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Abstract

Background: Smartphones and wearables are revolutionizing the assessment of cognitive and motor function in neurological
disorders, allowing for objective, frequent, and remote data collection. However, these assessments typically provide a plethora
of sensor-derived measures (SDMs), and selecting the most suitable measure for a given context of use is a challenging, often
overlooked problem.

Objective: This analysis aims to develop and apply an SDM selection framework, including automated data quality checks and
the evaluation of statistical properties, to identify robust SDMs that describe the cognitive and motor function of people with
multiple sclerosis (MS).

Methods: The proposed framework was applied to data from a cross-sectional study involving 85 people with MS and 68
healthy participants who underwent in-clinic supervised and remote unsupervised smartphone-based assessments. The assessment
provided high-quality recordings from cognitive, manual dexterity, and mobility tests, from which 47 SDMs, based on established
literature, were extracted using previously developed and publicly available algorithms. These SDMs were first separately and
then jointly screened for bias and normality by 2 expert assessors. Selected SDMs were then analyzed to establish their reliability,
using an intraclass correlation coefficient and minimal detectable change at 95% CI. The convergence of selected SDMs with
in-clinic MS functional measures and patient-reported outcomes was also evaluated.

Results: A total of 16 (34%) of the 47 SDMs passed the selection framework. All selected SDMs demonstrated moderate-to-good
reliability in remote settings (intraclass correlation coefficient 0.5-0.85; minimal detectable change at 95% CI 19%-35%). Selected
SDMs extracted from the smartphone-based cognitive test demonstrated good-to-excellent correlation (Spearman correlation
coefficient, |ρ|>0.75) with the in-clinic Symbol Digit Modalities Test and fair correlation with Expanded Disability Status Scale
(EDSS) scores (0.25≤|ρ|<0.5). SDMs extracted from the manual dexterity tests showed either fair correlation (0.25≤|ρ|<0.5) or
were not correlated (|ρ|<0.25) with the in-clinic 9-hole peg test and EDSS scores. Most selected SDMs from mobility tests showed
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fair correlation with the in-clinic timed 25-foot walk test and fair to moderate-to-good correlation (0.5<|ρ|≤0.75) with EDSS
scores. SDM correlations with relevant patient-reported outcomes varied by functional domain, ranging from not correlated
(cognitive test SDMs) to good-to-excellent correlation (|ρ|>0.75) for mobility test SDMs. Overall, correlations were similar when
smartphone-based tests were performed in a clinic or remotely.

Conclusions: Reported results highlight that smartphone-based assessments are suitable tools to remotely obtain high-quality
SDMs of cognitive and motor function in people with MS. The presented SDM selection framework promises to increase the
interpretability and standardization of smartphone-based SDMs in people with MS, paving the way for their future use in
interventional trials.

(JMIR Form Res 2024;8:e60673) doi: 10.2196/60673
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Introduction

Background
Accurate measurement of meaningful change in neurological
function, essential for optimal patient management and
development of new interventions, remains a significant
challenge. This challenge is particularly salient in the context
of clinical trials, in which infrequent, in-clinic assessments are
often used as primary end points [1-3]. Such infrequent, and at
times subjective [4,5], assessments may not capture typical
function or subtle disease progression because complex
neurological diseases often exhibit significant fluctuations within
individuals and are heterogeneous between individuals.

The need for better assessment tools is particularly compelling
in the setting of disease monitoring for multiple sclerosis (MS),
where there is an unmet need for enhanced performance-based
measures of function across motor and cognitive domains
commonly impacted by disease progression. MS is a
heterogeneous disease that often leads to impairment in
neurological domains that extend beyond lower limb function,
as assessed by walking distance range, including cognition, gait
and posture, and fine motor function [1]. Monitoring of
MS-associated disability progression is essential for patient
management and development of MS treatments; however, it
is complicated by the presence of relapses, fluctuation of
symptoms due to illness or fatigue, and infrequent in-clinic
assessment of function. The use of conventional clinical
instruments, which rely on intermittent in-clinic, rater-dependent
outcome measures [6,7], further adds to the complexity of
measuring function and treatment effects. Assessment tools
yielding more continuous outcome measures in free-living
environments may improve measurements of the efficacy of
new treatments across key functional domains affected by MS
disease by providing more accurate and reliable measures.
Consumer adoption of smartphones and wearable technologies
has offered us the opportunity to move measurements from the
clinic to remote unsupervised settings, with the potential for
more accurate, sensitive, and objective performance measures
of function. Greater accuracy and sensitivity are expected to
result from reduced variability due to increased frequency of
measurement [8-10]. Greater accuracy and sensitivity may also
result from the ability to measure unique aspects of function
not currently captured by conventional clinical assessments
[11]. This principle has been demonstrated by the fact that more

people with MS show confirmed disability worsening when
assessing change across multiple functional domains relative
to assessment [12-15] based on the Expanded Disability Status
Scale (EDSS) [16] alone. Sensor-derived measures (SDMs)
extracted from digital assessments may offer more granularity
within different functional domains and capture unique
information relevant to disability progression.

Smartphones are a potential solution for remote deployment of
standardized assessment protocols, which can be achieved by
leveraging the smartphone-sensing technologies and apps
designed to provide the patient with codified test instructions.
Smartphone-based assessment offers a cost-effective and readily
deployable method for monitoring neurological function
remotely without the need for trained test raters or specialized
monitoring devices [17,18]. This approach has already shown
success in pilot and validation studies in neurological diseases,
including Parkinson disease and MS [11,19-24]. However,
hundreds of different SDMs can be computed from a single
digital assessment, resulting in many candidate SDMs and
challenges in selecting the relevant and meaningful ones,
stressing the need for an SDM selection framework.

