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Abstract

Background: Artificial intelligence (AI) models are being increasingly studied for the detection of variations and pathologies
in different imaging modalities. Nasal septal deviation (NSD) is an important anatomical structure with clinical implications.
However, AI-based radiographic detection of NSD has not yet been studied.

Objective: This research aimed to develop and evaluate a real-time model that can detect probable NSD using cone beam
computed tomography (CBCT) images.

Methods: Coronal section images were obtained from 204 full-volume CBCT scans. The scans were classified as normal and
deviated by 2 maxillofacial radiologists. The images were then used to train and test the AI model. Mask region-based convolutional
neural networks (Mask R-CNNs) comprising 3 different backbones—ResNet50, ResNet101, and MobileNet—were used to detect
deviated nasal septum in 204 CBCT images. To further improve the detection, an image preprocessing technique (contrast
enhancement [CEH]) was added.

Results: The best-performing model—CEH-ResNet101—achieved a mean average precision of 0.911, with an area under the
curve of 0.921.

Conclusions: The performance of the model shows that the model is capable of detecting nasal septal deviation. Future research
in this field should focus on additional preprocessing of images and detection of NSD based on multiple planes using 3D images.
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Introduction

Background
Nasal septal deviation (NSD) is characterized by malalignment
of the nasal septum with reference to the anatomical midline
[1,2]. NSD has been associated with turbinate hypertrophy,
decreased air volume, and diseases of the nasal cavity and
maxillary sinus [3-5]. The prevalence rates of NSD vary from
26% to 97%, as reported in studies originating from different
parts of the world [3-6].

The contemporary diagnostic modalities used for the evaluation
of NSD include anterior rhinoscopy, endoscopy, computed
tomography, and magnetic resonance imaging [7-9]. Over the
past few years, cone beam computed tomography (CBCT) has
established itself as a low radiation diagnostic modality for
imaging of nasal and paranasal sinus [10-12].

In conventional radiology practice, radiologists analyze images
to detect and monitor disease conditions. However, recent
advancements in the field of artificial intelligence (AI)
technologies have enabled the automatic recognition of intricate
patterns of imaging data. Recent studies have revealed that the
accuracy and reproducibility of AI-based radiology evaluations
aid radiologists in image interpretation and diagnosis [13].

A recent scoping review revealed a growing number of recent
research articles on the application of AI for detecting
anatomical nasal and paranasal landmarks using various imaging
modalities [14]. Recently published studies have revealed that
deep learning models are effective in detecting various
conditions, ranging from nasopharyngeal carcinoma to nasal
bone fractures across different imaging modalities [15-17]. To
the best of our knowledge, no studies have used AI models to
detect NSD in CBCT image slices. This AI model could serve
as an adjunct to physicians in the radiographic detection of NSD.

Aim of This Study
The aim of this research was to develop a real-time AI model
to detect NSD and determine its accuracy in detecting NSD in
CBCT images.

Methods

Data Source
We collected 204 coronal CBCT images of the nasal septum
(138 with a deviated nasal septum and 66 with a nondeviated
nasal septum) from the dental radiology archives of University
Dental Hospital, Sharjah. The CBCT scans were obtained using
a Planmeca Viso 7 CBCT unit (0.2 mm resolution, 95 kVp, and
5mA; Finland) and large fields of view (FOVs) from patients
who visited the dental hospital between June 1, 2020, and June
30, 2023. CBCT scans of male and female patients within the

age group of 18 and 60 years were included in the study. CBCT
scans with small and medium FOV, incomplete scans, and
artifacts were excluded. Scans of patients with a history of
midfacial trauma, surgery, cleft palate, and complete nasal
obliteration were also excluded.

Ethical Considerations
This study was reviewed and approved by the Research Ethics
Committee of the University of Sharjah (REC 21-01-10-01),
which waived the requirement for patient consent. Only
preexisting CBCT scans in the radiology archives of the dental
teaching hospital were used for the study. No new CBCT scans
were done for the study. No personal identification details of
the patients were used during the analysis of CBCT scans in
the study. No compensation was provided to the participants
whose CBCT scans were used in the study.

Procedure
The assessment of CBCT was performed directly on a 1920 ×
1080–pixel and 23-inch DELL monitor screen. Since there were
only 210 CBCT scans with a large FOV in the radiology archive,
convenience sampling was used in the study, with only 204
scans. A total of 6 scans were not used due to meeting 1 or more
exclusion criteria. Of the 204 CBCT images, 163 were assigned
to the training group, and the remaining 41 of the CBCT images
were assigned to the testing group on a random basis using a
computerized random number generator. Uniformity was
maintained while cropping the coronal image fields in all the
CBCT scans so that the anatomical landmarks were consistent.
Each image was then cropped into a 200 × 400–pixel square,
extending from the crista galli superiorly to the hard palate
inferiorly, and 5 mm laterally from the lateral nasal wall on both
sides (Figure 1A and 1B). The files were saved in JPEG format.

