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Abstract

Background: Artificial intelligence (AI) based computer-aided detection devices are recommended for screening and triaging
of pulmonary tuberculosis (TB) using digital chest x-ray (CXR) images (soft copies). Most AI algorithms are trained using input
data from digital CXR Digital Imaging and Communications in Medicine (DICOM) files. There can be scenarios when only
digital CXR films (hard copies) are available for interpretation. A smartphone-captured photo of the digital CXR film may be
used for AI to process in such a scenario. There is a gap in the literature investigating if there is a significant difference in the
performance of AI algorithms when digital CXR DICOM files are used as input for AI to process as opposed to photos of the
digital CXR films being used as input.

Objective: The primary objective was to compare the agreement of AI in detecting radiological signs of TB when using DICOM
files (denoted as CXRd) as input versus when using smartphone-captured photos of digital CXR films (denoted as CXRp) with
human readers.

Methods: Pairs of CXRd and CXRp images were obtained retrospectively from patients screened for TB. AI results were obtained
using both the CXRd and CXRp files. The majority consensus on the presence or absence of TB in CXR pairs was obtained from
a panel of 3 independent radiologists. The positive and negative percent agreement of AI in detecting radiological signs of TB
in CXRd and CXRp were estimated by comparing with the majority consensus. The distribution of AI probability scores was also
compared.

Results: A total of 1278 CXR pairs were analyzed. The positive percent agreement of AI was found to be 92.22% (95% CI
89.94-94.12) and 90.75% (95% CI 88.32-92.82), respectively, for CXRd and CXRp images (P=.09). The negative percent agreement
of AI was 82.08% (95% CI 78.76-85.07) and 79.23% (95% CI 75.75-82.42), respectively, for CXRd and CXRp images (P=.06).
The median of the AI probability score was 0.72 (IQR 0.11-0.97) in CXRd and 0.72 (IQR 0.14-0.96) in CXRp images (P=.75).

Conclusions: We did not observe any statistically significant differences in the output of AI in digital CXRs and photos of
digital CXR films.

(JMIR Form Res 2024;8:e55641) doi: 10.2196/55641
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Introduction

An estimated 10.6 million people (133 per 100,000 population)
were diagnosed with tuberculosis (TB) in the year 2022 which
is an increase from the 10.3 million new cases reported in 2021
[1]. The number of deaths caused by TB in 2022 is estimated
to be about 1.3 million [1]. Chest x-ray (CXR or chest
radiographs) is a crucial tool in the TB diagnostic pathway, but
the lack of qualified radiologists or health care professionals in
interpreting CXRs and limited infrastructure for CXR facilities
is a challenge in resource-limited settings which are not
uncommon in high TB burden areas [2].

In light of increasingly promising evidence of the usefulness of
computer-aided detection (CAD) technologies, such as those
based on artificial intelligence (AI), the World Health
Organization (WHO) has recommended their use as an
alternative to human interpretation of digital CXR for screening
and triage for pulmonary TB in individuals aged 15 years or
older [3]. Many CAD tools intended for TB screening and triage
using CXR use AI algorithms in the backend, and multiple such
commercially available software devices are available for routine
clinical use [4]. One of the commercially available AI CAD
devices is qXR (version 3.2; Qure.ai). Many of these AI
algorithms, including the algorithm in qXR, were trained
primarily on digital CXR images using their Digital Imaging
and Communications in Medicine (DICOM) files (soft copies)
as inputs.

The diagnostic accuracy of qXR and many other similar
commercially available devices has been evaluated previously
in multiple studies [4-15]. A study conducted in a high
TB-burden setting in Bangladesh reported that qXR has an AUC
(area under the receiver operating characteristics curve) of
90.81% while also fulfilling the WHO’s Target Product Profile
criteria of minimum 70% specificity at 90% sensitivity [4,16].
Another retrospective study conducted using CXRs from patients
from Nepal and Cameroon reported that AI was better than
human readers in detecting bacteriologically confirmed TB [9].
An independent evaluation of 12 different AI algorithms for
TB detection in adults conducted in Vietnam found an AUC of
about 82% for qXR [13]. In an active-case finding program
conducted in India using both radiologists and qXR for CXR
screening, a 15% increase in TB yield was found to be
attributable to qXR [2]. WHO’s recommendation for the use of
CAD in the screening and triaging of TB was primarily based
on independent evaluations of multiple commercially available
technologies, and qXR was among them [3].

