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Abstract

Background: Accurate and timely assessment of children’s developmental status is crucial for early diagnosis and intervention.
More accurate and automated developmental assessments are essential due to the lack of trained health care providers and imprecise
parental reporting. In various areas of development, gross motor development in toddlers is known to be predictive of subsequent
childhood developments.

Objective: The purpose of this study was to develop a model to assess gross motor behavior and integrate the results to determine
the overall gross motor status of toddlers. This study also aimed to identify behaviors that are important in the assessment of
overall gross motor skills and detect critical moments and important body parts for the assessment of each behavior.

Methods: We used behavioral videos of toddlers aged 18-35 months. To assess gross motor development, we selected 4 behaviors
(climb up the stairs, go down the stairs, throw the ball, and stand on 1 foot) that have been validated with the Korean Developmental
Screening Test for Infants and Children. In the child behavior videos, we estimated each child’s position as a bounding box and
extracted human keypoints within the box. In the first stage, the videos with the extracted human keypoints of each behavior were
evaluated separately using a graph convolutional networks (GCN)–based algorithm. The probability values obtained for each
label in the first-stage model were used as input for the second-stage model, the extreme gradient boosting (XGBoost) algorithm,
to predict the overall gross motor status. For interpretability, we used gradient-weighted class activation mapping (Grad-CAM)
to identify important moments and relevant body parts during the movements. The Shapley additive explanations method was
used for the assessment of variable importance, to determine the movements that contributed the most to the overall developmental
assessment.

Results: Behavioral videos of 4 gross motor skills were collected from 147 children, resulting in a total of 2395 videos. The
stage-1 GCN model to evaluate each behavior had an area under the receiver operating characteristic curve (AUROC) of 0.79 to
0.90. Keypoint-mapping Grad-CAM visualization identified important moments in each behavior and differences in important
body parts. The stage-2 XGBoost model to assess the overall gross motor status had an AUROC of 0.90. Among the 4 behaviors,
“go down the stairs” contributed the most to the overall developmental assessment.

Conclusions: Using movement videos of toddlers aged 18-35 months, we developed objective and automated models to evaluate
each behavior and assess each child’s overall gross motor performance. We identified the important behaviors for assessing gross
motor performance and developed methods to recognize important moments and body parts while evaluating gross motor
performance.
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Introduction

For the continuous and proper development of children, an
accurate and timely assessment of their developmental levels
is essential [1]. Early diagnosis during the toddler stage allows
for early intervention, which can significantly impact children’s
later life outcomes [2,3]. Previous research has shown that early
intervention in vulnerable populations, such as those with low
birth weight and prematurity, leads to significant improvements
in later childhood developments compared to those who do not
receive early intervention and that these differences persist into
adolescence [4,5]. Numerous studies have shown that the
influence of early intervention extends beyond adolescence to
adulthood, with significant socioeconomic benefits [6-8]. A
recent study about the development of children exposed to lead
showed that early intervention before the age of 3 years
benefited their future academic performance [9].

As a result, many countries recommend the need for regular
developmental screening of infants and young children, and
South Korea has implemented the National Health Screening
Program for Infants and Children for children under 6 years of
age since 2007 [10-14]. The National Health Screening Program
for Infants and Children in South Korea developed the Korean
Developmental Screening Test for Infants and Children (K-DST)
in 2014, which assesses gross motor, fine motor, cognitive,
language, social, and self-help skills in children aged 4-71
months [15].

In various areas of development, gross motor development
begins earlier than other areas of development, such as fine
motor and language development, and therefore, it is possible
to assess the risk of developmental delay at a younger age by
monitoring gross motor development. Studies have shown that
gross motor development at an early age is predictive of
subsequent developments [16] and is also associated with future
academic achievement [17,18].

