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Abstract

Background: Aging is a risk factor for falls, frailty, and disability. The utility of wearables to screen for physical performance
and frailty at the population level is an emerging research area. To date, there is a limited number of devices that can measure
frailty and physical performance simultaneously.

Objective: The aim of this study is to evaluate the accuracy and validity of a continuous digital monitoring wearable device
incorporating gait mechanics and heart rate recovery measurements for detecting frailty, poor physical performance, and falls
risk in older adults at risk of falls.

Methods: This is a substudy of 156 community-dwelling older adults ≥60 years old with falls or near falls in the past 12 months
who were recruited for a fall prevention intervention study. Of the original participants, 22 participants agreed to wear wearables
on their ankles. An interview questionnaire involving demographics, cognition, frailty (FRAIL), and physical function questions
as well as the Falls Risk for Older People in the Community (FROP-Com) was administered. Physical performance comprised
gait speed, timed up and go (TUG), and the Short Physical Performance Battery (SPPB) test. A gait analyzer was used to measure
gait mechanics and steps (FRAIL-functional: fatigue, resistance, and aerobic), and a heart rate analyzer was used to measure heart
rate recovery (FRAIL-nonfunctional: weight loss and chronic illness).

Results: The participants’ mean age was 74.6 years. Of the 22 participants, 9 (41%) were robust, 10 (46%) were prefrail, and
3 (14%) were frail. In addition, 8 of 22 (36%) had at least one fall in the past year. Participants had a mean gait speed of 0.8 m/s,
a mean SPPB score of 8.9, and mean TUG time of 13.8 seconds. The sensitivity, specificity, and area under the curve (AUC) for
the gait analyzer against the functional domains were 1.00, 0.84, and 0.92, respectively, for SPPB (balance and gait); 0.38, 0.89,
and 0.64, respectively, for FRAIL-functional; 0.45, 0.91, and 0.68, respectively, for FROP-Com; 0.60, 1.00, and 0.80, respectively,
for gait speed; and 1.00, 0.94, and 0.97, respectively, for TUG. The heart rate analyzer demonstrated superior validity for the
nonfunctional components of frailty, with a sensitivity of 1.00, specificity of 0.73, and AUC of 0.83.

Conclusions: Agreement between the gait and heart rate analyzers and the functional components of the FRAIL scale, gait
speed, and FROP-Com was significant. In addition, there was significant agreement between the heart rate analyzer and the
nonfunctional components of the FRAIL scale. The gait and heart rate analyzers could be used in a screening test for frailty and
falls in community-dwelling older adults but require further improvement and validation at the population level.
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Introduction

The number of older adults aged ≥65 years is projected to double
to 1.5 billion by 2050 [1]. Populations in Asia Pacific countries,
such as Singapore and Taiwan, are aging the fastest. Aging is
a risk factor for chronic diseases, falls, dementia, frailty, and
disability. Countries with a rapidly aging population will face
escalating health and social care costs. For instance, in Hungary,
the health care cost for an 80-year-old man was 15.8 times
higher than that for a 20-year-old man in 2015 [2]. The World
Health Organization (WHO) defines healthy aging as the process
of developing and maintaining functional ability, which includes
both physical and cognitive function and enables well-being
[3]. Prevention of frailty, falls, and dementia is a public health
priority in many countries worldwide [2,4]. As a result, there
is a rise in the following 2 parallel trends: (1) development of
digital technologies for continuous population-level assessment
and monitoring and (2) national programs for healthy longevity
that take a life-course approach [2].

Frailty is a dynamic state of reduced physiological reserve that
predisposes older adults to adverse events when exposed to
stressors [5]. It is reversible before the onset of disability through
multidimensional interventions such as exercise, social activities,
protein intake, and a nutrient-enriched diet [6,7]. The prevalence
of frailty in community-dwelling older adults varies between
7% and 46.3% depending on the frailty screening tools used
and population studied [8-10]. There are many diagnostic criteria
for frailty such as the frailty phenotype described by Fried et al
[11], which consists of 5 criteria: unintentional weight loss,
self-reported exhaustion, weakness, slow walking speed, and
low levels of physical activity. The FRAIL scale is a
questionnaire-based screening tool that captures fatigue,
climbing 1 flight of stairs (resistance), walking 50 meters
(aerobic), unintentional weight loss, and ≥5 chronic illnesses
[12]. Besides age, frailty is a well-recognized risk factor for
falls, but to date, there are no gold standard validated tools for
frailty and falls assessment [5,13,14]. In addition, current tools
have limitations such as recall bias, which may limit their use
with older adults with cognitive impairment; being resource
intensive; and requiring space, equipment, and trained
professionals to conduct the assessments [12]. Therefore, other
sources of information such as that from sensor-based
instruments can provide an additional quantified data source
for frailty assessment including gait speed, physical activity,
and heart rate recovery (HRR) [15,16].

