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Abstract

Background: Atrial fibrillation (AF) represents a hazardous cardiac arrhythmia that significantly elevates the risk of stroke and
heart failure. Despite its severity, its diagnosis largely relies on the proficiency of health care professionals. At present, the
real-time identification of paroxysmal AF is hindered by the lack of automated techniques. Consequently, a highly effective
machine learning algorithm specifically designed for AF detection could offer substantial clinical benefits. We hypothesized that
machine learning algorithms have the potential to identify and extract features of AF with a high degree of accuracy, given the
intricate and distinctive patterns present in electrocardiogram (ECG) recordings of AF.

Objective: This study aims to develop a clinically valuable machine learning algorithm that can accurately detect AF and
compare different leads’ performances of AF detection.

Methods: We used 12-lead ECG recordings sourced from the 2020 PhysioNet Challenge data sets. The Welch method was
used to extract power spectral features of the 12-lead ECGs within a frequency range of 0.083 to 24.92 Hz. Subsequently, various
machine learning techniques were evaluated and optimized to classify sinus rhythm (SR) and AF based on these power spectral
features. Furthermore, we compared the effects of different frequency subbands and different lead selections on machine learning
performances.

Results: The light gradient boosting machine (LightGBM) was found to be the most effective in classifying AF and SR, achieving
an average F1-score of 0.988 across all ECG leads. Among the frequency subbands, the 0.083 to 4.92 Hz range yielded the highest
F1-score of 0.985. In interlead comparisons, aVR had the highest performance (F1=0.993), with minimal differences observed
between leads.

Conclusions: In conclusion, this study successfully used machine learning methodologies, particularly the LightGBM model,
to differentiate SR and AF based on power spectral features derived from 12-lead ECGs. The performance marked by an average
F1-score of 0.988 and minimal interlead variation underscores the potential of machine learning algorithms to bolster real-time
AF detection. This advancement could significantly improve patient care in intensive care units as well as facilitate remote
monitoring through wearable devices, ultimately enhancing clinical outcomes.
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Introduction

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia,
impacting an estimated 33.5 million people worldwide [1]. This
severe cardiac condition heightens the risks of stroke and heart
failure [2]. Clinicians typically detect and diagnose AF through
the noninvasive electrocardiogram (ECG) method. However,
ECG interpretation relies heavily on the expertise of the medical
professional, creating a need for automated ECG classification
to support clinicians. Machine learning, a subset of artificial
intelligence, has shown great potential in improving the
detection and management of AF through automated ECG
analysis [3], risk stratification [4], or treatment planning [5].

The 2020 PhysioNet Challenge data sets offer 12-lead ECG
recordings that can be used to evaluate machine learning
techniques for ECG interpretation [6]. Compared to machine
learning approaches based on small and homogeneous data sets,
algorithms using PhysioNet data are likely to be more
representative of realistic clinical scenarios, thereby making
them better suited for practical implementation. Various machine
learning techniques have been used to detect AF using ECG
data. Some of the widely explored methods include support
vector machines, decision trees, random forests, and deep
learning approaches like convolutional neural networks and
recurrent neural networks. These techniques have demonstrated
promising results in classifying normal sinus rhythm (SR) and
AF, with fair accuracy and F1-scores [4].

The performance of machine learning algorithms depends on
the quality of the input features. Common feature extraction
methods in AF detection include time-domain analysis,
frequency-domain analysis, and wavelet transform. Power
spectral density (PSD) is a popular frequency-domain feature

that has been used to differentiate SR from AF. PSD analysis
reveals information about the distribution of a signal’s power
and frequency components. An ECG signal comprises various
frequency components, including those related to the sinus
heartbeat as well as atrial and ventricular activity. The PSD
distribution of these frequency components may alter heart
conditions that affect the cardiac contraction cycle, making it
a potential indicator for identifying cardiac arrhythmias.
Consequently, we developed an automated machine learning
algorithm based on PSD to differentiate normal SR from AF
based on a large-scale data set from PhysioNet 2020.

Methods

ECG Data
We used the 2020 PhysioNet Challenge data sets (Table 1) [6],
comprising the China Physiological Signal Challenge (CPSC)
Database (men: n=3699, women: n=3178, total: n=6877, and
sampling rate: 500 Hz), CPSC-Extra Database (men: n=1843,
women: n=1610, total: n=3453, and sampling rate: 500 Hz), St
Petersburg Institute of Cardiological Technics INCART 12-lead
Arrhythmia Database (total: n=72 and sampling rate: 257 Hz),
Physikalisch Technische Bundesanstalt (PTB) Diagnostic ECG
Database (men: n=377, women: n=139, total: n=516, and
sampling rate: 1000 Hz), Physikalisch Technische Bundesanstalt
extra large (PTB-XL) electrocardiography Database (men:
n=11,379, women: n=10,458, total: n=21,837, and sampling
rate: 500 Hz), and Georgia 12-lead ECG Challenge Database
(men: n=5551, women: n=4793, total: n=10,344, and sampling
rate: 500 Hz). The PhysioNet Challenge data sets can be
accessed publicly [7], and data access is licensed under the
Creative Commons Attribution 4.0 International Public License
[8].

