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Abstract
Background: Smartwatches are increasingly popular for physical activity and health promotion. However, ongoing validation
studies on commercial smartwatches are still needed to ensure their accuracy in assessing daily activity levels, which is
important for both promoting activity-related health behaviors and serving research purposes.
Objective: This study aimed to evaluate the accuracy of a popular smartwatch, the Huawei Watch GT2, in measuring step
count (SC), total daily activity energy expenditure (TDAEE), and total sleep time (TST) during daily activities among Chinese
adults, and test whether there are population differences.
Methods: A total of 102 individuals were recruited and divided into 2 age groups: young adults (YAs) and middle-aged and
older (MAAO) adults. Participants’ daily activity data were collected for 1 week by wearing the Huawei Watch GT2 on their
nondominant wrist and the Actigraph GT3X+ (ActiGraph) on their right hip as the reference measure. The accuracy of the GT2
was examined using the intraclass correlation coefficient (ICC), Pearson product-moment correlation coefficient (PPMCC),
Bland-Altman analysis, mean percentage error, and mean absolute percentage error (MAPE).
Results: The GT2 demonstrated reasonable agreement with the Actigraph, as evidenced by a consistency test ICC of 0.88
(P<.001) and an MAPE of 25.77% for step measurement, an ICC of 0.75 (P<.001) and an MAPE of 33.79% for activity
energy expenditure estimation, and an ICC of 0.25 (P<.001) and an MAPE of 23.29% for sleep time assessment. Bland-Altman
analysis revealed that the GT2 overestimated SC and underestimated TDAEE and TST. The GT2 was better at measuring
SC and TDAEE among YAs than among MAAO adults, and there was no significant difference between these 2 groups in
measuring TST (P=.12).
Conclusions: The Huawei Watch GT2 demonstrates good accuracy in step counting. However, its accuracy in assessing
activity energy expenditure and sleep time measurement needs further examination. The GT2 demonstrated higher accuracy in
measuring SC and TDAEE in the YA group than in the MAAO group. However, the measurement errors for TST did not differ
significantly between the 2 age groups. Therefore, the watch may be suitable for monitoring several key parameters (eg, SC) of
daily activity, yet caution is advised for its use in research studies that require high accuracy.
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Introduction
Physical inactivity is recognized as a significant risk factor
for many chronic noncommunicable diseases, including
cardiovascular disease, certain malignancies (eg, colorec-
tal cancer), and type 2 diabetes [1], leading to increased
mortality, reduced quality of life, shorter life expectancy
[2-4], and a significant financial burden on the health care
system [5]. Hence, interventions aimed at increasing physical
activity are critical to public health. In this regard, sustained
efforts of regular and accurate monitoring of physical activity
are necessary [6-8]. To achieve this goal, researchers and
health practitioners have been continuously in search of
physical activity measurement methods that best balance
precision and cost. High-precision monitoring methods such
as double-labeled water and indirect calorimetry are not
suitable for daily life due to high cost and user burden [9].
Pedometers and accelerometers are relatively easy to carry in
daily life but offer only limited indices that mostly focus on
activity counts, rather than physiological measures (eg, heart
rate), and the latter is also expensive [8,9]. Questionnaires
are commonly used, particularly in large-sample surveys, but
have often been questioned for being highly subjective [8-10].

With rapid technological advancements, smartwatches
have become increasingly popular for monitoring and
promoting health behaviors such as physical activity,
sedentary behavior, and sleep. Such devices are valued for
their multifunctionality, convenience, comfort, and cost-effec-
tiveness. Specifically, smartwatches have multiple built-in
sensor devices, such as accelerometers and optical heart
rate sensors, which may achieve a higher level of measure-
ment accuracy and cover a variety of indices (eg, duration
of certain behavior, heart rate, and oxygen saturation) than
pedometers and accelerometers that are commonly used in
research settings [11].

Recent studies highlight the role of smartwatches in
enhancing exercise motivation and facilitating healthier
lifestyle choices [12-15]. With the growing popularity,
smartwatches provide the possibility for continuous, real-time
monitoring and feedback, which have been shown effec-
tive in increasing physical activity engagement [7,12-16].
Nowadays, various types of smartwatches have been widely
used in a variety of practical settings, such as physical
activity programs, fitness training, physical education, and
health care services [7,17-19]. They also have great potentials
to serve research purposes [20,21]. However, the practical
applications of smartwatches (eg, in fitness training, physical
education, and health care services) as well as their use in
research should rely on continuous validation and improve-
ment of their accuracy.

