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Abstract

Background: While deep learning classifiers have shown remarkable results in detecting chest X-ray (CXR) pathologies, their
adoption in clinical settings is often hampered by the lack of transparency. To bridge this gap, this study introduces the neural
prototype tree (NPT), an interpretable image classifier that combines the diagnostic capability of deep learning models and the
interpretability of the decision tree for CXR pathology detection.

Objective: This study aimed to investigate the utility of the NPT classifier in 3 dimensions, including performance, interpretability,
and fairness, and subsequently examined the complex interaction between these dimensions. We highlight both local and global
explanations of the NPT classifier and discuss its potential utility in clinical settings.

Methods: This study used CXRs from the publicly available Chest X-ray 14, CheXpert, and MIMIC-CXR datasets. We trained
6 separate classifiers for each CXR pathology in all datasets, 1 baseline residual neural network (ResNet)–152, and 5 NPT
classifiers with varying levels of interpretability. Performance, interpretability, and fairness were measured using the area under
the receiver operating characteristic curve (ROC AUC), interpretation complexity (IC), and mean true positive rate (TPR) disparity,
respectively. Linear regression analyses were performed to investigate the relationship between IC and ROC AUC, as well as
between IC and mean TPR disparity.

Results: The performance of the NPT classifier improved as the IC level increased, surpassing that of ResNet-152 at IC level
15 for the Chest X-ray 14 dataset and IC level 31 for the CheXpert and MIMIC-CXR datasets. The NPT classifier at IC level 1
exhibited the highest degree of unfairness, as indicated by the mean TPR disparity. The magnitude of unfairness, as measured
by the mean TPR disparity, was more pronounced in groups differentiated by age (chest X-ray 14 0.112, SD 0.015; CheXpert
0.097, SD 0.010; MIMIC 0.093, SD 0.017) compared to sex (chest X-ray 14 0.054 SD 0.012; CheXpert 0.062, SD 0.008; MIMIC
0.066, SD 0.013). A significant positive relationship between interpretability (ie, IC level) and performance (ie, ROC AUC) was
observed across all CXR pathologies (P<.001). Furthermore, linear regression analysis revealed a significant negative relationship
between interpretability and fairness (ie, mean TPR disparity) across age and sex subgroups (P<.001).

Conclusions: By illuminating the intricate relationship between performance, interpretability, and fairness of the NPT classifier,
this research offers insightful perspectives that could guide future developments in effective, interpretable, and equitable deep
learning classifiers for CXR pathology detection.

(JMIR Form Res 2024;8:e59045) doi: 10.2196/59045
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Introduction

Challenges in Chest X-Ray Analysis
The chest X-ray (CXR) is a standard imaging procedure for
screening, diagnosing, and monitoring a range of critical thoracic
conditions, including but not limited to cardiac, pulmonary, and
respiratory diseases [1,2]. More than 2 billion CXRs are obtained
globally each year, making it one of the most frequently
performed radiographic tests [3]. However, interpreting CXRs
poses substantial challenges, evidenced by research highlighting
substantial interobserver variability among radiologists, leading
to inconsistent image analyses [4,5]. In addition, a global
shortage of radiologists has been reported. For instance, the
United Kingdom only has 8.5 radiologists per 100,000
population, and 96% of the radiology departments reported that
they were not able to meet their diagnostic reporting
requirements within contracted hours [6,7]. Similarly, in Canada,
understaffing of radiologists has not only caused considerable
delays in delivering diagnostic results but also led to burnout
in up to 72% of radiologists [8,9]. In response to these
challenges, substantial research has been invested in developing
deep learning classifiers aimed at enhancing the efficiency and
accuracy of CXR analysis [4,10-12]. The findings from these
studies suggested that deep learning classifiers can reach
competitive performance in detecting common CXR pathologies
[4,10].

Adoption of Artificial Intelligence
The adoption of deep learning classifiers for detecting CXR
pathologies typically involves a human–artificial intelligence
(AI) collaborative approach, wherein the classifier serves as a
decision support tool, and the radiologist makes the final
judgment [13]. Establishing trust in deep learning–based
technologies is a pivotal factor for the successful implementation
of human-AI collaboration [14]. Distrust in deep learning–based
technologies impedes their adoption and may result in the major
loss of opportunities [14,15]. Prior studies found that
transparency is a critical element in building trust and promoting
the adoption of deep learning–based technologies [14,16]. In
the context of CXR pathology detection, transparency means
the classifier’s prediction can be explained in a manner that the
radiologist can understand and reconstruct the classifier’s
reasoning. However, a predominant challenge with most deep
learning classifiers is their nontransparent nature, which can
obscure the rationale behind their decision-making processes
[17,18]. To address this issue, explainable AI (XAI) methods
are frequently used to provide explanations of these classifiers’
behavior [4,19,20]. The transparency offered by XAI methods
not only helps establish trust in deep learning–based
technologies but can also greatly enhance the diagnostic
performance of clinicians in medical imaging tasks [21-23].

The Role of XAI
In the realm of XAI, explanations are generally categorized into
2 main types: post hoc and intrinsic. Post hoc explanations are
generated by applying additional XAI tools after the classifier
is trained. In contrast, the intrinsic explanations are directly
derived from the internal architecture of interpretable classifiers,
such as feature weights in the logistic regression [24]. In the

context of the CXR pathology classification, class activation
maps and integrated gradients, along with their variants, are
frequently used to provide post hoc explanations for
nontransparent classifiers [23,25]. These tools generate
explanations by highlighting the region of the CXR that is most
important for the prediction of the classifier. However, previous
studies have shown that post hoc explanations can be imprecise
due to their reliance on approximations of the classifier’s
behavior [11,20,23,26-28]. On the contrary, intrinsic
explanations can more precisely explain the classifier’s behavior
because these explanations originate directly from the classifier’s
internal decision-making process [29]. However, the dilemma
arises because conventional interpretable classifiers such as
logistic regression and decision trees do not match the predictive
performance of more complex, nontransparent classifiers.
Balancing the need for accurate explanations with competitive
performance remains a critical challenge in CXR pathology
detection.

