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Abstract

Background: Vancomycin pharmacokinetics are highly variable in patients with critical illnesses, and clinicians commonly
use population pharmacokinetic (PPK) models based on a Bayesian approach to dose. However, these models are
population-dependent, may only sometimes meet the needs of individual patients, and are only used by experienced clinicians
as a reference for making treatment decisions. To assist real-world clinicians, we developed a deep learning–based decision-making
system that predicts vancomycin therapeutic drug monitoring (TDM) levels in patients in intensive care unit.

Objective: This study aimed to establish joint multilayer perceptron (JointMLP), a new deep-learning model for predicting
vancomycin TDM levels, and compare its performance with the PPK models, extreme gradient boosting (XGBoost), and TabNet.

Methods: We used a 977-case data set split into training and testing groups in a 9:1 ratio. We performed external validation of
the model using 1429 cases from Kangwon National University Hospital and 2394 cases from the Medical Information Mart for
Intensive Care–IV (MIMIC-IV). In addition, we performed 10-fold cross-validation on the internal training data set and calculated
the 95% CIs using the metric. Finally, we evaluated the generalization ability of the JointMLP model using the MIMIC-IV data
set.

Results: Our JointMLP model outperformed other models in predicting vancomycin TDM levels in internal and external data
sets. Compared to PPK, the JointMLP model improved predictive power by up to 31% (mean absolute error [MAE] 6.68 vs 5.11)
on the internal data set and 81% (MAE 11.87 vs 6.56) on the external data set. In addition, the JointMLP model significantly
outperforms XGBoost and TabNet, with a 13% (MAE 5.75 vs 5.11) and 14% (MAE 5.85 vs 5.11) improvement in predictive
accuracy on the inner data set, respectively. On both the internal and external data sets, our JointMLP model performed well
compared to XGBoost and TabNet, achieving prediction accuracy improvements of 34% and 14%, respectively. Additionally,
our JointMLP model showed higher robustness to outlier data than the other models, as evidenced by its higher root mean squared
error performance across all data sets. The mean errors and variances of the JointMLP model were close to zero and smaller than
those of the PPK model in internal and external data sets.
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Conclusions: Our JointMLP approach can help optimize treatment outcomes in patients with critical illnesses in an intensive
care unit setting, reducing side effects associated with suboptimal vancomycin administration. These include increased risk of
bacterial resistance, extended hospital stays, and increased health care costs. In addition, the superior performance of our model
compared to existing models highlights its potential to help real-world clinicians.

(JMIR Form Res 2024;8:e45202) doi: 10.2196/45202
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Introduction

Vancomycin is frequently used for severe infections caused by
gram-positive bacteria (including methicillin-resistant
Staphylococcus aureus), such as pneumonia, skin and soft tissue
infections, and other sepsis or septic shock in patients with
critical illnesses. For vancomycin, because of the narrow
therapeutic range and individual differences in pharmacokinetic
parameters, therapeutic drug monitoring (TDM) is recommended
to minimize toxicity and improve therapeutic efficacy. Although
various pharmacokinetic indicators related to the antibacterial
action of vancomycin have been suggested, the most recent
guideline [1] recommends that a ratio of the area under the curve
(AUC) over 24 hours to the minimum inhibitory concentration
(MIC) of ≥400 should be the primary pharmacokinetic and
pharmacodynamic (PK/PD) predictor of vancomycin activity
[2]. However, in the real world, especially in intensive care
units (ICUs), a more practical method of vancomycin monitoring
is evaluating with trough concentrations since calculating the
AUC requires multiple blood samples per patient [3-5].

There are different methods to determine the vancomycin AUC,
such as the Bayesian approach or equation-based methodologies
such as the trapezoidal model. The Bayesian approach uses
population data to estimate individual patient pharmacokinetic
parameters, called Bayesian priors. However, this method
requires complex mathematical calculations to estimate the
posterior distribution of model parameters and relies on certain
assumptions, such as the normality of errors and data
independence. Violating these assumptions can result in biased
results, and using the Bayesian approach requires expensive
commercial software programs [6,7]. On the other hand,
equation-based approaches, like the trapezoidal model, do not
require specialized software but need multiple blood sampling
to achieve 2 steady-state levels. Since it is done under
steady-state conditions, it cannot account for potential changes
in AUC due to ongoing acute physiological changes. The
pharmacokinetic profile of vancomycin exhibits linear
pharmacokinetics over a range of therapeutic doses, is highly
variable, especially in older people or people with critical
illnesses, and is different for adults with normal renal function
[8,9].

