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Abstract
Background: Markerless motion tracking methods have promise for use in a range of domains, including clinical settings
where traditional marker-based systems for human pose estimation are not feasible. Artificial intelligence (AI)–based systems
can offer a markerless, lightweight approach to motion capture. However, the accuracy of such systems, such as MediaPipe, for
tracking fine upper limb movements involving the hand has not been explored.
Objective: The aim of this study is to evaluate the 2D accuracy of MediaPipe against a known standard.
Methods: Participants (N=10) performed a touchscreen-based shape-tracing task requiring them to trace the trajectory of
a moving cursor using their index finger. Cursor trajectories created a reoccurring or random shape at 5 different speeds
(500-2500 ms, in increments of 500 ms). Movement trajectories on each trial were simultaneously captured by the touchscreen
and a separate video camera. Movement coordinates for each trial were extracted from the touchscreen and compared to those
predicted by MediaPipe. Specifically, following resampling, normalization, and Procrustes transformations, root-mean-squared
error (RMSE; primary outcome measure) was calculated between predicted coordinates and those generated by the touchscreen
computer.
Results: Although there was some size distortion in the frame-by-frame estimates predicted by MediaPipe, shapes were
similar between the 2 methods and transformations improved the general overlap and similarity of the shapes. The resultant
mean RMSE between predicted coordinates and those generated by the touchscreen was 0.28 (SD 0.06) normalized px.
Equivalence testing revealed that accuracy differed between MediaPipe and the touchscreen, but that the true difference was
between 0 and 0.30 normalized px (t114=−3.02; P=.002). Additional analyses revealed no differences in resultant RMSE
between methods when comparing across lower frame rates (30 and 60 frames per second [FPS]), although there was greater
RMSE for 120 FPS than for 60 FPS (t35.43=−2.51; P=.03).
Conclusions: Overall, we quantified similarities between one AI-based approach to motion capture and a known standard for
tracking fine upper limb movements, informing applications of such systems in domains such as clinical and research settings.
Future work should address accuracy in 3 dimensions to further validate the use of AI-based systems, including MediaPipe, in
such domains.
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Introduction
Within clinical and rehabilitation settings, the evaluation and
monitoring of an individual’s motor function and impairment
is important when assessing the effectiveness of an inter-
vention [1]. Standardized clinical assessments, while highly
important, often involve a degree of subjectivity (eg, [2]).
For example, observing and rating movement quality based
on a set criterion or scale may be susceptible to bias and
inaccuracies [3]. Alternatively, motion capture systems can be
used to provide additional and more objective measurements
of movement [4,5]; however, challenges may arise due to the
cost and maintenance of equipment [6]. Accordingly, a cost
and time-effective way in which movement can be evaluated
with high accuracy is desirable in clinical settings.

Marker-based motion tracking involves optical, mechani-
cal, magnetic, or inertial systems that need complex com-
putational processing and resources [7]. Further, the use
of such marker-based systems may be limited when assess-
ing individuals who experience sensory difficulties (eg,
tactile sensitivity) and may require customized approaches.
Advances in computer vision technology have enabled
“marker-less” systems, eliminating the need for physical
tracking equipment [8]. While well-established, research-
grade markerless systems exist, balancing resources, cost,
and output are important to consider when using motion-
tracking software. The development of artificial intelligence
(AI)–based systems for motion tracking, such as OpenPose
[9], DeepLabCut [10], and MediaPipe [11] are “lightweight”
approaches that allow the tailoring of computational difficulty
and accuracy according to their application.