While these studies provide substantial evidence supporting the
use of AI in digital CXR images for TB screening and triage,
there is limited evidence on the performance of such AI
algorithms when photos of digital CXR films (hard copies) are
taken using regular smartphones or when conventional plain
film radiograph photos are used as inputs. This is important in
resource-limited areas where there is a lack of digital CXR

infrastructure [17-20]. Some studies have reported the use of
CXR films and formats other than DICOM as inputs for training
the TB detection AI algorithm, but it is not clear how exactly
the films were fed as inputs to AI algorithms [21-23]. A recently
published study of qXR reported negligible differences in
performance in DICOM CXR files and photos of DICOM CXR
films, but a formal statistical comparison was not performed
[24].

In this retrospective cross-sectional analysis, we investigated
if there is a significant difference in the agreement of qXR in
detecting radiological signs of TB from CXR images in digital
x-ray images (DICOM files) and their corresponding
smartphone-captured CXR photos with majority consensus
obtained from a panel of 3 radiologists.

Methods

AI CAD Device
qXR is an AI-based CXR interpretation software device [25].
The “TB detection” deep-learning algorithm in qXR is trained
using roughly 100,000 digital CXR images (DICOM files) from
individuals with microbiological confirmation for the presence
or absence of tuberculous bacteria. qXR can be used to identify
radiological signs of TB in frontal (posteroanterior or
anterior-posterior views) CXR images of patients aged 6 years
and older. A probability score between 0 and 1, denoting the
likelihood of the presence of radiological signs of TB in a CXR
image, is generated, and based on a set threshold, it classifies
a CXR image for the presence or absence of radiological signs
of TB. Ideally, the threshold is recommended to be calibrated
by conducting on-site calibration studies prior to routine clinical
use [26]. The manufacturer-recommended threshold is 0.5 and
for this study, we used this threshold. Several other diagnostic
accuracy studies of qXR have also used this threshold
[11,14,15]. Typically, the input to qXR is a DICOM file of the
CXR, but it can also process CXR images in JPEG or PNG
formats. Throughout this paper, from here onward, we use the
terms “AI,” “AI CAD device,” or “AI device” interchangeably,
and all these terms denote qXR version 3.2.

Study Design
This was a retrospective cross-sectional analysis. The following
types of data were used for this analysis—deidentified and
anonymous digital CXR images in their DICOM format (CXRd)
and photos of digital CXR films captured using smartphones
(CXRp), AI results in the form of numerical probability scores
for both CXRd and CXRp images, and radiological majority
consensus obtained from a panel of 3 radiologists. Except for
the radiological majority consensus data, all other data were
sourced retrospectively from historical records. The main
objective was to evaluate and compare the agreement (quantified
in the form of positive percent agreement [PPA] and negative
percent agreement [NPA]) of the AI (qXR version 3.2) in
detecting radiological signs of TB in CXRd and CXRp with
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majority consensus obtained from a panel of 3 radiologists. A
5% difference in PPA or NPA was considered to be a
conservative clinically significant difference. We determined
that a sample of 1146 CXR pairs will provide about 80% power
to detect a difference in PPA or NPA of 5%, assuming a
conservative PPA (or NPA) of 80% and 75%, respectively, in
CXRd and CXRp images for paired observations data with a
moderate correlation of 0.5 [27]. We included 1300 CXR pairs
initially and after applying exclusion criteria, the final analysis
included 1278 CXR pairs, meaning that our analysis had more
than 80% power to detect a minimum difference of 5%.

The inclusion criteria were CXRd and CXRp pairs of frontal
CXR images from patients aged 6 years or older and the
availability of majority consensus from the radiologist panel.
Microbiological reference standards for TB confirmation were
not available in the retrospective data. We excluded any
duplicate CXR images from the same patients.

Details of the Retrospective Data
The CXRs used for this analysis were originally captured in
their digital form as part of a different TB screening project
(Stop TB REACH Wave 7 grant initiative) in Bihar, India,
conducted during the period from July 2020 to January 2021
[28]. During this project, community health workers performed
doorstep screenings using a structured questionnaire in the
regional language (Hindi) to identify individuals exhibiting any
symptoms indicative of TB. Those with symptoms were referred
to nearby health centers for further evaluation. All symptomatic
individuals were advised to undergo CXR examinations as part

of the routine TB diagnostic pathway. The CXRs used in this
analysis were done at 4 private x-ray centers during the Stop
TB REACH Wave 7 project. A grantee of this project proposal,
Innovators in Health, a nonprofit organization, was involved in
this data collection.