Population pharmacokinetic (PPK) models of vancomycin
required to determine the AUC have very limited robustness
beyond the specific population studied. The training and
experience of the clinician or clinical pharmacist are still vital
in achieving adequate vancomycin TDM, especially in patients
with critical illnesses with high heterogeneity. A more
multidimensional and consistent decision-making system is

needed in such a clinical decision-making system because
differences inevitably influence the results of individual
clinicians’abilities. Machine learning algorithms have emerged
as a promising approach for improving decision-making on
specific questions related to rich multidimensional data and for
medical research and clinical care [10-12]. In previous studies,
machine learning techniques such as decision trees [13] and
extreme gradient boosting (XGBoost) [14,15] were used to
make better predictions on vancomycin concentrations. In
addition, various deep learning models have had great success
in various fields [16], including clinical practice. These might
help solve more complex clinical problems. In this study, we
aimed to establish an ideal model by comparing and integrating
methods that have been successful so far in the decision-making
system that predicts the vancomycin TDM level in patients in
the ICU.

Methods

Study Population
This retrospective study involved 2406 patients with critical
illnesses admitted to medical ICUs, including 1 each at Dongguk
University Ilsan Hospital (DUIH) and Kangwon National
University Hospital (KNUH) between January 1, 2010, and
February 28, 2022. We used the data collected from DUIH and
KNUH as the internal and external validation data sets. The
internal validation data set contained 977 patients, while the
external validation data set contained 1429 patients.

Patients with critical illnesses (>18 years) with intravenous
vancomycin treatment history and who had at least 1 test for
vancomycin TDM were eligible for this study. Vancomycin
TDM was investigated for trough-level information. If the TDM
was checked multiple times, only the first TDM value was
selected. However, in patients with normal renal function, if
the interval between stopping vancomycin and readministering
it was 2 weeks or more, it was considered an independent TDM
value and used for analyses. Patients who received oral
vancomycin or were aged 18 years or younger were excluded.
The total serum vancomycin concentrations were determined
using a fluorescence immunoassay (VANC3, Cobas c 702;
Roche Diagnostics).

The data set was split into training and testing groups in a 9:1
ratio, with 879 and 98 cases representing the internal data set,
respectively. For external validation, 1429 cases from KNUH
were used. To evaluate the model’s generalization and the range
of expected errors of the classifiers, 10-fold cross-validation
was performed on the internal training data set, with a 9:1 ratio
and 791 and 88 cases, respectively. The model was tested on
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both the internal and external test data sets for each fold and
the metrics obtained were used to calculate the 95% CI over the
10 folds. The internal and external data sets remained constant
across all folds. To evaluate the generalization ability of the
joint multilayer perceptron (JointMLP) model, we used 2394
cases from the Medical Information Mart for Intensive Care–IV
(MIMIC-IV) [17] as a US critical care database used for
large-scale multi-institutional research for external validation.

Experimental Model
We proposed a JointMLP to predict the vancomycin TDM level
in patients in the ICU. The JointMLP model is an ensemble
model, meaning it combines the predictions of multiple
individual MLPs (multilayer perceptrons) to generate a final
prediction. The MLP is an artificial neural network. The MLP
consists of multiple layers of interconnected nodes (also known
as neurons) that perform mathematical operations on the input
data to generate an output. In the case of the JointMLP model
proposed for vancomycin TDM prediction, each MLP in the
ensemble consists of 3 hidden layers with a hidden unit size of
32, and the LeakyReLU activation function is used to introduce

nonlinearity into the model (Figure 1). Using an ensemble helps
reduce the risk of overfitting and improves the accuracy and
robustness of the model. In this case, the JointMLP model
comprises 100 different MLPs, each with its own set of weights
learned during the training process. To find the best set of
hyperparameters for the JointMLP model, grid search is used,
which systematically tests different combinations of
hyperparameters to find the combination that yields the best
performance on a validation data set. In this case, the tuned
hyperparameters included the number of MLPs, the number of
hidden layers, and the size of the hidden units. In a JointMLP
model, the MLPs are trained independently in parallel. During
training, each MLP in the ensemble receives a randomly selected
subset of the training data and learns to make predictions based
on that subset. The individual MLPs are then combined to
generate a final prediction, typically by taking the average of
their outputs or using a weighted combination. The MLPs are
trained independently of each other and in parallel. Our
JointMLP model is available on the websites [18] for predicting
TDM levels and recommending the frequency and dose.

