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Abstract

Background: Short sleep and obstructive sleep apnea are underrecognized strains on the public health infrastructure. In the
United States, over 35% of adults report short sleep and more than 80% of individuals with obstructive sleep apnea remain
undiagnosed. The associations between inadequate sleep and cardiometabolic disease risk factors have garnered increased attention.
However, challenges persist in modeling sleep-associated cardiometabolic disease risk factors.

Objective: This study aimed to report early findings from the Short Sleep Undermines Cardiometabolic Health-Public Health
Observational study (SLUMBRx-PONS).

Methods: Data for the SLUMBRx-PONS study were collected cross-sectionally and longitudinally from a nonclinical, rural
community sample (n=47) in the southeast United States. Measures included 7 consecutive nights of wrist-based actigraphy (eg,
mean of 7 consecutive nights of total sleep time [TST7N]), 1 night of sleep apnea home testing (eg, apnea-hypopnea index [AHI]),
and a cross-sectional clinical sample of anthropometric (eg, BMI), cardiovascular (eg, blood pressure), and blood-based biomarkers
(eg, triglycerides and glucose). Correlational analyses and regression models assessed the relationships between the cardiometabolic
disease risk factors and the sleep indices (eg, TST7N and AHI). Linear regression models were constructed to examine associations
between significant cardiometabolic indices of TST7N (model 1) and AHI (model 2).

Results: Correlational assessment in model 1 identified significant associations between TST7N and AHI (r=–0.45, P=.004),
BMI (r=–0.38, P=.02), systolic blood pressure (r=0.40, P=.01), and diastolic blood pressure (r=0.32, P=.049). Pertaining to model
1, composite measures of AHI, BMI, systolic blood pressure, and diastolic blood pressure accounted for 25.1% of the variance

in TST7N (R2
adjusted=0.25; F2,38=7.37; P=.002). Correlational analyses in model 2 revealed significant relationships between AHI

and TST7N (r=–0.45, P<.001), BMI (r=0.71, P<.001), triglycerides (r=0.36, P=.03), and glucose (r=0.34, P=.04). Results from
model 2 found that TST7N, triglycerides, and glucose accounted for 37.6% of the variance in the composite measure of AHI and

BMI (R2
adjusted=0.38; F3,38=8.63; P<.001).

Conclusions: Results from the SLUMBRx-PONS study highlight the complex interplay between sleep-associated risk factors
for cardiometabolic disease. Early findings underscore the need for further investigations incorporating the collection of clinical,
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epidemiological, and ambulatory measures to inform public health, health promotion, and health education interventions addressing
the cardiometabolic consequences of inadequate sleep.
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Introduction

Insufficient sleep has emerged as a critical public health burden
[1,2]. More than 35% of adults in the United States identify as
short sleepers, receiving less than 7 hours of sleep per night [3].
Among this sample of short sleepers, more than half of men
and over one-third of women self-reported snoring [3], a
potential indicator of obstructive sleep apnea (OSA)—a
sleep-mediated breathing disorder characterized by 5 or more
apnea-hypopnea events per hour [4]. Short sleep and OSA are
underrecognized burdens on the public health infrastructure
[2,3]. More than 80% of individuals in the United States with
OSA remain undiagnosed [5]. Furthermore, in Western cultures,
a sufficient sleep duration of 7-9 hours of sleep each night [6]
is often perceived as a dispensable luxury, contributing to a
significant portion of short sleep being voluntary in nature [7].

A growing body of evidence [8] suggests short sleep and OSA
are associated with cardiometabolic disease risk factors
including adiposity [9], hypertension [10,11],
hypercholesterolemia [12,13], and hyperglycemia [14,15].
Studies have found that short sleep increases sympathetic
outflow to the heart, leading to increased blood pressure (BP)
[16], while OSA is linked to various cardiovascular events such
as secondary and resistant hypertension [17], ischemic heart
disease [18], stroke [19], and arrhythmias [11]. Associations
between desaturation episodes and hyperlipidemia in
OSA-affected patients have also been observed [13], and short
sleep is correlated with increased total and low-density
lipoprotein cholesterol (LDL-C) levels in nonclinical populations
[20]. Chronic intermittent hypoxia, a result of OSA, increases
the risk of glucose intolerance [14], and a single night of partial
sleep restriction can potentiate insulin resistance, even in
apparently healthy adults [7,15].

The relationship between obesity and inadequate sleep [9] has
garnered increased attention due to their overlapping prevalence
[7], potential causal relationship [21,22], and hypothesized
interaction with cardiometabolic etiology [9,23]. Proposed
mechanisms for the sleep-obesity association include
dysregulation of satiation-signaling hormones leading to
overeating [24] and daytime fatigue impeding motivation for
physical activity [9].