However, a global shortage of pediatric health care providers
hinders the proper developmental assessment of children. In a
report published in 2016, one-third of pediatricians in the United
States did not use standardized screening tools in their pediatric
practice because of issues such as limited clinic hours and a
shortage of medical staff to perform developmental screenings
[19]. As an alternative to pediatric health care professionals,
many countries, including South Korea, rely on parental reports
to determine developmental milestones. However, parental
reports are based on subjective opinions, and parents may
respond positively even when they have observed their child’s
activities only once, leading to false positives [20]. Based on
these factors, there is a need for an objective, labor-free, and
automated tool to assess the development of children.

Recently, there have been several studies using deep learning
to assess gross motor development in children. A study reported
that a deep learning model can predict cerebral palsy progression
from videos of spontaneous movements taken in infancy [21].
However, this study did not use a previously validated metric
such as the K-DST, which may limit the explainability and
generalizability of the model. Liu et al [22] evaluated the gross
motor skills of children with autism with an average age of 5
years, and Suzuki et al [23,24] assessed gross motor skills on
a video-by-video basis using a deep learning model with
behavioral videos of 4- to 5-year-old children. However, since
these studies were conducted on children aged ≥4 years, there
is a limitation in that they could not validate the model
effectiveness in the <3 years age group, where early intervention
is expected to be more effective.

Considering these factors, we developed an automated and
accurate pediatric developmental assessment model using videos
of toddlers aged 18-35 months performing gross motor
movements that have been validated with the K-DST. Our 2-step
model assesses each behavior and evaluates each child’s overall
gross motor performance based on the performance level of
each behavior. In addition, we identified behaviors that
contribute to the overall gross motor skills assessment and
detected critical moments and important body parts for the
assessment of each behavior.

Methods

Study Design and Participants
In this study, we used behavioral videos of toddlers aged 18-35
months, when most of them could walk, perform a wide range
of gross motor actions, and minimally understand the examiner’s
instructions to perform the task [16,25]. We selected 4 behaviors
frequently used by the K-DST to assess gross motor
development in this age group: climb up the stairs, go down the
stairs, throw the ball, and stand on 1 foot [15]. These 4
movements were chosen as core tasks based on existing child
development guidelines and in consultation with 3 pediatricians
and 15 child development experts, considering the physical and
cognitive abilities of this age group [26,27]. The participant
performed multiple trials for each behavior. For each of these
trials, the raters watched the video and rated the performance
as “bad,” “good,” or “perfect.”

We also categorized participants into “relatively slow” and
“relatively fast” groups based on their overall performance: if
their performance was rated as “bad” on 2 or more behaviors,
we categorized them as “relatively slow”; the remaining cases
were categorized as “relatively fast.”

JMIR Form Res 2024 | vol. 8 | e51996 | p. 2https://formative.jmir.org/2024/1/e51996
(page number not for citation purposes)

Chun et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/51996
http://www.w3.org/Style/XSL
http://www.renderx.com/


Ethical Considerations
The data set used in this study is from our previous study and
it was constructed while adhering to the ethical principles of
the Declaration of Helsinki [28]. The construction of the data
set was approved by the Institutional Review Board of Severance
Hospital, Yonsei University College of Medicine (4-2021-0845),
and the requirement for informed consent was waived due to
the retrospective nature of the study. Participants of the data set
were recruited from daycare centers, kindergartens, primary
pediatric hospitals, and internet communities. Written informed
consent for data collection and subsequent analysis was obtained
from all caregivers of the participants. Participants received
₩50,000 (approximately US $38) and were provided with an
intelligence scale test valued at around ₩300,000 (US $232)
as compensation. To ensure the confidentiality and privacy of
the participants, each study participant was deidentified via an
alphanumeric code.

Experimental Setting
The videos were recorded in the presence of caregivers,
examiners, and children. Depending on the behavior, a staircase
or a ball was used as the apparatus. The video recordings for
each child were conducted for approximately 1 hour. A camera
was positioned to capture the entire body of each child. Using
a frontal angle camera, the child’s behavior was recorded as an
RGB (red-green-blue) video. All videos were collected using a
Sony DSC-RX100 with 1920×1080 resolution and at 30 frames
per second. The collected videos were rated by human raters
based on the K-DST criteria, and these values were used as true
labels in the stage-1 model.

