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Abstract

Background: The early detection of respiratory infections could improve responses against outbreaks. Wearable devices can
provide insights into health and well-being using longitudinal physiological signals.

Objective: The purpose of this study was to prospectively evaluate the performance of a consumer wearable physiology-based
respiratory infection detection algorithm in health care workers.

Methods: In this study, we evaluated the performance of a previously developed system to predict the presence of COVID-19
or other upper respiratory infections. The system generates real-time alerts using physiological signals recorded from a smartwatch.
Resting heart rate, respiratory rate, and heart rate variability measured during the sleeping period were used for prediction. After
baseline recordings, when participants received a notification from the system, they were required to undergo testing at a Northwell
Health System site. Participants were asked to self-report any positive tests during the study. The accuracy of model prediction
was evaluated using respiratory infection results (laboratory results or self-reports), and postnotification surveys were used to
evaluate potential confounding factors.

Results: A total of 577 participants from Northwell Health in New York were enrolled in the study between January 6, 2022,
and July 20, 2022. Of these, 470 successfully completed the study, 89 did not provide sufficient physiological data to receive any
prediction from the model, and 18 dropped out. Out of the 470 participants who completed the study and wore the smartwatch
as required for the 16-week study duration, the algorithm generated 665 positive alerts, of which 153 (23.0%) were not acted
upon to undergo testing for respiratory viruses. Across the 512 instances of positive alerts that involved a respiratory viral panel
test, 63 had confirmed respiratory infection results (ie, COVID-19 or other respiratory infections detected using a polymerase
chain reaction or home test) and the remaining 449 had negative upper respiratory infection test results. Across all cases, the
estimated false-positive rate based on predictions per day was 2%, and the positive-predictive value ranged from 4% to 10% in
this specific population, with an observed incidence rate of 198 cases per week per 100,000. Detailed examination of questionnaires
filled out after receiving a positive alert revealed that physical or emotional stress events, such as intense exercise, poor sleep,
stress, and excessive alcohol consumption, could cause a false-positive result.

Conclusions: The real-time alerting system provides advance warning on respiratory viral infections as well as other physical
or emotional stress events that could lead to physiological signal changes. This study showed the potential of wearables with
embedded alerting systems to provide information on wellness measures.
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Introduction

The COVID-19 pandemic caused by the SARS-CoV-2 virus
had a major impact on public health since its emergence in late
2019. The ability to provide early accurate detection of the virus
has been important for controlling the spread of the virus in the
community [1]. Virus transmission from asymptomatic or
presymptomatic individuals has been a key factor contributing
to the spread. High levels of SARS-CoV-2 virus have been
observed 48-72 hours before symptom onset [2].

At present, 1 in 5 Americans use wearable devices [3].
Longitudinal information collected from fitness trackers and
smartwatches holds immense potential for real-time health
tracking and illness detection [4-8]. Infection detection based
on physiological signals can help bridge the existing gap in the
diagnosis and treatment of viral infections and intelligently
provide guidance on who might be at risk for infections and
hence help limit the spread. Recent studies have shown that
wearable devices could detect respiratory infections such as
COVID-19 and influenza [9-16]. Different combinations of
physiological signals, such as resting heart rate, heart rate
variability, sleep data, respiratory rate, dermal temperature, step
counts, and physical activity, have been used for upper
respiratory infection prediction models with promising results
[10-13,17-19].

In a previous investigation by our team, a model was developed
to associate changes in respiratory rate, resting heart rate, and
heart rate variability (measured using trackers or smartwatches)
with the onset of COVID-19 [9]. These features were combined
into an “alerting” algorithm, which would indicate the day on
which the subject was believed to have contracted COVID-19.
The investigation noted a sensitivity of 43% and a specificity
of 95% in correctly labeling days as either being associated with
COVID-19 or being healthy days, using a window of 7 days
after the onset of COVID-19 symptoms. However, these results
were generated using a retrospective self-reported survey
instrument, with no direct laboratory confirmation on the timing
or accuracy of positive cases. In this prospective validation
study, our primary objective was to evaluate the performance
of the previously developed algorithm in real-time alerting for
COVID-19 infections and our secondary objective was to
evaluate the performance of the model for other upper
respiratory infections in a sample of health care workers
affiliated with Northwell Health in New York.