Of the 5 frailty phenotypic criteria, 3 are directly related to
individual locomotor mobility: (1) self-reported exhaustion, (2)
gait speed, and (3) physical activity. Gait speed is a diagnostic
screening tool for frailty and sarcopenia and is a component of
motoric cognitive risk syndrome, which is a prodrome of
dementia [17-19]. The advancement of wearable technology,
especially from the consumer electronics segment, is very suited
to continuous remote monitoring of motion-related parameters
such as physical activity and gait speed. Mueller et al [17]

demonstrated that long-term digital monitoring of mobility in
frail older adults was reliable and reflective of in-clinic
performance. Beyond gait and physical activity, digitally
recorded HRR is a new area gaining recognition in frailty
research [18,20,21]. HRR, like heart rate variability, is a
surrogate for autonomic function, and both are well-recognized
biomarkers for frailty, fatigue, chronic inflammation, mortality,
insulin resistance, and a higher risk of cardiovascular events
[16,20,22-24].

One of the common reasons for adoption of wearables among
older adults is continuous data collection and ease of use.
Consumer electronic brands such as Apple and Samsung have
smartwatches (Apple Watch and Samsung Galaxy Watch,
respectively) that cover multiple domains in motion, activity,
and cardiovascular health (heart rate, electrocardiogram).
However, some wearable functions require specific actions by
the users to trigger the measurement, which may be challenging
for older adults especially those with cognitive impairment.
Standardized frailty screening using sensor-based wearables
will enable population-level screening in a cost-effective manner
with necessary upstream interventions to delay the onset of
disability. However, a recent scoping review highlighted
numerous gaps in adoption such as validation of clinical efficacy
and lack of data expertise among clinicians [19]. The aim of
this study was to evaluate the accuracy and validity of using
continuous digital monitoring wearable devices to detect frailty
and poor physical performance in older adults at risk of falls.

Methods

Study Participants
This is a substudy of 156 community-dwelling older adults ≥60
years old with falls or near falls in the past 12 months who were
recruited for a fall prevention intervention study from
community and primary care centers in Singapore. Recruited
participants were able to provide consent, adhere to instructions,
and be ambulant. Participants from nursing homes, with a
pacemaker or defibrillator, and with any underlying psychiatric
conditions were excluded. In addition to participating in the fall
prevention program, participants were offered the option to
wear devices on their ankles for gait analysis. Only those who
consented were included in this study.

Ethical Considerations
This study conformed to the principles of the Declaration of
Helsinki and was approved by The National Healthcare Group
Domain Specific Review Board (Reference: 2019/00650).
Written informed consent was obtained from all participants
involved in the study. Data analysis was conducted in an
anonymized manner, and no specific compensation was provided
for participants who agreed to wear the wearables.

Covariates
Trained research assistants administered study questionnaires
on demographics, education, depression, frailty, function,
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physical performance, and falls. Frailty was measured using the
FRAIL (fatigue, resistance, aerobic, number of illnesses, and
loss of weight) questionnaire. FRAIL has a maximum score of
5: 0 is considered robust; 1 and 2 are considered prefrail; and
3, 4, and 5 are considered frail. Participants who experienced
at least 1 fall in the past 12 months were considered fallers.
Physical performance comprised 4-meter gait speed, the Short
Physical Performance Battery (SPPB) test, and the timed up
and go (TUG) test. The SPPB includes 3 components (balance,
gait speed, and chair stand) with a maximum score of 12 points
(4 points per component). Participants’ baseline falls risk was
assessed using the Falls Risk for Older People in the Community
(FROP-Com) tool developed by the National Ageing Research
Institute Australia [25]. It is made up of 13 risk factors, with
total scores ranging from 0 to 60: individuals scoring ≤11 points
are considered to have a low falls risk, those scoring 12 to 18
points are considered to have a moderate risk, and individuals
scoring ≥19 points have a high risk. These tests form the
reference standard for the purpose of this study.

