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Abstract

Background: Human digital twins have the potential to change the practice of personalizing cognitive health diagnosis because
these systems can integrate multiple sources of health information and influence into a unified model. Cognitive health is
multifaceted, yet researchers and clinical professionals struggle to align diverse sources of information into a single model.

Objective: This study aims to introduce a method called HDTwin, for unifying heterogeneous data using large language models.
HDTwin is designed to predict cognitive diagnoses and offer explanations for its inferences.

Methods: HDTwin integrates cognitive health data from multiple sources, including demographic, behavioral, ecological
momentary assessment, n-back test, speech, and baseline experimenter testing session markers. Data are converted into text
prompts for a large language model. The system then combines these inputs with relevant external knowledge from scientific
literature to construct a predictive model. The model’s performance is validated using data from 3 studies involving 124 participants,
comparing its diagnostic accuracy with baseline machine learning classifiers.

Results: HDTwin achieves a peak accuracy of 0.81 based on the automated selection of markers, significantly outperforming
baseline classifiers. On average, HDTwin yielded accuracy=0.77, precision=0.88, recall=0.63, and Matthews correlation
coefficient=0.57. In comparison, the baseline classifiers yielded average accuracy=0.65, precision=0.86, recall=0.35, and Matthews
correlation coefficient=0.36. The experiments also reveal that HDTwin yields superior predictive accuracy when information
sources are fused compared to single sources. HDTwin’s chatbot interface provides interactive dialogues, aiding in diagnosis
interpretation and allowing further exploration of patient data.

Conclusions: HDTwin integrates diverse cognitive health data, enhancing the accuracy and explainability of cognitive diagnoses.
This approach outperforms traditional models and provides an interface for navigating patient information. The approach shows
promise for improving early detection and intervention strategies in cognitive health.
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Introduction

Background
Mild cognitive impairment (MCI) is a transition state between
healthy aging and dementia. Digital health technologies can
enhance early detection and improve the ecological validity of
traditional MCI diagnostic assessments. Current
technology-assisted approaches often focus on a small set of
data sources, such as speech and text [1,2], mobile tests [3,4],
self-reported in-the-moment states [5], and digital behavior
markers [6-9]. Each contributes valuable insights, but they are
fragmented.

We propose the construction of a human digital twin that uses
these diverse pieces of digital information to form a more
comprehensive model of an individual. This digital twin
integrates data from multiple sources, recorded at different times
and in real-world settings. The result offers a holistic view that
enhances early diagnosis of cognitive impairment and facilitates
timely interventions to slow progression, in line with the quest
for precision health.

Designing digital twins faces the challenges associated with
merging data that differ in acquisition times, devices, formats,
and fidelity. Clinicians also need help navigating these types
of information with traditional dashboards [10]. To overcome
these challenges, we propose a system called HDTwin that uses
large language models (LLMs) to create a cohesive digital twin
from heterogeneous data sources. In this paper, we detail the
design of HDTwin and evaluate the system in the context of
automating cognitive health diagnosis for 124 participants from
3 studies. Specifically, we highlight the system’s ability to
perform information retrieval, data fusion, and inference
explanations. We demonstrate that HDTwin successfully
integrates traditional machine learning models, numeric
reasoning resources, scientific literature, audio recordings, and
ecological momentary assessment (EMA) responses to generate
diagnosis predictions that are comparable or superior to
traditional ensemble classifiers. We further investigate the ability
of HDTwin to process information and articulate clear diagnostic
explanations interactively, providing a bidirectional flow of
information between a clinician and the computational model.

Related Work
Recent advances in language models have tremendously
impacted health question answering and information retrieval.
These prior works focus on leveraging specialized corpora for
enhanced performance. Language models are trained on
biomedical texts to refine their capabilities in summarizing
documents and answering complex health-related questions
[11,12]. Models have been further enhanced by efforts like
KeBioSum [13], which integrates medical knowledge into model
training to improve response accuracy.

Language models also support health prediction. As an example,
AD-BERT [14] processes electronic health record notes with
pretrained models to forecast a patient’s progression from MCI
to Alzheimer disease. Research by Asgari et al [15] leverages

text markers from recorded speech to predict MCI. Jiang et al
[16] train an LLM on medical language to predict hospital
readmission, and Kim et al [17] evaluate prompting strategies
for LLMs on a variety of health prediction tasks. Because LLMs
can inherently predict future states, Xue and Salim [18] explore
pretrained LLMs to predict future temperature, electricity
consumption, and movement trajectories. Similarly, Sprint et
al [19] demonstrated that LLMs could anticipate future health
states based on past EMA reports and sensor-based behavior
data.

