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Abstract

Background: Electronic health records are a valuable source of patient information that must be properly deidentified before
being shared with researchers. This process requires expertise and time. In addition, synthetic data have considerably reduced
the restrictions on the use and sharing of real data, allowing researchers to access it more rapidly with far fewer privacy constraints.
Therefore, there has been a growing interest in establishing a method to generate synthetic data that protects patients’ privacy
while properly reflecting the data.

Objective: This study aims to develop and validate a model that generates valuable synthetic longitudinal health data while
protecting the privacy of the patients whose data are collected.

Methods: We investigated the best model for generating synthetic health data, with a focus on longitudinal observations. We
developed a generative model that relies on the generalized canonical polyadic (GCP) tensor decomposition. This model also
involves sampling from a latent factor matrix of GCP decomposition, which contains patient factors, using sequential decision
trees, copula, and Hamiltonian Monte Carlo methods. We applied the proposed model to samples from the MIMIC-III (version
1.4) data set. Numerous analyses and experiments were conducted with different data structures and scenarios. We assessed the
similarity between our synthetic data and the real data by conducting utility assessments. These assessments evaluate the structure
and general patterns present in the data, such as dependency structure, descriptive statistics, and marginal distributions. Regarding
privacy disclosure, our model preserves privacy by preventing the direct sharing of patient information and eliminating the
one-to-one link between the observed and model tensor records. This was achieved by simulating and modeling a latent factor
matrix of GCP decomposition associated with patients.

Results: The findings show that our model is a promising method for generating synthetic longitudinal health data that is similar
enough to real data. It can preserve the utility and privacy of the original data while also handling various data structures and
scenarios. In certain experiments, all simulation methods used in the model produced the same high level of performance. Our
model is also capable of addressing the challenge of sampling patients from electronic health records. This means that we can
simulate a variety of patients in the synthetic data set, which may differ in number from the patients in the original data.

Conclusions: We have presented a generative model for producing synthetic longitudinal health data. The model is formulated
by applying the GCP tensor decomposition. We have provided 3 approaches for the synthesis and simulation of a latent factor
matrix following the process of factorization. In brief, we have reduced the challenge of synthesizing massive longitudinal health
data to synthesizing a nonlongitudinal and significantly smaller data set.
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Introduction

Background
Electronic health records (EHRs) are becoming an increasingly
important source of detailed information about patients because
the successful integration and efficient analysis of EHRs could
help solve many health care problems, such as expediting
clinical decisions and enhancing patient safety. However,
researchers often encounter challenges when trying to obtain
high-quality health data for their research, and EHRs need to
be appropriately deidentified before being shared with
researchers. This process requires both skill and effort.

A method for deidentifying data, including health data, is
anonymization. However, recent allegations show successful
reidentification attacks on anonymized data [1,2]. Data synthesis
is a recently developed approach for data deidentification.
Studies suggest that synthetic data do not pose a significant
privacy risk [3,4]. Therefore, data synthesis has emerged as an
interesting method for producing nonidentifiable health data,
which reduces the restrictions on the use and sharing of actual
data. This allows researchers to access it more rapidly and with
substantially fewer privacy constraints.

Therefore, there has been growing interest in establishing a
method to simulate synthetic data that protects patients’privacy
while properly reflecting the data. One method for generating
synthetic data is to choose an appropriate model, fit it within
privacy constraints, and then simulate new data from the fitted
model.

Furthermore, dimensionality reduction converts the
high-dimensional description of the data into a low dimension
without losing crucial information and phenotypes [5]. In the
medical context, phenotypes are used to describe relevant
variations and features [6]. EHR-based phenotyping is a process
that maps raw EHR data to meaningful medical concepts [7,8].
Moreover, synthesizing longitudinal data in EHRs becomes
difficult because patients may have lengthy sequences of events
and come from diverse populations. Therefore, using a
dimensionality reduction technique in the generative model
could be advantageous. However, the main challenge is to
develop a model that captures the most important data features
and efficiently finds meaningful characterizations.

Classical phenotyping methods, which require medical field
experts, can be time-consuming and expensive [9,10] because
of the high-dimensional and heterogeneous nature of the EHR
data set. Recently, more efficient unsupervised approaches, such
as matrix factorization [11], have been emerging. However,
matrix factorization does not necessarily detect associations
within a data set because the data may not be accurately
represented as matrices. Thus, tensor decompositions [12] have
drawn growing attention because of their interpretability and
flexibility in accommodating high-dimensional data. They also
appear to be beneficial and favorable for computational

phenotyping [13] and can easily be privatized [14,15]. They
have been recognized as a promising method for the analysis
of EHRs [16]. Therefore, generating a model based on
state-of-the-art tensor factorization for creating synthetic
longitudinal health data is a valuable effort.

The goal of this study is to develop a model that generates
valuable synthetic longitudinal health data while protecting the
privacy of the patients whose data are collected. We propose a
model that relies on generalized canonical polyadic (GCP) tensor
decomposition, which has demonstrated substantial outcomes
in health data analysis [17,18]. We validated this model using
samples from the MIMIC-III (version 1.4) data set [19].
MIMIC-III is a large, freely available database that contains
deidentified health-related data.

