Contents

Original Papers

Comparing Self-Reported Running Distance and Pace With a Commercial Fitness Watch Data: Reliability Study (e39211)
Garrett Bullock, Joanne Stocks, Benjamin Feakins, Zahra Alizadeh, Amelia Arundale, Stefan Kluzek. ... 16

Prevalence of Body Dysmorphic Disorder in the Spanish Population: Cross-Sectional Web-Based Questionnaire Study (e46515)
Álvaro Loewen, Hilario Blasco-Fontecilla, Chao Li, Marcos Bella-Fernández, Belén Ruiz-Antorán. ... 25

Methodological Insights on Recruitment and Retention From a Remote Randomized Controlled Trial Examining the Effectiveness of an Alcohol Reduction App: Descriptive Analysis Study (e51839)
Melissa Oldham, Larisa Dinu, Gemma Loebenberg, Matt Field, Matthew Hickman, Susan Michie, Jamie Brown, Claire Garnett. 40

Remote Delivery of the Cuidánde Telehealth Intervention for Self-Management of Depression and Anxiety Among Latina Immigrant Women: Randomized Controlled Trial (e52969)
Carmen Alvarez, Subhash Aryal, Elizabeth Vrany, Maria Sanchez R, Rosalpíe Quiles, Lia Escobar-Acosta, Felicia Hill-Briggs. 53

Feasibility and Acceptability of a Mobile Technology Intervention to Support Postabortion Care After Surgical Abortion (the FACTS Study Phase 3): Mixed Methods Prospective Pilot Study (e46284)
Roopan Gill, Gina Ogilvie, Wendy Norman, Brian Fitzsimmons, Ciara Maher, Regina Renner. ... 69

The Sukaribit Smartphone App for Better Self-Management of Type 2 Diabetes: Randomized Controlled Feasibility Study (e46222)
Cecilia Josefsson, Thea Liljeroos, Margareta Hellgren, Ulrika Pöder, Mariann Hedström, Erik Olsson. ... 83

Office Workers’ Views About the Uses, Concerns, and Acceptance of Hand Hygiene Data Collected From Smart Sanitizers: Exploratory Qualitative Interview Study (e47308)
Sophie Rutter, Sally Sanger, Andrew Madden, Sukaina Ehdeed, Catherine Stones. ... 98

Population-Level Portal-Based Anxiety and Depression Screening Perspectives in HIV Care Clinicians: Qualitative Study Using the Consolidated Framework for Implementation Research (e48935)
Daniela Zimmer, Erin Staab, Jessica Ridgway, Jessica Schmitt, Melissa Franco, Scott Hunter, Darnell Motley, Neda Latiaerapong. 111

Dentists’ Information Needs and Opinions on Accessing Patient Information via Health Information Exchange: Survey Study (e51200)
Shuning Li, Grace Felix Gomez, Huiping Xu, Anushri Rajapuri, Brian Dixon, Thankam Thyvalikakath. ... 123
Promoting Self-Efficacy of Individuals With Autism in Practicing Social Skills in the Workplace Using Virtual Reality and Physiological Sensors: Mixed Methods Study (e52157)
Sung-In Kim, So-young Jang, Taewan Kim, Bogoan Kim, Dayoung Jeong, Taehyung Noh, Mingon Jeong, Kaely Hall, Meelim Kim, Hee Yoo, Kyungskik Han, Hwajung Hong, Jennifer Kim. 135

Mapping the Cardiometabolic Patient Experience and Self-Care Behaviors to Inform Design, Implementation, and Persistent Use of Digital Health Care Solutions: Mixed Methods Study (e43683)
Jan Liska, Marie Mical, Christophe Maillard, Cécile Dessapt, Europa Bendig, Daniel Mai, John Piette, Sabina De Geest, Guillaume Fontaine. 149

Linguistic Variables and Gender Differences Within a Messenger-Based Psychosocial Chat Counseling Service for Children and Adolescents: Cross-Sectional Study (e51795)
Zeki Ele, Sabrina Baldofski, Elisabeth Kohls, Melanie Eckert, Shadi Saee, Julia Thomas, Richard Wundrack, Christine Rummel-Kluge. 160

Rosie, a Health Education Question-and-Answer Chatbot for New Mothers: Randomized Pilot Study (e51361)
Quynh Nguyen, Elizabeth Aparicio, Michelle Jasczynski, Amara Channell Doig, Xiaohe Yue, Heran Mane, Neha Srikanth, Francis Gutierrez, Nataly Delcid, Xin He, Jordan Boyd-Graber. 175

Clinical Needs Assessment of a Machine Learning–Based Asthma Management Tool: User-Centered Design Approach (e45391)
Lu Zheng, Joshua Ohde, Shauna Overgaard, Tracey Brereton, Kristelle Jose, Chung-Il Wi, Kevin Peterson, Young Juhn. 188

Exploring Adolescents’ Attitudes Toward Mental Health Apps: Concurrent Mixed Methods Study (e50222)
Helene Høgsdal, Henriette Kyrrestad, Marte Rye, Sabine Kaiser. 199

The Impact of Social Media Use on Mental Health and Family Functioning Within Web-Based Communities in Saudi Arabia: Ethnographic Correlational Study (e44923)
Bdour Alwuqaysi, Allie Abdul-Rahman, Rita Borgo. 209

Enabling Personalization for Digital Cognitive Stimulation to Support Communication With People With Dementia: Pilot Intervention Study as a Prelude to AI Development (e51732)
Nick Hird, Tornhi Osaki, Samik Ghosh, Suchendra Pataniappan, Kyoshi Maeda. 224

Designing and Developing a Mobile App for Management and Treatment of Gestational Diabetes in Nepal: User-Centered Design Study (e50823)
Aarthi Shanmugavel, Prabin Shakya, Archana Shrestha, Jyoti Nepal, Abha Shrestha, Jean-Francois Daneault, Shristi Rawal. 242

Preoperative Virtual Reality to Expose Patients With Breast Cancer to the Operating Room Environment: Feasibility and Pilot Case Series Study (e46367)
Jordana Sommer, Kristin Reynolds, Pamela Hebbard, Michael Smith, Natalie Mota, W Mutch, Jessica Maples-Keller, Leslie Roos, Renée El-Gabalawy. 259

Educational Video Intervention to Improve Health Misinformation Identification on WhatsApp Among Saudi Arabian Population: Pre-Post Intervention Study (e50211)
Ebtihal Alsaa3, Sharifah AlDossary. 276

A Blended Intervention Targeting Emotion Dysregulation in Adults With Attention-Deficit/Hyperactivity Disorder: Development and Feasibility Study (e53931)
Emilie Nordby, Frode Guribye, Viktor Schenning, Sander Andersen, Jonna Kuntsi, Astrid Lundervold. 291

Designing a Web-Based Navigation Tool to Support Access to Youth Mental Health Services: Qualitative Study (e48945)
Alison Calear, Philip Batterham, Sonia McCallum, Michelle Banfield, Elizabeth Moore, Natalie Johnson, Alyssa Morse. 307
Development and Usability Testing of an mHealth Tool for Trauma-Informed Prevention of Substance Use, HIV Acquisition, and Risky Sexual Behaviors Among Adolescents: Mixed Methods Study (e52835)

Carla Danielson, Angela Moreland, Austin Hahn, Devin Banks, Kenneth Ruggiero.

Virtual Exercise in Medicine: A Proof of Concept in a Healthy Population (e45637)

Experiences Among Patients With Cystic Fibrosis in the MucoExocet Study of Using Connected Devices for the Management of Pulmonary Exacerbations: Grounded Theory Qualitative Research (e38064)

Culturally Adapting the World Health Organization Digital Intervention for Family Caregivers of People With Dementia (iSupport): Community-Based Participatory Approach (e46941)

Anna Messina, Rebecca Amati, Anna Annoni, Beatrice Bano, Emiliano Albanese, Maddalena Fiordelli.

A Bluetooth-Enabled Device for Real-Time Detection of Sitting, Standing, and Walking: Cross-Sectional Validation Study (e47157)

Demographics and Social Factors Associated With Persistent Nonuse of Video Appointments at a Multisite Health Care Institution: Cross-Sectional Study (e50572)

Pravesh Sharma, Celia Kamath, Tabetha Brockman, Anne Roche, Pamela Sincrope, Ruoxiang Jiang, Paul Decker, Vanessa Pazdernik, Christi Patten.

Transfer of Knowledge on Pneumoconiosis Care Among Rural-Based Members of a Digital Community of Practice: Cross-Sectional Study (e52414)

Brian Soller, Orrin Myers, Akshay Sood.

Improving Medical Photography in a Level 1 Trauma Center by Implementing a Specialized Smartphone-Based App in Comparison to the Usage of Digital Cameras: Prospective Panel Study (e47572)

Jan El Barbari, Maxim Fikuart, Nils Beisemann, Michael Müller, Hannah Syrek, Paul Grützner, Jochen Franke, Sven Vetter.

Machine Learning and Symptom Patterns in Degenerative Cervical Myelopathy: Web-Based Survey Study (e54747)

Alvaro Touzet, Tanzil Rujeedawa, Colin Munro, Konstantinos Margetis, Benjamin Davies.

Testing a Behavioral Activation Gaming App for Depression During Pregnancy: Multimethod Pilot Study (e44029)

Rachel Vanderkruik, Craig Ferguson, Lauren Kobylski, Joseph Locascio, Gabriella Hamlett, Parker Killenber, Robert Lewis, Noah Jones, Ella Rossa, Hannah Dineen, Rosalind Picard, Lee Cohen.

Telephone-Based Training Intervention for Using Digital Communication Technologies for Social Housing Residents During the COVID-19 Pandemic: Mixed Methods Feasibility and Acceptability Evaluation (e45506)

Tim Walker, Sarah Buckingham, Ria Poole, Lewis Elliott, Tamaryn Menneer, Gengyang Tu, Karyn Morrissey.

Acceptance of a Web-Based Intervention in Individuals Who Committed Sexual Offenses Against Children: Cross-Sectional Study (e48880)

Sonja Schröder, Claudia Buntrock, Louisa Neumann, Jürgen Müller, Peter Fromberger.

Development and Implementation of Digital Diagnostic Algorithms for Neonatal Units in Zimbabwe and Malawi: Development and Usability Study (e54274)

Hannah Gannon, Leyla Larsson, Simbarashe Chimhuya, Marcia Mangiza, Emma Wilson, Erin Kesler, Gwendoline Chimhini, Felicity Fitzgerald, Gloria Zailani, Caroline Crehan, Nushrat Khan, Tim Hull-Bailey, Yali Sassoon, Morris Baradza, Michelle Heya, Msandeni Chiulume.
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Phenotyping for Atopic Dermatitis With Transformers and Machine Learning: Algorithm Development and Validation Study (e52200)</td>
<td>Andrew Wang, Rachel Fulton, Sy Hwang, David Margolis, Danielle Mowery</td>
<td>504</td>
</tr>
<tr>
<td>Examining a Remote Group-Based Type 2 Diabetes Self-Management Education Program in the COVID-19 Era Using the ORBIT Model: Small 6-Week Feasibility Study (e46418)</td>
<td>Madison Hiemstra, Sonja Reichert, Marc Mitchell</td>
<td>519</td>
</tr>
<tr>
<td>Home Blood Pressure Telemonitoring Technology for Patients With Asymptomatic Elevated Blood Pressure Discharged From the Emergency Department: Pilot Study (e49592)</td>
<td>Karen Tran, Meagan Mak, Laura Kuyper, Jesse Bittman, Birinder Mangat, Heather Lindsay, Chad Kim Sing, Liang Xu, Hubert Wong, Martin Dawes, Nadia Khan, Kendall Ho</td>
<td>527</td>
</tr>
<tr>
<td>Acceptability of a Self-Led Mindfulness-Based Intervention for Teens with Type 1 Diabetes: Pilot Randomized Controlled Trial (e45659)</td>
<td>Tori Humiston, Caroline Cummings, Stephen Suss, Laura Cohen, Holly Hazlett-Stevens, Amy Hughes Lansing</td>
<td>541</td>
</tr>
<tr>
<td>“I Just Wanted a Dentist in My Phone”—Designing Evidence-Based mHealth Prototype to Improve Preschool Children’s Oral and Dental Health: Multimethod Study of the Codevelopment of an App for Children’s Teeth (e49561)</td>
<td>Waraf Al-yaseen, Daniela Raggio, Mariana Araujo, Nicola Innes</td>
<td>550</td>
</tr>
<tr>
<td>Administrative Dashboard for Monitoring Use of a Web-Based Parent Training Intervention: Usability Study (e53439)</td>
<td>Susan Breitenstein, Julia Berteletti, Shea Smoske, Charles Barger, Kyrie Tipps, Nathan Helsabeck</td>
<td>567</td>
</tr>
<tr>
<td>Web-Based Mindfulness Meditation as an Adjunct to Internet-Delivered Cognitive Behavioral Therapy for Public Safety Personnel: Mixed Methods Feasibility Evaluation Study (e54132)</td>
<td>Caeleigh Landry, Hugh McCall, Janine Beahm, Nickolai Titov, Blake Dear, R Carleton, Heather Hadjistavropoulos</td>
<td>577</td>
</tr>
<tr>
<td>Formative Evaluation of a Comprehensive Self-Management Intervention for Irritable Bowel Syndrome, Comorbid Anxiety, and Depression: Mixed Methods Study (e43286)</td>
<td>Kendra Kamp, Pei-Lin Yang, Emily Friedman, Alejandra Lopez, Sarah Iribarren, Pamela Barney, Sean Munson, Margaret Heitkemper, Rona Levy</td>
<td>595</td>
</tr>
<tr>
<td>Investigating the Potential of a Conversational Agent (Phyllis) to Support Adolescent Health and Overcome Barriers to Physical Activity: Co-Design Study (e51571)</td>
<td>Richard Moore, Abdel-Karim Al-Tamimi, Elizabeth Freeman</td>
<td>607</td>
</tr>
<tr>
<td>Improvements in Adolescents’ Disordered Eating Behaviors in a Collaborative Care Digital Mental Health Intervention: Retrospective Observational Study (e54253)</td>
<td>Landry Huffman, Darian Lawrence-Sidebottom, Aislinn Beam, Amit Parikh, Rachael Guerra, Monika Roots, Jennifer Huberty</td>
<td>626</td>
</tr>
<tr>
<td>Comparison of Blended Learning With Traditional Dermatology Learning for Medical Students: Prospective Evaluation Study (e49616)</td>
<td>Cristiana Silva, Cidia Vasconcellos, Murilo Souza, Juliana Fernandes, Vitoria Rego</td>
<td>659</td>
</tr>
</tbody>
</table>
Support for Chronic Pain Management for Breast Cancer Survivors Through Novel Digital Health Ecosystems: Pilot Usability Study of the PainRELife Mobile App (e51021)
Marianna Masiero, Chiara Filipponi, Elisa Fragale, Silvia Pizzoli, Elisabetta Munzone, Alessandra Milani, Luca Guido, Vittorio Guardamagna, Sara Marcelgila, Roberto Prandin, Marco Prenassi, Annamaria Caruso, Vania Manzelli, Chiara Savino, Costanza Conti, Federica Rizzi, Alice Casalino, Giulia Candiani, Francesca Memini, Luca Chiaveri, Andrea Vitali, Massimo Corbo, Roberto Grasso, Florence Didier, Roberta Ferrucci, Gabriella Pravettoni

Mental Health and Well-Being in Racial or Ethnic Minority Individuals After Using a Faith and Prayer Mobile App (Pray.com): Feasibility and Preliminary Efficacy Trial (e52560)
Breanne Laird, Sabrina Zuniga, Joshua Hook, Daryl Van Tongeren, Lynda Joeman, Jennifer Huberty

Attitudes Toward School-Based Surveillance of Adolescents' Social Media Activity: Convergent Parallel Mixed Methods Survey (e46746)
Colin Burke, Cynthia Triplett, Caryn Rubanovich, Melissa Karnaze, Cinnamon Bloss

Internet Use and Effects on Mental Well-being During the Lockdown Phase of the COVID-19 Pandemic in Younger Versus Older Adults: Observational Cross-Sectional Study (e46824)
Chou Yu, Nien Tou, James Low

Explainable Machine Learning Classification to Identify Vulnerable Groups Among Parenting Mothers: Web-Based Cross-Sectional Questionnaire Study (e47372)
Akiko Hanai, Tetsuo Ishikawa, Shoko Sugao, Makoto Fuji, Kei Hirai, Hiroko Watanabe, Masayo Matsuzaki, Goji Nakamoto, Toshihiro Takeda, Yasuji Kitabatake, Yuichi Itoh, Masayuki Endo, Tadashi Kimura, Eiryo Kawakami

Tumor Immunotherapy–Related Information on Internet-Based Videos Commonly Used by the Chinese Population: Content Quality Analysis (e50561)
Chen-xu Ni, Yi-bo Fei, Ran Wu, Wen-xiang Cao, Wen-hao Liu, Fang Huang, Fu-ming Shen, Dong-jie Li

Remote Self-Administration of Cognitive Screeners for Older Adults Prior to a Primary Care Visit: Pilot Cross-Sectional Study of the Reliability and Usability of the MyCog Mobile Screening App (e54299)
Stephanie Young, Elizabeth Dworak, Greg Byrne, Callie Jones, Lihua Yao, Julia Yoshino Benavente, Maria Diaz, Laura Curtis, Richard Gershon, Michael Wolf, Cindy Nowinski

Vision-Language Model for Generating Textual Descriptions From Clinical Images: Model Development and Validation Study (e32690)
Jia Ji, Yongshuai Hou, Xinyu Chen, Youcheng Pan, Yang Xiang

A Digitally Enabled Combined Lifestyle Intervention for Weight Loss: Pilot Study in a Dutch General Population Cohort (e38891)
Rahul Gannamani, José Castela Forte, Pytik Folkertsm, Sven Hermans, Sridhar Kumaraswamy, Sipko van Dam, Niels Chavannes, Hendrikus van Os, Hanno Pijl, Bruce Wolfenbuttel

Predictors of Mental Health Literacy in a Sample of Health Care Major Students: Pilot Evaluation Study (e43770)
Pia Tohme, Nour Abi Fadel, Nour Yaktine, Rudy Abi-Habib

Exploring User Perspectives on Brief Reflective Questioning Activities for Stress Management: Mixed Methods Study (e47360)
Ananya Bhattacharjee, Pan Chen, Abhijoy Mandal, Anne Hsu, Katie O'Leary, Alex Mariakakis, Joseph Williams

Investigation of the Impact of Wellinks on the Quality of Life and Clinical Outcomes in Patients With Chronic Obstructive Pulmonary Disease: Interventional Research Study (e47555)
Keri Pierz, Nicholas Locantore, Gretchen McCreary, Robert Calvey, Nickole Hackney, Pooja Doshi, John Linnell, Abirammy Sundaramoorthy, Carol Reed, Julie Yates
The Impact of Intervention Design on User Engagement in Digital Therapeutics Research: Factorial Experiment With a Mixed Methods Study (e51225)
Hyerim Lee, Eung Choi, Jung Shin, Tae-Gyun Kim, Jooyoung Oh, Bokyoung Shin, Jung Sim, Jaeyong Shin, Meelim Kim. .. 821

Zahra Zandesh. .. 836

Evaluating the Intensity of Exposure to MTV Shuga, an Edutainment Program for HIV Prevention: Cross-Sectional Study in Eastern Cape, South Africa (e44111)
Sarah Mulwa, Venetia Baker, Cherie Cawood, David Khanyile, Dominique O’Donnell, Sophie Sarrassat, Simon Cousens, Isolde Birdthistle. ... 856

Nonuse of Blended Web-Based and Face-To-Face Cognitive Behavioral Therapy for Alcohol Use Disorder: Qualitative Study (e45471)
Kristine Tarp, Regina Christiansen, Randi Bilberg, Simone Borkner, Caroline Dalsgaard, Marie Folker, Anette Nielsen. 872

The Effect of Web-Based Culinary Medicine to Enhance Protein Intake on Muscle Quality in Older Adults: Randomized Controlled Trial (e49322)
Emily Salas-Groves, Michelle Alcorn, Allison Childress, Shannon Galyean. ... 881

Using #ActuallyAutistic on Twitter for Precision Diagnosis of Autism Spectrum Disorder: Machine Learning Study (e52660)
Aditi Jaiswal, Peter Washington. ... 897

Determining the Right Levels of Health Coaching and Heart Rate Variability Biofeedback in a Workplace Behavior Change Intervention: Multiphase Optimization Strategy Preparation Study (e47181)
Sean Locke, Jenna Osborne. .. 910

Measurement of Head Circumference Using a Smartphone: Feasibility Cohort Study (e54194)
Stefan Yordanov, Kalsoom Akhter, Jye Quan Teh, Jawad Naushahi, Ibrahim Jalloh. ... 928

Use Intention and User Expectations of Human-Supported and Self-Help eHealth Interventions: Internet-Based Randomized Controlled Trial (e38803)
Talia Cohen Rodrigues, Thomas Reijnders, Linda Breeman, Veronica Janssen, Roderik Kraaijenhagen, Douwe Atsma, Andrea Evers. 939

Effects of Embodiment in Virtual Reality for Treatment of Chronic Pain: Pilot Open-Label Study (e34162)
Adam Saby, Anthony Alvarez, David Smolins, James Petros, Lincoln Nguyen, Michael Trujillo, Oytun Aygün. ... 949

Contactless Monitoring System Versus Gold Standard for Respiratory Rate Monitoring in Emergency Department Patients: Pilot Comparison Study (e44717)
Charlotte Goldfine, Md Oshim, Brittany Chapman, Deepak Ganesan, Tauhidur Rahman, Stephanie Carreiro. .. 959

An Intelligent Customer-Driven Digital Solution to Improve Perioperative Health Outcomes Among Children Undergoing Circumcision and Their Parents: Development and Evaluation (e52337)
Zhi Kwa, Jinqu Li, Dale Loh, Yang Lee, Guangyu Liu, Lixia Zhu, Minna Pikkarainen, Honggu He, Vidyadhar Mali. ... 970

Development of Cost-Effective Fatty Liver Disease Prediction Models in a Chinese Population: Statistical and Machine Learning Approaches (e53654)
Liang Zhang, Yueqing Huang, Min Huang, Chun-Hua Zhao, Yan-Jun Zhang, Yi Wang. ... 985
Patient and Therapist Perceptions of a Publicly Funded Internet-Based Cognitive Behavioral Therapy (iCBT) Program for Ontario Adults During the COVID-19 Pandemic: Qualitative Study (e50113)
Serena Thapar, Megan Nguyen, Bilal Khan, Roz Fanaieyan, Vanessa Kishimoto, Rebecca Liu, Blanca Bolet-Alamañac, Marisa Leon-Carlyle, Anne O’Riordan, Maggie Keresteci, Onil Bhattacharyya. ... 1004

Assessment of a Daily Diary Study Including Biospecimen Collections in a Sample of Sexual and Gender Minority Young Adults: Feasibility and Acceptability Study (e52195)
Stephanie Cook, Erica Wood, Mariana Rodrigues, Janice Jachero Caldas, Maxline Delorme. .. 1017

Acceptance of Telemedicine by Specialists and General Practitioners in Cardiology Care: Cross-Sectional Survey Study (e49526)
Felix Muehlensiepen, Marie Hoffmann, Jonathan Nübel, Yury Ignatyev, Martin Heinze, Christian Butter, Anja Haase-Fielitz. .. 1034

Enhancing Health Care Accessibility and Equity Through a Geoprocessing Toolbox for Spatial Accessibility Analysis: Development and Case Study (e51727)
Soheil Hashtarkhani, David Schwartz, Arash Shaban-Nejad. .. 1047

Group, Blended and Individual, Unguided Online Delivery of Mindfulness-Based Cognitive Therapy for People With Cancer: Feasibility Uncontrolled Trial (e52338)
Nasim Badaghi, Mette van Kruijssbergen, Anne Speckens, Joëlle Vilé, Judith Prins, Saskia Kelders, Linda Kwakkenbos. .. 1058

Comprehensive Assessment and Early Prediction of Gross Motor Performance in Toddlers With Graph Convolutional Networks–Based Deep Learning: Development and Validation Study (e51996)
Sulim Chun, Sooyoung Jang, Jin Kim, Chanyoung Ko, Joohyun Lee, JaeSeong Hong, Yu Park. .. 1073

Perception of Apps for Mental Health Assessment With Recommendations for Future Design: United Kingdom Semistructured Interview Study (e48881)
Erin Funnell, Benedetta Spadaro, Nayra Martin-Key, Jiri Benacek, Sabine Bahn. .. 1086

Co-Production of a Flexibly Delivered Relapse Prevention Tool to Support the Self-Management of Long-Term Mental Health Conditions: Co-Design and User Testing Study (e49110)

Help-Seeking, Support, and Engagement in Gestational Diabetes Mellitus Online Communities on Facebook: Content Analysis (e49494)
Sheila Pham, Kate Churruca, Louise Ellis, Jeffrey Brathwaite. .. 1122

How to Identify e-Cigarette Brands Available in the United States During 2020-2022: Development and Usability Study (e47570)
Shaoying Ma, Adeeba Kaareen, Hojin Park, Yanyun He, Shuning Jiang, Zefeng Qiu, Zidian Xie, Dongmei Li, Jian Chen, Richard O’Connor, Geoffrey Fong, Ce Shang. .. 1128

Using a Novel Gameplay Intervention to Target Intrusive Memories After Work-Related Trauma: Iterative Qualitative Analysis of Intensive Care Unit Staff Experiences (e47458)
Priya Patel, Susan Brown, Bolian Guo, Emily Holmes, Lalitha Iyadural, Jonathan Kingslake, Julie Highfield, Richard Morriss. .. 1137