Data Preprocessing
To assess the behavior of the children in the RGB videos, we
estimated the position of each child as a bounding box and then
extracted 17 human keypoints within the box [29]. To detect
the participants, we estimated the bounding boxes using
Faster-RCNN [30] with the ResNet 50 backbone in the RGB

videos. HRNet was then used to detect human keypoints in the
detected bounding boxes [31]. Skeleton data were generated at
a rate of 30 frames per second.

Model Construction
We divided the data into training, validation, and test sets in a
6:2:2 ratio for each behavior, ensuring that data from the same
individual were not allocated across multiple sets. To predict
the overall gross motor performance of the children, we designed
a 2-stage model. The overview of our model is shown in Figure
1. The first stage is the action evaluation stage, in which each
behavior is evaluated separately using a graph convolutional
networks (GCN)–based deep learning algorithm. To improve
the performance of the stage-1 model, we performed transfer
learning with pretrained weights. These pretrained weights are
released by PYSKL and are trained with the channel-wise
topology refinement graph convolution networks (CTR-GCN)
model on the NTU RGB+D dataset by detecting 17 skeleton
nodes with HRNet [32-34]. The CTR-GCN model is a stacked
structure of 10 basic blocks, 8 of which were frozen during the
training on our data. Augmentation using random flipping and
scaling was applied to our training data. The training task was
repeated 5 times for the same data, and 80 frames were randomly
selected each time. The model training strategy of this study
and the architecture of the CTR-GCN is shown in Figure 2. A
total of 4 CTR-GCN models were trained to generate the
predicted probabilities for the 4 gross motor skills, 1 for each
behavior [35]. Although these 4 models can assess the
performance of each behavior, it was necessary to integrate all
4 models to have a comprehensive assessment of the child’s
gross motor development. Accordingly, to assess overall gross
motor performance, the stage-2 model aggregated the outcome
probability values of each label per behavior. The extreme
gradient boosting (XGBoost) algorithm was used for the stage-2
model [36]. The validation process was performed using a
10-fold cross-validation strategy. The parameters used to train
our models are shown in Multimedia Appendix 1.
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Figure 1. An overview of the suggested 2-stage model for predicting and evaluating comprehensive gross motor performance of children. Faster-RCNN
and HRNet were used to extract the skeletal joints from the 4 behavioral videos. The evaluation of each behavior in the stage-1 was performed by graph
convolutional networks model separately, and Grad-CAM was used for analyzing the influence of each joint and time segment of the video. In stage-2,
the XGBoost algorithm was used for overall performance evaluation, and the SHAP method was used to recognize the contribution of each behavior
to the evaluation. B: behavior; C: class; CTR-GCN: channel-wise topology refinement graph convolution networks; Grad-CAM: gradient weighted
class activation mapping; GMS: gross motor skills; SHAP: Shapley additive explanations; XGBoost: extreme gradient boosting.
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Figure 2. A detailed architecture of the suggested model and CTR-GCN. We applied augmentation methods and frame sampling strategies. The
pretrained weights for the CTR-GCN model were applied, and 8 basic blocks of the model were frozen during training. The Grad-CAM was generated
from the gradients and feature map from the last block. The Grad-CAM was then interpolated to align with the input frames. A basic block of CTR-GCN
consists of 3 CTR-GCs, which use temporal pooling to aggregate temporal features of skeleton graph sequences and pairwise subtraction and concatenation
for correlation modeling between skeletal joints. C: channel dimension of the data; CTR-GCN: channel-wise topology refinement graph convolution
networks; GMS: gross motor skills; Grad-CAM: gradient-weighted class activation mapping; MLP: multilayer perceptron; N: number of skeletal joints;
T: temporal dimension of the data; Tanh: hyperbolic tangent function; XGBoost: extreme gradient boosting.

Evaluation of Model Performance and Verification of
Explainability
The stage-2 model–assessed performance was compared with
human panel–assessed performance on a fixed-test data set. A
panel consisting of 1 pediatrician and 2 nonexperts assessed the
participants’ overall gross motor status. Sensitivity and
specificity for each panel were calculated.