Wearable Device

Overview
The wearable device is shown in Figure 1. Within the waterproof
housing, there are 3 main components: the main printed circuit
board (PCB) with a wireless Bluetooth module, motion sensors
(accelerator, gyroscope, and compass), and memory storage
(Figure 1A). A second PCB has a heart rate sensor using
photoplethysmography. The wearable device has a rechargeable
battery and is designed to allow wireless pairing with the
Android smartphone app. Thereafter, the wearable device
operates 100% autonomously 24/7 for up to 3 to 4 days. The
onboard battery, when fully charged, can support the various

sensors and 2 PCBs. The onboard memory allows continuous
data acquisition from the motion and heart rate sensors. Since
the wearable device requires autonomous operation for
continuous data collection, it is not feasible for either researchers
or participants to manipulate any controls to maintain device
operation. The 3 to 4 days of continuous operation cater for
longer periods of data collection, so researchers can conduct
less frequent visits with the participants.

The wearable used in this study was purpose-built to conduct
research. The features and functions are not available in most
off-the-shelf consumer devices. This wearable is equipped with
large onboard memory (Figure 1A) to allow continuous
autonomous operation for multiple days of high-resolution raw
data (off-the-shelf devices do not store raw data). The post-data
processing software is programmable to derive new parameters
(off-the-shelf devices do not provide software programmability)
as new use cases develop. Both the raw data and postprocessed
data can be uploaded to any cloud or clinical database for further
artificial intelligence or other analytics.

The wearable device is designed to be worn on the inner side
of the right ankle (Figure 1C). The heart rate sensor window in
Figure 1A must be well-placed onto the participant’s skin. Loose
fitment on the skin can cause inaccurate heart rate
measurements. The Android smartphone app (Figure 1B) is
used to control the device and to start and stop the device data
recording. After data collection is complete, the desktop device
control (Figure S1 in Multimedia Appendix 1) is used to
download the data onto a desktop computer. This data file is
analyzed using the desktop analytics software in which there
are 3 algorithms: (1) gait analyzer, (2) heart rate analyzer, and
(3) daily living analyzer.

Figure 1. (A) The wearable device, (B) the Android smartphone app, and (C) wearing the device on the inner right ankle. BLE: Bluetooth low energy;
PCB: printed circuit board.

Gait Analyzer
The gait analyzer can process motion sensor data (including
accelerometer, gyroscope, and compass data) as input for the

biomechanics model. In this study, the gait analyzer’s output
was validated using a gait lab equipped with a force
plate and motion capture system to ensure accuracy.

JMIR Form Res 2024 | vol. 8 | e58110 | p. 3https://formative.jmir.org/2024/1/e58110
(page number not for citation purposes)

Merchant et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Cross-validation revealed an average deviation of 9% between
the gait analyzer’s results and those obtained in the gait lab for
key parameters such as cadence, toe-off moment, and swing
power.

For this study, the gait analyzer was used to measure gait
mechanics, including cadence, toe-off moment, and swing
power. Additionally, it was used for step detection and step
count. In the context of step counting, a continuous 40 steps was
considered as a single step count.

Daily Living Analyzer
In many studies, the daily living activity level is categorized
[26] into 3 groups: (1) light activity while sitting, (2) household
tasks of a moderate effort, and (3) cycling (high effort). Using
accelerometer data from the wearable device to compute energy
level output by the participant is a common method in similar
research studies [27]:

where A denotes acceleration data and x, y, z are the x, y, and
z axes, respectively.

This energy level was normalized to an energy level of a walking
speed (cadence) of 1 step/second. Using this as a reference, the
3 categories of daily activity were derived as (1) light activity
while sitting: <10% of the energy level (no walking detected);
(2) household tasks of a moderate effort: ≥10% to <30% of the
energy level (intermittent walking of 1 step/second); (3) cycling
moderately: ≥30% of the energy level (continuous walking of
1 step/second).

