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Abstract

Background: The automatic generation of radiology reports, which seeks to create a free-text description from a clinical
radiograph, is emerging as a pivotal intersection between clinical medicine and artificial intelligence. Leveraging natural language
processing technologies can accelerate report creation, enhancing health care quality and standardization. However, most existing
studies have not yet fully tapped into the combined potential of advanced language and vision models.

Objective: The purpose of this study was to explore the integration of pretrained vision-language models into radiology report
generation. This would enable the vision-language model to automatically convert clinical images into high-quality textual
reports.

Methods: In our research, we introduced a radiology report generation model named ClinicalBLIP, building upon the foundational
InstructBLIP model and refining it using clinical image-to-text data sets. A multistage fine-tuning approach via low-rank adaptation
was proposed to deepen the semantic comprehension of the visual encoder and the large language model for clinical imagery.
Furthermore, prior knowledge was integrated through prompt learning to enhance the precision of the reports generated. Experiments
were conducted on both the IU X-RAY and MIMIC-CXR data sets, with ClinicalBLIP compared to several leading methods.

Results: Experimental results revealed that ClinicalBLIP obtained superior scores of 0.570/0.365 and 0.534/0.313 on the IU
X-RAY/MIMIC-CXR test sets for the Metric for Evaluation of Translation with Explicit Ordering (METEOR) and the
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) evaluations, respectively. This performance notably surpasses that
of existing state-of-the-art methods. Further evaluations confirmed the effectiveness of the multistage fine-tuning and the integration
of prior information, leading to substantial improvements.

Conclusions: The proposed ClinicalBLIP model demonstrated robustness and effectiveness in enhancing clinical radiology
report generation, suggesting significant promise for real-world clinical applications.

(JMIR Form Res 2024;8:e32690) doi: 10.2196/32690
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Introduction

Radiology reports offer essential textual descriptions of
radiographs and play a pivotal role in the medical diagnosis and
treatment process. Their precise interpretation can directly
influence patient outcomes, underscoring the gravity of each
assessment. However, even for seasoned radiologists,

interpreting these images can be a meticulous task, often taking
several minutes per image. In an era where timely medical
intervention can be lifesaving, streamlining this process becomes
imperative. Recognizing the immense potential to ease the
workload of the health care sector and improve patient care,
there has been a growing interest in the research for automatic
radiology report generation.
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As shown in Figure 1, several attempts have been made in the
medical field to create medical reports from images. In the early
stage, most researchers used traditional deep learning methods,
such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), to produce radiology reports. IU
X-RAY proposed by Demner-Fushman et al [1] was a significant
step in this direction. In addition, Shin et al [2] innovatively
applied a CNN-RNN model for structured report creation. Wang
et al [3] used a nonhierarchical CNN-long-short term memory
approach, emphasizing both semantic and visual cues. Vinyals
et al [4] introduced visual attention mechanisms in the realm
of image captioning with CNN-RNN structures. Subsequently,
radiology report creation has evolved to adopt transformer-based
models [5,6]. The Knowledge-Driven Encode, Retrieve,

Paraphrase method was proposed by Li et al [7] to ensure
accurate medical report generation. To better recognize common
radiographic findings, Yuan et al [8] suggested pretraining
encoders with an array of chest x-ray images. Chen et al [9] put
forward the idea of producing radiology reports using a
memory-centric transformer. Meanwhile, Pino et al [10]
advocated for a template-driven methodology for x-ray report
generation. In their model, clinical templates are defined for
each abnormality, signaling its presence or lack thereof.
However, this method falls short in conveying specific patient
details like anatomical positions or size dimensions. Addressing
this, Wang et al [11] introduced a template-oriented
multiattention report generation model, which is tailored
especially for standard reports.

Figure 1. Example of a radiology report generation task.

