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Abstract

Background: In recent years, a range of novel smartphone-derived data streams about human mobility have become available
on a near–real-time basis. These data have been used, for example, to perform traffic forecasting and epidemic modeling. During
the COVID-19 pandemic in particular, human travel behavior has been considered a key component of epidemiological modeling
to provide more reliable estimates about the volumes of the pandemic’s importation and transmission routes, or to identify hot
spots. However, nearly universally in the literature, the representativeness of these data, how they relate to the underlying real-world
human mobility, has been overlooked. This disconnect between data and reality is especially relevant in the case of socially
disadvantaged minorities.

Objective: The objective of this study is to illustrate the nonrepresentativeness of data on human mobility and the impact of
this nonrepresentativeness on modeling dynamics of the epidemic. This study systematically evaluates how real-world travel
flows differ from census-based estimations, especially in the case of socially disadvantaged minorities, such as older adults and
women, and further measures biases introduced by this difference in epidemiological studies.

Methods: To understand the demographic composition of population movements, a nationwide mobility data set from 318
million mobile phone users in China from January 1 to February 29, 2020, was curated. Specifically, we quantified the disparity
in the population composition between actual migrations and resident composition according to census data, and shows how this
nonrepresentativeness impacts epidemiological modeling by constructing an age-structured SEIR (Susceptible-Exposed-Infected-
Recovered) model of COVID-19 transmission.

Results: We found a significant difference in the demographic composition between those who travel and the overall population.
In the population flows, 59% (n=20,067,526) of travelers are young and 36% (n=12,210,565) of them are middle-aged (P<.001),
which is completely different from the overall adult population composition of China (where 36% of individuals are young and
40% of them are middle-aged). This difference would introduce a striking bias in epidemiological studies: the estimation of
maximum daily infections differs nearly 3 times, and the peak time has a large gap of 46 days.

Conclusions: The difference between actual migrations and resident composition strongly impacts outcomes of epidemiological
forecasts, which typically assume that flows represent underlying demographics. Our findings imply that it is necessary to measure
and quantify the inherent biases related to nonrepresentativeness for accurate epidemiological surveillance and forecasting.
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Introduction

With large-scale empirical data (eg, mobile phone records, GPS
data, and location-based social network data) becoming available
with increasingly fine spatial and temporal resolution [1],
quantitative studies on individual and collective mobility
patterns have flourished in the past few years [2-6]. These
developments have offered advances with respect to
understanding migratory flows, traffic forecasting, urban
planning, and epidemic modeling [7-10]. The ongoing
COVID-19 pandemic has further intensified discussions on how
to optimally use human mobility research to support outbreak
responses and nonpharmaceutical interventions (eg, contact
tracing) [11-14].

The representativeness of data sets used to infer real-world
human mobility, however, has typically not been explicitly
incorporated in such analyses. This is potentially troubling as
representativeness is known to be especially poor for socially
disadvantaged minorities such as low-income groups, women,
children, and older people. For example, it has been confirmed
that individuals’probability of travel is not randomly or equally
distributed, and there is significant heterogeneity when
comparing the travel patterns of different demographic groups
[15-17]. For example, women are more localized than men in
their movements and visit fewer locations in regions such as
Latin America, Bangladesh, and sub-Saharan Africa [18,19].
In the specific case of epidemic outbreaks, low-income
individuals are not necessarily able to limit their exposure to a
circulating virus by reducing mobility and must continue, for
example, commuting behavior to remain employed. Thus, this
group is subject to a substantially higher probability of becoming
infected in an epidemic than higher-income groups [20]. Further,
different contact rates across age groups have been observed in
COVID-19 incidence cases [21], and higher COVID-19
infection rates among disadvantaged racial and socioeconomic
groups have been observed in multiple studies [22,23]. It has
also been argued that including information about demographic
heterogeneity in human mobility patterns, for example, by
combining demographically stratified travel data with
epidemiology research, would make epidemiological models
more robust [24].

While it is widely recognized that rich new data sources can
provide near–real-time information about human mobility [25]
and powerful input into models that estimate imported cases
using regional mobility information when modeling pathogen
transmission, the state-of-the-art models do not consider data
representativeness. This is typically because for privacy
concerns, most data sets are not disaggregated demographically.
Instead, relevant information on demographic features and social
relationships is traditionally collected by censuses and other
surveys [26-28].

