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Abstract

Background: Machine learning has advanced medical event prediction, mostly using private data. The public MIMIC-3 (Medical
Information Mart for Intensive Care III) data set, which contains detailed data on over 40,000 intensive care unit patients, stands
out as it can help develop better models including structured and textual data.

Objective: This study aimed to build and test a machine learning model using the MIMIC-3 data set to determine the effectiveness
of information extracted from electronic medical record text using a named entity recognition, specifically QuickUMLS, for
predicting important medical events. Using the prediction of extended-spectrum β-lactamase (ESBL)–producing bacterial infections
as an example, this study shows how open data sources and simple technology can be useful for making clinically meaningful
predictions.

Methods: The MIMIC-3 data set, including demographics, vital signs, laboratory results, and textual data, such as discharge
summaries, was used. This study specifically targeted patients diagnosed with Klebsiella pneumoniae or Escherichia coli infection.
Predictions were based on ESBL-producing bacterial standards and the minimum inhibitory concentration criteria. Both the
structured data and extracted patient histories were used as predictors. In total, 2 models, an L1-regularized logistic regression
model and a LightGBM model, were evaluated using the receiver operating characteristic area under the curve (ROC-AUC) and
the precision-recall curve area under the curve (PR-AUC).

Results: Of 46,520 MIMIC-3 patients, 4046 were identified with bacterial cultures, indicating the presence of K pneumoniae
or E coli. After excluding patients who lacked discharge summary text, 3614 patients remained. The L1-penalized model, with
variables from only the structured data, displayed a ROC-AUC of 0.646 and a PR-AUC of 0.307. The LightGBM model, combining
structured and textual data, achieved a ROC-AUC of 0.707 and a PR-AUC of 0.369. Key contributors to the LightGBM model
included patient age, duration since hospital admission, and specific medical history such as diabetes. The structured data-based
model showed improved performance compared to the reference models. Performance was further improved when textual medical
history was included. Compared to other models predicting drug-resistant bacteria, the results of this study ranked in the middle.
Some misidentifications, potentially due to the limitations of QuickUMLS, may have affected the accuracy of the model.

Conclusions: This study successfully developed a predictive model for ESBL-producing bacterial infections using the MIMIC-3
data set, yielding results consistent with existing literature. This model stands out for its transparency and reliance on open data
and open-named entity recognition technology. The performance of the model was enhanced using textual information. With
advancements in natural language processing tools such as BERT and GPT, the extraction of medical data from text holds
substantial potential for future model optimization.
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Introduction

In recent years, machine learning techniques have been used to
build models to predict various medical events such as
drug-resistant bacterial infections [1] and unscheduled hospital
readmissions [2]. Most of these studies have used private data
sets to build their prediction models, limiting the replicability
and generalizability of the findings owing to accessibility
constraints.

In contrast, MIMIC-3 (Medical Information Mart for Intensive
Care III) is a large publicly available electronic medical record
(EMR) data set that contains comprehensive clinical data of
more than 40,000 patients admitted to intensive care units
(ICUs), thereby serving as a valuable resource for the
development and evaluation of machine learning models for
predicting various medical events [3-5]. While previous studies
have mainly used structured data such as patient background
(eg, age and sex), laboratory results, and vital signs to predict
medical events, MIMIC-3 is unique in that it also includes
textual data. In a database consisting of a single medical
institution, the records of visits to other medical institutions are
not structured and may be difficult to trace. However, the text
of an EMR may contain records of visits to other hospitals, and
if information from such texts can be extracted, even a database
obtained from a single medical facility might facilitate the
tracking of past medical history. This may also improve the
accuracy of predicting medical events because past medical
history is often important in predicting such events.

Information extraction from medical texts can be a complex
task because of the specialized terminology and abundant
abbreviations used. Further, 1 common method to extract
information from medical texts is to use named entity
recognition (NER), which is a subtask of information extraction
that seeks to locate and classify named entities in text into
predefined categories, such as the names of diseases, drugs, and
medical conditions. For example, QuickUMLS matches strings
of text to Unified Medical Language System (UMLS) concepts
and extracts concept unique identifiers (CUI) from the text [6].
The UMLS is a comprehensive resource of biomedical terms
and concepts that allows QuickUMLS to extract medical
information effectively and quickly. QuickUMLS uses a method
called “approximate string matching,” which finds UMLS
concepts in texts that are either the same or very close to the
string in the text.

Among the various medical events that are meaningful to
predict, this study focused on predicting infections caused by
a type of antibiotic-resistant bacteria known as
extended-spectrum β-lactamase (ESBL)–producing bacteria.
They are a significant global health concern because of their
resistance to commonly used antibiotics [7]. The incidence of
ESBL-producing bacteria has been reported to have increased
from 1997 to 2011 in the United States [8]. The timely and
accurate prediction of ESBL-producing bacterial infections can

help initiate appropriate antimicrobial therapy, improve patient
outcomes, and minimize the spread of antibiotic resistance.