Methods

Participants
Northwell Health (Northwell) workforce members or affiliates
(ie, students, faculty members, and staff) were invited to
participate (across Northwell’s 21 hospitals, more than 850
outpatient facilities, and research institutes). Northwell has over
70,000 employees, with a significant number engaged in

frontline clinical work. Participants were recruited into the trial
via internal employee messaging systems and flyers, with
enrollment taking place remotely via an online platform
(REDCap). Before enrollment, participants underwent an
eligibility screening. The inclusion criteria were as follows: (1)
age of 18 years or older, (2) Northwell Health member or
affiliate, (3) ability to speak or read English, (4) ability to give
informed written consent, and (5) owning a smartphone capable
of receiving text messages and connecting to the internet. We
excluded participants who (1) were pregnant or lactating women,
(2) had a pacemaker or implantable cardioverter defibrillator,
or (3) were unable or unwilling to wear a device. Potential
participants completed the screening and consented online via
a Northwell-approved electronic data capture platform
(REDCap). Initial recruitment was focused on those employees
identified as being at higher risk of contracting COVID-19 (eg,
nurses, doctors, and others with direct exposure to COVID-19
patients) [20]. All participants were vaccinated with at least one
dose of the COVID-19 vaccine in line with the Northwell
mandate for vaccination.

Ethical Considerations
The study was approved by the Northwell Institutional Review
Board (IRB#20–1080). All participants provided written
informed consent under the approved protocol (IRB#20–1080),
and all research procedures were performed in accordance with
relevant guidelines and regulations and the Declaration of
Helsinki. Participants were recruited starting January 6, 2022,
until completion of the study in July 2022. Northwell is based
in New York State, and all participants resided within the tristate
area. Taking part in the study was voluntary, and participants
could choose not to participate in the study or to leave the study
at any time. All tests were administered at Northwell’s
laboratory locations [21]. The data collected from the study
were deidentified and securely transferred to researchers for
analysis. All tests were provided by the Northwell laboratory
testing services at no cost to the participants. To cover
transportation costs, participants were compensated US $25
each time they went to a laboratory for a COVID-19 test.
Participants were also allowed to keep their Fitbit device, and
if they completed at least 80% of COVID-19 tests, they were
entered into a random draw for a US $500 gift card.

Algorithm Predictions Based on Health Metrics
In this study, our objective was to validate the performance of
a previously developed model to detect COVID-19 using
wearable physiological signals in a sample of health care
workers affiliated with Northwell [9]. In this prospective study,
the following physiological data were collected for each user
daily using data recorded by their Fitbit watch:

• Respiration rate: The estimated mean respiration rate during
deep sleep when possible and during light sleep in the case
of insufficient deep sleep was assessed.

• Resting heart rate: The mean nocturnal heart rate during
nonrapid eye movement sleep was assessed.
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• Heart rate variability: The root mean square of successive
differences in the nocturnal R-R series was assessed. It was
computed in 5-minute intervals, and the median value of
these individual measurements over the whole night was
calculated.

• Heart rate variability (entropy): The Shannon entropy of
the nocturnal R-R series was assessed. It is a nonlinear time
domain measurement computed using the histogram of R-R
intervals over the entire night.

Since health metrics can vary substantially between users, the
algorithm used Z-scored equivalents of the aforementioned
metrics. The algorithm used a matrix of 5×4 observations
consisting of the 4 physiological features in the past 5 days (the
day of prediction and the previous 4 days). Thus, each row of
the matrix represents a day of data, while each column represents
a metric. The matrix was linearly interpolated to handle missing
data but only when there were data for a minimum of 3 days.
Having less than 3 nights of data on a rolling window of the
past 5 days was the condition where the algorithm could not
generate any predictions. Then, an “image” of 28×28×1, with
the last dimension indicating that there was only 1 color channel,
was created by resizing each 5×4 matrix. Each image was an
input for a 1-dimension convolutional stage with m filters. A
dense layer was used to reduce the m convolutional features to
a smaller feature set N1. At this stage, an array of n external
inputs was applied, including age, gender, and BMI. The final
dense layer led to a Softmax function with 2 possible output
classes: positive and negative (more information on model
development has been provided previously [9]).

Model Evaluation and Statistical Analysis
Our model was previously developed using data collected from
Fitbit users and a retrospective self-report survey of COVID-19
infections with no laboratory confirmation on the timing or

