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Abstract

Background: The growth in the capabilities of telehealth have made it possible to identify individuals with a higher risk of
uncontrolled diabetes and provide them with targeted support and resources to help them manage their condition. Thus, predictive
modeling has emerged as a valuable tool for the advancement of diabetes management.

Objective: This study aimed to conceptualize and develop a novel machine learning (ML) approach to proactively identify
participants enrolled in a remote diabetes monitoring program (RDMP) who were at risk of uncontrolled diabetes at 12 months
in the program.

Methods: Registry data from the Livongo for Diabetes RDMP were used to design separate dynamic predictive ML models to
predict participant outcomes at each monthly checkpoint of the participants’ program journey (month-n models) from the first
day of onboarding (month-0 model) up to the 11th month (month-11 model). A participant’s program journey began upon
onboarding into the RDMP and monitoring their own blood glucose (BG) levels through the RDMP-provided BG meter. Each
participant passed through 12 predicative models through their first year enrolled in the RDMP. Four categories of participant
attributes (ie, survey data, BG data, medication fills, and health signals) were used for feature construction. The models were
trained using the light gradient boosting machine and underwent hyperparameter tuning. The performance of the models was
evaluated using standard metrics, including precision, recall, specificity, the area under the curve, the F1-score, and accuracy.

Results: The ML models exhibited strong performance, accurately identifying observable at-risk participants, with recall ranging
from 70% to 94% and precision from 40% to 88% across the 12-month program journey. Unobservable at-risk participants also
showed promising performance, with recall ranging from 61% to 82% and precision from 42% to 61%. Overall, model performance
improved as participants progressed through their program journey, demonstrating the importance of engagement data in predicting
long-term clinical outcomes.

Conclusions: This study explored the Livongo for Diabetes RDMP participants’ temporal and static attributes, identification
of diabetes management patterns and characteristics, and their relationship to predict diabetes management outcomes. Proactive
targeting ML models accurately identified participants at risk of uncontrolled diabetes with a high level of precision that was
generalizable through future years within the RDMP. The ability to identify participants who are at risk at various time points
throughout the program journey allows for personalized interventions to improve outcomes. This approach offers significant
advancements in the feasibility of large-scale implementation in remote monitoring programs and can help prevent uncontrolled
glycemic levels and diabetes-related complications. Future research should include the impact of significant changes that can
affect a participant’s diabetes management.
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Introduction

Diabetes is a chronic disease that affects 37.3 million individuals
living in the United States and requires ongoing management
[1]. Common diabetes-related health complications that can be
delayed or prevented with glycemic control include heart
disease, chronic kidney disease, and neuropathy. Diabetes
management is multifaceted and should include some level of
provider care, medication management, and self-management.
Telehealth interventions have been shown, and are encouraged,
to support condition management and the reduction in
diabetes-related complications [2]. With the current capabilities
and advancements of telehealth in diabetes management, it is
critical to help identify individuals with a higher risk of
uncontrolled diabetes and provide them with targeted support
and resources to help them manage their condition [3,4].

Predictive modeling has emerged as a valuable tool in diabetes
management, offering numerous benefits for individuals with
diabetes. By engaging early in a remote diabetes monitoring
program (RDMP), predictive modeling can capture the user’s
interest and motivation, fostering active participation in their
own health through suggesting personalized behavior change
in a timely manner to improve outcomes. The integration of
proactive targeting into routine diabetes care also holds immense
potential to transform the lives of millions affected by this
chronic condition through preventing or delaying the onset of
diabetes-related complications and reducing the burden on the
health care system by lowering the cost of care and improving
the quality of care. The current literature describing applied or
developed predictive models has used insurance claims or
electronic medical records to predict varying outcomes related
to uncontrolled diabetes; however, there is a lack of literature
on the prediction of uncontrolled diabetes management through
a large data set of self-monitored blood glucose (SMBG) values
and contributing factors, which provides a unique pathway to
real-time predictions [5-7].

Machine learning (ML) can analyze a large amount of data and
identify meaningful patterns that correspond to the diabetes risk
level of individuals and predict their diabetes outcome risk
[8-11]. The objective of this study was to conceptualize and
develop a novel ML approach to proactively identify participants
enrolled in a large-scale RDMP who were at risk of uncontrolled
diabetes at 12 months in the program. Therefore, a set of
dynamic predictive ML models were designed and trained at
specific checkpoints during the participants’ time in the program
to proactively identify those at risk and capture participant
attributes that could impact the participants’ at-risk status.

