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Abstract

Background: The COVID-19 pandemic has highlighted gaps in the current handling of medical resource demand surges and
the need for prioritizing scarce medical resourcesto mitigate the risk of health care facilities becoming overwhelmed.

Objective: During a health care emergency, such as the COVID-19 pandemic, the public often uses social media to express
negative sentiment (eg, urgency, fear, and frustration) as a real-time response to the evolving crisis. The sentiment expressed in
COVID-19 posts may provide valuable real-time information about the rel ative severity of medical resource demand in different
regions of a country. In this study, Twitter (subsequently rebranded as X) sentiment analysis was used to investigate whether an
increase in negative sentiment COVID-19 tweets corresponded to a greater demand for hospital intensive care unit (ICU) beds
in specific regions of the United States, Brazil, and India.

Methods: Tweets were collected from a publicly available data set containing COVID-19 tweets with sentiment labels and
geolocation information posted between February 1, 2020, and March 31, 2021. Regional medical resource shortage data were
gathered from publicly available data sets reporting a time series of 1CU bed demand across each country. Negative sentiment
tweets were analyzed using the Granger causality test and convergent cross-mapping (CCM) analysis to assess the utility of the
time series of negative sentiment tweets in forecasting |CU bed shortages.

Results: For the United States (30,742,934 negative sentiment tweets), the results of the Granger causality test (for whether
negative sentiment COV1D-19 tweets forecast ICU bed shortage, assuming a stochastic system) were significant (P<.05) for 14
(28%) of the 50 states that passed the augmented Dickey-Fuller test at lag 2, and the results of the CCM analysis (for whether
negative sentiment COVID-19 tweets forecast ICU bed shortage, assuming a dynamic system) were significant (P<.05) for 46
(92%) of the 50 states. For Brazil (3,004,039 negative sentiment tweets), the results of the Granger causality test were significant
(P<.05) for 6 (22%) of the 27 federative units, and the results of the CCM analysis were significant (P<.05) for 26 (96%) of the
27 federative units. For India (4,199,151 negative sentiment tweets), the results of the Granger causality test were significant
(P<.05) for 6 (23%) of the 26 included regions (25 states and the national capital region of Delhi), and the results of the CCM
analysis were significant (P<.05) for 26 (100%) of the 26 included regions.

Conclusions: This study provides a novel approach for identifying the regions of high hospital bed demand during a health care
emergency scenario by analyzing Twitter sentiment data. Leveraging analyses that take advantage of natural language
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processing—driven tweet extraction systems has the potential to be an effective method for the early detection of medical resource

demand surges.

(JMIR Form Res 2024;8:e46087) doi: 10.2196/46087
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Introduction

Background

The World Health Organization declared COVID-19 apandemic
on March 11, 2020 [1]. The emergence of this pandemic, caused
by SARS-CoV-2, led to an unprecedented disruption in the
global health care system that exposed and exacerbated existing
vulnerabilities in health infrastructure around the world. In
particular, the COVID-19 pandemic has had a profound impact
on thegloba medical supply chain, leading to people struggling
desperately to access crucial medical resources in the face of
case surges and high resource demand [2].

The unprecedented nature of the pandemic and the limited
availability of resources, no matter the country, will inevitably
lead to the need for prioritizing scarce medical resources to
different extents [3,4]. Wealthy countries, such as the United
States, experienced shortages of personal protective equipment
(PPE) and ventilators [5,6]. Thisled to the Centers for Disease
Control and Prevention developing guidelines for the optimal
sourcing of COV1D-19 mitigation equipment such asface masks
[7]. The pandemic also resulted in an increased strain on hospital
capacity around the world. This was especially true for low-
and middle-income countries, where health care systems are
likely to already be underresourced and stretched thin, making
them particularly vulnerable to becoming overwhelmed [8,9].
Considering the potential for future pandemic scenariosand for
therecurrence of existing disease outbreaks as new virusvariants
emerge, the development of accurate real-time methodologies
for detecting and forecasting disease impacts is critical for an
effective global health response [10,11]. For hospitals that
experience volatile demand surgesin the face of afinite medical
resource supply, timely solutions are required that can alow
for rapid and precise decisions to be made regarding resource
allocation.

Given that social media are an emerging source for real-time
and easily accessible information, thereis potential to leverage
data from socia media for forecasting real-world outcomes
[12-15]. Social media platforms and web search data host a
wealth of real-time datathat broadly reflect the current state of
affairs in a particular region [16]. Although the standards of
validation for these new data streams are till being validated
because they do not have a track record of use, these
unconventional data sources have the potential to aid in short-
and long-term surveillance, although the surveillance goals must
be clearly defined. Studies have found that leveraging socia
media to identify shortages has the potential to be a
cost-effective solution that can be used in real time [17,18]; for
instance, Get Us PPE isagrassroots organi zation that leveraged
Twitter (subsequently rebranded as X) to address medical supply
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shortagesin US health care facilities during thefirst year of the
COVID-19 pandemic [19]. Its success in garnering both public
and governmental attention to the PPE shortage crisis has
demonstrated that Twitter can be a useful tool for mobilizing
effortsto address gaps, identifying regional PPE shortages, and
informing decision-making in the health care supply chain. In
other countries too, such as India, people used Twitter during
the pandemic to amplify demands for medical oxygen and
intensive care unit (ICU) beds during periods when health care
facilities were overwhelmed by case surges [20].

