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Abstract

Background: Measurement of sodium intake in hospitalized patients is critical for their care. In this study, artificial intelligence
(AI)–based imaging was performed to determine sodium intake in these patients.

Objective: The applicability of a diet management system was evaluated using AI-based imaging to assess the sodium content
of diets prescribed for hospitalized patients.

Methods: Based on the information on the already investigated nutrients and quantity of food, consumed sodium was analyzed
through photographs obtained before and after a meal. We used a hybrid model that first leveraged the capabilities of the You
Only Look Once, version 4 (YOLOv4) architecture for the detection of food and dish areas in images. Following this initial
detection, 2 distinct approaches were adopted for further classification: a custom ResNet-101 model and a hyperspectral
imaging-based technique. These methodologies focused on accurate classification and estimation of the food quantity and sodium
amount, respectively. The 24-hour urine sodium (UNa) value was measured as a reference for evaluating the sodium intake.

Results: Results were analyzed using complete data from 25 participants out of the total 54 enrolled individuals. The median
sodium intake calculated by the AI algorithm (AI-Na) was determined to be 2022.7 mg per day/person (adjusted by administered
fluids). A significant correlation was observed between AI-Na and 24-hour UNa, while there was a notable disparity between
them. A regression analysis, considering patient characteristics (eg, gender, age, renal function, the use of diuretics, and administered
fluids) yielded a formula accounting for the interaction between AI-Na and 24-hour UNa. Consequently, it was concluded that
AI-Na holds clinical significance in estimating salt intake for hospitalized patients using images without the need for 24-hour
UNa measurements. The degree of correlation between AI-Na and 24-hour UNa was found to vary depending on the use of
diuretics.

Conclusions: This study highlights the potential of AI-based imaging for determining sodium intake in hospitalized patients.

JMIR Form Res 2024 | vol. 8 | e48690 | p. 1https://formative.jmir.org/2024/1/e48690
(page number not for citation purposes)

Ryu et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:kimhwhw@gmail.com
http://www.w3.org/Style/XSL
http://www.renderx.com/


(JMIR Form Res 2024;8:e48690) doi: 10.2196/48690

KEYWORDS

artificial intelligence; AI; image-to-text; smart nutrition; eHealth; urine; validation; AI image; food AI; hospital; sodium intake;
pilot study; imaging; diet; diet management; sex; age

Introduction

Overview
A low-salt diet is prescribed for patients with cardiovascular,
kidney, or liver diseases. In these patients, sodium intake
regulation is essential. High salt intake is a key modifiable risk
factor for these diseases. Thus, monitoring the dietary salt intake
of patients provides patients and clinicians with valuable
information on dietary salt reduction advice [1].

For therapeutic purposes, the salt intake of hospitalized patients
is assessed either indirectly by the prescription order of diet and
food consumption questionnaires or directly from repeated
24-hour urinary sodium (UNa) excretion collections [2].
However, these methods have several limitations. Discrepantly
with the prescribed diet order, the actual food intake of patients
may vary because of poor compliance. Inaccurate answers
provided during questionnaire surveys may result in biased
results. Direct access to repeated 24-hour UNa collection, which
is the standard method of salt intake marking, is an inconvenient
and costly process because samples are to be sent to a laboratory,
and flame photometry is typically required [3]. Furthermore,
this method is inherently impractical because of the dependence
on patient compliance and variability between collections.

For inpatients, a quick evaluation of salt intake would enable
real-time advice and subsequent application to the next diet
regimen. Therefore, a tool to objectively quantify a patient’s
dietary intake and repetitively evaluate the sodium content of
the diet of hospitalized patients is required.

Artificial intelligence (AI) technology has enabled image-based
analyses of nutrition and ingredients. Picture-to-Amount, a deep
learning architecture using a cross-modal image-to-text retrieval
system, can predict the number of ingredients in a given food
image [4]. Technology-assisted dietary assessment relies on AI
to accurately group food pictures and measure food credit by
assessing a cellphone food record [5]. AI models for dietary
assessment have been verified for reproducibility and validity.
A large-scale population survey verified the accuracy of one
such AI model for nutrient analysis [6]. Carter et al [7]
conducted a study to compare the nutritional intake recorded
in the smartphone app called “My Meal Mate” and the
nutritional intake using the 24-hour recall method. Ahmed et
al [8] divided participants of their study into 2 groups, namely
a meal diary group and a tablet application use, and compared
their nutrient intakes [8]. A fully automatic monitoring system
of nutrient intake by hospitalized patients was presented for
medical use by processing Red Green Blue (RGB) depth image
pairs before and after meal consumption using AI-based

estimation [9]. However, most studies have focused on
classifying food or identifying the content of protein, fats, and
carbohydrates, whereas studies on specific nutrients such as salt
are scarce. To further improve the assessment and monitoring
of the salt content of inpatients’ diets, the validation of accurate
estimation of the diet and consumption of salt by patients is still
required.