accuracy of positive tests. In this study, we validated the
performance of the previously developed model using data
collected in a prospective study on a sample of health care
workers. Participants who received a positive alert were
instructed to undergo a respiratory viral panel (RVP) test to
confirm any upper respiratory infections. Participants were only
notified in case of positive alerts. Moreover, participants were
asked to report any positive home or laboratory test results to
study coordinators in cases where they got tested for reasons
other than positive alerts from our study. For evaluating the
algorithm performance, positive algorithm detections were
defined as participants with positive test results who received
an alert within 8 days prior to a positive test. The choice of 8
days as a predictive window is based on previous published
work [22,23] and a sensitivity analysis of the detection rate
relative to the predictive window in our study (Figure 1). In this
study, our primary goal was to detect COVID-19 (ie,
SARS-CoV-2 virus). In a subsequent secondary analysis, we
considered different definitions of positive algorithm detections
(ie, positive SARS-CoV-2 plus home test, positive respiratory
viruses such as influenza, etc). The detection rate was defined
as the ratio of positive algorithm detections over all positives
defined based on different tests. We defined false algorithm
detection as the number of participants who tested negative
within 8 days after receiving a positive alert. The estimated
false-positive rate was defined as the ratio of false algorithm
detections over all negative alerts that did not report any positive
test within the next 8 days. The positive-predictive value was
defined as positive algorithm detections over all positive alerts
generated. In cases where participants received positive alerts
and did not act upon the alerts to get tested (ie, 153 of the 665
positive alerts, 23.0%), we assumed the test results were
negative, and they were included in the denominator for the
positive-predictive value.
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Figure 1. Positive algorithm detection rate of polymerase chain reaction (PCR)-confirmed COVID-19 relative to the length of the predictive window.
The predictive window was the time window (days) between the test date and the date for an alert to be accepted as a correct detection (ie, predictive
window=8; alert generated within 8 days prior to the test date counted as a correct detection). A wider predictive window was associated with a higher
detection rate of the algorithm for PCR-confirmed COVID-19 cases.

Study Procedure
After signing the written consent form, participants were led to
an onboarding survey involving initial baseline questionnaires
and collecting demographic information. Participants were
prospectively issued a smartwatch (Fitbit Sense or Fitbit Versa
3) and asked to download the associated Fitbit app. After
onboarding, every participant was instructed to fill out a daily
questionnaire for the symptoms of COVID-19 throughout the
study. Participants received a text message each morning at
7:30 AM, which included a link to a survey on the N1Thrive
(Twistle) platform. The survey included questions related to
COVID-19 symptoms experienced by the participant and 3
additional questions. The questions were as follows:

1. Are you currently experiencing any of the following?
• Fever of 100 °F or feeling unusually hot (if no

thermometer is available), accompanied by
shivering/chills

• Sore throat
• New cough not related to a chronic condition
• Runny or stuffy nose, or nasal congestion (not related

to allergies)

• Difficulty breathing or shortness of breath
• Diarrhea unrelated to a chronic condition
• Nausea or vomiting
• Headache unrelated to a chronic condition
• Fatigue unrelated to a chronic condition
• Muscle aches unrelated to a chronic condition
• New loss of sense of taste or smell

2. Have you had a POSITIVE COVID-19 test in the past 10
days?

3. Have you been within 6 feet for more than 15 minutes with
a confirmed or suspected COVID-19 case in the past 14
days WITHOUT PROPER PPE?

4. Yesterday, how stressed were you across the entire day?

All questions involved yes or no responses, apart from the stress
question, which had 5 options (relaxed, slightly stressed,
moderately stressed, very stressed, or extremely stressed). If
participants did not complete a daily symptom questionnaire at
least 4 times in a given week, they were contacted by the study
administrative team to remind them of the importance of being
adherent to the study surveys. No action was taken if a person
reported being exposed or being symptomatic from the study
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team, unless the participant received a positive alert from the
Fitbit device.

The algorithm required 18 days to establish a baseline for
physiological features before the generation of any prediction
was possible. From day 19 onward, participants were only
alerted when the algorithm generated a positive alert. This
notification informed participants that their physiological
measurements were outside their normal range and that they
needed to contact the research team to arrange additional testing.
In the case of an alert, it was sent an hour after the daily
symptom survey to avoid any bias in the survey responses.
However, we could not confirm whether the surveys were filled
out prior to the later text. Study staff members were also alerted
when participants received a positive alert, and they reached
out on the same day to any participants who did not contact the
study team for arrangements to get tested. Participants were
instructed to undergo an RVP test at their preferred testing
location (ie, across Northwell’s 21 hospitals). The RVP test was
used to confirm the presence of COVID-19 or multiple upper
respiratory infections. The RVP test (respiratory viral/bacterial
detection panel by NAT [24]) used the multiplex amplified
nucleic acid test that adopts polymerase chain reaction (PCR)
for detecting influenza A virus (H1, H1-2009, and H3), influenza
B virus, respiratory syncytial virus (RSV), human

metapneumovirus, parainfluenza virus (types 1, 2, 3, and 4),
rhinovirus/enterovirus, coronavirus (229E, HKU1, NL63, and
OC43), adenovirus, Chlamydophila pneumoniae, Mycoplasma
pneumoniae, and SARS-CoV-2.