Innovators in Health staff captured photos of the digital CXR
films (CXRp) using regular smartphones (Xiaomi Redmi Note
5 Pro and Samsung Note 7 Pro). There were specific instructions
as to how to capture photos of the CXR films. These included
placing the film on a lightbox in a dark room, switching off the
flashlights of the phones, phones to be kept in parallel to the
film, apex and base of the lungs visible in the camera, and the
captured photo not being rotated or flipped. Illustrative guidance
on how to capture photos is available in Multimedia Appendix
1. An example of a CXRd image and its corresponding CXRp

image is shown in Figure 1.

Thus, for each digital CXR file in DICOM format (CXRd), we
had a corresponding photo of the digital CXR film captured
using a smartphone (CXRp) in JPEG format. During the TB
screening project, AI was also used for TB screening, and thus,
historical records also contained the AI results. Before any
statistical analysis, any personally identifiable information was
removed. The retrospective data included both images of each
CXR pair, the AI probability score (a numeric value between
0 and 1) indicating the likelihood for the presence of radiological
signs of TB for each CXR pair, the age of the patient at the time
of CXR acquisition, and gender.

Figure 1. A digital CXR image (on the left) viewed in a DICOM viewer and its corresponding smartphone-captured photo (on the right). CXR: chest
x-ray; DICOM: Digital Imaging and Communications in Medicine.

Establishment of Majority Consensus by Human
Readers
The majority consensus establishment was done as part of this
study. This was performed separately after the collection of the
retrospective data. A panel of 3 general radiologists with 3 to
10 years of postresidency experience in interpreting CXRs
formed the radiologist panel. These radiologists had significant
experience in interpreting CXR images for TB diagnostic
workups in the high TB burden setting of India. They were not

part of the TB screening project from which the retrospective
data were collected. All radiologists were blinded to the
“CXRd-CXRp pair” information, AI result, and clinical history.
The order of the CXRd and CXRp images were randomized for
each reader. The majority opinion on the presence or absence
of radiological signs of TB in the CXR was considered the
majority consensus. Of the 3 radiologists, 2 of them initially
independently read all CXR pairs. They classified each CXR
into one of the following 2 categories: the presence of
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radiological signs of TB and the absence of radiological signs
of TB. Thus, for each CXR pair, we obtained 2 readings from
1 radiologist, one each for CXRd and CXRp images. If all 4
readings for a CXR pair from the 2 radiologists were the same
(concordant CXR pairs), this was considered the majority
consensus. The third radiologist read discordant CXR pairs.

Thus, for the discordant CXR pairs, we had 6 readings in total
from 3 radiologists (3 each for CXRd and CXRp). For analysis
purposes, we used 3 different majority consensus (Table 1):
majority consensus on CXRd (MCd), majority consensus on
CXRp (MCp), and a global majority consensus (MCg).

Table 1. Types of majority consensus and their descriptions.

DefinitionMajority consensus type

Majority vote by the radiologist panel for the digital CXRa images (CXRd).Majority consensus on CXRd (MCd)

Majority vote by the radiologist panel for the photos of digital CXR films (CXRp).Majority consensus on CXRp (MCp)

Majority vote by the radiologist panel for all pairs of CXR images. If there was a tie (eg, 3 TBb

positive votes and 3 TB negative votes), the majority vote for the digital CXRd was considered
as the final consensus decision.

Global majority consensus (MCg)

aCXR: chest x-ray.
bTB: tuberculosis.