Two maxillofacial radiologists classified the nasal septum
images into normal or deviated. In case there was a
disagreement, a third radiologist was consulted for the
finalization of the classification. NSD was determined by the
method used by Shetty et al [11] and Al-Rawi et al [18] (Figure
2).

The annotations were done using the Visual Geometry Group
Image Annotator manual annotation open-source software
(Figure 3) [19]. After annotation, the data (cropped coronal
images) were used for training (80%) and testing (20%) of the
AI model. In training the models, we only considered images
with a deviated septum and discarded images with a nondeviated
septum. We also augmented the training data to increase the
data to 5 times the original number of the deviated images. The
process of NSD detection using Mask region-based
convolutional neural networks (R-CNN) is described in Figure
4. Figures 5 and 6 show the test image with detection results
and examples of region proposals, respectively.
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Figure 1. Cropped coronal cone beam computed tomography images showing (A) a nondeviated nasal septum and (B) a deviated nasal septal deviation.

Figure 2. Point A represents the junction of the nasal septum with the floor of the nasal cavity. Point B represents the Crista Galli. The line BC represents
a tangent drawn from point B and passing through the outermost part on the convexity of the deviated septum.
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Figure 3. An image annotated using the Visual Geometry Group Image Annotator software showing a deviated nasal septum.

Figure 4. The flowchart of the study describing the stages of contrast enhancement, annotation, model training and performance evaluation. RCCN:
region-based convolutional neural networks.
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Figure 5. Detection of nasal septal deviation in the cropped coronal cone beam computed tomography image by Mask region-based convolutional
neural networks.
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Figure 6. Region proposals in the cropped cone beam computed tomography image showing potential areas of interest (10 random Regions of Interest
out of 200).

Mask R-CNN
To identify targets and detect deviated nasal septum, Mask
R-CNN was used to segment the nasal septum at the pixel level.
The Mask R-CNN architecture consisted of faster R-CNN,
Region of Interest (RoI) alignment (RoIAlign) technique, and
feature pyramid networks [20]. Mask R-CNN is an improved
version of faster R-CNN, a model used for object detection,
which includes a segment prediction branch for each RoI,
allowing it to perform both detection and pixel-level
segmentation at the same time. Mask R-CNN’s dual nature
allows it to serve as both an object identification model and an
excellent tool for instance segmentation tasks [21-23].

The Model Training
Mask R-CNN with a pair of different backbones—ResNet50,
ResNet101, and MobileNetV1—was used in this work to detect
and segment deviated nasal septum, and weights from trained
models were adopted using the transfer learning approach to
assess the performance of the proposed detection model. The

models were developed for 2 distinct scenarios. In the first
instance, the model was developed using the original images
and the ResNet50, ResNet101, and MobileNetV1 backbones.
In the next instance, the model was trained with contrast
enhancement (CEH) along with the aforementioned backbones.
The performance of the models based on the mean average
precision (mAP) and area under the curve (AUC) was compared
to find the best model. To boost the total number of images and
the model performance, the dataset was augmented before the
model was trained by randomly flipping, scaling, and rotating
the images along the x-axis and the y-axis. This increased the
original training data by 5 times. Additionally, augmenting the
data stops the model from becoming overfit. The hyperparameter
values for the model were set as follows: weight decay=0.0001,
learning rate=0.001, detection minimum confidence=0.9,
learning momentum=0.9, mask pool size=14, validation
steps=100, steps per epoch=100, and epoch=50.

mAP is widely used in object detection models because it
efficiently integrates recall and precision into a single,
all-encompassing statistic, which is essential for assessing
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localization efficacy and detection accuracy. Its ability to
determine the average precision for every class independently
is important since it provides a thorough understanding of the
model’s performance in a variety of object classes. Crucial to
object detection tasks, mAP includes varying intersection over
union thresholds to evaluate the model’s accuracy in object
localization. This metric has been standardized in well-known
benchmarks, such as MS COCO [24] and PASCAL VOC [25].
As a result, it is a widely recognized tool for comparing
performance between various models and datasets and for
producing a single, all-inclusive figure that sums up the overall
effectiveness of object detection models. mAP and AUC
detection levels were used to evaluate model performances. The
training environment used was Anaconda and Jupyter notebook,
Keras 2.0.8, and tensor flow 1.4.0 on a GeForce Nvidia
GTX1080, with an i7 processor and a RAM of 16 GB.

