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Abstract

Background: The self-monitoring of physical activity is an effective strategy for promoting active lifestyles. However, accurately
assessing physical activity remains challenging in certain situations. This study evaluates a novel floor-vibration monitoring
system to quantify housework-related physical activity.

Objective: This study aims to assess the validity of step-count and physical behavior intensity predictions of a novel floor-vibration
monitoring system in comparison with the actual number of steps and indirect calorimetry measurements. The accuracy of the
predictions is also compared with that of research-grade devices (ActiGraph GT9X).

Methods: The Ocha-House, located in Tokyo, serves as an independent experimental facility equipped with high-sensitivity
accelerometers installed on the floor to monitor vibrations. Dedicated data processing software was developed to analyze
floor-vibration signals and calculate 3 quantitative indices: floor-vibration quantity, step count, and moving distance. In total, 10
participants performed 4 different housework-related activities, wearing ActiGraph GT9X monitors on both the waist and wrist
for 6 minutes each. Concurrently, floor-vibration data were collected, and the energy expenditure was measured using the Douglas
bag method to determine the actual intensity of activities.

Results: Significant correlations (P<.001) were found between the quantity of floor vibrations, the estimated step count, the
estimated moving distance, and the actual activity intensities. The step-count parameter extracted from the floor-vibration signal

emerged as the most robust predictor (r2=0.82; P<.001). Multiple regression models incorporating several floor-vibration–extracted

parameters showed a strong association with actual activity intensities (r2=0.88; P<.001). Both the step-count and intensity
predictions made by the floor-vibration monitoring system exhibited greater accuracy than those of the ActiGraph monitor.
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Conclusions: Floor-vibration monitoring systems seem able to produce valid quantitative assessments of physical activity for
selected housework-related activities. In the future, connected smart home systems that integrate this type of technology could
be used to perform continuous and accurate evaluations of physical behaviors throughout the day.

(JMIR Form Res 2024;8:e51874) doi: 10.2196/51874
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Introduction

There is evidence associating regular physical activity with
lower risks for mortality and noncommunicable diseases [1],
encouraging researchers, policy makers, and health care
companies to develop strategies for the promotion of active
lifestyles. The self-monitoring of physical behavior is one
approach that has been described as effective for helping people
increase their level of physical activity [2-5]. The recent
expansion of the activity tracker device market has opened new
perspectives for the promotion of active behavior [3,6].

Technology that enables the objective assessment of physical
behaviors has evolved considerably over the past decades [7].
Modern activity trackers are generally worn at the waist or the
wrist, and while the most recent devices usually feature multiple
sensing abilities, the evaluation of physical behaviors mostly
results from the treatment of acceleration data acquired by an
integrated 3-axis microelectromechanical accelerometer sensor
chip [8]. Software tools are able to compute a wide range of
parameters related to physical behaviors, such as sedentary time,
step count, and estimated energy expenditure [9]. Activity
tracker devices can be paired with smartphone apps,
transforming smartphone handsets into genuine hubs for the
monitoring of physical activity and sedentary behaviors.
Although waist- and wrist-worn activity tracker devices have
been linked to inaccurate energy expenditure predictions
[10-12], the emergence of the 5G and Internet of Things devices
opens up room for more accurate and continuous monitoring,
where multiple connected devices can collect a wealth of
information about people’s physical behaviors throughout the
day. In such a connected environment, and while
housework-related activities account for a substantial proportion
of daily physical activity in some populations [13], smart home
systems could provide crucial information to (1) support the
continuity of the monitoring of physical activity and sedentary
behaviors when people stay at home by allowing them to remove
their wearable activity tracker device and (2) improve the
accuracy of energy expenditure predictions related to
home-based activities. However, although various smart home
projects have already included technological features allowing
monitoring of the physical behaviors of the occupants, to date,
the information has mainly been used as input to smart
appliances to adapt to the living environment, assist occupants

with disabilities, or optimize domestic energy consumption
[14-17]. In these projects, various monitoring technology devices
have been considered, including motion sensors, low-resolution
video cameras, Kinect systems (Microsoft), and
accelerometer-based wearable monitors [16,18-20]. Floors with
sensing capabilities have also been developed. For instance,
binary pressure detection floor systems have been used to detect
the position of occupants [21,22]. Floor geophones and
accelerometer sensors have been used to locate footsteps or
evaluate room occupancy [23,24]. Unfortunately, none of these
projects have prioritized the objective and quantitative
assessment of physical behaviors with the ultimate goal of
providing lifestyle-oriented feedback to the occupants.
Nevertheless, smart home systems capable of monitoring
physical activity and sedentary behaviors while providing
feedback to the occupants have the potential to encourage
individuals to adopt more active and healthier behaviors
throughout the day [2-5].

In this study, the floor-vibration measurement system of the
experimental Ocha-House was used to collect information about
the floor vibrations generated by the occupant and estimate the
energy expenditure and step count. A structured experiment
consisting of the completion of 4 typical home-based activities
was conducted to assess the validity of these estimations with
respect to the actual measurements performed by indirect
calorimetry (energy expenditure) and direct observation (step
count). The estimations of the floor-vibration monitoring system
were also compared with those of waist- and wrist-worn
research-grade activity tracker devices. It is hypothesized that
the floor-vibration monitoring system is capable of correctly
predicting energy expenditure.

Methods

The Ocha-House Project
The experimental Ocha-House is in the Bunkyo district in the
central area of the Tokyo metropolitan region. The project was
originally designed as a ubiquitous computing house that allows
the mounting of various sensing devices [25]. According to
Japanese standards, the Ocha-House corresponds to an extended
1LDK dwelling, that is, a 1-bedroom apartment with a kitchen
separated from the living and dining areas. An overview of the
building and experimental area is shown in Figure 1.
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Figure 1. Overview of the Ocha-House and the experimental area. (A) External view of the building (image captured from southwest corner of the
yard). (B) Plan of the house and the experimental area, with furniture indicated in light gray, and green squares (labeled 1-8) indicating sensor positions.
The house comprises 2 distinct areas separated by a wall. The west side features a fully open space housing a bedroom corner and a living room without
any additional partition wall. On the east side, the kitchen and dining room are interconnected through an open space. The toilet and bathroom corners
are situated in enclosed spaces on the east side of the building.

