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Abstract

Background: Breast implants, including textured variants, have been widely used in aesthetic and reconstructive mammoplasty.
However, the textured type, which is one of the shell texture types of breast implants, has been identified as a possible etiologic
factor for lymphoma, specifically breast implant–associated anaplastic large cell lymphoma (BIA-ALCL). Identifying the shell
texture type of the implant is critical to diagnosing BIA-ALCL. However, distinguishing the shell texture type can be difficult
due to the loss of human memory and medical history. An alternative approach is to use ultrasonography, but this method also
has limitations in quantitative assessment.

Objective: This study aims to determine the feasibility of using a deep learning model to classify the shell texture type of breast
implants and make robust predictions from ultrasonography images from heterogeneous sources.

Methods: A total of 19,502 breast implant images were retrospectively collected from heterogeneous sources, including images
captured from both Canon and GE devices, images of ruptured implants, and images without implants, as well as publicly available
images. The Canon images were trained using ResNet-50. The model’s performance on the Canon dataset was evaluated using
stratified 5-fold cross-validation. Additionally, external validation was conducted using the GE and publicly available datasets.
The area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (PRAUC) were
calculated based on the contribution of the pixels with Gradient-weighted Class Activation Mapping (Grad-CAM). To identify
the significant pixels for classification, we masked the pixels that contributed less than 10%, up to a maximum of 100%. To assess
the model’s robustness to uncertainty, Shannon entropy was calculated for 4 image groups: Canon, GE, ruptured implants, and
without implants.

Results: The deep learning model achieved an average AUROC of 0.98 and a PRAUC of 0.88 in the Canon dataset. The model
achieved an AUROC of 0.985 and a PRAUC of 0.748 for images captured with GE devices. Additionally, the model predicted
an AUROC of 0.909 and a PRAUC of 0.958 for the publicly available dataset. This model maintained the PRAUC values for
quantitative validation when masking up to 90% of the least-contributing pixels and the remnant pixels in breast shell layers.
Furthermore, the prediction uncertainty increased in the following order: Canon (0.066), GE (0072), ruptured implants (0.371),
and no implants (0.777).

Conclusions: We have demonstrated the feasibility of using deep learning to predict the shell texture type of breast implants.
This approach quantifies the shell texture types of breast implants, supporting the first step in the diagnosis of BIA-ALCL.
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Introduction

Breast implants have been developed for aesthetic and
reconstructive mammaplasty since 1962. The first textured
breast implant was developed in 1968 to prevent capsular
contracture after aesthetic or reconstructive implant-based
mammaplasty [1,2]. Engraving and embossing types of textured
implants have also been used in anatomical breast implants for
natural shape. Since the diagnosis of the first case of breast
implant–associated anaplastic large cell lymphoma (BIA-ALCL)
in 1997 by Dr. Keech, a total of 1264 cases of BIA-ALCL,
including 59 deaths, have been reported by the US Food and
Drug Administration (FDA), according to a recent update as of
June 30, 2023 [3,4]. Since the first case of BIA-ALCL,
numerous investigations have been conducted to examine its
etiology, prevalence rates, and clinical characteristics.

Several studies have demonstrated that the topography of a
textured breast implant shell surface is associated with
BIA-ALCL [5-11]. Classified as a rare T-cell lymphoma,
BIA-ALCL is nevertheless a significant concern in the context
of breast augmentation and reconstruction surgeries, with
documented cases of mortality. BIA-ALCL is often treatable
when detected early, underscoring the critical importance of
timely and accurate diagnosis [6,9-11]. A recent study found
that prophylactic replacement can be indicated in asymptomatic,
risk-stratified patients to reduce the risk of BIA-ALCL [12].
Identifying the inserted breast implant shell surface topography
is the first step for diagnosing BIA-ALCL in follow-up breast
examination and replacement cases. If a patient has a history
of primary aesthetic or reconstructive mammaplasty utilizing
a smooth-type breast implant, there is generally no cause for
concern regarding BIA-ALCL.

Nevertheless, a substantial number of patients may not be aware
of the specific type of breast implant shell inserted during
surgery after a long period of time, and medical records,
especially within private clinics, may not be well preserved.
Additionally, there are flaws in government policy regulating
medical devices in South Korea [13]. As the medical community
deepens its understanding of the complexities of this condition,
the significance of diagnosing the surface topography of breast
implant shells becomes increasingly apparent. Traditional
diagnostic methods for assessing breast implants have relied
heavily on subjective human evaluations. Mammograms and
magnetic resonance imaging (MRI) exams, which are used to
monitor breast implant–related complications, cannot identify
the implant shell surface topography. Only ultrasonography can
identify the inserted implant shell surface topography [14,15].

