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Abstract

Background: Medical staff often conduct assessments, such as food intake and nutrient sufficiency ratios, to accurately evaluate
patients’ food consumption. However, visual estimations to measure food intake are difficult to perform with numerous patients.
Hence, the clinical environment requires a simple and accurate method to measure dietary intake.

Objective: This study aims to develop a food intake estimation system through an artificial intelligence (AI) model to estimate
leftover food. The accuracy of the AI’s estimation was compared with that of visual estimation for liquid foods served to hospitalized
patients.

Methods: The estimations were evaluated by a dietitian who looked at the food photo (image visual estimation) and visual
measurement evaluation was carried out by a nurse who looked directly at the food (direct visual estimation) based on actual
measurements. In total, 300 dishes of liquid food (100 dishes of thin rice gruel, 100 of vegetable soup, 31 of fermented milk, and
18, 12, 13, and 26 of peach, grape, orange, and mixed juices, respectively) were used. The root-mean-square error (RMSE) and

coefficient of determination (R2) were used as metrics to determine the accuracy of the evaluation process. Corresponding t tests
and Spearman rank correlation coefficients were used to verify the accuracy of the measurements by each estimation method
with the weighing method.

Results: The RMSE obtained by the AI estimation approach was 8.12 for energy. This tended to be smaller and larger than that
obtained by the image visual estimation approach (8.49) and direct visual estimation approach (4.34), respectively. In addition,

the R2 value for the AI estimation tended to be larger and smaller than the image and direct visual estimations, respectively. There
was no difference between the AI estimation (mean 71.7, SD 23.9 kcal, P=.82) and actual values with the weighing method.
However, the mean nutrient intake from the image visual estimation (mean 75.5, SD 23.2 kcal, P<.001) and direct visual estimation
(mean 73.1, SD 26.4 kcal, P=.007) were significantly different from the actual values. Spearman rank correlation coefficients
were high for energy (ρ=0.89-0.97), protein (ρ=0.94-0.97), fat (ρ=0.91-0.94), and carbohydrate (ρ=0.89-0.97).

Conclusions: The measurement from the food intake estimation system by an AI-based model to estimate leftover liquid food
intake in patients showed a high correlation with the actual values with the weighing method. Furthermore, it also showed a
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higher accuracy than the image visual estimation. The errors of the AI estimation method were within the acceptable range of
the weighing method, which indicated that the AI-based food intake estimation system could be applied in clinical environments.
However, its lower accuracy than that of direct visual estimation was still an issue.

(JMIR Form Res 2024;8:e55218) doi: 10.2196/55218
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Introduction

Background
Inadequate diet and nutritional intake are causes of malnutrition
[1]. Food intake is the primary criterion for assessing
malnutrition among patients [2]. Medical staff often conduct
surveys, such as food intake and nutrient sufficiency ratios, to
accurately assess patients’ food intake. Typical methods for
measuring food intake include weighing and visual estimation.
Although weighing foods before and after consumption is the
most accurate method, it is burdensome for the measurer [3].
In the visual estimation method, nurses, caregivers, and other
medical staff estimate and record food intake through direct
observation. However, this is difficult with numerous patients.
Visual estimation is popular as it is significantly associated with
the weighing method and is a valid assessment [4]. However,
only some patients measure their food intake [5]. Nursing staff
failed to record 44% (220/503) of meals correctly when they
used a food intake chart to record all the meals consumed by
patients [6]. Therefore, other methods may be useful for
recording food intake in hospitals, such as confirming and
recording the amount of food intake as determined by the
patient’s visual estimation [7]. However, this method does not
provide an accurate measurement as the visual estimation
method may not be precise if performed without training [8,9].
These factors make food intake measurement both complicated
and inaccurate in some clinical environments.

