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Abstract

Background: Preoperative evaluation is important, and this study explored the application of machine learning methods for
anesthetic risk classification and the evaluation of the contributions of various factors. To minimize the effects of confounding
variables during model training, we used a homogenous group with similar physiological states and ages undergoing similar
pelvic organ–related procedures not involving malignancies.

Objective: Data on women of reproductive age (age 20-50 years) who underwent gestational or gynecological surgery between
January 1, 2017, and December 31, 2021, were obtained from the National Taiwan University Hospital Integrated Medical
Database.

Methods: We first performed an exploratory analysis and selected key features. We then performed data preprocessing to
acquire relevant features related to preoperative examination. To further enhance predictive performance, we used the log-likelihood
ratio algorithm to generate comorbidity patterns. Finally, we input the processed features into the light gradient boosting machine
(LightGBM) model for training and subsequent prediction.

Results: A total of 10,892 patients were included. Within this data set, 9893 patients were classified as having low anesthetic
risk (American Society of Anesthesiologists physical status score of 1-2), and 999 patients were classified as having high anesthetic
risk (American Society of Anesthesiologists physical status score of >2). The area under the receiver operating characteristic
curve of the proposed model was 0.6831.

Conclusions: By combining comorbidity information and clinical laboratory data, our methodology based on the LightGBM
model provides more accurate predictions for anesthetic risk classification.

Trial Registration: Research Ethics Committee of the National Taiwan University Hospital 202204010RINB;
https://www.ntuh.gov.tw/RECO/Index.action

(JMIR Form Res 2024;8:e54097) doi: 10.2196/54097
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Introduction

Evaluating perioperative risk is an important part of preoperative
assessment [1]. The American Society of Anesthesiologists
(ASA) physical status classification system is used to assess a
patient’s medical conditions before anesthetic induction. A
healthy patient with well-controlled disease can be classified
as ASA class I or II, indicating low anesthetic risk, whereas a
patient with impaired organ function is classified as ASA class
III or higher, indicating high anesthetic risk. ASA physical status
scores are correlated with the risk of postoperative
complications, particularly the risk of mortality. Effective risk
prediction is the key to optimizing patient care and resource
allocation in health care settings. Patients with high anesthetic
risk require more intensive postanesthetic care and longer
hospital stays than those with low anesthetic risk [2]. The ASA
scoring process is not straightforward. The score is calculated
based on the experience of anesthesiologists, who make
assessments according to the status of organ function [3,4].
Only anesthesiologists with years of experience can effectively
integrate all coexisting issues into an ASA classification [5].
Assessments include laboratory data, comorbidities, and the
specific procedure. Several machine learning programs are
available; however, it is a struggle to apply the findings to
clinical practice. Only big data analytics can reveal the
interaction between patient organ function and anesthetic risk
[6,7].

Advances in artificial intelligence have been made in various
fields, including anesthesiology. Machine learning can be
integrated into intraoperative anesthetic practice and can be
applied for preoperative ASA prediction. Several research
groups have attempted to train a machine learning algorithm
for ASA physical status classification; however, in most cases,
physicians or specialists are still required for evaluation [8,9].
Although models in several studies have achieved high accuracy,
they have failed to address the class imbalance between ASA
physical status classes, which can skew results. In one study,
the ASA physical status scores for all surgeries were evaluated
by a single anesthesiologist, who concluded that the ICD-9
(International Classification of Diseases, Ninth Revision) was
the most significant contributor; however, selection bias cannot
be excluded [10]. This study explored the application of machine
learning methods for anesthetic risk classification and evaluated
the contributing factors in clinical practice. To minimize the
effects of confounding variables during training, we used a
homogenous group with similar physiological states and ages
undergoing similar pelvic organ procedures not involving
malignancies. We selected patients from the gynecologic and
obstetric wards based on gestation age because this provided

the most uniform criterion apart from gestation itself. We used
machine learning for ASA classification and for evaluating the
contributions of the ICD-10 (International and Statistical
Classification of Diseases, Tenth Revision).