For the interpretability of the stage-1 action evaluation model,
gradient-weighted class activation mapping (Grad-CAM) was
used to identify critical time points and body parts in behavioral
videos [37]. To create a Grad-CAM heatmap, we obtained
weights for each label through gradient calculation and extracted
feature maps from the final graph convolutional layer of the
CTR-GCN model. The heatmap was then generated by linearly
combining the derived weights and feature maps and applying
the ReLU function [38]. We then visualized the heatmap along
with the original input, which is a sequence of positions of
skeletal joints. To understand the influence of each body part
on model decision, we determined the top-1 activated joints
that had the highest Grad-CAM values per frame and grouped
their frequency by body part [39]. The 17 joints were grouped
as belonging to the head, left arm, right arm, left leg, and right
leg [39].

In the second stage of overall performance prediction, we used
the Shapley additive explanations (SHAP) method to identify
the actions that contribute more to the total developmental

assessment [40]. The mean absolute SHAP value was obtained
to estimate the contribution of each feature to the model output.

Statistical Analysis
The performance of the models was evaluated using the area
under the receiver operating characteristic curve (AUROC)
score, which was calculated as the average of all folds and
presented with SD. The optimal cutoff value for the overall
gross motor skill assessment was determined based on receiver
operating characteristic analysis using the Youden index. The
receiver operating characteristic curve was also plotted with the
average of the folds within the threshold intervals and the area
between the SDs. All statistical analyses were performed in
Python (version 3.6.8; Python Software Foundation) using
sci-kit-learn (0.24.2 version).

Results

Characteristics of Cohort Participants
Behavioral videos of the 4 gross motor skills were collected
from 141 children, of which 71 (50.4%) were boys, and 70
(49.6%) were girls. The average age of the children in this study
was 29.6 (SD 4.3) months. The characteristics of the behavioral
data for each gross motor skills are listed in Table 1. A total of
2502 behavioral videos were collected, with 698 (23.9%) rated
as “bad,” 581 (23.2%) rated as “good,” and 1321 (52.8%) rated
as “perfect.”
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Table 1. Characteristics of cohort participants. The 141 participants consisted of 71 (50.4%) boys and 70 (49.6%) girls, and the average age was 29.6
(SD 4.3) months. A total of 2502 behavioral videos were collected, with 698 (23.9%) rated as “bad,” 581 (23.2%) rated as “good,” and 1321 (52.8%)
rated as “perfect.” The distribution of the demographics of the population and the number of videos by label for each behavior are represented as the
total number and its percentage.

Type of gross motor skillParameter and variable

Total (N=141)Stand on 1 foot
(N=141)

Throw the ball
(n=140)

Go down the stairs
(N=141)

Climb up the stairs
(N=141)

Demographics

28.6 (4.3)29.5 (4.3)29.5 (4.3)29.5 (4.3)29.5 (4.3)Age (months), mean (SD)

Gender, n (%)

70 (49.6)70 (49.6)69 (49.3)70 (49.3)70 (49.6)Girls

71 (50.4)71 (50.4)71 (50.4)71 (50.7)71 (50.4)Boys

Number of videos by label, n (%)

598 (23.9)222 (35.9)95 (15.0)144 (23.1)137 (21.9)Bad

581 (23.2)212 (34.2)156 (24.7)107 (17.2)106 (16.9)Good

1321 (52.8)185 (29.9)380 (60.2)372 (59.7)384 (61.2)Perfect

Performance of the Evaluation of Each of the 4 Gross
Motor Skills
Table 2 shows the results of the first-stage model. The AUROC
values with each behavioral evaluation were from 0.79 to 0.90.
We found that the model for the “climb up the stairs” behavior
performed the best, with an AUROC score of 0.90, followed
by “go down the stairs” with an AUROC score of 0.86;
subsequently, the models for “throw the ball” and “stand on 1
foot” performed similarly, with AUROC scores of 0.79 and
0.80, respectively (Figure 3).