As a solution, various mobile apps have been developed to
record food intake and manage calorie and nutrient intake from
meals [10]. In particular, systems that managed daily food intake
and recommended personalized meals and recipes were useful
for weight loss [11]. However, nutrition management
applications that require manually inputting meal contents to
calculate calorie and nutrient intake demonstrated accuracy
issues, such as varying intakes between applications [12,13]
and significant underestimation of energy intake [14]. Therefore,
these systems should be further improved for use in clinical
settings. In addition, some applications introduced artificial
intelligence (AI), such as estimating calories from food images
[15]. However, AI cannot accurately manage the amount of
food a patient actually consumes as it shows the result of the
entire intake. Therefore, we developed an AI model to estimate
leftover liquid food in hospitals through a convolutional neural
network and aimed to achieve further accurate measurements.
The mean absolute error (MAE) from this AI estimation was
0.85, which was significantly smaller than 1.03 (P=.009) in the

visual estimation of the food images by the dietitians. This
indicates an error of 8.5% with the weighing method. The high
accuracy of this AI model was indicated as measurements in
clinical settings should have an error margin of less than 10%
when using the weighing method [16]. However, this evaluation
was based on images of hospital liquid food captured by a
camera.

Objective
We evaluated the accuracy of the AI estimates for liquid foods
actually served to hospitalized patients. We built a system that
could manage the food intake of multiple patients admitted to
a hospital through our AI model to estimate leftover food. A
system that can automatically and accurately determine patients’
food intake by photographing and uploading liquid food after
a meal through mobile devices can increase accessibility for
medical staff.

Methods

Construction of a Food Intake Estimation System by
an AI Model to Estimate Leftover Food
The food intake estimation system (Figure 1) matched the
photographed foods with a menu preregistered by the
administrator. Menu information is obtained from the dietitian
and registered in this system. Users took a picture of the food
after a meal through their mobile devices and uploaded the
image to the food intake estimation system server. The system
is designed to upload images according to each individual’s
meal menu. The AI analyzed the data from the uploaded image
to determine the area, name, and leftover food. In addition, the
determined contents were displayed on the screen. We used our
previously developed AI model to estimate leftover food [16].
The AI model comprises 2 parts: an object-detection part that
identifies the positions of multiple dishes on a tray and extracts
their regions from a single liquid food image and a
leftover-estimation part that classifies the names of liquid foods
associated with the detected objects and estimates the amount
of leftover liquid food (Figure 2). The leftover estimation is a
task that comprises classifying leftover liquid food on an
11-point scale (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, 90%, and 100%). A convolutional neural network analyzed
the liquid food images. Data transmission from mobile devices
to the server was through the internet. Furthermore, the
encryption used transport-layer security. The system is encrypted
and authenticated using TLS1.2 ECDHE_RSA with P-256 and
AES_128_GCM.
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Figure 1. Overview of food intake estimation system.

Figure 2. Artificial intelligence model to estimate leftover liquid food.

Dataset for Training
We trained the AI using our previously developed dataset, with
additional training on images where 5% or less of the entire
amount was ingested [16]. The liquid food menu consisted of
a staple food, 2 side dishes, packaged beverage, and seasonings.
Table 1 lists the types of dishes and a number of images used
for AI training. The images consisted of a combination of

portions created to include 0%, 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, and a state with no leftovers of each
liquid food. An annotation tool (visual object tagging tool) was
used to label the area, name, and leftover food on the tray.
Furthermore, the image was divided into separate pictures for
each dish. Liquid food images were taken under various lighting
conditions for breakfast, lunch, and dinner on multiple dates
and times.
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Table 1. Types of dishes and number of images used for artificial intelligence training.

