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Abstract
Background: Fever of unknown origin (FUO) is a significant challenge for the medical community due to its association
with a wide range of diseases, the complexity of diagnosis, and the likelihood of misdiagnosis. Machine learning can extract
valuable information from the extensive data of patient indicators, aiding doctors in diagnosing the underlying cause of FUO.
Objective: The study aims to design a multipath hierarchical classification algorithm to diagnose FUO due to the hierarchical
structure of the etiology of FUO. In addition, to improve the diagnostic performance of the model, a mechanism for feature
selection is added to the model.
Methods: The case data of patients with FUO admitted to the First Affiliated Hospital of Xi’an Jiaotong University between
2011 and 2020 in China were used as the dataset for model training and validation. The hierarchical structure tree was then
characterized according to etiology. The structure included 3 layers, with the top layer representing the FUO, the middle layer
dividing the FUO into 5 categories of etiology (bacterial infection, viral infection, other infection, autoimmune diseases, and
other noninfection), and the last layer further refining them to 16 etiologies. Finally, ablation experiments were set to determine
the optimal structure of the proposed method, and comparison experiments were to verify the diagnostic performance.
Results: According to ablation experiments, the model achieved the best performance with an accuracy of 76.08% when
the number of middle paths was 3%, and 25% of the features were selected. According to comparison experiments, the
proposed model outperformed the comparison methods, both from the perspective of feature selection methods and hierarchi-
cal classification methods. Specifically, brucellosis had an accuracy of 100%, and liver abscess, viral infection, and lymphoma
all had an accuracy of more than 80%.
Conclusions: In this study, a novel multipath feature selection and hierarchical classification model was designed for the
diagnosis of FUO and was adequately evaluated quantitatively. Despite some limitations, this model enriches the exploration
of FUO in machine learning and assists physicians in their work.
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Introduction
Background
Fever of unknown origin (FUO) is a medical term used
to describe a group of diseases that exhibit a prolonged
fever lasting for a duration exceeding 3 weeks and that
cannot be diagnosed even after 1 week of outpatient or
inpatient examinations. This concept was initially introduced
by Petersdorf and Beeson [1]. The etiology of FUO is
multifactorial and encompasses a wide range of factors,
including over 200 different species [2], such as Strepto-
coccus pneumoniae [3], peritoneal mesothelioma [4], and
Bacteroides fragilis [5]. The distribution of these causative
agents varies temporally and geographically, necessitating
comprehensive and in-depth investigations to determine the
underlying cause of the disease accurately. Consequently,
identifying the cause of FUO poses a significant challenge
within the medical field [6]. In diagnosing febrile illness,
doctors must conduct a thorough evaluation and examination
based on the patient’s symptoms, signs, and possible causes
to determine the final diagnosis and treatment plan. However,
despite conducting a comprehensive examination, it has been

found that one-third of patients presenting with persistent
fever remain undiagnosed [7].

With the continuous progress of machine learning (ML),
its application in various domains of production and business
activities has experienced substantial growth [8-10]. In the
realm of medicine, the use of ML-based disease diagnosis
technology holds immense importance, as it aids in enhancing
the accuracy and real-time capabilities of doctors’ diagno-
ses. In recent years, there has been a significant increase
in the advancement of intelligent diagnostic techniques that
use ML algorithms to independently predict potential causes
of diseases. Choudhury [11] uses a logistic regression (LR)
model to diagnose cases of malignant pleural mesothelioma.
Ogunleye and Wang [12] propose a liver disease classifica-
tion approach that uses the extreme gradient boosting and
further improves its performance by optimizing its parame-
ters using a genetic algorithm. It can be seen that intelligent
diagnosis has received significant attention in recent years.
More researches are illustrated in Table 1, including medical
image analysis [13-21], pathology analysis [19,21-24], and
diagnostic system [25-30].

Table 1. The review of intelligent diagnostic methods in health care.
Diseases Dataset type Method Study
Parkinson Tabular Random forest Polat [25]
COVID-19 X-ray image Ensemble algorithms Sunnetci and Alkan [13]
Lung cancer CTa image ISOb-CNNc Yan and Razmjooy [14]
Epilepsy EEGd signals CNN-RNNe Malekzadeh et al [26]
COVID-19 X-ray image Fusion of CNN, SVMf, and Sobel

filter
Sharifrazi et al [15]

