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Abstract

Background: Early signs of Alzheimer disease (AD) are difficult to detect, causing diagnoses to be significantly delayed to
time points when brain damage has already occurred and current experimental treatments have little effect on slowing disease
progression. Tracking cognitive decline at early stages is critical for patients to make lifestyle changes and consider new and
experimental therapies. Frequently studied biomarkers are invasive and costly and are limited for predicting conversion from
normal to mild cognitive impairment (MCI).

Objective: This study aimed to use data collected from fitness trackers to predict MCI status.

Methods: In this pilot study, fitness trackers were worn by 20 participants: 12 patients with MCI and 8 age-matched controls.
We collected physical activity, heart rate, and sleep data from each participant for up to 1 month and further developed a machine
learning model to predict MCI status.

Results: Our machine learning model was able to perfectly separate between MCI and controls (area under the curve=1.0). The
top predictive features from the model included peak, cardio, and fat burn heart rate zones; resting heart rate; average deep sleep
time; and total light activity time.

Conclusions: Our results suggest that a longitudinal digital biomarker differentiates between controls and patients with MCI
in a very cost-effective and noninvasive way and hence may be very useful for identifying patients with very early AD who can
benefit from clinical trials and new, disease-modifying therapies.

(JMIR Form Res 2024;8:e55575) doi: 10.2196/55575
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Introduction

Alzheimer disease (AD) is the sixth leading cause of death in
the United States and incurs a heavy economic burden of US
$257 billion in direct costs [1]. The numbers are
staggering—11.3% of Americans aged 65 years and older have
Alzheimer dementia, and more than twice as many are
anticipated to have Alzheimer dementia by 2050 [1]. Moreover,
estimates suggest that 46.7 million Americans are already in a

preclinical AD stage [2]. AD diagnoses are often significantly
delayed to time points when brain damage has already occurred,
owing to difficulty in detecting early signs of AD due to cost
and effort, which makes it critical to identify efficient methods
for early detection of AD signs. One pillar of AD programs,
like the National Alzheimer's Project Act, focuses on early
diagnosis of AD, as it allows patients to make lifestyle changes
and consider new treatment options. Early diagnosis and
identification of the trajectory of cognitive decline would also
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allow pharmaceutical companies to develop better therapeutics
to delay or halt the progression to AD and support enrollment
in experimental trials.

A growing body of evidence indicates that cognitive, sensory,
and motor changes may precede clinical manifestations of AD
by several years [3]. Validated neuropsychological or cognitive
tests are often less effective in the earliest stages of the disease
and are impractical for frequent testing [4,5]. Frequently studied
biomarkers, such as detection of beta-amyloid and tau proteins
in cerebrospinal fluid [6,7] or using structural magnetic
resonance imaging (MRI) [8] or positron emission tomography
(PET) molecular imaging [9] promise earlier detection of
disease, but these tests are infrequently performed in clinical
settings since they are invasive or costly. Additionally, not all
individuals with amyloid plaques will go on to develop dementia
[10]. This calls for inexpensive and noninvasive methods that
can provide clinicians with ways to augment these biomarkers
and help triage patients eligible for these expensive and invasive
tests.

One biomarker that has been associated with early changes in
patients with mild cognitive impairment (MCI) is disruption of
sleep. Sleep disturbance is prevalent in mild cognitive decline
and has been previously associated with cognitive decline in
several meta-analyses when compared across different stages
of cognitive status [11,12]. Previous studies suggest that poor
sleep quality is associated with the presence of amyloid plaques
in cognitively healthy individuals in AD-sensitive brain regions
[13] and that even 1 night of sleep deprivation affects the levels
of amyloid-β in the cerebrospinal fluid of healthy middle-aged
men [14]. Other studies suggest that poor sleep may also be
associated with increased levels of tau in the cerebrospinal fluid
of cognitively normal people [15] and participants with the
highest levels of tau had the lowest levels of nonrapid eye
movement (NREM) across different cognitive statuses from
unimpaired to maximal impairment [16]. Finally, high-frequency
heart rate variability (HRV), especially during NREM sleep,
may be an early biomarker for dementia detection when
comparing older adults with MCI to patients with subjective
cognitive impairment [17].