While progress has been made in identifying sleep-associated
risk factors for cardiometabolic disease, challenges persist
[25,26]. Epidemiological studies investigating sleep generally
rely on retrospective, cross-sectional, self-report, nonvalidated
measures [3,27], often yielding mixed results. Experimental
studies of sleep, while methodologically rigorous, frequently

recruit small sample sizes [28] and terse observation periods
[29], limiting their generalizability to naturalistic, free-living
conditions [30].

To model the relationship between sleep and cardiometabolic
disease risk factors, studies incorporating rigorous measures of
sleep collected under naturalistic conditions are required. In
line with this objective, we report preliminary findings from
the Short Sleep Undermines Cardiometabolic Health-Public
Health Observational study (SLUMBRx-PONS).
SLUMBRx-PONS was designed to encompass a broad spectrum
of clinical, epidemiological, and ambulatory measures, collected
both cross-sectionally and longitudinally.

Methods

Data Collection
The current study represents the first analysis of data collected
as part of SLUMBRx-PONS. The methods for the
SLUMBRx-PONS have been detailed elsewhere [31]. Clinical
data were collected cross-sectionally at the University of
Alabama Exercise Science Laboratory (Tuscaloosa, Alabama).
Epidemiological and ambulatory data were collected
longitudinally over a 7-night period using an internet-based,
web portal (Hypknowledge website). At the conclusion of the
7-night data collection period, participants returned to the study
location to submit unused study equipment, obtain copies of
their health data in report format, and receive a financial
incentive.

Recruitment and Consent
Participants for the study were recruited by distributing flyers
throughout the community and through research study
advertising networks established by the University of Alabama
Division of Strategic Communication (Tuscaloosa, Alabama).
An internet-based screening questionnaire was built using survey
software (Qualtrics [Silver Lake]) to determine study eligibility.
Study inclusion criteria limited enrollment to respondents who
were (1) at least 18 years of age; (2) with a permanent home
address that is located within proximity to the study site; (3)
who are currently employed; (4) that currently operate a motor
vehicle; (5) with reliable access to the internet and to a secure
PC, laptop, or tablet; (6) with a valid email address and mobile
phone number; and (7) who are committed to completing all
study activities. Health-related exclusionary study criteria
included (1) pregnancy, (2) classified as underweight (BMI<18.5

kg/m2), (3) prescription of any sleep medications, (4) continuous
positive airway pressure therapy, (5) diagnosis of heart disease,
or (6) diabetes.
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Variables

Anthropometric-Based Biomarkers
Participant body weight was measured in a fasted state to 0.05
kg using a calibrated, electronic scale (COSMED). Height was
measured to the nearest 1 mm using a stadiometer (SECA)
without shoes and with light clothing. Height (in m) and weight

(in kg) were used to calculate BMI (kg/m2) with reference ranges

categorized as (1) underweight, <18.5 kg/m2; (2) normal weight,

18.5-24.9 kg/m2; (3) overweight, 25.0-29.9 kg/m2; and (4) obese,

30.0 kg/m2.

Cardiovascular-Based Biomarkers
Systolic blood pressure (SBP) and diastolic blood pressure
(DBP) were measured in accordance with published guidelines
[32]. Briefly, the same trained clinician measured resting BP
in a seated position after a 10-minute rest period in a quiet room
using an automated device (SphygmoCor XCEL [AtCor Medical
Pty Ltd]). BP readings were measured in duplicate, with 2
minutes between readings, on the right arm, with an
appropriately sized cuff while the brachial artery was supported
at heart level. The average of 2 BP readings was considered and
used for analysis if SBP and DBP values agreed within 5 mm
Hg; up to 6 additional BP readings were obtained until
agreement was achieved (if agreement was not achieved within
6 readings, all values were averaged and used for analysis).
Resting BP was classified using the following reference ranges:
(1) normal, SBP <120 mm Hg and DBP<80 mm Hg; (2)
elevated, SBP 120-129 mm Hg and DBP<80 mm Hg; (3) stage
1 hypertension, SBP 130-139 mm Hg or DBP 80-89 mm Hg;
and (4) stage 2 hypertension, SBP≥140 mm Hg or DBP≥90 mm
Hg [32].