Recently, researchers have extended LLM capabilities to
interpret nontextual data inputs. Yu et al [20] direct LLMs to
diagnose sleep apnea and cardiac conditions by leveraging large
databases. Jin et al [21] convert time-series data into text to
forecast electricity usage. Partnering principal component
analysis with text reports, as explored by de Zarza et al [22],
enhances predictive accuracy for forecasting weather and traffic
volume.

The next step in the evolution of LLMs for health diagnostics
involves fusing diverse information sources. Girdhar et al [23]
aligned video, text, and audio by creating unified image
embeddings. Xu et al [24] paired images with radiology reports.
While these prior efforts illustrate the potential of LLMs to
synthesize information across modalities, Cascella et al [25]
caution that LLMs still face challenges in aligning personal and
general information sources effectively.

This paper aims to contribute to the evolving landscape by
exploring the use of LLMs to create a human digital twin from
diverse information sources. First, we consider a novel
integration of digital behavior markers into the language model
that are collected from continuous sensor data. Second, we
enhance the language model for cognitive health domains by
incorporating self-report, traditional clinical assessment, and
automated performance scores. Third, we investigate whether
LLMs can offer an effective mechanism for creating a digital
twin from these varied components that enhances the accuracy
of cognitive health diagnosis and the explainability of system
inferences.

Methods

HDTwin LLM
We built HDTwin using LangChain and OpenAI’s
GPT-3.5-turbo-0125 language model. As with other GPTs, the
model is based on a transformer architecture and uses a
self-attention mechanism to aid in capturing dependencies and
context within the text. HDTwin’s processing pipeline is
illustrated in Figure 1. Using custom LangChain tools, HDTwin
retrieves information from personal data, statistical summaries,
paper abstracts, and a knowledge base to input as prompts to
an LLM, which then generates output for the user in response
to a query or diagnosis request. The knowledge base
incorporates diverse personal markers which are prompt
engineered for input to the language model.
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Figure 1. HDTwin information processing pipeline. A user interacts with the LLM interface to request summary information about a person or a
suggested diagnosis. Based on the query, HDTwin retrieves personalized markers together with paper abstracts and data from a knowledge base that
informs a response. The query response is presented to the user, supporting an ongoing conversation about the person or explanation of the query
response. LLM: large language model.

We validate HDTwin using data from 3 studies. Participants in
these studies were 124 independent-living older adults, age
mean 70.48 (8.72) years, 71.78% female (n=89). Participant
recruitment and screening were similar across the studies.
Recruitment included community health and wellness fairs,
TrialMatch, advertisements on social media, physician referrals,
and web-based posts. Inclusion criteria were individuals aged
50 years and older and the ability to speak English; exclusion
criteria included current psychoactive substance use; significant
auditory visual, or cognitive impairment; presence of a
psychiatric, neurologic, or medical condition that greatly
attributed to cognitive complaints; and Telephone Interview for
Cognitive Status [26] score<26. Participants provided informed
consent, and the studies were approved by the Washington State
University institutional review board. The source code for
HDTwin and a video demonstration of the chatbot interface are
available publicly available [27,28].

Each participant was assigned a fictitious name, sampled from
a repository [29]. This step was performed to anonymize
references to the names that appeared in processed text.
Participants were categorized as cognitively healthy older adults
(n=75, 60.5%) or older adults with MCI (n=49, 39.5%). To
perform these categorizations, at study baseline interviews were
conducted, questionnaires were completed (eg, Patient-Reported
Outcomes Measurement Information System) [30], and
standardized neuropsychological tests evaluating the cognitive
domains of memory, language, executive functioning, and
attention (3 scores per domain) were administered. These
included the Wechsler Adult Intelligence Scale—Fourth Edition
[31], Digit Span Forward and Backward subtests, the
Delis-Kaplan Executive Function System [32], Category
Switching test, the Five Point Test [33], the California Verbal
Learning Test [34], and self-reported measures from the
Patient-Reported Outcomes Measurement Information System
[30]. Jak et al criteria [35] were followed to classify individuals

as MCI. These participants were primarily single domain (n=99,
80%), and most met the criteria for amnestic MCI (n=97, 78%).

Ethical Considerations
These studies were reviewed and approved by the institutional
review board at Washington State University. To participate in
any of the studies, participants needed to sign an informed
consent; each person received compensation between US $55
and US $120 for their participation, consistent with the time
demands of the study. All data were anonymized before
performing analyses.

