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Abstract

Background: Generative artificial intelligence (AI), particularly in the form of large language models, has rapidly developed.
The LLaMA series are popular and recently updated from LLaMA2 to LLaMA3. However, the impacts of the update on diagnostic
performance have not been well documented.

Objective: We conducted a comparative evaluation of the diagnostic performance in differential diagnosis lists generated by
LLaMA3 and LLaMA2 for case reports.

Methods: We analyzed case reports published in the American Journal of Case Reports from 2022 to 2023. After excluding
nondiagnostic and pediatric cases, we input the remaining cases into LLaMA3 and LLaMA2 using the same prompt and the same
adjustable parameters. Diagnostic performance was defined by whether the differential diagnosis lists included the final diagnosis.
Multiple physicians independently evaluated whether the final diagnosis was included in the top 10 differentials generated by
LLaMA3 and LLaMA2.

Results: In our comparative evaluation of the diagnostic performance between LLaMA3 and LLaMA2, we analyzed differential
diagnosis lists for 392 case reports. The final diagnosis was included in the top 10 differentials generated by LLaMA3 in 79.6%
(312/392) of the cases, compared to 49.7% (195/392) for LLaMA2, indicating a statistically significant improvement (P<.001).
Additionally, LLaMA3 showed higher performance in including the final diagnosis in the top 5 differentials, observed in 63%
(247/392) of cases, compared to LLaMA2’s 38% (149/392, P<.001). Furthermore, the top diagnosis was accurately identified
by LLaMA3 in 33.9% (133/392) of cases, significantly higher than the 22.7% (89/392) achieved by LLaMA2 (P<.001). The
analysis across various medical specialties revealed variations in diagnostic performance with LLaMA3 consistently outperforming
LLaMA2.

Conclusions: The results reveal that the LLaMA3 model significantly outperforms LLaMA2 per diagnostic performance, with
a higher percentage of case reports having the final diagnosis listed within the top 10, top 5, and as the top diagnosis. Overall
diagnostic performance improved almost 1.5 times from LLaMA2 to LLaMA3. These findings support the rapid development
and continuous refinement of generative AI systems to enhance diagnostic processes in medicine. However, these findings should
be carefully interpreted for clinical application, as generative AI, including the LLaMA series, has not been approved for medical
applications such as AI-enhanced diagnostics.
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Introduction

Artificial Intelligence in Medicine
The concept of artificial intelligence (AI) dates back to the 1950s
when the potential for machines to mimic human intelligence
first began to be explored [1]. Since then, AI technologies,
particularly in areas such as neural networks, natural language
processing (NLP), and large language models (LLMs), have
advanced substantially. These advancements have been driven
by significant computational developments and the vast data
available in the digital world. Recently, access to these
technologies has also become more straightforward, requiring
less specific knowledge and fewer resources.

In the realm of AI, neural networks form a foundational concept.
These networks mimic the complex interconnections of neurons
in the human brain, featuring synapse-like connections that
facilitate dynamic learning and adoption. Unlike traditional
technologies that rely on static algorithms, neural networks are
designed to iteratively adjust the connections between nodes
[2]. NLP enables computers to understand and process human
language, facilitating tasks such as text translation, voice
command response, and data extraction from complex sources.
LLMs, advanced forms of NLP, train on extensive corpora of
text to generate coherent and contextually relevant text [3].
These technologies have enabled complex models to achieve
improved performance and address challenges that traditional
approaches cannot handle, such as analyzing large volumes of
data to identify patterns that may not be visible to human
analysts.

These advancements are now widespread across various sectors,
notably in the medical field. Generative AI systems, such as the
GPT series developed by OpenAI, Google’s Gemini, and
LLaMA, have demonstrated considerable value in research,
education, and potential future clinical applications [4,5]. They
have the potential to support medical professionals, patients,
and their families, by aiding them in making informed clinical
decisions based on comprehensive data analysis.

