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Abstract

Background: Atopic dermatitis (AD) is a chronic skin condition that millions of people around the world live with each day.
Performing research into identifying the causes and treatment for this disease has great potential to provide benefits for these
individuals. However, AD clinical trial recruitment is not a trivial task due to the variance in diagnostic precision and phenotypic
definitions leveraged by different clinicians, as well as the time spent finding, recruiting, and enrolling patients by clinicians to
become study participants. Thus, there is a need for automatic and effective patient phenotyping for cohort recruitment.

Objective: This study aims to present an approach for identifying patients whose electronic health records suggest that they
may have AD.

Methods: We created a vectorized representation of each patient and trained various supervised machine learning methods to
classify when a patient has AD. Each patient is represented by a vector of either probabilities or binary values, where each value
indicates whether they meet a different criteria for AD diagnosis.

Results: The most accurate AD classifier performed with a class-balanced accuracy of 0.8036, a precision of 0.8400, and a
recall of 0.7500 when using XGBoost (Extreme Gradient Boosting).

Conclusions: Creating an automated approach for identifying patient cohorts has the potential to accelerate, standardize, and
automate the process of patient recruitment for AD studies; therefore, reducing clinician burden and informing the discovery of
better treatment options for AD.

(JMIR Form Res 2024;8:e52200) doi: 10.2196/52200
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Introduction

Background
Atopic dermatitis (AD) is a common skin disease with a
population prevalence of approximately 30% [1]. It is often
diagnosed in early childhood, but onset can occur at any age
[2-5]. Symptoms of AD include inflamed, red, irritated, and

itchy skin and can cause significant physical and emotional
distress. AD is often associated with other allergic illnesses,
including asthma, seasonal allergies, and food allergies [2,3,5-7].

AD is thought to be associated with skin barrier dysfunction
and immune dysregulation [5]. AD has also been associated
with genetic variation as well as environmental factors [5].
Classic treatment for AD has included the use of moisturizers,
topical steroids, and other topical anti-inflammatory agents [8].
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However, in the past few years, there have been significant
treatment advances, which include systemic agents that alter
immune function, such as dupilumab. Therefore, due to the
widespread nature of AD, the need for improved knowledge of
the natural history of AD, the need to understand the efficacy
of new treatments, and the need to develop new treatments,
there is an urgent need to understand the clinical course of
individuals with AD. However, identifying appropriate cohorts
of patients for medical studies can be difficult and
time-consuming. Because AD is so common as well as being
diagnosed and managed by many different clinicians in varying
health care settings, a potential source population would be
patients from a health system’s electronic health records (EHRs)
[9]. Investigators often ascertain a patient’s illness using
International Classification of Disease (ICD) hospital billing
codes as recorded during routine office visits. However, it has
been previously demonstrated that reliance on ICD codes is not
an accurate method for the ascertainment of study cohorts with
AD [9,10]. Furthermore, epidemiologic studies have used
different methods and algorithms, including the UK Working
Party (UKWP) diagnostic criteria and the Hanifin and Rajka
(HR) criteria [11,12]. Investigators attempting to conduct clinical
trials and observational studies have also relied on manual,
large-scale chart review, a process that is inefficient, slow, and
tedious [9]. This motivates the need for a standard method to
accurately, automatically, and efficiently identify potential
patient cohorts from their text medical records by using natural
language processing (NLP) and machine learning (ML)
techniques.

Previous Work
Previously, researchers aimed to phenotype patients with AD
using EHR data. In particular, Gustafson et al [10] trained a
logistic regression model with lasso regularization to identify
cases of AD from the Northwestern Medical Enterprise Data
Warehouse, which contained both structured data (ICD Ninth
and Tenth Revision codes, medication prescriptions, and
laboratory results) as well as unstructured data (clinician notes
from patient encounters). A gold standard diagnosis was
assigned to each patient in their data set by 2 rheumatologists
following a chart review when using the UKWP criteria and
(alternatively) when using the HR criteria.

Although similar, this study differs in the following ways: (1)
we survey a wide range of supervised ML algorithms as opposed
to only using lasso regularized logistic regression, (2) we use
transformer embeddings of sentences to represent information
in each patient’s records and aggregate these embeddings with
multilayer perceptron (MLP) networks to create a patient vector
representation for patient phenotyping, and (3) we performed
an ablation study of processing methods to compare the impact
on performance in using a probability-based versus binary label
of whether each patient meets various AD diagnostic criteria
when creating a vector to represent each patient for input to our
final patient phenotyping algorithms.

Contributions
The primary contributions of this study are as follows:

• We introduce and validate a rules-based approach for
aggregating information from patient EHR data to generate
binary-valued patient vectors that are used with standard
ML algorithms for patient phenotyping.

• We introduce and validate a transformer-based approach
for aggregating information and patient phenotyping by
using “Bidirectional Encoder Representations from
Transformers” (BERT) models (ie, BERT Base Uncased
and BioClinical BERT) to generate patient vectors of
probabilities, which are used with standard ML algorithms
for patient phenotyping.

• We compare the aforementioned approaches to (1) discern
whether a transformer model pretrained on clinical text can
provide performance benefits over a transformer model not
pretrained on clinical text, and (2) discern whether a
transformer-based approach for aggregating information
could outperform a rules-based approach for aggregating
information.

