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Abstract

This cross-sectional study evaluates the clinical accuracy, relevance, clarity, and emotional sensitivity of responses to inquiries
from patients undergoing surgery provided by large language models (LLMs), highlighting their potential as adjunct tools in
patient communication and education. Our findings demonstrated high performance of LLMs across accuracy, relevance, clarity,
and emotional sensitivity, with Anthropic’s Claude 2 outperforming OpenAI’s ChatGPT and Google’s Bard, suggesting LLMs’
potential to serve as complementary tools for enhanced information delivery and patient-surgeon interaction.
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Introduction

Recent advances in natural language processing (NLP) have
produced large language model (LLM) applications, such as
OpenAI’s ChatGPT, that have captivated a worldwide audience
[1]. They have permeated the health care sector, offering several
benefits [2]. While LLMs have immense potential in improving
clinical practice and patient outcomes, their role has not been
completely established [3]. Often, patients that require surgery
struggle with complex, anxiety-inducing questions [4]. Thus,
counseling during preoperative workup is crucial for obtaining
informed consent, establishing trust, and ensuring presurgical
optimization to improve patient outcomes. This process, being
resource-intensive and involving numerous conversations, often
delays communication, causing significant frustration for
patients [5]. Therefore, the importance of clear, adequate, and

timely information delivery cannot be overemphasized. LLMs
with chat features could improve preoperative communication;
however, LLMs’ability in answering patients’surgical questions
have not been extensively studied. Thus, this study aims to
assess LLMs’ potential and proficiency in responding to
questions from patients undergoing surgery.

Methods

Overview
In formulating our questionnaire, we used the input of 3
neurosurgical attendings, focusing on common general patient
inquiries regarding surgery. We presented 38 patient questions
in web sessions to 3 publicly accessible LLMs: ChatGPT
(GPT-4; OpenAI), Claude 2 (Anthropic), and Bard (Google)
on August 16, 2023 (Multimedia Appendix 1). Questions had
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4 central themes: the nature and rationale of a surgery,
preoperative concerns, procedural aspects, and postoperative
considerations. Each reply from the LLMs was reviewed by 2
independent blinded reviewers (MMD and FCO, research
fellows with medical doctorates who had not completed
postgraduate clinical training). A 5-point Likert scale was used
to assess accuracy, relevance, and clarity of responses [6].
Emotional sensitivity was evaluated on a 7-point Likert scale
to increase discriminatory power [7]. Assessment of data
normality used the Shapiro-Wilk test. Homogeneity of variances
(homoscedasticity) across groups was evaluated via the Levene
test. For nonparametric analysis, the Kruskal-Wallis test was
used to discern differences among groups. Subsequent pairwise
comparisons were facilitated by the post hoc Dunn test. In
instances where parametric assumptions were upheld, a 1-way
ANOVA was conducted, followed by post hoc analysis with
the Tukey honestly significant difference (HSD) test. P values
from the post hoc analysis were adjusted for multiplicity with
Bonferroni correction. Additionally, weighted percentage
agreement (WPA) was used to determine agreement between
raters. All statistical analyses used Python (version 3.7; Python
Foundation).

Ethical Considerations
The study qualified for institutional review board exemption as
it exclusively used questions sourced from surgeon input, with
no direct patient involvement.

Results

Shapiro-Wilk testing indicated nonnormality (P<.05; Table 1)
for accuracy, relevance, and clarity scores. Levene testing
revealed nonhomoscedasticity for relevance (F2=5.009; P=.01).
The Kruskal-Wallis test showed significant differences in the
distribution of accuracy (H=27.464; P<.001), relevance
(H=29.074; P<.001), and clarity (H=32.745; P<.001). The post
hoc Dunn test demonstrated that Claude 2’s responses were
significantly more highly rated than ChatGPT’s or Bard’s for
accuracy, relevance, and clarity (P<.05). There were no
significant differences between ChatGPT and Bard except in
clarity (Z=1.972; P=.04). ANOVA showed significant
differences in emotional sensitivity (F2,111=10.799; P<.001).
The post hoc Tukey HSD test revealed significantly higher
emotional sensitivity scores for Claude 2 compared to ChatGPT
and Bard (P<.05). WPA was highest for Claude 2, followed by
ChatGPT and Bard (Tables 2 and 3).
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Table 1. Results of normality test (Shapiro-Wilk), homoscedasticity test (Levene), nonparametric test (Kruskal-Wallis), post hoc pairwise comparison
of nonparametric data (Dunn test with Bonferroni correction), parametric test (ANOVA), and post hoc pairwise comparison of parametric data (Tukey
honestly significant differences [HSD] test with Bonferroni correction).