However, ultrasonography also has many limitations. The
generalizability of the results may be limited due to the real-time
and operator-dependent nature of ultrasonography, which may
result in inter- and intraobserver variability. Although artificial

intelligence (AI) is useful in overcoming these limitations of
ultrasonography, we conducted this study to determine whether
it is useful in distinguishing breast implant shell surface
topography using our algorithm. Additionally, the development
of AI programs to accurately diagnose breast implant shell
surface topography holds promise in revolutionizing early
detection and management strategies for BIA-ALCL. The
development of AI algorithms aims to eliminate subjectivity
and provide a more accurate and standardized approach to
identifying the breast implant shell surface topography as
textured and smooth types.

Methods

Study Design
In this study, we retrospectively collected anonymous and
deidentified medical records containing information on implant
shell types, ultrasonographic images, and demographic
characteristics. We built multiple datasets as follows: Canon
dataset (D1), GE dataset (D2), ruptured implant dataset (D3),
no implant image dataset (D4), and publicly available dataset
(D5). We used the Canon dataset (D1) for training, interval
validation, and testing, and we used the GE and publicly
available datasets (D2 and D5) for external validation. The
ruptured implant and no implant image datasets (D3 and D4)
were also used as out-of-distribution (OOD) datasets to identify
model interpretation.

First, the Canon and GE datasets (D1 and D2) included the
ultrasonography images with medical data generated from
patients who underwent aesthetic or reconstructive
implant-based mammaplasty without implant rupture at a single
institution in South Korea. All patients underwent both breast
cancer examination and ultrasonography-assisted examination
at the institution. Ultrasonography-assisted examinations were
conducted with an Aplio i600 (Canon Medical System) system
with a 7-18 MHz linear transducer (General Electric LOGIQ
E10). These retrospective data were confirmed by a surgeon
between August 31, 2017, and November 31, 2022. We obtained
the ultrasonography images with medical data from 1043
patients (Multimedia Appendix 1). Multiple ultrasonography
images from each patient were captured to assess the implant
shell types and saved in a Picture Archiving and Communication
System (PACS)–rendered JPEG format. We retained unique
images for model development by checking 128-bit MD5 hash
algorithms to rule out data leakage between the training and
testing datasets. A breast surgeon with 14 years of breast implant
ultrasonography experience labeled all the ultrasonographic
images of shell surface topography.

Our problem divided shell surface topography into textured and
smooth types. The smooth type included the microtextured type
as a conventional clinical classification [15]. Microtextured
types show almost the same shell surface topography as smooth
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types in high-resolution ultrasonography and light microscopy
[15]. As some retrospective data were not stored in a Digital
Imaging and Communications in Medicine (DICOM) format,

we only used the centered PACS-rendered image (Table 1),
discarding the top 12%, bottom 10%, and left and right 7% of
pixels.

Table 1. Eligible ultrasonography datasets.

Shell surface topography
(N=19,502), n

Shell integrityObjectiveDeviceDataset name

SmoothTextured

14,9762420IntactTraining, validation, and testingCanonCanon (D1)

1844113IntactExternal validationGEGE (D2)

30101RupturedOODaCanonRuptured implant (D3)

N/AcN/AcN/AbOODCanonWithout implant (D4)

711IntactExternal validationHeterogenousPublicly available (D5)

aOOD: out-of-distribution.
bN/A: not applicable.
cn=338.

Second, 131 ultrasonography images of the ruptured implant
dataset (D3) were collected using the Canon Aplio i600. Because
of the damaged shell integration, the implant shell type would
be less easily identified from ultrasonography images. We used
these images as an OOD dataset to identify the model’s ability
to estimate its uncertainty for the 2 types of shells. Third, 338
ultrasonography images without implants were also captured
and used as an OOD dataset to determine the transparency of
our model by estimating uncertainty (D4). Finally, we
constructed a publicly available dataset for external validation
by searching for ultrasonography images using the following
keywords: “breast implant ultrasound” and “breast implant
ultrasonography” (D5).

Model Development
Convolutional neural networks (CNNs) were used to scale the
parameter sizes to achieve high performance. This feasibility
study used an off-the-shell CNN architecture originally designed
for natural images, ResNet-50, composed of 50 layers as the
backbone [16]. To speed up the proof of concept, we chose a
lightweight model instead of models with a large number of
parameters, such as Vision transformer or SwinTransformer,
which require expensive computational costs with a large
amount of data due to the lack of inductive bias [17,18].

We trained our model by conducting transfer learning on the
pretrained ResNet-50, which learned ImageNet classification.

