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Abstract

Background: The underdiagnosis of cognitive impairment hinders timely intervention of dementia. Health professionals working
in the community play a critical role in the early detection of cognitive impairment, yet still face several challenges such as a lack
of suitable tools, necessary training, and potential stigmatization.

Objective: This study explored a novel application integrating psychometric methods with data science techniques to model
subtle inconsistencies in questionnaire response data for early identification of cognitive impairment in community environments.

Methods: This study analyzed questionnaire response data from participants aged 50 years and older in the Health and Retirement
Study (waves 8-9, n=12,942). Predictors included low-quality response indices generated using the graded response model from
four brief questionnaires (optimism, hopelessness, purpose in life, and life satisfaction) assessing aspects of overall well-being,
a focus of health professionals in communities. The primary and supplemental predicted outcomes were current cognitive
impairment derived from a validated criterion and dementia or mortality in the next ten years. Seven predictive models were
trained, and the performance of these models was evaluated and compared.

Results: The multilayer perceptron exhibited the best performance in predicting current cognitive impairment. In the selected
four questionnaires, the area under curve values for identifying current cognitive impairment ranged from 0.63 to 0.66 and was
improved to 0.71 to 0.74 when combining the low-quality response indices with age and gender for prediction. We set the threshold
for assessing cognitive impairment risk in the tool based on the ratio of underdiagnosis costs to overdiagnosis costs, and a ratio
of 4 was used as the default choice. Furthermore, the tool outperformed the efficiency of age or health-based screening strategies
for identifying individuals at high risk for cognitive impairment, particularly in the 50- to 59-year and 60- to 69-year age groups.
The tool is available on a portal website for the public to access freely.

Conclusions: We developed a novel prediction tool that integrates psychometric methods with data science to facilitate “passive
or backend” cognitive impairment assessments in community settings, aiming to promote early cognitive impairment detection.
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This tool simplifies the cognitive impairment assessment process, making it more adaptable and reducing burdens. Our approach
also presents a new perspective for using questionnaire data: leveraging, rather than dismissing, low-quality data.

(JMIR Form Res 2024;8:e54335) doi: 10.2196/54335
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Introduction

Background
Cognitive impairment encompasses both mild cognitive
impairment (MCI) and dementia. MCI is considered to be an
intermediate state between normal aging and dementia [1] and
may initially not interfere with daily life but potentially progress
to dementia and cause significant functional impairment [2].
Recent biomedical research continues to yield novel treatments,
such as lecanemab (Eisai and Biogen) and Donanemab (Eli
Lilly and Company) [3,4], which can effectively slow cognitive
decline if applied at its early stages (MCI or mild dementia).
This underscores the importance of detecting cognitive
impairment early for the cognitive health of older adults.

Nevertheless, cognitive impairment underdiagnosis remains a
concerning issue around the world. In the United States,
cognitive impairment assessment is included in Medicare’s
Annual Wellness Visit [5], but less than 20% of older adults
use this preventive service [6,7]. In countries such as the United
Kingdom, routine cognitive impairment assessment is not
recommended for all older adults [8]. This underuse or lack of
provision of preventive cognitive impairment assessment,
combined with challenges faced by primary care providers in
identifying early cognitive impairment on top of managing other
health issues, often leads to cognitive impairment underdiagnosis
[9,10].

Considering these challenges, health professionals working in
community environments such as community health and social
workers (CHSWs) have become increasingly important in
cognitive health management for older adults. CHSWs primarily
focus on promoting overall well-being within community
settings, such as nonprofit organizations, government agencies,
and community centers, and often work with specific
populations such as older adults. The World Health
Organization’s Global Action Plan has made dementia a priority
for public health action, accelerating a paradigm shift in the
prevention and care of cognitive impairment from clinical
systems toward family and community-based services [9]. This
shift emphasizes the essential roles of CHSWs in identifying
and referring older adults with early cognitive impairment
symptoms to clinical care providers for further assessment and
treatment.

Although CHSWs have a growing role in cognitive health
management, several challenges may hinder the implementation
of timely cognitive impairment assessment in community
environments. Administering a cognitive impairment
assessment, even with a so-called “brief” tool such as the
Telephone Interview for Cognitive Status (which consists of 11

items and takes about 10 minutes with a trained administrator),
is easier said than done [11]. Given the broad range of
responsibilities of CHSWs, integrating cognitive impairment
assessments into their existing tasks could stretch their capacity
and limit the time available for other essential services. Besides,
CHSWs may encounter challenges related to a lack of specific
training and expertise in cognitive health assessment, because
their educational background often focuses on social work and
public health. This knowledge gap could decrease their ability
to accurately identify symptoms of cognitive impairment and
confidently refer individuals for further clinical evaluation.
Finally, stigma and cultural barriers surrounding cognitive
impairment may also present challenges for CHSWs [12]. Older
adults or their families might be hesitant to disclose cognitive
impairment symptoms within community settings, leading to
inaccurate results of cognitive impairment assessment [12].

