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Abstract

Background: Common interventions for musculoskeletal pain disorders either lack evidence to support their use or have small
to modest or short-term effects. Given the heterogeneity of patients with musculoskeletal pain disorders, treatment guidelines
and systematic reviews have limited transferability to clinical practice. A problem-solving method in artificial intelligence,
case-based reasoning (CBR), where new problems are solved based on experiences from past similar problems, might offer
guidance in such situations.

Objective: This study aims to use CBR to build a decision support system for patients with musculoskeletal pain disorders
seeking physiotherapy care. This study describes the development of the CBR system SupportPrim PT and demonstrates its ability
to identify similar patients.

Methods: Data from physiotherapy patients in primary care in Norway were collected to build a case base for SupportPrim PT.
We used the local-global principle in CBR to identify similar patients. The global similarity measures are attributes used to
identify similar patients and consisted of prognostic attributes. They were weighted in terms of prognostic importance and choice
of treatment, where the weighting represents the relevance of the different attributes. For the local similarity measures, the degree
of similarity within each attribute was based on minimal clinically important differences and expert knowledge. The SupportPrim
PT’s ability to identify similar patients was assessed by comparing the similarity scores of all patients in the case base with the
scores on an established screening tool (the short form Örebro Musculoskeletal Pain Screening Questionnaire [ÖMSPQ]) and an
outcome measure (the Musculoskeletal Health Questionnaire [MSK-HQ]) used in musculoskeletal pain. We also assessed the
same in a more extensive case base.

Results: The original case base contained 105 patients with musculoskeletal pain (mean age 46, SD 15 years; 77/105, 73.3%
women). The SupportPrim PT consisted of 29 weighted attributes with local similarities. When comparing the similarity scores
for all patients in the case base, one at a time, with the ÖMSPQ and MSK-HQ, the most similar patients had a mean absolute
difference from the query patient of 9.3 (95% CI 8.0-10.6) points on the ÖMSPQ and a mean absolute difference of 5.6 (95% CI
4.6-6.6) points on the MSK-HQ. For both ÖMSPQ and MSK-HQ, the absolute score difference increased as the rank of most
similar patients decreased. Patients retrieved from a more extensive case base (N=486) had a higher mean similarity score and
were slightly more similar to the query patients in ÖMSPQ and MSK-HQ compared with the original smaller case base.

Conclusions: This study describes the development of a CBR system, SupportPrim PT, for musculoskeletal pain in primary
care. The SupportPrim PT identified similar patients according to an established screening tool and an outcome measure for
patients with musculoskeletal pain.
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Introduction

Background
Musculoskeletal pain conditions are the leading cause of
disability and a major societal burden worldwide [1]. Common
interventions for musculoskeletal pain either lack evidence to
support their use or, at best, have modest or only short-term
effects [2,3]. Treatment guidelines are based on randomized
controlled trials considering effects on the group level with little
or no consideration for the huge variation in patient stories and
individual symptoms, even within more narrowly defined
diagnostic entities, for example, low back pain. Thus, applying
group-level evidence to individual patients and the relevance
of one-size-fits-all treatment guidelines have been questioned
[4]. In addition, the highly selected patients in most clinical
trials do not match clinical settings where patients often present
with comorbidities and large variations in symptoms and clinical
history. Thus, clinicians are at unease with and often do not
follow evidence-based guidelines [5]. Different attempts at
subgrouping patients have been explored [6,7], but most
attempts of subgrouping patients according to symptoms and
clinical characteristics, and offering matched treatments
(stratified care), have yet to demonstrate superior treatment
outcomes [8].