Recently, vision-language models (VLMs) [12-15] have become
leading approaches, which use pretrained transformer models
to handle both visual and textual data at the same time. These
models are very good at understanding and creating content
based on images and texts. One key feature is cross-modal
learning [16,17], where VLMs learn to match specific image
patterns with their related descriptions or findings. This
understanding helps in making reports that are more relevant
and accurate. VLMs have the potential to greatly improve
radiology report generation by increasing accuracy, making
processes faster, and ensuring consistency. However, it is
important to address challenges related to data quality,
integration, and rules when using VLMs in clinical settings.
Thus, designing an effective fine-tuning method to boost VLM’s
knowledge and understanding of medical images and texts is a
very interesting research direction.

In this study, we fine-tune a medical VLM named ClinicalBLIP
through a multistage fine-tuning strategy for the radiology report
generation task. First, a joint optimization method that combines
self-attention fine-tuning via low-rank adaptation (LoRA) [18]
with layer normalization [19] is proposed to enhance the
understanding of clinical images by a general visual encoder.
The training target is the text generation loss of the large
language model (LLM) without introducing extra clinical
image-text pairs for further pretraining. Second, the joint
fine-tuning process for both the image-text transformation layer
and the multilayer perceptron (MLP) layer of the language
model is designed to allow the LLM to draw upon its internal
capability to generate the final report. In addition, we further
incorporate the prior information to light the specialized clinical
knowledge inherent in the LLM. Also, the clinical tag and brief

description of the image as a text prompt are fed into the model
for training and prediction. Experiments were conducted on the
IU X-RAY [1] and MIMIC-CXR [20] data sets. We compared
the proposed model with 11 competitor methods and analyzed
the performance in several aspects. It is demonstrated that the
proposed ClinicalBLIP achieved state-of-the-art performance
and can effectively combine the introduced textual prior
knowledge with clinical images to generate better reports.

Methods

Data Set
We evaluated our proposed method on the IU X-RAY [1] and
MIMIC-CXR [20] data sets. Both data sets have been
automatically deidentified.

The IU X-ray data set comprises 7470 images and 3955 reports.
The images consist of chest x-rays originating from Indiana
University. Each report in the data set primarily encompasses
multiple attributes such as comparison, indications, findings,
and impressions. Reports with empty findings were excluded,
resulting in 3337 remaining reports. Subsequently, we divided
the remaining reports into training and testing sets in a 4:1 ratio,
yielding 2668 reports for training and 669 reports for testing.

The MIMIC-CXR data set was created by the Massachusetts
Institute of Technology. The images are sourced from 65,379
patients who presented to the Beth Israel Deaconess Medical
Center Emergency Department between 2011 and 2016. We
used 152,173 medical reports for training and 1196 reports for
testing. In this data set, each data entry comprises a specific
report and 1 to 3 corresponding images.
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Overview of the Proposed Method
Our work aims to transform clinical radiographs, accompanied
by additional information, into textual descriptions that convey
the same semantic meaning as the images. To achieve this, we
introduce the ClinicalBLIP model, as depicted in Figure 2. This

model comprises three core modules: (1) a visual encoder for
converting clinical images into semantic representations; (2)
query transformer (Q-Former), a crucial component for bridging
the image-text gap; and (3) a LLM for generating textual reports
based on queries learned from Q-Former and textual prompts.

Figure 2. Overview of the proposed ClinicalBLIP model. LLM: large language model; Q-Former: query transformer.

Initially, we briefly introduce the structure and pretraining of
the ClinicalBLIP, which draws inspiration from Li et al [21],
especially how Q-Former as an intermediate module effectively
connects visual and textual data. Subsequently, we delve into
the details of how to effectively fine-tune the task of radiology
report generation.