The experimental Ocha-House is in the Bunkyo district in the
central area of the Tokyo metropolitan region (Figure 1A). The

total experimental surface area was 42 m2 (Figure 1B). A total
of 8 high-sensitivity uniaxial accelerometers (shear-type pickup
PV-87; Rion Co. Ltd) were installed on the floor to measure
the floor vibrations occurring on the experimental surface. The
PV-87 sensor characteristics were specified as follows by the

manufacturer: charge sensitivity +40 pC to –40 pC/m/s2; range
of detection 1 to 3000 Hz; dimensions 24 mm (hex) × 30.5 (H)
mm; mass 115 g. The optimal number of sensor units and their
locations were determined through a series of preliminary
experiments. These experiments involved progressively
increasing the sensitivity setting of the sensors and the number
of units placed on both the west and east sides of the

Ocha-House. The operation continued until the coverage was
deemed sufficient to detect human motion across all parts of
the experimental surface. The data related to these preliminary
experiments are not presented here. The sensors were mounted
on the floor using double-sided tape, as recommended by the
manufacturer, and connected to 4 UV-16 2-channel charge
amplifiers (Rion Co Ltd) configured in accordance with the
manufacturer’s recommendations. The floor-vibration data
acquisition was performed using USB-6008 data acquisition
devices (National Instrument Corp), a laptop equipped with
MATLAB 2015b, and the necessary data acquisition toolbox
(MathWorks Inc). The signal was digitized at a 100-Hz sampling
rate with a resolution of 12 bits. The abovementioned system
is described hereafter as the floor-vibration monitoring system.
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Study Protocol
In total, 10 female participants engaged in 4 activities in the
Ocha-House. Participants were recruited from the Ochanomizu
University campus, which is a women’s university. They were
selected based on the inclusion criterion of being aged ≥18
years, with the exclusion criterion being physical imbalance.
Participant characteristics are summarized in Table 1, and the
details of the 4 activities performed at the Ocha-House are
presented in Figure 2. Before the commencement of the
experiment, each participant completed a brief walking trial in

the Ocha-House, lasting approximately 1 minute. In total, 2
researchers with expertise in gait analysis visually determined
the gait type of each participant, specifically identifying whether
they exhibited a heel strike or a lighter mid-strike or
forefoot-strike landing. The walking trial revealed that all
participants could be categorized into either heel-strike landing
or mid-strike or forefoot-strike landing categories, with no other
gait types observed. All experiments were conducted without
any footwear, including slippers. In total, 9 participants wore
socks. Moreover, 1 participant did not wear socks on the day
of the experiment and completed the protocol barefoot.

Table 1. Participant characteristics (N=10).

Values

24 (7)Age (y), mean (SD)

47 (6)Body weight (kg), mean (SD)

19 (1)BMI (kg/m2), mean (SD)

Gait type

3Heel strike

7Mid- or forefoot strikea

aThe column “gait type” refers to the number of participants presenting a strong heel strike during the walking gait cycle, as opposed to participants
who presented a lighter mid-strike or forefoot-strike landing. The gait type of the participants was visually determined during the walking calibration
trial.

Figure 2. Images of experiments. (A) Sitting and watching videos; (B) ironing, folding, and hanging clothes; (C) cooking, setting the table, and serving
food; and (D) cleaning the room.
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In total, 4 activities were selected from the “inactivity
quiet/light” or “home activities” categories of the compendium
of physical activities [26]. The metabolic equivalent of task
(MET) values, indicating the intensity of each activity, were
reported in the compendium as follows:

• Sitting and watching videos, hereafter referred to as sitting
(approximately 1.3 MET, activity code 07020).

• Ironing, folding, and hanging clothes, hereafter referred to
as ironing (1.8-2 METs, activity codes 05070 and 05090).

• Cooking, setting the table, and serving food, hereafter
referred to as cooking (approximately 2.5 METs, activity
codes 05051 and 05052).

• Cleaning the room, hereafter referred to as cleaning
(approximately 3.3 METs, activity code 05030).

Each activity lasted 6 minutes. To balance the contribution of
the 3 tasks within “cooking, setting the table, and serving food”
and considering the volume of the Douglas bag used for energy
expenditure measurement (see the section Indirect Calorimetry),
participants were orally given time information. This ensured
that they spent approximately 40 seconds on each task every 2
minutes. The floor-vibration monitoring system recorded floor
vibrations, estimate the number of steps, and compute
quantitative parameters as described in the Floor Vibration
Signal Treatment and Data Feature Extraction section. The
participants wore 2 ActiGraph GT9X monitors (ActiGraph
LLC) at the waist and wrist. The 10-second epoch activity count
and the step-count prediction were recorded for each activity.
Finally, Douglas bags were used during the last 2 minutes of
each activity to collect the air expired by the participants,
perform indirect calorimetry measurements, and obtain the
actual energy expenditure. Throughout the experiments, the
researchers stood quietly on an insulated part of the floor outside
the experimental area to avoid producing confounding
vibrations. The experiments were video recorded (data not
shown).

Ethical Considerations
The experimental protocol was approved by the Ochanomizu
University Research Ethics Committee (2018-18). All the
participants provided written informed consent and they did not
receive any compensation. The individual shown in Figure 2
provided informed consent for the publication of their image.

Floor-Vibration Signal Treatment and Data Feature
Extraction
The 8-sensor floor-vibration data of each 6-minute activity
corresponded to 8 time series of 36,000 samples. Raw data were
expressed in volt. For each series, the floor-vibration signal was
rectified and smoothed using a Butterworth filter. The vector
norms of the 8 sensors were then computed. A location-based
calibration coefficient was applied to the vector norm for each
data sample to uniformize the vibration magnitudes throughout
the experimental surface (Multimedia Appendix 1). The 3
following data features were extracted:

• Floor count—for each participant and each activity, 36,000
sample values (6-min ×100 Hz sampling rate) of the
uniformized vector norm time series were summed to obtain
the floor count parameter.

• Step count—data from the uniformized vector norm time
series were cut in windows of 1 second with an overlap of
50%. For each window, the number of steps was computed
using a standard peak detection algorithm configured to
detect vibration peaks with a minimum prominence of 1.05
SD and a minimum interval of 250 ms [27]. The step count
parameter was computed for each activity of each
participant by summing the number of unique peaks
throughout the activity (6 min). The step count parameter
was used as both a data feature, allowing the prediction of
energy expenditure and a physical activity parameter to be
compared with the direct observations and the outcomes of
the waist- and wrist-worn ActiGraph devices.

• Moving distance—the uniformized vector norm time series
was cut into windows of 1 second and averaged for each
window. The window average was compared with a
criterion value calculated for each individual from the data
collected during the walking trial to determine whether the
participant was moving. Subsequently, the filtered data of
the 8-sensor time series corresponding to the windows
where the participant was moving were used to compute
their location in the house. The distances between all
locations taken sequentially were summed for each activity
to obtain the moving distance parameter (6 min). This
parameter was tested and validated against the moving
distance estimated from the observation of the video records
(Figure S1 in Multimedia Appendix 2).

The signal treatment and computation of the 3 previously
described parameters were performed using the toolboxes
included in the SciPy library [28]. An overview of the entire
data processing process is shown in Figure 3.
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Figure 3. Floor-vibration signal flow processing chart. From 8 time series of raw signals to the extraction of 3 floor-vibration–based data features.

