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Abstract

Background: Generative artificial intelligence (Al), particularly in the form of large language models, has rapidly developed.
TheLLaMA seriesare popular and recently updated from LLaMA2 to LLaM A 3. However, theimpacts of the update on diagnostic
performance have not been well documented.

Objective: We conducted a comparative evaluation of the diagnostic performance in differential diagnosis lists generated by
LLaMA3 and LLaMAZ2 for case reports.

Methods: We analyzed case reports published in the American Journal of Case Reports from 2022 to 2023. After excluding
nondiagnostic and pediatric cases, weinput the remaining casesinto LLaMA3 and L LaM A2 using the same prompt and the same
adjustable parameters. Diagnostic performance was defined by whether the differential diagnosislistsincluded thefinal diagnosis.
Multiple physicians independently evaluated whether the final diagnosis was included in the top 10 differentials generated by
LLaMA3 and LLaMAZ2,

Results: In our comparative evaluation of the diagnostic performance between LLaMA3 and LLaMA2, we analyzed differential
diagnosislists for 392 case reports. The final diagnosis was included in the top 10 differentials generated by LLaMA3 in 79.6%
(312/392) of the cases, compared to 49.7% (195/392) for LLaMAZ2, indicating a statistically significant improvement (P<.001).
Additionally, LLaMA3 showed higher performance in including the final diagnosisin the top 5 differentials, observed in 63%
(247/392) of cases, compared to LLaMA2's 38% (149/392, P<.001). Furthermore, the top diagnosis was accurately identified
by LLaMAS3 in 33.9% (133/392) of cases, significantly higher than the 22.7% (89/392) achieved by LLaMA2 (P<.001). The
analysisacrossvarious medical specialtiesrevealed variationsin diagnostic performance with LLaM A3 consistently outperforming
LLaMA2.

Conclusions: The resultsreveal that the LLaMA3 model significantly outperforms LLaMA?2 per diagnostic performance, with
a higher percentage of case reports having the final diagnosis listed within the top 10, top 5, and as the top diagnosis. Overall
diagnostic performance improved almost 1.5 times from LLaMA2 to LLaMA3. These findings support the rapid development
and continuous refinement of generative Al systemsto enhance diagnostic processes in medicine. However, these findings should
be carefully interpreted for clinical application, asgenerative Al, including the LLaMA series, has not been approved for medical
applications such as Al-enhanced diagnostics.

(IMIR Form Res 2024;8:€64844) doi: 10.2196/64844

https:/formative.,jmir.org/2024/1/e64844 JMIR Form Res 2024 | vol. 8| 64844 | p. 1
(page number not for citation purposes)


mailto:hirosawa@dokkyomed.ac.jp
http://dx.doi.org/10.2196/64844
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR FORMATIVE RESEARCH

KEYWORDS

Hirosawa et al

artificial intelligence; clinical decision support system; generative artificial intelligence; large language models; natural language
processing; NLP; Al; clinical decision making; decision support; decision making; LLM: diagnostic; case report; diagnoss,

generative Al; LLaMA

Introduction

Artificial Intelligencein Medicine

The concept of artificial intelligence (Al) datesback to the 1950s
when the potential for machines to mimic human intelligence
first began to be explored [1]. Since then, Al technologies,
particularly in areas such as neural networks, natural language
processing (NLP), and large language models (LLMs), have
advanced substantially. These advancements have been driven
by significant computational developments and the vast data
avalable in the digital world. Recently, access to these
technologies has also become more straightforward, requiring
less specific knowledge and fewer resources.

Intherealm of Al, neural networksform afoundational concept.
These networks mimic the complex interconnections of neurons
in the human brain, featuring synapse-like connections that
facilitate dynamic learning and adoption. Unlike traditional
technologiesthat rely on static algorithms, neural networks are
designed to iteratively adjust the connections between nodes
[2]. NLP enables computers to understand and process human
language, facilitating tasks such as text trandlation, voice
command response, and data extraction from complex sources.
LLMs, advanced forms of NLP, train on extensive corpora of
text to generate coherent and contextually relevant text [3].
These technologies have enabled complex models to achieve
improved performance and address challenges that traditional
approaches cannot handle, such as analyzing large volumes of
data to identify patterns that may not be visible to human
analysts.