A Mobile Applet for Assessing Medication Adherence and Managing Adverse Drug Reactions Among Patients With Cancer: Usability and Utility Study (e50528)
Chenxu Ni, Yi-fu Wang, Yun-ting Zhang, Min Yuan, Qing Xu, Fu-ming Shen, Dong-Jie Li, Fang Huang. .. 1159

Using mHealth to Improve Communication in Adult Day Services Around the Needs of People With Dementia: Mixed Methods Assessment of Acceptability and Feasibility (e49492)
Amy Zheng, Marissa Bergh, Komal Patel Murali, Tina Sadarangani. .. 1169
The Impact of a Web-Based Restorative Dentistry Course on the Learning Outcomes of Dental Graduates: Pre-Experimental Study (e51141)
Rasha Al-Sbei, Jawdat Ataya, Issam Jamous, Mayssoon Dashash

Comparison of the Discrimination Performance of AI Scoring and the Brixia Score in Predicting COVID-19 Severity on Chest X-Ray Imaging: Diagnostic Accuracy Study (e46817)
Eric Tenda, Reyhan Yunus, Benny Zulkarnaen, Muhammad Yugo, Ceve Pitoyo, Moses Asaf, Tiara Islamiyati, Arierta Pujitresnani, Andry Setiadharma, Joshua Hennina, Cleophas Rumende, Vally Wulani, Kuntjoro Harimurti, Aida Lydia, Hamzah Shatri, Pradana Soewondo, Prasandhya Yusuf

Developing a Novel Web-Based Self-Management Support Intervention for Polycystic Ovary Syndrome: Mixed Methods Study With Patients and Health Care Professionals (e52427)
Carol Percy, Andrew Turner, Charys Orr

A Deep Learning–Based Approach for Prediction of Vancomycin Treatment Monitoring: Retrospective Study Among Patients With Critical Illness (e45202)
Dohyun Kim, Hyun-Soo Choi, DongHoon Lee, Minkyu Kim, Yoon Kim, Seon-Sook Han, Yeonjong Heo, Ju-Hee Park, Jinkyeong Park

Optimization of Using Multiple Machine Learning Approaches in Atrial Fibrillation Detection Based on a Large-Scale Data Set of 12-Lead Electrocardiograms: Cross-Sectional Study (e47803)
Beau Chuang, Albert Yang

Designing an App to Support Measurement-Based Peer Supervision of Frontline Health Workers Delivering Brief Psychosocial Interventions in Texas: Multimethod Study (e55205)
Anubhuti Poudyal, Delta-Marie Lewis, Sarah Taha, Alyssa Martinez, Lauren Magoun, Y Ho, Natali Carmio, John Naslund, Katherine Sanchez, Neal Lesh, Vikram Patel

Improving Behavioral-Based Safety Training in Using Verbal Commands Through a Theory-Driven and Feedback-Based Nonimmersive Virtual Reality Game: Development and Usability Study (e48080)
Chukwudebube Atagbuzia, Ean Ng, Ganapathy Natarajan

Implementing a Sodium-Glucose Cotransporter 2 Inhibitor Module With a Software Tool (Future Health Today): Qualitative Study (e50737)
Matthew Suen, Jo-Anne Manski-Nankervis, Caroline McBride, Natalie Lumsden, Barbara Hunter

Characteristics of Users of a Digital Hypnotherapy Intervention for Hot Flashes: Retrospective Study (e53555)
Morgan Snyder, Gary Elkins

Adapting the Number of Questions Based on Detected Psychological Distress for Cognitive Behavioral Therapy With an Embodied Conversational Agent: Comparative Study (e50056)
Kazuhiro Shidara, Hiroki Tanaka, Hiroyoshi Adachi, Daisuke Kanayama, Takashi Kudo, Satoshi Nakamura

A Closed-Loop Digital Health Tool to Improve Depression Care in Multiple Sclerosis: Iterative Design and Cross-Sectional Pilot Randomized Controlled Trial and its Impact on Depression Care (e52809)
Kyre Henderson, Jennifer Reihm, Kanishka Koshal, Jaelenee Wijangco, Narender Sara, Nicolette Miller, Marianne Doyle, Alicia Mallory, Judith Sheridan, Chu-Yueh Guo, Lauren Oommen, Katherine Rankin, Stephan Sanders, Anthony Feinstein, Christina Mangurian, Riley Bove

Assessing a GPS-Based 6-Minute Walk Test for People With Persistent Pain: Validation Study (e46820)
Joshua Simmich, Nicole Andrews, Andrew Claus, Megan Murdoch, Trevor Russell

Using Principles of Digital Development for a Smartphone App to Support Data Collection in Patients With Acute Myocardial Infarction and Physical Activity Intolerance: Case Study (e33868)
Diana Cáceres Rivera, Luz Rojas, Lyda Rojas, Diana Gomez, David Castro Ruiz, Luis López Romero
Preliminary Efficacy of a Cognitive Behavioral Therapy–Based Smartphone App for Smoking Cessation in China: Randomized Controlled Pilot Trial (e48050)
Shanshan Chen, Jinsong Tang, Congyang Wu, Ge Zhang, Jing Zhang, Yanhui Liao. 1348

Use of Digital COVID-19 Exposure Notifications at a Large Gathering: Survey Analysis of Public Health Conference Attendees (e50716)
Caitlin Drover, Adam Elder, Brandon Guthrie, Debra Revere, Nicole Briggs, Laura West, Amanda Higgins, William Lober, Bryant Karras, Janet Baseman. 1361

Developing a Text Messaging Intervention to Prevent Binge and Heavy Drinking in a Military Population: Mixed Methods Development Study (e55041)
Chase Aycock, Indika Mallawaarachchi, Xin-Gun Wang, Daniel Cassidy, Jordan Ellis, Robert Klesges, G Talcott, Kara Wiseman. 1374

Association of Digital Engagement With Relaxation Tools and Stress Level Reduction: Retrospective Cohort Study (e50506)
Inbar Breuer-Asher, Marilyn Ritholz, David Horwitz, Omar Manejwala, Ephraim Behar, Yifat Fundoiano-Hershcovitz. 1388

An Ecological Mobile Momentary Intervention to Support Dynamic Goal Pursuit: Feasibility and Acceptability Study (e49857)
Ciarán O'Driscoll, Aneesha Singh, Iya Chichua, Joachim Clodic, Anjali Desai, Dara Nikolova, Alex Yap, Irene Zhou, Stephen Pilling. 1400

Effectiveness of a Web-based and Mobile Therapy Chatbot on Anxiety and Depressive Symptoms in Subclinical Young Adults: Randomized Controlled Trial (e47960)
Stanislaw Karkosz, Robert Szymaki, Katarzyna Sanna, Jaroslav Michalowski. 1413

Parents’ User Experience Accessing and Using a Web-Based Map of COVID-19 Recommendations for Health Decision-Making: Qualitative Descriptive Study (e53593)
Samantha Cyrkot, Lisa Hartling, Shannon Scott, Sarah Elliott. 1429

Assessing Knowledge, Competence, and Performance Following Web-Based Education on Early Breast Cancer Management: Health Care Professional Questionnaire Study and Anonymized Patient Records Analysis (e50931)
Michael Gnant, Khatijah Abdullah, Frances Boyle, Chiun-Sheng Huang, Katie Bickford, Sola Neunie, Alexander Noble, Anne Nunn, Caroline Sproat, Nadia Harbeck, Carlos Barrios. 1441

Development of Therapeutic Alliance and Social Presence in a Digital Intervention for Pediatric Concussion: Qualitative Exploratory Study (e49133)
Kiarah O’Kane, Thalia Otamendi, Noah Silverberg, Esther Choi, Veronik Sicard, Roger Zemek, Katherine Healey, Olivier Brown, Lauren Butterfield, Andrea Smith, Gary Goldfield, Rachel Kardish, Bechara Saab, Andrée-Anne Ledoux, Molly Cairncross. 1456

Low-Fidelity Prototype of a Sensor-Dependent Interaction Platform: Formative Evaluation With Informal Caregivers of Older Adults With Cognitive Impairment (e53402)
Nikita Sharma, Karen Grotenhuijs, J Gemert-Pijnen, Harri Oinas-Kukkonen, L Braakman-Jansen. 1470

Medical Students’ Perceptions on Identifying and Addressing Emotional Responses in Emergency Medicine: Pilot Investigation (e50827)
Anish Agarwal, Rachel Gonzales, Cory Munden, DaCarla Albright, Suzana Tsao. 1491

Factors Associated With Perception of Stigma Among Parents of Children With Cleft Lip and Palate: Cross-Sectional Study (e53353)
Yanan Zhang, Xinwen Zhang, Jizhuo Jiang, Wanhua Xie, Daoman Xiang. 1498

Machine Learning for Early Prediction of Major Adverse Cardiovascular Events After First Percutaneous Coronary Intervention in Patients With Acute Myocardial Infarction: Retrospective Cohort Study (e48487)
Pin Zhang, Lei Wu, Ting-Ting Zou, ZiXuan Zou, JiaXin Tu, Ren Gong, Jie Kuang. 1507
Differences in Psychological Inflexibility Among Men With Erectile Dysfunction Younger and Older Than 40 Years: Web-Based Cross-Sectional Study (e45998)
Junichi Saito, Hiroaki Kumano, Mohammad Ghazizadeh, Chigusa Shimokawa, Hideki Tanemura. .. 1518

Determining Distinct Suicide Attempts From Recurrent Electronic Health Record Codes: Classification Study (e46364)
Kate Bentley, Emily Madsen, Eugene Song, Yu Zhou, Victor Castro, Hyunjoon Lee, Younga Lee, Jordan Smoller. .. 1526

Synergizing the Behavior Change Wheel and a Cocreative Approach to Design a Physical Activity Intervention for Adolescents and Young Adults With Intellectual Disabilities: Development Study (e51693)
Laura Maenhout, Julie Latomme, Greet Cardon, Geert Crombez, Geert Van Hove, Sofie Compernolle. ... 1536

Assessing and Improving Data Integrity in Web-Based Surveys: Comparison of Fraud Detection Systems in a COVID-19 Study (e47091)
Stephen Bonett, Willey Lin, Patricia Sexton Topper, James Wolfe, Jesse Golinkoff, Aayushi Deshpande, Antonia Villarruel, José Bauermieister. 1555

Virtual and Interprofessional Objective Structured Clinical Examination in Dentistry and Dental Technology: Development and User Evaluations (e44653)
MengWei Pang, YanLing Dong, XiaoHan Zhao, JiaWu Wan, Li Jiang, JinLin Song, Ping Jì, Lin Jiang. ... 1569

Use of Machine Learning Tools in Evidence Synthesis of Tobacco Use Among Sexual and Gender Diverse Populations: Algorithm Development and Validation (e49031)
Shaoying Ma, Shunfing Jiang, Olivia Yang, Xuanzhi Zhang, Yu Fu, Yusen Zhang, Aadeeba Kaareen, Meng Ling, Jian Chen, Ce Shang. 1593

Designing and Developing Online Training for Diabetes Prevention Program Coaches Using an Integrated Knowledge Translation Approach: Development and Usability Study (e50942)
Kaela Cranston, Natalie Grieve, Tineke Dineen, Mary Jung. .. 1605

Evaluation of Eligibility Criteria Relevance for the Purpose of IT-Supported Trial Recruitment: Descriptive Quantitative Analysis (e49347)
Romina Blasini, Cosima Strantz, Christian Gulden, Sven Helfer, Jakub Lidke, Hans-Ulrich Prokosch, Keywan Sohrabi, Henning Schneider. .. 1627

User Requirements in Developing a Novel Dietary Assessment Tool for Children: Mixed Methods Study (e47850)
Zöe van der Heijden, Femke de Gooijer, Guido Camps, Desiree Lucassen, Edith Feskens, Marlou Lasschuijt, Elske Brouwer-Brolsma. 1641

The Development and Use of a New Visual Tool (REVISIT) to Support Participant Recall: Web-Based Interview Study Among Older Adults (e52096)
Eileen Dryden, Chitra Anwar, Jennifer Conti, Jacqueline Boudreau, Meaghan Kennedy, William Hung, Kathryn Nearing, Camilla Pimentel, Lauren Moo. .. 1652

Testing Behavioral Messages to Increase Recruitment to Health Research When Embedded Within Social Media Campaigns on Twitter: Web-Based Experimental Study (e48538)
Sandro Stoffel, Jing Law, Robert Kerrison, Hannah Brewer, James Flanagan, Yasemin Hirst. ... 1663

Clinical Informatics Team Members’ Perspectives on Health Information Technology Safety After Experiential Learning and Safety Process Development: Qualitative Descriptive Study (e53302)
Chantelle Recsky, Kathy Rush, Maura MacPhee, Megan Stowe, Lorraine Blackburn, Allison Muniak, Leanne Currie. 1678

Attitudes, Barriers, and Motivators Toward Daily Walking and a Mobile App to Increase Walking Among Women: Web-Based Anonymous Survey (e48668)
Catherine Jones, Shikha Chandarana, Amita Vyas, Melissa Napolitano. .. 1678
Brief Intervention as a Method to Reduce Z-Hypnotic Use by Older Adults: Feasibility Case Series (e51862)
Maria Bjelkarøy, Tone Simonsen, Tahreem Siddiqui, Sigrid Halset, Socheat Cheng, Ramune Grambaite, Jar Benth, Jennifer Gerwing, Espen Kristoffersen, Christofer Lundqvist.

Investigating the Impact of Prompt Engineering on the Performance of Large Language Models for Standardizing Obstetric Diagnosis Text: Comparative Study (e53216)
Lei Wang, Wenshui Bi, Suling Zhao, Yinyao Ma, Longting Lv, Chenwei Meng, Jingru Fu, Hanlin Lv.

Efficacy of Digital Outreach Strategies for Collecting Smoking Data: Pragmatic Randomized Trial (e50465)
Lauren Kearney, Emily Jansen, Hasmeena Kathuria, Katrina Steiling, Kayla Jones, Allan Walkey, Nicholas Cordella.

mHealth App Usability Questionnaire for Stand-Alone mHealth Apps Used by Health Care Providers: Canadian French Translation, Cross-Cultural Adaptation, and Validation (Part 1) (e50839)
Julie Gagnon, Sebastian Probst, Julie Chartrand, Michelle Lalonde.

Predictive Criterion Validity of the Parsley Symptom Index Against the Patient-Reported Outcomes Measurement Information System-10 in a Chronic Disease Cohort: Retrospective Cohort Study (e53316)
Hants Williams, Sarah Steinberg, Kendall Leon, Ryan Vingum, Mengyao Hu, Robin Berzin, Heather Hagg, Patrick Hanaway.

Daily Activity Lifelogs of People With Heart Failure: Observational Study (e51248)
Teketo Tegegne, Ly-Duyen Tran, Rebecca Nourse, Cathal Gurrin, Ralph Maddison.

Designing and Validating a Novel Method for Assessing Delay Discounting Associated With Health Behaviors: Ecological Momentary Assessment Study (e48954)
Amanda Luken, Jill Rabinowitz, Jonathan Wells, David Sosnowski, Justin Strickland, Johannes Thrul, Gregory Kirk, Brion Maher.

The Influence of Human Connections and Collaboration on Research Grant Success at Various Career Stages: Regression Analysis (e49905)
Akiko Hashiguchi, Makoto Asashima, Satoru Takahashi.

Identifying Unmet Needs in Major Depressive Disorder Using a Computer-Assisted Alternative to Conventional Thematic Analysis: Qualitative Interview Study With Psychiatrists (e48894)
Michelle Worthington, Richard Christie, Aaron Masino, Sarah Kark.

Risk Identification in Perinatal Health Care Settings via Technology-Based Recruitment Methods: Comparative Study (e48823)
Jessica Beatty, Logan Zelenak, Spencer Gillon, Lucy McGoron, Gregory Goyert, Steven Ondersma.

Machine Learning–Based Approach for Identifying Research Gaps: COVID-19 as a Case Study (e49411)

Feasibility and Acceptability of Web-Based Structured Oral Examinations for Postgraduate Certification: Mixed Methods Preliminary Evaluation (e40868)
Vanessa Burch, Jessica McGuire, Eric Buch, Mike Sathekge, Francis M'bouaflou, Flavia Senkubuge, Johannes Fagan.

Development of a Social Risk Score in the Electronic Health Record to Identify Social Needs Among Underserved Populations: Retrospective Study (e54732)

Patient-Centered Approaches for Designing Destigmatizing Sexual Pain-Related Web-Based Platforms: Qualitative Study (e53742)
Abdul-Fatawu Abdulai, Hasti Naghdali, Heather Noga, Paul Yong.
Investigating the Roles and Responsibilities of Institutional Signing Officials After Data Sharing Policy Reform for Federally Funded Research in the United States: National Survey (e49822)
Jinyoung Baek, Jonathan Lawson, Vasiliki Rahimzadeh ... 1855

Automated Category and Trend Analysis of Scientific Articles on Ophthalmology Using Large Language Models: Development and Usability Study (e52462)
Hina Raja, Asim Munawar, Nikolaos Mylonas, Mohammad Delaouz, Yeganeh Madadi, Muhammad Elahi, Amr Hassan, Hashem Abu Serhan, Onur Inam, Luis Hernandez, Hao Chen, Sang Tran, Wuqas Munir, Alaa Abd-Alrazaq, Siamak Yousefi. ... 1865

Acceptance of Medical Artificial Intelligence in Skin Cancer Screening: Choice-Based Conjoint Survey (e46402)
Inga Jagemann, Ole Wensing, Manuel Stegemann, Gerrit Hirschfeld ... 1881

Digital Health Needs and Preferences During Pregnancy and the Postpartum Period: Mixed Methods Study (e49860)
Natalie Henrich, Alison Brinson, Alyssa Arnold, Hannah Jahnke ... 1891

Acceptability and Feasibility of a Smartphone-Based Real-Time Assessment of Suicide Among Black Men: Mixed Methods Pilot Study (e49992)
Leslie Adams, Thamosina Watts, Aubrey Devlin, Emily Haroz, Johannes Thrul, Jasmin Stephens, Mia Campbell, Denis Antoine, Benjamin Lé Cook, Sean Joe, Roland Thorpe Jr. ... 1909

An Initial Validation of Community-Based Air-Conduction Audiometry in Adults With Simulated Hearing Impairment Using a New Web App, DigiBel: Validation Study (e51770)
Anna Sienko, Arun Thirunavukarasu, Tanya Kuzmich, Louise Allen ... 1921

Sleep Patterns of Premedical Undergraduate Students: Pilot Study and Protocol Evaluation (e45910)
Gargi Rajput, Andy Gao, Tzu-Chun Wu, Ching-Tzu Tsai, Jennifer Molano, Danny Wu ... 1930

Acceptability and Utility of a Digital Group Intervention to Prevent Perinatal Depression in Youths via Interactive Maternal Group for Information and Emotional Support (IMAGINE): Pilot Cohort Study (e51066)
Keshet Ronen, Anupa Gewali, Kristin Dachelet, Erica White, Marimirca Jean-Baptiste, Yolanda Evans, Jennifer Unger, S Tandon, Amritha Bhat. ... 1944

Benefits, Recruitment, Dropout, and Acceptability of the Strength Back Digital Health Intervention for Patients Undergoing Spinal Surgery: Nonrandomized, Qualitative, and Quantitative Pilot Feasibility Study (e54600)
Annemieke van der Horst, Laura Meijer, Harmieke van Os - Medendorp, Jan Jukema, Ernst Bohlmeijer, Karlein Schreurs, Saskia Kelders. . . 1960

Web-Based Screening, Brief Intervention, and Referral to Treatment for Traumatic Stress and Alcohol Misuse Among Survivors of Sexual Assault and Intimate Partner Violence: Usability and Acceptability Study (e49557)
Christine Hahn, Emily Tilstra-Ferrell, Selime Salim, Nada Goodrum, Alyssa Rheingold, Amanda Gilmore, Sara Barber, Angela Moreland. . . 1982

Sodium Intake Estimation in Hospital Patients Using AI-Based Imaging: Prospective Pilot Study (e48690)

Human-Written vs AI-Generated Texts in Orthopedic Academic Literature: Comparative Qualitative Analysis (e52164)
Hassan Hakam, Robert Prill, Lisa Korte, Bruno Lovreković, Marko Ostojić, Nikolai Ramadanov, Felix Muehlensiepen. ... 2011
Investigating the Feasibility of Using a Wearable Device to Measure Physiologic Health Data in Emergency Nurses and Residents: Observational Cohort Study (e51569)

Anish Agarwal, Rachel Gonzales, Kevin Scott, Raina Merchant. ... 2018

Feasibility of Guided Internet-Based Cognitive Behavioral Therapy for Panic Disorder and Social Anxiety Disorder in Japan: Pilot Single-Arm Trial (e53659)

Seina Shinno, Kazuki Matsumoto, Sayo Hamatani, Yosuke Inaba, Yoshihito Ozawa, Yohei Kawasaki, Tomoki Ikai, Chihiro Sutoh, Hiroyuki Hayashi, Eiji Shimizu. ... 2025

Six-Month Pilot Testing of a Digital Health Tool to Support Effective Self-Care in People With Heart Failure: Mixed Methods Study (e52442)

Alison Keogh, Carol Brennan, William Johnston, Jane Dickson, Stephen Leslie, David Burke, Peter Megyesi, Brian Caulfield. ... 2036

Pharmacy Students' Attitudes Toward Distance Learning After the COVID-19 Pandemic: Cross-Sectional Study From Saudi Arabia (e54500)

Saud Alsahali, Salman Almutairi, Salem Almutairi, Saleh Almofadhi, Mohammed Anaam, Mohammed Alshammari, Suhaj Abdulsalim, Yasser Almogbel. ... 2050

Nurse-Led Brief Intervention for Enhancing Safe Sex Practice Among Emerging Adults in Hong Kong Using Instant Messaging: Feasibility Study (e52695)

Sharon Pak, Man Wang, Anne Teitelman, Janet Wong, Daniel Fong, Edmond Choi. ... 2061

Changepoint Detection in Heart Rate Variability Indices in Older Patients Without Cancer at End of Life Using Ballistocardiography Signals: Preliminary Retrospective Study (e53453)

Naotake Yanagisawa, Yuji Nishizaki, Bingwei Yao, Jianting Zhang, Takatoshi Kasai. ... 2073

Engaging Cancer Care Physicians in Off-Label Drug Clinical Trials: Human-Centered Design Approach (e51604)

Maren Parsell, Morgan Greenleaf, Greeshma Kombara, Vikas Sukhatme, Wilbur Lam. ... 2084

Implementation Documentation and Process Assessment of the PharmNet Intervention: Observational Report (e54077)

Lori Eldridge, Beth Meyerson, Jon Agley. ... 2095

Privacy Concerns About Sharing General and Specific Health Information on Twitter: Quantitative Study (e45573)

Pouyan Esmaeilzadeh. ... 2110

Evaluation of the Effectiveness of Suicide.ca, Quebec's Digital Suicide Prevention Strategy Platform: Cross-Sectional Descriptive Study (e46195)

Louis-Philippe Côté, Julie Lane. ... 2133

Assessment of Qatar's Health Care Community Call Center Efficacy in Addressing COVID-19 Pandemic Health Care Challenges: Cross-Sectional Study (e42753)

Muhammad Waheed, Lolwa Al Mannai, Hanan Khudadad, Jamil Alenbawi, Mariama Mansaray, Samya Al Abdulla. ... 2164

Jim Swift, Noel O'Kelly, Chris Barker, Alex Woodward, Sudip Ghosh. ... 2176

User-Friendly Chatbot to Mitigate the Psychological Stress of Older Adults During the COVID-19 Pandemic: Development and Usability Study (e49462)

Ya-Hsin Chou, Chemin Lin, Shwu-Hua Lee, Yen-Fen Lee, Li-Chen Cheng. ... 2186
Novel Web-Based Drop-In Mindfulness Sessions (Pause-4-Providers) to Enhance Well-Being Among Health Care Workers During the COVID-19 Pandemic: Descriptive and Qualitative Study (e43875)
Mary Elliott, Camille Khallouf, Jennifer Hirsch, Diane de Camps Meschino, Ort Zamir, Paula Ravitz. 2200

Latino Parents' Reactions to and Engagement With a Facebook Group–Based COVID-19 Vaccine Promotion Intervention: Mixed Methods Pilot Study (e51331)
Anna González-Salinas, Elizabeth Andrade, Lorien Abroms, Kaitlyn Gómez, Carla Favetto, Valeria Gómez, Karen Collins. 2215

Barriers to COVID-19 Vaccination in a Troop of Fleet Antiterrorism Security Team Marines: Observational Study (e50181)
E Blazek, Amy Bucher. 2232

Web-Based Search Volume for HIV Tests and HIV-Testing Preferences During the COVID-19 Pandemic in Japan: Infodemiology Study (e52306)
Rie Kanamori, Futaba Uemura, Kosuke Uemura, Taiju Miyagami, Simon Valenti, Nobuyuki Fukui, Mayumi Yuda, Mizue Saita, Hirotake Mori, Toshio Naito. 2244

A Novel Approach for the Early Detection of Medical Resource Demand Surges During Health Care Emergencies: Infodemiology Study of Tweets (e46087)
Mahakprit Kaur, Taylor Cargill, Kevin Hui, Minh Vu, Nicola Bragazzi, Jude Kong. 2255

Exploring the Perspectives of Patients Living With Lupus: Retrospective Social Listening Study (e52768)
Erica Spies, Thomas Andreu, Matthias Hartung, Josephine Park, Paul Kamudoni. 2279

