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Abstract

Background: Though there has been considerable effort to implement machine learning (ML) methods for health care, clinical
implementation has lagged. Incorporating explainable machine learning (XML) methods through the development of a decision
support tool using a design thinking approach is expected to lead to greater uptake of such tools.

Objective: This work aimed to explore how constant engagement of clinician end users can address the lack of adoption of ML
tools in clinical contexts due to their lack of transparency and address challenges related to presenting explainability in a decision
support interface.

Methods: We used a design thinking approach augmented with additional theoretical frameworks to provide more robust
approaches to different phases of design. In particular, in the problem definition phase, we incorporated the nonadoption,
abandonment, scale-up, spread, and sustainability of technology in health care (NASSS) framework to assess these aspects in a
health care network. This process helped focus on the development of a prognostic tool that predicted the likelihood of admission
to an intensive care ward based on disease severity in chest x-ray images. In the ideate, prototype, and test phases, we incorporated
a metric framework to assess physician trust in artificial intelligence (AI) tools. This allowed us to compare physicians’assessments
of the domain representation, action ability, and consistency of the tool.

Results: Physicians found the design of the prototype elegant, and domain appropriate representation of data was displayed in
the tool. They appreciated the simplified explainability overlay, which only displayed the most predictive patches that cumulatively
explained 90% of the final admission risk score. Finally, in terms of consistency, physicians unanimously appreciated the capacity
to compare multiple x-ray images in the same view. They also appreciated the ability to toggle the explainability overlay so that
both options made it easier for them to assess how consistently the tool was identifying elements of the x-ray image they felt
would contribute to overall disease severity.

Conclusions: The adopted approach is situated in an evolving space concerned with incorporating XML or AI technologies
into health care software. We addressed the alignment of AI as it relates to clinician trust, describing an approach to wire framing
and prototyping, which incorporates the use of a theoretical framework for trust in the design process itself. Moreover, we proposed
that alignment of AI is dependent upon integration of end users throughout the larger design process. Our work shows the
importance and value of engaging end users prior to tool development. We believe that the described approach is a unique and
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valuable contribution that outlines a direction for ML experts, user experience designers, and clinician end users on how to
collaborate in the creation of trustworthy and usable XML-based clinical decision support tools.

(JMIR Form Res 2024;8:e50475) doi: 10.2196/50475
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Introduction

Though much research has been published on the applications
of machine learning (ML) in clinical contexts, few studies have
proceeded to deployment for patient care [1]. Barriers to
adoption in health care include data quality; data bias; and lack
of proper validation, reproducibility, and transparency [2].
Particularly with respect to transparency, black box models,
which are increasingly used for prediction tasks in clinical
contexts, do not provide the rationale behind the prediction in
order to justify a clinical decision [3,4]. In fact, studies found
that “physicians need to understand artificial intelligence (AI)
methods and systems sufficiently to be able to trust an
algorithm’s predictions—or know how to assess the
trustworthiness and value of an algorithm—as a foundation for
clinical recommendations” [5].

Explainable machine learning (XML) is a field focused
on developing techniques to help end users understand the
predictions made by complex models [6]. Indeed, we followed
Rudin [7] in adopting the definition of XML as the use of
additional post-hoc models to explain a primary black-box
model. Such black-box models are in contrast to interpretable
models. This includes information concerning the underlying
data and performance of the model [8]. However, the
effectiveness of various approaches for explainability are
dependent upon well-designed and highly usable user interfaces
[9], and Abdul et al [10] pointed out that much of the work
within the domains of AI and ML has not focused on usability
or practical interpretability. Indeed, as Liao et al [8] discussed,
current work provides limited guidance on actualizing guidelines
in user interfaces.

As discussed by Schwartz et al [11], clinician involvement in
the design of ML clinical decision support has primarily been
used to validate the clinical accuracy of underlying models
developed by the researchers. A recent review by Chen et al
[12] of explainable AI and ML medical imaging design found
no evidence of end-user clinical involvement in the design of
explainability models and a highly limited number of articles
that documented an empirical assessment of explainability
claims with end users. These findings mirror our previous
unpublished work that looked at the broader state of XML in
clinical decision support and the same low engagement of end
users in the empirical assessment of XML decision support
applications.