Actigraphy
The participants were equipped with 2 ActiGraph GT9X
monitors worn on the waist and the wrist. The waist-worn device
was positioned near the right hip of the participant, on the belt,
or on the upper edge of the skirt or the bottom of the trousers.
An elastic belt provided by the manufacturer was used when
the clothes worn by the participant did not allow the tight
mounting of the monitor. The wrist-worn GT9X device was
mounted tightly on the nondominant hand always in the same
direction. The 2 monitors were mounted by the same
experimenter for all participants. The ActiGraph monitor data
were collected in 1-second epochs. The 10-second epoch activity
count data were extracted from the wrist-worn as well as
waist-worn devices, and the “Crouter adult (2010)” equation
was used to compute energy expenditure predictions (ActiLife
6; ActiGraph LLC) [29]. This algorithm uses a refined
2-regression model to distinguish between walking and lifestyle
activities. In this study, the activity intensities were expressed
in MET (ie, energy expenditure/participant weight/6 min). The
number of steps estimated by the waist- and wrist-worn monitors
was also recorded.

Indirect Calorimetry
The actual energy expenditure was measured using the Douglas
bag method during the last 2 minutes of each activity. The air
composition of the bags was analyzed using a mass spectrometry

gas analyzer (ARCO-1000; Arco System) calibrated on each
experimental day in accordance with the manufacturer’s
instructions. The gas volume was determined using a gas meter
(DC-5; Shinagawa). The energy expenditure was estimated from
oxygen consumption (VO2) and carbon dioxide production
(VCO2) using the Weir formula (ie, 3.9VO2+1.1VCO2). In
addition, the resting metabolic rate of each participant was
evaluated before the experiment. The participant lay for 15
minutes on the bed of the Ocha-House, and the expired air was
collected during the last 2 minutes. The actual MET value for
each activity was calculated as the activity energy expenditure
divided by the resting metabolic rate.

Video Recording
The experimental sessions were video recorded using an Arrows
M03 smartphone (Fujitsu Ltd) or an iPad Mini 3 (Apple Inc).
In total, 2 independent investigators inspected the videos and
counted the number of actual steps for the 4 activities of each
participant. In this study, a “step” is defined as the shift of the
body weight support from one leg to the other, which includes
a single-leg support phase and occurs at least partially on the
anterior-posterior axis.

Statistical Analysis
The 4 activities were compared for the floor count, step count,
moving distance parameters using an ANOVA or the
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Kruskal-Wallis test, and multiple comparison procedures (Tukey
or Nemenyi tests) were performed to locate differences. The
same analysis was conducted for parameters extracted from the
waist- and wrist-worn GT9X monitors and for the indirect
calorimetry measurements. The relationships between the actual
intensities measured by indirect calorimetry and floor count,
step count, and moving distance were investigated using single
linear regression tests. Multiple regression models were used
to explore the relationship between different combinations of
descriptors, including floor count, step count, and moving
distance, and the actual intensities measured using indirect
calorimetry. This analysis was conducted hierarchically. First,
the regressions were only performed on the
floor-vibration–extracted parameters. Second, the participant
characteristics (ie, body weight and gait type) were included in
the model descriptors. Additional hierarchical models are
presented in Multimedia Appendix 2. The model with the

highest R2 value best explained the variation in the data and
was selected for subsequent testing. Finally, mixed model
ANOVA and post hoc pairwise operations were used to compare
the performance of the best models built on data obtained with
the floor-vibration–based monitoring system, the waist- and
wrist-worn GT9X monitors, against the actual intensity and the
actual number of steps.

The underlying assumptions for each test were evaluated before
conducting the analyses. Data are presented as mean (SD). The
statistical analysis was performed using the following Python
libraries: StatsModels (0.13.2), Pingouin (0.5.3), and
Scikit-Posthocs (0.7.0) [30,31]. Data used for the statistical
analysis are shared in the Multimedia Appendix 3.

Results

Actual Intensities and Number of Steps
Activity intensities calculated from indirect calorimetry
measurements were as follows: 1.2 (SD 0.2) MET for the sitting
behavior, 1.9 (SD 0.4) MET for the ironing activity, 2.5 (SD
0.4) MET for the cooking activity, and 3.7 (SD 0.6) MET for
the cleaning activity (Figure 4A). Pairwise comparisons
indicated significant differences in intensity between sitting and
cooking, between sitting and cleaning, and between ironing and
cleaning (P=.004, P<.001, and P=.01, respectively). The actual
number of steps was 0 (SD 0) for sitting, 48 (SD 36) for ironing,
133 (SD 35) for cooking, and 281 (SD 48) for cleaning (Figure
4B). Pairwise comparisons indicated significant differences in
steps between sitting and cooking, between sitting and cleaning,
and between ironing and cleaning (P=.003, P<.001, and P=.003,
respectively).
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Figure 4. Comparison between the 4 experimental home activities. (A) actual intensities (indirect calorimetry evaluation); (B) actual number of steps
(video observation); (C) activity intensity predicted by the waist-worn ActiGraph GT9X device; (D) activity intensity predicted by the wrist-worn
ActiGraph GT9X device; (E) floor-vibration–based computed floor-count; (F) floor-vibration–based computed step-count; (G) floor-vibration–based
computed moving-distance. The intensity predictions of the GT9X monitors were computed using the “Crouter adult (2010)” equation [29]. Yellow
line: median. Green point: average. Outliers are not depicted. MET: metabolic equivalent of task. *P<.05, **P<.001.

Floor Count, Step Count, and Moving Distance
Parameters Computed From Floor Vibrations
The floor count parameter (arbitrary units) was as follows for
each activity: 113 (SD 58) for sitting, 610 (SD 277) for ironing,
1046 (SD 748) for cooking, and 2323 (SD 1255) for cleaning

the room (Figure 4E). Pairwise comparisons indicated significant
differences in intensity between sitting and cooking, between
sitting and cleaning, and between ironing and cleaning (P=.006,
P<.001, and P=.04, respectively). The estimated number of
steps was as follows: 12 (SD 7.3) for sitting, 78 (SD 27) for
ironing, 133 (SD 53) for cooking, and 251 (SD 59) for cleaning
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(Figure 4F). Pairwise comparisons indicated that the respective
intensities of the 4 activities were all significantly different
(between sitting and ironing, P=.01; between ironing and
cooking, P=.04; and others, P<.001). Finally, the moving
distance parameter scored as follows: 1.3 (SD 1.8) m for sitting,
17 (SD 11) for ironing, 30 (SD 29) for cooking, and 115 (SD
39) for cleaning (Figure 4G). Pairwise comparisons indicated
significant differences in intensity between sitting and cooking,
between sitting and cleaning, and between ironing and cleaning
(P=.03, P<.001, and P=.03, respectively). Furthermore, a
significant correlation was found between the moving distance
outcomes computed from the floor-vibration signal and the
moving distances estimated from the video records (Figure S1
in Multimedia Appendix 2).