Studies examining therole of social mediato glean information
about the characteristics of the pandemic note that data derived
from social media and search engine data were used to predict
new cases in countries such as South Korea [21], the United
States [22-24], China[25-27], and Iran [28]. Twitter data have
been analyzed to understand the population-level spread of
disease [29-31]. Furthermore, forecasting models have been
created to track demand for |CU capacity planning in countries
such as Chile [32,33], Brazil [34], Colombia [35], the United
States [36], India [37], and China [38]. Previous studies have
applied convergent cross-mapping (CCM) analysis to explore
possible relationships invol ving antiepidemic measure—related
tweets [39], the dynamics of misleading news on Twitter [40],
and the identification of the global drivers of influenza [41].
However, to our knowledge, there are limited studies examining
the potential of social media, particularly Twitter, to better
understand hospital bed demand.

Objectives

This study aimed to investigate the potential for social media,
a relatively novel data stream, to be leveraged as an early
warnhing and detection system for forecasting medical resource
shortages. Specifically, this study sought to determine whether
the COVID-19 discourse on Twitter could be linked to
real-world |CU bed demand. We applied the Granger causality
test and CCM analysisto explore whether a causal relationship
exists between the volume of negative sentiment COVID-19
tweets and the proportion of ICU bed occupancy in real time
in the United States, Brazil, and India. If socia media can be
successfully leveraged to develop an effective early warning
system for forecasting medical resource demand, health care
workers and governments may receive real-time insights into
pandemic scenarios to inform urgent resource allocation
decisions and gain a head start in preparing for demand surges.

Methods

Overview

For our analyses, the volume of negative sentiment COVID-19
tweets was compared with ICU bed demand data for each
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subregion in the United States, Brazil, and India. These 3
countries were selected for this study because they have high
cumulative COVID-19 death tolls[42], and they are among the
top 4 nationsin terms of Twitter users[43]; in addition, publicly
accessible validation dataon | CU bed demand are available for
each country. Three main restrictions in terms of how many
patients can be treated at a hospital during the pandemic are
available PPE, available ICU beds, and available hedth care
professional s per shift [44]. The number of available ICU beds
was selected as the validation parameter for our model.

Data Sets

For tweets, we used the publicly available Twitter data set Two
Billion Multilingual COVID-19 Tweets with Sentiment, Entity,
Geo, and Gender Labels (TBCQOV), which contains >2 hillion
COVID-19 multilingual tweets, including geographic location
and positive, negative, and neutral sentiment labels [45]. From
thisdata set, negative sentiment tweets were selected to capture
the volume of negative Twitter discourse surrounding
COVID-19 for the United States, Brazil, and India. From this
TBCOV dataset, for the period from February 1, 2020, to March
31, 2021, a total of 59,832,393 tweets were extracted for the
United States, of which 30,742,934 (51.38%) contained negative
sentiment. For Brazil, there were 5,343,723 tweets, of which
3,004,039 (56.22%) contained negative sentiment. For India,
there were 9,509,766 tweets, of which 4,199,151 (44.16%)
contained negative sentiment.

Real-world hospitdl bed demand was defined as
inpatient_beds used covid_coveragefromthe USHealth Data
COVID-19 Reported Patient Impact and Hospital Capacity by
Sate Timeseries (RAW) data set [46] for the United States and
as ICU beds needed from the Institute for Health Metrics and
Evaluation COVID-19 Projections data set for Brazil and India
[47]. The COVID-19 Projections data set contains daily
information about each region’s need and capacity for hospital
beds overal, including ICU beds. In India, similar to Brazil,
the greatest medical supply demand during the pandemic was
for oxygen cylinders and ICU beds [48]. Amid the pandemic,
the insufficient oxygen-manufacturing capacity and the
fragmented nature of the Indian health care system made it
extremely difficult for peopleto obtain the suppliesthey needed
in time [49]. Hashtags and sample tweets posted by the Indian
public during the pandemic to secure oxygen cylinders and
express the urgent need for ICU beds in specific regions have
been documented [50,51].

Data collection and analysis were conducted using Python
(Python Software Foundation).

Granger Causality Test Analysis

A time series of each region was generated using the number
of negative sentiment tweets per week. This time series was
standardized with mean and SD cal culated from historical tweet
data. Another time series, the ground truth frequency of ICU
bed demand, was generated from our preprocessed medical
data. In general, all time-series datawere binned in intervals of
1 week.

The Granger causality test was used to determine whether past
negative tweet frequency contains information that can help

https://formative.jmir.org/2024/1/e46087

Kaur et d

forecast ICU bed demand, in addition to the information
contained in the past values of 1CU bed demand alone [52]. In
theory, this test can be applied to a stationary time series. For
a nonstationary time series, first or higher difference can be
used instead [53,54]. To see whether the time series could satisfy
the requirement for the Granger causality test, the augmented
Dickey-Fuller (ADF) test, which determines whether a time
series is stationary or nonstationary, was used. In our
implementation, the functions grangercausalitytests and adfuller
from the statsmodel s package for Python were used.

CCM Analysis

The CCM anadysis workflow consisted of embedding,
cross-mapping, and convergence analysis as well as validation
and performance testing. In embedding, the negative sentiment
tweets and 1CU bed demand for each region were embedded
into higher dimensional spaces to capture their underlying
dynamics. In cross-mapping, the embedded time series were
compared to identify their relationship. In convergence analysis,
the results were assessed using statistical measuresto determine
whether there is a robust relationship between negative
sentiment tweets and ICU bed demand.