Generative AI in Medicine
In the medical field, generative AI has been pivotal in advancing
diagnostic processes, developing treatment protocols, enabling
personalized medicine, and managing patient care [6]. By
analyzing vast datasets, generative AI uncovers patterns not
immediately obvious to medical professionals, providing crucial
insights that lead to improved patient outcomes. For example,
generative AI systems are instrumental in enhancing clinical
decision-making, optimizing clinical workflows, and improving
patient outcomes [7]. Specifically, in diagnosis, generative AI
enhances the medical interview process by visualizing the
patient’s perspective [8], expands the scope of differential
diagnosis lists, and supports clinical reasoning [9,10].

From LLaMA2 to LLaMA3
The evolution of generative AI systems has been notably rapid,
primarily due to their ability to integrate user feedback and
continuously update from expanded datasets. This iterative
improvement is evident in the progression from GPT-3 to
GPT-4, and more recently to GPT-4o and OpenAI o1 [11,12].
Similarly, other systems such as Bard have evolved into more
advanced versions such as Gemini and Gemini Advanced [13].
In this dynamic landscape, the LLaMA series has also undergone
upgrades, moving from LLaMA2 to LLaMA3, enhancing their
capabilities [14].

Generative AI in Diagnostics
In diagnostics, generative AI systems have the potential to
enhance diagnostic performance. These systems excel at
processing and interpreting complex clinical data from diverse
courses such as electronic health records, imaging studies, and
genomic data. Notably, the GPT series has demonstrated
considerable diagnostic performance in medical benchmarks
and complex case analyses [15]. While significant strides have
been made, studies have indicated that other LLM models, such
as LLaMA2, require substantial refinement for optimal
application in diagnostics [16,17]. Our own study revealed that
the diagnostic performance by LLaMA2 was inferior to those
of ChatGPT-4 and Gemini for case-report series [18]. This
necessitates ongoing development to improve model accuracy
and reliability, ensuring they meet clinical standards and
effectively support diagnostic decision-making.

Study Aims
Despite these advancements, the diagnostic capabilities of
updated AI models such as LLaMA3 have not been
comprehensively explored. There is a particular lack of
comparative studies examining the improvements in diagnostic
performance from LLaMA2 to LLaMA3. In this context, our
study aims to fill this gap by assessing and comparing the
diagnostic performance of LLaMA3 to LLaMA2. Specifically,
we intend to evaluate their effectiveness in generating
differential diagnosis lists for comprehensive case reports. This
comparison will explain the evolutionary benefits of the
generative AI system upgrade and their practical implications
in future diagnostics.

Methods

Overview
This was an experimental study using publicly available
generative AI systems and published case reports. The entire
study was conducted at the Department of Diagnostic and
Generalist Medicine (General Internal Medicine), Dokkyo
Medical University, Japan. This study consisted of four
components, including preparing case reports, generating
differentials by AIs, evaluating the differentials, and analysis.
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The flowchart, including preparing case reports and generating differentials, is shown in Figure 1.

Figure 1. The flowchart, including preparing case reports and generating differentials.

Ethical Considerations
We used published case reports; therefore, ethical approval was
inapplicable.

Case Reports
We used the dataset from our previous research [18]. Our
inclusion criteria included case reports published in the
American Journal of Case Reports from January 2022 to March
2023. We excluded nondiagnostic cases and pediatric cases.
These exclusion criteria were adopted from a previous study
for a clinical decision support system [19]. For the included
case reports, we refined the text data for input. This process
involved extracting the clinical narrative from each case report
up until the stated final diagnosis. We carefully removed any
sections that included clinical assessments or subjective
interpretations by the authors to minimize the risk of biasing
the AI’s output. This editing was designed to ensure that the
input to the AI models was focused on clinical information
essential for generating accurate differential diagnoses. The
final diagnoses were typically written by the authors. The main
investigator, TH, conducted this process, which was validated
by another coinvestigator, YH. Details of preparing case reports
are shown in Multimedia Appendix 1.

Differentials Generated by AIs
We used popular generative AI systems developed by Meta AI,
LLaMA3 and LLaMA2, to generate differentials. LLaMA3
offers 8B and 70B versions, while LLaMA2 includes 7B, 13B,
and 70B versions. For our study, we used the most capable
models, the 70B versions. The main investigator, TH, inputted
the same cases into both LLaMA3 and LLaMA2 using the same
prompt to generate the top 10 differential diagnosis lists.