Actigraphy
The waist-worn activity tracker estimated the activity intensities
as follows: 1.1 (SD 0.2) MET for sitting, 1.2 (SD 0.3) MET for
ironing, 2.1 (SD 0.4) MET for cooking, and 4.2 (SD 0.7) MET
for cleaning (Figure 4C). Pairwise comparison analyses
indicated significant differences between sitting and cooking,
between sitting and cleaning, and between ironing and cleaning
(P=.01, P<.001, and P<.001, respectively). The estimated
number of steps were as follows: 0.9 (SD 2.4) for sitting, 8 (SD
12) for ironing, 55 (SD 27) for cooking, and 165 (SD 51) for
cleaning (Multimedia Appendix 2). Pairwise comparison
analyses indicated significant differences between sitting and
cooking, between sitting and cleaning, and between ironing and
cleaning (P=.007, P<.001, and P<.001, respectively).

The wrist-worn activity tracker estimated the activity intensities
as follows: 1.8 (SD 0.4) MET for sitting, 6.4 (SD 0.5) MET for
ironing, 5.6 (SD 0.7) MET for cooking, and 6.8 (SD 0.4) MET
for cleaning (Figure 4D). Pairwise comparisons indicated
significant differences between sitting and ironing and between
sitting and cleaning (P=.002 and P<.001, respectively). The
estimated number of steps was as follows: 11 (SD 5.7) for
sitting, 177 (SD 39) for ironing, 131 (SD 37) for cooking, and
197 (SD 35) for cleaning (Multimedia Appendix 2). Pairwise
comparison analyses indicated significant differences between
sitting and ironing and between sitting and cleaning (P<.001
for both).

The results for the activity count parameters of the waist- and
wrist-worn devices are shown in Multimedia Appendix 2.

Relationship Between the Floor-Vibration–Based
Outcomes and the Actual Activity Intensities
As presented in Table 2, floor count, step count, and moving
distance were significantly associated with the intensity of

physical behavior (r2=.56, r2=.82, r2=.66, respectively; P<.001).

Combining the 3 parameters resulted in an r2 value of 0.84.
Combining floor count, step count, and moving distance with
participant personal characteristics, such as body weight and
gait type, allowed predicting the intensity of physical behaviors
with an accuracy of 88% (Table 1). The results of the additional
hierarchical models are presented in Multimedia Appendix 2.

Table 2. Relationship between floor-vibration–based parameters and actual activity intensities evaluated by indirect calorimetry.

r 2P valueStandardized partial regression coefficientModelsa and predictor variables

Single regressions

0.56<.0010.745Floor count1

0.82<.0010.904Step count2

0.66<.0010.815Moving distance3

Multiple regressions

4

0.85<.0010.971Step count

0.85.01–0.43Floor count

0.85.020.361Moving distance

5

0.88<.0010.916Step count

0.88.090.259Moving distance

0.88.20−0.224Floor count

0.88.21−0.08Body weight

0.88.03−0.155Gait type

aRegression models combining 2 vibration parameters with and without participant characteristic parameters are shown in Multimedia Appendix 2.
“Gait type” is binary data (mid- or forefoot strike vs heel-strike foot landing).
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Step Count and Activity Intensity Predictions
The mixed model ANOVA showed a significant effect of the
measurement method and a significant interaction with the
activity for both the predictions of the number of steps and
activity intensities (P<.001).

Significant underestimations in the number of steps were noted
for the waist-worn ActiGraph device predictions when all
activities were considered together (Figure 5A, “total”).
Regarding the prediction of activity intensities (Figure 5B), the
pairwise comparison analyses revealed statistically significant
overestimations for the wrist-worn ActiGraph device across all
activities, The wrist-worn device and the floor-vibration system
did not exhibit any difference with the actual number of steps.
When activities are considered separately, pairwise comparisons

indicate that the wrist-worn ActiGraph device underestimated
the number of steps completed during cleaning but
overestimated it for sitting and ironing activities. The
floor-vibration–based predictions overestimated the number of
steps required for sitting.

Regarding the prediction of activity intensities, the pairwise
comparison analyses revealed statistically significant
overestimations for the wrist-worn ActiGraph device across all
activities. The floor-vibration system did not show any
differences with the actual intensities evaluated by indirect
calorimetry. Finally, the waist-worn ActiGraph device showed
a slight but significant underestimation for the estimations of
the ironing activity intensities. The results are shown in Figure
5.

Figure 5. Comparison of prediction methods for each activity. (A) number of steps; (B) activity intensity. Energy expenditure measurements were
collected for 2 minutes over the 6 minutes of each activity. Therefore, comparisons of measurement methods for the total energy expenditure are not
presented in this figure. In panel B, the green bar shows the prediction of the model with the highest coefficient of determination (model 5; Table 2).
The marks indicate a significant difference against the actual number of steps. MET: metabolic equivalent of task. *P<.05, **P<.001.

Discussion

Principal Findings
This study presented a novel quantitative method that uses the
monitoring of floor vibrations for the evaluation of physical
behaviors at home. The floor count, step count, and moving
distance parameters were computed from the floor-vibration
signal. Statistical models combining these 3 parameters showed
significant correlations with the actual energy expenditure
measured in 10 participants in a structured experiment that
included 4 common home-based activities. In addition, the step
count parameter did not show any significant difference with
the number of steps completed by the participants during the
experiment. The predictions of the floor-vibration monitoring
system for both the activity intensity and number of steps were
equal to or more accurate than those obtained by the Actigraphy
method using the refined 2-regression model.

Floor Vibration for the Quantification of Physical
Behaviors
The actual activity intensities measured by the indirect
calorimetry for the 4 activities increased in accordance with the
intensities presented in the compendium of physical activities
[26], that is, 1.2 versus 1.3 MET; 1.9 versus 1.8 to 2.0 MET;
2.5 versus 2.5 MET; and 3.7 versus 3.3 MET for sitting (and

watching video), ironing (and folding clothes), cooking (and
setting the table), and cleaning the room, respectively (Figure
4A). The floor count, step count, and moving distance
parameters also increased gradually for the 4 activities,
indicating the feasibility of evaluating the intensity of physical
behaviors in the home environment using the information
provided by floor vibrations (Figures 4E-4G). Among them,
step count was the only parameter that showed significant
differences between all 4 activities. The single regression
analyses also indicated a strong association between the step

count and the actual activity intensities (r2=0.82; P<.001),
whereas floor count and moving distance showed a weaker but
still significant association with the actual activity intensities

(r2=0.56 and 0.66, respectively; P<.001 for both). These pieces
of information taken together may suggest that the estimated
number of steps extracted from the floor-vibration signal could
be used to make a reliable quantitative estimation of physical
behavior in home settings. All the 3 parameters were designed
to describe the inhabitant’s motion. Although the step count
and floor count parameters can capture the physical dimension
of the movement, the moving distance parameter adds a spatial
dimension to the evaluation. The better performance of step
count alone compared with moving distance alone may be due
to the location approximation inherent to the limited number of
sensors used to cover the entire house surface (Multimedia

JMIR Form Res 2024 | vol. 8 | e51874 | p. 10https://formative.jmir.org/2024/1/e51874
(page number not for citation purposes)

Nakajima et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Appendix 2). A step is detected and not affected by any
approximation. On the other hand, floor count may also be
susceptible to inaccuracies, potentially due to variations in
floor-vibration wave attenuation. Factors influencing this
attenuation include the proximity of furniture, its weight and
contact surface with the floor, proximity of support beams and
walls, and the irregular geometry of the Ocha-House floor area.