Blood-Based Biomarkers
Blood samples were collected from fasted participants by a
trained phlebotomist for measures of cholesterol (lipid panel)
and glucose. Samples were taken in a seated position and
analyzed immediately (Abbott Cholestech LDX Analyzer).
Lipids and glucose were expressed as mg/dL with reference
ranges categorized as (1) high-density lipoprotein cholesterol
(HDL-C), low <40 mg/dL (men), low <50 mg/dL (women); (2)
triglycerides, normal: <150 mg/dL, borderline high: 105-199
mg/dL, high: 200-499 mg/dL; (3) LDL-C, desirable: <100
mg/dL, less than desirable: 100-129 mg/dL, borderline high:
130-159 mg/dL, high: 106-189 mg/dL, very high: ≥190 mg/dL;
and (4) fasting glucose, desirable: <100 mg/dL, impaired:
100-125 mg/dL, diabetes mellitus: ≥126 mg/dL [33].

Sleep Parameters

Sleep Duration
Sleep duration was measured over 7 consecutive nights using
wrist-based actigraphy (FitBit Inspire 2 [Google]). Each
morning, participants synced the wearable device to the
standardized study web portal (Hypknowledge website). Sleep
duration was operationalized as the mean of 7 consecutive nights
of total sleep time in minutes (TST7N) and categorized as (1)
short sleep duration, TST7N<420 minutes and (2) normal sleep
duration, TST7N≥420 [6,34].

Obstructive Sleep Apnea
During their visit to the exercise physiology science laboratory,
participants were provided with a home sleep test (HST)
recording device. The first 30 participants were fitted with
ReactDx HSTs. The AccuSom HST was conducted outside of
a clinical center using an AccuSom Type III diagnostic device.
This device simultaneously recorded several parameters,
including oral and nasal airflow, chest wall motion (measured
by impedance), oxygen saturation (using a pulse oximeter),
heart rate, and snoring. The apnea-hypopnea index (AHI) values
were calculated by dividing the total number of apneas plus
hypopneas by the total monitoring time and Respiratory Event
Index (REI) values were calculated by dividing the total number
of respiratory events by the total monitoring time [35]. The
monitoring time was defined as the recorded time minus any
excluded bad data or artifacts, in accordance with the American
Academy of Sleep Medicine guidelines. As described and in
accordance with American Academy of Sleep Medicine
guidelines, the calculation of AHI is based on monitoring
duration rather than actual sleep time. The second set of
participants (n=17) were fitted with the Itamar Medical
WatchPAT ONE HST [36]. The WatchPAT ONE HST is worn
on the wrist and uses a plethysmography-based, finger-mounted
probe that measures the PAT (peripheral arterial tone) signal.
The PAT signal reflects pulsatile volume changes in the fingertip
arteries, which indicate the relative state of arterial vasomotor
activity and indirectly, the level of sympathetic activation.
Peripheral arterial vasoconstriction, which corresponds to
sympathetic activation, appears as attenuation in the PAT signal
amplitude. In addition, snoring, body position, and chest
movement signals are recorded by the integrated chest sensor.
Following the sleep study, the recordings are automatically
downloaded from the web server and analyzed using the
proprietary zzzPAT software (Itamar Medical), which calculates
respiratory parameters, including the peripheral AHI. The
peripheral AHI represents the average number of apneas
(complete pauses in breathing) and hypopneas (partial reductions
in airflow) per hour of sleep, based on peripheral arterial tone,
heart rate, oxygen saturation, and actigraphy, rather than
traditional airflow measurements [37].

Participants were instructed on device use and were provided
with contact information for device support should any issues
arise with their use of the HST. The HST raw data, in its
entirety, were reviewed and interpreted by a board-certified
sleep specialist and physician (JDG). OSA diagnosis was
determined using AHI values with reference ranges categorized
as (1) none or minimal, AHI<5; (2) mild, AHI≥5, but <15; (3)
moderate, AHI≥15, but <30; and (4) severe, AHI≥30 [38].

Statistical Analyses
A total of 2 independent researchers (APK and Josh Williams)
from the SLUMBRx-PONS laboratory team cross-checked all
data for accuracy and completeness. The significance for
statistical assessment of all results was set a priori at the .05
level. Pearson correlation coefficients (r) were calculated to
evaluate the relationships between the anthropometric (BMI),
cardiovascular (SBP and DBP), and metabolic (HDL-C, LDL-C,
triglycerides, and glucose) indices and the TST7N and AHI
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variables. Variables with significant correlations were used to
construct linear regression models examining associations
between the significant cardiometabolic indices and the TST7N

(model 1) and AHI (model 2) sleep variables.