There is a widespread belief that synthetic data present an
insignificant privacy risk because there is no unique link or
mapping between the records in the synthetic data and the
records in the original data [20]. Therefore, this view should
also be satisfied in practice. However, there is a one-to-one
mapping and direct correspondence between the entries of the
GCP model and the entries of the original data. This undermines
the most sensible and acceptable concepts of privacy. Inspired
by the studies by Ma et al [14] and Schmidt and Mohamed [21],
this is fixed by simulating and modeling a latent factor matrix
of GCP decomposition associated with patients.

Related Work
Tensor decomposition is an active area of research that has been
widely applied to health care data [17,18,22]. It has been found
to be an efficient method for phenotyping EHRs [13,23]. It also
has various applications beyond health data analysis, including
recommender systems [24] and signal processing [25]. Thus
far, several tensor decomposition techniques have been
developed [26]. The most popular technique is called canonical
polyadic (CP) tensor factorization, which is also known by 2
different names: canonical tensor decomposition and parallel
factor decomposition, which were introduced separately by
Carroll and Chang [27] and Harshman [28], respectively.

The CP decomposition approximates a tensor by the sum of
rank-1 tensors using squared errors (L2 loss) [26]. Recently,
Hong et al [29] developed a GCP model that offers the flexibility
to use other loss functions in addition to squared errors.
Furthermore, Kolda and Hong [30] have presented stochastic
gradient descent as a way to overcome the challenge of fitting
generalized CP to large-scale tensors, making it a perfect fit for
a massive and heterogeneous EHR data set.

CP factorization [28] and its generalization, GCP decomposition
[29], are fundamental tools for tensor analysis. They result in
a factorized tensor that contains the most important
computational phenotypes, and many studies show that they
perform particularly well in phenotyping EHRs [13,17]. In
addition, privacy-preserving methods have been widely applied
to them in the medical setting [14,15]. Therefore, we developed
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a generative model that produces synthetic longitudinal health
data using generalized CP decomposition, which captures the
most important features.

Methods

In this section, we present the methods that we used to generate
synthetic longitudinal health data using generalized CP
decomposition and various sampling and simulation techniques.
We also describe the data, the evaluation method, and the
experimental details of our study.

Notations and Definitions
We first describe the preliminaries and notations used in this
paper. Before we begin, Table 1 shows some basic symbols
used for tensor factorization. In addition, a boldface uppercase

letter in Euler font represents a tensor, for example, . A matrix
is represented by a boldface uppercase letter, such as A. A
boldface lowercase letter, such as a, symbolizes a vector. A
lowercase letter, such as x, denotes a scalar.

The GCP decomposition approximates a N-way observed tensor

of size n1 × n2 × ... × nN by the sum of R rank-1 tensors as

model , where R is smaller or equal to the rank of tensor ,
as illustrated in Figure 1. It is presented as follows [29]:

(1)

Where indicates the rth column of A(k) for all k=1,...,N and

r=1,...,R, and A(k) is the k-mode factor matrix of size Ik× R,
k=1,...,N, consisting of R latent components or phenotypes
vectors, expressed as follows:

(2)

In addition, it is often convenient to express the decomposition
with a positive weights vector of λ as follows:

(3)

The GCP decomposition was carried out by minimizing the loss

between and as represented by an objective function,
which is also called a loss function. This means that finding

factor matrices for k = 1,...,N, with a given R
such that solves the following optimization problem:

(4)

Where xi = x(i1,...,iN), mi = m(i1,...,iN), and ℓ is the loss function.
The choice of the loss function depends on how the original
data are generated, which can be found in section S1 in
Multimedia Appendix 1 [29].

Therefore, for a 3-way tensor , the generalized
CP decomposition with weight vector λ=1 is represented as (for

simplicity, A, B, C notations are used rather than A(1), A(2),

A(3)):

(5)

W h e r e  ,  a n d

are the rth column vectors within

the patient factor matrix , and nonpatient factor

matrices and , respectively.

For simplicity, we discussed a 3-way tensor scenario; however,
this approach generalizes to N modes as well. The GCP

decomposes the observed longitudinal health data into
3-factor matrices: a patient factor matrix A and 2 nonpatient
factor matrices B and C.

Table 1. The notations used in this paper.

DescriptionsNotations

Outer product◦

Number of dimensions (modes) of a tensorN

Number of ranksR
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Figure 1. The generalized canonical polyadic decomposition.

Data Synthesis Method

Overview
Our goal was to generate synthetic longitudinal health data,

which we will refer to as . As mentioned earlier, relying on

the model tensor for synthesis is generally a bad idea and
unwise because its elements directly approximate elements of

the actual tensor and thus disclosing privacy. Instead, we
focused on the patient factor matrix A in the model’s latent
space, which contains key phenotypes and information about
patients.

In addition, the patient factor matrix A is not a longitudinal data
set and is a significantly smaller data set than the model tensor

; hence, its sampling and synthesis would be considerably
simpler, and more efficient. Therefore, the aim was to find the
optimal sampling or synthesis technique for the patient factor

matrix A, which is denoted by . As determined by our
research and study, we may use one of the generative models

listed in the following subsections to create . Thus,

is viewed as a synthetic form of , as illustrated
in Figure 2:

(6)

For addressing missing observations in the GCP model, Hong
et al [29] used an indicator for the missingness of observations
by assigning weights 0 if an observation is missing or 1 if it is
observed; this approach for handling missing data is essentially
the same as the work of Acar et al [31]. In addition, the missing
structure of synthetic data must be similar to that of the original
data. We assigned weights 0 or 1 to every element of the tensor

, xi:

(7)

Let be the missingness indicator or mask tensor made of
weights wi we then treated it as an input tensor and decomposed

it using GCP decomposition. Assume is its patient
factor matrix attained from the GCP decomposition with rank
R':

(8)

We proposed combining Aw and A to create a new patient factor

matrix , from which we sample and
simulate to obtain the synthesized and simulated form of

. Then, we need to restore and to their
source latent space to obtain the synthetic data and its

missingness indicator tensor .