Several studies have evaluated the accuracy of various
smartwatch models in real-world settings, comparing them
against established activity monitoring devices such as the
Accelerometer GT3X+ [22,23]. Degroote et al [22] observed
that while models such as the Polar M600 and Huawei Watch
accurately measured steps, their ability to accurately capture
moderate to vigorous physical activity varies. Tedesco et al

[23] found that for older adult population, both the Fitbit
Charge 2 and the Garmin Vivosmart HR+ were effective
in step counting but only moderately accurate in measuring
activity energy expenditure and sleep, with Fitbit performing
slightly better in these areas. In addition, several studies
examined the accuracy of smartwatches in different age
groups in laboratory setting [24,25]. Chow and Yang [24]
found that when performing aerobic exercise indoors, the
Xiaomi Mi Band 2 and Garmin Vivosmart HR+ showed
overall acceptable accuracy in heart rate measurements,
which were independent of age. Magistro et al [25] suggested
that the ADAMO Care Watch, with its algorithm tailored for
slower pace, might be particularly effective for older adults in
step counting.

While the accuracy of smartwatches has been explored in
previous research studies, research specifically focusing on
their performance across different age groups in a free-living
environment remains scarce. The Huawei smartwatch ranks
second in global sales in Q2 2023 and holds a high market
share of 39% in China [26] but received limited empirical
research attention on its accuracy [22,27], especially with
regard to measurements of activity energy expenditure and
sleep duration [28-30]. Considering its significant market
prominence, it is crucial to rigorously assess the accuracy of
the Huawei smartwatch in measuring health-related indices to
ensure its validity for users’ health monitoring and lifestyle
management. Clearly, researchers have long voiced out the
need to regularly examine the accuracy of smartwatches
in order to continuously improve their functions and better
apply them to human health promotion. However, it appears
that studies of validity examination are far from providing
sufficient evidence that support the use of smartwatches for
research and health promotion purposes [23,28,29,31].

Hence, this study aimed to determine the validity of
Huawei Watch GT2 for different populations under free-liv-
ing conditions. Such efforts aimed to address the lack of
evidence regarding the device’s performance across diverse
user groups and provided insights that may have facilitated
the broader adoption of smartwatches in health promotion and
monitoring.

Methods
Participants
Sample size estimation was performed using G*Power 3.1
(effect size f²=0.30, α=.05, and power=0.80), resulting in
a required sample size of 84. A total of 120 adults were
recruited through campus and community flyers. Eighteen
participants opted out, claiming interference with their daily
life and sleep caused by the device. Ultimately, data were
retained for 102 participants, including 44 young adults
(YAs; age range: 18‐24 years) and 58 middle-aged and
older (MAAO) adults (age range: 55‐91 years). All the
participants were Chinese, living in Hangzhou, China, and
volunteered to participate in this study. The inclusion criteria
were no neurological or cardiovascular disease that could
affect the participants’ daily exercise and no history of lower
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extremity injury or disability. A detailed verbal explanation
was provided by the researchers before participation in the
study; all participants signed informed consent. Participants
had the right to choose to continue or discontinue their
participation at any time during the conduct of this experi-
ment.
Measures

Accelerometer
The Actigraph GT3X+ (ActiGraph) has been widely used as
a reference measure of physical activity because it has been
consistently found to be both reliable and valid in physical
activity studies [32-34]. The Actigraph accelerometer was
set to collect data every 10 seconds, and the raw data and
clinical reports of the accelerometer were downloaded using
ActiLife software (version 6.13.4; ActiGraph). The Freedson
Adult (1998) cut points were used to process the data and
calculate activity energy expenditure [35-37]. The total sleep
time (TST) was calculated using the Cole-Kripke algorithm
[38].