Then, we replaced the classifier layer of ResNet-50, which has
a 1000D vector for multiclass, with a binary classifier layer to
return a 2D vector for shell surface topology as smooth or
textured type. Weighted binary cross-entropy was used as the
objective function for parameter optimization, which effectively
trains the model by penalizing incorrect predictions of the minor
class due to class imbalance between shell types (the textured
type being a minor class). The weight in the weighted binary
cross-entropy for the minor class was calculated with the
inversed ratio of the minor class in the training dataset.

Cropped, PACS-rendered images were preprocessed, being
resized to 224×224 pixels using bilinear interpolation. The
images in the training dataset were fed into the model without
any augmentation. The deep learning model was trained with
an Adam optimizer, with a learning rate 0.0001 and a batch size
32. The total number of training epochs was set to 20; however,
the actual number of epochs was reduced due to early stopping,
which was triggered when the validation loss did not improve
for 7 consecutive epochs (patience=7).

Performance Evaluation and Model Interpretation.
We evaluated our model with four experiments: (1) classification
performance using multiple datasets, (2) quantitative validation
using masked images, (3) uncertainty estimation for multiple
datasets, and (4) post hoc explainable interpretation (Figure 1).
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Figure 1. Illustration of the 4 experimental settings. AUROC: area under the receiver operating characteristic curve; Grad-CAM: Gradient-weighted
Class Activation Mapping; PRAUC: area under the precision-recall curve.

First, to report our model transparently, we performed two types
of validation: (1) stratified cross-validation and (2) external
validation with both the GE dataset and publicly available
ultrasonography images (D2 and D3). A stratified 5-fold
cross-validation was conducted to identify generalized
performance in the Canon dataset due to class imbalance
between smooth and textured shells. Data split was performed
by stratified random splitting of ultrasonography images into
training (60%), validation (20%), and test (20%) datasets with
shell surface topology labels. We evaluated the area under the
curve (AUC) with different cutoffs for the receiver operating
characteristic (ROC) curve and precision-recall (PR) curve.
Also, we conducted an external validation set to reduce latent
bias with publicly available ultrasonographic images. We also
identified the AUC of both the ROC and PR curves with these
data.

Second, we used an explainable AI (XAI) approach to determine
whether our model accurately classified the implant shell types
from the features of echogenicity or layers from ultrasonography
images and no other unexpected factors by assessing the
classification performance according to the masking part of the
image. For the quantitative validation, we hypothesized that the
important pixels of the image that distinguished the type of
implant were on the layers of the implant. In addition, we also
hypothesized that there would be no performance degradation
if some nonlayered pixels were erased. Therefore, we calculated
the pixel importance using Gradient-weighted Class Activation
Mapping (Grad-CAM), a method to quantify a pixel’s
contribution to the classification [19]. Both AUROC and
PRAUC were calculated by removing 10% of the
least-contributing pixels from the total number of pixels in the
image and replacing them with zeros.

Third, we calculated the Shannon entropy for the uncertainty
estimation to estimate the predictive uncertainty for each image
in the OOD dataset [20,21]. Entropy ranges from 0 to 1, with
a larger value indicating greater predictive uncertainty. We also
hypothesized that entropies in the ruptured implant dataset (D3)
would be larger than those in the test set because our model was
only trained on ultrasonography images from patients without

damaged shell integrity. Furthermore, we hypothesized that the
entropies in images without breast implants (D4) would be
larger than those in the ruptured implant dataset (D3). Our model
was only trained on ultrasonographic features from the implant
image dataset to classify the shell types.

Finally, we used the Grad-CAM technique to gain further insight
into the model’s decision-making processes. This interpretative
method was used to visually trace and affirm the alignment
between the model’s predictive patterns and established medical
expertise concerning diagnosing different breast implant shell
types. Through Grad-CAM, heatmaps were generated,
highlighting the critical regions in the imaging data that
influenced the model’s diagnostic predictions, thus ensuring
that these insights were consistent with conventional medical
knowledge.

Ethical Considerations
This retrospective study was approved by the Internal
Institutional Review Board of the Korea National Institute of
Bioethics Policy (P01-202401-01-006), which waived the
requirement for informed consent of medical records, including
patients’ images and characteristics. All procedures described
herein were performed under the 1964 Declaration of Helsinki
and its later amendments or comparable ethical standards. None
of the authors have a financial interest in any products, devices,
or drugs mentioned in this paper.