The neural prototype tree (NPT) is one of the most popular
interpretable image classifiers, which addresses the performance
limitations of the conventional interpretable classifier by
combining the expressiveness of the deep learning model with
the interpretability of the decision tree [30]. The architecture of
the NPT comprises a convolutional neural network followed
by a decision tree [30], revealing its decision-making process
with a tree-structure explanation. While the NPT presents a
promising innovation in integrating interpretability with deep
learning capabilities, its practical utility in CXR pathology
detection needs to be justified with competitive performance,
particularly in comparison with nontransparent deep learning
classifiers.

The Intersection of Performance, Interpretability, and
Fairness
Besides interpretability and performance, fairness is another
important dimension when considering adopting deep
learning–based diagnostic tools for detecting CXR pathologies
[31,32]. Deep learning–based diagnostic tools are recognized
as potential sources that worsen health inequity through
algorithmic bias. In the clinical sense, algorithmic bias can
appear as disparities in performance attributed to sex, race,
ethnicity, language, socioeconomic status, and other identities
that are not indexed to clinical need [33]. For instance, a
previous study has highlighted that the state-of-the-art deep
learning classifiers for detecting CXR pathologies have a higher
false negative rate for Hispanic female patients [34]. The
algorithmic bias can lead to unequal access to medical treatment
and raises serious ethical concerns. Therefore, it is imperative
to comprehensively evaluate the fairness dimension of the NPT
classifier to ensure it equitably benefits patients from diverse
backgrounds.

The decision tree component of NPT provides transparency in
the decision-making process of the classifier. The tree
component imposes a constraint on the NPT’s expressivity,
which refers to its capacity to model complex patterns and
relationships. Increasing the size of the tree can enhance the
NPT’s expressivity; however, a larger tree leads to a more
complex decision-making process, which reduces the classifier’s
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interpretability and can impact its performance and fairness.
Investigating the relationship between interpretability,
performance, and fairness will provide the basis for future
studies to better align these 3 dimensions within the NPT
classifier for CXR pathology detection.

Study Objectives
In this study, we systematically trained NPT classifiers with
varying sizes of the decision tree component to determine if the
interpretable classifier NPT can achieve comparable
performance to nontransparent deep learning classifiers for
detecting CXR pathologies [12]. Each NPT classifier undergoes
a comprehensive evaluation across 3 critical dimensions:
performance, interpretability, and fairness. Subsequently, we
investigated the intricate relationship among these 3 dimensions.
Furthermore, we highlighted both local and global explanations
of the NPT classifier and discussed its potential utility in clinical
settings.

Methods

Data Source
In this study, we used 3 publicly available CXR datasets: Chest
X-ray 14 [12], CheXpert [35], and MIMIC-CXR [36]. The Chest
X-ray 14 is one of the largest publicly available CXR datasets
composed of 112,120 posteroanterior and anteroposterior view
CXRs, partitioned into 14 classes. These 15 classes include 14
prevalent CXR pathologies along with no finding class. The
dataset was extracted from the clinical Picture Archiving and
Communication System database at the National Institutes of
Health Clinical Center [12]. CheXpert, on the other hand,
contains 224,316 CXRs from 65,401 patients who underwent
radiographic examinations at Stanford Health Care between
October 2002 and July 2017. The MIMIC-CXR dataset
comprises 377,110 CXRs from 65,379 patients evaluated at the
Beth Israel Deaconess Medical Center Emergency Department
between 2011 and 2016. The labeling of all datasets was
performed using natural language processing techniques applied
to the corresponding radiology reports. The demographics of
the datasets are presented in Table 1.

Table 1. Description of chest X-ray (CXR) datasets, Chest X-ray 14, CheXpert, and MIMIC-CXR. The number of CXRs, patients, and the proportion
of patients per subgroups of sex, age, and race are presented. The race subgroups include White, Asian, Black, Hispanic, Native American, and others.
Age subgroups are categorized into 4 groups: 0 to 25, 26 to 50, 51 to 75, and >75 years. Data for race are only available for CheXpert and MIMIC-CXR.

MIMIC-CXRCheXpertChest X-ray 14Attribute

377,110224,316112,120CXRs, n

65,37965,24030,805Patients, n

Sex, n (%)

34,252 (52.39)29,019 (44.48)13,403 (43.51)Female

31,127 (47.61)36,221 (55.52)17,402 (56.49)Male

Age (y), n (%)

5230 (8)3197 (4.9)3891 (12.63)0-25

18,208 (27.85)15,514 (23.78)12,611 (40.94)26-50

28,937 (44.26)30,656 (46.99)13,548 (43.98)51-75

13,004 (19.89)15,873 (24.33)755 (2.45)>75

Race, n (%)

2373 (3.63)7105 (10.89)—aAsian

10,918 (16.7)3164 (4.85)—Black

4112 (6.29)1461 (2.24)—Hispanic

157 (0.24)1050 (1.61)—Native American

42,085 (64.37)36,985 (56.69)—White

5734 (8.77)15,475 (23.72)—Other

aRace data not available for this dataset.

Ethical Considerations
The datasets used in this study were collected with institutional
review board approval from their respective institutions: Chest
X-ray 14 was approved by the National Institutes of Health
Clinical Center (Bethesda, MD), CheXpert received approval
from Stanford Hospital (Stanford, CA), and MIMIC-CXR was

approved by the Beth Israel Deaconess Medical Center (Boston,
MA) [12,35,36]. As all datasets were fully deidentified
[12,35,36], individual patient consent was not required, and this
study was exempted from further institutional review board
review [37]. To obtain access to these datasets, the authors
completed the necessary training courses and signed the
corresponding data use agreements, ensuring the appropriate
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use of the data in accordance with relevant policies and
regulations. The lead author completed the CITI Data or
Specimens Only Training course (certification number
62353094) to access the MIMIC-CXR dataset. The Chest X-ray
14 and CheXpert datasets did not require specific training.