Wearable Devices
The study aimed to examine the validity of the then-latest
Huawei Watch GT2 (45.9×45.9×10.7 mm), developed by
Huawei Technologies Co, in daily life. The GT2 had a wrist
coverage of 14‐21 cm and was equipped with the wearable
chip Kirin A1 and sensors, including an acceleration sensor,
a gyroscope, an optical heart rate sensor, and a geomagnetic
sensor. At the time of the study, the device was capable
of measuring activity energy expenditure, step count (SC),
heart rate, and sleep monitoring. In this study, the researcher
used Huawei Sports Health software (Huawei Technologies
Co) for data acquisition, which was conducted in 2021, to
examine the performance of the GT2 in terms of SC, total
daily activity energy expenditure (TDAEE), and TST in daily
life.
Data Collection Procedure
The researchers measured and collected participants’
physiological data (age, gender, height, and weight) on the
first day using mechanical height gauges and electronic scales
and then fitted them with a calibrated Actigraph GT3X+
(right hip) and Huawei Watch GT2 (nondominant wrist).
Participants were told to maintain a normal daily routine
but to wear both devices for 7 consecutive days (including
2 weekends and 5 workdays). The devices were worn at all
times, except during water-based activities.
Statistical Analysis
The data were downloaded and recorded once the devices
were returned. To ensure that the collected data were reliable,
the researchers examined the data and excluded cases where
the accelerometer was worn for less than 10 hours in a
day and for fewer than 2 days [39,40]. Data analysis and
graphical representation were performed using IBM SPSS

29 (IBM Corp) and GraphPad Prism 9 (GraphPad). First,
a descriptive analysis of the GT2 and GT3X+ accelerome-
ters was performed, and the Shapiro-Wilk test showed that
the collected data followed a normal distribution (P>.05).
Second, the correlations between GT2 and accelerometer data
were examined by calculating the Pearson product-moment
correlation coefficient (PPMCC) and the intraclass correla-
tion coefficient (ICC; 2-way random, absolute consistency;
95% CI; and single measurement). The critical values for
the explanatory ICC were categorized as poor for <0.60,
moderate for 0.60-0.75, good for 0.75-0.90, and excel-
lent for >0.90 [41]. Third, the agreement between GT2
and accelerometer was examined by calculating the mean
percentage error (MPE) and the mean absolute percentage
error (MAPE). The MPE quantifies the average percentage
deviation between the GT2 and accelerometer, highlighting
potential systematic discrepancies. Moreover, MAPE captures
the absolute extent of these deviations, offering a comprehen-
sive view of error magnitude without directional bias (the
formula is: MAPE = (1/n) × Σ(|(Actual value − Predicted
value)|/Actual value) × 100%). These metrics are instrumen-
tal in assessing the GT2’s precision across various physical
activities. To determine whether the measurement errors of
the GT2 against the Actigraph were statistically different
between the 2 age groups, two-tailed independent t tests
were used. Finally, to test the level of consistency between
GT2 and convergence measures, Bland-Altman plots and
the associated consistency restrictions were constructed. To
intuitively display the accuracy of different indicators of
the Huawei Watch GT2, Bull’s-eye diagrams based on the
Actigraph accelerometer were constructed.
Ethical Considerations
This study involving human participants was rigorously
reviewed and approved by the ethics committee of the
Department of Psychology and Behavioral Sciences, Zhejiang
University ([2021]007). All study procedures adhered to
the 1964 Declaration of Helsinki and its subsequent amend-
ments, ensuring compliance with ethical standards. Written
informed consent was obtained from all participants, with
strong measures in place to safeguard personal data and
privacy.

Results
Overview
A total of 102 participants met the inclusion criteria and
participated in the experiment, spanning an age range of
18-91 (mean 48.17, SD 24.56) years and a BMI range of
16.68-31.64 (mean 22.52, SD 3.13) kg/m². The cohort was
stratified into 2 age groups: YAs and MAAO adults, with a
note that 5 participants in the MAAO group were younger
than 60 years, constituting 8.62% (5/58) of this group.
Detailed demographic data are shown in Table 1.
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Table 1. Participant characteristics (N=102).
Characteristic Total (N=102) YAsa (n=44) MAAOb (n=58)
Age (year), mean (SD) 48.17 (24.56) 20.89 (1.66) 68.86 (7.55)
Male gender, n (%) 37 (36.27) 22 (50) 15 (25.86)
Height (cm), mean (SD) 164.51 (8.57) 170.59 (7.38) 159.91 (6.25)
Weight (kg), mean (SD) 60.88 (9.07) 60.82 (8.53) 60.93 (9.54)
BMI (kg/m2), mean (SD) 22.52 (3.13) 20.86 (2.14) 23.78 (3.19)

aYA: young adult.
bMAAO: middle-aged and older.