As we argue below, however, simply considering the population
demographics at the origin of a trip does not represent the
traveling population.

To systematically evaluate how real-world travel flows differ
from census-based estimations, we use an aggregated and
anonymized data set collected from 318 million mobile phones.
Specifically, we quantified the disparity in the population
composition between actual migrations and resident composition
according to census data and found significant differences. We
then investigated how this nonrepresentativeness impacts
epidemiological modeling. The aim of this study is to illustrate
the nonrepresentativeness of data on human mobility and the
impact of this nonrepresentativeness on modeling dynamics of
the COVID-19 pandemic.

Methods

Data Description
In China, a total of 847 million Chinese people use mobile
phones to surf the internet, accounting for 99.1% of the total
netizens. The penetration rate of mobile phone usage among
the population aged 15-65 years is almost 100%, providing
extensive coverage and high representativeness for the national
population. To understand the demographic composition of
population movements, we collected nationwide mobility data
from 318 million mobile phone users in China from January 1
to February 29, 2020. All population flow data were aggregated
on the basis of users’ geographic locations and demographic
characteristics (eg, gender and age). To enhance extrapolation
and representation of the population, a machine learning method
was used to extrapolate the data to all users of the entire
network, which also agrees well with the official population

statistics (R2=0.98; Multimedia Appendix 1 [2,29-31]).

Epidemiological Modeling
To illustrate the impact of data nonrepresentativeness on
modeling dynamics of the COVID-19 epidemic, we constructed
an age-structured SEIR (Susceptible-Exposed-Infected-
Recovered) model of COVID-19 transmission developed by
Prem et al [32]. In fitting this age-mixing transmission model
with heterogeneous contact rates between age groups [33], the
differential age composition of traveling people and the overall
national population were input as alternative parameters. By
comparing model outputs, we measured the bias caused by the
data nonrepresentativeness of demographic composition in
forecasting epidemic dynamics.

Ethical Considerations
The study data provided by the operator were anonymized
(without personally identifying information) and aggregated at
the city level. As no individual study was carried out, no ethical
approval was required to undertake this scoping study.

Results

Demographic Heterogeneity Among Traveling
Individuals
For our analysis, we draw on a unique data set from China.
China is an ideal location to study representativeness in mobile
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phone data because of its very high smartphone penetration. In
China, the penetration rate of mobile phone usage among the
population aged 15-65 years is almost 100%, providing
extensive coverage and high representativeness for the national
population [29]. We estimate the full national mobility at the
city level by extrapolating from 318 million mobile phone users
(see Multimedia Appendix 1 [2,29-31] for details).

Our comparison reveals a marked difference between the overall
population composition and those who travel. Hereinafter, we
define “young” individuals as those in their 20s-30s,
“middle-aged” individuals as those in their 40s-50s, and “older
adults” as those older than 60 years. Specifically, we found that
the majority of population flows within China are generated by
men and young people. Although mobility behavior fluctuated
strongly across our observation period (Figures 1A and 1B) and
is affected by temporal factors such as weekdays and holidays,

the composition of travelers did not change significantly over
different periods (Figures 1C and 1D). In the population flows,
59% (n=20,067,526) of travelers are young and 36%
(n=12,210,565) of them are middle-aged (as children generally
do not have mobile phones, all ratios are calculated with minors
younger than 18 years having been excluded). This ratio is
completely different from what we observed in the overall adult
population composition of China (about 1084 million in total)
[30], where 36% (n=390 million) of individuals are young and
40% (n=430 million) of them are middle-aged. Furthermore,
daily male travelers constitute approximately 59%
(n=20,858,026) of the total number of traveling individuals,
which is greater than the overall proportion of men (51.2%,
n=721 million). Compared to men, women travel less often, but
we found that when women travel, they tend to move slightly
further than men, with 175 km traveled per person in an average
intercity trip, compared to 170 km for men (P<.001).

