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Abstract

Background: Intensive care unit (ICU) residents are exposed to high stress levels due to the intense nature of their work, which
can impact their mental health and job performance. Heart rate measured through wearable devices has the potential to provide
insights into residents’ self-reported stress and aid in developing targeted interventions.

Objective: This exploratory study aims to analyze continuous heart rate data and self-reported stress levels and stressors in ICU
residents to examine correlations between physiological responses, stress levels, and daily stressors reported.

Methods: A secondary data analysis was conducted on heart rate measurements and stress assessments collected from 57 ICU
residents over a 3-week period using Fitbit Charge 3 devices. These devices captured continuous physiological data alongside
daily surveys that assessed stress levels and identified stressors. The study used Spearman rank correlation, point-biserial correlation
analysis, 2-tailed paired t tests, and mixed-effect models to analyze the relationship between heart rate features and stress indicators.

Results: The findings reveal complex interactions between stress levels and heart rate patterns. The correlation analysis between
stress levels and median heart rate values across different percentile ranges showed that lower percentile heart rates (bottom 5%,
10%, 25%, and 50%) had modest correlations with stress, whereas higher percentiles (top 50%, 25%, 10%, and 5%) did not
correlate significantly (all P>.05). The 2-tailed paired t test indicated significant differences in stress levels reported in midday
versus end-of-day surveys (P<.001), although these changes in stress levels were not consistently reflected in heart rate patterns.
Additionally, we explored and found that stressors related to “other health” issues had the highest positive correlation with stress
level changes from midday to end-of-day surveys. However, the weak effect of these stressors on peak heart rate suggests that
their impact on physiological measures like heart rate is not yet clear. According to our mixed-effects model, stress levels
significantly influenced heart rate variations when hierarchical data were taken into account (P=.03), meaning that as the stress
level increased, there was a significant increase in mean heart rate.

Conclusions: This study highlights the complexity of using heart rate as an indicator of stress, particularly in high-stress
environments like the ICU. Our findings suggest that while heart rate is found to correlate with self-reported stress in the
mixed-effect model, its impact is modest, and it should be combined with other physiological and psychological measures to
obtain a more accurate and comprehensive assessment of residents’ stress levels.
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Introduction

Background
The intensive care unit (ICU) is a specialized hospital
department that provides intensive and constant treatment and
monitoring to patients with severe or life-threatening illnesses
and injuries. This necessitates a versatile ICU staff team of
competent experts skilled in different treatments and advanced
medical techniques and their seamless collaborations [1].
Moreover, these staff members face unpredictable, challenging,
and high-demanding tasks in their everyday work while
frequently encountering traumatic and ethical issues; making
critical end-of-life decisions; visualizing open wounds, massive
bleeding, and deaths; dealing with combative family and
patients; and providing postmortem care [2]. As a result, it is
widely recognized that more ICU staff feel stressed,
overwhelmed, and burned out compared to hospital physicians,
eventually jeopardizing their job satisfaction, well-being, and
quality of care [3]. According to a study by Kumar et al [4], the
prevalence of stress among ICU nurses and doctors is 52.43%.

Among ICU staff, residents are an especially high-risk group
for stress and burnout. Residents are also called trainee
physicians who have finished medical school and taken
postgraduate training and clinical roles at hospitals. On top of
their highly intensive training and demanding tasks at the ICU,
these trainee physicians also generally struggle with more
uncertainties and stressors that arise from both work and
personal lives [5]. A line of related research from the
Association of Program Directors in Internal Medicine in the
United States categorized residents’ stressors into 3 classes:
situational stressors like excessive workload; personal stressors
like financial issues; and professional stressors like examination
and career planning [6]. Furthermore, residents are generally
less experienced in stress coping as no formal training is
provided, and they lack supportive resources [7]. Several studies
show that residents tolerate higher and more severe stress than
senior physicians [8,9]. This not only affects the residents’
performance and well-being but also leads to more medical
errors.