Data
Participant data stem from multiple numeric and text-based
marker sources. Language models currently struggle with
numeric reasoning for real-valued variables. HDTwin includes
agents to summarize and learn models from raw numeric data.
To handle the cases where prompts are fed directly to the LLM,
however, we transform each real-valued marker to a 0-10 integer
scale.

Demographic Markers
The age, sex, and number of education years of each participant
were included as markers.

Behavior Markers
All participants wore a smartwatch (Apple Watch) daily for a
minimum of 2 weeks. The watches continuously collected
acceleration, rotation, and location data at 10 Hz. From the
location coordinates, we defined the participant’s home as the
most frequently visited location among the first 300 readings
each day. From these data, we extracted activity level (estimated
as total acceleration) and distance from home. These values
were aggregated by day, and then we calculated the mean and
variance over the entire data collection period. The missing data
rate was 14%, and missing entries were not included in the
calculations. Figure 2 shows screenshots of the smartwatch app.
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Figure 2. In addition to collecting sensor data, the smartwatch app queries the user for their current state, includes an n-back shape test, and collects
daily audio data.

EMA Markers
EMA responses were collected 4 times/day at random points
within specified time windows. During this session, each
participant responded to the prompt “Right now I feel mentally
sharp” on a Likert scale of 1=“Not at all” to 5=“Extremely.”
For each person, we extract the mean and variance for the EMA
response value and response or compliance rate.

n-Back Markers
Prior research indicated that the n-back task, delivered via a
tablet, can capture cognitive capacity for older adults as it is
influenced by fatigue, mental sharpness, and the environment
[9]. We adapted this n-back shape test to the smartwatch. The
3 shapes (circle, square, and diamond) were displayed on the
watch screen, and participants indicated whether the current
shape was the same as the prior. We computed accuracy for
each 45-second task.

Earlier studies reveal the importance of considering n-back
performance in terms of the learning phase (when scores start
low but increase sharply) as well as characteristics of
performance over the entire sampled period. After the learning
phase, daily performance varies with fatigue, mood, mental
sharpness, cognitive changes, and environmental factors [36,37].
Applying linear regression to the sequence of daily scores, we
extracted the slope for the first 6 scores (the learning rate). We
also computed the overall score mean and SD.

Speech Markers
Each day, participants provided a verbal description of their
day in response to the prompt, “Talk about your day, what you

did, and how you felt.” Participant responses were collected by
the smartwatch. The audio files were then converted to text and
fed verbatim to the language models. A total of 2995 audio files
were provided by 85 participants across the 3 studies. All
descriptions from a single participant were aggregated into 1
text entry per person.

Testing Session Markers

Overview
From the administered cognitive assessment tests that were
delivered orally at the study baseline, we converted the recorded
testing session audio files to text. Based on the experimenter
script, we input experimenter questions as prompts to the LLM.
The purpose of this step was to have the language model
quantitatively evaluate participant responses based solely on
the recorded interaction. This contrasts with the traditional
method of using a predefined set of rules to determine the score
for each assessment task. There were 23 types of participant
responses, generated from tests for phonemic and semantic
fluency, list learning and delayed memory, cognitive screening,
and health literacy.

As shown in Table 1, we asked the LLM to extract and rate
participant responses on a scale of 1=poor to 5=excellent or
report as missing. While some prompts included a list of correct
answers (eg, “Where is our lab located?”), many did not (eg,
“list all of the animals you can think of”). In the second case,
response rating consequently relied on the model’s reasoning.
Of the 124 baseline testing session transcripts, 116 had at least
3 responses and were input to the LLM.
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Table 1. Example prompt for processing baseline testing session data. The user provides the system message and prompt; HDTwin generates the
corresponding response.

Example user system message and prompt with corresponding HDTwin response

System
message

• You are a helpful assistant that extracts and rates participant responses to interview questions.

Example
prompt

• The following is an unlabeled transcript of an interview between an interviewer and a participant: “all right so the recordings on
again for the next task I'm going to.”

• There should be a part of the transcript where the interviewer asks the participant to list as many words that start with the letter S
as they can think of. Using only exact quotes from the transcript, provide the participant’s response to the interviewer’s question.
Then, using a scale of 1=poor to 5=excellent, rate the participant’s ability to think of words that start with S. Briefly explain your
rating. If you cannot find the participant’s response, respond only with: could not find the participant’s response.

Example
response

• Participant’s answer: Sun, stairs, startled, stars, stilt, stern, south, song.
• Rating: 5.
• Explanation: The participant was able to list multiple words that start with the letter S, demonstrating a strong ability to recall

words.