Furthermore, the EHR data might be an irregular tensor, with
patients having a varied number of clinical visits. However, the
input for CP and generalized CP decompositions must be a
regular tensor. Therefore, we proposed converting the irregular
observed tensor into the regular one by adding extra missing
visits. We then performed the GCP decomposition and added
the number of clinical visits as a new variable to the patient
factor matrix A because this feature is not a longitudinal variable
and can be directly added to the patient factor matrix. We then
sampled or synthesized the A along with that variable, and
obtained the synthetic number of records, and finally, we
modified the number of records in the postprocessing. We also
recommended applying the same to the baseline attributes. With
this generative model, we can simulate different numbers of
patients in synthetic data as well.
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Figure 2. The generative model in terms of the generalized canonical polyadic decomposition.

Copula
This section summarizes the copula principles that we used in
this study. Synthetic data generation using copula has recently
attracted a lot of attention because some deep learning generative
models, such as generative adversarial networks (GANs), require
a very large data set for the learning stage and are therefore
unproductive for small data sets. Copula models might be the
most effective method to describe dependencies and marginal
distributions. Furthermore, these models appear to be among
the best options for data synthesis based on complex and small
actual data sets [32]. Therefore, we selected the Gaussian copula
as one of the simulation and synthesizing techniques for the

patient factor matrix as it has been represented
in several papers [33,34].

We assumed that have marginal distributions F1,...,FR

parametric or nonparametric, with covariances .
By a Gaussian copula, we completed the following:

1. Generated variables t1,...,tR from a multivariate normal
distribution with means all equal to 0, variances all equal

to 1, and .
2. Generated the uniform variables such that

; the Gaussian copula is the joint
distribution of u1,...,uR

3.
Generated samples .

However, the sampling will never be exact, and because we
were sampling in the latent space, the correlation of the synthetic
tensor might not be what we want. Therefore, we suggest
selecting a sample such that the Frobenius norm of the difference
between the correlation matrices of the original and synthetic
data is less than a threshold ∈, which can be viewed as an
optimization.

Finally, we produced the synthetic patient factor matrix from

the obtained samples, such that .

Sequential Decision Trees
Another technique that we proposed is to synthesize the patient
factor matrix A using sequential decision trees, as presented in
[35]. In data synthesis, sequential trees outperform deep learning
methods, such as GANs or recurrent neural network models
when the data set is not huge. We briefly summarize the
sequential data synthesis process of [35]. Let us assume that

the variables in the patient factor matrix A are , and

their corresponding synthesized versions are . We fit

R-1 models using a model Mj defined by ,
where Mj and f denote a decision tree model and the tree model

fitting function, respectively. Finally, we sampled from

a1 and applied to sample the
remaining variables.

Hamiltonian Monte Carlo
In this section, we sampled from the patient factor matrix A
using a Bayesian simulation, with a focus on Hamiltonian Monte
Carlo (HMC), which has advantages over other Markov Chain
Monte Carlo (MCMC) methods.

We began by assuming that the patient factor matrix variables

are generated from a multivariate Gaussian

distribution prior with a known mean vector .
(which is set to a vector of zeros for simplicity) and an unknown
covariance matrix ∑. A suitable prior for variances would be
the Cauchy distribution. However, we must consider that the
distribution of patient factor variables depends on the kind of
loss function used in the GCP decomposition. We used this
method only on the latent space generated by Gaussian loss.

The model block of STAN is provided in section S2 in
Multimedia Appendix 1. In this block, x and x_sim represent
the patient factor matrix variables ai and the corresponding

simulations , respectively. N indicates the number of patients.

Data
This study used the MIMIC-III data set [19]. MIMIC-III is a
large, freely available database that contains deidentified
health-related data corresponding to >40,000 patients who stayed
in critical care units. It was compiled at the Beth Israel
Deaconess Medical Center in Boston, Massachusetts, between
2001 and 2012. Therefore, as the largest publicly available EHR
data set, it has received significant interest from researchers as
an open platform for the development and validation of their
research on EHRs.

The continuous data set that we derived from the MIMIC-III
data and used to evaluate the performance of our proposed
model is a 3-way tensor of laboratory measurements for patients
within the hospital who had 36 clinical visits. This is derived
from the “LABEVENT” table in MIMIC-III. The resulting
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tensor consists of 226 patients, 4 laboratory tests (creatinine,
potassium, sodium, and the hematocrit), and 36 clinical visits,
with 21% of the data missing. The categorical data set used in
our analysis is a tensor consisting of 246 patients, 2 categorical
features (admission type and admission location), and 5 clinical
visits, with no missing entries. This was obtained from the
“ADMISSIONS” table of MIMIC-III. The detailed descriptions
of the tables can be found in the study by Johnson et al [19].

Evaluation Methods
We describe how we evaluated the utility and privacy risks of
the synthetic data set.

The analysis of synthetic data should provide similar statistical
inferences and conclusions to those obtained from actual data
analysis. Therefore, we evaluated the proposed method on the
utility aspect of the generated data [20,36].