NPT Architecture and Inference Logic
NPT [30] is an interpretable classifier composed of a CNN
followed by a prototype decision tree. The architecture and
inference logic of the NPT is shown in Figure 1. During training,
input images are first passed through a pretrained CNN, such
as a residual neural network (ResNet), which extracts a set of
latent feature maps. These feature maps capture high-level
representations of the image and serve as input to the decision
tree component of the NPT. At each internal node of the decision
tree, there is a trainable prototype, representing a characteristic

part of the training images. These prototypes are initialized as
random tensors and refined throughout training. The
decision-making at each node is based on the similarity between
the most similar image patch in the input feature map of the
image and the learned prototype at that node. If the prototype
is sufficiently present in the image based on the Euclidean
distance, the decision path moves to the right; otherwise, it
moves to the left. The training objective is to minimize the
cross-entropy loss between the predicted class distribution and
the true class label. Both the CNN weights and the prototypes
are optimized through backpropagation to ensure accurate
classification. By the end of the training, each prototype
represents a discriminative patch learned from the training data
that is crucial for making classification decisions. The prototypes
are then upsampled using bicubic interpolation, enabling
visualization in the original image space.

Figure 1. Overview of the neural prototype tree architecture. Chest x-ray images are passed through a pretrained convolutional neural network (CNN),
generating feature maps that capture high-level image representations. These feature maps are used as input to a prototype decision tree, where each
internal node contains a prototype representing a discriminative patch learned from the training data. The presence of a prototype within an input image’s
feature map determines its routing through the decision tree, ultimately arriving at the leaf node to produce the final prediction.

Classifier Development and Comparison
ResNet [38] is a commonly used CNN architecture for medical
imaging tasks [39], which enables training deeper neural
networks using residual blocks and skip connections. ResNet
has demonstrated exceptional performance in various medical
imaging studies [4,40], making it an ideal candidate for
comparison with the NPT classifier in CXR pathology detection
due to its established accuracy and widespread adoption in the
field. We started with training a ResNet-152 classifier for each
CXR pathology. The performance of trained classifiers was
then compared with recent studies. Upon confirming that the
ResNet-152 could reach comparable performance with previous
studies, we adopted it as our performance benchmark. This
benchmarking laid the groundwork for comparing the
interpretable NPT classifiers against nontransparent deep models
(ie, ResNet-152). Subsequently, we trained NPT classifiers with
different numbers of internal nodes, compared their performance
with the benchmark, and investigated whether the NPT classifier
could achieve similar performance. We used ResNet-152 as the
convolutional backbone of NPT to facilitate this comparison.
The ResNet-152 was chosen due to its superior performance in
CXR pathology classification compared with other convolutional
neural network architectures [41].

Consistent with previous studies [4,42,43], we treated each CXR
pathology as an individual binary classification task, and for
each CXR pathology, we assigned positive to CXRs with the

condition and negative to all others. We combined the
nonpositive labels within CheXpert into an aggregate “negative”
label similar to previous studies [34]. Anticipating scenarios
where a patient’s CXR may exhibit multiple pathologies, we
acknowledged the possibility of chaining binary classifiers for
multipathology detection using a binary relevance approach
[44]; however, applying NPTs to a multilabel classification
approach would dramatically increase the tree size due to the
numerous prototypes required to achieve optimal performance
for detecting all pathologies. This expansion would lead to a
large number of internal and leaf nodes, which poses a challenge
for interpretability. The dataset for each CXR pathology was
randomly split into training (70%), validation (10%), and testing
(20%) datasets with no individual patient’s X-rays shared across
datasets.

For each CXR pathology, 5 NPT classifiers were independently
trained on the anteroposterior and posteroanterior views. The
decision was made in consideration of the NPT’s inference
process, which relies on the presence of prototype image patches
within a CXR. As such, we wanted to ensure that the
decision-making process matched the provided explanations
derived from a specific view of CXRs. In addition, a single
ResNet classifier was trained using a combined dataset of both
anteroposterior and posteroanterior views for each pathology.
The NPT classifiers varied in the number of internal nodes by
adjusting the tree depth. All classifiers were optimized using
the AdamW optimizer [42]. The data preprocessing procedures
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include resizing the input CXR to a dimension of 224×224×3
and normalization based on the mean and SD of images in the
ImageNet dataset [45]. Additionally, we used data augmentation
techniques, including random horizontal flip, random affine,
and random crop [46-48]. Hyperparameters, including learning
rate, batch size, and degree of random affine, were selected
based on the model’s area under the receiver operating
characteristic curve (ROC AUC) score on the validation dataset.
The number of epochs was determined by using an early
stopping condition, where training was terminated if the
validation loss did not decrease for 10 epochs. To ensure
robustness, each classifier was trained 5 times, with the dataset
being randomly reshuffled each time. The classifiers’
performance measures were reported with their means and 95%
CIs based on these 5 runs.

Performance, Interpretability, and Fairness
Measurement
The performance of trained classifiers was evaluated using ROC
AUC. ROC AUC is a widely used metric for evaluating a
classifier’s performance. It is computed by plotting the true
positive rate (TPR) against the false positive rate and calculating
the area under the curve. The metric provides a comprehensive
evaluation of the classifier’s overall performance, capturing its
proficiency in distinguishing positive and negative classes across
various classification thresholds.

The interpretability of classifiers was quantified by the
interpretation complexity (IC), which refers to the count of
decision thresholds present in a model [49]. For tree-based
classifiers, IC corresponds to the number of internal nodes, each
internal node assesses the presence of a prototype image patch
[49]. A lower IC value indicates a more interpretable classifier
[50,51]. Intuitively, increasing the number of nodes leads to
more decision-making steps that involve determining the
presence of more prototype image patches in a CXR. This will
increase the complexity of the model and decrease the ability
to comprehend the model’s rationale for making a prediction.
In this study, we adjusted the tree depth of the NPT classifier
to control the number of nodes, thus achieving various levels
of interpretability as delineated by IC. To be specific, we trained
NPT classifiers with tree depths ranging from 1 to 5,
corresponding to an IC of 1, 3, 7, 15, and 31.