Figure 1. Profiles of the intercity movements extracted from mobile phone data between January 1 and February 29, 2020, in China. (A) and (B) show
the daily number of travelers for different age and gender groups; (C) and (D) show the respective ratios. Dashed horizontal lines denote the composition
of respective groups in the latest 7th census. As children generally do not have mobile phones, the proportions of young (20-39 years), middle-aged
(40-59 years), and older people (≥60 years) add up to 100%.

Bias From Data Nonrepresentativeness
Since individual mobility is the primary reason for the spatial
diffusion of an epidemic, it is important to directly explore how

the demographic heterogeneity of human migration behaviors
impacts our ability to forecast the spatial behavior of epidemics.

By fitting an age-structured transmission model [32,33], and
including differential age composition as an input parameter,
we measured the possible bias caused by the
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nonrepresentativeness of data on the traveling population in
modeling epidemic dynamics. Feeding the composition of
travelers and composition from the census data separately into
the model, we found that the predicted number of infected
individuals had a striking bias: the maximum number of daily
infections in these 2 populations differ by nearly 3 times (521
infected individuals among a total of 1 million people for the
composition of travelers and 1521 infected individuals for the
census population), and their peak time had a large gap of 46
days. Although older adults are the most susceptible population,

the 2 infection rates among older people collected from mobility
data and census data deviate strongly (Figure 2). Further, while
the predicted cumulative number of confirmed cases do
gradually stabilize late in the epidemic, the gap between the
results of the 2 models is nonnegligible (with a deviation of
around 79.5%) with respect to infection volumes. Failing to
include information about age and gender structure in real-world
human mobility is thus likely to introduce considerable biases
in epidemiological studies, especially in the early phase of an
epidemic outbreak caused by imported cases [24].

Figure 2. Dynamics of the incidence rates among different groups predicted by the age-structured model. Solid lines indicate the incidence rates of
different age groups from census data, and dashed lines indicate the incidence rates by using traveling data from mobile phones.

Discussion

By comparing mobility traces from mobile phone users to census
data, our study has highlighted a number of striking differences
in the demographic composition of those who travel with respect
to the overall population. For example, we found that 59%
(n=20,067,526) of travelers are young and 36% (n=12,210,565)
of them are middle-aged, which is completely different from
the composition of the adult population in China, where 36%
of people are young and 40% of them are middle-aged. The
travel probability and travel distance between men and women
were also significantly different. This realization is especially
important in the case of epidemic forecasting, and increased
awareness of this issue in the scientific community has the
potential to improve not only epidemiological models but also
our overall understanding of possible biases when inferring
human mobility from cell phone data and the representational
issues of mobility data. It is important to emphasize that while
China is an ideal place to study representativeness, our findings
about which fraction of individuals compose the population of
travelers are specific to China. The fraction of young,
middle-aged, old, male, and female individuals who travel is
likely to depend on a range of factors and can be expected to
be different in different countries.

Nonetheless, the realization that understanding the
representativeness of mobility data is crucial for epidemic
monitoring and forecasting is generalizable. Thus, our results
imply that when generalizing results from population mobility
analysis, these differences should be included in the analysis to
avoid potential biases caused by data nonrepresentativeness.
For example, in the case of the COVID-19 pandemic, as
travelers often have a higher probability of infection, the
transmission risk among men and youth could be a promising
focus for COVID-19 prevention.

In the recent Omicron waves, imported infections represented
the majority of cases in China, and most COVID-19–positive
individuals had a travel history to high-risk areas such as
Shanghai [34]. As presymptomatic and asymptomatic pathogen
carriers can travel to a foreign country and initiate the spread
of COVID-19 even when there is no community transmission,
human migration behaviors are promising candidates to
incorporate into epidemiological models. Our findings
emphasize that focusing on the representativeness of mobility
data is essential for more sophisticated modeling approaches to
capture key mechanisms of epidemic propagation. In future
work, we intend to further explore how to accurately quantify
the inherent biases related to data nonrepresentativeness for
accurate epidemiological surveillance and forecasting.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (grants 72025405, 72088101, 72001211, and
72301285), the National Social Science Foundation of China (grants 22ZDA102), the Hunan Science and Technology Plan Project
(grants 2020TP1013), the Natural Science Foundation of Hunan Province (grants 2024JJ6069 and 2023JJ40685), and the Innovation

JMIR Form Res 2024 | vol. 8 | e55013 | p. 4https://formative.jmir.org/2024/1/e55013
(page number not for citation purposes)

Liu et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Team Project of Colleges in Guangdong Province (grants 2020KCXTD040). P.H. was supported by JSPS KAKENHI (grants JP
21H04595).