We assessed the ability of the developed generalized CP
framework to create synthetic data in terms of dependency
structure and marginal fitting (univariate distribution similarity)
using the following:

• The absolute difference in correlations between variables
in the original and synthetic data

• The Hellinger distance between the synthetic and original
variables indicates whether they are drawn from the same
distribution. The Hellinger distance is a metric in the range
of 0 to 1, where 0 indicates no difference between the
distributions.

• The root mean square difference between the actual and
synthetic correlations (RMSDC), which means the root
mean square difference between the correlations of the
original variables and those of the associated synthetic
variables, is used to measure how well the dependency
structure is captured. A lower RMSDC indicates a better
capture of the dependency structure.

• Descriptive statistics

The statistical characteristics of a synthetic data set need to
match those of the original data. However, a single record in
the synthetic data does not relate to or correspond to a single
record in the original data set [13]. There is a one-to-one
correspondence between the entries of the GCP model and the
original data, which violates the most reasonable and accepted
concepts of privacy. Therefore, in terms of privacy disclosure,
our approach preserves privacy by preventing the direct sharing
of patient information and destroying the one-to-one link
between the observed and model tensor records.

Experimental Details
We evaluated 3 different simulation and sampling techniques
on the generalized CP’s patient factor matrix, which contains
patient phenotypes. Initially, we arranged the study into trials
on dense and scarce continuous data sets and experiments on
dense categorical data. Therefore, we started imputing the
continuous data set with 21% missing observations using the
GCP decomposition. We then used all 3 previously mentioned
techniques to synthesize the imputed version of the original
tensor, as well as the imputed data containing just the first 5 or
10 clinical visits.

The GCP decomposition was conducted using various loss
functions depending on the kind of variables in our trials. These
included gamma, β-divergence (similar to gamma), and
Gaussian with nonnegativity constraints. Despite the continuous
data set being nonnegative, the Gaussian loss (L2 loss)
outperformed the others for all 3 approaches. This is because
the dependency structure and univariate distributions of the
original variables were significantly better preserved in the
generated synthetic data. Refer to section S1 in Multimedia
Appendix 1 for the choices of the loss function.

Finding the rank of a tensor is necessary for GCP decomposition.
Following the selection of the loss function, we attempted to
find the rank R by doing several runs with different values of
R, where R ≤ min{IJ,IK,JK}, keeping in mind that the maximum
rank is the last option. We then selected the rank for which there
were no significant changes in the objective function, fit score

, or mean square error from that rank to higher
ranks. This allows important features and phenotypes to be
captured by the model. This method is similar to the “elbow”
rule. Although we may end up with the maximum value for R,
the privacy constraints are not violated because the latent space
simulation prevents overfitting. In addition, we investigated if
the latent space structure, such as normalization and
standardization, would lead to better results.

The GCP tensor decomposition was conducted using the
algorithm of Hong et al [29], which was implemented in the
Tensor Toolbox for MATLAB [37]. There is also a C++
programming software for GCP decompositions developed by
Sandia National Laboratories [38], known as Genten, which is
accessible in GitLab [39].

We applied the copula method using parametric and
nonparametric marginals. For the nonparametric marginals, we
used the empirical cumulative distribution function (CDF) and
kernel smoothing. In addition, we performed the Gaussian
copula based on parametric marginals using gamma, beta, and
truncated Gaussian distributions, as suggested in the study by
Benali et al [32].

We successfully synthesized the patient factor matrix A based
on the sequential decision trees [35] through Replica Synthesis
software [40]. The STAN model and the rstan package in R
were used to perform HMC sampling on the patient factor
matrix.

Finally, we applied sequential trees to validate the generative
model on the data set with missing and irregular clinical visits.
The categorical data trial was accomplished by GCP
decomposition using Poisson with log link and Gaussian losses.
Following that, the patient factor matrix was sampled using all
3 approaches.

Ethical Considerations
This study was approved by the Children’s Hospital of Eastern
Ontario (CHEO) Research Institute Research Ethics Board
(protocol number 24/18X). The MIMIC-III database is a
third-party anonymous public database approved by the
Institutional Review Boards of Beth Israel Deaconess Medical
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Center (Boston, Massachusetts) and the Massachusetts Institute
of Technology (Cambridge, Massachusetts).

Results

Overview
In this section, we report and analyze the results of our
experiments on generating synthetic longitudinal health data
using the proposed model. We demonstrate that our method is
capable of handling different data structures and scenarios. We
conducted numerous experiments and considered the following
structures for both the original data and the synthetic data to
validate our model:

• Synthetic data for dense original data with continuous
variables

• Synthetic data with a varying number of patients compared
to the original data

• Synthetic data for original data with missing observations
• Synthetic data for original data with irregular clinical visits
• Synthetic data for dense original data with categorical

variables

Experiments on Continuous Dense Data
According to the evaluations, β-divergence is not a suitable
objective function for synthesizing continuous data in EHR with
patient factor matrix simulation using sequential trees or HMC
with the multivariate Gaussian distribution model. Refer to
section S3 in Multimedia Appendix 1 for a summary of the
findings.

We learned through several analyses that standardizing data
and using Gaussian loss improves the results significantly. In
the following, we present the outcomes of synthesizing a dense
continuous data set that contains 226 patients, 4 laboratory test
variables, and 5 clinical visits. In the preceding sections, we
described how we obtained the data set for our study. The model
used GCP decomposition with Gaussian loss and R=20. It can
be observed that synthetic data sets generated by all 3 patient
factor matrix simulation methods have comparable dependency
structures and marginal distributions to the real ones. Here, we
present the results of copula, sequential trees, and the HMC.