Results

Classification Performance for Shell Surface Type
Our model achieved an AUROC of 0.998 and a PRAUC of
0.994 in the Canon dataset (D1; Table 2). From the stratified
5-fold cross-validation, our model showed an average AUROC
of 0.98 and a PRAUC of 0.88 in the Canon dataset captured
with the Canon ultrasonography device (D1; Multimedia
Appendix 2). Although the images were captured with a GE
ultrasonography device (D2), our model showed an AUROC
of 0.985 and a PRAUC of 0.748. For the publicly available
dataset (D5), the model showed an AUROC of 0.909 and a
PRAUC of 0.958.
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Table 2. Performance metrics of classification for each dataset

DatasetsMetrics

Publicly available (D5)Ruptured implants (D3)GE (D2)Canon (D1)

0.9090.9950.9850.998AUROCa

0.9580.9980.7480.994PRAUCb

aAUROC: area under the receiver operating characteristic curve.
bPRAUC: area under the precision-recall curve.

Quantitative Validation
In the quantitative analysis to determine whether our model
classifies ultrasonography images by medical knowledge, the
model maintained an AUROC of 0.999 when masking up to
90% of the least-contributing pixels for prediction and showed
an AUROC of 0.997 when masking 100% of the pixels.
However, the PRAUC remained at 0.999 even after masking
90% of the pixels. After that, it decreased to 0.493 when all
pixels were masked (Figure 2A). For each individual case, the

confidence for the textured shell type remained at 0.993, even
when 80% or fewer contributing pixels were masked. When
masking 90% of the pixels, model confidence dropped to 0.968
and reached 0.497 when all pixels were masked. Similarly, the
model confidence for another case with a textured shell type
was maintained at 0.994 until masking 80% of the pixels,
decreased to 0.960 when masking 90% of the pixels, and
dropped to 0.947 when masking 100% of the pixels (Figure 2B
and C).

Figure 2. Performance deterioration depends on masking noncontributing pixels to prediction. (A) ROC curve (left) and PR curve (right) for the test
dataset in the Canon dataset; (B) textured shell implant prediction in the Canon dataset (D1) by increasing the number of lower-contributing pixels by
10%; (C) textured shell implant prediction in the ruptured implant dataset (D3) by increasing the number of lower-contributing pixels by 10%. AUROC:
area under the receiver operating characteristic curve; PR: precision-recall; PRAUC: area under the precision-recall curve; ROC: receiver operating
characteristic.

Uncertainty Estimation
The model did not produce significantly lower entropies for the
test dataset in the Canon dataset (D1) than for the external
validation set from the GE ultrasonography device (mean 0.072,
SD 0.201 vs mean 0.066, SD 0.21; P=.35). However, the average
entropy for ruptured implant images was significantly higher

than for the test dataset in the Canon dataset (mean 0.371, SD
0.318 vs mean 0.072, SD 0.201; P<.001). Moreover, the model
also predicted a statistically significantly higher entropy for
images with breast implants than for ruptured implant images
(mean 0.777, SD 0.199 vs mean 0.371, SD 0.318; P<.001;
Figure 3).
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Figure 3. Entropy distribution of prediction from tests in all datasets.

Individual Case Review
For a qualitative case review, we sampled 2 ultrasonography
images, 1 from the test dataset (Canon, D1) and another from
the ruptured implant datasets (D3), captured by the same device.
The model provided a model confidence of 0.998 for the
textured shell type. In a heatmap with the Grad-CAM score,
high values were shown for the textured type at the shell (white

horizontal line in Figure 4A). Also, for the image of the
ruptured, textured shell implant, the model provided model
confidence of 0.664 for it being the textured type. Although this
score is higher than the classification threshold (0.5), it is lower
than that of the intact, textured shell implant. However, the
Grad-CAM score was high in the intact layer adjacent to the
ruptured shell area in the heatmap despite the shell being
ruptured due to a shell tear (Figure 4B).
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Figure 4. Preprocessed ultrasonography image with Grad-CAM for textured shell type prediction. Heatmap with Grad-CAM was bilinearly interpolated
to resize the original image. (A) Intact textured implant image captured with Canon ultrasonography device, and (B) a damaged textured implant image
captured with Canon ultrasonography device (the red arrow annotates a shell tear). Grad-CAM: Gradient-weighted Class Activation Mapping.

Discussions

Principal Findings
Identifying breast implant shell types requires ultrasonographic
examination, which can have inter- and intraobserver variability.
Therefore, the generalizability of the results may be variable,
leading to potentially missed diagnoses. However, no
quantitative measurement or classification method distinguishes
the 2 shell types. This feasibility study demonstrates that deep
learning can quantitatively classify breast implant shell types.
Also, this study supports the use of echogenicity from the shell
layer of breast implants as an important region in classifying
shell types. Furthermore, despite using different ultrasonography
devices to capture images, our findings provide evidence that
the deep learning model can classify the shell types. Moreover,
the model exhibited higher uncertainty for ruptured breast
implant ultrasonography images and ultrasonography images

without an implant than images from the intact shell type
classification dataset, suggesting that the model could robustly
quantify predictive uncertainty.