Table 1. 2020 PhysioNet challenge data sets.

Data setProperties

GeorgiaPTB-XLdPTBc DiagnosticSt Petersburg INCARTb

Database

CPSC-Extra DatabaseCPSCa Database

10 seconds10 secondsUnknown30 minutes6~60 seconds6~60 secondsRecording time

5005001000257500500Sampling frequency (Hz)

Participants, n

555111,379377N/Ae18433699Male

479310,458139N/A16103178Female

10,34421,8375167234536877Total

aCPSC: China Physiological Signal Challenge.
bINCART: Institute of Cardiological Technics.
cPTB: Physikalisch Technische Bundesanstalt.
dPTB-XL: Physikalisch Technische Bundesanstalt extra large.
eN/A: not applicable.
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From these data sets, we initially selected data featuring a 500
Hz sampling rate. Next, we identified ECG diagnoses using the
Systematized Nomenclature of Medicine—Clinical Terminology
codes 426783006 and 164889003 for SR and AF, respectively.
This led to the identification of 20,766 SR and 3458 AF ECG
recordings. After excluding recordings corresponding to multiple
diagnoses, the final data set comprised 9102 SR and 1088 AF
ECG recordings.

Ethical Considerations
This study was approved by the institutional review board of
Taipei Veterans General Hospital (2022-04-004BC).

ECG Preprocessing and Feature Extraction
The ECG patterns associated with AF exhibit greater variability
compared to those of SR. To explore this distinction, we used
the Welch method [9,10] to estimate PSD and determine the
frequency composition of the ECG signals. The recording
durations of the ECG data ranged from 6 to 60 seconds, with
10 seconds being the most common. This variability could lead
to differences in PSD resolution. To address this issue, we used

the frequency bin method to ensure consistent frequency
resolution across our PSD features. We set the frequency
resolution to 1/6 Hz and calculated the arithmetic mean of the
PSD frequencies within this resolution to represent the midpoint
of each envelope. The data we used had a sampling rate of 500
Hz. Based on Nyquist-Shannon sampling theorem, the highest
frequency information we can get is 250 Hz. After observing
several data plots of the original PSD graph, we can see that
most of the power of the signal is within 0 to 25 Hz. Thus, for
a 10-second ECG recording, we selected a frequency of 0 to 25
Hz which was converted to 0.083 to 24.92 Hz. Figure 1 presents
an example of original PSD plots and explains why we chose
the PSD from 0 to 25 Hz. For further segmentation, it was just
reasonable to separate the whole frequency segment into 5
smaller segments since the whole frequency ranges from 0 to
25 Hz. Figure 2 presents example ECG signals and PSD plots,
highlighting notable differences in PSD between SR and AF;
narrower harmonic frequency components can be observed in
SR, while AF patterns display more erratic frequency
components. We used these PSD features as inputs for our
machine learning algorithm.

Figure 1. Initial results of PSD for SR and AF)in lead 1. The original frequency information we got from PSD is 0 to 250 Hz. From the figure, we can
see that the power of the signal concentrates within 0 to 25 Hz. Thus, we selected 0 to 25 Hz as our main frequency band. AF: atrial fibrillation; PSD:
power spectral density; SR: sinus rhythm.
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Figure 2. A comparison of the ECG and PSD for SR and AF in lead V4. While there is a discernible difference between SR and AF in the ECG
representation, it remains challenging to distinguish them in this format. In contrast, the PSD figure demonstrates the harmonic nature of SR and the
chaotic nature of AF, making it much easier to differentiate between the two. As a result of these observations, we have chosen to use PSD as the primary
feature for our machine learning algorithms. This decision is based on the enhanced clarity and distinction provided by the PSD representation, which
allows for more accurate and effective differentiation between SR and AF in our analysis. AF: atrial fibrillation; ECG: electrocardiogram; PSD: power
spectral density; SR: sinus rhythm.