Statistical Analysis
Since the original CXR source was digital, MCd was used for
the primary objective of comparing the PPA and NPA of AI in
CXRd versus CXRp images. Calculations of PPA and NPA are
like that of sensitivity and specificity respectively, but the
terminologies of PPA and NPA indicate that the majority
consensus of human readers used in this study is a nonreference
standard [29]. Secondary analyses based on MCp and MCg are
also reported. The manufacturer-defined threshold of 0.5 was
applied to the probability scores obtained from the AI CAD
device to obtain a categorical decision for the presence or
absence of radiological signs of TB in each CXR. Any
indeterminate test results or missing values from AI, if occurred,
were reported. The point estimates of PPA and NPA are reported
along with the exact binomial 95% CI. McNemar’s test was
used to compare the PPA and NPA of AI between CXRd and
CXRp images [30]. Agresti-Min 95% CI is reported for
differences in PPA and NPA [31]. AUC was estimated based
on empirical method, and DeLong’s 95% CI for AUC is reported
[32]. It is to be noted the use of the term “AUC” may be
misleading in that it uses a reference standard, but we want to
emphasize that, unlike PPA and NPA, no such standard
terminologies were available to report a metric, like AUC, when
a nonreference standard is used. DeLong’s test was used to
compare AUCs [32]. We also compared the distribution of AI
probability scores in CXRd and CXRp. We also report agreement
statistics between results from CXRp and CXRd images by the

radiologists and AI CAD device by providing point estimates
and 95% CI for Cohen κ, prevalence and bias-adjusted κ, Gwet’s
AC1 [33], and overall percentage agreement [34]. McNemar’s
chi-square test for the symmetry of rows and columns in a 2D
contingency table was also performed to investigate the
difference in AI output (using the default threshold of 0.5) in
CXRd and CXRp images. Sensitivity analysis by changing the
threshold to 0.3, 0.4, 0.6, and 0.7 are also reported. All the
statistical analysis was done using R (version 4.2.1; R Core
Team).

Ethical Considerations
The study was approved by an independent ethics committee
of the Royal Pune Independent Ethics Committee (IEC
RPIEC041023). Informed consent requirement was not required
due to the retrospective nature of the study. Only deidentified
data were used for any analysis. Participants were not
compensated as this was a retrospective study using only
deidentified CXR images.

Results

Overview
A total of 1300 CXR pairs were considered for the analysis.
After applying inclusion and exclusion criteria, 22 (7 duplicates
and 15 from patients younger than 6 years) CXR pairs were
excluded. Thus, a total of 1278 CXR pairs from 1278 distinct
patients were included in the final analysis (Figure 2). There
were no indeterminate results or missing values from the AI.
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Figure 2. Data flow diagram. AI: artificial intelligence; CXR: chest x-ray; CXRp: photo of the digital CXR film; MCd: majority consensus of the
radiologists based on digital CXR images (CXRd); TB: tuberculosis.

Baseline Characteristics and Summary Statistics of
Majority Consensus
The CXRp images in JPEG format were generated by
photographing the CXRd films using the Xiaomi Redmi Note
5 Pro and Samsung Note 7 Pro. The CXRd images were
originally acquired using x-ray machines manufactured by
Fujifilm. Both CXRd images (in DICOM format) and CXRp

images (in JPEG format) had a minimum 1440×1440 pixels
resolution. The size of the CXRp files ranged from 1.2 to 4.8
MB.

The mean age of the patients from whom the CXRs were
sourced was 44.2 (SD 17.3; median 46, IQR 29-61) years. A
total of 1232 (96.4%) CXR pairs were from patients older than
15 years. Gender information was not available in the metadata
of 12 CXRs, and in the remaining 1266 CXRs, 659 (52%) CXRs
were males. Among the 1278 CXR pairs, 812 (63.5%) CXRs
had a complete agreement (both CXRd and CXRp interpretations
were the same) between the 2 radiologists. The other 466
(36.5%) CXR pairs were additionally sent for reading by a third
radiologist. Based on MCd, 681 (53.3%) CXRs were positive,
and the rest, 597 (46.7%) CXRs, were negative for the presence
of radiological signs of TB.

Agreement With Majority Consensus
Using MCd, the PPA of AI was found to be 92.22% (95% CI
89.94-94.12) and 90.75% (95% CI 88.32-92.82), respectively,
for CXRd and CXRp images (difference: 1.47; P=.09). The NPA
of AI was 82.08% (95% CI 78.76-85.07) and 79.23% (95% CI
75.75-82.42), respectively, for CXRd and CXRp images
(difference: 2.85; P=.06) using MCd. Both PPA and NPA
differences were statistically insignificant in all comparisons
using MCd, MCp, and MCg (Table 2). Using MCd, the AUC of
AI in CXRd and CXRp images were found to be 95.09% (95%
CI 93.95-96.24) and 93.67% (95% CI 92.39-94.95), respectively,
and this difference was statistically significant (difference: 1.42;
P=.01). AUC curves are shown in Figure 3. The differences in
AUC were all statistically insignificant while using MCp and
MCg (Table 2). The mean absolute difference in the probability
scores from the AI in CXRd and CXRp was 0.09 (SD 0.15;
median 0.03, IQR 0.01-0.11). The distribution of the probability
scores is shown in Figure 4. The median of the AI probability
score was 0.72 (IQR 0.11-0.97) in CXRd and 0.72 (IQR
0.14-0.96) in CXRp images (P=.75).
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Table 2. Positive and negative percent agreements and AUCa of AIb.