Both LLaMA3 and LLaMA2 allowed for several adjustable
settings to control the output, including temperature, top-P
(nucleus), and max tokens. All parameters were set uniformly
for this study. The temperature was set at a low value of 0.01
to prioritize predictability in the model’s output. This setting
reduces the randomness and creativity of the responses, favoring
deterministic and consistent results ideal for medical diagnostics
where accuracy is paramount. The top-P parameter was set at
1, allowing for the broadest selection of words while maintaining
focus on relevant content, crucial for generating precise
differential diagnoses. Lastly, the max tokens were limited to
streamline the output, ensuring that the AI focuses on generating
concise, relevant differential-diagnosis lists. Table 1 illustrates
the key characteristics of the methods to generate differentials,
including adjustable parameters and the prompts. The details
of methods to generate differentials, including adjustable
parameters and system prompts are shown in Multimedia
Appendix 2.
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Table 1. The key characteristics of the methods to generate differentials include adjustable parameters and the prompts in this study.

LLaMA2LLaMA3

Meta AIMeta AIDeveloper

70B70BVersion

July 2023April 2024Release date

May 2024May 2024Access date

“Tell me the top 10 suspected illnesses for the fol-
lowing case: (copy and paste the case)”

“Tell me the top 10 suspected illnesses for the fol-
lowing case: (copy and paste the case)”

Prompt

0.010.01Temperature

500500Max tokens

11Top-P

Evaluation
Two expert physicians, T Shiraishi and T Suzuki, independently
evaluated the differentials. We adopted a binary approach to
evaluate whether the final diagnosis was included in the
differential diagnosis lists. When the lists included the final
diagnosis, their rankings were also evaluated. To ensure
consistency and objectivity in evaluations, any discrepancies
between the initial assessments by T Shiraishi and T Suzuki
were resolved through a consensus meeting involving a third
expert physician, KT. To enhance the reliability of our
evaluation process, we considered implementing a κ statistic to
quantify interevaluator agreement. All evaluators were blinded
to which AI system generated the differentials to prevent bias.
The details of evaluation methods are shown in Multimedia
Appendix 3.

Analysis
In this study, diagnostic performance was defined as the
inclusion of the final diagnosis in the differential diagnosis lists.

Outcome
We defined the primary outcome as the ratio of cases where the
final diagnosis was included in the top 10 differential diagnosis
lists generated by LLaMA2 or LLaMA3. The denominator was
the total number of cases. The numerator was the number of
cases in which the final diagnosis was included in the lists. The
secondary outcomes were defined as the ratios of whether the
final diagnosis was included in the top 5 differential diagnosis
lists and as the top diagnosis, generated by LLaMA2 or
LLaMA3. We defined the primary outcome and the secondary
outcomes as overall diagnostic performance. Additionally,
interrater reliability between the physicians’ evaluation for the
differential diagnosis lists was calculated as the Cohen κ
coefficient.

Exploratory Analysis
The dataset for this analysis comprised cases sourced from a
broad spectrum of medical specialties. Each case report was
tagged with one to six relevant medical specialties, ensuring a
comprehensive representation of the diverse areas in medicine.

These specialties were included as part of the standardized
metadata attached to each case report, facilitating an organized
and targeted analysis. In this study, we included only those
specialties that were tagged in at least 10 different case reports.

The exploratory analysis involved quantifying the number of
cases correctly diagnosed within each specialty and calculating
the ratio of cases for each specialty where the final diagnosis
was included in the top 10 differential diagnosis lists generated
by LLaMA3 or LLaMA2. The denominator was the total number
of cases for each specialty. The numerator was the number of
cases in which the final diagnosis was included in the lists.
Additionally, we calculated 95% CIs for each ratio to assess
the precision of our estimates.