• We demonstrate that MLP networks can be used with BERT
sentence embeddings to identify which sentences in patient
records are relevant to the diagnosis of AD. These MLP
networks can then be used during clinician chart review to
highlight sentences that are relevant to diagnosis and
therefore accelerate the process of chart review during
clinical trial recruitment.

Methods

Overview
To predict whether a patient may qualify as a participant for an
AD study based on their EHR, we first assigned patients in our
data set to either the training or testing sets. Then, for each
patient, we aggregated the text from their EHR and constructed
a vector representation of clinical features indicative of AD
according to the UKWP criteria. Lastly, we leveraged our
vectorized patient representations to train several ML classifiers
to predict whether each patient has AD. In the following
sections, we detail this process.

Data Set Creation
We initially sampled 2000 patients and their clinical records
from Epic Clarity, Penn Medicine’s EHR database. We selected
Penn Medicine patients who were diagnosed with a subset of
AD-related ICD codes [9]. As shown in Figure 1, of the 2000
sampled patients, we identified 1926 patients who had clinical
notes for processing. We then deidentified these patient records
according to the Safe Harbor method using the “Protected Health
Information filter” (Philter) [13]. Each patient in the data set
was also manually reviewed and labeled according to the UKWP
diagnostic criteria for AD. According to the UKWP criteria, in
order to qualify as having AD, a patient must have an itchy skin
condition along with 3 or more of the following: a history of
flexural involvement, a history of asthma or hay fever, a history
of dry skin, an onset of rash when aged 2 years or younger, or
a visible flexural dermatitis. Our data set was validated by 2
clinicians (a board-certified dermatologist [DJM] and a medical
fellow [RF]), resulting in 137 patients with AD and 1789
patients without AD.
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Figure 1. Waterfall diagram of cohort. AD: atopic dermatitis.

Training and Testing Split
We first created our training set. Due to the heavy class
imbalance in our data set, we decided to create a balanced
training set to prevent biasing the model toward either patients
with AD or patients without AD. In particular, we created the
training set by assigning 80% (109/137) of the 137 patients with
AD to our training set and undersampling the patients without
AD to match the number of patients with AD. The remaining
20% (28/137) of the 137 patients were assigned to both of our
testing sets. This resulted in a training set that had 109 patients
with AD and 109 patients without AD.

Next, we created 2 testing sets. The first testing set was
class-balanced and was intended to show how our patient
classification model can generalize to unseen samples if the
class distribution is kept the same. The second testing set was
class-imbalanced (28/91, 30% of patients with AD and 63/91,
70% of patients without AD) and was intended to show how
our patient classification model can perform when the
class-distribution of the data set matches the prevalence of AD
in the United States.

We created the first (balanced) testing set by including the 20%
(28/137; previously reserved for testing) of the 137 patients
with AD and combining them with an equal number of patients
without AD who have not been used during training. This
resulted in a balanced testing set that had 28 patients with AD
and 28 patients without AD.

Furthermore, we created the second (unbalanced) testing set by
including the same 20% (28/137) patients with AD but instead
combining them with a greater number of patients without AD
to match the 30% prevalence rate of AD found in the United
States [1]. This resulted in an unbalanced testing set with 28
patients who have AD and 63 patients without AD.

We chose not to create a separate hyperparameter tuning set
and instead applied cross-validation for hyperparameter tuning
on the training set due to the data-scarce setting of our
experiments.

Vector Representation for AD Classification
Next, we created a vector representation for each patient. We
performed 3 experiments to compare different methods of
creating each patient’s vector representation (Figure 2).

Figure 2. Atopic dermatitis (AD) phenotyping pipeline across all 3 experiments. BERT: Bidirectional Encoder Representations from Transformers;
MLP: multilayer perceptron.
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Description of Patient Vector Representation
Each patient’s vector representation is 8 elements long, where
each element of the vector is representative of whether the
patient fulfills a different AD diagnosis criteria based on the
UKWP criteria as well as clinician feedback (Table 1). Across
all 3 experiments, each element in the patient vector corresponds
to a distinct classification task; however, in experiments 1 and
2, each element is a probability, and in experiment 3, each
element is a binary value.

In experiments 1 and 2, elements 1-8 of each patient’s vector
represent the highest probability that any sentence in the
patient’s EHR mentions (1) AD or synonyms of AD, (2)
keywords that suggest hay fever allergies, (3) keywords that
suggest atopic allergies, (4) keywords that suggest eczema or
rashes, (5) keywords that indicate dry or itchy skin, (6) keywords
denoting nonasthma medications, (7) keywords suggesting the
presence of asthma, and (8) keywords indicating the use of
asthma medications.

In experiment 3, instead of each element representing a
probability, each element represents a binary value of whether
there was at least 1 sentence in the corresponding patient record
suggesting the presence of the corresponding AD indicator.

In the first 2 experiments, each patient’s vector elements
represent probabilities (ranging from 0 to 1). Each probability
value is derived from a distinct MLP classifier. Experiments 1

and 2 were performed to compare the use of 2 BERT models
(BERT Base Uncased [14,15] in experiment 1 and BioClinical
BERT [16,17] in experiment 2) for creating sentence
embeddings used to train MLP networks (or alternatively,
sentence classifiers). A separate MLP network is trained for
each element of the patient vector. Each MLP network is trained
to distinguish sentences in 1 of the 8 AD indicator categories
from sentences in all other categories. Furthermore, medSpacy
(Eyre et al [18]) was used to split documents into sentences and
label each sentence with different categories. After each sentence
classifier is trained, embeddings of all sentences in each patient’s
full EHR are passed through each sentence classifier, and an
aggregation function (max operator) is used to assign a value
to each element of each patient’s vector. Our goal in experiments
1 and 2 was to test the hypothesis that a BERT model pretrained
on clinical text (BioClinical BERT) could outperform a BERT
model trained on nonclinical text (BERT Base Uncased).