A growing body of evidence also strongly suggests that physical
exercise may attenuate cognitive impairment and reduce the
risk of AD via a variety of mechanisms [18] and that some
preventable lifestyle-related risk factors such as a sedentary
lifestyle and lack of physical activity increase the risk of
dementia and AD [19,20]. Proposed mechanisms that may be
responsible for this effect include increased production of
neurotrophic factors and neurogenesis, increased cerebral blood
flow, reduced risk of cardiovascular diseases [21], increased
cortical thickness, and enhanced cognitive function through
improved cardiorespiratory fitness in MCI patients [22].
Although physical activity does not attenuate cognitive
impairment, low levels are a risk factor for dementia [23].

Although previous studies have shown that sleep and physical
activity are individually associated with AD [11,12,17,20,24-26],
their measurements were either based on collection via
self-reported questionnaires, which tend to overestimate
objective measurements [27-30], or collected over very short

periods of time (typically 2-6 days) via an actigraph [15,16,25],
limiting the ability to assess temporal variability and track
gradual changes in these traits. Additionally, actigraphs typically
do not measure heart rate, and acceleration features show only
modest performance in differentiating between sleep stages
[31,32]. Wearable technologies present a unique opportunity
to capture these early changes preceding clinical decline while
addressing limitations of the aforementioned biomarkers and
circumvent inaccuracy in self-reported traits, but studies have
thus far relied mostly on costly medical devices that were used
only for short time periods. A review discussing the potential
of digital markers for early detection of AD indicated that
accurate algorithms require longitudinal observational studies
with confirmed MCI and healthy controls [3].

Using cost-effective, widely available fitness trackers (Fitbit
Charge 4), we captured sleep, physical activity, and heart rate.
Passive collection is well-suited for older adults, especially
those who are already diagnosed with MCI, as it avoids relying
on subjective recollection and does not interfere with their
day-to-day activities. Studies have determined that Fitbits
provide similar estimates of sleep outside the laboratory to a
research-grade actigraph [33], and another study showed that
consumer-grade multimodal sensor streams can detect MCI
status [34].

Here, we report a pilot study that demonstrates that sleep,
physical activity, and heart rate recorded from a fitness tracker
can distinguish between MCI and age-matched controls with a
high accuracy. Furthermore, we show that 11 days of recording
is sufficient to reach high accuracy. These methods may be used
for early detection of decline in cognitive function, which can
prompt clinicians to conduct further testing.

Methods

Recruitment
This study included participants who visited the University of
Texas Health Science Center at Houston (UTHealth)
Neurosciences Neurocognitive Disorders Center (NDC) at
Houston, TX between January 2022 and September 2023. Per
the approved recruitment protocol, patients and their spouses
visiting the NDC who matched the inclusion criteria (see the
Cohort Definition section) were approached by a study
coordinator to participate in a fitness tracking study.

Interested participants were consented by the study coordinator
in a private room and were given a written consent form and
time to ask any questions. The study was discussed, including
the purpose, procedures, associated risks and benefits, time
commitments, and costs. Participants were also told that
participation was voluntary and they could withdraw at any
time. If the participant agreed to be in the study, the participant
signed the informed consent form. A signed and dated copy
was given to the participant. The same procedures were followed
for consent of the study partner. Patient privacy was protected
by assigning unique study IDs to each participant, and the
mapping was available only to the study coordinator.

After participants consented, the recruiting study coordinator
set up their fitness tracker (Fitbit Charge 4) and installed the
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corresponding free Fitbit app on the participant’s smartphone.
Participants were also provided with instructions on how to
wear and charge the fitness tracker and were instructed to keep
their Bluetooth on their phones so the Fitbit app could
synchronize with the fitness tracker. Each participant wore their
fitness tracker between 2 consecutive visits to the clinic,
returning it during their next visit.

Ethical Considerations
The study was approved by the UTHealth institutional review
board (HSC-MS-21-0719).

Cohort Definition

Cohort
The recruited cohort included 12 cases, including 11 patients
with amnestic MCI and 1 diagnosed with early AD.
Additionally, 8 age-matched healthy controls were recruited.
All the recruited controls were spouses of the recruited MCI,
enabling minimization of variability in lifestyle affecting
physical activity and sleep times. Having the spouse wear a
fitness tracker concomitantly also helped verify that they were
charged on time.

Inclusion Criteria
The eligibility criteria included cases and controls aged 60 years
to 80 years.