Patient Experiences and Insights on Chronic Ocular Pain: Social Media Listening Study (e47245)
Brigitte Slobes, Paul O'Brien, Himanshu Verma, Sathyarat Asaithambi, Nikita Parashar, Raj Mothe, Javed Shaikh, Annie Syntosi. 2293

Identification of Myths and Misinformation About Treatment for Opioid Use Disorder on Social Media: Infodemiology Study (e44726)
Mai ElSherief, Steven Sumner, Vikram Krishnasamy, Christopher Jones, Royal Law, Akadia Kacha-Ochana, Lyna Schieber, Munmun De Choudhury. 2303

Arabic Web-Based Information on Oral Lichen Planus: Content Analysis (e49198)
Azzam AlMeshrafi, Arwa AlHamad, Hamoud AlKuraidees, Lubna AlNasser. 2313

Viewpoint

Architecture and Development Framework for a Web-Based Risk Assessment and Management Platform Developed on WordPress to Address Opioid Overdose (e49759)
Alirea Kazemi, Marisha Boyd, Fiona Choi, Andy Tai, Vivian Tsang, Tam To, Jane Kim, Kerry Jang, Farhud Shams, Stefanie Schreiter, Maurice Cabanis, Reinhard Krausz. 2153

Corrigenda and Addenda

Correction: Evaluating the Clinical Feasibility of an Artificial Intelligence–Powered, Web-Based Clinical Decision Support System for the Treatment of Depression in Adults: Longitudinal Feasibility Study (e56570)
Christina Popescu, Grace Golden, David Benrimoh, Myriam Tanguay-Sela, Dominique Slowey, Eryn Lundrigan, Jérôme Williams, Bennet Desormeau, Divyesh Kardani, Tamara Perez, Colleen Rollins, Sonia Israel, Kelly Perlman, Caitrin Armstrong, Jacob Baxter, Kate Whitmore, Marie-Jeanne Fradette, Kaelan Felcarek-Hope, Ghassen Souf, Robert Fratila, Joseph Mehlretter, Karl Looper, Warren Steiner, Soham Rej, Jordan Karp, Katherine Heller, Sagar Parikh, Rebecca McGuire-Snedekus, Manuela Ferrari, Howard Margolese, Gustavo Turecki. 2242
Research Letters

The Relationship Between Changes in Mindfulness and Subsequent Changes in Well-Being Following Psychedelic Use: Prospective Cohort Study (e54632)
Grant Jones, Felipe Herrmann, Adam Bear, Robin Carhart-Harris, Hannes Kettner. .. 2324

Smartwatch Versus Routine Tremor Documentation: Descriptive Comparison (e51249)
Catharina van Alen, Alexander Brenner, Tobias Warnecke, Julian Varghese. .. 2328

Case Report

Examining Passively Collected Smartphone-Based Data in the Days Prior to Psychiatric Hospitalization for a Suicidal Crisis: Comparative Case Analysis (e55999)
Ross Jacobucci, Brooke Ammerman, Nilam Ram. .. 2332

Short Paper

Tailoring of Health-Promotion Video Messaging for Reproductive-Aged Women at Risk for Developing Cardiometabolic Disease: Qualitative Focus-Groups Study (e52583)
Jacqueline Kent-Marvick, Bryan Gibson, Alycia Bristol, Stephanie St Clair, Sara Simonsen. .. 2355
Comparing Self-Reported Running Distance and Pace With a Commercial Fitness Watch Data: Reliability Study

Garrett Bullock1*, DPhil, DPT; Joanne Stocks2*, PhD; Benjamin Feakins3, DPhil; Zahra Alizadeh4, MD; Amelia Arundale5, PhD, DPT; Stefan Kluzek2, MD, DPhil

1Wake Forest School of Medicine, Winston-Salem, NC, United States
2University of Nottingham, Nottingham, United Kingdom
3University of Oxford, Oxford, United Kingdom
4Department of Sports Science and Exercise Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
5Red Bull Athlete Performance Center, Thalgau, Austria
*these authors contributed equally

Corresponding Author:
Garrett Bullock, DPhil, DPT
Wake Forest School of Medicine
475 Vine St
Winston-Salem, NC, 27411
United States
Phone: 1 3367144264
Email: garrettbullock@gmail.com

Abstract

Background: There is substantial evidence exploring the reliability of running distance self-reporting and GPS wearable technology, but there are currently no studies investigating the reliability of participant self-reporting in comparison to GPS wearable technology. There is also a critical sports science and medical research gap due to a paucity of reliability studies assessing self-reported running pace.

Objective: The purpose of this study was to assess the reliability of weekly self-reported running distance and pace compared to a commercial GPS fitness watch, stratified by sex and age. These data will give clinicians and sports researchers insights into the reliability of runners’ self-reported pace, which may improve training designs and rehabilitation prescriptions.

Methods: A prospective study of recreational runners was performed. Weekly running distance and average running pace were captured through self-report and a fitness watch. Baseline characteristics collected included age and sex. Intraclass correlational coefficients were calculated for weekly running distance and running pace for self-report and watch data. Bland-Altman plots assessed any systemic measurement error. Analyses were then stratified by sex and age.

Results: Younger runners reported improved weekly distance reliability (median 0.93, IQR 0.92-0.94). All ages demonstrated similar running pace reliability. Results exhibited no discernable systematic bias.

Conclusions: Weekly self-report demonstrated good reliability for running distance and moderate reliability for running pace in comparison to the watch data. Similar reliability was observed for male and female participants. Younger runners demonstrated improved running distance reliability, but all age groups exhibited similar pace reliability. Running pace potentially should be monitored through technological means to increase precision.

(intJMIR Form Res 2024;8:e39211) doi:10.2196/39211

KEYWORDS

GPS; Garmin; training load; running; exercise; fitness; wearables; running; running distance; pace; pace distance

Introduction

Physical activity is an essential component of a healthy lifestyle [1]. There is a substantial body of evidence highlighting the physical, social, and psychological health benefits of regular physical activity [1-3]. Sustainable physical activity interventions are needed, given that 31% of the global population is sedentary [4]. The World Health Organization’s physical activity action plan [5] identifies sport as an underused yet significant contributor to physical activity.
One widely popular sport globally is running [6]. Over the past 40 years, running has become one of the most popular physical leisure activities [7,8]. An estimated 50 million people in Europe participate in running as a way to stay healthy [9]. Due to high running participation prevalence [9], researchers have attempted to quantify running habits and training load, most notably through self-report [10]. Running load or workload is the distance run in 1 session. A training session is 1 running bout. Running speed is the intensity at which one runs for 1 running session [9,10]. However, there are potential inaccuracies from over–self-reporting due to recall bias [11] and social desirability of higher levels of physical activity [12], with potential differences by sex and age groups [13]. Further, the reliability of self-reported running pace has not been investigated, which is an important factor in quantifying running training intensity [14]. Due to these issues, research has investigated the reliability of wearables in quantifying running load [15]. Wearables, such as accelerometers, have demonstrated excellent reliability in assessing gait patterns, acceleration, and velocity [15]. Although wearable accelerometers are ubiquitously used in the general population [16] and are reliably used in research to measure physical activity levels [17], they are rarely used by running populations to track running load and training [18]. Runners opt for wearable GPS watches to track running training [19], with up to 90% of regular runners using some form of GPS monitoring when running [18]. GPS wearable technology quantifies running workload and speed [20]. A systematic review determined that there is excellent reliability for step counting and moderate validity for energy expenditure and distance run [21]. The most popular GPS wearable technology used by runners is the Garmin watch, as indicated by a previous survey where 44% of GPS and sports watches were Garmin, compared to 27% for Polar and 7% for Nike watches [22]. There has been previous related work in evaluating the reliability of running self-reports in large samples. In a sample of 92 endurance runners, followed for a 52-week (ie, 1 year) period, 93% of the runners participated in the entire follow-up period [10]. In a study of 53 running participants over 18 weeks, the response rate was 73% over the reporting period [23]. Another study surveyed 228 runners for at least 6 months, with a 2.2% attrition rate [24].

Although there is substantial evidence investigating the reliability of running distance self-reporting [10] and GPS wearable technology [20], there are currently no studies investigating the reliability of participant self-reporting in comparison to GPS wearable technology in running populations. There is a critical sports science and medical research gap due to a paucity of reliability studies assessing self-report running pace. Further, as GPS wearable technology is expensive [25], there may be a barrier for some recreational runners, decreasing the efficacy of using GPS monitoring alone to assess running workload [22]. Therefore, this study aimed to assess the reliability of weekly self-reported running distance and pace compared to a commercial GPS fitness watch, stratified by sex and age. These data will give clinicians and sports researchers insights into the reliability of runners’ self-reported pace, which may improve training designs and rehabilitation prescriptions.

Methods

Study Design

A prospective cohort study was conducted using a mobile-based app. Participants accessed a dynamic digital consent form through the app or the recruitment website during the spring of 2021 over a 4-month period. During consent, participants could select different levels of study engagement. All levels of engagement involved the following: (1) an acknowledgement, understanding, and consent to participate in the study; (2) a baseline questionnaire collecting information on demographics, previous and current injury and illness history, footwear and foot posture, knee symptoms, lifestyle, and previous year’s training load; and (3) weekly reports on training load and each participant’s perceptions of cardiorespiratory symptoms, mood, and incidence of illness and injury in the last week. More advanced participation involved connecting participants’ Garmin Connect (Garmin Ltd) data, which included sharing data on running distance, running speed, and heart rate during each training or racing session. Participants added their Garmin Connect information at study recruitment. Garmin data were then automatically uploaded every week when the participant was within the study. Once the participant reaches the end of the study data collection or voluntarily leaves the study, the Garmin data collection link is terminated, ending data upload (Figure 1). Participants could opt out of the study at any time.
Ethical Considerations
This study received a favorable ethical review from the University of Nottingham (FMHS 113-1120). All methods were performed following the relevant guidelines and regulations of the Declaration of Helsinki. Before study inclusion, all participants were detailed about the risks and benefits of participation. All participants provided informed consent to participate.

Population and Recruitment Strategy
This study aimed to examine recreational runners. The inclusion criteria of this subgroup of the larger “Running Through” [26] study consisted of the following: (1) age \(\geq 18 \) years; (2) performing running activities; and (3) connecting their Garmin Connect data to the weekly reports. Exclusion criteria consisted of individuals meeting the following conditions: (1) not able or willing to use the internet regularly; (2) diagnosed with an immunocompromised disorder; (3) diagnosed with memory impairment; (4) diagnosed with a neurodegenerative disorder; (5) diagnosed with inflammatory osteoarthritis; and (6) undergone trunk or lower extremity orthopedic surgery in the last 6 months. The larger “Running Through” study consisted of both Garmin and self-report data. Participants were recruited through email, the study website, social media, and word of mouth. Participants resided in the United Kingdom or Europe. All recruitment was performed in English. Participants did not receive compensation for participating in this study. Watch ownership was not known by the research team.

Weekly Survey
Participants were sent an encrypted text message or email weekly to report weekly running distance, pace, and incidence of illness and injury [10]. Garmin Connect data also monitored running distance and pace. Garmin monitoring has demonstrated excellent reliability and validity [20].

Data Storage
The University of Nottingham’s secure server hosted the research survey tool through the RedCap (Research Electronic Data Capture) service [27]. Data were queried from the secure database using a unique randomized and encrypted identification number.

Data Reduction
Watch data were downloaded to an encrypted SQL database using Garmin Connect software (Garmin Ltd). For convenience, these data were combined with the RedCap survey data and tables containing key variables that could be used to link these data. Custom functions were written in R using the DBI and MariaDB packages to interface with the database. The rjson and bit64 packages were additionally used to facilitate the extraction of JavaScript Object Notation format activity data and provide necessary extensions to R’s base data classes. Once data were downloaded, they were aggregated, cleaned, and checked for quality assurance. Data checks were performed through automation and manually.

Statistical Analyses
Participant statistics were described using mean (SD) or median (IQR) for continuous variables and frequencies (percentages)
for categorical variables. Overall running exposure was calculated in person kilometers.

To assess reliability, intraclass correlational coefficients ($ICC_{2,1}$) were calculated for weekly running distance and running pace between self-reports and weekly reports generated by the Garmin Connect data. Reliability was rated as poor (<0.50), moderate (0.50-0.75), good (0.75-0.90), and excellent (>0.90) [28]. Correlation and Bland-Altman plots were also calculated to assess any systemic measurement error. Analyses were then stratified by sex and age strata (18-40, 41-60, and ≥61 years). All analyses were performed in R 4.1.2 (R Foundation for Statistical Computing) [29], with the psych package for ICC calculations and BlandAltmanLeh for Bland-Altman plots.

Results

A total of 485 participants linked their Garmin Connect data to the study, with 475 participants included for a total of 3602 participant weeks. Of these, 3 participants were excluded due to lack of follow-up, and another 7 did not run during the collection period (Table 1; the flow chart is available in Multimedia Appendix 1). Participants self-reported running a weekly median of 26.2 (IQR 12.8-39.7) km at a median pace of 6.0 (IQR 5.4-6.7) min/km compared to 25.9 (IQR 4.7-41.8) km running distance at a median pace of 6.1 (IQR 5.2-7.0) min/km (Table 2) recorded by the Garmin watch.

Table 1. Participant descriptive statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (n=475)</th>
<th>Female participants (n=248)</th>
<th>Male participants (n=227)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>49.5 (12.2)</td>
<td>51.0 (13.1)</td>
<td>47.8 (10.9)</td>
</tr>
<tr>
<td>BMI (kg/m2), mean (SD)</td>
<td>24.0 (3.7)</td>
<td>24.2 (3.7)</td>
<td>23.8 (3.8)</td>
</tr>
<tr>
<td>Number of weeks followed, median (IQR)</td>
<td>17 (11-23)</td>
<td>15 (10-20)</td>
<td>17 (11-24)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>10 (2)</td>
<td>6 (2)</td>
<td>4 (1)</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>62 (13)</td>
<td>30 (13)</td>
<td>32 (13)</td>
</tr>
<tr>
<td>Cigarettes per day, median (IQR)</td>
<td>9 (3-14)</td>
<td>7 (5-10)</td>
<td>30 (23-37)</td>
</tr>
<tr>
<td>Years smoked, median (IQR)</td>
<td>22 (9-35)</td>
<td>14 (2-26)</td>
<td>25 (18-31)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>6 (1)</td>
<td>1 (1)</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Heart disease, n (%)</td>
<td>5 (1)</td>
<td>2 (1)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Cancer, n (%)</td>
<td>14 (3)</td>
<td>10 (4)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>Asthma, n (%)</td>
<td>62 (13)</td>
<td>40 (16)</td>
<td>32 (11)</td>
</tr>
<tr>
<td>Hay fever (pollen allergies), n (%)</td>
<td>180 (38)</td>
<td>99 (40)</td>
<td>81 (35)</td>
</tr>
<tr>
<td>Days of running per week, mean (SD)</td>
<td>2 (1)</td>
<td>2 (1)</td>
<td>2 (1)</td>
</tr>
</tbody>
</table>

Table 2. Weekly running descriptive characteristics using Garmin watch data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (n=475)</th>
<th>Female participants (n=248)</th>
<th>Male participants (n=227)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time running (min), median (IQR)</td>
<td>144 (48-238)</td>
<td>139 (43-226)</td>
<td>153 (45-230)</td>
</tr>
<tr>
<td>Calories burned (kcal), median (IQR)</td>
<td>1450 (547-2353)</td>
<td>1212 (461-1963)</td>
<td>1755 (671-2840)</td>
</tr>
<tr>
<td>Kilometers, median (IQR)</td>
<td>25.9 (4.7-41.8)</td>
<td>22.7 (4.5-40.9)</td>
<td>29.6 (4.9-40.6)</td>
</tr>
<tr>
<td>Running pace (min/km), median (IQR)</td>
<td>6.1 (5.2-7.0)</td>
<td>6.7 (5.7-7.7)</td>
<td>5.7 (4.9-6.4)</td>
</tr>
<tr>
<td>Average heart rate (bpma), mean (SD)</td>
<td>130 (26)</td>
<td>127 (26)</td>
<td>130 (24)</td>
</tr>
<tr>
<td>Maximum heart rate (bpma), mean (SD)</td>
<td>163 (24)</td>
<td>162 (25)</td>
<td>163 (24)</td>
</tr>
</tbody>
</table>

aBpm: beats per minute.

Reliability

Weekly distance and pace reliability were rated as good and moderate, respectively, for both sexes and for runners aged 18-40, 41-60, and ≥61 years. Furthermore, weekly distance reliability was rated as excellent and moderate in runners aged 18-40 years. All results exhibited no discernable systematic bias (Figure 2; Table 3; Multimedia Appendix 1).
Figure 2. Correlation and Bland-Altman Plots of the Reliability of Self-Report and Garmin Connect Weekly Running Distance and Running Pace. A. Weekly Running Distance (km) B. Weekly Running Pace (min/km).
Table 3. Reliability of weekly self-report and Garmin watch data for running distance and pace.

<table>
<thead>
<tr>
<th>Group</th>
<th>Self-report</th>
<th>Garmin watch</th>
<th>ICCa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly distance run (km), median (IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall (n=475)</td>
<td>26.2 (12.8, 39.7)</td>
<td>25.9 (4.7-41.8)</td>
<td>0.88 (0.87-0.89)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (n=248)</td>
<td>24.8 (10.0-39.7)</td>
<td>22.7 (4.5-40.9)</td>
<td>0.86 (0.85-0.87)</td>
</tr>
<tr>
<td>Male (n=227)</td>
<td>29.0 (16.9-41.1)</td>
<td>29.6 (4.9-40.6)</td>
<td>0.89 (0.88-0.90)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-40 (n=113)</td>
<td>27.0 (10.9-43.0)</td>
<td>26.8 (7.2-44.6)</td>
<td>0.93 (0.92-0.94)</td>
</tr>
<tr>
<td>41-60 (n=262)</td>
<td>27.0 (16.0-38.0)</td>
<td>25.9 (11.5-41.2)</td>
<td>0.87 (0.85-0.88)</td>
</tr>
<tr>
<td>≥61 (n=100)</td>
<td>25.0 (13.8-36.2)</td>
<td>24.5 (9.7-39.3)</td>
<td>0.83 (0.80-0.85)</td>
</tr>
<tr>
<td>Average weekly running pace (min/km), mean (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall (n=475)</td>
<td>6.0 (1.1)</td>
<td>6.1 (2.0)</td>
<td>0.72 (0.69-0.75)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (n=248)</td>
<td>6.4 (1.2)</td>
<td>6.7 (1.9)</td>
<td>0.67 (0.62-0.72)</td>
</tr>
<tr>
<td>Male (n=227)</td>
<td>5.7 (0.9)</td>
<td>5.7 (2.1)</td>
<td>0.68 (0.65-0.71)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-40 years (n=113)</td>
<td>5.8 (1.1)</td>
<td>5.7 (2.5)</td>
<td>0.69 (0.65-0.73)</td>
</tr>
<tr>
<td>41-60 years (n=262)</td>
<td>6.0 (1.0)</td>
<td>6.1 (2.5)</td>
<td>0.70 (0.66-0.73)</td>
</tr>
<tr>
<td>≥61 years (n=100)</td>
<td>6.2 (1.2)</td>
<td>6.5 (2.5)</td>
<td>0.74 (0.68-0.78)</td>
</tr>
</tbody>
</table>

aICC: intraclass correlation coefficient.

Discussion

Principal Findings

The overall findings of this study indicate that the weekly self-report of running distance by runners wearing a Garmin watch demonstrated good reliability compared to the Garmin watch data. Distance reliability was similar between female and male participants and across age strata, except for participants aged 18-40 years, who demonstrated excellent reliability. Weekly self-report of running pace demonstrated moderate reliability compared to Garmin watch data, with similar reliability observed between sex and age strata. There were no discernable patterns or systematic biases concerning self-reported running distance or pace.

Comparison to Previous Work

Self-reported running distance exhibited good reliability compared to Garmin data. The reliability is higher in this study compared to a previous study on physical activity (ICC 0.67-0.81) [30]. However, the previous study examined multiple countries and recorded all physical activity beyond running. The homogenous country sample and the focus on running in our study may affect the comparison of these results [31]. Younger adults (aged 18-40 years) demonstrated increased running distance reliability reporting compared to the older age strata (aged 41-60 and ≥61 years). This is comparable with previous research, in which younger adults displayed improved self-report reliability [30]. Younger adults may have a greater aptitude to monitor their running through technology [32]. However, this is only speculative, and further research is required.

Self-reported running pace demonstrated moderate reliability compared to Garmin Connect data. There are currently no studies investigating the reliability of self-reported running pace. However, recreational runners usually train at one pace, with little change at different distances [33]. The moderate reliability observed in this sample may be due to these runners reporting their perceived running pace, with little fluctuation between sessions or weeks. However, specific variances may have occurred in the actual running pace, decreasing the reliability of these data. Previous literature has suggested that instant feedback through the use of heart rate or step cadence can increase a recreational runner’s ability to self-report running pace [33]. However, further work is needed to investigate the efficacy of this approach.

These findings necessitate future research. Participants were recreational runners, and most of them were older than 40 years. Future work is needed to assess the reliability of self-report in comparison to GPS monitoring data in elite runners of all ages and younger populations across different skill or competition levels. All runners in this study already owned a Garmin watch before the study enrollment. Understanding how self-reporting changes among new GPS activity monitor users is needed. Running pace demonstrated moderate reliability in this recreational runner sample. Future research is required to investigate the effectiveness of running pace training on self-report reliability.
Limitations
As with all studies, there are limitations to this study. First, there is the risk of recall bias due to the weekly intervals for self-reporting, which decreases the precision of these findings. Participants may have not worn or activated their Garmin watch for specific runs, decreasing the reliability of these data. GPS monitoring devices are expensive, causing a high barrier to entry. Such a barrier may add selection bias to this reliability study, decreasing the generalizability of these results to all running populations. Further, the sample in this study comprised recreational runners; therefore, the results are not generalizable to elite runners or populations that solely engage in walking for exercise. Finally, participants used different versions of the Garmin watch. As different watch versions may exhibit different reliability, there is a potential for decreased data precision.

Practical Applications
Physical activity monitors have effectively enhanced physical activity levels by providing user feedback, facilitating behavior change—following prescribed training—and preventing injuries [34]. The good to excellent reliability of self-reported weekly running distance observed in this cohort of recreational runners across all adult age groups supports previous research indicating that runners can effectively report running loads [30]. These findings strengthen the notion that self-report can be used to reliably monitor runners as they begin or maintain an exercise regimen or return to running following an injury. However, the moderate reliability exhibited for running pace suggests that recreational runners of all ages are not as adept at monitoring their running pace. Incorporating technological monitoring for running pace may be pertinent to maintain prescribed running paces either for specific training regimens (ie, preparing for a race) or when returning to running following an injury.

Conclusions
Weekly self-report demonstrated good reliability for running distance compared to the Garmin watch data, with similar reliability between sex and age groups. However, the weekly self-report demonstrated only moderate reliability for running pace compared to the Garmin data, with similar reliability between sex and age groups. Sports researchers and scientists can use weekly self-reported running distance in conjunction with Garmin data when quantifying weekly training load. However, caution should be exercised when relying on self-reported running pace to evaluate running intensity in recreational runners. Running pace potentially should be monitored through technological means to increase precision.

Data Availability
Data and corresponding codes are available within the Open Science Framework [35].

Acknowledgments
This study was funded through Technopolis Consulting Group Belgium (TGB).

Authors' Contributions
GB, JS, BF, and SK conceived the study idea. JS, ZA, and SK collected the data. GS, BF, JS, and SK extracted and analyzed the data. GB, JS, BF, AA, and SK wrote the original manuscript. GB, JS, BF, ZA, AA, and SK edited the manuscript. GB, JS, BF, ZA, AA, and SK approved the final draft of the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Study flowchart.

References

20. Mallula C. Comparing Garmin Forerunner 405CX GGP and Nike + iPod to Accurately Measure Energy Expenditure, Distance, and Speed of Overground Running. MSL Academic Endeavours. 2010. URL: https://engagedscholarship.csuohio.edu/cgi/viewcontent.cgi?article=1726&context=etdarchive [accessed 2023-12-14]

35. Open Science Framework. URL: https://osf.io/jgfau/ [accessed 2023-12-15]

Abbreviations

ACC: intraclass correlational coefficient
RedCAP: Research Electronic Data Capture

©Garrett Bullock, Joanne Stocks, Benjamin Fearins, Zahra Alizadeh, Amelia Arundale, Stefan Kluzek. Originally published in JMIR Formative Research (https://formative.jmir.org), 04.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Prevalence of Body Dysmorphic Disorder in the Spanish Population: Cross-Sectional Web-Based Questionnaire Study

Álvaro Loewen¹, MD; Hilario Blasco-Fontecilla¹,²,³,⁴, MD, PhD; Chao Li¹, MD; Marcos Bella-Fernández²,⁵,⁶, MSc; Belén Ruiz-Antorán⁷, MD, PhD

¹Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
²Servicio de Psiquiatría Infantil, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
³Centro de Investigación Biomédica en Red - Salud Mental, Madrid, Spain
⁴Facultad de Ciencias de la Salud y Centro Médico, Universidad Internacional de La Rioja, Madrid, Spain
⁵Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
⁶Departamento de Psicología, Universidad Pontificia de Comillas, Madrid, Spain
⁷Servicio de Farmacología Clínica, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain

Corresponding Author:
Hilario Blasco-Fontecilla, MD, PhD
Servicio de Psiquiatría Infantil
Hospital Universitario Puerta de Hierro Majadahonda
Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana
C/ Manuel de Falla, 1
Majadahonda, 28222
Spain
Phone: 34 911911690
Email: hmblasco@yahoo.es

Abstract

Background: Body dysmorphic disorder (BDD) is defined as excessive concern with mild or nonexistent defects in personal physical appearance, which are not perceived by others. The worldwide prevalence of BDD ranges between 0.5% and 3.2%, with no differences across genders. The mean age of onset of BDD is 16.9 years. BDD is typically associated with young age, psychiatric disorders, and dermatological procedures. Patients with BDD typically display poorer mental health status than patients diagnosed with other mental disorders.