Statistical Analysis
Data were analyzed using R software (version 4.2.2; The R
Foundation for Statistical Computing). Descriptive statistics for
categorical or binary variables were summarized as numbers
and percentages. We compared categorical data using the
chi-square test to determine statistical significance. All tests
were 2-sided, and a P value of <.05 was considered to indicate
statistical significance. For assessing interrater reliability, the
Cohen κ coefficient was computed using the “irr” package in
R. The interpretation of Cohen κ was as follows: a value below
0.4 indicates poor agreement; values between 0.41 and 0.75
suggest fair to good agreement; and values from 0.75 to 1 reflect
very good to excellent agreement [20].

Results

Overview Cases
A total of 392 cases were included in this study. LLaMA3 and
LLaMA2 generated differentials for all cases. The representative
differentials are shown in Table 2. The dataset of cases,
differentials by LLaMA3 and LLaMA2, and the final diagnoses
are shown in Multimedia Appendix 4. The cases encompassed
a broad range of medical specialties, with the highest number
of cases in general internal medicine and surgery, as detailed
in Table 3.
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Table 2. The representative differentials generated by LLaMA3 and LLaMA2.

LLaMA2LLaMA3Final diagnosis

Dementia with Lewy bodies 1.1. Parkinson diseaseLewy body dementia
2. 2.Parkinson disease Dementia with Lewy bodies

3.3. Alzheimer diseaseDementia with Lewy bodies
4. 4.Alzheimer disease Vascular dementia

5.5. Frontotemporal dementiaRapid eye movement sleep behavior disorder
6. 6.Neuroleptic malignant syndrome Huntington disease

7.7. Creutzfeldt-Jakob diseaseSerotonin syndrome
8. 8.Delirium Wernicke-Korsakoff syndrome

9.9. Mild cognitive impairmentFrontotemporal dementia
10. 10.Vascular dementia Schizophrenia

Infectious myositis 1.1. Infectious shockNecrotizing fasciitis
2. 2.Sepsis Sepsis

3.3. Bacterial arthritisCellulitis
4. 4.Myositis Muscle abscess

5.5. Necrotizing fasciitisPyomyositis
6. 6.Abscess Cellulitis

7.7. PyomyositisOsteomyelitis
8. 8.Endocarditis Osteomyelitis

9.9. SepticemiaBacteremia
10. 10.Gas gangrene Multiorgan dysfunction syndrome

Wandering spleen 1.1. Chronic pancreatitisWandering spleen
2. 2.Splenoptosis Pancreatic neuroendocrine tumor

3.3. Splenic tumorIntestinal malrotation
4. 4.Pancreatic heterotopy Intestinal obstruction

5.5. Chronic appendicitisGastric volvulus
6. 6.Midgut volvulus Pelvic inflammatory disease

7.7. EndometriosisInternal hernia
8. 8.Ovarian torsion Ovarian cyst

9.9. Gastrointestinal stromal tumorUterine fibroid
10. 10.Pelvic inflammatory disease Mesenteric ischemia
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Table 3. Medical specialties in all cases and those correctly identified solely by LLaMA3 and LLaMA2.

Cases correctly identified by LLaMA2
(N=195), n (%, 95% CIs); improvement ra-
tios

Cases correctly identified solely by LLa-
MA3 (N=312), n (%, 95% CIs)