Table 2 shows the results of correlational analysis between
the GT2 and the GT3X+ accelerometer, while Table 3 shows
the results of the difference test between the GT2 and
Actigraph in terms of SC, TDAEE, and TST during daily

life across different age groups, along with the Bland-Altman
limits of agreement. Figure 1 visualizes the Bland-Altman
analysis comparison plot, and Figure 2 illustrates the overall
accuracy of the Huawei Watch GT2 across various functions.

Table 2. Correlation coefficients, 95% CIs between Huawei Watch GT2 and Actigraph GT3X+ measurements, and independent sample t tests on
mean absolute percentage error between the YAa and MAAOb groups.
Indicator, group Correlation Correlation Independent

PPMCCc (95% CI） P value ICCd (95% CI） P value t test (df)e P value
SCf −3.45 (571) <.001
  Total 0.92 (0.91 to 0.93) <.001 0.88 (0.76 to 0.93) <.001
  YAs 0.91 (0.89 to 0.93) <.001 0.88 (0.79 to 0.92) <.001
  MAAO 0.92 (0.90 to 0.94) <.001 0.88 (0.73 to 0.93) <.001
TDAEEg −6.70 (512) <.001
  Total 0.77 (0.74 to 0.80) <.001 0.75 (0.67 to 0.80) <.001
  YAs 0.80 (0.75 to 0.84) <.001 0.76 (0.67 to 0.83) <.001
  MAAO 0.76 (0.71 to 0.80) <.001 0.73 (0.65 to 0.80) <.001
TSTh 1.54 (483) .12
  Total 0.47 (0.40 to 0.54) <.001 0.25 (−0.06 to 0.49) <.001
  YAs 0.49 (0.38 to 0.59) <.001 0.21 (−0.07 to 0.46) <.001
  MAAO 0.48 (0.39 to 0.57) <.001 0.29 (−0.05 to 0.54) <.001

aYA: young adult.
bMAAO: middle-aged and older.
cPPMCC: Pearson product-moment correlation coefficient.
dICC: intraclass coefficient correlation. <0.60 (poor), 0.60-0.75 (moderate), 0.75-0.90 (good), and >0.90 (excellent).
eIndependent t test: independent samples t test between YA and MAAO group mean absolute percentage errors.
fSC: step count.
gTDAEE: total daily activity energy expenditure.
hTST: total sleep time.

Table 3. Measured mean, mean percentage error (MPE), mean absolute percentage error (MAPE), and deviation values in Bland-Altman analysis for
the Huawei Watch GT2 and Actigraph GT3X+ accelerometer for step count (SC; steps), total daily activity energy expenditure (TDAEE; kcal), and
total sleep time (TST; minutes), with associated SDs.

Indicator, group, device Mean (SD） MPE (SD) MAPE (SD）
Bland-Altman analysisa,
bias (SD)

SC
  Total −17.47 (30.56) 25.77 (23.98) −1318.82 (2340)
   Watch GT2 9585.29 (5947.50)
   Accelerometer 8266.47 (4919.71)
  YAsb −14.55 (27.80) 21.91 (22.43) −1068.63 (2153)
   Watch GT2 8870.82 (5333.84)
   Accelerometer 7802.18 (4418.34)
  MAAOc −19.79 (32.44) 28.81 (24.74) −1516.62 (2463)
   Watch GT2 10,150.17 (6342.52)
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Indicator, group, device Mean (SD） MPE (SD) MAPE (SD）
Bland-Altman analysisa,
bias (SD)

   Accelerometer 8633.55 (5260.39)
TDAEE
  Total 8.43 (39.64) 33.79 (22.34) 50.36 (148.40)
   Watch GT2 307.76 (204.37)
   Accelerometer 358.13 (232.90)
  YAs 4.48 (36.94) 30.32 (21.48) 44.39 (126.60)
   Watch GT2 282.41 (172.53)
   Accelerometer 326.80 (212.99)
  MAAO 11.32 (41.33) 36.29 (22.68) 54.73 (162.50)
   Watch GT2 326.27 (223.26)
   Accelerometer 381.00 (244.24)
TST
  Total 19.98 (18.20) 23.29 (13.71) 138.08 (123.80)
   Watch GT2 476.68 (88.45)
   Accelerometer 614.76 (138.20)
  YAs 22.13 (17.23) 24.39 (13.84) 156.33 (133.00)
   Watch GT2 466.60 (77.06)
   Accelerometer 622.94 (153.17)
  MAAO 18.35 (18.77) 22.45 (13.58) 123.15 (114.70)
   Watch GT2 484.37 (95.68)
   Accelerometer 608.52 (125.51)