Objective: The aim of this study was to estimate the prevalence of BDD in Spain and to identify the variables associated with BDD.

Methods: We performed a cross-sectional descriptive study by collecting data through an anonymous web-based survey targeting the Spanish population aged 18 years or older. The measures in this study were (1) sociodemographic variables, (2) variables associated with dermatological and psychiatric disorders and cosmetic procedures, (3) scales measuring quality of life (12-item Short Form health survey, version 2) and (4) BDD (BDD Questionnaire). Statistical analysis was performed with SPSS software version 21. P values less than .05 were considered significant.

Results: Of the 2091 participants who took the survey, 322 (15.2%) met the criteria of having BDD. The mean age of the participants with BDD was 23.5 (SD 9.6) years. In terms of BDD prevalence, women accounted for 19.9% (284/1421), men accounted for 5.2% (34/653), and students accounted for 25.2% (263/1043). Approximately 46.6% (150/322) of the participants with BDD reported a history of psychiatric comorbidities, including anxiety disorders, depressive disorders, and eating disorders.

BDD was significantly associated with female gender, younger age (18-24 years), students, monthly income of less than €500 (€1=US $1.11), and the presence of dermatological and some psychiatric disorders such as depression, anxiety, and eating disorders (P<.05). The number of body parts of concern in participants with BDD was significantly higher than that in those without BDD (4.6 vs 2.2, respectively; P<.001). Regarding the body parts of concern, body fat was the most common concern for both groups with BDD and without BDD, followed by thighs, face, hips, and skin in the BDD group and thighs, teeth, and hair in the non-BDD group. Participants with BDD showed a significantly poorer self-perception of their mental health, irrespective of the presence of any mental disorder (P<.001).
Conclusions: Our findings showed that the prevalence of BDD in Spain was higher than expected. Further, BDD is frequently associated with other psychiatric disorders, particularly depressive disorder, anxiety disorder, and eating disorder. Participants with BDD had a poorer perception of quality of life associated with mental but not physical health problems. Finally, the perception of quality of mental health life in participants with BDD was independent of diagnosis of any mental disorder.

doi:10.2196/46515

KEYWORDS
body dysmorphic disorder; prevalence; adults; Spain; comorbidities; mental health; depression; anxiety; OCD; obsessive-compulsive disorder

Introduction

Body dysmorphic disorder (BDD) is a common psychiatric disorder affecting 0.5%-3.2% of the general population worldwide [1]. A multicentric study in Spain showed that the prevalence of BDD was higher among patients with acne (10.6%) [2]. The prevalence of BDD across genders is debatable. One study showed similar prevalence of BDD across both genders (49% females and 51% males) [3]. Another study reported higher prevalence among females (68.5%) [4]. The average age of onset of BDD is 16.9 years [5]. One study reported an inverse relationship between the prevalence of BDD and age: 78.6% of participants with BDD were aged 18-27 years, 14.3% were aged 28-37 years, and 7.1% were aged 38 years or older [6]. Furthermore, BDD is closely associated with other mental disorders. A recent systematic review [1] showed that the highest prevalence of BDD was among psychiatric inpatients (5.8%-37.78%). The psychiatric disorders most frequently associated with BDD are depressive disorder (47%-56.3%), borderline personality disorder (54.3%), and eating disorders (12%-45%), whereas obsessive-compulsive disorder (3%-15.3%) and schizophrenia are less closely associated with BDD. Participants who had cosmetic procedures (2.9%-57%) slightly overlay with BDD prevalence in the general population. The prevalence of BDD in both psychiatric outpatients (0.3%-2%) and students (1.3%-5.8%) partially overlaps with that observed in the general population. Among dermatologic patients, the prevalence of BDD was reported to be 2.1%-36% [1].

The etiology of BDD is multifactorial, encompassing biological, psychological, and sociocultural factors. BDD has been associated with parental rejection, as well as physical, emotional, or sexual abuse during adolescence [7]. Studies have shown a possible genetic association in first-degree relatives, with affected patients being up to 3-8 times more likely to develop BDD than the general population [7]. Shy, anxious, and perfectionistic individuals may also have a greater predisposition to develop this disorder [8].

The most important symptom of BDD is distortion of body perception, which leads to low self-esteem, anxiety, depression, social isolation, and obsessive-compulsive behaviors [9]. The clinical profile of BDD is characterized by repetitive actions such as constant checking in mirrors, applying excessive makeup to cover defects, dermatillomania, comparing one's appearance with that of others, and excessive exercise, taking up an average of 3-8 hours daily [10]. Patients with BDD are usually preoccupied with 5-7 different parts of their body [11], the most common being skin (53.8%), nose (38.5%), and hair (34.6%). The other body parts that are of frequent concern are weight and muscle mass (30.8%), face (30.8%), chest and trunk (19.2%), and teeth (19.2%) [1]. The mental and physical health status perceived by patients with BDD are lower than that perceived by the general population [12].

Given that the primary concern of patients with BDD revolves around their external appearance, it is common for people with BDD to predominantly seek dermatological and cosmetic procedures over seeking professional help for the treatment of their underlying psychiatric pathology [13]. Moreover, patients diagnosed with BDD often do not seek help for various reasons: they feel ashamed or lack insight [14]. Furthermore, BDD is likely to be underdiagnosed, given the large number of barriers to diagnosis such as the absence of appropriate tools, lack of information and awareness among health care professionals, and professionals' refusal to lose a patient or inability to diagnose it properly [15]. In addition, not all health care professionals are familiar with this disorder [9]. This leads to poor identification in psychiatric and cosmetic settings where BDD cases are notoriously prevalent [14]. If professionals do not perform a detailed anamnesis, it is difficult for patients to disclose their concerns, given the shyness underlying this disorder [16]. To overcome this shortcoming, clinicians may use the BDD Questionnaire (BDDQ), a validated diagnostic tool for BDD, with sensitivity of 100% [17-19], specificity of 89%-93% for psychiatric inpatients [18], and 93% for dermatologic patients [19]. The BDDQ is a brief questionnaire that assesses different items of the patient’s body perception [17]. Finally, treatment is based on pharmacological and nonpharmacological measures. The former includes the use of fluoxetine, a serotonin reuptake inhibitor antidepressant. The latter is based on psychotherapy—most notably cognitive behavioral therapy [20]. Randomized clinical trials have shown a rate of 50%-80% improvement in patients as well as a lower relapse rate following pharmacological treatment [21].

In summary, BDD is a poorly studied and underdiagnosed psychiatric disorder. This may be because BDD is not perceived as a disorder by aesthetic practitioners, who may think that they are merely offering a “service” [22-24]. The main objective of our study was to estimate the prevalence of BDD in Spain. Additionally, we explored the association of BDD with sociodemographic variables, presence of dermatological or psychiatric disorders and cosmetic procedures, and quality of life.

https://formative.jmir.org/2024/1/e46515
Methods

Design and Scope of This Study
A cross-sectional descriptive study was conducted. The general population aged 18 years and older in Spain was invited to access the study protocol via a link to Google Forms. The security and lawful use of personal data collected on the website is guaranteed by accepting the data privacy policy included in the survey. The measures in the protocol consisted of (1) sociodemographic variables, (2) variables associated with dermatological and psychiatric disorders and cosmetic procedures, and (3) perception of health and quality of life, measured using the 12-item Short Form version 2 (SF-12v2) health survey, and (4) a validated scale for the diagnosis of BDD, using the BDD questionnaire screening test [17].

Study Sample Population
Participants 18 years and older from the general population residing and registered in Spain at the time the survey was performed and who voluntarily completed the study's web-based questionnaire were included. The sample size was calculated using Epidat 4.0 (Dirección Xeral de Saúde Pública da Consellería de Sanidade da Xunta de Galicia) based on the following estimate: population size, 40,000,000; expected proportion, 5%; accuracy, 1%; confidence level, 95%; and design effect, 1.0. The minimum total number of responses required for 1% precision with 95% confidence level was 1825 participants.

Variables
The following variables were collected: sociodemographic variables such as gender (female, male, or other, ie, participants who do not identify themselves as male or female), year of birth, region of residence, race, educational level, employment status, and range of monthly income. Variables related to other comorbidities associated with BDD were comorbidity with dermatologic and psychiatric diseases and cosmetic procedures. Regarding the year of birth, the participants were classified into 4 age groups: 18-24 years, 25-44 years, 45-64 years, and 65 years or older. This classification was based on previous studies related to mental health and the use of these services according to age group [25].

Quality of Life Assessment
Data on quality of life and perception of their state of health were collected through the SF-12v2 health survey, which is validated as a psychometric instrument for numerous diseases and conditions, including mental illness. It assesses the participant's physical and mental state through 8 health domains: 4 related to physical health, that is, general health, physical function, role-physical, and bodily pain; and 4 related to mental health, that is, vitality, social function, role-emotional, and mental health [26].

BDD Assessment
BDD assessment was performed using the BDDQ [17]. A version adapted and validated in Spanish was used [27]. The BDDQ is a brief (7-item) self-report measure derived from the Diagnostic and Statistical Manual of Mental Disorders, fourth edition diagnostic criteria. The first 6 items require a dichotomous answer (yes/no) and the last one is multiple choice. The test will be positive if the patient answers “yes” to questions 1 and 2, “yes” to question 3, 4, 5, or 6, and if in question 7, the time indicated is more than 1 hour per day [17].

Data Handling
The Google Forms platform was used for the web-based survey. The questionnaire was distributed telematically, both through a link via mobile phone and a printed QR code. The data obtained were extracted and sorted in Microsoft Excel. Subsequently, we used SPSS to create the database and perform the corresponding analyses. A license was obtained for the SF-12v2 health survey, which together with the use of the QualityMetric program provided, allowed for its correct interpretation. The database was generated in an anonymized form guaranteeing exclusive access by the principal investigator, thereby allowing respect, privacy, and confidentiality of the data.

Statistical Analysis
Statistical analysis was performed with SPSS software (version 21; IBM Corp). All statistical analyses were performed at .05 level of significance. A descriptive study was conducted for all the variables included in this study. Quantitative variables were expressed as mean and standard deviation (SD). Qualitative variables were expressed as absolute value (n) and percentage with an estimated 95% CI. Comparison of means was performed using 2-sided Student t test or Mann-Whitney U test as appropriate after checking normality with the Kolmogorov-Smirnov test. The association of the qualitative variables was estimated by means of the chi-square statistic. Multiple logistic regression models were used to determine the association of different variables with each other. A univariate analysis was performed where a significantly higher risk ratio for BDD diagnosis was obtained for some of the variables studied. The significant variables obtained in the univariate model were subsequently included in the multivariate analysis. Thereafter, given the heterogeneous conditions of the population, a subgroup analysis was performed with a multivariate model considering the gender and age variables.

Ethics Approval
This study was conducted in accordance with the requirements expressed in the Declaration of Helsinki 2013. Participants were invited to participate online by clicking on the link to the survey. Information about the purpose of the survey and its anonymous and voluntary nature was included in the survey header. Participants were identified by a numerical code in order to respect the confidentiality of the participants' personal data. The automatic code is assigned directly by Google Forms at the time of download through a time stamp. This project was approved by the ethics committee of the Hospital Universitario Puerta de Hierro Majadahonda in Madrid (promotor protocol code PI 206/21, December 20, 2021).
Results

A total of 2091 participants were included in this study. The sociodemographic and clinical characteristics of the participants are described in Table 1.

The prevalence of BDD in the population assessed in this study was 15.2% (284/1421, 19.9% in females vs 34/653, 5.2% in males). Regarding age, the prevalence of BDD was higher in the youngest age group (18-24 years; 267/1091, 24.5%), followed by the 25-44 years age group (30/279, 10.8%) (Figure 1). The number of body parts of concern in participants with BDD was significantly higher than that in participants without BDD (4.6 vs 2.2, respectively; \(P < .001 \)). Regarding the body parts of concern, body fat was the most common concern in both groups, followed by thighs, face, hips, and skin in the BDD group and thighs, teeth, and hair in the non-BDD group (Figure 2).

Regarding the sociodemographic characteristics of the BDD population (n=322), the majority were females (284/322, 88.2%), with a mean age of 23.5 (SD 9.6) years, and Caucasians (243/722, 75.5%). Approximately 81.7% (1533/2091) were students, and 76.6% (247/322) of them had a university education level. Among the participants diagnosed with BDD, 63.4% (204/322) had a history of dermatologic disease, the most frequent being acne (115/204, 56.5%) and dermatitis (99/204, 48.5%). Approximately 46.6% (150/322) of the participants with BDD reported a history of psychiatric comorbidities, and the most frequent were anxiety disorders (108/150, 72%), depressive disorders (84/150, 56%), eating disorders (72/150, 48%), and attention-deficit/hyperactivity disorder (18/150, 12%).

Approximately 17.7% (57/322) of the population with BDD had previously undergone a cosmetic procedure, the most frequent being laser treatment for acne, blemishes, and other skin lesions (17/57, 29.8%); mesotherapy (9/57, 15.8%); and rhinoplasty (7/57, 12.3%). The factors related to BDD are reported in univariate and multivariate analyses in Table 2. BDD diagnosis was significantly associated with female gender, other genders, age 18-24 years, students, monthly income level of less than €500 (€1=US $1.11), and participants with dermatologic and psychiatric comorbidities (\(P < .001 \)). All these variables were included in the multivariate model, with gender (female and other), age, student occupation, depressive disorder, eating disorders, and anxiety disorders remaining at \(<.05\) significance as diagnostic predictors of BDD.
Table 1. Sociodemographic and clinical characteristics of the participants.

<table>
<thead>
<tr>
<th></th>
<th>All (N=2091)</th>
<th>With BDDa diagnosis (n=322)</th>
<th>Without BDD diagnosis (n=1769)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (female), n (%)</td>
<td>1421 (68)</td>
<td>284 (88.2)</td>
<td>1137 (64.3)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>37.7 (16.6)</td>
<td>23.5 (9.6)</td>
<td>35.5 (16.9)</td>
</tr>
<tr>
<td>Age group (years), n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>1091 (52.2)</td>
<td>267 (82.9)</td>
<td>824 (46.6)</td>
</tr>
<tr>
<td>25-44</td>
<td>279 (13.3)</td>
<td>30 (9.3)</td>
<td>249 (14.1)</td>
</tr>
<tr>
<td>45-64</td>
<td>654 (31.3)</td>
<td>23 (7.1)</td>
<td>631 (35.7)</td>
</tr>
<tr>
<td>>64 years</td>
<td>66 (3.2)</td>
<td>2 (0.6)</td>
<td>64 (3.6)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African</td>
<td>11 (0.5)</td>
<td>3 (0.9)</td>
<td>8 (0.5)</td>
</tr>
<tr>
<td>American</td>
<td>6 (0.3)</td>
<td>0 (0)</td>
<td>6 (0.3)</td>
</tr>
<tr>
<td>Asian</td>
<td>26 (1.2)</td>
<td>7 (2.2)</td>
<td>19 (1.1)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>1533 (73.3)</td>
<td>243 (75.5)</td>
<td>1290 (72.9)</td>
</tr>
<tr>
<td>Latin</td>
<td>306 (14.6)</td>
<td>23 (7.1)</td>
<td>283 (16)</td>
</tr>
<tr>
<td>Other</td>
<td>209 (10)</td>
<td>46 (14.3)</td>
<td>163 (9.2)</td>
</tr>
<tr>
<td>Educational level, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary school</td>
<td>11 (0.5)</td>
<td>1 (0.3)</td>
<td>10 (0.6)</td>
</tr>
<tr>
<td>Middle school</td>
<td>8 (0.4)</td>
<td>0 (0)</td>
<td>8 (0.5)</td>
</tr>
<tr>
<td>Professional education</td>
<td>100 (4.8)</td>
<td>15 (4.7)</td>
<td>85 (4.8)</td>
</tr>
<tr>
<td>High school</td>
<td>265 (12.7)</td>
<td>59 (18.3)</td>
<td>206 (11.6)</td>
</tr>
<tr>
<td>University</td>
<td>1707 (81.6)</td>
<td>247 (76.7)</td>
<td>1460 (82.5)</td>
</tr>
<tr>
<td>Occupation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>1043 (49.9)</td>
<td>263 (81.7)</td>
<td>780 (44.1)</td>
</tr>
<tr>
<td>Worker</td>
<td>865 (41.4)</td>
<td>50 (15.5)</td>
<td>815 (46.1)</td>
</tr>
<tr>
<td>Other</td>
<td>183 (8.8)</td>
<td>9 (2.8)</td>
<td>174 (9.8)</td>
</tr>
<tr>
<td>Monthly income (€)b, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><500</td>
<td>861 (41.2)</td>
<td>205 (63.7)</td>
<td>656 (37.1)</td>
</tr>
<tr>
<td>500-999</td>
<td>138 (6.6)</td>
<td>34 (10.6)</td>
<td>104 (5.9)</td>
</tr>
<tr>
<td>1000-1999</td>
<td>343 (16.4)</td>
<td>39 (12.1)</td>
<td>304 (17.2)</td>
</tr>
<tr>
<td>2000-2999</td>
<td>291 (13.9)</td>
<td>9 (2.8)</td>
<td>282 (15.9)</td>
</tr>
<tr>
<td>>3000</td>
<td>358 (17.1)</td>
<td>11 (3.4)</td>
<td>347 (19.6)</td>
</tr>
<tr>
<td>Not known</td>
<td>100 (4.8)</td>
<td>24 (7.5)</td>
<td>76 (4.3)</td>
</tr>
<tr>
<td>Dermatologic disease, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acne</td>
<td>532 (49.6)</td>
<td>115 (56.5)</td>
<td>417 (48)</td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td>434 (40.5)</td>
<td>99 (48.5)</td>
<td>335 (38.6)</td>
</tr>
<tr>
<td>Other dermatitis</td>
<td>35 (3.3)</td>
<td>10 (4.9)</td>
<td>25 (2.9)</td>
</tr>
<tr>
<td>Psoriasis</td>
<td>50 (4.7)</td>
<td>2 (1)</td>
<td>48 (5.5)</td>
</tr>
<tr>
<td>Rosacea</td>
<td>64 (6)</td>
<td>5 (2.5)</td>
<td>59 (6.8)</td>
</tr>
<tr>
<td>Urticaria</td>
<td>15 (1.4)</td>
<td>1 (0.5)</td>
<td>14 (1.6)</td>
</tr>
<tr>
<td>Pityriasis</td>
<td>10 (0.9)</td>
<td>1 (0.5)</td>
<td>9 (1)</td>
</tr>
<tr>
<td>Eczema</td>
<td>37 (3.5)</td>
<td>9 (4.4)</td>
<td>28 (3.2)</td>
</tr>
<tr>
<td>Skin infections</td>
<td>32 (3)</td>
<td>6 (2.9)</td>
<td>26 (3)</td>
</tr>
<tr>
<td>Category</td>
<td>All (N=2091)</td>
<td>With BDD diagnosis (n=322)</td>
<td>Without BDD diagnosis (n=1769)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>11 (1)</td>
<td>0 (0)</td>
<td>11 (1.3)</td>
</tr>
<tr>
<td>Other</td>
<td>65 (6.1)</td>
<td>7 (3.4)</td>
<td>58 (6.7)</td>
</tr>
<tr>
<td>Psychiatric disorder, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressive Disorder</td>
<td>493 (23.6)</td>
<td>150 (46.6)</td>
<td>343 (19.4)</td>
</tr>
<tr>
<td>Borderline personality disorder</td>
<td>244 (49.5)</td>
<td>84 (56)</td>
<td>160 (46.6)</td>
</tr>
<tr>
<td>Eating disorder</td>
<td>9 (1.8)</td>
<td>3 (2)</td>
<td>6 (1.7)</td>
</tr>
<tr>
<td>Obsessive-compulsive disorder</td>
<td>33 (6.7)</td>
<td>12 (8)</td>
<td>21 (6.1)</td>
</tr>
<tr>
<td>Attention-deficit/hyperactivity disorder</td>
<td>59 (12)</td>
<td>18 (12)</td>
<td>41 (12)</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>7 (1.4)</td>
<td>1 (0.7)</td>
<td>6 (1.7)</td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td>292 (59.2)</td>
<td>108 (72)</td>
<td>184 (53.6)</td>
</tr>
<tr>
<td>Schizophrenia/psychosis</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>12 (2.4)</td>
<td>3 (2)</td>
<td>9 (2.6)</td>
</tr>
<tr>
<td>Other</td>
<td>18 (3.7)</td>
<td>3 (2)</td>
<td>15 (4.4)</td>
</tr>
<tr>
<td>History of plastic surgery procedures, n (%)</td>
<td>355 (17)</td>
<td>57 (17.7)</td>
<td>298 (16.8)</td>
</tr>
</tbody>
</table>

*BDD: body dysmorphic disorder.

Figure 1. Prevalence of body dysmorphic disorder among subsamples. BDD: body dysmorphic disorder.
Figure 2. Body parts of concern in our study population.
Table 2. Factors related to body dysmorphic disorder.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Univariate risk ratio (95% CI)</th>
<th>P value</th>
<th>Multivariate risk ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>284/1421 (20)</td>
<td>4.55 (3.14-6.58)</td>
<td>.001</td>
<td>3.02 (2.01-4.53)</td>
</tr>
<tr>
<td>Male</td>
<td>34/653 (5.2)</td>
<td>Refa</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>4/17 (23.5)</td>
<td>5.60 (1.73-18.09)</td>
<td>.004</td>
<td>4.57 (1.28-16.38)</td>
</tr>
<tr>
<td>Mean age</td>
<td></td>
<td>0.93 (0.92-0.95)</td>
<td>.001</td>
<td>0.97 (0.95-0.99)</td>
</tr>
<tr>
<td>Age categories (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>267/1091 (24.5)</td>
<td>2.69 (1.79-4.02)</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>25-44</td>
<td>30/279 (10.8)</td>
<td>Ref</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>45-64</td>
<td>23/654 (3.5)</td>
<td>0.30 (0.17-0.53)</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>>64</td>
<td>2/66 (3)</td>
<td>0.26 (0.060-1.11)</td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>263/1043 (25.2)</td>
<td>Ref</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>50/865 (5.8)</td>
<td>0.18 (0.13-0.25)</td>
<td>.001</td>
<td>0.51 (0.28-0.94)</td>
</tr>
<tr>
<td>Other</td>
<td>9/183 (4.9)</td>
<td>0.15 (0.07-0.30)</td>
<td>.001</td>
<td>0.35 (0.14-0.88)</td>
</tr>
<tr>
<td>Dermatologic disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>204/1072 (19)</td>
<td>1.79 (1.40-2.29)</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>118/1019 (11.6)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Acne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>115/532 (21.6)</td>
<td>1.80 (1.40-2.32)</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>207/1559 (13.3)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>99/434 (22.8)</td>
<td>1.90 (1.46-2.48)</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>223/1657 (13.5)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Other dermatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>10/35 (28.6)</td>
<td>2.23 (1.06-4.70)</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>312/2056 (15.2)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Psoriasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2/50 (4)</td>
<td>0.22 (0.05-0.92)</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>320/1041 (15.7)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>150/493 (30.4)</td>
<td>3.63 (2.83-4.65)</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>172/1598 (10.8)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Depressive Disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>84/244 (34.4)</td>
<td>3.55 (2.64-4.78)</td>
<td>.001</td>
<td>1.68 (1.06-2.69)</td>
</tr>
<tr>
<td>No</td>
<td>238/1847 (12.9)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Eating behavior disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>72/136 (52.9)</td>
<td>7.67 (5.34-11.02)</td>
<td>.001</td>
<td>3.77 (2.26-6.30)</td>
</tr>
<tr>
<td>No</td>
<td>250/1955 (12.8)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Obsessive-compulsive disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12/33 (36.4)</td>
<td>3.22 (1.57-6.62)</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>310/2058 (15.1)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Factor</td>
<td>Univariate risk ratio (95% CI)</td>
<td>P value</td>
<td>Multivariate risk ratio (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Attention-deficit/hyperactivity disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18/59 (30.5)</td>
<td>2.49 (1.41-4.40)</td>
<td>.003</td>
<td>—</td>
</tr>
<tr>
<td>No</td>
<td>304/2032 (15)</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>108/292 (37)</td>
<td>4.35 (3.30-5.74)</td>
<td>.001</td>
<td>2.30 (1.36-3.88)</td>
</tr>
<tr>
<td>No</td>
<td>214/1799 (11.9)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Plastic surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>57/355 (16.1)</td>
<td>1.06 (0.78-1.45)</td>
<td>.71</td>
<td>—</td>
</tr>
<tr>
<td>No</td>
<td>298/355 (83.9)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*a*Ref: reference value.

*b*Not applicable.