All cases
(N=392), n

Medical specialtya

34 (50.7, 49-52.5)50 (74.6, 72.5-77)67Surgery

35 (54.7, 52.9-56.5)55 (85.9, 83.7-88.2)64General internal medicine

39 (70.9, 68.7-73.1)48 (87.3, 84.8-89.7)55Infectious diseases

20 (40.8, 39.1-42.6)38 (77.6, 75.1-80)49Cardiology

23 (54.7, 52.5-57)37 (88.1, 85.3-90.9)42Neurology

23 (57.5, 55.2-59.8)34 (85, 82.1-87.9)40Urology

19 (59.4, 56.7-62)26 (81.3, 78.1-84.4)32Oncology

19 (59.4, 56.7-62)26 (81.3, 78.1-84.4)32Metabolic diseases

16 (55.2, 52.5-57.9)20 (69, 65.9-72)29Radiology

9 (33.3, 31.2-35.5)22 (81.5, 78.1-84.9)27Critical care medicine

10 (37, 34.7-39.3)21 (77.8, 74.5-81.1)27Gastrointestinal

10 (45.5, 42.6-48.3)17 (77.3, 73.6-80.9)22Hematology

12 (63.2, 59.6-66.7)14 (73.7, 69.8-77.5)19Rheumatology

8 (44.4, 41.4-47.5)14 (77.8, 73.7-81.9)18Nephrology

11 (61.1, 57.5-64.7)15 (83.3, 79.1-87.6)18Respiratory

8 (47.1, 43.8-50.3)11 (64.7, 60.9-68.5)17Obstetrics and gynecology

7 (43.8, 40.5-47)14 (87.5, 82.9-92.1)16Endocrinology

4 (30.8, 27.8-33.8)10 (76.9, 72.2-81.7)13Otolaryngology

4 (40, 36.1-43.9)6 (60, 55.2-64.8)10Orthopedics

aEach case report was tagged with one to six relevant medical specialties.

Overall Diagnostic Performance
The final diagnosis was included in the top 10 differentials
generated by LLaMA3 in 79.6% (312/392) of the cases,
compared to 49.7% (195/392) for LLaMA2, indicating a
statistically significant improvement (P<.001). Additionally,
LLaMA3 showed higher performance in including the final
diagnosis in the top 5 differentials, observed in 63% (247/392)
of cases, compared to LLaMA2’s 38% (149/392, P<.001).

Moreover, the final diagnosis was accurately identified as the
top diagnosis by LLaMA3 in 33.9% (133/392) of cases,
significantly higher than the 22.7% (89/392) achieved by
LLaMA2 (P<.001). The overall diagnostic performance of
LLaMA3 and LLaMA2 is shown in Table 4. We observed fair
to good agreement between physicians’ evaluations for the
differential diagnosis lists, with a κ coefficient of 0.69,
indicating concordance in 84.2% (660/784) of cases.

Table 4. Overall diagnostic performance of LLaMA3 and LLaMA2.

P valueaLLaMA2, n/N (%)LLaMA3, n/N (%)Diagnostic performance

<.001195/392 (49.7)312/392 (79.6)The ratio of whether the final diagnosis was included in
the top 10 differential diagnosis lists

<.001149/392 (38)247/392 (63)The ratio of whether the final diagnosis was included in
the top 5 differential diagnosis lists

<.00189/392 (22.7)133/392 (33.9)The ratio of whether the final diagnosis was included as
the top diagnosis

aP value from chi-squared test.

Exploratory Analysis by Medical Specialty
The exploratory analysis across various medical specialties
revealed variations in diagnostic performance with LLaMA3
consistently outperforming LLaMA2 in almost all fields. All
specialties showed improvements of more than 10% from

LLaMA2 to LLaMA3, with nonoverlapping 95% CIs, indicating
statistically significant enhancements. Specifically, critical care
medicine, gastrointestinal, endocrinology, and otolaryngology
exhibited remarkable improvements of more than 40% from
LLaMA2. Conversely, infectious diseases, radiology, and
obstetrics and gynecology showed the least improvements, with
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about a 10% increase from LLaMA2 to LLaMA3. Other
specialties exhibited moderate improvements with 20%-30%.
Ophthalmology demonstrated the highest accuracy with 71.4%
(5/7) of cases correctly identified, followed by otolaryngology
at 61.5% (8/31). Lower accuracy was observed in specialties
such as rehabilitation medicine at 11.1% (1/9) and rheumatology
at 15.8% (3/19). Other specialties such as general internal
medicine and surgery showed moderate performance with

accuracies of 34.4% (22/64) and 28.4% (19/67), respectively.
Table 3 details the breakdown of medical specialties, showing
the total number of cases and those correctly identified by
LLaMA3 and LLaMA2 in all cases and those correctly identified
solely by LLaMA3. Figure 2 presents a radar chart illustrating
the ratio of cases for each specialty where the final diagnosis
was included in the top 10 differential diagnosis lists generated
by both LLaMA3 or LLaMA2.

Figure 2. Radar chart illustrating the improvement ratios for the inclusion of the final diagnosis within the top 10 differential diagnosis lists generated
by LLaMA2 and LLaMA3, across various medical specialties. Each axis on the radar chart represents a specific medical specialty. The numerical values
adjacent to each specialty name reflect the total number of cases analyzed within that specialty, providing context for the observed performance metrics.