COVID-19 X-ray image UA-ConvNetg Gour and Jain [16]
COVID-19 CT image CycleGanh Ghassemi et al [17]
COVID-19 CT image CNN and transfer learning Balaha et al [18]
Breast cancer Tabular (SVM + LRi + NBj + DTk) +ANNl Naseem et al [22]
Lung cancer Sequences MGGPm Sattar et al [23]
Gastric cancer Endoscopic images GAIN-ResNet-50n, CA-U-Neto Ma et al [24]
Lung cancer PETp or CT image Logistic regression Wang et al [19]
Lymph node metastasis Ultrasound images YOLOq Fu et al [20]
Breast cancer Histopathology images VGGr Yuan et al [21]
Schizophrenia EEG signals CNN-LSTMs Shoeibi et al [27]
Schizophrenia and attention-deficit/
hyperactivity disorder

rs-fMRIt Convolutional autoencoder-interval
and type-2 fuzzy regression

Shoeibi et al [28]

Autism spectrum disorder EEG and eye-tracking signals Machine learning Wadhera [29]
Epilepsy EEG signals CNN-LSTM Wang et al [30]

aCT: computed tomography.
bISO: improved snake optimization.
cCNN: convolutional neural network.
dEEG: electroencephalography.
eRNN: recurrent neural network.
fSVM: support vector machine.
gUA-ConvNet: uncertainty-aware convolutional neural network.
hCycleGan: cycle-consistent generative adversarial network.
iLR: logistic regression.
jNB: naive Bayes.
kDT: decision tree.
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Diseases Dataset type Method Study

lANN: artificial neural network.
mMGGP: multigene genetic programming.
nGAIN-ResNet-50: guided attention inference network-residual network-50.
oCA-U-Net: convolutional block attention module and atrous spatial pyramid pooling module based on U-Net.
pPET: positron emission tomography.
qYOLO: you only look once.
rVGG: visual geometry group.
sLSTM: long short-term memory.
trs-fMRI: resting-state functional magnetic resonance imaging.

Objectives
Due to the current major applications being primarily binary
classification or a few class classification problems, algo-
rithm designs are often directly aimed at all classes using
flat classification methods. However, FUO can be attrib-
uted to numerous potential causes, necessitating a multiclass
classification approach. Consequently, using flat classifica-
tion methods alone results in suboptimal accuracy and fails
to fulfill the application’s requirements [31]. Given the
hierarchical structure of the etiological labels in the FUO
dataset, it is possible to use hierarchical classification [32]
models to analyze the dataset. By leveraging the hierarchi-
cal associations among data classes, a top-down methodol-
ogy is used for hierarchical classification, culminating in
acquiring the corresponding class at the leaf level. Hierarchi-
cal classification involves decomposing a multiclass task into
several subclassification tasks, resulting in a simplified model
and reduced complexity in modeling. Additionally, it presents
a notable advantage in terms of computational efficiency
for both classification learning and prediction tasks. This
characteristic makes it particularly suitable for fulfilling the
requirements of etiological prediction in cases of FUO.

Therefore, we introduce a novel auxiliary diagnostic
method for FUO using multipath feature selection and
hierarchical classification. The data will be organized into
a hierarchical structure based on disease classes for hierarch-
ical classification. Subsequently, prediction will be conduc-
ted from the highest to the lowest level until the final
classification class is achieved. To mitigate the likelihood

of ineffective lower-level classification resulting from errors
in higher-level classification, the hierarchical classification
process incorporates multiple path prediction models with
controllable preselected classes. This approach aims to
enhance the accuracy of lower-level classification. Addi-
tionally, the L1,2 regularization constraint [33] is used for
feature selection at each level to eliminate redundant features
and minimize interference, thereby enhancing prediction
accuracy.

Methods
Framework

Overview
The framework of the hierarchical classification method
based on multipath and feature selection proposed in this
paper is illustrated in Figure 1. The process can be divi-
ded into two steps: (1) feature selection is performed
at each layer using L1,2 regularization constraints based
on the tree hierarchy to eliminate redundant features and
reduce interference and (2) hierarchical classification is
then performed using the selected features, and multipath
prediction models are built by preselecting controllable
multiple classes during the hierarchical classification process.

For a more detailed explanation of the multipath hier-
archical classification process, please refer to Multimedia
Appendix 1 [34].
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Figure 1. The framework of our method. FUO: fever of unknown origin.

Hierarchical Feature Selection
Traditional feature selection assumes that all classes are
independent of each other, and a set of standard features is
selected for all classes to form a subset of features before
classification. However, Freeman et al [35] found that certain
features are more suitable for classifying some classes with
better discriminative properties. On the other hand, these
features do not improve the classification performance for
other classes. Feature selection in hierarchical structures
allows for selecting a distinct subset of features for each
subcategorization task within the structure. This approach
enhances the performance of the classification task.

We select an L1,2 regularization constraint for each level
of the tree hierarchy, and feature ranking is performed
to select the most relevant features. L1,2 regularization
constraint is an unbiased estimation that results in a sparser
and more computationally efficient solution to the minimiza-
tion problem than L1 regularization [33].