It has been argued to focus less on diagnostic classification in
musculoskeletal pain and more on prognostic factors to inform
treatment decisions and improve treatment outcomes [9]. Factors
influencing patients’ course and treatment outcomes are many,
making decisions on the best treatment approach challenging
for clinicians. In this situation, artificial intelligence (AI) may
add decision support [10]. An intriguing AI method relevant to
musculoskeletal pain disorders is case-based reasoning (CBR),
where experiences from past problems and their solutions are
used to solve new problems [11]. CBR may advance
decision-making for musculoskeletal pain disorders and improve
patient care and outcomes by providing information for tailoring
the treatment. CBR has been used in fields such as the oil
industry [12]; weather prediction [13]; and different aspects of
health care [14], for example, kidney functioning in an intensive
unit setting [15], assessment and diagnosis of depression in
palliative care [16], follow-up of patients who underwent stem
cell transplantation [17], and diabetes management [18]. More
recent studies have used CBR in diagnostics [19] and promoting
self-management [20,21]. Yin et al [19] developed a CBR-based
decision support system capable of differentiating between 2
types of probable primary headaches challenging for physicians
in clinical care. The system was found to have high accuracy
and differentiated probable migraine and probable tension-type

headache much better than a guideline-based system. In a
previous study from our research group, CBR was used to
capture patient experiences and find the best treatment advice
for patients by evaluating how to carry out a similarity-based
retrieval [22]. This was further used for tailoring
self-management support for patients with low back pain
through a smartphone app. The app was provided as an adjunct
to usual care and compared to usual care only in a randomized
controlled trial. The patients in the intervention group reported
a larger improvement in disability compared to those receiving
usual care only [20]. The effect of the app has recently also been
tested in a 3-armed randomized controlled trial among patients
with neck and back pain in the specialist care. The authors
reported no differences in effects among use of the app, a
web-based nontailored self-management support tool, or usual
care alone [21].

Objective
In this study, we used CBR to build a system for decision
support in patients with musculoskeletal pain seeking
physiotherapy care. This study describes the development of
the system and demonstrates the system’s ability to identify
similar patients.

Methods

The CBR Cycle Versus Physiotherapy Way of Solving
a Problem
CBR has been described as a 4-step process, known as the CBR
cycle: retrieve, reuse, revise, and retain (Figure 1) [11]. The
most similar case or cases are retrieved from the collection of
previous cases (stored in the case base), where a case is a set of
data that represents a problem with its solution from the past.
Knowledge of the CBR model (eg, adaptation rules) is applied
to fit a new problem to an existing solution (reuse). The solution
for the new case is tested for success and revised if necessary.
The system learns as useful experiences of the new case are
retained for future problem-solving, such that the case base is
continuously updated with new or modified cases. Building and
refining the collection of cases, the case base, is an important
step in the CBR process [23]. The CBR methodology assumes
that similar problems have similar solutions. Translated to
medical terms, the problem is defined by a detailed description
of the patient’s characteristics, signs, and symptoms, and the
solution is defined by the treatment leading to a successful
outcome. New patients are matched to previous similar patients
(problems) with a successful outcome, and their treatment is
used to inform treatment for the new patient (solution).
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Figure 1. The case-based reasoning cycle, adapted from the study by Aamodt and Plaza [11].

An important reason for choosing CBR as the AI method of
choice in this study (Figure 1) was its logic and resemblance
with how physiotherapists approach new patients in clinical
care (Figure 2). When a new patient consults a physiotherapist
(Figure 2), the physiotherapist collects information about the
patients’ symptoms, performs a clinical examination, and then
tries to recall his experiences with similar patients from the past
(ie, Retrieve in Figure 2). Knowledge and experience with
previous similar patients with a successful outcome are used to
guide treatment for the new patient (ie, Reuse in Figure 2), and

the treatment is adapted and revised if necessary to fit the new
patient. The physiotherapist gains experience with the new
patient and may thus increase their knowledge of treatment
leading to a successful outcome (ie, Retain in Figure 2). This
process resembles the structure of the CBR cycle. The main
difference in problem-solving between a physiotherapist and a
CBR system is that the physiotherapist is limited by his memory
and experiences, while a CBR system can use experiences from
many different physiotherapists and thus use a much larger case
base for decision support.
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Figure 2. Physiotherapist’s way of solving a problem (ie, how to treat a new patient).

