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Abstract

Background: Heightened stress and insufficient sleep are common in the transition to college, often co-occur, and have both
been linked to negative health outcomes. A challenge concerns disentangling whether perceived stress precedes or succeeds
changes in sleep. These day-to-day associations may vary across individuals, but short study periods and group-level analyses in
prior research may have obscured person-specific phenotypes.

Objective: This study aims to obtain stable estimates of lead-lag associations between perceived stress and objective sleep
duration in the individual, unbiased by the group, by developing an individual-level linear model that can leverage intensive
longitudinal data while remaining parsimonious.

Methods: In total, 55 college students (n=6, 11% second-year students and n=49, 89% first-year students) volunteered to provide
daily self-reports of perceived stress via a smartphone app and wore an actigraphy wristband for the estimation of daily sleep
duration continuously throughout the academic year (median usable daily observations per participant: 178, IQR 65.5). The
individual-level linear model, developed in a Bayesian framework, included the predictor and outcome of interest and a covariate
for the day of the week to account for weekly patterns. We validated the model on the cohort of second-year students (n=6, used
as a pilot sample) by applying it to variables expected to correlate positively within individuals: objective sleep duration and
self-reported sleep quality. The model was then applied to the fully independent target sample of first-year students (n=49) for
the examination of bidirectional associations between daily stress levels and sleep duration.

Results: Proof-of-concept analyses captured expected associations between objective sleep duration and subjective sleep quality
in every pilot participant. Target analyses revealed negative associations between sleep duration and perceived stress in most of
the participants (45/49, 92%), but their temporal association varied. Of the 49 participants, 19 (39%) showed a significant
association (probability of direction>0.975): 8 (16%) showed elevated stress in the day associated with shorter sleep later that
night, 5 (10%) showed shorter sleep associated with elevated stress the next day, and 6 (12%) showed both directions of association.
Of note, when analyzed using a group-based multilevel model, individual estimates were systematically attenuated, and some
even reversed sign.
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Conclusions: The dynamic interplay of stress and sleep in daily life is likely person specific. Paired with intensive longitudinal
data, our individual-level linear model provides a precision framework for the estimation of stable real-world behavioral and
psychological dynamics and may support the personalized prioritization of intervention targets for health and well-being.

(JMIR Form Res 2024;8:e53441) doi: 10.2196/53441
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Introduction

Background
The transition to college is often accompanied by elevated stress
and insufficient sleep [1-3], both of which have been found to
impact daily functioning and, upon repeated exposure, to be
associated with negative health outcomes ranging from
internalizing disorders, including anxiety and depression, to
cardiac and metabolic disease [4-9]. A better understanding of
the dynamic day-to-day interplay between perceived stress and
sleep duration could inform the mechanisms of their downstream
impacts and the development of interventions to prevent or
mitigate them [10-14]. Nevertheless, only a few studies have
collected daily observations to evaluate within-person
associations between stress responses and sleep duration, and
their results are mixed: some studies report that heightened
stress is followed by shorter sleep that night but not vice versa
[15,16], others report that shorter sleep is followed by
heightened stress the next day but not vice versa [17], and yet
others report bidirectional relationships [18,19].

Inconsistent findings in stress-sleep associations might be at
least partially explained by 2 interrelated methodological
limitations, both of which are addressed by the individual-level
modeling approach presented in this study. First, existing
longitudinal studies have aggregated individual observations
collected over short study periods of ≤14 days, thus limiting the
estimation of stable associations that are robust to changing
environmental demands (eg, first week of the semester vs final
examinations period). Thanks to the adoption of digital
phenotyping tools such as wearables and smartphones, research
designs that sample individuals over much longer periods of
time are increasingly feasible [20-22]. Sleep duration can now
be passively tracked through continuous actigraphy sensing
over months and even years, while perceived stress levels can
be probed via brief daily smartphone-based surveys, with high
compliance rates in student samples and small participant burden
[23-25].

Moreover, the prevailing focus on group modeling and
sample-level effects obscures the possibility that day-to-day
associations between perceived stress and sleep duration may
vary across individuals; for instance, it is possible that in certain
individuals, getting less sleep than usual has no significant
impact on stress levels the following day, but heightened stress
during the day leads to shorter sleep duration later that night,
while the opposite pattern might be true for others. Even when
group-level models allow for individual-level estimates, such
as in multilevel models with random effects, the degree to which
the individual estimates are pulled toward the group (a shrinkage

effect) is different for each individual based on the amount of
data they provide, thus reducing the individual tailoring in a
nonuniform manner [26].

Individual-level linear models (iLMs), which are fitted over a
single individual’s intensive longitudinal observations, may
offer a critical alternative to the estimation of stress-sleep
associations. Compared to group-level approaches, iLMs provide
estimates of phenotypes that are tailored to each person’s data
and unbiased by the group [27-30]. They may also be more
readily applicable in real-world contexts, where a clinician might
use a precision health approach to evaluate and support each
individual patient based on their personal data rather than on a
hypothetical average patient [31-34]. Of note, individual-level
approaches can also contribute to conclusions at the group or
population level, such as by estimating the prevalence of each
individually derived phenotype, rather than blurring across
individuals, to arrive at a central tendency that might not
accurately represent many of the included individuals.

Objectives
In this study, we introduce a novel iLM approach that leverages
daily observations collected over a full academic year for the
assessment of day-to-day associations between
actigraphy-derived sleep duration and self-reported stress levels
in first-year college students. Our aims were 2-fold. First, we
used a pilot data set to develop and validate a parsimonious
iLM that estimates concurrent or lagged associations between
2 daily variables of interest while accounting for the weekly
structure in student behavior. We then leveraged this iLM for
the target examination of bidirectional day-to-day associations
between perceived stress and objective sleep duration in an
independent data set of 49 first-year college students. We
expected a negative association for most participants—such
that higher stress levels are associated with shorter sleep—but
we also anticipated that some participants might show positive
or null associations. We further hypothesized that the lead-lag
relationship between perceived stress and sleep duration (ie,
which of the 2 temporally precedes the other) would vary across
individuals such that, for some, elevated stress would associate
with shorter sleep that night; for others, shorter sleep would
associate with elevated stress the next day; and for still others,
both directions of association would be identified.
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Methods

Participants

Pilot Group
A total of 6 undergraduate students returning for their
sophomore year volunteered for a year-long study (all aged 19
years; n=3, 50% women and n=3, 50% men). All had
participated in a previous pilot study in our laboratory during
their first year of college and were known to be compliant. These
6 pilot participants provided data to develop the statistical
models that were then applied to the new group of target
participants described in the next subsection. The pilot
participants enrolled for this study during the first 2 weeks of
their fall semester. As in the case of the target participants, they
were required to be taking full-time classes and own a
smartphone compatible with the study smartphone app, Beiwe,
which is part of the open-source Beiwe platform for digital
phenotyping [35]. Available and missing data information at
the participant level is provided in Figure S1 in Multimedia
Appendix 1. Given our focus on individual-level models where
each person serves as their own baseline, and there is no
aggregation across participants, students were not excluded for
current or past psychiatric disorders or medication use, and nor
were they excluded if they began treatment or medication for
mental health issues during the study.

Target Group
In total, 49 undergraduate students beginning their first year of
college volunteered for a year-long study (aged 18-19 years;
mean age 18.1, SD 0.24 y; n=25, 51% women and n=24, 49%
men). We have previously reported data from these participants
[24]. Participants living on campus were recruited via flyers
posted on campus boards and distributed via email lists and
were enrolled during the first 2 weeks concurrently with the
pilot participants. Enrollment criteria were the same as for the
pilot participants other than the fact that the target first-year
participants were all new to the university. Initially, 68
participants enrolled, of whom 19 (28%) were excluded based
on issues with data acquisition, including early withdrawal from
the study (n=7, 37%), technical failure of the actigraphy data
(n=1, 5%), poor-quality actigraphy data (n=2, 11%), and
completion of <50% of the daily surveys (n=9, 47%). Of the
49 participants in the final sample, 2 (4%) identified as
American Indian, 5 (10%) as Asian, 7 (14%) as Black, 31 (63%)
as White, and 2 (4%) as mixed race. Furthermore, 12% (6/49)
reported prior diagnosis of a psychiatric disorder (including
anxiety, depression, and attention-deficit/hyperactivity disorder),
and 8% (4/49) maintained active diagnoses. The 49 first-year
students had not yet declared their area of study, but they
reported their desired future occupation to be medicine (n=15,
31%), business or finance (n=7, 14%), academia or other
research (n=6, 12%), engineering (n=5, 10%), policy or
government (n=5, 10%), law (n=4, 8%), and other or undecided
(n=7, 14%). Of the 49 participants, 46 (94%) were iPhone users,
whereas 3 (6%) used Android mobile phones.

Study Design
As previously reported in our study [24], this intensive
longitudinal observational study collected passive and active
data as participants engaged in their lives over a full academic
year, extending a few days into the summer break. Both pilot
and target participants completed smartphone-based daily
surveys and a voice-recorded diary; wore an actigraphy
wristband (GENEActiv Original; Activinsights Ltd) for
continuous activity and sleep monitoring for the duration of the
study; completed a battery of web-based questionnaires at the
beginning, middle, and end of the study; and attended brief
in-person check-ins every 3 to 4 weeks.