In this study, we developed a predictive methodology based on
a light gradient boosting machine (LightGBM) model for
anesthetic risk stratification for gynecologic and obstetric
patients. Our research has several key features. First, we used
machine learning methods that can analyze large amounts of
clinical data that can identify patterns and learn
relationships—an approach not commonly used in gynecologic
and obstetric anesthetic risk classification. Second, we
incorporated comorbidity information and clinical laboratory
data into our model. Comorbidity information reflects additional
diseases or health issues that patients may develop during
anesthesia induction and is a crucial component of anesthetic
risk assessment. Clinical laboratory data includes physiological
indicators and pathological characteristics, which enable a more
comprehensive evaluation of anesthetic risk. By integrating
these two types of information into our model, we enhanced
the model’s accuracy and predictive capabilities. Finally, we
focused on model visualization and interpretability by explaining
predictions through visual input-output representation and by
ranking the importance of key features. These analyses can help
physicians and clinical anesthetists better understand the
working principles of the model and can provide valuable
clinical insights for implementing improved anesthesia strategies
and decision-making.

Methods

Overview
In this section, we present our method for automatically
detecting patients with high anesthetic risk. The system
architecture, which is illustrated in Figure 1, consists of 4 key
components: National Taiwan University Hospital Integrated
Medical Database (NTUH-iMD), clinical examination feature
extraction, comorbidity pattern generation, and LightGBM.
First, the clinical examination feature extraction component
retrieves clinical examination data from the NTUH-iMD and
performs data preprocessing to generate a clinical examination
feature vector. Next, the comorbidity pattern generation
component accesses inpatient diagnostic data from the
NTUH-iMD and uses ICD-10 codes to identify comorbidities
and then generate comorbidity patterns as comorbidity feature
vectors. Finally, the 2 generated vectors are merged as input for
the LightGBM component. Thus, a classifier can be trained to
detect patients with high anesthetic risk.
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Figure 1. Proposed model system architecture. ICD-10: International Classification of Diseases, 10th Revision; LightGBM: light gradient boosting
machine; NTUH-iMD: National Taiwan University Hospital Integrated Medical Database.

Ethical Considerations
In this study, the inclusion criteria were female patients of
reproductive age (age 20-50 years) who underwent gestational
or gynecological surgery between January 1, 2017, and
December 31, 2021, which were obtained from the NTUH-iMD.
This study was registered with the Research Ethics Committee
of the National Taiwan University Hospital (202204010RINB).
The informed consent waiver was also approved by the same
Research Ethics Committee. All the data of this study were
deidentified and confidentiality protected with file system level
encryption. There is no identification of individual participants
or users in any images of the paper or supplementary materials.

NTUH-iMD Data Set
Data on women of reproductive age (age 20-50 years) who
underwent gestational or gynecological surgery between January
1, 2017, and December 31, 2021, were obtained from the
NTUH-iMD. Most of the hospitalized patients with benign
gynecological procedures and patients with all gestational
operations were included. Patients requiring malignant-related
procedures were excluded. Our variables encompassed patient
demographic information such as age, surgery time, hospital
level, comorbidities, pharmacy prescriptions, outpatient visits,
emergency room visits, and hospitalization. Additionally, we
collected data on medication use including cardiovascular and
renal drugs, endocrine and metabolic drugs, respiratory tract
drugs, hematologic drugs, endocrine drugs, and anti-infective

agents. A total of 10,946 patients were identified in the
preliminary group. Among these patients, complete data were
unavailable for 54 patients, who were subsequently excluded.
Finally, we included 10,892 patients in the analysis. Within our
data set, 9893 patients were classified as having low anesthetic
risk (ASA 1-2), and 999 patients were classified as having high
anesthetic risk (ASA >2). There were 4532 (41.6%) inclusions
received gestation-related, mainly cesarean section; 6360
(58.4%) inclusions received gynecological surgeries.