Development of the CBR System, SupportPrim PT, in
Musculoskeletal Pain
In this study, we focus on the retrieval phase of CBR. We
demonstrate the CBR system, SupportPrim PT, for
musculoskeletal pain in two steps (1) how similar patients were
identified and (2) an evaluation of SupportPrim PT’s ability to
identify similar patients. The system also displays solutions (ie,
treatment suggestions) for new patients based on previous
successful cases, but this part will only be described briefly.
The medical community is the target audience for this study,
and we have, therefore, used nontechnical language.

Patient Similarity Measures
The SupportPrim PT was built using myCBR (myCBR v3 and
its rest API v2), which leverages patient data from the past to
identify the most similar patients to advise management [24].
We used the local-global principle in CBR to identify similar
patients, where similarity is calculated by a weighted sum
function [25]. Global similarity measures are attributes used to
identify similar patients, where an example of an attribute is a
patient’s age or pain intensity. The weighting of these attributes
(ie, global weighting) represents the relevance of the different
attributes for the identification of similar patients, in our case,
in terms of prognostic importance and choice of treatment, while
local measures weight similarities between different values for
the same attribute.

We chose attributes based on their prognostic value in previous
studies of patients with musculoskeletal pain and from
systematic reviews of generic prognostic factors across body
regions (Multimedia Appendix 1 [26-41]). These prognostic

factors inform the likely course of musculoskeletal pain to aid
examination or treatment decisions [42-46]. The domains
covered were sociodemographic factors, pain and function,
psychological factors, and health behavior (refer to Multimedia
Appendix 1 for a detailed list). In addition, some of the attributes
were chosen for their potential to influence specific treatment
decisions and not for their prognostic abilities, for example,
physical activity and BMI for overweight [47,48].

For the development of global weights, we first created a
baseline CBR system by assigning equal weights to all the
attributes, a second system with assigned weights based on a
data-driven approach [49], and then a CBR system that used
expert knowledge. We decided to use the expert knowledge
approach to emphasize evidence of prognostic factors across
different musculoskeletal conditions. We validated the weighting
of the attributes in an iterative process using a sample of 14
patients representing 5 distinct phenotypes of musculoskeletal
complaints [50], ranging from good to poor prognosis for a
successful outcome [51]. The validation aimed to retrieve the
most similar patient from the same phenotype as the queried
patient, which is the new patient. In addition, we weighted
attributes we believed were important for choosing adequate
physiotherapy treatment higher (eg, mental distress, insomnia,
and work ability; Multimedia Appendix 1).

For the local similarity measures, we decided the degree of
similarity between values within each attribute from 0 (not
similar at all) to 1 (full conformity between scores; Multimedia
Appendix 1). To guide this work, we used knowledge about
minimal clinically important difference, which is the smallest
difference that is clinically important for the patient. For
instance, this could be 2 points in the numeric rating scale for
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pain intensity [52], which means that values within this range
were regarded as completely similar. For attributes where
information about minimal clinically important difference were
lacking, we determined this by consensus within the study group.
We did not always assume a linear relationship between scores
on an attribute in the local similarity measure, where the local
similarity for the same absolute difference in score could differ
if the score was at the upper or lower end of the scale (eg,
physical activity, where we defined full conformity—1.0
similar—between 5 and 6 to 7 days, while 0 versus 1 day were
defined as only 0.4 similar).

How to Find a Similar Patient
The SupportPrim PT calculates a similarity score to find similar
patients. A similarity score is the weighted sum of all the local
similarity scores divided by the total possible weighting (Table
1), giving a similarity score between 0 and 1. Calculation of the
similarity score between a query patient (Q) and the most similar

patient in the case base (C) is shown in equation 1, earlier
described by Bergman [25], where “w” is the weight of the
attribute “i.” For each attribute “i,” the local similarity is defined
as “simi (q, c),” where “q” is the value of the attribute for the
query patient and “c” is the value of that respective attribute for
the patient case from the case base. Finding the most similar
patient is the result of the retrieval process where all patients
are compared to the query patient, and the most similar patients
are returned. The patient with the highest similarity score will
be the most similar to the query patient.