These advancements are now widespread across various sectors,
notably inthe medical field. Generative Al systems, such asthe
GPT series developed by OpenAl, Google's Gemini, and
LLaMA, have demonstrated considerable value in research,
education, and potential future clinical applications[4,5]. They
have the potential to support medical professionals, patients,
and their families, by aiding them in making informed clinical
decisions based on comprehensive data analysis.

Generative Al in Medicine

Inthemedical field, generative Al has been pivotal in advancing
diagnostic processes, devel oping treatment protocols, enabling
personalized medicine, and managing patient care [6]. By
analyzing vast datasets, generative Al uncovers patterns not
immediately obviousto medical professionals, providing crucial
insights that lead to improved patient outcomes. For example,
generative Al systems are instrumental in enhancing clinical
decision-making, optimizing clinical workflows, andimproving
patient outcomes [7]. Specifically, in diagnosis, generative Al
enhances the medical interview process by visualizing the
patient’s perspective [8], expands the scope of differential
diagnosislists, and supports clinical reasoning [9,10].

https://formative.jmir.org/2024/1/e64844

FromLLaMA2toLLaMA3

The evolution of generative Al systems has been notably rapid,
primarily due to their ability to integrate user feedback and
continuously update from expanded datasets. This iterative
improvement is evident in the progression from GPT-3 to
GPT-4, and more recently to GPT-40 and OpenAl o1 [11,12].
Similarly, other systems such as Bard have evolved into more
advanced versions such as Gemini and Gemini Advanced [13].
In thisdynamic landscape, the LLaMA serieshas also undergone
upgrades, moving from LLaMA2 to LLaMA3, enhancing their
capabilities[14].

Generative Al in Diagnostics

In diagnostics, generative Al systems have the potentia to
enhance diagnostic performance. These systems excel at
processing and interpreting complex clinical datafrom diverse
courses such as electronic health records, imaging studies, and
genomic data. Notably, the GPT series has demonstrated
considerable diagnostic performance in medical benchmarks
and complex case analyses[15]. While significant strides have
been made, studieshaveindicated that other LLM models, such
as LLaMA2, require substantial refinement for optimal
application in diagnostics [16,17]. Our own study revesl ed that
the diagnostic performance by LLaMA2 was inferior to those
of ChatGPT-4 and Gemini for case-report series [18]. This
necessitates ongoing devel opment to improve model accuracy
and reliability, ensuring they meet clinical standards and
effectively support diagnostic decision-making.

Study Aims

Despite these advancements, the diagnostic capabilities of
updated Al models such as LLaMA3 have not been
comprehensively explored. There is a particular lack of
comparative studies examining the improvementsin diagnostic
performance from LLaMA2 to LLaMA3. In this context, our
study aims to fill this gap by assessing and comparing the
diagnostic performance of LLaMA3to LLaMA?2. Specifically,
we intend to evaluate their effectiveness in generating
differential diagnosislistsfor comprehensive casereports. This
comparison will explain the evolutionary benefits of the
generative Al system upgrade and their practical implications
in future diagnostics.

Methods

Overview

This was an experimental study using publicly available
generative Al systems and published case reports. The entire
study was conducted at the Department of Diagnostic and
Generalist Medicine (Genera Interna Medicine), Dokkyo
Medica University, Japan. This study consisted of four
components, including preparing case reports, generating
differentials by Als, evaluating the differentials, and analysis.
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Theflowchart, including preparing case reports and generating
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differentials, is shownin Figure 1.

Figure 1. Theflowchart, including preparing case reports and generating differentials.
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Ethical Considerations

We used published casereports; therefore, ethical approval was
inapplicable.

Case Reports

We used the dataset from our previous research [18]. Our
inclusion criteria included case reports published in the
American Journal of Case Reportsfrom January 2022 to March
2023. We excluded nondiagnostic cases and pediatric cases.
These exclusion criteria were adopted from a previous study
for a clinical decision support system [19]. For the included
case reports, we refined the text data for input. This process
involved extracting the clinical narrative from each case report
up until the stated final diagnosis. We carefully removed any
sections that included clinical assessments or subjective
interpretations by the authors to minimize the risk of biasing
the Al’s output. This editing was designed to ensure that the
input to the Al models was focused on clinical information
essential for generating accurate differential diagnoses. The
final diagnoses weretypically written by the authors. The main
investigator, TH, conducted this process, which was validated
by another coinvestigator, YH. Details of preparing case reports
are shown in Multimedia Appendix 1.

https://formative.jmir.org/2024/1/e64844

Differentials Generated by Als

We used popular generative Al systems devel oped by Meta Al
LLaMA3 and LLaMAZ2, to generate differentials. LLaMA3
offers 8B and 70B versions, while LLaMA2 includes 7B, 13B,
and 70B versions. For our study, we used the most capable
models, the 70B versions. The main investigator, TH, inputted
the same casesinto both LLaMA3 and LLaM A2 using the same
prompt to generate the top 10 differential diagnosis lists.