In addition, traditional hierarchical feature selection
considers different nodes as independent. It selects com-
pletely different subsets of features, whereas, in this paper,
we propose selecting a portion of the same feature for every
layer, known as shared features identified by Wi, for different
nodes in the same layer. Additionally, we select exclusive
features for each node that are suitable for classification
identified by Di. These 2 matrices are solved by the optimiza-
tion method.

Multipath Hierarchical Classification
The framework shows that after the hierarchical feature
selection based on L1,2 paradigm regularization, these
features are used as the feature subset for classification.
Subsequently, k candidate coarse classifications are selec-
ted from the coarse classifications (in Figure 1, k=3) by
probabilities from LR. The candidate coarse classifications

are the top k most likely to be the broad category of etiol-
ogy to which the disease belongs (eg, bacterial infection and
viral infection). The etiologies to be identified are targeted to
specific categories under these coarse classifications. Refined
categorization follows, leading to the final diagnosis.
Dataset

Information
The dataset used in our research is obtained from the
clinical diagnostic records of patients with FUO admitted
to the First Affiliated Hospital of Xi’an Jiaotong Univer-
sity between 2011 and 2020 in China. Each sample in this
study represents authentic clinical data obtained from patients
with FUO, encompassing pathological data and diagnoses
provided by physicians. The pathological data encompass a
range of information, including clinical symptoms, epidemio-
logical history, past medical history, laboratory tests, medical
imaging, and indicators from pathological examination. The
statistical indicators of the dataset are presented in Table 2.

For this study, we used patients’ pathological data and
doctors’ diagnostic results as the training dataset to construct
the model. Due to the limited quantity of available data,
there is a possibility of encountering a significant imbalance
within the dataset. This imbalance may result in a bias
toward predicting classes with more extensive data samples,
ultimately impacting the overall classification performance.
During the data analysis process, samples that contained less
than 6 instances of a particular disease were excluded to
address the imbalance issue. After the refinement process,
a final dataset of 564 samples was obtained. This dataset
encompasses 5 coarse etiologies (bacterial infection, viral
infection, other infection, autoimmune diseases, and other
noninfection), and 16 exact etiologies belong to them. Please
consult Table 3 for more detailed information regarding the
dataset.
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Table 2. The statistical analysis of the data (collected during 2011‐2020).
Indicators Samples, n (%)
Sex

Male 303 (53.7)
Female 261 (46.3)

Age (years)
0-20 87 (15.4)

20-40 172 (30.5)
40-60 188 (33.3)
>60 117 (20.8)

Infection 399 (70.7)
Noninfection 165 (29.3)

Table 3. The breakdown of etiologies included in the dataset.
Diagnose Values, n (%) Label
Bacterial infection
  Liver abscess 24 (4.3) 1
  Endocarditis 12 (2.1) 2
  Brucellosis 64 (11.4) 3
Viral infection
  Epstein-Barr virus infection 77 (13.7) 4
  Cytomegalovirus infection 14 (2.5) 5
  Infectious mononucleosis 38 (6.7) 6
  Other viral infection 103 (18.3) 7
Other infection
  Kala-azar 11 (1.9) 8
  Mycoplasma infection 11 (1.9) 9
  Rickettsia infection 45 (8) 10
Autoimmune diseases
  Anca-associated vasculitis 12 (2.1) 11
  Adult-onset Still disease 20 (3.5) 12
  Lymphoma 33 (5.9) 13
Other noninfection
  Systemic inflammatory response syndrome 47 (8.3) 14
  Hemophagocytic syndrome 19 (3.4) 15
  Necrotizing lymphadenitis 34 (6) 16

Hierarchy Label
According to the pathological characteristics of FUO, the
dataset can be organized in a hierarchical structure tree [36].
The categories of the FUO tree span from abstract etiol-
ogy to concrete etiology, progressing from the root node to
the leaf nodes in a top-to-bottom manner. The hierarchical
tree structure in the dataset exhibits a 3-tiered system of
granularity. The first layer, “ROOT,” signifies FUO, while
the subsequent layer categorizes FUO into 5 classifications:

bacterial infection, viral infection, other infection, autoim-
mune diseases, and other noninfections, labeled from 17 to
21. The final layer further delineates these 5 categories into
specific etiologies. For instance, within the bacterial infection
labeled as 17, liver abscess, endocarditis, and brucellosis are
identified and assigned labels 1‐3, respectively, as illustrated
in Table 3. This process is similarly applied to the other 4
middle categories, culminating in the hierarchical structure
tree presented in Figure 2.
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Figure 2. The hierarchical structure of classes.