In experiment 3, each patient’s vector elements are binary (either
0 or 1). Each element corresponds to a diagnostic criterion and
represents whether medSpacy was able to identify at least 1
sentence in the patient’s record with a keyword and affirming
context that suggests the patient meets the corresponding
diagnostic criteria. Our goal was to conduct an ablation study
to test the hypothesis that an AD phenotyping classifier
leveraging BERT embeddings to create the patient vector
representation will better discern whether a patient has AD than
an AD Phenotyping Classifier without BERT embeddings.

Table 1. Meaning of each patient vector element.

ADa indicator (diagnostic criteria)Element

EHRb directly mentions patient has AD1

Patient has hay fever allergies2

Patient has atopic allergies3

Patient has eczema or rashes4

Patient has dry or itchy skin5

Patient uses nonasthma medications related to treating AD6

Patient has asthma7

Patient uses asthma medications8

aAD: atopic dermatitis.
bEHR: electronic health record.

Preprocessing for Experiments 1-3
Before each experiment, we applied the same preprocessing
steps to assign 1 or more labels to each sentence in our corpus
of documents in both our training and testing sets. Each sentence
can be labeled as applying to 1, multiple, or none of the 8 AD
indicators previously defined.

For each of the 8 diagnostic criteria, we first created a list of
keywords and phrases (for each vector element) that suggested
the presence of the corresponding diagnostic criteria. Next, we
used medSpacy with the ConText (Harkema et al [20]) algorithm
to split each document into sentences and categorize each
sentence [18]. Using medSpacy allows us to obtain sentences

that suggest the presence of each of the 8 diagnostic criteria due
to medSpacy’s use of regex and rules-based keyword matching.
Furthermore, medSpacy’s implementation of the ConText
algorithm allows us to discern between sentences that affirm
from negated assertions. We define negated sentences for each
AD indicator as sentences where the indicator is ruled out,
sentences where the indicator is experienced by someone other
than the patient, and sentences where the existence of the
indicator is hypothetical [19-22].

After assigning 1 or more categorical labels to each sentence
with medSpacy, we then performed 3 different experiments to
create a vectorized representation of each patient.
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In Tables 2 and 3, we include some statistics on the data set
obtained after preprocessing.

As shown in Table 2, patients with AD have approximately
twice as many sentences as patients without AD. The average
number of documents and sentences is the same (within patients
with AD and similarly within patients without AD) between
BERT Base Uncased and BioClinical BERT experiments
because these values are only dependent on medSpacy’s
preprocessing of documents. Furthermore, using BioClinical
BERT to tokenize sentences tends to yield more tokens (on
average) per patient and per document. We hypothesize this is
because the BioClinical BERT tokenizer is able to recognize
more clinical terms and therefore yields more tokens for the
same sentence than using the tokenizer from BERT Base
Uncased.

As shown in Table 3, sentences in category 5 (relating to dry
or itchy skin) tend to have the most tokens, whereas sentences
in category 6 (relating to the use of nonasthma medications
related to treating AD) tend to have the least number of tokens.
We hypothesize that this is because categories where the average
number of tokens per sentence is greater tend to correspond to
more general categories where many terms and sentences could
apply, whereas categories where the average number of tokens
per sentence is lower tend to correspond to more specific
categories, thus yielding a lower average number of tokens per
sentence. Additionally, similarly to before, we can see that using
BioClinical BERT tends to result in a greater number of tokens
per sentence than using BERT Base Uncased for the same
sentence.

Table 2. Differences in the number of documents, sentences, and tokens between patients with atopic dermatitis (AD) and those without AD.

Patients without ADPatients with AD

BioClinical BERTBERT UncasedBioClinical BERTBERTa Uncased

7.997.9923.4423.44Average number of documents (per patient)

193.69193.69392.99392.99Average number of sentences (per patient)

7674.357241.0217054.1116035.39Average number of tokens (per patient)

24.2524.2516.7716.77Average number of sentences (per document)

960.69906.45727.63684.16Average number of tokens (per document)

39.6237.3843.4040.80Average number of tokens (per sentence)

aBERT: Bidirectional Encoder Representations from Transformers.

Table 3. Mean number of tokens for sentences identified in each category.

BioClinical BERT (tokens per sentence), meanBERTa Uncased (tokens per sentence), mean

106.1699.49Category 1

92.4181.18Category 2

82.0779.20Category 3

92.5583.74Category 4

112.58106.64Category 5

80.1774.93Category 6

109.4092.85Category 7

83.5776.13Category 8

aBERT: Bidirectional Encoder Representations from Transformers.

Experiments 1 and 2: Patient Vector Construction With
BERT Embeddings
In experiments 1 and 2, we first used the sentences medSpacy
identified in each category to create class-balanced training and
testing sets for each MLP network classifier, as shown in Table
4. The same training and testing set was used for both
experiment 1 (BioClinical BERT) and experiment 2 (BERT
Base Uncased).