Discussion

Principal Results
This study demonstrated that the LLaMA3 model significantly
outperforms LLaMA2 in overall diagnostic performance,
showing almost 1.5-fold improvement. Specifically, the
inclusion rate of the final diagnosis in the top 10 differentials
rose from 50% to 80%. This substantial enhancement reflects
marked advancements within the LLaMA series over a relatively
short period.

These enhancements likely come from the implementation of
more advanced algorithms and more robust training datasets,
highlighting the rapid evolution of generative AI capabilities

in medical diagnostics. The significantly higher inclusion rates
of the final diagnosis in the top 10, top 5 differentials, and the
top diagnosis by LLaMA3 indicate that its model has been finely
tuned for greater precision in analyzing complex medical cases.
This tuning suggests that LLaMA3 is more adept at
incorporating clinical nuances and recognizing a diverse range
of symptoms, which is critical for generating accurate
differential diagnoses in real-world clinical settings.

Model Bias and Generalizability
While this study leverages data from a single journal, it is crucial
to consider how this might limit the generalizability of the
findings. The cases predominantly represent complex or rare
medical scenarios, which might not fully represent routine
clinical situations found across diverse health care systems [21].
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This focus could skew the AI’s performance, suggesting that
while LLaMA3 shows promise, its effectiveness in general
practice remains to be validated in a more varied clinical context.

Practical Implementation and Challenges
Integrating LLaMA3 into clinical practice presents several
challenges that require careful consideration. The foremost is
regulatory approval, as generative AI, including the LLaMA
series, has not yet been approved for direct clinical applications
such as AI-enhanced diagnostics. Regulatory hurdles can
significantly delay or impede the practical application of
innovative technologies. Furthermore, clinician trust in AI
decision-making is vital and requires the AI to be not only
effective but also transparent in how decisions are derived.
Clinicians must be able to comprehend how decisions are
derived to confidently integrate AI recommendations into their
workflow.

The computational demands of running sophisticated models
such as LLaMA3 also pose a significant challenge.
High-performance computing resources, such as Graphics
Processing Units or cloud-based solutions, are essential to
operate these advanced AI systems effectively, which could
limit their deployment in resource-constrained settings.

Future Research and Development
To facilitate the effective integration of AI such as LLaMA3
into health care workflows, ongoing training with real-world
data and continuous feedback from clinical use are
indispensable. This iterative process will help ensure that the
AI remains accurate and adapts to evolving medical standards.
Exploring multimodal AI that incorporates text and image data
from electronic health records could enhance diagnostic
accuracy. Future studies should focus on integrating these
systems with routine health care workflows to assess their
practical utility and acceptance among health care providers.
Additionally, addressing potential biases in AI decision-making
and ensuring adherence to ethical health care standards are
crucial for gaining acceptance and trust in clinical environments.

Results From Exploratory Analysis
The exploratory analysis across different medical specialties
provided a view of LLaMA3’s performance, which varied across
fields. For instance, specialties, including critical care medicine,
showed exceptionally high improvements in diagnostic accuracy
with LLaMA3. This finding highlights its effectiveness in
processing complex clinical courses.

However, the analysis also uncovered areas with modest
improvements. For instance, radiology showed small
improvements, with about a 10% increase from LLaMA2. This
result suggests a need for multimodal AI that can process image
data in addition to text data [22]. Multimodal AI enables the
simultaneous processing and understanding of multiple forms,
including text and image data, which is particularly pertinent
for enhancing diagnostic accuracy in radiology.

The variability in these improvements highlights the importance
of targeted algorithmic training tailored to the specific demands
of each medical specialty. Specialized training datasets that
encompass the wide range of scenarios encountered in particular

fields could be crucial in enhancing the generative AI’s learning
curve and improving its utility in clinical practice. The
performance of LLaMA3 varies across medical specialties, with
notably high improvement ratios in ophthalmology and
otolaryngology, likely due to the distinct and well-defined
symptoms associated with conditions treated within these fields.
Conversely, specialties such as rehabilitation medicine and
rheumatology showed lower improvement ratios, attributed to
the complexity of the clinical course and immune responses,
posing challenges for the current model’s diagnostic algorithms.
A significant factor contributing to the variation in performance
is the relatively small number of cases available for some
specialties.