Figure 1. The architecture of joint multilayer perceptron (JointMLP). The JointMLP model was built with 100 different multilayer perceptrons (MLPs)
consisting of 3 hidden layers with a hidden unit size of 32 and LeakyReLU as an activation function.
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We compared 4 other models: the PPK model [19], XGBoost,
TabNet, and 300-layer MLP. The PPK is a pharmacokinetic
model used to assess the relationship between drug concentration
and time in the body. XGBoost is an open-source library for
decision tree–based gradient-boosting machine learning. The
XGBoost model especially works well on tabular data learning.
It is a vital model for distributed training or regularization.
TabNet is a deep learning model specialized for tabular data set
analysis. TabNet could be optimized by automatically
transforming input variables and using additional validation
data to select the required variables.

For XGBoost, the hyperparameters are eta (learning rate),
gamma (minimum loss reduction required to make a further
partition on a leaf node of the tree), and max_depth (maximum
depth of a tree). The grid search was performed to find the best
combination of these hyperparameters. The eta, gamma, and
max depth values were 0.2, 0.001, and 6, respectively.

For TabNet, the hyperparameters are n_d (width of the decision
prediction layer), n_a (width of the attention embedding for
each mask), n_steps (number of steps in the architecture),
gamma (coefficient for feature reusage in the masks), and
verbose (verbosity for notebook plots). The grid search was
performed to find the best combination of these
hyperparameters. The values chosen for n_d, n_a, n_steps,
gamma, and verbose were 8, 8, 3, 1.3, and 0, respectively.

The 300-layer MLP model was constructed to verify the
performance of the JointMLP model. The hyperparameters for
the MLP model were chosen to have the same depth as the
JointMLP model, which is 100 horizontal MLPs times 3 hidden
layers. The number of hidden layers was set to 300, and the
number of hidden units was set to 32.

Data Processing
Variables that are associated with vancomycin PK/PD were
selected. These variables included the total dose of vancomycin
from start to end, the usage of the loading dose at the first use,
the total number of vancomycin infusions, the dose of
vancomycin per infusion, the mean infusing interval of
vancomycin, the interval from the start of vancomycin
administration to the measurement of vancomycin serum levels,
age, sex, height, body weight, serum creatinine levels, serum
vancomycin levels, dialysis, and the total volume of transfusion
from the start of vancomycin administration to the measurement
of vancomycin levels. Patients with impaired kidney function
may have issues with the metabolism and elimination of
vancomycin. The estimated glomerular filtration rate (eGFR),
which represents renal function, was calculated using the
Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) formula and used as a variable. For the
normalization of the data, for both the input and target variables,
all values were scaled in the range (−1 to 1) using the
minimum-maximum scaler. Moreover, we only had binary
categorical variables in the model. Therefore, no special
categorical variable encoding was performed in the model but
a simple change to 0 and 1. To select significant input variables,
we grouped variables into 5 categories. Each variable was
classified as (1) baseline demographics—age, sex, body weight,
and height; (2) drug administration-related variables; (3)

variables related to the volume of distribution; (4) eGFRs using
serum creatinine levels; and (5) variables related to the amount
of transfusion. With the above-grouped categories, first, we
have selected the default variables that would be used throughout
all scenarios: the baseline demographics and the drug
administration–related variables. Then, from the remaining 3
categories, with the clinician’s consultation, we tried to
minimize the redundancy of the variables that would have the
same meaning. Moreover, in accordance with the feature
importance of each variable, we were able to find the best
combination of model input variable sets. Furthermore, the
contribution of the input data to the model in the test set was
determined through the Shapley value of Shapley Additive
exPlanations (SHAP) [19]. A high mean absolute estimated
Shapley value indicates that the variable has a stronger impact
on the output value.