Our study used a design thinking [13,14] approach to explore
how constant engagement of clinician end users could provide
insights on how to improve the alignment of XML decision
support to actual end-user needs and address challenges related
to presenting explainability in a decision support interface. To
this end, we identified a relevant ML decision support tool
targeted toward COVID-19 via clinician focus groups. We then
developed a clinician-facing interface for the quantification of
COVID-19 severity from chest x-ray images with XML. We
tested the resulting prototype via structured interviews with
clinicians to verify the domain-appropriate representation,
potential actionability, and consistency of the tool.

Methods

Ethical Considerations
Ethical approval for this study was granted by the Centre intégré
universitaire de santé et de services sociaux (CIUSSS) of West
Central Montreal psychosocial research ethics committee
(Project 2022-2838) and by the NRC research ethics board
(Project 2021-101). Informed consent was received from all
participants. In all analysis and research documents,
participant-identifying data were replaced by a code. No
compensation was offered to any participants of the study.

Design Thinking Approach
We chose a design thinking approach to optimize clinician
involvement in the creation of an XML-based clinical decision
support system (CDSS). Design thinking is a process for solving
complex problems that emphasizes iteration and rapid
prototyping to maximize end-user involvement in generating a
usable solution. Stanford University Design School describes
5 key phases of the design thinking approach, namely,
empathize, define, ideate, prototype, and test. Table 1 provides
an overview of the work presented in this manuscript according
to design thinking phases. For each phase, we define the
objective, associated research activities, end-user involvement,
and supplementary theoretical frameworks used to add
robustness to our work.

To simplify the structure of the paper, we have chosen to report
the majority of research activities conducted in the empathize,
define, and ideate phases in the Methods section. The Results
section is primarily focused on the outputs of the prototype and
test phases.
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Table 1. Overview of the design thinking phases and research activities conducted during each phase.

TestPrototypeIdeateDefineEmpathizePhase

Testing of the best
solutions

Production of a scaled-down
version to iterate different
solution ideas with users

Brainstorm approach-
es to achieve solutions

Analyze and synthe-
size observations to
identify and define
core problems

Consult experts to better un-
derstand the design chal-
lenge, and engage and em-
pathize to understand moti-
vations and experiences

Phase objective

Software prototype
testing; Analysis of
results

Paper prototype testing; Im-
plementation and testing of
different explainability ap-
proaches; Development of
an interactive working proto-
type

Iterative design of the
tool user experience;
Identification of an
appropriate explain-
ability approach

Data synthesis, anal-
ysis, and decision on
tool function

Rapid review, focus groups,
and scoping review

Research activities

Formally assess a
working prototype

Provide iterative feedback
on paper prototypes

Consult on early de-
sign concepts

Select the potentially
most useful tool;
Prioritize features

Share opinions and experi-
ences in focus groups

Physician end-user
involvement

Framework for clini-
cian trust in machine
learning [4]

Framework for clinician
trust in machine learning [4]

Framework for clini-
cian trust in machine
learning [4]

NASSSb framework
[15]

N/AaTheoretical frame-
works used in
analysis/design

aN/A: not applicable.
bNASSS: nonadoption, abandonment, scale-up, spread, and sustainability of technology in health care.

Empathize Phase
The objective of the empathize phase was to better understand
the motivation and experiences of potential end users and to
consult with experts on the problem in question. In this phase,
we conducted three key research activities: (1) a rapid review
to identify clinical use cases for ML or AI that could benefit
from explainability and be useful to clinicians in the context of
the COVID-19 pandemic; (2) focus groups with physicians
designed to review the output of the rapid review and to elicit
data that would help the team better understand the scope and
nature of a tool that would be most useful to physicians in an
integrated health care network, responding to the COVID-19
pandemic; and (3) a scoping review to better understand the
existing XML CDSS in health care, the associated design
frameworks used for explainability, and the research methods
used to study end-user perceptions.

During our rapid review, we searched Scopus, the World Health
Organization (WHO) COVID-19 publication database, and the
Dialog Proquest COVID-19 database to identify systematic
reviews, literature reviews, or surveys of AI or ML technologies
used to support clinicians in a pandemic (COVID-19). We
identified 65 review articles, of which the 7 most pertinent were
used to separate the cited papers within the reviews into 8 broad
categories of applications. We selected 4 of these categories to
present to stakeholders as candidate applications based on
assessment of their clinical need, applicability to hospital
settings, relevance to our current research field, interest to
clinicians, and feasibility in the chosen clinical setting. The

selected categories were large-scale COVID-19 screening;
detection, diagnosis, or prognosis of COVID-19; predicting
recovery, mortality, or severity of COVID-19 patients; and
hospital resource management.