Due to the severity of this issue, researchers are calling for
appropriate interventions to address residents’ stress [10-12].
Such appropriate interventions are based on the premise of
precise identification of stress sources, on-time intervention,
and personalized intervention methods [10]. Despite extensive
research on residents’ stress, stressors, and burnout, almost all
existing research focuses on either qualitative research methods
or questionnaires that only enable the identification of resident
stress based on their daily or even 1-time self-reflection and
reports. On the one hand, such sparse, subjective data collection
cannot be used to track the real-time stress of the residents and
thus fails to support timely intervention; on the other hand, it
can be mistaken as it depends on the residents’ memory and
hence causes inadequate intervention.

One ecologically valid solution for real-time stress tracking is
via wearables. With advances in sensors, the Internet of Things,
sensing technology, and artificial intelligence, wearables like
wristbands (eg, Fitbit), smartwatches (Apple and Samsung

smartwatches), smart rings (Oura rings), and smart belts (Polar
belt) are capable of tracking physiological signals like heart rate
(HR), HR variability (HRV), electrodermal activity, body
temperature, and body movements (via accelerometers)
constantly, and based on which, computing and reporting human
status in real-time. In recent years, these devices have been
widely used by individuals keen to understand and promote
their physical (eg, sleep tracking, step counting) and mental
health (eg, stress tracking). Indeed, physiological signals reflect
the status of the autonomic nervous system (ANS), which is
related to the involuntary or unconscious processes of the human
body, such as heart beating. Specifically, the ANS can be further
divided into sympathetic nervous system (SNS) and
parasympathetic nervous system (PSNS). The former is
responsible for our “fight-or-flight” instincts when the human
brain perceives danger and thus triggers acute stress responses
like increased HR and heart contraction forces; the latter helps
to conserve and restore the stressed status and main
“rest-and-digest” of the human body. The SNS and PSNS work
synergetically, creating balancing acts and smooth transitions
when humans deal with different environmental conditions.
Therefore, tracking the ANS system, or features of the ANS
system like HR (or other physiological signals), enables
understanding of the dominant (SNS or PSNS) system and
implies human status like stress.

Indeed, existing research shows that physiological signals like
HRV are highly related to stress [13]. For instance, Taelman et
al [14] compared the HR and HRV of 28 participants at rest or
with mental stressors and concluded that HR and HRV may
have the potential to measure stress levels. Moreover, Schubert
et al [15] found that chronic and short-term stress can affect
different HR and HRV metrics. However, although promising,
applying physiological signal- or wearable-based stress
computing, or in general, affective computing, is extremely
challenging since most existing studies on affective computing
conducted their experiments in controlled laboratory settings
where experimental stimuli are relatively simple, monotonous,
nonrealistic situations (eg, “imagine you are going to have your
final exam in 10 minutes”), and the participants are normally
required to be stationary. Such settings aim to avoid complex
physiological signal changes and noises introduced by the
surroundings or participants (eg, movements, skin tone). As a
result, the conclusions drawn from such experiments can be
related to those in naturalistic settings or in the wild but less
convincing. Physiological signal-based stress computing in
naturalistic settings is still an open and challenging issue,
especially given that ICU residents work in complex
environments. Nevertheless, this paper evaluates long-term HR
data collected from ICU residents in a 3-week study period.
Such an extensive dataset and continuous data support the
chances of improved noise reduction and the possibilities of
stress-caused physiological signal change identification.

Objective
This exploratory study analyzed long-term HR data collected
by wearable devices and survey responses from ICU residents
in a clinical setting. It aimed to investigate the correlation
between HR and self-reported stress levels and assess the
influence of daily stressors, contributing to a deeper
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understanding of how stress varies in clinical settings. This
understanding could inform future strategies to support health
care professionals, potentially enhancing decision-making and
patient care.

Methods

Study Design and Dataset
This study conducted a secondary data analysis of the dataset,
which was collected from 57 residents enrolled in the ICU
rotation at the Los Angeles County and University of Southern
California Medical Center between November 2019 and March
2020 [16]. Participating residents were provided with a Fitbit
Charge 3, and they wore the device continuously over the
3-week study period. The device recorded physiological data,
including HR, step count, sleep duration, and sleep quality.

