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Abstract

Background: The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in China presents a significant public
health concern. Traditional ultrasound, commonly used for fatty liver screening, often lacks the ability to accurately quantify
steatosis, leading to insufficient follow-up for patients with moderate-to-severe steatosis. Transient elastography (TE) provides
a more quantitative diagnosis of steatosis and fibrosis, closely aligning with biopsy results. Moreover, machine learning (ML)
technology holds promise for developing more precise diagnostic models for NAFLD using a variety of laboratory indicators.

Objective: This study aims to develop a novel ML-based diagnostic model leveraging TE results for staging hepatic steatosis.
The objective was to streamline the model’s input features, creating a cost-effective and user-friendly tool to distinguish patients
with NAFLD requiring follow-up. This innovative approach merges TE and ML to enhance diagnostic accuracy and efficiency
in NAFLD assessment.

Methods: The study involved a comprehensive analysis of health examination records from Suzhou Municipal Hospital, spanning
from March to May 2023. Patient data and questionnaire responses were meticulously inputted into Microsoft Excel 2019, followed
by thorough data cleaning and model development using Python 3.7, with libraries scikit-learn and numpy to ensure data accuracy.
A cohort comprising 978 residents with complete medical records and TE results was included for analysis. Various classification
models, including logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), light
gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost), were constructed and evaluated based on the
area under the receiver operating characteristic curve (AUROC).

Results: Among the 916 patients included in the study, 273 were diagnosed with moderate-to-severe NAFLD. The concordance
rate between traditional ultrasound and TE for detecting moderate-to-severe NAFLD was 84.6% (231/273). The AUROC values
for the RF, LightGBM, XGBoost, SVM, KNN, and LR models were 0.91, 0.86, 0.83, 0.88, 0.77, and 0.81, respectively. These
models achieved accuracy rates of 84%, 81%, 78%, 81%, 76%, and 77%, respectively. Notably, the RF model exhibited the best
performance. A simplified RF model was developed with an AUROC of 0.88, featuring 62% sensitivity and 90% specificity.
This simplified model used 6 key features: waist circumference, BMI, fasting plasma glucose, uric acid, total bilirubin, and
high-sensitivity C-reactive protein. This approach offers a cost-effective and user-friendly tool while streamlining feature acquisition
for training purposes.

Conclusions: The study introduces a groundbreaking, cost-effective ML algorithm that leverages health examination data for
identifying moderate-to-severe NAFLD. This model has the potential to significantly impact public health by enabling targeted
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investigations and interventions for NAFLD. By integrating TE and ML technologies, the study showcases innovative approaches
to advancing NAFLD diagnostics.

(JMIR Form Res 2024;8:e53654) doi: 10.2196/53654
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Introduction

Nonalcoholic fatty liver disease (NAFLD) stands as the foremost
chronic liver condition, impacting approximately 1.7 billion
individuals worldwide. NAFLD manifests as a multifaceted
chronic liver disorder marked by an excessive buildup of fat
within liver tissue. As hepatic steatosis advances, it exacerbates
the onset and progression of hepatitis and fibrosis, while
heightening the likelihood of liver cancer. Furthermore,
numerous studies provide compelling evidence linking NAFLD
closely with metabolic disorders such as obesity, diabetes, and
hypertension, significantly elevating the risk of cardiovascular
disease [1]. A recent meta-analysis revealed that the prevalence
of NAFLD in Asian countries mirrors that of Western nations.
Notably, China exhibits the highest prevalence, incidence, and
yearly mortality associated with NAFLD in Asia. If this trend
persists, projections suggest that by 2030, the total NAFLD
population in China will soar to 314.58 million. Consequently,
China will emerge as the global leader in both patients with
NAFLD and liver-related fatalities [2]. Given that the majority
of NAFLD cases are asymptomatic, early diagnosis holds
significant clinical importance. Furthermore, precise
quantification of liver fat content and clarification of hepatic
steatosis severity are crucial for determining appropriate clinical
interventions, assessing disease progression, and evaluating
treatment efficacy. Hepatic steatosis is typically categorized
into minimal (<5%), mild (5%-33%), moderate (33%-66%),
and severe (≥66%) levels [3]. Patients exhibiting
moderate-to-severe steatosis necessitate more intensive
intervention and follow-up. Enhanced detection of individuals
at high risk and early diagnosis can substantially aid in the
diagnosis, treatment, and prevention of NAFLD.

Ultrasound is widely acknowledged as the preferred method for
screening hepatic steatosis due to its cost-effectiveness, safety,
convenience, and efficacy [4]. The characteristic ultrasound
findings of fatty liver are either homogeneous or heterogeneous
enhancement of liver echogenicity, along with liver enlargement
and diminished visualization of intrahepatic ductal structures.
However, the accuracy of ultrasound in diagnosing the disease
is heavily reliant on the skill and expertise of the operator [5].
Studies have consistently found that ultrasound is highly
operator dependent and lacks the capability to precisely
determine the extent of hepatic steatosis or distinguish between
steatosis and fibrosis, as both conditions lead to heightened liver
echogenicity. Consequently, ultrasound is predominantly used
for screening fatty liver disease (FLD) [6]. However, it is not
recommended for tasks requiring accurate diagnosis and severity
grading of early-stage fatty liver, liver transplantation
assessments, or evaluation of short-term drug therapies.