Low-Quality Response in Questionnaires
In conducting surveys or questionnaires, researchers usually
expect respondents to answer questions honestly and accurately.
However, some respondents might lack the cognitive capability
to think carefully and answer each question genuinely, leading
to a lower quality of response [13-16]. The definition of
low-quality response (LQR) in this paper is relatively neutral
and is not motivated by intentional deception, but rather by
invalid, unreliable, or erroneous responses [17,18].
Manifestations of the LQR are diverse [19-21], including but
not limited to (1) skipping questions—respondents may
selectively answer and bypass certain queries; (2) contradictory
answers—for similar questions, respondents might provide
conflicting responses; (3) oversimplified responses—for
instance, always choosing “agree” or “do not know” for all
questions; and (4) inaccurate or unreliable answers. This could
be due to the respondents not fully understanding the question
or lacking the time or motivation to ponder over it.

Completing a questionnaire is a task that requires multiple
cognitive functions working in synergy [22], such as attention,
working memory, and executive functions. Respondents with
subtle cognitive deficits might resort to suboptimal answering
strategies to cope with the psychological demands of responding
to questions [17,23]. Some studies have found that older adults
with cognitive deficits may exhibit stronger signals of LQR
during questionnaires [19-21,24]. For instance, they might more
frequently skip questions or opt for the “do not know” answer.
Early cognitive decline might first manifest in complex tasks
in the daily life of people, among which, completing a
questionnaire is one.
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Gaps in Research
Recent research on early identification of cognitive impairment
has been using advanced computational statistics techniques
such as machine learning to develop predictive models of
cognitive impairment [25-28]. Nevertheless, challenges persist
in effectively implementing such cognitive impairment
predictive models within community environments. Existing
studies on machine learning and cognitive impairment
classification mostly used clinical biomarkers such as magnetic
resonance imaging and cerebrospinal fluid analysis as predictors
[29-31]. These approaches are not feasible in community settings
due to their reliance on high-cost or invasive methods for
obtaining predictor information. Furthermore, most current
studies on machine learning and cognitive impairment
classification have been based on small clinical samples (sample
size typically ranged from 140-550), where resampling or
case-controlling techniques were widely used to derive analytic
samples with balanced cognitive impairment and noncognitive
impairment proportions [32-34]. The proportion of cognitive
impairment cases in such datasets can be significantly higher
than the estimated prevalence (about 15%-20%) observed among
older adults in communities [35]. While these resampling and
case-controlling techniques may enhance the model’s sensitivity
to the minority class (ie, the cognitive impairment) [36,37],
existing research has shown that reliance on these techniques
can lead to discrepancies in the distribution of data and introduce
model bias [38,39].

It is worth noting that recent studies have started to explore the
use of large community-based samples with questionnaire data
to develop machine learning models for cognitive impairment
classification [40-43]. However, there remain several important
gaps in this genre of research. First, issues related to LQRs,
such as nonresponse, extreme answers, and acquiescence, are
ubiquitous in the questionnaire data of older adults [19,44-46].
Direct use of questionnaire response data without proper
handling of the potential LQR issue may reduce the validity of
the prediction models. Second, the number of predictors used
in these studies was generally substantial (approximately 22-44),

which can make rapid data collection and cognitive impairment
assessment challenging. Lastly, widely used machine learning
techniques such as regularization are not designed to produce
unbiased predictions, because bias-variance trade-off is an
essential component of these techniques [47]. Consequently,
the predicted probability from these models does not necessarily
reflect the true likelihood of cognitive impairment. This poses
a challenge for end users, such as CHSWs, in selecting an
appropriate threshold. Existing studies often fall short in
providing guidance on determining this threshold.

This Study
This study aimed to develop a novel machine learning tool for
the early identification of cognitive impairment in community
settings using psychometric indices generated from subtle
inconsistencies in questionnaire responses. A distinctive feature
of this study is that rather than filtering out the original
questionnaire responses due to potential LQR issues (eg,
eliminating low-quality answers), we relied on LQR indices,
derived from psychometric methods, as predictors in our
machine learning models to classify cognitive impairment. In
community environments, CHSWs routinely administer brief
questionnaires to identify well-being issues [48], generating a
rich amount of questionnaire response data despite that the
contents of these questionnaires are usually not directly related
to assessing cognitive impairment. This study will investigate
whether the relationships between LQR and cognitive
impairment could be exploited to develop a machine learning
tool for early cognitive impairment identification.