Data Availability
Deidentified data and code used in the analysis are available upon reasonable request from the corresponding author.

Authors' Contributions
XL designed the study. CL and XL analyzed the data. CL, PH, SL, XL, and WY contributed to the interpretation of the results
and drafted the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Underrepresented data of the population flow.
[DOCX File , 984 KB-Multimedia Appendix 1]

References

1. Barbosa H, Barthelemy M, Ghoshal G, James CR, Lenormand M, Louail T, et al. Human mobility: Models and applications.
Physics Reports. Mar 2018;734:1-74. [doi: 10.1016/j.physrep.2018.01.001]

2. Tan S, Lai S, Fang F, Cao Z, Sai B, Song B, et al. Mobility in China, 2020: a tale of four phases. Natl Sci Rev. Nov
2021;8(11):nwab148. [FREE Full text] [doi: 10.1093/nsr/nwab148] [Medline: 34876997]

3. Hou X, Gao S, Li Q, Kang Y, Chen N, Chen K, et al. Intracounty modeling of COVID-19 infection with human mobility:
assessing spatial heterogeneity with business traffic, age, and race. Proc Natl Acad Sci U S A. Jun 15,
2021;118(24):e2020524118. [FREE Full text] [doi: 10.1073/pnas.2020524118] [Medline: 34049993]

4. Schlosser F, Maier BF, Jack O, Hinrichs D, Zachariae A, Brockmann D. COVID-19 lockdown induces disease-mitigating
structural changes in mobility networks. Proc Natl Acad Sci U S A. Dec 29, 2020;117(52):32883-32890. [FREE Full text]
[doi: 10.1073/pnas.2012326117] [Medline: 33273120]

5. Lu X, Tan J, Cao Z, Xiong Y, Qin S, Wang T, et al. Mobile phone-based population flow data for the COVID-19 outbreak
in Mainland China. Health Data Sci. Jun 18, 2021;2021:9796431. [FREE Full text] [doi: 10.34133/2021/9796431] [Medline:
36405355]

6. Xiong C, Hu S, Yang M, Luo W, Zhang L. Mobile device data reveal the dynamics in a positive relationship between
human mobility and COVID-19 infections. Proc Natl Acad Sci U S A. Nov 03, 2020;117(44):27087-27089. [FREE Full
text] [doi: 10.1073/pnas.2010836117] [Medline: 33060300]

7. Jia JS, Lu X, Yuan Y, Xu G, Jia J, Christakis NA. Population flow drives spatio-temporal distribution of COVID-19 in
China. Nature. Jun 29, 2020;582(7812):389-394. [doi: 10.1038/s41586-020-2284-y] [Medline: 32349120]

8. Kraemer MUG, Yang C, Gutierrez B, Wu C, Klein B, Pigott DM, Open COVID-19 Data Working Group, et al. The effect
of human mobility and control measures on the COVID-19 epidemic in China. Science. May 01, 2020;368(6490):493-497.
[FREE Full text] [doi: 10.1126/science.abb4218] [Medline: 32213647]

9. Chen P, Liu R, Aihara K, Chen L. Autoreservoir computing for multistep ahead prediction based on the spatiotemporal
information transformation. Nat Commun. Sep 11, 2020;11(1):4568. [FREE Full text] [doi: 10.1038/s41467-020-18381-0]
[Medline: 32917894]

10. Liu R, Zhong J, Hong R, Chen E, Aihara K, Chen P, et al. Predicting local COVID-19 outbreaks and infectious disease
epidemics based on landscape network entropy. Sci Bull (Beijing). Nov 30, 2021;66(22):2265-2270. [doi:
10.1016/j.scib.2021.03.022] [Medline: 36654453]