Next, we used pretrained BERT models to generate embeddings
of the sentences in each classifier’s training and testing set. We

incorporated pretrained BERT models because these models
have been trained on a much larger corpus than our existing
data set, and BERT provides a context-sensitive embedding of
text that other techniques, such as bag of words, do not provide.
Furthermore, we used BERT Base Uncased in experiment 1
and Alsentzer et al’s [16] BioClinical BERT in experiment 2
because we wanted to quantify how much of a difference in
performance using a model pretrained on clinical text can
provide over a model that has not been pretrained on clinical
text.
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Using these embeddings, we trained a MLP network to
distinguish sentence embeddings in each category from sentence
embeddings that are not in the corresponding category. Each of
our MLPs was trained with the following architecture: a fully
connected input layer of shape 768 × 100, followed by a
Rectified Linear Unit (ReLU) activation, further followed by a
fully connected output layer of shape 100 × 2. We trained each
of our MLPs for 10 epochs with the cross-entropy loss function,
the stochastic gradient descent (SGD) optimizer, a learning rate
of 0.001, and a momentum value of 0.9. The final layer of each
MLP can then be used to obtain the probability that any given
sentence embedding comes from the category for which the
MLP is being trained by passing the logits of the final layer to
the softmax function.

We used the ReLU activation function as defined below, where
x is the input to the ReLU function:

We also used the softmax function as defined below, where e

is the standard exponential function and is element at index

i of the K element long input vector .

We chose to embed our sentences once with pretrained BERT
models and then feed these saved embeddings to our MLP
networks as opposed to adding a classification head (a linear

layer) to the end of our pretrained BERT models. Although
doing so only allows us to fine-tune the weights in our MLP
network (as opposed to also fine-tuning the weights BERT uses
to embed the sentences), doing so allows us to iterate over
different experiments more quickly and with less computational
power. In particular, we are able to (1) avoid the large
computational expense of gradient calculations during
backpropagation for all 12 layers of transformers used by BERT
when fine-tuning the model, (2) avoid the computational expense
of repeatedly generating the same embeddings from BERT
multiple times (if we choose to freeze the weights of BERT and
only fine-tune an added classification head or linear layer), and
(3) iterate more efficiently over different hyperparameter
combinations across different experiments with our MLP
networks.

After training a separate MLP network for each of the 8
categories, we generated a vector representation for each patient,
where each of the 8 vector elements represents the highest
probability that any given sentence in the patient record affirms
the presence of the corresponding AD indicator (Figure 3). We
accomplished this by iterating through all sentences in each
patient’s full EHR and passing the sentence embedding through
each of our 8 trained MLP networks to obtain 8 probabilities
for each sentence corresponding to the probability that the
sentence affirms each of the 8 AD indicators we previously
selected. Then, for each patient and for each AD indicator, we
kept the highest probability that any given sentence in the
patient’s record affirms the presence of the AD indicator.

Table 4. Training and testing data set size for each classifier.

Number of testing samples, nNumber of training samples, nClassifier

86227661

39213022

1685323

245498224

35414665

231691146

52015967

107047648

Figure 3. Patient vector representations of atopic dermatitis indicators in experiments 1 and 2. BERT: Bidirectional Encoder Representations from
Transformers; MLP: multilayer perceptron.
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Experiment 3: Patient Vector Construction Without
BERT Embeddings
In experiment 3, we generated each patient’s vector
representation by assigning a 1 to each element of the patient
vector if medSpacy with the ConText algorithm identified at

least 1 sentence in the patient’s record that affirms or suggests
the presence of the AD indicator for which the vector element
corresponds (Figure 4). Experiment 3 was conducted as an
ablation study to quantify the performance benefit (if at all) of
using contextual BERT text embeddings to generate probability
scores that the patient meets various AD indicators.

Figure 4. Patient vector representations of atopic dermatitis (AD) indicators in experiment 3.

AD Phenotyping With Vector Representations
In all 3 experiments, after generating a vector representation
for each patient, we collated each patient’s vector representation
with the corresponding label our clinicians assigned the patient
when validating the data set. Then, we fed the vector patient
representation and corresponding patient label through a variety
of classification algorithms. These include logistic regression,
support vector machines (SVM), decision trees, random forests,
k-nearest neighbor (KNN), Extreme Gradient Boosting
(XGBoost), and Adaptive Boosting (AdaBoost). During training
for each of the previously mentioned classifiers, we used 5-fold
cross validation to determine the best set of hyperparameters
to use (as opposed to creating a separate validation set) due to
the data-scarce setting of our experiments. We then used the
selected hyperparameters to train each algorithm on the entire
training set and evaluated performance on the unbalanced and
balanced testing sets. In addition to using the previously
mentioned classifiers, we also used the stacking algorithm
provided by scikit-learn to obtain an ensemble prediction from
the different classifiers [23]. To quantify performance, we
calculated the accuracy, precision, recall, F1-score, negative
predictive value (NPV), and specificity of each algorithm on
both testing sets.

We define accuracy, precision, and recall as follows, where TP
is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the
number of false negatives:

Additionally, we define the F1-score, NPV, and specificity as
follows:

Ethical Considerations
This research protocol was reviewed and approved by the
University of Pennsylvania Institute Review Board and
determined to be exempt (IRB#843922).

