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Abstract

Background: Prolonged improper posture can lead to forward head posture (FHP), causing headaches, impaired respiratory
function, and fatigue. This is especially relevant in sedentary scenarios, where individuals often maintain static postures for
extended periods—a significant part of daily life for many. The development of a system capable of detecting FHP is crucial, as
it would not only alert users to correct their posture but also serve the broader goal of contributing to public health by preventing
the progression of chronic injuries associated with this condition. However, despite significant advancements in estimating human
poses from standard 2D images, most computational pose models do not include measurements of the craniovertebral angle,
which involves the C7 vertebra, crucial for diagnosing FHP.

Objective: Accurate diagnosis of FHP typically requires dedicated devices, such as clinical postural assessments or specialized
imaging equipment, but their use is impractical for continuous, real-time monitoring in everyday settings. Therefore, developing
an accessible, efficient method for regular posture assessment that can be easily integrated into daily activities, providing real-time
feedback, and promoting corrective action, is necessary.

Methods: The system sequentially estimates 2D and 3D human anatomical key points from a provided 2D image, using the
Detectron2D and VideoPose3D algorithms, respectively. It then uses a graph convolutional network (GCN), explicitly crafted
to analyze the spatial configuration and alignment of the upper body’s anatomical key points in 3D space. This GCN aims to
implicitly learn the intricate relationship between the estimated 3D key points and the correct posture, specifically to identify
FHP.

Results: The test accuracy was 78.27% when inputs included all joints corresponding to the upper body key points. The GCN
model demonstrated slightly superior balanced performance across classes with an F1-score (macro) of 77.54%, compared to the
baseline feedforward neural network (FFNN) model’s 75.88%. Specifically, the GCN model showed a more balanced precision
and recall between the classes, suggesting its potential for better generalization in FHP detection across diverse postures. Meanwhile,
the baseline FFNN model demonstrates a higher precision for FHP cases but at the cost of lower recall, indicating that while it
is more accurate in confirming FHP when detected, it misses a significant number of actual FHP instances. This assertion is
further substantiated by the examination of the latent feature space using t-distributed stochastic neighbor embedding, where the
GCN model presented an isotropic distribution, unlike the FFNN model, which showed an anisotropic distribution.
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Conclusions: Based on 2D image input using 3D human pose estimation joint inputs, it was found that it is possible to learn
FHP-related features using the proposed GCN-based network to develop a posture correction system. We conclude the paper by
addressing the limitations of our current system and proposing potential avenues for future work in this area.

(JMIR Form Res 2024;8:e55476) doi: 10.2196/55476
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Introduction

Improper posture is not merely a cosmetic concern but a health
issue that can precipitate chronic conditions, significantly
diminishing quality of life. Additionally, the treatment
necessitates consistent rehabilitation exercises, leading to
significant commitments in terms of time and financial
resources. Forward head posture (FHP), characterized by the
head jutting forward and shoulders rounding, is a prevalent
consequence of modern lifestyles that involve extended periods
of using laptops, mobile devices, or driving. Achieving optimal
posture—where the spine maintains a neutral alignment with
the gravitational line passing through the acromion and
tragus—ensures stability and good postural health [1].
Deviations from this alignment, as seen in FHP, can place undue
stress on the cervical spine. This can lead to persistent neck
pain and headaches [2] and may escalate to issues such as gait
disturbances, chronic fatigue, digestive disorders, and lumbar
disk herniation [3,4]. FHP is also associated with increased
activation in the thoracic and salivary muscles, angular and
transcriptional changes in muscles, and a decrease in forced
lung capacity [5]. Furthermore, it is linked to cervical
radiculopathy, cervicogenic headaches, and dizziness [6-8].

Given the severity and widespread prevalence of FHP, the
absence of an effective, robust posture monitoring system for
various real-world conditions is alarming [9]. This emphasizes
the necessity for preventative strategies, highlighting the urgency
in creating a system capable of detecting FHP, correcting
improper posture, and ultimately preventing the onset and
progression of chronic conditions. Efforts to prevent FHP have
included discussions on reliable and accessible measuring
equipment and methods for assessing body posture. Researchers
have explored various approaches such as radiographic image
analysis [10] and physical measurements with medical
instruments [11-13]. More specifically, a recent study introduced
a novel wearable device to measure FHP, using a magnetometer
and a permanent magnet for precise head posture calibration,
which, when combined with accelerometer data and processed
through machine learning algorithms, demonstrates high
accuracy in assessing neck angles and determining FHP risk
levels [12]. In their follow-up work, another recent study
introduced a method for simultaneous detection of common
posture issues, including FHP, using a novel combination of
sensors and deep learning algorithms, achieving high accuracy
in classifying these postural disorders [13]. In a recent study,
researchers introduced a convolutional neural network system
that demonstrated high accuracy in automated identification of
anatomical landmarks in petrous temporal bone cone-beam