Data Preprocessing
The clinical symptoms, epidemiological history, past medical
history, and laboratory tests in the pathological data of the
patients with FUO exhibited a range of different forms,
including continuous and discrete data. Therefore, the data
underwent preprocessing to ensure standardization.
Imputation of Missing Values
The k-nearest neighbor was used to interpolate continuous
missing data to address missing values in the dataset [37]. For
discrete missing data, we used the mode of all available data
points within the respective data item.
Coding
After filling in the missing values in the discrete data, it
was necessary to identify the category features that lack
significance in size. Subsequently, numerical or vectorization
operations can be applied to these features. Two coding
methods, namely 0‐1 encoding and one-hot encoding, were
used in the paper.

Normalization
A process applied to continuity data after filling in missing
values, aiming to distribute the values on the [0,1] interval to
result in the preprocessed normalized data [38]:

(1)x′ = x −MINMAX −MIN
where x represents the original continuity data, MIN
represents the minimum value of the data item within its
respective location, and MAX represents the maximum value
of the data item within its respective location. After under-
going data preprocessing, the final dataset consists of 564
samples in total, with each sample having 327 dimensions.
Experimental Settings
We input body indicators after data preprocess as features
into the model to get the etiological diagnosis. To fully
evaluate our method, we designed 2 types of experiments:
ablation experiments and comparison experiments. Ablation
experiments were to determine the optimal structure of our
method, and comparison experiments were to compare the
advantages and disadvantages of our method with other
methods.

Ablation experiments consisted of 2 experiments.
Experiment 1 selected support vector machine (SVM) and
random forest (RF) as classifiers and evaluated the effect of
the number of hierarchical paths, with the optional number
ranging from 1 to 5. Based on the optimal number of
hierarchical paths from experiment 1, experiment 2 evaluated
the effect of the different feature selection ratios of the L1,2
regularization using SVM. We set the ratio starting from 0.05
and ending at 1 (with an interval of 0.05). After the ablation
experiments to determine the optimal number of hierarchi-
cal paths and the ratio of feature selection to determine the
optimal structure, it turned to comparison experiments.

Three experiments were set up for the comparison
experiments. Experiment 3 compared the performance of
L1,2 regularization proposed in this paper with 10 fea-
ture selection methods, and the evaluation metric was the
accuracy. Experiment 4 compared our method with 7 ML
models and 4 hierarchical classification algorithms. The
comparison metric with ML models was accuracy, and with
hierarchical classification algorithms was not only accuracy
but also hierarchical F1-measure (FH), FH based on the
closest ancestor (FLCA), and tree-induced error (TIE). In
addition, we also refined the comparison to 16 etiologies
involving 4 hierarchical classification algorithms with the
metric of accuracy. Experiment 5 compared our method with
the hierarchical classification methods on 5 broad etiologies,
again with the metric of accuracy.
Compared Methods
To evaluate the performance of our method, experiments
were conducted and compared with 4 similar hierarchical
classification methods:

1. Top-down LR hierarchical classification: At each
granularity level, the node with the highest predic-
ted probability is selected as the classification result,
recursively performing from top to bottom until
reaching the leaf level.

2. Hierarchical classification based on optimal N-paths
(HNBP) [39]: The proposed approach converts the
task of class prediction into a search problem, aiming
to identify multiple paths within a tree-like hierar-
chy with the highest joint probability. This strategy
effectively mitigates the issue of error propagation
between different levels.

3. Cost-sensitive hierarchical classification based on
class hierarchy correlation [40]: In the same layer
of hierarchical classification, there is an imbalanced
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data distribution, introducing cost-sensitive factors to
reduce the tendency of majority class classification
and improving the classification accuracy of minority
classes.

4. Cost-sensitive hierarchical classification based on
multiscale information entropy [41]: The computation
of information entropy for various classes at each level
of the hierarchy is performed, and an entropy thresh-
old is established to mitigate the propagation of errors
from higher-level classification tasks to lower-level
ones. It assigns different cost weights to classes based
on hierarchical information entropy to address data
imbalance.

Evaluation Metrics
The performance of the proposed method was assessed and
confirmed through a series of experiments. Five metrics were
used for evaluation: FH [42], FLCA [43], TIE [44], accuracy,
and runtime (T). For details on calculating the indicators,
please refer to Multimedia Appendix 2.
Ethical Considerations
This study was approved by the institutional review
board of Tangdu Hospital, Air Force Medical University
(TDLL-202411-02). The study was conducted in accordance
with the Declaration of Helsinki, and all participants gave
their informed consent for inclusion before they participated
in the study. Meanwhile, the data used in our study were
deidentified to protect the privacy and confidentiality of the
participants. This study did not provide compensation to the
participants.