The model generally made good predictions for both “bad” and
“perfect” behaviors when we calculated the normalized
confusion matrix for all behaviors but tended to struggle to
distinguish “good” behaviors that represent the intermediate
stage (Figure 3). Specifically, for the “go down the stairs”
behavior, the model accurately predicted the “bad” behavior
with a ratio of 0.84. Even when the prediction was incorrect,
the model tended to classify the behavior as “good,” which is
the adjacent label to “bad.”

Table 2. Results of the evaluation of the 4 gross motor skills.

Gross motor skill, mean (SD)Performance metric

Stand on 1 footThrow the ballGo down the stairsClimb up the stairs

0.60 (0.02)0.68 (0.02)0.76 (0.03)0.78 (0.02)Accuracy

0.63 (0.02)0.61 (0.02)0.67 (0.03)0.71 (0.03)Sensitivity

0.76 (0.02)0.78 (0.01)0.85 (0.02)0.86 (0.02)Specificity

0.60 (0.03)0.62 (0.03)0.67 (0.04)0.72 (0.04)F1-score

0.80 (0.02)0.79 (0.02)0.86 (0.02)0.90 (0.01)AUROCa

aAUROC: area under the receiver operating characteristic curve.
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Figure 3. Performance scores and confusion matrices of the stage-1 gross motor skill evaluation model for 4 behaviors. The bar chart of scores is shown
with error bars indicating the range between minimum and maximum scores observed in the cross-validation. The AUC scores range from 0.79 for
“throw the ball” to 0.90 for “climb up the stairs.” The confusion matrices show the model’s ability to distinguish between “bad” and “good” labels.
AUC: area under the curve.

Grad-CAM on the Visualization of Human Keypoint
Our keypoint-mapping Grad-CAM visualization showed the
differences in the activated joints for each behavior and label
(Figure 4). By observing the highlighted areas in the heatmap,
we could identify the contribution of the joints to the evaluation
of each behavior. The horizontal axis, labeled as “time,”
indicates the moments of the behavioral video that contributed
to the classification across the selected 80 frames of the videos.
The vertical axis, labeled as “skeletal joint,” shows the critical
joints related with behavior evaluation. For the “climb up the
stairs” behavior, the Grad-CAM results of the behavior evaluated
as “bad” showed that the Grad-CAM scores of the arms and

head increased as the child falls and grabs the stairs with their
hands. On the other hand, for behavior evaluated as “perfect,”
the child’s legs scored consistently high as they walked up.

It was also observed that the Grad-CAM score was higher when
a given task was being performed. In the Grad-CAM results for
the child who was rated “bad” for “climb up the stairs,” we
could observe that the moment when the child wandered and
looked back to the assistant has a lower Grad-CAM value than
the moment when they climbed the stairs. To compare the
importance of each body part, we determined the top-1 activated
joint, which is the joints with the highest Grad-CAM value per
frame, and grouped the frequencies by body part. (Multimedia
Appendix 2) [39].
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Figure 4. Grad-CAM heatmap with frame-by-frame mapped keypoints for each behavior. The change of Grad-CAM values over time for 17 human
keypoints was displayed as a heatmap. For each behavior, the Grad-CAM heatmap for a given participant was compared between a “perfect” and “bad”
performance. The actions of the participant over time were visualized as human keypoints and shown above the heatmap. The age and gender of each
child were displayed together. Grad-CAM: gradient-weighted class activation mapping.

Overall Performance Status Prediction
The results of the stage-2 overall performance prediction model
and the human panels on a fixed-test data set are shown in
Figure 5. The model had an AUC score of 0.90, and the
specificity and sensitivity of the optimal cutoff points were 0.83
and 0.82, respectively. For the human panels, sensitivities of
0.90 and 0.91 and specificities of 0.59 and 0.81 were recorded
by nonexperts and an expert, respectively. Comparing each of

these showed that the model performed better than the nonexpert
panel and was similar to the expert panel. Table 3 shows the
overall results of the model.