Objectives
We evaluated whether sodium intake could be determined
through AI methods using food photographs and known nutrition
information in hospitalized patients. We also determined if it
is significant to compare sodium intake with 24-hour UNa,
which is the gold standard for measuring sodium intake.

Methods

Study Design and Population
This single-center prospective study was conducted from August
to November 2021 and involved 54 hospitalized patients,
recruited from the hospitalist-run acute care unit as well as
nephrology and urology departments. The following criteria
were used for inclusion: (1) adult patients aged 19 years or older,
(2) patients who agreed to take photographs before and after
meals, and (3) patients who were prescribed 10 g of salt (4 g of
sodium) in their diet. Patients who were unable to eat because
of conditions such as respiratory arrest requiring tracheal
intubation, cardiac arrest, acute coronary syndrome or
life-threatening arrhythmias, failure of more than 2 organs,
recent trauma, or burns of the neck and face were excluded.
People with alcohol addiction and pregnant patients were also
excluded. Previous medical history, demographics, and
laboratory data were retrieved from electronic medical records.

Nutrient Information and Acquisition of Food Images
A novel and dedicated image database was developed because
models pretrained using the data of different regions and
countries could not be used. Hence, curating a local food data
set was necessary, particularly for measuring sodium intake in
hospitalized patients. A 3-month diet was predetermined before
the study was initiated. The Seoul National University Bundang
Hospital Nutrition Department provided all the meals and
nutrient information. To establish the new data set and salt
estimation algorithm, photographs of cooked food, plates, and
spoons from the selected menu were collected. The researchers
took photographs of the patients’ meals before and after
consumption for a day and prohibited the patients from eating
snacks or any outside food, except for water (Figure 1A and
1B).
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Figure 1. Food photographs taken (A) before and (B) after meal consumption for sodium intake measurement. The red track indicates the recognition
of the amount of food intake.

Figure 2. Main architecture of the hybrid model for food quantity estimation for and sodium amount estimation. RGB: Red Green Blue.

Food Image Analysis—Sodium Intake Measurement
with AI (AI-Na)
We used the hybrid model for sodium intake measurement based
on food image analysis. This model incorporates the You Only
Look Once, version 4 (YOLOv4) model’s detection of the image
areas and uses 2 classification approaches—Custom-101 and
Hyperspectral imaging—to predict the food quantity estimation
for sodium amount (Figure 3A and 3B). YOLOv4 has been used
in several previous studies to detect and classify the food and
dish areas in the images [10,11]. Multidish images were
generated by cropped images using the boundary-box area to
create a data set containing images with different sizes. Figure
3 shows data generated after converting single images into
multidish images. A data set for a convolutional neural network
with one kind of food was placed in dishes of different shapes.
Then, all the food images were rotated to different angles, and
the light and sharpness of these images were adjusted (Figure
3B). For the estimation of food quantity from the images, we
predominantly used convolutional neural networks, with
ResNet-101 being our primary model of choice. In our pursuit