Q-Former to Bridge the Modality Gap
Q-Former is designed to link a fixed image encoder with a
standard LLM. Notably, it can extract a consistent set of features
from the visual encoder, regardless of the input image resolution.
As shown in Figure 3, the model is composed of two primary

transformer submodules: (1) an image transformer for direct
interaction with the visual encoder and (2) a text transformer
that serves as both encoder and decoder. The efficacy of the
Q-Former is greatly influenced by learnable query embeddings,
which facilitate self-attention and cross-attention layer
interactions. These embeddings also enable communication
with text through similar attention mechanisms. During its 2
pretraining phases, that is, vision-language representation
learning and vision-to-language generative learning, Q-Former
uses distinct attention masks for specific tasks, controlling the
interaction between queries and text.

Figure 3. Model architecture of query transformer (Q-Former).

Vision-Language Representation Learning From
Visual Encoder
In the representation learning phase, Q-Former, connected to a
frozen visual encoder, undergoes pretraining with image-text
pairs. The objective here is to train the model to enable queries

to extract visual representations corresponding to the text.
Inspired by Li et al [22], 3 pretraining tasks are jointly
optimized, using the same input format and model parameters.
As illustrated in Figure 3, these tasks include image-text
contrastive learning, image-grounded text generation, and
image-text matching. Image-text contrastive learning aligns
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image and text representations by contrasting the similarity of
a positive image-text pair against that of negative pairs.
Image-grounded text generation encourages the Q-Former to
compel the queries to extract visual features that contain the
whole information of the text. Image-text matching seeks to
capture fine-grained alignment between image and text
representations through a binary classification task. Each task
uses a specific attention-masking strategy to control the
interaction between queries and text.

Vision-to-Language Generative Learning From LLM
During the generative pretraining phase, Q-Former, connected
to a frozen LLM, leverages its language generation capabilities.
A fully connected layer is used to linearly project the output
query embeddings to match the dimension of the LLM’s text
embedding. These embeddings then act as visual prompts,
guiding the LLM based on the visual representation captured
by Q-Former. Since Q-Former has been trained to extract visual
representations that are informative for language, it effectively
serves as an information filter, providing only the most relevant
information to the LLM and excluding unnecessary visual
details. This setup reduces the load on the LLM to learn

vision-language alignment, mitigating the risk of the catastrophic
forgetting problem.

General Vision-Language Instruction Tuning
Following the pretraining phases, as in Dai et al [23], Q-Former
undergoes a vision-language instruction tuning process. Here,
the LLM integrates visual encodings from Q-Former with
additional instruction text tokens. The instruction interacts with
the query embeddings through the Q-Former’s self-attention
layers. This interaction aids in extracting relevant image
features, which are further provided to optimize the LLM for
following instructions. Both quantitative and qualitative analyses
confirm the effectiveness of the instruction tuning process in
achieving vision-language zero-shot generalization.

Effective Fine-Tuning of Radiology Report Generation
To enhance the performance of a general visual encoder and an
LLM for medical image understanding and report generation,
various aspects need careful consideration. As shown in Figure
4, a multistage parameter fine-tuning approach is used to
improve model performance, namely visual encoder
enhancement and vision-language joint training.

Figure 4. Multistage fine-tuing on radiology report generation. LLM: large language model; Q-Former: query transformer.

In the first stage, the model’s weights are adjusted to focus more
on relevant features within medical images. This refinement
aids in understanding critical elements such as lesions, organs,
and more. Concurrently, layer normalization is applied to
maintain a consistent response across varying image scales and
brightness levels. The primary objective here is the generation
loss of the LLM, aiming to improve the quality of final reports
by enhancing the visual encoder’s ability to use visual
information more effectively during report generation, without
the need for additional medical text data for further pretraining.

In the second stage, the joint training process encompasses the
fusion of visual and textual inputs, and crucially, the
incorporation of the attention layer and MLP layer of the LLM.
The model simultaneously processes information from the visual
encoder and textual sources. The attention layer enables dynamic
focus on specific regions of medical images, aligning with

features crucial for report generation. Meanwhile, the MLP
layer transforms the combined visual-textual data, boosting the
model’s ability to generate contextually accurate and coherent
medical reports. The whole approach ensures full use of the
model’s attention and transformation capabilities, yielding
medically precise and linguistically sound reports, thus
effectively bridging the gap between visual and textual data.