At present, liver biopsy stands as the gold standard for
diagnosing FLD and evaluating the severity of hepatic steatosis.
However, its utility for dynamic monitoring of disease
progression and efficacy assessment is limited by factors such
as poor patient acceptance and high cost. Additionally, liver
biopsy entails inherent risks of complications including
invasiveness, bleeding, and infection. Moreover, it is prone to
subjective evaluation bias and sampling errors, further impeding
its effectiveness as a monitoring tool [7]. Currently, the
noninvasive preliminary assessment of hepatic steatosis and the
quantitative dynamic evaluation of hepatic fat content represent
focal points in current research efforts. Techniques such as
transient elastography (TE), computed tomography, and
magnetic resonance imaging (MRI) have all been validated for
the quantitative diagnosis of steatosis, with MRI demonstrating
superior accuracy [6]. However, the high cost, poor patient
acceptance, and lengthy examination times associated with
biopsy, MRI, and computed tomography render them impractical
for large-scale population screening. Consequently, obtaining
sufficient sample data in outpatient services worldwide remains
challenging. Controlled attenuation parameters in TE represent
a quantitative diagnostic approach tailored for detecting steatosis
graded as S1, S2, and S3, as well as fibrosis graded as F1, F2,
F3, and F4. A meta-analysis has determined that controlled
attenuation parameters exhibit good sensitivity and specificity
for grading steatosis [7]. Additionally, a prospective study that
used TE to assess disease progression in patients with NAFLD
indicated that liver stiffness measurements (LSMs) can
effectively monitor the degree of liver fibrosis in this patient
population [8]. The study indicated that TE can serve as a
comprehensive diagnostic tool for both hepatic steatosis and
liver fibrosis. It also offers a rapid and noninvasive method to
assess liver fibrosis in patients with diverse chronic liver
diseases, encompassing chronic hepatitis C, chronic hepatitis
B, and NAFLD. Moreover, TE shows promise in predicting
complications associated with advanced compensated chronic
liver disease [4,9]. However, the widespread adoption of TE in
population-based health screenings faces obstacles, particularly
in China, where TE is primarily used for evaluating patients
with FLD in general hospital settings. There are persistent
challenges concerning inadequate ultrasound equipment and
insufficient specialized training for physicians in primary health
services that require attention. Consequently, there is a pressing
need for the development of more cost-effective and efficient
methods to identify individuals in the population with FLD who
warrant intervention and follow-up, particularly those reaching
the threshold of needing medical attention (S≥S2).

Machine learning (ML) offers a promising avenue to tackle
these challenges. ML, a branch of computer science, uses
algorithms to discern patterns within extensive data sets and
predict diverse outcomes [10]. Evolving from pattern recognition
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and computational learning, ML uses computers to analyze
interactions between variables, encompassing both nonlinear
and complex relationships, while minimizing errors between
predicted and actual outcomes. ML not only enhances predictive
accuracy but also has the capacity to identify latent variables
that might not be directly observable but can be inferred from
other variables. Currently, various ML techniques, including
logistic regression (LR), random forest (RF), artificial neural
networks (ANNs), k-nearest neighbors (KNNs), support vector
machine (SVM), and extreme gradient boosting (XGBoost),
are being used in disease prediction with significantly higher
accuracy compared with classical methods [11]. Previous studies
have used clinical data to diagnose patients with NAFLD, often
relying on traditional ultrasound results for FLD diagnosis
[12,13]. Given the challenges posed by the unsatisfactory
diagnostic accuracy of traditional ultrasound in FLD screening
and its inability to provide early warnings for patients requiring
follow-up and more stringent interventions, there is an
opportunity to leverage data from TE in population-based health
examinations. These data can be used to develop a new ML
model with enhanced accuracy and the capability to classify
patients based on severity thresholds.

Methods

Recruitment
All clinical data for our study were sourced from health
examinations conducted at 7 health examination centers across
Suzhou, encompassing 3 districts of Suzhou Municipal Hospital
and its 4 affiliated community hospitals. The study included
individuals who underwent health examinations from March to
May 2023, with exclusion criteria applied to those lacking TE
test results. Among the 1753 patients who underwent TE
screening, 1344 were selected during their health examination.
Ultimately, a total of 978 health examination records with
complete medical files were included, accessible for querying
in the case system.

Ethical Considerations
All participants who agreed to partake in the annual health
examination were required to complete an informed consent
form. Physical examination data were collected for the Suzhou
Municipal Government and Suzhou Municipal Hospital. The

authors take full accountability for all aspects of the work,
ensuring that any questions regarding the accuracy or integrity
of the study are thoroughly investigated and resolved. All
procedures adhered to the ethical standards outlined in the
Helsinki Declaration and received approval from the Ethical
Committee of Suzhou Municipal Hospital. The study was
approved by the Ethics Committee of Suzhou Municipal
Hospital (ethical approval number K-2022-034-K01).