Clinical Examination Feature Extraction
Medical examinations and anesthetic risk are inherently
interconnected. We identified the 15 most frequently conducted
assessment items prior to surgery and used these items as the
features in our research model [11]. These items can be
categorized into 5 major domains of examination: hematology
tests, renal function, coagulation, liver function, and others.
Hematology tests encompass several parameters related to
different aspects of blood composition. Red blood cell (RBC)
count, the quantity of RBCs in a given blood volume, indicates
the blood’s oxygen-carrying capacity and can be used to identify
anemia. Hemoglobin, a protein molecule found in RBCs, reflects
the blood’s oxygen-carrying capacity and aids in identifying
anemia. Hematocrit is the concentration of RBCs in the blood,
aiding in evaluating the blood’s oxygen-carrying capacity and
in identifying dehydration and polycythemia. Mean corpuscular
hemoglobin denotes the average amount of hemoglobin within
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each RBC, assisting in assessing the blood’s oxygen-carrying
capacity and identifying specific types of anemia. Mean
corpuscular hemoglobin concentration, the average
concentration of hemoglobin in a given volume of packed RBCs,
aids in evaluating the color and concentration of hemoglobin
and in identifying anemia. Mean corpuscular volume can be
used to measure the average size or volume of RBCs, which
helps categorize anemia as microcytic, normocytic, or
macrocytic and assists in identifying underlying causes. White
blood cell (WBC) count, the total number of WBCs in a given
blood volume, provides an assessment of immune system
function, identification of infections, and monitoring of the
treatment response. Platelet count, the number of platelets in a
given blood volume, can be used to evaluate the blood’s clotting
ability and to identify and monitor conditions such as
thrombocytopenia or thrombocytosis. Finally, the red cell
distribution width coefficient of variation measures the variation
in the size of RBCs, aiding in the diagnosis of different types
of anemia and monitoring the treatment response.

Renal function tests are used to evaluate kidney function. One
of the key measures is the estimated glomerular filtration rate
(EGFR), which calculates the rate at which the kidneys filter
waste products from the blood. The EGFR is used to assess
kidney function and diagnose or monitor conditions such as
chronic kidney disease. Another important parameter is
creatinine, a waste product produced by muscle metabolism
that is filtered by the kidneys. Measuring the creatinine
concentration helps evaluate kidney function and diagnose or
monitor conditions such as kidney disease. These renal function
parameters are crucial for assessing the health and functioning
of the kidneys. In addition, coagulation tests are used to evaluate
the blood’s clotting ability. The prothrombin time (PT) test
measures the time it takes for blood to clot and is used to assess
the activity of clotting factors in the blood and monitor
anticoagulant therapy. The activated partial thromboplastin time
test also measures the clotting time, specifically assessing the
intrinsic pathway of coagulation. This test is used to monitor
anticoagulant therapy and diagnose bleeding disorders.
Additionally, the PT international normalized ratio, a
standardized measure derived from the PT test, is used to
monitor the effectiveness of anticoagulant therapy and assess
the risk of abnormal bleeding. These coagulation tests play a
crucial role in evaluating clotting function and in guiding
treatment decisions. The last feature set is related to liver
function. Liver function tests are performed to assess the health
and function of the liver. These tests involve the measurement
of various liver enzymes, which provide insights into liver
health. One such enzyme is aspartate aminotransferase (AST),
which is primarily found in the liver, heart, and skeletal muscles.
Measuring AST levels aids in evaluating liver function and in
identifying liver disease or damage. AST is an important marker
for assessing the overall health of the liver and for identifying
potential liver-related issues.

In addition to the aforementioned feature sets, age was included
to explore its effect on anesthetic risk. Finally, 16 comprehensive
features were included in our model. These features encompass
various domains, namely hematologic parameters (RBC,
hemoglobin, hematocrit, mean corpuscular hemoglobin, mean

corpuscular hemoglobin concentration, mean corpuscular
volume, WBC, platelet, red cell distribution width-coefficient
of variation), renal function tests (EGFR and creatinine),
coagulation tests (PT, activated partial thromboplastin time,
and PT international normalized ratio, liver function (AST),
and patient age. These features provide a robust foundation for
the development of our model, enabling analysis in their
respective domains. It is worth noting that the range of values
for clinical examination and comorbidity varies significantly,
which could potentially negatively impact the performance of
a machine-learning model. To address this issue, we have
implemented normalization procedures using the z score method
for continuous variables. This ensures that each feature
contributes equally to the model’s learning process. Such an
approach is effective in mitigating any adverse effects arising
from differences in scale among the variables.