Moreover, general LLMs often struggle with the absence of
specialized medical domain knowledge in the medical report
generation task. To mitigate the issue, we incorporate the prior
information into the model during the second stage. Specifically,
medical tags related to the medical image and a brief image
description are embedded as text prompts. In training, these
prompts are linked to corresponding medical images, facilitating
the model’s comprehension of the image content. This
association enables the model to better learn medical
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domain-specific terms and concepts. This embedding of text
prompts guides the model with domain knowledge, addressing
its limitations in the medical field. During prediction, these
prompts provide additional contextual information, enabling
the model to better comprehend medical images, identify
features within them, and express the medical reports in a more
professional manner.

In our research, we analyze 2 relevant data sets: IU X-RAY [1]
and the MIMIC-CXR [20]. Each of them has unique prior
information as input. The IU X-RAY data set enriches the model
with essential prior information, including “problem,” “image,”
and “indication.” The input template for the IU X-RAY data
set is formatted as follows:

“Problems: {problem} \n Image: {image} \n Indication:
{indication} \n”,

exemplified by “Problems: normal \n Image: Chest, 2 views,
frontal and lateral \n Indication: Pruritic \n”.

In contrast, the MIMIC-CXR data set lacks direct access to
similar prior information. To maintain consistency, we use the
CheXBERT [24] model to extract medical observations from
the reports within the MIMIC-CXR data set. The input template
for this data set is formatted as follows:

“Symptoms of existence: {} \n Symptoms of non-existence: {}
\n”,

illustrated by “Symptoms of existence: Cardiomegaly,
Atelectasis \n Symptoms of non-existence: Edema,
Consolidation \n”.

Experimental Settings
We adopt the InstructBLIP [23] as the base model, in which
contrastive language-image pretraining [13] and Flan-T5-XL
[25] are used as visual encoders and LLM structures,
respectively. In the training phase, we integrated LoRA [18]
into both the visual encoder and the language model. This
integration of LoRA was strategically implemented within the
query projection and value projection stages during self-attention
operations, enhancing the model’s ability to capture and leverage
relational information. For the training process, we configured
our settings as follows: a batch size of 3 was used, and gradient
accumulation was carried out over 4 steps to facilitate stable
and efficient training. The initial learning rate for the Q-Former

parameters was set to 1×10–4, while the initial learning rate for

the LoRA-related parameters was established at 5×10–4. To
dynamically adapt the learning rate during training, we used a
cosine decay learning rate scheduler, optimizing the convergence
and fine-tuning process. Furthermore, to enhance the training
efficiency and minimize memory consumption, we used float16
precision, a half-precision training technique, which effectively
balances training speed and model performance. This
comprehensive approach allowed us to train our model
effectively, incorporating LoRA’s enhancements for improved
performance and robustness. All the experiments are conducted
on a graphics processing unit (NVIDIA V100).

To evaluate the performance of the ClinicalBLIP model, we
compared our method with the following 11 state-of-the-art