Results
Ablation Experiments

The Validation of the Hierarchical Paths
Our study compared the performance of the intermediate
paths on the effectiveness of exact etiology categorization.
The intermediate paths represent the process in the hierarch-
ical structure from the root node through the second level
of the coarse etiologies and finally to the specific etiologies.
Within the context of the hierarchical classification method
proposed in this paper, we selected the whole feature to
assess the performance of intermediate path numbers while
maintaining consistency. For the base classifiers, we chose
SVM and RF. Empirical findings are presented in Table 4.

From the results of our method, the case of k=1 in Table
4 is equivalent to using the traditional single-path hierarchical
classification method. In this case, the accuracy, FH, FLCA,
and TIE metrics using SVM are 66.66%, 82.03%, 79.90%,
and 60.8, respectively. The performance is the lowest among
the results for different numbers of paths, as evidenced by
the highest TIE. However, the T of 0.87 seconds is the
shortest for this case, thanks to the single-path hierarchical
approach that simplifies the model. When k=5, this scenario is
equivalent to directly flattening the dataset for classification,
as this paper only has 5 coarse categories. The accuracy of
our method by SVM is 68.47%, which aligns closely with
the SVM outcomes of various classification algorithms shown
in Table 5, thus validating the earlier inference. Although, in
this case, the accuracy of our method by RF is 13.48% higher
than that of Table 5, it is due to the random nature of the
classification mechanism of RF.

In contrast, the optimal hyperplane sought by SVM
is constrained by the spatial distribution of the samples.
Consequently, the outcomes of each search are relatively
similar. Therefore, this discrepancy does not impact the
conclusion that it is comparable to the direct flat classifica-
tion of the dataset in the previous instance k=5. By com-
paring the classification results of multiple paths, it can be
observed that both our method by SVM and RF exhibit the
best performance when k=3. The accuracy of our method by
SVM is 72.35%, representing an improvement of 5.69% and
3.88% compared to the single-path hierarchical classification
with k=1 and the similar flattened classification with k=5,
respectively. The accuracy of our method by RF is 69.20%,
showing an improvement of 2.54% and 4.12% over the 2
approaches mentioned earlier. The results of both classifi-
ers demonstrate that the multipath hierarchical classification
approach can reduce the interlayer error propagation problem.

Additionally, decomposing the total task into multiple
subtasks can reduce the complexity of the problem and
improve the classification results. The running times of SVM
and RF are 4.17 and 45.19 seconds, respectively. These times
are 3.3 and 41.88 seconds more extended than the single-
path hierarchical classification, suggesting that more paths
will increase the hierarchical model’s complexity, prolonging
the system’s decision time. However, it is still within an
acceptable range.

Table 4. The performance comparison of intermediate path numbers on 16 detailed etiologies.
Classifier and path Accuracy (%) FHa (%) FLCAb (%) TIEc T (seconds)
Support vector machine
  1 66.66 82.03 79.90 60.8 0.87
  2 71.49 84.49 82.74 52.6 2.18
  3 72.35 85.01 83.29 50.8 4.17
  4 71.83 84.48 82.85 52.6 7.84
  5 68.47 82.77 80.87 58.4 10.00
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Classifier and path Accuracy (%) FHa (%) FLCAb (%) TIEc T (seconds)
Random forest
  1 66.66 82.03 79.90 60.8 3.31
  2 68.97 83.05 81.18 57.4 43.20
  3 69.20 83.25 81.36 56.8 45.19
  4 64.90 80.45 78.53 66.2 50.63
  5 65.08 80.15 78.44 67.2 50.94

aFH: hierarchical F1-measure.
bFLCA: FH based on the closest ancestor.
cTIE: tree-induced error.

Table 5. The accuracy of different classification methods on 16 detailed etiologies.
Method Accuracy (%)
LRa 69.86
SVMb 68.46
KNNc 51.38
RFd 51.6
DTe 53.36
XGBf 62.22
ELMg 70.69
TDLRh 66.67
CSHCICi 68.93
CSHCj 67.87
HNBPk 70.45
Our method 76.08

aLR: logistic regression.
bSVM: support vector machine.
cKNN: k-nearest neighbor.
dRF: random forest.
eDT: decision tree.
fXGB: extreme gradient boosting.
gELM: extreme learning machine.
hTDLR: top-down logistic regression hierarchical classification.
iCSHCIC: cost-sensitive hierarchical classification based on class hierarchy correlation.
jCSHC: cost-sensitive hierarchical classification based on multiscale information entropy.
kHNBP: hierarchical classification based on optimal N-paths.

The Validation of Different Feature Selection
Percentages
A comparison was conducted to evaluate the performance
of various feature selection percentages. The selection of
features at each level of the hierarchical tree structure was
consistent, with an equal percentage being chosen.