Both LLaMA3 and LLaMA?2 allowed for several adjustable
settings to control the output, including temperature, top-P
(nucleus), and max tokens. All parameters were set uniformly
for this study. The temperature was set at a low value of 0.01
to prioritize predictability in the model’s output. This setting
reducesthe randomness and cregtivity of the responses, favoring
deterministic and consistent resultsideal for medical diagnostics
where accuracy is paramount. The top-P parameter was set at
1, allowing for the broadest selection of wordswhile maintaining
focus on relevant content, crucial for generating precise
differential diagnoses. Lastly, the max tokens were limited to
streamline the output, ensuring that the Al focuses on generating
concise, relevant differential-diagnosis lists. Table 1 illustrates
the key characteristics of the methods to generate differentials,
including adjustable parameters and the prompts. The details
of methods to generate differentials, including adjustable
parameters and system prompts are shown in Multimedia
Appendix 2.
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Table 1. The key characteristics of the methods to generate differentials include adjustable parameters and the promptsin this study.

LLaMA3 LLaMA2

Developer Meta Al Meta Al

Version 70B 70B

Release date April 2024 July 2023

Access date May 2024 May 2024

Prompt “Tell me the top 10 suspected illnesses for the fol-  “Tell me the top 10 suspected illnesses for the fol-
lowing case: (copy and paste the case)” lowing case: (copy and paste the case)”

Temperature 0.01 0.01

Max tokens 500 500

Top-P 1 1

Evaluation These specidties were included as part of the standardized

Two expert physicians, T Shiraishi and T Suzuki, independently
evaluated the differentials. We adopted a binary approach to
evaluate whether the final diagnosis was included in the
differential diagnosis lists. When the lists included the final
diagnosis, their rankings were also evaluated. To ensure
consistency and objectivity in evaluations, any discrepancies
between the initial assessments by T Shiraishi and T Suzuki
were resolved through a consensus meeting involving a third
expert physician, KT. To enhance the reliability of our
evaluation process, we considered implementing ak statistic to
quantify interevaluator agreement. All evaluators were blinded
to which Al system generated the differentials to prevent bias.
The details of evaluation methods are shown in Multimedia
Appendix 3.

Analysis

In this study, diagnostic performance was defined as the
inclusion of thefinal diagnosisin the differential diagnosislists.

Outcome

We defined the primary outcome asthe ratio of caseswherethe
final diagnosiswasincluded inthetop 10 differential diagnosis
listsgenerated by LLaMA2 or LLaMA3. The denominator was
the total number of cases. The numerator was the number of
casesinwhich thefinal diagnosiswasincluded inthelists. The
secondary outcomes were defined as the ratios of whether the
final diagnosis was included in the top 5 differential diagnosis
lists and as the top diagnosis, generated by LLaMA2 or
LLaMA3. We defined the primary outcome and the secondary
outcomes as overal diagnostic performance. Additionally,
interrater reliability between the physicians’ evaluation for the
differential diagnosis lists was calculated as the Cohen k
coefficient.

Exploratory Analysis

The dataset for this analysis comprised cases sourced from a
broad spectrum of medical specialties. Each case report was
tagged with one to six relevant medical specialties, ensuring a
comprehensive representation of the diverse areas in medicine.

https://formative.jmir.org/2024/1/e64844

metadata attached to each case report, facilitating an organized
and targeted anaysis. In this study, we included only those
specidtiesthat weretagged in at least 10 different case reports.

The exploratory analysis involved quantifying the number of
cases correctly diagnosed within each specialty and calculating
the ratio of cases for each specialty where the final diagnosis
wasincluded in thetop 10 differential diagnosislists generated
by LLaMA3 or LLaMAZ2. The denominator wasthe total number
of cases for each specialty. The numerator was the number of
cases in which the final diagnosis was included in the lists.
Additionally, we calculated 95% ClIs for each ratio to assess
the precision of our estimates.