aBland-Altman analysis: bias of Bland-Altman.
bYA: young adult.
cMAAO: middle-aged and older.
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Figure 1. Bland-Altman plots of the Huawei Watch GT2 and Actigraph GT3X+ in overall phases for different groups and indicators. The middle line
represents the mean difference between the GT2 and accelerometer (negative values indicate an overestimation of the GT2, whereas positive values
indicate an underestimation), and the upper and lower dashed lines indicate the limit of agreement (1.96 × SD of the difference scores). The green
dots indicate YAs, and the red dots indicate MAAOs. Panel A displays the Bland-Altman plot for step count (steps) across different groups, panel B
presents the Bland-Altman plot for total daily activity energy expenditure (kcal) across different groups, and panel C illustrates the Bland-Altman plot
for total sleep time (minutes) across different groups. MAAO: middle-aged and older adults; YA: young adults.
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Figure 2. Bull’s-eye diagrams with Actigraph GT3X+ as the reference measure. The x-axis represents the MPE, and the y-axis represents the ICC
between the GT2 and the accelerometer. The good accuracy of the Huawei Watch GT2’s measurement is indicated when the scatter point falls
steadily near the origin (MPE=0, ICC=1). ICC: intraclass correlation coefficient; MPE: mean percentage error; SC: step count (steps); TDAEE: total
daily activity energy expenditure (kcal); TST: total sleep time (minutes).

Step Count
First, Table 2 shows the correlation between the GT2 and
the accelerometer, with a PPMCC test score of 0.92 (P<.001;
95% CI 0.91-0.93) and an ICC test score of 0.88 (P<.001;
95% CI 0.76-0.93), which suggests that the GT2 possesses
good to excellent validity in measuring SC. Second, the
difference between the GT2 and Actigraph in SC across
age groups is shown in Table 3. Generally, the GT2
tends to overestimate SC compared with Actigraph accel-
erometer measurements (MPE=−17.47%, mean difference
[MD]=1318.82 steps). This overestimation is more pro-
nounced in the MAAO group (MPE=−19.79%, MD=1516.62
steps) than in the YA group (MPE=−14.55%, MD=1068.63
steps). Furthermore, the error results (MPE=−17.47%,
MAPE=25.77%) confirm the GT2’s validity for measuring
SC in daily life. A independent t test comparing MAPE
between the YA and MAAO groups indicates a signifi-
cant difference (t=−3.45; df=571; P<.001), with the YA
group showing a lower measurement error (MAPE=21.91%,
SD=22.43%) than the MAAO group (MAPE=28.81%,
SD=24.74). Finally, the Bland-Altman plot and Bull’s-eye
diagrams (Figures 1A and 2) display minimal scatter bias,
suggesting good overall consistency in GT2’s SC measure-
ments. However, as the number of steps increases, the
deviation becomes greater, implying a decrease in meas-
urement consistency between the GT2 and the Actigraph
(Figure 1A). Overall, the GT2 demonstrates good to excellent
accuracy in SC measurement for both YA and MAAO groups
in daily life settings.