MCI Diagnosis
Cases were diagnosed by a neurologist who runs the NDC clinic
with 35 years of experience diagnosing MCI. The diagnostic
process starts with surveying the patient’s previous medical
history (eg, comorbidities), patient background, family history,
social history, sleep patterns, mood issues, and other neurologic
changes, such as gait, from the patient and their family. The
clinical team asks directed questions to better identify areas of
change in cognition, mood, behavior, and activities of daily
living. Screening tests are administered, including the Montreal
Cognitive Assessment [35] and Mini Mental State Examination
[36] to identify the level of cognitive impairment. Depending
on these results, other tests are ordered to clarify the diagnosis
and rule out alternative diagnoses. The initial tests most often
include neuropsychological testing [37], MRI of the brain [38],
and blood work. They can, however, also include sleep studies,
electroencephalograms (EEGs), and lumbar punctures. The
neurologist meets with patients and families and reviews the
results. If appropriate, other testing is then ordered, including
fluorodeoxyglucose PET [39], amyloid PET [40], or spinal taps.
The neurologist or staff then meet the patient to explain the test
conclusions. When testing is consistent with MCI due to AD
pathology, patients were considered for inclusion in this study.

Exclusion Criteria
Participants were excluded if they were hospitalized within 1
month prior to screening, had suspected or known drug or
alcohol abuse (ie, more than approximately 60 g of alcohol
[approximately 1 liter of beer or 0.5 liter of wine] per day), had
acute intercurrent infections, or were unable or unwilling to
comply with the protocol and follow-up requirements. Patients

taking sleep-inducing medication such as benzodiazepines were
also excluded.

A list of comorbidities and prescribed medications used by the
patients with MCI is available in Tables S1 and S2 in
Multimedia Appendix 1. We did not collect this information
for the controls since the controls were not patients of the NDC.

Data Collection
Data, including daily summaries of sleep, activity, and heart
rate, were collected through the Fitbit application programming
interface using proprietary scripts coded in Python 3.9.

For activities, we adopted the All of Us definition for a valid
day as a participant wearing the Fitbit for at least 10 hours per
day and reporting at least 100 steps per day [41]. Days not
considered valid based on this threshold were excluded,
including the days of the clinic visits when the participants were
recruited or returned their fitness trackers.

Fitbit algorithms differentiate between the main sleep epoch
and naps with regard to capturing sleep stages. For the main
sleep epoch, Fitbit measures periods of light, deep, rapid eye
movement (REM), and wake stages. For naps, Fitbit detects
awake, asleep, and restless stages. Due to differences in captured
features, the main sleep epoch and naps were separated for the
purpose of modeling.

Assessing the Sex Imbalance Effect on Model
Performance
The sex distribution in the MCI and control groups was
imbalanced, with 4 (4/12, 33%) women in the MCI group and
7 (7/8, 88%) women in the control group. To isolate the effect
of sex on predictions, we modeled the MCI prediction as the
following regression model:

MCI status=a·sex+b

After obtaining the coefficient a and residual b, a separate
regression model was built on the residuals b as the dependent
variable. This 2-step approach discerned whether other features,
apart from sex, could effectively capture the unexplained
variability in the residuals. The logistic regression model of sex
yielded an area under the curve (AUC) value of 0.58, and a

regression model based on the residuals b obtained an R2 of
0.96, which meant that sex plays a minor role in differentiating
between cases and controls. This led us to exclude sex from
future analysis to reduce bias from recruitment imbalance.

Aggregation Model and Daily Model
We tested 2 sets of prediction schemes (Figure S1 in Multimedia
Appendix 1). The first scheme (“aggregation model”) aggregated
the daily records for each participant to a single record.
Summary statistics, including minimal, maximal, mean, sum,
standard deviation, and skewness were applied to the daily data.
The final set of features included age and 329 engineered
summary statistics features from the fitness trackers.

The second scheme (“daily model”) classified individual days
per participant. The classifier predicted MCI status per day of
each participant, followed by a majority vote on the percent of
days predicted to be MCI per participant.
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We included age in the aggregation model, although there was
no statistically significant difference between MCI and controls.
To avoid introducing artificial bias into the daily model resulting
from the difference in the number of days measured per
participant (ie, the number of days a specific participant age
was replicated depends on the number of days the fitness tracker
was worn), we excluded age from the daily model, but this
exclusion did not alter the performance.

Feature Selection
In order to deal with the large number of variables, we built a
prediction model to select important features. These selected
features were subsequently fed into a final prediction model.