Machine Learning Methods
Supervised machine learning is a type of machine learning where
the algorithm is trained on a labeled data set, and the goal is to
make predictions for new, unseen data. There are several types
of supervised machine learning methods used in this study,
including (1) discriminant analysis: a method for modeling the
relationship between a dependent variable and one or more
independent variables (used for continuous target variables);
(2) logistic regression: a method for modeling the probability
of a binary outcome based on one or more independent
variables; (3) decision trees: a method for making predictions
by creating a tree-like model of decisions and their potential
consequences; (4) random forests: an ensemble method that
combines multiple decision trees to make a prediction; (5)
support vector machines: a method for classifying data by
finding the best boundary (or “hyperplane”) that separates the
classes; (6) neural networks: a method inspired by the structure
and function of the human brain (can be used for a wide range
of tasks, including classification and regression); and (7) naive
Bayes: a probabilistic method for making predictions based on
Bayes’ theorem (often used for text classification).

Additionally, we used a gradient boosting decision tree
algorithm, namely light gradient boosting machine (LightGBM)
[11]. It is one of the most efficient algorithms in recent years,
known for its speed and accuracy. Boosting is an approach for
combining multiple base models into a composite one. One of
the ensemble tree algorithms of LightGBM is a “leaf-wise” tree
algorithm, wherein the tree grows vertically; most of the others
are “level-wise” tree algorithms, wherein the trees grow

horizontally. The leaf-wise structure reduces time complexity
and offers a favorable balance of accuracy and efficiency,
especially for large-scale, high-dimensional data. Thus, it is
useful in classification problems.

Perceptrons are single-neuron models and the precursors to
larger neural networks; now, they are the building blocks of
neural networks. A deep neural network (DNN) is a supplement
of a feed-forward neural network and consists of 3 types of
layers: the input layer, the output layer, and the hidden layer.
The input layer receives the input signal to be processed. The
output layer performs the required task, such as prediction or
classification. The true processing engine is the hidden layers,
placed between the input and output layers. In a DNN, data flow
from the input layer to the output layer, just as in feed-forward
neural networks. The neurons are trained through back
propagation. DNNs are widely used in various applications,
including automated diagnosis using ECG data [12].

Statistical Analysis

Data Imbalance
We used the synthetic minority over-sampling technique [13]
to filter the data and reduce the imbalance between the numbers
of SR and AF recordings (n=9102 and n=1088, respectively).

F1-Score

To mitigate bias resulting from data imbalance, we used the
F1-score as the primary metric for evaluating machine learning
models. F1-scores treat false-positive and false-negative errors
equally and are more useful than accuracy in cases of class
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imbalance. The F1-score is the harmonic mean of precision and
recall, which measures the errors contributed by false positives
and false negatives, respectively.

Training, Validation, and Testing Data Sets
We divided our data sets into training, validation, and testing
sets. The training set was used to develop the models, the
validation set for model tuning, and the testing set for model
assessment. In this study, 60% of the data comprised the training
set, 20% the validation set, and 20% the testing set. For model
tuning, we used ensemble learning to identify optimal
parameters for each model based on the validation set.

Results

Comparison of the Performance of Various Machine
Learning Algorithms
We evaluated various machine learning methods, including
extra tree, LightGBM (Microsoft Corporation), CatBoost
(Yandex), XGBoost (The XGBoost Contributors), decision tree,
k-nearest neighbors, stochastic gradient descent, gradient
boosting, random forest, naïve Bayesian, logistic regression,
and DNN. Our analysis reveals that machine learning algorithms
with boosting methods outperform those without boosting. In

particular, LightGBM outperformed the other methods,
achieving the highest average F1-score of 0.988 across all 12
ECG leads and the lowest computation time for features within
the entire frequency range (0.083-24.92 Hz). Conversely, our
results indicate that the naive Bayesian algorithm performs
poorly in classifying SR and AF. Despite its simplicity, naive
Bayesian appears to be less suited for this specific task, and
alternative approaches should be considered for better accuracy
and reliability. Thus, we focused solely on LightGBM for
subsequent analyses.

Effect of Frequency Band on Model Performance
We examined the contributions of various frequency subbands
of ECG PSD features to model performance in detecting AF
(Table 2). The entire frequency range was divided into 5
subbands (0.083-4.92, 5.083-9.92, 10.083-14.92, 15.083-19.92,
and 20.083-24.92 Hz). The highest overall F1-score was
achieved by the model using the full frequency range
(0.083-24.92 Hz), and the frequency subband of 0.083 to 4.92
Hz yielded the highest F1-score among the subbands. Generally,
the F1-score for each subband was around 0.9, indicating that
every subband contains valuable information for ECG
classification.

Table 2. F1-scores for various frequency bands.