Machine and Operational Standard
The machine used in the health examination was the
FibroTouch, specifically the Transient Elastography FibroTouch
(FibroTouch-FT5000; Wuxi HISKY Medical Technologies).
This device assesses the degree of hepatic fibrosis by measuring
LSM through vibration-controlled instantaneous elastography.
Hepatic steatosis is quantitatively evaluated by measuring the
attenuation of ultrasound signals in the liver, known as the
ultrasound attenuation parameter (UAP). To address detection
errors in patients with obesity, the FibroTouch automatically
adjusts the probe based on the thickness of subcutaneous fat
following precise positioning and depth measurement. This
adjustment ensures comparable diagnostic accuracy to FibroScan
[14].

FibroTouch measurements were conducted by experienced and
certified physicians, each having performed over 500
examinations. Following the manufacturer’s instructions,
patients assumed a supine position with the right hand placed
behind the head to facilitate the expansion of the intercostal
space. An image-guided probe was carefully chosen to scan the
region between the seventh and ninth intercostal spaces,
avoiding cysts and blood vessels in the liver. The probe was
maintained in a vertical position relative to the skin surface,
with pressure applied within the appropriate range (Figure 1).
Detection commenced once the M waveform intensity was
uniformly distributed and the A waveform appeared linear. In
this study, the representative measurement of FibroTouch was
determined by calculating the median value of the 10 acceptable
LSMs in kilopascals (kPa) and UAPs in decibels per meter
(dB/m), along with their respective IQRs. LSM and UAP
measurements were deemed reliable only if 10 successful
measurements were obtained, with an IQR-to-median ratio of
30% and a success rate of at least 60% [15].

JMIR Form Res 2024 | vol. 8 | e53654 | p. 3https://formative.jmir.org/2024/1/e53654
(page number not for citation purposes)

Zhang et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. A simplified schematic diagram of TE testing showing an image-guided probe selected to detect the region through the intercostal space.
ROI: region of interest; TE: transient elastography.

Statistical Analysis
When collecting data, we initially searched for the patient’s
medical number to ensure that the accessed data did not contain
any identifiable patient information. To enhance data quality
and mitigate the impact of erroneous data on the model, we
developed a comprehensive set of logic algorithms to
systematically check for logical errors within the health
examination data records. These checks included identifying
unit errors, magnitude errors, format errors, and so forth. Any
identified errors were then manually corrected following
prompts from the algorithm. Additionally, to detect potential

hidden errors arising from data entry issues, we generated
scatterplots (Figure 2) to identify outliers, which were
subsequently monitored and reviewed manually on a
case-by-case basis. A professional medical doctor, with over
15 years of experience in the field, assessed the reasonableness
of outliers. It is notable that some outliers exhibited values that
were theoretically unlikely, such as low-density
lipoprotein-cholesterol (LDL-C) levels exceeding 300 mmol/L.
We conducted thorough verification of these unreasonable
values and subsequently corrected or excluded data entries found
to be erroneous due to researchers’ data entry mistakes or other
factors.

Figure 2. Scatterplots for outlier detection. HDL-C: high-density lipoprotein-cholesterol; LDL-C: low-density lipoprotein-cholesterol; TC: total
cholesterol.

In the lifestyle characteristics section, dietary information was
omitted from the model. This decision was based on the
understanding that many older individuals were unable to
accurately report their daily food intake, while younger
individuals often experienced irregular eating habits.
Additionally, in terms of prevalence, conditions with low case

numbers such as chronic obstructive pulmonary disease (n=5),
myocardial infarction (n=28), and stroke (n=23) were excluded
from the model. Osteoporosis was also excluded because bone
mineral density assessments were not included in the health
examination protocol, making it difficult to ascertain the
presence of osteoporosis in the majority of patients undergoing
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health examinations. Furthermore, 56 patients were excluded
due to data disorder errors. Specifically, variables such as red
blood cell count, neutrophil count, white blood cell count, and
lymphocyte count were mistakenly entered as percentages of
red blood cells, neutrophils, white blood cells, and lymphocytes,
respectively.

Characteristic Processing

Exercise
The PARs-3 (Physical Activity Rating Scale-3) is a commonly
used exercise measurement scale in China [16]. In previous
studies, the scale’s internal consistency and reliability were 0.86
and 0.82, respectively. The scale contains 3 dimensions, namely,
time, intensity, and frequency of exercise. A score of 20 or
higher on this scale is indicative of moderate physical activity,
which equates to engaging in at least 150 minutes of moderate
exercise per week. To simplify the analysis, moderate physical
activity was categorized into 2 groups: individuals who
participate in at least 150 minutes of moderate exercise per week
versus those who engage in less than 150 minutes weekly.

Smoking and Drinking
The health examination records included information on the
variety of wine, volume of drinking, and alcohol percentage
consumed per day. We calculated alcohol intake using the
following equation: alcohol intake (g) = volume of drinking
(mL) × alcohol percentage (%, vol/vol) × 0.8 (g/mL). Patients
with alcohol intake above the recommended limits (male≥30
g/day; female≥20 g/day) were excluded. However, individuals
with an alcohol intake of 0 were included in the analysis. We
categorized alcohol intake into 2 groups: those with an alcohol
intake of 0 and those with an intake greater than 0, treating them
as 2-categorical variables. Similarly, we classified patients into
2 groups based on smoking history: those who had never smoked
and those with a history of smoking, also treated as 2-categorical
variables.