Given the use of nonprobability sampling and the smaller sample
size analyzed, violations of model-building assumptions were
anticipated. Subsequently, diagnostics were conducted to
evaluate normality (ie, Shapiro-Wilk test or histogram
inspection), linearity (ie, test for linear trend or scatterplot
inspection), homoscedasticity (ie, Breusch-Pagan test or P-P
plot inspection), and multicollinearity (ie, variance inflation
factor or matrix scatterplot inspection). To address violations,
inverse transformation of nonnormal variables was applied. As
well, multivariate outliers identified using Mahalanobis distance
(chi-square P=.05) were removed. Finally, bias-corrected and
accelerated bootstrapping with 10,000 samples was performed
on the linear regression models to construct robust 95% CIs for
the regression coefficients [39]. Data analysis was performed
using IBM SPSS (version 29.0) and Microsoft Excel (version
2311). Data are presented as mean and SD, unless otherwise
noted.

Ethical Considerations
Enrolled participants were provided copies of the study’s
institutional review board–approved informed consent
documentation before data collection (IRB 19-04-2288). All
deidentified electronic data were stored on the University of
Alabama’s HIPAA (Health Insurance Portability and
Accountability Act)-compliant cloud service. For the
in-laboratory component of the study, participants received
no-cost access to the data collected during their laboratory visit.
For the in-home component, payment was prorated as follows:
(1) 7 nights of 100% complete sleep diaries, US $50; (2) 7 nights
of 100% complete activity monitor entries, US $50; (3) 7 (100%)
complete survey sets; and (4) valid and complete HST, US $50.
All participants who completed 100% of the home-based portion
of the study were provided a US $200 financial incentive for
their participation.

Results

Participants
Participant screening was conducted using an internet-based
enrollment survey, which included a series of yes or no questions
to determine inclusion and exclusion criteria. Figure 1 illustrates
the flow of study respondents through the screening process.
Unshaded boxes represent participants who met the study
inclusion criteria, while gray-shaded boxes indicate respondents
excluded due to participation-related factors. Black shaded
boxes represent those excluded for health-related reasons.
Discrepancies in the frequency totals across screening criteria
are due to some respondents discontinuing the survey.

Out of the 1030 respondents who initiated the study enrollment
survey, 388 were eligible to participate in SLUMBRx-PONS
at the time of this analysis. Among the eligible respondents,
more women (n=286) than men (n=102) initiated and completed
the intake screening questionnaire. Given the nearly 2:1 ratio
of females to males enrolled in the study and the deadlines to
process participants, a sex-balanced enrollment approach was
used based on the date the participant completed the survey.
Under this strategy, for each female enrolled, 1 male was also
enrolled, resulting in an equivalent balance of men and women
in the study sample.

After sex-matching, enrollment was then prioritized based on
BMI-matching. For each female in the participant pool, the first
enrolled was classified as normal weight BMI, the second as
overweight BMI, and the third as obese BMI. A similar strategy
was attempted for each male in the participant pool. However,
BMI categories were not equivalent during this initial reporting
period, resulting in unbalanced BMI categories during the early
reporting period. Of the 388 eligible participants, 47 were
enrolled and analyzed for this study. No participants were lost
to follow-up, ensuring that all data were used in the analysis.

The enrolled participants were roughly equivalent between
female (n=24) and male (n=23), identifying as African American
or Black (n=6), Asian (n=8), Caucasian or White (n=31), and
multiracial or other (n=2). In addition, 45 participants identified
as non-Hispanic. As a group, participants were overweight
(based on BMI) with mildly elevated BP and overall normal
blood biomarker levels. In terms of sleep parameters,
participants displayed symptoms of mild OSA and experienced
short sleep duration. Only 4 participants experienced oxygen
saturation below 90% (T90%).

On average, both women and men were short sleepers, and
nearly half experienced mild (n=8 women and n=9 men),
moderate (n=2 women and n=3 men), or severe (n=1 woman
and n=1 man) OSA. More women were categorized as normal
weight (n=11) and obese (n=8) compared with men (n=8 and
n=5, respectively), while a higher proportion of men (n=10)
were overweight relative to women (n=5). Sex-based differences
in cardiometabolic disease risk factors were not significantly
different between men and women. However, there were trends
between several, including HDL-C and triglycerides, although
the results were not statistically significant (Table 1).