The energy level was further normalized on an hourly
basis. Based on the aforementioned categorization of energy
levels from the wearable device data analysis, the average total
daily energy in calories was calculated. For each participant,
the average total daily energy (in kilocalories) was classified
as low (<521 kcal/day), middle (521-770 kcal/day), or high
(>770 kcal/day).

Heart Rate Analyzer
A common heart rate analysis related to frailty is HRR. Although
HRR takes various forms, the typical protocol for HRR [28]
assessment requires the participant to (1) exercise until a
predefined condition is reached, usually when achieving a
percentage of the maximum heart rate based on age, and (2)
take the maximum heart rate, rest for approximately 60 seconds
to 120 seconds, and measure heart rate again. HRR is defined
as the difference between the maximum heart rate and the heart
rate after rest. A higher HRR represents better fitness in the
participant.

In daily activities, the conventional protocol for assessing HRR
is impractical due to the deliberate actions required by the
participant. In our study, we developed an automated method
to record both the maximum heart rate and recovery heart rate.
Our analytics software identified instances when the energy

level intensity (as defined by the daily living analyzer) exceeded
30%. It concurrently tracked this level until a peak heart rate
was registered as the maximum heart rate. Subsequently, within
a 5-minute interval (matching the sampling rate of the heart rate
sensor data recording), the next heart rate measurement was
recorded as the recovered heart rate. The difference between
these 2 heart rates—the maximum heart rate and the recovered
heart rate—defined HRR. The analytics software identified
various episodes of this protocol and computed the average
HRR as a singular measurement for each participant.

Statistical Analysis
The data were analyzed using a diagnostic test framework to
verify the predictive value of the gait analyzer and heart rate
analyzer compared with the reference standards. A total of 10
experimental data sets resulted from the combination of the 5
reference standards and 2 screener tests (5 reference standards
× 2 screener tests = 10 data sets).

For each experimental data set, a 2 × 2 diagnostic test was
established (Figure S2 in Multimedia Appendix 1). Based on
this diagnostic test, sensitivity and specificity were calculated
and plotted on the receiver operating characteristic (ROC) curve.
The optimal cutoff thresholds (Figure S3 in Multimedia
Appendix 1) for the gait analyzer and heart rate analyzer were
determined when the Youden index (max [sensitivity +
specificity – 1]) was maximized. The optimal cutoff threshold
occurs at the Youden index. To calculate the corresponding area
under the curve (AUC), the ROC curve was approximated using
a series of trapezoids. The AUC is thus the sum of all the areas
of each trapezoid, calculated using the conventional trapezoid
area method (see Figure S4 for the AUC calculation method).

Classifying Functional Versus Nonfunctional Tests
Some of the reference standards, such as the SPPB and the
FRAIL scale, include both functional components related to
physical performance measurements and nonfunctional
components (such as chronic diseases or unintentional weight
loss). When analyzing the results of the SPPB, which consists
of 3 separate tests, the 5x sit-to-stand (5x-STS) had a higher
rate of false classification. As a result, we focused on comparing
performance data from the wearable from only 2 subcomponents
of the SPPB: gait and balance. For the FRAIL scale, only
fatigue, walking 50 meters, and climbing 1 flight of stairs were
compared.

To support the functional and nonfunctional components, the
wearable data provided by the gait analyzer were classified as
functional, and data from the heart rate analyzer were classified
as nonfunctional data.

Results

Participants
The mean participant age was 74.6 years, with 5.6 years of
education (Table 1). Among the 22 participants, 9 (41%) were
robust, 10 (46%) were prefrail, and 3 (14%) were frail.
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Table 1. Demographics of the study population (n=22).

ResultsVariables

74.62 (7.2)Age (years), mean (SD)

Frailty status, n (%)

9 (41)Robust

10 (45)Prefrail

3 (14)Frail

8 (36)≥1 fall in the past year, n (%)

4 (18)≥1 ADLa limitation, n (%)

4 (18)≥1 IADLb limitation, n (%)

0.83 (0.30)Gait speed (m/s), mean (SD)

8.86 (3.36)Total SPPBc score, mean (SD)

SPPB component scores, mean (SD)

3.32 (0.99)Gait

3.00 (1.21)Balance

2.27 (1.45)5x sit-to-stand

13.75 (8.68)TUGd (seconds), mean (SD)

3.39-75.61TUG (seconds), range

aADL: activity of daily living.
bIADL: instrumental activity of daily living.
cSPPB: Short Physical Performance Battery.
dTUG: timed up and go.