To evaluate the classifiers’ fairness dimension, we used equality
of opportunity as our fairness criterion [52]. According to this
criterion, a classifier is considered fair if the TPR (ie, recall) is
the same across subgroups defined by distinct protected
attributes (ie, sex, age, and race). We focused on evaluating the
fairness of the NPT classifier with respect to patient
demographics, including age and sex for the Chest X-ray 14
dataset and age, sex, and race for the CheXpert dataset. The sex
categories include male and female, while the age groups are
divided into 4 intervals: 0 to 25, 26 to 50, 51 to 75, and >75
years. The race groups for the CheXpert dataset include White,
Asian, Native American, Hispanic, and Black. The bias on the
subgroup level is quantified with the TPR disparity [34,53,54].
For groups differentiated by sex, the TPR disparity is computed
as the difference between the model’s TPR on the group’s CXRs
and the complementary group’s CXRs [54]. When considering

subgroups differentiated by age and race, the TPR disparity is
computed as the difference between the TPR of a specific age
group and the median TPR across all subgroups [34]. The TPR
disparity values can range from −1 to 1, with negative values
indicating the classifier is biased against a particular subgroup.
Subsequently, we identified favorable and unfavorable
subgroups based on the frequency of positive or negative TPR
disparity across all pathologies. For instance, if male patients
had positive TPR disparity in 10 out of 14 pathologies, it would
be categorized as a favored group. We quantified the NPT
classifier’s degree of fairness using the mean TPR disparity
[34]. For NPT classifiers with different ICs, the mean TPR
disparity was computed by first determining the largest TPR
disparity at the subgroup level (ie, sex, age, and race) and
subsequently averaging these values across all CXR pathologies.
A higher mean TPR disparity indicates a greater potential for
unfair diagnosis of certain subgroups by the classifier.

The Intersection Between Performance,
Interpretability, and Fairness
A tree with a greater IC (ie, a larger number of internal nodes)
can express more complex relationships, potentially leading to
improved performance. Nonetheless, as the IC increases, the
decision-making process becomes more complicated, potentially
diminishing the classifier’s interpretability. To investigate the
relationship between interpretability and performance, we
conducted simple linear regression to determine the ability of
NPT’s IC to predict its ROC AUC in detecting 5 CXR
pathologies.

Previous studies have suggested that simplifying the model (ie,
reducing the number of internal nodes) to enhance
interpretability may adversely impact the model’s fairness
[55,56]. To further understand the relationship between
interpretability and fairness, we performed simple linear
regression to assess the ability of IC to predict the mean TPR
disparity across sex, age, and race-differentiated subgroups.
The linear regression model parameters were estimated using
the ordinary least squares method. Each linear regression
analysis was performed using 25 data points from 5 separate
runs for each of the 5 NPT classifiers with different ICs. We
used RStudio (version 4.2.1; The R Foundation) for conducting
linear regressions. To control the false discovery rate, we applied
the Benjamini-Hochberg correction to adjust the P values
obtained from statistical analyses.

Local and Global Explanation Generation
The NPT classifier [30] can provide both local and global
explanations. The global explanation is directly derived from
the decision tree architecture. The explanation exposes the
potential paths that an input CXR might undertake, providing
a holistic perspective into the classifier’s decision-making
mechanism for detecting pathologies. The process for generating
local explanations commences with navigating the input image
through the decision tree, wherein the presence of prototype
image patches within the image influences its path through the
decision tree until it reaches a leaf node. These leaf nodes carry
probability distributions over classes and lead to the final
prediction. In this study, we first presented an example of a
global explanation for the NPT classifier trained to detect
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atelectasis. Then, we presented an example of a local explanation
for an atelectasis CXR. We subsequently discussed the potential
utility and implications of these explanations.

Results

Performance Comparison Between NPT and
ResNet-152
Before evaluating the performance of the NPT classifier against
ResNet-152, we first benchmarked the trained ResNet-152

model against established studies to ensure it reached a
competitive performance level. A detailed comparison of the
results is provided in Multimedia Appendix 1. The box plot in
Figure 2 provides a visual comparison between the performance
of the ResNet-152 classifier and results from recent studies.
The diamond markers represent the ROC AUC scores of the
ResNet-152 classifier across various pathologies. ResNet-152
exhibits competitive performance, surpassing the median
performance of recent studies in 12 out of the 14 pathologies
within the Chest X-ray 14 dataset.

Figure 2. Box plot comparing the area under the receiver operating characteristic curve (ROC AUC) performance of the residual neural network
(ResNet)–152 classifier with recent studies on the Chest X-ray 14 dataset. The diamond symbol represents the ROC AUC of the ResNet-152 classifier.
The plot visually demonstrates how the performance of ResNet-152 aligns closely with the median performance of recent studies across 14 pathologies.

The ROC AUC performance of the ResNet-152 and NPT
classifiers across various IC levels in detecting pathologies is
presented in Multimedia Appendix 2. Figures 3-5 illustrate the
NPT performance as a function of IC level for the Chest X-ray
14, CheXpert, and MIMIC-CXR datasets, respectively. The
results show that the performance of the NPT classifiers
generally improved with increasing IC levels, eventually
surpassing the performance of ResNet-152 at IC levels 15 or
31 for most pathologies. This pattern was consistently observed

across 3 datasets. The mean ROC AUC of ResNet-152 and NPT
classifiers across all pathologies in Chest X-ray 14, CheXpert,
and MIMIC-CXR are presented in Table 2. Figure 6 illustrates
the mean ROC AUC values of ResNet-152 and NPT classifiers
across different IC levels for all pathologies in 3 datasets. In
the Chest X-ray 14 dataset, the NPT classifier outperformed
ResNet-152 at IC level 15, while in the CheXpert and
MIMIC-CXR datasets, this outperformance occurred at IC level
31.
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Figure 3. Comparison of area under the receiver operating characteristic curve (ROC AUC) performance between residual neural network (ResNet)–152
(dashed lines) and neural prototype tree (NPT) classifiers (solid lines) across varying IC levels for different pathologies in the Chest X-ray 14 dataset.
As the interpretation complexity (IC) level increases, the NPT performance generally improves, with several pathologies surpassing ResNet-152's
performance at IC levels 15 and 31. The dashed lines represent ResNet-152 performance, while colored solid lines represent NPT performance for each
pathology.