Results

Performance of MLP Networks
In this section, we compare the performance of several MLP
classifiers in distinguishing sentences relevant to the diagnosis
of AD. This corresponds to the “Train separate MLP network
(sentence classifier) for each of 8 AD indicators” box in Figure
2.

As part of our AD phenotyping pipeline, we trained various
MLP networks to classify when a given sentence embedding
indicates the presence of an AD indicator, and we compared
the performance of BioClinical BERT embeddings to BERT
Base Uncased embeddings when training these MLP networks.
In both cases, the classifier with the highest accuracy was the
classifier for category 1 (sentences with direct mentions of AD).
The classifiers with the 2 lowest accuracies were either the
classifier for category 5 (sentences with mentions of dry or itchy
skin) or the classifier for category 7 (sentences with mentions
of asthma) for both the use of BioClinical BERT embeddings
and the use of BERT Base Uncased embeddings. However, the
accuracy in classifier 7 was lower when using BERT Base
Uncased embeddings than when using BioClinical BERT
embeddings.
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In experiment 1, the accuracies across AD indicator classifiers
ranged from 0.7373 (classifier 5) to 0.9002 (classifier 1), as
shown in Table 5.

In experiment 2, the accuracies across AD indicator classifiers
ranged from 0.7269 (classifier 7) to 0.9153 (classifier 1), as
shown in Table 6.

Table 5. Accuracy of different multilayer perceptron networks in discerning sentences by atopic dermatitis (AD) indicator categories using “BioClinical
Bidirectional Encoder Representations from Transformers” sentence embeddings.

AccuracyAD indicatorClassifier

0.9002Direct mention of AD1

0.8954Mention of hay fever allergies2

0.8214Mention of atopic allergies3

0.8284Mention of eczema or rash4

0.7373Mention of dry or itchy skin5

0.8204Mention of nonasthma medications6

0.7712Mention of asthma7

0.8299Mention of asthma medications8

Table 6. Accuracy of different multilayer perceptron networks in discerning sentences by atopic dermatitis (AD) indicator categories using “Bidirectional
Encoder Representations from Transformers Base Uncased” sentence embeddings.

AccuracyAD indicatorClassifier

0.9153Direct mention of AD1

0.7730Mention of hay fever allergies2

0.7976Mention of atopic allergies3

0.8439Mention of eczema or rash4

0.7288Mention of dry or itchy skin5

0.8096Mention of nonasthma medications6

0.7269Mention of asthma7

0.8738Mention of asthma medications8

AD Phenotyping With Patient Vector Representations
In this section, we compare performance in patient classification
when using different methods for creating patient vector
representations. This encompasses all 3 experiments and
corresponds to the “Use vector patient representations to classify
whether patient has AD” box in Figure 2.

In experiment 1, we leveraged BioClinical BERT sentence
embeddings to train various MLP networks to discern sentence
embeddings in different AD indicator categories. Then, we
applied these trained MLP networks (sentence classifiers) along
with an aggregation function (max operator) to assign values
to each element of each patient’s vector representation. Lastly,
we used each patient’s vector representation with their validated
label to train various ML algorithms. We evaluated these on
both a balanced and unbalanced testing set.

As shown in Table 7, the accuracy on the balanced testing set
ranges from 0.5893 (decision tree) to 0.7321 (logistic regression
and SVM).

As shown in Table 8, the range of accuracies on the unbalanced
testing set is slightly lower, ranging from 0.5824 (decision tree)
to 0.7253 (stacking classifier).

In experiment 2, we followed the same process as in experiment
1; however, we used BERT Base Uncased instead of BioClinical
BERT. As shown in Table 9, the accuracy of our AD classifiers
on the balanced testing set ranges from 0.5179 (AdaBoost) to
0.6250 (random forest).

As shown in Table 10, the range of accuracies of our AD
classifiers on the unbalanced testing set is slightly higher,
ranging from 0.5714 (logistic regression and SVM) to 0.6703
(random forest).

In experiment 3, we performed an ablation study and assigned
binary labels to the elements of each patient’s vector based on
whether medSpacy was able to identify at least 1 sentence in
each of the AD indicator categories that each vector element
corresponds to. As shown in Table 11, the accuracy across our
AD classifiers on the balanced testing set ranges from 0.6964
(KNN) to 0.8036 (XGBoost).

As shown in Table 12, the lower bound of the range of
accuracies across our AD classifiers on the unbalanced testing
set is higher, and the upper bound of the accuracies is lower.
The accuracies on the unbalanced testing set range from 0.7143
(Stacking Classifier) to 0.7582 (Random Forest and Stacking
Classifier).
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Table 7. Atopic dermatitis phenotyping performance on balanced testing set in experiment 1 (BioClinical Bidirectional Encoder Representations from
Transformers).

SpecificityNPVaF1-scoreRecallPrecisionAccuracyModel

0.75000.74070.73680.75000.72410.7321Logistic regression

0.78570.69700.70590.64290.78260.7321SVMb

0.75000.56760.51060.42860.63160.5893Decision tree

0.82140.68970.69090.67860.70370.6964Random forest

0.78570.64710.64000.57140.72730.6786KNNc

0.85710.60000.59260.57140.61540.6071XGBoostd

0.78570.63330.62960.60710.65380.6429AdaBooste

0.75000.66670.66670.60710.73910.6964Stacking classifier

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

Table 8. Atopic dermatitis phenotyping performance on unbalanced testing set in experiment 1 (BioClinical Bidirectional Encoder Representations
from Transformers).