When defining a framework for the selection of
smartphone-based SDMs for use in a clinical trial context, data
quality and transparency are of paramount importance. First, it
is essential to ensure that the sensor-derived data acquired are
of high quality and that the assessment protocols are followed
when deployed in an unsupervised daily living context. Second,
from the initial assessment stage, it is vital to identify SDMs
with the most robust metrological and statistical properties
needed to obtain specific, sensitive, and responsive SDMs for
future clinical trials. Although studies have demonstrated that
it is feasible to use smartphone-based assessment of neurological
function [8,9,11], these fundamental deliberative aspects of
assessment have been only partially addressed, and the SDM
selection process was not adequately described.

Objectives
This analysis aimed to develop and apply a transparent and
systematic SDM selection framework to identify robust and
meaningful SDMs that can be collected remotely with
smartphones and quantify cognitive and motor function in
people with MS. For this purpose, we relied on data from the
DigiToms study [25] and Konectom (Ad Scientiam), which is
a smartphone app for collecting data on motor and cognitive
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function. This work intended to provide greater transparency
for the selection and validation of SDMs from standardized,
unsupervised, remote assessments and thereby enhance
confidence in the robustness and adoption of such
measurements.

Methods

Study Design and Participants
The DigiToms study (NCT04756700) [25] is a prospective
study of people with MS and matched healthy participants. The
study was conducted at CHU Hôpitaux de Bordeaux in France
and classified in France as an interventional clinical study with
only minimal risks and constraints. The main objectives of
DigiToms were to validate DigiCog, which is a tablet-based
digital version of the Brief International Cognitive Assessment
for Multiple Sclerosis (BICAMS) [26,27], as a digital
assessment tool for cognitive and motor functions in people
with MS and to characterize the validity and reliability of SDMs
obtained from Konectom in people with MS. Only the latter
results are presented in this paper.

The DigiToms study recruited people with MS and healthy
participants matched for age, gender, and level of education.

People with MS were aged between 18 and 64 years with the
diagnosis of MS according to the 2017 revised McDonald
criteria [28] and an EDSS score of ≤6.0. Inclusion and exclusion
criteria for both cohorts are described in Table S1 in Multimedia
Appendix 1. The study assessment schedule is presented in
Table 1. At clinic visit 1 (CV1), participants completed the
EDSS (only patients), the daily walk test [29], either BICAMS
[26] or 3 DigiCog tests [25,30], and patient-reported outcomes
(PROs; Table 1). Symbol Digit Modalities Test (SDMT), a
component of the BICAMS, was performed either at CV1 or
clinic visit 2 (CV2), depending on randomization (Table 1). All
participants first underwent a training session and then
completed the full test battery under the supervision of clinic
staff at CV1. Participants were initially asked to perform the
digital tests daily for 14 days, but this requirement was reduced
to 7 days after a scheduled interim analysis of the first 40 people
with MS and 20 healthy participants showed a marked reduction
in adherence after 7 days (data not shown). After the mandatory
period, use was optional up to 28 days. CV2 was scheduled to
occur approximately 28 days after CV1. At CV2, the
conventional clinical assessments were repeated, along with a
final supervised test session. The EDSS total score, and
subscores were assessed by neurologists certified by the
Neurostatus e-test [31].

Table 1. DigiToms study assessment schedule for people with multiple sclerosis.

Day 28 (+5
or –5 days;
CV2)

CV1 minus 1-
2 days (remote
visit)

Day 8-CV1
(remote visit)

Day 1-7 (remote
visit)

Day 0
(CV1)

Day minus 2

(CVa0)

✓Information only

✓Inclusion and randomization

✓Medical history

✓Demographic data

✓✓MSb treatments

✓EDSSc

✓✓PROsd (ABILHAND-56, MSWS-12e, FSMCf, MSIS-

29g)

✓✓DigiCog or BICAMSh

✓✓T25FWi test

✓✓9HPTj

✓Konectom full battery training (no data collected)

✓✓✓ (optional)✓✓Konectom full battery

aCV: clinic visit.
bMS: multiple sclerosis.
cEDSS: Expanded Disability Status Scale.
dPRO: patient-reported outcome.
eMSWS-12” 12-item Multiple Sclerosis Walking Scale.
fFSMC: Fatigue Scale for Motor and Cognitive Functions.
gMSIS-29: 29-item Multiple Sclerosis Impact Scale.
hBICAMS: Brief International Cognitive Assessment for Multiple Sclerosis.
iT25W: timed 25-foot walk.
j9HPT: 9-hole peg test.
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Ethical Considerations
This study was reviewed and approved by the regional French
ethics committee, Committee for the Protection of Persons of
the South-West and Overseas 4 (IRB Number: IORG0009855;
e t h i c s  a p p r o v a l :
CPP2020-08-071/2020-A01801-38/20.06.29.74021). Before
completing any screening assessments, all study participants
provided written informed consent for study participation and
to authorize the use of confidential health information (including
Konectom data) in accordance with national and local privacy
regulations. Encryption was used for data transfer from the
smartphone to a dedicated database that complied with the
European General Data Protection Regulation. All study data
were deidentified and aggregated for analyses presented in this
paper. People with MS were not paid to participate in the study.
When applicable, transport-related costs incurred by people
with MS could be submitted to the investigator for review and
submission to the sponsor for reimbursement. Healthy
participants were compensated €75 (US $82) upon completion
of the study. Compensation and reimbursement were described
in the informed consent document approved by the regional
French Ethics Committee.