computed tomography scans, achieving 0.958 in axial slices
and 0.924 in coronal slices with statistical significance (P<.001)
[14]. While these methods have proven reliable, they are limited
by the need for specialized medical equipment and expert
involvement, making them impractical for routine detection of
injury risk in everyday life.

Meanwhile, advancements in computer vision technologies
have significantly enhanced capabilities in real-time image
processing and 3D human pose estimation from single images
[15]. Leveraging this technological progress, we aim to propose
a digital health care system designed to prevent chronic neck
injuries by detecting FHP through advanced 3D human pose
estimation techniques.

Our system initiates with a preprocessing stage in which a 2D
red, green, and blue (RGB) image is input and analyzed to infer
the corresponding 3D human poses via the VideoPose3D
algorithm [16]. Central to the prediction process is a deep neural
network tailored to harness the 3D joint coordinates along with
their interconnectivity to accurately identify FHP.

To assess the effectiveness of our method, we conducted a series
of experiments using a public data set containing 2D images
depicting users in various sitting postures. The outcomes of
these experiments confirm the viability of our approach,
illustrating that a single 2D image can provide significant
insights into a user’s posture by estimating their 3D pose. The
primary contributions of our work are 2-fold: first, we
formulated an FHP detection system using recent computational
techniques and developed a graph convolutional network
(GCN)–based robust algorithm specifically designed to
recognize FHP from 3D human posture estimated from 2D
images. Second, through our comprehensive experimental
validation, we established the reliability and accuracy of our
method in a real-world context.

The implications of our approach extend beyond individual
health benefits to broader public health advancements. By
enabling early detection and intervention for FHP with our
proposed system, we contribute to alleviating a widespread
public health concern. This establishes our system not only as
a tool for personal health management but also as a valuable
component in efforts to enhance public health impacts related
to posture-induced conditions.

Methods

Ethical Considerations
This study uses publicly available data sourced from the
StateFarm data set [17], the “Don’t be a Turtle” project [18],
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and various digital photos and videos from platforms such as
YouTube. The use of human photography in this research was
approved by the institutional review board of Sungkyunkwan
University (SKKU 2023-03-011). No identifiable personal data
were used in this study.

Proposed Approach

Overview
This paper presents a system designed to detect FHP using
advanced deep learning techniques, aiming to enable early
identification and management of postural irregularities,

contributing to enhanced overall posture health and the
prevention of related chronic conditions. In pursuit of this, we
used Detectron2 [19] and VideoPose3D [16] for estimating 3D
skeletal data from single 2D image inputs. Following this, the
acquired data underwent preprocessing to enhance the
classification accuracy of our deep-learning model. Figure 1
illustrates the foundational pipeline of our proposed method,
which starts with a single RGB image input, followed by
successive 2D and 3D key point estimation and preprocessing
steps, and concludes with the classification phase. During the
training phase, the data set was used for supervised learning to
train the deep learning model.

Figure 1. The base pipeline of the proposed method. The system first estimates the 2D key points, followed by the estimation of the 3D key points.
These key points are then preprocessed by normalizing their scale and orientation. Finally, the normalized key points are used for classifying the posture
to determine the presence of a forward head posture.

Definition of FHP
In this paper, the definition of factors contributing to the risk
of FHP is established based on multiple previous studies
[3,10,12,20-32]. FHP is defined as a condition where the tragus
is positioned anterior to the acromion. Conversely, a normal
posture is characterized by the tragus being nearly aligned with
the acromion. We established these criteria and had them
cross-validated by 2 physical therapists (Bo Yeon Park and
Dong Hyeon Park, from the Department of Physical Therapy,
Namseoul University, Cheonan, Korea).

Throughout this paper, postures with a higher risk of leading
to FHP are categorized as “FHP,” while those with a lower risk
are categorized as “Normal.”