After performing a nonexhaustive scan of additional publications
that fit these categories, we retained a total of 37 articles that
were peer reviewed and that described ML implementations
considering the following criteria: techniques where
explainability would be beneficial and associated data or codes
were available for implementation. These articles were explored
to further select 3 themes, each with its own clinical use case
for an ML application, which cross-cut the previously described
categories. The first theme was screening. It involved algorithms
for tools that may help with COVID-19 screening by predicting
the risk of COVID-19 in undiagnosed patients through the
analysis of text-based telehealth notes or triage notes in the
emergency room. The second theme was prognosis. It involved
algorithms for tools that may help predict the severity of
COVID-19 infections and the prognosis and risk of intensive
care unit (ICU) admission through the analysis of chest x-ray
images. The third theme was long COVID. It involved
algorithms for tools that may predict the likelihood of long-term
implications (long COVID) resulting from COVID-19 through
patient-reported outcomes.

Two focus groups were conducted with 7 physicians to identify
which of the 3 use cases were suitable for use in clinical decision
support. Participants represented a broad range of medical
specialties and had experience providing COVID-19–related
care in a variety of venues (Textbox 1).
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Textbox 1. Physician representation in focus groups.

Medical subspecialties

• Emergency medicine

• Intensive care

• Palliative care

• Cardiology

• Family medicine

• Diagnostic medicine

• Internal medicine

COVID-19 care venues

• Long-term care facilities

• Family medicine centers

• Emergency departments

• Intensive care units

• COVID-19 acute care wards

For each category of possible tools (screening, prognosis, and
long COVID), we used the following interview guide questions
to seed the discussions: (1) How might a clinical decision
support tool focused on (insert tool type) be useful in the context
of our health care sites? (additional prompts: Could you describe
what you see as the value of this type of tool for clinicians
[doctors, nurses, and others]? Could you describe what you see
as the value of this type of tool for patients?); (2) If we assume
that we can access the required data to make the tool work, what
additional challenges might a tool like this be associated with?
(additional prompts: Any specialized additional clinical
knowledge needed? Would it require dramatic changes to
existing care protocols or workflows? Any special characteristic
of our patient population?); and (3) What types of information
or data points would be most crucial in an explanation of the
prediction being discussed?

All data from the focus groups were transcribed and loaded into
NVivo software (QSR International) for thematic coding.

In parallel, a scoping review of the use of XML for decision
support in health care was conducted, using the methods
proposed by Levac et al [16]. We generally found very few
studies that described testing or methods to collect end-user
perceptions of explainability, and even fewer studies that
referenced any design theory or framework in the development
of decision support tools.

Define Phase
The objective of the define phase was to synthesize the findings
from the work done in the empathize phase and formally define
the scope of the problem. For focus group data, we applied a
framework developed to study the nonadoption, abandonment,
scale-up, spread, and sustainability of technology in health care
(NASSS), to analyze physician feedback on the possible tools

for development. The NASSS framework is composed of the
following 7 domains: condition, technology, value proposition,
adopters, organizations, wider system, and embedding over time
[15]. The NASSS framework, while traditionally used to analyze
technology implementations, can be used to “generate a rich
and situated narrative of the multiple influences on a complex
project” [17] and assess in advance whether certain technology
will be adopted in a health care setting. According to Fereday
and Muir-Cochrane [18], a hybrid deductive or inductive
thematic analysis was used. An initial deductive coding
framework based a priori on the domains of the NASSS
technology implementation framework was completed by one
of the researchers. During the coding, 2 members of the research
team met frequently to review challenges in the coding process
and identify new subcodes for each domain. A detailed summary
of the NASSS framework domains and sample coded participant
data are provided in Multimedia Appendix 1. The objective of
this phase was to better understand the suitability of each tool
for adoption within the organization. We present a brief
summary of the analysis in Table 2.

Physicians felt that the characteristics of long COVID were still
unclear and difficult to define, and thus, it would be
inappropriate to develop a long COVID tool. There was strong
disapproval for a screening tool that makes predictions based
on analysis of free text in the patient medical records given the
possibility of incorrect information, inconsistent completion of
records, missing information, and false reporting by patients.