Clinical Application
There are several classifications for breast implant shell surface
topography; ISO 14607:2018 is a widely accepted classification
[22]. Although there is a lack of standardized breast implant
surface classification, high-resolution ultrasonography of shell
surface topography can divide the breast implant texture types
into textured and smooth [15]. The textured type shows
roughness compared with the smooth type in high-resolution
ultrasonography (Multimedia Appendix 3) [15]. Identifying the
texture type of an inserted implant using ultrasonography
without surgery is clinically important because the physician
must consider the BIA-ALCL risk induced by the textured-type
breast implant in patients, even in patients with no memory of
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the implant. As an extension of previous research on the
feasibility of high-resolution ultrasonography for identifying
the breast implant shell surface topography, this study was
conducted to develop a deep learning model to predict the breast
implant texture types with ultrasonographic images [15]. In
ultrasonography, smooth types include microtextured types
because microtextured types show almost the same shell surface
compared with smooth types.

This method offers a promising way to classify breast implants
with respect to the risk of BIA-ALCL, a condition that remains
underexplored in current research. Given its rarity and the
association of certain texture types with BIA-ALCL, accurate
identification of texture type emerges as a critical determinant
in risk assessment. Using ultrasonography to identify texture
types allows for straightforward identification on ultrasound
images, often eliminating the need for additional testing. In
addition, the use of deep learning models has the potential to
assist patients undergoing breast augmentation or reconstruction,
particularly in cases of implant rupture. Given the limited
familiarity of radiologists and breast physicians with the diverse
landscape of breast implants, including both manufacturers and
shell types, the integration of AI in clinical contexts is proving
invaluable.

Reliable AI for Clinical Decision Support
Reliable AI is essential for clinical decision support in the
biomedical domain to avoid adverse patient outcomes [23,24].
This study includes multiple experiments on different datasets,
such as devices and OOD datasets, to explore the model’s
transparency. In AI research for radiology, it was found that
deep learning models often showed deteriorated performance
in external validation [25]. The study reveals that deep learning
models may be vulnerable to medical images from
heterogeneous sources due to unseen distribution. To eliminate
biased evidence from these findings, we evaluated the model
using ultrasonography images from the heterogeneous devices
(Figure 1). In addition, this study showed uncertainty in the
model’s predictions, with the mean distribution being larger for
images taken with the same device, images taken with a different
device, images with ruptured implants, and images without
implants (Figure 2). This can support the idea that the deep
learning model classifies the shell type by learning the
ultrasonographic features of breast implant shells. Further,
ruptured implant images are consistent with those in the medical
field, where determining the shell type of a ruptured implant is

difficult due to the damaged surface of the implant (Figure 3).
The entropies for ruptured implant images (D4) were higher
than those for intact implant images (D1 and D2). This approach
provides model confidence that can help clinicians make
decisions that reflect the uncertainty in the diagnosis when
uncertainty is high, for example, when the model consensus is
close to 0.5, and make more confident decisions when it is close
to 1. Also, clinicians can provide important pixels by conducting
post hoc analyses such as Grad-CAM or Score-CAM [19,26].

Limitations
This study acknowledges several limitations that may introduce
bias into interpretations. Primarily, the ultrasonography datasets
did not represent all ultrasonography devices worldwide. Given
the variability in the device resolution, configuration, and
manufacturer, classification performance cannot be universally
applied. To mitigate this, we performed internal and external
validations on various ultrasound devices and incorporated OOD
data to achieve less biased and more widely applicable results.
In addition, the implant images collected did not include all
types of shells used worldwide; rather, we focused only on
implants from 8 manufacturers licensed by the Ministry of Food
and Drug Safety of the Republic of Korea. As a result, a
multicenter study spanning multiple nations and including
images of common implants in each region would allow for
more generalized interpretations of the results. Lastly, as this
research is at the feasibility stage, no existing studies have
classified breast implant shell types. Consequently, it is
challenging to compare other state-of-the-art methodologies.
This limits the ability to assess the objectivity of this study’s
findings or identify the best practice for classifying the shell
types. However, as this is the first investigation into the
classification of breast implant shell types, it can serve as the
foundation for future studies in this area.