Such systems have been used for human pose estima-
tion [12], object detection [13], and image segmentation
[14], with applications to a range of domains (see [15-18]
for examples). In clinical research settings, emerging work
has focused on applications of AI-based motion tracking in
rehabilitation [19,20], physiotherapy [21], action and posture
recognition [22,23], human gait analysis [24], as well as
diagnostics in telehealth [25]. Outcome measures of research
studies in these domains include trajectory analysis, range
of motion analysis, task-based assessment, and accuracy
of classification models. For instance, MediaPipe has been
applied to gross upper limb movements and tremor identi-
fication (eg, [26-29]). Yet, this specific tool has not been
optimized and validated for behavioral investigations of
fine upper-limb movements. Interestingly, previous research
has validated AI-based motion capture for gross motor
tracking, such as running [30] and stationary cycling [31],
as well as in hip, knee, shoulder, and elbow joint move-
ments [32]. Fine upper-limb movements differ from these
applications due to a large diversity in parameters relating
to dexterity, speed, occlusions, overlaps that occur during
movement and lower contrast patterns between individual
features as compared to gross upper limb movements [33].
Given the number of degrees of freedom, and complexity
in assessing such fine movements, it is critical to determine
and quantify the accuracy of AI-based systems, in compari-
son with known standards. Validation of these systems for

the purpose of tracking fine upper-limb movements would
provide a key step toward cost-effective motion tracking in
clinical settings, particularly for populations with upper-limb
movement impairments (eg, individuals after stroke [34],
individuals with Parkinson disease [35], cerebral palsy [36],
or developmental coordination disorder [37]).

Accordingly, this work aimed to evaluate whether the
model solutions given by one AI-based approach to motion
tracking, MediaPipe, can be used for accurate tracking of
2D, fine upper limb movements. To address this objec-
tive, we evaluated the 2D accuracy of MediaPipe against
a known standard, using a touchscreen-based shape-tracing
task. Specifically, this task was used to generate 2D trajec-
tories of hand or arm movements on a touchscreen com-
puter. Videos of the hand or arm movements were processed
through MediaPipe to obtain predicted coordinates of the
movement. Additional postprocessing steps (resampling and
normalization) were applied to standardize predicted data
by moving it into a common reference space. To assess
the accuracy of these predictions, the processed 2D coor-
dinate data were compared to our known standard; coordi-
nates obtained from the touchscreen computer. Following
Procrustes transformations to facilitate comparison, root-
mean-squared error (RMSE; our primary outcome meas-
ure) was obtained between predicted coordinates and those
generated by the touchscreen computer. We hypothesized
that the predicted coordinates would be equivalent to those
generated by the touchscreen computer.

Methods
Participants
Data were collected from 10 young healthy adults (aged mean
19.5, SD 1.3 years; 9 females, 1 male, 9 right-handed, and 1
ambidextrous) who participated in the study. All participants
had normal or corrected-to-normal vision and were free of
neurological disorders or any physical impairment that would
impact upper-limb movement. Participants were recruited
from the Institution’s Undergraduate Psychology Research
Participation Pool.
Ethical Considerations
Informed consent was obtained from all participants. Ethics
approval was obtained from the University of British
Columbia Okanagan’s research ethics board (#H21-02626).
All study data were deidentified. Participants were provi-
ded with course credit for their research participation, in
accordance with the Institution’s Undergraduate Psychology
Research Participation Pool system and procedures.
Behavioral Task
All participants engaged in a 2D shape-based tracing task
performed on a touchscreen computer using custom software
developed in the Python programming language (Python
Software Foundation) [38]. This task is described in prior
work [39]. Briefly, each trial began with the participant
tapping a “go” button located on the lower corner of
the screen to trigger the movement of a white cursor
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originating from the starting point. Trajectories consisted of
5 segments (curved paths between 4 additional points and
ending at the starting point). All trajectories were anima-
ted clockwise from point to point, with no visual feedback
(“trace”) left on the screen for participants to track. The
duration of each animation ranged between 500 milliseconds
and 2500 milliseconds, in increments of 500 milliseconds
(ie, 5 different speeds; [39]), and was randomized across
trials. Immediately following the animation, participants were
instructed to reproduce the trajectory on the screen beginning
and ending from the starting point and were instructed to
match the speed at which it was animated. All participants
performed the task in a seated position directly in front
of a horizontally oriented 12.3-inch touchscreen (Microsoft