Training images, nType of food and liquid food name

576Staple food: thin rice gruel

Side dishes 1

144Japanese clear soup

432Vegetable soup

144Miso soup

66Red miso soup

Side dishes 2

84Fermented milk

84Peach juice

84Grape juice

84Orange juice

78Mixed juice

78Fruit mix

Packaged beverage

576Milk

66Milk for toddlers

66Apple juice for toddlers

66Orange juice for toddlers

66Additive-free vegetable juice

576Seasoning: salt

Dataset for Evaluation
A total of 100 liquid foods provided to patients in 2 wards of
Tokushima University Hospital between November 2020 and
March 2021 were measured. For each dish, three types of
measurements were performed: (1) image analysis evaluation
of the food photo by an AI model through a picture after the
meal (AI estimation), (2) visual measurement evaluation by a
dietitian who looked at the same photo (image visual
estimation), and (3) visual measurement evaluation by a nurse
who looked directly at the food (direct visual estimation), and
measurement by weighing. Figure 3 shows an image of a

patient’s liquid food after their meal that was measured. The
liquid food menu comprised a combination of staple food, side
dishes 1, side dishes 2, packaged beverages, and seasonings.
The lunch menus served during the study period were measured:
staple food, thin rice gruel; side dish 1, vegetable soup; and side
dish 2, fermented milk or peach, grape, orange, or mixed juice.
Table 2 presents the types of dishes and number of liquid foods
measured, and Table 3 presents the nutrients. Packaged
beverages and seasonings were excluded as it was difficult to
measure them through visual estimation. The operation is
designed so that meals are not provided in advance when leaving
the hospital or going out.
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Figure 3. Example of liquid food image after the meal of a patient measured.

Table 2. Types of dishes and number of liquid foods measured.

Measuring images, nType of food and liquid food name

100Staple food: thin rice gruel

100Side dish 1: vegetable soup

Side dish 2

31Fermented milk

18Peach juice

12Grape juice

13Orange juice

26Mixed juice

Table 3. Nutrients in liquid foods.

Carbohydrate (g)Fat (g)Protein (g)Energy (kcal)Liquid food name

7.00.10.532Thin rice gruel

0.500.13Vegetable soup

10.500.342Fermented milk

13.00.10.147Peach juice

13.00.10.147Grape juice

12.60.10.146Orange juice

13.700.566Mixed juice

Measurement of Food Intake

Estimation Methods
The estimation method was rated on an 11-point scale as nurses
usually measured food intake on an 11-point scale (0%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%).

The AI estimation used food images photographed by the
researcher on a tablet device (NEC LAVIE Tab E 8FHD1
camera resolution: 4160×3120, 72 dpi) after the nurse measured

the food by direct visual estimation. The food images were
resized from 4160×3120 to 960×720 as image preprocessing
for AI image analysis. The AI model analyzed the food images
uploaded to the food intake estimation system to estimate
leftover food. Furthermore, the leftover amount was displayed
on an 11-point scale. The amount of total food minus leftovers
was calculated as the patient’s food intake.

The image visual estimation was performed by a dietitian, who
visually estimated the food images photographed by the
researcher. Processes of visual estimation were selected based
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on the medical staff’s routine work. Dietitians did not evaluate
food intake as part of their routine work, but their nutritional
assessment was performed in a usual clinical setting. Food intake
was measured on an 11-point scale using the same food images
photographed in the AI estimation. The measurements were
recorded by the dietitian, who was informed of the study’s
purpose and instructed on how to complete the measurement
form in advance.

Direct visual estimation was performed by a nurse, who visually
estimated the trays after the meals. The nurse collected the tray
and immediately measured it on an 11-point scale. The nurse
was also informed of the study’s purpose and instructed on how

to complete the form in advance. Nurses routinely estimate food
intake during their work.

Weighing Method
Data obtained from the hospital food provider’s information
were used as the premeal weight, and the amount of liquid food
provided was predetermined. Weighing measurements were
performed on a digital scale (TANITA, 1458; maximum
capacity: 1000 g, minimum display: 1 g, precision: ± 2 g) and
recorded on an entry form by 2 researchers after the nurses
performed the direct visual estimation. Food intake was
calculated as the difference in weight before and after meals.
The actual intake measured once using the weighing method
was converted to an 11-point scale (Table 4).