to select the optimal classification model, several alternative
architectures were also evaluated. This included experimenting
with models such as MobileNetV2, ResNet-18,
Wide-ResNet-50, and InceptionV3. After rigorous testing and
evaluation, ResNet-101 demonstrated superior performance,
affirming its selection for our research objectives. The amount
of food remaining was estimated, and the calorie and nutrition
contents were estimated [12,13]. The food photographs were
color-based images, and a hyperspectral image was used to
clarify the differences between colors and improve image
quality. Hyperspectral images have rich information and show
superior performance when used for feature identification based
on pixel intensity [14,15]. In our study, we used Custom-MST++
to facilitate the conversion of standard RGB images into
hyperspectral images. Although a conventional RGB image is
composed of 3 channels (ie, red, green, and blue), the
reconstructed hyperspectral image boasts an enhanced structure,
encompassing 31 distinct bands. This transition from a trichannel
format to a multiband representation allows for a more nuanced
and detailed analysis, critical for our research objectives. The
following steps must be performed when using hyperspectral
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images for estimating food quantity: (1) reconstruction of the
hyperspectral image from the RGB image, (2) preprocessing of
the hyperspectral image thus obtained, (3) calculation of the
pixel intensity per spectral band, and (4) classification with of
the food quantity using random-forest regression of food
quantity. Therefore, by using the aforementioned method and
procedures, the types and quantities of food that the patients
consumed were classified and estimated from the food images.
In our research, our foremost goal was to devise an algorithm
capable of estimating sodium intake solely from images.
Initially, our challenge was to accurately discern the volume or
weight of the food items depicted in these images. Leveraging
cutting-edge AI methodologies, we crafted a model adept at

both recognizing and quantifying various food items. As part
of this implementation process, we used information regarding
the selected menu’s nutrients, type of food, and amount of food
based on the protocol of the hospital nutrition department. Once
we established the food quantity, we cross-referenced it with
the nutritional data pertinent to the identified items. By
combining this food quantity data with the nutritional profiles,
our algorithm adeptly calculated the sodium proportion in the
given dishes, ultimately yielding the sodium intake value, which
we have denoted as AI-Na (unadjusted). Subsequent adjustments
were made to the algorithm by subtracting sodium content from
administered fluids, resulting in a refined AI-Na (adjusted;
Figure 2).

Figure 3. Sodium intake measurement using the artificial intelligence–based method. (A) Data generated after converting single images into multidish
images; (B) Dataset for the convolutional neural network. 'Q' denotes quantity in the classification of food classes by portion size.

The 24-Hour UNa Collection as a Reference Value for
Sodium Intake
The gold standard for estimating dietary sodium intake is the
24-hour UNa value [16]. Participants were asked to collect all
urine during a 24-hour period, starting with the first urine sample
on the morning of the day when they took the food photos and
concluding with the second urine sample on the following
morning. The urine aliquots were stored at –20 °C before
transportation to the certified laboratory. An ion-selective
electrode method (Modular DPE chemistry; Roche Diagnostics)
was used to measure urinary sodium and potassium levels. The
urinary creatinine (UCr) level was measured using the Jaffe
reaction (kinetic colorimetric assay; Roche Diagnostics). The
urine samples were excluded if any of the following were
observed: (1) total volume of urine during the 24-hour period
was <500 cc, (2) UCr was <0.6 g/day in men and <0.4 g/day in
women, and (3) the self-reported spillage was more than 30 cc
[17,18].

Statistical Analysis
The Mann-Whitney test and Brand–Altman method were
performed to determine the extent to which the AI-Na values
matched the 24-hour UNa as reference values. However, because
diuretics affect the 24-hour UNa, we divided the participants

into diuretic and nondiuretic groups for the analysis. As kidney
function can also affect the 24-hour UNa, a regression equation
using sodium intake, 24-hour UNa, and estimated glomerular
filtration rate (eGFR) was developed, and an interaction term
was used to evaluate the role of diuretics. The interaction term
was used rather than the dose, depending on the use of diuretics,
as the sample was too small to evaluate the relationship between
diuretic dose and 24-hour UNa. In the baseline characteristics
of the study population, continuous variables were expressed
as median values, and categorical variables were described as
frequencies and percentages. We considered 2-sided P values
<.05 to be statistically significant. Statistical analyses were
performed using the R 4.1.0 (R foundation for Statistical
Computing).

Ethical Considerations
The study followed the general treatment policy for the
underlying disease, and patients did not go beyond the scope
of the standard treatment, except for capturing photographs of
the prescribed meal. The study protocol complied with the
Declaration of Helsinki and was approved by the Institutional
Review Board of the Seoul National University Bundang
Hospital (B2108-701-302). Written informed consent was
obtained from all the patients.
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Results