Equation 1 shows the calculation of the similarity score between
a query patient (Q) and the most similar patient in the case base
(C).

Table 1. Example of a calculation of similarity score showing the query patient with the 4 most similar patients in the case-based reasoning system
SupportPrim PT for patients with musculoskeletal pain disorders.

Attributesa (weightb)Patient

Similarity

scorec
Total
score

Workability (4)Sleep (4)Pain sites (2)Expectations (4)Mental distress (8)

Local

simd
ScoreLocal

simd
ScoreLocal

simd
ScoreLocal

simd
ScoreLocal

simd
Score

N/AN/AN/A6N/AModerateN/A3N/A8N/Ae2Query pa-
tient

0.9320.41.051.0Moderate1.031.070.81.8Patient A

0.8719.21.070.6Great0.820.861.02.0Patient B

0.7316.00.630.8Slight0.841.090.61.5Patient C

0.6213,60.840.4Normal0.650.340.82.2Patient D

aThe attributes used to identify similar patients.
bThe relevance of the different attributes for the identification of similar patients, ranging from 1 to 8, where higher weights represent higher relevance.
cCalculation: ((attribute 1 weight×attribute 1 local sim)+(attribute 2 weight×attribute 2 local sim)+...+[attribute n weight×attribute n local sim])/(attribute
1 weight+attribute 2 weights+...+attribute n weight)=Similarity score. Patient A: [(8×0.8)+(4×1.0)+(2×1.0)+(4×1.0)+(4×1.0)]/(8+4+2+4+4)=0.93.
dThe degree of similarity between values within each attribute. Ranges from 0 to 1, where 0 means not similar at all and 1 means full conformity between
scores.
eN/A: not applicable.

In Table 1, we show a query patient with its 4 most similar
patients ranked according to the similarity score (patient A, B,
C, and D). We exemplify the calculations of the similarity score
by showing 5 of the 29 global measures (ie, attributes) used to
represent cases in the CBR system. Patient A will be the most
similar, B second most similar, C third most similar, and D the
fourth most similar. Furthermore, which is beyond the scope of
this study, important patient information and treatment
description from the most similar patients having successful
outcome will be displayed for the physiotherapist in a clinical
dashboard.

To populate the case base for the SupportPrim PT, we
systematically collected data from patients and physiotherapists
in primary care of Norway. The case base consists of data on
patient characteristics, prognostic factors, description of

treatments, and outcomes from patients aged ≥18 years with
musculoskeletal pain in any of these areas: shoulder, neck, upper
or low back, hip, knee, or with complex pain as primary contact
reason. Classification of complex pain was at the discretion of
the treating physiotherapist based on a combination of the
overall severity of symptoms, the number of pain sites, the
clinical examination, and the patient history.

System’s Ability to Identify Similar Patients
To explore how the SupportPrim PT performs in finding similar
patients, we assessed the similarity score of all patients in the
case base, in ranked order from the most to the least similar
patients, with the scores on the short form Örebro
Musculoskeletal Pain Screening Questionnaire (ÖMSPQ) [53]
and the Musculoskeletal Health Questionnaire (MSK-HQ) [54].
For similarity scores, each patient was compared with all other
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patients in the case base and repeated similarly for all patients
to attain a rank order of most similar patients for all patients in
the case base. Both questionnaires are used across different
musculoskeletal pain conditions. ÖMSPQ is an established
prognostic tool for long-term disability and failure of return to
work, with a total score of 0 to 100, where higher scores indicate
a worse long-term disability. The ÖMSPQ questionnaire
emphasizes biopsychosocial variables related to future
disability—similar to the global measures in the CBR system.
The ÖMSPQ includes pain, self-perceived function, distress,
return to work expectancy, and fear avoidance beliefs. The
MSK-HQ is a generic musculoskeletal outcome measure that
can be used for different musculoskeletal conditions. It contains
14 key items: severity of pain or stiffness, physical function or
activity, work or daily activities, symptoms interference,
independence, sleep, fatigue or low-energy levels, emotional
well-being, understanding of condition and treatment,
confidence in being able to manage symptoms, and overall
symptom impact. The total score range is 0 to 56, with higher
scores indicating better musculoskeletal health.