In this study, using MIMIC-3 as a data source, we constructed
and evaluated a machine learning model to predict whether
Escherichia coli and Klebsiella pneumoniae in specimens
collected from a patient were suspected of producing ESBLs,
based on structured data and patient history information
extracted by applying QuickUMLS to EMR text. This study
aimed to build a model that makes clinically meaningful
predictions using open data sources and open NER technology.

Methods

Ethical Considerations
The establishment of the MIMIC-3 database was approved by
the institutional review boards (IRBs) of Beth Israel Deaconess
Medical Center and the Massachusetts Institute of Technology
[4]. Under the Common Rule (45 CFR 46), records-based
research using identifiable private information that is publicly
available is exempt from IRB review. Since MIMIC-3 is
publicly available and deidentified, the secondary analysis in
this study is exempt from IRB review. As a result, this study
did not undergo an IRB review.

One of the authors (GI) received the necessary training in the
use of the MIMIC-3 data set, obtained permission to use the
data, and conducted this study in compliance with the PhysioNet
Credentialed Health Data Use Agreement 1.5.0.

Data Source
In this study, we used the MIMIC-3 data set, a publicly available
large-scale EMR data set. MIMIC-3 contains comprehensive
clinical data from over 40,000 patients admitted to ICUs at the
Beth Israel Deaconess Medical Center in Boston, Massachusetts,
between 2001 and 2012. The data set includes various types of
clinical information such as demographics, vital signs, laboratory
results, medications, diagnoses, and free-text data in the form
of nursing notes, radiology reports, and discharge summaries
[3-5].

Study Population
This study included patients with K pneumoniae or E coli
detected in bacterial culture tests conducted during
hospitalization and detailed in the MIMIC-3. Patients without
a summary text at discharge were excluded from this study.

Outcome Variable
The outcome variable is a binary variable of whether K
pneumoniae or E coli in the specimen showed a minimum
inhibitory concentration ≥8 µg/mL for cefpodoxime or minimum
inhibitory concentration ≥2 µg/mL for ceftazidime, or
ceftriaxone as a result of the bacterial culture test (liquid
microdilution method). This criterion corresponds to the
screening criteria for ESBL-producing bacteria according to the
Clinical and Laboratory Standards Institute M100-S25 [9].
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Predictor Variables
The predictor variables were broadly classified into variables
extracted from the structured tables and those related to the
patient’s history extracted from the text data.

The variables extracted from the structured table were patient
age at the time of specimen collection, sex, number of days
between admission and specimen collection, admission type,
previous location of the patient before arrival at the hospital,
and specimen type collected for the bacterial culture test.

The medical history variables extracted from the discharge
summary text were preprocessed using the procedure: (1) from
the discharge summary, we extracted paragraphs beginning with
the string “Past medical history,” “Past Medical History,” or
“PAST MEDICAL HISTORY”; (2) QuickUMLS was applied
to the extracted paragraphs to extract the CUI with a Jaccard
similarity coefficient of 0.7 or higher; and (3) dummy variables
with and without each CUI were used for medical history.

Model Development and Evaluation
First, we constructed an L1-regularized logistic regression model
using only the variables extracted from the structured table.
Subsequently, we used the variables derived from the structured
table and those related to medical history extracted from the
text to build either an L1-regularized logistic regression model
or a LightGBM model. We chose L1-regularized logistic
regression and LightGBM to build our predictive model
primarily for 2 reasons. First, logistic regression is a
straightforward linear model used for binary classification, while
LightGBM is a more complex model that can handle both linear
and nonlinear patterns. This combination allows us to cover a
broad range of data behaviors. Second, we used L1
regularization with logistic regression to help manage the
model’s complexity by selecting important features. For
reference, we constructed a model that judges all positive cases,
one that judges all negative cases, and one that judges randomly
according to the ratio of positive to negative cases.

The models were constructed and evaluated using stratified
group 5-fold cross-validation with patient ID as a group variable.
This method ensures an equal class distribution in each fold,

while samples from the same patient are not split across different
folds. The receiver operating characteristic area under the curve
(ROC-AUC) and precision-recall curve area under the curve
(PR-AUC) were used to evaluate the performance of each
model. The ROC-AUC evaluates the model’s ability to
distinguish between classes, whereas the PR-AUC focuses on
the model’s performance in terms of precision and recall, which
are particularly valuable when dealing with imbalanced data
sets [10]. These were calculated for each fold, and the average
of the values from each fold was used as the ROC-AUC and
PR-AUC of that model.