Given the heterogeneity of the population, most of whom were women aged 18-24 years, we performed a multivariate analysis considering gender and age (Table 3). On the one hand, after multivariate analysis by gender in the group of women, students, eating disorder, and anxiety disorder remained with a significance at <.05 as diagnostic predictors of BDD (Table 3). In the male group after multivariate analysis, none of the factors analyzed showed statistical significance. On the other hand, in the multivariate analysis by age (Table 3), the following factors remained with significance at <.05 as diagnostic predictors of BDD. In the 18-24 years analysis, the diagnostic predictors were female gender and other gender, students, depressive disorder, eating disorder, and anxiety disorder. In the 25-44 years analysis, the diagnostic predictor was income level between €2000 and €2999. In the 45-64 years analysis, the diagnostic predictor was female gender, and the >64 years analysis was not performed due to the small sample size.
Table 3. Multivariate analysis by group.

<table>
<thead>
<tr>
<th></th>
<th>BDD<sup>a</sup> prevalence, n/N (%)</th>
<th>Risk ratio (95% CI)</th>
<th>P value</th>
<th>Multivariate risk ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>233/752 (30.9)</td>
<td>Ref<sup>b</sup></td>
<td>.04</td>
<td>0.46 (0.22-0.96)</td>
<td>.04</td>
</tr>
<tr>
<td>Worker</td>
<td>43/541 (7.9)</td>
<td>0.19 (0.14-0.27)</td>
<td>.001</td>
<td>0.46 (0.22-0.96)</td>
<td>.04</td>
</tr>
<tr>
<td>Other</td>
<td>9/128 (7)</td>
<td>0.17 (0.08-0.34)</td>
<td>.001</td>
<td>0.26 (0.09-0.72)</td>
<td>.01</td>
</tr>
<tr>
<td>Monthly income (€)<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><500</td>
<td>181/617 (29.3)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>500-999</td>
<td>30/107 (28)</td>
<td>0.94 (0.59-1.48)</td>
<td>.79</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1000-1999</td>
<td>34/255 (13.3)</td>
<td>0.37 (0.25-0.55)</td>
<td>.001</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2000-2999</td>
<td>8/192 (4.2)</td>
<td>0.10 (0.05-0.22)</td>
<td>.001</td>
<td>0.37 (0.15-0.93)</td>
<td>.04</td>
</tr>
<tr>
<td>>3000</td>
<td>91/173 (5.2)</td>
<td>0.13 (0.07-0.26)</td>
<td>.001</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Eating behavior disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>69/125 (55.2)</td>
<td>6.195 (4.23-9.07)</td>
<td>.001</td>
<td>4.03 (2.32-6.98)</td>
<td>.001</td>
</tr>
<tr>
<td>No</td>
<td>215/1296 (16.6)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>103/250 (41.2)</td>
<td>3.83 (2.85-5.16)</td>
<td>.001</td>
<td>2.94 (1.65-5.25)</td>
<td>.001</td>
</tr>
<tr>
<td>No</td>
<td>181/171 (15.5)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18-24 years age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>236/787 (30)</td>
<td>4.20 (2.75-6.42)</td>
<td>.001</td>
<td>3.19 (2.05-4.97)</td>
<td>.001</td>
</tr>
<tr>
<td>Male</td>
<td>27/292 (9.2)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Other</td>
<td>4/12 (33.3)</td>
<td>4.91 (1.39-17.37)</td>
<td>.01</td>
<td>6.38 (1.72-23.67)</td>
<td>.006</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>255/1005 (25.4)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Worker</td>
<td>8/67 (11.9)</td>
<td>0.40 (0.19-0.85)</td>
<td>.02</td>
<td>0.39 (0.17-0.86)</td>
<td>.02</td>
</tr>
<tr>
<td>Dermatologic disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>177/640 (27.7)</td>
<td>1.53 (1.15-2.05)</td>
<td>.004</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>No</td>
<td>90/451 (20)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Psychiatric disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>130/301 (43.2)</td>
<td>3.62 (2.70-4.86)</td>
<td>.001</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>No</td>
<td>137/790 (17.3)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Depressive Disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>73/152 (48)</td>
<td>3.55 (2.49-5.06)</td>
<td>.001</td>
<td>1.71 (1.04-2.84)</td>
<td>.04</td>
</tr>
<tr>
<td>No</td>
<td>194/930 (20.7)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Eating disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>66/107 (61.7)</td>
<td>6.27 (4.12-9.54)</td>
<td>.001</td>
<td>3.70 (2.13-6.42)</td>
<td>.001</td>
</tr>
<tr>
<td>No</td>
<td>201/984 (20.4)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>93/194 (47.9)</td>
<td>3.83 (2.76-5.30)</td>
<td>.001</td>
<td>2.14 (1.22-3.78)</td>
<td>.008</td>
</tr>
<tr>
<td>No</td>
<td>174/897 (19.4)</td>
<td>Ref</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

^a BDD = Body Dysmorphic Disorder

^b Ref = Reference

^c P value

^d Monthly income (€)
Regarding quality of life, BDD was not statistically associated with physical health status. However, those diagnosed with BDD showed significantly lower levels of mental health than those without BDD (Figure 3). Additionally, quality of life analysis was performed considering psychiatric comorbidity as a factor affecting quality of life. Differences regarding mental health status remained statistically significant ($P<.05$) for patients with BDD, irrespective of the presence of psychiatric pathology (Figure 4).

Figure 3. Association of body dysmorphic disorder with (A) physical and (B) mental health status. BDD: body dysmorphic disorder.
Discussion

Principal Findings

Our study reveals many interesting aspects of BDD. Most of our findings are consistent with those reported previously [1,4,6,12,13]. For example, BDD is particularly prevalent in the young adult population [5], and patients with BDD are particularly concerned about an average of 4.6 different body parts. However, some findings are novel in our study. For instance, the prevalence of BDD in our sample population (15.2%) was higher than expected (0.5%-3.2%) [1]. Further, in addition to the described association between BDD and eating and depressive disorders, we report that BDD is closely associated with anxiety disorders. The most relevant finding of our study is the perception of quality of life: participants with BDD had a poorer perception of quality of life associated with mental but not physical health problems. Moreover, the perception of quality of mental health in patients with BDD was independent of diagnosis of any mental disorder.

Our study reports that the prevalence of BDD in adults is 15.2% in Spain, which is higher than that reported in the general population (0.5%-3.2%) in another study [1] and higher than that reported in a Spanish multicentric study in patients with acne (10.6%) [2]. Our findings may be explained by 2 factors. First, our sample population was particularly young, with more than half of the participants being in the age group of 18-24 years. As shown in a previous study [6], the younger the age of the patient, the greater is the possibility of BDD diagnosis. Second, our data reflect more of a screening diagnosis as compared with a definitive diagnosis established with BDDQ via an interview by a health professional, which is more demanding [17].

Our study shows that the sociodemographic characteristics most associated with the diagnosis of BDD are gender (female and other), age group of 18-24 years, students, income level of less than €500/month, and a diagnosis of previous dermatologic or psychiatric disease. Regarding gender, females showed a statistically significant ($P<.001$) higher prevalence of BDD than males (284/1421, 19.9% vs 34/653, 5.2%, respectively). Previous studies have reported similar prevalence between men and women [3] or increased prevalence in women (68.5%) compared to that in men [4]. In our study, almost 67.9% (1421/2091) of the participants were women, which may suggest the need for future studies controlled by sex to clarify the differences. Regarding age, the mean age at diagnosis of BDD in the participants in our study was 23.5 years, which is higher than the mean age of 16.9 years described elsewhere [5]. This is probably because our study only included populations 18
years and older, resulting in an increase in the mean age at diagnosis. Furthermore, we found a higher prevalence of BDD among students (263/1043, 25.2%), which was also higher than 1.3%-5.8% reported in another study [1]. Again, this could be because almost half our sample was comprised of students. Moreover, this can be attributed to the influence of social media in the current age, increasing young people's concern about their body image [1]. It would be appropriate to conduct a more specific study including this young population group.

Participants with BDD in our study were concerned about an average of 4.6 different body parts, which is in line with that reported by previous studies (5-7 body parts) [13]. The body parts that were of the most concern were body fat (248/322, 77%), thighs (191/322, 59.3%), face (166/322, 51.6%), hip (144/322, 44.7%), and skin (126/322, 39.1%). Skin (14/26, 54%) and face (8/26, 31%) were the body parts of the greatest concern in previous studies [1]. The prevalence of BDD in participants with dermatologic conditions (204/1072, 19%) in our study falls within the range (4.9%-21.1%) reported in the literature [1]. However, it is necessary to emphasize that previous studies did not distinguish between dermatologic patients per se and those undergoing aesthetic procedures [1].

Regarding the association between previous dermatologic disease and BDD, we found no significant relationships. The association between BDD and acne (115/532, 21.6%) in our study was slightly higher than that previously described (8.8%-21.1%) [1]. The association of BDD with having undergone rhinoplasty was 12.1% (39/322), which was lower than that previously documented (20.1%) [1]. However, the sample size limited our capability to extract meaningful conclusions on this issue. Among participants with previous psychiatric pathology and BDD, there was a significant association with eating disorders (72/136, 52.9%) and depressive disorders (84/244, 34.4%), similar to the findings of 12%-45% and 47%-56.3%, respectively, reported in a previous systematic review [1]. In addition, our study showed a significant comorbidity with anxiety disorders (108/292, 36.9%), making it necessary to conduct future studies in this subgroup.

Regarding quality of life, participants diagnosed with BDD had a perception of having a poorer mental health status than those without BDD. In contrast, there were no significant differences in the physical status between participants with and without BDD [12]. Ultimately, the diagnosis of BDD was associated with a perception of reduced quality of life that is not subsidiary to the presence of mental health disorders. In other words, our study suggests that BDD could be used as a marker or predictor of an individual's perception of quality of life, which is independent of the presence of mental health problems.

Limitations and Strengths

Our study was based on the use of a questionnaire that was disseminated telematically, which is why we obtained a heterogeneous participant base, being represented mostly by female students in an age range of 18-24 years. The higher percentage of prevalence obtained may be linked to the specific population in this study. However, we must bear in mind that, despite obtaining the first diagnostic approximation with BDDQ, its confirmation must subsequently be backed up by an interview with a health professional [17]. Furthermore, the mean age at BDD diagnosis (23.5 years) in our study was higher than that (16.9 years) described previously [5] because this study was limited to participants aged 18 years and older. Additionally, the number of participants in our study who had undergone previous plastic surgeries was too less to achieve a proper statistical power.

With regard to the strengths of this study, we increased the number of variables related to BDD compared to the number of variables used in previous studies [2-6,12,13], which, together with the total number of participants, resulted in a large database. Further, we introduced the quality of life indicators through the SF-12v2 health survey.

Conclusion

Patients with BDD experience serious biopsychosocial repercussions. This study provides the first approximation of the prevalence of BDD in the Spanish population, which was found to be higher than expected, although our results should be interpreted cautiously. BDD was particularly prevalent in participants aged 18-24 years, students, and women. BDD is associated with psychiatric conditions such as eating disorder, anxiety disorder, and depressive disorder, and with dermatologic conditions such as acne and dermatitis. No significant associations were found between BDD and the performance of previous aesthetic procedures, which could be due to our small sample size. Finally, BDD could be a marker of an individual’s perception of quality of health, irrespective of psychiatric diagnoses. Future studies should confirm our preliminary findings.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' Contributions

HBF and BRA conceptualized this study, contributed to the methodology, supervised this study, and contributed to the resources. AL and CL curated the data and contributed to visualization. CL and MBF performed a formal analysis of this study. AL, HBF, and BRA contributed to the investigations. HBF contributed to project administration. AL and MBF wrote the original draft. HBF performed reviewing and editing.
Conflicts of Interest

In the last 24 months, HBF has received lecture fees from Takeda, BIAL, laboratorios Rubio, and laboratorios Rovi. He has also been granted 3 prizes for the development of a serious videogame for treating attention-deficit/hyperactivity disorder (The Secret Trail of Moon) called as the Shibuya Prize by Takeda, first prize of the College of Psychologists of Madrid, and a prize for the Best Innovative Health Initiative within Healthstart. He is the Principal Investigator of an iPfIS research contract (accessed on August 12, 2022; IF16/00039), Coprincipal Investigator of a MINECO research grant (RTI2018-101857-B-I00), and Principal Investigator of a research of the Sincronia project, funded by the start-up Bitsphi; recipient of a Fund for the Improvement of Postsecondary Education grant and an IDIHPfIS intensification grant; involved in 2 clinical trials (Mensia Koala, Neurofed Study; ESKETSUI2002); and a cofounder of Haglaia Solutions. He is also an employee and member of the advisory board of Ita Salud Mental (Korian).

References

Abbreviations

BDD: body dysmorphic disorder
BDDQ: Body Dysmorphic Disorder Questionnaire
SF-12v2: 12-item Short Form version 2

Edited by A Mavragani; submitted 14.02.23; peer-reviewed by RM Ruiz, P Watson; comments to author 10.10.23; revised version received 30.10.23; accepted 20.11.23; published 04.01.24.

Please cite as:
Loewen A, Blasco-Fontecilla H, Li C, Bella-Fernández M, Ruiz-Antorán B
Prevalence of Body Dysmorphic Disorder in the Spanish Population: Cross-Sectional Web-Based Questionnaire Study
JMIR Form Res 2024;8:e46515
URL: https://formative.jmir.org/2024/1/e46515
doi:10.2196/46515
PMID:38175692

©Álvaro Loewen, Hilario Blasco-Fontecilla, Chao Li, Marcos Bella-Fernández, Belén Ruiz-Antorán. Originally published in JMIR Formative Research (https://formative.jmir.org), 04.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Methodological Insights on Recruitment and Retention From a Remote Randomized Controlled Trial Examining the Effectiveness of an Alcohol Reduction App: Descriptive Analysis Study

Melissa Oldham¹, PhD; Larisa Dinu¹, MSc; Gemma Loebenberg¹, MSc; Matt Field², PhD; Matthew Hickman³, PhD; Susan Michie⁴, PhD; Jamie Brown¹, PhD; Claire Garnett¹, PhD

¹University College London, London, London, United Kingdom
²Department of Psychology, University of Sheffield, Sheffield, United Kingdom
³Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
⁴Centre for Behaviour Change, University College London, London, United Kingdom

Corresponding Author:
Melissa Oldham, PhD
University College London
London
1-19 Torrington Place
London, WC1E 7HB
United Kingdom
Phone: 44 20 7679 883
Email: m.oldham@ucl.ac.uk

Abstract

Background: Randomized controlled trials (RCTs) with no in-person contact (ie, remote) between researchers and participants offer savings in terms of cost and time but present unique challenges.

Objective: The goal of this study is to examine the differences between different forms of remote recruitment (eg, National Health Service [NHS] website, social media, and radio advertising) in the proportion of participants recruited, demographic diversity, follow-up rates, and cost. We also examine the cost per participant of sequential methods of follow-up (emails, phone calls, postal surveys, and postcards). Finally, our experience with broader issues around study advertising and participant deception is discussed.

Methods: We conducted a descriptive analysis of 5602 increasing-and-higher-risk drinkers (Alcohol Use Disorders Identification Test score ≥8), taking part in a 2-arm, parallel group, remote RCT with a 1:1 allocation, comparing the intervention (Drink Less app) with usual digital care (NHS alcohol advice web page). Participants were recruited between July 2020 and March 2022 and compensated with gift vouchers of up to £36 (a currency exchange rate of £1=US $1.26988 is applicable) for completing follow-up surveys, with 4 stages of follow-up: email reminders, phone calls, postal survey, and postcard.

Results: The three main recruitment methods were advertisements on (1) social media (2483/5602, 44.32%), (2) the NHS website (1961/5602, 35.01%), and (3) radio and newspapers (745/5602, 13.3%), with the remaining methods of recruitment accounting 7.37% (413/5602) of the sample. The overall recruitment cost per participant varied from £0 to £11.01. Costs were greater when recruiting participants who were men (£0-£28.85), from an ethnic minority group (£0-£303.81), and more disadvantaged (£0-£49.12). Targeted approaches were useful for recruiting more men but less useful in achieving diversity in ethnicity and socioeconomic status. Follow-up at 6 months was 79.58% (4458/5602). Of those who responded, 92.4% (4119/4458) responded by email. Each additional stage of follow-up resulted in an additional 2-3 percentage points of the overall sample being followed up, although phone calls, postal surveys, and postcards were more resource intensive than email reminders.

Conclusions: For remote RCTs, researchers could benefit from using a range of recruitment methods and cost-targeted approaches to achieve demographic diversity. Automated emails with substantial financial incentives for prompt completion can achieve good follow-up rates, and sequential, offline follow-up options, such as phone calls and postal surveys, can further increase follow-up rates but are comparatively expensive. We also make broader recommendations focused on striking the right balance when designing remote RCTs. Careful planning, ongoing maintenance, and dynamic decision-making are required throughout a trial to balance the competing demands of participation among those eligible, deceptive participation among those who are not eligible, and ensuring no postrandomization bias is introduced by data-checking protocols.

https://formative.jmir.org/2024/1/e51839
Introduction

Randomized controlled trials (RCTs) are used to examine the efficacy of interventions on a wide range of health-related behaviors and outcomes [1-4]. RCTs examining the efficacy of digital interventions are increasingly taking place on the web or remotely. Web-based trials feature no in-person contact between researchers and participants, with the administration of the intervention and all measures completed on the web. Remote trials also have no in-person contact between researcher and participant but may involve some offline follow-up options, such as completing surveys over the phone or by post. Web-based and remote trials can be cheaper and less labor-intensive than in-person trials, although they present some unique challenges around recruitment, retention, and participant deception. Here, we present methodological insights from a large-scale (n=5602) remote RCT examining the effectiveness of a digital intervention, the “Drink Less” app [5], in helping increasing-and-higher-risk drinkers (Alcohol Use Disorders Identification Test [AUDIT] score ≥8) to reduce their alcohol consumption.

Digital interventions, such as websites and apps, are increasingly being used for a wide range of health behaviors [6] and can offer benefits over in-person interventions in terms of cost, convenience, and anonymity [7]. RCTs aiming to evaluate digital interventions can be conducted on the web or remotely and may have several advantages relative to trials requiring in-person contact. First, web-based and remote settings could increase the external validity of the trial, as having to travel to in-person appointments for baseline or follow-up assessments does not reflect real-world implementation or how users access digital interventions [8]. Second, in theory, participants can be recruited from throughout nations or even globally, giving a larger and potentially more generalizable sampling frame [9]. Third, the cost of web-based or remote trials is likely to be much less as they can be partly automated, reducing demands on researcher time, and could potentially reduce researcher bias through double blinding [9].

However, there are also significant challenges with web-based or remote RCTs beyond those conducted in person. First, it may be harder to recruit participants or to recruit a broadly representative sample [10,11], as some groups, such as older adults and people from less advantaged communities, may be less likely to engage with research conducted remotely [12]. Second, researchers have less control over who signs up, and it is possible that motivated individuals may sign up multiple times for financial incentives [8,13]. Third, once recruited, researchers may have less control over how participants engage with the intervention [14] or respond to follow-ups [8]. This could be particularly problematic with groups who may have low digital literacy and may not understand how to use the intervention, although this may be reflective of how people would engage with digital interventions in real-world settings. There are other challenges that are present in both remote and in-person trials. Contamination occurs when the comparator group finds the intervention being tested outside of the trial [9]. This could be particularly likely if the comparator group receives an intervention they do not deem acceptable and seeks out alternatives. These biases could introduce bias into RCTs, which could obscure the effect of the intervention.

Here, we draw on data from a large-scale remote RCT, evaluating the effectiveness of the Drink Less app [5] compared with usual digital care (the National Health Service [NHS] alcohol advice web page). Drink Less is a theory- and evidence-informed, app-based intervention designed by researchers [15,16] to help increasing-and-higher-risk drinkers reduce their alcohol consumption. To mitigate some of the potential challenges outlined above, the trial used a multipronged recruitment strategy, including an advertisement on the NHS website and social media advertising [5]. In line with previous research [11], and to maximize follow-up rates, we offered substantial financial incentives to complete follow-up surveys, including an additional amount for completing the primary outcome within the first 24 hours, and undertook a comprehensive follow-up approach by sequentially sending follow-up reminders through email, SMS text messages, and telephone and by post. These strategies and broader methodological issues will be discussed ahead.

This study aims to:

1. Compare different remote recruitment methods in terms of cost per recruited participant, retention rates, participant deception, and sociodemographic diversity.
2. Compare the proportion of returned responses using different strategies for follow-up at each time point, and compare the cost and time associated with each follow-up stage.
3. Consider broader methodological issues pertaining to recruitment, retention, and participant deception, and discuss the success of strategies to mitigate these issues throughout the trial.

Methods

The protocol and analysis plan were preregistered on the Open Science Framework [17]. The trial was registered (ISRCTN64052601). The main trial findings are reported elsewhere [18].

Design

Participants
A total of 5602 participants were randomized in the RCT evaluating Drink Less. Participants were eligible if they were aged 18 years or older, lived in the United Kingdom, were increasing-and-higher-risk drinkers (AUDIT score ≥ 8) [19], had access to an iOS device (iPhone, iPod touch, or iPad), and wanted to drink less alcohol. Recruitment ran from July 2020 to March 2022 and included an advertisement on the NHS website, a mail-out to a database of UK-based users of the smoking cessation app “Smoke Free”, radio and social media advertising, press releases, and local advertising through health care providers. Advertisements were codeveloped with public representatives.

Informed consent was sought at baseline to participate in 3 web-based follow-up surveys at 1, 3, and 6 months. Surveys were completed on the web through Qualtrics (Silver Lake), although at the 6-month follow-up, offline options (eg, phone and post) were available. The 6-month follow-up survey assessed primary and secondary outcomes relating to alcohol use and a range of related measures. The 1- and 3-month follow-up surveys only assessed secondary outcome measures relating to alcohol use. We attempted to contact participants within 30 days of their first invitation to complete each follow-up survey. To maximize data retention and to allow for time taken for answers to be posted at 6-month follow-up, data provided up to 2 weeks after the 30-day period were accepted.

Initially, as well as through 3 emails (days 0, 5, and 9) and (from January 15, 2022) a total of 2 SMS text messages (days 5 and 9), we had planned that at the 1-, 3-, and 6-month follow-up, all participants would also be sequentially offered opportunities to complete follow-up through phone (called twice from days 10 to 17), a mailed survey (from day 18), and a mailed postcard (from day 30). However, due to resource constraints, from November 2020 on, we only used automated emails on days 0, 5, 9, and 11 to contact participants at the 1- and 3-month follow-up; we no longer called or sent postal surveys. With the aim of improving these follow-up rates with less resource, we added SMS text messaging follow-ups. Phone calls, mailed surveys, and postcard follow-ups were retained for the 6-month follow-up survey (when the primary outcome was measured).

Measures

Recruitment Method
At baseline, participants were asked to specify where they saw the study advertised, with the following response options: NHS website, social media (eg, Facebook and Twitter [subsequently rebranded X]), other media (eg, radio and newspapers), emailed by the Smoke Free app, local health care provider, word of mouth, Google, general practitioner (GP) surgery, or other. If they selected “other,” free-text responses that fell within one of the response options were recoded (eg, Facebook would be social media). The response options “local health care provider” and “GP surgery” were collapsed. Throughout the study, both untargeted and targeted (eg, at men) social media advertisements were used. These were analyzed separately.

Participant Deception
We experienced 3 distinct subgroups of participant deception throughout the trial: duplicates, manual fraud, and bots. Duplicate responses, where individuals signed up more than once with identical names and phone numbers, were the least prevalent (n=49) and easiest to detect. Data checks were undertaken each month to search for duplicate values. Manual fraud was a more prevalent form of participant deception (n=297), defined as individuals who signed up multiple times with false information, such as phone numbers linked to businesses where they were not known or addresses that did not exist. To identify manual fraud, monthly checks were made on all addresses and telephone numbers provided to ensure street names matched the postcode and that numbers were mobile phone numbers. Any suspicious responses were flagged, and the participants were contacted and asked to confirm their details over the phone. Where individuals were not known at the phone number provided, they were removed from the study. To make it easier to automatically screen out those engaging in manual fraud, we added attention checks, whereby individuals were asked to select a certain response option. Participants were also asked to confirm their age at 2 different points in the baseline survey to ensure they were consistent. Individuals failing either of these attention checks were screened out of the survey before randomization. The most prevalent type of fraud were “bot” responses (n=863). These were fraudulent responses similar to manual fraud, but they occurred in batches of 20-30 at a time when contact information was given in noticeably similar formats (eg, firstname123@emailaddress.com), often with American street addresses (being UK-based was an inclusion criteria of the trial). These responses seemed to be automated and were identified using the same process of address checking as above (individuals not known at the phone number provided were removed from the study). Adding a CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) to the survey eliminated this issue. A more detailed discussion on participant deception is described elsewhere [20].

Sociodemographic Characteristics
Sociodemographic measures were assessed at baseline. This study focuses on gender, ethnicity, and occupation (to derive socioeconomic status [SES]: ABC1 [managerial, professional, and intermediate occupations] versus C2DE [skilled, semiskilled, unskilled manual, and lowest-grade worked or unemployed]).

Analysis

Aim 1: Methods of Recruitment
Each recruitment method is compared in terms of the proportion of enrolled participants, the proportion of participants who were men, from a minority ethnic group, or from a more disadvantaged background (C2DE), and the proportion of participant deception. Cost-per-recruited participant citing each recruitment method (eg, total spend on recruitment method divided by the number of participants citing recruitment method) is reported. As well as the overall cost per participant, we also present the cost per participant stratified by gender (eg, for each...
man recruited), ethnicity (eg, for those from ethnic minority individuals), and SES (eg, for those from more disadvantaged backgrounds). Finally, we present follow-up rates at 1-, 3-, and 6-months for each method of recruitment.