Metabolic Disease
In contrast to previous studies where diastolic and systolic blood
pressures were often analyzed as features, we chose not to
include them. We believed that the blood pressure measurements
of patients undergoing health examinations could be biased due
to various factors such as changes in peak blood pressure,
medication usage, and clinical hypertension. Similarly, random
blood glucose levels are strongly influenced by diet. Instead,
we opted to use fasting plasma glucose (FPG), postprandial
plasma glucose (PPG), and hemoglobin A1c (HbA1c) as
variables. Additionally, we included hypertension,
hyperuricemia, diabetes, and hyperlipemia as 2-categorical
variables. All remaining data were normalized for analysis.

Educational Attainment and Financial Situation
Individuals who have never received formal education are
classified as “uneducated.” Those with less than a high school
education are categorized as “low,” whereas individuals with a
high school diploma or specialized education are labeled as
“mid.” Education at the college level or higher is defined as
“high.” Regarding income, the medical report divides income
into categories including below the social minimum wage,
slightly below the average social wage, slightly above the
average social wage, and significantly above the average wage.
Individuals earning below the social minimum wage were
categorized as “poor,” whereas those earning significantly above
the average wage were classified as “rich.” Those with incomes
falling between these extremes were categorized as “average.”

Enrollment of Participants
We screened individuals who ultimately met the diagnostic
criteria for NAFLD based on the American Association for the
Study of Liver Diseases (AASLD) Practice Guidance [17].
Cases with conditions known to substantially impact TE results,
such as liver cancer and ascites, were excluded from the study.
Similarly, individuals with conditions known to affect blood
biochemistry analysis, such as infections and long-term
glucocorticoid use, were excluded. Figure 3 presents a flowchart
illustrating the enrollment process of patients.
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Figure 3. Flowchart of patient enrollment and diagnostic standards of NAFLD from the AASLD Practice Guidance. AASLD: American Association
for the Study of Liver Diseases; NAFLD: nonalcoholic fatty liver disease; TE: transient elastography.

All the collated data of the 916 people screened are summarized
in Tables 1 and 2. Table 1 summarizes the descriptive
characteristics of the study population, including gender, age,
educational attainment, financial situation, residence, smoking

and drinking state, exercise, and metabolic disease
(hypertension, hyperuricemia, diabetes, and hyperlipemia).
Table 2 presents a summary of blood biochemistry analysis of
the study population.
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Table 1. Summary of descriptive characteristics of the study population (N=978).

Values, n (%)Characteristic

Gender

503 (51.4)Male

475 (48.6)Female

Age (years)

498 (50.9)20-60

480 (49.1)≥60

Finance

268 (27.4)Poor

666 (68.1)Average

44 (4.5)Rich

Education

42 (4.3)Uneducated

262 (26.8)Low

478 (48.9)Mid

196 (20.0)High

Residence

911 (93.1)City

67 (6.9)Village

BMI (kg/m2)

19 (1.9)<18.5

370 (37.8)18.5-23.9

430 (44.0)24-27.9

159 (16.3)≥28

Waist circumference (cm)

Male (n=503)

338 (67.2)≥85

165 (32.8)<85

Female (n=475)

299 (62.9)≥80

176 (37.1)<80

Smoking

151 (15.4)Ever

827 (84.6)Never

Alcohol (g/day)

Male (n=503)

343 (68.2)0

120 (23.9)0-30

40 (8.0)≥30

Female (n=475)

453 (95.4)0

20 (4.2)0-20

2 (0.4)≥20
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Values, n (%)Characteristic

Sleeping (hours)

154 (15.7)<6

824 (84.2)≥6

Moderate physical activity

837 (85.6)No

141 (14.4)Yes

Metabolic disease

432 (44.2)Hypertension

56 (5.7)Hyperuricemia

258 (26.4)Diabetes

145 (14.8)Hyperlipemia

Table 2. Summary of blood biochemistry analysis of the study population (N=978).

Values, mean (SD)Characteristic

6.1 (1.6)Fasting plasma glucose (mmol/L)

8.9 (3.2)Postprandial plasma glucose (mmol/L)

5.9 (1.2)Hemoglobin A1c (%)

13.2 (7.4)Total bilirubin (μmol/L)

330.8 (79.1)Uric acid (μmol/L)

1.8 (1.4)Triglyceride (mmol/L)

4.8 (1.2)Total cholesterol (mmol/L)

1.3 (0.5)High-density lipoprotein-cholesterol (mmol/L)

2.9 (0.9)Low-density lipoprotein-cholesterol (mmol/L)

27.9 (16.0)Alanine transaminase (U/L)

26.4 (14.5)Aspartate transaminase (U/L)

36.2 (23.7)γ-Glutamyl transpeptidase (U/L)

2.2 (3.6)High-sensitivity C-reactive protein (mg/L)

211.8 (54.8)Platelets (×109/L)

136.9 (26.5)Hemoglobin (g/L)

8.5 (31.4)Urea (mmol/L)

70.5 (18.5)Creatinine (μmol/L)

Model Building
To predict NAFLD with different severities, we used several
classification models, including LR, KNN, SVM, RF, light
gradient boosting machine (LightGBM), and XGBoost.