According to section S4 in Multimedia Appendix 1, the synthetic
data generated from the copula using empirical CDF marginals
almost preserves the dependency structure and distribution of
the original variables. The box plots in Figure 3 represent the
variation in the Hellinger distance and the Pearson correlation
between the variables in both the synthetic and original data
sets. Furthermore, an RMSDC of 0.04 was obtained.

According to the summaries presented in Tables 2 and 3, the
maximum value of the variables is slightly lower than that of
the original.

The following are the outcomes of sampling the patient factor
matrix of the previously mentioned GCP decomposition using
the sequential trees approach. According to section S5 in

Multimedia Appendix 1, the structure of the original data was
preserved in different modes upon synthesis.

Figure 4 of the variation of the Hellinger distance also shows
that synthetic variables from sequential decision trees are
derived from a similar distribution as the original variables.
However, the copula performed slightly better in capturing the
correlations between the variables. The RMSDC computed for
this experiment was 0.078.

The summary presented in Table 4 shows that the range of
variables has significantly improved compared to the previous
copula analysis, refer to Table 3 for the summary of the original
data.

The following is the result of MCMC method using the HMC
algorithm: if the distribution of the HMC model is well
specified, the resulting outcome will be more effective.

Section S6 in Multimedia Appendix 1 indicates that the structure
of the synthetic data in different modes is comparable to that
of the original data. Furthermore, an RMSDC of 0.071 was
obtained. We expected the HMC to perform well on the
Gaussian latent space, which is defined by our Gaussian model.
Defining a proper model distribution for the HMC would
significantly enhance the findings. Figure 5 illustrates that HMC
was slightly better at capturing the correlations between
variables.

On the basis of Table 5, the summary of HMC synthetic
variables is similar to that of the other methods. The maximum
values of the variables dropped in the synthetic data compared
to the actual data in Table 3.

Finally, we present Figure 6 and section S7 in Multimedia
Appendix 1 for an easier comparison of the 3 sampling
techniques on GCP decomposition with Gaussian loss. In Figure
6, we can observe the dependency structure and univariate
distribution of both synthetic and original variables
simultaneously.

The findings and figures demonstrate that all 3 synthetic data
sets have similar statistical properties in terms of dependency
and univariate distributions. However, the copula and sequential
trees performed slightly better than the MCMC technique when
the HMC algorithm was used. In brief, we need to define a
proper distribution that corresponds to the latent space to obtain
decent results through HMC sampling. The Gaussian loss is the
ideal loss function for simulating from the patient factor matrix
using sequential trees, but the observed data must be
standardized beforehand. Further analysis, which we have not
included in this paper, has shown that it is preferable to use
empirical CDF marginals instead of parametric ones when
sampling the patient factor matrix by copula. The outcomes of
generating synthetic data using β-loss in GCP decomposition
can be found in section S3 in Multimedia Appendix 1.

In the following section, we will provide the results of
generating synthetic data with an additional number of patients
compared to the original data set.
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Figure 3. The box plots display the variation of the Hellinger distance and the Pearson correlation between the original variables and the synthetic
variables generated by copula. (A) This is the box plot of the absolute differences in bivariate correlations between the real and synthetic data. Smaller
values indicate that the bivariate relationships in the data have been greatly preserved during the generation of synthetic data. (B) This is the box plot
of the Hellinger distance between the original variables and the synthetic variables. This shows the similarity of the univariate distributions between
the real and synthetic data. This is a value between 0 and 1, with lower values indicating similarity between the univariate distributions of the real and
synthetic variables.

Table 2. A summary of the copula’s synthetic variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

13.64110.62.230Minimuma

31.64 (27.97-35.75)138 (134.5-141.9)4.17 (3.77-4.62)1.08 (0.52-2.21)Median (IQR)

31.9 (4.1)138 (6.2)4.22 (0.59)1.67 (1.58)Mean (SD)

48.49157.57.3214.1Maximumb

aMinimum: minimum of data.
bMaximum: maximum of data.

Table 3. A summary of the original variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

9.21092.50.2Minimuma

31.6 (28.1-35.7)138 (135-141.6)4.1 (3.8-4.51)1 (0.7-1.6)Median (IQR)

32.08 (5.82)138.4 (6.5)4.23 (0.62)1.64 (1.6)mean (SD)

52.61701016.2Maximumb

aMinimum: minimum of data.
bMaximum: maximum of data.
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Figure 4. The box plots display the variation of the Hellinger distance and the Pearson correlation between the original variables and the synthetic
variables generated by sequential decision trees. (A) This is the box plot of the absolute differences in bivariate correlations between the real and synthetic
data. Smaller values indicate that the bivariate relationships in the data have been greatly preserved during the generation of synthetic data. (B) This is
the box plot of the Hellinger distance between the original variables and the synthetic variables. This shows the similarity of the univariate distributions
between the real and synthetic data. This is a value between 0 and 1, with lower values indicating similarity between the univariate distributions of the
real and synthetic variables.