Figure 2 shows the study protocol. All the tests were provided
by the Northwell laboratory testing service at no cost to the
participants. When positive alerts were generated, both the
participants and the study team at Northwell received the
notifications (no notification was sent in case of a negative
alert). If the study team did not hear back from the participants
regarding the arrangement of getting tested on the day they were
flagged, the study team followed up with them the following
day and each subsequent day up to 7 days. At the close of that
7-day period after the alert, they checked to see if they had
completed the test and then informed them that it was no longer
necessary to go for the test but they should still complete the
follow-up survey. Participants were not excluded if they did
not get tested within the defined window for a positive alert
since our analysis was based on intent to treat rather than per
protocol. Participants were instructed to self-report any positive
test results to the research team when they did not get an alert
(ie, positive home tests or positive laboratory results for reasons
other than positive alerts from our study).

Figure 2. Study protocol. Day 0 to day 18: onboarding, baseline measurement, and issuing new devices. Upon receiving a positive alert from day 19
onward, participants were instructed to take the respiratory viral panel (RVP) test as well as fill out follow-up questionnaires the next day after receiving
an alert. Daily symptom questionnaires were filled out throughout the study. Participants only received notifications for positive alerts. The algorithm
required at least 3 nights of data in a rolling window of the past 5 nights to be able to generate predictions. In total, 89 participants in this study did not
adhere to the study guidelines, and the algorithm could not generate any prediction owing to infrequent use of the smartwatch.

When a participant received a positive alert from the algorithm,
the alerting was suppressed for the following 5 days, regardless
of the algorithm output, in order to reduce the testing burden.
Participants who received a positive alert were instructed to fill
out an additional questionnaire about their prior day’s behavior,
including physical activity (ie, intense exercise beyond routine),
stress (ie, life and work related), and the number of alcoholic
drinks and amount of caffeine consumed during that period.
The survey questions were as follows:

1. Overall, how do you feel about last night’s sleep quality?
2. How many alcoholic drinks did you consume yesterday?
3. How many caffeinated drinks did you consume after 12

PM yesterday?
4. Yesterday, how often did you feel at least slightly stressed?
5. Please select all that apply: I exercised yesterday, I

meditated yesterday, I am currently sick, I am currently
under quarantine for COVID-19, None of the above.
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6. Did you change any medication or drug use in the last 2
days?

7. Did you exercise significantly more than your normal
routine yesterday?

8. Did you feel like you were at your normal level of health
yesterday?

9. Are there any other unusual circumstances to report from
yesterday that may have been outside of your normal daily
activities?

Results

Overview
In total, 577 participants were enrolled in this study between
January 6, 2022, and July 20, 2022. Across the participants
enrolled in the study, 470 successfully completed the study, 89
did not provide sufficient wearable physiological data to receive
any prediction from the algorithm (ie, did not wear the watch

at least 3 nights in a rolling window of the past 5 nights during
the 16 weeks of the study), and 18 withdrew from the study.
Participants withdrew from the study for the following reasons:
change of eligibility (n=5), Fitbit issues (n=2), personal reasons
(n=1), study burden (testing time commitment; n=4), Fitbit
issues and study burden (n=2), and unknown (n=2). Fitbit issues
included experiencing Fitbit issues and not wanting a
replacement, concerns with Fitbit Ionic recall, and loss of the
Fitbit device.

Table 1 presents the overall breakdown of demographics and
comorbidities for all participants versus participants who tested
positive for COVID-19 or other respiratory viruses over the
course of the study. It is important to note that some participants
tested positive more than once throughout the study, and the
numbers in Table 1 refer to the numbers of participants and not
the numbers of positive upper respiratory infection events. These
infection events were at least more than a week apart from each
other.

Table 1. Demographics of participants based on the study onboarding survey.

Participants with a positive COVID-19 test
result or other upper respiratory infection

(N=67b)

All participants (N=559a)Characteristic

47 (13)46 (13)Age (years), mean (SD)

Gender, n (%)

54 (81)426 (76)Female

13 (19)129 (23)Male

0 (0)4 (1)Other/declined to state

Race, n (%)

8 (12)86 (15)Black or African American

11 (16)81 (14)Asian

41 (61)316 (56)White

7 (10)76 (14)Other

Comorbidities, n (%)