Frequency rangePerformance

20.083-24.92 Hz15.083-19.92 Hz10.083-14.92 Hz5.083-9.92 Hz0.083-4.92 HzWhole range

0.9000.9120.9250.9560.9850.988F1-score

Interlead Differences in Model Performance
In lead comparisons, aVR demonstrated the highest performance
across all frequency subbands, although the differences between

leads were minimal (Table 3). Specifically, for the entire
frequency range, using aVL resulted in the lowest classification
performance (F1-score=0.980), while using aVR achieved the
highest performance (F1-score=0.993).

Table 3. F1-scores for various leads and frequency bands.

Different leadsFrequency range

V6V5V4V3V2V1aVFaVLaVRl3l2l1

0.9890.9900.9910.9910.9880.9880.9840.9800.9930.9810.9900.985Whole range

0.9870.9900.9900.9870.9880.9860.9800.9800.9900.9780.9890.9800.083-4.92 Hz

0.9580.9630.9580.9590.9470.9610.9570.9360.9780.9300.9680.9615.083-9.92 Hz

0.9370.9120.9400.9360.9230.9260.9210.9170.9490.9000.9280.92010.083-14.92 Hz

0.9240.9380.9270.9230.9070.9200.9090.9000.9480.8540.9150.87815.083-19.92 Hz

0.9250.9400.9160.9200.8820.8770.8850.8710.9390.8570.9150.86820.083-24.92 Hz

Discussion

Principal Findings
In this study, we found that the LightGBM algorithm was the
most effective machine learning model for our purposes.
Notably, all frequency subbands contained distinct information,
achieving independent F1-scores of approximately 0.9.
Consequently, using the entire frequency range (0.083-24.92
Hz) provided the most comprehensive features and yielded the

highest F1-score of 0.988. Interestingly, among the limb leads,
aVR produced the best result, which was marginally superior
to the outcomes of chest leads and lead II. This finding is
unexpected, as lead aVR is rarely used in real-world scenarios
for detecting arrhythmia. The contributions of different
frequency bands to classification performance showed that even
though each subband contains unique features, the dominant
frequency subband (0.083-4.92 Hz) is sufficient for
distinguishing AF from SR.
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In terms of the contributions of frequency bands to classification
performance, it is important to note that the normal human heart
beats between 60 to 100 times per minute (1-1.67 Hz), whereas
the dominant frequency in AF ranges from 3.8 to 8 Hz [14].
Given the differences in frequency components between SR
and AF, they can be used to distinguish one from the other. As
demonstrated in Figure 1, multiple frequency peaks are observed
within the 0 to 25 Hz range for both SR and AF. Consequently,
frequency subbands containing distinct features may yield
different results.

Initially, we hypothesized that the subband containing the
dominant frequency (0.083-4.92 Hz) would result in the optimal
classification of SR and AF, similar to the whole frequency
range (0.083-24.92 Hz), while other subbands would struggle
to classify SR and AF effectively. Indeed, models using the
dominant frequency subband performed well, with results
closely resembling those of models using the whole frequency
range. However, other subbands also demonstrated high
performance independently (Table 2), with F1-scores exceeding
0.854. The dominant frequency subband (0.083-4.92 Hz) yielded
an F1-score of 0.985, which is comparable to that of the whole
frequency range (F1-score=0.988). These findings suggest that
although each subband contains unique features and cannot be
replaced by other subbands, the dominant frequency subband
alone is sufficient for differentiating AF from SR.

In this study, we explore the variations in AF classification
performance across different ECG leads. Each ECG lead has
unique physiological applications, which in turn influence the
preference of medical professionals in identifying specific types
of arrhythmias. For instance, lead 1, aVF, or V1 are frequently
used in diagnosing right ventricular hypertrophy. Routine
clinical practice suggests that lead 2, which is typically the focus
of medical professionals when examining AF, would yield the
most accurate results. Surprisingly, our findings revealed that
all leads, within the frequency range of 0.083-24.92 Hz,
generated F1-scores in close proximity to 0.985. Among these,
lead aVR achieved the highest F1-score at 0.993. We believe
this can be attributed to the visibility of AF in the majority of
leads and the comprehensive features encompassed by the entire
frequency range.

Contrary to our initial expectations, lead aVR, which is not a
common choice in clinical settings, produced the most optimal
results when using subbands [15]. This finding may potentially
shed light on the reentry mechanism that underlies AF [16,17].
It is worth noting that lead aVR captures data from the right
ventricle outflow tract and the basal portion of the septum,
whereas AF predominantly manifests in the left ventricle.
Consequently, the reentry mechanism emerges as the most
plausible explanation for this observed phenomenon.