Figure 4. Comparison of area under the receiver operating characteristic curve (ROC AUC) performance between residual neural network (ResNet)–152
(dashed lines) and neural prototype tree (NPT) classifiers (solid lines) across varying interpretation complexity (IC) levels for different pathologies in
the CheXpert dataset. As the IC level increases, the NPT performance generally improves, with several pathologies surpassing ResNet-152’s performance
at IC levels 15 and 31. The dashed lines represent ResNet-152 performance, while colored solid lines represent NPT performance for each pathology.
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Figure 5. Comparison of area under the receiver operating characteristic curve (ROC AUC) performance between residual neural network (ResNet)–152
(dashed lines) and neural prototype tree (NPT) classifiers (solid lines) across varying interpretation complexity (IC) levels for different pathologies in
the MIMIC-chest x-ray (CXR) dataset. As the IC level increases, the NPT performance generally improves, with several pathologies surpassing
ResNet-152’s performance at IC levels 15 and 31. The dashed lines represent ResNet-152 performance, while colored solid lines represent NPT
performance for each pathology.

Table 2. The mean area under the receiver operating characteristic curve (ROC AUC) performance of residual neural network (ResNet)–152 and neural
prototype tree (NPT) classifiers across varying interpretation complexity (IC) levels for all pathologies in the Chest X-ray 14, CheXpert, and MIMIC-CXR
datasets. As the IC level increases, NPT performance improves, surpassing ResNet-152 at IC level 15 for the Chest X-ray 14 dataset and IC level 31
for the CheXpert and MIMIC-CXR datasets.

NPT (IC=31),
mean (SD)

NPT (IC=15),
mean (SD)

NPT (IC=7), mean
(SD)

NPT (IC=3), mean
(SD)

NPT (IC=1), mean
(SD)

ResNet-152, mean
(SD)

Dataset

0.853 (0.057)0.848 (0.061)0.833 (0.049)0.803 (0.054)0.779 (0.036)0.847 (0.054)Chest X-Ray 14

0.810 (0.063)0.804 (0.048)0.791 (0.053)0.757 (0.039)0.739 (0.042)0.805 (0.062)CheXpert

0.838 (0.061)0.819 (0.054)0.789 (0.056)0.759 (0.071)0.735 (0.052)0.833 (0.065)MIMIC-CXR
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Figure 6. Comparison of mean area under the receiver operating characteristic curve (ROC AUC) performance between residual neural network
(ResNet)–152 (dashed lines) and neural prototype tree (NPT) classifiers (solid lines) across varying IC levels for the Chest X-ray 14, CheXpert, and
MIMIC-CXR datasets. As the interpretation complexity (IC) level increases, NPT performance improves, surpassing ResNet-152 at IC level 15 for the
Chest X-ray 14 dataset and IC level 31 for the CheXpert and MIMIC-chest x-ray (CXR) datasets.

We performed 14 linear regression analyses on the Chest X-ray
14 dataset and 13 linear regression analyses on both the
CheXpert and MIMIC-CXR datasets, with each analysis
corresponding to a distinct pathology. These analyses aimed to
assess the influence of IC levels on the ROC AUC of NPT
classifiers. To account for the false discovery rate, we applied
the Benjamini-Hochberg correction to adjust the P values. The
detailed results of these analyses are provided in Multimedia
Appendix 3. A statistically significant positive association
(P<.001) was observed between IC levels and ROC AUC across
all pathologies in each dataset. The results highlight a tradeoff
between model performance and interpretability, wherein an
increase in IC levels improved performance but simultaneously
led to a reduction in interpretability.

Fairness Assessment of NPT Classifiers
The TPR disparity of NPT classifiers across various
demographic attributes for classifying CXR pathologies is
presented in Multimedia Appendix 4. A summary of the fairness
assessment of NPT classifiers at different IC levels is provided
in Table 3.

Male patients are frequently classified as favorable (ie,
exhibiting more positive TPR disparities across pathologies
compared with other groups), particularly at lower IC levels
(IC=1 and IC=3). The 26-50- and 51-75-year age groups were
found to be favorable across different IC levels, while the
0-25-year age group was consistently found as unfavorable.
Regarding racial groups, White individuals were found to be

favorable across all IC levels, whereas Black and Hispanic
individuals tended to exhibit negative TPR disparities and were
frequently found to be unfavorable across different IC levels.
The highest mean TPR disparities were consistently observed
at IC level 1 across all datasets. Figure 7 presents the mean TPR
disparity across various IC levels for different demographic
attributes (sex, age, and race) in the CheXpert, MIMIC-CXR,
and Chest X-ray 14 datasets. The results showed a consistent
decrease in mean TPR disparity across all groups and datasets
as IC levels increased, indicating a reduction in disparity with
higher IC levels. To investigate the tradeoff between fairness
and performance, we calculated the average TPR disparity across
demographic attributes for Chest X-ray 14, MIMIC-CXR, and
CheXpert datasets. These values were then plotted against the
mean ROC AUC in Figure 8. Figure 8 revealed an inverse
relationship between the TPR disparity and the mean ROC
AUC. ResNet-152 classifiers consistently exhibited higher TPR
disparity compared with NPT classifiers when achieving similar
mean ROC AUC across 3 datasets.

We conducted linear regression analyses to examine the effect
of IC levels on mean TPR disparity across demographic
attributes, specifically sex and age in the Chest X-ray 14 dataset
and sex, age, and race in the CheXpert, MIMIC-CXR datasets.
A detailed statistical analysis is provided in Multimedia
Appendix 5. The results indicated a statistically significant
negative relationship (P<.001) between IC levels and mean TPR
disparity for all demographic attributes in all datasets.
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Table 3. Overview of true positive rate (TPR) disparities across different demographic attributes (sex, age, and race) in the CheXpert, MIMIC-CXR,
and Chest X-ray 14 datasets. The table identifies the “favorable” and “unfavorable” subgroups, defined as those with more positive or negative TPR
disparities, respectively, when compared to other groups across pathologies. The mean TPR disparity is calculated by averaging the largest disparities
associated with each attribute (sex, age, and race) across all pathologies. Both datasets list the most frequent favorable and unfavorable subgroups for
each interpretation complexity (IC) level, illustrating the disparity patterns across demographics.