10 (15)97 (17)Anxiety

7 (10)46 (8)Depression

2 (3)18 (3)Smoking cigarettes

1 (1)32 (6)Diabetes

0 (0)7 (1)Taking insulin

2 (3)18 (3)Cardiac condition

1 (1)8 (1)Cancer condition

7 (10)63 (11)Asthma emphysema and bronchitis

9 (13)78 (14)Rheumatoid arthritis

5 (7)41 (7)Apnea condition

9 (13)66 (12)Thyroid condition

1 (1)24 (4)Medication suppressing the immune system

aThe number of participants who completed the study based on the onboarding survey. Of the 577 participants who were enrolled, 18 dropped out.
Among the participants who completed the study, 89 did not receive any prediction owing to insufficient physiological data.
bDistinct users who had positive upper respiratory infection test results. Note that some participants tested positive more than once (ie, 80 upper respiratory
infection events among the 67 participants).
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During the study, 81.9% (458/559) of participants wore the
smartwatch to bed for more than 50% of the days in the study
(Figure 3A). In terms of daily wear time, 97.0% (542/559) of
participants wore the smartwatch for more than 10 hours a day

(Figure 3B). Across the participants who established a baseline,
93.0% (437/470) received their first algorithm prediction (ie,
positive or negative) within 20 days after baseline completion
(Figure 3D).

Figure 3. Wear time and algorithm predictions during the study. (A) Distribution of signal coverage (percentage of days participants wore the watch
to bed during the study). (B) Distribution of the average daily smartwatch wear time (hours) during the study across all participants. (C) Number of
predictions received by each participant during the study. (D) Distribution of time when the first algorithm prediction was generated after establishing
baseline.

In total, the algorithm could generate predictions for 470
participants, including both positive and negative predictions
(Figure 3C). It is important to note that participants were only
notified if the algorithm generated positive alerts. The algorithm

generated 665 positive alerts during the study, and of these, 153
(23.0%) were not acted upon (ie, participants did not undergo
an RVP test after the alert). Across the 512 alerts for which
participants underwent an RVP test or home test, 63 involved
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confirmed cases of upper respiratory infection. Moreover,
participants were instructed to report any positive upper
respiratory virus test result they received during the study for
reasons other than positive alerts from our algorithm to cover
missed respiratory infections during the study. We received a
total of 17 positive upper respiratory virus test reports from our
participants without a positive alert. The breakdown was as

follows: 13 positive home tests, 3 positive COVID-19 tests, and
1 positive upper respiratory virus test (ie, influenza).

In total, 31 positive PCR tests of COVID-19 and 35 positive
tests of other respiratory viruses, such as influenza, adenovirus,
and common cold, were collected in laboratory tests during the
study. A further 14 COVID-19 cases were reported from positive
home tests. The breakdown of all positive laboratory results is
shown in Table 2.

Table 2. Breakdown of all positive upper respiratory infection tests during the study.

Positive test result (N=80), n (%)Virus

31 (39)SARS-CoV-2

13 (16)Coronavirus (229E, HKU1, NL63, and OC43); not COVID-19

14 (18)Enterovirus/rhinovirus

1 (1)Adenovirus

1 (1)Enterovirus/rhinovirus and human metapneumovirus

2 (3)Human metapneumovirus

1 (1)Influenza A

2 (3)Influenza A/H3

1 (1)Parainfluenza 3

14 (18)COVID-19 home test

Model Performance
During the study, the algorithm generated daily predictions for
upper respiratory infections, including COVID-19, using
wearable physiological signals. In total, 27,636 predictions were
generated (positive or negative alerts) over the course of the
study. It is important to note that participants only received a
notification in the case of a positive alert. Based on the protocol,
participants were only instructed to undergo testing after
receiving a positive alert from the algorithm. We were aware
of missed detections by the participant’s self-report of home or
laboratory positive results when testing was performed through
Northwell laboratories. Of all the alerts, 665 were positive alerts,
and across these positive alerts, 512 (77.0%) were acted upon
(ie, getting tested by either an RVP or home test within 8 days
from the alert).

Across the 665 positive alerts, 28 were associated with a positive
SARS-CoV-2 test within 8 days after the alert, 34 were
associated with a positive PCR test for other upper respiratory
infections, and 1 was associated with a positive COVID-19
home test (Multimedia Appendix 1) [25].

Across the 26,971 negative alerts, there were 3 reports of
positive SARS-CoV-2 results, 1 report of a positive influenza
A result, and 13 reports of positive home test results that did
not receive an alert, and tests were performed for reasons other
than receiving an alert from our algorithm.