Statistical Analysis
The primary end point was the predictive performance of the
vancomycin level within the therapeutic range. The baseline
variables and patient characteristics of internal and external data
sets were presented as frequencies with percentages or mean
values with SDs. Between–data set comparisons were performed
using the paired 2-tailed t test for continuous variables or the
chi-square test for categorical variables. The measured serum
vancomycin levels were used as true values. The predictive
abilities of 4 kinds of models for vancomycin trough
concentrations, using the PPK model on the website of the
infectious diseases management program at the University of
California, San Francisco [20], machine learning models
(XGBoost) [21], and deep learning models (TabNet [22] and
JointMLP), were evaluated for bias and precision by calculating
the mean absolute error (MAE), root-mean-square error

(RMSE), R2, and adjusted R2. The paired t test on MAE was
used [23,24] to confirm significant differences in prediction
performance between models. P values of <.05 were considered
statistically significant. All analyses were performed with R
software (version 3.4.4; R Foundation for Statistical Computing)
and Python (version 3.8.12; The Python Software Foundation)
using the SciPy 1.9.1, PyTorch 1.10.2, and PyTorch Lightning
1.6.4 libraries.

Ethical Considerations
This study involved a retrospective analysis of medical records
and did not involve collecting prospectively obtained data. As
such, the study was considered to pose minimal risks and did
not directly affect patients’ rights, welfare, or clinical care while
offering recognized social benefits. To protect patient
confidentiality during data collection and record review, all
investigative records were securely stored in an encrypted
database, and published results did not include any participants’
names or identifiers. The study received ethical approval from
the institutional review board of Dongguk University Hospital
(DUIH 2021-08-015) and Kangwon National University
Hospital’s Institutional Review Board (KNUH-2022-03-020).
This study was performed per the principles of the Declaration
of Helsinki.
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Results

Overview
Out of the 977 patients included in the DUIH data set, the testing
data set was composed of 98 (10%) patients, with the other 879
patients belonging to the training data set. All 1429 patients
included in KNUH were for external validation. The baseline
characteristics did not differ significantly between the testing

and training groups (Table 1). However, there were more older
patients and shorter heights in the external validation set. The
estimated renal function by the CKD-EPI method was worse
in the patients for external validation. The patients included in
MIMIC-IV showed significant differences in sex distribution
compared to internal data sets or patients in other ICUs in Korea,
and the proportion of non-Hispanic White patients was over
66.4% (n=1591).
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Table 1. Baseline characteristics of all enrolled patients.

External data setExternal data setInternal data set

P valued
From MIMIC-

IVc (n=2395)P valueb
From KNUHa

(n=1429)
Train or validation
(n=879)Test (n=98)Variable

.0021021 (42.6).32555 (38.8)328 (37.3)31 (31.6)Female, n (%)

<.00165.38 (15.64).00270.48 (14.39)68.38 (15.56)67.65 (15.49)Age (years), mean (SD)

<.001168.87 (10.67).006161.36 (9.51)162.42 (9.61)163.56 (9.04)Height (cm), mean (SD)

<.00183.01 (25.20).0658.36 (13.60)57.02 (13.27)58.54 (15.80)Body weight (kg), mean (SD)

<.001>.99Race, n (%)

51 (2.1)1429 (100)979 (100)98 (100)Asian

219 (9.1)0 (0)0 (0)0 (0)African-American

81 (3.4)0 (0)0 (0)0 (0)Hispanic

1591 (66.4)0 (0)0 (0)0 (0)Non-Hispanic White

<.00117.58 (8.44)<.00113.37 (9.49)15.01 (10.29)14.49 (10.33)Serum trough value (mg/L), mean
(SD)

<.0011.55 (1.34).661.06 (1.34)1.11 (1.32)1.10 (1.16)Serum creatinine (μmol/L), mean
(SD)

.099144 (6.0).5555 (3.8)41 (4.7)3 (3.1)Dialysis, mean (SD)

<.0013213.99
(2488.45)

.454446.94 (4933.77)4289.52 (3504.59)3961.28
(2812.91)

The total dose of vancomycin be-

fore TDMe (mg), mean (SD)

<.0013.10 (2.25).754.77 (5.17)4.80 (4.03)4.42 (2.72)Number of vancomycin injections,
n (%)

<.0011030.84
(171.60)

<.001931.31 (184.90)891.90 (186.89)882.40 (207.66)The average dose of vancomycin
before TDM (mg), mean (SD)

<.0012.54 (2.07)<.0012.86 (2.62)4.01 (2.70)3.81 (1.37)Time between administration of
vancomycin and the TDM (day),
mean (SD)