Figure 3 illustrates the distribution of participants between the
healthy and MCI categories based on each type of quantifiable
marker (ie, demographics, behavior, EMA response, and n-back
score). As can be seen from the plots, the categories are highly
intermixed for each category of marker as well as the t-sne
combination of these markers. The high degree of intermixing
between categories indicates that there are no clear, simple class
boundaries separating the groups, making diagnosis prediction

more complex. This complexity necessitates leveraging all
available information to improve prediction accuracy, which
requires integrating information with diverse modalities,
granularities, and availability. This challenge motivates the
adoption of an LLM-based method for this task, which is
well-suited to handling and synthesizing such heterogeneous
data.
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Figure 3. Distribution of healthy participants and those with MCI based on HDTwin markers that include (from upper left): demographics, behavior,
EMA response, and n-back scores. The bottom graph shows a t-sne plot of all quantifiable features. Text input from journals and testing sessions are
not included in the plots. EMA: ecological momentary assessment; MCI: mild cognitive impairment.

Knowledge Base Construction
To predict cognitive diagnoses with LLMs, we constructed a
prompt template that combines two primary sources of context
to be combined by the LLM: (1) insights gleaned from external
knowledge about the field, and (2) insights gathered from
personalized data markers.

We use these information sources by transforming them into
text prompts for the LLM. To integrate insights from the field,

each prompt is framed based on a finding from a relevant
publication. Language models have demonstrated their ability
to summarize medical research papers [38]. In contrast, we use
such research papers as just 1 piece of the digital twin to provide
more comprehensive reasoning about a person’s state. In this
context, we introduce a novel use of such articles, leveraging
them as sources of external neuropsychology insights. Textbox
1 provides a summary of the relevant literature sources we
included for HDTwin.
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Textbox 1. Rules found in external information sources. These rules represent summaries of statements found in the included research papers.

• More hours spent outside the home and greater distance from home were associated with better cognitive function [6].

• Physical exercise demonstrated a protective factor for mild cognitive impairment (MCI) and was associated with higher mean semantic memory
and executive function [8,39].

• Association was found between participant sentence complexity and levels of cognitive impairment [2].

• Individuals with MCI were observed to perform worse on shape tests than healthy older adults [4].

• Response or compliance rate was greater for healthy older adults compared to mild cognitive impairment [5].

• Detected changes in behavior patterns were early indicators of cognitive decline [40].

Three types of LLM prompts are created. First, prompts that
process text directly (ie, journal entries and testing session
transcripts) are formalized based on a statement found in the
corresponding research paper (ie, external knowledge). HDTwin
contains 11 of these rules, such as “if journal_text has a small
vocabulary, short sentences, and/or low sentence complexity

then more likely mild cognitive impairment” [41]. The full set
of rules is provided in Table 2. The LLM must interpret the
meaning of the rule in the context of the input text. Second, as
described earlier, the LLM is directed to generate numeric
ratings of the testing session participant responses.

Table 2. HDTwin text processing rules. These results are used to process information found in text including journal entries and interview assessments.

RuleMarker set

Speech • If journal_text is empty the more likely mild cognitive impairment
• If journal_text has a large vocabulary, long sentences, and/or high sentence complexity then more likely healthy
• If journal_text has a small vocabulary, short sentences, and/or low sentence complexity then more likely mild cognitive im-

pairment
• If journal_text uses positive emotion words then more likely healthy
• If journal_text uses negative emotion words then more likely mild cognitive impairment
• If journal_text appears to have more than 1 entry then more likely healthy
• If journal_text appears to only have 1 entry then more likely mild cognitive impairment

Baseline testing
session

• if some interview_assessment ratings are <= 3 then more likely mild cognitive impairment
• if most interview_assessment ratings are >= 4 then more likely healthy
• if the interview_assessment explanations suggest the participant confidently answered the questions correctly then more likely

healthy
• if the interview_assessment explanations suggest the participant struggled to answer the questions correctly then more likely

mild cognitive impairment

Third, a decision tree algorithm processes numeric markers
from the training set, learning a concept distinguishing healthy
older adults from MCI. The purpose of these models is to
provide a mechanism for learning from real-valued numeric
data and demonstrate the ability of HDTwin to harness
heterogeneous types of information. Decision trees are
advantageous because the learned model is easily interpretable.
In particular, these trees are automatically converted to if-then
rules that are provided to the LLM in a prompt. From the large

set of possible rules, we include those that support ≥10% of the
training data and the probability of rule occurrence in the tree
is >70%. In the case of single-term rules resulting from decision
stumps, the rule inversion is also added. This process resulted
in 20 rules, such as “if distance_traveled_from_home > 4.5 then
more likely healthy” and “if physical_activity_level ≤ 1.5 and
EMA_compliance ≤ 9.5 then more likely mild cognitive
impairment.” The full set of decision tree-generated rules is
provided in Table 3.
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Table 3. HDTwin numeric processing rules. These results are created from the trained decision trees and are listed with the corresponding Pra and Pab.