From Figure 3, when the feature selection reaches 25%,
the highest level of performance is attained, with an accuracy
of 76.08%, FH of 86.72%, FLCA of 85.39%, and TIE reduced

to 45. When the ratio ranges from 5% to 25%, accuracy,
FH, and FLCA show an increasing trend, while TIE shows
a decreasing trend. However, when the percentage exceeds
25%, the trend of the 4 metrics reverses because selecting too
many features may lead to overfitting and increased com-
putational complexity. However, choosing too few features
may result in underfitting and information loss. The optimal
number of features balances model complexity and informa-
tion retention, enhancing model generalization and perform-
ance.
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Figure 3. The performance comparison of different percentage feature selections on 16 detailed etiologies. FH: hierarchical F1-measure; FLCA: FH
based on the closest ancestor; TIE: tree-induced error.

Comparison Experiments

The Validation of Different Feature Selection
Methods
A comparison test of feature selection methods was
performed to demonstrate the effectiveness of L1,2 fea-
ture selection. The selected comparison methods included
traditional methods [45] like Fisher score and recursive

feature elimination, as well as swarm intelligence methods
[46-50] including whale optimization algorithm, particle
swarm optimization, rat swarm optimization, Lévy flight
trajectory–based whale optimization algorithm, improved
discrete laying chicken algorithm, fuzzy entropy [51], L1
regularization, and L2 regularization. As shown in Table 6,
L1,2 regularization achieves the highest accuracy of 72.14%
and filters out approximately 30% of the features.

Table 6. The accuracy and number of features of different feature selection methods on 16 detailed etiologies.
Method Values, n (%) Accuracy (%)
FSa 326 (97.9) 64.02
RFEb 243 (73) 65.96
L1 35 (10.5) 60.84
L2 94 (28.2) 67.92
FEc 224 (67.3) 65.25
WOAd 145 (43.5) 68.64
PSOe 162 (48.6) 71.17
RSOf 135 (40.5) 68.19
LWOAg 258 (77.5) 71.28
IDLCAh 196 (58.9) 68.26
L1,2 229 (68.8) 72.14

aFS: Fisher score.
 

JMIR FORMATIVE RESEARCH Du et al

https://formative.jmir.org/2024/1/e58423 JMIR Form Res 2024 | vol. 8 | e58423 | p. 9
(page number not for citation purposes)

https://formative.jmir.org/2024/1/e58423


 
Method Values, n (%) Accuracy (%)

bRFE: recursive feature elimination.
cFE: fuzzy entropy.
dWOA: whale optimization algorithm.
ePSO: particle swarm optimization.
fRSO: rat swarm optimization.
gLWOA: Lévy flight trajectory–based whale optimization algorithm.
hIDLCA: improved discrete laying chicken algorithm.

The Validation of the Classification Methods
A comparison was conducted to assess the performance
differences between the proposed method and alternative
approaches. The proposed method used a value of 3 for
the number of paths (k), used SVM as the base classifier,
and set the feature selection percentage to 25%. To evalu-
ate the accuracy of the assessment, a variety of comparison
methods were used, including both hierarchical classification
techniques and flat classification techniques such as LR,
k-nearest neighbor, RF, SVM, extreme gradient boosting
[52], and extreme learning machine (ELM) [53], as depicted
in Table 5.

The results indicate that LR, SVM, and ELM dem-
onstrated relatively high performance compared to other
flat classification methods. In contrast, the remaining flat
methods exhibited lower accuracy due to their ability to
prevent overfitting. LR and SVM improve generalization by
regularizing and maximizing classification intervals, while
the kernel method of SVM allows capturing nonlinear
features in high-dimensional space. ELM prevents the model
from falling into local optima by random initialization and
fast training and combines linear and nonlinear properties to
achieve effective feature selection. Overall, these models can
flexibly handle complex relationships in high-dimensional

data and perform well in the high-dimensional classification
of small-sample data.

On the contrary, the hierarchical classification methods
demonstrated strong performance, with the proposed method
exhibiting the highest level of effectiveness, surpassing all
other alternative approaches.

About the FH and FLCA metrics, the proposed method was
compared to other hierarchical classification methods, and the
outcomes are depicted in Table 7. The results indicate that
our method achieved the highest rankings in both metrics.
It obtained an FH of 86.72%, 2.63% higher than the second-
ranked HNBP, and achieved an FLCA of 85.39%, surpassing
HNBP by 3.2%. Our method demonstrated the lowest TIE
with a value of 45, representing a significant decrease of
8.6 compared to the second-ranked HNBP. This observation
shows that our approach exhibits fewer misclassifications and
superior classification performance.