Methods

Study Design
An overview of the methodology adopted in this study is
provided in Figure 1. We followed the guidelines outlined in
the TRIPOD (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis)
statement for reporting the development and validation of the
multivariate predictive models (Multimedia Appendix 1) [49].

Figure 1. Overview of the workflow and methods for the proposed tool development. CHSW: community health and social worker; LQR: low-quality
response.
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Study Sample
Development of the machine learning tool was based on
individuals aged 50 years and older from the Health and
Retirement Study (HRS), a community-based longitudinal aging
study involving a representative sample of older adults in the
United States [50]. As a part of this study, demographics
including race and ethnicity are collected using surveys. In 2006
(wave 8) and 2008 (wave 9), the HRS administered the
leave-behind survey, which explored various aspects of
participants’ psychological well-being and life experiences
[51,52]. A random half (n=8681, 51.13%) of participants
completed the survey in 2006, and the remaining participants
(n=8296, 48.87%) completed it in 2008. Our analysis included
participants from the leave-behind survey, excluding those
whose questionnaires were completed by proxy, those with
missing responses to all scale items, or those lacking key
follow-up records (such as survival status). This resulted in a
total of 12,942 individuals included in our analysis. While our
analysis examined all 21 available questionnaires in the HRS
leave-behind survey (Multimedia Appendix 2) [51], 4
questionnaires, that is, the optimism, hopelessness, life purpose,
and life satisfaction scales, were used as the primary data source
to develop the machine learning tool. These questionnaires were
brief and assessed aspects that are closely related to the common
focus of CHSWs on overall well-being as a positive
psychological attitude, satisfaction with life, clear life goals,
and optimism significantly contribute to enhancing the quality
of life, extending the anticipated lifespan, and reducing mortality
risk in those aged 50 years or older [53-56].

LQR Indices
To model subtle inconsistencies in questionnaire responses as
predictors in our machine learning model, we created two types
of LQR indices using psychometric methods. For each
questionnaire, we first fitted a graded response model—a
common psychometric model based on the item response
theory—to the data to obtain an estimate of the respondents’
“latent trait” score [57]. We did this to remove information
related to content (eg, people’s optimism levels) and to isolate
statistically “misfitting” response patterns indicative of LQR
regardless of question content. The first index, the squared
residuals, was then derived by calculating the squared
differences between the observed questionnaire item responses
and the statistically expected responses given a respondent’s
latent trait [58]. Larger differences between observed and
expected responses indicate severe problems with LQR. The
second index was defined as the probability of a respondent
choosing the observed response given their latent trait [59].
Selecting statistically fewer probable responses can indicate
problems with LQR. The LQR indices were generated using R
(version 4.2.2; R Foundation), mirt (version 1.38.1; York
University), and tidyverse (version 2.0.0; RStudio) [59,60].

Predicted Outcomes
Cognitive impairment status was ascertained using the validated
criteria developed by Langa et al [61] for the HRS. In brief, a
cognitive status score was calculated from cognitive tests of
immediate and delayed word recall, an attention and working
memory task (serial sevens), and counting backward from 20.

The total score has a range from 0 to 27 with higher scores
indicating better cognitive performance. Thresholds of dementia
(0-6 points), cognitively impaired with no dementia (7-11
points), and cognitively normal (12-27 points) were applied
[61]. The cognitively impaired with no dementia and dementia
categories were then combined into a single cognitive
impairment category to indicate whether the individual currently
has cognitive impairment. To investigate the longitudinal
prognostic utility of the LQR indices, we also created a
secondary predicted outcome in the supplemental analysis, that
is, dementia or mortality in the next 10 years, which was derived
from the HRS follow-up records.

Model Development and Training
Using the LQR indices derived from each questionnaire, we
trained and compared seven machine learning models for the
binary classification task of forecasting cognitive impairment.
Specifically, we used the multilayer perceptron (MLP)
technique. MLP is a feed-forward neural network that is
structured with input, hidden, and output layers [62]. Compared
to conventional machine learning, it possesses robust adaptive
learning capabilities, enabling the automatic extraction of
abstract information from raw predictor variables without the
need for labor-intensive manual transformations [62]. Moreover,
the MLP is particularly adept at discerning nonlinear
relationships between predictors and outcomes [63], facilitating
the modeling of potential complex associations between the
LQR indices and cognitive impairment. In contrast to certain
advanced hybrid deep learning models, the MLP boasts a lighter
architecture and parameter setup, which reduces computational
burdens [64]. In addition to training the models using only LQR
indices, another version of the models was developed using the
LQR indices in combination with two easily obtained
demographic variables, that is, age and gender, as predictors.