Despite the possible weaknesses of the floor count and moving
distance parameters, multiple linear regression models
combining step count, floor count, and moving distance still

exhibited stronger associations (r2≥0.85; Table 1; Table S1 in
Multimedia Appendix 2). As presented in Table 2, the inclusion
of body weight and gait type parameters as descriptors greatly
lowered the contribution of floor count to the model. Indeed,
although floor count does not correlate with either body weight
or gait type (Table S2 in Multimedia Appendix 2), it is still the
only parameter extracted from floor vibrations that can
quantitatively capture the forces applied on the floor. Given
that the actual body weight can be easily inputted into any smart
home system, the question of the relevance of extracting and
using the floor count parameter to make accurate predictions
of energy expenditure remains open. Additional studies,
including a population with more heterogeneous anthropometric
characteristics, may be needed to address this question further.

Finally, the ANOVA revealed that the predictions made by the
floor-vibration monitoring system also showed less deviation
than those of the 2 research-grade ActiGraph GT9X monitors
for both the number of steps and activity intensity end points
(Figure 5). The underestimation of the number of steps noted
for the waist-worn ActiGraph device may be related to walking
gait characteristics when movements are performed in closed
and narrow spaces. Such environments may not allow sufficient
acceleration to meet the necessary signal processing threshold
criteria required to count a step, as suggested elsewhere [32].
In contrast, the overestimated number of steps observed for the
wrist-worn device may be the result of confounding upper limb
movements performed in a frequency range similar to that of
walking gait, which may occur in the course of completing
housework-related activities.

Regardless of the performance of the ActiGraph GT9X monitors
and although no external validation experiment has been
conducted, taken together, these observations emphasize the
good performance of the floor monitoring system for the
quantitative evaluation of physical behaviors performed in home
settings.

Perspectives
Although the market for wearable activity trackers is still in its
growing phase [6], waist- and wrist-worn physical activity
monitors, including research- or consumer-grade devices, have
been associated with inaccurate predictions of daily physical
activity [10-12]. During the past decade, the computation of
accurate predictions for housework-related activities using
traditional accelerometer-based activity tracker devices has been
the object of specific software development [33,34]. However,
this study still showed statistical differences between the
predictions made by the ActiGraph GT9X monitors and the

actual values for both number of steps and activity intensities.
These observations emphasize the necessity of developing new
methods that can accurately evaluate physical behaviors at home
to improve the computation of daily physical activity metrics.
When considering long-term use, it is crucial to distinguish
between consumer- and research-grade devices. This study used
2 ActiGraph GT9X monitors, recognized as research-grade
devices, in the context of a short semistructured experiment.
However, consumer-grade physical activity tracking devices
used in everyday life are subject to additional extrinsic
limitations that can impede their ability to provide continuous
monitoring. For instance, the common practice of removing
watches and other wearables at home can have significant
impacts on the evaluation of physical behaviors in home settings.

Considering the current limitations of wearable activity tracker
devices, smart home systems, such as floor-vibration monitoring
technologies similar to those used in this study, present a suitable
opportunity to enhance the self-monitoring of daily physical
activity. Such systems offer a novel approach to improve the
accuracy of estimating energy expenditure and the number of
steps performed at home, especially when considering their
integration with a 5G network composed of interconnected
devices dedicated to the evaluation of daily physical activity.
By ensuring accurate and continuous measurements when
individuals are at home, smart home systems could help
maintain people’s interest in self-monitoring, making them a
pivotal factor in promoting and sustaining active and healthy
lifestyles. However, the potential widespread adoption of such
systems should not only be considered from a technological
perspective but should also acknowledge the role of
sociocultural factors in shaping user acceptance and usability.

Limitations and Strengths
The main limitation of this study is that the proposed method
only assesses the physical behaviors of 1 inhabitant at a time.
Quantifying the physical behaviors of multiple individuals would
require additional signal processing tools to link vibration events
with the individuals generating them. Although each individual
may exhibit a unique gait signature reflected in the
floor-vibration signal, extracting such information is beyond
the scope of this study. This limitation could also be addressed
by analyzing the sequence of interactions with smart and
connected home furniture devices, similar to what has already
been described elsewhere [35]. Furthermore, it is important to
note that the experimental Ocha-House used in this study was
originally designed for a single inhabitant, aligning with the
living environment of millions of Japanese people. The
structured nature of the experimental protocol may be cited as
a second limitation of the study, which restricts the
generalization of the observations to what may happen under
free-living conditions. To further evaluate the feasibility of
using the floor-vibration–based monitoring method,
semistructured experiments using a portable breath-by-breath
gas exchange analyzer could be conducted to assess energy
expenditure during longer periods of activity. A third limitation
is that the external validity of the floor-vibration
parameter–based activity intensity prediction models (Table 2)
was not tested, thus mitigating the interpretations of the
comparison test performed against the actigraphy method. The
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cost of the system is also considered to be a limitation. In this
study, expensive, high-sensitivity shear-type accelerometer
sensors were used. Further studies are necessary to explore the
feasibility of using cheaper accelerometer sensors similar to
those commonly used in wearable devices. The results of the
multiple regression analyses (Table 2; Multimedia Appendix
2) indicated that the floor-vibration–based step count and moving
distance parameters contributed more to the activity intensity
prediction models. These 2 parameters may not require the
computation of a high-resolution signal. Fourth, the
quasi-absence of responses in the floor count, step count, and
moving distance parameters during sitting and watching videos
may suggest that the floor-vibration monitoring system may
also be capable of evaluating sitting behaviors (Figures
4E-Figures 4G). However, owing to the structured nature of the
protocol, which involves short observation windows, further
interpretations regarding the accuracy of the system in predicting
energy expenditure for home-based sitting activities cannot be
made. Given the importance, complexity, and intricacies of
sedentary behaviors that can occur at home, specific studies
should be designed to understand how floor-vibration monitoring
systems may contribute to the objective assessment of
home-based sedentary behaviors. Finally, the participants in
this study were all women and exhibited relatively homogeneous
characteristics in terms of age and weight. The BMI scores
indicated a limited variability in physical fitness. These
observations constrain the generalizability of our results to a
more diverse population. Given that age and physical fitness
are recognized determinants of energy expenditure, future
investigations should aim to recruit a more diverse sample of
participants and consider a broader spectrum of personal
characteristics in the development of energy expenditure
prediction models.