Results

Study Population
The total number of patients registered in the MIMIC-3 database
was 46,520, of which 4046 underwent bacterial culture tests,
and K pneumoniae or E coli were detected. After excluding 432
patients without a summary text on discharge, the final study
population consisted of 3614 patients. Of the specimens
collected from this study’s population, 5272 specimens were
positive for K pneumoniae or E coli, which were the targets of
this model.

Patient Characteristics
Patient characteristics are summarized in Table 1, which shows
no notable differences in mean age between negative and
positive ESBL screening patients, although there was a slightly
higher proportion of older patients (n=1160, 27.3%) aged 80
years or older among negative patients. The sex distribution
was slightly higher for females (n=2477, 58.4%) in the negative
group and almost the same in the positive group. The average
time from admission to specimen collection was 6.1 (SD 11.9)
days for negative patients and 12.1 (SD 18.4) days for positive
patients. Before arrival at the hospital, the previous location of
the patient did not differ markedly between the negative and
positive patients. Specimens tested for bacterial growth showed
that negative patients had slightly more urine specimens and
slightly fewer sputum specimens than positive patients.
However, these differences were not statistically significant.
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Table 1. Patient characteristics.

Patients with ESBL screening–positive
specimen (N=1030)

Patients with ESBLa screening–negative
specimen (N=4242)

Characteristics

Age (years)

0 (0)10 (0.24)<20 years, n (%)

64 (6.21)196 (4.62)≥20 to <40 years, n (%)

275 (26.70)941 (22.18)≥40 to <60 years, n (%)

530 (51.46)1935 (45.62)≥60 to <80 years, n (%)

161 (15.63)1160 (27.35)≥80 years, n (%)

65.2 (14.5)68.8 (15.2)Mean (SD)

Sex, n (%)

530 (51.46)1765 (41.61)Male

500 (48.54)2477 (58.39)Female

12.1 (18.4)6.1 (11.9)Number of days from the admission to specimen collection, mean
(SD)

Admission type, n (%)

927 (90)3741 (88.19)Emergency

76 (7.38)384 (9.05)Elective

27 (2.62)114 (2.69)Urgent

0 (0)3 (0.07)Newborn

Previous location of the patient before arriving at the hospital, n (%)

453 (43.98)2092 (49.31)Emergency department admission

213 (20.68)920 (21.69)Clinic referral or premature

208 (20.19)648 (15.28)Transfer from hospital or extramural

116 (11.26)526 (12.40)Physician referral or normal delivery

29 (2.82)40 (0.94)Transfer from a skilled nursing facility

11 (1.07)15 (0.35)Transfer from other health

0 (0)1 (0.02)Information not available

Specimen tested for bacterial growth, n (%)

431 (41.84)2395 (56.46)Urine

245 (23.79)637 (15.02)Sputum

134 (13.01)568 (13.39)Blood culture

72 (6.99)197 (4.64)Swab

18 (1.75)78 (1.84)Bronchoalveolar lavage

130 (12.62)367 (8.65)Other

aESBL: extended-spectrum β-lactamase.

Model Performance
The ROC-AUC of the L1-penalized model constructed using
variables extracted from a structured table was 0.646 and the
PR-AUC was 0.307 (Table 2). When variables extracted from
the structured table and past medical history variables extracted
from the discharge summary were used to construct the
L1-penalized model, the ROC-AUC and PR-AUC were 0.653

and 0.335, respectively (Table 2 and Figure 1). The ROC-AUC
of the LightGBM model was 0.707 and the PR-AUC was 0.369
(Table 2 and Figure 2). In the reference random classification
model, the ROC-AUC and PR-AUC were 0.501 and 0.275,
respectively (Table 2). The model that predicted all cases as
positive or negative had a ROC-AUC of 0.500 and an undefined
PR-AUC (Table 2).
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Table 2. Model performance.

PRc-AUCROCa-AUCbPredictor variables and model

Only from the structured table

0.3070.646L1-regularized logistic regression

From the structured table and the discharge summary text

0.3350.653L1-regularized logistic regression

0.3690.707LightGBM

None

0.2750.501Randomd

—e0.500All positive

—0.500All negative

aROC: receiver operating characteristic.
bAUC: area under the curve.
cPR: precision-recall curve.
dRandom model judges randomly according to the ratio of positive to negative cases.
eNot applicable.

Figure 1. Mean ROC curve and mean PR curve of L1-regularized logistic regression with variables from the structured table and the discharge summary
text. The AUC value is presented as the mean (SD) across 5 folds. AUC: area under the curve; PR: precision-recall curve; ROC: receiver operating
characteristic.
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Figure 2. Mean ROC curve and mean PR curve of LightGBM with variables from the structured table and the discharge summary text. The AUC value
is presented as the mean (SD) across 5 folds. AUC: area under the curve; PR: precision-recall curve; ROC: receiver operating characteristic.