Methods

Ethical Considerations
Approval was granted by the Aspire Institutional Review Board
(IRB; #520160099), and guidelines outlined in the Declaration
of Helsinki were followed. All participants provided consent
to participate during enrollment into the Livongo for Diabetes
RDMP, and guidelines outlined in the Declaration of Helsinki
were followed. All study data were stored in Health Insurance
Portability and Accountability Act–compliant secure servers
and were deidentified prior to analysis. Participants were not
compensated for their participation in the study.

Livongo for Diabetes
Teladoc Health’s Livongo for Diabetes is an RDMP focused
on empowering participants with education and tools to
self-manage their diabetes through mobile technology. The
program offers participants a cellular-enabled, 2-way messaging
device that measures blood glucose (BG) levels and delivers
personalized insights into their glycemic management; free
unlimited BG test strips; real-time support from diabetes
response specialists 24 hours a day, 7 days a week, 365 days a
year; and access to certified diabetes care and education
specialists (CDCESs) for support and goal setting.

Teladoc participants’ BG meter use was captured remotely
through the cellular-enabled device. Participants also had access
to a web-based app and mobile phone app that tracked historical
SMBG readings; provided reminders for SMBG checking,
physical activity (PA), and food log tracking; and provided an
asynchronous chat with coaches, the ability to schedule private
coaching sessions with CDCESs, educational content for
diabetes self-management, and the ability to send historical
reports of SMBG readings to care providers, family members,
and friends.

Diabetes Management Journey
The diabetes management journey (ie, program journey) refers
to the ongoing process of monitoring and managing diabetes
through the Livongo for Diabetes RDMP. The program journey
involves education and support to make lifestyle changes,
monitor SMBG levels, take medications as prescribed, and work
with health care providers to achieve optimal health. The goal
is to support participants with diabetes achieve BG control for
complication avoidance and lead healthy, active lives.

Study Design
Registry data from the RDMP were used to design separate ML
models to predict participant outcomes at each monthly
checkpoint of the program journey (month-n models) from the
first day of onboarding (month-0 model) up to the 11th month
(month-11 model). The program journey of a participant began
upon onboarding into the Livongo for Diabetes RDMP and
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capturing their first BG measurement through a Livongo BG
meter. Overall, each participant passed through 12 predicative
models through their first year enrolled in the program.

Measures

Hemoglobin A1c and Observability
Hemoglobin A1c (HbA1c), or glycated hemoglobin, is a critical
metric for diabetes management, which provides a long-term
picture of an individual’s average BG levels over a 2-3-month
period [12]. HbA1c cannot be directly measured with a BG
meter, which only measures the current BG level in the blood.
To calculate HbA1c from BG meter readings, an algorithm that
considers the average BG levels and the frequency of
measurements was used: A1c = [average glucose (mg/dL) –
46.7]/28.7 [13]. In this algorithm, the more frequent and
consistent the BG readings, the more accurate the estimate of
A1c (eA1c). A participant was considered “observable” if
enough BG readings over 90 preceding days provided statistical
confidence to estimate clinically meaningful A1c, otherwise
the participant was considered “unobservable.” Statistical
significance was determined by considering both the mean and
SD of BG checks. The more variable the set of BG checks for
a given participant, the greater the threshold for that participant
to be deemed observable.

Population Selection
Participants enrolled in the Livongo for Diabetes RDMP
between January 1, 2019, and January 1, 2022, with an activated
BG meter who met the criteria to be categorized as observable
at month 12 in the program were included as study participants
(N>200,000). Ground truth labeling as “cases” and “controls”
for diabetes management conditions was performed using
12-month eA1c values as follows: (1) participants with month
12 eA1c≥7.5% were labeled as cases and defined as participants
at risk of uncontrolled diabetes management outcomes and (2)
participants with month 12 eA1c<7.5% were labeled as controls
and defined as participants not at risk of uncontrolled diabetes
management outcomes. The ratio of cases to controls in the
study population was 23.5%-76.5%.