This study has several strengths and originalities. First, the
results of the present experiment are in line with those of
previous studies, which described a good relationship between
the force exerted by an individual on the floor of a small squared

6.25 m2 metabolic chamber equipped with a force transducer
and the actual energy expenditure [36-38]. They allow extending
the previous observation to a different sensing technology, larger
non–squared living surfaces, and a wider range of activities that
are usually performed at home. Another strength of this study
is that it is the first to compare the outcomes of a smart home
system with those of research-grade activity trackers.

Conclusions
This study presents a novel floor-vibration monitoring system
that can be used in smart home settings to quantify physical
activity at home. The hardware included high-sensitivity
accelerometers. In this case, 8 sensors were required to cover

a surface area of 42 m2. The software includes a simple data
processing workflow for the computation of the floor count
parameter, which is a quantitative index of the floor vibrations,
and the step count and moving distance parameters. Regression
models combining the information of these 3 parameters showed
a strong association with the actual intensities measured using
indirect calorimetry for the 4 tested home-based activities. A
significant association was also observed between the step count
parameter computed using the floor-vibration signal and the
actual number of steps. Further studies, conducted under real-life
conditions or using semistructured experimental protocols, are
necessary to extend the results of this study and validate the
monitoring of floor vibrations as a surrogate method for
evaluating physical behaviors at home. Considering the current
evolution of 5G technologies and IoT devices, smart home
systems are expected to contribute to a more continuous
evaluation of daily physical activity.

Acknowledgments
The authors would like to thank the individuals who participated in this study. NM, YO, and JT would like to acknowledge all
the research students who contributed to the Ocha-House project in the past: Chihiro Nakajima, Saki Kaneko, Mana Akao, and
Mio Sasaki. This study has received research grants from the Japan Society for the Promotion of Science (Grant-in-Aid for Young
Scientists-B 15K20997 directed to JT and Grant-in-Aid for Scientific Research-C 21K11335 directed to JT and YO) and from
the Japanese Foundation for the Promotion of Precision Measurement Technology (精密測定技術振興財団研究費).

Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplementary descriptions and results of the calibration and walking trials.
[DOCX File , 841 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Supplementary analyses and results.
[DOCX File , 293 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Data used for the statistical analysis.
[XLSX File (Microsoft Excel File), 20 KB-Multimedia Appendix 3]

JMIR Form Res 2024 | vol. 8 | e51874 | p. 12https://formative.jmir.org/2024/1/e51874
(page number not for citation purposes)

Nakajima et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v8i1e51874_app1.docx&filename=fb093b922ab08c50fec6d2286a6911a4.docx
https://jmir.org/api/download?alt_name=formative_v8i1e51874_app1.docx&filename=fb093b922ab08c50fec6d2286a6911a4.docx
https://jmir.org/api/download?alt_name=formative_v8i1e51874_app2.docx&filename=dfde7bbed569ecd4ef08fd69638936cd.docx
https://jmir.org/api/download?alt_name=formative_v8i1e51874_app2.docx&filename=dfde7bbed569ecd4ef08fd69638936cd.docx
https://jmir.org/api/download?alt_name=formative_v8i1e51874_app3.xlsx&filename=d0e421b5182e979d9a5c4ef21a2a4ff3.xlsx
https://jmir.org/api/download?alt_name=formative_v8i1e51874_app3.xlsx&filename=d0e421b5182e979d9a5c4ef21a2a4ff3.xlsx
http://www.w3.org/Style/XSL
http://www.renderx.com/


References

1. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. Mar 14, 2006;174(6):801-809.
[FREE Full text] [doi: 10.1503/cmaj.051351] [Medline: 16534088]

2. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical
activity and improve health: a systematic review. JAMA. Nov 21, 2007;298(19):2296-2304. [doi: 10.1001/jama.298.19.2296]
[Medline: 18029834]

3. Shin G, Jarrahi M, Fei Y, Karami A, Gafinowitz N, Byun A, et al. Wearable activity trackers, accuracy, adoption, acceptance
and health impact: a systematic literature review. J Biomed Inform. May 2019;93:103153. [FREE Full text] [doi:
10.1016/j.jbi.2019.103153] [Medline: 30910623]

4. Chaudhry UA, Wahlich C, Fortescue R, Cook DG, Knightly R, Harris T. The effects of step-count monitoring interventions
on physical activity: systematic review and meta-analysis of community-based randomised controlled trials in adults. Int
J Behav Nutr Phys Act. Oct 09, 2020;17(1):129. [FREE Full text] [doi: 10.1186/s12966-020-01020-8] [Medline: 33036635]

5. Vetrovsky T, Borowiec A, Juřík R, Wahlich C, Śmigielski W, Steffl M, et al. Do physical activity interventions combining
self-monitoring with other components provide an additional benefit compared with self-monitoring alone? A systematic
review and meta-analysis. Br J Sports Med. Dec 07, 2022;56(23):1366-1374. [FREE Full text] [doi:
10.1136/bjsports-2021-105198] [Medline: 36396151]

6. Jia Y, Wang W, Wen D, Liang L, Gao L, Lei J. Perceived user preferences and usability evaluation of mainstream wearable
devices for health monitoring. PeerJ. 2018;6:e5350. [FREE Full text] [doi: 10.7717/peerj.5350] [Medline: 30065893]

7. Shephard RJ, Aoyagi Y. Measurement of human energy expenditure, with particular reference to field studies: an historical
perspective. Eur J Appl Physiol. Aug 11, 2012;112(8):2785-2815. [doi: 10.1007/s00421-011-2268-6] [Medline: 22160180]

8. Chen KY, Bassett DRJ. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc.
Nov 2005;37(11 Suppl):S490-S500. [doi: 10.1249/01.mss.0000185571.49104.82] [Medline: 16294112]

9. Mâsse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, et al. Accelerometer data reduction: a
comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. Nov 2005;37(11
Suppl):S544-S554. [doi: 10.1249/01.mss.0000185674.09066.8a] [Medline: 16294117]

10. Jeran S, Steinbrecher A, Pischon T. Prediction of activity-related energy expenditure using accelerometer-derived physical
activity under free-living conditions: a systematic review. Int J Obes (Lond). Aug 02, 2016;40(8):1187-1197. [doi:
10.1038/ijo.2016.14] [Medline: 27163747]