Aim 2: Follow-Up

The proportion of the sample responding at each sequential stage of follow-up (ie, emails, phone calls, postal surveys, and postcards) is reported. The cost of each follow-up stage per participant responding at each stage is also reported. This was derived by dividing the estimated researcher time and other relevant costs by the number of follow-ups completed at each stage.

Aim 3: Broader Methodological Issues

Broader methodological issues such as advertising, participant deception, technical support, contamination, and boosting retention are discussed. We describe and briefly discuss the strategies we used throughout the trial to mitigate issues.

Ethical Considerations

Ethical approval for the iDEAS (iOS Drink Less, Evaluating the Effectiveness of an Alcohol Smartphone app) trial was granted by the University College London (UCL) Ethics Committee (16799/001). Participants provided informed consent before participating in the trial. Study data were pseudonymized and stored on a secure university drive. Participants were compensated with gift vouchers of up to £36 (a currency exchange rate of £1=US $1.26988 is applicable) for completing the 3 surveys: £6 for the survey at 1 and 3 months and £12 at 6 months, with an additional £12 if the 6-month survey was completed within 24 hours.

Results

Sample Characteristics

A total of 5602 participants completed the baseline survey between July 2020 and March 2022: 65.78% (3685/5602) responded at 1-month follow-up, 63.80% (3574/5602) at 3-month follow-up, and 79.58% (4458/5602) at 6-month follow-up. Over half (3207/5602, 57.25%) of the sample were women, 42.22% (2365/5602) were men, 0.46% (26/5602) were “other,” and 0.07% (4/5602) preferred not to say. Most of the sample were White (5296/5602, 94.54%) and earned above-average income (4151/5602, 74.01%). The sample characteristics were similar at each follow-up. Table 1 reports the sociodemographic characteristics of the sample at baseline and those responding at each stage of follow-up.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline (N=5602)</th>
<th>1-month follow-up (n=3685)</th>
<th>3-month follow-up (n=3574)</th>
<th>6-month follow-up (n=4458)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>3207 (57.25)</td>
<td>2046 (55.52)</td>
<td>1992 (55.74)</td>
<td>2534 (56.84)</td>
</tr>
<tr>
<td>Women</td>
<td>2365 (42.22)</td>
<td>1620 (43.96)</td>
<td>1565 (43.79)</td>
<td>1903 (42.69)</td>
</tr>
<tr>
<td>Other</td>
<td>26 (0.46)</td>
<td>16 (0.43)</td>
<td>14 (0.39)</td>
<td>17 (0.38)</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>4 (0.07)</td>
<td>3 (0.08)</td>
<td>3 (0.08)</td>
<td>4 (0.09)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>96 (1.71)</td>
<td>68 (1.85)</td>
<td>68 (1.9)</td>
<td>83 (1.86)</td>
</tr>
<tr>
<td>Black</td>
<td>47 (0.84)</td>
<td>35 (0.95)</td>
<td>39 (1.09)</td>
<td>41 (0.92)</td>
</tr>
<tr>
<td>Chinese</td>
<td>9 (0.16)</td>
<td>9 (0.24)</td>
<td>9 (0.25)</td>
<td>9 (0.2)</td>
</tr>
<tr>
<td>White</td>
<td>5296 (94.54)</td>
<td>3474 (94.27)</td>
<td>3361 (94.04)</td>
<td>4206 (94.35)</td>
</tr>
<tr>
<td>Mixed</td>
<td>113 (2.02)</td>
<td>75 (2.03)</td>
<td>71 (1.99)</td>
<td>84 (1.88)</td>
</tr>
<tr>
<td>Other</td>
<td>21 (0.37)</td>
<td>15 (0.41)</td>
<td>15 (0.42)</td>
<td>18 (0.4)</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>19 (0.34)</td>
<td>9 (0.24)</td>
<td>11 (0.31)</td>
<td>16 (0.36)</td>
</tr>
<tr>
<td>Not known</td>
<td>1 (0.02)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0.02)</td>
</tr>
<tr>
<td>Occupation, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC1b</td>
<td>4151 (74.01)</td>
<td>2759 (74.87)</td>
<td>2688 (75.21)</td>
<td>3337 (74.85)</td>
</tr>
<tr>
<td>C2DEc</td>
<td>1451 (25.9)</td>
<td>926 (25.13)</td>
<td>886 (24.79)</td>
<td>1121 (25.15)</td>
</tr>
</tbody>
</table>

aThe data is also reported in the main trial paper [18].
bABC1: managerial, professional, and intermediate occupations.
cC2DE: skilled, semiskilled, unskilled manual, and lowest-grade worked or unemployed.
Aim 1: Recruitment Methods, Demographic Diversity, and Cost Per Participant

Most participants recruited for this trial reported seeing it advertised on social media (2483/5602, 44.32%), the NHS website (1961/5602, 35.01%), or through radio or newspapers (745/5602, 13.3%), with all other recruitment methods accounting for 7.37% (413/5602) of the sample (Table 2).

Table 2. Total recruitment and proportion of recruited sample of iDEAS (iOS Drink Less, Evaluating the Effectiveness of an Alcohol Smartphone) randomized controlled trial who were men, of minority ethnic groups, had lower socioeconomic status (SES), and identified as a fraudulent response by recruitment method.

<table>
<thead>
<tr>
<th>Recruitment method</th>
<th>Included sample (N=5602), n (%)</th>
<th>Ethnic minority group, n (%)</th>
<th>Low SES, n (%)</th>
<th>Fraudulent response, n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untargeted social media</td>
<td>2119 (37.82)</td>
<td>650 (30.67)</td>
<td>147 (6.94)</td>
<td>507 (23.93)</td>
</tr>
<tr>
<td>Targeted social media</td>
<td>364 (6.5)</td>
<td>353 (96.98)</td>
<td>13 (3.57)</td>
<td>90 (24.73)</td>
</tr>
<tr>
<td>National Health Service website</td>
<td>1961 (35.01)</td>
<td>628 (32.02)</td>
<td>76 (3.88)</td>
<td>570 (29.07)</td>
</tr>
<tr>
<td>Radio or newspapers</td>
<td>745 (13.3)</td>
<td>591 (79.33)</td>
<td>27 (3.62)</td>
<td>167 (22.42)</td>
</tr>
<tr>
<td>Word of mouth</td>
<td>142 (2.53)</td>
<td>74 (52.11)</td>
<td>9 (6.34)</td>
<td>41 (28.87)</td>
</tr>
<tr>
<td>Google</td>
<td>159 (2.84)</td>
<td>44 (27.67)</td>
<td>7 (4.4)</td>
<td>50 (31.45)</td>
</tr>
<tr>
<td>Smoke Free email</td>
<td>55 (0.98)</td>
<td>13 (23.64)</td>
<td>3 (5.45)</td>
<td>11 (20)</td>
</tr>
<tr>
<td>Health care provider or general practitioner</td>
<td>15 (0.27)</td>
<td>5 (33.33)</td>
<td>3 (20)</td>
<td>4 (26.67)</td>
</tr>
<tr>
<td>Other</td>
<td>42 (0.75)</td>
<td>7 (16.67)</td>
<td>2 (4.76)</td>
<td>11 (26.19)</td>
</tr>
</tbody>
</table>

- The percentage of participants recruited from each method (ie, N=Included sample value).
- The percentage of the overall sample from each recruitment method including those removed after participant deception checks.

Ongoing sociodemographic tracking throughout the study revealed that women, White, and advantaged participants were being overrecruited. In response, strategies targeted at a more diverse sample in terms of gender, SES, and ethnicity were introduced with mixed success. This included targeted social media advertisements aimed at men and radio advertisements on Talk Radio, Asian Sounds (in English and Urdu), and Punjabi Radio (in English and Punjabi).

Recruitment methods differed in the proportion of men (range 17%-97%), with targeted approaches including social media advertising (335/364, 97% men) and radio advertising (591/745, 79.3%) being the most successful in recruiting a sample of men. Word of mouth was most effective in terms of recruiting a balanced sample in terms of gender (74/142, 52.1% men) but recruited a small proportion (142/5602, 2.53%) of the sample overall.

Recruiting through GP surgeries and local health care providers resulted in the highest proportion of participants from minority ethnic groups (3/15, 20%) but recruited a small proportion of participants in total (15/5602, 0.27%). Untargeted social media advertisements and word of mouth were the next best, with 6.94% (147/2119) and 6.3% (9/142) of the sample coming from ethnic minority individuals, respectively.

The NHS website, word of mouth, and Google all recruited around a third of participants who were more disadvantaged. However, both Google (159/5602, 2.84%) and word of mouth (142/5602, 2.53%) recruited a small proportion of participants in total.

The final column of Table 2 refers to the proportion (and number) of participants who were removed from the study due to participant deception, citing each recruitment method. A total of 84.54% (1028/1216) of participants identified as fraudulent cited social media as the place they saw the advertisement. It should be noted here that these participants may not have been honest in terms of where they saw the study advertisement and may have been deliberately misreporting where they found the study or responding at random.

Money spent on each of the recruitment methods varied from £0 for the NHS advertisement and word of mouth to £8203 for radio or newspaper advertisements (Table 3; a currency exchange rate of £1=US $1.26988 is applicable). Of the paid forms of recruitment, social media advertising and advertising through health care providers were the cheapest ways of recruiting participants who were men, of ethnic minorities, or from more disadvantaged backgrounds.

Although the overall number of participants recruited from health care settings was low, this was impeded by the COVID-19 pandemic. The initial recruitment plan was to have posters in primary care surgeries throughout the United Kingdom; however, due to the pandemic and associated lockdowns for most of the recruitment period, many people received health care on the web and were not visiting GP surgeries. We only started advertising in GP surgeries for the last 5 months of trial recruitment (in November 2021).

Those recruited from health care providers (15/15, 100%), Smoke Free email (51/55, 93%), and word of mouth (126/142, 88.7%) appeared to have the highest response rates and those recruited through advertisements on Google (109/159, 69%), and the NHS website (1513/1961, 77%) appeared among the lowest. Table 4 presents the follow-up rates at 1-, 3-, and 6-month follow-up.
Table 3. Total cost per participant and cost per participant who were men, of ethnic minority groups, and lower socioeconomic status (SES) by recruitment method for participants of the iDEAS (iOS Drink Less, Evaluating the Effectiveness of an Alcohol Smartphone) randomized controlled trial. A currency exchange rate of £1=US $1.26988 is applicable.

<table>
<thead>
<tr>
<th>Recruitment method</th>
<th>Recruited, n</th>
<th>Total cost (£)</th>
<th>Cost per participant (£)</th>
<th>Cost per man (£)</th>
<th>Cost per ethnic minority participant (£)</th>
<th>Cost per low SES participant (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untargeted social media</td>
<td>2119</td>
<td>6750.00</td>
<td>3.19</td>
<td>10.38</td>
<td>45.92</td>
<td>13.31</td>
</tr>
<tr>
<td>Targeted social media</td>
<td>364</td>
<td>690.00</td>
<td>1.90</td>
<td>1.95</td>
<td>53.08</td>
<td>7.67</td>
</tr>
<tr>
<td>National Health Service website</td>
<td>1961</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Radio or newspapers</td>
<td>745</td>
<td>8203.00</td>
<td>11.01</td>
<td>13.88</td>
<td>303.81</td>
<td>49.12</td>
</tr>
<tr>
<td>Word of mouth</td>
<td>142</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Google</td>
<td>159</td>
<td>1247.00</td>
<td>7.84</td>
<td>28.34</td>
<td>178.14</td>
<td>138.56</td>
</tr>
<tr>
<td>Smoke Free email</td>
<td>55</td>
<td>375.00</td>
<td>6.82</td>
<td>28.85</td>
<td>125.00</td>
<td>34.09</td>
</tr>
<tr>
<td>Health care provider or general practitioner</td>
<td>15</td>
<td>61.00</td>
<td>4.07</td>
<td>12.20</td>
<td>20.33</td>
<td>15.24</td>
</tr>
<tr>
<td>Other</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4. Follow-up rates at 1-, 3-, and 6-month follow-up among increasing-and-higher-risk drinkers participating in the iDEAS (iOS Drink Less, Evaluating the Effectiveness of an Alcohol Smartphone) randomized controlled trial by recruitment method.

<table>
<thead>
<tr>
<th>Recruitment method</th>
<th>Recruited, n</th>
<th>Follow-up rate at 1 month, n (%)</th>
<th>Follow-up rate at 3 months, n (%)</th>
<th>Follow-up rate at 6 months, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untargeted social media</td>
<td>2119</td>
<td>1376 (64.94)</td>
<td>1340 (63.24)</td>
<td>1708 (80.6)</td>
</tr>
<tr>
<td>Targeted social media</td>
<td>364</td>
<td>277 (76.1)</td>
<td>256 (70.33)</td>
<td>295 (81.04)</td>
</tr>
<tr>
<td>National Health Service website</td>
<td>1961</td>
<td>1237 (63.08)</td>
<td>1210 (61.7)</td>
<td>1513 (77.15)</td>
</tr>
<tr>
<td>Radio or newspapers</td>
<td>745</td>
<td>520 (69.8)</td>
<td>495 (66.44)</td>
<td>603 (80.94)</td>
</tr>
<tr>
<td>Word of mouth</td>
<td>142</td>
<td>107 (75.35)</td>
<td>106 (74.65)</td>
<td>126 (88.73)</td>
</tr>
<tr>
<td>Google</td>
<td>159</td>
<td>87 (54.72)</td>
<td>81 (50.94)</td>
<td>109 (68.55)</td>
</tr>
<tr>
<td>Smoke Free email</td>
<td>55</td>
<td>38 (69.09)</td>
<td>43 (78.18)</td>
<td>51 (92.73)</td>
</tr>
<tr>
<td>Health care provider or general practitioner</td>
<td>15</td>
<td>12 (80)</td>
<td>10 (66.66)</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Other</td>
<td>42</td>
<td>31 (73.81)</td>
<td>33 (78.57)</td>
<td>38 (90.48)</td>
</tr>
</tbody>
</table>

Aim 2: Retention During Sequential Follow-Up
At 6-month follow-up, 92.4% (4119/4458) of those who responded did so in response to 1 of the 3 email notifications. An additional 2.02% (90/4458) responded following 2 phone calls from the research team, and 3.25% (145/4458) responded following a postal survey. The final stage of recruitment, a postcard sent through mail to participants featuring just the key outcome measure for the trial (AUDIT-C), yielded a further 2.33% (104/4458) of the followed-up sample. The estimated costs of each sequential stage of follow-up are presented in Tables 5 and 6.
Table 5. A summary of time spent and cost on different stages of contacting participants of the iDEAS (iOS Drink Less, Evaluating the Effectiveness of an Alcohol Smartphone) randomized controlled trials at 1- and 3-month follow-up. A currency exchange rate of £1=US $1.26988 is applicable.

<table>
<thead>
<tr>
<th>Time point and method</th>
<th>Total follow-up sent, n</th>
<th>Follow-up per month, mean (range)</th>
<th>Responded</th>
<th>Hours spent sending follow-up<sup>a</sup></th>
<th>Hours spent sending vouchers</th>
<th>Total research hours</th>
<th>Cost research hours<sup>b</sup> (€)</th>
<th>Other costs (£)</th>
<th>Total cost (£)</th>
<th>Cost per participant (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-month follow-up</td>
<td></td>
</tr>
<tr>
<td>Automated email</td>
<td>5602</td>
<td>267 (65-621)</td>
<td>1874</td>
<td>0</td>
<td>34</td>
<td>34</td>
<td>672</td>
<td>0</td>
<td>672</td>
<td>0.36</td>
</tr>
<tr>
<td>First manual email and SMS text message<sup>c</sup></td>
<td>3800 and 1057</td>
<td>181 (34-448)</td>
<td>1130</td>
<td>130</td>
<td>20</td>
<td>150</td>
<td>2966</td>
<td>106<sup>d</sup></td>
<td>3072</td>
<td>2.72</td>
</tr>
<tr>
<td>Second and third manual email and SMS text message<sup>c</sup></td>
<td>3291 and 648</td>
<td>175 (0-462)</td>
<td>643</td>
<td>112</td>
<td>12</td>
<td>124</td>
<td>2452</td>
<td>65<sup>d</sup></td>
<td>2517</td>
<td>3.91</td>
</tr>
<tr>
<td>3-month follow-up</td>
<td></td>
</tr>
<tr>
<td>Automated email</td>
<td>5602</td>
<td>267 (65-621)</td>
<td>2053</td>
<td>0</td>
<td>37</td>
<td>37</td>
<td>732</td>
<td>0</td>
<td>732</td>
<td>0.36</td>
</tr>
<tr>
<td>First manual email and SMS text message<sup>c</sup></td>
<td>3610 and 1282</td>
<td>172 (26-419)</td>
<td>1056</td>
<td>123</td>
<td>19</td>
<td>142</td>
<td>2807</td>
<td>128<sup>d</sup></td>
<td>2935</td>
<td>2.78</td>
</tr>
<tr>
<td>Second and third manual email and SMS text message<sup>c</sup></td>
<td>3698 and 874</td>
<td>176 (0-511)</td>
<td>460</td>
<td>126</td>
<td>8</td>
<td>134</td>
<td>2649</td>
<td>87<sup>d</sup></td>
<td>2736</td>
<td>5.95</td>
</tr>
</tbody>
</table>

^aTime spent sending manual reminders and SMS text messages. On average, an email and SMS text message reminder took 2 minutes and 5 seconds to send, and a voucher email took 1 minute and 8 seconds to send.

^bThe cost here is the average of 2 research staff salaries (£19.77) × research hours.

^cFor the first 3 months of follow-up, we contacted participants twice manually by email, followed sequentially by phone calls, a written survey, and a postcard with the primary outcomes. However, this was not sustainable, so the subsequent follow-up stages were dropped at 1 and 3 months and are not presented below but are included in this total. 1-month phone completions=22, and 1-month postcard completions=16. 3-month phone completions=4, and 3-month postcard completions=1. SMS text messages were added 18 months into recruitment and sent at the same time as the first and second emails, so individual effects cannot be differentiated. SMS text messages did not add significantly to the time spent sending them, as they were also sent through mail merge at the same time.

^dBased on 10 pence (US $0.12) per SMS text message.
Table 6. A summary of time spent and cost on different stages of contacting participants of the iDEAS (iOS Drink Less, Evaluating the Effectiveness of an Alcohol Smartphone) randomized controlled trial (RCT) at 6-month follow-up. A currency exchange rate of £1=US $1.26988 is applicable.

<table>
<thead>
<tr>
<th>Method</th>
<th>Total follow-up sent, n</th>
<th>Follow-up per month, mean (range)</th>
<th>Responded (n=4458)</th>
<th>Follow-Up hours</th>
<th>Voucher hours</th>
<th>Data entry hours</th>
<th>Total hours</th>
<th>Cost hours ((£))</th>
<th>Other costs ((£))</th>
<th>Total cost ((£))</th>
<th>Cost per participant ((£))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email through Qualtrics</td>
<td>5602</td>
<td>266 (64-621)</td>
<td>2358</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>42</td>
<td>830</td>
<td>0</td>
<td>830</td>
<td>0.35</td>
</tr>
<tr>
<td>First manual follow-up email and SMS text message(f)</td>
<td>1886 and 505</td>
<td>52 (4-132)</td>
<td>948</td>
<td>64</td>
<td>17</td>
<td>0</td>
<td>81</td>
<td>1601</td>
<td>0</td>
<td>1652</td>
<td>1.74</td>
</tr>
<tr>
<td>Second manual follow-up email and SMS text message(f)</td>
<td>1077 and 450</td>
<td>51 (4-132)</td>
<td>813</td>
<td>37</td>
<td>15</td>
<td>0</td>
<td>52</td>
<td>1028</td>
<td>45</td>
<td>1073</td>
<td>1.32</td>
</tr>
<tr>
<td>Phone calls</td>
<td>2118</td>
<td>101 (8-260)</td>
<td>90</td>
<td>117</td>
<td>2</td>
<td>0</td>
<td>119</td>
<td>2353</td>
<td>0</td>
<td>2353</td>
<td>26.14</td>
</tr>
<tr>
<td>Posted survey</td>
<td>1378</td>
<td>66 (2-167)</td>
<td>145</td>
<td>68</td>
<td>3</td>
<td>0</td>
<td>24</td>
<td>1878</td>
<td>45</td>
<td>2426</td>
<td>29.39</td>
</tr>
<tr>
<td>Postcard</td>
<td>1161</td>
<td>55 (2-156)</td>
<td>104</td>
<td>59</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>70</td>
<td>1384</td>
<td>1080(j)</td>
<td>2464</td>
</tr>
</tbody>
</table>

\(a\) Based on average times of 2.05 minutes per email or SMS text message, 3.31 minutes per phone call, 2.94 minutes per survey, and 3.07 minutes per postcard.

\(b\) A voucher email took 1.08 seconds to send.

\(c\) Based on 10 minutes to input a survey and 5 minutes to input a postcard.

\(d\) The cost here is the average of 2 research staff salaries (\(£19.77\)) × research hours.

\(e\) Not available.

\(f\) Text messages were added 18 months (from January 15, 2022) into recruitment and sent at the same time as the first and second emails, so individual effects cannot be differentiated.

\(g\) Based on 10 pence (US $0.12) per SMS text message.

\(h\) Based on estimated stationary and postage costs of $1.73 per survey.

\(i\) Based on estimated stationary and postage costs of £0.93 per postcard.

Aim 3: Broader Methodological Insights

Retention

Each SMS text message cost 10 pence (US $0.12) to send and required minimal researcher time as texts were sent to participants through mail merge at the same time as email reminders were sent. This was relatively low cost and low effort, and there was an increase in the average follow-up rate at 1- and 3-month follow-up in the 3 months before and after the introduction of the SMS text messages (from 58.0% (221/381) to 71.43% (830/1162) at 1 month and 58.5% (223/381) to 64.80% (753/1162) at 3 months).

Recruitment

Remote trials may unintentionally exclude participants with less experience using web-based surveys and digital interventions or with lower digital literacy. To mitigate this risk, in the recommendation email and at the end of the baseline survey, we included a link to a pictorial step-by-step guide to downloading and using the app [21] and encouraged participants to contact the research team if they needed technical support. Less than 10 participants contacted the research team for technical support throughout the trial.

Advertisement Development

Advertising any research study involves balancing incentivizing the target audience to participate while avoiding incentivizing those outside of the target market to falsify information to gain reimbursement. This is particularly true of remote research, where there is no face-to-face contact with researchers and therefore fewer barriers to participant deception. Below, we outline the process of developing the study advertisement, involving feedback from public and patient involvement (PPI) groups and dynamic changes throughout the trial in response to higher rates of participant deception.

PPI Feedback on Advertising

To improve the clarity and appeal of the advertisement, we attended meetings with 2 PPI groups (the Sheffield Addiction Recovery Research Panel and the Alcohol and Food Discussion Group at the University of Stirling) and asked for feedback on an advertisement we had designed (Figure 1). The PPI group highlighted language (eg, “Researchers at UCL” and “trial”) that they felt was too formal and would make the study sound frightening or labor-intensive. Furthermore, they did not like the phrase “digital support tools,” which they felt was unclear, and instead suggested we use the phrase “online support tools.” The group also suggested that to make the advertisement more appealing, we should make it clear that people would get support
to drink less alcohol, highlight the financial incentives in a more prominent position, and include pictures.

Figure 1. The original study advertisement designed by the research team to recruit participants to the iDEAS randomized controlled trial (left), advertisement following public and patient involvement feedback (middle), and advertisement following issues with participant deception (right). iDEAS: iOS Drink Less, Evaluating the Effectiveness of an Alcohol Smartphone; UCL: University College London.

Advertising and Participant Deception
Following issues with participant deception, edits were made to the advertisement to disincentivize those who did not meet the inclusion criteria from signing up for financial reimbursement. The mention of the vouchers was removed from the heading and moved to the body of the advertisement. The specific amount was removed, and the text was updated to make it clear that there was no immediate financial incentive to participate in the study; rather, vouchers were sent after 1-, 3-, and 6-month follow-up surveys were completed.

Negative Engagement With Advertising
Throughout the study, we also experienced negative engagement with our social media advertising, particularly on Facebook. Unhelpful comments included those joking about wanting to drink more (eg, “I need support with drinking MORE alcohol”), leaving negative messages about the research team (eg, “killjoy weirdos”), highlighting the reimbursement amount (eg, “vouchers sound good”), or telling other users reasons they had been screened out (eg, “people who use android rather than apple ones are not wanted”). We decided against disabling comments on advertising posts, as other people used them to engage positively with the study and to tag friends. Rather than respond to or delete posts, which may have further antagonized people, we used the “hide” feature on negative comments on a weekly basis, meaning these comments could not be seen by others but that the original poster was not notified. A total of 46.6% (210/451) of comments were hidden throughout the study.

Contamination
This was a pragmatic trial, as we were testing the effect of the recommendation rather than the use of the Drink Less app. Nevertheless, we took steps to minimize contamination. We were careful not to mention the name of the app or the trial in any advertising. We also included 2 sensitivity analyses to try and capture the extent of contamination in the trial. One focused on those who followed the recommendation determined by self-report (at 1-month and 6-month follow-ups). The second was an instrumental variable analysis that accounted for nonuse in the intervention group and contamination in the comparator group by operationalizing the difference in app use between the 2 groups.

These recommendations are summarized in Textbox 1.
Textbox 1. Methodological recommendations for remote randomized controlled trials (RCTs).