Model Design: Participant Features and Attributes
Using diabetes-related available features and attributes of
participants through their program journey, each ML model
was designed and developed to make a binary prediction of
whether the participant will be at risk of uncontrolled diabetes
at the end of month 12 in their program journey. The eA1c at
month 12 was used to generate binary labels for either month
12 eA1c≥7.5% or month 12 eA1c<7.5% as controls.

During the program journey, participants used the BG meter
provided to record BG levels. Next, A1c was estimated using
the accumulation of BG levels over a 90-day period. As
described previously, clinically meaningful calculation of a
member’s eA1c is dependent on the classification of
observability. Since A1c has remained the clinical gold standard
for indexing chronic glycemia for decades, and eA1c is an
essential metric in assessing a participant’s diabetes condition,
observability was a critical metric to predict participant
outcomes. For unobservable participants, due to the lack of

eA1c related to sparsity of BG checks and with the availability
of derived program features, other features and attributes played
a significantly more important role in the predictive ML models.
Therefore, at each month of predictive modeling design, it was
essential to train 2 separate models to cover participants with
observable and unobservable eA1c values, making a total of 24
trained models.

The goal of an ML model is to find and learn patterns of input
features from training data and then use them to make
predictions on new, unseen data. Therefore, the quality and
relevance of the features used are crucial for the performance
of an ML model. We trained a set of ML models that needed
to be sequentially compared, which made it critical to keep the
structure of features consistent along the program journey to
obtain a robust interpretation of features evolving among
models.

Participant Attribute Categories
Participant attributes, including survey data, BG data,
medication fill data, and health signals, were used for feature
construction within the ML models.

Survey Data
Survey data gathered from the participants at enrollment
included demographic information, such as age, gender, race,
ethnicity, height, weight, BMI, language, and diabetes type.
Participant intention and preference information around the
diabetes management style, interest in becoming more active,
and interest in healthy eating was also included in survey data.
Each of the engagement attributes was encoded for model
features as ordinal values. For example, in the case of interest
in healthy eating, the options of not important, somewhat
important, and very important were encoded as 1, 2, and 3,
respectively.

Blood Glucose Data
BG data were measured through RDMP-provided BG meters
with blood from a finger prick applied to a test strip, and
participants were asked to select “feel tags” and “meal tags”
from a set of options. Features were constructed from an
accumulation of SMBG readings by 30-day aggregates, BG
readings broken down by meal and feel tags, and A1c. The
30-day BG check aggregates generated data of the total number
of readings and the number of hypoglycemic and hyperglycemic
BG levels. Since the ML models were designed in monthly
checkpoints, 30-day aggregates were important indicators of a
participant’s diabetes pattern change.

BG levels are affected by both diet and mental health; therefore,
BG readings were broken down by meal and feel tags to be
correlated along each BG reading [14-16]. Meals increase
glucose levels, while fasting typically decreases BG levels. BG
levels can also be impacted by feelings, such as stress, and PA.
Therefore, in the features, BG levels were broken down based
on meal and feel tags. The meal tag options include before/after
breakfast, before/after lunch, before/after dinner, after snack,
and no meal. In addition, the feel tag options include feel fine,
feel sick, stressed, ate extra, lightheaded, after exercise, missed
medications, increased medications, and other feelings.
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A1c is an important feature in diabetes management as it
provides a snapshot of an individual’s overall BG control. In
addition, variability of A1c depicts the diabetes management
condition of an individual over time [17]. In the RDMP, A1c
was estimated if a participant was observable. This feature was
only available for observable participants, who recorded enough
SMBG readings to estimate A1c with statistical significance.

Medication Fill Data
A GPI is a unique identifier assigned to a drug product to
distinguish it from similar products and improve identification
and tracking in the health care supply chain. Generic product
identifiers (GPIs) were tracked over time to capture medicine
fills, understand medication adherence, and determine a change
in the health status of participants related to their diabetes. Based
on participants’ medicine fills, they were categorized into the
following diabetes groups using medication use as a proxy for
disease progression [18]:

• Group 1: participants with type 2 diabetes who use only
lifestyle modification (diet and exercise) and take no
medication

• Group 2: participants with type 2 diabetes who take
metformin

• Group 3: participants with type 2 diabetes who take
metformin and other noninsulin medications

• Group 4: participants with type 2 diabetes who use basal
insulin, in addition to other medications

• Group 5: participants with type 2 diabetes who use basal
and bolus insulin (also known as multiple daily injections
[MDIs] or intensive insulin)

• Group 6: participants with type 1 diabetes

Health Signal Data
A health signal refers to any measurable aspect of an
individual’s physical or physiological state that provides
information about their health status. Based on availability,
30-day aggregates of health signals were used in the features,
such as average systolic and diastolic blood pressure (BP)
readings, whether participants were enrolled in the Livongo for
Hypertension (HTN) program, and the average weight, average
daily PA, and food logs if participants were enrolled in weight
management (WM).