Physicians were more receptive to the prognosis tool. Their
familiarity with x-ray images and more trust in the image data
source increased support for this tool. Physicians not only
considered this a more useful application but also considered
the warning of the impending prognosis to be important.
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Table 2. Grading of each proposed decision support tool based on the nonadoption, abandonment, scale-up, spread, and sustainability of technology
in health care (NASSS) framework domains.

Long COVID toolPrognosis toolScreening toolDescriptionNASSSa domain

−c++bIs the nature of the condition or illness (eg, symptoms, diagnosis,
and therapeutics) relevant to the organization?

Condition domain

−+−Can the technology of the tool (eg, underlying algorithm) be
supported by quality data sources?

Technology domain

+/−++Is there potential of the tool to provide some type of business or
health system value?

Value proposition domain

+/−++Could the use of the tool result in a change in practice of care
providers, and impact patients and their careers?

Adopters domain

+++/−Are there considerations related to readiness of the institution to
innovate, use, and fund new technologies?

Organizations domain

+/−+−Are there political, regulatory, or sociocultural considerations
impacting the implementation of the tool?

Wider system domain

−+−Is there potential for the organization to adapt and evolve the tool
over time?

Embedding and adaptation
over time domain

aNASSS: nonadoption, abandonment, scale-up, spread, and sustainability of technology in health care.
bPositive sentiment from physicians.
cNegative sentiment from physicians.

Ideate Phase
In this phase, the research team met continuously to build
various approaches for both the user experience (UX)
implementation and underlying explainability approaches used
in the tool. As discussed in the Introduction section, increasing
clinician trust in ML-based CDSS applications is seen as a key
driver to increasing their use in actual practice. In line with this
principle, the team adopted an evaluation framework published
by Tonekaboni et al [4], which presents a series of metrics that
can help assess clinician trust in an explanation provided by a
ML CDSS tool. The framework includes 3 metrics. The first
metric is domain appropriate representation, which represents
the degree to which the tool provides adequate information to
the end user within the context of the specific clinical setting
and workflow. The second metric is potential actionability,
which represents the degree to which the tool facilitates the
taking of appropriate decisions or “next steps” in the care of the
patient. The third metric is consistency, which represents the
degree to which changes in the tool’s predictions and
corresponding explanations can be explored to determine
consistency.

These metrics were incorporated as design guidelines in the
ideate phase and then used as the primary metrics in the
prototype and test phases.

Prototype Phase
The objective of the prototype phase was to develop low-cost
physical representations of the tool that allow for more detailed

end-user feedback and more opportunities to iterate on the
design of the solution.

For domain appropriate representation, we focused on providing
a succinct summary of additional COVID-19–relevant
information that physicians would likely find relevant in the
context of a prognostic prediction based solely on chest x-ray
images. This included the addition of a subset of patient vitals,
laboratory values, and history, including symptom onset.

For potential actionability, we assumed the most important
visual component of the tool would be the chest x-ray and
corresponding explainability features. The team chose to
implement a heat map–based visualization approach that would
highlight areas of the image that most significantly contributed
to the x-ray severity score. The technical implementation is
explained in more detail below.

Our assumption was that this would quickly provide clinicians
with the information they needed to make appropriate decisions
concerning the next steps of the patient’s care trajectory. In
order to provide context to the severity score, we considered a
model of ICU admission to assess risk by defining 3 categories
of risk (low, medium, and high) and the associated likelihood
of admission.

Finally, for consistency, we planned for the clinician to be able
to click on multiple imaging results in the patient timeline such
that the clinician can compare the ML predictions across images
and make assessments as to the consistency of the predictions.

The prototype wireframe in Figure 1 illustrates the basic design
and different domain considerations.
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Figure 1. Wireframe prototype indicating different domain considerations. C: consistency; CXR: chest x-ray; DAR: domain appropriate representation;
PA: potential actionability.

ML Model: Developing Explainability
Based on the selected application, we chose to use the algorithm
of Cohen et al [19] as the algorithm to include in the prototype
application. Their work predicts the level of lung opacity and
the geographic extent of disease regions from the input x-ray
data, using a deep neural network. The main network consists
of a network pretrained on large public non–COVID-19 data
sets followed by 2 regression networks, one for each of the
opacity and extent outputs. We computed total disease severity
as the sum of the 2 neural network outputs. Training of
regression networks was performed using COVID-19 data
obtained by radiologist scoring of chest x-ray images with the
following scores: (1) the extent of involvement of ground-glass
opacity for each lung (for a total between 0 and 8), and (2) the
degree of opacity for each lung (for a total between 0 and 6).