Comorbidity-Integrated LightGBM Model for
Predicting Risk of Gynecological and Obstetric
Anesthesia
Comorbidity refers to the simultaneous presence of two or more
diseases, which typically affects the overall health of a patient.
Given the potential correlation and interaction between
comorbidities and anesthetic risk in clinical practice, this study
incorporated comorbidities into the model to comprehensively
assess the overall risk in patients and provide more accurate
predictions of anesthetic risk. We used the log-likelihood ratio
(LLR), which is an effective feature selection method that can
generate representative comorbidities in patients with high
anesthetic risk [12]:

Using a training data set comprising binary labels indicating
whether patients were identified as high risk (HR) or not high
risk (¬HR), we obtained primary and secondary diagnoses from
inpatient records to generate a set of co-occurring diseases,
representing comorbidities as {cb1,..., cbn}. The LLR uses a
specific mechanism to calculate the probability that co-occurring
diseases in high-risk patients are not a result of chance. To
illustrate this calculation, consider a specific comorbidity. N(HR)
and N(¬HR) represent the numbers of high-risk and
not-high-risk patients, respectively. N(cb^HR), denoted as q,
indicates the number of high-risk patients with comorbidity cb.
By contrast, N(cb^¬HR), denoted as r, represents the number
of not-high-risk patients with comorbidity cb. To simplify the
formula, we defined m as N(HR) – q, which represents the
number of high-risk patients without comorbidity cb, and n as
N(¬HR) – r, which denotes the number of not-high-risk patients
without comorbidity cb. A maximum likelihood estimation is
then performed to derive the probabilities p(cb), p(cb|HR), and
p(cb|^HR) by calculating the LLR of the hypothesis that the
presence of cb in the high-risk patient set is not random. A large
LLR value for co-occurring diseases suggests a strong
association with high anesthetic risk. The training data are used
to rank all disease pairs based on their respective LLR values.
We selected disease pairs with high scores as representative of
comorbidity (ie, comorbidity patterns) related to anesthesia.
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Once the comorbidity representation was obtained, we integrated
it with clinical examination features through the direct splicing
strategy to form a consolidated feature vector as the input to
the model. In this study, LightGBM was used as the
classification model training algorithm [13]. LightGBM is a
highly efficient and accurate machine learning method widely
used in various data modeling and prediction tasks. It operates
based on the principles of gradient boosting, in which multiple
weak learners are sequentially added to enhance the model’s
performance. LightGBM is distinct from traditional
gradient-boosting machines in terms of its unique operational
principles. It uses a histogram-based decision tree (DT)
algorithm that leverages the binning of feature values and
histogram-based sparse feature optimization. These techniques
improve training speed and memory use efficiency. Additionally,
LightGBM incorporates exclusive feature bundling and
gradient-based one-side sampling to further accelerate the
training process. LightGBM has been extensively applied across
various machine learning tasks including classification,
regression, ranking, and recommendation systems.
Consequently, the model is widely used in data competitions
and real-world applications [14-16].

Comparative Analysis Models
We conducted a comprehensive comparative analysis of several
widely used predictive models to assess their suitability for
anesthetic risk stratification. We selected a set of well-known
machine-learning approaches as the baseline for our evaluation.
The first model considered was Naïve Bayes (NB), a
probabilistic classifier that applies Bayes’ theorem. The NB
classifier assumes independence between features and is
computationally efficient. The second model was logistic
regression (LR), a linear classifier that models the relationship
between independent variables and the log odds of the dependent
variable. LR is widely used in medical research due to its
interpretability and ability to analyze both categorical and
continuous variables. We also included the k-nearest neighbor
(KNN) algorithm, a nonparametric method that classifies
instances based on their proximity to labeled instances in the
training set. The KNN algorithm is flexible and can analyze
various types of data, making it suitable for anesthetic risk
stratification. Another model in our comparison was the DT, a
tree-based model that creates decision rules based on feature
thresholds. DTs offer interpretability and can capture nonlinear
relationships, which are crucial for understanding the underlying
factors influencing anesthetic risk. Finally, we considered the
support vector machine (SVM), a binary classifier that finds an
optimal hyperplane to separate data into different classes. SVMs
are particularly effective for high-dimensional data and can
capture nonlinear relationships using kernel functions.

In addition to the aforementioned models, we considered 3 other
prominent methods for our comparative analysis: random forest
(RF), extreme gradient boosting (XGBoost), LightGBM, and
multilayer perceptron (MLP). RF is an ensemble learning
method that combines multiple DTs to make predictions. It
addresses issues, such as overfitting and instability, by
aggregating the predictions of individual trees. RF is robust and
is known for its ability to examine high-dimensional data.
Additionally, it provides valuable insights through feature