Tracking these features that contribute to participant attribute
categories over time can assist in personalized effective
interventions for at-risk observable and unobservable
participants.

Outcome Data
During evaluation of performance of the ML models for
identification of participants at risk of uncontrolled diabetes
management outcomes, various viewpoints were considered to
prevent model shortcomings and imbalanced data: (1) How
many at-risk participants were identified and with what precision
by each model? (2) How many participants were targeted to
achieve the performance metrics? (3) How does the progression
of the performance metrics look over a participant’s program
journey?

To provide a comprehensive view of model performance and
address the aforementioned questions, the following 6 measures
commonly used in ML model evaluation were selected [19]:

• Sensitivity or recall: Recall is a measure of how well a
model can identify positive (at-risk participants) instances
defined as the number of true-positive predictions divided
by the total number of positive instances in the data set.

• Precision: Precision is a measure that evaluates the
proportion of positive predictions that are correct and
defined as the number of true-positive predictions divided
by the sum of true-positive predictions and false-positive
predictions.

• Specificity: Specificity is a measure that evaluates the
ability of a model to correctly identify negative (not-at-risk
participants) examples. It is the proportion of true negatives
over all negatives.

• Area under the curve (AUC): The AUC represents a model’s
ability to distinguish between positive and negative
examples. In this study, AUC values ranged from 0 to 1,
with a value of 0.5 representing a random guess and a value
of 1 representing a perfect model. An AUC of 0.7 or higher
is generally considered good, while an AUC of 0.9 or higer
is considered excellent.

• F1-score: The F1-score is a performance metric that balances
the precision and recall by calculating the harmonic mean
of these 2 metrics.

• Accuracy: Accuracy measures the proportion of correct
predictions made by a model out of all predictions.

Model Development
For proactive targeting of the RDMP participants’ diabetes
management outcomes, it was necessary to train a set of ML
models at specific time stamps through each participant’s
program journey for the following reasons. First, the diabetes
condition, such as severity, complications, and medication use,
of a participant can evolve over time and impact the outcome.
Similarly, the diabetes management patterns of participants,
such as exercise, diet, and SMBG checking patterns, can alter
over time and change the outcome trajectory. To capture these
changes, new models needed to be trained along the program
journey to update the risk prediction using more recent
accumulated information. Second, as participants progressed
in their program journey, more temporal data were collected
from their retrospective diabetes management attributes. This
change in the quality of attributes can change their importance
and contribution in the ML modeling, indicating the need for
new model training along the participant program journey.

As previously mentioned, from the first day of Livongo BG
device activation, at each monthly step, a prediction ML model
was trained to predict the binary outcome of the diabetes
management status of each participant at 12 months in the
program. At each month of the program journey, there were 2
separate models to develop based on observability. Figure 1
represents the timeline of modeling work for observable and
unobservable segments of the participants’ program journey.
Based on the designed framework, a set of 24 ML models were
trained to capture the relationship between participants’ input
attributes and diabetes management control outcomes.
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Figure 1. Diabetes proactive targeting framework at each monthly observable and unobservable segment of each participant’s program journey. The
program journey starts from device activation, and at each monthly checkpoint, based on the participant’s observability status, an ML model is trained
to predict the outcome of the diabetes condition of the participant at year 1 of the program journey. ML: machine learning.

In modeling, for each model, data were split into 2 subsets. The
first subset, which contained a larger portion of the data, was
used as training and validation data to train the model and tune
the hyperparameters, as well as find the optimal parameters of
the model to achieve the highest accuracy. The second subset
was used as testing data, which was held separate from the
training data and used to assess how well the model could work
with new data. Each model randomly split the data into 85%
training and 15% testing subsets.