Digital Outcome Assessment
The Konectom digital outcome assessments tool [32] (Figure
S1 in Multimedia Appendix 1), developed in collaboration
between Biogen and Ad Scientiam, is an app that assesses
cognitive and motor functions using a battery of tests
reproducing well-established clinical assessment tools. The
assessment implied three main sessions: (1) in the clinic, (2)
daily activities, and (3) daily walk. The in-clinic session is
supervised and follows a defined order, while the daily activities
and daily walk sessions are unsupervised. The schedule of these
tests is summarized in Figure S2 in Multimedia Appendix 1.

Cognitive processing speed (CPS) was measured using the CPS
test, based on the validated SDMT [23]. The test consists of
displaying a series of symbols on the screen (Figure S1A in
Multimedia Appendix 1) and instructing participants to match
symbols with their corresponding digits as quickly and
accurately as possible for 90 seconds, according to a reference
key displayed at the top of the screen. At each test performance,
participants performed the test using either a fixed reference
key, where the symbol digit pairings remained constant
throughout the course of the 90-second test, or a dynamic
reference key, where the symbol digit pairings changed upon
the presentation of every symbol throughout the 90-second test.
Only results from fixed key tests are presented in this paper.

Manual dexterity was assessed for both the dominant and
nondominant hand using 2 tests previously proved to be valid
and reliable in MS: the drawing test [33] and the pinching test
[34]. The drawing test involves drawing predetermined shapes
as quickly and accurately as possible (Figure S1B in Multimedia
Appendix 1). A total of 8 shapes per hand were performed (2
attempts per shape and 4 different shapes: rectangle clockwise,
rectangle counterclockwise, figure-of-8, and spiral). The
pinching test involves pinching as many balloon shapes as
possible within 30 seconds (Figure S1C in Multimedia Appendix
1).

Gait and postural ability were assessed using the static balance
test (SBT), the U-turn test (UTT), and the daily walk test,
consistently with similar efforts [22,35]. Participants were
instructed to place their smartphones in a running belt at the
lower back level. The SBT and UTT consisted of a 2-step test.
First, participants were instructed to stand still with arms crossed
and feet at hip level for 30 seconds. An auditory signal then
informed the participants that they could perform 5 steps and a
U-turn in a sequence repeated 5 times. Finally, in the daily walk
test, participants were asked to walk outdoors and as fast as
they could for 6 minutes, following a path that would allow
them to walk straight for at least 250 meters.

Data Recording
During each test, various sensors embedded in the provided and
preconfigured study smartphones (iPhone X, Apple) were used
to capture the necessary raw data. These sensors included screen
input and coordinates (sampling frequency of 60 Hz),
accelerometer, and gyroscope data (sampling frequency of 50
Hz). Assessments’ metadata were also collected, including
information such as the participant’s study ID, the time stamp
of each assessment, and the related session. To ensure data
security and integrity, a secure protocol was used to transmit
the recorded data from the smartphone to the Hébergeurs de
Données de Santé servers hosted in France and managed by Ad
Scientiam (Microsoft Azure).

Data Quality Checks and Automated Detection of
Deviations From Instructions
To ensure the reliability and validity of the collected data, a
3-layer quality control procedure was defined to identify and
mitigate potential sources of bias or error that could influence
participants’ digital test results. This process is aimed at
identifying and excluding artifacts or outliers from the
subsequent analysis. As part of the quality control checks, a
flag was automatically raised if any anomalies or inconsistencies
were detected in the different control layers.

The first layer was implemented in the app to identify
assessments that did not follow the nominal scenario, such as
receiving a phone call, which would automatically stop the
assessment and raise a specific exit reason in the related
metadata. The second layer involved identifying technical issues
with the data capture process at the sensor level, such as
confirming the presence and the consistency of the expected
data with hardware specifications (eg, expected and stable
sampling frequency). The third layer leveraged previously
developed and publicly available [36] algorithms to
automatically identify critical deviations from the assessment
instructions, potentially occurring in unsupervised remote
assessments. In particular, the following deviations from the
instructions were identified as critical and used to identify
signals or measures to be excluded from the analysis:
smartphone not worn in the belt during the SBT, UTT, and daily
walk test; presence of excessive extra motions during the SBT;
absence of U-turns during the UTT; finger lifting during the
drawing test; smartphone not kept in portrait mode during the
drawing and pinching tests; incomplete drawing or drawing
path length outside expected values during the drawing test;
and missing attempts at the pinching tests.
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SDM Computation and Selection
SDMs were computed for each test using a purposely developed
and publicly available Python library [36]. To select promising
SDMs for our context of use, a previously proposed selection
process [37] was adopted after tailoring it to the study needs.
In more detail, relevant literature was reviewed, and a first set
of measures per digital test was identified, which was expected
to capture meaningful concepts of interest in people with MS
and have high interpretability. For the pinching and drawing
tests, only SDMs for the dominant hand were included to focus
on the most relevant information. Subsequently, the statistical
properties of the SDMs were evaluated to establish their
suitability to be collected in unsupervised settings and
potentially serve as accurate and sensitive outcomes in people
with MS. Specifically, 2 experts (CM and CK) first
independently and blindly evaluated the distribution and
potential systematic bias of each original SDM and of the
versions of the SDMs obtained after applying
variance-stabilizing transformations (logarithmic, square root,
and reciprocal functions). For this purpose, quantile-quantile
and Bland-Altman plots were visually inspected to identify the
original or transformed SDMs that most closely followed a
normal distribution and did not show systematic bias. After
jointly reviewing the contrasting results, the assessors discarded
SDMs that showed systematic bias or significantly deviated
from a normal distribution, such as those affected by ceiling or
floor effects, low resolution, or outliers. These steps ensured
the overall robustness of the selected SDMs and allowed to
fulfill the basic assumption for subsequently calculating
statistical performance metrics, namely, the intraclass correlation
coefficient (ICC 3, k) [38] and the minimal detectable change
at 95% CI (MDC95%) [39,40]. The ICC accounts for the
interparticipant and intraparticipant variability of a measure,
with an ideal measure being stable within a participant but
discriminating behavior between participants [41]. The
MDC95% provides a range of values in which it is not possible
to discriminate between statistical noise and physiological
change. This implies that, in a longitudinal study, changes in
measures would only be deemed statistically meaningful if they
exceed the MDC95% threshold [42]. To enable comparability
across SDMs, the MDC95% is normalized to the range of a
measure and ultimately expressed as a proportion or percentage
value. Instead of applying strict predefined thresholds for the
SDM selection framework, ICC, MDC95%, and the other
available evidence (literature, hypotheses, interpretability, flags
raised from data quality checks, and prior experience with
SDMs) were used in this study to select a final set of SDMs per
test. This approach allowed for more flexibility in the SDM
selection process while still enabling a hypothesis-driven and
data-driven selection of SDMs.