MobileNetV1
A network model called MobileNet uses depth-dependent
separable convolution as its basic component [26]. It has 2
levels, called convolution layers, independently for depthwise
and point convolutions. The output feature maps of the
preceding convolution layer are superimposed on the input
feature maps of each dense block layer. There is a transition
layer in DenseNet between 2 dense blocks. The quantity of input
feature maps is reduced in the transition layer using a 1 × 1
convolution kernel. In place of a pooling layer, MobileNet
depends on a convolution layer because it lacks a transition
layer. The convolution layer automatically convolves the output
feature map of the previous point convolution layer with stride
2, thereby decreasing the overall dimension of the feature map
[26].

ResNet
To solve a problem in computer vision, machine learning
professionals use deep convolutional neural networks in
combination with additional layers. A deeper network could
promote the degrading problem even though the number of
stacked layers may improve the model’s properties. Since
discrete layers may be trained for various jobs to generate highly
accurate results, these additional layers help in the quicker
convergence of complex problems. This drop in performance
was not brought on by overfitting. The network configuration,
the optimization technique, and the problem with vanishing
gradients may be to blame. Deep residual networks use residual
blocks to improve the models’ performance. By establishing a
different path for the gradient to take, they can address the issue
of vanishing gradients. They also allow the model to learn an
identity function, which guarantees that the model’s top layers
perform on comparable levels with its bottom layers. ResNet
was created specially to deal with this problem [27,28].

The ResNet50 architecture is based on the ResNet34 paradigm,
except that every component is composed of a series of 3 layers
instead of 2. This model is far better than the 34-layer version
of ResNet and produces 3.8 billion floating-point operations
per second. Each of the preceding 2-layer blocks was swapped
out for a 3-layer bottleneck block to produce a 50-layer design
[29].

Performance Evaluation
Precision is an important metric to assess a model’s performance
in object detection. It evaluates the precision of the objects
detected, emphasizing the percentage of accurately predicted
objects that are relevant or true. With an emphasis on the context
of detected objects, the formula for precision in object detection
is comparable to that of other classification tasks, as follows:

where precision (P) is the ratio of true positives (TPs) to the
sum of TPs and false positives (FPs), and N is the number of
instances.

Contrast Enhancement
To improve a picture’s visual quality, CEH increases the contrast
between different image areas. It aims to increase the variety
in pixel intensity values to enhance the visual appeal of the
image and the discriminating power of the obtained features.
Contrast stretching, adaptive histogram equalization, and
histogram equalization are methods for improving contrast [30].
In this study, we applied adaptive histogram equalization. This
image preprocessing technique was applied to enhance contrast
in images. It calculates various histograms, each related to a
distinct portion of the image, and uses them to reallocate the
luminance values of the image [30].

Results

In this study, the performance of the newly proposed
MobileNetV1 backbone for the Mask R-CNN architecture was
compared to that of existing ResNet backbones. We used the
mAP and AUC measures to evaluate how well each backbone
performed on segmented images of the nasal septum. The mAP
scores for the models with various backbones are shown in
Table 1.

Table 1. Performance of the models based on mean average precision (mAP).

mAP of nonprocessed imagesContrast enhancement mAPModels

0.7310.911ResNet50

0.8130.866MobileNetV1

0.7520.843ResNet101
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With a mAP of 0.911, the Mask R-CNN with CEH-ResNet101
demonstrated its accuracy in detecting and segmenting nasal
septum images. The Mask R-CNN with CEH-ResNet50
achieved a mAP of 0.866, indicating its high performance and
effectiveness. With a mAP of 0.843, our proposed Mask R-CNN
with CEH-MobileNetV1 also produced encouraging results.
Comparatively, the mAP for the Mask R-CNN with ResNet50
was 0.731, and the mAP for the Mask R-CNN with
MobileNetV1 (without CEH) was 0.813. The mAP for the Mask
R-CNN with ResNet101 was 0.752.

As shown in Table 2, the Mask R-CNN with CEH-ResNet101
once more outperformed all other models, with an AUC of
0.921. An AUC of 0.864 demonstrates the Mask R-CNN’s good
performance with CEH-ResNet50. The Mask R-CNN with
CEH-MobileNetV1, which was recently incorporated,
demonstrated competitive outcomes with an AUC of 0.843. The
AUC for the Mask R-CNN with ResNet50 was 0.732, while
the AUC for the Mask R-CNN with MobileNetV1 (without
CEH) was 0.814. Finally, an AUC of 0.831 was obtained using
the Mask R-CNN with ResNet101.