According to the grouped SHAP value obtained from variables
for each action, the action “go down the stairs” contributed the
most to the prediction, with a SHAP value of 1.28 (Figure 5).
The next highest values were “climb up the stairs,” “throw the
ball,” and “stand on 1 foot,” with values of 0.73, 0.65, and 0.36,
respectively.
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Figure 5. ROC curves, confusion matrix, and grouped SHAP values of the stage-2 overall performance status prediction model. The stage-2 overall
performance status prediction model had an AUC score of 0.90, and the specificity and sensitivity of the optimal cutoff points were 0.83 and 0.82,
respectively. For the expert panel, the sensitivity and specificity were 0.91 and 0.81, respectively. For the nonexpert panels, the mean sensitivity and
mean specificity were 0.90 and 0.59, respectively. In the confusion matrix, we displayed the relative ratio of the predicted values to each actual value.
To identify the highly contributed behaviors in the stage-2 overall performance status prediction model, we obtained the SHAP value of each label in
4 behaviors and summed the SHAP values for each behavior. AUC: area under the curve; ROC: receiver operating characteristic; SHAP: Shapley
additive explanations.

Table 3. Results of the stage-2 overall performance status prediction model.

Performance, mean (SD)Performance metric

0.82 (0.04)Accuracy

0.71 (0.09)Sensitivity

0.88 (0.04)Specificity

0.74 (0.06)F1-score

0.90 (0.02)AUROCa

aAUROC: area under the receiver operating characteristic curve.

Discussion

Principal Findings
In this study, we evaluated each gross motor behavior and
assessed each child’s overall gross motor performance status
using movement videos of toddlers aged 18-35 months. To the
best of our knowledge, this study is the first to predict the overall
gross motor behavior status using pediatric gross motor
movement videos at ages younger than 3 years.

Several previous studies have attempted to predict pediatric
development using digital phenotype data, such as detecting
developmental disabilities using drag-and-drop data in games
[41], identifying visual impairments using gaze patterns and
facial feature data in response to visual stimuli on a smartphone,
and measuring fine motor skills in children using
sensor-augmented toys [42]. Suzuki et al [23,24] conducted
studies that collected the behavioral videos of 4- to 5-year-old
children and extracted skeletal data through OpenPose to
evaluate behavioral performance on a per-video basis using a
convolutional neural network and autoencoder model. Liu et al
[22] proposed a method to evaluate the initial gross motor skills
of children with autism with an average age of 5 years using
velocities, trajectories, and angles of upper and lower limb joints
based on skeleton data extracted through OpenPose. However,
unlike these previous studies of gross motor skill assessments,
our study focused on gross motor function in toddlers younger
than the age of 3 years, which may allow us to quickly identify
developmental delays in children younger than the age of 3

years for early intervention. Additionally, this study not only
assessed each behavior but also built a model to evaluate the
overall performance of each individual by aggregating the
assessments of each behavior.

In this work, we performed action recognition using CTR-GCN
on skeleton data extracted through human pose estimation with
Faster-RCNN and HRNet [30,31,35]. Recently, many studies
have been published on action recognition, which is broadly
categorized into RGB-based methods and skeleton-based
methods [43]. In this study, instead of RGB-based methods,
which directly use RGB video, we used a skeleton-based method
using Faster-RCNN and HRNet to estimate the location of
human presence as a bounding box and extract human keypoints
[30,31]. These skeleton-based methods are not only
computationally efficient but also have the advantage of
focusing on the child’s behavior and deidentifying the study
participants by removing background information [43,44].

For human pose estimation, we used HRNet and Faster-RCNN
compared to the studies by Suzuki et al [23,24] and Liu et al
[22], which used OpenPose [30,31,45]. In human pose
estimation, there are 2 types of methods: the bottom-up method
(eg, OpenPose), where each body part is detected first and
subsequently the body parts are combined, and the top-down
method (eg, HRNet + Faster-RCNN), where the person is
detected and then each body part is searched within the detected
bounding box [29-31,45]. The HRNet method is known to be
more accurate than OpenPose, and the top-down method is
expected to be more accurate in detecting body parts, especially

JMIR Form Res 2024 | vol. 8 | e51996 | p. 9https://formative.jmir.org/2024/1/e51996
(page number not for citation purposes)

Chun et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


when there are multiple people in the video [31,32]. Since
children are often filmed with their caregivers in the
developmental test, the HRNet was more suitable for our study.