PaPrRule

6100.00If distance_traveled_from_home > 4.5 then more likely healthy

1291.67If distance_traveled_variance > 8.0 and physical_activity_level ≤ 5.5 then more likely healthy

785.71If physical_activity_level ≤ 1.5 and EMA_compliance ≤ 9.5 then more likely mild cognitive impairment

683.33If mental_sharpness_variance > 2.5 and mental_sharpness_mean > 4.5 then more likely mild cognitive impairment

2281.82If shape_score_sd ≤ 2.5 and mental_sharpness_variance ≤ 2.5 then more likely healthy

1580.00If distance_traveled_variance > 8.0 then more likely healthy

580.00If mental_sharpness_variance ≤ 2.5 and mental_sharpness_mean ≤ 4.5 then more likely mild cognitive impairment

2479.17If mental_sharpness_mean > 5.5 and physical_activity_variance ≤ 8.0 then more likely healthy

977.78If sex = male and age ≤ 79.5 then more likely mild cognitive impairment

977.78If mental_sharpness_variance > 2.5 then more likely mild cognitive impairment

1776.47If sex = female and shape_learning_rate ≤ 4.5 then more likely healthy

1675.00If shape_score_sd > 2.5 and shape_learning_rate > 1.5 then more likely mild cognitive impairment

875.00If physical_activity_variance ≤ 0.5 then more likely mild cognitive impairment

875.00If mental_sharpness_mean ≤ 4.5 then more likely mild cognitive impairment

1770.59If shape_score_sd > 2.5 then more likely mild cognitive impairment

3360.61If shape_score_sd ≤ 2.5 then more likely healthy

3360.61If distance_traveled_variance ≤ 8.0 then more likely mild cognitive impairment

4057.50If physical_activity_variance > 0.5 then more likely healthy

4057.50If mental_sharpness_variance ≤ 2.5 then more likely healthy

4156.10If mental_sharpness_mean > 4.5 then more likely healthy

aPr: probability of the rule occurring in the decision tree.
bPa: number of participants supporting the rule.

Chatbot Agent Tools
The chatbot agent is designed as a Python LangChain OpenAI
tools agent. We created custom tools that allow the chatbot
agent to plan and take actions to solve specialized tasks. By
integrating these tools, HDTwin links the LLM with additional
sources of information and additional functionality, yielding a
more complete digital twin. These agent tools include the
following.

• Participant data retriever tool: We embedded and stored
the test dataset in a Facebook AI Similarity Search vector
database. We then created a LangChain retriever tool for
the database that the agent can query to find markers for a
participant.

• Reference data calculation tool: We wrapped a LangChain
pandas agent in a custom tool that loads the reference data
into a pandas DataFrame. The agent can query this
calculation tool to get on-the-fly summary statistics for
participants, such as grouping data by diagnosis category
and then calculating the mean for a marker of interest. This
tool allows HDTwin to interactively answer questions
regarding a particular person, including their scores on each
assessment component and how the scores compare with
the participant cohort.

• Knowledge base retriever tool: We embedded and stored
the knowledge base in a Facebook AI Similarity Search

vector database. Similar to the participant data retriever
tool, the agent can query a LangChain retriever tool to find
knowledge in the database that may interest the user. For
example, HDTwin may quote one of the findings from the
literature as part of the reason it predicted a particular
diagnosis category for a participant.

• Paper abstract retriever tool: Using the LangChain PubMed
app programming interface, we created a tool that searches
PubMed abstracts for information that may be relevant to
the query tasks. Text from the abstracts is included verbatim
as input. The tool can also be leveraged to include literature
from other public domain sources.

• Diagnosis classification tool: Using the same classification
prompting strategy described in an earlier section, we
created a LangChain structured tool that uses a custom chat
chain to classify a participant as a healthy older adult or
MCI. The chain constructs a prompt using information from
the knowledge base and personalized markers to request
that the language model generate predictions (see the
Diagnosis Prediction section for more details about
diagnosis prompt construction).