Two daily surveys were administered during the study for stress
assessments. The midday survey was issued at 12:15 PM each
day, and participants retrospectively rated their stress level for
the morning hours on a 7-point Likert scale ranging from 1=not
at all stressed to 7=extremely stressed. The end-of-day survey
was deployed at 6:15 PM, which extended the assessment to
afternoon stress levels and included questions on perceived
daily stressors, work behaviors, and sleep quality. The surveys
also allowed participants to specify stressors encountered and
categorize them as personal (eg, financial issues, health
problems) and professional (eg, interpersonal conflicts,
discrimination) domains. To provide an overview of the sample
characteristics, the descriptive statistics of the key demographic
variables of the study participants are summarized in Table 1.

Table 1. Descriptive statistics of ICUa residents participating in the study (N=57).

ValueVariables

29.4 (2.3; 25-34)Age (years), mean (SD; range)

2.1 (0.9; 1-4)Years of residency, mean (SD; range)

Sex, n (%)

34 (60)Male

23 (40)Female

aICU: intensive care unit.

Ethical Considerations
The original data collection for the study was conducted under
the institutional review board approval obtained by the authors
of the TILES-2019 dataset (HS-19-00606). All participants in
the original study provided informed consent. The data used in
this study were fully anonymized before analysis, ensuring that
no personal identifiers were included. Data confidentiality was
maintained throughout the research process. Participants in the
original study were compensated according to the guidelines
of the primary research protocol. Focal participants were
compensated with a gift card and were allowed to keep the
Fitbit. No additional compensation was provided for this
secondary analysis.

Data Processing
HR data were reported at nonuniform intervals anywhere
between approximately 5 seconds and 15 minutes, depending
on the participants’ physical activity [16]. For data cleanup and
preprocessing, all empty files and duplicated columns that
occurred in some files were removed. We matched the HR

dataset with the corresponding reported stressor and stress level
dataset for each participant and then excluded participants who
were missing either the HR dataset or the reported stress dataset.
After preprocessing, 50 complete survey responses were
obtained with matching HR files. To facilitate comparative
analyses between participants, we normalized HR data using a
minimum-maximum normalization technique [17], which adjusts
HR values to a standardized range of values without distorting
differences in value ranges. After normalization, we aligned the
timestamps of the HR data and survey responses to synchronize
physiological data with stress assessments. Finally, due to the
different time intervals of the midday and end-of-day surveys
(4-hour vs 6-hour), we extracted HR data for a 4-hour window
preceding each survey time to maintain a consistent data
structure. After these steps, the dataset contains each
participant’s raw HR data before the midday and end-of-day
surveys with the corresponding stress level, for example, shown
in Figure 1. The raw HR data exhibit noise, necessitating the
identification of key features for extracting essential information
for analysis.
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Figure 1. Raw heart rate data before midday and end-of-day surveys for 1 participant on January 14, 2024: (A) before midday survey (stress level 3.0)
and (B) before end-of-day survey (stress level 2.0). bpm: beats per minute.

Feature Selection of HR Data
To extract essential information from the HR data, fundamental
statistical terms were first calculated at the aggregated level.
The key metrics for assessing the cardiac status of ICU residents
include mean HR, minimum HR, median normalized HR, HR
SD, and the ratio of HR above 100 bpm [18-20].

The median HR, a common measure of central tendency, has
been widely used in various studies [21,22]. Moreover, previous
research shows inconclusive results in the complicated
correlation between objective and continuous (4-hour window,
multiple samples per minute) physiological measurements like
HR and subjective and discrete self-reported mental health data
[23]. Such discrepancies can reside in the biased or falsely

self-reported stress levels affected by cognitive processes, social
desirability, and survey conditions [24]. Alternatively, they can
also be affected by various random noises in the physiological
signals caused by environmental or context factors like
temperature [25], light [26], individuals’circadian rhythms [27],
human activities [28], or drinking coffee [29]; extraordinary
experiences like winning a lottery; and underlying mechanism
or inferior quality of the sensors [30,31]. Moreover, the HR
data reflect the continuous changes over 4 hours. In contrast,
the survey data were only collected twice daily in this study,
which can be biased by individuals’ memory recall [14].
Therefore, to mitigate the influences of various biases, errors,
and noises in the data and to gain insights into the complex
correlation between perceived stress and HR, we decided to use
the median of different percentiles of the HR data. Specifically,
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in addition to the median of the entire 4-hour window, we
experimented with specified percentile ranges for each
participant, specifically the top and bottom 5%, 10%, 25%, and
50%, which were calculated to characterize the central tendency
of HR distribution. The median values potentially also provide
insights into the distribution and variability of HR responses
across participants.