Total Daily Activity Energy Expenditure
First, Table 2 illustrates that TDAEE data measured by the
GT2 and the accelerometer are correlated, evidenced by a
PPMCC of 0.77 (P<.001; 95% CI 0.74-0.80) and an ICC of
0.75 (P<.001; 95% CI 0.67-0.80), indicating GT2’s moder-
ate to good validity in measuring TDAEE. Second, Table 3
summarizes the agreements between the GT2 and Actigraph
in terms of TDAEE during daily life in different groups.
In daily settings, GT2 typically underestimates TDAEE
(MPE=8.43%, MD=50.36 kcal) compared with the Acti-
graph accelerometer. The underestimation seems to be more
frequent among MAAO adults (MPE=11.32%, MD=54.73
kcal) than among YAs (MPE=4.48%, MD=44.39 kcal).
The error results (MPE=8.43%, MAPE=33.79%) suggest
moderate validity of the GT2 for measuring TDAEE in
daily life. A independent t test comparing MAPE between
the YA and MAAO groups showed a significant difference
(t=−6.70; df=512; P<.001), with the YA group exhibiting a
lower measurement error (MAPE=30.32%, SD=21.48%) than
the MAAO group (MAPE=36.29%, SD=22.68%). Finally, the
Bland-Altman plot and Bull’s-eye diagrams (Figures 1B and
2) indicate moderate consistency in GT2’s TDAEE measure-
ments, with a tendency to underestimate. In addition, the bias
increases with increasing levels of TDAEE, suggesting that
the error in GT2 measurements tends to amplify as activity
energy expenditure increases (Figure 1B). Overall, the GT2
has moderate validity and may have limited measurement
accuracy at high levels of activity energy expenditure.
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Total Sleep Time
First, Table 2 displays a significant correlation between
the GT2 and the accelerometer, with a PPMCC of 0.47
(P<.001; 95% CI 0.40-0.54) and an ICC test score of
0.25 (P<.001; 95% CI −0.06 to 0.49). Second, we tested
the difference between GT2 and Actigraph in terms of
TST during daily life across different age groups, which is
summarized in Table 3. The GT2 tends to underestimate TST
(MPE=19.98%, MD=138.08 minutes) as compared with the
Actigraph accelerometer measurements. The underestimation
was evident between both YAs (MPE=22.13%, MD=156.33
minutes) and MAAO adults (MPE=18.35%, MD=123.15
minutes). The error results (MPE=19.98%, MAPE=23.29%)
suggest moderate validity of the GT2 for measuring TST
in daily life. A independent t test showed no significant
difference in MAPE between the YA and MAAO groups
(t=1.54; df=483; P=.12), indicating that the measurement
error of the GT2 in the YA group (MAPE=24.39%,
SD=13.84%) was comparable with that in the MAAO group
(MAPE=22.45%, SD=13.58%). Finally, the Bland-Altman
plots and Bull’s-eye diagrams (Figures 1C and 2) indicate that
the GT2 tends to underestimate TST and that the underesti-
mation increases as sleep time increases. Overall, when using
the Actigraph GT3X+ as the criterion measure, the GT2 has
poor to moderate validity in measuring TST among adults
during daily life.

Discussion
Principal Findings
This study assessed the accuracy of the Huawei Watch
GT2 in measuring SC, TDAEE, and TST under free-liv-
ing conditions, while also exploring the validity differen-
ces between YAs and MAAO adults. The findings indicate
that while the GT2 measures SC reasonably accurately, its
accuracy in measuring TDAEE is lower, especially at higher
levels of TDAEE. In addition, the accuracy of TST measure-
ment appears to be lower when using Actigraph accelerome-
ters as the reference criterion, highlighting the need for more
valid standardized measures for further validation. Notably,
the GT2 demonstrated higher accuracy in measuring SC and
TDAEE in the YA group than in the MAAO group; however,
the measurement errors for TST did not significantly differ
between the 2 age groups.

For SC, the GT2 often reports higher counts than
traditional accelerometers in daily scenarios (MD=1318
steps), yet it maintains a reasonable accuracy in SC,
as evidenced by its high ICC value with accelerometer
counts (ICC=0.88). This observation is in line with find-
ings from prior research. For instance, Degroote et al [22]
found that despite the Huawei watch’s tendency to overesti-
mate SC (MD=1478 steps), its SC measurement accuracy
remains robust, demonstrated by strong correlations with
accelerometer data (ICC=0.88). The consistent overestimation
observed across studies may be attributed to the differing
placement of the devices [22,42]. Tudor-Locke et al [42]
showed that wrist-attached devices tend to report higher SC

than waist-attached devices in free-living conditions, with
overestimations ranging from 2500 to 8700 steps per day.
This phenomenon is particularly noticeable during sedentary
and low-intensity intermittent activities, which are more
prevalent than continuous walking in everyday life [43].
Consequently, while the GT2 accurately captures SC during
regular walking (involving typical wrist and hip movements),
it may also mistakenly count steps during wrist movements
in nonwalking activities (eg, wrist oscillation without actual
displacement), leading to higher counts than those recorded
by waist-worn accelerometers. Further analysis through a
independent t test on MAPE revealed that the GT2’s SC
performance is superior in the YA group (MAPE=21.91%)
compared with the MAAO group (MAPE=28.81%). This can
be attributed to YAs’ more predictable movement patterns,
which correspond more closely with the GT2’s step counting
algorithm [43]. In addition, younger adults typically engage
more in vigorous activities, making their movements more
detectable than those of older adults, resulting in better
accuracy for the GT2. This is in line with previous research
indicating that consumer-grade activity trackers tend to be
more accurate at moderate to vigorous walking speeds than
at slower speeds [44]. Future studies may consider improving
the calibration of SC algorithms in smartwatches to account
for the variability in activity types and intensities, which may
potentially enhance their accuracy across a wider range of
movements.