methods. R2GEN [9] is a memory-driven radiology report
generation model with a relational memory to record the
information from the previous generation processes and a layer
normalization mechanism to incorporate the memory. CA [26]
is a contrastive attention model to capture and depict
abnormalities by comparing the input image with known normal
images. CMCL [27] is a novel competence-based multimodal
curriculum learning framework to alleviate data bias by
efficiently using limited medical data for medical report
generation. Posterior-and-Prior Knowledge
Exploring-and-distilling [28] is an effective approach to
exploring and distilling posterior and prior knowledge for
radiology report generation. R2GEN enhanced with cross-modal
memory networks [29] is a radiology report generation model
with cross-modal memory networks in which a memory matrix
is used to record the alignment and interaction between images
and texts, and another memory is used to perform querying and
responding to obtain the shared information across modalities.
ALIGNTRANSFORMER [30] is a radiology report generation
model to alleviate the data bias problem and model the very
long sequence. Knowledge Matters [31] is a novel radiology
generation framework assisted by general and specific
knowledge. Meshed-Memory Transformer [32] is a simple but
effective progressive text generation model to produce the
radiology report by incorporating high-level concepts into the
generation progress. Reinforcement Learning Over a
Cross-Modal Memory (CMM-RL) [33] is an enhanced radiology
report generation model with reinforced cross-modal alignment
to alleviate the requirement of annotated supervision while
facilitating interactions across modalities. Cross-Modal
Contrastive Attention (CMCA) [34] is a novel model to capture
both visual and semantic information from similar cases.
Observation-Guided Radiology Report Generation (ORGAN)
[35] is a generation framework that can maintain the clinical
consistency between radiographs and generated free-text reports.

We adopted natural language generation metrics to evaluate the
methods. Specifically, we selected Bilingual Evaluation
Understudy (BLEU) [36], Metric For Evaluation of Translation
with Explicit Ordering (METEOR) [37], and Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) [38]. BLEU-1,
BLEU-2, BLEU-3, BLEU-4, METEOR, and ROUGE-L are
reported.

BLEU is primarily used to evaluate the quality of
machine-generated translations by comparing them to 1 or more
reference translations. It computes a precision-based metric by
counting the number of n-grams (contiguous sequences of n
items, usually words) in the generated translation that matches
any reference translation. In this work, BLEU is used to evaluate
the generated text report.

METEOR is based on the harmonic mean of unigram precision
and recall, with recall weighted higher than precision. It
incorporates features not found in other metrics, such as
stemming and synonymy matching, along with standard exact
word matching. The metric was designed to address some of
the issues found in the more popular BLEU metric and to
produce a good correlation with human judgment at the sentence
or segment level.
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ROUGE compares an automatically produced text against a
reference or a set of reference text. It measures the overlap of
n-grams and word sequences between the generated text and
reference text. ROUGE captures both precision and recall,
providing a more balanced evaluation, and can be adapted for
different summary lengths.

Ethical Considerations
This study complied with all relevant ethical regulations. All
the publicly available data sets have been deidentified and
anonymized. With institutional review board approval
(OHSRP#5357) by the National Institutes of Health Office of
Human Research Protection Programs, the IU X-RAY data set
was made publicly available by Indiana University, and no
informed consent was necessary [1]. The MIMIC-CXR data set
was originally approved by the institutional review board of the
Beth Israel Deaconess Medical Center and the requirement for
individual patient consent was waived [20].

Results

Quantitative Evaluation
Tables 1 and 2 provide the quantitative results of the IU X-RAY
and MIMIC-CXR test sets, respectively. The detailed results
show that the ClinicalBLIP model exhibited robust performance
when compared with other methods across the IU X-RAY and
MIMIC-CXR data sets. For the IU X-RAY data set, as shown
in Table 1, although ClinicalBLIP was slightly inferior to the
competitor methods on some individual metrics, it significantly
surpassed the competitor methods on most metrics. With a
BLEU-A score of 0.296, it boasted an improvement of roughly
6.9% over its nearest competitor, CMCA, which had a BLEU-A

score of 0.277. This showcases ClinicalBLIP’s enhanced
capability in producing reports that are more aligned with the
reference. Moreover, when assessing the METEOR metric,
which provides insights into the robustness of generation,
ClinicalBLIP achieved a score of 0.570. This was approximately
1.7 times higher than CMCA’s 0.209, reflecting ClinicalBLIP’s
superior relevance to the generated report. The ROUGE-L metric
further solidified this observation; ClinicalBLIP’s score of 0.534
was about 33.8% higher than ORGAN’s score of 0.399,
suggesting that ClinicalBLIP consistently maintained a high
level of linguistic quality and relevance in its results.