Put another way, given 2 time series X and Y, their data point
entries can be considered to exist in a vector space with x and
y axes, and the points over time form atrajectory in the space.
Likewise, one can include the time-delayed values of X as new
axes, where the vectors can be <X(t), X(t—3), X(t—6),...>,
<X(t—1), X(t—4), X(t=7),...>, etc.

If the values of X over time do indeed influence or are linked
to the values of Y, then a distance-weighted k-nearest neighbor
model inthe X, X with delay 1, X with delay 2, etc vector space
appliedtothesameY (and delay axes) space can haveits output
converge to the actual observed values of Y, that is, predict the
value of Y. If the convergence between modeled Y from X with
delays and the actual observed values of Y is close, we can say
that the model constructed represents the causality relation
between X and Y.

In our implementation, the causal_ccm packagefor Pythonwas
used.

Ethical Considerations

Ethics approval was not required for our study because all data
and information are publicly available. In addition, all
user-identifiable information was excluded from the study
results.

Results

Overview

From the TBCOV data set, for the period from February 1,
2020, to March 31, 2021, atotal of 30,742,934 tweets containing
negative sentiment were extracted for the United States;
3,004,039 tweets contai ning negative sentiment were extracted
for Brazil; and 4,199,151 tweets containing negative sentiment
were extracted for India. Our results can be categorizedinto (1)
Granger causality test analysisand (2) CCM analysis.
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Granger Causality Test Analysis

United States

Figure 1 showstime series graphs comparing negative sentiment
COVID-19 tweets with real-world ICU bed demand data for
each of the 50 US states.

Before performing the Granger causality test, the 2 time series
were checked to determine whether they were stationary or
nonstationary using ADF tests. After taking the second
difference of the 2 time series, the P values of the ADF tests
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for negative sentiment COV I D-19 tweets and | CU bed demand
were found to be <.05 for al US states, meaning that we were
ableto reject the null hypothesis (H) that aunit root was present
inthetime series samples; in other words, the 2 time serieswere
stationary. The results are summarized in Multimedia A ppendix
1

The results for the Granger causality test with Hy, that is,
negative sentiment COVID-19 tweets do not Granger-cause
ICU bed demand in US states, are presented in Table 1. At lag
2, Hy was rejected for 14 (28%) of the 50 US states (P<.05).
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Figure 1. Time series with a comparison of trends for intensive care unit (ICU) bed use with trends for the volume of negative sentiment COVID-19
tweets across all 50 US states. TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels.
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Table 1. Granger causdlity test for all 50 US states.

State P value Number of lags Reject null hypothesis
Alaska 37 10 No
Alabama .04 1 Yes
Arkansas 34 10 No
Arizona <.001 1 Yes
California 91 10 No
Colorado .61 10 No
Connecticut .99 10 No
Delaware 40 10 No
Florida .04 2 Yes
Georgia .99 10 No
Hawaii .93 10 No
lowa 97 10 No
Idaho 45 10 No
Illinois .04 2 Yes
Indiana .99 10 No
Kansas .25 10 No
Kentucky 97 10 No
Louisiana .10 10 No
Massachusetts .001 2 Yes
Maryland .99 10 No
Maine .95 10 No
Michigan .02 3 Yes
Minnesota .59 10 No
Missouri 43 10 No
Mississippi .99 10 No
Montana .32 10 No
North Carolina .02 4 Yes
North Dakota .004 3 Yes
Nebraska .93 10 No
New Hampshire 01 1 Yes
New Jersey .93 10 No
New Mexico .80 10 No
Nevada <.001 4 Yes
New York .001 1 Yes
Ohio .28 10 No
Oklahoma .047 2 Yes
Oregon 54 10 No
Pennsylvania .53 10 No
Rhode Island .002 1 Yes
South Carolina .78 10 No
South Dakota 19 10 No
Tennessee .94 10 No
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State P value Number of lags Reject null hypothesis

Texas 32 10 No

Utah 97 10 No

Virginia .02 7 Yes

Vermont .70 10 No

Washington .69 10 No

Wisconsin .95 10 No

West Virginia .99 10 No

Wyoming 24 10 No

Brazil Brazilian federative units (P<.05), qualifying all of them for

Figure 2 showstime series graphs comparing negative sentiment
COVID-19 tweets with real-world ICU bed demand data for
each of the 27 Brazilian federative units.

Before performing the Granger causality test, the 2 time series
were checked to determine whether they were stationary or
nonstationary using ADF tests, and H, was rejected for all
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the Granger causality test. The results are summarized in
Multimedia Appendix 2.

The results for the Granger causality test with Hy, that is,

negative sentiment COVID-19 tweets do not Granger-cause
ICU bed demand in Brazilian federative units, are presented in
Table 2. At lag 2, Hy was rejected for 6 (22%) of the 27
Brazilian federative units (P<.05).
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Figure 2. Time series with a comparison of trends for intensive care unit (ICU) bed use with trends for the volume of negative sentiment COVID-19
tweets across Brazil's 27 subdivisions (states and administrative divisions). TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment,
Entity, Geo, and Gender Labels.

—— Volume of negative tweets in the TBCOV repository (8-d moving average, divided by maximum value)
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Table 2. Granger causdlity test for Brazilian federative units.