Conclusion
The feasibility study presented demonstrates the potential of
deep learning to accurately classify breast implant shell types
from ultrasound images, addressing the current lack of
standardized methods. Our findings underscore the importance
of differentiating implant texture types, particularly for assessing
the risk of BIA-ALCL. In addition, the adaptability of the deep
learning model to account for imaging device variations and
navigate prediction uncertainties opens promising avenues for
robust, AI-driven clinical decision support in evaluating and
managing breast implants.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Demographic characteristics of 1043 patients.
[DOCX File , 19 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Model performance in the Canon dataset (D1) using 5-fold stratified cross-validation.
[DOCX File , 230 KB-Multimedia Appendix 2]
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Multimedia Appendix 3
Example images of breast implants of the textured, smooth, and microtextured types.
[DOCX File , 1095 KB-Multimedia Appendix 3]

References

1. Atlan M, Nuti G, Wang H, Decker S, Perry T. Breast implant surface texture impacts host tissue response. J Mech Behav
Biomed Mater. Dec 2018;88:377-385. [FREE Full text] [doi: 10.1016/j.jmbbm.2018.08.035] [Medline: 30205325]

2. Barnsley GP, Sigurdson LJ, Barnsley SE. Textured surface breast implants in the prevention of capsular contracture among
breast augmentation patients: a meta-analysis of randomized controlled trials. Plast Reconstr Surg. Jun
2006;117(7):2182-2190. [FREE Full text] [doi: 10.1097/01.prs.0000218184.47372.d5] [Medline: 16772915]

3. Keech JA, Creech BJ. Anaplastic T-cell lymphoma in proximity to a saline-filled breast implant. Plast Reconstr Surg. Aug
1997;100(2):554-555. [FREE Full text] [doi: 10.1097/00006534-199708000-00065] [Medline: 9252643]

4. Medical device reports of breast implant-associated anaplastic large cell lymphoma. US Food and Drug Administration.
Dec 15, 2023. URL: https://www.fda.gov/medical-devices/breast-implants/
medical-device-reports-breast-implant-associated-anaplastic-large-cell-lymphoma [accessed 2024-03-06]

5. Blombery P, Thompson ER, Prince HM. Molecular drivers of breast implant-associated anaplastic large cell lymphoma.
Plast Reconstr Surg. Mar 2019;143(3S A Review of Breast Implant-Associated Anaplastic Large Cell Lymphoma):59S-64S.
[doi: 10.1097/PRS.0000000000005570] [Medline: 30817557]

6. Clemens MW, Jacobsen ED, Horwitz SM. 2019 NCCN consensus guidelines on the diagnosis and treatment of breast
implant-associated anaplastic large cell lymphoma (BIA-ALCL). Aesthet Surg J. Jan 31, 2019;39(Suppl_1):S3-S13. [FREE
Full text] [doi: 10.1093/asj/sjy331] [Medline: 30715173]

7. Parthasarathy M, Orrell J, Mortimer C, Ball L. Chemotherapy-resistant breast implant-associated anaplastic large cell
lymphoma. BMJ Case Rep. Nov 27, 2013;2013:bcr2013201950. [FREE Full text] [doi: 10.1136/bcr-2013-201950] [Medline:
24285813]

8. Brody GS, Deapen D, Taylor CR, Pinter-Brown L, House-Lightner SR, Andersen JS, et al. Anaplastic large cell lymphoma
occurring in women with breast implants: analysis of 173 cases. Plast Reconstr Surg. Mar 2015;135(3):695-705. [doi:
10.1097/PRS.0000000000001033] [Medline: 25490535]

9. Doren EL, Miranda RN, Selber JC, Garvey PB, Liu J, Medeiros LJ, et al. U.S. epidemiology of breast implant-associated
anaplastic large cell lymphoma. Plast Reconstr Surg. May 2017;139(5):1042-1050. [doi: 10.1097/PRS.0000000000003282]
[Medline: 28157769]

10. Tripodi D, Amabile MI, Varanese M, D'Andrea V, Sorrenti S, Cannistrà C. Large cell anaplastic lymphoma associated
with breast implant: a rare case report presentation and discussion of possible management. Gland Surg. Jun
2021;10(6):2076-2080. [FREE Full text] [doi: 10.21037/gs-20-853] [Medline: 34268093]

11. Marra A, Viale G, Pileri SA, Pravettoni G, Viale G, de Lorenzi F, et al. Breast implant-associated anaplastic large cell
lymphoma: a comprehensive review. Cancer Treat Rev. Mar 2020;84:101963. [FREE Full text] [doi:
10.1016/j.ctrv.2020.101963] [Medline: 31958739]

12. Santanelli di Pompeo F, Panagiotakos D, Firmani G, Sorotos M. BIA-ALCL epidemiological findings from a retrospective
study of 248 cases extracted from relevant case reports and series: a systematic review. Aesthet Surg J. Apr 10,
2023;43(5):545-555. [doi: 10.1093/asj/sjac312] [Medline: 36441968]