To our knowledge, this is the first study to assess the
GT2 smartwatch’s efficacy in measuring TDAEE in real-life
settings. Consistent with findings from other smartwatch
research on TDAEE [28,45-48], our results reveal that while
the GT2 demonstrates moderate validity compared with the
Actigraph, its accuracy in TDAEE measurements is still
not ideal, as indicated by a high level of errors against the
Actigraph (MAPE >30%). Previously, Le et al [27] analyzed
the accuracy of GT2 compared with Cosmed K5 in meas-
uring activity energy expenditure in outdoor scenarios and
showed that the ICC was 0.76 and 0.68, and the MAPE was
9.9% and 11.9% in walking (6 km/hour, 2 km) and running
(10 km/hour, 2 km) scenarios, respectively. These findings
underscore the GT2’s moderate accuracy in activity energy
expenditure measurement. Notably, our study extends the
current findings by highlighting an increase in measurement
error according to the rise in activity energy expenditure.
Although the degree of error in our study appears higher than
that reported in previous studies (eg, Le et al [27], Mugger-
idge et al [49], and Reddy et al [50]), we applied the device
in a real-world setting over an extended period of 7 full
days. It is important to consider that acceptable MAPE limits
should be interpreted in the context of specific application
scenarios and performance indicators. Previous research has
shown that data collected in daily life are often less accu-
rate than those generated under standardized, controlled,
and relatively short-term conditions, such as in a laboratory
setting [28,45,51]. This is because the accuracy of the device
in real-world scenarios can be influenced by various factors,
such as complex terrain and irregular activity patterns, which
make it challenging to consistently identify such activities
through acceleration counts [44,51]. Hence, scholars have
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clearly articulated the necessity of testing devices in free-
living contexts, as they are designed to monitor daily living
activities [52]. Again, this study emphasized that while
the GT2 has good potentials for everyday health monitor-
ing, users and researchers alike must remain cognizant of
its limitations in accurately tracking TDAEE. The Huawei
Watch GT2 may face challenges in accurately predicting
energy expenditure in certain scenarios, especially when
activity patterns are not very consistent. To address this,
it is critical to further enhance sensor accuracy and better
integrate multiple data sources, optimizing the algorithm’s
ability to recognize and monitor activity patterns. The users
should take the potential underestimation into consideration
when interpreting the readings of their TDAEE. Such findings
underscore the ongoing need for technological refinement and
validation.

Likewise, the issue of the measurement error in TST
by GT2 warrants further research attention. We identified
an underestimation of TST (138.08 minutes) for the GT2,
and a similar case is reported on Fitbit [53,54]. Compared
with polysomnography, Meltzer et al [53] showed that the
Fitbit Ultra (sensitive mode) underestimated TST by 105
minutes on average in youth, and Cook et al [54] also found
that the Fitbit Flex (sensitive mode) underestimated TST
(86.3 minutes) in individuals with unipolar major depressive
disorder. The degree of TST underestimation of Fitbit seems
smaller than what we found in GT2. However, the reference
measure used in this study (the accelerometer) is different
from that used in Fitbit validation studies (polysomnography).
Polysomnography is the gold standard for TST measurement,
whereas accelerometers often overestimate TST too. For
instance, Zinkhan et al [55] found that Actigraph GT3X+
(hip) overestimated TST (81.1 minutes) as compared with
polysomnography. Therefore, when hip-worn accelerometers
are used as measurement criteria, the degree of underestimat-
ing TST by smartwatch is likely to be exaggerated [55,56].
It is worth noting that different wearing positions resulting
in different displacement data may be one of the reasons
why the accelerometer and GT2 data are not in agreement
[42,55]. Specifically, during bed rest, wrist activity tends to
be higher than hip activity, given that people may engage in
activities involving use of wrists (eg, reading books or using
a mobile phone); in fact, many participants orally reported
habitual use of smartphones while lying in bed prior to
falling asleep at night and getting up in the morning. In such
cases, it is easy for smartwatch to capture wrist movements
and accurately distinguish between awake and sleep states.
However, hip-worn accelerometers are less able to monitor
these activities and tend to recognize them as sleep time
and therefore are more likely to overestimate sleep duration,
especially in insomniacs [55]. As described in the reviews
by Guillodo et al [57] and Evenson et al [45], the current
evidence from reliability studies on sleep is still limited.
Therefore, although results of this study suggest that the GT2
is likely to underestimate TST in reference to Actigraph,
we should be cautious in drawing the conclusions. Future
research is essential, and it should incorporate established
standards such as polysomnography to validate the accuracy
of smartwatch measurements for TST.