We designed the agent with an interface built using the Python
(Python Software Foundation) streamlit library. Figure 4 [28]
provides a screenshot of this interface. As the figure
demonstrates, HDTwin leverages the participant’s personal
markers (demographics, behavior, EMA response, n-back scores,
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and testing session data), rules generated from the training
cohort, and literature from the field to respond to user queries.
Upon request, the agent lists the steps that were performed by

generating a response, pulling from the message memory as
needed (ie, interaction history), as well as the information
sources.

Figure 4. The HDTwin chatbot interface with an example prompt and response for a query regarding one of a person’s n-back score statistics. Users
can see the agent’s message memory using the “Chat History” dropdown and the agent’s planning and execution steps using the “See Intermediate
Steps” dropdown. A video demonstration of the chatbot is available on the web [28].

Diagnosis Prediction

Overview
The long-term goal of HDTwin is to build a digital twin
representing the cognitive health state of a physical human. The
digital twin can respond to queries about the person’s behavior,
task performance, and predicted cognitive health diagnosis.
Unlike traditional machine learning tools, the system will
interactively explain its reasoning and ingest additional
information that is provided on the fly.

In this paper, we consider the role of HDTwin in performing
cognitive diagnosis prediction. Specifically, we seek to validate
the ability of HDTwin to perform cognitive diagnosis from a
fusion of heterogeneous information. Using the LLM model,

we constructed a classification pipeline that we performed for
each participant in the test set. The pipeline begins by
constructing the context needed to form a prompt. Textbox 2
provides an example of this context, which primes the language
model to perform reasoning and generate a response. As shown
in the example, the prompt includes instructions, the knowledge
base rules that it references, and participant markers. The LLM
is prompted to return a response with the diagnosis, which we
extract using a regular expression pattern search. Upon request,
the LLM will also provide an explanation for the diagnosis. By
default, HDTwin provides a short (ie, few-sentence) explanation.
The full explanation can be extracted upon request. The latter
not only provides insight into the LLM’s reasoning but can also
help with response accuracy using chain-of-thought reasoning
[42].
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Textbox 2. Example cognitive diagnosis prompt. The user inputs the system message and prompt, and HDTwin generates the corresponding response.
In this case, the classification of diagnosis from HDTwin is correct.

Example user system message and prompt with corresponding HDTwin response

System message:

You are a knowledgeable health assistant designed to diagnose someone as “healthy” or “with mild cognitive impairment” using diagnosis rules and
relevant personal information.

Example prompt:

Diagnose Sloan as healthy or mild cognitive impairment by applying the following rules to Sloan's information.

Diagnosis Rules:

Rule #1: if shape_score_sd > 2.5 then more likely mild cognitive impairment

Rule #2: if shape_score_sd <= 2.5 then more likely healthy

Rule #3: if shape_score_sd > 2.5 and shape_learning_rate > 1.5 then more likely mild cognitive impairment

Rule #4: if journal_text has a large vocabulary, long sentences, and/or high sentence complexity then more likely healthy

Rule #5: if some interview_assessment ratings are <= 3 then more likely mild cognitive impairment

Sloan's Information:

shape_learning_rate: 9

shape_score_sd: 6

journal_text: made a list and went to the store and got everything on it and didn't alter from it

interview_assessment: Category Fluency (Animals): Participant's Answer: “turkey”

Rating: 2

<text removed for brevity>

Answer using the format:

Diagnosis: ...

Explanation: ...

Example response:

Diagnosis: Mild cognitive impairment

Explanation: Based on the provided information, Sloan’s shape_score_sd is 6, which is greater than 2.5, and the shape_learning_rate is 9, indicating
a high learning rate. According to Rule #3, when shape_score_sd is greater than 2.5 and shape_learning_rate is higher than 1.5, the individual is more
likely to have mild cognitive impairment. Additionally, some of Sloan’s interview_assessment ratings are <= 3, such as the ratings for category fluency
(animals) and letter fluency (F), further supporting the diagnosis of mild cognitive impairment.

We measure prediction performance using accuracy, MCI
precision and recall, and the Matthews correlation coefficient.
To provide a baseline for comparison, we trained 3 traditional
classifiers using numeric markers. We trained the models on
the same participants used to build the LLM knowledge base
and evaluated performance using the same test set. The baseline
classifiers are random forest, gradient boosting, and XGBoost.

Reference, Training, and Test Sets
Traditional supervised machine learning uses data from a
training set to train a model. In contrast, HDTwin performs
retrieval-augmented generation by combining information
retrieval with a generative model [43]. In HDTwin, therefore,
training data are used to build a knowledge base of text, data,
and rule prompts for the language model to retrieve. Following
literature guidelines for evaluating LLMs [44], we created 3
sets—reference, training, and test—from the original participant
group (N=124). Data from the reference set support the chatbot
functions. A subset of the reference group is selected as the
training set. In our experiments, the training set is used to build

a knowledge base of text input, numeric data, and decision tree
rules for HDTwin to perform diagnosis prediction. Participants
not in the reference (and training) set are reserved to form a test
set. Prediction performance is determined based on these
held-out data.