3D Human Pose Estimation Using VideoPose3D
We used the VideoPose3D model [16] for estimating 3D human
poses from single RGB images. Using a fully convolutional
architecture with dilated temporal convolutions, VideoPose3D
integrates 2D key points across multiple views and timeframes,

enhancing the accuracy and robustness of 3D reconstructions
by overcoming the limitations of single-view occlusions. In
supervised settings, this model has outperformed previous
benchmarks, achieving an 11% improvement in mean per-joint
position error on the Human3.6M data set [33] showing
significant advancements on the HumanEva-I data set [34].
Particularly in semisupervised scenarios with limited labeled
data, VideoPose3D surpasses existing state-of-the-art methods.

3D Coordinates System
VideoPose3D estimates 3D human joint key points, capturing
kinematic information across 17 key points originally defined
by the Human3.6M data set [33], as depicted in Figure 2 [16,35].
The 3D coordinates are defined along the x-, y-, and z-axes,
with each coordinate value normalized within a range of –1.0
to 1.0. In this system, the x-axis corresponds to depth, the y-axis
to width, and the z-axis to height as shown in Figure 2 [16,35].

We applied the normalization techniques for 3D human poses,
thereby enhancing the model’s resilience to variations in viewing
direction.

Figure 2. Skeletal model illustrating the 17 key anatomical points as identified by the VideoPose3D algorithm, numbered from 0 to 16 [16,35]. The
red lines and dots denote key points on the right side of the body, highlighting the model’s ability to capture the complexity of human anatomy for pose
estimation. Note that the skeleton is drawn such that the vector originating from the pelvis (#0) to the left hip (#4) is aligned with the y-axis of the
coordinate system for visualization purposes.
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Performance Evaluation
We used test accuracy as a performance measure of the proposed
recognition task. Accuracy is defined as the ratio of samples
that the model predicts to correspond to the data labeling values
among the total number of samples, which is expressed as
follows:

The F1-score is used to evaluate the classification performance
of each class, which is defined as the harmonic average of the
precision and recall, as follows:

To evaluate all classes evenly, regardless of the proportion of
each class c, we used the unweighted mean of per-class
F1-scores, macro average, Fm, which is defined by the following
formula:

Experiment

Data Collection and Preprocessing
For this study, we mainly used the publicly available StateFarm
data set [17], which comprises images of 26 individuals. Each
image has a resolution of 640 by 480 pixels and is in a 3-channel
(RGB) format. The data set was originally curated to classify
the level of drivers’ attention in 10 different scenarios: safe
driving (c0), texting with the right hand (c1), talking on the
phone with the right hand (c2), texting with the left hand (c3),
talking on the phone with the left hand (c4), operating the radio
(c5), drinking (c6), looking behind (c7), doing hair and makeup
(c8), and talking to a passenger (c9). In our research, we have
adapted this data set to assess the risk of FHP. To ensure the
accuracy of our reclassification, we engaged in a detailed
cross-validation process with the help of 2 physical therapists
(Bo Yeon Park and Dong Hyeon Park, from the Department of
Physical Therapy, Namseoul University, Cheonan, Korea).
These experts, specializing in neurological rehabilitation, manual
therapy, and pain management, practice at university hospitals,
also known as tertiary medical institutions. Their expertise in
posture assessment was crucial for identifying FHP,
characterized by the contraction of the upper cervical region,
leading to disrupted body alignment. To enrich our data set, we
also incorporated additional images from a public pose
repository [18] and extracted data sets from publicly accessible
digital photos and videos including YouTube. This effort yielded
a total of 2387 samples, with 1528 samples classified as
“normal” and 859 samples classified as “FHP.” Specifically,

we included 1220 “normal” samples and 310 “FHP” samples
from the StateFarm data set [17].

To extract the 3D pose, we initially estimated 2D joint key
points using Detectron2 [19]. Following this, we used
Videopose3D [16] to estimate the 3D human pose. This 2-step
process involves accurately detecting the position of key
anatomical points on the human body in a 2D plane using
Detectron2, a powerful tool for object detection and key point
estimation. After obtaining these 2D key points, Videopose3D,
a specialized model for 3D pose estimation from video data, is
used to infer the 3D structure and position of the human body.
In this study, the mean time taken to infer 2D joint key points
using Detectron2 was 0.6170 (SD 0.0193) seconds for each
image. Additionally, the process of inferring 3D joints from
these 2D key points required an average of 44.1 (SD 3.35)
milliseconds per sample.

Distribution of Rounded Shoulder Angles
Measuring the craniovertebral angle (CVA) is essential in
detecting FHP. However, accurately gauging the 3D position
of the C7 vertebra, a key component for calculating CVA, is
challenging with current methodologies without dedicated
equipment. This limitation restricts the practicality of such
measurements in everyday settings.