The dataset had 1.25% missing values (3898 of 310,608 data
points), with 1499 of 12,942 (11.58%) participants having at
least one missing item. These missing values were imputed
using a regression-based iterative imputation method (details
in Multimedia Appendix 3) [65]. The imputed data was then
split into training (n=9059, 70%) and testing sets (n=3883, 30%)
using stratified random sampling to ensure a consistent cognitive
impairment prevalence (n=1641, 18.11% for the training set
and n=704, 18.1% for the testing set) across both sets. We used
batch normalization and class weighting strategies during the
training process [66,67]. This allowed our model to support raw
data input without scaling and resampling steps.

The MLP model comprised four hidden layers with a rectified
linear unit activation function [68]. To reduce overfitting, we
added dropout layers after each hidden layer [69]. The output
layer used a sigmoid activation function with an initialization
strategy to accelerate model convergence [68,70]. During the
training phase, we used 10-fold cross-validation on the training
sets [71]. Model weights and biases were adjusted based on the
binary cross-entropy loss. The data were further split into 80%
(n=7247) training subsets and 20% (n=1812) validation subsets
in each fold. The area under the curve (AUC) was monitored
on the validation subset to guide mechanisms such as early
stopping [72]. We also used the Adam optimizer with a dynamic
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learning rate to optimize the training process, ensuring that only
the best-performing model was retained for the final evaluation
of the test dataset [66,73]. Hyperparameter selection was initially
guided by KerasTuner (Google) [74]. Based on its recommended
values, extensive iterative experiments were conducted to
ascertain the selected configurations, as listed in Multimedia
Appendix 4. The model training was carried out using Python
(version 3.9.16; Python Software Foundation), TensorFlow
(version 2.12.0; Google, Google Brain), and scikit-learn (version
1.2.1; French Institute for Research in Computer Science and
Automation) [66,75,76]

We compared the performance of the MLP to 6 different
predictive models. These included 2 classical machine learning
models (logistic regression and decision trees) [77,78], 2
ensemble learning models (XGBoost and LightGBM) [79,80],
and 2 hybrid deep learning models bidirectional-gated recurrent
unit and convolutional neural network-long short-term memory
[81-83]. We compared bidirectional-gated recurrent unit and
convolutional neural network-long short-term memory models
due to the potential dependencies among LQR indices. The
LQR indicators are derived from multi-item questionnaires,
where multiple items are designed to load onto a single latent
factor. Consequently, there may be correlations between LQR
indices within items from the same questionnaires. For the
classical machine learning and ensemble learning models, we
used grid search to determine the optimal hyperparameters. In
the case of the hybrid deep learning models, we adopt the same
training approach as the MLP and a similar architecture for the
fully connected layers. All models were trained by 10-fold
cross-validation and evaluated on the same unseen test dataset.

Threshold Determination
We determined the threshold for cognitive impairment risk
scores predicted by the model based on the ratio of
underdiagnosis cost to overdiagnosis cost, aiming to minimize
the total cost of underdiagnosis and overdiagnosis [84].
Underdiagnosis refers to when the assessment tool identifies
an individual with cognitive impairment as cognitively normal,
while overdiagnosis refers to when the tool identifies a
cognitively normal individual as having cognitive impairment.
When applying the cognitive impairment assessment tool in
community settings, individuals whose predicted risk scores
are higher than the threshold would be referred to follow-up
clinical cognitive impairment assessment. Thus, the cost of
overdiagnosis would be equal to the cost of conducting one
follow-up clinical cognitive impairment assessment. The cost
of underdiagnosis would be more profound, including the cost
of not receiving timely clinical assessment and treatment of
cognitive impairment. Users of the cognitive impairment
assessment tool may choose different cost ratios tailored to the
needs of their practices. A larger cost ratio would be appropriate
when the follow-up clinical assessment and treatment of
cognitive impairment is readily available. With the emergence

of effective medications such as lecanemab and donanemab
[3,4], this cost ratio would more likely to become larger in the
future.

Evaluation of Model Performance and Efficiency
Predictive accuracy of the assessment tool was evaluated using
the AUC value. AUC values range from 0 to 1, with a higher
score indicating better predictive performance [72]. Moreover,
the efficiency of using the tool in identifying individuals at high
risk of cognitive impairment was evaluated using an efficiency
curve approach. The first step was to calculate the proportion
of individuals referred to further clinical assessment for
cognitive impairment based on predicted results from the tool,
which served as a proxy measure of the resources required to
conduct follow-up clinical assessment and treatment. Then, the
proportion of individuals with cognitive impairment identified
by the follow-up clinical assessments was calculated, which
acted as a proxy measure for the desired outcome of the tool’s
implementation and subsequent cognitive impairment
assessment. These proportions were computed at different
predicted risk score thresholds from the tool, and the paired
proportion values were plotted on a curve. The tool’s efficiency
was then compared with plausible rule-based screening
strategies, which included conducting cognitive impairment
assessments for all individuals aged 65 years and older, or those
with cardiovascular diseases such as high blood pressure, heart
diseases, possible stroke or transient ischemic attack, or diabetes
that is one of major risk factors for cardiovascular disease. This
approach of comparing screening efficiency based on proxy
measures of needed resources and desired outcomes has been
previously implemented by research to compare machine
learning–based assessment against rule-based screening
strategies [85].