Strengths
A major strength of this study is the controlled comparison of
diagnostic performances using identical cases and standardized
parameters, providing a clear assessment of improvements from
LLaMA2 to LLaMA3. Additionally, the longitudinal assessment
of the LLaMA series offers valuable insights into the
developmental course of AI models in medical diagnostics. This
is particularly notable when contrasted with findings from other
AI systems where no improvement was noted over time [23].

Limitations

Overview
There were several limitations concerning study design and
generative AI.

Limitations for Study Design
First, case reports may not fully reflect real-world clinical cases.
This limitation arises because case reports often focus on new
or rare diseases, which might not be commonly encountered in
typical clinical settings [21]. Second, relying solely on a single
case report journal may introduce selection bias. Third, there
was no well-established standard to evaluate the diagnostic
performance of clinical decision support systems, including the
number of differentials and the evaluation methods. For
example, a study adopted 5 differentials while another adopted
40 differentials [24,25]. Regarding evaluation methods, some
studies used scale-based assessments, while others used binary
methods. Qualitative evaluations of the differential diagnosis
lists should also be explored in future studies to assess their
overall clinical relevance beyond whether the correct diagnosis
was included. These variations in evaluation methods were
partly due to the complexity of the diagnostic process in real
clinical situations [26]. Fourth, we excluded specialties tagged
in fewer than 10 different case reports. Therefore, there was a
possibility to overlook minor specialties where LLaMA3 did
not outperform LLaMA2. Fifth, the variability in sample sizes
across specialties in our exploratory analysis might affect the
robustness of the conclusions drawn. Additionally, the sensitivity
of AI models such as the LLaMA series to variations in input
prompts—prompt engineering—is a critical area. There is a
potential that even minor prompt changes presented to the AI
can significantly influence its diagnostic suggestions,
emphasizing the need for standardized prompt protocols to
ensure consistent AI performance.
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Limitations for Generative AI
Generative AI, including the LLaMA series, has not been
approved for medical applications such as AI-enhanced
diagnostics. Additionally, the optimal prompts and adjustable
parameters for medical diagnostics remain unknown. For
example, another study used different settings with a temperature
of 0.6, top-P of 0.9, and max tokens of 2048 [16], in contrast
to our study which used a temperature of 0.01, top-P of 1, and
max tokens of 500. Similarly, another study used multiple
prompting scenarios, such as chain of thought, few shots, and
retrieval augmentations [27], compared to our study with a
simple prompt. This difference in prompting complexity could
impact the generative AI’s performance. Furthermore, we did
not recruit all available generative AI, including the ChatGPT
series, Gemini, and Claude 3. Moreover, a critical limitation
identified in our study involves the potential for data leakage,
where LLaMA3 and LLaMA2 might have been previously
exposed to the case reports used in our analysis, thereby
influencing their performance artificially. The inherent risk of
data leakage cannot be entirely ruled out due to the models’
continuous learning capabilities and the complex nature of their
training environments. To mitigate such risks in future studies,
we plan to implement rigorous partitioning of data to ensure
that no overlap occurs between training and testing datasets.
Regarding transparency, although the LLaMA series is often
referred to as open-source LLMs, there is an ongoing debate
about the openness of generative AIs [28,29]. Finally, the rapid
pace of development in generative AI systems suggested that

our findings may quickly become outdated as next-generation
LLMs emerge.

These limitations could affect generalizability.

Comparison With Prior Work

Comparison With LLaMA2
Following the limitations outlined, our comparative analysis
with prior iterations of LLaMA2 highlights the dynamic nature
of AI development and its implications on diagnostic accuracy.
In our study, the inclusion of the final diagnosis in the top 10
differentials for 49.7% (195/392) of cases represents a decrease
from the 54.6% (214/392) observed in our prior study [18]. This
variation in performance, a 1%-5% difference, is directly
attributable to the adjustments in operational parameters such
as temperature, max tokens, and top-P. These findings highlight
how seemingly minor tweaks in AI configurations can lead to
significant changes in outcome, emphasizing the necessity for
continuous optimization based on evolving clinical needs.