For the MIMIC-CXR data set, as shown in Table 2, there were
areas where ClinicalBLIP did not have the highest score, but
its comprehensive performance remains commendable. The
BLEU-A score for ClinicalBLIP stood at 0.162, which, while
marginally behind ORGAN’s score of 0.184, indicates a
competitive translation quality. However, ClinicalBLIP made
a strong comeback in the METEOR metric, recording a score
of 0.365, which is approximately 1.25 times higher than
ORGAN’s score of 0.162. This underlines ClinicalBLIP’s
proficiency in generating semantically relevant reports.
Furthermore, with a ROUGE-L score of 0.313, ClinicalBLIP
managed to surpass ORGAN by roughly 6.8%, emphasizing its
consistent linguistic excellence.

In summary, while individual metrics might have seen close
competition, the overall trend clearly indicates the
comprehensive strength of the ClinicalBLIP model. Its
consistently high scores across various data sets and metrics
demonstrate its versatility and reliability in the realm of clinical
report generation.
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Table 1. The BLEUa, METEORb, and ROUGE-Lc scores of the generated reports by various methods on the IU X-RAY data set.

IU X-RAYMethods

ROUGE-LMETEORBLEU-AdBLEU-4BLEU-3BLEU-2BLEU-1

0.371N/Ae0.2290.1650.2190.3040.470R2GEN

0.3810.1930.2350.1690.2220.3140.492CAf

0.3780.1860.2280.1620.2170.3050.473CMCLg

0.376N/A0.2360.1680.2240.3150.483PPKEDh

0.3750.1910.2340.1700.2220.3090.475M2TRi

0.3900.1920.2410.1730.2320.3170.486R2GENCMNj

0.379N/A0.2370.1730.2250.3130.484ALIGNTRANSFORMER

0.381N/A0.2480.1780.2380.3270.496KNOWMATk

0.3840.2010.2460.1810.2350.3210.494CMM-RL

0.3920.2090.2770.2150.2680.3490.496CMCAl

0.3990.2050.2650.1950.2550.3460.510ORGANm

0.5340.5700.2960.2540.2900.3430.433ClinicalBLIP

aBLEU: Bilingual Evaluation Understudy.
bMETEOR: Metric for Evaluation of Translation With Explicit Ordering.
cROUGE-L: Recall-Oriented Understudy for Gisting Evaluation-L.
dBLEU-A: average of the BLEU-2/3/4 scores.
eN/A: not available.
fCA: contrastive attention.
gCMCL: competence-based multimodal curriculum learning.
hPPKED: Posterior-and-Prior Knowledge Exploring-and-distilling.
iM2TR: Meshed-Memory Transformer.
jR2GENCMN: R2GEN enhanced with cross-modal memory networks.
kKNOWMAT: Knowledge Matters.
lCMCA: Cross-Modal Contrastive Attention Model.
mORGAN: Observation-Guided Radiology Report Generation Framework.
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Table 2. The BLEUa, METEORb, and ROUGE-Lc scores of the generated reports by various methods on the MIMIC-CXR data set.