The models were based on light gradient boosting machine
(LightGBM), which is a tree-based learning algorithm developed
on the randomly selected subset of training data. With 5-fold
cross-validation on training data, the Hyperopt Python library
was used for tuning the hyperparameters of each LightGBM
model, including the number of estimators, learning rate, number
of leaves, feature fraction, and bagging fraction [20,21]. The
tree-structured Parzen estimator (TPE) algorithm was used to
optimize hyperparameter quantization [22]. Finally, the
performance of each model was assessed on the unseen test data
sets.

Training and testing instances for cases and controls among the
data subsets for observable and unobservable participants for
each month of the program journey were distributed (see
Multimedia Appendix 1). The class imbalance of observable
and unobservable participants was on average 78% versus 22%
and 69% versus 31%, respectively, for controls and cases. To
mitigate this highly imbalanced ratio of controls and cases and
increase the focus of the models on less prevalent cases, the
models were set to assign class weights inversely proportional
to their respective frequencies during the training process.

Bias Mitigation Consideration
Bias reduction in ML models is crucial to ensure fair and
equitable outcomes. The following considerations were taken
to reduce bias in the ML model: class imbalance handling,
feature selection and inclusion, observability consideration,
missing imputation, cross-validation, and temporal changes.

Class Imbalance Handling
As previously mentioned, there was a class imbalance in the
observable and unobservable participants. To address this, the
models were set to assign class weights inversely proportional
to their respective frequencies during the training process. This

technique helped the models give more importance to the
minority class, reducing bias toward the majority class.

Feature Selection and Inclusion
Four categories of participant attributes for feature construction
within the models were used: survey data, BG data, medication
fills, and health signals. This diverse set of features helped in
capturing different aspects of participants’ health and behavior,
reducing bias that might have arisen from relying on a limited
set of features.

Observability Consideration
The observability of participants, distinguishing between
observable and unobservable participants, was used. This factor
was explicitly considered during model development, with
different models trained for observable and unobservable
participants. This approach acknowledged and addressed the
potential bias introduced by the availability of certain data for
only a subset of participants.

Missing Imputation
For unobservable participants with missing eA1c values, a robust
imputation approach was used, which involved a mixture of
historical eA1c data interpolation, leveraging their past records,
and incorporation of similarity features from other participants,
considering factors such as age and diabetes medications. This
approach aimed at reducing bias in the imputation process,
ensuring a more accurate estimation of missing eA1c values.

Cross-Validation
The models were based on LightGBM and underwent
hyperparameter tuning using 5-fold cross-validation on training
data. Cross-validation helped in assessing each model’s
performance across different subsets of the data, reducing the
risk of overfitting and ensuring generalizability.

Consideration of Temporal Changes
The study acknowledged the dynamic nature of diabetes
conditions and the importance of capturing temporal changes.
The models were trained at specific checkpoints during each
participant’s program journey, allowing the models to adapt to
evolving patterns and reducing bias introduced by changes over
time.
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Summary of the Methodology Workflow The detailed sequential steps of the modeling process are listed
next and represented visually in Figure 2:

Figure 2. Sequential steps in the modeling workflow, which included data preprocessing, feature preparation, model training, and model registry at
each monthly program journey checkpoint. ML: machine learning; obs.: observed; unobs.: unobserved.

• Step 1 (data collection): Registry data from the Livongo
for Diabetes RDMP were collected.

• Step 2 (population selection): Participants with an activated
BG meter who met criteria for observability at month 12
were selected.

• Step 3 (ground truth labeling): Participants with eA1c≥7.5%
were labeled as cases, and those with eA1c<7.5% were
labeled as controls.

• Step 4 (observability classification/splitting): Participants
were classified as observable or unobservable based on the
statistical confidence derived from a sufficient number of
BG readings over the preceding 90 days.

• Step 5 (feature construction): Features were constructed
based on survey data, BG reading breakdown by meal and
feel tags, medicine fill data, and health signals.

• Step 6 (feature engineering): Features were transformed to
accommodate high performance of ML modeling. These
steps included missing imputation using a combination of
historical data and relevant participant characteristics with
normalization and standardization of numerical features.
In addition, for categorical features, ordinal encoding was
applied, when possible. When ordinal encoding was not
possible, one-hot-encoding was performed.