Estimating Sodium Intake From Food
Images—Quantifying Results of Food Quantity
Estimation
We collected 20,000 images for food quantity estimation and
1500 hospital images with sodium amount metadata. Table 1
and Table 2 show the results of food area detection and
classification. In the context of our research, when we refer to
YOLO versions, such as YOLOv3, YOLOv3-tiny,
YOLOv3-tiny3l, YOLOv4, and YOLOv4-tiny, an important
part of the highlight is that our choice of YOLOv4 signifies our
preference for the best training and testing mean average
precision among these versions. The decision was made after
rigorous evaluation and comparative analysis, ensuring optimal
performance for our specific use case. Moreover, similar to
choosing the ResNet-101 architecture for its distinct advantages
in certain applications, we used 5 alternative CNN models to
get the best accuracy of classification. ResNet-101 got the
highest F1-score and a lower train and validation loss in 50
epochs. Training and validation losses quantify the model’s
prediction error. Lower values indicate higher accuracy and
better generalization to new data. These losses are measured as
dimensionless quantities derived from the chosen loss function,
such as cross-entropy for classification tasks. Epoch count, such
as the 50 used in our experiments, represents the total number
of times the learning algorithm processes the entire data set, a
critical factor in optimizing the model’s learning curve and
preventing overfitting or underfitting.

Of the 54 participants enrolled in this study, 11 withdrew their
consent because they could not wait for the photographs to be

taken before the meal and because their general health
deteriorated. Seven participants were excluded due to incomplete
urine collection, and 11 were excluded due to inaccurate urine
collection based on the 24-hour UCr value. Finally, the data of
the 25 selected participants were analyzed (Figure 4).

The median age was 64 (IQR 53-74) years, and 68% (n=17)
were men. The median values of serum creatinine and serum
sodium were 1.0 (IQR 0.8-1.6) mg/dl and 138 (IQR 135.0-140.0)
mEq/ml, respectively. The baseline characteristics of the study
participants are presented in Table 3. Because the use of
diuretics affects 24-hour Una—the standard of sodium intake
evaluation—the baseline characteristics were classified
accordingly (Table 3). A total of 10 participants were treated
with saline and parenteral nutrients. Because sodium in these
fluids affects the 24-hour UNa, total intake was calculated by
adding the amount of sodium administered (AI-Na [adjusted]).

The median sodium intake (AI-Na [unadjusted]) was estimated
to be 1756.5 (IQR 1266.6-2273.2) mg when using the AI
algorithm; further, the sodium in the fluids was included,
resulting in a total sodium intake AI-Na [adjusted]) of 2022.7
(IQR 1396.2-2564.4) mg (Table 3). The 24-hour UNa was
determined to be 2783.0 (IQR 1955.0-4922.0) mg. Depending
on the effect of the diuretics, the value of 24-hour UNa varied
and was 2599.0 (IQR 1771.0-4922.0) mg and 2921.0 (IQR
2231.0-4059.5) mg for the nondiuretic and diuretic groups,
respectively (Table 4).

We compared the AI-estimated sodium intake values with those
of 24-hour UNa and analyzed the degree of concordance and
difference between the two.

Table 1. Results of food area detection.

Training time (h)Weight size (MB)Testing mAP (%)Training mAPa (%)Model name

1782367481.1YOLOv3b

6533.78590YOLOv3-tiny

6533.77787.6YOLOv3-tiny_3l

2072459598.9YOLOv4c

64.9237470YOLOv4-tiny

64.3237585.1YOLOv4-tiny_3l

amAP: mean average precision. Input size was 608×608, and iteration numbers were 50,000.
bYOLOv3: You Only Look Once, version 3.
cYOLOv4 was selected from multiple models listed in the Table.

JMIR Form Res 2024 | vol. 8 | e48690 | p. 5https://formative.jmir.org/2024/1/e48690
(page number not for citation purposes)

Ryu et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Classification of food quantity estimation.

Time (h)EpochValidation lossValidation F1-score (%)Training lossTraining F1-score (%)Model name

0.8500.7930.1595MobileNetv2

1.2500.1920.1296ResNet-18

1.3500.1940.296Wide-ResNet-50

1.2500.0395.50.1198ResNet-101a

1.4500.12930.1796Inceptionv3

aResNet-101 was selected from multiple models listed in the Table.

Figure 4. Flow diagram of the study population.
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Table 3. Comparison of the characteristics between the diuretic and nondiuretic groups.