Multivariate outliers were removed (n=8) before constructing
the correlational matrix. Model 1 correlational assessment
identified significant associations between TST7N and AHI
(r=–.45, P=.004), BMI (r=–.38, P=.02), SPB (r=.40, P=.01),
and DPB (r=.32, P=.049). Model 2 correlational analyses found
significant relationships between AHI and TST7N (r=–.45,
P<.001), BMI (r=.71, P<.001), triglycerides (r=.36, P=.03),
and glucose (r=.34, P=.04). Table 2 displays the correlational
coefficient matrices for the SLUMBRx-PONS study participants.
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Figure 1. Short Sleep Undermines Cardiometabolic Health-Public Health Observational study onboarding flow chart (n=1030). CPAP: continuous
positive airway pressure.
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Table 1. Descriptive statistics of the cardiometabolic disease risk factors and sleep indices from Short Sleep Undermines Cardiometabolic Health-Public
Health Observational study participants (N=47; female n=24 and male n=23).

P valueUbM RankaMean (SD)MaximumMinimumVariable

BMI (kg/m2)

.63253.024.9628.73 (7.66)43.1618.82Female

——c23.0027.00 (5.88)41.9419.50Male

———27.89 (6.83)43.1618.82Total

AHId

.16210.521.277.47 (9.32)42.000.80Female

——26.859.88 (11.27)53.801.20Male

———8.65 (10.28)53.800.80Total

TST7N
e

.42238.025.58397.17 (80.37)552.56195.86Female

——22.35386.91 (40.82)490.50324.08Male

———392.15 (63.66)552.56195.86Total

SBPf (mm Hg)

.59250.525.06122.13 (11.95)154.70106.00Female

——22.89119.94 (10.23)141.30107.30Male

———121.06 (11.07)154.70106.00Total

DBPg (mm Hg)

.42238.025.5878.57 (8.21)97.0066.30Female

——22.3576.97 (8.53)99.7062.70Male

———77.79 (8.31)99.7062.70Total

HDL-Ch (mg/dL)

.09196.527.3152.75 (15.18)88.0016.00Female

——20.5447.22 (15.13)91.0016.00Male

———50.04 (15.25)91.0016.00Total

LDL-Ci (mg/dL)

.82265.524.44109.01 (32.22)182.2055.00Female

——23.54108.13 (33.99)200.2068.00Male

———108.58 (32.74)200.2055.00Total

Triglycerides

.08193.520.5679.67 (30.88)143.0045.00Female

——27.59102.30 (44.17)181.0045.00Male

———90.74 (39.25)181.0045.00Total

Glucose

.54247.522.8189.38 (11.96)121.0069.00Female

——25.2489.96 (7.99)103.0070.00Male

———89.66 (10.10)121.0069.00Total

Age (years)

.54247.025.2134.88 (11.69)62.0020.00Female

——22.7433.39 (12.48)61.0019.00Male
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P valueUbM RankaMean (SD)MaximumMinimumVariable

———34.15 (11.97)62.0019.00Total

aM Rank: Mean Rank.
bU: Mann-Whitney U Test statistic.
cNot applicable.
dAHI: apnea-hypopnea index.
eTST7N: mean of 7 consecutive nights of total sleep time.
fSBP: systolic blood pressure.
gDBP: diastolic blood pressure.
hHDL-C: high-density lipoprotein cholesterol.
iLDL-C: low-density lipoprotein cholesterol.

Table 2. Correlational coefficient matrix of the mean of 7 consecutive nights of total sleep time in minutes and cardiometabolic risk factor indices from
the Short Sleep Undermines Cardiometabolic Health-Public Health Observational study participants (n=39).

AgeGlucoseTriglyceridesLDL-CfHDL-CeDBPdSBPcBMIAHIbTST7N
a

—gTST7N

–0.45hAHI

0.71h–0.38iBMI

0.200.31–0.41hSBP

0.70h0.070.31–0.35iDBP

0.050.06–0.02–0.060.22HDL-C

–0.050.34i0.080.170.09–0.17LDL-C

0.42h–0.44h0.14–0.140.290.36i–0.27Triglycerides

0.230.13–0.190.110.100.39i0.41i–0.16Glucose

0.070.0020.030.06–0.140.130.04–0.110.15Age

aTST7N: mean of 7 consecutive nights of total sleep time.
bAHI: apnea-hypopnea index.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
eHDL-C: high-density lipoprotein cholesterol.
fLDL-C: low-density lipoprotein cholesterol.
gNot applicable.
hSignificance level P<.01.
iSignificance level P<.05.