Surface Pro 7) placed on a desk. Participants performed
the task with the index finger of their dominant hand, with
their nondominant hand resting comfortably in their lap. All
participants performed these tasks in blocks, comprising 10
trials each. The x-y coordinates of the participant’s produced
trajectory for each trial were recorded by the computer and
stored for offline analysis. To obtain videos of the shape-trac-
ing task, a camera (GoPro Hero8; GoPro Inc) was mounted
directly above the touchscreen computer to simultaneously
record the performance of each trial. The camera position
remained fixed throughout the session and was constant
across participants, and captured movements in an “overhead”
view (Figure 1). One video was recorded per block (10 trials)
and stored for offline analysis.

Figure 1. Left: overview of the analysis pipeline applied to data extracted from the touchscreen-based shape-tracing task performed by young healthy
adults during a single session, and predicted by MediaPipe from videos obtained simultaneously with a camera (GoPro Hero8). Following video
preprocessing (cropped to the length of 1 trial), frames were extracted and evaluated with MediaPipe. Postprocessing (resampling and normalization)
was applied to both MediaPipe and touchscreen-based shape-tracing task data, with the two datasets compared using Procrustes transformations and
analysis. Right: still-frames from trial clips of the shape-tracing task with MediaPipe Hands landmarks overlaid to illustrate instances where the index
finger was visible (top) and partially occluded (bottom).

Data Analysis

Behavioral Task
Preprocessing of the touchscreen-based shape-tracing task
data occurred as described in Ingram [39]. Preprocessing was
performed to standardize participant’s produced trajectories

by optimally transforming response trajectories onto the
original stimulus (animation) trajectories, to account for
variability in timing (via dynamic time warping [40]; to
allow for natural variation in movement speed dynamic time
warping) and natural variations in movement (via Pro-
crustes transformation [41]; to account for “shape accuracy”
independent of translation, rotation, and scale).
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Video Analysis
Videos were captured by a GoPro Hero8. Each video was
cropped to the length of 1 individual trial (ie, 1 complete
trial per video), resulting in clips that ranged between 2 and
6 seconds (ie, as participants performed the task at different
speeds). A total of 12 blocks of trials were chosen for final
analysis, including 1 to 2 blocks for each participant. In total,
5 trials were excluded due to participant compliance, leaving
115 trials in our final analyses. OpenCV, an open-source
computer vision and machine learning library [42] was used
to extract frames from each 2‐6 second clip in the form
of “.jpg” images. A mean of 174 frames was obtained per
video depending on the duration of the participant’s trac-
ing movement in each 2‐6 second clip. These frames were
evaluated using the MediaPipe Hands solution for Python.

MediaPipe Hands
MediaPipe Hands is a customizable, high-fidelity hand and
finger tracking solution that uses machine learning to detect
21 landmarks of a hand with right and left-handedness
detection [43]. Specifically, the landmarks that are detected
are the tip of each finger (4); metacarpophalangeal, proxi-
mal interphalangeal, and distal interphalangeal joints of the
4 fingers (12); the tip of the thumb (1); carpometacarpal,
metacarpal, and interphalangeal joints of the thumb (4); and
the wrist (1) [44]. MediaPipe Hands uses a single shot palm
detection model to detect hands in the input image, followed
by a hand landmark detector model over the bounding box
of the detected hand for precise key point location of 21
fingertip and knuckle coordinates in virtual coordinates and
real-world coordinates. The model appears robust to self-
occlusions, partially visible hands, and multiple instances
of hands in a given image (eg, see ). For this experiment,
the MediaPipe Hands solution was deployed in a Google
Colab environment [45] to evaluate the input frames. The
frames for each trial clip were iterated through and evaluated
serially by the MediaPipe Hands model, and x-y coordinates
for dominant hand index fingertips were extracted frame-
by-frame. This coordinate data were stored pertaining to
each trial trajectory. The coordinates were captured between
0‐1920 units of x coordinates and 1080 units of y coordinates
for an image resolution of 1920×1080. The x-y coordinates of
the index fingertip output for each trial were then postpro-
cessed.