This framework and all subsequent statistical analyses were
performed using only data from people with MS who had
performed at least 7 remote instances of a given test with at
least 2 valid remote instances of a given SDM.

Statistical Analysis
Additional analyses were performed to describe the properties
of the SDMs that were selected through the SDM selection
framework.

Reproducibility of SDMs
The reproducibility of the SDMs was evaluated with ICC and
MDC95% (remote SDM only) as well as by calculating the
mean relative difference (MRD) between SDMs from supervised
versus unsupervised Konectom assessments [42]. ICC was
calculated based on a mixed-effect model with subject-level
random effects, and an additional fixed effect of visit number
was added to account for potential practice effects. The
MDC95% was calculated as 1.96 × square root of 2
within-subject variance, with the within-subject variance derived
from the intermediate results of the corresponding ICC values.
The relative (percentage) MDC95% was calculated as the
MDC95% of an SDM divided by the range of its distribution.
The MRD between SDMs from supervised versus unsupervised
Konectom assessments was calculated as the average of the
differences between the first remote instance of an SDM and
the in-clinic SDM at CV1, divided by the SDM values at CV1.

Test-retest reproducibility was considered poor (ICC<0.5),
moderate (ICC=0.5-0.75), good (ICC=0.75-0.9), or excellent
(ICC>0.9) [41].

Convergence of SDMs With Clinical Anchors, EDSS,
and PROs
The convergence of selected SDMs with domain-specific clinical
anchors (oral SDMT, 9-hole peg test, 9HPT; and timed 25-foot
walk, T25FW test); EDSS; and domain-relevant subscores, with
domain-relevant PROs, was evaluated with Spearman correlation
coefficients (ρ). The convergence was considered as
good-to-excellent if |ρ|>0.75, moderate-to-good if 0.5<|ρ|≤0.75,
fair if 0.25≤|ρ|<0.5, and not correlated if |ρ|<0.25 [43]. The
9HPT tested the average time to complete the test from both
attempts (seconds), the T25FW test tested the average time to
complete the test from both attempts (seconds), and SDMT
tested the number of correct responses.

Results

Study Participants’ Baseline Characteristics
Between October 2020 and July 2022, a total of 88 people with
MS and 70 healthy participants were enrolled in the study. Three
people with MS and 2 healthy participants were either lost to
follow-up or withdrew their consent, and their data were
excluded from further analyses. Study participants’ baseline
characteristics are presented in Table S2 in Multimedia
Appendix 1. As intended, people with MS and healthy
participants were well balanced overall for the matching criteria
(age, gender, and education) as well as for BMI and hand
dominance. The level of disability of the people with MS was
mild (median EDSS score of 2, IQR 1.5-3.0), and none of the
patients required an assisting device to walk. Compared with
healthy participants, people with MS performed worse on 9HPT,
T25FW test, daily walk test, and SDMT. The EDSS score
distribution and treatment allocation are presented in Figure S3
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and Table S3 in Multimedia Appendix 1, respectively. No safety
issues or disease relapses were reported during the observation
period.

Adherence to Protocol and Test Instructions
Among the 85 people with MS, the number of those completing
at least 7 full remote test batteries ranged from 56 to 75
(66%-88%), which then decreased in the following period

(Figure 1). People with MS took a median of 8 (IQR 7-26) days
to complete the first 7 remote instances of the digital tests.

Instances were flagged when the participants deviated from the
test instructions provided by the Konectom app. The percentage
of instances with deviations from Konectom test instructions
was low (an average of 6.2% across tests, SD 4.4%), and no
systematic deviation patterns in performing the tests were
identified for the people with MS (Table 2).

Figure 1. Number of people with multiple sclerosis performing a complete Konectom test during clinic visit 1 (CV1), first to 28th remote sessions,
and clinic visit 2 (CV2). 6MWT: 6-minute walk test; CPS: cognitive processing speed; SBT: static balance test; UTT: U-turn test.
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Table 2. Summary of the number and frequency of instances with deviations from the Konectom test instructions that were automatically detected
through dedicated algorithms in the DigiToms study participants (N=153).