Table 4. A summary of the sequential decision trees’ synthetic variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

10.09116.41.880Minimuma

31.68 (27.01-36.38)138.8 (134.2-143.3)4.18 (3.7-4.71)1.25 (0.67-1.86)Median (IQR)

31.87 (5.8)138.7 (6.6)4.23 (0.58)1.53 (1.62)Mean (SD)

54.8177.48.1614.84Maximumb

aMinimum: minimum of data.
bMaximum: maximum of data.

Figure 5. The box plots display the variation of the Hellinger distance and Pearson correlation between the original variables and the Hamiltonian
Monte Carlo synthetic variables. (A) This is the box plot of the absolute differences in bivariate correlations between the real and synthetic data. Smaller
values indicate that the bivariate relationships in the data have been greatly preserved during the generation of synthetic data. (B) This is the box plot
of the Hellinger distance between the original variables and the synthetic variables. This shows the similarity of the univariate distributions between
the real and synthetic data. This is a value between 0 and 1, with lower values indicating similarity between the univariate distributions of the real and
synthetic variables.
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Table 5. A summary of the Hamiltonian Monte Carlo’s synthetic variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

7.22117.80.660Minimuma

32.18 (27.85-36.47)138.6 (134.5-142.8)4.19 (3.74-4.7)1.85 (0.6-3.1)Median (IQR)

31.93 (4.8)138.5 (5.02)4.23 (0.54)2.01 (1.4)Mean (SD)

51.63156.96.787.24Maximumb

aMinimum: minimum of data.
bMaximum: maximum of data.

Figure 6. The plots show the correlation and distribution of the original and synthetic variables. A correlation matrix displays bivariate scatter plots
of the adjacent variables below the diagonal, histograms of the data distribution of the respective variables on the diagonal, and the Pearson correlation
above the diagonal. Ellipses specify the direction of the correlation. The information regarding the relationship between the 2 selected variables is always
perpendicular to each other. (A) This is the plot of the original variables. (B) This is the plot of synthetic variables generated by copula. (C) This is the
plot of synthetic variables generated by sequential decision trees. (D) This is the plot of synthetic variables generated by Hamiltonian Monte Carlo.

Experiments on Continuous Data With a Different
Number of Patients in Synthetic Data Compared to
Original Data
We can generate different numbers of patients in the synthetic
data using all 3 patient factor matrix simulations. However, we
only applied the sequential trees approach, and the results are
as follows: the findings indicate that the dependency and

univariate structure of the original variables are well maintained
in the synthetic data.

The following are the outcomes of generating 250 patients from
the patient factor matrix using sequential trees: the patient factor
matrix is derived from the GCP decomposition in the previous
experiment. The original data set is dense, consisting of 226
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patients, and is the same data set used in the previous
experiment.

Figure 7 indicates that the Pearson correlations and univariate
distributions were similar between the synthetic and original
data sets. Figure 8 illustrates that the synthetic variables created
by sequential decision trees are derived from a distribution
similar to that of the original variables. The structure of the
generated data in different modes is included in section S8 in
Multimedia Appendix 1, which shows similar results to those

of the analyses presented here. The RMSDC computed for this
experiment was 0.066.

In this scenario, the summary presented in Table 6 also
demonstrates that the ranges of the synthetic variables are
comparable to those of the original ones in Table 3.

On the basis of the results of this section, we are optimistic that
our model may perform even better when generating larger data
sets.

Figure 7. The plots show the correlation and distribution of sequential decision trees’ synthetic variables as well as the original variables. A correlation
matrix displays bivariate scatter plots of the adjacent variables below the diagonal, histograms of the data distribution of the respective variables on the
diagonal, and the Pearson correlation above the diagonal. Ellipses specify the direction of the correlation. The information regarding the relationship
between the 2 selected variables is always perpendicular to each other. (A) This is the plot of the original variables. (B) This is the plot of the synthetic
variables.

Figure 8. The box plots display the variation of the Hellinger distance and the Pearson correlation between the original variables and the sequential
decision trees’ synthetic variables. (A) This is the box plot of the absolute differences in bivariate correlations between the real and synthetic data.
Smaller values indicate that the bivariate relationships in the data have been greatly preserved during the generation of synthetic data. (B) This is the
box plot of the Hellinger distance for all variables between the original and synthetic data sets. This shows the similarity of the univariate distributions
between the real and synthetic data. This is a value between 0 and 1, with lower values indicating similarity between the univariate distributions of the
real and synthetic variables.
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Table 6. A summary of sequential decision trees’ synthetic variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

8.97108.32.160Minimuma

31.44 (27.37-35.87)138.4 (134.4-142.2)4.18 (3.71-4.72)1.22 (0.76-1.88)Median (IQR)

31.56 (5.83)138.4 (5.6)4.26 (0.61)1.67 (1.6)Mean (SD)

53.04163.17.9416.42Maximumb

aMinimum: minimum of data.
bMaximum: maximum of data.

Experiments on Continuous Data With Missing
Observations
The following is a trial on the continuous data derived from the
MIMIC-III data set without imputation. As mentioned earlier,
the data set consists of 226 patients, 4 laboratory tests, and 36
clinical visits, with 21% of the observations missing. We have
previously described the approach for synthesizing this sort of
data. In this experiment, we attempted to sample the patient
factor matrix using sequential trees and generate the same
sample size of 226 patients as in the original data. We performed
GCP factorization with Gaussian loss and R=100. Then, we
applied the CP via an alternating least square decomposition to
the missing tensor with R=50, where the loss function was also
Gaussian.