MIMIC-CXRMethods

ROUGE-LMETEORBLEU-AdBLEU-4BLEU-3BLEU-2BLEU-1

0.2700.1420.1550.1030.1450.2180.353R2GEN

0.2830.1510.1600.1090.1520.2190.350CAe

0.2810.1330.1510.0970.1400.2170.344CMCLf

0.2840.1490.1600.1060.1490.2240.360PPKEDg

0.2780.1420.1570.1060.1480.2180.353M2TRh

0.2720.1450.1640.1070.1540.2320.378R2GENCMNi

0.283N/Aj0.1680.1120.1560.2350.378ALIGNTRANSFORMER

0.284N/A0.1660.1150.1560.2280.363KNOWMATk

0.2870.1510.1650.1090.1550.2320.381CMM-RL

0.2870.1480.1670.1170.1560.2270.360CMCAl

0.2930.1620.1840.1230.1720.2560.407ORGANm

0.3130.3650.1620.1150.1530.2190.332ClinicalBLIP

aBLEU: Bilingual Evaluation Understudy.
bMETEOR: Metric for Evaluation of Translation With Explicit Ordering.
cROUGE-L: Recall-Oriented Understudy for Gisting Evaluation-L.
dBLEU-A: average of the BLEU-2/3/4 scores.
eCA: contrastive attention.
fCMCL: Competence-Based Multimodal Curriculum Learning.
gPPKED: Posterior-and-Prior Knowledge Exploring-and-distilling.
hM2TR: Meshed-Memory Transformer.
iR2GENCMN: R2GEN enhanced with cross-modal memory networks.
jN/A: not available.
kKNOWMAT: Knowledge Matters.
lCMCA: Cross-Modal Contrastive Attention Model.
mORGAN: Observation-Guided Radiology Report Generation Framework.

Ablation Study
We also conducted an ablation study to analyze the impact of
fine-tuning on different modules, such as the original
InstructBLIP (without any fine-tuning on this task), LLM, visual
encoder, and prior information, and show the results in Table
2. Based on the ablation study results presented in Table 3,
several observations can be made regarding the performance of
different methods on the IU X-RAY data set. The ClinicalBLIP
method achieved a BLEU score of 0.296, a METEOR score of
0.570, and a ROUGE-L score of 0.534, indicating its robust
performance across the metrics. When the effective tuning was
removed, namely InstructBLIP, there was a significant drop in
all metrics, especially in the BLEU score, which dropped to a

mere 0.011. This highlights the importance of effective tuning
for the model’s performance. Similarly, removing prior
information also led to a decline in performance, with the
METEOR metric showing a noticeable drop, to 0.339. The
removal of LLM tuning and visual encoder tuning resulted in
reduced scores, but this was not as drastic as in the former cases.
The BLEU score dropped to 0.149 and 0.245, respectively,
while the METEOR score was 0.458 and 0.513 for the same
conditions.

In summary, effective fine-tuning and prior information played
a vital role in achieving optimal performance, and LLM tuning
and visual encoder tuning were also important components for
enhancing the model’s results. All the components together
contributed to the best results.
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Table 3. Experimental results of ablation study on the IU X-RAY test set.

ROUGE-Lc scoreMETEORb scoreBLEU-Aa scoreMethods

0.5340.5700.296ClinicalBLIP with all fine-tuning

0.0570.0960.011ClinicalBLIP without effective tuning

0.2830.3390.091ClinicalBLIP without prior information

0.4120.4580.149ClinicalBLIP without LLMd tuning

0.4740.5130.245ClinicalBLIP without visual encoder tuning

aBLEU-A: the average of the BLEU-2/3/4 scores.
bMETEOR: Metric for Evaluation of Translation With Explicit Ordering.
cROUGE-L: Recall-Oriented Understudy for Gisting Evaluation–L.
dLLM: large language model.

Discussion

Principal Results
Our proposed model, ClinicalBLIP, achieved the best METEOR
and ROUGE-L scores and competitive BLEU scores on the test
sets of both IU X-RAY and MIMIC-CXR. The primary
outcomes of this study are to (1) propose a multistage
fine-tuning strategy that separately enhances the visual encoder
and the LLM’s understanding of medical image and text,
allowing the LLM to harness the knowledge acquired during
the pretraining process and (2) incorporate the medical tags of
medical images and brief introductions of these images in the
form of prompts into the model’s training and prediction
processes, the large model can effectively combine the
introduced text-based prior knowledge with medical images to
generate a more accurate report. Experimental results
demonstrate that ClinicalBLIP has great potential to help
medical experts facilitate radiology report generation and
improve the efficiency of decision-making for clinical diagnosis
and treatment.