Users with at least 1 instance
with deviations, n (%)

Total users, n
(%)

Instances with deviations from test
instructions, n (%)

Total instances, nTest

27 (17.9)151 (98.7)103 (4.6)2252Daily walk

0 (0)153 (100)0 (0)2603CPSa

9 (5.9)153 (100)14 (0.3)5140Pinching

105 (68.6)153 (100)390 (15.3)2546SBTb

40 (26.1)153 (100)193 (7.6)2546UTTc

107 (69.9)153 (100)812 (8.6)9428Drawing an infinity shaped

87 (56.9)153 (100)553 (5.9)9428Drawing a rectangle clockwisee

87 (56.9)153 (100)432 (4.6)9428Drawing a rectangle counterclockwised

120 (78.4)153 (100)812 (8.6)9428Drawing a spirald

aCPS: cognitive processing speed.
bSBT: static balance test.
cUTT: U-turn test.
dFor both attempts of both hands.

SDM Selection
The conceptual framework for optimal SDM selection and
analysis is presented in Figure S4 in Multimedia Appendix 1.
In total, 16 (34%) of the initial 47 SDMs passed the SDM

selection process. Results of the intermediate steps of the
selection are presented in Figure 2, while detailed definitions
of the selected SDMs and their descriptive statistics are
summarized in Table 3. Further details on the discarded SDMs
are presented in Multimedia Appendix 2.

Figure 2. Sensor-derived measurement selection overview. CPS: cognitive processing speed; ICC: intraclass correlation coefficient; MDC95%: minimal
detectable changes at 95% CI; SBT: static balance test; SDM: sensor-derived measure; UTT: U-turn test.
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Table 3. Selected sensor-derived measure (SDM) characteristics from Konectom assessments performed in people with multiple sclerosis and healthy
participants, with corresponding measure description, type of transformation performed, and descriptive statistics.

P valuebHealthy participants
People with multiple
sclerosis

Transforma-
tionDescriptionTest and SDM (unita)

Value, medi-
an (IQR)

Value,
n

Value, medi-
an (IQR)

Value,
n

CPSc

<.00151 (33-64)6644.5 (24-67)74NoneTotal number of correct responses for the fixed
key sets during the symbol-to-digit phase

Correct responses
(unitless)

<.0010.68 (0.47-
0.93)

660.59 (0.32-
0.97)

74Reciprocal
function

Median reaction time of the correct responses’
distribution during the symbol-to-digit phase

Reaction time
median (s)

.0040.82 (0.55-
1.25)

660.74 (0.31-
1.17)

74Reciprocal
function

Median reaction time of the correct responses for
unique keys only. A key is unique if it cannot be
associated with any other key in the header

Reaction time
unique keys (s)

Pinching

.0036 (0-8)665 (0-8)76NoneThe number of successful pinches, where a suc-
cessful pinch is a screen interaction with at least

Total number of
pinched balloons
(unitless) 2 fingers at the screen that leads to the target bal-

loon bursting

.595.96 (3.36-
10.34)

666.14 (2.73-
10.12)

76Sqrtd (x)Median distance between the contact point of
bottom finger and balloon appeared at the start of
a pinch attempt

Contact distance
(point)

.890.59 (0.29-
0.92)

660.59 (0.16-
1.06)

76Sqrt (x)Median speed of the top finger during pinch at-
tempts

Pinching speed
(point/s)

Drawing

.160.04 (0.02-
0.08)

580.03 (0.01-
0.08)

67NoneDrawing accuracy is normalized by the time spent
between the first and last interaction of the partic-
ipant with the screen. Accuracy is 1 over the

Duration-normal-
ized accuracy
(spiral; 1/[point ×
s]) similarity between reference shape and drawn

shape measured using dynamic time warping; it
is calculated on the spiral shape

.5118.99
(11.14-
33.28)

5819.13
(12.58-
28.83)

67Sqrt (x)Median of instantaneous drawing speed. The fea-
ture is calculated on the spiral shape

Speed (spiral;
point/s)

.448.61 (7.50-
9.70)

588.55 (7.77-
9.43)

67Log xTime spent between the first and last interaction
of the participant with the screen; it is calculated
on the spiral shape

Duration (spiral;
ms)

.020.50 (0.34-
0.67)

590.54 (0.36-
0.81)

69NoneCoefficient of variation of instantaneous drawing
speed; it is calculated on the square shape

Speed variability
and square (unit-
less)

SBTe

<.0012.38 (1.17-
3.99)

573.02 (1.07-
6.33)

55Log xArea of the ellipse containing 95% of accelera-
tions belonging to the mediolateral or anteropos-
terior plane from 5 to 30 s

Area of 95% con-
fidence ellipse

(microG2)

.0020.10 (0.05-
0.19)

570.07 (0.02-
0.15)

55Reciprocal
function

Jerk of measured accelerations in the anteroposte-
rior or medio-lateral plane from 5 to 30 s

Jerk (mG/s)

UTTf

.264.01 (2.24-
5.58)

663.77 (2.26-
6.19)

75NoneMean absolute angular velocity recorded during
the turn (median over first 4 turns)

Turning speed
(rad/s)

Daily walk test

.251.83 (0.52-
2.83)

621.67 (0.48-
2.79)

61Log xIntegral of the mean-centered acceleration magni-
tude signal over a step

Step power

(m2/s3)