In a prior study [18], the 2020 PhysioNet Challenge data sets
were used alongside the LightGBM machine learning algorithm.
However, the approaches to signal extraction and processing in
that study differed from those used in our research. The previous
study implemented filtering techniques and wavelet
multiresolution analysis, while our investigation used PSD and
the Welch method. Another key distinction between the 2 studies

is the scope of the classification task. While our research focused
solely on differentiating AF from SR, the previous study
attempted to identify 24 different diseases. Due to the varied
physiological information provided by each ECG lead, we opted
to compare the performance of LightGBM for each individual
lead, rather than inputting data from all 12 leads into the
LightGBM simultaneously. Furthermore, our study identified
the most critical frequency subband within the total frequency
range. We determined the dominant frequency subband to be
0.083-4.92 Hz, which played a significant role in our analysis.

There are several limitations to be addressed in this study. One
notable constraint is our selection of 10-second ECG recordings,
which may not accurately represent the full spectrum of
real-world clinical scenarios. The data sets used in this study
were predominantly clean, while actual clinical situations may
involve data contaminated by noise, potentially affecting the
results. Moreover, our study focused exclusively on
single-diagnosis data, representing either AF or SR. This
approach, however, does not account for the possibility of a
patient experiencing multiple arrhythmias concurrently.
Consequently, our findings were derived under simplified
conditions that may not fully reflect the complexity of real-life
cases. In light of these limitations, it is essential to interpret our
results with caution and consider further research that
incorporates a broader range of ECG recordings, addresses
potential noise-related challenges, and examines cases with
multiple coexisting arrhythmias to enhance the generalizability
and applicability of our findings to real-world clinical settings.

In summary, LightGBM proves to be a highly effective
algorithm for distinguishing AF from SR. Our study
demonstrated that when dividing the entire ECG frequency
range into subbands with fewer features, lead aVR delivered
the best performance. This outcome could potentially be
associated with the underlying pathological mechanisms of AF.
By incorporating adequate frequency band features, lead 2 ECG
data can achieve an F1-score of approximately 0.99. This level
of accuracy and efficiency of the LightGBM model renders the
algorithm suitable for implementation in clinical practice and
integration into commercialized electronic devices, such as the
smartwatch with the ECG functionality, for a range of health
care applications. This study’s findings suggest that leveraging
the power of LightGBM could enhance arrhythmia detection
and monitoring, ultimately improving patient care and outcomes.

Literature Review
In this review, we will talk about studies that introduce
techniques for AF detection, analyzing their methods, results,
and potential implications in the field of cardiology. First, one
study [19] proposed a feature extraction method based on a
gradient set for AF detection, which features simplicity, noise
tolerance, and adaptability to various classifiers. However, we
can still improve the feature extraction method in the future,
such as improving AF detection performance by proposing a
more representative feature set or combining it with other types
of features. This approach shows the potential for streamlined,
efficient feature extraction, providing a solid foundation for
further research in the domain.
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Next, the Transposed Projection–Convolutional Neural Network
(TP-CNN) method was introduced in another study [20], aiming
to use “compressed ECG signals” for AF detection. The
approach demonstrates promising results in accurately detecting
AF in wearable application scenarios while addressing energy
consumption concerns. It shows the effective use of compressed
signals and a highly accurate algorithm. Yet, its data sources
only contain 25 patients. More patients should be included in
further studies.

Another study [21] demonstrates a unique method using multiple
parameters, including the average number of f waves in a TQ
interval, showing robust real-time AF detection capabilities.
This approach not only differentiates between AF and normal
ECGs but also outperforms distinguishing AF from other
arrhythmias. However, they can discuss more about how their
algorithms will be implemented in clinical situations.

There is another study [22] focusing on low-complexity
algorithms for AF detection, a method based on RR interval
features. This approach demonstrated reasonable feature

selection while maintaining a low computational cost, making
it suitable for low-power devices. However, in future studies,
it should focus on getting a better F1-score.

In addition to ECG AF detection, there is also a signal called
photoplethysmography common in wearable devices for AF
detection, while we usually use ECG in clinical situations. This
Fitbit Heart study [23] provides an algorithm that exhibited a
high positive predictive value for concurrent AF, highlighting
the potential of consumer wearables for large-scale AF
identification. Though the result is nice, we hope we can know
more about photoplethysmography comparison with ECG.

In conclusion, these studies collectively contribute to the
evolving landscape of AF detection methods. While each
approach offers unique advantages, further research should
focus on refining these methods, exploring real-time
applications, and enhancing the overall accuracy and efficiency
of AF detection algorithms. Potential limitations should also be
emphasized in future studies.
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