RaceAge (y)SexIC level and attribute

Chest X-ray 14

IC=1

—a26-50MaleFavorable

—14 (100)14 (100)Pathologies with higher TPR, n (%)

—0-25FemaleUnfavorable

—14 (100)14 (100)Pathologies with lower TPR, n (%)

—0.112 (0.015)0.054 (0.012)TPR disparity, mean (SD)

IC=3

—51-75, >75MaleFavorable

—10 (71)14 (100)Pathologies with higher TPR, n (%)

—0-25FemaleUnfavorable

—14 (100)14 (100)Pathologies with lower TPR, n (%)

—0.086 (0.013)0.036 (0.009)TPR disparity, mean (SD)

IC=7

—26-50MaleFavorable

—11 (79)8 (57)Pathologies with higher TPR, n (%)

—0-25FemaleUnfavorable

—14 (100)8 (57)Pathologies with lower TPR, n (%)

—0.044 (0.009)0.022 (0.007)TPR disparity, mean (SD)

IC=15

—51-75MaleFavorable

—10 (71)11 (79)Pathologies with higher TPR, n (%)

—0-25FemaleUnfavorable

—12 (86)11 (79)Pathologies with lower TPR, n (%)

—0.042 (0.011)0.018 (0.004)TPR disparity, mean (SD)

IC=31

—>75FemaleFavorable

—11 (79)8 (57)Pathologies with higher TPR, n (%)

—0-25MaleUnfavorable

—14 (100)8 (57)Pathologies with lower TPR, n (%)

—0.032 (0.005)0.013 (0.003)TPR disparity, mean (SD)

CheXpert

IC=1

White26-50MaleFavorable

12 (92)13 (100)13 (100)Pathologies with higher TPR, n (%)

Hispanic0-25FemaleUnfavorable

11 (85)13 (100)13 (100)Pathologies with lower TPR, n (%)

0.069 (0.013)0.097 (0.010)0.062 (0.008)TPR disparity, mean (SD)

IC=3
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RaceAge (y)SexIC level and attribute

White51-75MaleFavorable

12 (92)11 (85)13 (100)Pathologies with higher TPR, n (%)

Black0-25FemaleUnfavorable

13 (100)13 (100)13 (100)Pathologies with lower TPR, n (%)

0.052 (0.011)0.078 (0.013)0.041 (0.009)TPR disparity, mean (SD)

IC=7

White51-75FemaleFavorable

13 (100)9 (69)7 (54)Pathologies with higher TPR, n (%)

Hispanic0-25MaleUnfavorable

9 (69)13 (100)7 (54)Pathologies with lower TPR, n (%)

0.045 (0.008)0.050 (0.014)0.025 (0.005)TPR disparity, mean (SD)

IC=15

White51-75MaleFavorable

9 (69)11 (85)12 (92)Pathologies with higher TPR, n (%)

Black0-25FemaleUnfavorable

11 (85)10 (77)12 (92)Pathologies with lower TPR, n (%)

0.039 (0.006)0.037 (0.008)0.020 (0.004)TPR disparity, mean (SD)

IC=31

White51-75MaleFavorable

10 (77)12 (92)13 (100)Pathologies with higher TPR, n (%)

Black0-25FemaleUnfavorable

10 (77)13 (100)13 (100)Pathologies with lower TPR, n (%)

0.011 (0.003)0.016 (0.004)0.012 (0.002)TPR disparity, mean (SD)

MIMIC-CXR

IC=1

White26-50MaleFavorable

12 (92)13 (100)13 (100)Pathologies with higher TPR, n (%)

Hispanic, Asian, Black0-25FemaleUnfavorable

10 (77)13 (100)13 (100)Pathologies with lower TPR, n (%)

0.096 (0.021)0.093 (0.017)0.066 (0.013)TPR disparity, mean (SD)

IC=3

White51-75MaleFavorable

11 (85)10 (77)13 (100)Pathologies with higher TPR, n (%)

Black0-25FemaleUnfavorable

11 (85)12 (92)13 (100)Pathologies with lower TPR, n (%)

0.074 (0.016_0.081 (0.015)0.058 (0.012)TPR disparity, mean (SD)

IC=7

White26-50, 51-75MaleFavorable

13 (100)8 (62)8 (62)Pathologies with higher TPR, n (%)

Black0-25FemaleUnfavorable

12 (92)11 (85)8 (62)Pathologies with lower TPR, n (%)

0.057 (0.014)0.059 (0.013)0.038 (0.009)TPR disparity, mean (SD)

IC=15
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RaceAge (y)SexIC level and attribute

White51-75, >75MaleFavorable

11 (85)8 (62)7 (54)Pathologies with higher TPR, n (%)

Black0-25FemaleUnfavorable

10 (77)11 (85)7 (54)Pathologies with lower TPR, n (%)

0.039 (0.005)0.049 (0.009)0.023 (0.006)TPR disparity, mean (SD)

IC=31

White51-75MaleFavorable

9 (69)9 (69)9 (69)Pathologies with higher TPR, n (%)

Native American0-25FemaleUnfavorable

11 (85)8 (62)9 (69)Pathologies with lower TPR, n (%)

0.029 (0.007)0.028 (0.008)0.014 (0.002)TPR disparity, mean (SD)

aRace data not available for this dataset.

Figure 7. Mean true positive rate (TPR) disparity across varying interpretation complexity (IC) levels for different demographic attributes (sex, age,
and race) in the CheXpert, MIMIC-chest x-ray (CXR), and Chest X-ray 14 datasets. As IC levels increase, the mean TPR disparity decreases consistently
across all demographic groups, indicating improved fairness in classification at higher IC levels.