RF is an ensemble classification algorithm developed by Leo
Breiman and Adele Cutler in 1999. It operates by constructing
a multitude of decision trees during the training phase and
outputs the mode of the classes (classification) or the mean
prediction (regression) of the individual trees. RF is widely used
for classification, regression, and other tasks. Each decision tree
in the RF is built independently by applying the general
technique of bootstrap aggregating (bagging), where random
samples are selected for the training set. RF determines the final
result by aggregating the predictions of all individual trees

through a simple majority vote. It has demonstrated high
accuracy across various fields, including medical diagnosis.
Additionally, RF is frequently used for feature selection in data
science workflows. One of the reasons for its popularity in
feature selection is due to the tree-based strategies used by RF.
These strategies naturally rank features based on how effectively
they improve the purity of the nodes in the decision trees.
Features that result in the greatest decrease in impurity are
typically encountered at the beginning of the trees, while those
with the least decrease in impurity are found toward the end of
the trees [11]. By selectively pruning trees below a certain node,
a subset of the most important features can be derived.

LR is a type of discrete choice model that falls under
multivariate analysis. It is extensively used in various fields
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such as sociology, biostatistics, clinical medicine, quantitative
psychology, econometrics, and marketing. LR is often used for
empirical analysis and is commonly used for comparison with
ML studies [18]. This method offers several advantages,
including high power and accuracy, making it a popular choice
for modeling binary or categorical outcomes.

ANNs, a family of statistical learning algorithms, draw
inspiration from biological neural networks. ANNs have
demonstrated remarkable power in nonlinear modeling and have
been proven for accurate predictions in many fields, including
clinical decision support [19]. The operation of an ANN is akin
to a biological neuron, where signals are received through
dendrites. In ANNs, this process is replicated with an input layer
that feeds into several hidden layers, ultimately leading to an
output layer. Each layer consists of numerous perceptrons
interconnected by adjustable weights. During training, the ANN
iteratively adjusts these weights using a data set, aligning inputs
with their desired outputs. This iterative learning process allows
the ANN to refine its predictive capabilities over time.

The KNN classification algorithm is among the simplest
methods in data mining classification techniques. KNN operates
by searching the pattern space for k-training tuples that are
nearest to the unknown tuple being classified. These tuples
collectively form the KNN classifier for the unknown tuple.
The concept of “nearest” is determined by a distance metric,
such as the Euclidean distance, which measures the proximity
between data points. One potential limitation of KNN classifiers
is that they assign equal weight to all attributes based on
distance, regardless of their relevance. Consequently, KNN
classifiers may suffer from poor accuracy when confronted with
noise or irrelevant attributes in the data.

XGBoost is a significantly enhanced implementation of the
gradient-boosting supervised ML technique, known for its speed
and performance. It shares similarities with RFs but uses a more
regularized model formulation to control overfitting. XGBoost
operates as a tree ensemble model, which involves the
summation of predictions derived from a specific set of
classification and regression trees. This regularization technique
helps improve the overall performance of the model by
mitigating overfitting issues. XGBoost is versatile and can be
applied to both classification and regression tasks.

LightGBM is a gradient-boosting framework that uses decision
trees as the base learner, similar to XGBoost. However,
LightGBM is optimized for efficiency and performance, offering
several advantages, including faster training speed and lower
memory usage. Additionally, LightGBM supports
single-computer multithreading, multicomputer parallel
computing, and graphics processing unit training, and has the
ability to handle large-scale data.

After cleaning the data, we constructed models (RF and
LightGBM) to eliminate irrelevant features such as gender, urea,
creatinine, and total cholesterol. The final model incorporated
the following features: age, education, finance, alcohol intake,
smoking, hypertension, hyperuricemia, diabetes, hyperlipemia,
BMI, waist circumference, HbA1c, FPG, PPG, total bilirubin
(TBil), uric acid (UA), triglyceride (TG), high-density
lipoprotein-cholesterol (HDL-C), LDL-C, alanine transaminase
(ALT), aspartate transaminase (AST), γ-glutamyl transpeptidase
(γ-GT), high-sensitivity C-reactive protein (hs-CRP), platelets,
and hemoglobin (HGB).

Analysis Tools
The basic patient information and paper questionnaire responses
were manually entered by a researcher using Microsoft Excel
2019 as the information entry software. Data cleaning, model
construction, and area under the curve chart output were
performed using Python 3.7 (Python Foundation), with the
packages scikit-learn and numpy. The editor used for this
purpose was PyCharm (JetBrains). The flowchart was drawn
using MyDraw (Nevron Software).

Results

Overview of Data Comparison
First, we compared the diagnostic rates of traditional ultrasound
with TE and found that traditional ultrasound achieved a high
diagnostic rate of 84.6% (231/273) in patients with TE-rated
moderate-to-severe steatosis (S≥S2), which is consistent with
previous reports on the accuracy of ultrasound diagnosis [20].
The comparison of hepatic steatosis stages produced by TE and
traditional ultrasound results is shown in Table 3.
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Table 3. Comparison of TEa and traditional ultrasound results.