Diuretics (n=11)Non-diuretics (n=14)Total (N=25)Characteristics

62.0 (56.5-79.5)64.5 (43.0-72.0)64 (53-74)Age, median (IQR)

5 (46)12 (86)17 (68)Sex (male), n (%)

27.4 (26.1-29.1)24.3 (23.7-26.3)25.8 (23.7-28.8)BMI (kg/m2), median (IQR)

8 (73)8 (57.1)16 (64)Hypertension, n (%)

6 (55)6 (43)12 (48)Diabetes, n (%)

3 (27)4 (29)7 (28)Liver cirrhosis, n (%)

4 (36)0 (0)4 (16)Congestive heart failure, n (%)

1 (9)2 (14)3 (12)Coronary artery disease, n (%)

2 (18)1 (7)3 (12)Cerebrovascular disease, n (%)

1 (9)4 (29)5 (20)Cancer, n (%)

1 (9)4 (29)6 (24)Chronic kidney disease, n (%)

10.5 (9.7-13.2)11.6 (10.0-13.3)11.1(10.0-13.3)Hemoglobin (mg/dl), median (IQR)

138.0 (135.0-140.0)138.0 (133.0-140.0)138.0 (135.0-140.0)Sodium (mEq/L), median (IQR)

4.0 (3.6-4.4)4.0 (3.9-4.3)4.0 (3.7-4.4)Potassium (mEq/L), median (IQR)

1.3 (0.9-1.8)1.0 (0.7-1.4)1.0 (0.8-1.6)Serum creatinine (mg/dl), median (IQR)

3.4 (3.1-4.2)3.6 (3.3-4.0)3.6 (3.3-4.1)Albumin (mg/dl), median (IQR)

54.06 (27.77-74.43)83.82 (52.04-98.38)70.41 (42.57-89.55)eGFRa (ml/1.73m2), median (IQR)

aeGFR: estimated glomerular filtration rate.

Table 4. Sodium input calculated with AI (AI-Na) and 24-hour urine sodium (UNa) excretion.

P valueParticipants, median (IQR)Sodium and urine output metrics

Diuretic (n=11)Nondiuretic (n=14)Total (N=25)

.371756.5 (1620.9-2418.8)1646.4 (1162.4-2244.9)1756.5 (1266.6-2273.2)AI-Na (mg; unadjusteda)

.980 (0.0-0.0)177.1 (0.0-190.8)0 (0.0-177.1)Sodium in the fluids (mg)

.982022.7 (1620.9-2418.8)2034.2 (1266.6-2748.9)2030.0 (1396.2-2564.4)AI-Na (mg; adjustedb)

.991650.0 (1210.0-1984.0)1750.0 (916.0-2468.0)1170.0 (1120.0-2210.0)Total urine output (ml/day)

.812921.0 (2231.0-4059.5)2599.0 (1771.0-4922.0)2783.0 (1955.0-4922.0)24-hour UNa (mg/day)

.060.8 (0.6- 0.9)1 (0.9-1.2)0.9 (0.7-1.1)24-hour UCrc (g/day)

aUnadjusted with the amount of sodium in the administered fluids.
bAdjusted with the amount of sodium in the administered fluids.
cUCr: urine creatinine.

The Difference and Accordance Analysis Between
Sodium Intake by Image-Sodium and 24-Hour UNa
The sodium intake was measured using the 2 aforementioned
methods and was 2022.7 mg in AI-Na (adjusted) and 2783.0
mg in 24-hour UNa, and the statistical significance was 0.02,
indicating a statistically significant difference. Considering the
effect of diuretics on UNa, the participants were divided into 2
groups: diuretic and nondiuretic, and no significant difference
was noted between the 2 groups (Table 5).

The disparity between the 2 methods was not insignificant, and
we assessed its impact on the concordance. Our analysis using
the Bland-Altman method revealed a bias of –1106.4 mg, with
a CI for the concordance limit ranging from –5468.2 mg to
3255.5 mg. Given that the corresponding bias when converted
to the amount of salt is approximately 2.76 g and the
concordance limit’s CI varies from 8.1 g to 13.7 g, it is
challenging to draw conclusive inferences from these findings.
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Table 5. Differences between the total sodium input values using an artificial intelligence (AI)–based method (adjusted by fluids) and 24-hour urine
sodium (UNa) excretion.

P valueDifference testa, median (IQR)Sodium intake

.02Total participants

2022.7 (1369.2-2564.4)AI-Nab (adjustedc; mg)

2783.0 (1955.0-4922.0)24-hour UNa (mg)

.14Participants with nondiuretics

2034.2 (1282.1-2689.0)AI-Na (adjustedc; mg)

2599.0 (1817.0-4566.0)24-hour UNa (mg)

.10Participants with diuretics

2023.0 (1621.0-2419.0)AI-Na (adjustedc; mg)

2921.0 (2231.0-4060.0)24-hour UNa (mg)

aMann-Whiney test.
bAI-Na: AI-estimated sodium intake.
cAdjusted with the amount of sodium in the administered fluids.