Figure 8. The relationship between true positive rate (TPR) disparity (averaged across demographic attributes) and mean area under the receiver
operating characteristic curve (ROC AUC) across all pathologies for neural prototype tree (NPT) and residual neural network (ResNet)–152 classifiers,
evaluated on the Chest X-ray 14, CheXpert, and MIMIC-chest x-ray (CXR) datasets. The figure revealed an inverse relationship between the mean TPR
disparity and the mean ROC AUC for NPT classifiers, indicating improved fairness with higher performance of NPT classifiers.
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Local and Global Explanations of the NPT Classifier
Figure 9 presents an example of a global explanation of the
NPT classifier (IC=3) for detecting atelectasis. The pathways
from the root node to the leaf node reveal the NPT classifier’s
decision-making mechanism in detecting atelectasis. At each
internal node, the NPT classifier identified the presence of
specific signs linked to atelectasis within the input CXR. It then
decided on the subsequent pathway, ultimately leading to the
final classification at a leaf node. Figure 10 presents an example

of a local explanation of the NPT classifier for a sample CXR
indicating atelectasis. The NPT classifier started with locating
the nearest matching patch in the input CXR to the internal
node’s prototype image patch. Following this, the detection of
relevant signs of atelectasis within the CXR guided the CXR
to the rightmost leaf node, resulting in a positive prediction for
atelectasis. We present more examples of NPT classifiers’global
explanation for detecting CXR pathologies in Multimedia
Appendix 6.

Figure 9. Global explanation of the neural prototype tree (NPT) classifier’s decision-making process for detecting atelectasis (interpretation complexity=3).
The diagram illustrates the NPT classifier’s decision-making logic, starting from the root node, where it assesses the presence or absence of discriminative
prototypes in the chest x-ray associated with atelectasis. This evaluation progresses through internal nodes, ultimately leading to the final classification
at the leaf nodes.

Figure 10. Local explanation of the neural prototype tree (NPT) classifier’s decision-making process for detecting atelectasis in a chest x-ray (CXR).
The NPT classifier starts by identifying the most relevant region in the input CXR and comparing it to internal prototype images that capture key features
of atelectasis. This culminates in a final positive classification for atelectasis.
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Discussion

Principal Findings
Deep learning classifiers have attracted substantial interest due
to their exceptional performance in detecting CXR pathologies
[4,57]. However, incorporating such systems within clinical
contexts requires diligent evaluation due to their direct impact
on patient care. Regulatory frameworks for AI have been
proposed worldwide, such as the Artificial Intelligence Act in
Europe [58] and the New Generation Artificial Intelligence
Ethics Specification in China [59]. These regulations underscore
the paramount importance of interpretability and fairness. In
the context of CXR pathology detection, post hoc XAI tools
are frequently used to enhance interpretability for the
nontransparent deep learning classifiers. However, these tools
may not accurately describe the classifier’s behavior and provide
unfaithful explanations [60]. In response to this issue, we used
an interpretable classifier, NPT [30], for CXR pathology
detection and subsequently assessed its utility in 3 dimensions,
including performance, interpretability, and fairness. To the
best of our knowledge, this is the first time that NPT has been
used for detecting CXR pathologies. Furthermore, we
investigated the intricate relationship between the NPT
classifier’s performance, interpretability, and fairness in the
context of CXR pathology detection.

In this study, we have shown that the NPT classifier can achieve
competitive performance similar to the baseline classifier (ie,
ResNet-152) and recent studies for classifying CXR pathologies
in Chest X-ray 14 dataset [4,12,20,61-63], suggesting the
potential of using the NPT classifier instead of nontransparent
deep learning classifiers. The linear regression analysis revealed
that the IC was positively correlated with ROC AUC for all
CXR pathologies in this study (P<.001), indicating a tradeoff
between interpretability and performance. As the IC increases,
the decision-making process is more complex and leads to
decreased interpretability, which may present challenges for
clinicians in understanding and tracing the model’s reasoning.
This tradeoff highlights the necessity to find a balance between
the performance and interpretability of NPT. Therefore,
choosing an appropriate IC level (ie, the number of internal
nodes) is essential to maintain this balance, ensuring that the
NPT classifier is not only effective in detecting CXR pathologies
but also remains interpretable for clinical use.

Furthermore, we have observed biases in NPT classifiers across
subgroups differentiated by sex, age, and race. The NPT
classifiers with an IC level of 1 exhibited the highest level of
unfairness indicated by mean TPR disparity for all demographic
attributes in the Chest X-ray 14, CheXpert, and MIMIC-CXR
datasets. The magnitude of unfairness, quantified with mean
TPR disparity, was found to be more pronounced in groups
differentiated by age (Chest X-ray 14 0.112, SD 0.015;
CheXpert 0.097, SD 0.010; MIMIC-CXR 0.093, SD 0.017)
rather than sex (Chest X-ray 14 0.054, SD 0.012; CheXpert
0.062, SD 0.008; MIMIC-CXR 0.066, SD 0.013). This
observation aligns with the study by Seyyed-Kalantari et al [34]
on identifying fairness gaps in state-of-the-art deep learning
classifiers for CXR pathology detection. The linear regression

analysis demonstrated a significant negative relationship
between IC and mean TPR disparity for both age and
sex-differentiated subgroups (P<.001) in Chest X-ray 14 and
age, sex, and race-differentiated subgroups (P<.001) in the
CheXpert and MIMIC-CXR datasets, highlighting the tension
between interpretability and fairness. This conflict can be
attributed to the fact that the tree with a low IC level has a
limited capacity to capture the nuances useful for smaller
subgroups within the dataset [55]. It is imperative for future
studies to devise strategies that reconcile the tension between
interpretability and fairness within NPT classifiers, ensuring
that the drive for interpretability does not inadvertently
perpetuate or amplify demographic biases for detecting CXR
pathologies. Various bias reduction techniques have been
proposed, such as diversifying training datasets [31,64],
detecting and mitigating shortcut learning [65,66], and applying
fairness-aware machine-learning techniques [67]; however, the
application of these techniques in the context of interpretable
CXR classifiers remain unexplored and warrant further
investigation.