Assessing the similarity scores with the 2 established
instruments was done with the case base used to build the
SupportPrim PT (n=105) and then repeated in a larger case base
(n=486). For the latter, we imported additional patients in the
case base from another study to assess the performance of the
similarity scores in a larger case base.

For patients with musculoskeletal problems, there is rarely 1
ideal solution. Different treatments could lead to a satisfactory

outcome and, thus, work as solutions to the problem. In the final
CBR system, after identifying similar patients using the
local-global principle, similar previous successful patients were
filtered, and the description of their treatment was displayed to
inform treatment for the new patient (“solution”). The criterion
for a successful outcome was a combination of pain intensity
and function measured at baseline and at 3-month follow-up,
where also the change score on MSK-HQ and the patient’s
global perceived effect were included in the combined outcome
measure. Details of our definition of a successful outcome are
described in Multimedia Appendix 2 [53-56].

Ethical Considerations
The Regional Committee for Medical and Health Research
Ethics in mid-Norway approved the study (51566/2019 and
49308/2020). All patients provided written informed consent
to participate in the study. Patients did not receive any
compensation for participating. Study data are deidentified, and
no identification of individual participants is possible.

Results

Descriptive Characteristics of Patients in the Case Base
The original case base consisted of 105 patients, with complete
data gathered from 22 physiotherapists in primary care collected
from January 2020 to January 2021. The patients’ mean age
was 46 (SD 15) years, the majority were women (77/105,
73.3%), and pain duration was >3 months for most patients
(87/105, 82.9%; Table 2).
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Table 2. Characteristics of patients with musculoskeletal pain disorders included in the case-based reasoning system SupportPrim PT (N=105).

Total cohort

77 (73.3)Female, n (%)

46.0 (15.2)Age (years), mean (SD)

26.9 (6.1)BMI (kg/m2), mean (SD)

59 (56.2)Higher educationa, n (%)

87 (82.9)Pain durationb, n (%)

9 (8.6)Current smoker, n (%)

4.7 (2.1)Pain intensity, mean (SD)

4.0 (2.7)PSFSc, mean (SD)

6.2 (2.9)Work ability, mean (SD)

Musculoskeletal risk groupd (n=101), n (%)

42 (41.6)Low

47 (46.5)Medium

12 (11.9)High

Main body pain region, n (%)

16 (15.2)Neck

18 (17.1)Shoulder

19 (18.1)Back

16 (15.2)Hip

13 (12.4)Knee

23 (21.9)Complex

37.7 (8.5)MSK-HQe, mean (SD)

43.1 (15.6)ÖMSPQf, mean (SD)

aEducation above high school.
bPain duration >3 months.
cPSFS: Patient Specific Functional Scale; a higher value indicates better function.
dMusculoskeletal risk groups: 0-4 is low risk, 5-8 is medium risk, and 9-12 is high risk.
eMSK-HQ: Musculoskeletal Health Questionnaire; a higher value indicates better musculoskeletal health.
fOMSPQ: Örebro Musculoskeletal Pain Screening Questionnaire; higher scores indicate worse long-term disability.

The System’s Ability to Identify Similar Patients
The SupportPrim PT built to use for decision support in patients
with musculoskeletal pain consisted of 29 weighted attributes,
each having a defined local similarity measure to identify similar
patients. To demonstrate the system’s ability to identify the
most similar patients, all patients in the case base were compared
to each other, that is, each patient was queried against the rest
of the patients, and this was repeated for all patients. Rank 1
thus represents the average similarity score for the most similar

patient (“best match”) to the query patient for all patients in the
case base. The ranks from the most similar to least similar were
then plotted against each rank’s absolute difference on the
ÖMSPQ (Figure 3) and MSK-HQ (Figure 4) scores. The most
similar patients had a mean absolute difference from the query
patient of 9.3 (95% CI 8.0-10.6) points on the ÖMSPQ and a
mean absolute difference of 5.6 (95% CI 4.6-6.6) points on the
MSK-HQ. For both ÖMSPQ and MSK-HQ, the absolute score
difference increased as the rank of most similar patients
decreased (Figures 3 and 4).
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Figure 3. The absolute difference (mean with 95% CI) in the short form Örebro Musculoskeletal Pain Screening Questionnaire (ÖMSPQ) between
queried patients with musculoskeletal pain disorders and most similar patients in ranked order in the case-based reasoning system SupportPrim PT.