According to the existing literature on physiological markers
of stress [32], an advanced measurement, peak HR, was
generated to represent the highest HR during the 4-hour window
preceding each survey response. It captures moments of acute
physiological arousal that may be associated with stressful
experiences.

Statistical Analysis
This study used a list of statistical analyses in 3 stages to first
explore the relationship between long-term HR and stress
reported by ICU residents and also examine the potential factors
for stress in the clinic setting. In stage 1, we conducted the
correlation analysis to explore the relationship between key
cardiac status metrics and self-reported stress levels. In addition,
we analyzed the correlations between the median HR across
different percentile ranges and stress levels, aiming to determine
which percentile ranges showed more pronounced correlations
with stress. Following this inspiration, we also investigated
whether the HR pattern differs in the midday and end-of-day
periods by extracting HR readings from the 4-hour periods
before each survey’s timestamp. This approach allowed us to
analyze how immediate physiological conditions, captured
through HR, correlated with the stress levels reported by ICU
residents at different times of the day.

To understand the causes of stress in stage 2, we performed
2-tailed paired t tests on stress levels reported in the midday
and end-of-day surveys for each day. In the next step, we
examined the influence of various daily stressors on stress levels
and physiological responses, particularly peak HR. Through
this, we aimed to understand the influence of day-to-day
challenges on the residents’ stress experiences.

Furthermore, in stage 3, we applied mixed-effect models to
accommodate the nested structure of the data and account for

the correlation of repeated measurements from the same
individual, which usually exists in longitudinal data. The model
incorporates median HR, stress level, and survey type (midday
or end-of-day).

The mean HR was entered as the dependent variable in the
mixed-effects model, with stress level and survey type as the
fixed effects. We added random intercepts for each participant
in the model, trying to capture individual variability in HR.
Those random intercepts acknowledge and account for the
inherent differences in physiological baseline found from person
to person. Additionally, we considered the random slopes for
the survey type, exploring whether the timing of the survey
influenced HR across participants, thus allowing for
personalized response patterns.

Each stage of our analysis deepens our understanding of the
complex relationship between the physiological characteristics
of stress and the subjective experience of ICU residents. More
sophisticated statistical techniques are used, culminating in
mixed-effects models, allowing us to distinguish between fixed
and random effects that contribute to HR, thus providing a
comprehensive insight into the phenomenon under study.

Results

Stage 1: Correlation Analysis Between HR Metrics
and Stress Levels
We used Spearman rank correlation analysis to examine the
linear relationship between key cardiac status metrics and
self-reported stress levels among ICU residents, with correlation
coefficient values ranging from –1 to 1 [33].

A significant positive correlation (0.14; P<.001) was found
between mean HR and stress levels, shown in Table 2. The
minimum value and SD of HR are also found to be significantly
correlated with stress levels (both P<.001). However, the
correlation coefficients between these metrics and stress levels
are small, and the association may not be particularly relevant.
This indicates that HR, as measured through these fundamental
statistical terms, may not serve as a strong stand-alone indicator
of stress within the context of ICU residents.

Table 2. Correlation coefficients between heart rate metrics and stress levels.

P valueCoefficientHeart rate metrics

<.0010.1401Mean heart rate

<.0010.1068Minimum heart rate

.020.0609Normalized mean heart rate

.110.0639Normalized median heart rate

.280.0289Ratio of heart rate above 100 (bpma)

.370.0237Maximum heart rate

<.001–0.1036SD of heart rate

abpm: beats per minute.

Beyond the fundamental statistical terms, we explored the
correlation between stress levels and median HR values of top

and bottom 5%, 10%, 25%, and 50% percentiles to identify
whether HR segments are associated with self-reported stress
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levels among ICU residents. We used Spearman rank correlation
analysis for stress levels on an ordinal scale. There is no
significant correlation between the median values and stress

levels for the upper percentiles of values, as shown in Table 3
(all P>.05).

Table 3. Correlation between upper percentiles median heart rate and stress levels.