Ethical Considerations
This study is approved by the University of Southern California
institutional review board (UP-22-00147) and the University
of Surrey Research Integrity and Governance Office (FHMS
21-22 216 EGA).

Results

Sample characteristics are described in Table 1. In addition,
Multimedia Appendix 5 presents sample characterization of the
training and testing sets. There were 9059 individuals in the
training dataset with an average age of 68.9 (range 50-104.6,
SD 9.85) years, of which 18.11% (n=1641) had cognitive
impairment according to the Langa-Weir criteria. The testing
set included 3883 individuals. The average age of the testing
sample was 68.8 (range 50-100.7, SD 9.72) years and 18.1%
(n=704) in the testing set had current cognitive impairment. The
comparison between training and testing sets showed no
significant differences.
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Table 1. Sample characteristics (N=12,942).

Participants, n (%)Variables

Age (years)

2613 (20.19)50-59

4113 (31.87)60-69

3935 (30.4)70-79

1938 (14.97)80 and older

Gender

7357 (56.85)Female

5242 (40.5)Male

Marital status

8112 (62.68)Married

4486 (34.66)Not married

Race

1511 (11.68)African American

10,588 (81.81)White

500 (3.86)Other

Ethnicity

903 (6.98)Hispanic

11,696 (90.37)Not Hispanic

Education level

6833 (52.8)High school and below

2918 (22.55)Some college

2847 (22)College graduate and above

Self-reported diseases

7029 (54.31)High blood pressure

2402 (18.56)Diabetes

2963 (22.89)Heart disease

947 (7.32)Possible stroke or transient ischemic attack

3728 (28.81)With 2 or more of the above diseases

The MLP has the highest predictive performance on the testing
dataset compared to other predictive methods. As shown in
Multimedia Appendix 6, when using the LQR indices as
predictors, the MLP ranked first or tied for first in AUC values
for 16 of the 21 questionnaires. After including age and gender
as additional predictors, the MLP ranked first or tied for first
in AUC for 18 of the 21 questionnaires. As a result, we chose
the MLP as our predictive model. In addition, we evaluated the
performance of using raw questionnaire responses as predictors
in logistic regression models as baseline performance. Among
the 21 questionnaires, the baseline model’s AUC ranged from
0.47 to 0.64, with a mean of 0.56 (SD 0.04) and a median of
0.55 (IQR 0.04). The performance of using raw questionnaire
responses for cognitive impairment prediction slightly
outperformed random guessing (AUC=0.5), but was inferior to
using LQR indices for prediction in our machine learning
models.

Predictive accuracy of the MLP models is summarized in
Multimedia Appendix 7 and AUC curves are shown in Figure
2. The AUC values ranged from 0.63 to 0.66 across the 4
questionnaires when using LQR indices as predictors. The AUC
values were improved to the range of 0.71 to 0.74 when age
and gender were included as additional predictors. The AUCs
were similar across the 4 questionnaires, and no evident signs
of overfitting were observed during the training and validation
phases (Multimedia Appendix 8). The LQR indices derived
from the optimism scale performed the best among all 21
available questionnaires (Multimedia Appendix 6). The AUC
for predicting dementia or mortality in the next ten years ranged
from 0.61 to 0.70 and improved to 0.80 to 0.83 when age and
gender were included as additional predictors.

Additionally, the evaluation of different thresholds revealed
that as the cost ratio of underdiagnosis to overdiagnosis of
cognitive impairment increased, the proportions of individuals
referred for further assessment and the identification of cognitive
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impairment cases also increased. The results demonstrated that
the performance differences between models with and without
age and gender as additional predictors became smaller as the
cost ratio increased. For instance, with a cost ratio of
underdiagnosis to overdiagnosis of two, the model using LQR
indices from the optimism scale resulted in 3% (n=116) of all
individuals being referred for further clinical cognitive
impairment assessment and 7% (n=49) of all cognitive
impairment cases being identified. On the other hand, the model
using LQR indices from the same scale plus age and gender as
predictors led to 10% (n=388) of individuals referred for further
assessment and 24% (n=169) of cognitive impairment cases
identified. When the cost ratio increased to four, the model

using LQR indices alone resulted in 39.99% (n=1533) of
individuals being referred and 59.9% (n=422) of cognitive
impairment cases being identified, and the model using LQR
indices plus age and gender led to 35% (n=1359) of individuals
being referred and 63.1% (n=444) of cognitive impairment
identified. As mentioned above, the advancements in dementia
treatment imply increased cost ratios of underdiagnosis to
overdiagnosis, suggesting that the thresholds corresponding to
larger cost ratios are more relevant for future practices. In light
of this, a cost ratio of 4 was used as the default choice for the
tool, because it provides a reasonable trade-off between
underdiagnosis and overdiagnosis.