13. Seong JK. Loss of data from 13,000 patients receiving a breast implant. Hit News. Oct 13, 2020. URL: http://www.
hitnews.co.kr/news/articleView.html?idxno=30265 [accessed 2024-10-04]

14. Nam SE, Bang BS, Lee EK, Sung JY, Song KY, Yoo YB, et al. Use of high-resolution ultrasound in characterizing a breast
implant and detecting a rupture of the device. Plast Reconstr Surg. Jul 01, 2023;152(1):39-43. [doi:
10.1097/PRS.0000000000010201] [Medline: 36688630]

15. Kim YH, Park DW, Song KY, Lim HG, Jeong JP, Kim JH. Use of high-resolution ultrasound in characterizing the surface
topography of a breast implant. Medicina (Kaunas). Jun 05, 2023;59(6):1092. [FREE Full text] [doi:
10.3390/medicina59061092] [Medline: 37374297]

16. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016. Presented at: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR); June 27-30, 2016:770-778; Las Vegas, NV. [doi:
10.1109/cvpr.2016.90]

17. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: hierarchical vision transformer using shifted windows.
2021. Presented at: 2021 IEEE/CVF International Conference on Computer Vision (ICCV); October 10-17, 2021:9992-10002;
Montreal, QC. [doi: 10.1109/iccv48922.2021.00986]

18. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T. An image is worth 16x16 words: transformers
for image recognition at scale. 2021. Presented at: ICLR 2021 - 9th International Conference on Learning Representations;
May 3-7, 2021; Virtual event. URL: https://openreview.net/forum?id=YicbFdNTTy

JMIR Form Res 2024 | vol. 8 | e58776 | p. 9https://formative.jmir.org/2024/1/e58776
(page number not for citation purposes)

Kim et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v8i1e58776_app3.docx&filename=f1288e80b0660ba20f6c5b94c9952ff6.docx
https://jmir.org/api/download?alt_name=formative_v8i1e58776_app3.docx&filename=f1288e80b0660ba20f6c5b94c9952ff6.docx
https://linkinghub.elsevier.com/retrieve/pii/S1751-6161(18)30751-3
http://dx.doi.org/10.1016/j.jmbbm.2018.08.035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30205325&dopt=Abstract
https://pubmed.ncbi.nlm.nih.gov/16772915/
http://dx.doi.org/10.1097/01.prs.0000218184.47372.d5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16772915&dopt=Abstract
https://pubmed.ncbi.nlm.nih.gov/9252643/
http://dx.doi.org/10.1097/00006534-199708000-00065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9252643&dopt=Abstract
https://www.fda.gov/medical-devices/breast-implants/medical-device-reports-breast-implant-associated-anaplastic-large-cell-lymphoma
https://www.fda.gov/medical-devices/breast-implants/medical-device-reports-breast-implant-associated-anaplastic-large-cell-lymphoma
http://dx.doi.org/10.1097/PRS.0000000000005570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30817557&dopt=Abstract
https://pubmed.ncbi.nlm.nih.gov/30715173/
https://pubmed.ncbi.nlm.nih.gov/30715173/
http://dx.doi.org/10.1093/asj/sjy331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30715173&dopt=Abstract
https://europepmc.org/abstract/MED/24285813
http://dx.doi.org/10.1136/bcr-2013-201950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24285813&dopt=Abstract
http://dx.doi.org/10.1097/PRS.0000000000001033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25490535&dopt=Abstract
http://dx.doi.org/10.1097/PRS.0000000000003282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28157769&dopt=Abstract
https://europepmc.org/abstract/MED/34268093
http://dx.doi.org/10.21037/gs-20-853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34268093&dopt=Abstract
https://pubmed.ncbi.nlm.nih.gov/31958739/
http://dx.doi.org/10.1016/j.ctrv.2020.101963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31958739&dopt=Abstract
http://dx.doi.org/10.1093/asj/sjac312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36441968&dopt=Abstract
http://www.hitnews.co.kr/news/articleView.html?idxno=30265
http://www.hitnews.co.kr/news/articleView.html?idxno=30265
http://dx.doi.org/10.1097/PRS.0000000000010201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36688630&dopt=Abstract
https://www.mdpi.com/resolver?pii=medicina59061092
http://dx.doi.org/10.3390/medicina59061092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37374297&dopt=Abstract
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/iccv48922.2021.00986
https://openreview.net/forum?id=YicbFdNTTy
http://www.w3.org/Style/XSL
http://www.renderx.com/