MCg
cMCp

cMCd
c 

CXRpCXRdCXRpCXRdCXRpCXRd
d 

PPAe

614/666618/666592/626589/626618/681628/681Pa/Pf, n/n 

92.19% (89.89 to
94.11)

92.79% (90.40 to
94.52)

94.57% (92.49 to
96.21)

94.09% (91.94 to
95.80)

90.75% (88.32 to
92.82)

92.22% (89.94 to
94.12)

PPA%g (95% CI) 

—0.60% (–1.13 to
2.33)

—–0.48% (–2.13 to
1.17)

—i1.47% (–0.27 to
3.21)

Δ%h (95% CI) 

—.49—.56—.09P value 

NPAj

485/612495/612502/652506/652473/597490/597Na/Nk, n/n 

79.08% (75.64 to
82.24)

80.88 (77.54 to
83.92)

76.99% (73.57 to
80.17)

77.61% (74.21 to
80.75)

79.23% (75.75 to
82.42)

82.08% (78.76 to
85.07)

NPA%g (95% CI) 

—1.80% (–1.19 to
4.79)

—0.62% (–2.31 to
3.53)

—2.85% (–0.18 to
5.87)

Δ% (95% CI) 

—.24—.68—.06P value 

AUC

94.59% (93.46 to
95.73)

94.99% (93.81 to
96.16)

95.19% (94.13 to
96.25)

94.80% (93.54 to
96.05)

93.67% (92.39 to
94.95)

95.09% (93.95 to
96.24)

AUC%g (95% CI) 

—0.40% (–1.40 to
0.61)

—–0.39% (–0.67 to
1.45)

—1.42% (0.33 to
2.51)

Δ% (95% CI) 

—.44—.47—.01P value 

aAUC: area under the receiver operating characteristic curve.
bAI: artificial intelligence.
cMCd, MCp, and MCg: Majority consensus on CXRd, majority consensus on CXRp and global majority consensus, respectively of human readers. PPA,
NPA and AUC comparisons using all three majority consensus types are reported in the table.
dCXR: chest x-ray.
ePPA: positive percent agreement.
fPa/P: the number of positive agreements (Pa) and the total number of positive CXRs (P) as per majority consensus of radiologists.
gPPA%, NPA%, and AUC%: point estimates of PPA, NPA, and AUC, respectively.
hΔ%: point estimates of percentage point differences in PPA%, NPA%, and AUC% between CXRd and CXRp images.
iNot applicable.
jNPA: negative percent agreement.
kNa/N: the number of negative agreements (Na) and the total number of negative CXRs as per majority consensus of radiologists (N).
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Figure 3. (A) AUC curves using MCd, (B) AUC curves using MCp, and (C) AUC curves using MCg. AUC: area under the receiver operating
characteristics curve; CXR: chest x-ray; MCd: majority consensus on CXRd; MCg: global majority consensus; MCp: majority consensus on CXRp;
NPA: negative percent agreement; PPA: positive percent agreement.

Figure 4. Distribution of probability scores from artificial intelligence. CXR: chest x-ray.

Agreement Statistics of AI and Radiologists in
Interpreting CXRd and CXRp Images

McNemar’s chi-square test for symmetry of rows and columns
in the 2D contingency table (Table 3) of AI decisions (presence

or absence of radiological signs of TB based on the default
threshold of 0.5) in CXRd and CXRp images returned a
statistically insignificant (P=.58) result. A sensitivity analysis
was performed by changing the threshold to 0.3, 0.4, 0.6, and
0.7, and all of these returned statistically insignificant results
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(McNemar’s chi-square test P=.40, .40, .99, and .80,
respectively) suggesting no significant differences in the binary
decisions outputted by the AI in CXRd and CXRp images.