• Step 7 (class imbalance mitigation): To address imbalance
between controls and cases, class weights were assigned
inversely proportional to their respective frequencies during
the training process.

• Step 8 (ML model development): Separate ML models were
designed and trained at specific checkpoints during each
participant’s program journey (from month 0 to month 11)
for both observable and unobservable segments.

• Step 9 (hyperparameter tuning): Hyperparameter tuning
was performed using the Hyperopt Python library,
optimizing parameters such as the number of estimators,
learning rate, number of leaves, feature fraction, and
bagging fraction.

• Step 8 (model performance evaluation): Models were
evaluated using standard metrics, including precision, recall,
specificity, the AUC, the F1-score, and accuracy.

• Step 10 (register models): Each trained model was
registered into the model registry to be used for inference.

Descriptive Analysis
Patterns and trends of static and time series features and their
correlation to the outcomes represented the participant
breakdown by interest in learning about healthy eating and
interest in becoming more active from the participant onboarding
survey along with 12-month eA1c values. Assessing mean BG
levels by meal and feel tags was crucial for predictive modeling
to provide valuable insights into the patterns and factors
influencing diabetes management outcomes. Understanding
how BG levels vary before and after meals and in relation to
different feelings supports the identification of critical points
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in a participant’s daily routine that may contribute to
uncontrolled outcomes.

Statistical Analysis
To examine the correlation strength between extracted features
and the diabetes outcomes (uncontrolled/controlled), Pearson
r correlation analysis was used and represented top performers
among 4 categories of attributes.

Results

Participant Demographics
Participant demographics and characteristics at the time of
program enrollment are presented in Table 1.

Table 1. Participant demographics and characteristics at the time of enrollment into the Livongo for Diabetes RDMPa.

ParticipantsCharacteristics

Diabetes type, %

92.1Type 2 diabetes

7.3Type 1 diabetes

0.5Unknown

Insulin use, %

78.8No

13.1Yes, once/day

8.0Yes, more than once/day

0Unknown

Race, %

47.9Unknown

37.1White/Caucasian

7.4Black/African American

3.9Asian/Chinese/Japanese/Korean

3.1Other

0.4American Indian or Alaskan Native

0.2Native Hawaiian or Other Pacific Islander

Ethnicity, %

47.7Unknown

46.3Non-Hispanic

6.0Hispanic

Gender, %

51.7Male

48.3Female

61.6 (12.3)Age (years), mean (SD)

9.03 (9.19)Year since diabetes diagnosis, mean (SD)

7.33 (1.54)Self-reported A1c at enrollment, mean (SD)

aRDMP: diabetes remote monitoring program.

Descriptive and Statistical Analysis
Patterns and trends of static and time series features and their
correlation to the outcomes are illustrated in Figure 3. Figure

3a shows that participants with a higher interest in learning
about healthy eating had a lower mean eA1c outcome. Similarly,
as shown in Figure 3b, participants with a higher interest in
becoming more active had a lower mean eA1c outcome.
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Figure 3. Participant breakdown and mean eA1c of survey responses to (left) interest in learning about healthy eating and (right) interest in becoming
more active. eA1c: estimate of A1c.

Figure 4 represents the mean BG levels of participants along
their 1-year program journey by meal tag and feel tag. As shown
in Figure 4a, the BG level tagged after breakfast, lunch, or
dinner was on average 20% higher than that before meals. In
addition, as illustrated in Figure 4b, BG levels related to feeling
fine, lightheaded, and after exercise were the lowest, while those
after missed or increased medications and eating extra were the
highest.

In the BG data category, the BG check breakdown by feel and
meal tags was highly correlated, including BG checks tagged
as “feel fine” (r=–0.18, P<.001) and before breakfast, lunch,
and dinner (r=0.155, P<.001). In addition, among survey data,
age had the highest correlation (r=0.164, P<.001). Among
medicine fills, the metformin fills feature was presented as a
top feature (r=0.072, P<.001). Finally, among health signals,
30-day PA had a correlation of 0.039 (P<.001).

Figure 4. Mean BG level of participants along their 1-year program journey by (left) meal tag and (right) feel tag. BG: blood glucose.