The global explanation derived from the NPT classifier offers
a transparent and traceable decision-making process. This
enables radiologists to assess whether the NPT classifier is
effectively using relevant signs for detecting certain CXR
pathology. Understanding the classifier’s behavior before
deployment can help establish trust, facilitate adoption, and
mitigate the risk of exposing patients to a poorly trained
classifier. The proposed approach addresses a critical limitation
of post hoc XAI tools, which is the lack of a convenient and
reliable method for assessing the overall quality of generated
explanations [26,68,69]. The local explanation provided by the
NPT classifier consists of a series of questions about the
presence of different signs for certain CXR pathology in the
input CXR. In the event of misclassification, the responsible
prototype image patch can be easily traced to facilitate error
analysis and enable users to pinpoint the factors contributing
to misclassifications, aiding in the refinement and improvement
of the NPT classifier’s performance. The explanations for deep
learning classifiers are most effective when they resonate with
the mental model of the radiologists [70]. By providing
explanations that mirror the hierarchical reasoning used in CXR
diagnosis, such as differential diagnosis pathways, explanations
can become intuitive extensions of the reasoning by radiologists
[71]. This congruence can lead to a higher degree of trust and
a smoother integration into clinical practice. It should also be
noted that the explanations provided herein are intended for
illustrative purposes only and have not undergone thorough
clinical evaluation by radiologists for diagnostic use. As part
of ongoing research, future work will focus on conducting
comprehensive clinical evaluations to assess the diagnostic
utility and validity of these explanations.

Comparison With Prior Work
Numerous studies have investigated deep learning classifiers
for CXR pathology detection [4,12,20,42,72], but their lack of
transparency often limits their applicability in clinical settings
[16,73,74]. Previous work has used post hoc XAI techniques
for explaining the prediction of CXR pathology classifiers
[4,75]; however, post hoc XAI techniques only approximate
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the behavior of the model and, therefore, may not provide
faithful explanations [60,76]. Research into the use of
interpretable classifiers for CXR pathology detection remains
limited. Sun et al [77] proposed a novel interpretable image
classifier, which can provide local counterfactual explanations.
However, their approach cannot generate global explanations
for the classifier’s decision-making mechanism. Yan et al [78]
proposed a vision-language model, offering concept-based
explanations. While innovative, their approach demands
substantial effort from radiologists for concept creation and
verification and does not provide global explanations. In
contrast, this study used the interpretable model NPT, which
could provide both local and global explanations [30].
Furthermore, the relationship between interpretability and
fairness has not been well understood, nor has it been
investigated in the context of CXR pathology detection.
Doshi-Velez and Kim [51] suggested that enhanced model
interpretability facilitates analysis, aiding in assessing the
fairness dimension. Conversely, Kleinberg and Mullainathan
[55] and Agarwal [56] found that simpler, more interpretable
models might intensify biases against disadvantaged groups.
We conducted a thorough investigation of the relationship
between performance, interpretability, and fairness in CXR
pathology detection using the interpretable NPT model. This
study has shown that interpretability is negatively correlated
with performance and fairness. The empirical evidence sheds
light on the intricate balances and connections among these
critical dimensions in a comprehensive manner.

Limitations
This study has several limitations that should be acknowledged.
First, the datasets used in this study were automatically labeled
using natural language processing techniques, which might lead
to some mistakes in the labels [12]. Future research should
consider addressing this limitation by using additional validation
methods or incorporating expert reviews to validate the accuracy
and quality of the CXR labels. Second, this study did not
incorporate the PadChest dataset due to its substantial size,
which exceeded our current computational resources [79].
Additionally, the VinDr-CXR dataset was excluded because of
the rarity of certain pathologies, with some conditions
represented by only a few hundred CXRs [80]. This limited
sample size would have hindered a comprehensive analysis of
the fairness dimension of the NPT classifiers across specific
demographic groups. Future studies should consider
incorporating more CXR datasets to enhance the generalizability

of the findings in this study. Thirdly, while this study focuses
on the tradeoffs between interpretability, fairness, and
performance in interpretable NPT classifiers, incorporating
vision transformers as the backbone of NPTs [81] and using
self-supervised methods such as Dino-v2 for pretraining [82]
may further enhance classifier performance in CXR pathology
classification [83]. Future research should investigate these
approaches to assess whether the relationships between
performance, interpretability, and fairness shift under these
conditions. Fourth, while we have presented both the global
and local explanation of the NPT classifier and discussed their
potential utility in aiding diagnostic procedures, their clinical
significance needs to be established in a rigorous user study
with radiologists. Such a study would involve evaluating
whether the NPT accurately learns clinically relevant and causal
features that align with a diagnostic process of the radiologist,
as well as identifying potential failure modes of the global
explanation pathways from a medical perspective. Fifth, the
transferability of the NPT classifier across diverse clinical
environments and unseen data distributions requires evaluation,
as previous studies have highlighted the importance of this
factor for ensuring its robustness and successful deployment in
real-world settings [84,85]. Finally, it is crucial to investigate
the appropriate way of integrating the NPT classifier into the
workflow of radiologists. This involves conducting usability
studies to better understand how the NPT classifier can
effectively complement and enhance the existing diagnostic
process [86].

Conclusions
In this study, we have comprehensively investigated the NPT
classifier’s performance, interpretability, and fairness
dimensions in CXR pathology detection. Our findings
demonstrated that the NPT classifier not only achieved
competitive performance comparable to nontransparent deep
learning classifiers but also offered the added benefit of
providing faithful global and local explanations for its
decision-making process. The traceability and interpretability
provided by NPT classifiers represent considerable advancement
toward enhancing transparency in the application of deep
learning classifiers for CXR pathology detection. By shedding
light on the complex relationship between performance,
interpretability, and fairness in the NPT classifier, this research
offers critical insights that could guide future advancement in
effective, interpretable, and equitable deep learning innovations
for CXR pathology detection.
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