Ethical Considerations
Informed consent and all study procedures and methods were
approved by the institutional review board of Harvard University
(IRB16-1230). All participants completed an in-person informed
consent session where study procedures were explained, and
any questions were clarified. Participants were informed that
they could withdraw their study participation at any time.
Participants were compensated US $1 per each daily survey
they submitted, US $1 per day for continuously wearing the
actigraphy wristband, and US $20 per hour for web-based
surveys and attending in-person visits. Milestone bonus
payments for completing half of the study (US $100) and the
full study (US $300) were also provided to compensate
participants for their continued compliance.

Study data collected across devices were stored and
automatically backed up in a secure data warehouse configured
to automatically import data from various collection streams.
All data were kept as securely as possible and were only
accessible to study staff. Participants’ data were labeled with a
randomly generated participant ID. Personally identifying
information, such as names and contact information, were kept
separate from all other collected data in a locked file cabinet
(in a locked office, behind an ID card–secured suite during
off-hours) and in a password-protected database.

Measures and Quality Control

Objective Sleep Duration
Daily sleep duration reflects the number of minutes between
the estimated start and end of the day’s longest detected sleep
episode. As redescribed from our original study [24], sleep
duration was derived from the accelerometer data collected
through the GENEActiv Original actigraphy wristband and
analyzed via the deep phenotyping of sleep processing pipeline
[36]. Participants wore the wristband on their nondominant
wrist continuously, including during sleep and when bathing.
Triaxial acceleration was collected with a sampling frequency
of 30 Hz during the academic semesters and 10 Hz during the
winter break (to extend battery life and memory while
participants were away from campus). Participants were
instructed to press the wristband’s button when they began
trying to fall sleep at night and immediately after they awoke
in the morning. Individuals exchanged their wristband for a
fully charged one with reset memory at the in-person check-ins.
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The deep phenotyping of sleep (DPSleep) processing pipeline
was applied to the raw actigraphy data to detect the major sleep
episode for each day [36]. The pipeline first converted the
accelerometer data to minute-based activity estimates, removed
the minutes when the individual was not wearing the device,
and then estimated the major sleep episode based on a sliding
window. Days where one of the boundaries of the sleep episode
(ie, rises in relative activity both before and after a period of
lower activity) could not be detected due to missing data were
labeled as unusable. Two independent trained raters examined
the automatically detected start and end times and the usability
label of each sleep episode against the minute-based activity
levels and the participant button presses when available. When
necessary, they adjusted the automatic times and labels. Any
disagreements between the 2 raters’assessments were reviewed
by the research team and resolved through discussion. A full
description of the DPSleep processing pipelines applied to the
actigraphy data, including quality control steps, can be found
in the study by Rahimi-Eichi et al [36].

All data that passed quality control were included in analysis,
including days with no detected sleep episode (ie, with no
extended periods of lower relative activity).

Daily Telephone-Based Surveys
Smartphone surveys were administered via the Beiwe app [35].
Each night before bed, participants completed a 46-item
self-report survey related to their daily lives. As described
originally in our study [24], the questions assessed a range of
behaviors and internal states over the past 24 hours, including
sleep quality, stress levels and sources, positive and negative
affect, general physical health, daily consumption habits,
studying behaviors, and sociability and support [24]. This paper
reports analyses using 2 survey questions selected a priori that
probed daily subjective sleep quality and perceived stress. The
sleep quality question asked “How did you sleep last night?”
and was answered on a 5-point scale (1=terribly: little or no
sleep, 2=not so well: got some sleep but not enough,
3=sufficient: got enough sleep to function, 4=good: got a solid
night’s sleep and felt well rested, and 5=exceptional: one of my
best nights of sleep). The perceived stress question asked “How
much did you feel stressed over the past 24 hours?” and was
also answered on a 5-point scale (1=very slightly or not at all,
2=a little, 3=moderately, 4=quite a bit, and 5=extremely).

Surveys submitted between 5 PM (local time) on the day the
survey opened and 6 AM the following day were considered to
be on time. Surveys submitted after 6 AM the day after the
survey was prompted were marked as missing. A participant
was included in analysis if they were compliant with at least
100 daily surveys across the data collection period, and only
on-time surveys from these participants were included.

Analytical Approach

Development of the iLM
An iLM was developed on the intensive day-level longitudinal
data from the 6 pilot participants to test person-specific
day-to-day behavioral associations. The iLM framework allows
for individually tailored estimates by treating each day as the
unit of observation and the individual as the population, as

opposed to each individual as the unit of observation used to
estimate the general population. An individual’s observed time
series data can be understood as just one realization of a
stochastic process whose data-generating process we are trying
to model and understand [37], in this case through linear models.
The intercept and slope estimates are unique to the individual,
and we interpret them as a proxy for the individual’s phenotype.
Of note, in this framework, each individual model can be
interpreted as an independent test of the hypothesized
association (eg, is shorter sleep than usual associated with
heightened perceived stress the following day?).

The model was structured to be parsimonious while accounting
for the nonindependence of the daily measures and the temporal
structure imposed by the academic schedule. The day of the
week was included as a categorical covariate to account for
weekend versus weekday effects and other weekly structures
imposed by the college schedule (eg, classes that meet on
Monday-Wednesday-Friday vs those that meet on
Tuesday-Thursday). In addition, because behavioral patterns
during the semester vary substantially from those during the
5-week winter break (when students do not have classes and
typically are away from campus), we decided a priori to only
include in the model compliant data collected during the school
semesters.

The final iLM took the following general form:

yt = β0 + β1xt or t−1 + β2DayOfWeekt + εt

A daily observation on dayt starts with the nighttime sleep
episode and ends with the submission of the daily survey
submitted in the evening before the next sleep episode. In the
aforementioned formula, yt is a single participant’s outcome
variable (eg, sleep duration in min) at daily time point t, β0 is
this participant’s individual intercept, x is the predictor variable
(eg, sleep quality or stress measured on a 1-5 scale) at daily
time point t or t−1 (depending on the lag of the tested
association), β1 is the participant’s individual slope for x,
DayOfWeekt is the day of the week in which the outcome
observation was acquired (modeled as a categorical variable
ordered from Saturday to Friday), and εt is a normally distributed
random error term.

All modeling was carried out in a Bayesian inference
framework, which treats unknown parameters (eg, a slope) as
random variables with a probability distribution rather than a
discrete value; this distribution is updated based on the observed
data (resulting in a posterior distribution) and serves as a
measure of uncertainty around the parameter [38-40]. The
Bayesian framework was favored for these analyses due to its
flexibility in computing models with varied specifications
(including complex random effect specifications in the
multilevel models we fitted as part of our model validation
process), robustness to sample data characteristics (eg,
dispersion), and intuitive interpretation of the posterior
distribution and 95% uncertainty interval (UI; ie, conditional
on the data and the model, the probability that the parameter is
contained in the interval is 0.95) [39,40]. For comparison,
parallel iLMs fitted in a frequentist inference framework in the
pilot validation stage yielded nearly identical point estimates
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to their Bayesian counterparts (refer to Figure S2 in Multimedia
Appendix 1), suggesting that our model specification is robust
across both statistical inference frameworks. All models were
estimated in R (version 4.3.1; R Foundation for Statistical
Computing) [41]. Bayesian models were estimated using the
Stan modeling language [42] and the packages rstanarm (version
2.21.4 [43]), tidybayes (version 3.0.1 [44]), and bayestestR
(version 0.13.1 [45]). Frequentist iLMs were estimated using
the stats package included in base R [41].

Bayesian models were fit with default weakly informative priors
specifying a gaussian distribution (mean 0, SD 2.5) to represent
our diffuse prior knowledge. We estimated parameters using a
Markov chain Monte Carlo (MCMC) approach. For each
parameter, we sampled from 4 stationary Markov chains, each
comprising 5000 sampling iterations, including a burn-in period
of 2500 iterations that were discarded (for a total of 10,000
post–warm-up draws). Convergence of the 4 chains to a single
stationary distribution was assessed quantitatively via the R-hat
convergence diagnostic [46] (adequate convergence defined as
R-hat <1.1) and qualitatively by visual inspection of trace plots
showing the estimated parameter as a function of each chain’s
iteration number (adequate convergence defined as the chains
overlapping with each other throughout and a lack of structured
patterns in each chain). Each model’s effective sample size
(ESS) metric is reported. Each estimate in the MCMC process
is serially correlated with the previous estimates: the higher the
correlation, the more samples are needed to get to a stationary
distribution. In the presence of nearly no autocorrelation, the
ESS will be equal to the number of posterior draws requested
(in this case, 10,000). Generally, the ESS should be at least
1000 to obtain stable estimates [38,47].

Adequacy of the model specification was assessed via 2
methods. First, posterior predictive checks entailed a visual
comparison of the distribution of the observed outcome variable
to the distribution of 100 simulated outcome data sets generated
by applying 100 draws from the model parameters’ posterior
distribution to our observed data set. Similarity in the
distributions of the observed and model-generated outcomes
suggests that the model specification captured the data well.
Second, we inspected the model residuals against the model’s
predicted values to confirm homoscedasticity and against
themselves to rule out problematic autocorrelation due to
temporal dependencies in longitudinal data.

Point estimates of intercepts and slopes were computed as the
median value of their respective posterior distributions.
Furthermore, 95% UIs were computed as the 2.5% and 97.5%
quantiles of the posterior distribution. To provide intuitive
parallels to a frequentist inference framework, we interpreted
a predictor slope as statistically significant if its 95% UI did not
contain 0, or, put differently, if the proportion of the posterior
distribution falling in the direction (positive or negative) of the
point estimate (also known as probability of direction [pd]) was
higher than 0.975 (which approximates a frequentist 1-tailed P
value of <.025) [48]. Although we focus on 95% as the cutoff
for the UI given the widespread use of this number in the
literature, it should be noted that this threshold has been
criticized as arbitrary [39]. To go beyond testing whether the
slope is different from exactly 0, we also report the percentage

of the 95% UI that falls within a region of practical equivalence
(ROPE), defined as parameter values that are sufficiently close
to 0 to be considered equivalent to the null for practical purposes
[49] and mathematically defined as a standardized effect size
of <0.1 (ie, half of a small effect as defined by Cohen [50]).
Given our individualized approach, ROPEs were estimated
separately for each participant based on their observed data.