P valueCorrelation coefficientHeart rate percentiles

.390.0227Top 5% median heart rate

.350.0248Top 10% median heart rate

.370.0239Top 25% median heart rate

.260.0297Top 50% median heart rate

For the lower percentiles, the correlations are tested to be
significant (all P<.05), as shown in Table 4, whereas the
correlation coefficients, ranging from 0.0967 to 0.1083, are
relatively small. The low coefficients indicate a weak linear
relationship between the lower percentiles of median HR and
stress levels. These weak but significant correlations may be

due to the large sample size of testing or other important but
unrecognized confounding factors of median HR. Although the
associations between the lower percentiles of median HR and
stress levels are tested to be significant and have greater
magnitude compared to the upper segments, the results suggest
that stress levels may not be reflected by median HR levels.

Table 4. Correlation between lower percentiles median heart rate and stress levels.

P valueCorrelation coefficientHeart rate percentiles

<.0010.1066Bottom 5% median heart rate

<.0010.1083Bottom 10% median heart rate

<.0010.1046Bottom 25% median heart rate

.0020.0967Bottom 50% median heart rate

Similar to initial expectations, higher reported stress levels did
not generally correspond to higher metric values during the
measuring window. This can be further reflected by a
representative case shown in Figure 2, which illustrates the HR
of 2 entire windows of 1 participant for 1 day. The patterns can
hardly be distinguished given the significantly different stress

levels (6 vs 4). Regarding the period right before the survey
(1500th-1700th samples), the HRs of higher stress (blue) are
lower than those of lower stress (orange line). This observation
suggests that the relationship between immediate physiological
responses (measured by raw HR) and subjective stress
experience is more complex than direct causation.

Figure 2. Comparison of HR patterns between midday and end-of-day surveys for 1 participant. HR: heart rate; PPG: photoplethysmography.

Stage 2: Analysis of Stress Level Differences and
Relevant Factors
In the second stage of analysis, we explored the differences in
stress levels reported in midday and end-of-day surveys among
ICU residents and compared corresponding HR patterns. We
performed a 2-tailed paired t test on a significant sample of 669
instances of completion of both surveys [34]. Specifically, the
t test was conducted to compare the absolute value of the
difference in stress levels reported between the 2 survey times

against 0. This approach allowed us to assess whether the
magnitude of stress level changes was significant, regardless
of the direction of change. The 2-tailed t test analysis yields a
t statistic of 21.02 and a P value of <.001. The result indicates
that the stress differences between midday and end-of-day
surveys observed in the dataset are statistically significant.
However, we did not observe that 1 survey time consistently
resulted in higher stress levels than the other. The range of
variability in stress experiences, with both positive and negative
differences between the midday and end-of-day surveys
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observed across the study population, indicates no consistent
trend in stress levels at either time of day.

Despite significantly different stress levels between midday and
end-of-day surveys, the HRs measured did not demonstrate
significant differences according to the previous analysis (Figure
2). In addition to the survey type or time, we examined the

specific stressors reported by ICU residents and their influence
on changes in their stress levels and peak HRs. To report daily
stressors, participants indicated whether and how frequently
they had experienced stress that day from any of the sources in
Table 5. All reported stressors are nonprofessional as they
pertain to personal and family-related issues rather than
professional or clinical activities.

Table 5. Meaning and frequency of daily stressors reported by participants.

Frequency, nMeaningDaily stressor

10Tension or arguments with spouse or partnerPartner

5Tension or arguments with family membersFamily

20An item breakingBreakdown

15Not having enough money to pay bills, loans, or something else that is neededMoney

60Finding time for self-careSelf-care

30Own health problemsHealth

40Someone else’s health problemsOther health

25Doing or needing to do household tasksHousehold

5Caring or arranging care for the childChild

2Experiencing discriminationDiscrimination

280NoneNone

Self-care is the most prevalent stressor, indicating that ICU
physicians are consciously aware of the challenges. Yet,
participants selected “none” 280 times, even though they worked
under substantial stress.