Figure 4 compares our method’s classification outcomes
with other hierarchical classification algorithms to evaluate
the accuracy of different classes. Based on the obtained
results, it is evident that our method demonstrates superior
classification accuracy across the majority of classes.

Table 7. The validation of different hierarchical methods on 16 detailed etiologies.
Method FHa (%) FLCAb (%) TIEc

TDLRd 82.03 79.9 60.8
CSHCICe 83.08 81.18 57.2
CSHCf 82.25 80.42 60
HNBPg 84.09 82.19 53.6
Our method 86.72 85.39 45

aFH: hierarchical F1-measure.
bFLCA: FH based on the closest ancestor.
cTIE: tree-induced error.
dTDLR: top-down logistic regression hierarchical classification.
eCSHCIC: cost-sensitive hierarchical classification based on class hierarchy correlation.
fCSHC: cost-sensitive hierarchical classification based on multiscale information entropy.
gHNBP: hierarchical classification based on optimal N-paths.
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Figure 4. The accuracy of different hierarchical methods on 16 detailed etiologies respectively. CSHC: cost-sensitive hierarchical classification
based on multiscale information entropy; CSHCIC: cost-sensitive hierarchical classification based on class hierarchy correlation; HNBP: hierarchical
classification based on optimal N-paths; TDLR: top-down logistic regression hierarchical classification.

Additionally, we compared the accuracy of the coarse classes
at the intermediate level of the FUO dataset, as shown in
Table 8. Our method outperforms other hierarchical classi-
fication algorithms regarding accuracy across all 5 coarse
classes. The observation above suggests that our method’s
implementation successfully addresses the error propagation
issue. In the context of class 17, our method demonstrates a
prediction accuracy of approximately 98%. In class 20, our
method shows the most significant improvement compared
to other methods, exhibiting a 15% improvement over the
top-down LR hierarchical classification and an almost 8%
improvement over the HNBP. Despite the relatively low

overall prediction accuracy observed in all methods for
classes 19‐21, our method demonstrates a notable improve-
ment in the prediction accuracy of these 3 classes, surpass-
ing 70%. This finding suggests that the proposed algorithm
significantly enhances the predictive performance. From the
analysis of the accuracy metrics, it is apparent that misclas-
sified test samples exist. This can be attributed to several
factors, including the imbalanced distribution of samples
across different classes in the dataset, the inherent variability
in the sample data, and the inadequate cleaning resulting in
sample overlap.

Table 8. The accuracy of different hierarchical methods on 5 coarse etiologies (%).
Label TDLRa (%) HNBPb (%) CSHCICc (%) CSHCd (%) Our method (%)
17 96.73 94.55 94.61 93.82 97.96
18 87.05 88.95 89.50 89.38 89.72
19 66.67 65.03 67.06 65.01 71.18
20 61.57 68.86 62.90 60.17 76.75
21 68.28 71.68 68.53 68.52 74.75
Mean (SD) 76.06 (15.06) 77.81 (13.09) 76.52 (14.44) 75.38 (15.18) 82.07 (11.31)

aTDLR: top-down logistic regression hierarchical classification.
bHNBP: hierarchical classification based on optimal N-paths.
cCSHCIC: cost-sensitive hierarchical classification based on class hierarchy correlation.
dCSHC: cost-sensitive hierarchical classification based on multiscale information entropy.

To facilitate a comprehensive examination of the pivotal
“multipath prediction” aspect of our method, Table 9 provides
the progress of 20 samples from the middle to final layers
to the final prediction versus the ground truth. The analysis
reveals that 14 samples were predicted correctly, including
liver abscess, brucellosis, viral infection, rickettsia infection,
lymphoma, and necrotizing lymphadenitis (corresponding to
labels 1, 3, 7, 10, 13, and 16). Additionally, Epstein-Barr

virus infection and systemic inflammatory response syndrome
(corresponding to labels 4 and 14) were predicted with
partial accuracy. Among the 6 samples that were incorrectly
predicted, samples 11, 17, and 19 were classified within
the same broad disease category as their corresponding true
values. For example, sample 11 was predicted as label 14. At
the same time, its ground truth was label 16, both of which
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fall under middle layer label 21, the category with the highest
likelihood ranking among the 3 nodes in the middle layer.