A detailed summary of the performance of our algorithm based
on different tests is shown in Table 3. When sufficient data were
available, the algorithm generated daily predictions (either

positive or negative). We first examined the capability of the
alerting system to detect SARS-CoV-2 identified by PCR tests
as our primary objective. The results shown in the detection
rate column of Table 3 also include laboratory tests obtained
outside of the study procedures (people underwent a test without
a positive alert prompt). Of 31 cases involving positive
SARS-CoV-2 laboratory PCR test results, the algorithm detected
28 (ie, 28 of the 31 instances had a positive alert within 8 days
prior to the positive result), with a detection rate of 90%. The
estimated false-positive rate of the algorithm based on prediction
per day was 2%; however, the positive-predictive value was
low (4%). Most of the algorithm alerts could be attributed to
events other than COVID-19, thereby highlighting confounders
that change physiological signals and subsequently trigger the
algorithm. If we expand the definition of positive to be either
a laboratory-confirmed PCR result or a self-report home test
result, 29 out of 45 instances would be detected. Only 1 instance
of a home test was detected by the algorithm. There is
uncertainty around the date of home test self-reports, which
could contribute to the poor performance of the algorithm. In
total, 62 instances of positive respiratory virus PCR tests (ie,
SARS-CoV-2 or other respiratory viruses) out of 66 instances
of positive SARS-CoV-2 and other respiratory virus PCR tests
received an alert within 8 days prior to a positive test result.
Overall, across respiratory viruses (PCR or home tests), 63
instances were detected out of 80 instances (Table 3). In Table
3, we have used the term “estimated” false-positive rate as there
was a small possibility that some infections were missed (if
there was no alert and they never received a test). Moreover,
there was a small risk of positive infections being missed owing
to the limited sensitivity of the viral test panels.
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Table 3. Algorithm performance across different upper respiratory infection tests.

Positive-predictive valueEstimated false-positive rateDetection rate (number detect-
ed/number tested positive; tests in
the protocol and out of the protocol)

Test type

0.04 (28/665)0.02 (637/26,759)0.90 (28/31)SARS-CoV-2

0.04 (29/665)0.02 (636/26,745)0.64 (29/45)SARS-CoV (laboratory PCRa or home test)

0.09 (62/665)0.02 (603/26,724)0.94 (62/66)Respiratory viral panel test

0.09 (63/665)0.02 (602/26,710)0.79 (63/80)Respiratory viral panel test and home test

aPCR: polymerase chain reaction.

Another important factor for model performance evaluation was
the number of false alerts each person received during the study,
since this would impact the feasibility of the algorithm in
real-world deployment. The distribution of false alerts is shown
in Figure 4. A false alert was defined as a positive alert without
a positive test result (COVID-19 or other respiratory viruses
confirmed with a PCR or home test) within 8 days after the
alert. Overall, out of 665 positive alerts across 470 participants,

172 participants never received a false alert (Figure 4). The
maximum number of false alerts for a single participant was 8
(out of 102 predictions). The reason for this large number of
false alerts is unclear. For the analysis, positive alerts that
participants did not act upon (ie, 23% of positive alerts) were
considered as negative test results and were counted toward the
false alerts. The number of false alerts could be less in reality.

Figure 4. Algorithm alert flowchart following the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) reporting guidelines.
Participants only received a notification to undergo testing if the algorithm generated a positive alert. Participants were instructed to report any positive
upper respiratory infection test results they received for reasons other than positive alerts from our algorithm.
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Symptoms
Many strategies for managing COVID-19 as a public health
issue rely on self-reporting of symptoms (followed by voluntary
self-isolation), and symptoms can help flag the disease if present
[26,27]. In real-time alerting systems that rely solely on
physiological signals, one of the factors limiting model
performance is confounding events (ie, physical or emotional
stress) [11]. Daily symptom tracking could be a potential
candidate that can bring context to alerting systems and
potentially increase the sensitivity or specificity of these
algorithms. In this study, we tracked daily symptoms as a
secondary objective to evaluate the most commonly reported
symptoms and the percentage of participants who reported
symptoms in positive-detection cases versus false-positive cases.

The most commonly reported symptoms in positive respiratory
virus infection tests across participants were “runny or stuffy
nose, or nasal congestion (not related to allergies),” “fatigue
not related to a chronic condition,” “cough,” and “sore throat,”
which are in line with the findings in the literature [26,28,29].
Symptoms, such as “new loss of sense of taste or smell,” “nausea

or vomiting,” “difficulty breathing or shortness of breath,” and
“diarrhea unrelated to a chronic condition,” had the lowest
reports in our cohort with positive test results, and these findings
are in line with the findings of previous reports [27].