Total, n (n=916)UltrasoundTE

Undiagnosed, n (n=414)Diagnosed, n (n=502)

38630581Sb<S1c

25767190S1≤S<S2d

16633133S2≤S<S3e

107998S≥S3

aTE: transient elastography.
bS: hepatic steatosis stage.
cS1: mild steatosis.
dS2: moderate steatosis.
eS3: severe steatosis.

Model Performance Comparison
Finally, the model incorporated the following features: age,
education, finance, alcohol intake, smoking, hypertension,
hyperuricemia, diabetes, hyperlipemia, BMI, waist

circumference, HbA1c, FPG, PPG, TBil, UA, TG, HDL-C,
LDL-C, ALT, AST, γ-GT, hs-CRP, platelets, and HGB. The
features incorporated into the final model are presented in Table
4. We compared the study population with moderate-to-severe
steatosis with those without it.
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Table 4. Features that were incorporated into the final model and significantly contribute to moderate-to-severe steatosis.

P valueS<S2Sa≥S2bCharacteristic

<.001291/643 (45.3)165/273 (60.4)Age (≥60 years), n (%)

<.001163/643 (25.3)25/273 (9.2)Education (high), n (%)

.2587/643 (13.5)45/273 (16.5)Physical activity (moderate), n(%)

.007224/306 (73.2)117/137 (85.4)Alcohol (male; 0), n (%)

.1271/306 (23.2)42/137 (30.7)Smoking (male; ever), n (%)

.1231/643 (4.8)7/273 (2.6)Finance (rich), n (%)

.004259/643 (40.3)138/273 (50.5)Hypertension, n (%)

.0829/643 (4.5)20/273 (7.3)Hyperuricemia, n (%)

.009154/643 (24.0)88/273 (32.2)Diabetes, n (%)

.0183/643 (12.9)53/273 (19.4)Hyperlipemia, n (%)

<.00124.1 (3.2)26.0 (2.8)BMI (kg/m2), mean (SD)

<.00182.6 (7.6)90.5 (6.6)Waist circumference (cm), mean (SD)

<.0015.8 (1.5)6.6 (1.8)Fasting plasma glucose (mmol/L), mean (SD)

<.0018.4 (2.5)10.1 (4.0)Postprandial plasma glucose (mmol/L), mean (SD)

<.0015.9 (1.1)6.2 (1.4)Hemoglobin A1c (%), mean (SD)

<.00112.4 (5.1)14.4 (10.0)Total bilirubin (μmol/L), mean (SD)

<.001317 (71.7)351 (87.0)Uric acid (μmol/L), mean (SD)

.011.7 (1.3)2.0 (1.6)Triglyceride (mmol/L), mean (SD)

.031.3 (0.6)1.2 (0.3)High-density lipoprotein-cholesterol (mmol/L), mean (SD)

.032.8 (0.9)3.0 (0.9)Low-density lipoprotein-cholesterol (mmol/L), mean (SD)

.00526 (13.6)29.8 (17.4)Alanine transaminase (U/L), mean (SD)

.0225.4 (9.5)27.7 (22.1)Aspartate transaminase (U/L), mean (SD)

.00133 (16.8)39.1 (32.8)γ-Glutamyl transpeptidase (U/L), mean (SD)

<.0011.8 (2.3)2.7 (2.9)High-sensitivity C-reactive protein (mg/L), mean (SD)

.03209 (53.9)217 (56.5)Platelets (× 109/L), mean (SD)

.02134 (26.2)139 (28.6)Hemoglobin (g/L), mean (SD)

aS: hepatic steatosis stage.
bS2: moderate steatosis.

Table 5 presents the performance of the classification models.
The area under the receiver operating characteristic curve
(AUROC) for RF, LightGBM, XGBoost, SVM, KNN, and LR
was 0.91, 0.86, 0.83, 0.88, 0.77, and 0.81, respectively.
Additionally, the accuracy for RF, LightGBM, XGBoost, SVM,

KNN, and LR was 84%, 81%, 78%, 81%, 76%, and 77%,
respectively. RF exhibited the best performance. Figure 4
displays the AUROC obtained on the test set of the
moderate-to-severe fatty liver cohort using the final features.
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Table 5. The AUROCa, accuracy, sensitivity, and specificity of the 6 classification models.

SpecificitySensitivityAccuracyAUROCModel

0.920.630.840.91RFb

0.890.630.810.86LightGBMc

0.890.550.780.83XGBoostd

0.840.600.760.77KNNe

0.950.470.810.88SVMf

0.850.520.770.81LRg

aAUROC: area under the receiver operating characteristic curve.
bRF: random forest.
cLightGBM: light gradient boosting machine.
dXGBoost: extreme gradient boosting.
eKNN: k-nearest neighbor.
fSVM: support vertical machine.
gLR: logistic regression.

Figure 4. Receiver operating characteristics curve obtained on the test set of the moderate-to-severe fatty liver cohort using the final features. AUC:
area under the curve; KNN: k-nearest neighbor; LGBM: light gradient boosting machine; LR: logistic regression; RF: random forest; SVM: support
vertical machine; XGBoost: extreme gradient boosting.