<.00117.88 (12.06)<.00116.90 (10.58)21.12 (11.75)21.43 (11.59)Interval among each dose of van-
comycin (hours), mean (SD)

<.0010 (0.0)<.0010 (0.0)54 (6.1)8 (8.2)Vancomycin loading, mean (SD)

<.00158.11 (17.64).0640.86 (9.52)39.92 (9.29)40.98 (11.06)Volume distribution (L), mean
(SD)

<.00144.38 (5.74)<.00139.82 (3.25)39.17 (3.34)39.38 (3.81)Adjusted volume distribution (L),
mean (SD)

<.00182.56 (64.02).1390.36 (82.44)84.06 (58.85)91.49 (73.26)CrClf (minutes), mean (SD)

<.0010.07 (0.05).130.08 (0.07)0.07 (0.05)0.08 (0.06)CrCl (hours), mean (SD)

<.0011.07 (0.85)<.0011.17 (1.07)1.59 (1.21)1.70 (1.26)The elimination rate constant at
infusion time (Kt), mean (SD)

<.00118.84 (22.81)<.00120.87 (20.79)12.19 (14.62)10.07 (9.15)Trough levels of vancomycin
(mcg/mL), mean (SD)

<.00173.85 (67.13).20122.70 (123.49)114.23 (90.33)116.94 (100.14)eGFRg MDRDh, mean (SD)

<.00162.94 (38.54).3384.35 (36.96)82.00 (38.47)82.33 (39.87)eGFR CKD-EPIi, mean (SD)

N/AN/A.133.96 (3.41)3.69 (2.43)4.00 (3.03)Vancomycin clearance, mean (SD)

aKNUH: Kangwon National University Hospital.
bP value: comparison of the internal data set with the external data set from KNU hospital in Korea.
cMIMIC-IV: Medical Information Mart for Intensive Care–IV.
dP value: comparison of the internal data set with the external data set from MIMIC-IV.
eTDM: therapeutic drug monitoring.
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fCrCl: creatinine clearance.
geGFR: estimated glomerular filtration rate.
hMDRD: Modification of Diet in Renal Disease.
iCKD-EPI: Chronic Kidney Disease Epidemiology Collaboration.

XGBoost (1 of the Machine Learning Models) Versus
PPK Model
Compared to the PPK model, the XGBoost model only
significantly improved the predictive performance of external
data sets (20.43 vs 11.59, a 76% change by RMSE and 11.87

vs 8.75, a 36% change by MAE; Table 2) when evaluated by
RMSE and MAE. Although statistical significance could not
be determined, the predictive power of internal data sets also
improved by 8% (10.38 vs 9.58 by RMSE) and 16% (6.68 vs
5.75 by MAE).

Table 2. Performances of different models with bootstrapping.

External, R2 (95% CI)Internal, R2 (95%
CI)

External, MAE
(95% CI)

Internal, MAEb

(95% CI)

External, RMSE
(95% CI)

Internal, RMSEa

(95% CI)

Model

−3.64 (−5.16 to
−2.48)

−0.02 (−0.44 to
0.22)

11.87 (11.05 to
12.75)

6.68 (5.29 to
8.45)

20.43 (18.15 to
22.64)

10.38 (7.38 to
13.42)

PPKc

−0.49 (−0.81 to
−0.24)

0.13 (−0.63 to 0.48)8.75 (8.34 to 9.13)5.75 (4.37 to
7.48)

11.59 (10.88 to
12.17)

9.58 (6.31 to 12.6)XGBoostd

−1.15 (−2.53 to
−0.38)

0.26 (−0.15 to 0.51)7.50 (6.90 to 8.13)5.85 (4.53 to
7.25)

13.89 (11.01 to
17.71)

8.81 (6.33 to
11.29)

TabNet

–0.098 (–0.26 to
–0.023)

0.021 (–0.086 to
0.056)

7.45 (6.55 to 7.28)6.98 (5.61 to
8.63)

9.94 (8.84 to
11.04)

10.17 (7.06 to
13.09)

300-layer MLPe

−0.005 (−0.17 to 0.13)0.35 (−0.03 to 0.59)6.56 (6.18 to 6.90)5.11 (3.92 to
6.58)

9.50 (8.72 to
10.30)

8.27 (5.33 to
11.19)

JointMLPf (pro-
posed)

aRMSE: root mean squared error.
bMAE: mean absolute error.
cPPK: population pharmacokinetic.
dXGBoost: extreme gradient boosting.
eMLP: multilayer perceptron.
fJointMLP: joint multilayer perceptron.