Interaction Model Using Regression Analysis
The difference between the 2 test values could be attributed to
factors that affect 24-hour UNa excretion in a real-world setting,
such as the use of diuretics as well as the patient’s gender, age,
and renal function; this prompted us to derive a formula
considering the aforementioned factors. The eGFR value using
the Chronic Kidney Disease Epidemiology Collaboration
equation was used as a variable, and the following regression
equation was obtained using the interaction term for diuretics
because gender, age, and renal function can all be calculated
using eGFR (Table 6).

24h-UNa = 0.535 * AI-Na [adjusted]-2292.009 * I (diuretics)
+ 1.280 * AI-Na [adjusted] * I (diuretics) + 22.102 * eGFR

24h-UNa = 2.355 * AI-Na [adjusted] + 22.102 * eGFR-2292.009
(diuretic group)

24h-UNa = 0.535 * AI-Na [adjusted] + 22.102 * eGFR
(nondiuretic group)

In this equation, “I” is the interaction term.

In this regression equation, the AI-Na (adjusted) and 24-hour
UNa exhibited a strong relationship. Additionally, eGFR was
significantly related to 24-hour UNa. Because the impact of the
eGFR value on the 24-hour UNa is the same regardless of the
use of diuretics, which was negligible in this equation, it can
be assumed that 2.355 times the total sodium input (AI-Na
[adjusted]) corresponds to 24-hour UNa in the diuretic group,
and 0.535 of the AI-Na corresponds to the measured 24-hour
UNa in the nondiuretic group.

Table 6. Linear regression with the interaction term between sodium intake calculated by the artificial intelligence algorithm (AI-Na; adjusted) and

24-hour urine sodium (UNa) excretion (adjusted R2=0.739; F=18.7; P<.001).

P valueaSERegression coefficientsLinear regression with interaction term

.030.2320.535AI-Na (mg; adjustedb)

.322259.709–2292.009Furosemide dose (mg)

.028.36122.102eGFRc (ml/min/1.73m2)

.111.0761.820AI-Na (furosemide dose; adjusted)

aP value for the interaction term in the relationship.
bAdjusted with the amount of sodium in the administered fluids.
ceGFR; estimated glomerular filtration rate.

Discussion

Principal Findings
Our study may be the first study that compared an AI-based
method with 24-hour UNa for measuring sodium intake in a
real clinical field. Although the AI-Na and 24-hour UNa values
were not the same, the various factors that affect the 24-hour

UNa value, such as age, sex, renal function, diuretics, and even
the underlying disease, cannot be ignored when using real-world
data. Therefore, the 2 methods were worth evaluating using
regression. The AI-Na values can be clinically considered as a
significant indicator of sodium intake, although there were
differences based on whether diuretics were used. Therefore,
food images can be used to measure sodium intake to some
extent, but this method is still inaccurate.
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We calculated the sodium amounts in each test image as ground
truth and used them for the AI sodium amount prediction model.
Food amount served as one of the input values for Sodium
amount prediction, as we used a multi-input fixture to predict
sodium amount prediction and 24-hour UNa amount prediction
using the collected data set from the hospital. As we collected
metadata, it included food quantity, sodium amount, food
classes, food intake, and patient information. The AI-based
method predicted salt or sodium amount in food based on our
multitask method.

Concerns regarding sodium intake have led to the development
of several sodium measurement methods [16,19,20]. Numerous
methods for measuring sodium intakes are available, ranging
from 24-hour UNa, the most objective method, to single or
multiday food records and 24-hour dietary recalls in which
patients have to subjectively capture detailed information
regarding the food they consumed in the past 24 hours. The
24-hour UNa method shows up to 30% within-person variability.
Therefore, this method has been used to validate the accuracy
of dietary measurement studies [21]. Other subjective methods
for assessing sodium intake are the food diary, the recall method,
and concurrent dietary questionnaires. These methods describe
the portion size or weight of the food consumed; therefore, these
methods may not be accurate and may yield highly variable
results because they rely solely on the information that the
participants provide. Therefore, 24-hour UNa is generally used
for the external validation of these methods. Although dietary
records and 24-hour UNa are recognized as suitable methods
for measuring sodium intake, challenges such as difficulty
during measurement and variability in results persist. Therefore,
there is a growing demand for a more accurate and convenient
method to measure sodium intake.