Kaur et d

Federative unit P value Number of lags Reject null hypothesis
Acre .99 10 No
Alagoas .90 10 No
Amazonas .28 10 No
Amapa .99 10 No
Bahia .99 10 No
Ceard <.001 9 Yes
Federal District .99 10 No
Espirito Santo .55 10 No
Goias .60 10 No
Maranhéo .04 6 Yes
Minas Gerais .85 10 No
Mato Grosso do Sul .99 10 No
Mato Grosso .99 10 No
Para .006 2 Yes
Paraiba .04 1 Yes
Parana .60 10 No
Pernambuco 01 2 Yes
Piaui .90 10 No
Rio de Janeiro 16 10 No
Rio Grande do Norte .99 10 No
Ronddnia 91 10 No
Roraima .002 4 Yes
Rio Grande do Sul .99 10 No
Santa Catarina .99 10 No
Sergipe 48 10 No
Séo Paulo 91 10 No
Tocantins .50 10 No
India statesand the national capital region of Delhi (P<.05), quaifying

Figure 3 showstime series graphs comparing negative sentiment
COVID-19 tweets with real-world ICU bed demand data for
the 25 Indian statesincluded in the analysis (Assam, Meghalaya,
and Tamil Nadu were excluded owing to lack of data) and the
national capital region of Delhi.

Before performing the Granger causality test, the 2 time series
were checked to determine whether they were stationary or
nonstationary using ADF tests, and H, wasrejected for all Indian

https://formative.jmir.org/2024/1/e46087

RenderX

all for the Granger causality test. The results are summarized
in Multimedia Appendix 3.

The results for the Granger causality test with Hy, that is,
negative sentiment tweets do not Granger-cause ICU bed
demand in Indian states and the national capital region, are
presented in Table 3. At lag 2, Hy was rejected for 6 (23%) of
the 26 included regions (25 Indian states and the national capital
region; P<.05).
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Figure 3. Time series with a comparison of trends for intensive care unit (ICU) bed use with trends for the volume of negative sentiment COVID-19
tweets across Indian states. TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels.
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Table 3. Granger causdlity test for Indian states and the national capital region of Delhi.

State or national capital region P value Number of lags Reject null hypothesis
Haryana .99 10 No
Madhya Pradesh .60 10 No
Andhra Pradesh .99 10 No
Uttarakhand .99 10 No
Guijarat .86 10 No
Manipur .003 10 Yes
Himachal Pradesh .83 10 No
Punjab 97 10 No
Karnataka .99 10 No
Jnarkhand 32 10 No
Bihar 45 10 No
Arunachal Pradesh .99 10 No
Sikkim .99 10 No
Mizoram .99 10 No
Goa 81 10 No
Keraa <.001 8 Yes
West Bengal .28 10 No
Maharashtra .002 6 Yes
Tripura .64 10 No
Delhi 91 10 No
Uttar Pradesh .99 10 No
Rajasthan 88 10 No
Nagaland .99 10 No
Odisha .98 10 No
Telangana .99 10 No
Chhattisgarh .89 10 No

CCM Analvsi between ICU bed demand and negative sentiment COVID-19
nalysis tweets for 46 (92%) of the 50 states (P<.05). The full list of
United States correlation coefficients (r) and P values for the CCM anaysis

Figure 4 illustrates the results of the CCM analysis for the across US states is presented in Table 4.

United States, where a significant causal relationship wasfound
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Figure4. Graphs showing the convergence of the correlation coefficient (r) in convergent cross-mapping analysis asthe time serieslength (L) approaches
the maximum possible value for each US state. Series X=negative sentiment COV1D-19 tweet proportion and series Y =intensive care unit bed demand.
The blue graph represents the correl ation coefficient when modeling X causing Y (X - Y). The orange graph represents the correl ation coefficient when
modeling Y causing X (Y - X). The correlation coefficients ranged from 0.0405 (Vermont) to 0.7670 (New York). The P values ranged from .44
(Vermont) to <.001 (New York). Of the 50 US states, 46 (92%) had P values <.05.
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Table 4. Results of the convergent cross-mapping analysis for each US state. The correlation coefficients (r) ranged from 0.0405 (Vermont) to 0.7670
(New York). Series X=negative sentiment COVID-19 tweet proportion and series Y =intensive care unit bed demand. X - Y refers to the correlation
coefficient when modeling X causing Y; Y — X refersto the correlation coefficient when modeling Y causing X.

State Correlation coefficient, r P value X-Y Y-X
Alaska 0.1080 .04 0.1080 -0.1520
Alabama 0.2280 <.001 0.2280 0.0211
Arkansas 0.2320 <.001 0.2340 —-0.0166
Arizona 0.5740 <.001 0.5730 0.5460
California 0.6270 <.001 0.6260 0.1100
Colorado 0.5750 <.001 0.5760 0.3770
Connecticut 0.7010 <.001 0.7000 0.2770
Delaware 0.4810 <.001 0.4800 0.5290
Florida 0.7430 <.001 0.7430 0.5600
Georgia 0.4050 <.001 0.4040 0.0673
Hawaii 0.1650 <.001 0.1650 0.3960
lowa 0.3930 <.001 0.3870 0.2240
Idaho 0.2080 <.001 0.2070 —-0.0386
Illinois 0.5700 <.001 0.5700 0.4190
Indiana 0.2150 <.001 0.2190 0.3560
Kansas 0.3710 <.001 0.3750 0.3380
Kentucky 0.2790 <.001 0.2790 0.1840
Louisiana 0.3880 <.001 0.3880 0.5810
Massachusetts 0.3590 <.001 0.3570 0.4900
Maryland 0.3980 <.001 0.3980 0.5700
Maine 0.0526 31 0.0518 0.2660
Michigan 0.5480 <.001 0.5500 0.3720
Minnesota 0.2960 <.001 0.2930 0.2920
Missouri 0.2920 <.001 0.2890 0.2170
Mississippi 0.5950 <.001 0.5950 0.2920
Montana 0.2600 <.001 0.2600 0.2020
North Carolina 0.5470 <.001 0.5400 0.5850
North Dakota 0.6000 <.001 0.5990 0.6830
Nebraska 0.1580 .002 0.1570 0.2520
New Hampshire 0.4080 <.001 0.4080 0.0395
New Jersey 0.6830 <.001 0.6770 0.4970
New Mexico 0.4810 <.001 0.4800 0.3220
Nevada 0.1800 <.001 0.1800 0.2380
New York 0.7670 <.001 0.7660 0.4700
Ohio 0.4840 <.001 0.4830 0.1210
Oklahoma 0.0565 27 0.0559 0.0657
Oregon 0.2590 <.001 0.2570 0.1350
Pennsylvania 0.6290 <.001 0.6280 0.4440
Rhode Island 0.3990 <.001 0.3990 0.3960
South Carolina 0.2550 <.001 0.2540 0.2780
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State Correlation coefficient, r P value XY Y - X