The TabNet model showed significantly better predictive
performance for vancomycin TDM after vancomycin treatment
than the PPK model in external data sets (20.43 vs 13.89, a 47%
change by RMSE and 11.87 vs 7.50, a 58% change by MAE;
P<.001, respectively). Contrary to the prediction improvements
compared to the PPK model in the external data set (TabNet
47% vs XGBoost 76% by RMSE), there was no significant
difference between TabNet and XGBoost in predictive power
for vancomycin TDM on the internal data set.

JointMLP Versus Other Models
In both internal and external data sets, the JointMLP model had
better predictive performance for vancomycin TDM among the
models we compared. It improved the predictive power up to
31% (6.68 vs 5.11) based on MAE for the vancomycin
concentration after vancomycin infusion on the internal data
set compared to PPK. Additionally, our JointMLP model was
more accurate (11.87 vs 6.56, 81%) in predicting the
vancomycin levels on the external data set than the PPK method.

The proposed JointMLP model significantly outperformed
XGBoost and TabNet with a 13% (5.75 vs 5.11) and 14% (5.85
vs 5.11) improvement in predictive accuracy under MAE on
the internal data set, respectively. Additionally, our trained
JointMLP showed better performance not only on the internal
data set but also on the external data set that consisted of 1429
patients with critical illnesses by 34% (8.75 vs 6.56) and 14%
(7.50 vs 6.56) when compared with XGBoost and TabNet.
Furthermore, JointMLP’s RMSE performance is higher than
that of other models on all data sets, which means that the
proposed model is more robust than theirs against outlier data.

Within the external data set, we clearly see that all models are
statistically significant among themselves (Figure 2). However,
the P value of JointMLP within the internal data set expressed
a trend more robust than all other models while showing
statistical significance only when compared with PPK with
MAE. The mean error and variance of the JointMLP model
were nearer to zero and smaller in both internal and external
data sets than in the PPK model (Figure 3).
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Figure 2. P value heat map by paired t test on all the combinations of prediction models. The P value for each comparison of the mean absolute error
for predictive performance on (A) the internal validation data set (B) and the external validation data set. 300MLP: 300-layer multilayer perceptron;
JointMLP: joint multilayer perceptron; PPK: population pharmacokinetic; XGB: extreme gradient boosting.

Figure 3. Comparisons of the population pharmacokinetic (PPK) and joint multilayer perceptron (JointMLP) models on the internal and external
validation sets. Scatter plots of (A) the internal data set and (B) the external data set with the predicted value against a target value. The error histograms
of (C) the internal data set and (D) the external data set with a predicted value against a target value. TDM: therapeutic drug monitoring.

The most influential variables in TDM prediction were eGFR
CKD-EPI, the average dose of vancomycin, and the average
volume of distribution in both internal and external data sets.

These variables consistently had high SHAP values in both data
sets (Table 3).
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Table 3. The mean values of Shapley Additive exPlanations on the internal and external validation sets.

External validation, mean (SD)Internal validation, mean (SD)Variables

0.063 (0.088)0.076 (0.09)eGFRa CKD-EPIb

0.04 (0.073)0.045 (0.05)Average dose of vancomycin

0.032 (0.04)0.037 (0.029)Average volume of distribution

0.031 (0.03)0.028 (0.014)Interval of vancomycin

0.024 (0.044)0.027 (0.038)Body weight

0.02 (0.066)0.014 (0.028)Total dose

0.015 (0.026)0.013 (0.023)Height

0.011 (0.004)0.01 (0.018)Sex

0.015 (0.031)0.01 (0.012)Number of vancomycin injection

0.01 (0.011)0.01 (0.007)Creatinine

0.003 (0.01)0.007 (0.012)Loading

0.006 (0.003)0.006 (0.006)Age

0.005 (0.028)0.005 (0.018)Dialysis

0.005 (0.022)0.005 (0.022)The elimination rate constant at infusion time

0.007 (0.007)0.003 (0.002)Time between vancomycin injection and TDMc

aeGFR: estimated glomerular filtration rate.
bCKD-EPI: Chronic Kidney Disease Epidemiology Collaboration.
cTDM: therapeutic drug monitoring.