Validation of the iLM in the Pilot Data
Data from 6 pilot participants were used to test the properties
of the iLM and explore associations among variables of interest
to validate the approach. A first sanity check was to assess
whether the iLM captured the expected association between a
sleep event’s objective duration (estimated from an actigraphy
wristband) and the subjective rating (reported at the end of each
day as part of a smartphone-based survey) for the same
(concurrent) sleep event. Participants were expected to rate
episodes of shortened sleep as worse quality compared to nights
of longer sleep. This contemporaneous model, known as a static
model in the time series literature [37], was specified as follows:

Object iveSleepDurat ion t  =  β 0  +
β1SubjectiveSleepRatingt + β2DayOfWeekt + εt

A second, exploratory lagged model was fit testing associations
between sleep duration on dayt and sleep quality reported the
day before, on dayt−1. We expected that this lagged association
would be weaker than the concurrent association outlined
previously (given that the variables tested are no longer referring
to the same sleep event), and importantly, that the association
would be in the opposite direction such that poor-quality sleep
on one night is associated with longer sleep duration the next
night, signaling a compensatory sleep rebound effect. To test
this, a model similar to the aforementioned one was fit, with
the difference that the predictor was lagged by 1 day. This
lagged model, known as a finite distributed lag model in time
series analysis [37], was specified as follows:

Object iveSleepDurat ion t  =  β 0  +
β1SubjectiveSleepRatingt−1 + β2DayOfWeekt + εt

Both models were fit with a gaussian distribution to reflect the
observed normal distribution of sleep duration in our sample.

We conducted model checks to evaluate the performance of the
iLM framework. Posterior predictive checks (described earlier
in this subsection) evaluated that a gaussian model specification
captured the distribution of the data well. In addition, given the
longitudinal design, we examined whether the model residuals
lacked meaningful autocorrelation, which would suggest that
our day-of-the-week covariate sufficiently captured the weekly
structure of sleep duration. Finally, we compared the estimates
obtained through the iLMs to the estimates obtained when the
same data for the 6 pilot participants were fit within a single,
group-based multilevel linear model (MLM), specifying fixed
effects for intercepts and slopes and additional participant-level
random intercepts and random slopes for the main predictor of
interest (in this case, sleep quality). This comparison allowed
us to assess our expectation that MLMs would provide
individual estimates roughly comparable to those of the iLM,
but with the critical difference that MLMs would systematically
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attenuate these individual estimates, especially for individuals
who deviate from the predominant association phenotype or
when there is large heterogeneity in these phenotypes across
individuals.

Application of the iLM to the Novel Target Participants
After developing the iLM and validating it extensively over the
pilot data set, the modeling framework was then carried forward
and applied to the independent target data set of first-year
college students. All models were fit with a gaussian
distribution. We first applied the same sanity check models as
in the pilot data set. Subsequently, we used the iLM method to
test a priori target hypotheses regarding the association between
perceived daily stress and objective sleep duration.

Two target models were fit for each individual to examine
bidirectional associations between sleep duration and perceived
stress. A daily observation on dayt consists of last night’s sleep
duration (ObjectiveSleepDurationt, recorded passively via the
actigraphy wristband) and the subjective rating of the present
day’s overall stress levels (SubjectiveStressRatingt, reported by
the participant in the evening). First, to test whether stress level
during the day is related to sleep duration later that night (ie, a
stress-then-sleep association), the model used the stress rating
the day before sleep (dayt−1) as the predictor of subsequent sleep
duration (dayt). Thus, the formula for this model was specified
as follows:

Object iveSleepDurat ion t  =  β 0  +
β1SubjectiveStressRatingt−1 + β2DayOfWeekt + εt

Next, to test whether sleep duration is related to stress levels
the day after (ie, a sleep-then-stress association), the model used
stress rating the day after sleep (dayt) as predictor of the previous
sleep duration (dayt, sleep duration last night):

Object iveSleepDurat ion t  =  β 0  +
β1SubjectiveStressRatingt + β2DayOfWeekt + εt

In this model, stress rating (predictor) is back-predicting sleep
duration (outcome), which effectively tests the question “Is
stress today associated with sleep last night?” As the objective
sleep duration measure occurs temporally before the daily stress
rating is submitted, results are interpreted as sleep duration

being associated with increased or decreased stress the next
day. Implementing the model in this way (rather than using
sleep duration as the predictor and stress rating as the outcome)
presented the advantage that the slope estimates across the 2
models are on equivalent units, namely, the change in the
number of minutes in sleep duration per unit of change in stress
rating. This allows us to directly compare the quantitative
outputs for the models testing the questions “Is stress associated
with subsequent sleep?” and “Is sleep associated with
subsequent stress?”

As with the pilot data set, we conducted model checks to further
evaluate the specification and performance of the iLM
framework in our target data set, including posterior predictive
checks; inspection of model residuals; and a comparison of the
estimates obtained through the iLMs and the estimates obtained
when the same data for the target sample were fit in a single,
group-level MLM with random intercepts and random slopes
per participant on the stress predictor. Additional inspection of
model results against each participant’s raw time series data
was conducted to complement our interpretation.

Results

Participant-Level Descriptive Statistics
Table 1 presents participant-level available data and summary
statistics for sleep and stress variables used in analysis. The
pilot participants provided a median of 178 (range 119-212 out
of a total possible of 223) usable observations for modeling,
that is, day-level observations collected during the school
semesters with usable actigraphy and survey data. The target
participants provided a median of 178 (range 84-214) usable
observations. Participants’ total number of usable observations
was not correlated with their mean sleep duration (r=0.09;
P=.53) or mean stress levels (r=−0.11; P=.42). In addition,
participants’ mean sleep duration did not differ on days with or
without available survey data (paired 2-tailed t test, P=.59), and
participants’ mean stress levels did not differ on days with or
without available actigraphy data (paired 2-tailed t test, P=.70).
These observations suggest that participants’ overall sleep and
stress metrics did not introduce systematic missingness in the
data (more details on participant-level missing data are presented
in Figure S1 in Multimedia Appendix 1).
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Table 1. Participant-level descriptive statistics of data used in analyses.

Stress (1-5 Likert scale), mean
(SD)

Sleep quality (1-5 Likert scale), mean
(SD)

Sleep duration (min), mean (SD)Daily observationsParticipant

1.36 (0.74)3.59 (0.64)493.22 (101.89)119P1a

2.95 (0.82)2.50 (0.68)412.08 (84.57)212P2

2.89 (0.93)2.48 (0.55)404.03 (68.81)156P3

3.15 (0.42)2.64 (0.69)425.20 (82.42)200P4

2.23 (1.14)3.14 (0.74)387.76 (58.32)200P5

3.85 (1.14)2.65 (1.12)379.29 (139.37)147P6

2.76 (1.06)3.81 (0.94)464.92 (96.66)147T1b

3.16 (0.83)3.08 (0.62)460.47 (82.68)212T2

3.59 (0.82)2.61 (0.71)415.09 (114.00)139T3

1.69 (1.09)2.81 (0.83)349.96 (89.02)103T4

2.51 (0.83)3.33 (0.62)446.40 (60.47)189T5

2.68 (0.77)3.07 (0.63)465.13 (76.76)199T6

1.95 (1.19)3.06 (0.91)389.17 (56.96)131T7

2.69 (0.63)2.87 (0.49)402.33 (108.91)173T8

1.98 (1.01)2.95 (0.79)448.53 (144.97)102T9

3.07 (1.11)2.71 (0.73)432.88 (114.48)208T10

2.77 (0.78)2.62 (0.73)373.92 (94.30)173T11

3.57 (1.14)2.83 (1.00)475.03 (75.76)87T12

3.25 (0.70)2.49 (0.56)441.09 (73.22)214T13

2.52 (0.81)3.40 (0.62)454.23 (100.68)84T14

3.41 (0.87)2.57 (0.66)412.93 (64.32)98T15

3.08 (0.83)2.70 (0.66)414.31 (127.89)152T16

1.37 (0.68)3.06 (0.50)440.73 (74.20)191T17

2.87 (0.63)3.09 (0.51)385.57 (70.90)92T18

2.94 (0.59)2.87 (0.44)464.09 (74.95)199T19

2.30 (0.95)3.69 (0.58)497.65 (77.78)192T20

2.85 (1.05)3.36 (0.76)390.89 (82.58)199T21

2.53 (1.04)3.33 (0.90)464.25 (84.70)126T22

3.39 (0.79)2.87 (0.62)418.65 (73.60)84T23

2.01 (0.77)3.19 (0.87)482.32 (81.06)148T24

3.47 (1.00)2.70 (0.78)406.52 (95.58)191T25

2.94 (1.14)3.01 (0.10)446.68 (64.03)205T26

3.28 (0.76)3.16 (0.82)443.10 (114.21)177T27

2.67 (0.91)2.92 (0.59)409.12 (65.85)209T28

1.68 (0.88)3.00 (0.47)429.07 (74.85)197T29

2.85 (1.05)2.67 (0.59)396.16 (62.76)195T30

2.52 (0.71)2.82 (0.83)388.53 (94.91)205T31

3.73 (1.10)2.61 (0.86)397.49 (118.98)117T32

2.09 (1.27)2.65 (0.89)383.05 (135.02)114T33

2.43 (0.89)2.88 (0.73)436.76 (80.84)206T34

3.16 (1.23)3.08 (0.78)461.99 (71.50)207T35
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Stress (1-5 Likert scale), mean
(SD)