Gait Analyzer

Reference Standard Versus Gait Analyzer
Table 2 shows the comparison of the gait and heart rate
analyzers with the reference standard results. The reference

standard test results (gait and balance in the SPPB, TUG, and
gait speed) were also compared against the gait analyzer results
using an ROC (Figure S3 in Multimedia Appendix 1), resulting
in an AUC >0.8 (good validity).
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Table 2. Summarized results for the gait analyzer and heart rate analyzer versus the reference standards.

Area under
the curve

Negative predic-
tive value

Positive pre-
dictive value

False posi-
tive rate

True posi-
tive rate

SpecificitySensitivityOptimal
cutoff

Variables

Gait analyzer results

0.780.810.830.070.630.930.633SPPBa (gait, balance,
and chair stand)

0.921.000.500.161.000.841.003SPPB (gait and balance
only)

0.640.500.830.110.380.890.383Frail (functional and
nonfunctional)

0.680.630.830.090.450.910.453Frail (functional)

N/AN/AN/AN/AN/AN/AN/AN/AbFrail (nonfunctional)

0.680.630.830.090.450.910.453FROP-Comc

0.800.751.000.000.601.000.603Gait speed

0.971.000.830.061.000.941.003Timed up and go

Heart rate analyzer results

0.630.750.500.250.500.750.50–14SPPB (gait, balance,
and chair stand)

0.861.000.250.271.000.731.00–14SPPB (gait and balance
only)

0.790.631.00N/A0.571.000.57–14Frail (functional and
nonfunctional)

N/AN/AN/AN/AN/AN/AN/AN/AFrail (functional)

0.861.000.250.271.000.731.00–14Frail (nonfunctional)

0.750.860.600.250.750.750.75–15FROP-Com

0.720.880.500.220.670.780.67–14Gait speed

0.861.000.250.271.000.731.00–14Timed up and go

aSPPB: Short Physical Performance Battery Test.
bNot applicable.
cFROP-Com: Falls Risk for Older People in the Community.

SPPB Versus Gait Analyzer
The overall results for the SPPB (gait, balance, and 5x-STS)
demonstrated high specificity (0.93), a positive predictive value
(PPV) of 0.83, and a negative predictive value (NPV) of 0.81
(as shown in Table 2). The AUC was 0.78.

Interestingly, when focusing on the subdomains of gait and
balance, the overall results showed even better performance,
with higher sensitivity, true positive rate (TPR), and NPV and
an AUC of 0.92 (Table 2) compared with the broader SPPB
assessment that included the 5x-STS.

The difference in the performance can be attributed to the
biomechanics involved in the gait and balance components of
the SPPB. These components are closely related to the quality
of walking gait, as captured by the gait analyzer. In contrast,
the 5x-STS, which heavily relies on hip flexor muscles, has
relatively less influence on the results obtained from the gait
analyzer.

FRAIL Versus Gait Analyzer
The FRAIL scale was categorized into functional and
nonfunctional components. Only the FRAIL functional
component was used in the gait analyzer diagnostic test. For
the functional component versus the nonfunctional components,
the results showed a higher specificity (0.45 vs 0.38) and TPR
(0.45 vs 0.38). Both had the same PPV of 0.83; however, the
FRAIL functional (0.64) and nonfunctional (0.68) AUC values
were only fair (Table 2).

FROP-Com Versus Gait Analyzer
The FROP-Com test (Table 2) showed good specificity (0.91)
and PPV (0.83) with an AUC of 0.68.

Gait Speed Versus Gait Analyzer
Gait speed (Table 2) showed good specificity (1.0) and PPV
(1.0) with an AUC of 0.80.
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TUG Versus Gait Analyzer
The TUG test (Table 2) showed very good sensitivity (1.0),
specificity (0.94), TPR (1.0), and NPV (1.0) with an AUC of
0.97.