SpecificityNPVaF1-scoreRecallPrecisionAccuracyModel

0.69840.85420.59150.75000.48840.6813Logistic regression

0.73020.81810.56250.64290.50000.6923SVMb

0.71430.71190.36670.39290.34380.5824Decision tree

0.76190.68450.56670.60710.53130.7143Random forest

0.79370.78570.50790.57140.45710.6593KNNc

0.76190.77360.48480.57140.42110.6264XGBoostd

0.73020.77550.48570.60710.40480.6044AdaBooste

0.69840.83930.60320.67860.54290.7253Stacking classifier

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

JMIR Form Res 2024 | vol. 8 | e52200 | p. 9https://formative.jmir.org/2024/1/e52200
(page number not for citation purposes)

Wang et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 9. Atopic dermatitis phenotyping performance on balanced testing set in experiment 2 (Bidirectional Encoder Representations from Transformers
Base Uncased).

SpecificityNPVaF1-scoreRecallPrecisionAccuracyModel

0.50000.60870.62300.67860.57580.5893Logistic regression

0.53570.62500.63330.67860.59380.6071SVMb

0.60710.60710.60710.60710.60710.6071Decision tree

0.71430.60610.58820.53570.65220.6250Random forest

0.67860.54290.48980.42860.57140.5536KNNc

0.57140.55170.54550.53570.55560.5536XGBoostd

0.53570.51720.50910.50000.51850.5179AdaBooste

0.60710.60710.60710.60710.60710.6071Stacking classifier

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

Table 10. Atopic dermatitis phenotyping performance on unbalanced testing set in experiment 2 (Bidirectional Encoder Representations from Transformers
Base Uncased).

SpecificityNPVaF1-scoreRecallPrecisionAccuracyModel

0.52380.78570.49350.67860.38780.5714Logistic regression

0.52380.78570.49350.67860.38780.5714SVMb

0.66670.79250.51520.60710.44740.6484Decision tree

0.68250.81130.54550.64290.47370.6703Random forest

0.71430.73770.41380.42860.40000.6264KNNc

0.68250.76790.47620.53570.42860.6374XGBoostd

0.63490.74070.43080.50000.37840.5934AdaBooste

0.66670.79250.51520.60710.44740.6484Stacking classifier

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.
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Table 11. Atopic dermatitis phenotyping performance on balanced testing set in experiment 3 (binary vector encoding).

SpecificityNPVaF1-scoreRecallPrecisionAccuracyModel

0.75000.77780.77190.78570.75860.7679Logistic regression

0.78570.78570.78570.78570.78570.7857SVMb

0.75000.80770.79310.82140.76670.7857Decision tree

0.82140.76670.77780.75000.80770.7857Random forest

0.78570.66670.66670.60710.73910.6964KNNc

0.85710.77420.79250.75000.84000.8036XGBoostd

0.78570.78570.78570.78570.78570.7857AdaBooste

0.75000.75000.75000.75000.75000.7500Stacking classifier

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

Table 12. Atopic dermatitis phenotyping performance on unbalanced testing set in experiment 3 (binary vector encoding).

SpecificityNPVaF1-scoreRecallPrecisionAccuracyModel

0.69840.88000.63770.78570.53660.7253Logistic regression

0.73020.88460.65670.78570.56410.7473SVMb

0.71430.90000.66670.82140.56100.7473Decision tree

0.76190.87270.65630.75000.58330.7582Random forest

0.79370.81970.58620.60710.56670.7363KNNc

0.76190.87270.65630.75000.58330.7582XGBoostd

0.73020.88460.65670.78570.56410.7473AdaBooste

0.69840.86270.61760.75000.52500.7143Stacking classifier

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

Discussion

Sentence Classification Results
We hypothesized that using BioClinical BERT sentence
embeddings to train sentence classifiers would provide better
performance than using BERT Base Uncased sentence
embeddings due to the clinical setting of our data. Given the
results in Tables 5 and 6, we observed that this was most often
true in the context of sentence classification because we were
able to achieve better performance in the majority (5 out of 8)
of the sentence classification tasks when using BioClinical
BERT embeddings as opposed to BERT Base Uncased
embeddings.

Using BioClinical BERT sentence embeddings yielded stronger
performance when distinguishing sentences in 5 of the 8

sentence categories: category 2 (mentions of hay fever allergies),
category 3 (mentions of atopic allergies), category 5 (mentions
of dry or itchy skin), category 6 (mentions of nonasthma
medications), and category 7 (mentions of asthma). More
specifically, we observed higher accuracies when using
BioClinical BERT sentence embeddings for classifiers 2
(0.8954), 3 (0.8214), 5 (0.7373), 6 (0.8204), and 7 (0.7712) than
their corresponding counterparts when using BERT Base
Uncased embeddings for classifiers 2 (0.7730), 3 (0.7976), 5
(0.7288), 6 (0.8096), and 7 (0.7269). We observed that the
differences in performance between using BioClinical BERT
embeddings and BERT Base Uncased embeddings are most
pronounced for classifiers 2 and 7, which correspond to
mentions of hay fever allergies and asthma mentions,
respectively. We hypothesize this is because hay fever allergies
and asthma (and their synonyms) may be very common terms
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in clinical notes; therefore, models trained on clinical data
(BioClinical BERT) may be able to provide stronger
performance than models trained on nonclinical text (BERT
Base Uncased), which may not have as many mentions of hay
fever allergies or asthma.