P valueValueTest

Shapiro-Wilk (W statistic)

Accuracy

<.0010.862ChatGPT

<.0010.711Claude 2

<.0010.87Bard

Relevance

<.0010.845ChatGPT

<.0010.604Claude 2

.010.917Bard

Clarity

.010.886ChatGPT

<.0010.747Claude 2

.020.933Bard

Emotional sensitivity

.270.965ChatGPT

.110.953Claude 2

.180.959Bard

Levene (F2 statistic)

.122.144Accuracy

.015.009Relevance

.151.918Clarity

.830.184Emotional sensitivity

Kruskal-Wallis (H statistic)

<.00127.363Accuracy

<.00129.074Relevance

<.00132.745Clarity

Dunn test with Bonferroni (Z statistic)

Accuracy

.01–2.546ChatGPT vs Claude 2

.151.56ChatGPT vs Bard

<.0014.106Claude 2 vs Bard

Relevance

<.001–2.872ChatGPT vs Claude 2

.341.235ChatGPT vs Bard

<.0014.107Claude 2 vs Bard

Clarity

.01–2.546ChatGPT vs Claude 2

.041.972ChatGPT vs Bard

<.0014.518Claude 2 vs Bard

<.00110.799 (2,111)F statistic (df) from ANOVA (for emotional sensitivity)
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P valueValueTest

Tukey HSD test with Bonferroni (emotional sensitivity; Q statistic)

<.001–0.974ChatGPT vs Claude 2

.600.21Bard vs ChatGPT

.010.763Claude 2 vs Bard

Table 2. Adjusted percentage average ratings of large language model responses. Adjusted average percentage ratings were calculated as the mean of
normalized scores using the following formula to scale responses uniformly from 0% to 100%: adjusted percentage rating = ((actual Likert score – 1)
/ (Likert scale maximum – 1)) × 100%.

BardClaude 2ChatGPT

Adjusted average
Likert rating, mean
(SD)

Likert score, mean
(SD)

Adjusted average
Likert rating, mean
(SD)

Likert score, mean
(SD)

Adjusted average
Likert rating (%),
mean (SD)

Likert score, mean
(SD)

69.08 (21.3)3.76 (0.85)90.13 (14.58)4.61 (0.58)79.93 (13.8)4.2 (0.55)Accuracy

75.99 (16.79)4.04 (0.67)94.08 (9.96)4.76 (0.4)81.91 (16.1)4.28 (0.64)Relevance

71.38 (15.89)3.86 (0.64)92.11 (9.38)4.68 (0.38)80.92 (16.1)4.24 (0.61)Clarity

61.62 (16.16)4.7 (0.97)74.34 (15.3)5.46 (0.92)58.11 (16.61)4.49 (1)Emotional sensitivity

Table 3. Weighted percentage agreement (WPA) point estimates.

Bard, WPA (95% CI)Claude 2, WPA (95% CI)ChatGPT, WPA (95% CI)

71.05 (56.63-85.47)86.84 (76.09-97.59)80.26 (67.61-92.92)Accuracy

71.05 (56.63-85.47)97.37 (92.28-102.46)76.32 (62.8-89.83)Relevance

60.53 (44.98-76.07)94.74 (87.64-101.84)72.37 (58.15-86.59)Clarity

67.11 (52.17-82.04)77.63 (64.38-90.88)68.42 (53.64-83.2)Emotional

Discussion

Principal Findings
Our investigation revealed potential for using LLMs in patient
education. Claude 2 had significantly higher percentage average
ratings of above 90% for accuracy (P=.004 and P<.001),
relevance (P<.001), and clarity (P=.004 and P<.001) compared
to ChatGPT and Bard. It also scored significantly better on
emotional sensitivity than ChatGPT and Bard (P<.001 and
P=.01), with 74.3%. In a study parallel to ours, Sezgin et al [8]
assessed the clinical accuracy of LLMs in the context of
postpartum depression, demonstrating their efficacy in providing
clinically accurate information, a finding that complements our
study’s illustration of LLMs’ potential in patient education and
engagement. By providing accurate and timely information,
LLMs can potentially alleviate patient concerns.

Limitations
The study’s limitations include the absence of direct patient
input when formulating the questionnaire, the lack of repeated
zero-shot questioning, which may reveal variability, and no
dedicated analysis of overtly inaccurate “hallucinations.” The
principal challenge for LLM deployment in clinical settings lies
in its regulatory approval and secure integration within health
care systems [9]. We are actively conceptualizing a randomized
clinical trial controlling for these limitations to investigate LLM
and surgeon responses as rated by patients and surgeons.

Conclusions
While surgeons remain indispensable in patient education, LLMs
can potentially serve as a complementary tool, enhancing
information delivery and supporting patient-surgeon interactions.
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