For our purposes, we were able to leverage their latest publicly
available implementation and database [20], thus allowing us
to only focus on developing the explainability methods. The
multisite data set consisted of posteroanterior deidentified chest
x-ray images of patients with varying COVID-19 severity, and
each x-ray image had an associated disease severity score
obtained by radiologists. Many of the patients had x-ray images
from several time points, and the number of time points per
patient was not consistent across patients.

We aimed to explore local post-hoc explainability approaches
as we needed to explain specific instances of pre-existing
models. We focused on model-agnostic methods as they would
be useful in broader contexts and be applicable independent of
the clinicians’ choice. In particular, we selected LIME (local
interpretable model-agnostic explanations) [21] in order to
interpret the model output owing to the simplicity in its
implementation and perceived intuitiveness of the results. In
our case, LIME explained the predicted severity as a linear
function of the contribution, positive or negative, that each area
in the x-ray has for changing the total severity score. We found
the kind of output produced by LIME, which consists of
contiguous regions, and this is more consistent with users’
expectations.

Low Fidelity Prototype
Using our wireframe and the results from the ML model, a static
low fidelity prototype of the tool was developed using FIGMA
(Figure 2) [22].

We defined 3 levels of the risk of admission to the ICU
considering the severity score (low, medium, and high), using
the observed ICU admission rates and associated severity scores
in our test data set. We defined severity score ranges for each
of the risk levels in such a way that similarity in severity was
maximized within each range. The risk was then calculated as
the average probability of admission within each category. Our
data set contained 950 x-ray images representing 472 unique
patients. A subset of 398 x-ray images for 162 unique patients
with information on ICU stay was used to calculate the risk of
admission.

For the explainability component, we used the LIME Python
package [23] to explain the predicted severity as a linear
function of the contributions from image patches that compose
the full x-ray image. Each image was subdivided into patches
using the Quickshift Segmentation algorithm [24]. We found
that the resulting explanation was unintuitive upon visual
inspection, as patches indicating high contributions to increasing
severity did not appear to be diseased. In addition, the low
fidelity prototype displayed importance values for all patches
and proved too confusing during iterative testing. The patches
showing a negative contribution were cluttering the display and
were unnecessary to show highly diseased regions. This was
addressed in future iterations.

According to the design thinking approach [25], we met with
2 clinicians who had participated in the focus group sessions,
and asked them to provide individual feedback during informal
sessions of 30 to 60 minutes. We asked for their overall
impression of the tool prototype design, as well as comments
on specific design choices made by the research team to improve
UX and explainability. These sessions were conducted over
Microsoft Teams. Follow-up was conducted via email as the
team made iterations on the comments and ideas from
physicians.
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Figure 2. Static low fidelity prototype.

Test Phase
The objective of the test phase was to gain more insight into
the working prototype. The high fidelity (software) prototype
was developed in Python using the Plotly Dash framework [26],
a library that allows for quick prototyping of user interfaces.

The interactive prototype was tested with 5 physicians from the
initial focus group sessions. According to Doshi-Velez Kim
[27], we used an application grounded evaluation approach in
which intended end users used the tool simulating prognostic
prediction in the context of a 1-hour semistructured interview.
We began the sessions by asking clinicians to explore the
application with no guidance and then facilitated a discussion
about the various features of the tool by presenting 3 separate
patient cases. The questions from the interview guide were as
follows: (1) What is your overall impression of what the tool
is presenting to you? (overall impression); (2) How well does
the tool provide with you with necessary contextual information
about the case? (domain representation; additional probes: Is
there too much information or is there missing information? Is
the information poorly organized or is the presentation of the
information confusing?); (3) How does the tool help or hinder
your ability to make a treatment decision or take action with
the patient? (actionability; additional probes: Is the prediction
the tool is making clear? Is the tool adequately transparent with
regard to the certainty of the prediction? Are there any
complimentary data points you feel are missing for you to make
a decision? Do you feel this tool could be shared with a patient
in its current state?); and (4) As we show different cases, what

are your impressions of how changes in the prediction are
explained by the tool? (consistency; additional probes: In cases
where the tool shows the progression of predictions for a single
patient, does the tool adequately explain the changes? In cases
where the tool shows a range of different patients, are the
differences in predictions adequately explained by the tool?).