Conversely, using BERT Base Uncased embeddings yielded
stronger performance when distinguishing sentences in the other
3 of 8 sentence categories: category 1 (direct mentions of AD),
category 4 (mentions of eczema or rashes), and category 8
(mentions of asthma medications). More specifically, we
observed higher accuracies when using BERT Base Uncased
sentence embeddings for classifiers 1 (0.9153), 4 (0.8439), and
8 (0.8738) than their corresponding counterparts when using
BioClinical BERT embeddings for classifiers 1 (0.9002), 4
(0.8284), and 8 (0.8299). We observed differences in
performance between using BERT Base Uncased embeddings
and BioClinical BERT embeddings, which are most evident for
classifier 8, which corresponds to mentions of asthma
medications. Although this is counterintuitive at first (we would
expect a classifier using embeddings generated from BioClinical
BERT to be able to better recognize allergy medicines), we
believe that the performance benefit from using BERT Base
Uncased can be attributed to the list of terms we gave to
medSpacy when asking it to identify sentences in category 8.
Many of the asthma medications in category 8 sentences are
either monoclonal antibody medications ending in -mab
(benralizumab, mepolizumab, omalizumab, etc) or
hydrofluoroalkanes (hfa; atrovent hfa, flovent hfa, xopenex hfa,
etc). Because monoclonal antibodies are very specialized types
of medication, they may not occur as frequently as other terms
in the corpus used to train BioClinical BERT, so a more general
model such as BERT Base Uncased may provide more robust
performance. Additionally, because the hydrofluoroalkane
allergy medications in category 8 sentences are often abbreviated
with “hfa,” which can have alternate medical meanings such as
high-functioning autism or health facility administrator, the
BioClinical BERT embeddings might not be representative of
the presence of allergy medications in the sentence, so a more
general model such as BERT Base Uncased may be able to
provide better performance.

More broadly, looking at the results in Tables 5 and 6, we can
see that the least accurate classifier has an accuracy of 0.7288,
while the most accurate classifier is able to achieve an accuracy
of 0.9153. Furthermore, when aggregating the most accurate
classifiers from both tables we can see that we are able to
achieve accuracies of 0.9153 (classifier 1) for identifying
sentences that directly suggest the patient has AD, 0.8954
(classifier 2) for identifying sentences that mention hay fever
allergies, 0.8214 (classifier 3) for identifying sentences that
mention atopic allergies, 0.8439 (classifier 4) for identifying
sentences that mention eczema or skin rashes, 0.7373 (classifier
5) for identifying sentences that mention dry or itchy skin,
0.8204 (classifier 6) for identifying sentences that mention
nonasthma medications related to diagnosis of AD, 0.7712
(classifier 7) for identifying sentences that mention asthma, and
0.8738 (classifier 8) for identifying sentences that mention
asthma medications. Because our training and testing sets were
both class-balanced and the majority (6 of the 8) of the most

accurate classifiers previously mentioned achieved accuracies
between 0.8204 and 0.9153, we believe these results are
promising and indicate that our sentence classifiers could
potentially be used to save time in a clinical setting during chart
review by identifying (and highlighting for review) sentences
relevant to the diagnosis of AD when recruiting for clinical
trials.

AD Phenotyping Results
As per Tables 7-10, our earlier hypothesis holds: using clinical
embeddings (BioClinical BERT) to generate the patient vector
representation does provide better performance in patient
phenotyping than using nonclinical embeddings (BERT Base
Uncased). Comparing evaluations on the balanced testing set
in Tables 7 and 9, we observe that using BioClinical BERT
embeddings provides higher accuracy in almost all models, with
the exception of Decision Trees where BERT Base Uncased
provides better performance (accuracy of 0.6071) as compared
with BioClinical BERT (accuracy of 0.5893). Comparing
evaluations on the unbalanced testing set in Tables 8 and 10,
we observed that the same trend follows: using BioClinical
BERT embeddings provides higher accuracy in almost all
models, with the exception of Decision Trees and XGBoost,
where using BERT Base Uncased embeddings provides better
performance (accuracy of 0.6484 for Decision Trees and 0.6374
for XGBoost) as compared with their counterparts with
BioClinical BERT embeddings (accuracy of 0.5824 for Decision
Trees and 0.6264 for XGBoost).

As part of our experimental design, we included an ablation
study in experiment 3 so we could compare the difference in
performance during patient phenotyping when removing the
use of BERT models to create each patient’s vector
representations. On the class-balanced testing set, we observed
that accuracies range from 0.6071 to 0.7321 when using
BioClinical BERT embeddings in Table 7, accuracies range
from 0.5179 to 0.6250 when using BERT Base Uncased
embeddings in Table 9, and accuracies range from 0.6964 to
0.8036 when removing the use of BERT models in Table 11
(experiment 3). On the unbalanced testing set, we observed that
accuracies range from 0.5824 to 0.7253 when using BioClinical
BERT embeddings in Table 8, accuracies range from 0.5714
to 0.6703 when using BERT Base Uncased embeddings in Table
10, and accuracies range from 0.7143 to 0.7582 when removing
the use of BERT models in Table 12 (experiment 3).