importance measures, which help identify the most influential
variables in the anesthetic risk stratification process. XGBoost
[17], another ensemble learning method, uses gradient boosting
to construct a powerful predictive model. It is known for its
computational efficiency and ability to address missing data
effectively. XGBoost also provides feature importance measures,
allowing researchers to understand the relative contributions of
different features to the anesthetic risk stratification process.
To improve our proposed method, we incorporated LightGBM,
which is a high-performance gradient-boosting framework that
excels in examining large-scale data sets. Its efficient tree-based
learning algorithm enables rapid training and prediction. With
optimized memory use and excellent parallelization, LightGBM
excels in complex machine learning and data analysis tasks,
making it a powerful tool for addressing real-world challenges.
Finally, we included the MLP [18], a neural network inspired
by the structure and function of the human brain. MLP can
capture complex relationships and patterns in data, making it
well-suited for tasks involving intricate interactions. MLP excels
at learning from large data sets, which is advantageous for
anesthetic risk stratification, in which a comprehensive
understanding of the patient’s medical history is crucial.

Through the evaluation of these models, our objective was to
determine an optimal approach for precise anesthetic risk
stratification, considering interpretability, computational
efficiency, and capturing complex relationships.

Evaluation Data Set and Experimental Settings
To ensure the reliability of our experimental results, a 10-fold
cross-validation approach was conducted. This approach is
widely used in research to assess the performance and
generalizability of machine learning models. In 10-fold
cross-validation [12], the data set is divided into 10 subsets of
approximately equal size. The training and evaluation process
is then performed 10 times, with each fold serving as the
validation set while the remaining 9 folds are used for training.
By rotating the validation set across all 10 folds, we obtain a
more comprehensive evaluation of our model’s performance.
This rigorous validation technique mitigates the effects of
random variations and provides a robust assessment of the
effectiveness of our approach. Furthermore, to address the class
imbalance issue commonly found in medical data sets, we used
the synthetic minority oversampling technique for effective
resampling. The synthetic minority oversampling technique
operates by randomly selecting an instance from the minority
class and identifying its KNNs within the same class. A synthetic
instance is then generated by randomly selecting one of these
neighbors, and a line segment is formed between the selected
instance and the neighbor in the feature space. These synthetic
instances are created as a combination of the 2 chosen instances,
a and b, ensuring convexity. By using the synthetic minority
oversampling technique, we balanced the data distribution
between positive and negative instances. In our specific
experiment, we oversampled clinical narratives, vital signs, and
patient demographic data from the minority classes to achieve
this balance [19].

In our experimental settings, we implemented an MLP
comprising 3 fully connected layers. The configuration begins
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with an input layer featuring neurons equal in number to the
input features, followed by an intermediary layer where the
neuron count is halved. The architecture culminates in an output
layer with a single neuron, designed to represent the probability
of HR. The activation function used throughout is rectified
linear unit, a type commonly used in the hidden layers of neural
networks. Additionally, the loss function used is binary cross
entropy. Optimization was carried out using the Adam optimizer,
set to a learning rate of 0.001. For our SVM model, we chose
a radial basis function kernel. Furthermore, we used LightGBM
with the following parameter configurations to optimize its
performance for our specific task. The “gbdt” boosting type
uses gradient boosting with DTs, and the choice of 31 leaves
provides a balance between model complexity and
generalization. Setting the maximum depth to –1 allows the
trees to grow without any restrictions on depth. A learning rate
of 0.1 controls the contribution of each tree in the ensemble.
We trained the model with 100 estimators to capture sufficient
complexity and avoid overfitting. Additionally, we assigned
the class weights of 0.1 and 0.9 to the minority (0) and majority
(1) classes, respectively, to address any class imbalance present
in the data set.

The performance of our model for predicting gynecological and
obstetric mortality was evaluated using precision, recall, and
F1-score metrics. Additionally, microaveraged metrics were
used to assess the overall performance of the models. These
evaluation measures were determined based on a contingency
table that captured the predictions for a specific target criterion,
Ci. Precision (P(Ci)), recall (R(Ci)), and F1-score (F1(Ci)) were
calculated as follows:

Here, TP(Ci) represents the number of true positives, which are
instances correctly classified as positive, and FP(Ci) represents
the number of false positives, which are negative instances
mistakenly classified as positive. Similarly, TN(Ci) and FN(Ci)
denote the number of true negatives and false negatives,
respectively. The F1-score provides a comprehensive assessment
of the relative effectiveness of the compared methods. As
mentioned in the NTUH-iMD Data Set section, the data set
contained fewer high-risk than low-risk patients. The ratio of

high-risk to low-risk patients was approximately 10:1. A
macroaveraging (Macro (Ci)) approach was used to calculate
the overall performance of each model, allowing for a more
comprehensive and objective evaluation of each model’s
performance.