11. Murakami H, Kawakami R, Nakae S, Yamada Y, Nakata Y, Ohkawara K, et al. Accuracy of 12 wearable devices for
estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: validation
study. JMIR Mhealth Uhealth. Aug 02, 2019;7(8):e13938. [FREE Full text] [doi: 10.2196/13938] [Medline: 31376273]

12. Nakagata T, Murakami H, Kawakami R, Tripette J, Nakae S, Yamada Y, et al. Step-count outcomes of 13 different activity
trackers: results from laboratory and free-living experiments. Gait Posture. Oct 2022;98:24-33. [FREE Full text] [doi:
10.1016/j.gaitpost.2022.08.004] [Medline: 36030707]

13. Murphy MH, Donnelly P, Breslin G, Shibli S, Nevill AM. Does doing housework keep you healthy? The contribution of
domestic physical activity to meeting current recommendations for health. BMC Public Health. Oct 18, 2013;13:966. [FREE
Full text] [doi: 10.1186/1471-2458-13-966] [Medline: 24139277]

14. Yao L, Sheng QZ, Benatallah B, Dustdar S, Wang X, Shemshadi A, et al. WITS: an IoT-endowed computational framework
for activity recognition in personalized smart homes. Computing. Mar 6, 2018;100(4):369-385. [doi:
10.1007/s00607-018-0603-z]

15. GhaffarianHoseini A, Dahlan ND, Berardi U, GhaffarianHoseini A, Makaremi N. The essence of future smart houses: from
embedding ICT to adapting to sustainability principles. Renew Sustain Energy Rev. Aug 2013;24:593-607. [doi:
10.1016/j.rser.2013.02.032]

16. Farayez A, Reaz MB, Arsad N. SPADE: activity prediction in smart homes using prefix tree based context generation.
IEEE Access. 2019;7:5492-5501. [doi: 10.1109/access.2018.2888923]

17. Hayat H, Griffiths T, Brennan D, Lewis RP, Barclay M, Weirman C, et al. The state-of-the-art of sensors and environmental
monitoring technologies in buildings. Sensors (Basel). Aug 22, 2019;19(17):3648. [FREE Full text] [doi: 10.3390/s19173648]
[Medline: 31443375]

18. Kientz JA, Patel SN, Jones B, Price E, Mynatt ED, Abowd GD. The Georgia Tech aware home. In: Proceedings of the CHI
'08 Extended Abstracts on Human Factors in Computing Systems. 2008. Presented at: CHI EA '08; April 5-10, 2008;
Florence, Italy. [doi: 10.1145/1358628.1358911]

19. Sevrin L, Noury N, Abouchi N, Jumel F, Massot B, Saraydaryan J. Characterization of a multi-user indoor positioning
system based on low cost depth vision (Kinect) for monitoring human activity in a smart home. In: Proceedings of the 37th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015. Presented at:
EMBC 2015; August 25-29, 2015; Milan, Italy. URL: https://ieeexplore.ieee.org/document/7319515 [doi:
10.1109/embc.2015.7319515]

20. Bao L, Intille SS. Activity recognition from user-annotated acceleration data. In: Proceedings of the Pervasive Computing.
2004. Presented at: PERVASIVE 2004; April 21-23, 2004; Vienna, Austria. [doi: 10.1007/978-3-540-24646-6_1]

JMIR Form Res 2024 | vol. 8 | e51874 | p. 13https://formative.jmir.org/2024/1/e51874
(page number not for citation purposes)

Nakajima et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.cmaj.ca/cgi/pmidlookup?view=long&pmid=16534088
http://dx.doi.org/10.1503/cmaj.051351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16534088&dopt=Abstract
http://dx.doi.org/10.1001/jama.298.19.2296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18029834&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(19)30071-1
http://dx.doi.org/10.1016/j.jbi.2019.103153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30910623&dopt=Abstract
https://ijbnpa.biomedcentral.com/articles/10.1186/s12966-020-01020-8
http://dx.doi.org/10.1186/s12966-020-01020-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33036635&dopt=Abstract
http://bjsm.bmj.com/lookup/pmidlookup?view=long&pmid=36396151
http://dx.doi.org/10.1136/bjsports-2021-105198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36396151&dopt=Abstract
https://europepmc.org/abstract/MED/30065893
http://dx.doi.org/10.7717/peerj.5350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30065893&dopt=Abstract
http://dx.doi.org/10.1007/s00421-011-2268-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22160180&dopt=Abstract
http://dx.doi.org/10.1249/01.mss.0000185571.49104.82
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16294112&dopt=Abstract
http://dx.doi.org/10.1249/01.mss.0000185674.09066.8a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16294117&dopt=Abstract
http://dx.doi.org/10.1038/ijo.2016.14
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27163747&dopt=Abstract
https://mhealth.jmir.org/2019/8/e13938/
http://dx.doi.org/10.2196/13938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31376273&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0966-6362(22)00469-6
http://dx.doi.org/10.1016/j.gaitpost.2022.08.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36030707&dopt=Abstract
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-13-966
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-13-966
http://dx.doi.org/10.1186/1471-2458-13-966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24139277&dopt=Abstract
http://dx.doi.org/10.1007/s00607-018-0603-z
http://dx.doi.org/10.1016/j.rser.2013.02.032
http://dx.doi.org/10.1109/access.2018.2888923
https://www.mdpi.com/resolver?pii=s19173648
http://dx.doi.org/10.3390/s19173648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31443375&dopt=Abstract
http://dx.doi.org/10.1145/1358628.1358911
https://ieeexplore.ieee.org/document/7319515
http://dx.doi.org/10.1109/embc.2015.7319515
http://dx.doi.org/10.1007/978-3-540-24646-6_1
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Helal S, Mann W, El-Zabadani H, King J, Kaddoura Y, Jansen E. The Gator Tech Smart House: a programmable pervasive
space. Computer. Mar 2005;38(3):50-60. [doi: 10.1109/MC.2005.107]

22. Yamazaki T. The ubiquitous home. Int J Smart Home. Feb 2007;1(1):17-22.
23. Bahroun R, Michel O, Frassati F, Carmona M, Lacoume JL. New algorithm for footstep localization using seismic sensors

in an indoor environment. J Sound Vibration. Feb 2014;333(3):1046-1066. [doi: 10.1016/j.jsv.2013.10.004]
24. Pan S, Bonde A, Jing J, Zhang L, Zhang P, Noh HY. BOES: building occupancy estimation system using sparse ambient

vibration monitoring. In: Proceedings of SPIE - The International Society for Optical Engineering. 2014. Presented at: SPIE
Optics + Photonics 2014; August 17-21, 2014; San Diego, CA. [doi: 10.1117/12.2046510]