11. Oliver N, Lepri B, Sterly H, Lambiotte R, Deletaille S, De Nadai M, et al. Mobile phone data for informing public health
actions across the COVID-19 pandemic life cycle. Sci Adv. Jun 05, 2020;6(23):eabc0764. [FREE Full text] [doi:
10.1126/sciadv.abc0764] [Medline: 32548274]

12. Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, et al. Effect of non-pharmaceutical interventions to contain
COVID-19 in China. Nature. Sep 04, 2020;585(7825):410-413. [FREE Full text] [doi: 10.1038/s41586-020-2293-x]
[Medline: 32365354]

13. Xia J, Yin K, Yue Y, Li Q, Wang X, Hu D, et al. Impact of human mobility on COVID-19 transmission according to
mobility distance, location, and demographic factors in the Greater Bay Area of China: population-based study. JMIR
Public Health Surveill. Apr 26, 2023;9:e39588. [FREE Full text] [doi: 10.2196/39588] [Medline: 36848228]

14. Li Z, Li X, Porter D, Zhang J, Jiang Y, Olatosi B, et al. Monitoring the spatial spread of COVID-19 and effectiveness of
control measures through human movement data: proposal for a predictive model using big data analytics. JMIR Res Protoc.
Dec 18, 2020;9(12):e24432. [FREE Full text] [doi: 10.2196/24432] [Medline: 33301418]

JMIR Form Res 2024 | vol. 8 | e55013 | p. 5https://formative.jmir.org/2024/1/e55013
(page number not for citation purposes)

Liu et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v8i1e55013_app1.docx&filename=e596d4a96b89217ca14408ca221e9901.docx
https://jmir.org/api/download?alt_name=formative_v8i1e55013_app1.docx&filename=e596d4a96b89217ca14408ca221e9901.docx
http://dx.doi.org/10.1016/j.physrep.2018.01.001
https://europepmc.org/abstract/MED/34876997
http://dx.doi.org/10.1093/nsr/nwab148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34876997&dopt=Abstract
https://europepmc.org/abstract/MED/34049993
http://dx.doi.org/10.1073/pnas.2020524118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34049993&dopt=Abstract
https://www.pnas.org/doi/abs/10.1073/pnas.2012326117?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1073/pnas.2012326117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33273120&dopt=Abstract
https://spj.science.org/doi/10.34133/2021/9796431?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.34133/2021/9796431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36405355&dopt=Abstract
https://www.pnas.org/doi/abs/10.1073/pnas.2010836117?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
https://www.pnas.org/doi/abs/10.1073/pnas.2010836117?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1073/pnas.2010836117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33060300&dopt=Abstract
http://dx.doi.org/10.1038/s41586-020-2284-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32349120&dopt=Abstract
https://europepmc.org/abstract/MED/32213647
http://dx.doi.org/10.1126/science.abb4218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32213647&dopt=Abstract
https://doi.org/10.1038/s41467-020-18381-0
http://dx.doi.org/10.1038/s41467-020-18381-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32917894&dopt=Abstract
http://dx.doi.org/10.1016/j.scib.2021.03.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36654453&dopt=Abstract
https://www.science.org/doi/abs/10.1126/sciadv.abc0764?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1126/sciadv.abc0764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32548274&dopt=Abstract
https://europepmc.org/abstract/MED/32365354
http://dx.doi.org/10.1038/s41586-020-2293-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32365354&dopt=Abstract
https://publichealth.jmir.org/2023//e39588/
http://dx.doi.org/10.2196/39588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36848228&dopt=Abstract
https://www.researchprotocols.org/2020/12/e24432/
http://dx.doi.org/10.2196/24432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33301418&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


15. Adhikari S, Pantaleo NP, Feldman JM, Ogedegbe O, Thorpe L, Troxel AB. Assessment of community-level disparities in
coronavirus disease 2019 (COVID-19) infections and deaths in large US metropolitan areas. JAMA Netw Open. Jul 01,
2020;3(7):e2016938. [FREE Full text] [doi: 10.1001/jamanetworkopen.2020.16938] [Medline: 32721027]

16. Bavel JJV, Baicker K, Boggio PS, Capraro V, Cichocka A, Cikara M, et al. Using social and behavioural science to support
COVID-19 pandemic response. Nat Hum Behav. May 30, 2020;4(5):460-471. [doi: 10.1038/s41562-020-0884-z] [Medline:
32355299]