Figure 2. (A) AUC curves for predicting current cognitive impairment and (B) AUC curves for predicting dementia or mortality in the next 10 years.
AUC: area under the curve.

Compared to rule-based screening strategies, the cognitive
impairment assessment tool showed greater efficiency in
identifying individuals at high risk of cognitive impairment. As
shown in Figure 3, the efficiency curves corresponding to the
four questionnaires were all located to the left of rule-based
strategies, indicating higher efficiency as fewer resources were
required to achieve the same desired outcome. Moreover, the
tool offered greater flexibility as users could choose thresholds
depending on the needs of their practices. We selected model
thresholds at a default cost ratio of 4 for comparison between
the two strategies, as shown in Table 2. Except for the rule “high
blood pressure,” where the screening efficiency is relatively
balanced, the screening efficiency under the other rules is
generally polarized, making it difficult to reach a reasonable
trade-off. For instance, although the rule “age ≥65” years leads
to 84.9% (n=598) of this study’s sample with cognitive
impairment being identified, it also consumes the most resources
(n=2757, 71% of the sample will need to receive follow-up
assessments), almost twice as much as the machine
learning-based screening strategies. The machine learning
methods are more efficient in identifying individuals with
cognitive impairment. For instance, in the model based on the

optimism scale, 35% (n=1359) of the sample needs to receive
follow-up assessments to ensure that 63.1% (n=444) of
individuals with cognitive impairment are identified. The
proportion receiving follow-up assessments is approximately
51% and 41% less compared to the “age ≥65” years and “high
blood pressure” rules, respectively, yet it achieves an output
(ie, the proportion of individuals with cognitive impairment
identified) that is approximately 75% and 91% of theirs. This
indicates that machine learning approaches are more efficient
per resource usage and capable of achieving a higher
identification ratio with less resource input.

Moreover, we explored the performance of LQR indices as
predictors across different age groups, and the results are
presented in Table 3. Overall, the cognitive impairment
assessment tool demonstrated greater predictive accuracy and
efficiency in the 50- to 59-year and 60- to 69-year age groups.
Notably, in the optimism scale, the LQR indices consistently
exhibited the best predictive performance (AUC=0.72) in the
50- to 59-year age group, regardless of whether age and gender
were included as predictors. The tool performed better in
predicting cognitive impairment among relatively younger older
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adults, suggesting that LQR indices may be more sensitive to
early cognitive deficits.

Finally, the cognitive impairment assessment tool was deployed
to a web portal for free public access (URL available in the
reference list [86]). As shown in Figure 4, the tool allows users
to enter responses from one of the four questionnaires examined

in this study, set up thresholds by choosing a cost ratio (default
is 4), predict risk scores of cognitive impairment, and generate
recommendations for whether follow-up cognitive health
assessment would be suggested. Users can choose a different
cost ratio based on their circumstances. The tool can also be
expanded using the same modelling approach described in this
paper to incorporate additional questionnaires in the future.

Figure 3. Comparison of machine-learning-based and rule-based identification efficiency for high-risk individuals with cognitive impairment.

Table 2. Comparison of identification efficiency for high-risk individuals with cognitive impairment between machine learning–based and rule-based
approaches under a cost ratio of 4.

Proportion of individuals with current cognitive
impairment that received follow-up assessment,
n (%)

Proportion of all individuals receiving follow-
up assessment, n（%）

Rule or model name

598 (84.9)2757 (71)Age ≥65 years

197 (28)854 (22)Diabetes

486 (69)2291 (59)High blood pressure

204 (29)1048 (26.99)Heart disease

120 (17)388 (10)Stroke

444 (63.1)1359 (35)LQRa indices from optimism scale plus age and
gender

422 (59.9)1281 (32.99)LQR indices from purpose in life scale plus age
and gender

458 (65.1)1553 (39.99)LQR indices from hopelessness scale plus age
and gender

408 (58)1243 (32.01)LQR indices from life satisfaction scale plus age
and gender

aLQR: low-quality response.
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Table 3. Comparison of performance and efficiency of the LQRa indices as predictors for predicting current cognitive impairment across scales and
age groups under a cost ratio of 4.