In both cases (evaluation on the balanced testing set and
evaluation on the unbalanced testing set), we found that models
in experiment 3 (ablation study) generally outperform (or are
as good as) their corresponding counterparts in experiments 1
and 2 (BERT experiments) across all metrics (accuracy,
precision, recall, F1-score, NPV, and specificity), with the
exception that the stacking classifier in experiment 1
(BioClinical BERT) has marginally stronger accuracy and
precision than the stacking classifier in experiment 3. This shows
that traditional rules-based approaches (experiment 3) can
outperform BERT-based approaches for generating a patient
vector representation for downstream patient phenotyping.

We hypothesize that models in experiments 1 and 2 showed
lower performance because errors from our sentence classifiers
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in earlier stages of the pipeline could have propagated to later
stages of the pipeline during patient phenotyping. Because we
leveraged the max operator to aggregate probabilities that any
given sentence in the patient record applies to each category,
more sentences in each patient record would lead to a greater
chance that an erroneous prediction with a high probability
would lead to a false positive error in the creation of each
patient’s vector representation in experiments 1 and 2.

Although there is a wide range in performance for our patients
with AD phenotyping algorithms, we believe that we have
reached our goal of developing a system capable of patient with
AD phenotyping for clinical trial recruitment because Tables
11 and 12 show promising results. Furthermore, our system can
be used as a first step during AD clinical trial recruitment to
filter out most patients who may not qualify for AD trials and
therefore save valuable clinician time. We believe our pipeline
is important and valuable because, unlike other diseases, such
as influenza, COVID-19, and cancer, there is no gold-standard
test result that can be used to determine when a patient has AD.
Instead, clinicians must spend large amounts of time undergoing
chart reviews to individually determine whether each patient
has AD.

Limitations
One limitation of this study was the small size of our data set.
Although we had a total of 1926 patients in our data set, only
137 of them were validated as having AD. During training, we
leveraged 109 of the 137 patients with AD and sampled another
109 patients without AD to create a class-balanced training set.
The small size of the training set could lead to overfitting and
therefore result in reduced performance on the testing set. Future
work could involve obtaining more data from patients with AD
as well as exploring the use of an imbalanced data set but using
a class-weighted loss function to counteract the class imbalance.

A second limitation of this study was the input-limit size of the
large language models that were used. Both BERT Base
Uncased and BioClinical BERT had an input limit of 512 tokens.
This meant that any input text that was longer than 512 tokens
would be ignored when training BERT. Consequently, we could
not simply directly concatenate all documents from each
patient’s EHR and feed the tokenized documents of each patient
into BERT with an added classification head for training as well
as direct prediction of whether the patient has AD. Instead, we
designed a pipeline around distilling information from all
documents in each patient’s EHR into a patient vector
representation and then using this patient vector representation
to train various classical ML algorithms for phenotyping the
patient. Future work could involve exploring the use of other
large language models that are suited for long inputs, such as
Longformer or Doc2Vec, for predicting when a patient should
be labeled as having AD.

A third limitation of this study was the list of AD indicators we
selected. We did not consider additional AD indicators, and we
also did not consider the use of different combinations (or
subsets) of the AD indicators selected. This is particularly
relevant in considering that (1) our pipeline is intended to be
used for identifying patients with AD, and (2) one of our AD
indicators (category 1) directly targets whether there is any
given sentence in the patient’s record that mentions AD, which
could be in the context of a family history of AD, a potential
(but not confirmed) diagnosis of AD, as well as a confirmed
diagnosis of AD, among other possibilities. If this AD indicator
is removed, then 1 interesting research question could be
whether our pipeline is still able to maintain performance
similarly to what it is currently able to achieve. Future work
could involve assessing the performance impact of removing
or adding the use of various AD indicators. We could then
determine if our pipeline is relying too much on or overfitting
1 or more indicators. Furthermore, we could also redesign our
patient vector and separate the feature for category 1 (any
sentence that mentions AD) into 3 separate indicators: whether
there is (1) a family history of AD, (2) an affirmed diagnosis
that the patient has AD, and (3) uncertainty of whether the
patient has AD. Doing so could potentially improve precision.

Potential Applications
Given the aforementioned results, we believe our AD classifier
could be operationalized to facilitate reliable and efficient EHR
chart review. For example, sentence classifiers could visually
indicate AD indicators inline text, therefore reducing
information foraging efforts by clinicians. Additionally, AD
phenotyping classifiers could indicate the strength of a patient
match to UKWP criteria, exact or partial, based on AD indicator
sentence classifications. Furthermore, ranking patient cases by
match strength could reduce the number of cases reviewed to
generate both case and matched controls.

Conclusions
In conclusion, we present and validate a promising pipeline for
phenotyping patients with AD during clinical trial recruitment.
To do so, we compare a rules-based and transformer-based
approach for creating a vector representation of each patient
and compare downstream performance in patient phenotyping
with various standard ML algorithms. We find that a traditional
rules-based approach outperforms using a transformer-based
approach (experiment 3). We hope that our pipeline can be
deployed in hospital settings during clinical trial recruitment as
an initial step to automatically filter candidates before manual
review. Additionally, we show that MLP networks can identify
whether sentences are relevant to AD diagnosis. These MLP
networks can later be deployed in clinical settings to highlight
which sentences are relevant for physicians during manual chart
review, therefore reducing physician burden. Future work can
involve extending our patient phenotyping pipeline to other data
sets and other diseases.
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