17. Weill JA, Stigler M, Deschenes O, Springborn MR. Social distancing responses to COVID-19 emergency declarations
strongly differentiated by income. Proc Natl Acad Sci U S A. Aug 18, 2020;117(33):19658-19660. [FREE Full text] [doi:
10.1073/pnas.2009412117] [Medline: 32727905]

18. Grantz KH, Meredith HR, Cummings DAT, Metcalf CJE, Grenfell BT, Giles JR, et al. The use of mobile phone data to
inform analysis of COVID-19 pandemic epidemiology. Nat Commun. Sep 30, 2020;11(1):4961. [FREE Full text] [doi:
10.1038/s41467-020-18190-5] [Medline: 32999287]

19. Sinha I, Sayeed AA, Uddin D, Wesolowski A, Zaman SI, Faiz MA, et al. Mapping the travel patterns of people with malaria
in Bangladesh. BMC Med. Mar 04, 2020;18(1):45. [FREE Full text] [doi: 10.1186/s12916-020-1512-5] [Medline: 32127002]

20. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, et al. Mobility network models of COVID-19 explain
inequities and inform reopening. Nature. Jan 10, 2021;589(7840):82-87. [doi: 10.1038/s41586-020-2923-3] [Medline:
33171481]

21. Davies NG, Klepac P, Liu Y, Prem K, Jit M, CMMID COVID-19 working group, et al. Age-dependent effects in the
transmission and control of COVID-19 epidemics. Nat Med. Aug 16, 2020;26(8):1205-1211. [doi:
10.1038/s41591-020-0962-9] [Medline: 32546824]

22. Pareek M, Bangash MN, Pareek N, Pan D, Sze S, Minhas JS, et al. Ethnicity and COVID-19: an urgent public health
research priority. Lancet. May 2020;395(10234):1421-1422. [doi: 10.1016/s0140-6736(20)30922-3]

23. Chowkwanyun M, Reed AL. Racial health disparities and Covid-19 — caution and context. N Engl J Med. Jul 16,
2020;383(3):201-203. [doi: 10.1056/nejmp2012910]

24. Buckee C, Noor A, Sattenspiel L. Thinking clearly about social aspects of infectious disease transmission. Nature. Jul 30,
2021;595(7866):205-213. [doi: 10.1038/s41586-021-03694-x] [Medline: 34194045]

25. Buckee CO, Balsari S, Chan J, Crosas M, Dominici F, Gasser U, et al. Aggregated mobility data could help fight COVID-19.
Science. Apr 10, 2020;368(6487):145-146. [doi: 10.1126/science.abb8021] [Medline: 32205458]

26. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant to the
spread of infectious diseases. PLoS Med. Mar 25, 2008;5(3):e74. [FREE Full text] [doi: 10.1371/journal.pmed.0050074]
[Medline: 18366252]

27. Karaca-Mandic P, Georgiou A, Sen S. Assessment of COVID-19 hospitalizations by race/ethnicity in 12 states. JAMA
Intern Med. Jan 01, 2021;181(1):131-134. [FREE Full text] [doi: 10.1001/jamainternmed.2020.3857] [Medline: 32804192]

28. Rubin D, Huang J, Fisher BT, Gasparrini A, Tam V, Song L, et al. Association of social distancing, population density,
and temperature with the instantaneous reproduction number of SARS-CoV-2 in counties across the United States. JAMA
Netw Open. Jul 01, 2020;3(7):e2016099. [FREE Full text] [doi: 10.1001/jamanetworkopen.2020.16099] [Medline: 32701162]

29. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of control strategies to reduce social
mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health. May
2020;5(5):e261-e270. [doi: 10.1016/s2468-2667(20)30073-6]

30. Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the dynamics of the
COVID-19 outbreak in China. Science. Jun 26, 2020;368(6498):1481-1486. [FREE Full text] [doi: 10.1126/science.abb8001]
[Medline: 32350060]

31. Baidu. URL: https://qianxi.baidu.com/#/ [accessed 2024-05-24]
32. Number of mobile cell phone subscriptions in China from December 2020 to December 2023. Statista. URL: https://www.