Postprocessing
Our overall pipeline is shown in Figure 1. Output x-y
coordinates for all trials were resampled to 1500 points
using univariate spline interpolation with k=3 (cubic spline
interpolation, via the “interpolated univariate spline” function

from the “scipy.interpolate” module in Python; [46]), to
interpolate between predicted points. These coordinates were
obtained within the coordinate system bounded by the
height and width of the input image, between axis lim-
its of 1920×1080. Resampled data were then normalized
by minmax scaling in Python using the sklearn.preprocess-
ing module [47] to obtain the final predicted coordinate
data between 0 and 1 for each trial. To facilitate an accu-
rate comparison of MediaPipe predictions with trajectories
extracted from the touchscreen, coordinates generated from
the touchscreen-based shape-tracing task were postprocessed
as described. Specifically, trajectories extracted from the
touchscreen-based shape-tracing task were also resampled to
1500 points, via the scipy.interpolate module, and normalized
using the sklearn.preprocessing library given differences in
reference frames and coordinate systems between MediaPipe
and the touchscreen.

Once data from both MediaPipe predictions and
the touchscreen-based shape-tracing task were extracted,
resampled (1500 points) and normalized (range of 0 to 1),
the 2 datasets were compared to quantitatively assess the
accuracy of the predictions using Procrustes transformations
and analysis in R programming environment (version 4.2.1;
R Core Team) [48] via the vegan package [49]. Specifi-
cally, geometric transformations are applied to the MediaPipe
predicted trajectory to rotate, scale, and translate the dataset
to best match it to the touchscreen trajectory. The best match
is determined by the lowest RMSE between the correspond-
ing points of the 2 datasets:

RMSE = ∑i = 1
n Moriginal −  Mtransformed 2 n    =

  ∑i = 1
n Xoriginal −  Xtransformed 2  + Yoriginal −  Ytransformed 2 n

Here, Moriginal is a set of x and y coordinates extracted from
the touchscreen. Mtransformed is the corresponding set of x and
y coordinates predicted by MediaPipe, following Procrustes
transformations. n is the total number of coordinates data
points extracted (here, 1500).

Figure 2 shows an exemplar trace extracted from the
touchscreen and generated from MediaPipe with postprocess-
ing steps applied for illustrative purposes. Applying this
Procrustes transformation and analysis, we obtained RMSE
for each pair of coordinates predicted by MediaPipe and the
data from our touchscreen computer (our known standard) for
each trial.
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Figure 2. Data from an exemplar shape-tracing trial of the touchscreen-based shape-tracing task are plotted at each step in the methodology. Top row:
the original trace extracted from the touchscreen (dark blue) and predicted by MediaPipe (light blue) are shown. Middle row: the raw traces are then
merged into the same plot (left). Resampling is then applied to both datasets (right). Bottom row: datasets are then normalized (left), with Procrustes
transformations applied for comparison (right).
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Statistical Analysis

Accuracy of MediaPipe
Equivalence tests were performed on the resultant RMSE
calculated for coordinates generated by MediaPipe versus
the touchscreen computer, to determine whether the predic-
ted coordinates were equivalent to touchscreen-generated
coordinates. Specifically, an equivalence test was performed
(via two one-sided tests; α<.05) on RMSE using the TOSTER
package in R Programming Environment [50]. These tested
the null hypotheses that the true mean is equal to 0 (null
hypothesis significance testing), and the true mean is more
extreme than 0 and 0.30 (two 1-sided tests). A threshold of
0.3, representing the minimum effect (magnitude of differ-
ence) of interest, was used based on Wade et al [51] whereby
an AI-based pose estimation approach used to track a lower
limb movement was compared to a manual tracking sys-
tem. The mean absolute resultant effects for markers on the
ankle, calcaneus, and fifth metatarsal head was 0.35. As a
more conservative estimate given that our task involved an
upper-limb movement, we decreased this threshold from 0.35
to 0.3.