South Dakota 0.4140 <.001 0.4130 0.1500

Tennessee 0.4920 <.001 0.4920 0.0250

Texas 0.4430 <.001 0.4430 0.5220

Utah 0.2970 <.001 0.2950 -0.0438

Virginia 0.3760 <.001 0.3740 0.1550

Vermont 0.0405 44 0.0341 0.0602

Washington 0.5930 <.001 0.5930 0.2970

Wisconsin 0.6140 <.001 0.6140 0.2920

West Virginia 0.0746 14 0.0752 -0.0510

Wyoming 0.2700 <.001 0.2690 0.3740
Brazil bed demand and negative sentiment COVID-19 tweets for 26

Figure 5 illustrates the results of the CCM analysis for Brazil,
where asignificant causal relationship was found between ICU
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(96%) of the 27 Brazilian federative units (P<.05). Thefull list
of correlation coefficients (r) and P valuesfor the CCM analysis
across Brazil is presented in Table 5.
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Figure5. Graphs showing the convergence of the correlation coefficient (r) in convergent cross-mapping analysis asthe time serieslength (L) approaches
the maximum possible value for each Brazil subregion. Series X=negative sentiment COVID-19 tweet proportion and series Y = intensive care unit bed
demand. The blue graph represents the correlation coefficient when modeling X causing Y (X - Y). The orange graph represents the correl ation coefficient
when modeling Y causing X (Y — X). The correlation coefficients ranged from 0.0751 (Amap4) to 0.8010 (Amazonas). The P values ranged from .14
(Amapad) to <.001 (Amazonas). Of the 27 Brazilian federative units, 26 (96%) had P values <.05.
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Table 5. Results of the convergent cross-mapping analysis for each Brazilian federative unit. The correlation coefficients (r) ranged from 0.0751
(Amap3) to 0.8010 (Amazonas). Series X=negative sentiment COVID-19 tweet proportion and series Y =intensive care unit bed demand. X - Y refers
to the correlation coefficient when modeling X causing Y; Y - X refers to the correlation coefficient when modeling Y causing X.

Federative unit Correlation coefficient, r P value X-Y Y-X

Acre 0.5800 <.001 0.5800 0.7230
Alagoas 0.6010 <.001 0.6010 0.6250
Amazonas 0.8010 <.001 0.8010 0.8500
Amapa 0.0751 14 0.0758 0.6270
Bahia 0.5940 <.001 0.5940 0.4860
Ceara 0.3140 <.001 0.3170 0.7180
Federal District 0.2720 <.001 0.2600 0.1720
Espirito Santo 0.1940 <.001 0.1940 0.4150
Goias 0.3290 <.001 0.3290 0.2490
Maranh&o 0.3970 <.001 0.3960 0.7280
Minas Gerais 0.5370 <.001 0.5360 0.3490
Mato Grosso do Sul 0.1910 <.001 0.1910 0.3350
Mato Grosso 0.3400 <.001 0.3400 0.3070
Para 0.4750 <.001 0.4830 0.6790
Paraiba 0.3780 <.001 0.3780 0.5710
Parana 0.6110 <.001 0.6150 0.2810
Pernambuco 0.4350 <.001 0.4350 0.7090
Piavi 0.2990 <.001 0.2990 0.3390
Rio de Janeiro 0.4760 <.001 0.4760 0.5930
Rio Grande do Norte 0.2810 <.001 0.2780 0.5440
Rondbnia 0.2760 <.001 0.2770 0.4130
Roraima 0.5170 <.001 0.5160 0.3440
Rio Grande do Sul 0.5040 <.001 0.5040 0.6780
Santa Catarina 0.5400 <.001 0.5490 0.2040
Sergipe 0.3230 <.001 0.3220 0.3400
Sdo Paulo 0.6240 <.001 0.6250 0.5690
Tocantins 0.3530 <.001 0.3530 0.2430

India (100%) of the 26 included regions (25 states and the national

capital region; P<.05). The full list of correlation coefficients
Figure 6 illustrates the result of the CCM analysis for India,  (r) and P values for the CCM analysis across Indian states and
where asignificant causal relationship was found between ICU  the national capital region is presented in Table 6.
bed demand and negative sentiment COVID-19 tweets for 26
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Figure6. Graphs showing the convergence of the correlation coefficient (r) in convergent cross-mapping analysis asthe time serieslength (L) approaches
the maximum possible value for each of the 26 Indian states included in the analysis. Series X=negative sentiment COVID-19 tweet proportion and
series Y =intensive care unit bed demand. The blue graph represents the correlation coefficient when modeling X causing Y (X - Y). The orange graph
represents the correlation coefficient when modeling Y causing X (Y — X). The correlation coefficients ranged from 0.1630 (Sikkim) to 0.8060 (Delhi).