Smartwatches are becoming increasingly popular, but their
use for monitoring and regulating health-related behaviors
(eg, physical activity, sedentary behaviors, and sleep) is
hindered by insufficient evidence of accuracy [23,28,29,31].
In particular, the accuracy of the Huawei Watch GT2, a
highly popular wearable device, remains uncertain in terms
of TDAEE and TST monitoring in daily life, and few studies
have been conducted on large Asian populations [28,29,31].
Therefore, we focused on gathering empirical evidence on
the GT2’s accuracy in the Chinese population, we believe
such efforts are necessary and should be made on a regular
basis. In this study, we found that the GT2 demonstrates
good accuracy in measuring SC in adults during daily life
but requires improvement in measuring TDAEE and TST.
In addition, the accuracy of the GT2 in measuring SC and
TDAEE may vary across different populations. Users should
consider potential bias when evaluating activity goals based
on GT2 measurements. This is particularly important to many
users (especially those managing chronic diseases or aiming
to improve physical health and well-being) who rely on the
real-time feedback provided by smartwatches [58,59]. Future
devices should better recognize users’ behavioral habits,
so that the algorithms can be improved to better account
for personal characteristics. Therefore, we call on main-
stream smartwatch manufacturers to continuously improve
their devices by introducing advanced techniques such as
deep learning and sensor fusion to refine algorithms for
more accurate health monitoring. Although it is challeng-
ing to establish a one-size-fits-all measurement standard
due to individual and environmental variability, studies that
consistently evaluate the validity of smartwatches can offer
valuable feedback to improve algorithms, increase public
recognition, and ultimately enhance their potential for health
behavior management and promotion.
Strengths and Limitations
This study has several strengths. First, the Huawei Watch is
a widely used smartwatch with a high market share, espe-
cially in China (39%) [26], but only a few studies have
provided empirical evidence of its accuracy [22,27]. The
study examines the measurement accuracy of the GT2 in
free-living settings. In particular, it is the first to examine the
GT2’s accuracy in measuring TDAEE and TST in daily life,
which are quite important parameters that have not received
sufficient attention. Second, this study has a sample size that
is relatively large among validation studies of smartwatches
and covers a wide age distribution of participants (18-24
years in YAs; 55-91 years in MAAO adults), evidence of
such studies is rarely reported before [30]. Collectively, the
results supported the accuracy of this device in measuring SC
and TDAEE in daily life. These findings may help users and
researchers better determine how to use GT2 for practical and
research purposes.

However, the results of this study should also be inter-
preted with consideration for several limitations. First, the
proportion of female participants was higher in the MAAO
group, and since we recruited a healthy population, the results
may not be generalizable to populations with existing health
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conditions. Second, the reference measure of the study was
research-grade accelerometers with known validity limita-
tions, especially in terms of sleep measures. Future stud-
ies could use polysomnography and doubly labeled water
methods to evaluate the accuracy of relevant parameters.
Third, like other smartwatch validation studies, this study had
access to only algorithmically processed data. In addition,
as smartwatches are iteratively updated, the results may not
generalize to newer models. Future studies should consider
adopting more appropriate and feasible criterion measures
based on the specific target behaviors to be assessed.
Conclusions
In summary, the Huawei Watch GT2 serves as a valid
measure of SC and shows moderate accuracy in measuring

TDAEE. However, it should be used with caution for studies
requiring high precision of TDAEE. Furthermore, the GT2
has been shown to underestimate TST measurements in
reference to an accelerometer. Future studies should further
validate its accuracy in monitoring TST using more valid
methods, such as polysomnography. The GT2 demonstra-
ted higher accuracy in measuring SC and TDAEE in the
YA group compared with the MAAO group. However, the
measurement errors for TST did not differ significantly
between the 2 age groups. As smartwatches are constantly
updated, their accuracy should be regularly evaluated in
various settings and populations to ensure proper application
in health-related behavior monitoring and promotion.
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