Impact of Frame Rates on Resultant RMSE
To explore the impact of the frame rate parameter on the
accuracy of landmark prediction, we assessed 2 blocks of
trials (ie, 20 video clips) for 3 different frame rates: 30,
60, and 120 frames per second (FPS). Pairwise t tests were
conducted to determine if RMSE differed across frame rates.
Specifically, 2 separate t tests were conducted to compare
RMSE between videos of 30 and 60 FPS, and between videos
of 60 and 120 FPS, with Bonferroni corrections applied for
multiple comparisons.

Results
Accuracy of MediaPipe
Visual inspection of our results on a frame-by-frame basis
suggested that using MediaPipe to capture trajectories was
overall similar to trajectories obtained from the touchscreen
in short-duration clips, yet that postprocessing resulted in
greater overlap and improved the comparison. The resultant
mean RMSE between trajectories predicted by MediaPipe and
those captured by the touchscreen was 0.28 (SD 0.06) px.
Our statistical tests conducted (testing the null hypotheses
that true mean is equal to 0, and the true mean is more
extreme than 0 and 0.30) indicated that RMSE was not
equal to 0 (t114=47.552; P<.001); yet, that at the selected
error rate the true mean was found to be between 0 and 0.3
(t114=−3.02; P=.002; 90% CI 0.27-0.29; Hedges g=4.40; 90%
CI 3.96-5.0).
Impact of Frame Rate on Resultant
RMSE
The mean RMSE across frame rates are reported in Table 1.
From our analysis conducted to determine if resultant RMSE
(ie, between MediaPipe and the touchscreen) differed across
frame rate, no differences were observed between video clips
of 30 and 60 FPS (t35.05=0.707; P=.97; 95% CI −0.02 to
0.04); yet, video clips of 120 FPS resulted in greater RMSE
than video clips of 60 FPS (t35.43=−2.51; P=.03; 95% CI
−0.07 to −0.01).

Table 1. Mean RMSEa calculated between trajectories predicted by MediaPipe and extracted from the touchscreen computer across 30, 60, and
120 frames per second. RMSE was assessed between 2 datasets for each individual trial following postprocessing, with Procrustes transformations
applied.
Frame rate, n Number of trials, n Mean RMSE (SD)
30 20 0.29 (0.042)
60 20 0.28 (0.056)
120 20 0.32 (0.043)

aRMSE: root-mean-squared error.

Discussion
As a proof of concept, we evaluated the extent to which
trajectories predicted by one AI-based approach to motion
tracking, MediaPipe, deviated from those generated by a
touchscreen computer (a “gold standard”). In partial support
of our hypotheses, while a statistical difference between these
trajectories was found, this difference was limited. Specifi-
cally, the mean RMSE was found to be 0.28 (SD 0.06) px
with the true magnitude of difference to be less than 0.3
via equivalence testing (90% CI 0.27-0.29). These results
support the use of MediaPipe in domains where positional
data of the hand or arm are required to measure complex
upper-limb movements (for example, see [18,20,25-27]). In

this study, it appeared possible to extract coordinates when
key features of hands are occluded, such as when the palm
is occluded by the fingers while making a fist. Extracting
these coordinates also appeared possible in the presence of
a second hand (ie, the nondominant hand) and from low-
resolution or blurred images. However, it is important to
consider the trade-off between the accuracy and computa-
tional complexity of motion-tracking systems to conclusively
determine the benefit of AI-based approaches to motion-
tracking applied to research and clinical domains such as
physiotherapy, rehabilitation, and telerehabilitation. Eliminat-
ing the sole reliance on physical tracking equipment enables
motion tracking in a wide variety of clinical domains where
it may not always be feasible or possible to use such systems

JMIR FORMATIVE RESEARCH Wagh et al

https://formative.jmir.org/2024/1/e56682 JMIR Form Res 2024 | vol. 8 | e56682 | p. 6
(page number not for citation purposes)

https://formative.jmir.org/2024/1/e56682


[8]. Validating AI-based markerless systems is a key step
toward bridging the gap between the theory and practice of
remote clinical assessment [51].