.480.79 (0.46-
0.89)

620.78 (0.46-
0.93)

61NoneFirst peak of autocorrelation function of the resul-
tant acceleration

Step regularity
(unitless)
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P valuebHealthy participants
People with multiple
sclerosis

Transforma-
tionDescriptionTest and SDM (unita)

Value, medi-
an (IQR)

Value,
n

Value, medi-
an (IQR)

Value,
n

.440.85 (0.59-
0.91)

620.86 (0.62-
0.93)

61NoneSecond peak of autocorrelation function of the
resultant acceleration

Stride regularity
(unitless)

aBefore transformation.
bP values for sensor-derived measure differences between people with multiple sclerosis and healthy participants were obtained from Wilcoxon test.
cCPS: cognitive processing speed.
dSqrt: square root.
eSBT: static balance test.
fUTT: U-turn test.

Reproducibility

MRD Between First Remote Versus CV1 Konectom
SDMs
Changes associated with performing the test without supervision
in a free-living environment are shown in Figure 3, reporting

the MRD between CV1 and the remote assessments. Most
differences were not significant (P≥.05) and were <10%.

Figure 3. Mean relative differences between sensor-derived measures (SDMs) from supervised in-clinic versus unsupervised remote Konectom
assessments performed in people with multiple sclerosis, calculated as the average of the differences between the first remote instance of an SDM and
the in-clinic SDM at clinic visit 1 divided by SDM values at clinic visit 1. The error bars represent standard deviation. *P<.05. CPS: cognitive processing
speed; SBT: standing balance test; UTT: U-turn test.

Reproducibility of the First 7 Remote Konectom SDMs
Overall, selected measures had ICC values ranging from 0.53
to 0.85 (moderate-to-good) [32] and MDC95% ranging from
19% to 35%, based on the first 7 test performances. For balance
and ambulation measures, ICC values ranged from 0.62 to 0.82,

with MDC95% between 19% and 30%. For upper extremity
SDMs, ICC values ranged from 0.62 to 0.82, with MDC95%
between 21% and 33%. For cognition measures, ICC ranged
from 0.53 to 0.85, with MDC95% between 19% and 35%
(Figure 4).
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Figure 4. Sensor-derived measure (SDM) reproducibility for the first 7 remote instances of Konectom sessions in people with multiple sclerosis assessed
by intraclass correlation (ICC) and minimal detectable change at 95% CI (MDC95%). ICC ranged from moderate to good; moderate (ICC = 0.5-0.75),
or good (ICC = 0.75-0.9). MDC95% for each SDM is represented relative to the range of its distribution (eg, 0.2 signifies that the minimal detectable
change threshold is at 20% of the full range of SDM distribution). *P>.05. CPS: cognitive processing speed; SBT: static balance test; UTT: U-turn test.

SDMs’Convergence With Clinical Measures and PROs

Correlations With Relevant In-Clinic Benchmarks of
MS Functional Performance Outcomes: SDMT, 9HPT,
and T25FW Test
Figure 5 shows the correlations that were assessed between (1)
the SDMT and CPS test SDMs; (2) the 9HPT and SDMs from
the drawing and pinching tests; and (3) the T25FW test and
SDMs from the SBT, UTT, and daily walk test. Correlations
were in the expected direction; that is, increasing levels of
MS-related disability as measured by SDMT, 9HPT, or T25FW
were associated with poorer performances on each

corresponding Konectom SDM. As expected, a
good-to-excellent convergence was observed between the SDMT
and CPS test SDMs. All selected SDMs extracted from the
pinching and drawing tests had a rather fair convergence with
the 9HPT, except the contact distance in the pinching test and
the speed variability in the unsupervised drawing shape (square),
which did not correlate with the 9HPT. All selected SDMs
extracted from the SBT, UTT, and daily walk test also had a
rather fair convergence with the T25FW test, except the daily
walk test stride regularity in the clinic, which did not correlate
with the T25FW test. Overall, correlations were similar when
tests were performed in a clinic or remotely.
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Figure 5. Correlations between conventional in-clinic measures and Konectom sensor-derived measures (SDMs). SDM convergence with conventional
clinical measures and patient-reported outcomes (PROs) in people with multiple sclerosis are displayed. EDSS: Expanded Disability Status Scale; FS:
functional score; MSIS-29: 29-item Multiple Sclerosis Impact Scale; MSWS-12: 12-item Multiple Sclerosis Walking Scale.

Correlations With Corresponding PRO and EDSS
Functional Score and Subscores
When significant, correlations between selected SDMs from
Konectom assessments (in the clinic at CV1) and the EDSS,
relevant EDSS functional scores or subscores, and relevant
PROs (Figure 5) were all in the expected direction. In the
domain of cognition, all 3 CPS test SDMs had a fairly significant
convergence with overall EDSS and its cerebral functional
system (FS) score, which numerically outperformed that of the
SDMT. Neither CPS test SDMs nor SDMT correlated with the
29-item Multiple Sclerosis Impact Scale mental subscore. In
the domain of manual dexterity, among all selected SDMs of
the pinching and drawing tests, only the total number of pinched
balloons in the pinching test had a fair convergence with EDSS
and ABILHAND-56 but not with the cerebellar FS score. In
the domain of gait and balance, all selected SDMs from the
SBT, UTT, and daily walk test had a fair to moderate-to-good
convergence with the 12-item Multiple Sclerosis Walking Scale,
the overall EDSS, and the appropriate EDSS subscore (the
Romberg test, cerebellar FS score, or ambulation scores).