Individuals with current
cognitive impairment that
received follow-up assess-
ment, n (%)

Individuals receiving
follow-up assessment,
n（%）

Sample with cognitive
impairment, n (%)

Sample, n (%)AUCbModels and age groups (years)

LQR indices from optimism scale plus age and gender

22 (30)65 (8)73 (9)790 (20.4)0.7250-59

51 (33)214 (16.9)154 (12.2)1268 (32.66)0.760-69

170 (66.2)588 (46.8)257 (20.5)1256 (32.35)0.6670-79

210 (95.5)529 (93)220 (38.7)569 (14.7)0.6280 and above

LQR indices from purpose in life scale plus age and gender

9 (12)41 (5)73 (9)790 (20.4)0.6450-59

48 (31)167 (13.2)154 (12.2)1268 (32.66)0.6660-69

153 (59.5)562 (44.8)257 (20.5)1256 (32.35)0.6170-79

212 (96.4)533 (93.7)220 (38.7)569 (14.7)0.5680 and above

LQR indices from hopelessness scale plus age and gender

13 (18)87 (11)73 (9)790 (20.4)0.6250-59

42 (27)193 (15.2)154 (12.2)1268 (32.66)0.6560-69

184 (71.6)693 (55.2)257 (20.5)1256 (32.35)0.6270-79

218 (99.1)566 (99.5)220 (38.7)569 (14.7)0.6180 and above

LQR indices from life satisfaction scale plus age and gender

9 (12)37 (5)73 (9)790 (20.4)0.6350-59

33 (21)151 (11.9)154 (12.2)1268 (32.66)0.6460-69

156 (60.7)516 (41.1)257 (20.5)1256 (32.35)0.6670-79

212 (96.4)549 (96.4)220 (38.7)569 (14.7)0.5780 and above

LQR indices from optimism scale

53 (73)309 (39.1)73 (9)790 (20.4)0.7250-59

104 (67.5)489 (38.6)154 (12.2)1268 (32.66)0.7160-69

139 (54.1)527 (42.0)257 (20.5)1256 (32.35)0.6270-79

128 (58.2)277 (48.7)220 (38.7)569 (14.7)0.5980 and above

LQR indices from purpose in life scale

47 (64)321 (40.6)73 (9)790 (20.4)0.6750-59

91 (59)508 (40.1)154 (12.2)1268 (32.66)0.6560-69

151 (58.8)568 (45.2)257 (20.5)1256 (32.35)0.670-79

145 (65.9)346 (60.8)220 (38.7)569 (14.7)0.5480 and above

LQR indices from hopelessness scale

38 (52)261 (33)73 (9)790 (20.4)0.6550-59

83 (54)404 (31.9)154 (12.2)1268 (32.66)0.6760-69

120 (46.7)433 (34.5)257 (20.5)1256 (32.35)0.670-79

116 (52.7)245 (43.1)220 (38.7)569 (14.7)0.680 and above

LQR indices from life satisfaction scale

42 (58)291 (36.8)73 (9)790 (20.4)0.6650-59

89 (58)507 (40)154 (12.2)1268 (32.66)0.6460-69

159 (61.9)541 (43.1)257 (20.5)1256 (32.35)0.6570-79
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Individuals with current
cognitive impairment that
received follow-up assess-
ment, n (%)

Individuals receiving
follow-up assessment,
n（%）

Sample with cognitive
impairment, n (%)

Sample, n (%)AUCbModels and age groups (years)

121 (55)276 (48.5)220 (38.7)569 (14.7)0.5880 and above

aLQR: low-quality response.
bAUC: area under the curve.

Figure 4. A web portal allowing free public use of the machine-learning tool for cognitive impairment assessment based on subtle inconsistencies in
questionnaire responses.

Discussion

Principal Findings
In this study, we developed a novel machine learning tool for
predicting cognitive impairment based on LQR indices derived
from subtle inconsistencies in questionnaire responses. One
unique advantage of the tool is its reliance solely on the brief
questionnaire that does not directly assess cognitive impairment.
Of all the questionnaires evaluated, the best performer was the
optimism scale, which comprises just six questions. Crucially,
the content of these questionnaires does not need to be directly
related to cognitive impairment. This flexibility allows health
professionals, such as CHSWs, to select questionnaires that
resonate more with their practical emphasis, such as focusing
on overall well-being aspects such as optimism, hopelessness,
life purpose, and life satisfaction [53-56]. Powered by our
machine learning models, these questionnaires now enable a
“passive or backend” cognitive impairment assessment with
acceptable accuracy (AUC around 0.7) for prescreening and
screening purposes. This approach alleviates the need for health
professionals such as CHSWs to undergo specialized cognitive
impairment assessment training and addresses potential
stigmatization concerns. Residents can engage without fearing
labels such as “potentially cognitively impaired” or being seen
as “likely to develop dementia” from receiving cognitive
impairment evaluations [12]. In essence, our tool streamlines

the cognitive impairment assessment process, making it more
adaptable and less burdensome for both professionals and the
community.