Recruitment
- Use a range of recruitment methods.
- Monitor the demographic composition of the sample during trials and have targeted methods for underrecruited groups.
- Targeted advertising on social media or radio can be successful in recruiting men and can yield large numbers of responses. Having advertisements run consecutively for weeks seemed to result in cumulative benefits.
- General practitioner (GP) surgeries and word of mouth were good for recruiting a more balanced sample in terms of gender, ethnicity, and socioeconomic status (SES) but overall yielded lower numbers of participants. However, these methods were likely impacted by the COVID-19 pandemic and may be more effective with an increased investment of time or money in future trials.
- Offer technical support for online surveys and intervention use, ideally in different forms such as through pictorial step-by-step guides or through phone or email to ensure recruitment and engagement are inclusive.

Follow-up
- Offline follow-up options, such as phone calls and postal surveys, are more resource intensive but can increase follow-up rates.
- SMS text messaging services can be a relatively low-cost and low-effort way of boosting follow-up rates.

Advertising and incentives
- Avoid overly formal language, which may alienate participants, and use pictures.
- Highlight benefits to participants other than financial incentives (e.g., support for alcohol reduction).
- Tailor advertising strategies to ensure the right balance of incentivization across different platforms. For example, if advertising on social media or where barriers to sign up are low, mentioning incentives could result in motivated individuals falsifying information. However, where there are more barriers to sign up, for example, through a radio advertisement where participants must find the study link independently, it may be necessary to highlight incentives more explicitly.

Participant deception
- Be aware of different types of fraud and the best ways to detect them, and continuously monitor data as strategies are likely to evolve in response to checks and barriers introduced. These may include address checks, phone calls, or requiring participants to submit ID.
- When creating online surveys, researchers should use fraud detection software if it is offered (e.g., CAPTCHAS [Completely Automated Public Turing test to tell Computers and Humans Apart]) and check licenses to see if additional fraud detection software is available.
- Include attention-check questions where participants are asked to give stable information at different points in a survey or where participants are asked to select a particular response option.
- Ensure costing is included for the data monitoring resources required.

Contamination
- Consider the inclusion of sensitivity analyses, such as instrumental variable analysis, to capture the extent of contamination in remote randomized controlled trials.

Discussion

Summary of Findings
In this remote RCT, the 3 main participant recruitment methods were through advertisements on social media (2483/5602, 44.32%), the NHS website (1961/5602, 35.01%), and through radio or newspapers (745/5602, 13.3%), with all other methods of recruitment accounting for 7.37% (413/5602) of the sample. More participants who were women, White, and from more advantaged backgrounds responded to the initial recruitment. Targeted approaches through social media and radio advertising were successful in recruiting men but less successful in appealing to a more diverse demographic in terms of ethnicity and SES. The most effective methods for recruiting more balanced samples (health care providers and word of mouth) were often responsible for a relatively small proportion of the overall sample, suggesting greater investment in these methods could be a positive strategy in future trials. The costs associated with different recruitment methods varied. There was an increase in cost per participant when recruiting participants who were men, from ethnic minorities, and from more disadvantaged backgrounds across all recruitment methods.

There was evidence that the sequential approach taken to 6-month follow-up was successful, with 79.58% (4458/5602) follow-up rates at 6-months. Most participants responded following automated emails and substantial financial incentives, including an additional incentive to respond to the primary outcome within the first 24 hours, but each additional stage of follow-up resulted in an additional 2% to 3% of the sample following up. The advantage of the sequential approach is also evidenced by the greater follow-up rate (4458/5602, 79.58%) at 6-month follow-up when this process was followed, relative to the follow-up rates at 1- and 3-months (3685/5602, 65.78% and 3574/5602, 63.8%, respectively), where only email or SMS
text reminders were sent and less financial incentive was offered. However, each of the offline stages of follow-up was considerably more resource intensive than email reminders, so this is a practical consideration to be made at the costing stage. It would be of great interest to compare, across trials, the sociodemographic characteristics associated with the sample captured at each stage of follow-up. For example, it may be possible that offline stages of follow-up may be effective in retaining less digitally literate or less engaged participants.

Implications

When making methodological decisions about remote RCTs, there is rarely a right answer that is applicable to every study or circumstance. It is important to be aware of balancing forces, which often pull in different directions. For example, when considering advertising, it is important to balance making the study appealing to the target market with not making the study so appealing that it yields a high rate of participants who sign up with false information or who respond multiple times to gain financial reimbursement. There is a similar trade-off when considering processes aimed at reducing participant deception in the data. It is important that processes that aim to ensure participants are real and eligible do not add postrandomization bias to remote RCTs by removing “real” participants in potentially nonrandom ways. Part of navigating this balance is to plan carefully and tailor decisions to individual circumstances, as well as to monitor and learn from decisions made throughout a trial.

Previous Research

The findings of this study are in line with other studies that have focused on methodological issues in remote studies and RCTs [11,13]. The recruitment strategy undertaken was informed by a previous smoking cessation trial, which recommended using a range of sources but also monitoring the success of strategies throughout to recruit a large, diverse sample [11]. We have reported on the success of each strategy here to inform the planning of future trials. An additional potential strategy that we did not use here to improve ethnic diversity in trial participation is geotargeting of social media advertisements in geographic areas with an ethnically diverse population [22]. The multistage follow-up strategy and stepped approach to incentives (eg, an additional £12 if completed within 24 hours at 6 months) undertaken throughout the iDEAS trial were also informed by previous research [11]. The need to have ongoing strategies to detect participant deception in web-based studies and trials is also supported in other studies, and other strategies recommended beyond those we used are to check participant IDs during onboarding and undertake IP address checks [13].

Limitations

This study offers valuable insights for researchers conducting web-based or remote RCTs, but it is not without limitations. The cost per participant is calculated for different sociodemographic groups to demonstrate the relative increase in costs required to recruit a balanced sample. However, this stepped increase in costs is conflated by narrowing the focus to smaller groups in the population. For example, we would expect that each participant from ethnic minority groups would cost more than each participant overall when simply dividing the cost by the number of participants, because there are proportionately fewer of them. Regardless, our estimates of comparative costs for different demographic groups across different recruitment methods may help other researchers who are planning future trials. Furthermore, this study does not consider costs related to setting up the trial, developing automation, designing materials for data collection and recruitment, and engaging with stakeholders to promote recruitment. These are additional upfront and ongoing costs that should be considered when costing RCTs. There are also 2 limitations related to the generalizability of these findings. Due to the very small numbers of some ethnic minorities, ethnicity was treated as White versus ethnic minority. Grouping all ethnic minority participants together in this way does not allow examination of different methods of recruitment for attracting different ethnic minorities. Furthermore, the Drink Less app is currently only available to those with an iOS device, and as such, iOS device ownership was an entry requirement for the trial. There are some sociodemographic differences in iPhone ownership: relative to Android devices, iPhone owners are younger, more likely to be women [23], and have higher average incomes [24].

Conclusion

Most participants in this remote RCT were recruited through advertisements on social media (2483/5602, 44.32%), the NHS website (1961/5602, 35.01%), and through radio or newspapers (745/5602, 13.3%). Most recruitment methods oversampled participants who were more advantaged, women, and White. Targeted approaches through social media and radio advertising were successful in recruiting men but less successful in appealing to a more diverse demographic in terms of ethnicity and SES. There was evidence that the sequential approach taken to 6-month follow-up was successful, with 79.58% (4458/5602) follow-up rates at 6 months. This study offers recommendations for achieving balance in methodological challenges when conducting remote RCTs. Recruitment methods should be broad and targeted to achieve sociodemographic diversity. Automated emails with substantial financial incentives can achieve excellent follow-up rates of approximately 70%, but sequential offline follow-up can further boost retention by nearly 10% overall. SMS text messages can be a low-cost, low-effort way to improve follow-up rates. An important and broader takeaway is the importance of continuously monitoring, identifying, reacting to, and documenting new methodological challenges as they appear over the course of a trial. This is necessary not only to improve individual trials but also because pooling shared experiential learning can help research teams who are planning future trials.
Acknowledgments

This study is funded by the National Institute for Health and Care Research (NIHR; Public Health Research Programme, #127651). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. MO’s salary is funded by NIHR (NIHR127651) and Medical Research Council (MRC; MR/W026430/1). CG is funded by NIHR (NIHR302923).

Data Availability

The data sets generated during and analyzed during this study are available on Open Science Framework [25].

Conflicts of Interest

MH, GL, LD, MF, and SM declare no conflicts of interest. JB has received unrestricted funding related to smoking cessation research and sits on the scientific advisory board for the Smoke Free app. CG and MO have done paid consultancy work for the behavior change and lifestyle organization “One Year No Beer,” providing fact-checking for blog posts.

References

Remote Delivery of the Cuidándome Telehealth Intervention for Self-Management of Depression and Anxiety Among Latina Immigrant Women: Randomized Controlled Trial

Carmen Alvarez1, MSN, PhD; Subhash Aryal1, MS, PhD; Elizabeth Vrany2, PhD; Maria Jose Sanchez R3, MD, MPH; Rosalphie Quiles4, PhD; Lia Escobar-Acosta5, BS; Felicia Hill-Briggs6†, PhD

1School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
2Institute of Health System Science, Feinstein Institutes for Medical Research, Department of Medicine, Zucker School of Medicine, New York, NY, United States
3Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
4Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
5Johns Hopkins School of Nursing, Baltimore, MD, United States
6†deceased

Corresponding Author:
Carmen Alvarez, MSN, PhD
School of Nursing
University of Pennsylvania
418 Curie Boulevard
Philadelphia, PA, 19104
United States
Phone: 1 2158980715
Email: alcarmen@nursing.upenn.edu

Abstract

Background: Growing evidence suggests that Latina immigrant survivors of adverse childhood experiences (ACEs) are at increased risk for developing and remaining with either depression or anxiety or both symptoms. This study examined the feasibility and acceptability of a telehealth intervention—Cuidándome (quee-DAN-doh-meh, “taking care of myself”). Cuidándome is a 10-week, patient-centered, trauma-informed intervention delivered by a trained facilitator that promotes self-management of depression and anxiety symptoms through improved problem-solving skills and strategies.

Objective: The aim of this study was to examine the feasibility and acceptability of Cuidándome delivered remotely (via Zoom) with Latina immigrant ACE survivors with either depression or anxiety or both symptoms. We also estimated the effect sizes associated with the intervention on decreasing depression and anxiety symptoms and improving social problem-solving styles.

Methods: We evaluated Cuidándome using a randomized controlled trial design. Latina immigrants (N=47) who had experienced at least 1 ACE and had at least mild depression or anxiety symptoms were randomized to Cuidándome or a comparison group delivered by trained facilitators. We assessed for changes in depression and anxiety symptoms as well as social problem-solving styles at baseline, post intervention, and 3- and 6-month follow-up.

Results: Analyses indicated significant decreases over time within both Cuidándome and comparison groups for depression and anxiety symptoms and maladaptive problem-solving. The intervention effect was largest for anxiety; at 6-month follow-up, Cuidándome participants had significantly lower anxiety scores than the comparison group. In addition, we observed a greater average point reduction in depression symptoms at 6 months among Cuidándome participants (5.7 points) than in the comparison group (3.7 points).

Conclusions: A mental health program delivered via Zoom by a trained facilitator was feasible and acceptable to Latina immigrant women and can be beneficial for reducing anxiety and depression symptoms. More research is needed to assess the effectiveness of Cuidándome among a powered sample size of Latina immigrants.

Trial Registration: ISRCTN Registry ISRCTN16668518; https://www.isrctn.com/ISRCTN16668518

(JMIR Form Res 2024;8:e52969) doi:10.2196/52969
KEYWORDS

Latina immigrant; mental health; depression; anxiety; problem-solving; intervention study; trauma-informed; depressive; Latinx; Latin; Latino; Latina; Hispanic; Spanish; immigrant; immigrants; survivor; child; children; childhood; trauma; traumatic; adverse; telehealth; telemedicine; eHealth; digital health; feasibility; acceptability; randomized; controlled trial; controlled trials; mobile phone

Introduction

Background

Latina immigrant survivors of adverse childhood experiences (ACEs) are at increased risk of poor long-term health outcomes, as mental health disorders often go untreated in this population [1]. ACEs are a spectrum of adversities that occur in 18 years and younger of age and include physical and sexual abuse, family dysfunction such as living with an adult with mental illness, experiencing or witnessing community violence (eg, stabbing and shooting), and experiencing or witnessing violence perpetrated by an organized group (eg, gang violence and police or military brutality) [2]. These types of experiences are established risk factors for anxiety and depressive disorders in adulthood [1,3]. The United States has seen historic levels of immigrants from Central America—many fleeing from different types of adversity, trauma (eg, natural disasters, pervasive community, and political violence), and limited opportunity for socioeconomic advancement. Growing evidence suggests that foreign-born Latinos, particularly those from countries with high risks of community and political violence, experience high rates of early childhood adversity that are associated with poorer mental health outcomes [3]. When compared to the general US population and Latino immigrant men, Latina immigrants report significantly higher rates of multiple types of ACEs [1].

Despite the high burden of adversity and depression and anxiety symptoms, multiple barriers impede Latina immigrants’ access to mental health services. System-level barriers such as lack of health insurance and lack of language-concordant services are common barriers to accessing mental health services [4]. Despite the growth of the Latino population in the United States, there has been a decline in mental health services offered in Spanish [5]. In addition, while evidence-based psychological treatments are the recommended first-line treatment for mild to moderate depression [6], they are becoming less available in primary care settings [7]. Implementation of evidence-based psychological treatment services in Latino-servicing health care settings also remains a challenge. These limitations make it difficult for Latino immigrants who prefer psychotherapy to pharmacotherapy to access the mental health care they need [8,9]. Studies targeting Latinos in primary care settings have often used licensed personnel as interventionists; however, the sustainability of providing such services in low-resource settings is questionable. To address these barriers, mental health experts recommend expanding access to behavioral health services by providing them outside of specialized settings, using telehealth services [10], and rigorously training and supervising unlicensed personnel (such as community health workers) to deliver high-quality services [11].

Teletherapy and the use of paraprofessionals both show promise in increasing acceptability and engagement in the treatment of Latino immigrants experiencing depression. Among Latinos, adherence to teletherapy sessions was higher (>80%) compared to in-person sessions (42%-80%) [12,13]. Despite the methodological limitations, paraprofessional-led interventions have demonstrated improvements in depression symptoms among Latinos [14,15]. Given the shortage of behavioral health professionals, delivering mental health care through paraprofessionals or community health workers is a promising strategy for increasing access for underserved populations [11,16].

Community health workers are also attuned to the needs of the communities they serve and have feasible solutions. Community health workers who serve Latino populations acknowledge (1) the need for more mental health services, (2) the training for community health workers to better meet this need, and (3) the use of telehealth services to make care more accessible [17]. Community health workers have also proposed group support for addressing mental health needs. Indeed, the group format helps to reduce feelings of isolation and shame as participants hear from others who have similar life experiences with trauma and depression and anxiety symptoms [18]. Further, group support maximizes the community health workers’ reach as multiple individuals can be served and supported by each other.

Problem-solving is an established evidence-based approach for managing depression and anxiety symptoms. Social problem-solving refers to the cognitive behavioral process used to cope with life stressors [19]. According to problem-solving theory, coping with stressors involves two independent components: (1) problem orientation and (2) problem-solving style [20]. Problem orientation refers to one’s general cognition and attitudes when faced with a problem; this process is also framed by past experiences and self-appraisal about problem-solving ability. Problem-solving style refers to cognitive behavioral activities people use to cope with or manage stressful situations and include rational problem-solving (RPS; systematic and deliberate application of problem-solving skills), impulsive-careless style (ICS; impulsive approaches to problems), and avoidance style (AS; procrastination and avoiding addressing the problem) [21,22]. Effective social problem-solving involves identifying barriers to practicing recommended behaviors and brainstorming strategies to overcome barriers [23].

Among Latina immigrant women, ACE survivors had lower self-confidence in stress management compared to women who did not report ACEs [3]. In addition, experiencing more types of adversity was negatively associated with overall social problem-solving skills and positively associated with negative problem orientation (NPO) and AS [3]. Understanding and overcoming barriers through problem-solving underscores the importance of trauma-informed care, in which trauma survivors are supported in understanding how childhood adversities
contribute to mental and physical health and reducing negative self-evaluations that impact problem-solving styles [24]. To date, the most widely used and evaluated psychological intervention among Latino immigrants is cognitive behavioral therapy, and the established benefit to Latina immigrants is based on 3 randomized controlled trials with limited generalizability [25]. Randomized controlled trials testing problem-solving therapy for decreasing depression symptoms among Latina immigrants showed clinically significant reductions in symptoms up to a year postintervention when compared to pharmacotherapy [26,27]. In summary, there remains a need to expand the portfolio of effective mental health interventions to maximize reach and enhance responsiveness to diverse needs among Latina immigrants.

This Study

Given the lack of mental health services for Latina immigrants and the evidence for problem-solving and trauma-informed care, we developed Cuidándome (quee-DAN-doh-meh, “taking care of myself”). Cuidándome is a 10-week, culturally appropriate, trauma-informed, group-based intervention delivered once a week by a trained facilitator that promotes self-management of depression and anxiety symptoms through improved problem-solving skills and strategies. Multiple strategies were used to provide a trauma-informed intervention, including training the research team in therapeutic communication, screening and education about ACEs and their impact on health, and creating a safe and trusting environment for participants to work through their barriers for implementing useful strategies for depression and anxiety symptom management. Details of the adaptation and development process for Cuidándome are documented elsewhere [28]. The aims of this study were to (1) examine the feasibility and acceptability of Cuidándome delivered remotely (via Zoom; Zoom Video Communications) with Latina immigrant ACE survivors with either depression or anxiety or both symptoms and (2) estimate the effect sizes associated with the Cuidándome intervention on decreasing depression and anxiety symptoms and improving social problem-solving styles. We hypothesized that compared to the comparison group, the intervention group would report lower depression and anxiety symptoms, higher positive problem orientation (PPO) and RPS, and lower NPO, AS, and ICS at postintervention and at 3- and 6-month follow-up.

Methods

Recruitment

We recruited participants over 2 weeks in July 2021. Both active and passive strategies were used to recruit participants. Actively, we developed a database of Latina immigrants with a prior study [3] and contacted these women to assess for eligibility and participate in this study if interested. We also shared the study flyer with community health workers in the area, who distributed the flyer within their networks, including placing study flyers inside bags of food that were being donated during a food drive. Our passive strategies included posting flyers at laundromats and grocery stores in Latino-concentrated neighborhoods. Women who were interested in participating in the study texted or called the research phone. A bilingual research assistant obtained informed consent and established eligibility over the phone for all women verbalizing interest in participating in the study.

Establishing eligibility included the completion of a baseline study questionnaire (including demographic information and assessments for depression and anxiety symptoms) to verify eligibility for the study. Eligibility criteria included (1) being ≥18 years, (2) foreign-born (or born on the island of Puerto Rico), (3) self-identify as a Latina, (4) self-report of ≥1 ACE, (5) ability to understand and speak Spanish, and (6) have a score of ≥5 on the Patient Health Questionnaire-8 (PHQ-8)—an assessment for depression symptoms [29] or ≥5 on the Generalized Anxiety Disorder-7 (GAD-7)—an assessment for anxiety symptoms [30]. We excluded women currently enrolled in another study about mental health (to limit potential confounding or carryover effects), and we excluded women who reported being pregnant (given that pregnancy can contribute to depression symptoms). Figure 1 displays the CONSORT (Consolidated Standards of Reporting Trials) diagram, participant enrollment, and retention (Multimedia Appendix 1).
Ethical Considerations

All study procedures were approved by the Johns Hopkins University Ethics Review Board (IRB00287200). Oral consent was obtained from all participants in Spanish over the phone by the bilingual research assistants (native proficiency). To secure and protect all participant information, all data were collected and directly entered into REDCap (Research Electronic Data Capture) hosted at Johns Hopkins University. Only select research team members could access these data. All data were deidentified prior to export to SPSS (version 28; IBM Corp) for data analysis. Given the cost associated with data use, we compensated our participants up to US $190 for study participation (US $15 per session attended) and completion of all follow-up study questionnaires.

Procedures

Women who provided consent were found eligible for the study (based on the baseline study questionnaire), and women who agreed to enroll in the study were randomized to receive either Cuidándome or educational content from a health promotion manual designed in Mexico [31]. Randomization was stratified based on ACE score so that one group would not have more people with higher average ACEs than the other. After completion of the baseline questionnaire and randomization, participants were told when their group sessions would begin, and participants were mailed the corresponding workbook for
their group assignment. Based on input from community partners and the significant use of mobile phones and apps in the study population, we did not make computer or internet access a requirement for participation. For those who were not familiar with Zoom, a brief orientation was scheduled to explain how to use Zoom. All participants were encouraged to join the group sessions when they were scheduled; if a participant could not attend the group session, a make-up session would be scheduled with the participant where the facilitator would review content from the missed week prior to the next group session. This progression was particularly important because the sessions were designed to build on each other.

Study questionnaires were completed at baseline (T0) as part of the eligibility assessment and enrollment process, within 1 month post intervention (T1), and again at 3 months (T2) and 6 months (T3) post intervention. Trained bilingual research assistants who were not involved in the intervention delivery administered the study questionnaire (see “Study Questionnaire” section for descriptions of items and measures) to participants via phone and entered responses into a secure REDCap database. Based on our experience and prior evidence, many low-income Latino immigrants rely on their smartphones for internet access, particularly if they do not subscribe to broadband services [32]. Our retention efforts included 3 weekly reminders via SMS text message for joining the Zoom sessions, mailing participants a Cuidándome bookmark and a booklet of poems.

Intervention

Table 1 provides the content overview for the intervention and comparison groups. To summarize, Cuidándome facilitates the learning and practice of systematic problem-solving through identification of the problem, generation of potential solutions, selection of the best solution, and implementation of the identified plan. Given participants’ history of trauma, the intervention sessions start with content about mental health and how ACEs, as well as other types of adversity, can contribute to mental health symptoms and conditions in adulthood. The remainder of the sessions guides participants through 5 evidence-based self-management strategies for managing depression and anxiety symptoms and identifying solutions for the barriers (life activities and stressors) that get in the way of practicing the recommended strategies. The weekly sessions lasted approximately 1 hour. In addition to the facilitator, all participants had the Cuidándome workbook that provided structured templates for guiding participants through the session activities. The first session included a discussion about ground rules, including the importance of confidentiality and not sharing comments made within the group with people outside of the group. During each session, the facilitator encouraged group discussion and shared reflections and strategies for overcoming challenges. The first 2 modules focus on psychoeducation and allow for discussion throughout. In the remaining modules, group learning through participant discussion is the priority; therefore, the facilitator presents the activity, guides participants through the exercises, and encourages discussion using vignettes and the workbook.
Table 1. Brief description of modules for Cuidándome and comparison program.

<table>
<thead>
<tr>
<th>Cuidándome</th>
<th>Comparison (health promotion group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A: ACEs(^a), depression, anxiety, and PTSD(^b)</td>
<td>1: Physical activity</td>
</tr>
<tr>
<td>• ACEs and their associations with health</td>
<td>• What is physical activity?</td>
</tr>
<tr>
<td>• Signs and symptoms of depression, anxiety, and PTSD</td>
<td>• Benefits of physical activity</td>
</tr>
<tr>
<td>• Mental health stigma</td>
<td>• Suggestions for remaining physically active</td>
</tr>
<tr>
<td>1B: Mental health and self-management strategies</td>
<td>2A: Healthy eating</td>
</tr>
<tr>
<td>• Signs and symptoms (continued)</td>
<td>• Review and discussion of food groups</td>
</tr>
<tr>
<td>• Review and discussion of personal profile</td>
<td>• Discussion of portion sizes</td>
</tr>
<tr>
<td>• Self-management strategies for depression and anxiety</td>
<td>• Recommendations for healthy eating</td>
</tr>
<tr>
<td>2: Overview of problem-solving</td>
<td>2B: Healthy eating</td>
</tr>
<tr>
<td>• Identify behaviors for self-management of mental health</td>
<td>• Recommendations for health eating</td>
</tr>
<tr>
<td>• Identify barriers to self-management</td>
<td>• My BMI</td>
</tr>
<tr>
<td>• Understand the steps in problem-solving approach</td>
<td>3: Mental health</td>
</tr>
<tr>
<td>3: Taking control of stress and emotions (problem orientation)</td>
<td>• What is mental health?</td>
</tr>
<tr>
<td>• Understand negative versus positive problem orientation and its impact</td>
<td>• Why is it important?</td>
</tr>
<tr>
<td>on problem-solving</td>
<td>• What can influence your mental health?</td>
</tr>
<tr>
<td>• Understand the relationship between emotions and behavior</td>
<td>4: Substance misuse</td>
</tr>
<tr>
<td>4: What makes a problem a problem? (problem identification)</td>
<td>• Addiction prevention</td>
</tr>
<tr>
<td>• Identify external and individual barriers to self-management</td>
<td>• Assessing alcohol consumption</td>
</tr>
<tr>
<td>• Demonstrate knowledge of the problem-solving process</td>
<td>• Smoking cessation</td>
</tr>
<tr>
<td>5: Know thyself: set goals that fit your life (generating alternative solutions)</td>
<td>5: Chronic diseases</td>
</tr>
<tr>
<td>• Understand the importance of identifying problems for appropriate goal setting</td>
<td>• Prediabetes and diabetes</td>
</tr>
<tr>
<td>• Demonstrate an understanding of effective goal setting</td>
<td>• Hypertension</td>
</tr>
<tr>
<td>• Demonstrate knowledge of the problem-solving process</td>
<td>• Hyperlipidemia</td>
</tr>
<tr>
<td>6: Different ways to reach health goals: knowing yourself</td>
<td>6: Cancer screenings</td>
</tr>
<tr>
<td>• Understand the importance of exploring multiple options for problem-solving</td>
<td>• Breast cancer risk factors and screening</td>
</tr>
<tr>
<td>7: That sounds good but does it work for me?</td>
<td>• Cervical cancer screening</td>
</tr>
<tr>
<td>• Understand one’s own values and priorities in decision-making and</td>
<td>7: Osteoporosis</td>
</tr>
<tr>
<td>problem-solving</td>
<td>• What is osteoporosis?</td>
</tr>
<tr>
<td>• Demonstrate understanding of the 4 problem-solving styles and the impact on problem-solving</td>
<td>• Prevention of osteoporosis</td>
</tr>
<tr>
<td>• Identify rational problem-solving as the effective approach for solving problems</td>
<td>8: Respiratory illnesses</td>
</tr>
<tr>
<td>8: Take action and know the signs</td>
<td>• Prevention and control of communicable respiratory infections</td>
</tr>
<tr>
<td>• Acquire skills for attempting alternative solutions for solving problems</td>
<td>• Prevention and control of noncommunicable respiratory illnesses</td>
</tr>
<tr>
<td>• Demonstrate awareness of signs that a solution is not working</td>
<td>9: Review</td>
</tr>
<tr>
<td>9: Putting it all together</td>
<td>• What did you learn?</td>
</tr>
<tr>
<td>• Demonstrate mastery of the rational problem-solving approach</td>
<td>• What has helped you?</td>
</tr>
<tr>
<td>• Articulate the problem-solving approach for the management of mood</td>
<td>• What will you continue to do for your well-being?</td>
</tr>
</tbody>
</table>

\(^a\)ACE: adverse childhood experience.
\(^b\)PTSD: posttraumatic stress disorder.