To investigate the influence of the reported stressors, we
computed the point-biserial correlation coefficient between each
stressor and the magnitude of change in stress levels between
midday and the end-of-day surveys. In the analysis, the stressors
were encoded as binary states indicating the presence or absence
of each stressor. The point-biserial correlation is used to measure
the relationship between a continuous variable and a
dichotomous variable. According to the study design, stressors
were reported only in the end-of-day surveys, but stress levels
were assessed at midday and at the end of the day. Participants

presumably recalled stressors that happened close to the end of
day in their short-term memory, and the change in stress levels
is likely to capture the cumulative impact of daily stressors.
Thus, we focused on analyzing changes in stress levels rather
than comparing raw stress values. The correlation analysis shows
that “other health,” which involves health issues of others other
than participating ICU residents, emerged as the stressor with
the highest positive correlation (0.1694) with stress level, shown
in Table 6. On the other hand, “none” showed a statistically
significant negative correlation (–0.1085; P=.005) with stress
level changes, indicating that participants reported less change
in stress on days without any specified stressor. Yet, due to the
small coefficient values, the correlations between the stressors
and stress levels are generally weak, and the significance may
be due to other unknown confounding factors.
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Table 6. Correlations between daily stressors and stress level changes.

P valueCoefficientDaily stressor

.0504–0.0756Partner

.0090.0996Family

.055–0.0741Breakdown

.870.0062Money

.39–0.033Self-care

.800.0098Health

<.0010.1694Other health

.32–0.0386Household

N/AN/AaChild

.310.0391Discrimination

.005–0.1085None

aN/A: not available.

Moreover, when we assessed the impact of the stressors on
changes in stress levels through regression analysis, the results
showed that the model’s explanatory power was relatively low,
with a mean squared error of 0.638 and an R squared value of
0.012. It can be inferred that other unexamined factors, in
addition to the predetermined stressors in the survey, may
explain variations in stress levels among ICU residents.

Finally, inspired by the literature [35], we examined the
relationship between reported stressors and peak HR using linear

regression. The regression results show that the stressors
“partner” and “breakdown” have significant effects on the peak
HR (both P<.001), whereas the coefficient is close to 0 (Table
7). This indicates no meaningful changes in peak HR associated
with partner-related stress. Other stressors, such as “family”
(P=.03), “other health” (P<.001), and “household” (P=.003),
also showed statistically significant effects and more substantial
influence on the peak HR.

Table 7. Summary of linear regression results for stressors and peak heart rate.

P value >|t|t valueCoefficientVariable

<.0013.5951.03×1016Partner

.032.1750.2134Family

<.0013.7571.203×10–16Breakdown

.0052.8461.016×10–16Money

.69–0.397–0.0115Self-care

.049–1.980–0.1119Health

<.001–3.356–0.0982Other health

.0032.9840.2477Household

N/AN/AN/AaChild

.44–0.765–0.0749Discrimination

.051–1.965–0.0435None

aN/A: not available.

The model has several limitations. The R squared value is 0.110,
suggesting that the model does not explain much of the variation
in the data. However, the statistical significance of the model
was confirmed (F11,491=5.52, P<.001) for the collective
relationship between the identified stressors and peak HR. The

model also produces a high condition number (5.68×1033),
indicating potential problems with the multicollinearity of the
stressors. Although providing insights into the causes of daily

stress, the model needs further enhancement to disentangle these
relationships.

Stage 3: Mixed-Effects Model of Stress, HR, and
Relevant Factors
In stage 3, we implemented the mixed-effects model to
investigate the influence of stress level and survey type on mean
HR while accounting for the nested structure of the data with
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the repeated measurements of the study. The model was applied
to data consisting of 50 unique participants with 1419
observations. Each participant was considered a separate group.
The observation size ranged from 1 to 43 in each group, while
the average size for observations recorded was 28.4. In our
analysis, the intercept is 80.77, shown in Tables 8 and 9. This

means the HR is approximately 80 beats per minute at noon for
individuals under low stress. This number served as a starting
point for understanding how HR changed under different
conditions. The high level of certainty (P<.001) in this result
means that it is unlikely this is a random finding.

Table 8. Results of the linear mixed model on the influence of stress level and survey type on mean heart rate (part 1).

Mean heart rateDependent variableMixed linear modelModel

REMLaMethod1419Number of observations

61.99Scale50Number of groups

–5023.08Log-likelihood1Minimum group size

yesConverged43Maximum group size

——b28.4Mean group size

aREML: restricted maximum likelihood.
bNot applicable.

Table 9. Results of the linear mixed model on the influence of stress level and survey type on mean heart rate (part 2).