The rising interest in health care has led to an increased demand
for nutrient and diet management. With the widespread use of
smartphones, apps, and advancements in AI, there have been
efforts to integrate these technologies into a dietary management
system. A study was conducted to evaluate the consistency of
an app designed as a calorie measurement tool for weight loss
[7]. The comparison focused on the results from inputting
consumed food into the app with those from a phone recording.
Another study compared the food recorded in the app with a
written record to demonstrate the app’s validity [8]. These
studies proposed a novel approach that deviates from traditional
methods but still relies on patient self-recorded information.
The need for objective methods of food and nutrient intake
measurement has led to the emergence of AI-based studies that
have classified and quantified food intake using food photos.
AI-based techniques have advanced to a level at which they can
be used to classify various objects or humans in photos,
including the ability to identify the food on the plate and the
different types of food in the image; they can also determine
the food quantity [5,11,12,22]. Furthermore, the food’s
ingredients can be distinguished, and even chemical and
molecular information can be obtained using hyperspectral
images [4,15]. These studies have focused on healthy
populations, except for one that was conducted on hospitalized
patients, similar to our study [9]. This study evaluated the food
quantity, calories, carbohydrates, fat, and salt intake of

hospitalized patients by analyzing the photos taken before and
after meals. However, the reference value was calculated using
the weight and nutrition information that the hospital provided,
lacking the actual measurement of nutrient intake or clinical
reference. Additionally, because the aforementioned study
focused on the method of analyzing food photos, the
experimental setting of this study did not reflect that of a
real-world clinical one. Our study, on the other hand, considered
several variables of an actual clinical environment and showed
that salt intake measured by a photo-based AI algorithm had a
significant relationship with the gold standard of sodium intake
(ie, 24-hour UNa), thereby demonstrating that AI-Na value
establishes the foundation for clinical use.

Accurately measuring food intake in hospitalized patients is
crucial for determining their nutritional status, disease
progression, or treatment option selection. However, traditional
methods for evaluating food intake, such as visual estimation
of the entire or 75% of the amount and patients’ subjective
evaluations, often result in inaccuracies and an overestimation
of up to 15% [23,24]. Therefore, a convenient and
semiautomated digital method for food intake evaluation is
required, and AI-based food photographs are expected to fulfill
this need.

Strengths and Limitations
Our study’s strength lies in its evaluation of sodium intake in
actual inpatients using cutting-edge technologies, food photos,
and AI-based techniques as well as a comparison with
established standards. Various variables of a real clinical setting
were considered in this study, demonstrating the potential
clinical usefulness of using AI in this domain. This study had
some limitations. First, the sample size considered in this study
was small. If more patients were enrolled, it would be possible
to derive a more accurate formula using different variables. The
second limitation was the inaccurate estimation of the food
amount during food intake measurement. In addition to
considering 24-hour UNa, it would have been useful if the food’s
weight was considered both before and after consumption along
with the corresponding nutrients. Third, the method proposed
in this study failed to account for the potential loss of sodium
during cooking and trimming processes, which may have further
impacted the accuracy of the results.

Although we presented hyperspectral image reconstruction and
employed a machine learning model for estimating food
quantity, it is important to note that our approach did not directly
detect sodium amounts from food images. Instead, it
demonstrated a robust correlation between hyperspectral images
and sodium amount estimation. This correlation provides a
promising foundation for future research focused on refining
methods for predicting sodium content.

In summary, our study aimed to incorporate AI into the clinical
field; however, owing to limitations associated with AI,
incomplete nutritional information, and the diversity of
real-world treatments, comprehensive research planning is
necessary for clinical use.
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Conclusions
The method of measuring sodium intake using food photos was
found to be inconsistent as compared with 24-hour UNa, which
is widely used in clinical settings. However, the study results
have clinical significance because variables of a real-world

clinical setting, such as gender, age, diuretics, and fluid
treatment, were considered. The findings also suggest that the
formula derived in this study may not provide accurate estimates
of the absolute sodium intake. However, if additional data are
collected, it may be possible to develop a more useful formula
in the future.
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