Table 4. The converted values of actual measurement of food intake.

Food intakeConverted value

Ingesting 5% or less of the entire amount.0

Ingesting between 5% and 15% of the entire amount.1

Ingesting between 15% and 25% of the entire amount.2

Ingesting between 25% and 35% of the entire amount.3

Ingesting between 35% and 45% of the entire amount.4

Ingesting between 45% and 55% of the entire amount.5

Ingesting between 55% and 65% of the entire amount.6

Ingesting between 65% and 75% of the entire amount.7

Ingesting between 75% and 85% of the entire amount.8

Ingesting between 85% and 95% of the entire amount.9

Ingesting 95% or more of the entire amount.10

Accuracy Evaluation
The actual values from the weighing method were compared
with estimates from the AI, image visuals, and direct visual
estimations, as well as errors and distributions from each method
for the staple food thin rice gruel, side dish 1 vegetable soup,
and side dish 2 fermented milk or peach, grape, orange, and
mixed juice. Corresponding t tests and Spearman rank
correlation coefficients were used to verify the accuracy of the
measurements through each estimation method. Nutrient intakes
calculated from each estimation and weighing method were
compared. Nutrient intake was calculated by multiplying the
amount of nutrients in the menu items provided by the converted
value of food intake. Bland-Altman plots were used to examine
the differences between the estimated and actual values.
Furthermore, the limits of agreement were calculated as the
mean difference SD 1.96. In addition, the root-mean-square

error (RMSE) and coefficient of determination (R2) were used
as evaluation indicators to validate the measurement errors from
the AI, image visual, and direct visual estimations [17,18]. The
RMSE was a useful metric to develop AI models in which large
errors were undesirable as it was weighted against large errors
by squaring and averaging them. A smaller value indicates a
smaller error and higher accuracy. The RMSE was calculated
as follows:

Here, x represents the estimated value (AI estimation, image
visual estimation, direct visual estimation), and y represents the
actual value (weighing method).

The R2 indicated the insignificance of the error compared with
that of a model that always returned the average of the measured

values. The closer this value is to 1, the higher its accuracy. R2

was calculated as follows:

Mean error (ME) was used to determine whether the intake was
overestimated or underestimated for each dish. ME was
calculated as follows:
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Here, m represents the converted estimated value of food intake,
and l represents the converted actual value of food intake. The
Friedman test was used to compare the mean differences in
converted values of actual measurement of food intake by dish
and estimation method to examine the errors between estimation
methods that differed by dish. Finally, the MAE and a confusion
matrix table of the estimated and actual values were created to
evaluate the distribution of the absolute errors in the converted
values for the actual measurement of food intake. It analyzed
which intake of errors would be higher or the number of errors
would be more frequent. The MAE was calculated as follows:

All statistical analyses were performed using SPSS Statistics
(version 24; IBM Corp). P<.05 was deemed significant.

Ethical Considerations
This study was approved by the Clinical Research Ethics
Committee of Tokushima University Hospital (#3758).

Results

Image visual estimations were performed by 6 dietitians from
Tokushima University Hospital. Direct visual estimations were
performed by 9 nurses from the University of Tokushima
Hospital. Thin rice gruel as a staple food, vegetable soup, and
fermented milk or peach, grape, orange, or mixed juices were
evaluated. Table 5 presents the number of dishes by converted
values of actual measurement of food intake. Table 6 presents
summarized results regarding energy intake. There was no
difference between the AI estimation and actual values.
Spearman rank correlation coefficients were high with
(ρ=0.89-0.97, P<.001). The AI estimation RMSE was smaller
than the RMSE for image visual estimations, and the AI

estimation R2 was higher than the R2 for image visual
estimations.

Table 5. Number of dishes (N=300) by converted values of actual measurement of food intake (average food intake rate=84.7%).