Performance Results and Output of the 12 ML Models
Performance results of the 12 ML models for observable
participants for the training and testing subsets from month 0
to month 11 of their program journey are presented in
Multimedia Appendix 2. It was crucial to understand that due
to class imbalance, a random prediction would not result in a
theoretical precision or an F1-score of 0.5. The precision
obtained from a random prediction would be proportional to
the number of cases, and the F1-score would be accordingly
impacted. For observable participants, the baseline case was on
average 0.22 (range –0.009 to +0.009 across months in the
program journey), which was outperformed by the precision of

monthly models with an average precision of 61%, ranging
from 0.4 at month 0 to 0.88 at month 11, with consistent
improvement along the participant’s program journey. Similarly,
recall started from 0.7 at month 0 of the program journey and
reached 0.94 at month 11. The AUC of the models also
improved consistently, ranging from 0.76 to 0.98 across models
along the participant’s program journey.

Similar to observable participants, results of the performance
of the 12 ML models for unobservable participants along their
program journey are shown in Multimedia Appendix 3. For
unobservable participants, the baseline case was on average
0.31 (range –0.05 to +0.035 across months in the program
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journey), which was outperformed by the precision of monthly
models with an average precision of 0.55, ranging from 0.42 at
month 0 to 0.61 at month 11 on the testing set.

The recall of the ML models at month 0 was 0.61 and by further
progress of the participant’s program journey increased to 0.82,
with a precision of 0.61 at month 11. At month 1, there was a
significant improvement in performance, with an improved
recall and precision increase of +0.17 and +0.11, respectively.
This difference was due to the difference in input features of
month 0 and other monthly models. At month 0, only survey
data and medicine fills were being used as model features;
however, for the rest of the models, BG data and health signals
were added, causing a drastic improvement in the performance
of the models. In addition, the AUC of the models was on

average 0.8 (range 0.7-0.87), representing good performance
of the models.

Figure 5 represents the comparative performance of the models
along the monthly program journey for observable and
unobservable participants on the testing sets. In the figure, blue
and red lines represent the performance metrics for observable
and unobservable participants, respectively. On average, the
recall of models for observable participants was 0.09 higher
than that of models for unobservable participants, with the
difference ranging from 0.04 to 0.16. Similarly, the precision
of models for observable participants was on average 0.06 higher
than that of models for unobservable participants, with a range
of 0.02-0.26. In addition, specificity metrics had the highest
difference in these 2 groups, with an average difference of 0.11.

Figure 5. Performance metrics (recall, precision, and specificity) of models along each participant’s program journey for observable (blue) and
unobservable (red) subsets.

Discussion

Principal Findings
The ML approach used in this study demonstrated high
capability to proactively identify participants enrolled in an
RDMP who were at risk of uncontrolled diabetes using
participant survey inputs, SMBG data, medical history, and
diabetes management engagement signals. Proactive targeting
models accurately identified observable participants at risk of
uncontrolled diabetes (71%-94%; mean 86%, SD 6%) and
unobservable at-risk participants (64%-82%; mean 77%, SD
5%) from month 0 to month 11, with an achieved precision of
40%-88% (mean 62%, SD 12%) and 42%-61% (mean 57%,
SD 8%), respectively. As participants progressed through their
program journey, the prediction models became more accurate
and performed better in identification of those at risk among
observable participants compared to unobservable participants.
In addition, the performance difference between month 0 and
month 1 in both observable and unobservable participants was
significantly higher than in the consecutive months,
demonstrating the importance of engagement data for predicting
long-term clinical outcomes. The most critical feature in the
models was the last-available eA1c, followed by diabetes-related

medication fills and BG checking patterns with meal and feel
tags [23].

Comparison With Prior Work
Various prediction models have been developed and
implemented in the literature over the past decade with increased
accuracy in predicting the diabetes risk over time, specifically
the transition of prediabetes to diabetes [11,24,25]. However,
nearly all the literature focuses on health care data sets from
hospital patients [10,26,27]. Although these studies have shown
that ML models can preserve performance across populations
with health care data collected through demographic data,
laboratory values, and hospital records, there is a lack of
literature implementing ML and proactive targeting in a
real-world RDMP predicting an individual with diabetes entering
uncontrolled diabetes status using engagement behaviors and
SMBG levels. Additionally, prior studies restrict input data in
their models to contain specific information, such as baseline
A1c, and train models on a specific cohort of uncontrolled
baseline A1c [28]. Our study focused on ML models with the
ability to perform on limited and sparse data that are indicative
of diabetes management in a real-world population.