Table 9. The visualization of the multipath prediction process from the middle to the last layers, then to the final diagnostic results.
ID Middle layer Last layer, label (possible [%]) Prediction Ground truth
1 18, 21, 19 7 (93.29), 4 (2.79), 16 (2.06) 7 7
2 21, 19, 18 16 (84.69), 10 (6.62), 14 (4.27) 16 16
3 18, 20, 21 7 (77.33), 13 (10.38), 14 (4.31) 7 7
4 17, 18, 19 1 (59.27), 3 (14.31), 4 (10.98) 1 1
5 18, 21, 19 7 (95.51), 4 (1.64), 5 (1.42) 7 7
6 18, 21, 17 7 (91.73), 4 (3.30), 15 (1.71) 7 7
7 19, 21, 18 10 (88.07), 8 (4.54), 14 (3.34) 10 10
8 18, 20, 21 4 (66.27), 6 (23.41), 7 (3.57) 4 4
9 20, 18, 21 13 (72.37), 11 (9.47), 6 (6.80) 13 13
10 17, 18, 21 3 (83.08), 1 (7.28), 4 (5.92) 3 3
11 21, 19, 20 14 (60.37), 16 (26.64), 10 (7.35) 14 16
12 18,19,21 7 (50.20), 10 (38.56), 5 (7.64) 10 10
13 21,19,20 14 (58.29), 10 (27.01), 16 (9.03) 14 12
14 18,19,20 7 (35.15), 6 (28.92), 10 (20.66) 10 10
15 18,19,21 7 (50.20), 10 (38.56), 5 (7.64) 10 10
16 21, 19, 18 15 (40.78), 14 (25.63), 8 (17.48) 8 8
17 18, 21, 20 6 (79.28), 4 (8.03), 5 (5.09) 4 6
18 21, 18, 19 14 (79.74), 15 (9.76), 9 (3.24) 14 9
19 18, 21, 17 4 (70.70), 15 (10.90), 5 (9.80) 4 7
20 19, 21, 18 10 (36.13), 14 (28.45), 12 (15.62) 14 12

Discussion
Principal Findings
This paper proposes a hierarchical classification method
based on multipath and feature selection for intelligent
diagnosis of FUO. The method innovatively introduces the
L1,2 constraint feature selection method and extends the
single path of the hierarchical classification method to
incorporate multiple paths. Our method achieves superior
diagnostic outcomes compared to other methods, with an
accuracy of 76.08%, FH of 86.72%, and FLCA of 85.39% in
diagnosing 16 diseases and an accuracy of 82.07% in 5 coarse
diseases.

In traditional diagnosis, after collecting the required
patient indicators, it may take days for doctors to give the
results. In contrast, intelligent diagnosis takes minutes or even
less, for it can swiftly extract helpful information from a large
amount of data. On the other hand, doctors have a one-third
misdiagnosis rate [7], while our method has a higher accuracy
rate.

However, based on experimental data, our method
inevitably experiences misclassification. In practical
application scenarios, if a physician cannot confirm the cause
of a patient’s illness, our method could provide a possible
direction to support the current treatment. Subsequently,
the physician could reconfirm whether the model diagnosed
the correct etiology according to the patient’s condition

progression. If the model is misdiagnosed, the confirmed
and corrected case is added to the dataset to train the model
further and improve the prediction performance. In addition
to FUO, our method can be used for other diseases where the
data type is tabular, such as heart disease, breast cancer [22],
and so on.
Limitations
Due to the insufficient amount of data, our method has some
limitations. As shown in Figure 4, diagnosing many diseases
could be better. For instance, labels 5, 10, 11, 12, 14, and
15 (cytomegalovirus infection, rickettsia infection, anca-asso-
ciated vasculitis, adult-onset Still disease, systemic inflam-
matory response syndrome, and hemophagocytic syndrome,
respectively) all have an accuracy of less than 70%. Labels
5 and 11, in particular, have a correct diagnosis rate of only
50%, while label 12 has an accuracy of 45%. In addition,
compared up to 200 FUO etiologies, the proposed method is
only to be tested on 16 classes. The scarcity of many case
data [54,55] makes it difficult to be verified on more other
classes.
Conclusions
This paper presents a diagnostic method for FUO using
multipath feature selection and hierarchical classification.
First, a hierarchical structure is constructed to identify the
causes of FUO. A classification method is proposed to
address the issue of interlevel error propagation in hierarch-
ical classification, involving the preselection of multiple
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paths based on hierarchical prediction. Additionally, the
L1,2 regularization constraint is used at each level within
the hierarchical structure to facilitate feature selection. The
objective is to eliminate redundant and interfering features,
enhancing the method’s overall performance. Experimental
findings indicate that the implementation of a hierarchi-
cal classification model significantly improves the accu-
racy of predicting FUO. Moreover, incorporating multiple
path selection and feature selection further amplifies the

effectiveness of the hierarchical classification model, offering
a potential direction for the intelligent diagnosis of FUO.

Regarding future work, 2 aspects are considered. First,
the FUO dataset should be expanded to improve prediction
performance. Second, more optimal small-sample detection
methods should be designed to increase the identification of
rare diseases.
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