Statistical Analysis

Data were analyzed using R software (version 4.2.2; The R
Foundation for Statistical Computing). Descriptive statisticsfor
categorical or binary variables were summarized as numbers
and percentages. We compared categorical data using the
chi-square test to determine statistical significance. All tests
were 2-sided, and a P value of <.05 was considered to indicate
statistical significance. For assessing interrater reliability, the
Cohen K coefficient was computed using the “irr” package in
R. Theinterpretation of Cohen k was asfollows: avalue below
0.4 indicates poor agreement; values between 0.41 and 0.75
suggest fair to good agreement; and valuesfrom 0.75 to 1 reflect
very good to excellent agreement [20].

Results

Overview Cases

A total of 392 cases were included in this study. LLaMA3 and
LLaMA2 generated differentialsfor all cases. Therepresentative
differentials are shown in Table 2. The dataset of cases,
differentialsby LLaMA3and LLaM A2, and thefinal diagnoses
are shown in Multimedia Appendix 4. The cases encompassed
a broad range of medical specialties, with the highest number
of cases in genera internal medicine and surgery, as detailed
in Table 3.
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Table 2. The representative differentials generated by LLaMA3 and LLaMA2.
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Final diagnosis LLaMA3 LLaMA2
Dementiawith Lewy bodies 1. Lewy body dementia 1. Parkinson disease
2. Parkinson disease 2.  Dementiawith Lewy bodies
3. Dementiawith Lewy bodies 3. Alzheimer disease
4. Alzheimer disease 4. Vascular dementia
5. Rapid eye movement sleep behavior disorder 5. Frontotemporal dementia
6.  Neuroleptic malignant syndrome 6. Huntington disease
7.  Serotonin syndrome 7. Creutzfeldt-Jakob disease
8. Delirium 8.  Wernicke-Korsakoff syndrome
9. Frontotemporal dementia 9. Mild cognitive impairment
10. Vascular dementia 10. Schizophrenia
Infectious myositis 1. Necrotizing fasciitis 1. Infectious shock
2. Sepsis 2.  Sepsis
3. Cdlulitis 3. Bacteria arthritis
4. Myositis 4. Muscle abscess
5.  Pyomyositis 5. Necrotizing fasciitis
6. Abscess 6. Cdlulitis
7. Osteomyelitis 7. Pyomyositis
8. Endocarditis 8. Osteomyelitis
9. Bacteremia 9. Septicemia
10. Gasgangrene 10. Multiorgan dysfunction syndrome
Wandering spleen 1. Wandering spleen 1. Chronic pancrestitis
2. Splenoptosis 2. Pancreatic neuroendocrine tumor
3. Intestinal malrotation 3. Splenic tumor
4.  Pancrestic heterotopy 4. Intestinal obstruction
5. Gastric volvulus 5. Chronic appendicitis
6. Midgut volvulus 6. Pelvicinflammatory disease
7. Interna hernia 7. Endometriosis
8. Ovariantorsion 8. Ovarian cyst
9. Uterinefibroid 9. Gastrointestinal stromal tumor

10. Pelvicinflammatory disease

10. Mesenteric ischemia

https://formative.jmir.org/2024/1/e64844
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Table 3. Medica specidtiesin al cases and those correctly identified solely by LLaMA3 and LLaMA2.