Our results represent a necessary step to address this gap,
by quantifying the accuracy of 1 markerless system used for
fine upper-limb tracking in 2D space, informing on future
applications of AI-based approaches to motion capture in
these domains. Our pipeline evaluated videos of 2‐6 seconds
in duration with each video representing 1 trial, with a mean
of 174 frames evaluated for each video. It is likely that the
reported error can be attributed to any difference between
the fingertip landmark predicted in this study, to where the
finger is sensed on the touchscreen. While deviations (likely
distal) may result in different positional estimates, in this
instance a comparable trajectory assessment of within-video
change would be maintained. Therefore, while between-sub-
ject comparisons of error should be made with caution, our
findings suggest that MediaPipe may be suitable for assessing
relative within-person change in upper limb movements
over the course of an intervention or training regime. Any
distortions during video capture, approximated geometric
transformations, or low-resolution data capture may also
contribute to the reported error.

Palucci Vieira et al [52] compared an AI-based motion
tracking system (OpenPose) to a manual tracking system. No
differences were observed between approaches when tracking
the position of the hip or knee. Yet, for the position of the
ankle, heel, and fifth metatarsal head, which can be con-
sidered finer lower limb movements, small effects (abso-
lute mean of 0.35) between the approaches were observed.
AI-based systems, including MediaPipe, may thus perform
better for gross movements, including that of the torso or
postural sway, head, or hip movements rather than fine
upper limb movements as in our study. While we used
a threshold of 0.3 (ie, such that we aimed to statistically
reject effects larger than 0.3) it is important to practically
consider different maximum allowable effects to assess the
sensitivity of such systems when tracking the position of
different effectors and across various use cases. For instance,
Biswas et al [53] used physical sensors (accelerometers and
gyroscopes) to detect 3 different upper limb movements
typically performed during activities of daily living (eg,
making tea). While accuracy ranged from 40% to 88%
across both types of sensors, authors suggested the average
resultant accuracy (66%, gyroscope and 70%, accelerome-
ter) was determined to be effective given that such move-
ments were performed in naturalistic settings. With respect
to the approach taken in this study, MediaPipe has also been
validated against accelerometers for measuring upper limb
tremors in individuals with Parkinson [27]. Low resultant
error (mean absolute error 0.229, SD 0.174 Hz), and a high
correlation in amplitude measurement were shown when
comparing MediaPipe to the physical sensors [27]. Indeed,
alternative well-established markerless systems are available
(eg, Vicon and Kinect), representing high-quality solutions
that can eliminate the need for physical tracking systems.
Given that this investigation compared one AI-based motion
capture tool to a touchscreen computer (representing our

known standard), comparing AI-based systems to established
markerless tools and considering the sensitivity of differ-
ent AI-based approaches is an important avenue of future
research.

Our secondary analysis probed the impact of the frame
rate parameter to increase the accuracy of the pipeline. In
our pipeline, a low frame rate of 30 FPS resulted in similar
accuracy, but counterintuitively, a higher frame rate of 120
FPS resulted in increased tracking error. This result may
be due to the increased number of resampling points. Past
work has demonstrated MediaPipe-based tracking with 11
and 20 FPS [54] and with 30 FPS for full body posture
detection (with additional processing applied [ie, to correct
for incorrect depth estimation, jitter, and lag]; [22]) and motor
skill assessment of the hand (with additional depth correction)
[26]. While future research is needed to determine the impact
of resampling on videos of higher FPS, our findings support
the use of consumer-grade devices where 60 FPS is typical.
Our findings also suggest that postprocessing steps should
be included in an optimal processing pipeline for investiga-
tions of fine upper-limb movement using MediaPipe. Here,
postprocessing methods including resampling and normali-
zation improved transformation output. In particular, this
method adjusted outputs to a common coordinate system
to enable comparison across different systems (as in this
study, between MediaPipe and the touchscreen computer),
or to provide a method of standardization across partici-
pants. Normalization can further help eliminate the need for
shifting coordinate systems before comparison. Customizing
the postprocessing pipelines according to a particular task
may thus be important to the application of MediaPipe in
different domains.