Number of dishes, n （%）Converted values of actual measurement of food intake

23 （7.7）0

6 （2）1

3 （1）2

2 （0.7）3

9 （3）4

6 （2）5

6 （2）6

6 （2）7

3 （1）8

6 （2）9

230 （76.7）10

Table 6. The key results for energy intake.

Direct visual estimationImage visual estimationAIa estimation

73.1 (26.4)75.5 (23.2)71.7 (23.9)Mean (SD) kcal

.007<.001.82P valueb

0.970.940.89ρc

4.348.498.12RMSEd

0.970.870.88R2

aAI: artificial intelligence.
bDifference between the mean of each estimated and actual measured value using a paired t test.
cSpearman rank correlation coefficient.
dRMSE: root-mean-square error.
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Differences Between the Estimated and Actual
Measured Values
Table 7 presents the estimated and actual measured mean
nutrient intakes by the measurement method and their
correlations. The mean nutrient intakes from the image and
direct visual estimations were significantly different from those
of the actual values. However, there was no difference between
the AI estimation and actual values. Spearman rank correlation
coefficients were high for all energy, protein, fat, and
carbohydrate (ρ=0.89-0.97, P<.001). Correlation values for the
AI estimation method were high (ρ=0.89-0.94); however, the
direct visual estimation method generally showed higher
correlations. Regarding the limits of agreement from the

Bland-Altman plot, energy was AI estimation (–16.1 to 15.7
kcal), image visual estimation (–11.5 to 18.7 kcal), and direct
visual estimation (–7.1 to 9.4 kcal); protein was AI estimation
(–174.9 to 153.7 mg), image visual estimation (–124.0 to 203.2
mg), and direct visual estimation (–93.7 to 126.7 mg); fat content
was AI estimation (–29.8 to 27.4 mg), image visual estimation
(–24.2 to 39.4 mg), and direct visual estimation (–20.0 to 25.6
mg); and carbohydrate content was AI estimation (–3.8 to 3.8
g), image visual estimation (–2.8 to 4.5 g), and direct visual
estimation (–1.6 to 2.2 g; Figure 4). All estimated values were
highly correlated with the measured values. However, the limits
of agreement for the Bland-Altman plots were wider for the AI
and image visual estimation than for the direct visual estimation,
and the agreement with the measured values was lower.

Table 7. Mean nutrient intake and Spearman rank correlation coefficient (ρ) between each estimated and actual measured value of nutrient intake.

Estimated valueMeasured value

Direct visual estimationImage visual estimationAIa estimation

Energy (kcal)

73.1 (26.4)75.5 (23.2)71.7 (23.9)71.9 (26.2)Mean (SD) (kcal)

.007<.001.82—cP valueb

0.970.940.89—ρd

<.001<.001<.001—P valuee

Protein (mg)

739.7 (300.9)762.8 (274.6)712.6 (288.7)723.2 (302.3)Mean (SD) (mg)

.004<.001.21—P valueb

0.970.940.94—ρc

<.001<.001<.001—P valued

Fat (mg)

118.9 (59.1)123.7 (55.6)114.9 (56.7)116.1 (59.5)Mean (SD) (mg)

.019<.001.41—P valueb

0.940.920.91—ρc

<.001<.001<.001—P valued

Carbohydrate (g)

17.5 (6.2)18.0 (5.4)17.2 (5.5)17.2 (6.1)Mean (SD) (g)

.01<.001.93—P valueb

0.970.960.89—ρc

<.001<.001<.001—P valued

aAI: artificial intelligence
bDifference between the mean of each estimated and actual measured value using a paired t test.
cNot applicable.
dSpearman rank correlation coefficient.
eSignificance of correlation coefficients between each estimated and measured value using Spearman rank correlation coefficient.
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Figure 4. Bland-Altman analysis of the differences between each estimated and measured value of nutrient intakes.