Hirosawa et al

Medical specialty? All cases Cases correctly identified solely by LLa-  Cases correctly identified by LLaMA?2
(N=392),n  MA3(N=312), n (%, 95% Cls) (N=195), n (%, 95% Cls); improvement ra-
tios
Surgery 67 50 (74.6, 72.5-77) 34(50.7, 49-52.5)
General internal medicine 64 55 (85.9, 83.7-88.2) 35 (54.7, 52.9-56.5)
Infectious diseases 55 48 (87.3, 84.8-89.7) 39(70.9, 68.7-73.1)
Cardiology 49 38 (77.6, 75.1-80) 20 (40.8, 39.1-42.6)
Neurology 42 37(88.1, 85.3-90.9) 23 (54.7, 52.5-57)
Urology 40 34 (85, 82.1-87.9) 23 (57.5, 55.2-59.8)
Oncology 32 26 (81.3, 78.1-84.4) 19 (59.4, 56.7-62)
Metabolic diseases 32 26 (81.3, 78.1-84.4) 19 (59.4, 56.7-62)
Radiology 29 20 (69, 65.9-72) 16 (55.2, 52.5-57.9)
Critical care medicine 27 22 (815, 78.1-84.9) 9(33.3,31.2-35.5)
Gastrointestinal 27 21(77.8, 74.5-81.1) 10 (37, 34.7-39.3)
Hematol ogy 22 17 (77.3, 73.6-80.9) 10 (45.5, 42.6-48.3)
Rheumatology 19 14 (73.7, 69.8-77.5) 12 (63.2, 59.6-66.7)
Nephrology 18 14 (77.8, 73.7-81.9) 8 (44.4, 41.4-47.5)
Respiratory 18 15 (83.3, 79.1-87.6) 11 (61.1, 57.5-64.7)
Obstetrics and gynecol ogy 17 11 (64.7, 60.9-68.5) 8(47.1, 43.8-50.3)
Endocrinology 16 14 (87.5,82.9-92.1) 7 (43.8, 40.5-47)
Otolaryngology 13 10 (76.9, 72.2-81.7) 4(30.8, 27.8-33.8)
Orthopedics 10 6 (60, 55.2-64.8) 4 (40, 36.1-43.9)

8Each case report was tagged with one to six relevant medical specialties.

Overall Diagnostic Perfor mance

The final diagnosis was included in the top 10 differentials
generated by LLaMA3 in 79.6% (312/392) of the cases,
compared to 49.7% (195/392) for LLaMAZ2, indicating a
statistically significant improvement (P<.001). Additionally,
LLaMA3 showed higher performance in including the final
diagnosisin the top 5 differentials, observed in 63% (247/392)
of cases, compared to LLaMAZ2's 38% (149/392, P<.001).

Table4. Overal diagnostic performance of LLaMA3 and LLaMAZ2.

Moreover, the final diagnosis was accurately identified as the
top diagnosis by LLaMA3 in 33.9% (133/392) of cases,
significantly higher than the 22.7% (89/392) achieved by
LLaMA2 (P<.001). The overall diagnostic performance of
LLaMA3 and LLaMAZ2 is shown in Table 4. We observed fair
to good agreement between physicians' evaluations for the
differential diagnosis lists, with a k coefficient of 0.69,
indicating concordance in 84.2% (660/784) of cases.

Diagnostic performance LLaMA3, n/N (%) LLaMA2, n/N (%) P value?
The ratio of whether the final diagnosiswasincludedin ~ 312/392 (79.6) 195/392 (49.7) <.001
the top 10 differential diagnosislists

The ratio of whether the final diagnosiswasincludedin  247/392 (63) 149/392 (38) <.001
the top 5 differential diagnosis lists

Theratio of whether thefinal diagnosiswasincludedas ~ 133/392 (33.9) 89/392 (22.7) <.001

the top diagnosis

3P value from chi-squared test.

Exploratory Analysis by Medical Specialty

The exploratory anaysis across various medical speciaties
revealed variations in diagnostic performance with LLaMA3
consistently outperforming LLaMAZ2 in almost al fields. All
speciaties showed improvements of more than 10% from

https://formative.jmir.org/2024/1/e64844

LLaMA2toLLaMAS3, with nonoverlapping 95% Cls, indicating
statistically significant enhancements. Specifically, critical care
medicine, gastrointestinal, endocrinology, and otolaryngology
exhibited remarkable improvements of more than 40% from
LLaMAZ2. Conversely, infectious diseases, radiology, and
obstetrics and gynecol ogy showed the least improvements, with
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about a 10% increase from LLaMA2 to LLaMA3. Other
speciaties exhibited moderate improvements with 20%-30%.
Ophthalmology demonstrated the highest accuracy with 71.4%
(5/7) of cases correctly identified, followed by otolaryngology
at 61.5% (8/31). Lower accuracy was observed in speciaties
such asrehabilitation medicineat 11.1% (1/9) and rheumatol ogy
at 15.8% (3/19). Other specialties such as general internal
medicine and surgery showed moderate performance with

Hirosawa et al

accuracies of 34.4% (22/64) and 28.4% (19/67), respectively.
Table 3 details the breakdown of medical specialties, showing
the total number of cases and those correctly identified by
LLaMA3and LLaMAZ2inall casesand those correctly identified
solely by LLaMAS3. Figure 2 presents aradar chart illustrating
the ratio of cases for each specialty where the final diagnosis
wasincluded in thetop 10 differential diagnosislists generated
by both LLaMA3 or LLaMA2.