Model Simplification and Visualization
Furthermore, we attempted to build a more concise model. We
repeated the process randomly 5 times, each time selecting the
top 15 scored features to create a Venn diagram (Figure 5),
resulting in a total of 11 filtered features. We ranked the

importance of these 11 features and plotted them on a scree plot
(Figure 6). The plot demonstrated a substantial change between
FPG and ALT, leading us to choose the first 6 features as inputs,
excluding PPG. We made this decision based on the fact that
the PPG test takes 2 hours and is not typically performed in
most population health examinations.
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Figure 5. Venn diagram for screening important features.

Figure 6. The scree plot, demonstrating the importance of clinical variables obtained through the machine learning modeling on the clinical data.

To our surprise, the 6-feature RF model maintained accuracy
while simplifying the feature acquisition for training. Table 6
displays the performance of the 11-feature RF model and the
6-feature RF model. The AUROC of the RF (11 features) model
is 0.90, with a sensitivity of 0.61 and specificity of 0.94,
maintaining the same accuracy as the RF model before

simplification. Meanwhile, the performance of the RF (6
features) model showed an acceptable decrease compared with
the others, with an AUROC of 0.88, accuracy of 0.82, sensitivity
of 0.62, and specificity of 0.90. Figure 7 provides a summary
of the ROC curves for the 2 simplified RF models.

JMIR Form Res 2024 | vol. 8 | e53654 | p. 13https://formative.jmir.org/2024/1/e53654
(page number not for citation purposes)

Zhang et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Display of the performance of the 11-feature RFa model and the 6-feature RF model.

SpecificitySensitivityAccuracyAUROCbModel

0.920.630.840.91RF

0.940.610.840.90RF (11 features)

0.900.620.820.88RF (6 features)

aRF: random forest.
bAUROC: area under the receiver operating characteristic curve.

Figure 7. Receiver-operating characteristic curve of simplified RF models. AUC: area under the curve; RF: random forest.

Figure 8 presents box plots depicting the distribution of the 6
features. We can clearly see that there is a significant difference
(Table 4) in the features between the 2 groups, which again
demonstrates the high importance of the 6 features. To present

our models more intuitively, Figure 9 showcases an example
tree from the dense RF tree used for classification in the
analysis.

Figure 8. Box diagrams of 6 features in the simplified RF model. FPG: fasting plasma glucose; hs-CRP: high-sensitivity C-reactive protein; RF: random
forest; Tbil: total bilirubin; UA: uric acid.
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Figure 9. Example tree illustrating some set of rules and thresholds from the dense random forest tree used for classification in the analysis. The “0”
and “1” on the leaf node represent moderate-to-severe steatosis and no moderate-to-severe steatosis, respectively; ”Y” means Yes and “N” means no.

User-Friendliness and Cost-Effectiveness
In Suzhou, FPG, UA, and TBil can be tested through blood
biochemistry analysis, hs-CRP can be tested through CRP
analysis, and BMI and waist circumference are easy to obtain.
Our decision tree clearly shows the eigenvalues and prediction
accuracy of each node, which is convenient to use in clinical
practice. Therefore, we aimed for a simplified decision tree
model that can be widely applicable and generalized.

Waist circumference and BMI can be measured during routine
physical examinations at a negligible cost. Blood biochemistry
analysis costs approximately 168 yuan (US $23.6) per person,
while CRP analysis costs around 35 yuan (US $5) per person.
The total cost is approximately 203 yuan (US $28.5) per person.
As blood biochemistry analysis and CRP analysis are routine
checkup items in health examinations, our algorithm does not
require additional testing items. Additionally, residents of
Suzhou over the age of 40 years have free access to all of these
tests once a year, making our model cost-effective.

TE screening, as a noninvasive quantitative assessment of liver
fat deposition, poses challenges in determining its feasibility
for widespread implementation in densely populated cities such
as Suzhou (with >15 million residents), primarily due to the
additional expense involved.

Discussion

Principal Findings
We used ML to differentiate the severity of NAFLD by
incorporating body circumference, lifestyle, and blood
indicators. The optimal results demonstrated that a 6-feature
RF model could achieve an area under the curve of 88% (with
62% sensitivity and 90% specificity). The 6 features of the RF
model were waist circumference, BMI, FPG, UA, TBil, and
hs-CRP. The total cost of the indicator tests involved in the RF
model was approximately 203 yuan (US $28.5) per person. By

contrast, TE, as a noninvasive quantitative assessment of liver
fat deposition, currently costs 260 yuan (US $36.5) per person.
Compared with the cost of the indicator tests, TE incurs an
additional expense of approximately 57 yuan (US $8) per
person. Moreover, the Suzhou government offers free annual
health examinations to residents over 40 years old within their
jurisdiction. Consequently, people in Suzhou, with the assistance
of our model, can obtain an almost free evaluation of NAFLD.

Therefore, we ultimately decided to use the RF model composed
of these 6 features, as it not only serves as a routine component
of health examinations but also has the advantages of being
inexpensive and easily obtainable. In addition, we considered
that some variables such as systolic blood pressure, diastolic
blood pressure, and random blood glucose, which are included
in similar studies, may be variable and unreliable. Therefore,
we excluded these features to ensure that our model remains
stringent and stable.