Results

Prototype Phase (Low Fidelity)
In evaluating domain appropriate representation, the major
information elements required by physicians were present in
the first prototype; however, physicians did mention that the
following elements needed to be added: (1) A more prevalent
display of the date of COVID-19 diagnosis and date of symptom
onset; (2) A more prevalent display for vaccination dates if
available; (3) The method and volume of current oxygen in
L/min; and (4) Additional laboratory test values for
procalcitonin, C-reactive protein, and interleukin-6 (indicators
of infection or inflammation that could be treated).

As mentioned above in the ideate phase, our objective with this
design was to present the prediction in the most significant
quadrant of the screen to ensure potential actionability; however,
both our clinician testers commented on how presenting the
image first violated the basic approach for clinical assessment
and decision-making. While we assumed that the additional
information displayed in the interface meant to provide patient
content would only be looked at if needed, clinicians told us
that this would be relevant and would need to be incorporated

JMIR Form Res 2024 | vol. 8 | e50475 | p. 7https://formative.jmir.org/2024/1/e50475
(page number not for citation purposes)

Shulha et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


into their assessment of the quality of the ML prediction. Based
on this feedback, we chose to reverse the orientation of the
information for the development of the interactive prototype.

In addressing the consistency metric, while we explained to the
physicians that the interactive tool would ultimately allow them
to move through multiple images to compare the progression
of the disease, we could not simulate this in the static image.
Physicians did comment that it would be much easier if the
multiple images could be displayed in comparison. They also
commented on the importance of being able to turn the heat
map overlay on and off so as to be able to compare the areas
highlighted by the ML model with the actually affected areas

on the x-ray image. This suggestion was implemented in the
interactive prototype.

Finally, physicians commented that it was unclear how the
consolidation in the image contributed to the severity score and
how the severity score contributed to the risk of ICU admission.
These were addressed in the interactive prototype through the
creation of tool tip pop-ups with textual explanations.

Testing Phase (High Fidelity)
The final interactive prototype was designed based on all
feedback identified from the prototyping sessions and is
presented in Figure 3.

Figure 3. Working prototype.

Domain Appropriate Representation
Clinicians found the design of the prototype elegant, and domain
appropriate representation of data was displayed in the tool.
The added contextual data (history, vitals, and laboratory values)
were deemed necessary, and no items were considered
superfluous. Clinicians appreciated that the domain of interest
was succinctly represented on a single screen. However, one of
the most important issues uncovered was the degree to which
physicians erroneously assumed that the additional data present
in the tool, namely vitals and laboratory values, were being
included in the x-ray severity score. While the tool tips made
it explicitly clear that no data other than chest x-ray data were
being used in the prediction model, further work needed to be
done to visually distinguish information elements used to
provide additional domain context from information used in the
ML model.

Based on initial feedback during the prototype phase, we
specifically probed clinicians on the reorganization of the
structure and sequencing of the information in the interface,

and the degree to which it supported the standard thought
processes clinicians would follow to reach a decision. Physicians
responded well to the revised structure and information flow.
Moreover, they highlighted the possibility of using the tool as
an additional teaching resource with junior staff or nonradiology
specialists.

Potential Actionability
In order to reduce the clutter in the display of explainability
compared to the low fidelity version, we only showed the
patches that had a positive contribution to severity in red, where
higher values had a darker color. In order to allow the end user
to focus on the most predictive areas only, we tested several
methods for displaying only a subset of the regions, including
displaying a fixed number of patches (eg, 3, 4, and 5) or
displaying patches that explained a certain percentage of the
final score (eg, 80% and 90%). The selected prototype only
displayed the most predictive patches that cumulatively
explained 90% of the final score. The rationale behind it is that
in some cases where the top contribution comes from many
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patches with low and equivalent values, by only showing a fixed
number of patches, we will be omitting several equivalently
important patches. The remaining explainable model
hyperparameters (maximum distance, color space and image
space proximity ratio, and kernel size for the Quickshift
Segmentation; regularization coefficient for the explainer’s
ridge regression; and width of the explainer’s exponential
kernel) were then optimized by maximizing the coefficient of
determination via sequential optimization using decision trees
[28]. This optimization process resulted in more intuitive and
actionable explanations.