0.975][0.025P value >|z|zSECoefficient

83.1378.41<.00167.091.280.75Intercept

0.28–1.57.17–1.360.47–0.64Suvey_Type [end-of-day]

0.630.03.031.280.150.33Stress_Level

————a1.5856.31Group heart rate variance

————0.47-0.35Group heart rate and Survey_Type [end-of-day] covariance

————0.261.67Survey_Type [end-of-day] variance

aNot applicable.

The individual differences in physiological responses are
illustrated as a histogram of random intercepts from the
mixed-effects model shown in Figure 3. This histogram shows
a normal distribution centered around a mean close to 0,
highlighting interindividual variability in baseline HR among
participants. The distribution spans approximately from –15 to

+15, emphasizing differences in baseline physiological states
across individuals. Such variability underscores the importance
of accounting for individual differences when analyzing
physiological responses, as it confirms that baseline HR levels
can influence the observed effects of stress levels and time of
day on HR measurements across a diverse participant pool.

Figure 3. Distribution of random intercepts in the mixed-effects model for heart rate.

The impact of survey type on HR revealed distinct patterns
throughout the day. Compared to that at midday, HRs at the
end of the day are generally lower, with a decrease of 0.644
beats per minute (P=.17); however, this difference was not

statistically significant. As shown in Figure 4, mean HRs
demonstrated an approximately linear trend for the stress levels
in the midday surveys; mean HRs that corresponded to the
end-of-day surveys fluctuated, particularly for low stress and
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high stress. Individual differences in HR responses to survey
type are evident in variances of 1.677 (SE 0.265) for the
end-of-day surveys. It seems that even though time of day may

affect responses to stress, it varies significantly among
individuals, with some showing heightened sensitivity to survey
type.

Figure 4. Impact of stress level on heart rate by survey type. PPG: photoplethysmography.

The result in Table 9 demonstrates a significant relationship
between participants’ stress levels and HRs. The model
estimated that for each unit increase in stress level, there is a
corresponding increase in mean HR of 0.334 beats per minute
(P=.03). The strong correlation between perceived stress level
and HR is statistically significant, confirming that higher stress
levels are consistently associated with higher HRs.

The random effects analysis within our mixed-effects model
reveals substantial variability in HR responses among
participants, as indicated by the group variance of 56.313. As
a result of all this interindividual variability, baseline HRs differ
significantly across participants (P<.001), highlighting the need
to monitor and manage HRs individually. In addition, the
variance component for the end-of-day survey type is 1.67,
suggesting that HRs vary at different times of day and in
different ways. Moreover, the covariance between individuals’
baseline HRs and how those rates change at the end of the day
shows a negative value of –0.349, indicating an inverse
relationship. Those with lower HRs at the start might have more
substantial increases by the end of the day, while those starting
with higher rates might not experience as much change.

Discussion

Principal Findings
This secondary analysis study has produced several findings
with implications for understanding stress in clinical
environments. Our initial correlation analysis suggested a
modest correlation between average HR and stress levels. This
is consistent with previous research indicating that HR may be
a more complex indicator of stress than previously thought [36].
The weak correlations across key metrics highlight the potential
limitations of using HR alone as an indicator of stress, echoing
the findings of Matsumoto et al [37] on the need to combine
biometric data with other subjective measures for a
comprehensive stress assessment. In addition, the metrics
extracted from the entire 4-hour window provide aggregated
information, which may not explain the instantaneous stress

reported in surveys. Further analysis is necessary to understand
when and how much physiological history needs to be collected
for stress analysis.

Beyond fundamental metrics, the median HR in lower
percentiles (5%, 10%, 25%, and 50%) showed low-to-moderate
positive correlations with stress levels. The result shows that
self-reported stress can be captured by the lower end of the HR
distribution. However, median HRs of the upper percentiles
were very weakly correlated with stress levels. This highlights
the complexity of the stress response, as these upper percentile
HR values were not significantly consistent with residents’
self-reported stress. As suggested by Clarke et al [38], this may
be due to a variety of factors, including individual differences
in stress physiology or the presence of nonstress-related
physiological factors. Psychological factors such as reporting
biases or professional norms that encourage underreporting
stress might contribute to these findings. External factors like
medication or caffeine intake and the specifics of the
measurement methodology could also play significant roles
[39,40]. Relying solely on traditional HR metrics may not
sufficiently capture the multifaceted nature of stress responses
in health care settings. Therefore, future research should
consider these variables to better understand stress physiology
in clinical environments.