The P values ranged from .001 (Sikkim) to <.001 (Delhi). All 25 states and the national capital region of Delhi had P values <.05.
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Table 6. Results of the convergent cross-mapping analysis for each of the 25 Indian states included in the analysis and the national capital region.
Correlation coefficients (r) ranged from 0.163 (Sikkim) to 0.806 (Del hi). Series X=negative sentiment COVID-19 tweet proportion and series Y =intensive
care unit bed demand. X - Y refersto the correlation coefficient when modeling X causing Y; Y — X refersto the correlation coefficient when modeling

Y causing X.

State or national capital region Correlation coefficient, r P value XY Y- X

Haryana 0.486 <.001 0.4860 0.4840
Madhya Pradesh 0.417 <.001 0.4170 0.3950
Andhra Pradesh 0.258 <.001 0.2580 0.2940
Uttarakhand 0.489 <.001 0.4890 0.5920
Gujarat 0.669 <.001 0.6680 0.6120
Manipur 0.511 <.001 0.5110 0.3720
Himachal Pradesh 0.470 <.001 0.4700 0.3000
Punjab 0.244 <.001 0.2440 0.2260
Karnataka 0.646 <.001 0.6480 0.3830
Jharkhand 0.517 <.001 0.5170 0.4900
Bihar 0.685 <.001 0.6850 0.3870
Arunachal Pradesh 0.232 <.001 0.2320 0.2700
Sikkim 0.163 <.001 0.1630 0.4870
Mizoram 0.321 <.001 0.3180 0.3080
Goa 0.493 <.001 0.4920 0.1650
Kerda 0.612 <.001 0.6120 0.3420
West Bengal 0.631 <.001 0.6360 0.4420
Maharashtra 0.739 <.001 0.7420 0.5630
Tripura 0.470 <.001 0.4680 0.0105
Delhi 0.806 <.001 0.8090 0.4340
Uttar Pradesh 0.707 <.001 0.7070 0.6370
Rajasthan 0.582 <.001 0.5820 0.5200
Nagaland 0.315 <.001 0.2920 0.1790
Odisha 0.614 <.001 0.6140 0.6770
Telangana 0.573 <.001 0.5730 0.2660
Chhattisgarh 0.390 <.001 0.3900 0.1740

Discussion United States, Brazil, and India Two statistical tests were

Principal Findings

Given the need to prioritize the use of limited medical resources
during ahealth care emergency scenario such asthe COVID-19
pandemic, social media hold promise in identifying shortages
and can be a cost-€effective tool for the proper allocation of
medical resources, particularly ICU beds, because when
governments and organizations arewell informed with real-time
shortage data, they have the capacity to adequately address the
immediate funding and supply needs of health care facilities.
This strategy may help mitigate immediate risk to the public
until amore systematic solution is possible.

This study sought to determine which patterns existed between
negative sentiment COVID-19 tweets and real-world ICU bed
shortages during the pandemic, with the aim of leveraging social
media to pinpoint regional surges in ICU bed demand in the
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conducted to investigate this: the Granger causality test and
CCM analysis.

The Granger causadlity test aims to identify causalities where,
in a stochastic system, 1 separable variable is useful for
forecasting another. The results of the Granger causality test
for this analysis (Figures 1-3 and Tables 1-3) indicate that
negative sentiment COVID-19 tweets Granger-caused | CU bed
shortage (P<.05) for 14 (28%) of the 50 US states, 6 (22%) of
the 27 Brazilian federative unit, and 6 (23%) of the 26 Indian
regions included in the analysis (25 states and the national
capital region). By contrast, the CCM analysisaimsto identify
causalities for nonseparable variables that are linked in a
dynamic system and can identify and quantify weak to moderate
causalities that may be missed by the Granger causality test.
For the 3 countries, nearly all subregions—46 (92%) of the 50
US states, 26 (96%) of the 27 Brazilian federative units, and 26
(100%) of the 26 Indian regionsincluded in the analysis—had
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a significant (P<.05) result in the CCM analysis (Figures 4-6
and Tables 4-6), indicating a relationship between negative
sentiment COVID-19 tweets and |CU bed demand.

For the United States (Tables 1 and 4), of the 50 states, 13 (26%)
had a significant result for both the Granger causality test and
the CCM analysis (Alabama, Arizona, Florida, Illinois,
Massachusetts, Michigan, North Carolina, North Dakota, New
Hampshire, Nevada, New York, Rhode Island, and Virginia),
33 (66%) passed the CCM test but not the Granger causality
test (Alaska, Arkansas, California, Colorado, Connecticut,
Delaware, Georgia, Hawaii, lowa, Idaho, Indiana, Kansas,
Kentucky, Louisiana, Maryland, Minnesota, Missouri,
Mississippi, Montana, Nebraska, New Jersey, New Mexico,
Ohio, Oregon, Pennsylvania, South Carolina, South Dakota,
Tennessee, Texas, Utah, Washington, Wisconsin, Wisconsin,
and Wyoming), 1 (2%) passed the Granger causality test only
(Oklahoma), and 3 (6%) passed neither the Granger causality
test nor the CCM test (Maine, Vermont, and West Virginia).
Considering that the majority of the US states (33/50, 66%)
passed the CCM test but not the Granger causality test, it can
be inferred that the causal relationship between negative
sentiment COVID-19 tweets and ICU bed shortage is weak to
moderate for US states because CCM analysis is better at
detecting weak to moderate causalities than the Granger test.
This also implies that the relationship between the 2 variables
(social media sentiment and |CU bed shortage) is dynamic and
influenced by anumber of complex interacting factors such that
CCM analysismay be the more appropriate method for detecting
and modeling this relationship.