It is important to consider that our investigation com-
prised a sample of healthy young adults and was restricted
to 2D coordinates. Showing the 2D accuracy of Media-
Pipe represents an important first step toward its valida-
tion. While our findings are encouraging for the use of
AI-based alternatives, such as MediaPipe, for assessing
movement kinematics in healthy and clinical populations
(including those with fine upper limb motor impairment,
eg, individuals after stroke, with cerebral palsy, or with
developmental coordination disorder) where assessing change
in kinematics over the course of an intervention can be
used to track improvements in motor function, future work
is needed to assess its accuracy and feasibility for track-
ing 3D fine upper-limb movements. Furthermore, AI-based
motion tracking tools may provide a fruitful avenue for the
assessment of home-based, upper-limb focused, therapies,
which have been shown to be effective (eg, [55-58]). For
instance, individuals engaging in physical therapy may record
themselves performing a task via mobile phone and send
these to their therapist for documentation and assessment.
As we tested one AI-based approach to motion tracking in
a laboratory setting, testing these tools in more ecological
settings is an important next step that may enable motion
tracking in variable environments (ie, differing backgrounds,
obstructions, and light illuminations).
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While MediaPipe was trained on a synthetically devel-
oped dataset consisting of hand models layered with 5
hand textures and skin tones and natural image datasets to
mitigate racial bias [43], past work has shown that skin tones
may affect MediaPipe reliability when tracking a surgical
technique [54]. Given that racial bias has been noted in deep
learning models [59], future work should consider the impact
of factors such as race and skin tone of the participants on the
accuracy of predictions generated by AI-based motion capture
systems applied to fine upper limb movements. Further, given
our main aim related to testing the accuracy of MediaPipe
(ie, rather than assessing behavioral change of individual
participants), we considered each video (ie, movement) as an
independent observation in our analysis. As our videos were
not used to train the model and each video was treated as
a new exposure, extracted coordinates were not an extrapola-
tion predicated on previous trials, and the speed at which
each movement was completed varied to reduce the likeness
of videos. The robustness of the models to such variances
is a crucial feature of motion tracking systems to ensure
applicability in diverse settings. However, future work using
MediaPipe to assess behavioral change over the course of an
intervention should consider the use of mixed models such
that random effects can be entered to account for multiple
videos extracted from the same participant (ie, trials across

a test block). Exploring this approach with our data, we
simulated a dataset with a mean RMSE of 0.3 and conducted
a linear mixed effects model on RMSE by type (actual and
simulated). While this analysis tests for a difference (rather
than equivalence), no effects were observed, thus supporting
findings from our original analysis approach (see Multimedia
Appendix 1).

In this study, we assessed the 2D accuracy of one AI-based
markerless approach to motion tracking, MediaPipe, against a
known standard. Our findings show an equivalence (within a
range of 0-0.30 normalized px) between trajectories predic-
ted by MediaPipe and those extracted from a touchscreen-
based shape-tracing task. Our secondary analysis assessing
the impact of frame rate supports the use of widely available
devices where a frame rate of 60 FPS is typical. Future work
should address low-cost motion capture using 2D image data
for 3D pose estimation to further validate the use of “light-
weight” alternatives to motion tracking in clinical populations
and different settings (eg, clinical and diagnostic). While
this work represents a necessary step toward validating the
use of AI-based motion capture systems in investigations of
fine upper-limb movement, future work is required to assess
accuracy for tracking 3D fine upper-limb movements across a
larger sample.
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