Case Study
In addition to quantitative evaluations, we conducted an
extensive set of qualitative case studies to analyze the generated
report. Figure 5 shows 4 cases selected from the generated
reports on the MIMIC-CXR test set.

By comparing the prediction and the gold standard, it can be
found that case 1 and case 2 are good cases. For case 1, although
the prediction and the gold standard are not exactly the same,
there are differences in the order of symptom descriptions and
word choices; the deep semantic meanings expressed by the
two are basically consistent. However, the gold standard
provides more details than the prediction, which also explains

why the BLEU score is not ideal in certain situations. For case
2, both the prediction and the gold standard reports are closely
aligned and convey the same overall findings. The patient’s
chest x-ray does not reveal any significant abnormalities. This
is a good case as it highlights the consistency and accuracy of
radiological interpretation.

Besides the first 2 good cases, there are also areas that need
improvement and enhancement. Cases 3 and 4 in Figure 5 show
2 bad cases. For case 3, both the prediction and the gold standard
state that the heart is within the normal size, and the lungs appear
clear with no signs of pleural effusion or pneumothorax.
However, the prediction mentions mild anterior wedging of a
midthoracic vertebral body with slight degenerative changes
along the midthorax. In contrast, the the gold standard report
mentions degenerative changes in the thoracic spine but does
not specify the location or type of degeneration. The
discrepancies in the description of the bony structures between
the prediction and the the gold standard report could also be of
concern. Different types and locations of degenerative changes
can have different clinical implications. For case 4, while the
prediction and the gold standard largely align on most
observations, there are subtle differences in phrasing. For
instance, the prediction mentions the cardiomediastinal
silhouette is normal in size, whereas the the gold standard
emphasizes the normal contours of the heart and mediastinum.
Such subtle linguistic variations can potentially lead to
misunderstandings in diagnosis or interpretation, especially in
critical medical decisions. Therefore, even though the general
assessments align, precision in wording remains essential.

In summary, it is crucial to ensure that automatic or artificial
intelligence–based predictions in radiology are meticulously
validated and cross-referenced with expert opinions to ensure
patient safety and accurate diagnosis.
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Figure 5. Cases generated by ClinicalBLIP on the MIMIC-CXR test set.

Comparison With Prior Work
In the medical or clinical field, there has been a surging interest
in developing artificial intelligence applications for image
captioning, that is, radiology report generation. Most studies
have focused on improving the quality of the generated report
by using cross-modal memory to facilitate the generation process
[28], reinforcing learning to align the cross-modal information
[32], and planning and iterative refinement for long text
generation [25]. However, these methods have not explored the
capabilities of large VLMs for this task. In this study, we
successfully applied large VLMs to the radiology report
generation task by designing effective multistage fine-tuning
strategies and incorporating prior knowledge mechanisms. We
validated our approach on multiple task data sets and achieved
state-of-the-art performance.

Limitations and Future Work
Although ClinicalBLIP has made significant strides and shown
promising outcomes, there are still some unresolved issues. As
mentioned above, ClinicalBLIP has discrepancies in

terminological expressions in some cases compared to the the
gold standard and sometimes lacks or misinterprets
comprehensive details in certain descriptions. Therefore, in
future work, we will continue to optimize ClinicalBLIP,
considering the integration of reasoning techniques like chain
of thoughts into the fine-tuning process. This aims to enhance
the model’s semantic consistency in professional expressions
and provide more detailed descriptions while also verifying the
model’s generalization capabilities on more data sets. Moreover,
we will seek collaboration from professional practitioners,
including both directions for model improvement and methods
for model evaluation.

Conclusions
In this study, the ClinicalBLIP model was introduced, leveraging
large VLMs for radiology report generation. Tested on the IU
X-RAY/MIMIC-CXR data sets, ClinicalBLIP significantly
outperformed several competitor methods in METEOR and
ROUGE scores, showcasing its potential to enhance automatic
report generation in clinical radiology and streamline patient
care processes.
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