We observed a significant difference in symptom reports across
participants with positive SARS-CoV-2 PCR test results versus
participants with negative PCR test results within a 20-day
window centered around the test date (ie, 10 days before the
positive test result to 10 days after the test result) (Figure 5).
Among all participants who had a positive SARS-CoV-2 PCR
test result, approximately 80% (25/31, 81%) reported “cough,”
“sore throat,” or “runny or stuffy nose, or nasal congestion not
related to allergies or relieved by antihistamines” within a
20-day window centered around the test date (ie, 10 days before
the positive test result to 10 days after the test result) (Figure
5A). Among participants with positive results of COVID-19 or
other respiratory viruses confirmed with either PCR or home
tests, 70% (56/80) reported “runny or stuffy nose, or nasal
congestion not related to allergies or relieved by antihistamines,”
“cough,” or “sore throat” within a 20-day window centered
around the test date (Figure 5B).
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Figure 5. Associations of test results with symptoms across participants with positive and negative test results who received an alert. Bar plots show
the percentage of positive tests associated with each symptom. Symptoms were considered within a window of 10 days before the positive test result
to 10 days after the test result. (A) Participants with positive COVID-19 polymerase chain reaction (PCR) test results. (B) Participants with positive
results for respiratory viruses confirmed with PCR or home tests versus participants who received an alert with negative PCR test results. RVP: respiratory
viral panel.

Survey on the Next Day After Receiving an Alert
After receiving an alert from the algorithm, participants were
asked to fill out a follow-up questionnaire to investigate potential
confounding factors. In total, we received 569 completed
surveys the next day after receiving an alert out of 665 generated

alerts (85% completion rate for the follow-up survey). Table 4
shows the percentage of participants who reported each of the
conditions. In total, across all 569 participants who filled out
the questionnaire after receiving an alert, 362 (63.6%) reported
a reason related to a physical or emotional stress event, including
COVID-19.
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Table 4. Association of algorithm alerts with self-reported physical or emotional stress events.

Alerts associated with each event (N=569), n (%)Physical or emotional event

63 (11.1)COVID-19 and other upper respiratory infectionsa

28 (4.9)Other sicknessb

91 (16.0)Stressc

78 (13.7)Poor sleepd

55 (9.7)Intense exercisee

25 (4.4)Alcohol consumptionf

13 (2.3)Paing

9 (1.6)Caffeine consumptionh

207 (36.4)No reason

aCOVID-19 and other upper respiratory infections were defined as all upper respiratory viruses detected in our study by the respiratory viral panel test
(eg, COVID-19 and influenza).
bOther sickness was defined as sickness other than upper respiratory infections reported by participants (ie, stomach bug, COVID-19 booster, shingles
vaccine, seasonal allergy, recovery from surgery, eye infection, gallstone, etc).
cStress was defined as a stress score of “4” (fairly often) or “5” (very often).
dPoor sleep was defined as a sleep score of “1” (poor sleep).
eIntense exercise was defined as exercising significantly more than normal.
fAlcohol consumption was defined as the consumption of more than 2 glasses of alcoholic drinks.
gPain was defined as reporting strong pain (eg, menstrual cramps, pain after knee replacement surgery, etc).
hCaffeine consumption was defined as the consumption of more than 2 cups of coffee after 12 PM.

Comorbidities and Respiratory Virus Detections
Although most people who contract COVID-19 have few
symptoms or become mild to moderately ill, a substantial
minority are at high risk of more severe disease and adverse
outcomes, including death and long COVID. This is particularly

true for people with comorbidities [30]. Table 5 shows the
percentage of participants with comorbidities who tested positive
for COVID-19 or other respiratory viruses during this study.
We also present the relative risk of testing positive in each
comorbidity group with 95% CIs. None of the listed
comorbidities showed a significant relative risk (Table 5).

Table 5. Association of comorbidities in participants who contracted COVID-19 or other respiratory viruses.

Relative risk of a positive RVP test
result, value (95% CI)

Positive RVPa test (PCRb or
home test), n (%)

Participants
(N=559), n

Variable

0.92 (0.21-3.90)2 (11)18Smoking cigarettes

0.32 (0.04-2.32)1 (4)24Medication suppressing the immune system

0.22 (0.03-1.60)1 (3)34Diabetes

0.96 (0.50-1.83)9 (12)78Rheumatoid arthritis

1.05 (0.13-8.39)1 (13)8Cancer condition

0.92 (0.44-1.93)7 (11)63Asthma emphysema and bronchitis

1.02 (0.41-2.51)5 (12)41Apnea condition

0.79 (0.24-2.52)3 (10)31Taking beta-blockers

1.10 (0.54-2.18)8 (13)62Taking antidepressants

aRVP: respiratory viral panel.
bPCR: polymerase chain reaction.