Figure 4. The absolute difference (mean with 95% CI) in the Musculoskeletal Health Questionnaire (MSK-HQ) between queried patients with
musculoskeletal pain disorders and most similar patients in ranked order in the case-based reasoning system SupportPrim PT.

To assess the performance of the similarity scores in a larger
case base, we imported additional patients into the case base,
resulting in a case base of 486 patients. When we compare the
mean similarity score for the most similar patients for the 2 case
bases, we see that the patients retrieved from the larger case
base had a slightly higher mean similarity score (Figure 5). We

compared the ranks of most similar patients for all patients in
both case bases with the ÖMSPQ (Figure 6 and Table 3) and
MSK-HQ (Figure 7 and Table 4). The results showed that the
larger case base identified slightly more similar patients with a
smaller absolute mean difference on ÖMSPQ and MSK-HQ
for the ranks compared to the original case base.
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Figure 5. The mean similarity score of the 15 most similar patients with musculoskeletal pain disorders in the 2 case bases in the case-based reasoning
system SupportPrim PT.

Figure 6. The absolute mean difference in the short form Örebro Musculoskeletal Pain Screening Questionnaire (ÖMSPQ) between queried patients
with musculoskeletal pain disorders and most similar patients in ranked order for the 2 different size case bases in the case-based reasoning system
SupportPrim PT.
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Table 3. The absolute mean difference in the short form Örebro Musculoskeletal Pain Screening Questionnaire (score range 0-100) between queried
patients with musculoskeletal pain disorders and the 3 most similar patients for the 2 different case bases in the case-based reasoning system SupportPrim
PT.

Case base with 486 patients, absolute mean difference (95%
CI)

Case base with 105 patients, absolute mean difference (95%
CI)

8.2 (7.7-8.7)9.3 (8.0-10.6)Most similar patient

8.8 (8.2-9.4)11.2 (9.5-13.0)Second most similar patient

8.7 (8.1-9.3)10.2 (8.6-11.7)Third most similar patient

Figure 7. The absolute mean difference in the Musculoskeletal Health Questionnaire (MSK-HQ) between the queried patients with musculoskeletal
pain disorders and the most similar patients in ranked order for the 2 different size case bases in the case-based reasoning system SupportPrim PT.

Table 4. The absolute mean difference in the Musculoskeletal Health Questionnaire (score range 0-56) between queried patients with musculoskeletal
pain disorders and the 3 most similar patients for the 2 different case bases in the case-based reasoning system SupportPrim PT.

Case base with 486 patients, absolute mean difference (95%
CI)

Case base with 105 patients, absolute mean difference (95%
CI)

5.4 (5.0-5.7)5.6 (4.6-6.6)Most similar patient

5.3 (4.9-5.6)7.1 (6.0-8.2)Second most similar patient

5.6 (5.2-6.0)6.8 (5.8-7.9)Third most similar patient

Discussion

Principal Findings
This study describes the development of the CBR system,
SupportPrim PT, using the local-global principle to identify
similar patients with musculoskeletal pain disorders. The
SupportPrim PT successfully identified similar patients.