The structure of the synthetic and original data sets in different
modes is similar, as shown in section S9 in Multimedia
Appendix 1. Furthermore, Figures 9 and 10 indicate that the
dependency structure is preserved, and the marginal fitting is
quite comparable in both the synthetic and original data sets.
This demonstrates that our proposed model for EHR synthesis
performs well.

According to the summary presented in Tables 7 and 8, the
missing percentages in the synthetic and actual data are 46%
and 21%, respectively. It appears to be almost double. As the
missing tensor is binary, we can try to factorize it to determine
if there are any possible improvements in the outcomes.

Figure 9. The plots show the correlation and distribution of sequential decision trees’ synthetic variables as well as the original variables. A correlation
matrix displays bivariate scatter plots of the adjacent variables below the diagonal, histograms of the data distribution of the respective variables on the
diagonal, and the Pearson correlation above the diagonal. Ellipses specify the direction of the correlation. The information regarding the relationship
between the 2 selected variables is always perpendicular to each other. (A) This is the plot of the original variables. (B) This is the plot of the synthetic
variables.
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Figure 10. The box plots display the variation of the Hellinger distance and the Pearson correlation between the original variables and the sequential
decision trees’ synthetic variables. (A) This is the box plot of the absolute differences in bivariate correlations between the real and synthetic data.
Smaller values indicate that the bivariate relationships in the data have been greatly preserved during the generation of synthetic data. (B) This is the
box plot of the Hellinger distance for all variables between the original and synthetic data sets. This shows the similarity of the univariate distributions
between the real and synthetic data. This is a value between 0 and 1, with lower values indicating similarity between the univariate distributions of the
real and synthetic variables.

Table 7. A summary of the sequential decision trees’ synthetic variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

7.07117.50.710Minimuma

29.64 (26.58-32.77)138.6 (135.3-142)4.12 (3.64-4.62)1.3 (0.85-1.87)Median (IQR)

29.82 (4.8)138.6 (5.02)4.13 (0.76)1.47 (0.97)Mean (SD)

57.9156.87.947.97Maximumb

3661373336363893#NA’sc

aMinimum: minimum of data.
bMaximum: maximum of data.
c#NA’s: the number of missing values.

Table 8. A summary of the original variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

21032.10Minimuma

29.6 (26.9-32.5)139 (135.8-142)4 (3.7-4.4)1 (0.6-1.6)Median (IQR)

29.86 (4.62)138.7 (5.67)4.1 (0.58)1.52 (1.67)Mean (SD)

52.61701016.2Maximumb

1515175215322050#NA’sc

aMinimum: minimum of data.
bMaximum: maximum of data.
c#NA’s: the number of missing values.

Experiments on Continuous Data With Irregular
Clinical Visits
To create irregularity in clinical visits, a subset of the continuous
data was created by choosing the first 10 observations. Those

outcomes are presented in this section, and we have previously
elaborated on the method used for addressing this particular
scenario. The GCP decomposition was performed with Gaussian
loss and R=30, resulting in a mean square error of approximately
0.004. The experiment was conducted using the sequential
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decision trees approach to sample the patient factor matrix. The
RMSDC was computed as 0.14.

Upon analyzing the results in Figures 11 and 12, we found that
the process of generating synthetic data generally maintained
bivariate relationships and univariate distributions in the data.

When analyzing Tables 9 and 10, it was found that the provided
descriptive statistics have remained comparable throughout the
process of generating synthetic data.

Figure 11. The plots show the correlation and distribution of variables generated by sequential trees and the original ones. A correlation matrix displays
bivariate scatter plots of the adjacent variables below the diagonal, histograms of the data distribution of the respective variables on the diagonal, and
the Kendall correlation above the diagonal. Ellipses specify the direction of the correlation. The information regarding the relationship between the 2
selected variables is always perpendicular to each other. (A) This is the plot of the original variables. (B) This is the plot of the synthetic variables.

Figure 12. The box plots display the variation of the Hellinger distance and the Kendall correlation between the original variables and the sequential
decision trees’ synthetic variables. (A) This is the box plot of the absolute differences in bivariate correlations between the real and synthetic data.
Smaller values indicate that the bivariate relationships in the data have been greatly preserved during the generation of synthetic data. (B) This is the
box plot of the Hellinger distance for all variables between the original and synthetic data sets. This shows the similarity of the univariate distributions
between the real and synthetic data. This is a value between 0 and 1, with lower values indicating similarity between the univariate distributions of the
real and synthetic variables.
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Table 9. A summary of the sequential decision trees’ synthetic variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

10.62100.30.870Minimuma

31.43 (27.02-35.21)139.8 (134.9-144.6)4.31 (3.73-4.88)1.31 (0.76-2.82)Median (IQR)

31.36 (5.7)139.5 (5.11)4.34 (0.56)1.9 (1.18)Mean (SD)

58.15178.98.599.35Maximumb

aMinimum: minimum of data.
bMaximum: maximum of data.

Table 10. A summary of the original variables.

VariablesMetric

HematocritSodiumPotassiumCreatinine

9.2111.22.60.2Minimuma

31 (27.83-35.1)139 (135.6-142)4.15 (3.8-4.5)1.07 (0.76-1.7)Median (IQR)

31.61 (5.82)139 (6.53)4.21 (0.62)1.6 (1.64)Mean (SD)

52.61707.913.6Maximumb

aMinimum: minimum of data.
bMaximum: maximum of data.