Figure 2. Radar chart illustrating the improvement ratios for the inclusion of the final diagnosis within the top 10 differential diagnosis lists generated
by LLaMA2 and LLaMA3, across various medical specialties. Each axison the radar chart represents a specific medical specialty. The numerical values
adjacent to each specialty namereflect the total number of cases analyzed within that specialty, providing context for the observed performance metrics.
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Discussion

Principal Results

This study demonstrated that the LLaMA3 model significantly
outperforms LLaMA2 in overal diagnostic performance,
showing amost 1.5-fold improvement. Specifically, the
inclusion rate of the final diagnosis in the top 10 differentials
rose from 50% to 80%. This substantial enhancement reflects
marked advancementswithinthe LLaMA seriesover arelatively
short period.

These enhancements likely come from the implementation of
more advanced agorithms and more robust training datasets,
highlighting the rapid evolution of generative Al capabilities

https://formative.jmir.org/2024/1/e64844

RenderX

in medical diagnostics. The significantly higher inclusion rates
of the final diagnosisin the top 10, top 5 differentials, and the
top diagnosisby LLaM A3 indicate that its model hasbeen finely
tuned for greater precision in analyzing complex medical cases.
This tuning suggests that LLaMA3 is more adept at
incorporating clinical nuances and recognizing a diverse range
of symptoms, which is critical for generating accurate
differential diagnosesin real-world clinical settings.

Model Bias and Generalizability

Whilethis study leveragesdatafrom asinglejournd, itiscrucia
to consider how this might limit the generalizability of the
findings. The cases predominantly represent complex or rare
medical scenarios, which might not fully represent routine
clinical situationsfound across diverse health care systems|[21].
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This focus could skew the Al’s performance, suggesting that
while LLaMA3 shows promise, its effectiveness in genera
practice remainsto be validated in amore varied clinical context.

Practical Implementation and Challenges

Integrating LLaMA3 into clinical practice presents severa
challenges that require careful consideration. The foremost is
regulatory approval, as generative Al, including the LLaMA
series, hasnot yet been approved for direct clinical applications
such as Al-enhanced diagnostics. Regulatory hurdles can
significantly delay or impede the practical application of
innovative technologies. Furthermore, clinician trust in Al
decision-making is vital and requires the Al to be not only
effective but also transparent in how decisions are derived.
Clinicians must be able to comprehend how decisions are
derived to confidently integrate Al recommendations into their
workflow.

The computational demands of running sophisticated models
such as LLaMA3 dso pose a significant chalenge.
High-performance computing resources, such as Graphics
Processing Units or cloud-based solutions, are essential to
operate these advanced Al systems effectively, which could
limit their deployment in resource-constrained settings.

Future Resear ch and Development

To facilitate the effective integration of Al such as LLaMA3
into health care workflows, ongoing training with real-world
data and continuous feedback from clinical use are
indispensable. This iterative process will help ensure that the
Al remains accurate and adapts to evolving medical standards.
Exploring multimodal Al that incorporatestext and image data
from electronic health records could enhance diagnostic
accuracy. Future studies should focus on integrating these
systems with routine health care workflows to assess their
practical utility and acceptance among health care providers.
Additionally, addressing potential biasesin Al decision-making
and ensuring adherence to ethical health care standards are
crucial for gaining acceptance and trust in clinical environments.

Results From Exploratory Analysis

The exploratory analysis across different medical specialties
provided aview of LLaMA3's performance, which varied across
fields. For instance, specidlties, including critical care medicine,
showed exceptionally high improvementsin diagnostic accuracy
with LLaMA3. This finding highlights its effectiveness in
processing complex clinical courses.

However, the analysis also uncovered areas with modest
improvements. For instance, radiology showed small
improvements, with about a 10% increase from LLaMA2. This
result suggests aneed for multimodal Al that can processimage
data in addition to text data [22]. Multimodal Al enables the
simultaneous processing and understanding of multiple forms,
including text and image data, which is particularly pertinent
for enhancing diagnostic accuracy in radiology.