Further examination of significant differences in stress levels
reported at different times of the day, as revealed by the 2-tailed
t test analysis, indicates the dynamic nature of stress in health
care professionals, confirming the study of Vamvakas et al [41].
Interestingly, higher stress levels did not consistently correlate
with higher median and peak HRs. This result suggests the need
for further investigation into additional metrics such as HRV,
cortisol levels, and skin conductance, which may also
significantly influence these correlations and provide a more
comprehensive understanding of physiological responses to
stress [42,43]. The lack of a consistent correlation between
higher stress levels and higher HRs challenges the direct
relationship assumed in early stress models [36]. This finding
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aligns with recent work by Sommerfeldt et al [44], which shows
individual differences in physiological stress responses and
suggests that future studies should focus on establishing
personalized profiles that account for such variability.

The implementation of our mixed-effects model provided further
insight into these dynamics by accounting for the nested
structure of the data, a crucial aspect given the repeated
measures across subjects [45-47]. As a result of this modeling
approach, we found that, when the hierarchical nature of the
data was considered, stress levels were significantly correlated
with HR variations, contradicting initial correlation analyses.
According to the mixed-effect model, each unit increase in stress
level corresponded to a 0.334 beat per minute increase in mean
HR (P=.03) among participants. The variability in HR responses,
as indicated by the group variance of 56.313 and the specific
patterns observed in responses to different times of day, further
support the notion that individualized approaches are critical in
managing health outcomes in high-stress environments like
health care.

Specific stressors, particularly those related to the health of
others, had more pronounced effects on stress levels, perhaps
reflecting the inherently empathetic nature of health care work
[38,48]. In contrast, days without specific stressors reported
less change in stress, but this does not necessarily imply
consistently lower stress levels on such days, challenging the
notion of accumulation of stress through identifiable daily
stressors alone. This is consistent with the view proposed by
previous literature, which argues that stress may also arise from
a lack of stressors, as this may indicate insufficient stimulation
or lack of engagement [48,49].

These findings collectively suggest a complex interplay between
physiological measures and the psychological landscape of
stress. This aligns with the idea that stress in clinical settings is
a dynamic and complex experience impacted by individual,
situational, and emotional factors [50]. The results highlight the

importance of considering the broader context of individual
experiences and the multidimensionality of stressors in assessing
and managing stress among health care professionals. The study
sets a foundation for future research further to unravel the
intricacies of the HR-stress relationship, incorporating additional
variables like sleep quality and workload to enhance stress
management strategies within high-pressure clinical settings.

Limitations
The modest sample size and the focus on ICU residents may
limit the generalizability of our results to other settings or
populations. Additionally, the study relied on self-reported
measures of stress, which are subjective and may be influenced
by individual variability in stress perception and reporting
accuracy. The use of wearable technology has some constraints.
The Fitbit Charge 3 may not capture the full complexity of
physiological responses to stress. Also, factors such as device
placement, physical activity, and external environmental
influences could affect the accuracy of the data collected. Future
research incorporating a wider range of physical, physiological,
and psychosocial variables may improve the understanding and
predictive capability for stress levels in clinical environments.
The demographic factors that potentially influence stress levels
may be further examined to provide a deeper understanding and
guidelines for stress management.

Conclusions
This study provides valuable insights into the complex
relationship between HR and perceived stress levels in ICU
residents. We highlight the multifaceted nature of stress
responses in high-stress clinical settings by analyzing long-term
HR data and self-reported stress levels and stressors. Our
findings suggest that while HR indicators can provide some
indication of stress, they are not stand-alone indicators and
should be combined with comprehensive physiological and
psychological measures to obtain a more accurate assessment.
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The data sets analyzed during this study are available in the TILES repository [16].
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Abbreviations
ANS: autonomic nervous system.
HR: heart rate
HRV: heart rate variability
ICU: intensive care unit
PNS: parasympathetic nervous system
SNS: sympathetic nervous system
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