Heart Rate Analyzer

SPPB Versus Heart Rate Analyzer
The SPPB (gait and balance) demonstrated excellent sensitivity,
TPR, and NPV (all 1.00) with an AUC of 0.86.

FRAIL Versus Heart Rate Analyzer
The FRAIL (nonfunctional) reference standard showed excellent
sensitivity, TPR, and NPV (all 1.00) with an AUC of 0.86.

FROP-Com Versus Heart Rate Analyzer
The FROP-Com test showed a fair AUC value of 0.75, and
sensitivity, specificity, and TPR were 0.75. PPV and NPV were
0.60 and 0.86, respectively.

Gait Speed Versus Heart Rate Analyzer
Gait speed achieved a fair AUC value of 0.72 with specificity
of 0.78 and NPV of 0.88.

Review of TUG Versus Heart Rate Analyzer
The TUG showed an AUC value of 0.86 with a high sensitivity,
TPR, and NPV (all 1.0).

Daily Living Analyzer
The daily activity levels (low, medium, or high) for each
participant were calculated based on the energy level formula
in the Methods section. The distribution of the daily activity
level is shown in Table 3.

Table 3. Distribution of the 21 participants according to the daily living analyzer.

Distribution, n (%)Classification

5 (23)Low level

4 (18)Medium level

2 (59)High level

Discussion

Principal Findings
Our study showed that both the gait and heart rate analyzers
were excellent predictors of functional domains and displayed
high sensitivity for SPPB (gait and balance) and TUG. The gait
analyzer also had superior performance for specificity in the
same domains. The heart rate analyzer was a good predictor of
the FRAIL nonfunctional domains, whereas the gait analyzer
was a good predictor of the functional domains except for the
5x-STS. Compared with more traditional methods of performing
multiple functional tests and frailty screening, wearables may
be more efficient and cost effective but require validation at the
population level.

Interpretation of Findings
Widely adopted assessment tests like the SPPB, FRAIL,
FROP-Com, gait speed, and TUG provide a good platform to
assess the risk of falls and frailty among older adults but require
trained human resources, equipment, and space and are often
conducted in a controlled setting that may not accurately reflect
day-to-day activities. Advances in wearable technologies provide
longitudinal and continuous monitoring of daily living activities
in participants’ natural living environments and may provide a
better quantification of exhaustion, slowness, and weakness
[29]. Prior studies that validated the use of sensors for measuring
5x-STS either used multiple sensors or incorporated a machine
learning algorithm with a 2-sensor configuration for detecting
frailty [29,30]. Wearable devices offer superior data collection
in terms of continuity and reliability. They can operate remotely
and autonomously and are a very cost-effective, efficient tool.

In this study, 43% of the participants fell into the low-to-medium
activity level category. This is comparable with other studies
where about 35% of community-dwelling older adults
self-reported low activity levels [31]. Evaluation of gait quality
using triaxial accelerometers on the lower back in addition to
daily activities have been shown to improve the prediction of
future falls [32]. Similar to low heart rate variability, low HRR
is a recognized biomarker for frailty, as it is associated with
chronic diseases, physical function, lower cardiovascular fitness
reserve, chronic inflammation, and mortality [16,24,33].
Unintentional weight loss in frailty could be due to underlying
inflammation, which could be the underlying cause for lower
HRR. Qiu et al [16] showed that, for every 10-bpm HRR
decrease, the risk of cardiovascular events increases by 13%
and the risk of all-cause mortality increases by 9%, further
supporting our study findings on the validation of HRR to screen
for nonfunctional components of frailty.