25. Siio I. ユビキタスコンピューティング実験住宅 [Ocha House: a Residential Lab for Ubiquitous Computing]. Ochanomizu
University. URL: http://web.is.ocha.ac.jp/~siio/projects/papers/ochahouse_siio.pdf [accessed 2024-03-22]

26. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DRJ, Tudor-Locke C, et al. 2011 Compendium of Physical
Activities: a second update of codes and MET values. Med Sci Sports Exerc. Aug 2011;43(8):1575-1581. [doi:
10.1249/MSS.0b013e31821ece12] [Medline: 21681120]

27. Tripette J, Sasaki M, Kuno-Mizumura M, Motooka N, Ohta Y. Monitoring floor vibrations to evaluate objectively physical
activity during housework activities. In: Proceedings of the IEEE 3rd Global Conference on Life Sciences and Technologies
(LifeTech). 2021. Presented at: LifeTech 2021; March 09-11, 2021; Nara, Japan. [doi: 10.1109/lifetech52111.2021.9391942]

28. SciPy home page. SciPy. URL: https://scipy.org/ [accessed 2023-08-16]
29. Crouter SE, Kuffel E, Haas JD, Frongillo EA, Bassett DRJ. Refined two-regression model for the ActiGraph accelerometer.

Med Sci Sports Exerc. May 2010;42(5):1029-1037. [FREE Full text] [doi: 10.1249/MSS.0b013e3181c37458] [Medline:
20400882]

30. Seabold S, Perktold J. Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python
in Science Conference. 2010. Presented at: SciPy 2010; June 28-July 3, 2010; Austin, TX. [doi:
10.25080/majora-92bf1922-011]

31. Vallat R. Pingouin: statistics in Python. J Open Source Softw. Nov 2018;3(31):1026. [doi: 10.21105/joss.01026]
32. John D, Morton A, Arguello D, Lyden K, Bassett D. "What is a step?" Differences in how a step is detected among three

popular activity monitors that have impacted physical activity research. Sensors (Basel). Apr 15, 2018;18(4):1206. [FREE
Full text] [doi: 10.3390/s18041206] [Medline: 29662048]

33. Oshima Y, Kawaguchi K, Tanaka S, Ohkawara K, Hikihara Y, Ishikawa-Takata K, et al. Classifying household and
locomotive activities using a triaxial accelerometer. Gait Posture. Mar 2010;31(3):370-374. [doi:
10.1016/j.gaitpost.2010.01.005] [Medline: 20138524]

34. Ohkawara K, Oshima Y, Hikihara Y, Ishikawa-Takata K, Tabata I, Tanaka S. Real-time estimation of daily physical activity
intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br J Nutr. Jan 25,
2011;105(11):1681-1691. [doi: 10.1017/s0007114510005441]

35. Chua SL, Marsland S, Guesgen H. A supervised learning approach for behaviour recognition in smart homes. J Ambient
Intell Smart Environ. Apr 27, 2016;8(3):259-271. [doi: 10.3233/ais-160378]

36. Sun M, Hill JO. A method for measuring mechanical work and work efficiency during human activities. J Biomech. Mar
1993;26(3):229-241. [doi: 10.1016/0021-9290(93)90361-h] [Medline: 8468336]

37. Sun M, Reed GW, Hill JO. Modification of a whole room indirect calorimeter for measurement of rapid changes in energy
expenditure. J Appl Physiol (1985). Jun 01, 1994;76(6):2686-2691. [doi: 10.1152/jappl.1994.76.6.2686] [Medline: 7928901]

38. Chen KY, Sun M, Butler MG, Thompson T, Carlson MG. Development and validation of a measurement system for
assessment of energy expenditure and physical activity in Prader-Willi syndrome. Obes Res. Jul 06, 1999;7(4):387-394.
[FREE Full text] [doi: 10.1002/j.1550-8528.1999.tb00422.x] [Medline: 10440595]

Abbreviations
MET: metabolic equivalent of task

Edited by A Mavragani; submitted 16.08.23; peer-reviewed by A Martinko, H Namba; comments to author 25.09.23; revised version
received 24.12.23; accepted 03.01.24; published 25.04.24

Please cite as:
Nakajima Y, Kitayama A, Ohta Y, Motooka N, Kuno-Mizumura M, Miyachi M, Tanaka S, Ishikawa-Takata K, Tripette J
Objective Assessment of Physical Activity at Home Using a Novel Floor-Vibration Monitoring System: Validation and Comparison
With Wearable Activity Trackers and Indirect Calorimetry Measurements
JMIR Form Res 2024;8:e51874
URL: https://formative.jmir.org/2024/1/e51874
doi: 10.2196/51874
PMID: 38662415

JMIR Form Res 2024 | vol. 8 | e51874 | p. 14https://formative.jmir.org/2024/1/e51874
(page number not for citation purposes)

Nakajima et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/MC.2005.107
http://dx.doi.org/10.1016/j.jsv.2013.10.004
http://dx.doi.org/10.1117/12.2046510
http://web.is.ocha.ac.jp/~siio/projects/papers/ochahouse_siio.pdf
http://dx.doi.org/10.1249/MSS.0b013e31821ece12
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21681120&dopt=Abstract
http://dx.doi.org/10.1109/lifetech52111.2021.9391942
https://scipy.org/
https://europepmc.org/abstract/MED/20400882
http://dx.doi.org/10.1249/MSS.0b013e3181c37458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20400882&dopt=Abstract
http://dx.doi.org/10.25080/majora-92bf1922-011
http://dx.doi.org/10.21105/joss.01026
https://www.mdpi.com/resolver?pii=s18041206
https://www.mdpi.com/resolver?pii=s18041206
http://dx.doi.org/10.3390/s18041206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29662048&dopt=Abstract
http://dx.doi.org/10.1016/j.gaitpost.2010.01.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20138524&dopt=Abstract
http://dx.doi.org/10.1017/s0007114510005441
http://dx.doi.org/10.3233/ais-160378
http://dx.doi.org/10.1016/0021-9290(93)90361-h
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8468336&dopt=Abstract
http://dx.doi.org/10.1152/jappl.1994.76.6.2686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7928901&dopt=Abstract
https://europepmc.org/abstract/MED/10440595
http://dx.doi.org/10.1002/j.1550-8528.1999.tb00422.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10440595&dopt=Abstract
https://formative.jmir.org/2024/1/e51874
http://dx.doi.org/10.2196/51874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38662415&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Yuki Nakajima, Asami Kitayama, Yuji Ohta, Nobuhisa Motooka, Mayumi Kuno-Mizumura, Motohiko Miyachi, Shigeho
Tanaka, Kazuko Ishikawa-Takata, Julien Tripette. Originally published in JMIR Formative Research (https://formative.jmir.org),
25.04.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information,
a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

JMIR Form Res 2024 | vol. 8 | e51874 | p. 15https://formative.jmir.org/2024/1/e51874
(page number not for citation purposes)

Nakajima et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