Sleep quality (1-5 Likert scale), mean
(SD)

Sleep duration (min), mean (SD)Daily observationsParticipant

2.70 (1.10)3.36 (0.80)470.90 (86.02)188T36

2.21 (0.85)3.41 (0.63)423.49 (78.52)180T37

3.39 (0.82)2.56 (0.85)409.22 (132.79)139T38

2.25 (1.07)2.74 (0.67)414.25 (99.79)114T39

2.84 (1.24)3.37 (0.53)483.04 (53.83)102T40

3.54 (0.74)2.34 (0.67)429.99 (91.77)136T41

1.21 (0.46)3.26 (0.80)416.79 (95.16)193T42

2.23 (0.82)3.04 (0.35)464.57 (116.07)166T43

1.96 (1.03)3.34 (0.74)456.01 (67.63)179T44

1.18 (0.54)2.99 (0.60)474.08 (64.90)197T45

2.35 (1.01)1.99 (0.58)478.48 (70.13)203T46

1.79 (0.95)3.54 (0.72)382.32 (78.80)178T47

2.17 (1.36)2.81 (1.00)406.65 (103.77)189T48

1.90 (1.11)2.91 (0.86)444.64 (87.14)171T49

aIDs starting with “P” indicate pilot sample participants.
bIDs starting with “T” indicate target sample participants.

Sleep and Stress Fluctuate in Relation to the Academic
Calendar in the Pilot Participants
There was a pattern of enhanced sleep and lower stress when
students were released from the structured academic demands
of the in-person school semesters. Participants were enrolled
for a full academic year, including a fall semester and a spring
semester (each lasting roughly 16 weeks), as well as a 5-week
class-free winter break bridging the 2 semesters. During the
winter break and weekends, pilot participants had longer
objective (actigraphy-derived) sleep duration, better subjective
sleep quality, and felt less stress compared to school semesters
and weekdays (Figures 1A and 1B). The temporal structure of
sleep and stress variables was further evidenced by their
autocorrelation estimates. Autocorrelations were generally small

(|r|<0.2; Figure 1C) but were strongest (highlighted with
asterisks) at a 7-day lag (and again at a 14-day lag) for sleep
duration, consistent with a weekly sleep schedule. By contrast,
autocorrelations for stress were strongest at 1- and 2-day lags,
suggesting that experiences of stress might come in chains of
>1 day.

The school break and week-related changes observed in the data
informed the design of the iLM seeking to capture stable
person-level associations. Given that the winter break presents
different environmental demands from the school semester, we
decided a priori to exclude from the model the observations
collected during this period. In addition, to account for weekly
patterns in sleep behavior (outcome variable) within the school
semesters, we added the day of the week as a covariate in the
model.
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Figure 1. Group sleep and stress metrics fluctuate with the academic calendar. (A) The pilot participants’ group (between-person) means of sleep
duration (in min), sleep quality (1-5 Likert scale), and perceived stress (1-5 Likert scale), aggregated by school semester (fall and spring) and winter
break and (B) by the day of the week. (C) Between-person means of autocorrelation estimates over a 14-day window. Error bars show SE of the mean.
*Autocorrelations were strongest at a 7-day lag (and again at a 14-day lag) for sleep duration and at 1-day and 2-day lags for perceived stress. F: Friday;
FS: fall semester; M: Monday; S: Saturday; SS: spring semester; Su: Sunday; T: Tuesday; Th: Thursday; W: Wednesday; WB: winter break.

iLMs Capture Day-to-Day Associations in the Pilot
Participants
To test the viability of the iLM approach, a proof-of-concept
model examined the association between objective sleep
duration and subjective sleep quality in the pilot participants
(Table 2 and Figure 2). This model allowed for a test of
construct validity, given that the tested association was intuitive
and expected. The model tested the association between sleep
duration and sleep quality for the same sleep episode (ie, a
concurrent association). All pilot participants showed the
expected positive association: when participants slept for a
shorter period than usual, they also subjectively rated these
same sleep events as worse quality (shown in orange in Figure
2A). The effect size was large for all individuals, and the 95%
UI lay outside of the ROPE for all models. These results
provided preliminary evidence that the iLM is a valid framework
to reliably detect relations between psychological variables (in
this case, subjective sleep quality rating) and objective behaviors
(sleep duration) at the individual participant level.

A second, exploratory iLM tested the association between sleep
duration (on dayt) and sleep quality the day before (on dayt−1).
We expected this model to show significant but weaker effects

compared to the first model, given that the variables were
referring to lagged sleep events. Moreover, we expected negative
associations such that worse sleep quality on one night would
associate with longer sleep duration the next night, that is, a
compensatory sleep rebound effect. Half of the participants (3/6,
50%; P1, P4, and P6) showed this expected pattern of
association (pd>0.975; shown in blue in Figure 2). Of the 6
participants, 1 (17%; P2) showed a positive association such
that worse subjective sleep quality experienced on the preceding
night was associated with shorter sleep durations on the
subsequent night. This participant might experience chains of
poor sleep over multiple days (eg, reduced sleep days ahead of
a deadline to accommodate increased workload), rather than a
sleep rebound effect immediately the following night. In
addition, of the 6 participants, 2 (33%; P3 and P5) showed a
positive slope estimate but without reaching statistical
significance (pd<0.975). We did not observe structured patterns
of association between individual slope estimates and
individuals’ mean sleep quality, mean sleep duration, or total
number of daily observations (Figure 2B). This suggests that
the estimated slopes were not systematically influenced by
person-level characteristics of the psychological and behavioral
phenomena of interest.
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Table 2. Pilot sample results of individual-level linear models assessing sleep duration associated with concurrent sleep quality and assessing sleep
duration associated with sleep quality the day before (all models included the day of the week as a covariate, but the table only shows model parameters
for the main predictor, sleep quality).

ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIa
Slope (median of the
posterior distribution)Model and pilot participant

Sleep duration regressed on concurrent sleep quality

72911.000.0015.841.0037.73 to 92.4265.31eP1 

81771.000.0012.351.0031.42 to 63.8747.48eP2 

74841.000.0012.501.0054.30 to 88.4671.10eP3 

76491.000.0012.001.0042.31 to 70.2456.32eP4 

70301.000.007.891.0030.65 to 49.9540.22eP5 

65781.000.0012.501.0069.58 to 99.1584.28eP6 

Sleep duration regressed on sleep quality the day before

77261.000.0015.841.00−67.61 to −18.99−43.28eP1 

82441.003.9312.351.008.84 to 41.5725.05eP2 

74781.0071.0412.500.74−14.01 to 27.056.80P3 

78231.0017.2012.000.99−33.78 to −3.38−18.92eP4 

80301.0034.297.890.96−1.05 to 21.1810.07P5 

69111.001.3612.501.00−51.90 to −10.44−31.39eP6 

aUI: uncertainty interval.
bpd: probability of direction.
cROPE: region of practical equivalence.
dESS: effective sample size.
eStatistically significant result.
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Figure 2. Within-individual linear models capture real-world associations between objective sleep duration and subjective sleep quality. (A) Each row
(from participant 1 [P1] to participant 6 [P6]) shows model results for an individual pilot participant. Individual-level models testing sleep duration
associated with sleep quality the day before are displayed in blue; models testing sleep duration associated with concurrent sleep quality are displayed
in orange. Column 1 shows the models’ estimated slopes (computed as the median of the posterior distribution) and uncertainty metrics. Symbol shading
signifies statistically significant slopes. Error bars show 95% uncertainty intervals (UIs). Shaded density plots show the full posterior distributions of
the slopes; gray shaded areas show the regions of practical equivalence (ROPEs). Column 2 shows the models’ predicted sleep duration as a function
of sleep quality; shading around the lines indicates 95% UIs. Column 3 shows the participant-level distributions of sleep duration (in min) and sleep
quality (1-5 Likert scale) across all daily observations used in analysis. (B) Slope estimates from column 1 in subpart A are plotted against participant-level
estimates across the study period. Dur.: duration; n.s.: not statistically significant; pd: probability of direction; sig.: statistically significant.

Model Diagnostics Confirm Convergence and
Adequate Specification
Both visual and quantitative MCMC diagnostic checks revealed
that all iLMs converged successfully (Figure 3). Trace plots
(Figure 3, column 1) revealed no structured pattern in the
estimated slopes across sampling iterations. R-hat values were
<1.1, and ESSs were >1000 for the estimated slopes of all
models (Table 2). Posterior predictive checks comparing the
observed distribution of the outcome variable (sleep duration)

to 100 randomly sampled simulated data sets from the posterior
predictive distribution confirmed that a gaussian model
specification captured the observed data well (Figure 3, column
2). Inspection of the model residuals against the model’s
predicted values confirmed homoscedasticity, with no structured
pattern in the plots (Figure 3, columns 3 and 4). Finally, residual
autocorrelation was generally low (|r|<0.2) for all models (Figure
3, column 5), suggesting that the model specification was able
to account for the temporal structure in the data.
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Figure 3. Within-individual model diagnostics suggest adequate convergence and specification. Each row (from participant 1 [P1] to participant 6
[P6]) shows model diagnostics for an individual pilot participant. Diagnostics for the models assessing the association between sleep duration and sleep
quality the day before are displayed in blue; models assessing the association between sleep duration and concurrent sleep quality are displayed in
orange. Column 1’s trace plots display time series of each Markov chain’s estimated slope (y-axis) as a function of postwarmup iterations (x-axis).
Column 2 shows posterior predictive checks; black density lines show the observed distributions of the outcome (sleep duration), and the thin colored
density lines show 100 replicated outcome distributions generated based on random samples from the models’ parameters’ posterior distributions.
Columns 3 and 4 show the models’ predicted values (x-axis) against the models’ residuals (y-axis). Column 5 shows autocorrelation plots of model
residuals.

iLMs Yield Similar, but Not Identical, Estimates to a
Group-Based Multilevel Model
The slopes estimated from the iLM are similar to those obtained
through a MLM testing the same associations between
concurrent objective sleep duration and subjective sleep quality
(Figure 4). This suggests that the individually tailored slopes
obtained from our iLM are comparable to more traditional
group-based approaches. Of note, although the estimates are
similar, they are not identical.