Discussion

Infection detection algorithms based on wearable longitudinal
physiological data provide unique opportunities for the early
detection of respiratory illnesses. This technology may

potentially be helpful in supporting procedures to limit the
spread of infectious viruses. In this prospective study, we
evaluated the performance of our previously developed alerting
system for detecting COVID-19 as the primary goal and
expanded the scope to detecting other upper respiratory viruses
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such as influenza. The model performance was evaluated on a
sample of health care workers affiliated with Northwell Health
in New York, which was a separate data set from the one used
in the model development phase to validate the performance of
the model on a population with different COVID-19 prevalences
[31]. In health care workers who are at increased risk of
infection and transmission of the virus, these infection detection
algorithms are highly important to identify who might be at
increased risk and limit the spread [32]. The observed algorithm
detection rate was 90% for detecting COVID-19 cases confirmed
with PCR tests and 79% for COVID-19 or other respiratory
viruses confirmed with either PCR or home tests.

To limit the spread of COVID-19, it is critical to understand
the symptoms. In this study, we investigated the association of
symptoms across participants with positive RVP test results
versus participants with negative test results. Over 80% (25/31,
81%) of participants with COVID-19 reported at least one
symptom within a 20-day window centered around the test date,
whereas less than 10% (40/449, 8.9%) of participants with a
negative PCR test result reported a symptom within the same
time window. The top 3 reported symptoms were “runny or
stuffy nose, or nasal congestion,” “cough,” and “sore throat,”
in line with previous reports [26,27,29]. The use of symptoms
alone for infection detection is likely to limit the early and
accurate detection of COVID-19 or other respiratory infectious
diseases. The poor diagnostic accuracy of COVID-19 based on
symptoms alone [26] stresses the importance of algorithm
detection using longitudinal wearable signals for limiting the
spread of viral infections. Pairing algorithm detection with
symptom tracking could lead to increased performance of
COVID-19 or respiratory viral infection detection.

With regard to model performance, the false-positive rate based
on prediction per day was 2%, and the positive-predictive value
ranged from 4% to 10% in this specific population, with an
observed incidence rate of 198 cases per week per 100,000. The
design of the study did not allow the calculation of the
negative-predictive value. Many of the alerts generated in this
study were not associated with COVID-19 or any other
respiratory viruses, which is in line with the findings of previous
studies [11]. This highlights the confounding factors, namely
physical and emotional stress events, that could generate false
alerts. Across all the generated alerts in this study, 11.1%

(63/569) were related to COVID-19 or other upper respiratory
infections and 4.9% (28/569) were due to other illnesses such
as allergies, stomach bugs, recovery from surgery, and eye
infection. The rest of the alerts were associated with stress
(91/569, 16.0%), poor sleep (78/569, 13.7%), physical stress
(ie, intense exercise beyond normal routine) (55/569, 9.7%),
excessive caffeine or alcohol consumption (34/569, 6.0%), and
pain (13/569, 2.3%). Based on participant questionnaires, in
47.6% (271/569) of the generated alerts, the alerts could be
easily self-contextualized by the participants due to the
aforementioned physical and emotional stress events and might
lead to not undergoing any tests.

This study had several limitations. For participants who did not
receive a positive alert, we relied on self-report test results to
identify cases where the algorithm missed a detection (ie,
false-negative cases). It is possible that asymptomatic cases of
COVID-19 were missed throughout the study owing to a lack
of active COVID-19 surveillance. Continuous testing would
provide a better evaluation of model performance. Other
limitations of longitudinal wearable studies are adherence to
study guidelines and adherence to wearing the watch frequently
to provide enough data for prediction. In this study, 89
participants did not have sufficient data to generate any
prediction through the study. In terms of the completion rate,
77% mentioned undergoing a test after a positive alert and 85%
filled out the follow-up questionnaire for confounding events.
To further investigate confounding events (ie, physical or
emotional stress), it is recommended to conduct a daily survey
of physical or emotional stress events to better estimate the
association of alerts with these events and eliminate the placebo
effect related to receiving a survey after a positive alert.

With increasingly sophisticated sensors and the ability to add
brief contextual questions about behaviors, it is reasonable to
expect an increase in the performance of the algorithm and a
reduction in false alerts generated due to confounding factors
such as stress, alcohol consumption, and exercise. Moreover,
including contextual information about the prevalence of the
infectious disease in each region could potentially increase the
model performance. With the continuous development of
wearable technology and underlying algorithms, platforms that
employ a variety of physiological signals can be important in
the fight against infectious diseases.
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