Differences Between Estimated Error Values
The RMSE for the AI estimation tended to be smaller and larger
than those for image visual and direct visual estimations,

respectively (Table 8). The coefficient of determination R2 for
the AI estimation tended to be larger and smaller than those for
image visual and direct visual estimations, respectively. In

particular, the accuracy of orange juice by image visual
estimation showed lower values (Table 9). The ME in the
converted values of actual measurement of food intake by dish
and measurement method were significant for the AI estimation
and image visual estimation for staple thin rice gruel and side
dish 1: vegetable soup. However, it was not significant for the
other ME (Table 10).

Table 8. Differences between the actual measured values by nutrient and measurement method.

Direct visual estimationImage visual estimationAIa estimation

R 2RMSER 2RMSER 2RMSEb

0.974.340.878.490.888.12Energy

0.9658.60.8992.40.9184.5Protein

0.9612.00.9017.90.9314.6Fat

0.971.000.862.060.881.95Carbohydrate

aAI: artificial intelligence.
bRMSE: root-mean-squared error.
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Table 9. Differences between the actual measured values by nutrient, dish, and measurement method.

Direct visual estimationImage visual estimationAIa estimation

R 2RMSER 2RMSER 2RMSEb

Energy

0.993.610.994.680.993.96Thin rice gruel

1.000.111.000.301.000.44Vegetable soup

1.000.600.8611.30.992.85Orange juice

1.001.380.993.180.975.94Fermented milk

0.994.380.985.000.993.64Grape juice

1.001.380.992.750.975.45Peach juice

1.001.720.935.890.858.10Mixed juice

Protein

0.9856.50.9673.20.9761.9Thin rice gruel

0.993.600.919.910.8114.7Vegetable soup

1.001.310.3224.70.976.20Orange juice

1.009.830.9922.70.9642.4Fermented milk

0.959.320.9110.60.967.75Grape juice

0.992.940.965.860.8511.6Peach juice

1.0012.80.9944.00.9860.4Mixed juice

Fat

0.8911.30.7714.60.8612.4Thin rice gruel

1.0001.0001.000Vegetable soup

1.001.310.3224.70.976.20Orange juice

1.0001.0001.000Fermented milk

0.959.320.9110.60.967.75Grape juice

0.992.940.965.860.8511.6Peach juice

1.0001.0001.000Mixed juice

Carbohydrate

1.000.791.001.021.000.87Thin rice gruel

1.000.021.000.051.000.07Vegetable soup

1.000.171.003.111.000.78Orange juice

1.000.341.000.801.001.48Fermented milk

1.001.201.001.371.001.00Grape juice

1.000.381.000.761.001.50Peach juice

1.000.411.001.411.001.93Mixed juice

aAI: artificial intelligence.
bRMSE: root-mean-squared error.
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Table 10. Mean errors in converted values of actual measurement of food intake by dish and measurement method.

Direct visual estimationImage visual estimationAIa estimationNumber of dishesLiquid food nameType of food

0.240.54b–0.22b100Thin rice gruelStaple food

–0.070.13b–0.53b100Vegetable soupSide dishes 1

00.85–0.1513Orange juiceSide dishes 2

00.19–0.0631Fermented milkSide dishes 2

–0.250.500.2512Grape juiceSide dishes 2

0.1100.2218Peach juiceSide dishes 2

0.040.230.0826Mixed juiceSide dishes 2

aAI: artificial intelligence.
bSignificant differences among the three measurement methods using the Friedman test (P<.05).

Distribution of Errors Through the Confusion Matrix
Table
In the confusion matrix table of measured and converted values
of the actual measurement of estimated food intake, the AI
estimation showed more variation in the distribution of errors
when the actual measurement was 10. Furthermore, the numbers
of errors were larger (Figure 5). The image visual estimation

also showed overall variation, and many evaluations estimated
a higher intake than the measured values. Conversely, in direct
visual estimations, the errors were small and almost consistent
with the measured values. When the actual measured value was
0, there were a few errors. However, there was considerable
variation in the distribution of errors in the AI and image visual
estimations.
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Figure 5. Confusion matrices of the measured and estimated values. AI: artificial intelligence. MAE: mean absolute error.