Participants included in the training and test sets were required
to have complete behavior, EMA, and n-back markers, as these
markers were essential for conducting an ablation analysis of
their contribution to diagnosis prediction. To ensure a uniform
class distribution, 24 participants were randomly selected from
each diagnosis group (MCI and healthy older adult) to form a
test set of 48 participants. Of the 76 reference set participants,
51 were labeled healthy (67.1%) and 25 were labeled MCI
(32.9%). For the training set, we randomly selected 25 reference
set participants from each category (51 labeled healthy and 25
labeled MCI), resulting in an equal split.
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Results

Table 4 demonstrates an interaction with the HDTwin chatbot
agent in which the agent executes custom tools and accesses a
memory cache for conversation history. The generated rules
were used to form two classification prompt variants, one with

a requested explanation that aids in understanding the LLM’s
decision-making process. Experiment results showed no
substantial difference between these variations, so results are
reported for the smaller, diagnosis-only prompt. Lastly, HDTwin
performs a wrapper-based selection of rules to include in the
diagnoses. In the wrapper method, a greedy search is used to
identify the final set of features, or rules, to include [45].

Table 4. Example chatbot interaction. User-input text is highlighted with bold font. Each HDTwin response is listed with the chatbot agent tools that
were used to generate the corresponding response.

Tools UsedPrompt

What do you know about Sloan?

Participant data

retriever

Sloan is a 57-year-old female with 14 years of education. She has a shape score SD of 6 and a shape learning rate of 9.

Sloan’s EMAa compliance is rated at 8.0, and her physical activity level is 4.0. She has a mental sharpness mean of 6.0
and a mental sharpness variance of 5.0. Sloan’s journal entry mentions activities such as making a list, going grocery
shopping, using the EMMA app to remind her to take pills, and engaging in social and leisure activities. If you would
like more specific information about Sloan or her cognitive health status, please let me know.

Would you diagnose Sloan as mild cognitive impairment?

DiagnosisSloan has been diagnosed with mild cognitive impairment based on her cognitive assessment results. If you have any
further questions or need more information, feel free to ask.

Can you explain why you made that diagnosis?

Message memory and
diagnosis

Sloan has been diagnosed with mild cognitive impairment based on her cognitive assessment results. The diagnosis is
supported by the fact that Sloan’s shape_score_sd is greater than 2.5 and her shape_learning_rate is greater than 1.5,
meeting the criteria for mild cognitive impairment.

How does Sloan’s shape_score_sd compare to the average?

Message memory and
training calculation

Sloan’s shape_score_sd value is 6, which is higher than the average value of approximately 1.57 for healthy participants.
This indicates that Sloan's shape_score_sd value is significantly higher compared to the average value of healthy par-
ticipants.

aEMA: ecological momentary assessment.

Table 5 summarizes the diagnostic accuracy of HDTwin
compared to baseline classifiers. These include results for the
LLM using wrapper selection, a single type of information
source, or all available rules. Due to LLM nondeterminism,
each variation was executed 30 times; the mean and SD were

reported. To quantify the improvement gained by the wrapper
approach, we computed an unpaired 1-tailed t test, comparing
the LLM wrapper results against the best single marker set
(n-back; P<.001) and the best traditional classifier (XGBoost;
P<.001).
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Table 5. Prediction performance. Performance is reported in terms of prediction accuracy, precision, and recall for the MCIa category, and MCCb.

MCCMCI recallMCI precisionAccuracyClassification

LLM

–0.04±0.000.33±0.000.47±0.000.48±0.00Demographics

–0.14±0.050.43±0.040.43±0.020.43±0.02Behavior

0.55±0.000.54±0.000.93±0.000.75±0.00n-back

0.37±0.000.33±0.000.89±0.000.65±0.00EMAc

0.13 ± 0.070.63±0.050.56±0.030.57±0.04Journal

0.28±0.020.30±0.020.78±0.010.61±0.01Test session

0.15±0.020.29±0.020.64±0.020.56±0.01All

0.57± 0.050.63±0.030.88±0.050.77±0.02 dWrapper

0.31±0.070.27±0.000.86±0.030.62±0.04Random forest

0.39± 0.020.35±0.030.89±0.010.65±0.01Gradient boosting

0.38±0.000.42±0.000.83±0.000.67±0.00XGBoost

aMCI: mild cognitive impairment.
bMCC: Matthews correlation coefficient.
cEMA: ecological momentary assessment.
dItalicized values indicate the best performer for each metric.