Falls are the second leading cause of death due to injury after
road traffic accidents and a major public health problem [34-36].
In Canada and the United States, up to one-third of older adults
≥65 years old fall each year, one-half of whom may experience
recurrent falls [37]. There are many fall risk assessment tools
such as the Activity-specific Balance Confidence Scale,
FROP-Com, and TUG, but most of them are either
questionnaire-based or provide measurements at a specific time
point (eg, in a clinic or hospital) [38]. Questionnaire-based falls
risk assessments have lower predictive value [14]. The
FROP-Com only has a moderate capacity to predict falls and,
when validated against the TUG, has an AUC of 0.63 (95% CI
0.57-0.69) [25]. Predictability can be improved by combining
it with functional-based measures. The TUG, although
recommended by the US Centers for Disease Control and
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Prevention to screen for falls risk, is recognized mainly as a
measure of balance and is useful for ruling in rather than ruling
out falls in high-risk individuals [39,40]. Asai et al [41] showed
that the combination of dual tasking and TUG measurements
was associated with falls in the old-old but not the young-old.
Sensor-based falls risk assessment has gained significant traction
in recent years, as it measures data collected in a normal life
setting [39]. However, most of the data obtained through sensors
are validated against a falls risk classification or fall history.
Identification of fallers using sensor-based assessments is
dependent on the activity or task and the location of the sensors.
Sensors are worn in various locations such as the sternum, waist,
and head, which may not be acceptable to most people and may
result in gender-specific differences [19]. Most published studies
that have validated sensor-based falls risk assessments using
gait speed, 5x-STS, or TUG have been conducted in an
experimental setting or measured only gait speed in real life
[29,32]. Activities such as walking and turning around or
dual-task walking have higher predictive value than walking in
a straight path [41,42]. Multilocation sensors performed better
than those in a single location [14]. Although our study is one
of the first to validate the gait and heart rate analyzers with
FROP-Com using a single sensor on the ankle, the wearable
was not able to differentiate the walking terrain, and we had no
longitudinal data to show if a longitudinal assessment using a
wearable was superior at predicting falls than time-point
assessments in the clinic setting.

Limitations and Future Direction
Our study is one of the first few to show correlations between
the gait and heart rate analyzers and frailty, gait speed, SPPB,
TUG, and falls risk. However, there are several limitations that
warrant mentioning. Walking gait data were collected through
daily living activities, and a high variation of walking patterns
was found. To standardize the walking pattern for this study,
only steps that were part of a continuous 40 steps or more were
tagged by the gait analyzer. Since the wearable also allows
continuous tracking of walking, this analyzer is capable of
aggregating a much larger amount of gait characteristic data
than the specific time point data collected using gait speed or
the TUG test. Second, the gait analyzer was used with a small
sample of individuals who had fallen or were at a high risk of
falls. The findings need to be validated at the larger population
level. Third, the wearable we used needs to be worn on the

ankle, which may be inconvenient for older adults, and is not
completely waterproof. Fourth, we had no measures of muscle
strength as a proxy for weakness for the diagnosis of frailty. In
addition, we had no longitudinal outcome data for frailty; the
data collected are only meaningful for moderate and high
activity levels. For low activity levels, the activities were not
well understood. In addition, for walking activities, we could
not differentiate between walking on stairs and over uneven
terrains. Having additional user log capabilities (for participants
with low activity levels) and better detection of the walking
environment (stairs or uneven terrain) could provide additional
insights into daily activities. Last, none of the reference tools
are considered the gold standard for frailty or falls evaluation.
Without longitudinal outcome data, we cannot correlate our
wearable data with long-term outcomes.

Our study showed that agreement between the gait and heart
rate analyzers and the functional component of the FRAIL scale,
gait speed, and FROP-Com was significant. In addition, the
heart rate analyzer had significant agreement with the
nonfunctional component of the FRAIL scale. As shown in
prior studies, measuring heart rate dynamics or variation, in
conjunction with physical activity, can be a good indicator of
frailty [20,22]. It would be interesting to explore machine
learning protocols incorporating the different parameters and
HRR to improve the prediction of frailty and falls as well as a
long-term follow-up to determine the associations with
long-term outcomes such as disability, falls, and mortality. In
addition, the next-generation design will need to be user-friendly
with a better design and an algorithm to detect those with low
activity levels and the walking terrain. Another aspect of
wearables that will need to be evaluated longitudinally is their
role in behavior change toward a healthier lifestyle, through
triggers, goal setting, and prompts toward achieving sustainable
goals [43].

Conclusion
Our study showed significant correlations between the gait and
heart rate analyzers and physical performance, frailty, and falls
risk in older adults at risk of falls. Next-generation wearables
will need to be validated at the population level; incorporate a
better design; be able to detect walking terrains; and integrate
the gait, heart rate, and daily living analyzers with immediate
results.
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