Our results not only reflect the critical impact of parameter
adjustments on the efficacy and reliability of AI diagnostic
outputs but also the importance of tailoring these settings to
specific diagnostic tasks within clinical environments. The
ongoing research and development efforts are vital as they
contribute to refining these parameters to enhance the
performance of AI systems in real-world settings. Table 5 details
the diagnostic performance and key characteristics of LLaMA2
compared to the previous study, illustrating these points and
showing the progression within the LLaMA series.

Table 5. Diagnostic performance and key characteristics of LLaMA2 compared to a previous study.

LLaMA2 in the previous studyLLaMA2 in this study

214/392 (54.6)195/392 (49.7)The ratio of whether the fi-
nal diagnosis was included
in the top 10 differential di-
agnosis lists, n/N (%)

177/392 (45.2)149/392 (38)The ratio of whether the fi-
nal diagnosis was included
in the top 5 differential diag-
nosis lists, n/N (%)

90/392 (23)89/392 (22.7)The ratio of whether the fi-
nal diagnosis was included
as the top diagnosis, n/N (%)

Meta AIMeta AIDeveloper

70B70BVersion

July 2023July 2023Release date

August 2023May 2024Access date

“Tell me the top 10 suspected illnesses for the following
case: (copy and paste the case)”

“Tell me the top 10 suspected illnesses for the following
case: (copy and paste the case)”

Prompt

2.490.01Temperature

2048500Max tokens

0.51Top-P
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Comparison With Other Generative AI
From another study involving ChatGPT-3.5, ChatGPT-4, and
LLaMA2, inferior performances of LLaMA2 compared to
ChatGPT-3.5 and ChatGPT-4 were observed [16]. From the
current findings, there is a possibility that results may change
due to longitudinal improvements from LLaMA2 to LLaMA3.

Our comparative analysis extends beyond LLaMA2 and
LLaMA3 to include contemporary models such as ChatGPT-4
and Gemini, providing a broader perspective on generative AI
capabilities. While LLaMA3 has shown notable improvements
and closely matches the performance of ChatGPT-4 with a
diagnostic accuracy of 86.7% (340/392) in the top 10
differentials [18], it is essential to consider the development
timelines and the operational models of these AI systems. Unlike
LLaMA3, ChatGPT-4(o) and Gemini Advanced are fee-based
models that might have different optimization and deployment
strategies, potentially affecting their performance in clinical
settings. Moreover, the introduction of newer models such as
ChatGPT-4o and OpenAI o1 represents continuous
advancements within the generative AI landscape, highlighting
the dynamic nature of AI development.

Comparison With Other Clinical Decision Support
Systems
Expanding on our comparative analysis, we also evaluate
LLaMA3 in the context of established clinical decision support

systems such as Isabel Pro (developed by Isabel Healthcare).
While Isabel Pro has demonstrated a diagnostic retrieval
accuracy of 65% for its top 10 differentials, increasing to 87%
for the top 40 [25], these figures provide a benchmark for
evaluating LLaMA3’s capabilities. Our study’s performance
metrics are closely aligned with these established systems,
suggesting that LLaMA3 could offer comparable benefits in
clinical decision-making. It is crucial to understand the
methodologies and metrics used across different systems to
ensure a fair and meaningful comparison.

Conclusions
The results demonstrate that the LLaMA3 model significantly
outperforms LLaMA2 per diagnostic performance, with a higher
percentage of case reports having the final diagnosis listed
within the top 10, top 5, and as the top diagnosis. Overall
diagnostic performance improved almost 1.5 times from
LLaMA2 to LLaMA3. These findings support the rapid
development and continuous refinement of generative AI
systems to enhance diagnostic processes in medicine. However,
these findings should be carefully interpreted for clinical
application, as generative AI, including the LLaMA series, has
not been approved for medical applications such as AI-enhanced
diagnostics.
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