Thevariability intheseimprovements highlightstheimportance
of targeted algorithmic training tail ored to the specific demands
of each medical specialty. Specialized training datasets that
encompass the wide range of scenarios encountered in particular

https://formative.jmir.org/2024/1/e64844
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fields could be crucia in enhancing the generative Al’slearning
curve and improving its utility in clinical practice. The
performance of LLaMA3 varies across medical specialties, with
notably high improvement ratios in ophthamology and
otolaryngology, likely due to the distinct and well-defined
symptoms associated with conditionstreated within thesefields.
Conversely, specialties such as rehabilitation medicine and
rheumatology showed lower improvement ratios, attributed to
the complexity of the clinical course and immune responses,
posing challengesfor the current model’ s diagnostic al gorithms.
A significant factor contributing to the variation in performance
is the relatively small number of cases available for some
specidties.

Strengths

A magjor strength of this study is the controlled comparison of
diagnostic performances using identical cases and standardized
parameters, providing aclear assessment of improvementsfrom
LLaMA2toLLaMA3. Additionally, thelongitudinal assessment
of the LLaMA series offers valuable insights into the
developmental course of Al modelsin medical diagnostics. This
isparticularly notable when contrasted with findings from other
Al systems where no improvement was noted over time [23].

Limitations

Overview

There were severa limitations concerning study design and
generative Al.

Limitations for Study Design

First, case reports may not fully reflect real-world clinical cases.
This limitation arises because case reports often focus on new
or rare diseases, which might not be commonly encountered in
typical clinical settings[21]. Second, relying solely on asingle
case report journal may introduce selection bias. Third, there
was no well-established standard to evaluate the diagnostic
performance of clinical decision support systems, including the
number of differentials and the evaluation methods. For
example, astudy adopted 5 differentials while another adopted
40 differentials [24,25]. Regarding evaluation methods, some
studies used scal e-based assessments, while others used binary
methods. Qualitative evaluations of the differential diagnosis
lists should also be explored in future studies to assess their
overal clinical relevance beyond whether the correct diagnosis
was included. These variations in evaluation methods were
partly due to the complexity of the diagnostic process in real
clinical situations[26]. Fourth, we excluded specialties tagged
in fewer than 10 different case reports. Therefore, there was a
possibility to overlook minor specialties where LLaMA3 did
not outperform LLaMAZ2. Fifth, the variability in sample sizes
across specialties in our exploratory analysis might affect the
robustness of the conclusions drawn. Additionally, the sensitivity
of Al models such asthe LLaMA series to variations in input
prompts—prompt engineering—is a critical area. There is a
potential that even minor prompt changes presented to the Al
can significantly influence its diagnostic suggestions,
emphasizing the need for standardized prompt protocols to
ensure consistent Al performance.
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Limitations for Generative Al

Generative Al, including the LLaMA series, has not been
approved for medical applications such as Al-enhanced
diagnostics. Additionally, the optimal prompts and adjustable
parameters for medical diagnostics remain unknown. For
example, another study used different settingswith atemperature
of 0.6, top-P of 0.9, and max tokens of 2048 [16], in contrast
to our study which used a temperature of 0.01, top-P of 1, and
max tokens of 500. Similarly, another study used multiple
prompting scenarios, such as chain of thought, few shots, and
retrieval augmentations [27], compared to our study with a
simple prompt. This difference in prompting complexity could
impact the generative Al’s performance. Furthermore, we did
not recruit all available generative Al, including the ChatGPT
series, Gemini, and Claude 3. Moreover, a critical limitation
identified in our study involves the potential for data |eakage,
where LLaMA3 and LLaMA2 might have been previously
exposed to the case reports used in our analysis, thereby
influencing their performance artificialy. The inherent risk of
data leakage cannot be entirely ruled out due to the models
continuous learning capabilities and the complex nature of their
training environments. To mitigate such risksin future studies,
we plan to implement rigorous partitioning of data to ensure
that no overlap occurs between training and testing datasets.
Regarding transparency, although the LLaMA series is often
referred to as open-source LLMs, there is an ongoing debate
about the openness of generative Als[28,29]. Finally, therapid
pace of development in generative Al systems suggested that
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our findings may quickly become outdated as next-generation
LLMs emerge.