In addition to precision and recall, sensitivity and specificity
were applied as evaluation metrics to analyze the performance
of our model. Sensitivity measures the proportion of correctly
identified positive instances, reflecting the model’s ability to
accurately detect true positives. Specificity quantifies the
proportion of correctly identified negative instances, indicating
the model’s ability to correctly identify true negatives. These
metrics provide insights into the model’s overall accuracy in
identifying positive and negative instances. To visually assess
the performance of our model and quantify its discriminatory
power, we used the receiver operating characteristic curve. The
receiver operating characteristic curve illustrates the trade-off
between true positive rate (sensitivity) and false positive rate
(1 – specificity) at various classification thresholds. This curve
provides a visual representation of the model’s performance
across a range of classification thresholds. To further quantify
discriminatory ability, we used the area under the receiver
operating characteristic curve as a performance metric. The area
under the receiver operating characteristic curve provides a
single scalar value that measures the overall performance of the
model. A higher value for the area under the receiver operating
characteristic curve indicates that the model more effectively
and accurately distinguishes between positive and negative
instances.

Results

Our approach incorporated a single parameter ζ, which
represents the number of comorbidity patterns used for data
representation. To investigate the effect of this parameter, we
conducted experiments by varying ζ from 0 to 100 in increments
of 10. The model’s predictive performance under different
parameter settings is illustrated in Figure 2. Precision and recall
rates were generally positively correlated with ζ. This can be
attributed to the fact that a higher value of z allows our model
to consider a larger number of comorbidity patterns that are
strongly associated with high anesthetic risk. Consequently,
this setting enhances the detection of high anesthetic risk.
Optimal detection performance was achieved when ζ was set
to 60 (Figure 2). Accordingly, this value was used in subsequent
evaluations.
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Figure 2. Precision-recall-F1-score curve with different dimensions of the comorbidity vector.

As shown in Figure 3, the network visualization illustrates the
comorbidity patterns associated with anesthesia risk, generated
from our study’s data. The thickness of the lines represents
varying degrees of association strength between comorbidities,
quantified by their respective LLR values. We have categorized
these associations into 5 levels of strength, with level 1 being
the strongest and level 5 the weakest, each denoted by different
colors for clarity. It is worth noting that O14.10 (severe

preeclampsia, unspecified trimester) is the most important
component of comorbidity patterns, which is linked to many
other diseases, indicating a strong association with increased
anesthesia risk. Based on clinical evidence, this suggests that
severe preeclampsia increases the risk of anesthesia-related
complications during surgery. This visualization serves not only
as a tool for visualizing data but also as a critical aid in
understanding potential implications in clinical practice.

Figure 3. Network visualization of comorbidities associated with anesthesia risk.
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We further compared some well-known machine learning,
ensemble learning, and deep learning models for comprehensive
analysis (Table 1). As a benchmark method, the DT model
exhibited the lowest performance among all models evaluated.
Its performance on all metrics was less than satisfactory,
possibly due to the model’s simplicity, which renders it unable
to efficiently capture the intricacy of the data. The NB classifier
demonstrated intermediate overall performance. Despite its
precision and recall not being particularly high, it maintained
a relatively balanced equilibrium between these 2 metrics. This
suggests that the NB classifier can regulate false positives and
false negatives with equal efficacy. The precision of LR was

on par with that of NB, but it showed higher recall, indicating
that it identified a larger number of true positive cases. The
SVM model demonstrated moderate performance in our
anesthesia risk assessment, achieving precision, recall, and
F1-scores of 56.77%, 57.80%, and 57.28%, respectively. It uses
a hyperplane for data classification and excels in managing
nonlinear boundaries through the application of a radial basis
function kernel. A high-dimensional medical data set, like those
in anesthesia risk, has numerous variables and overlapping
classes, making this capability especially useful. SVM was able
to balance precision and recall effectively, ensuring a reliable
level of accuracy.

Table 1. Performance of compared predictive models.