statista.com/statistics/278204/china-mobile-users-by-month/, [accessed 2022-06-02]
33. The seventh national census data from national bureau of statistics in China. National Bureau of Statistics. URL: http:/

/www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818823.html, [accessed 2022-05-12]
34. Zhang J, Tan S, Peng C, Xu X, Wang M, Lu W, et al. Heterogeneous changes in mobility in response to the SARS-CoV-2

Omicron BA.2 outbreak in Shanghai. Proc Natl Acad Sci U S A. Oct 17, 2023;120(42):e2306710120. [FREE Full text]
[doi: 10.1073/pnas.2306710120] [Medline: 37824525]

Abbreviations
SEIR: Susceptible-Exposed-Infected-Recovered

JMIR Form Res 2024 | vol. 8 | e55013 | p. 6https://formative.jmir.org/2024/1/e55013
(page number not for citation purposes)

Liu et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/32721027
http://dx.doi.org/10.1001/jamanetworkopen.2020.16938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32721027&dopt=Abstract
http://dx.doi.org/10.1038/s41562-020-0884-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32355299&dopt=Abstract
https://www.pnas.org/doi/abs/10.1073/pnas.2009412117?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1073/pnas.2009412117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32727905&dopt=Abstract
https://doi.org/10.1038/s41467-020-18190-5
http://dx.doi.org/10.1038/s41467-020-18190-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32999287&dopt=Abstract
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-1512-5
http://dx.doi.org/10.1186/s12916-020-1512-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32127002&dopt=Abstract
http://dx.doi.org/10.1038/s41586-020-2923-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33171481&dopt=Abstract
http://dx.doi.org/10.1038/s41591-020-0962-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32546824&dopt=Abstract
http://dx.doi.org/10.1016/s0140-6736(20)30922-3
http://dx.doi.org/10.1056/nejmp2012910
http://dx.doi.org/10.1038/s41586-021-03694-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34194045&dopt=Abstract
http://dx.doi.org/10.1126/science.abb8021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32205458&dopt=Abstract
https://dx.plos.org/10.1371/journal.pmed.0050074
http://dx.doi.org/10.1371/journal.pmed.0050074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18366252&dopt=Abstract
https://europepmc.org/abstract/MED/32804192
http://dx.doi.org/10.1001/jamainternmed.2020.3857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32804192&dopt=Abstract
https://europepmc.org/abstract/MED/32701162
http://dx.doi.org/10.1001/jamanetworkopen.2020.16099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32701162&dopt=Abstract
http://dx.doi.org/10.1016/s2468-2667(20)30073-6
https://europepmc.org/abstract/MED/32350060
http://dx.doi.org/10.1126/science.abb8001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32350060&dopt=Abstract
https://qianxi.baidu.com/#/
https://www.statista.com/statistics/278204/china-mobile-users-by-month/,
https://www.statista.com/statistics/278204/china-mobile-users-by-month/,
http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818823.html,
http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818823.html,
https://www.pnas.org/doi/abs/10.1073/pnas.2306710120?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1073/pnas.2306710120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37824525&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by LCM Lau; submitted 05.12.23; peer-reviewed by Y Su, R Liu; comments to author 21.02.24; revised version received
31.03.24; accepted 19.04.24; published 28.06.24

Please cite as:
Liu C, Holme P, Lehmann S, Yang W, Lu X
Nonrepresentativeness of Human Mobility Data and its Impact on Modeling Dynamics of the COVID-19 Pandemic: Systematic
Evaluation
JMIR Form Res 2024;8:e55013
URL: https://formative.jmir.org/2024/1/e55013
doi: 10.2196/55013
PMID:

©Chuchu Liu, Petter Holme, Sune Lehmann, Wenchuan Yang, Xin Lu. Originally published in JMIR Formative Research
(https://formative.jmir.org), 28.06.2024. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete
bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license
information must be included.

JMIR Form Res 2024 | vol. 8 | e55013 | p. 7https://formative.jmir.org/2024/1/e55013
(page number not for citation purposes)

Liu et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://formative.jmir.org/2024/1/e55013
http://dx.doi.org/10.2196/55013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