Additionally, 3D pose estimation models, such as Videopose3D,
which estimates 3D human pose from a single 2D image, lack
a direct method for estimating the CVA. This is because they
are trained to identify general human anatomical landmarks,
such as shoulders, elbows, and knees, without specifically
accounting for the CVA. Therefore, rather than directly
measuring the CVA, we initially calculated several feasible
measures, including the shoulder angle, noting that FHP arises
when spinal neutral alignment is compromised. To explore the
patterns within the measured shoulder angles, we analyzed the
distributions in the data set using kernel density estimation plots.
These plots offer a visual interpretation of how the shoulder
angles are distributed according to posture type—FHP or
normal—as depicted in Figure 3.

Contrary to our expectations, distinguishing FHP from normal
posture solely based on these distributions proved to be
nontrivial, as there is a significant overlap in the data as shown
in Figure 3. This overlap suggests that while the shoulder angle
is a relevant factor, it may not be sufficient on its own to identify
FHP with high confidence. As depicted in Figure 4, which
presents a comparison of 2 postures with their spines aligned
for clearer visualization, it becomes evident that the use of
shoulder angles alone for the detection of FHP is not sufficient.
The figure underscores the complexity of posture analysis,
suggesting the need for a more comprehensive feature set
capable of capturing the subtleties of spinal alignment beyond
the shoulder angle alone. Accordingly, we used a neural network
as an advanced function approximator to effectively identify
FHP using predicted 3D human poses.
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Figure 3. KDE plot illustrating the distribution of the shoulder angle for samples labeled as normal (blue line) and those labeled as FHP (red line)
within the classified data set. The overlap in these distributions highlights the challenge of distinguishing between the 2 categories based solely on the
shoulder angle, emphasizing the complexity involved in identifying FHP using only this measurement. FHP: forward head posture; KDE: kernel density
estimation.

Figure 4. Visualization of 2 postures with their spines aligned for comparison. The posture indicative of FHP is depicted in red, whereas the normal
posture is shown in black. This visual comparison highlights that in the FHP posture, the shoulders are rounded and shifted forward compared to the
normal, more vertically aligned posture. FHP: forward head posture.

Input Data
Considering that upper body joints remain visible and can be
accurately estimated while sitting, we incorporated all upper
body joints as inputs for our system. Furthermore, we explored
various feature combinations to determine the optimal set for
our objectives, as summarized in Table 1.

Figure 5 presents examples of the upper-body poses used for
training our model. Out of the 17 available joints, we selected

13 that represent the upper body, as the lower body is typically
obscured during sedentary activities.

To account for the connectivity information between joints,
such as from the pelvis to the left or right hip and spine joints
but not from the pelvis to the right or left hand, we designed a
graph-based neural network. This is further detailed in the
following section.

Table 1. Features used in this study.

Joint regionInput joints (original index)Data dimension

All upper body joints0, 1, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1639
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Figure 5. Illustrations of extracted upper-body poses for model training. (A) driving, (B) texting while walking, and (C) viewing a tablet screen.

Machine Learning Algorithm
For this study, we used a GCN, explicitly crafted to analyze the
spatial configuration and alignment of the upper body’s
anatomical key points in 3D space. This GCN aims to implicitly
learn the intricate relationship between the estimated 3D key
points and the correct posture, specifically to identify FHP.
Figure 6 shows the adjacency matrix, which shows the structural
connections between human anatomical joints used in this study.
For example, the first line of the matrix can be translated into
[0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], meaning the pelvis
is connected to the left or right hips and spine.

The GCN used in this study consists of 2 graph convolutional
layers, each followed by dropout for regularization. After graph
convolutions, the high-level features are flattened and passed
through a dense layer before the final classification layer, which
outputs the probabilities for the given number of classes. This

architecture is designed to exploit the graph structure data for
classification tasks. To optimize our model, we conducted
hyperparameter tuning for the dropout rate via GridSearchCV,
ensuring optimal model performance. For training, we used a
batch size of 16 to ensure efficient and effective learning. As a
baseline algorithm, we adopted a conventional feedforward
neural network (FFNN), a type of neural network architecture
where information moves strictly in a forward direction—from
the input nodes, through the hidden layers, to the output nodes.
We trained our model using the Adam optimizer and categorical
cross entropy as the loss function, which is appropriate for our
class classification tasks where labels are provided in a one-hot
encoded format. The model’s performance was evaluated based
on its accuracy metric, allowing us to assess how well the model
predicts the correct posture category for a given input image.
For training, validating, and testing the model, we split the data
using a 3-way split ratio of 70% (training), 15% (validation),
and 15% (test).