We further explored potential actionability through the following
three possible use case scenarios for the tool in the interviews:
(1) Triage of patients presenting at the emergency department;
(2) Discharge planning; and (3) Shared decision-making with
patients.

In the first scenario (triage), many physicians were quick to
point out the evolution of care protocols across the different
waves of the pandemic. In the first and second waves, the lack
of global disease knowledge caused a large number of
pre-emptive ICU admissions; however, this is no longer the
case. Physicians did note that they felt the tool could be very
helpful in terms of planning for potential ICU admissions over
time and helping manage staff resource issues.

In the second scenario (discharge planning), we proposed that
the tool could be used as a final check for moving patients from
high acuity care to lower levels of acuity, either discharge to
home or discharge to virtual hospital care. Physicians generally
felt that the tool could be useful as an additional data source to
confirm an assessment of low risk.

In the third scenario (shared decision-making), we asked
physicians whether they thought the tool could be helpful in
shared decision-making, especially in scenarios where there
may be some disagreement between a physician and a patient
about a proposed next step. Physicians noted that the tool could
be useful in explaining escalations in care to patients currently
experiencing moderate symptoms.

Consistency
In terms of consistency, physicians unanimously appreciated
the capacity to compare multiple x-ray images in the same view.
They also appreciated the ability to toggle the explainability
overlay so that both options made it easier for them to assess
how consistently the tool was identifying elements of the x-ray
image they felt would contribute to overall disease severity.
Not all physicians agreed with the tool’s assessments, but felt
that more exposure to a larger number of predictions would be
necessary for them to gauge how much they trusted the tool.

Discussion

Designing for Trust and Decision-Making
As discussed by Wang et al [29], when predictive AI is used in
decision support tools, end users seek explanations to help
improve their decision-making, and in cases where the tool
performs in unexpected ways, explanations are critical for
allowing users to identify what elements of the underlying model

may be contributing to an unexpected prediction. In our case,
we used saliency heat maps to show causal attribution to a
severity score, where the highlighted regions represented areas
with the greatest contribution to the severity score. Physicians
appreciated the ability to toggle the heat map on and off to
clearly identify the areas of the image that most contributed.
However, multiple physicians did note that trust in the
application would be built over longer term use, allowing them
to assess the degree to which the application would align or
deviate from their own unaided clinical assessments.

As described by Wang et al [29], this may be considered a type
of heuristic representative bias, whereby past experience can
lead a physician to wrongly associate a current case with similar
previous cases. While our design allowed physicians to compare
multiple instances of chest x-ray images for a single patient, a
further iteration could incorporate features that would help to
address this heuristic bias. Specifically, we could include the
potential to compare an existing case to similar prototype
example cases and use a dissimilarity metric to compare cases.

It is also important to note that there was skepticism that a model
based solely on chest x-ray images could provide prediction as
good as a model based on multiple inputs. This highlights the
design challenge of optimizing domain appropriate
representation and potential actionability in the user interface.
Clinicians felt that it is important to see the prediction of chest
x-ray images in the context of additional clinical information
that feeds into their heuristic framework used for assessing a
patient’s disease trajectory. Those additional data points clearly
played a role in their likelihood to trust the explanation;
however, they were not accounted for in our model. Further
exploration of this challenge might include comparing the
accuracy of the current model to predictions that use additional
key inputs.

Design Thinking and Rapid Evolution
The COVID-19 pandemic evolved rapidly, and as such, the
constant engagement with end users allowed the team to improve
the potential application of the tool as well as the information
displayed. During the prototype phase of development,
physicians pointed out that the hospital was rapidly starting up
a virtual care service for early discharge of COVID-19 patients
to be cared for at home. This allowed the team to realign some
of the discussion in the testing phase to assess the suitability of
the tool for a unique case that did not exist in the ideate phase
of development.

Moreover, it allowed us to modify the scope of information
displayed in the tool to bring vaccine-related information into
the main display. Again, this information only began to become
available in the prototype phase of the project.

Finally, we were able to probe physicians around the
applicability of the prototype as a shared decision-making tool
to be used with patients, which was suggested informally during
the ideate and prototype phases.

The above examples illustrate the importance of agility that is
integral to the design thinking approach and represent ways in
which the potential applicability and design were improved,
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which would not have been addressed in a traditional waterfall
development approach.