Compared with existing machine learning models for cognitive
impairment prediction, our machine learning model is developed
from a large epidemiological sample without using
class-balancing techniques. This ensures that the proportion of
cognitive impairment in both training and testing sets mirrors
the actual prevalence of cognitive impairment in communities.
As mentioned above, our model demands fewer efforts in
gathering data on predictors compared to its counterparts. The
tool also allows for flexible threshold selection based on the
ratio of costs related to underdiagnosis to the costs related to
overdiagnosis. Such flexibility facilitates end users to navigate
the trade-off between underdiagnosis and overdiagnosis when
using a risk assessment tool.

Compared to clinical studies using clinical biomarkers as
predictors for dementia [26,29], our tool still has a gap in
predictive performance. However, our goal does not intend to
replace existing clinical cognitive impairment assessment tests
or tools. Instead, we hope that the tool we have developed will
lower the threshold for the usage of cognitive impairment risk
assessment, thereby adapting it to the needs of community
settings. The tool may establish an effective bridge between the
community end and the clinical end, allowing the clinical end
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to align resources more productively, resulting in fewer
unnecessary inputs and greater efficiency in the health care
system. In addition, by comparing to recent studies that use
similar HRS data to predict cognitive impairment [43,87,88],
our tool demonstrated predictive performance close to those
studies, even though other studies used clinical or cognitive
impairment-related risk factors as additional predictors. For
instance, a study achieved an AUC of 0.78 but used 13
additional cognitive impairment risk factors (eg, race, stroke
history, and glycated hemoglobin) alongside questionnaire data
[87].

Finally, our approach expands the boundary of current research
by innovatively integrating knowledge and techniques from
data sciences and psychometrics to enhance the cognitive health
of older adults. Central to our methodology is the machine
learning tool rooted in LQR indices that are designed to detect
latent cognitive deficits through modelling subtle inconsistencies
in questionnaire responses. Unlike clinical markers of cognitive
impairment [29-31], these psychometric indices are not only
cheaper but also simpler to obtain, making them ideal for
community settings. More importantly, the psychometric method
allows for the evaluation of cognitive impairment independently
of the questionnaire’s content. Further, while conventional
research methodologies typically handle low-quality data by
either eliminating or statistically adjusting them by methods
such as weighting [89-92], our approach presents a new
perspective: leveraging, rather than dismissing, low-quality
data. This strategy underscores the potential of our methodology
to enhance data utility for future research.

In addition to the development and validation of this tool, we
further explored the possibility of improving predictive
performance to provide insights for future research. We
experimented with two approaches: one was to incorporate
education level as an additional predictor, and the other was to
combine four selected scales. The results showed that both
methods could enhance the prediction performance of current
cognitive impairment using LQR as predictors (Multimedia
Appendix 9). It is worth pointing out that the number of items
in each questionnaire had no direct impact on the predictive
effect (Multimedia Appendix 6), but combining different

questionnaires did improve the discriminative ability of the
model. The application of these two approaches may increase
the burden of assessment as more predictors are added to the
model. Furthermore, incorporating other indicators of LQR,
such as prolonged response time, may increase the predictive
accuracy [93].

This study is constrained by the questionnaires available in the
HRS, potentially limiting its generalizability to other
questionnaire response data. However, an ongoing
comprehensive meta-analysis of longitudinal aging surveys
from ten countries indicates that the relationships between LQR
indices and cognitive functioning remain consistent across
various questionnaires and nations [94]. Additionally,
ascertainment of cognitive impairment in this study is based on
empirically established thresholds rather than detailed clinical
evaluations. Clinical diagnosis of cognitive impairment is
intricate, often requiring a mix of cognitive assessments, health
assessments, laboratory tests, and brain imaging. Given this
complexity, large aging survey studies such as the HRS find it
impractical to clinically evaluate every participant.
Consequently, these studies typically perform clinical
evaluations for a select group and then use empirically derived
standards, such as the Langa et al [61], to determine cognitive
impairment in more extensive samples. Lastly, this study is
limited by its nature as a secondary data analysis. Future
research should implement the tool in real-life settings and
conduct external validation and impact assessment to ensure its
effectiveness.

Conclusions
The machine learning tool developed in this study provides a
novel yet practical solution for tackling the challenges of early
identifying cognitive impairment in community environments.
The approach adopted in this study innovatively integrates
psychometric methods with data science techniques and large
questionnaire response data, resulting in a risk assessment tool
that can facilitate health professionals working in community
environments to conduct “passive or backend” cognitive
impairment assessment and therefore better collaborate with
medical systems to promote early identification and treatment
of mild cognitive impairment and dementia.
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