Discussion

Principal Findings
Digital health technologies (DHTs) and SDMs of motor and
cognitive function are promising solutions for complementing
currently limited clinical assessments of disease status and
progression in people with MS. However, their development,
validation, and acceptance require complex steps, including
selecting the most reliable and relevant SDMs. The purpose of

this work was to develop and apply a transparent and systematic
SDM selection framework to identify robust, hypothesis-driven,
and relevant SDMs that can be collected remotely with
smartphones and objectively assess cognitive and motor
functions in people with MS for continued clinical validation.
The framework was based on the hypothesis-driven motivation
of SDMs with high interpretability; the evaluation of remote
data quality (including automated detection of deviations from
test instructions); and the evaluation of relevant statistical
properties, including normality (quantile-quantile plots),
test-retest reliability (ICC), bias (Bland-Altman plots), and
MDC95%. Importantly, in this study, we report all 47 initially
considered SDMs and their properties, along with the 16 (34%)
most promising SDMs selected for assessing motor and
cognitive function, which were identified using the systematic
SDM selection framework. We advocate other researchers to
follow similar transparent and systematic reporting to ensure
that the field can reach standardization and a consensus on
smartphone-based SDMs to be used in the assessment of people
with MS, which can help facilitate the adoption of DHTs in
clinical trials and support conversations with regulators. It is
also worth highlighting potential cost advantages to adopting
valid and reliable SDMs to support clinical trial design. Sample
size and trial duration are important cost drivers for clinical
trials. High-frequency sensor-based remote data collection can
reduce sample size requirements by increasing precision and
reducing measurement variability [44,45]. A robust framework
such as the one proposed in this study can enable the selection
of high-quality SDMs with favorable statistical properties for
clinical validation and subsequent use to enhance trial design
and potentially reduce cost. While other SDM selection
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frameworks have been used in the literature [37,46,47], these
are not tailored to address the challenges with data that have
been collected remotely in unsupervised settings with
smartphones. Therefore, this work makes an important
contribution to mature the field of smartphone-based digital
biomarker development and helps to identify promising SDMs
of motor and cognitive function that can further be validated in
longitudinal MS trials.

Adherence to protocol and test instructions is necessary to gather
sufficient high-quality SDM data in a remote, unsupervised
setting, whereas nonadherence to study protocol (ie, test not
performed) affects study power through missing values,
deviations from test instructions (ie, test not performed as
intended), and increased noise in digital measures. However,
descriptions of adherence to both the study protocol and test
instructions are often lacking in the literature on
smartphone-based assessments. Although adherence was
observed to decline after 7 days, evaluation of adherence to
protocol and test instructions showed that most participants
performed 7 complete assessments within the 8 days following
the first CV1 and that the occurrence of deviations from test
instructions was low across all tests. This confirms previous
reports that smartphones are indeed suitable DHT tools to collect
high-quality remote SDM data in people with MS [48], even
though these results should be confirmed across a broader MS
population with a wider range of disabilities.

In this study, the selection framework allowed for an unbiased
evaluation of different potential SDMs of balance, ambulation,
manual dexterity, and cognition. On the basis of our framework
and subsequent analyses, step power was the most promising
SDM for balance and ambulation, showing higher ICC and
lower MDC95% values than more traditional SDMs, such as
step duration or step variability, which also showed higher mean
absolute errors and biases across remote visits. This latter result
might be associated with variations in the walking context
chosen by the patients (eg, including stops at traffic lights and
crowded paths), but additional contextual data would be needed
to test this hypothesis. For the pinching test, 3 SDMs of pinching
duration, pinching speed, and contact distance were selected,
as accuracy and smoothness measures were less robust and the
double touch asynchrony measure had strong ceiling or floor
effects, potentially due to the limited sampling rate of
smartphones. For the drawing test, 4 measures of speed, speed
variability, duration, and duration-normalized accuracy were
chosen, as they outperformed measures of movement
smoothness (jerk) and accuracy. Three of these measures were
extracted from the spiral drawing test, as it is the clinically
most-accepted shape and showed sufficient clinimetric
properties. Jerk-based smoothness measures have traditionally
been analyzed in the context of goal-directed ballistic arm
movement tasks, and which smoothness measures are suitable
for the drawing and pinching task remains to be explored [49].
For the CPS test, most SDMs were highly correlated with one
another and showed comparable statistical properties. The
median reaction time had similar statistical metrics compared
with the total number of correct responses, the classical output
of an SDMT. Despite lower ICC and higher MDC95% values,
the unique key response time was selected for its potential ability

to explore a different concept of interest because unique keys
do not have symmetrical counterparts that may confuse the
participant.

SDMs obtained in a supervised, in-clinic context compared with
unsupervised, remote SDMs collected in a free-living
environment may measure different constructs (performance
vs ability, respectively). Differences between SDMs collected
in a supervised and unsupervised environment have been
demonstrated in MS and other populations, notably with
different impacts of supervision across different gait measures
and populations [50]. In this study, statistically significant
differences between first in-clinic and remote tests were
observed in some SDMs; overall, correlation patterns between
SDMs and relevant in-clinic benchmarks of MS functional
performance outcomes were similar when data were collected
in the clinic or remotely. Differences were most apparent for
ambulation-related SDMs from the daily walk test. This is not
surprising given the change in walking course that would be
expected to occur when moving the test session from a
well-controlled in-clinic visit to unsupervised remote settings.
Despite this finding, there was generally moderate-to-good
test-retest reliability in the remote setting across all selected
SDMs, which reassures that reliable SDM data can be obtained
remotely using the Konectom assessment tool. Longitudinally,
the differences between measures collected in a supervised and
unsupervised environment are important to understand in the
context of a given study and measurement paradigm, especially
if both will be used.