P/R/F1 (%)Ensemble and DLb methodsP/R/F1 (%)MLa methods

67.67/51.83/58.70RFd55.16/58.75/56.90NBc

58.25/56.68/57.45XGBoostf55.43/62.19/58.62LRe

62.93/53.67/57.93LGBMh67.64/51.96/58.77KNNg

65.48/52.28/58.14MLPj53.70/53.99/53.84DTi

60.26/61.40/60.78Our method56.77/57.80/57.28SVMk

aML: machine learning.
bDL: deep learning.
cNB: Naïve Bayes.
dRF: random forest.
eLR: logistic regression.
fXGBoost: extreme gradient boosting.
gKNN: k-nearest neighbor.
hLGBM: light gradient boosting machine.
iDT: decision tree.
jMLP: multilayer perceptron.
kSVM: support vector machine.

In contrast to standard machine learning methods, ensemble
learning methods, such as XGBoost and LGBM, tend to deliver
superior overall performance. Both methods exhibited balanced
results across all metrics, with their overall efficiency achieving
an F1-score of more than 57%. RF exhibited very high precision,
implying a high proportion of true positives among all predicted
positives. However, it had a lower recall, indicating that many
true positives were missed in the process. The performance of
the MLP resembled that of RF, possibly because the MLP and
RF are universal function approximators that can solve complex
nonlinear problems. Remarkably, our proposed method
maintained a balance between precision and recall while
achieving the best F1-score (60.78%), outperforming the other
models. This result suggests that our method can accurately
predict anesthetic risk, ensuring patient safety. Finally, we
assessed the performance of the compared methods by using
receiver operating characteristic curves [12]. Our method
exhibited superior area under the receiver operating

characteristic curve values compared with most of the compared
methods (Figure 4). This finding implies that our method
demonstrates a high level of accuracy for detecting high
anesthetic risk.

To summarize, we evaluated several anesthetic risk prediction
models. Our proposed model outperformed the other models in
terms of precision, recall, F1-score, and area under the receiver
operating characteristic curve. These findings highlight that our
method can effectively predict anesthetic risk and enhance
patient safety in medical procedures. More specifically, by
incorporating comorbidity features into the model, the risk level
of patients can be determined more accurately. This strategy
can improve the predictive performance of the model, making
it more reliable and practical and ultimately enabling more
comprehensive and personalized risk assessment. This
improvement can lead to better decision-making, anesthesia
management, and overall health care quality for patients.
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Figure 4. Receiver operating characteristic curve for each model. MLP: multilayer perceptron; SVM: support vector machine.

Discussion

Principal Findings
In line with the objectives delineated in the introduction, this
study successfully developed and validated a predictive
methodology using the LightGBM model for anesthetic risk
stratification in gynecologic and obstetric patients. Our findings
affirm the efficacy of using advanced machine learning
techniques to analyze substantial clinical data sets for identifying
nuanced patterns and relationships not typically discernible
through conventional methods in anesthetic risk classification.
Significantly, the integration of comorbidity information and
clinical laboratory data enhanced the accuracy and predictive
capabilities of our model by incorporating physiological
indicators and pathological characteristics, thus improving the
identification of patients at higher anesthetic risk. Furthermore,
our methodological innovations prioritize model interpretability
and visualization, enabling health care professionals to gain a
deeper understanding of the predictive mechanisms at play and
assisting in effective anesthesia strategy development and patient
safety enhancement.

Analyzing the characteristics used in models is crucial for
understanding the patterns and relationships within the data. By
examining these features, we can gain insights into how the
model works, identify biases, and ascertain which attributes are

key to forecasting the target variable. Evaluating feature
significance can reveal the relative importance of each attribute
within the model and identify the attributes that considerably
affect the model’s efficiency. By investigating these features,
we can improve our understanding of the data and enhance the
overall effectiveness of our model. Permutation feature
importance is a prominent machine learning technique used to
determine feature significance; in this technique, feature values
are randomly shuffled, the model is retrained, and the effect of
the shuffled features on performance is assessed [20]. A marked
decline in performance upon shuffling suggests high importance,
whereas a minimal effect indicates a low contribution. The
permutation feature importance algorithm, therefore, helps
identify the features with the most influence on the model’s
output. The versatility of permutation feature importance enables
its application across different models including LightGBM. In
our research, we applied this technique to assess the predictive
strength of various clinical factors.