We tested several machine learning algorithms to select the
features based on the best performing algorithm, including
Gaussian naïve Bayes, logistic regression, support vector
machine (SVM), random forest, XGBoost, and CatBoost. In
each aggregation and daily data set, we used all features to train
classifiers using 5-fold cross-validation.

For each machine learning algorithm, we calculated Shapley
Additive Explanations (SHAP) values to illuminate the impact
of each feature on the model's prediction. We conducted
independent feature selection on each training fold (alpha=0.02)
and tested them on their respective testing folds. Finally, we
identified features as important if they appeared in at least 2 of
the 5 folds.

Final Models and Evaluation
The final aggregation and daily models were trained using only
the features selected in the feature selection stage. We built
prediction models with naïve Bayes, logistic regression, SVM,
random forest, XGBoost, and CatBoost.

In order to gain robustness, we conducted both 5 repeats of
5-fold cross-validation, each time with different data splits, and
a leave-one-out cross-validation technique. The mean AUC
values across the 5 repeats served as the standardized metric to
identify the best model. When dealing with daily models, we
used the majority vote on the number of days a participant had
days classified as MCI, classifying a participant as MCI if the
proportion of days classified as MCI out of their total number
of measured days exceeded 50%. The proportion of
MCI-classified days per participant also served for computing
the AUC value for each testing fold. As before, we computed
the mean AUC values to select the most effective model.

Statistical Analysis
Age differences between the MCI patients and controls were
computed using the Wilcoxon ranked sum test, and sex
differences were calculated using the Fisher exact test.

Results

Participant Characteristics
We collected fitness tracker data from 12 patients with MCI or
early AD and 8 age-matched controls between 2 clinic visits
(as described in the Methods section; Figure 1).

Figure 1. Illustration of data collection over a period of ~1 month, followed by a machine learning classifier to detect mild cognitive impairment (MCI).

After removing partial activity days (for more information, see
the Methods section), a total of 530 tracked heart rate days
(MCI: mean 25.6, SD 10.1 days; control: mean 27.9, SD 8.5
days), 510 activity days (MCI: mean 24.4, SD 10 days; control:
mean 27.1, SD 8.2 days), and 499 sleep days or nights (MCI:
mean 23.6, SD 8.8 days; control: mean 27, SD 9 days or nights;
Figure S2 in Multimedia Appendix 1) remained. One MCI

patient returned their fitness tracker early (Figure S2 in
Multimedia Appendix 1).

The average age of the patients in the MCI group was higher
by 1.3 years than the control group’s age (Table 1), but the
difference was not statistically significant (P=.6). Additionally,
55% (11/20) of all the participants were women. However,
significantly more women were recruited to the control group
than to the MCI group (P=.03; Table 1).
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Table 1. Demographic characteristics of the recruited patients to wear the fitness tracker (all participants were White).

Age (years), mean (SD)Women, nParticipants, nGroup

71.8 (7.3)412Mild cognitive impairment

70.5 (5.7)78Controls

Predicting MCI Status
We tested models for predicting MCI status that considered 2
types of processing the data: a model that aggregated the daily
data per participant and a model that classified individual daily
records (see the Methods section). We also tested the effect of
using different combinations of data modalities from the 3
groups of measures—sleep, physical activity, and heart rate.

In the aggregation model, we chose to use CatBoost as the
preliminary model because it outperformed other algorithms
on our aggregation data, while SVM was chosen in the daily
model due to its superior performance in daily data.

Regarding the aggregation model, different machine learning
algorithms obtained the top accuracy for some data modality

combinations of activity, heart rate, and sleep data (Tables S3
and S4 in Multimedia Appendix 1). However, the CatBoost
algorithm was the most consistent algorithm at achieving high
accuracy across combinations of modalities and across different
cross-validation schemes.

The classification performance of different combinations of
data modalities is displayed in Table 2. Adding data modalities
increases the accuracy of the algorithm, and the combination
of physical activity, heart rate, and main sleep achieved perfect
separation (AUC=1.0; Table 2; Figure 2; Figure S3 in
Multimedia Appendix 1). The combination of physical activity,
heart rate, and naps also achieved good separation between MCI
and controls (AUC=0.94; Table 2); however, it included only
15 participants (15/20, 75%: 11 MCI and 4 controls) that had
taken any nap during the time they wore the fitness tracker.

Table 2. Performance of classifiers differentiating between patients with mild cognitive impairment and controls using different combinations of data
modalities captured by fitness trackers for an aggregated data model.