The agreement (Cohen κ) between the CXRd and CXRd results
of the AI was 0.81 (95% CI 0.77-0.84), and for the 2 radiologists
who read all the pairs of CXRs images were 0.53 (95% CI
0.46-0.56) and 0.85 (95% CI 0.82-0.88), respectively. In the
subgroup of 466 discordant CXR pairs, the agreement was 0.67

(95% CI 0.60-0.74) and 0.62 (95% CI 0.55-0.70) for the AI and
the radiologist, respectively (Table 4). Overall, the AI had the
same results in 90.53% (95% CI 88.79-92.08) of the CXR pairs.
There was strong agreement (Cohen κ=0.84; 95% CI 0.82-0.87)
in the majority consensus on CXRd (MCd) and CXRp (MCp)
images. Radiologist 2 (Table 4) had a strong agreement (Cohen
κ=0.85; 95% CI 0.82-0.88). Gwet’s AC1 and prevalence and
bias-adjusted κ also showed similar trends to that of Cohen κ
estimates.

Table 3. Contingency table of AIa results in CXRd
b and CXRp images.

AI CXRp negative resultAI CXRp positive result

57678AI CXRd positive result

47964AI CXRd negative result

aAI: artificial intelligence.
bCXR: chest x-ray.

Table 4. Agreement statistics of AIa and radiologists in interpreting digital CXRsb and photos of corresponding digital CXR films.

Percentage agreement

(95% CI)

PABAKc

(95% CI)

Gwet’s AC1

(95% CI)

Cohen κ
(95% CI)

All CXR pairs (n=1278)

90.53% (88.79-92.08)0.81 (0.78-0.84)0.81 (0.78-0.85)0.81 (0.77-0.84)AI

76.37% (73.94-78.67)0.53 (0.48-0.57)0.55 (0.51-0.60)0.53 (0.46-0.56)Radiologist 1d

92.64% (91.07-94.02)0.85 (0.82-0.88)0.85 (0.82-0.88)0.85 (0.82-0.88)Radiologist 2d

92.2% (90.65-93.66)0.84 (0.81-0.87)0.84 (0.82-0.87)0.84 (0.82-0.87)MCd
e with MCP

Discordant CXR pairs (n=466)

83.48% (79.79-86.73)0.67 (0.60-0.73)0.67 (0.60-0.74)0.67 (0.60-0.74)AI

82.62% (78.87-85.95)0.65 (0.58-0.72)0.68 (0.61-0.74)0.62 (0.55-0.70)Radiologist 3f

aAI: artificial intelligence.
bCXR: chest x-ray.
cPABAK: prevalence and bias-adjusted κ.
dRadiologists 1 and 2 are the two radiologists who read all pairs of CXR images.
eMC: majority consensus.
fRadiologist 3 read only the discordant CXR pairs.

Discussion

Principal Results
We observed no statistically significant differences in the PPA
and NPA of AI in digital CXR images (input to AI here is a
DICOM file of the digital CXR) and their corresponding photos
of digital CXR films (input to AI here is a smartphone-captured
photo of the digital CXR film in JPEG format). Since the study
was adequately powered, and the differences in PPA and NPA
fell outside of the critical region, this can be considered as a
sign that the output of AI does not differ between digital CXRs
(CXRd) and photos of digital CXR films (CXRp) based on the
Neyman-Pearson approach of hypothesis testing [35]. The AUC
of AI was significantly higher in digital CXR images (95.09 vs

93.67; P=.01). This percentage point difference of 1.42% in
AUC is likely small and may not be clinically significant, and
this trend of significantly different AUC was not observed in
the secondary analyses using MCp and MCg. Moreover, the
variance of AUC is comparatively much lesser than that of a
proportion like PPA or NPA [36] and it is very likely that our
data had more than 80% power to detect a minimum detectable
difference in AUC lesser than 5% (overpowered). This is
probably the reason why we observed a statistically significant
difference in AUC even for such a small effect size of 1.42%.
Figure 4 illustrates that the distribution of AI probability scores
is quite similar in CXRd and CXRp images. We observed a high
proportion (n= 681, 53.3%) of patients whose CXRd were
identified with radiological signs of TB as per majority
consensus, and this could be due to the fact that these patients

JMIR Form Res 2024 | vol. 8 | e55641 | p. 8https://formative.jmir.org/2024/1/e55641
(page number not for citation purposes)

Ridhi et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


had already undergone a symptomatic assessment of TB, and
only those who were identified with symptoms suggestive of
TB had undergone the digital CXR investigation as part of the
TB screening project from which the data used for analysis were
retrospectively extracted.