Discussion

Principal Findings
We examined the accuracy of food intake estimation through
an original system that used an AI-based model to estimate
leftovers for actual liquid food in a clinical setting. Our study
showed that each estimation method was highly correlated with
the weighing method based on the results that compared the
respective estimates of the AI estimation by the food intake
estimation system, image visual estimation by dietitians, and
direct visual estimation by nurses by the weighing method.
Furthermore, the AI estimation showed higher accuracy as there
was no difference between the mean of the AI estimated and
measured values. The AI estimation had an MAE of 0.61, which,
when converted on an 11-point scale, had an error rate of 6.1%.
This is more accurate than the 13.8% error reported in a previous
study [19]. Furthermore, the AI estimation tended to have a

smaller RMSE and larger coefficient of determination (R2) than
image visual estimation. However, it tended to have a larger

RMSE and smaller R2 than direct visual estimation, which

resulted in lesser accuracy. Furthermore, the limits of agreement
from the Bland-Altman plot were also wider.

This is the first study to compare an AI-estimated evaluation
of liquid food consumed by patients with an evaluation estimated
by medical staff based on actual food and food images. A
previous study on AI systems has shown that several obstacles
occur when transitioning from a research and development
environment to practical use in a clinical context [20]. The AI
estimation accuracy can have different levels of precision as it
depends heavily on the training data. If the data have the same
distribution as the training data, the AI model can make correct
decisions. However, errors in practical situations can occur
when data different from the training data are input [21].
Therefore, AI systems were significantly less accurate than
reported prediction accuracy in a clinical context [22].

The AI and dietitians measured food intake through digital
images captured from a mobile device. With the development
of mobile technology, digital images are increasingly being
used in food intake assessments [23]. Image visual estimation
was reliable as human visual estimation of digital food images
by a camera was highly correlated with the actual values
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measured by the weighing method [4,24]. Similarly, in this
study, the estimates by the AI and image visual estimations
were highly reliable as there was a high correlation with the
values measured by the weighing method.

Various criteria have been used to evaluate the performance of
AI models, including accuracy, computational speed, and
interpretability. To evaluate the accuracy, this study converted
the output to a continuous scale by averaging the classification
results of multiple classification models and compared the error
of each measurement, including the AI estimation, using the
actual value measured by the weighing method as the correct

answer. In this study, RMSE and R2 were used to evaluate the
results. For the estimation error indicator of the continuous

scale, RMSE and R2 were recommended when the prediction
performance of the same scale was evaluated and when outliers
were included, respectively [25]. Differences in the estimation
error by type of food and intake were compared by the mean
differences in the converted values of food intake and
distributions in the confusion matrix table.

The results showed that the AI estimation had larger errors than
the direct visual estimation. The reason was that the AI
estimation was approximately 20% (47/230), which is in
agreement with the measured value for the converted values of
food intake 10, which was more than 95% of the total intake.
Even when all the food was eaten, some food adhered to the
inner sides and bottom of the dish, which could be mistakenly
recognized as leftovers (eg, vegetables separated from the clear
liquid in vegetable soup). Conversely, the direct visual
estimation was in close agreement (Figure 5). Similarly, the
results of the direct visual estimation in this study and previous
studies reported that the correct rate for total intake was as high
as 93%-96.4% [26-28]. Differences in the answers were related
to the accuracy, as the average food intake rate in this study was
84.7%. Furthermore, 76.7% (230/300) of the evaluated dishes
were classified as converted values of food intake 10. Results
for the mean dietary intake rate were consistent with those of
previous studies [29]. This suggested that differences in the
percentage of correct answers for the converted values of food
intake 10 that accounted for most of the dietary intake rate were
related to the accuracy of the estimation in medical institutions.