The data available through the Livongo for Diabetes RDMP
supported the ability to develop and achieve significant accuracy
of the ML models used in this study. Consistent capture of
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participants’SMBG patterns and frequency and self-monitoring
behaviors around PA, diet, and mental health was essential to
develop models for both observable and unobservable
participants. By conducting sufficient SMBG checks with
statistical confidence, a participant’s A1c can be estimated and
the participant becomes observable, which was an important
parameter in our study. Due to fewer data points of
SMBG-related features for unobservable participants, other
features became more important in their corresponding
predictive models. The result of this study’s approach is
applicable to proceeding years of participants’program journey
and other chronic condition remote monitoring program
journeys.

The results achieved in this study demonstrate robust and
generalizable performance in proactive targeting of at-risk
participants enrolled in an RDMP, which can provide significant
advancements toward the feasibility of large-scale
implementation in the following aspects. First, early
identification of at-risk participants will allow for ease in
effective interventions to change the trajectory of outcomes and
aid in the prevention of potential uncontrolled glycemic levels
and diabetes-related complications. Second, provided that
participants can become observable or unobservable and at risk
or not at risk at varying time points throughout the program
journey, proactive targeting will ensure identification of
participants with higher probability. Lastly, using proactive
targeting, along predictive models, the evolving metrics for
diabetes management can also be obtained, such as the diabetes
medication stage. These metrics combined with predictive
outcomes can provide personalized intervention strategies to
improve participant outcomes.

Strengths and Limitations
This study has many strengths, including the use of data
collected from participants enrolled in a real-world RDMP. The
ML models used in the study also have 2 distinguishing
strengths. First, the proactive targeting design enables ongoing
tracking of participants’diabetes management condition toward
reaching the desired outcome and early identification of at-risk
participants, which allows for identification of factors that may
cause a participant to become at risk of uncontrolled diabetes.

Second, the models are not limited to the availability of specific
data. In fact, the lack of availability and sparsity in each feature
can represent an important factor about the participants. For
example, the sparsity of BG checks can represent low program
engagement, especially for participants with higher diabetes
severity. This consideration avoids the self-selection bias of the
models toward active participants.

Some limitations also exist related to the complexity of
identifying participants at risk of uncontrolled diabetes
management outcomes proactively. Due to the signal of SMBG
levels being dependent on SMBG checking patterns of
participants, the accuracy of prediction decreases by participant
inactivity. This limitation can be resolved by using other BG
monitoring technologies, such as continuous glucose monitoring
devices [29]. In addition, identifying at-risk participants earlier
within the program journey would be helpful to develop
effective and timely interventions; however, the lower
performance of models at earlier time points due to a lack of
enriched features limited this objective. In addition, the models
may have been influenced by external factors not accounted for
in our study, such as individual socioeconomic factors and
environmental variables. This issue can be partially diminished
by adding extra generalizable features, such as the social
determinants of health, to the feature sets [30]. Future research
could explore the incorporation of a broader range of contextual
features to enhance the models’ robustness and generalizability
across diverse populations.

Conclusion
This study explored participants’ temporal and static attributes,
the identification of diabetes management patterns and
characteristics, and their relationship to predict diabetes
management outcomes. Proactive targeting models accurately
identified participants at risk of uncontrolled diabetes with a
high level of precision that was generalizable through future
years within the RDMP. Future research should include the
impact of significant changes that can affect a participant’s
diabetes management—for example, granular medication
changes, such as drug and dosage changes, as well as medication
adherence, which are important factors for the determination
of diabetes outcomes [31].
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Number of participant cases and controls for training and testing the data subset for each monthly checkpoint of the participants’
program journey.
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Multimedia Appendix 2
Performance metrics for training and testing the data subset for observable participants at each monthly checkpoint of their
program journey. The accuracy metrics for each month in the program journey represent the performance of a stand-alone ML
model. ML: machine learning.
[PDF File (Adobe PDF File), 54 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Performance metrics for training and testing the data subset for unobservable participants at each monthly checkpoint of their
program journey. The accuracy metrics for each month in the program journey represent the performance of a stand-alone ML
model. ML: machine learning.
[PDF File (Adobe PDF File), 60 KB-Multimedia Appendix 3]
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