The test-retest reliability (ICC) of the selected SDMs across the
first 7 remote assessments was moderate to good, while the
MDC95% ranged from 19% to 35%. Although the measurement
paradigm was different, for comparison, a recent, large-scale
analysis of traditional clinical end points from clinical trials
showed similar ICCs: 0.71 for the T25FW test and 0.84 for
9HPT from 2 to 6 test repetitions in people with MS [51]. In
terms of what can be considered a meaningful change, a 20%
change in the T25FW test and 9HPT is commonly used as a
heuristic threshold, while MDC95% of 21% to 36% and 12%
to 30% have been reported, respectively [52]. For remotely
acquired SDMs of cognition, such as the number of correct
responses and the median reaction time of the correct responses
in the CPS test, ICCs were 0.83 and 0.85, with MDC95% of
20% and 19%, respectively. The study by Goldman et al [51]
showed an ICC of 0.85 for SDMT, with another study showing
an ICC of >0.9 across the span of 1 week [40]. Appropriate
thresholds for change are less well established for cognition
and SDMT. Frequently, a 4-point change (10%) has been cited
as a threshold for SDMT [23,53,54]; however, the stability of
cognitive change based on this threshold and even a 20%
threshold has been questioned. More work is needed in this
respect [8,55]. Although, by design, we are using a different
measurement paradigm, our ICCs and MDC95% for selected
SDMs extracted from remote unsupervised assessments are
aligned with what is reported for conventional in-clinic measures
in the literature. An important caveat is that this is likely to vary
with the disability of the population and should be examined in
future studies in populations with a wider range of disabilities.
Altogether, over the first 7 remote test performances, the
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selected SDMs demonstrated good measurement properties,
likely as a result of the framework used for their selection. These
measurement properties may improve with a greater number of
data points collected in a longitudinal setting that would enable
the implementation of different aggregation methods to enhance
the signal-to-noise ratio.

Selected SDMs showed a range and diversity of correlation
patterns with clinical anchors, suggesting that the Konectom
tests and some of the SDMs capture aspects of cognition and
upper and lower limb motor function similar to conventional
in-clinic functional performance measures, while others may
capture uniquely nonoverlapping aspects of those functions.
For example, it is not surprising that SDMs from the CPS test
and the SDMT showed the greatest convergence, given the
similarity in the test construct and design. Conversely, other
SDMs (in particular, those derived from the pinching or drawing
tests and the daily walk test) showed a weaker correlation
against the clinical assessments 9HPT and T25FW test,
respectively. It should be noted that the drawing test may rely
to a greater extent on fine motor hand and finger function and
to a lesser extent on executive strategy compared with the upper
limb assessment by the 9HPT. The daily walk test and the
conventional T25FW test also represent different test constructs,
with different walking and balance control mechanisms involved
in gait initiation and short walking, which comprise the T25FW
test, as opposed to those associated with a longer 6-minute
walking paradigm [51]. Further study of these novel SDMs as
extracted from the Konectom digital outcome assessments tool
in a longitudinal setting is warranted to understand their potential
value in increasing the accuracy and sensitivity of MS disability
progression measures in those key domains of functional
performance impairment.

Generally, selected SDMs showed similar correlation strength
with total EDSS and domain-relevant EDSS subscores compared
with the SDMT, 9HPT, and the T25FW test. The CPS SDMs
showed a slightly greater correlation with the total EDSS than
the SDMT, whereas the SDMs from the drawing and pinching
tests were more weakly correlated with the EDSS than the

9HPT. Interestingly, the SDMs showed at least similar
correlations with PROs than the SDMT, 9HPT, or T25FW test
anchors, suggesting that they might capture concepts of interest
with similar levels of relevance to patients.

The data from this study and analyses should be interpreted in
the context of the following caveats. The first is the small
number of patients, albeit our study sample size was on par with
prior cross-sectional validation studies [8,9,11]. The second is
the overall low level of disability; the DigiToms patient
population had a relatively low level of physical disability and
functional MS-related impairment as defined by baseline EDSS,
SDMT, T25FW test, and 9HPT. While it may be informative
to assess SDMs in patients with a wider range of impairments,
the reported results are encouraging and may support future use
of SDMs in the setting of early interventions. The third is that
these analyses were cross-sectional in nature. While
cross-sectional data provide useful information, further
characterization of measurement properties in longitudinal trials
would be needed to prove sensitivity to changes in the selected
SDMs.

Conclusions
This study marked an important step in the pathway toward
acceptance of quantitative methods for objective and more
frequent assessment of motor and cognitive functions in patients
with MS. After having shared in a previous study the Python
library adopted for the calculation of SDMs [36], in this paper,
we presented a framework for their optimal selection and
analysis, with the goal of further enhancing transparency and
confidence in the robustness of SDMs from smartphone-based
tests. While their sensitivity to changes will have to be proven
in longitudinal interventional studies, the reliability and
convergent validity of the selected measures presented in this
study are an essential milestone for acceptance and adoption in
clinical trials and, ultimately, more accurate and sensitive
measures of cognitive and motor function in people MS. To
support further use of DHTs in clinical trials, we advocate that
researchers adopt similar standardized frameworks to aid
selection of high-quality reproducible SDMs.
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