AUC of the LOOCVcAUCa of the repeated 5-fold CVb, meanImportant features selected, nData

0.580.7615Activities

0.820.8210Activities + heart rate

0.770.8115Main sleep

0.860.916Napsd

0.840.8715Activities + main sleep

0.930.9711Activities + napsd

1.01.015Activities + heart rate + main sleep

0.880.9413Activities + heart rate + napsd

aAUC: area under the curve.
bCV: cross-validation.
cLOOCV: leave-one-out cross-validation.
dClassification of 15 participants (11 MCI and 4 controls) who had recorded naps within the time window.
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Figure 2. Receiver operating characteristic curve for 5-fold cross-validation of the CatBoost classifier; different curves correspond to different
combinations of data modalities captured by fitness trackers. AUC: area under the curve.

As a corollary question, we were interested in knowing the
minimal number of days that a fitness tracker needed to be worn
in order to obtain sufficient performance from the models. Using

the same models described before, we observed that, after only
11 days of wearing it, the classification performance surpassed
an AUC of 0.90 (Figure 3).

Figure 3. The machine learning model performance (area under the curve [AUC]) as a function of the maximal number of days recorded from fitness
trackers for each participant in (A) 5-fold cross-validation and (B) leave one out cross-validation.

Regarding the daily model, we evaluated the accuracy of
classifiers when classifying each day and taking the majority
vote per participant (see the Methods section). The daily models
performed worse than the aggregation models (Table S5 in
Multimedia Appendix 1). Specifically for naps, many
participants who had any naps had fewer than 3 days on which
these naps occurred, contributing to much lower performance
in daily combination compared with the aggregation data sets.

Features Predictive of MCI Status
The selected features predictive of MCI status differed between
different data modalities.

Aggregated Model
The aggregated model included 15 selected features related to
sleep (deep sleep minutes), heart rate (resting heart rate and
cardio, fat burn, and peak heart rate zones), and physical activity
(light active minutes and distance; Figure 4; Table S6 in
Multimedia Appendix 1). When considering naps instead of
main sleep (including only 15 participants who had naps; see
the Methods section), we found 13 top features, including more
features from physical activity and fewer features from heart
rate (Table S6 in Multimedia Appendix 1). Notably, most of
the top features from heart rate and physical activity data types
were different when we replaced main sleep with naps, but
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lightly active physical activity minutes and distance and heart
rate zone cardio time were common to the set of top features

from the 2 data modalities.

Figure 4. Top features captured from fitness trackers and used in the model to differentiate between mild cognitive impairment cases and healthy
controls using aggregated daily data. SHAP: Shapley Additive Explanations.

Daily Model
The top performing daily data features included 13 top-selected
features from sleep (eg, average of light sleep and REM
minutes), heart rate (resting heart rate and several heart rate
zones), and physical activity (calories expended and lightly
active minutes; Table S7 in Multimedia Appendix 1). In contrast
to the aggregated model, the models using main sleep and naps
shared multiple features, including physical activity light and
very active activities; calories out; and several heart rate zones,
including resting heart rate and cardio, fat burn, and out-of-range
zones.

Discussion

Principal Findings
In this pilot study, we recruited and tracked 20 MCI and healthy
control participants using fitness trackers for a typical time of
2 weeks to 4 weeks in order to test the ability of the data
captured by the fitness tracker to predict MCI status. We tested
the use of features from physical activity, sleep, and heart rate
measurements and trained a machine learning classifier to
predict MCI status, obtaining perfect separation in predicting
MCI status (AUC=1.0) when all the data types were combined.
We compared 2 models with different engineered features: a
model that classifies MCI status based on aggregated daily data
for each participant and a model that classified individual days
and determined MCI status based on a majority of days
classified as MCI or control. We found that the model
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aggregating all days into a set of variables per participant
performed better than when classifying each day in a daily
model.

The top features identified in the aggregated model agree with
those in previously published studies. The majority of the top
features were related to heart rate zones, including peak, cardio,
and fat burn zones. A systematic review of HRV and cognitive
function suggested that HRV is considered a promising early
biomarker of cognitive impairment in populations without
dementia or stroke [42]. Furthermore, HRV was suggested as
a marker of self-regulatory processes in neurodegenerative
conditions [43]. The association between higher HRV and better
cognitive performance was also confirmed in a multi‐ethnic
cohort of aging adults [44] and across groups of different fitness
levels [45,46]. In addition to heart rate zones, another top heart
feature is variability of resting heart rate. A higher resting heart
rate has been associated with an increased risk of cognitive
decline [47-49].