Experiments on Categorical Dense Data
The categorical data contain 2 variables: “admission type” and
“admission location.” The GCP decomposition was implemented
using 2 different loss functions: the Poisson log link, the results
of which we discuss in section S10 in Multimedia Appendix 1,
and the Gaussian loss function. Initially, a series of
postprocessing steps were conducted. The outcomes of the
synthesis, which apply the Gaussian loss function and use HMC,

are presented in the subsequent section. In this experiment,
R=10 was obtained.

The structure of the generated data in different modes is included
in section S11 in Multimedia Appendix 1. The Hellinger
distance and Kendall correlation were calculated for the
categorical variables as shown in Figures 13 and 14. All the
findings demonstrate that the generative model is applicable to
any sort of variable.

Figure 13. The plots show the Kendall correlation and distribution of the Hamiltonian Monte Carlo’s synthetic variables as well as the original variables.
A correlation matrix displays bivariate scatter plots of the adjacent variables below the diagonal, a bar chart of the data distribution of the respective
variables on the diagonal, and the Kendall correlation above the diagonal. Ellipses specify the direction of the correlation. (A) This is the plot of the
original variables. (B) This is the plot of the synthetic variables.
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Figure 14. The box plot shows the variation of Hellinger distance for all variables between the original and the Hamiltonian Monte Carlo synthetic
data sets. This shows the similarity of the univariate distributions between the real and synthetic data. This is a value between 0 and 1, with lower values
indicating similarity between the univariate distributions of the real and synthetic variables.

Discussion

Summary
Our objective was to develop and validate a generative model
that produces synthetic longitudinal health data. We constructed
a model by using a GCP tensor decomposition and sampling
from its latent factor matrix, which contains factors related to
patients.

We applied the GCP decomposition because tensor
decompositions offer interpretability and flexibility in handling
high-dimensional data, including massive and heterogeneous
EHR data sets. However, the most sensible and acceptable
privacy concepts were undermined because of the one-to-one
mapping and direct correspondence between the entries of the
GCP model and the entries of the original data. Thus, by
simulating and modeling the latent factor matrix of GCP
decomposition associated with patients, we could address
privacy concerns.

We proposed 3 methods for synthesizing and simulating the
patient’s factor matrix: sequential trees, Gaussian copula, and
HMC. These techniques appear to be the best options for data
synthesis and simulation, particularly when working with
complex and small data sets, such as the patient factor matrix
in our model.

The model was validated through several experiments conducted
on various data structures. We assessed the similarity between
our synthetic data and the real data by conducting utility
assessments. The assessments involved evaluating the structure
and general patterns present in the data, such as the dependency
structure, the descriptive statistics, and the marginal
distributions.

Limitations
In this study, we were not able to use the huge data set. In
addition, we could not investigate further simulation and
sampling techniques for the patient factor matrix due to time
constraints. We focused on longitudinal health data in our model.

However, there are also other types of longitudinal data, such
as transactions in financial data sets, that occur over time.

Therefore, a future study could use a huge data set for this model
and explore other techniques for synthesizing the patient factor
matrix, such as GANs and recurrent neural network models.
Another possible future work could involve conducting a more
rigorous comparison between the original and synthetic data
sets to evaluate both the generative model and the superior
sampling approach. We could also look at the HMC sampling
approach and see if we can improve its results by defining more
appropriate distributions. We believe that our model could
perform well on various types of longitudinal data sets. It would
be interesting and valuable to carry out a future study to assess
the effectiveness and feasibility of this model on different types
of longitudinal data, such as financial data, as the current model
has been developed and validated using health data.

Conclusions
There is an increasing demand to access EHRs for secondary
analysis. Data synthesis is one method that can address this
demand and satisfy privacy concerns simultaneously. The
objective of this study was to develop and validate a generative
model for producing synthetic longitudinal health data. This
was achieved using GCP tensor decomposition and sampling
its latent factor matrix, which contains patient factors. All the
simulation methods used in the generative model provided the
same high level of performance in certain experiments.
However, the sequential decision trees performed better when
data standardization was used, and the Gaussian loss was used
in the generalized CP decomposition. When applied to a
non-Gaussian latent space, the copula was preferred. Our
approach could also solve the problem of sampling patients
from EHRs. This means that we could simulate different
numbers of patients in the synthetic data set as well. On the
basis of our findings, we highly recommend the standardization
and decomposition of EHRs using Gaussian loss. This will
ensure that the synthetic data is a true reflection of the original
data set.
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We successfully addressed the challenge of synthesizing massive
longitudinal health data by synthesizing a significantly smaller
nonlongitudinal data set instead. Thus, it is encouraging that
our generative model could be applied to produce valuable
synthetic data in various fields and areas of research.

Tensor decompositions have drawn growing attention because
of their interpretability and flexibility in high-dimensional and
heterogeneous data sets. In addition, they can easily be
privatized. The GCP decomposition is the most popular tensor
decomposition technique, which is ideal for large-scale and

heterogeneous data sets. It has various applications beyond
health data analysis, such as in predicting financial markets.
There are significant benefits to banks and financial institutions
when it comes to generating and using synthetic data. For
instance, they gain the ability to analyze and test data without
any cybersecurity or privacy concerns, which is crucial and
saves a tremendous amount of time.

Therefore, we believe that our model can efficiently apply to
various types of longitudinal data, including generating synthetic
longitudinal financial data, such as synthetic transactions.
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