JointMLP Versus 300-Layer MLP
The purpose of Table 2 was to compare the predictive
performances of the 300-layer MLP model and the proposed
JointMLP model. The results showed that JointMLP
outperformed the 300-layer MLP model in both the internal
(8.27 vs 9.94, a 23% improvement by RMSE, and 6.98 vs 5.11,
a 37% improvement by MAE) and external (9.50 vs 9.94, a 5%
improvement by RMSE, and 7.45 vs 6.56, a 14% improvement
by MAE) data sets, indicating the effectiveness of the boosting
ensemble approach used in JointMLP. Figure 2 shows the P
value analysis of the comparison between JointMLP and the
300-layer MLP model. The analysis revealed that the difference
between the 2 models was statistically significant (P<.001)
within the external data set. However, compared to other models,
the difference between JointMLP and the 300-layer MLP model

was not statistically significant (P=.09) within the internal data
set.

Model Comparisons in the MIMIC-IV Data Set
The findings presented in Table 4 clearly indicated that the
JointMLP model performed better than both the PPK and
300-layer MLP models by a significant margin of 160% and
25%, respectively, when evaluated using the RMSE metric.
This improvement in predictive performance was observed even
in the MIMIC-IV data set, which included patients from multiple
centers and races. The JointMLP model also demonstrated
superior performance compared to the XGBoost and TabNet
models, with improvements of 5% and 4%, respectively. When
examining the MAE metric, the JointMLP model significantly
outperformed the PPK model by 90%, with further
improvements of 8%, 6%, and 5% over the XGBoost, 300-layer
MLP, and TabNet models, respectively.
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Table 4. Performances of models with Medical Information Mart for Intensive Care–IV data set.

MIMIC, R2 (95% CI)MIMIC, MAEc (95% CI)MIMICa, RMSEb (95% CI)Model

−5.93 (−8.52 to –3.99)12.13 (11.42 to 12.87)22.22 (18.88 to 25.72)PPKd

–0.12 (−0.21 to 0.04)6.93 (6.69 to 7.15)8.93 (8.60 to 9.23)XGBooste

–0.11 (−0.17 to –0.06)6.69 (6.45 to 6.93)8.91 (8.53 to 9.25)TabNet

–0.59 (–1.30 to –0.12)6.80 (6.48 to 7.13)10.65 (8.88 to 12.72)300-layer MLPf

–0.02 (−0.08 to 0.03)6.40 (6.17 to 6.64)8.53 (8.17 to 8.88)JointMLPg (pro-
posed)

aMIMIC: Medical Information Mart for Intensive Care.
bRMSE: root mean squared error.
cMAE: mean absolute error.
dPPK: population pharmacokinetic.
eXGBoost: extreme gradient boosting.
fMLP: multilayer perceptron.
gJointMLP: joint multilayer perceptron.

All models, except for the 300-layer MLP, were statistically
significant in the MIMIC-IV data set (Figure 4A). The most
influential variables in TDM prediction using the JointMLP
model were consistent with eGFR CKD-EPI, average
vancomycin dose, and average distribution volume, which were
variables identified in the internal data set (Figure 4B). The

300-layer MLP was statistically significant (P<.001) compared
to the PPK model. Additionally, the JointMLP model had a
mean error and variance that were close to zero and smaller
than those of the PPK model in the MIMIC-IV data set (Figure
4C and D).
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Figure 4. Result figures from the Medical Information Mart for Intensive Care (MIMIC) validation set. (A) The P value for each comparison of the
mean absolute error for predictive performance on the MIMIC validation data set; (B) the Shapley Additive exPlanations (SHAP) values of the joint
multilayer perceptron (JointMLP) model on the MIMIC validation set; (C) scatter plots of the MIMIC data set with the JointMLP predicted values
against target values; and (D) the error histograms of the MIMIC data set with the JointMLP predicted values against target values. 300MLP: 300-layer
multilayer perceptron; CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration; eGFR: estimated glomerular filtration rate; PPK: population
pharmacokinetic; TDM: therapeutic drug monitoring; XGB: extreme gradient boosting.