Combining Design Theory With Additional
Frameworks for a More Robust Approach
While design theory provides a well-established approach for
continuous engagement with end users, we believe our approach
of augmenting design thinking by incorporating additional
conceptual frameworks helped to create a more robust
collaborative tool design.

First, we used the NASSS framework during the “define” phase
of the project to systematically analyze the results of our
physician focus groups. This approach helped the team to
quickly identify how the potential solutions would align with
the various subdomains of the model. We see this as a pragmatic
approach and helpful augmentation of the design thinking
process to ensure the chosen design direction does not face
dramatic sociotechnical barriers to development and potential
implementation. Recent research into adoption of ML into
clinical practice has used the NASSS framework in a similar
manner. Pumplun et al [30] used the NASSS framework to
identify 13 specific factors influencing the adoption of ML
systems and further proposed a maturity model to be used by
health care institutions to assess their readiness to adopt
ML-based tools.

Similarly, we augmented the ideate, prototype, and test phases
of the project by applying the evaluation metrics proposed by
Tonekaoni et al [4]. This approach allowed us to begin the
ideation and design process focused on core domains that would
impact physician trust (domain appropriate representation,
potential actionability, and consistency). It provided a consistent
lens to assess both the prototype and test versions of the tool.
This consistency in approach led the team to quickly identify
design-specific improvements that directly led to the production
of a prototype our physicians felt could provide immediate
value.

Overall, the approach taken in our work can be situated in an
evolving space concerned with incorporating AI technologies
into health care software. Anderson et al [31] proposed a
framework of 5 lenses from which to view this growing research
field. Our work makes contributions to 2 of these lenses (AI as
alignment with human values and AI as a design process). First,
we addressed the alignment of AI as it relates to clinician trust,
describing an approach to wire framing and prototyping that
incorporates the use of a theoretical framework for trust in the
design process itself. We described how this allows to gauge
end-user alignment or trust in AI at multiple stages and optimize
designs accordingly.

Second, as described in detail throughout this work, we propose
that the alignment of AI is dependent upon integration of end
users throughout the larger design process. Our work shows the
importance and value of engaging end users prior to tool
development, specifically in the process of assessing the broader
applicability of a potential AI tool and its eventual use within
actual health care environments.

Limitations
There are several limitations associated with this work. First,
from a ML perspective, though we can verify the intuitiveness
of the explanation, the accuracy of explainability methods has
not been properly studied to date. We thus do not know how
well an explanation fits the true underlying prediction in spite
of its level of intuitiveness. This is of particular concern in the
case of additive feature attribution methods like LIME, where
a local linear model is used to explain a potentially more
complex nonlinear underlying model.

Second, we used a publicly available data set with limited data,
and thus, there were several implications. For example, it was
difficult to find exemplary samples where an explanation can
clearly demonstrate why an algorithm deviated from the ground
truth or examples that can shed light on why an algorithm may
have behaved in an unpredictable way. The data set contained
a lot of missing data and was limited beyond imaging
information, and as such, it was challenging to find examples
with the full patient state (such as vital signs, multiple time
points, etc) to provide end users with the desired contextual
information to make a fully informed assessment. Finally, the
data set was relatively old considering the rapid evolution of
COVID-19 and approaches to its treatment, and this has
implications on the likelihood of ICU admission considering
the state of a patient.

With regard to our focus group participants, it is important to
note that only physicians were represented in this research.
While this was intentional in the study design, as it is primarily
physicians who will make decisions about ICU admission, our
work could have benefited from the inclusion of additional
health care providers, such as nurses and respiratory therapists.
Indeed as Nalin [32] pointed out, a larger system perspective
of the use of the proposed tool could have provided richer data
in the focus group phases.

Conclusion
Our work set out to use a design thinking approach to develop
an XML-based decision support tool to assist clinicians. We
augmented the design thinking approach by using the NASSS
framework to help inform the development focus and direction,
and added a formal evaluation framework from the report by
Tonekaboni et al [4] to continuously focus our design on
elements that would improve clinician trust in the tool. This
research contributes to the body of health care literature that
deeply integrates end users into the design and evaluation of
XML in clinical decision support tools. As discussed, clinician
trust is seen to be one of the key barriers to larger scale adoption
of ML-based clinical decision support tools.

We believe that the approach described in our work is a unique
and valuable contribution that outlines a direction for ML
experts, UX designers, and clinician end users on how to
collaborate in the creation of trustworthy and usable XML-based
clinical decision support tools.
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