Metabolic associated FLD is a newer diagnosis; however,
NAFLD was still used in this study. This decision was made
because in the 43 patients we excluded who met the criteria for
alcohol intake (30 g/day for men and 20 g/day for women), the
diagnosis of FLD was significantly higher than in the rest of
the cohort. Additionally, we considered that the grading data
referenced by TE were generated from biopsies of patients with
NAFLD, and the inclusion of patients with FLD who exceeded
the alcohol intake limit would have led to less rigorous results.
In the model, we included 4 metabolic diseases (hypertension,
diabetes, hyperuricemia, and dyslipidemia) as 2-categorical
variables. Although all 4 diseases showed a correlation with
FLD, their importance was deemed lesser compared with
features such as waist circumference and BMI.

Models presented in previous studies are typically stratified by
age, with age demonstrating a high correlation in the final
constructed model. It has been observed that from 2010 to 2018,
the annual incidence of NAFLD was higher among those under
60 years of age (4.7%; 95% CI 4.0%-5.5%) than among those
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over 60 years of age (2.4%; 95% CI 2.1%-2.8%). Additionally,
the prevalence of NAFLD is parallel with the rising trend of
obesity in China, increasing from approximately 2% in 2000 to
7% in 2014 [21]. Therefore, we believe that the high prevalence
across all age groups is highly correlated with changes in
lifestyle habits of the population. Consequently, BMI and waist
circumference were heavily weighted in our model across all
age groups. However, despite their potential significance,
lifestyle variables such as smoking, alcohol intake, and physical
activity showed low importance compared with the ones we
ultimately used, and did not significantly improve the final
accuracy. Additionally, a portion of the patients who participated
in the TE examination had already been diagnosed with FLD
and had undergone lifestyle adjustments.

In economically developed regions such as eastern China, the
prevalence of FLD is higher. For example, the prevalence of
NAFLD in Shanghai is 38.17% [22]. Ultrasound screening used
in population-based health examinations does not allow for a
clear diagnosis of FLD grading, and therefore, does not identify
patients who need stricter lifestyle control and follow-up.
Additionally, there is still a lack of awareness and perception
of NAFLD as a chronic disease with serious consequences
among the public. Surveys conducted in the 2000s reported that
only 31% of the general population in China was aware of
NAFLD [23]. If our results are appended to the health
examination reports, it may catch people’s attention. Our next
plan is to perform TE testing on patients with a model diagnosis
of moderate-to-severe NAFLD, and we hope to screen out more
patients who need follow-up through the combination of ML
and TE examinations. At the same time, TE has the advantage
of being less costly and more readily available compared with
MRI and biopsy, allowing us to obtain more data to refine our
model. We welcome the use of our model for validation. We
hope that the use of ML to construct easy-to-use classification
models for targeted population screening can be generalized.

Limitations
Our study has some limitations that should be addressed. First,
while our model demonstrated a high specificity, the sensitivity
was comparatively lower. This could be attributed to the
complexity of our input data, indicating a potential need for
higher-dimensional inputs. Second, although we used TE results
to classify moderate-to-severe NAFLD along with other

categories, it is important to acknowledge that TE itself may
not be 100% accurate, necessitating liver biopsy as the gold
standard. Incorrect classification could diminish the accuracy
of our predictions. It is essential to test the model in real health
examinations.

In addition, the clinical data in this study encompassed all age
groups above 20 years old. Residents aged 40 years and above
can avail themselves of free health examinations provided by
the government, wherein related indicators can be included in
the examinations to facilitate and reduce the cost of data
acquisition. The population composition and dietary habits
exhibit good representativeness in the East China region. The
relevant research findings also show no obvious preference.
However, residents aged 40 years and above generally have
more chronic diseases and may be taking medications such as
lipid-lowering drugs, which can influence the importance of
lipid and other indicators in different age groups. These
characteristics may play a significant role in the development
of fatty liver, but they have not shown sufficient importance in
the application of our model across a broader age range. The
accuracy of using these indicators may vary across different
age groups. Therefore, if the relevant conclusions of this study
are widely promoted, they will require more representative data
support to ensure applicability across diverse age demographics.

Finally, it is important to note that while TE offers improved
precision and accuracy, studies suggest that obesity increases
the risk of TE examination failure [24,25]. Additionally, research
indicates that the presence of ascites can lead to failures in
ultrasound examinations [25]. These potential failures
underscore the need to consider alternative testing strategies
when dealing with patients with obesity or ascites, ensuring
comprehensive assessment and accurate diagnosis.

Conclusions
NAFLD has indeed emerged as a significant health burden in
China. Unfortunately, many Chinese individuals pay little
attention to the disease and are hesitant to undergo expensive
tests such as MRI or TE. The proposed cost-effective algorithm
using ML to identify moderate-to-severe NAFLD by screening
health examination data is promising. This approach has the
potential to address the limitations of ultrasound in staging
hepatic steatosis and overcome the high cost and low
accessibility of TE through the use of artificial intelligence.
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