For Brazil (Tables 2 and 5), asimilar pattern occurred such that
nearly al federative units (26/27, 96%) passed the CCM test,
but only a few (6/27, 22%) passed the Granger causality test.
Of the 27 federative units, 6 (22%) passed both the Granger
causality test and the CCM test (Ceard, Maranhdo, Para, Paraiba,
Pernambuco, and Roraima), 20 (74%) passed the CCM test but
not the Granger causality test (Acre, Alagoas, Amazonas, Bahia,
Federal Digtrict, Espirito Santo, Goias, Minas Gerais, Mato
Grosso do Sul, Mato Grosso, Parana, Piaui, Rio de Janeiro, Rio
Grande do Norte, Rondonia, Rio Grande do Sul, Santa Catarina,
Sergipe, Sdo Paulo, and Tocantins), none passed the Granger
causdlity test only, and 1 (4%) state passed neither test (Amapa).
This result again supports the idea of a dynamic and complex
causal relationship being detected between negative sentiment
COVID-19 tweets and 1CU bed shortage.

For India (Tables 3 and 6), a similar pattern emerged. Of the
26 regions included in the analysis (25 states and the national
capital region), 3 (12%) passed both the Granger causality test
andthe CCM test (Manipur, Kerala, and Maharashtra), whereas
the remaining 23 (88%) passed the CCM test only (Haryana,
Madhya Pradesh, Andhra Pradesh, Uttarakhand, Gujarat,
Himachal Pradesh, Punjab, Karnataka, Jharkhand, Bihar,
Arunachal Pradesh, Sikkim, Mizoram, Goa, West Bengal,
Tripura, Delhi, Uttar Pradesh, Rajasthan, Nagaland, Odisha,
Telangana, and Chhattisgarh), meaning that all 25 states and
the national capital region of Delhi passed at least the CCM
test. Thisfurther demonstratesthat CCM analysisis capable of
successfully detecting a causal pattern between negative
sentiment pandemic tweets and real-world medical resource
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shortage and that this can potentially be used to pinpoint specific
regions that are expected to face surges in medical resource
demand at a given time.

Overall, these results suggest that a significant relationship
exists between negative sentiment COVID-19 tweets and
real-world ICU bed demand at subnational scales and that this
relationship can be effectively detected and modeled using CCM
analysis. These findings also indicate that the data contained
within social media discourse regarding the COVID-19
pandemic can indeed be leveraged to identify and forecast the
real-world impacts of the pandemic in the form of ICU bed
demand surges. Further optimization of methodsfor identifying
patterns between X sentiment and real-world medical
emergencies can support the development of an early warning
system for the robust real-time prediction of health care demand
surges. Such a system may give health care workers and
government decision makersacritical head start when deciding
how to most effectively allocate medical resourcesin acrisis.

Future Directions

These results open up the possibility to develop tools that can
forecast hospital bed demand in certain regions, although further
research is required. This modeling approach can have a
significant impact in the context of the health care supply chain.
Forecasting ability is a potential factor affecting supply chain
performance [27-29]. One study found that tweets related to
food insecurity were strongly correlated with real food
insufficiencies [16]; the authors noted that thereis potential for
tweet sentiment analysis to be used as a cost-effective early
warning system that can help direct food-related interventions.
Similarly, our results suggest that thereis potential for negative
sentiment COVID-19 poststo relate to actual medical resource
shortage in regions where people use public discourse platforms
such as Twitter (since rebranded as X). Although the current
iteration of the methods described in this paper isonly relevant
to the time before a peak infection in the region, such methods
have the potential to advance preparedness measures for future
pandemics as they become more robust [31,32].

Digital data sources can aid in the identification of changesin
disease activity, and it is worth exploring whether they show
better performance in this regard than traditional COVID-19
metrics such as confirmed cases [33]. In low- and
middle-income countries, thereis potential for social mediato
act as a cost-effective early warning system to identify priority
regions for medical resource allocation in real time. User
behavior data can be extracted, given the unique social network
parameters of aregion, including the language spoken and the
preferencefor 1 social mediaplatform over another [34]. Similar
to how amultilingual data set was used in the analysesin this
study, Lopreite et a [55] analyzed a data set of tweets posted
in various European languages and found that there were early
warning signals of COVID-19 outbreaks before public
announcements about an outbreak were made. Social networks
that are particular to a region can provide user behavior data
that can inform early warning detection systems specific to that
region; for example, using Baidu search data, Qin et a [56]
were able to predict the number of new COVID-19 cases such
as fever, coronavirus, and pneumonia. Their study, along with
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similar social media—based early warning detection efforts
[37-40], shows potential for the creation of amore effective yet
affordable model to forecast new cases.