Figure 6. Adjacency matrix representing structural connections between human anatomical joints for FHP detection. Black squares denote direct
connections used in the GCN, such as those from the pelvis to the hips and spine, indicated by the filled cells in the first row corresponding to the
connections (0, 1), (0, 2), and (0, 3). Here, indices are reassigned from 0 to 12, differing from the original definition as shown in Figure 5. FHP: forward
head posture; GCN: graph convolutional network.

Results

Figure 7 shows the confusion matrices for the proposed GCN
and the baseline model, while Table 2 provides more detailed
classification results on the test data set.

We explored the high-dimensional feature space learned by our
models using t-distributed stochastic neighbor embedding
(t-SNE), a technique that reduces the dimensionality of data
while preserving the relative distances between points [36]. In
these t-SNE plots, each point corresponds to a 2D representation
derived from the original 64-dimensional feature space, which
is the output from the penultimate layer of our GCN and the
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FFNN, respectively. The process of t-SNE projection allows us
to visualize the clustering and separation of data points, which
indicates how well the network has learned to distinguish
between different classes. t-SNE plots reveal the clustering and

separation in the model’s learned feature space, indicating the
network’s ability to discriminate between classes and its
potential for generalization (Figure 8).

Figure 7. Confusion matrices for different training conditions. Matrix (A) shows the classification results for the proposed graph convolutional neural
network. Matrix (B) presents the results from the baseline model for comparison.

Table 2. Classification results on the test data set.

FFNNb (%)GCNa (%)Metrics or model

77.1481.99Precision (class 0)

88.7381.22Recall (class 0)

82.5381.60F1-score (class 0)

78.9572.97Precision (class 1)

61.6473.97Recall (class 1)

69.2373.47F1-score (class 1)

77.7278.27Overall accuracy

75.8877.54F1-score (macro, )

aGCN: graph convolutional network.
bFFNN: feedforward neural network.
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Figure 8. t-SNE plots of the test data set. Each point represents a 3D pose, colored according to its class as inferred by the model. Panel (A) presents
the GCN model, which demonstrates more dispersed clustering. Panel (B) showcases the FFNN model, characterized by highly condensed clusters.
This indicates that the GCN model is capturing a nuanced separation between classes, which could potentially generalize well to new, unseen data
although the FFNN model shows clearer class separation to the given data. FFNN: feedforward neural network; t-SNE: t-distributed stochastic neighbor
embedding.

Discussion

Classification Performance
The GCN model exhibits a more balanced performance between
classes compared to the FFNN model. For class 0 (Normal),
the GCN model achieves a precision of 81.99% and a recall of
81.22%, closely mirroring its performance for class 1 (FHP)
with a precision of 72.97% and a recall of 73.97%. This
balanced accuracy suggests the GCN model is effective in
distinguishing both classes with similar proficiency.

In contrast, the FFNN model shows a higher disparity in its
performance between the 2 classes. It has a higher precision
(78.95%) for class 1 compared to the GCN model but at the
cost of a significantly lower recall (61.64%), indicating it misses
a considerable number of actual FHP cases. This may arise from
the FFNN model’s tendency to make fewer false positive
predictions at the expense of increased false negatives,
suggesting it is more conservative in predicting FHP cases. For
class 0, the FFNN model’s recall is higher (88.73%) than its
precision, suggesting it is more reliable in identifying normal
posture but with a tendency to incorrectly classify FHP as

normal. In short, the FFNN model demonstrates a trade-off
where it is more cautious and thus precise in identifying FHP
cases but sacrifices the ability to recall all actual FHP instances.
This results in more missed detections of FHP while being more
accurate in confirming normal postures.

Overall, while the accuracy of both models is similar (GCN:
78.27%; FFNN: 77.72%), the GCN model offers a more
balanced and equitable classification across classes, indicating
a slightly better generalization ability to different types of
postures. The FFNN model, although slightly lower in overall
accuracy, demonstrates strength in identifying normal posture
but struggles with reliably detecting FHP cases.

Learned Feature Space
The t-SNE plot from the GCN model shows a more dispersed
clustering, with the 2 classes (Normal and FHP) displaying
some degree of overlap but also areas of distinct grouping. This
suggests the GCN model is learning a nuanced separation
between classes that could generalize well to unseen data.