These limitations could affect generalizability.
Comparison With Prior Work

Comparison With LLaMA2

Following the limitations outlined, our comparative analysis
with prior iterations of LLaM A2 highlights the dynamic nature
of Al development and itsimplications on diagnostic accuracy.
In our study, the inclusion of the final diagnosisin the top 10
differentialsfor 49.7% (195/392) of casesrepresentsadecrease
from the 54.6% (214/392) observed in our prior study [18]. This
variation in performance, a 1%-5% difference, is directly
attributable to the adjustments in operational parameters such
astemperature, max tokens, and top-P. Thesefindings highlight
how seemingly minor tweaks in Al configurations can lead to
significant changes in outcome, emphasizing the necessity for
continuous optimization based on evolving clinical needs.

Our results not only reflect the critical impact of parameter
adjustments on the efficacy and reliability of Al diagnostic
outputs but also the importance of tailoring these settings to
specific diagnostic tasks within clinical environments. The
ongoing research and development efforts are vital as they
contribute to refining these parameters to enhance the
performance of Al systemsin real-world settings. Table 5 details
the diagnostic performance and key characteristicsof LLaMA?2
compared to the previous study, illustrating these points and
showing the progression within the LLaMA series.

Table 5. Diagnostic performance and key characteristics of LLaMA2 compared to a previous study.

LLaMA2 in this study

LLaMAZ2 in the previous study

The ratio of whether thefi-  195/392 (49.7)

nal diagnosis was included

in the top 10 differential di-

agnosislists, n/N (%)

The ratio of whether thefi-  149/392 (38)

nal diagnosis was included

inthetop 5 differential diag-

nosislists, /N (%)

The ratio of whether thefi-  89/392 (22.7)

nal diagnosis was included

asthetop diagnosis, /N (%)

Developer Meta Al

Version 70B

Release date July 2023

Access date May 2024

Prompt “Tell me the top 10 suspected illnesses for the following
case: (copy and paste the case)”

Temperature 0.01

Max tokens 500

Top-P 1

214/392 (54.6)

177/392 (45.2)

90/392 (23)

Meta Al

70B

July 2023
August 2023

“Tell me the top 10 suspected illnesses for the following
case: (copy and paste the case)”

2.49
2048
0.5
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Comparison With Other Generative Al

From another study involving ChatGPT-3.5, ChatGPT-4, and
LLaMAZ2, inferior performances of LLaMA2 compared to
ChatGPT-3.5 and ChatGPT-4 were observed [16]. From the
current findings, there is a possibility that results may change
due to longitudinal improvements from LLaMA2to LLaMA3.

Our comparative analysis extends beyond LLaMA2 and
LLaMA3 to include contemporary models such as ChatGPT-4
and Gemini, providing a broader perspective on generative Al
capabilities. While LLaM A3 has shown notable improvements
and closely matches the performance of ChatGPT-4 with a
diagnostic accuracy of 86.7% (340/392) in the top 10
differentials [18], it is essentia to consider the devel opment
timelines and the operational model s of these Al systems. Unlike
LLaMA3, ChatGPT-4(0) and Gemini Advanced are fee-based
models that might have different optimization and deployment
strategies, potentialy affecting their performance in clinical
settings. Moreover, the introduction of newer models such as
ChatGPT-40 and OpenAl 01 represents continuous
advancements within the generative Al landscape, highlighting
the dynamic nature of Al development.

Comparison With Other Clinical Decision Support
Systems

Expanding on our comparative analysis, we aso evaluate
LLaMA3 in the context of established clinical decision support
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systems such as Isabel Pro (developed by Isabel Healthcare).
While Isabel Pro has demonstrated a diagnostic retrieval
accuracy of 65% for itstop 10 differentials, increasing to 87%
for the top 40 [25], these figures provide a benchmark for
evaluating LLaMA3's capabilities. Our study’s performance
metrics are closely aligned with these established systems,
suggesting that LLaMA3 could offer comparable benefits in
clinical decision-making. It is crucia to understand the
methodologies and metrics used across different systems to
ensure afair and meaningful comparison.

Conclusions

The results demonstrate that the LLaM A3 model significantly
outperforms LLaMA?2 per diagnostic performance, with ahigher
percentage of case reports having the final diagnosis listed
within the top 10, top 5, and as the top diagnosis. Overall
diagnostic performance improved almost 1.5 times from
LLaMA2 to LLaMA3. These findings support the rapid
development and continuous refinement of generative Al
systemsto enhance diagnostic processesin medicine. However,
these findings should be carefully interpreted for clinical
application, as generative Al, including the LLaMA series, has
not been approved for medical applications such as Al-enhanced
diagnostics.
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