Main Results
Linear regression models were constructed to explore the
relationships between significant cardiometabolic disease indices
and the sleep parameters: TST7N (Model 1) and AHI (Model
2). During assumption testing, multicollinearity was detected
between AHI and BMI. Due to the strong association between
these variables among SLUMBRx-PONS participants (r=0.71,
P<.001) and their historically established linear relationship
[40], principal component analysis (PCA) was used to create a
new composite variable representing the shared variance
between AHI and BMI (PCAAHI×BMI) [41]. Similarly, PCA was
used to transform SBP and DBP into a single composite measure
of BP (PCABP), due to their strong association (r=0.70, P<.001)

and previous applications [42]. Along with standardizing AHI,
BMI, SBP, and DBP for PCA, all remaining variables in the
regression models including TST7N (zTST7N), triglycerides (zTRG),
and glucose (zGLU) were converted to z scores to calculate
standardized bootstrapped regression coefficients.

Model 1 analysis found that PCAAHIxBMI (β=–.36, bias-corrected
and accelerated [BCa] 95% CI –0.58 to –0.17, P=.02) and
PCABP (β=–.32, BCa 95% CI –0.55 to –0.08, P=.04) accounted

for 25.1% of the variance in zTST7N (R2
adjusted=0.25; F2,38=7.37,

P=.002). For every 1-unit increase in zTST7N, PCAAHI×BMI

decreased by 0.36 units. Similarly, for each 1-unit increase in
zTST7N, PCABP decreased by –0.32 units
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zTST7N=[–0.36×PCAAHIxBMI]+[–0.32×PCABP]). Analysis of
Model 2 found zTST7N (β=–.30, BCa 95% CI –0.54 to –0.11,
P=.02), zTRG (β=.32, BCa 95% CI 0.05-0.53, P=.02), and zGLU

(β=.42, BCa 95% CI 0.16-0.66, P=.02) accounted for 37.6% of

the variance in PCAAHI×BMI (R2
adjusted=0.38; F3,38=8.63, P<.001).

For each 1-unit increase in PCAAHI×BMI, zTST7N decreased by

–0.30 units. Conversely, for each 1-unit increase in PCAAHI×BMI,
zTRG increased by 0.32 units and zGLU increased by 0.42 units
(PCAAHI×BMI=[–0.30× zTST7N]+[0.32× zTRG]+[0.42×zGLU]).
Table 3 summarizes the bootstrapped standardized regression
coefficients of the cardiometabolic disease risk factors and sleep
indices regression models.

Table 3. Bootstrapped standardized regression coefficients for the cardiometabolic disease risk factors and sleep indices regression models from the
Short Sleep Undermines Cardiometabolic Health-Public Health Observational study (n=39; unless otherwise noted, bootstrap results are based on 10,000
bootstrap samples).

BCab 95% CIP valueSE BBiasBaVariable

z TST7N
b,c,d

–0.58 to –0.170.0030.11.000–.36PCAAHIxBMI
e

–0.55 to –0.080.010.12.001–.32PCABP
f

PCAAHI×BMI
e,g,h

–0.54 to –0.110.020.12–0.02–.30z TST7N
b

0.06 to 0.530.020.13–0.002.32z TRG
i

0.16 to 0.660.0020.13–0.003.42z GLU
j

aB: standardized coefficient.
bBCa: bias-corrected and accelerated.
bzTST7N: standardized mean of 7 consecutive nights of total sleep time.
cFor zTST7N model, R2

adjusted=0.25; F2,38=7.37, P=.002.
dzTST7N=(–0.36×PCAAHI×BMI)+(–0.32×PCABP).
ePCAAHI×BMI: composite measure of apnea-hypopnea index and BMI derived from principal component analysis.
fPCABP: composite measure of systolic blood pressure and diastolic blood pressure derived from principal component analysis.
gFor PCAAHI×BMI model, R2

adjusted=0.38; F3,38=8.63, P<.001.
hPCAAHI×BMI=(–0.30× zTST7N)+(0.32× zTRG)+(0.42×zGLU).
izTRG: standardized mean of triglycerides.
jzGLU: standardized mean of glucose.

Discussion

Anthropometric-Based Biomarkers
In tandem with the majority of cross-sectional and longitudinal
investigations of body composition, sleep duration, and OSA
[43], early findings from the SLUMBRx-PONS study identified
significant associations among these covariates. Short sleep
duration is hypothesized to interact with obesity through a series
of causally connected bidirectional pathways [44]. Short sleep
can lead to a dysregulation of the hormones that control hunger
and satiation, resulting in excessive caloric consumption [45].
In addition, fatigue resulting from short sleep can reduce
behavioral intentions for physical activity [46]. In addition to
short sleep, OSA is hypothesized to operate as both an
independent and comorbid risk factor of obesity. The Wisconsin
Sleep Cohort study [47] observed for each 1-SD increase in
BMI, the odds of OSA increased 4-fold. Physiologically, excess
adipose contributes to OSA through fat deposition in the tissues
surrounding the upper airway, resulting in a smaller lumen and
increased collapsibility of the upper airway [48]. Risk factors

for obesity resulting from short sleep and OSA amalgamate,
often concurrently, perpetuating a further increased risk for
obesity, which, in turn, potentiates further disordered sleep.