Comparison of the 2 models suggested attenuation of the
individual-level estimates in the group models (refer to the part
of Figure 4 highlighted with an asterisk). Even with random
effects by participant, in the MLM, these estimates are, by
design, biased by the group and may underestimate
individual-level effects, especially for uncommon phenotypes
[20]. As will be revealed later in the results from the larger
sample of target participants, group-based estimation can even
result in the reversal of the sign of the association for some
individuals.
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Figure 4. Within-individual linear models of the association between sleep duration and sleep quality yield similar, but not identical, estimates to a
group-based linear model. Estimates of the intercepts and slopes from the individual-level linear models (iLMs; x-axis) for each participant are compared
to the random effects estimated from a group-based multilevel linear model (MLM; y-axis). Triangles show estimates for the models examining the
association between sleep duration and sleep quality the day before; circles show estimates for the models examining the association between sleep
duration and concurrent sleep quality. Symbol shading signifies statistically significant slopes in the iLMs. Dashed diagonal lines represent identical
estimates between the individual- and group-based approaches. *Attenuation of individual estimates in the MLM compared to the iLMs.

The iLM Is a Valid Framework to Identify
Individual-Level Associations
Proof-of-concept analyses of the pilot data demonstrated that
the iLM successfully captures expected associations between
objective behavior and psychological variables, has an adequate
model specification, and captures individual-level estimates
unbiased by the group. Moreover, point estimates obtained with
our Bayesian iLMs are nearly identical to those obtained through
iLMs fitted with a frequentist inference framework (refer to
Figure S2 in Multimedia Appendix 1), suggesting that our
individual-level modeling approach is robust across both major
statistical inference frameworks. In sum, the iLM is a valid
framework to identify individual-level associations, which
justified carrying over the model to test target hypotheses
regarding the association between perceived stress and objective
sleep duration in the independent target data set of first-year
students (n=49).

Sleep and Stress Fluctuate With the Academic
Calendar in the Target Participants
As with the pilot participants, during winter break and weekends,
participants had longer objective sleep duration, better subjective
sleep quality, and felt less stressed compared to the fall and
spring semesters (columns 1 and 2 in Figure S3 in Multimedia
Appendix 1). We replicated the autocorrelation pattern seen in
the pilot data set: sleep duration showed the greatest
autocorrelation at a 7-day lag (and then again at a 14-day lag),
indicating that sleep patterns are tied to a weekly schedule,
while stress showed the greatest autocorrelation at 1-day and
2-day lags, indicating that experiences of stress might come in
chains of a few days (column 3 in Figure S3 in Multimedia
Appendix 1). These school break– and week-related dynamics
confirm that our target data set captured real-life dynamics
associated with college life and reinforce our individual-level
modeling decisions regarding the exclusion of winter break data
and the addition of the day of the week as a covariate.

Shorter Objective Sleep Duration Is Associated With
Worse Subjective Sleep Quality in the Target
Participants
All participants showed a positive slope estimate for the
association between concurrent sleep duration and sleep quality,
and this effect was statistically significant in 46 (94%) of the
49 target participants (pd>0.975; Table 3 and Figure 5A, in
orange). In other words, when participants slept for a shorter
period than usual, they also rated these same sleep events as
worse quality, demonstrating that the iLM can capture expected
real-world relations between behavioral and psychological
phenomena. Among participants who showed a significant
association (46/49, 94%), a 1-point increase in a 5-point sleep
quality scale was associated with a sleep episode that was also
longer by a median 59 (range 16-119) minutes, a substantial
increase in sleep duration for most participants considering that
the average sleep duration in the sample was 432 minutes (7.2
h; SD 34 min).

For the exploratory lagged model, the expected negative
association between sleep duration and sleep quality the day
before reached statistical significance in only 5 (10%) of the 49
participants (pd>0.975; Table 4 and Figure 5A, in blue). In other
words, for only 10% of participants, sleep rated as worse quality
was consistently followed by longer sleep the following night,
suggesting that sleep rebound effects are perhaps less common
or reliable than anticipated. Among these participants, a 1-point
decrease in a 5-point sleep quality scale was associated with a
subsequent sleep episode that was longer by a median 18 (range
15-22) minutes across participants, a much smaller effect
compared to the concurrent model. We did not observe
structured patterns of association between individual slope
estimates and individuals’ mean sleep quality, mean sleep
duration, or total number of daily observations, suggesting that
the model results were not systematically influenced by
person-level aggregates of the variables that went into the model
(Figure 5B).
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Table 3. Target sample results of individual-level linear models assessing sleep duration associated with concurrent sleep quality (all individual-level
models included the day of the week as a covariate, but the table only shows model parameters for the main predictor, sleep quality).

ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIaSlope (median of the posterior distribution)Target participant

75231.000.0010.301.0043.90 to 72.9958.57eT1

89841.000.0013.361.0062.80 to 93.5878.35eT2

72111.000.0016.121.0060.42 to 107.4083.88eT3

77381.000.0010.741.0051.48 to 84.4868.08eT4

81681.000.009.771.0048.38 to 70.4659.57eT5

80291.000.0012.221.0027.26 to 59.1843.51eT6

77721.000.826.261.005.49 to 26.6016.10eT7

85981.000.0022.051.0053.43 to 115.8484.78eT8

65191.000.0018.391.0086.49 to 144.67115.91eT9

78131.000.0015.771.0071.20 to 108.4689.47eT10

73471.000.0012.981.0057.17 to 89.4273.07eT11

77651.000.007.561.0012.94 to 43.0427.69eT12

78551.000.0013.011.0030.31 to 61.9245.99eT13

67351.000.0016.151.0093.16 to 145.87119.30eT14

80481.000.009.771.0040.07 to 72.9656.74eT15

83731.000.0019.391.0081.17 to 133.61107.86eT16

87671.000.0014.881.0037.47 to 77.2057.72eT17

73131.000.0014.011.0040.75 to 91.9666.72eT18

79651.000.0016.981.0074.90 to 113.9094.56eT19

90581.000.0013.311.0045.72 to 79.4262.54eT20

85601.000.0010.881.0030.24 to 58.5944.44eT21

74361.000.009.381.0043.62 to 70.6657.24eT22

75031.000.0011.941.0020.23 to 71.1745.24eT23

84821.000.009.341.0034.92 to 61.3948.20eT24

87421.000.0012.211.0032.46 to 63.2547.93eT25

92311.0084.1564.980.70−66.79 to 112.0522.51T26

68291.000.0013.931.0059.80 to 94.4376.92eT27

93661.000.0011.071.0021.59 to 49.7335.80eT28

93331.0013.0915.800.995.63 to 49.4327.47eT29

10,4631.000.0010.681.0037.94 to 64.6351.20eT30

88591.000.0011.391.0048.35 to 74.0161.13eT31

83141.000.0013.821.0063.97 to 104.7884.47eT32

75301.000.0015.131.0048.83 to 95.7472.26eT33

81861.000.0011.041.0046.46 to 72.0759.12eT34

91521.000.009.111.0039.48 to 61.1550.34eT35
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ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIaSlope (median of the posterior distribution)Target participant

83671.000.0010.691.0031.88 to 60.4545.89eT36

83931.000.0012.421.0065.18 to 94.3679.76eT37

64201.000.0015.581.0076.15 to 117.5396.75eT38

74321.000.0014.991.0074.12 to 119.8897.12eT39

70831.0011.0510.250.981.58 to 42.2821.66eT40

79581.000.0013.721.0064.82 to 102.4983.39eT41

81661.000.0011.891.0053.03 to 81.9967.41eT42

74991.0038.5133.520.94−11.52 to 90.8140.65T43

85091.000.009.101.0036.79 to 59.6748.21eT44

91391.000.0010.781.0027.71 to 56.2542.05eT45

90211.0050.1312.000.93−4.23 to 28.1511.97T46

80501.000.0010.921.0042.98 to 70.5056.68eT47

78191.000.0010.361.0046.41 to 70.5958.27eT48

74101.000.0010.181.0040.08 to 65.2452.76eT49

aUI: uncertainty interval.
bpd: probability of direction.
cROPE: region of practical equivalence.
dESS: effective sample size.
eStatistically significant result.

Figure 5. Longer objective sleep duration associates with higher subjective sleep quality in most individuals. (A) Estimated slopes (corresponding to
the median of the posterior distribution) from the individual-level models that assess sleep duration associated with sleep quality the day before (triangles)
and with concurrent sleep quality (circles) are plotted along the y-axis ordered by participant (x-axis). Statistically significant slope estimates are shaded
blue (day before) or orange (concurrent). Error bars show 95% uncertainty intervals, and shaded density plots show the full posterior distributions of
the slopes. (B) Slope estimates from subpart A are plotted against participant-level estimates across the study period.
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Table 4. Target sample results of individual-level linear models assessing sleep duration associated with sleep quality the day before (all individual-level
models included the day of the week as a covariate, but the table only shows model parameters for the main predictor, sleep quality).

ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIaSlope (median of the posterior distribution)Target participant

73311.0072.7910.300.81−20.18 to 7.90−6.18T1

78981.0033.6813.360.97−1.23 to 35.0117.18T2

73391.0073.1816.120.62−24.38 to 33.474.86T3

76921.0061.5110.740.81−26.68 to 10.37−8.14T4

80571.0038.929.770.95−25.67 to 2.53−11.59T5

81241.0084.1612.220.68−12.52 to 20.733.99T6

77151.0076.766.260.63−9.04 to 12.401.79T7

82941.0075.0522.050.64−44.90 to 31.06−6.92T8

65421.0068.0018.390.63−43.52 to 30.76−6.64T9

82761.0082.2315.770.68−16.89 to 29.415.38T10

75921.0054.3812.980.88−8.52 to 32.2911.88T11

69811.0011.927.560.98−29.24 to −1.46−15.31eT12

88031.0090.6313.010.56−15.99 to 18.291.30T13

70331.0076.5916.150.51−30.03 to 29.90−0.44T14

76071.0060.839.770.73−13.53 to 25.516.21T15

76301.0029.0019.390.96−56.68 to 2.91−27.16T16

85481.0064.7214.880.87−30.90 to 8.36−11.26T17

70751.0074.5414.010.67−29.15 to 18.45−5.27T18

77541.0087.6016.980.59−20.85 to 25.942.84T19

79301.0042.1713.310.94−34.71 to 4.14−15.15T20

82921.0034.1110.880.97−28.15 to 0.59−13.72T21

78591.0024.149.380.96−31.39 to 2.04−14.97T22

76881.0059.3211.940.73−17.17 to 32.627.89T23

83321.0010.949.340.99−31.83 to −3.24−17.72eT24

71551.0071.2312.210.82−9.26 to 24.567.69T25

84651.0096.5664.980.58−80.37 to 64.79−7.54T26

85431.0074.7213.930.78−27.82 to 12.37−7.78T27

79131.003.9411.071.00−36.43 to −8.12−22.29eT28

70361.0050.1815.800.92−37.87 to 6.16−15.76T29

66951.0051.3110.680.91−4.82 to 25.9910.45T30

64941.0086.7911.390.64−12.58 to 18.242.76T31

74381.0074.0313.820.57−27.37 to 23.67−2.39T32

64291.0079.0915.130.54−27.00 to 24.74−1.18T33

81851.0068.4111.040.83−7.80 to 23.057.50T34

73041.0083.189.110.63−11.15 to 15.762.35T35

74461.0067.7110.690.83−22.38 to 7.85−7.26T36

74251.0065.2312.420.83−27.43 to 9.56−8.99T37

74481.0045.6915.580.92−7.39 to 40.6116.81T38

79011.0052.1114.990.84−14.82 to 42.9814.22T39

77581.0064.9910.250.63−25.53 to 18.36−3.62T40

JMIR Form Res 2024 | vol. 8 | e53441 | p. 16https://formative.jmir.org/2024/1/e53441
(page number not for citation purposes)

Vidal Bustamante et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIaSlope (median of the posterior distribution)Target participant

82051.0030.3613.720.94−43.76 to 4.64−19.81T41

69561.0080.3411.890.72−12.29 to 21.914.94T42

71071.0084.6333.520.60−42.60 to 56.276.17T43

79311.0078.739.100.76−7.61 to 16.094.48T44

86861.0053.3310.780.93−23.89 to 3.28−10.23T45

80861.0056.4512.000.91−4.71 to 26.8010.73T46

90681.008.0210.921.00−35.59 to −5.83−20.67eT47

88951.0013.2010.360.99−32.53 to −3.60−17.71eT48

80841.0078.5610.180.76−9.25 to 18.874.96T49

aUI: uncertainty interval.
bpd: probability of direction.
cROPE: region of practical equivalence.
dESS: effective sample size.
eStatistically significant result.

Higher Subjective Stress Is Associated With Shorter
Objective Sleep Duration in Most Target Participants,
but the Direction of the Temporal Association Varies
The slope estimate for the association between stress and sleep
duration was negative in 86% of all iLMs fitted such that an
increase in stress was associated with a decrease in sleep
duration (Tables 5 and 6; Figure 6A). This association between
stress and sleep duration reached statistical significance in 19
(39%) of the 49 participants (pd>0.975); of these 19 participants,
18 (95%) showed a negative association. Of note, the only
participant who showed a significant positive association (T15,
for the association between sleep duration and stress the day
after) also had no usable actigraphy data over the full spring
semester due to a technical issue with their wristband, and their
estimated positive slope should therefore be interpreted with
caution considering the structured missingness in their data. No
other participant in the target sample showed this kind of
systematic missingness in either the actigraphy or survey data
streams (refer to Figure S1 in Multimedia Appendix 1).

Of the 19 participants who showed a statistically significant
relationship between stress and sleep duration, 8 (42%) showed
only the stress-then-sleep phenotype, that is, days with shorter
sleep durations were preceded by higher stress the day before
(Figure 6, in green) but not vice versa; 5 (26%) showed only
the sleep-then-stress phenotype, that is, nights with shorter sleep

duration were followed by increased stress the day after (Figure
6, in purple); and 6 (32%) showed bidirectional effects such
that nights with shorter sleep duration were preceded by
increased stress the day before as well as followed by increased
stress the day after. Among participants who showed a
significant association between today’s stress levels and sleep
duration later that night (14/49, 29%), a 1-point increase in a
5-point perceived stress scale was associated with shorter
subsequent sleep duration of a median 17 (range 11-33) minutes
across participants. Among participants who showed a
significant association between today’s stress levels and last
night’s sleep duration (11/49, 22%), a 1-point increase in a
5-point perceived stress scale was associated with shorter
previous sleep duration of a median 18 (range 10-38) minutes
across participants. These effects would compound to more
substantial reductions in sleep duration with greater increases
in daily stress.

Individual slope estimates of the association between sleep
duration and stress showed no clear pattern of association with
individuals’ mean sleep duration or the number of daily
observations that went into the model (see Figure 6B for mean
sleep duration and number of daily observations). Individuals
with higher mean stress tended to have a larger absolute slope
estimate (see Figure 6B for mean stress), perhaps because
participants with very low stress levels have little variance to
be modeled.

JMIR Form Res 2024 | vol. 8 | e53441 | p. 17https://formative.jmir.org/2024/1/e53441
(page number not for citation purposes)

Vidal Bustamante et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Target sample results of individual-level linear models assessing sleep duration associated with stress the day before (all individual-level
models included the day of the week as a covariate, but the table only shows model parameters for the main predictor, stress the day before).

ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIaSlope (median of the posterior distribution)Target participant

79201.009.649.090.99−30.84 to −4.23−17.39eT1

75321.000.009.941.00−38.71 to −12.52−25.47eT2

74971.0056.2513.680.83−36.19 to 12.93−11.75T3

75311.005.458.250.99−31.13 to −4.48−17.88eT4

81891.0055.097.290.89−17.46 to 4.17−6.59T5

83101.0036.829.980.96−26.09 to 1.72−12.27T6

75681.0078.464.820.53−7.96 to 8.400.37T7

90051.0078.2916.890.60−31.88 to 24.48−3.97T8

67731.0056.5314.680.83−39.38 to 13.84−12.75T9

84291.0016.5510.190.99−29.99 to −2.96−16.42eT10

80511.0029.5111.910.96−34.71 to 1.64−16.79T11

74271.0065.816.730.74−16.42 to 8.22−4.08T12

88871.0057.3610.440.91−22.63 to 4.30−9.18T13

65691.0058.6612.840.79−34.82 to 15.03−10.01T14

84571.0054.537.330.80−8.58 to 21.046.40T15

71541.0078.6015.460.65−28.89 to 19.49−4.81T16

74801.0088.7211.190.52−15.28 to 15.700.47T17

82551.0078.3511.740.60−17.09 to 22.652.55T18

78851.000.0012.281.00−50.42 to −16.44−33.47eT19

79701.0084.768.290.55−12.06 to 13.070.66T20

82751.003.937.881.00−27.28 to −5.51−16.43eT21

84951.0049.738.080.86−22.65 to 6.56−8.13T22

64321.0019.979.300.96−36.46 to 2.27−16.85T23

81681.0011.0610.920.99−35.95 to −4.06−20.04eT24

78951.000.009.441.00−39.11 to −13.25−25.95eT25

88121.0034.565.630.97−14.59 to 0.61−7.07T26

84841.0076.2714.840.78−28.47 to 12.74−7.98T27

80631.0089.447.280.56−8.97 to 10.580.77T28

78501.008.748.521.00−27.87 to −3.96−16.06eT29

85441.009.275.921.00−19.45 to −2.63−11.06eT30

89931.0074.6013.610.81−9.54 to 25.477.99T31

91971.0030.2310.880.95−33.63 to 3.45−15.49T32

73581.0028.0010.690.96−33.42 to 2.04−15.60T33

79731.000.799.071.00−32.87 to −8.37−20.70eT34

83321.0087.055.750.52−7.97 to 8.630.24T35

68611.0025.167.700.98−22.46 to −0.28−11.30eT36

78891.0023.849.320.98−28.07 to −0.10−14.13eT37

75201.0014.2815.980.99−48.84 to −5.17−26.90eT38
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ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIaSlope (median of the posterior distribution)Target participant

73801.0029.799.200.93−31.21 to 4.22−13.52T39

74651.0059.484.390.75−12.06 to 5.95−3.02T40

77031.0035.8112.450.93−5.36 to 37.0615.91T41

88251.0071.6020.770.82−41.31 to 15.65−13.10T42

73571.0048.5614.060.92−35.39 to 5.80−14.40T43

81411.0046.996.470.94−15.22 to 1.43−6.76T44

84101.0081.7912.130.75−20.66 to 10.17−5.39T45

75131.0044.736.980.94−17.10 to 2.05−7.56T46

80121.0083.368.300.69−14.49 to 8.84−2.84T47

83261.0039.177.590.95−20.33 to 2.12−9.00T48

76131.0052.527.850.92−18.29 to 3.36−7.55T49

aUI: uncertainty interval.
bpd: probability of direction.
cROPE: region of practical equivalence.
dESS: effective sample size.
eStatistically significant result.
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Table 6. Target sample results of individual-level linear models assessing sleep duration associated with stress the day after (all individual-level models
included the day of the week as a covariate, but the table only shows model parameters for the main predictor, stress the day after).

ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIaSlope (median of the posterior distribution)Target participant

57971.0029.619.090.95−29.23 to 2.91−13.23T1

88751.0076.749.940.77−18.80 to 8.68−5.24T2

73381.0056.4713.680.85−34.81 to 11.56−11.77T3

80211.0015.118.250.98−32.32 to −0.57−16.22eT4

73771.0042.567.290.94−18.99 to 2.43−8.21T5

89261.0037.939.980.96−25.88 to 1.90−11.94T6

80951.0056.734.820.84−4.28 to 12.644.12T7

80681.0077.0416.890.73−33.38 to 17.75−7.79T8

82241.0057.8014.680.80−39.16 to 15.54−11.98T9

78811.007.7210.191.00−32.23 to −5.39−19.06eT10

73751.0085.5711.910.53−18.60 to 17.18−0.62T11

76611.0018.856.730.96−26.89 to 1.31−12.49T12

74551.0030.0210.440.98−27.24 to −0.47−13.95eT13

59081.0055.8012.840.73−37.81 to 19.76−9.24T14

75611.0011.117.330.981.01 to 30.3515.64eT15

73451.001.6015.461.00−62.78 to −12.78−37.82eT16

77121.0072.9411.190.78−23.61 to 10.03−6.43T17

85451.0066.6111.740.65−28.81 to 19.13−4.56T18

88441.0083.9612.280.66−20.73 to 14.26−3.52T19

73041.0084.368.290.60−10.79 to 13.911.55T20

79131.009.487.880.99−25.94 to −3.31−14.76eT21

81061.0047.688.080.87−23.16 to 6.68−8.48T22

73121.0044.679.300.83−31.70 to 10.72−10.36T23

71581.0014.0510.920.99−36.73 to −2.13−19.63eT24

84951.0039.419.440.95−24.15 to 2.27−11.10T25

87671.0010.245.631.00−17.83 to −2.28−10.11eT26

83731.0025.2214.840.98−42.43 to −0.97−21.40eT27

85511.0084.957.280.70−7.35 to 12.042.60T28

85211.003.668.521.00−29.37 to −5.97−17.68eT29

88951.0040.055.920.95−15.37 to 1.40−6.95T30

90791.0088.8813.610.60−20.99 to 15.76−2.47T31

83771.0076.0210.880.51−20.33 to 19.80−0.28T32

72351.0073.5910.690.62−22.10 to 16.05−3.11T33

83981.006.439.071.00−29.99 to −5.33−17.71eT34

81371.0032.795.750.96−15.50 to 0.75−7.43T35

66711.0045.847.700.92−20.14 to 3.43−8.27T36

74581.0041.219.320.94−25.05 to 3.13−10.86T37

80221.0043.9515.980.93−42.09 to 7.02−17.78T38

71411.0021.499.200.96−33.41 to 2.06−15.79T39
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ESSdR-hat% UI in ROPEROPEc (+/−)pdb95% UIaSlope (median of the posterior distribution)Target participant

71081.0024.884.390.95−15.56 to 1.26−7.11T40

87261.0039.4812.450.92−36.52 to 5.96−15.15T41

88621.0079.2520.770.72−20.92 to 38.939.05T42

75451.0072.4014.060.76−29.05 to 14.03−7.80T43

81511.0057.666.470.89−14.57 to 3.44−5.63T44

85941.0086.4112.130.58−19.16 to 16.16−1.63T45

84001.0075.806.980.79−13.64 to 5.68−3.81T46

75901.0047.738.300.91−21.25 to 3.95−8.61T47

74421.0056.897.590.87−17.83 to 4.77−6.65T48

85211.0034.477.850.96−1.66 to 22.0910.06T49

aUI: uncertainty interval.
bpd: probability of direction.
cROPE: region of practical equivalence.
dESS: effective sample size.
eStatistically significant result.

Figure 6. Higher subjective stress associates with shorter objective sleep duration in most individuals. (A) Estimated slopes (corresponding to the
median of the posterior distribution) from the individual-level models that assess sleep duration associated with stress the day before (triangles) and
with stress the day after (circles) are plotted along the y-axis ordered by participant (x-axis). Statistically significant slope estimates are shaded green
(day before) or purple (concurrent). Error bars show 95% uncertainty intervals, and shaded density plots show the full posterior distributions of the
slopes. (B) Slope estimates from subpart A are plotted against each participant-level estimate across the study period.

Person-Specific Estimates Get Attenuated in
Group-Based Modeling
A comparison of the estimates obtained through the iLM and
those of an MLM demonstrates that individual-level estimates
get systematically attenuated in a group-based approach when
there is between-person heterogeneity in the effects (Figure 7).
When there was a strong effect and small between-person
variability in the tested associations, as with the association
between sleep duration and concurrent sleep quality, the iLMs

provided slope estimates nearly identical to those estimated
through an MLM (Figure 7A). However, for associations that
showed a weaker effect and greater degree of between-person
variability, group-level approaches systematically flatten
individually tailored effect sizes or even reverse the sign of the
association (Figure 7B). We observed this in the lead-lag
associations between stress and sleep duration (as highlighted
with asterisks in Figure 7) and to some degree in the lagged
association between sleep quality and sleep duration.
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Figure 7. Estimates of the intercepts and slopes from the individual-level linear models (iLMs; x-axis) for each participant are compared to the random
effects estimated from a group-based multilevel linear model (MLM; y-axis) and presented separately for (A) associations between sleep duration and
sleep quality and (B) associations between stress and sleep duration (bottom row). Symbol shading signifies statistically significant slopes in the iLMs.
Dashed diagonal lines represent identical estimates between the individual- and group-based approaches. *Attenuation of individual estimates in the
MLM compared to the iLMs.

Examining Raw Within-Individual Data Informs the
iLM Results
A closer look at individual participants’ data reveals important
considerations for the application and interpretation of the iLMs
(Figure 8). As with other statistical models, the iLM is unlikely
to detect stable associations for participants with too little
variability in their data; for instance, participant T45 had
consistently low stress levels over the course of the year, with
occasional, small increases in stress tied to periods with
increased academic demands (eg, ahead of midterm and final
examinations periods). This participant’s individual linear
models showed null results for both directions of stress-sleep
associations (pd<0.975). Meanwhile, participant T29 also had

low baseline stress levels, but they presented more frequent and
substantial rises in stress throughout the year. Participant T29’s
iLMs showed bidirectional negative associations between stress
and sleep duration (pd>0.975).

While variability in daily observations over time is necessary
to detect linear associations within the iLM, variability alone
is not sufficient. Participant T10 showed substantial fluctuations
in stress and sleep duration throughout the year, and their iLMs
found bidirectional negative associations between stress and
sleep duration (pds>0.975). Meanwhile, participant T16 also
presented substantial variability in stress and sleep duration,
and while their iLM detected a significant association between
sleep duration and stress the day after (pd=1.00), no association
was detected in the opposite direction (pd=0.65).
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Figure 8. Intensive within-individual longitudinal data reveal differences among individuals. Results are shown for individual-level models testing the
association between sleep duration and stress the day before (green) and between sleep duration and stress the day after (purple). Column 1 shows the
models’ estimated slopes (computed as the median of the posterior distribution) and uncertainty metrics. Symbol shading signifies statistically significant
slopes. Error bars show 95% uncertainty intervals (UIs). Shaded density plots show the full posterior distributions of the slopes; gray shaded areas show
the regions of practical equivalence (ROPEs). Column 2 shows the models’ predicted sleep duration as a function of stress; shading around the lines
indicates 95% UIs. The time series panels in column 3 show daily observations of actigraphy-derived sleep duration and survey-based perceived stress.
Gray dashed lines show the participant’s mean value across the study period. Vertical lines indicate landmark events (labeled) in the academic calendar.
Gray shading indicates missing data during the school terms or the winter break, which were excluded from the individual-level linear models. Dur.:
duration; E: examinations period; n.s.: not statistically significant; pd: probability of direction; R: reading period; SB: spring break; sig.: statistically
significant; TB: Thanksgiving break; WB: winter break.