Discussion

Principal Findings
The PPK method is widely used for predicting vancomycin
TDM levels. However, it is population-dependent, leading to
inappropriate results for some patients. Therefore, this study
proposes a consistent decision-making system that is
population-independent and unaffected by clinicians’ abilities
by applying a joint MLP model that integrates various successful
deep learning models and decision trees. The proposed
JointMLP showed the best performance for predicting
vancomycin trough concentration in all data sets compared to
other models. Significantly, in the MAE metric, the JointMLP
model improved performance by 90% over the PPK model.
Results mean that the proposed model can be applied to predict
appropriate vancomycin trough concentrations in patients with
critical illnesses who require vancomycin treatment in various
situations.

Comparison to Machine Learning Model
In our study, we compared the performance of 3 machine
learning models for predicting vancomycin levels: JointMLP,

XGBoost, and TabNet. XGBoost is a popular gradient-boosting
algorithm known for its high accuracy and flexibility, while
TabNet is a newer deep-learning model [22] specifically
designed for tabular data. Compared to XGBoost and TabNet,
our JointMLP model outperformed both in terms of predictive
accuracy. One of the main reasons for this is that our model was
designed to handle noisy data samples, a common characteristic
of medical data sets. A deep neural network architecture
accomplishes this with multiple layers, which allows the model
to learn complex relationships between the input features and
the output variable. In contrast, XGBoost and TabNet are both
tree-based models, which may need to be more effective at
handling noisy data.

Compared to previous studies [15,24-26], our proposed
JointMLP model performs better in accurately predicting
vancomycin levels. Specifically, our model outperforms
XGBoost and TabNet, 2 well-known models in analyzing tabular
data and predicting drug concentrations. Moreover, our
JointMLP model is designed to handle noisy data samples
effectively, a crucial feature for real-world applications in the
medical domain where data quality can be highly variable. Our
model’s robustness is demonstrated by comparing it to a
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300-layer MLP, confirming the effectiveness of our model
structure in handling vancomycin TDM predictions. Importantly,
our model is trained on a larger and more diverse data set than
previous studies and tested on an unseen data set, demonstrating
its generalizability and suitability for predicting drug
concentrations. Overall, our findings highlight the potential of
deep learning models in improving the accuracy and reliability
of drug concentration prediction, which can lead to better
treatment outcomes and improved patient health. Overall, our
findings suggest that the JointMLP model is a promising
approach for predicting vancomycin levels, particularly in the
presence of noisy data. However, the choice of which model to
use may depend on the specific characteristics of the data set
being analyzed and the goals of the analysis.

Limitations and Future Work
When considering implementing our approach in clinical
settings, there are several factors to consider. First, although
we extended our model to validate across diverse ethnic groups
by including patients from Asia and other regions in the
MIMIC-IV data set, we acknowledge that there is still room for
improvement in this regard. We used a larger data set than
previous studies, with 977 samples as the internal data set and
1429 samples as the external data set. Additionally, we sought
to develop a generalized model by applying the MIMIC-IV data
set, which includes 2394 samples. However, additional
validation with external data sets is necessary to enhance further
the generalizability of our model for predicting vancomycin
levels. Second, our comparison of the predictive performance

with the PPK method was based on the trough-based target
method, which is easily used in the treatment of patients with
critical illnesses, rather than the AUC/MIC-specific range that
is currently recommended. Therefore, further research is needed
to compare the AUC/MIC range with our approach.

Despite these limitations, our deep learning model, if
implemented in actual clinical practice, could significantly
improve the treatment outcomes of ICUs by supporting clinical
decision-making in a more standardized and consistent manner.
Our proposed JointMLP model will continue to evolve and
update its performance to mimic the human brain better and
determine the optimal vancomycin dose.

Conclusions
In this study, proposing the JointMLP approach in clinical
settings has significant implications for public health, as it can
help optimize treatment outcomes for patients with critical
illnesses in ICUs. By providing a more accurate and consistent
method for predicting vancomycin levels, the model can reduce
adverse events associated with suboptimal vancomycin dosings,
such as the increased risk of bacterial resistance, longer hospital
stays, and higher health care costs. Furthermore, the ongoing
development and improvement of the JointMLP model through
continuous learning and updating can lead to more effective
treatments and better health outcomes for patients, improving
the accuracy and reliability of other clinical prediction models
in the future. Overall, the implementation of the JointMLP
approach has the potential to improve public health outcomes
and benefit patients worldwide.
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