The feature importance results were subsequently averaged.
The importance of the original features under 10-fold
cross-validation was evaluated using permutation feature
importance (Multimedia Appendix 1). The 6 most important
features were WBC, AST, EGFR, age, PT, and platelet. WBC,
which indicates the number of leukocytes in your body, achieved
the highest importance score (0.04). Therefore, the immune
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system, which defends against infection and disease, is the most
important factor. AST, EGFR, age, and hematologic factors
were also important. Because our data were homogenous in
terms of sex and surgical type, the model focused on the main
physiological difference between gynecologic and obstetric
patients, which is gestation. Because WBC is commonly
suspected of infection or inflammation [21], we can conclude
that in our result, the WBC poses the highest risk factor of
preoperative assessment [22]. Liver function and renal function
undergo changes during gestation, which affects high-risk
prediction [23,24]. In clinical practice, physicians and
anesthetists should consider whether the complete blood count
and coagulation tests are necessary components of a preoperative
blood examination [25]. This model suggests that the WBC,
AST, EGFR, PT, and platelet are more relevant and
cost-effective factors that should be considered in the
preoperative blood examination.

We further analyzed the comorbidity feature patterns generated
in this study. In total, 60 comorbidity feature patterns were used
in our model and divided into 5 rankings according to their LLR
weighting (Multimedia Appendix 2). Notably, the comorbidities
that posed the highest risk were gestation-related, with severe
preeclampsia-related hypertension posing the highest risk. The
second highest-ranking comorbidities were severe
preeclampsia-related hyperglycemia and fetal distress.
Determining ASA physical status scores for obstetric patients
is not straightforward. According to the ASA Physical Status
Guidelines (2020 revision), normal pregnancy is not considered
a disease; yet, it is classified as ASA Physical Status Score II
due to the distinct physiological state of the parturient [26].
However, little guidance is available on how to adjust for the
many complications of pregnancy [27]. Obstetric
anesthesiologists, when determining whether a cesarean section
is necessary, consider complex gestation complications rather
than age alone [28,29]. From this study, pregnant women with
pathological conditions, such as those involving
preeclampsia-related hypertension or hyperglycemia, should be
classified as high-risk cases. Given the effect of gestation on
organ function and potential threats to maternal well-being (eg,
infections) or preanesthetic physical status, all abnormal
conditions should be considered together.

Limitations
This study focuses exclusively on gynecologic and obstetric
patients from the National Taiwan University
Hospital-Integrated Medical Database, which began recording

pertinent patient assessment data prior to anesthesia in 2019.
Consequently, the scope of our analysis is constrained by the
duration of data availability. Additionally, as our data set
predominantly comprises Taiwanese individuals, the findings
may not be directly generalizable to other ethnic groups. This
ethnic homogeneity limits the broader applicability of our results
and underscores the need for caution when extrapolating these
findings to diverse populations.

Furthermore, this research uses a binary classification
framework for anesthetic risk, distinguishing only between the
presence and absence of anesthesia-related risk. Anesthetic
outcomes may be oversimplified with this approach, although
it is useful for preliminary risk stratification. Future iterations
of this research will aim to develop more nuanced models that
classify anesthetic risk into multiple categories, thereby
enhancing the precision of risk assessments.

Conclusions
In conclusion, this study not only advances the application of
machine learning in the field of anesthetic risk classification
for gynecologic and obstetric patients but also sets a precedent
for the integration of comprehensive clinical data in medical
predictive models. Using the LightGBM model, our approach
enhances predictive accuracy by effectively synthesizing
comorbidity information with clinical laboratory data. This
methodology does not merely improve anesthetic risk
assessments; it facilitates a deeper understanding of the
underlying factors influencing patient outcomes, thereby
enabling more informed clinical decision-making. Besides its
immediate clinical use, our model’s visualization and
explanatory analyses expand the discourse on how machine
learning can be strategically applied to enhance surgical
outcomes and patient safety. These findings underscore the
potential for sophisticated, data-driven approaches to transform
patient care by providing anesthesiologists with precise,
actionable information tailored to individual patient profiles.

In the future, we plan to incorporate a wider variety of clinical
variables and patient-specific factors into our anesthetic risk
stratification models. In addition to refining the models’
accuracy, we will explore their applicability across different
medical fields, potentially extending beyond gynecology and
obstetrics. The ultimate objective is to develop a dynamic,
personalized anesthetic risk stratification framework that
integrates multiple risk factors, uses advanced machine learning
techniques, and leverages real-time data to substantially enhance
the quality of patient care across health care settings.
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