The top physical activity features were light physical activity
(distance and time). Several studies have established the
relationship between light physical activity and risk for
dementia. Increased physical activity level, including a low
amount of light-intensity physical activity, has been associated
with a reduced risk of dementia [50], and increasing light
physical activity helps to maintain cognitive function among
community-dwelling older adults [51]. Additionally, light
activity as low as 10 minutes per day measured through
accelerometers was previously shown to be associated with
better cognitive function, while light physical activity performed
≥3 hours per day could be a protective factor for maintaining
cognitive function in older adults [52,53].

Finally, the top feature associated with sleep was the average
length of deep sleep. A comparison of Fitbit’s deep sleep stage
with EEG signals found that it aligns with the N3 stage of the
NREM sleep stage [54]. There is interest around the role of N3
sleep in dementia given its pivotal role in memory consolidation,
but evidence about this association is still limited [55]. One
study that focused only on patients with obstructive sleep apnea
found that a shortened N3 stage of sleep led to declarative
memory deficit [56].

Although all but 1 MCI participant had occasional naps, only
one-half of the controls had naps. Focusing only on the
participants who had naps, we obtained good performance,
suggesting that information about naps could be important for
identifying MCI status, where the length of the nap is one of
the selected predictors. Previous reports on the associations
between naps and cognitive function were inconclusive. No
association was found between napping and cognitive decline
in a meta-analysis of observational studies conducted with
healthy individuals [57], and there was only a modest causal
association between habitual daytime napping and larger total
brain volume [58]. However, afternoon napping was related to
better cognitive function in the aging Chinese population [59].
This has been related to higher levels of inflammatory markers
that may induce cognitive impairment [60] and may disrupt
circadian rhythms at the time of day of best coordination and
fastest reaction time [61].

A major concern we had with this older adult population was
whether they would continuously wear the fitness tracker and
keep it charged. Fortunately, all participants except 1 who
returned it early wore and charged their fitness tracker for the
full term. When alerts were received that their battery was low,
a research coordinator contacted the participant or their caregiver
to remind them to recharge it.

Limitations
Our study has 3 major limitations. The primary limitation of
our pilot study is our small sample size and the limited racial
diversity in our population. We attempted to address potential
biases between the patients with MCI and controls by including
couples, who were both age-matched but also had similar daily
schedules. Although our selected features agree with established
risk factors for cognitive impairment, the sample size may lead
to 2 limitations, including the “curse of dimensionality,” where
the number of features exceeds the number of samples, and
co-linearity between different data types. For example, when a
specific heart zone is elevated on a specific day, other zones
will correspondingly be lower on the same day. We attempted
to address the “curse of dimensionality” by having an
independent step of feature selection that selected features that
appear in more than 1 fold. A result of the sample size is limited
generalizability. In order to generalize our MCI prediction
models, larger and more diverse populations are needed to
establish their use in the general population.

A second limitation is possible selection bias. Several potential
participants declined to participate because they already had a
fitness tracker or a smartwatch. It is possible that the population
who already uses this technology are different in relevant
physical activity traits than the population we recruited.

Finally, our clinical study may have interfering comorbidities
and medications that may affect sleep; for example, 3 patients
with MCI had sleep apnea and were taking medications that
may affect sleep such as donepezil, rivastigmine, sertraline,
escitalopram, melatonin, duloxetine, and gabapentin. Some of
these medications, such as antidepressants (sertraline,
escitalopram, and duloxetine) and gabapentin, have been
reported to affect deep sleep, which is our prominent sleep
feature [62-65], while the rest primarily influence only the REM
stage [66-73].

Conclusions
Our pilot study demonstrates the use of fitness trackers for
determining MCI status. This study is intriguing in that it
suggests that it may be possible to use an inexpensive,
convenient digital biomarker applied serially to achieve the
critical goal of detecting MCI due to AD pathology as early as
possible because that is when new disease-modifying therapies
have the greatest efficacy. Clearly, more study is necessary to
ascertain the sensitivity and specificity of this digital biomarker.
Another important goal of this study is to continue to follow
these and other participants to learn more about ongoing digital
biomarker measurements as they relate to future cognitive
decline.
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PET: positron emission tomography
REM: rapid eye movement
SHAP: Shapley Additive Explanations
SVM: Support Vector Machines
UTHealth: University of Texas Health Science Center at Houston
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