Cardiovascular-Based Biomarkers
Among the cardiovascular biomarkers, the composite BP
measure (PCABP) was significantly associated with TST7N. The
relationship between TST7N and BP likely involves several
physiological mechanisms. Sleep duration–associated risk
factors of coronary heart disease include heightened sympathetic
overactivity and hypertension [16]. Physiologically, BP operates
diurnally and dips between 10% and 20% during sleep [49].
Subsequently, short sleep has been found to acutely increase
24-hour BP. Chronic sleep deprivation has been associated with
hemodynamic alterations, posited to induce hypertrophic
remodeling of the arterial walls and left ventricle [49],
contributing to entrained elevated BP [10].

OSA was not associated with SBP or DBP in the current
analysis; however, emerging trends were observed, although
not statistically significant. Given a larger sample size, the final
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study results may yield associations between OSA and measures
of BP. Elevated AHI is linked to the development and
exacerbation of hypertension through several mechanisms.
Recurrent episodes of apnea and hypopnea lead to intermittent
hypoxia, which triggers sympathetic nervous system activation
and consequent surges in BP [50,51].

This sympathetic overactivity persists during wakefulness,
contributing to long-term hypertension [52]. In addition,
intermittent hypoxia induces oxidative stress and inflammation,
further exacerbating endothelial dysfunction and hypertension
[53]. The severity of OSA, as indicated by AHI, appears directly
proportional to the risk of developing hypertension [11]. Peppard
et al [51] demonstrated a dose-response relationship between
AHI and the incidence of hypertension, where individuals with
severe OSA (AHI>30) were at a significantly higher risk
compared with those without OSA. Furthermore, the Wisconsin
Sleep Cohort study [54] found that each SD increase in AHI
was associated with a 4-fold increase in the odds of developing
hypertension [51].

Blood-Based Biomarkers
Short sleep has been hypothesized to mediate
hypercholesterolemia through appetite equilibrium disruption,
daytime fatigue, and sympathetic nervous system activation
[16,55]. OSA influences hypercholesterolemia through similar
mechanisms as short sleep; however, OSA is posited to increase
the risk of dyslipidemia through unique pathways exclusive to
its pathogenesis [13]. Metabolically, both short sleep and OSA
contribute to glucose-impairing indices including sleep
fragmentation [56], pancreatic B-cell dysfunction [57], systemic
inflammation [53], daytime fatigue [58], and appetite
dysregulation [14,59]. OSA and obesity-related risk factors
bidirectionally potentiate energy imbalance and excess adipose
[58], further exacerbating the risk for glucose intolerance
[55,60]. Both short sleep and OSA are hypothesized to elicit
metabolic derangements including insulin resistance and glucose
intolerance [61], independent of obesity [15].

Among the blood-based biomarkers, triglycerides and glucose
were found to be significant correlates of AHI [62]. This result
is in line with previous research connecting triglycerides with
OSA [14,57,63]. Chou et al [13] identified the oxygen
desaturation index, recorded as a component of
polysomnography, as an independent risk factor for
hypercholesterolemia and hypertriglyceridemia. Perry et al [63]
demonstrated a dose-response relationship between chronic
intermittent hypoxia and triglyceride levels using rodent
experimentation. Although observational studies have identified
cross-sectional relationships between short sleep and
hypercholesterolemia [12,64], TST7N was not related to the
blood-based biomarkers within the current set of
SLUMBRx-PONS participants. Sleep duration’s influence on
hyperlipidemia has been posited to transpire through the
activation of the sympathetic nervous system [64] and the
concurrent catecholamine-induced lipolysis of free fatty acids
[65]. As stress was not measured in the study sample, it could
not be investigated as a mediator of TST7N [66].

While short sleep is hypothesized to interact with fasting
glucose, there was no correlation between glucose and TST7N

[61]. Analysis did identify an association between AHI and
glucose, which aligns with research associating sleep-disordered
breathing with glucose regulation [67]. The lack of correlation
between glucose and TST7N in our study may result from the
small sample size. Previous research indicates that shorter sleep
durations are associated with higher incidences of type 2
diabetes [68], likely through mechanisms involving pancreatic
B-cell dysfunction [69], systemic inflammation [57], and
metabolic derangements independent of obesity [7]. Given the
smaller sample size of SLUMBRx-PONS, short sleep’s
influence on metabolic indices may become more profound
once the full sample is acquired.