In addition, image visual estimation had larger errors than direct
visual estimation. A reason was that the visual image estimation
showed a high degree of variability in the distribution of errors
for the converted values of food intake 0, which was less than
5% of the total intake (Figure 5). The estimation for the
converted values of food intake 0 was considered a difficult
problem as there was considerable variation in the distribution
of errors in the AI estimation; however, the direct visual
estimation was almost consistent with the measured values.
Therefore, difficulty in estimation could have been reduced by
adding other information to determine intake, such as features
not captured in the photographs that could indicate that the food
was not touched when looking at it directly.

The accuracy of intake estimation could differ based on the type
of dish and estimation method, as there was a difference in the
error between AI and image visual estimations for thin rice gruel
and vegetable soup (Table 10). The AI estimation tended to

underestimate intake and evaluated it as smaller than the
measured value. Conversely, image visual estimation tended to
overestimate intake and evaluate it as larger than the measured
value. Overestimation could have occurred as the evaluation
was performed by looking at digital images. Previous studies
reported that dietitians overestimated when they used visual
estimation methods [29].

Limitations
This study has several limitations. First, the photographed food
images were used for the AI estimation. A previous study
reported that direct visual estimation of actual food had a higher
correlation with the weighing method than the visual estimation
of food images [24]. In this study, direct visual estimation was
more accurate than AI and image visual estimations. In addition,
tablet-based food photography can be biased by differences in
distance and angle. Packaged beverages were excluded from
this study because it is difficult to evaluate leftover liquid foods
with food images. For such foods, it is necessary to consider
methods such as weighing.

Second, there was bias in the classification of the number of
evaluations, as 76.7% (230/300) of the evaluated dishes were
classified as converted values of food intake 10. Therefore, the
number of dishes evaluated may not have been sufficient to
evaluate the converted values as the number of dishes other than
those converted to values of food intake 10 was small. The
number of cases and types of dishes might be increased by
adding breakfast and dinner, as only lunch was covered in this
study.

Third, this evaluation was conducted at a single facility. The
menus and tableware for hospital liquid food served to patients
varied between facilities. The estimation accuracy and number
of study images per facility should be investigated. In addition,
solid food intake should be measured to evaluate multiple
facilities and varied menus. Solid food does not have a constant,
remaining food area, unlike liquid food. The volume of the
remaining food area must be calculated to measure the amount
of solid food remaining. Accurate measurement of food volume
has been attempted by using equipment that allows for a constant
angle of view and distance from the food image [19]. Therefore,
it is necessary to consider the development of an AI model for
solid food using such a device as the next step.

Finally, the usability of the proposed AI-based measurement
method for medical staff remains unclear. Regardless of the
system’s high accuracy, if its usability was low, it would be an
obstacle during transitioning the system to practical use in
clinical contexts [20]. For routine nutrition management, a
system that uses AI image analysis to support meal recording
has been evaluated for its simplicity and other usefulness
[30-33]. AI-based measurements require usability assessments
among medical staff in clinical environments. We are currently
developing an automated meal tray photography device to
improve usability for the measurer, and we are also planning a
usability evaluation of an AI-based system for estimating food
intake using this device.
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Conclusions
The measurement from the food intake estimation system
through an AI-based model to estimate the leftover liquid food
intake for patients showed a high correlation with the actual
values by the weighing method and higher accuracy than the
image visual estimation. However, the AI estimation was less
accurate than direct visual estimation. Therefore, its accuracy
could be further improved. We aim to improve AI accuracy by

learning from significantly different estimation data. However,
the errors of the AI estimation method were within the
acceptable range of the weighing method, which indicated that
the AI-based food intake estimation system could be applied in
clinical settings. Accurate nutritional data is difficult to obtain
because of the heavy burden on medical staff. AI-based
measurements are expected to reduce this burden and improve
nutritional management.
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