As noted in the previous subsection, there are complex
interacting factors that may explain the results observed. Thus,
further investigation is needed to unveil the dynamics
underpinning the relationship between X negative sentiment
pandemic tweets and medical resource demand; for instance,
sociopolitical and economic challenges may have had varying
influences on the X discourse by affecting public perceptions
of COVID-19 management measures across countries. For
Brazil (Figure 2), it can be seen that an increased proportion of
negative sentiment preceded the ICU bed demand surge.
Concern about preventing the proliferation of COVID-19 was
among the major emergent X topicsin Brazil, and politics also
influenced the X landscape [57]. Brazil has a decentralized
health system where the federal government finances the states
and municipalities that provide health care services. Different
levels of government must be able to coordinate effectively,
and a failure to do so can lead to a disjunction in the care
provided. A study by Neveset al [58] found that key government
stakehol ders underestimated the magnitude of the pandemicin
the early weeks; for example, the Minas Gerais State Health
Department posted messages on social media about not
suspending the carnival, which is Brazil’slargest festival. When
guestionable COVID-19 management decisions are made that
increase public health risk, such as decisions not to suspend
major public events (eg, Brazil’sannual carnival), it ispossible
for the X discourse to reflect negative public perceptions of
these government decisions before their negative impacts on
case count and 1CU bed demand. Further research is required
to better understand the reliability of social mediadiscoursein
reflecting current pandemic management landscapes so that
web-based public sentiment can accurately forecast pandemic
impacts.

Incongruencies among different level s of government may have
also contributed to the results observed. The then President of
Brazil, Jair Messias Bolsonaro, i ssued messages that conflicted
with thoseissued by states and municipalities, such asdefending
hydroxychloroquine as a COVID-19 treatment and countering
mask use and physical distancing [59]. At astate-specific level,
the governor of Rio de Janeiro state faced charges regarding
irregularitiesin contractsfor building emergency field hospitals,
which prevented efforts to relieve strain on hospitals [60]. In
addition, the state government of Sdo Paulo was being
investigated for ventilator fraud, which led to a shortage of
ventilators that prevented citizens from accessing life-saving
equipment [61]. Overal, the lack of coordinated effort and
strategy for dealing with the pandemic contributed to the
inconsistent implementation of preventive measures across the
states and resulted in confusion for the public. State-specific
challenges may have also contributed to the rise in negative
sentiment and increased medical resource demand, which can
help explain the results observed.

A similar exploration of potential factors for India can shed
light on how they contributed to the nuanced and complex
relationship observed between negative sentiment COVID-19
tweets and medica resource demand. India emerged as an
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interesting case study during the pandemic because of the novel
use of X by citizens as a way of sourcing ICU beds and
ventilatorsfor their loved ones. As citizensfound out that there
was a shortage of equipment in the hospitals, they took to X in
an effort to source medical supplies that were desperately
needed. Adherence to government policy is another factor to
consider inthelndian X discourse; for example, both COVID-19
waves were associated with nationwide shutdowns, but as the
monthswore on, people started to adhere less to measures such
as masking and physical distancing. This may have contributed
to an increase in cases, overwhelming hospitals [62].

Further exploration into region-specific factorsaswell as social
and political contexts will be important for refining our
forecasting models and gaining a better understanding of the
complex relationship between X negative sentiment pandemic
tweets and medical resource demand.

Limitations

One process in our methodology involved using tweets that
already had sentiment labels and analyzing them. However, we
are aware that there may not be data sets containing
pandemic-related tweets in future contexts. Therefore, 1
recommendation would be to first extract relevant
keyword-related tweets and increase accuracy with the help of
supervised natural language processing models. A similar study
with the aim of predicting medical resource shortages based on
tweets was conducted for the state of New York [63]. The
method consisted of using supervised learning to find related
tweets, which is amore robust method.

Oneother limitation isthat the ICU bed data setsfor Brazil and
India that were used to validate the model have decreased
reliability because they only provide an estimate of the actual
data[18], and they may not have accounted for fluctuationsin
| CU bed supply. However, because there were no other publicly
available data sets, it was reasonable to use these data sets.

The use of X data has some important ethical considerations
that lie at the intersection of privacy and data collection; for
example, social media data collection can be considered a
double-edged sword. Onthe one hand, it providesvery valuable
data that can increase the possibility of creating important
solutions such as a more cost-effective and faster method of
gauging PPE shortages and medica resource demand. On the
other hand, current artificial intelligence and data collection
practices have raised concerns about privacy and the selling of
personal data.

Conclusions

The COVID-19 pandemic has made it clear that adequate
demand-based allocation of medical resources and adequate
preparedness for surges in hospital admissions are paramount
to reduce cases and deaths at the onset of a pandemic. Between
the time that a pandemic hits and the time that a vaccine is
developed and distributed, it is vital that the medical supply is
carefully managed to ensure that all health care facilities have
adequate capacity and proper plans for meeting unprecedented
medical resource demand surges. This study analyzed negative
sentiment COV1D-19 tweets that were compared with real-world
ICU bed use data. Our results show promise that leveraging
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social media, particularly X, has the potential to provide a powerful tools that can inform health care decision-making in
cost-effective relatively rapid method that can inform resource  pandemic scenarios. X causal analysis in shortage forecasting
allocation to facilities that need it most. has the potential to be applied broadly in a global context for
identifying medical resource demand and informing health care

Further investigation into the potential of X datain the modeling supply chain decisions

of medical supply shortages may lead to the development of
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