Table 2. Performance of the models based on the area under the curve (AUC).

No processing AUCContrast enhancement AUCModels

0.7320.921ResNet50

0.8140.864MobileNetV1

0.8310.843ResNet101

Discussion

Principal Findings
In recent years, there has been an increase in the number of
research on the application of AI in image analysis [31]. AI
algorithms have been used for the detection and localization/
segmentation of anatomical areas in 3D image sources, such as
computed tomography and CBCT [32,33]. CBCT has proven
to be an efficient low-radiation dose modality for nasal septum
and midfacial structures [34]. To the best of our knowledge,
there are no studies highlighting the role of AI in the detection
of NSD. In our study, we used Mask R-CNN for the detection
of NSD in cropped coronal CBCT scans.

Mask R-CNN was not designed with pixel-to-pixel network
input and output synchronization in view. RoI Pooling, which
performs coarse spatial quantization for feature extraction,
currently the core mechanism for managing instances, serves
as an example of this approach. The network structure follows
the design outlined by Bienias et al [35].

The multidimensional feature extraction and information fusion
processes are carried out by the feature pyramid network and
region proposal network of the backbone network, while the
region proposal network additionally generates and offers target
candidate regions based on extracted feature maps and
classifications. Target instance segmentation is completed once
the RoIAlign is used to correct the target region and integrate
it with a faster R-CNN [36]. A simple, quantization-free layer
called RoIAlign precisely records exact spatial locations. It
improves mask accuracy by 10% to 50% when more severe
localization procedures are used. By separating class prediction
from mask prediction and relying on the network’s RoI
classification branch, we can identify the category. Using data
from previous ablation experiments, Mask R-CNN outperforms
all contemporary single-model solutions to the COCO instance
segmentation task [21].

In our study, Mask R-CNN with CEH-ResNet101 and
CEH-ResNet50 proved to be the best performers, demonstrating
high mAP and AUC values. However, the Mask R-CNN with

CEH-MobileNetV1 technique, while not the top performer,
delivered encouraging outcomes and showcased its potential as
a portable backbone for nasal septum image detection and
segmentation.

The MobileNetV1 backbone has been introduced, expanding
the pool of options available to academics and professionals
tasked with nasal septum image segmentation studies. We have
demonstrated that the new backbone may provide an outstanding
trade-off between accuracy and computational cost by
comparing its performance to the well-established ResNet
backbones. The MobileNetV1 backbone can now be considered
by researchers as a workable substitute in situations where
computing resources are constrained or real-time performance
is essential.

This study offers an important new understanding of the
effectiveness of the Mask R-CNN architecture with different
backbones for detecting and segmenting images of the nasal
septum. Professionals looking for effective but precise solutions
now have a vital choice with the development of
CEH-MobileNetV1 as a new backbone. These findings, we
believe, will pave the way for more developments in medical
image segmentation and encourage more study in this area.

Limitations
One of the limitations of our study was the utilization of cropped
2D CBCT images for the detection of NSD. Future studies can
be carried out using 3D CBCT images and AI software for NSD
detection [29,37]. The limited number of images used for
training and validation is another limitation of this study, which
was due to the limited availability of CBCT images with large
FOV. Most of the dental CBCT images are carried out on small
and medium FOV, which means there were only a very limited
number of large FOV scans that could be used for the study.
Furthermore, the data used in our study were unbalanced (138
images with a deviated septum against 66 images with a
nondeviated septum). To partially overcome this problem, we
augmented the training data to increase the data to 5 times the
original number of the deviated classes. The other limitation of
the study is that only one dimension of the nasal septum was
visualized. NSDs can be visualized in both the vertical (coronal)
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and horizontal (axial) planes [38]. Future studies can be
conducted using AI-based detection of multiplanar views of the
nasal septum.

Conclusions
Nasal deviation has been examined, and it is crucial to create a
model that can detect potential nasal deviation in real time.
Mask R-CNN was used in this study to detect a deviated nasal
septum, along with the different backbones Resnet101,
ResNet50, and MobileNetV1. CEH was also applied to the
images to improve the model’s performance, and it was found

that CEH-ResNet101 outperformed all the other models used
in the study, achieving a 0.911 mAP. This technique also
demonstrates that CEH can enhance model performance when
it comes to the detection of deviated nasal septum. The 3 distinct
backbones used in this study—ResNet101, ResNet50, and
MobileNetV1—show an acceptable degree of performance so
far in detecting and segmenting deviated nasal septa. However,
the performance of the models may be improved by using more
datasets. To increase performance, we will use new backbones
and enhanced backbone topologies in the future.

Data Availability
The data used in this study can be accessed at figshare [39].
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