In contrast, the t-SNE plot from the FFNN presents highly
condensed clusters, indicating that while the model distinguishes
very well between the 2 classes on the training data, it might
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be too tailored to the specifics of that data, potentially leading
to overfitting.

From the comparison of the ratio of the first two eigenvalues
between the two models, we can infer the degree of anisotropy
present in the data. The GCN model, with a ratio of 0.4986,
suggests a more isotropic distribution, indicating that the data
points in high dimensional feature space spread more evenly
across the principal components. In contrast, the FFNN model,
with a significantly lower ratio of 0.2251, implies a more
anisotropic distribution, where the learned features from the
data are predominantly stretched along the first few principal
components. This difference highlights the GCN model’s ability
to capture a more balanced representation of the data, suggesting
the potential for better generalization across varied data sets.

Limitations and Future Work
This study introduced a novel approach to detect FHP by
leveraging 3D human pose data extracted from single RGB
images. While we successfully used pose estimation to
determine the 3D positions of joints and used neural network
analysis to distinguish between FHP and normal postures, our
methodology faces certain limitations.

The validation of our model against a known data set may not
fully encapsulate the wide range of postural variability present
in real-world scenarios. This challenge is further exacerbated

by potential biases within the data set and the lack of a
comprehensive collection of diverse postures, limiting the
model’s training scope. One approach to overcome this
limitation involves the acquisition of a more varied set of bad
postures. However, the ethical and practical challenges of
encouraging participants to adopt incorrect postures intentionally
make this solution less viable. An alternative strategy to enhance
data set diversity without compromising ethical standards
involves the use of artificial intelligence–generated images to
simulate a wide range of bad postures. Such a technique would
enable the expansion of our data set with postures that are
underrepresented or particularly challenging to classify, thereby
improving the model’s robustness and accuracy. Figure 9
demonstrates the extracted 2D and 3D human poses using
Detectron2 [19] and Videopose3D [16], respectively. The
extensive application of artificial intelligence–generated images
to augment our data set presents a promising avenue for future
research, potentially offering a comprehensive solution to the
limitations currently faced.

In summary, while our current method marks a significant step
forward in FHP detection, future work will focus on addressing
these limitations by exploring innovative ways to enrich our
data set and enhance model training. This will involve not only
the inclusion of a wider array of postures but also the continued
refinement of our neural network model to adapt to the nuanced
complexities of human posture classification.

Figure 9. An example of pose estimation of an AI-generated image using Detectron2 and Videopose3D. This image was created using an AI-based
image generation tool. The tool, powered by OpenAI’s DALL-E, uses text descriptions to produce detailed images. Note that the vector extending from
the pelvis (#0) to the spine (#7) aligns with the z-axis in the coordinate system for visualization purposes. The broad use of AI-generated images to
enhance our data set opens a promising path for future research, potentially providing a comprehensive solution to the current limitations. AI: artificial
intelligence.
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Conclusions
FHP can result from various factors including misalignment of
seating ergonomics, habitual body mechanics, prolonged use
of electronic devices, or a general lack of postural awareness.
The occurrence of FHP is notably prevalent during sedentary
activities, highlighting the need for a practical system capable
of detecting FHP to enhance postural awareness among users.
Recognizing the challenges associated with obtaining precise
measurements of the CVA—a crucial landmark for FHP
diagnosis—without specialized equipment, this study aims to
develop an accessible machine learning solution. We propose
a neural network-based model that leverages the spatial
relationships of 13 key upper body joints to accurately identify
FHP. To validate our approach, we trained the model using data

collected from multiple publicly available sources. Experimental
results demonstrated that the GCN-based approach outperformed
the baseline model in terms of FHP detection, particularly in
achieving a higher recall for FHP cases. The t-SNE visualization
for the GCN model reveals a broader dispersion of clusters,
where the categories (Normal and FHP) exhibit overlapping to
a certain extent alongside clearly segregated groupings,
indicating that the GCN model is effectively distinguishing
between the classes in a manner that may offer good
generalizability to new, unseen data sets.

In future work, we aim to broaden the application of our
approach to various real-world contexts, such as enhancing
office ergonomics, where continuous monitoring of posture is
crucial.
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CVA: craniovertebral angle
FFNN: feedforward neural network
FHP: forward head posture
GCN: graph convolutional network
RGB: red, green, and blue
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