Discussion

Principal Results
The goal of this study was to explore the use of LLMs as a
mechanism to fuse multimodal information relevant to
understanding and predicting the cognitive health diagnosis for
an individual. As demonstrated in Table 4, the HDTwin chatbot
agent conversationally provides answers related to the dataset
and cognitive diagnosis. When prompted for a diagnosis for a
particular participant, it succinctly responds with a predicted
class label. When asked to explain the diagnosis, the agent
correctly cites a rule from the knowledge base, though the
chatbot may offer only a subset of rules that were used for the
inference.

We note that when the chatbot is requested to compare a
participant to the training set, the LLM calls the training
calculation tool, which generates and executes the code to select,
filter, and summarize the underlying DataFrame (eg, generating
{'query': “df[df['diagnosis'] == 'healthy']
['shape_score_sd'].mean()”}). In this case, the training
calculation tool produces the correct value (1.57). Because
LLMs are nondeterministic systems, the chatbot is not
guaranteed to return the same response each time.

Nondeterministic behavior also affected the classification results.
This behavior is evidenced by the nonzero performance SDs
that are listed in Table 5. We further observed that longer
prompts (eg, journal and testing sessions) generally led to less
consistent performance (eg, higher SD in Table 5). As the
prompt text increases in length, there is a higher risk of
divergence due to the model latching onto different parts of the
prompt in different ways across each run, creating more
variability in the output.

Another factor influencing classification performance is the
type of information that is used and the way the information is
incorporated into the LLM prompt. While HDTwin can use all
information sources, Table 5 illustrates that not all information
was equally effective at discriminating between diagnosis
classes. Of the 6 marker sets, n-back offers the most predictive
rules (0.75 accuracy). While the wrapper method occasionally
selected the text-based journal and testing session markers, this
marker set did not perform the best. The top-performing case,
with 0.81 accuracy, was a run with the combination of n-back
and behavior markers. The worst-performing cases combined
demographic markers with behavior markers. This is not
surprising considering only 2 rules using demographic markers
were supported with a high probability of occurrence in the
training set. Our results show that the LLM wrapper method
significantly outperformed the best traditional classifier as well
as the best individual marker set (n-back). Results for the
wrapper method are comparable to reported results, which use
MRI and cerebrospinal fluid to perform a similar task, yielding
an accuracy of 76.4% [46]. These findings provide evidence
supporting in-the-home data collection and the design of LLM
technologies for improved MCI diagnosis.

Limitations
This study faced several limitations, including missing data
across several of the marker sets, reliance on an LLM to extract
and label participant responses to testing session questions, and
a small sample size of training participants (n=50) whose data
formed the knowledge base. Additionally, LLM nondeterminism
affects the reproducibility of the results. In the future, we plan
to explore other LLMs for the HDTwin chatbot agent and
diagnosis classification task, as well as improve prediction
accuracy with more in-depth prompt engineering and an
expansion of the knowledge base.
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Many of HDTwin’s data sources are continually updated. These
include the behavior markers, n-back scores, and journal entries.
The rules can be periodically updated, allowing HDTwin to
adapt to this new information dynamically. Our approach does
not finetune the model but provides new context. Future work
will investigate how to direct the LLM to model the historical
evolution of the prompts and forecast the future state of the
individual. In this setting, the digital twin can provide a tool for
testing scenarios and predicting outcomes of various behavior
changes and other types of changes. Such a tool can help
optimize potential treatment decisions for each person before
they are administered.

Conclusions
In this paper, we built a custom agent called HDTwin for
interactively exploring a multimodal, in-the-wild health dataset

(N=124), supporting the creation of a digital twin. The HDTwin
digital twin contains an agent that supports the diagnosis of
MCI, guiding more informed and actionable cognitive
assessment. To build this classifier with an LLM, we explored
the predictive capability of diverse individual and fused health
markers. A fusion of knowledge and participant data from
different marker sets yielded the strongest performance. Our
findings indicate that HDTwin significantly outperforms
traditional classifiers in diagnosing MCI. Integrating diverse
data sources through LLMs provides a comprehensive view of
cognitive health, enhancing diagnosis and intervention strategies.
Future studies can continue to explore approaches for increasing
the accuracy of LLMs to improve the accuracy of custom agents
like HDTwin for aiding clinicians with health care diagnosis
and prediction of outcomes.
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