When comparing the similarity scores from the SupportPrim
PT and their rankings with ÖMSPQ and MSK-HQ scores, we
found that the SupportPrim PT successfully identified the most

similar patients to the queried patients across the
musculoskeletal pain conditions (Figures 3 and 4). The mean
score differences on the questionnaires between the queried and
the most similar patients increased linearly or curvilinearly with
increasing rank order (less similar patients). These results are
not unexpected as SupportPrim PT contains 29 mainly
prognostic attributes partly overlapping with items on the
ÖMSPQ and MSK-HQ. Mean differences between queried
patients and best matches of 9.3 points on ÖMSPQ and 5.6
points on the MSK-HQ are also expected. The SupportPrim PT
uses a larger number of attributes for patient similarity
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comparisons, possibly making the system more comprehensive
in mapping patients’ symptoms and prognostic factors than the
shorter comparative questionnaires. Using a larger case base,
the SupportPrim PT yielded patients with slightly higher mean
similarity scores and lower absolute mean difference between
the queried patients and the most similar patients on the ÖMSPQ
and MSK-HQ. This may indicate that a larger case base may
improve the performance of the system [57]. The case base of
105 patients is nevertheless representative of primary
physiotherapy care in Norway, with descriptive data being
consistent with data from a large longitudinal observational
study [58].

Key challenges when developing a CBR system are definition
of the case representation, similarity measure development, and
retrieval strategy. Attribute selection and weighting could be
dependent on expert knowledge and limited by the number,
type, and quality of the attributes included. We selected
attributes based on their prognostic value or potential to
influence treatment choice. There is good documentation for
prognostic factors being similar across musculoskeletal
diagnostic groups [42-46]. Classifying patients according to
similar prognostic factors rather than diagnosis may be more
fruitful in improving care [9]. To base interventions on
diagnoses is relevant if a causal pathway between diagnosis and
choice of treatment is established. However, a clear
understanding of causal pathways is often lacking in
musculoskeletal pain complaints. Thus, physiotherapy
interventions are commonly directed toward symptom
alleviation, for example, advice, reassurance, self-management,
exercise, and manual therapy. Therefore, patients may best be
treated within a prognostic framework with more emphasis on
specific prognostic factors on the individual level [43].

Definition of global weights in CBR is challenging. We used
expert knowledge instead of data-driven methods [49]. Among
the attributes selected, the sum score of Hopkins Symptom
Checklist 10-item, with questions about anxiety, depression,
and somatization, was weighted highest, as emotional distress
is an important mediating factor for the treatment effect [59]
and also potentially modifiable by physiotherapy interventions
[60]. Decisions were based on consensus between the authors
with different backgrounds and extensive experience both from
research and clinical work.

Limitations
Instead of attribute selection based on expert knowledge,
automated data-driven attribute selection methods [61] could
have been used. We acknowledge that other attributes not
included in our system could have improved the process of
identifying similar patients. A limitation of the study is that the
process of assigning weights of the global measures did not
follow a formal consensus method. This could have resulted in
different weighting of the attributes. In addition, comparative
studies of data-driven and expert-driven approaches to decide
the weighting of different attributes should be explored in future
work.

Conclusions
Advising treatment for new patients using previous similar
patients with successful outcome represents a move toward
more individualized treatment rather than relying on the best
evidence of average effects in clinical trials. It is important to
acknowledge that the SupportPrim PT is not built to replace the
clinical expertise and experience of the therapist but to work as
a decision support. Furthermore, AI might create an
uncomfortable situation for clinicians and patients, not having
complete control and being uncertain, not understanding what
is in the system, not having the possibility to tell which attributes
are used in the model, and thus not trusting the system [10]. We
believe CBR can address this uncertainty by being an
easy-to-understand and explainable AI method [62], with expert
and domain knowledge being an integrated part of the system,
which increases the likelihood for clinicians to trust it. This
study describes the development of a CBR system, SupportPrim
PT, for musculoskeletal pain in primary care. It demonstrates
the system’s ability to identify similar patients on an established
screening tool and an outcome measure used for patients with
musculoskeletal pain disorders. The SupportPrim PT will be
integrated into a clinical decision support system and tested in
a full-scale randomized controlled trial in primary health care
to evaluate its effectiveness among physiotherapists and their
patients. The SupportPrim PT was developed for decision
support for physiotherapists in managing patients with
musculoskeletal pain disorders, but we think such an explainable
system could be applicable to other health care personnel for
patients where decision support is needed.
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