Limitations
Early findings from the SLUMBRx-PONS study should be
interpreted considering several limitations. Although many of
the findings from this study align with previous research, it is
important to note the data were cross-sectional in nature,
prohibiting the ability to infer temporal relationships between
study variables. This is particularly relevant in the regression
analyses. While the sleep indices were entered into the
regression models as dependent variables, given the
cross-sectional nature of the data, it is impossible to assert a
temporal relationship between the sleep indices and the
cardiometabolic disease risk factors. In addition, data were
collected from a convenience sample of nonclinical participants.
Given participants were not selected randomly, and were not
randomized on study variables, caution is warranted when
generalizing the results of this study. Although a
sex-and-BMI-matching enrollment strategy was used,
participants were not randomly selected from the population,
limiting inference of the current findings on a broader scale.
Furthermore, the smaller sample size limits the robustness of
the current findings. In this study, short sleep was defined as
less than 7 hours per night, a threshold supported by current
literature [2]. However, further categorizing sleep duration into
normal (7-8 hours), mild short (6 hours), moderate short (5
hours), and extreme short (3-4 hours) [47] could provide deeper
insights into the risk implications of different sleep durations.
Preliminary analyses did not show significant associations using
these categories, likely due to the smaller sample size. Future
analyses with a larger sample may yield more definitive results.
Bootstrapping and composite measures derived from principal
components were used to increase the robustness of the model
CIs; nevertheless, this technique is only as valid as the initial
sample collected.

There were also limitations attributed to methodological
drawbacks common to clinical, epidemiological, and ambulatory
data collection. Before beginning clinical assessment,
participants were questioned about their dietary, exercise, and
sleep behaviors during the previous 24 hours. Participants also
provided their medical history and a list of all prescribed
medications. Ambulatory data collection was susceptible to
testing and social desirability biases [30]. It was assumed such
effects would be minimal due to the 7-night timeframe in which
sleep data were collected. There were also limitations inherent
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to sleep-measuring devices. HST and actigraphy allow for sleep
duration and AHI data to be collected in a more naturalistic
environment; however, they may lack the rigor offered by
in-laboratory polysomnography [70,71]. Furthermore, the
current findings are representative of an early cohort of healthy
participants with normal baselines and the sample may not have
yielded effect sizes strong enough to elicit positive results
regarding the impact of OSA on risk factors for cardiovascular
disease (eg, T90%). While actigraphy is generally an accepted
standard for measurement of total sleep time, other home
monitoring devices such as heart rate monitors, may offer more
comprehensive data to increase measurement precision of sleep
parameters [72]. Since one of the goals of the SLUMBRx-PONS
study is to identify potential modalities and instruments for
future community-based interventions, the limitations associated
with these devices were deemed acceptable. Notwithstanding,
FitBit devices are consumer-based products designed to assist

with behavior modification. For the purposes of this study,
participants were instructed to turn off the FitBit’s goal-setting
features and requested not to track their health data on the FitBit
phone app over the duration of the study.

Conclusion
Early findings from the SLUMBRx-PONS study highlight
significant associations between sleep indices and multiple
cardiometabolic risk factors. The study’s limitations, including
sample size and the inherent challenges of actigraphy and other
ambulatory measures, are acknowledged. Ongoing efforts aim
to increase participant numbers and improve the robustness of
the current analyses. Future research will continue to explore
the multi-factorial interactions between sleep, OSA, and
cardiometabolic health, incorporating numerous measures such
as T90% and measures of sleep fragmentation to enhance
understanding.
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BP: blood pressure
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HDL-C: high-density lipoprotein cholesterol (mg/dL)
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HIPAA: Health Insurance Portability and Accountability Act
HST: home sleep test
LDL-C: low-density lipoprotein cholesterol (mg/dL)
OSA: obstructive sleep apnea
PAT: peripheral arterial tone
PCA: principal component analysis
PCAAHI×BMI: composite measure of apnea-hypopnea index and BMI derived from principal component
analysis.
PCABP: composite measure of systolic blood pressure and diastolic blood pressure derived from principal
component analysis
REI: Respiratory Event Index
SBP: systolic blood pressure
SLUMBRx-PONS: Short Sleep Undermines Cardiometabolic Health-Public Health Observational study
T90%: oxygen saturation below 90%
TST7N: Mean of 7 consecutive nights of total sleep time in minutes
zGLU: standardized mean of glucose
zTRG: standardized mean of triglycerides
zTST7N: standardized mean of 7 consecutive nights of total sleep time
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