Model Specification
Several key variables related to patient attributes and medical
history are highlighted in the feature importance data for the
LightGBM model. Specifically, “age at admission” has an
importance score of 262, emphasizing its significant predictive
value in the model. The “days from hospitalization to specimen
collection” feature also plays a critical role with a score of 245.2.
Medical conditions such as end-stage renal disease (ESRD) and
Pseudomonas infection are also pertinent, with ESRD assigned
an importance of 64.4, although the specific score for
Pseudomonas infection is not listed in the top features shown.
The data further include morbid obesity and diabetes mellitus
(DM), which are integral for understanding patient outcomes,
though their importance scores need to be specified from the
full list. Additional features such as “fright,” “secondary,”
“trachy,” and “severed” are less prominent, with “fright” having
an importance of 28.7, indicating its relatively lower but still
notable influence on the model’s predictions.

Discussion

Principal Findings
Compared with the reference random classification model, we
observed an improvement in both the ROC-AUC and PR-AUC
of our model, built solely on predictor variables from the
structured table data. The performance of the model was further
enhanced by adding features extracted from text-based medical
histories.

A systematic review reported that the ROC-AUCs of existing
predictive models without text for drug-resistant bacteria ranged
from 0.48 to 0.93 [1]. The performance of our model was neither
outstanding nor disappointing; it was somewhere in between.
Key features contributing to the model’s performance included
age; number of days since hospital admission; and medical
history of end-stage renal disease, Pseudomonas infection,

obesity, and DM. These have been noted in previous studies as
risk factors for ESBL-producing bacteria and other drug-resistant
bacteria, and it seems reasonable to assume that they are
important factors for predicting ESBL-producing bacterial
infections [11-15].

While our study’s predictors are consistent with known risk
factors for drug-resistant infections, the retrospective nature of
our analysis means we might not have fully accounted for all
biases inherent in such data. Therefore, our findings do not
imply causal relationships and should be interpreted with
caution, particularly in clinical applications.

Features from the discharge summary text improved prediction
accuracy; however, the feature “fright,” which appears to be
unimportant for predicting drug-resistant bacteria, also appeared
among the important features. This may be because of the
limitations of NER using QuickUMLS. That is, “fright” may
have been incorrectly identified because it contains the string
“right.” Patients with a long medical history are more likely to
include common words such as “right” in their medical history,
which may have increased the risk of ESBL-producing bacterial
infection due to the long medical history, resulting in a higher
feature importance. The accuracy of the history extraction by
NER may have led to the extraction of invalid features and
prevented the model from reaching a high level of performance.

Another concern is the frequent use of abbreviations in discharge
summaries. For example, “DM” is an abbreviation for diabetes
mellitus. QuickUMLS performs NER based on string similarity,
so the abbreviation “DM” and the full term “diabetes mellitus”
are the same, but the strings are not highly similar, making
extraction difficult.

Furthermore, the extraction by QuickUMLS of words that might
seem less meaningful at first glance, such as “secondary,”
“trachy,” and “severed” is another challenge. Specifically,
“secondary” is associated with “neoplasm metastasis” (CUI:
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C0027627), “trachy” with “tracheotomy procedure” (CUI:
C0040591), and “severed” with “severing” (CUI: C1306232).
However, these words were not always used in the discharge
summaries to indicate their corresponding CUIs.

The data used in our study were obtained from MIMIC-3, a
single-institution database, and the extraction of information
outside the patient’s institution, such as medical history, was
possible only through textual information. Medical histories
were extracted from the discharge summary texts; however,
information such as antibiotic usage history, which is a risk
factor for ESBL, may not have been detailed in the discharge
summary, leading to potential underextraction.

Additionally, while the MIMIC-III database is open and makes
our study results more reproducible, the reliability of its data
cannot be fully guaranteed. This means that although our model
shows trends similar to previous studies, suggesting it has some
validity, the possibility that the model could be invalid cannot
be dismissed.

In summary, although feature extraction from the discharge
summary texts using QuickUMLS improved the accuracy of
predicting ESBL-producing bacterial infections, incomplete
data and difficulties in extracting information from the text may

have prevented us from extracting all the data required for ESBL
prediction. These obstacles may have contributed to the
suboptimal performance of the proposed model.

Conclusions
In conclusion, we constructed a model that predicts
ESBL-producing bacterial infections with accuracy comparable
to that of previous studies using the publicly available MIMIC-3
data set.

Because our model was constructed using open data and open
NER technology, it exhibited a high level of transparency. We
believe that this model serves as a valuable reference for future
studies in this field.

By extracting information from the text, we enhanced the
performance of our model. We posit that if we can extract data
from the text with even higher precision, we may be able to
further improve the performance of our model.

The advent of transformer-based models, such as BERT and
GPT, has led to notable improvements in medical natural
language processing tasks [2,16,17]. Given the rise in natural
language processing techniques, we believe that further
applications for the extraction of information from medical
texts, such as those used in our study, are promising.
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