A strong intrarater agreement (Cohen κ=0.81) in the results of
CXRd and CXRp images was observed for AI; one radiologist
had a weak agreement (κ=0.53), the other radiologist had a
strong agreement (κ=0.85). This is indicative of the known
inter- and intrareader variabilities of human readers [24-27].
Although the agreement in the majority consensus was strong
(κ=0.84), the observed reader variabilities could be the reason
why we observed no substantially improved agreement between
the majority consensus of CXRd (MCd) and CXRp (MCp) as
compared to a senior radiologist (Radiologist 2). The differences
in PPA and NPA of AI in CXRd and CXRd images were tested
using interpretation results from Radiologist 2, as a sensitivity
analysis, and all the differences were statistically insignificant.
AI was also not completely immune to intrareader variability,
as indicated by Cohen κ of 0.81 and percentage agreement of
90.53%. However, this demonstrated a strong agreement by AI
in interpreting CXRd and CXRp images. Agreement statistics
of AI were comparable to that of Radiologist 2 who was more
experienced than Radiologist 1. In the subgroup analysis using
only the discordant CXR pairs, both AI (κ=0.67) and the
radiologist (κ=0.62) had a moderate agreement. The PPA and
NPA of AI were found to be always >90% and >75%,
respectively, in all comparisons for the overall sample. We also
found that there are no statistically significant differences in
the output of AI in CXRd and CXRp images at various thresholds
of 0.3, 0.4, 0.5, 0.6, and 0.7. Our findings suggest that even a
simple photo of a digital CXR film captured by following simple
instructions may be sufficient for the AI. This is valuable in
scenarios where digital files (soft copies) are not available to
the patient or in environments where digital displays may not
be practical due to limited technological infrastructure.

Limitations
This study has several limitations. The first limitation is that
the original source of the CXRp was still digital CXR films and
thus cannot be considered conventional CXR plain films per
se. Hence, this study cannot be used to draw any inferences
about the performance of AI in a conventional plain chest
radiograph. We used smartphone-captured photos of the digital

CXR films against a lightbox in order to enable a head-to-head
comparison of the results from AI. New studies using
conventional plain film radiographs are needed to evaluate the
performance of AI in such settings. The second limitation is
that we did not have a microbiological reference standard for
TB. Instead, we used a radiological majority consensus using
a panel of 3 radiologists for our analysis and interreader
variabilities can impact estimations of PPA and NPA. We tried
to mitigate this, at least partly, by using a panel of 3 radiologists
instead of 1.

Comparison With Prior Work
One study of the same AI CAD device reported no large
differences in the performance of AI in digital and photographs
of digital CXR films [24]. The study population of this work
was different, and the statistical comparisons were descriptive
and not inferential. The smartphones used to capture photos
were also different. This work provides inferential evidence and
reports additional comparisons with human readers while at the
same time corroborating the finding that there is no difference
in the performance of AI in digital CXR images and the photos
of digital CXR films.

There are plenty of peer-reviewed publications reporting the
diagnostic accuracy of AI algorithms for digital CXR-based TB
detection and this has already been discussed in the introduction
of this paper and a systematic review is available [8]. Some
other studies have reported the use of “CXR films” in training
their AI models. Nijiati et al [21] reported minimum sensitivity
and specificity of about 93% for all 3 different AI models
although this was performed only on an internal testing data
set. Liu et al [22] reported an AUC of 0.76 + .006 in an external
test set. Lakhani and Sundaram [23] trained an AI model using
a CXR data set containing both PNG and DICOM images and
reported a very high AUC of 0.99 in the internal test set.
However, in these studies, it is not clear whether the authors
took photos of the films or not to be fed as inputs to AI.

Conclusions
We observed no statistically significant differences in the output
of the AI CAD device in digital CXR images and corresponding
smartphone-captured photos of digital CXR films. A
simple-to-follow set of instructions can be used to capture photos
of digital CXR films to ensure a stable performance of the AI
CAD device if only digital CXR films are available.
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AUC: area under the receiver operating characteristic curve
CAD: computer-aided detection
CXR: chest x-ray
DICOM: Digital Imaging and Communications in Medicine
MC: majority consensus
NPA: negative percent agreement
PPA: positive percent agreement
TB: tuberculosis
WHO: World Health Organization
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