The types of behaviors assessed in this study have been used
in the K-DST for the corresponding age group, and previous
research has shown that these types of gross motor behaviors
are good predictors of childhood developmental disorders, such
as intellectual disability, autism spectrum disorder, and cerebral
palsy [15]. Furthermore, the model we developed in this study
provides more objective assessments of gross motor skills than
the K-DST, which relies on parental reports and enables the
assessment of gross motor skills to be automated without
requiring trained pediatric health care providers.

Of the 4 behaviors evaluated, “go up the stairs” was the most
accurately classified; however, in the actual model, “go down
the stairs” had a higher contribution in SHAP values (Figures
2 and 4). When viewing videos of actual children’s behaviors,
we found that while performing the “go down the stairs”
behavior, the examiner placed the child on the stairs, and the
child subsequently performed the action of going down the
stairs to return to the caregiver at the bottom of the stairs without
the examiner’s intervention. Other behaviors required frequent
intervention by the investigator to encourage the child to perform
the behavior successfully, because the children sometimes did
not understand the investigator’s instructions (eg, holding up 1
leg for more than 1 second) or had a variety of alternative
actions at the onset of the behavior (eg, returning to the caregiver
instead of climbing the stairs).

We also aimed to validate the explainability of the model by
calculating the Grad-CAM values of each joint for each
behavior, frame by frame (Figure 4). This allowed us to identify
specific joints that had high importance values at critical points
in the child’s behavior. For example, in a video of a child
performing the “stand on 1 foot” behavior, when we analyzed
the Grad-CAM of each joint on a frame-by-frame basis, we
could observe that the importance of the leg joints increased as
the child stood on 1 leg. The importance of each joint across
the videos was determined by counting the number of times
each joint was the most important in a particular frame
(Multimedia Appendix 2) [39]. This allowed us to identify the
vital body parts for evaluating each behavior. In the case of
“climb up the stairs,” for example, it was found that the values

in the arm area increased when the child was performing the
behavior poorly. This finding can be attributed to the child’s
tendency to resort to crawling instead of standing when the child
had difficulty climbing, thereby increasing the values in the
arm. The analysis of Grad-CAM values per joint in the
children’s behavioral videos allowed us to identify which joints
were important for certain behaviors and which body parts were
more deficient in each child during specific behaviors.

One limitation of this study was that we could not validate the
model’s performance in different patient populations. The study
used data from participants aged 18-35 months, as this is the
developmental stage when children can perform a wide range
of gross motor movements, such as walking and running, and
can understand simple verbal instructions from the examiner.
Therefore, further research is needed to determine which gross
motor activities in different age groups can be used to assess
gross motor development in children. In addition, because this
study was limited to Korean children, we suggest that its
applicability should be studied in various settings, including
other ethnicities and cultural settings.

Additionally, this study did not collect long-term follow-up
prognostic data on the participants, such as the subsequent
occurrence of developmental delays. If prospective data had
been collected on the occurrence of future developmental
disabilities (eg, cerebral palsy and autism spectrum disorders),
more thorough studies could have been conducted using our
model. Therefore, it is necessary to consider the long-term
prognosis follow-up of participants in future studies.

Conclusions
We developed a model to assess 4 behaviors using behavioral
video in children aged 18-35 months and to assess each child’s
overall gross motor performance. This is the first study to assess
the overall gross motor behavioral status of children younger
than 3 years of age using gross motor video for automated and
objective prediction of child development. We also identified
important behaviors during the model’s assessment of overall
gross motor performance. Furthermore, we developed a method
to identify important moments and key body parts during
behavioral assessment using Grad-CAM. We anticipate that a
more accurate and automated assessment of gross motor
development will be possible with this model if more data are
available in a variety of settings.
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