Discussion

Principal Findings
Stress levels and sleep duration interact in an individual’s daily
life, but research has yielded mixed findings regarding the
temporal directionality of their associations, with changes in
stress preceding changes in sleep, changes in sleep preceding
changes in stress, or both. Here, we leveraged a novel
individual-level linear regression modeling iLM framework to
obtain precision estimates of day-to-day associations between
self-reported stress levels and actigraphy-derived sleep duration
in a sample of first-year college students studied continuously
for a full academic year. While most of the participants (45/49,
92%) showed a negative association between daily stress levels
and sleep duration, the temporal direction of the association
varied, with all types of lead-lag association previously reported
at the group level present within distinct individuals in our
sample.

In agreement with prior literature, our results within individuals
confirm that stress levels and sleep duration are closely and
inversely related in daily life [10-19]. Nearly four-tenths (19/49,
39%) of the participants—each considered an independent test
of the association—showed a statistically significant effect (in
either temporal direction), revealing that day-to-day changes in
stress levels or sleep duration can reliably predict one another
in the real world in a substantial portion of the sample. The

slope estimate for the association between stress and sleep
duration was negative in 86% of the fitted models. Within the
estimated slopes that reached statistical significance, all but one
were negative. This suggests that, for most individuals, increased
stress levels are associated with shorter rather than longer sleep
duration in the surrounding days, consistent with findings
showing that periods of heightened stress levels coincide with
periods of reduced sleep [11-14]. Critically, we provide a
framework to obtain individually tailored estimates of these
day-to-day associations. The individual-level slope estimates
ranged from 10 to 38 minutes in shorter sleep duration per 1-unit
increase in a 5-point perceived stress scale, suggesting that a
change in stress levels can be associated with substantial changes
in sleep duration, especially when daily stress levels increased
by several units. It should be noted that while negative
associations between sleep duration and stress levels
predominated in our sample, it is possible that some individuals
in the wider population show positive associations but were not
captured in our study.

Our precision approach further revealed that the temporal
directionality of the association between stress and sleep
duration varied from person to person, representing all patterns
of results reported by prior, group-level studies. For some of
the participants (8/49, 16%), heightened stress during the day
associated with shorter sleep later that night but not vice versa,
in agreement with group results reported in the studies by
Marcusson-Clavertz et al [15] and Slavish et al [16]; for others
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(5/49, 10%), shorter sleep associated with heightened stress the
next day but not vice versa, in agreement with group results in
the study by Sin et al [17]; and yet others (6/49, 12%) showed
both directions of association, in agreement with group results
in the studies by Doane and Thurston [18] and Yap et al [19].
Daily psychological and behavioral experiences such as
perceived stress and sleep duration thus seem to interact in
person-specific ways, rather than being uniform across the
population.

For individuals showing the stress–then–reduced-sleep
phenotype, experiences of heightened stress (eg, due to an
impending final examination or social conflict) might elicit
hyperarousal and rumination [13,51-53], as well as behaviors
aimed at mitigating the source of stress (eg, studying or
socializing with friends late into the night), all of which can
delay sleep and reduce its overall duration. Moreover, for those
showing the reduced-sleep–then–stress phenotype, shortened
sleep durations might enhance their sensitivity to (and
undermine their ability to cope with) academic, interpersonal,
or other stressors and thus make them more likely to experience
heightened stress levels [10,54,55]. For some individuals, both
patterns of effect might occur, with changes in stress levels and
sleep duration reinforcing one another and resulting in chains
of days with heightened stress and nights of short sleep that
succeed one another.

Critically, our results suggest that group-level studies might
report inconsistent findings, at least partly, because the dynamic
interaction between daily stress levels and sleep duration varies
from person to person. When data are aggregated at the group
level, individual phenotypes might be obscured, and the resulting
group-level estimates are suggestive of generalized effects when
in fact they might only apply to a fraction of the sample. Even
when hierarchical group models allow for fitting individual
estimates, these are biased by the group and tend to attenuate
(or shrink) the estimation of individual effects [26]. A
comparison of individual slope estimates of stress-sleep
associations derived from our iLMs and those derived from an
MLM with random intercepts and slopes starkly demonstrated
this group bias: the group MLM estimated individual slopes
that were systematically attenuated or even reversed sign
compared to those estimated by our iLMs.

These results demonstrate the utility of individual-level
modeling for characterizing real-world behavioral and
psychological dynamics [27-29,34]. Our approach leverages
mobile and wearable technology and provides a fit-for-purpose
methodology that can turn these devices’ large-scale longitudinal
measurements into meaningful insights. The iLM’s model
specification is parsimonious by design and easy to interpret,
including a single linear term for the main predictor of interest
and a day-of-the-week covariate to account for the weekly
structure in the outcome variable. Diagnostic checks confirmed
that this simple model specification was powerful enough to
capture real-world, stable linear associations between
psychological phenomena and objective behaviors, while
accounting for the time-related dependencies in the daily
observations. Individual tailoring is achieved by fitting only 1
person’s data within a model, but the model specification
remains identical across individuals, allowing for direct

between-person comparisons of results, including estimating
the relative prevalence of different phenotypes in the group.

The iLM framework is readily applied to a single individual’s
data, making it useful for multiple real-world purposes beyond
fundamental research that are increasingly gaining interest in
the fields of consumer health informatics and digital health
[21,31,32]. The iLM can be applied to data collected through
personal devices for self-monitoring as well as for precision
approaches in health care settings, where clinicians might use
a patient’s data to triage intervention plans. Taking these results
as an example, stress management interventions might be first
prioritized among individuals for whom heightened stress
precedes shortened sleep, while sleep interventions might be
prioritized among individuals for whom shortened sleep
precedes heightened stress. Moreover, this work might inform
a growing body of research and products combining multiple
data streams from wearables and smartphones along with
machine learning techniques to predict experiences of stress
[56,57]. Although prediction was not the focus of our work,
understanding the person-specific association between stress
and sleep duration, as well as the weekly behavioral patterns
revealed by our actigraphy and survey data and individualized
approach, could potentially contribute to the identification of
periods when individuals are more likely to experience stress
so that timely interventions can be offered.

The iLM offers a simple yet powerful precision framework for
the estimation of real-world psychological and behavioral
associations within the individual, but the results should be
interpreted carefully in light of its assumptions and limitations.
First, the iLM’s assumptions of linear, stable associations
between the predictor and outcome variables are a deliberate
attempt to simplify real-world behavioral and psychological
dynamics that are highly complex. In the context of this study,
these features allowed us to estimate college students’
day-to-day stress-sleep associations that are stable across the
fluctuating demands on students within the school semesters as
well as straightforward to interpret. However, it is possible that
the association between stress and sleep duration is context
dependent, varying as a function of the specific source of stress
experienced by the individual (eg, academic vs interpersonal)
and the broader seasonal demands (eg, whether school is in
session). In fact, given the possibility of the latter, we decided
a priori to exclude data collected during the winter break from
our models. Future research could examine how these contextual
demands influence stress-sleep associations, as well as explore
nonlinear associations or cumulative effects over time.

Our analyses leveraged leading and lagging patterns in each
individual’s time series of stress and sleep duration measures
to ascertain the temporal directionality of their association (eg,
stress during the day as a predictor of subsequent sleep duration
later that night), but we did not implement a controlled
experimental manipulation and cannot establish a causal
relationship. While our use of intensive longitudinal data
collected in the real world grants our results ecological validity,
it also exposes them to confounders; for example, it is possible
that a significant association between short sleep and higher
stress the next day could be explained by the anticipated
demands of the next day, such as an examination. Rather than
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short sleep duration causing higher stress the next day, the
examination might be the primary cause behind both the short
sleep (staying up late to prepare) and the stress reported the next
day (heightened stress during test taking).

While our current intensive longitudinal data set and
individual-level modeling framework passed sanity checks and
diagnostics that confirmed data quality and adequate model
specification, researchers applying our framework to other data
sets and research questions should scrutinize the appropriateness
of the data and the model before interpreting the results. Mobile
and wearable technologies enable the collection of large
behavioral data sets over time, but quantity does not guarantee
quality, and long study periods require extra vigilance to ensure
that participants remain compliant over time. Quality checks
should confirm that the data collected are capturing expected
real-world behavior (eg, as suggested by the intuitive changes
we observed in students’ behavior between school terms and
breaks as well as between weekdays and weekends). Even if
the available data are substantial, and participant compliance is
high, small variability in the metrics under study could still
impede obtaining meaningful estimates of their associations,
as demonstrated by participants with minimal fluctuations in
stress levels over the course of the academic year. Moreover,
investigators should be careful to identify appropriate uses,
sanity checks, and interpretations of the iLM for their population
of study; for example, part of our iLM validation process

included testing the expected positive association between
objective sleep duration (measured via the actigraphy wristband)
and the participant’s subjective rating for the same sleep event
(reported via a daily smartphone survey). While we expect that
generally healthy participants will tend to rate nights of
shorter-than-usual sleep duration as lower quality, it might not
always be advisable to assume a simple linear association
between objective sleep duration and subjective sleep quality,
especially when modeling data from patients with sleep and
psychiatric disorders.

Conclusions
Our novel iLM framework leveraged intensive longitudinal data
from mobile and wearable devices to obtain individually tailored
estimates of day-to-day associations between subjective stress
levels and objective sleep duration. While stress and sleep
duration were inversely related in most of the participants
(45/49, 92%), the iLM revealed that the temporal direction of
these associations is person specific, identifying a variety of
individual phenotypes that may account for the diverse
group-level findings reported in prior literature. Our results
demonstrate the utility of individual-level modeling approaches
for the assessment of behavioral and psychological associations
in the real world. An individualized approach offers a foundation
for the characterization of life dynamics at both the individual
and group levels, as well as for the development of precision
health and well-being interventions tailored to the individual.
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