19. Kim JH, Hong J, Choi H, Kang HG, Yoon S, Hwang JY, et al. Development of deep ensembles to screen for autism and
symptom severity using retinal photographs. JAMA Netw Open. Dec 01, 2023;6(12):e2347692. [FREE Full text] [doi:
10.1001/jamanetworkopen.2023.47692] [Medline: 38100107]

20. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks
via gradient-based localization. Int J Comput Vis. Oct 11, 2019;128(2):336-359. [doi: 10.1007/s11263-019-01228-7]

21. Shannon CE. A mathematical theory of communication. Bell System Technical Journal. Jul 1948;27(3):379-423. [doi:
10.1002/j.1538-7305.1948.tb01338.x]

22. Santanelli di Pompeo F, Paolini G, Firmani G, Sorotos M. History of breast implants: back to the future. JPRAS Open. Jun
2022;32:166-177. [FREE Full text] [doi: 10.1016/j.jpra.2022.02.004] [Medline: 35434240]

23. Lötsch J, Kringel D, Ultsch A. Explainable artificial intelligence (XAI) in biomedicine: making AI decisions trustworthy
for physicians and patients. BioMedInformatics. Dec 22, 2021;2(1):1-17. [FREE Full text] [doi:
10.3390/biomedinformatics2010001]

24. Juang WC, Hsu MH, Cai ZX, Chen CM. Developing an AI-assisted clinical decision support system to enhance in-patient
holistic health care. PLoS One. Oct 31, 2022;17(10):e0276501. [FREE Full text] [doi: 10.1371/journal.pone.0276501]
[Medline: 36315554]

25. Yu AC, Mohajer B, Eng J. External validation of deep learning algorithms for radiologic diagnosis: a systematic review.
Radiol Artif Intell. May 01, 2022;4(3):e210064. [FREE Full text] [doi: 10.1148/ryai.210064] [Medline: 35652114]

26. Score-CAM: score-weighted visual explanations for convolutional neural networks. GitHub. URL: https://github.com/
haofanwang/Score-CAM [accessed 2024-09-05]

Abbreviations
AI: artificial intelligence
AUC: area under the curve
AUROC: area under the receiver operating characteristic curve
BIA-ALCL: breast implant–associated anaplastic large cell lymphoma
CNN: convolution neural network
DICOM: Digital Imaging and Communications in Medicine
FDA: Food and Drug Administration
Grad-CAM: Gradient-weighted Class Activation Mapping
MRI: magnetic resonance imaging
OOD: out-of-distribution
PACS: Picture Archiving and Communication System
PR: precision-recall
PRAUC: area under the precision-recall curve
ROC: receiver operating characteristic
XAI: explainable artificial intelligence

Edited by A Mavragani; submitted 25.03.24; peer-reviewed by M Sorotos, M Sahu; comments to author 04.07.24; revised version
received 20.07.24; accepted 06.08.24; published 05.11.24

Please cite as:
Kim HH, Jeong WC, Pi K, Lee AS, Kim MS, Kim HJ, Kim JH
A Deep Learning Model to Predict Breast Implant Texture Types Using Ultrasonography Images: Feasibility Development Study
JMIR Form Res 2024;8:e58776
URL: https://formative.jmir.org/2024/1/e58776
doi: 10.2196/58776
PMID:

©Ho Heon Kim, Won Chan Jeong, Kyungran Pi, Angela Soeun Lee, Min Soo Kim, Hye Jin Kim, Jae Hong Kim. Originally
published in JMIR Formative Research (https://formative.jmir.org), 05.11.2024. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is
properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well
as this copyright and license information must be included.

JMIR Form Res 2024 | vol. 8 | e58776 | p. 10https://formative.jmir.org/2024/1/e58776
(page number not for citation purposes)

Kim et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/38100107
http://dx.doi.org/10.1001/jamanetworkopen.2023.47692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38100107&dopt=Abstract
http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://linkinghub.elsevier.com/retrieve/pii/S2352-5878(22)00013-4
http://dx.doi.org/10.1016/j.jpra.2022.02.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35434240&dopt=Abstract
https://www.mdpi.com/2673-7426/2/1/1/htm
http://dx.doi.org/10.3390/biomedinformatics2010001
https://dx.plos.org/10.1371/journal.pone.0276501
http://dx.doi.org/10.1371/journal.pone.0276501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36315554&dopt=Abstract
https://europepmc.org/abstract/MED/35652114
http://dx.doi.org/10.1148/ryai.210064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35652114&dopt=Abstract
https://github.com/haofanwang/Score-CAM
https://github.com/haofanwang/Score-CAM
https://formative.jmir.org/2024/1/e58776
http://dx.doi.org/10.2196/58776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