Comparison

Given our focus on Latina immigrant women with either depressive or anxiety or both symptoms, we opted to offer the comparison group some generic health education content rather than be waitlisted. The content for the comparison group came from a family health promotion manual from Instituto Mexicano del Seguro Social—the Mexican Institute for Social Security [31]. We selected this manual given our focus on a Spanish-speaking, immigrant Latina population. The content from Instituto Mexicano del Seguro Social was already in Spanish and culturally appropriate—particularly the nutrition.
content that referenced traditional foods and diets common to our participants. The comparison content included 1 session about mental health conditions in general, which did not overlap with the more detailed Cuidándome training. Delivery of the comparison content mirrored the format of the intervention group: 1-hour weekly sessions delivered via Zoom.

Group Facilitators and Intervention Fidelity

The intervention facilitator is a bilingual, Latina immigrant with a bachelor degree, who was trained in problem-solving therapy by our expert clinical psychologist and who received ongoing support and guidance. The facilitator of the comparison group was an experienced registered nurse with a master in health education and expertise (over 15 years of experience) in facilitating health promotion groups for Latina immigrant women. Aside from training on human participants, the nurse for the comparison group did not receive any specific training but was oriented to the purpose of the comparison group and provided with the corresponding workbook content. All Zoom sessions were audio recorded and reviewed after the sessions by the principal investigator to assess for client-centeredness (eg, showing empathy and encouraging autonomy) in both groups and to determine if the Cuidándome facilitator followed the facilitator script and demonstrated a problem-solving approach (eg, guiding participants to targets for change and focusing on positive action).

Study Questionnaire

Demographic Characteristics

The study questionnaire included questions about demographic characteristics: age, relationship status, children, nativity, length of time in the United States, educational attainment, and employment status. Items about demographic characteristics were only administered at baseline.

Adverse Childhood Experiences

The Adverse Childhood Experiences-International Questionnaire was used, at baseline only, to assess for occurrence (eg, “Did you live with a household member who was a problem drinker or alcoholic, or misused street or prescription drugs?” “Yes” or “No”) and frequency (eg, “Did a parent, guardian or other household member hit or cut you with an object, such as a stick (or cane), bottle, club, knife, whip etc.?” “Many times,” “A few times,” “Once,” or “Never?”) of different types of adversities that occurred in the age of 18 years and younger [33]. In addition to items that inquired about the traditional ACEs (eg, physical and emotional neglect), the Adverse Childhood Experiences-International Questionnaire also assesses for the types of adversity such as bullying and experiencing or witnessing community violence. Items about child marriage were not included in our assessment because we have not identified this experience as a significant part of our population’s history. We dichotomized item responses based on the presence or nonzero frequency of an experience (yes=1 and no=0) and summed all dichotomized item responses for a total score; higher scores indicated experiencing more types of adversity. This tool has been validated with Latina immigrants [3,34].

Primary Outcome Variables

Depression

We used the PHQ-8 to assess the frequency (0=not at all to 3=nearly every day) of depression symptoms during the last 2 weeks [29]. Item responses are summed for a total score (range 0-24), with higher scores indicating greater severity of symptoms. The PHQ-8 has been validated among Latina immigrants and demonstrated good reliability with our sample (α=.83).

Anxiety

We used the GAD-7 to assess the frequency (0=not at all to 3=nearly every day) of anxiety symptoms during the last 2 weeks [30]. Item responses are summed for a total score (range 0-21), with higher scores indicating greater severity of symptoms. The GAD-7 has also been validated among Latina immigrants and demonstrated good reliability with our sample (α=.76).

Social Problem-Solving

We assessed social problem-solving styles using the Social Problem-Solving Inventory-Revised (SPSI-R) [20]. The items assess attitude toward challenges as well as one’s tendencies and approach for managing stressors in everyday life. Items present different styles of thinking and reactions to scenarios to which participants report how accurately the statement reflects their attitudes or behaviors to challenges (0=not at all true of me to 4=extremely true of me). The SPSI-R assesses for (1) problem orientation and (2) problem-solving style. Problem orientation refers to one’s disposition and attitude toward a problem. People with a PPO perceive problems as solvable challenges and are optimistic and confident in their ability to manage the problem; higher scores on the PPO subscale indicate greater confidence and optimism for solving problems. People with an NPO tend to perceive problems as a threat and are less confident in their ability to address the problem; higher scores on the NPO indicate less confidence in their ability to address problems.

Three problem-solving styles are assessed with the SPSI-R: RPS, ICS, and AS. When faced with challenges, people who practice RPS tend to think through multiple solutions and intentionally implement the optimal approach; higher scores on the RPS subscale indicate higher levels of RPS. The ICS is used to describe the tendency to act on the first option that comes to mind rather than consider multiple solutions; higher scores on the ICS subscale indicate greater impulsivity when addressing problems. The AS describes the practice of procrastination or avoiding addressing a problem; higher scores on the AS subscale indicate greater tendency for practicing avoidance for addressing problems. Each subscale was added for a sum score. To obtain a total social problem-solving score, the subscales are calculated (maladaptive styles negatively impact the total score social problem-solving score) using the prescribed formula [20]. These assessments have been used among Latina immigrants and demonstrated good reliability (α=.74).
Statistical Analysis

Descriptive statistics (frequencies, means, and SDs) for all participant demographics and outcome variables were calculated. We tracked the number of sessions completed for each participant as an indicator of acceptability and asked participants if and how the intervention helped them at the end of the 10 weeks. The proportion of interested participants who consented and were screened as eligible to be in the study was also computed to help inform feasibility. We conducted independent t tests to assess differences in outcome variables (depression, anxiety, and social problem-solving styles) between the intervention and comparison groups at baseline and the follow-up time points (data not shown). In addition, paired t tests were used to compare the differences in means for the outcome variables from postintervention to 3- and 6-month follow-up time points (data not shown). For our primary analyses, mixed between-within participants’ ANOVA was used to examine differences in outcome variables between the intervention and comparison group, over time, from baseline to 6-month postintervention. We calculated effect sizes (Cohen d: small <0.50, medium ≥ 0.50 to <.80, and large ≥ 0.80) using the difference in outcome means for the different groups divided by the pooled SDs.

Results

Participant Demographics, ACEs, and Retention

Our sample included 47 Latina immigrants at baseline (Table 2) and 41 participants at all follow-up assessments. There were no significant differences between the intervention and comparison group at baseline.
Table 2. Participant characteristics^a.

<table>
<thead>
<tr>
<th></th>
<th>Total sample<sup>a</sup> (N=47)</th>
<th>Intervention group (n=23)</th>
<th>Comparison group (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>35.72 (8.4)</td>
<td>36.78 (9.2)</td>
<td>34.7 (7.6)</td>
</tr>
<tr>
<td>Relationship status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>8 (17)</td>
<td>3 (6)</td>
<td>5 (11)</td>
</tr>
<tr>
<td>Married</td>
<td>16 (34)</td>
<td>8 (17)</td>
<td>8 (17)</td>
</tr>
<tr>
<td>Living together (not married)</td>
<td>20 (43)</td>
<td>10 (21)</td>
<td>10 (21)</td>
</tr>
<tr>
<td>Living apart (not married)</td>
<td>2 (4)</td>
<td>1 (2.1)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Divorced</td>
<td>1 (2)</td>
<td>1 (2)</td>
<td>N/A<sup>b</sup></td>
</tr>
<tr>
<td>Children, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>4 (8)</td>
<td>3 (6)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>1-3</td>
<td>35 (75)</td>
<td>19 (41)</td>
<td>16 (34)</td>
</tr>
<tr>
<td>4 or more</td>
<td>8 (17)</td>
<td>1 (2)</td>
<td>7 (15)</td>
</tr>
<tr>
<td>Nativity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>11 (23)</td>
<td>5 (10)</td>
<td>6 (13)</td>
</tr>
<tr>
<td>El Salvador</td>
<td>9 (19)</td>
<td>5 (11)</td>
<td>4 (8)</td>
</tr>
<tr>
<td>Guatemala</td>
<td>5 (10)</td>
<td>2 (4)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Honduras</td>
<td>12 (26)</td>
<td>4 (9)</td>
<td>8 (17)</td>
</tr>
<tr>
<td>Other (Caribbean and South America)</td>
<td>10 (21)</td>
<td>7 (15)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Length of time in the United States, mean (SD)</td>
<td>10.48 (6.4)</td>
<td>11.3 (6.2)</td>
<td>9.7 (6.6)</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary school or less</td>
<td>9 (19)</td>
<td>3 (6)</td>
<td>6 (13)</td>
</tr>
<tr>
<td>Some high school education</td>
<td>9 (19)</td>
<td>7 (15)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>High school graduate or more</td>
<td>29 (62)</td>
<td>13 (28)</td>
<td>16 (34)</td>
</tr>
<tr>
<td>Employment status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not employed</td>
<td>26 (55)</td>
<td>16 (34)</td>
<td>10 (21)</td>
</tr>
<tr>
<td>Employed full-time</td>
<td>12 (26)</td>
<td>3 (6)</td>
<td>9 (19)</td>
</tr>
<tr>
<td>Employed part-time</td>
<td>9 (19)</td>
<td>4 (9)</td>
<td>5 (11)</td>
</tr>
<tr>
<td>Adverse childhood experiences, mean (SD)</td>
<td>11.26 (4.8)</td>
<td>11.1 (5)</td>
<td>11.4 (4.6)</td>
</tr>
<tr>
<td>Depression symptoms, baseline, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (<5)</td>
<td>6 (13)</td>
<td>3 (6)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Mild (5-9)</td>
<td>18 (38)</td>
<td>8 (17)</td>
<td>10 (21)</td>
</tr>
<tr>
<td>Moderate depression (10-14)</td>
<td>12 (26)</td>
<td>6 (13)</td>
<td>6 (13)</td>
</tr>
<tr>
<td>Major depression, moderately severe (15-19)</td>
<td>6 (13)</td>
<td>4 (9)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Major depression, severe (20-24)</td>
<td>5 (11)</td>
<td>2 (4)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Anxiety symptoms, baseline, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (<5)</td>
<td>2 (4)</td>
<td>N/A</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Mild (5-10)</td>
<td>23 (49)</td>
<td>12 (26)</td>
<td>11 (23)</td>
</tr>
<tr>
<td>Moderate (10-14)</td>
<td>14 (30)</td>
<td>9 (19)</td>
<td>5 (11)</td>
</tr>
<tr>
<td>Severe (15-21)</td>
<td>8 (17)</td>
<td>2 (4)</td>
<td>6 (13)</td>
</tr>
</tbody>
</table>

^aBaseline sample.

^bN/A: not applicable.
The most common ACEs included community violence (n=39, 83%), witnessing violence in the home (n=39, 83%), emotional abuse (n=36, 77%), physical abuse (n=36, 77%), and being bullied (n=35, 75%). In addition, 55% (n=26) of the sample reported some form of sexual abuse (unwanted sex, fondling, and attempted sex).

Figure 1 displays participant enrollment, retention, and adherence to the group sessions. Of the participants we assessed for eligibility, most (n=38, 63%) were women who contacted the research team indicating their interest to participate. The other participants were selected from the database for a previous study. Attrition was low, with 6 women discontinuing participation primarily due to work schedules. All Cuidándome participants (n=20, 100%) completed at least 9 of the 10 total sessions, and 76% (n=16) of the comparison group completed 9 of the total 10 sessions.

Depression and Anxiety and Social Problem-Solving Overview

In Tables 3 and 4, we present the mean scores for depression, anxiety, and social problem–solving styles by study group (intervention and comparison) and time (baseline, postintervention, and 3- and 6-month follow-up). In Table 5, we compared for differences of change in scores between the intervention and comparison groups for depression, anxiety, and social problem–solving styles (interaction effect); compared the change in depression, anxiety, and social problem–solving styles over time within the groups (time main effect); and compared the 2 programs for changing depression, anxiety, and social problem–solving styles (intervention main effect).

Table 3. Group mean scores for depression, anxiety, and social problem–solving styles at baseline, postintervention, and 3- and 6-month follow-up.

<table>
<thead>
<tr>
<th>Time point</th>
<th>Depression<sup>a</sup></th>
<th>Anxiety<sup>b</sup></th>
<th>Social problem–solving styles<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervention, mean (SD)</td>
<td>Comparison, mean (SD)</td>
<td>Effect size<sup>d</sup></td>
</tr>
<tr>
<td>Baseline</td>
<td>10.75 (5.19)</td>
<td>10.19 (6.12)</td>
<td>N/A<sup>c</sup></td>
</tr>
<tr>
<td>Postintervention</td>
<td>4.15 (3.04)</td>
<td>5.95 (4.26)</td>
<td>0.48</td>
</tr>
<tr>
<td>3-month follow-up</td>
<td>6.10 (4.66)</td>
<td>7.80 (6.16)</td>
<td>0.31</td>
</tr>
<tr>
<td>6-month follow-up</td>
<td>5.05 (2.95)</td>
<td>6.47 (4.58)</td>
<td>0.37</td>
</tr>
</tbody>
</table>

^aPatient Health Questionnaire-8 [29].

^bGeneralized Anxiety Disorder-7 [30].

^cSocial Problem-Solving Inventory-Revised [20].

^dCohen d: difference in outcome means for the different groups divided by the pooled SDs.

^eN/A: not applicable.

Table 4. Group mean scores for social problem–solving styles at baseline, postintervention, and 3- and 6-month follow-up.

<table>
<thead>
<tr>
<th>Time point</th>
<th>Negative problem orientation<sup>a</sup></th>
<th>Avoidance style<sup>b</sup></th>
<th>Impulsive-careless style<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervention, mean (SD)</td>
<td>Comparison, mean (SD)</td>
<td>Effect size<sup>b</sup></td>
</tr>
<tr>
<td>Baseline</td>
<td>9.3 (4.29)</td>
<td>10.62 (4.90)</td>
<td>N/A<sup>c</sup></td>
</tr>
<tr>
<td>Postintervention</td>
<td>6.1 (2.4)</td>
<td>6.42 (4.13)</td>
<td>0.10</td>
</tr>
<tr>
<td>3-month follow-up</td>
<td>5.45 (3.15)</td>
<td>7.66 (4.82)</td>
<td>0.54</td>
</tr>
<tr>
<td>6-month follow-up</td>
<td>4.85 (3.20)</td>
<td>6.42 (4.72)</td>
<td>0.38</td>
</tr>
</tbody>
</table>

^aSocial Problem-Solving Inventory-Revised [20].

^bCohen d: difference in outcome means for the different groups divided by the pooled SDs.

^cN/A: not applicable.
Table 5. Intervention and time effects on depression, anxiety, and social problem–solving styles.

<table>
<thead>
<tr>
<th></th>
<th>Depression</th>
<th>Anxiety</th>
<th>Social problem-solving</th>
<th>Negative problem orientation</th>
<th>Avoidance style</th>
<th>Impulsive-careless style</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention by time interaction</td>
<td>0.96</td>
<td>0.57 (3, 37)</td>
<td>0.96</td>
<td>0.48 (3, 37)</td>
<td>0.99</td>
<td>0.92</td>
</tr>
<tr>
<td>Time main effect</td>
<td>0.53</td>
<td>11.1 (3, 37)</td>
<td>0.51</td>
<td>11.9 (3, 37)</td>
<td>0.51</td>
<td>11.9</td>
</tr>
<tr>
<td>Intervention main effect</td>
<td>N/A</td>
<td>0.91 (1, 39)</td>
<td>N/A</td>
<td>4.3 (1, 39)</td>
<td>N/A</td>
<td>0.84</td>
</tr>
</tbody>
</table>

\(a P < .001\).
\(b P < .005\).
\(c P = .02\).
\(d N/A: \text{not applicable.}\)

Depression

Based on the PHQ-8, depression levels decreased from baseline to postintervention for both groups and remained below baseline at 3 and 6 months (Table 3). There were small effect sizes (Cohen \(d\)) at each time point (postintervention (T1): \(d = 0.48\); 3-month follow-up (T2): \(d = 0.31\); and 6-month follow-up (T3): \(d = 0.37\); Table 3). Depression symptoms significantly decreased over time (time main effect) for both intervention and comparison groups (Wilks \(\Lambda = 0.53\); \(F_{3,37} = 11.1\); \(P < .001\); Table 5). However, when comparing the 2 groups, the change in depression symptoms over time was not significant (intervention by time interaction in Table 5). There was also no significant difference between the 2 programs in reducing depression symptoms (intervention main effect in Table 5); specifically, at each time point, there was no significant difference in depression symptoms between the groups.

Anxiety

Based on the GAD-7, anxiety levels also decreased from baseline to post intervention and remained below baseline through 6 months for both groups (Table 3). We estimated small effect sizes (Cohen \(d\)) at each time point (T1: \(d = 0.30\) and T2: \(d = 0.36\) and medium (T3: \(d = 0.65\) effect sizes for reduced anxiety symptoms (Table 3). The reduction in anxiety symptoms over time was significant, with both groups showing a reduction in symptoms across the follow-up time points (Wilks \(\Lambda = 0.51\); \(F_{3,37} = 11.9\); \(P < .001\); Table 5). There was also a significant difference in the reduction of symptoms between the 2 groups, where Cuidándome was demonstrated to be more effective than the comparison program for reducing anxiety symptoms (\(F_{1,36} = 4.3\); \(P < .001\)).

Social Problem–Solving Styles

Overall social problem-solving increased from baseline to all 3 time points. Similar to depression and anxiety symptoms, the increase in social problem-solving over time was significant with both groups showing improvement (Wilks \(\Lambda = 0.51\); \(F_{3,37} = 11.9\); \(P < .001\)). When comparing the 2 groups, the increase in social problem-solving scores over time was not significant (intervention by time interaction in Table 5). There was also no significant difference between the 2 programs for increasing social problem–solving scores (intervention main effect in Table 5). The ANOVA analyses indicated that neither program had a significant effect on PPO or RPS (data not shown).

Negative Problem Orientation

NPO decreased from baseline to all 3 time points (Table 4). The reduction in NPO over time was significant for both groups (Wilks \(\Lambda = 0.44\); \(F_{3,37} = 16\); \(P < .001\); Table 5). Although there was change over time for both groups, this change did not differ by group (intervention by time interaction), and there was no significant difference in the effect of the 2 programs for reducing NPO (intervention main effect). However, the difference in NPO at 3-month follow-up between the 2 groups almost reached significance (Cuidándome: mean 5.45, SD 3.15 vs comparison: mean 7.66, SD 4.82; \(P = .09\)), and we estimated small (T1: \(d = 0.10\) and medium (T2: \(d = 0.54\) and T3: \(d = 0.38\)) effect sizes (Table 4).

Avoidance Style

ASs decreased from baseline to all 3 time points (Table 4). Similar to NPO, the reduction in AS over time was significant for both groups (Wilks \(\Lambda = 0.68\); \(F_{3,37} = 5.8\); \(P < .005\); Table 5). There was no difference in change over time between the 2 groups, and there was no significant difference in the effect of the 2 programs for reducing ASs; however, the difference in mean scores postintervention (Cuidándome: mean 2.1, SD 2.17 vs comparison: mean 4.42, SD 4.81; \(P = .06\)) and at 6-month follow-up (Cuidándome: mean 1.65, SD 2.5 vs comparison: mean 4.0, SD 4.80; \(P = .06\)) approached significance, where Cuidándome participants reported lower AS at these time points (Table 4). We estimated medium effect sizes (T1: \(d = 0.62\), T3: \(d = 0.61\)) for the intervention.

Impulsive-Careless Style

ICS decreased from baseline to all follow-up time points (Table 4). ICS decreased over time for both groups (Wilks \(\Lambda = 0.75\); \(F_{3,37} = 4.2\); \(P = .02\)); however, the change in scores did not differ significantly between the groups, and neither program was more effective at reducing ICS scores (Table 5). Nonetheless, we
observed lower mean scores for Cuidándome participants compared to the comparison group that approached significance at 3-month follow-up (Cuidándome: mean 4.55, SD 4.08 vs comparison: mean 7.1, SD 4.54; \(P=0.07 \); Table 4). We calculated small (T1: \(d=0.14 \)) and medium (T2: \(d=0.59 \) and T3: \(d=0.40 \)) effect sizes for the intervention.

Discussion

Principal Findings

This study is one of the first to assess the feasibility and acceptability of a trauma-informed, problem-solving–based, self-management program delivered remotely for Latina immigrant ACE survivors with at least mild depression and anxiety symptoms. Our rapid recruitment (completed in 2 weeks), high attendance, and retention indicated that participants desired the program and found it acceptable. Based on the PHQ-8 means, participants in both groups were experiencing moderate levels of depression symptoms at baseline. Depression symptoms significantly decreased for both groups, with no significance in change between the intervention and comparison group. However, we observed lower depression scores among Cuidándome participants compared to the comparison group suggesting Cuidándome participants experienced fewer days with depression symptoms. Although both groups experienced improvements, Cuidándome participants on average reported a greater reduction in depression symptoms (5.7 points) compared to the comparison group (3.7-point reduction). For anxiety symptoms, Cuidándome was significantly more effective at reducing anxiety symptoms. On average, Cuidándome participants reported minimal to no anxiety symptoms at all follow-up time points compared to comparison group participants who on average reported mild symptoms. The effect sizes for depression and anxiety were small to medium, further supporting the beneficial impact of Cuidándome for these symptoms. Further study with a powered sample is needed to rigorously test the effectiveness of Cuidándome in this Latina immigrant population.

Contrary to our hypothesis, we did not see improvements in PPO or RPS—the components of social problem-solving that we anticipated Cuidándome would increase. Instead, we found that among Cuidándome participants, we observed lower scores for NPO and maladaptive problem-solving styles (avoidance and impulsive-careless). The goal setting and learning the problem-solving steps may have helped Cuidándome participants feel more inspired and empowered to address daily life challenges in order to pursue their goals. When discussing the benefits of Cuidándome, our participants shared that Cuidándome provided them with the steps for “how” to achieve their goals; this may have helped women have a more positive outlook on addressing challenges [28]. Women also shared that they felt a greater sense of confidence managing daily challenges and thinking through options before reacting to a situation. Regarding the lack of findings with the positive subscales, although we did not include assessments of social desirability, social desirability may have influenced participant responses and minimized the scales’ sensitivity to change. Further, we were not powered to identify statistically significant changes with any of our outcomes.

Other studies that have examined the effectiveness of problem-solving therapy for depression among Latinos have also identified improvements in depression symptoms [27,35]. However, this study is the first to show promising findings on anxiety as well as social problem–solving styles, which are the potential mechanisms of action for improving mental health outcomes.

We unexpectedly observed significant reductions in depression and anxiety symptoms in both groups. On review of the session recordings, we learned that the nurse facilitator for this group used both goal-setting and problem-solving (particularly brainstorming solutions) strategies in her sessions—particularly for the nutrition and physical activity sessions. At the end of these sessions, participants were encouraged to set a goal based on the session topic, and they discussed strategies for achieving those goals. Participants also exchanged contact information with fellow participants in the chat feature of Zoom. We did not assess social support, but it is possible that through these sessions, participants were able to expand their social network and increase social support, which is associated with lower depression and anxiety symptoms [36]. In addition, given that there were 2 sessions about physical activity and nutrition, comparison group participants may have increased their physical activity; indeed, increased physical activity is associated with a reduction in depression symptoms among Latina women [37] and other populations [38]. Finally, for all participants, we made ourselves available to connect them with community resources. Participants often called for information about where they could find health care services, work, and food. In our future work, we will assess whether change in social needs is associated with improved mental health.

Based on prior work, we surmise that the trauma-informed content and care from our research team were important contributors to retention. During the development phase of Cuidándome, the review of ACEs and their association with mental health conditions were the most time-consuming sessions because of participant engagement. Similar to findings by Kaltman et al [39] who also examined the feasibility and acceptability of an in-person, trauma-informed intervention, Cuidándome participants had positive reviews about the discussions on trauma, and they found it validating to learn that their current depression and anxiety symptoms could be related to early life adversities. Participants who were mothers felt inspired to engage with their children in a more positive way to not perpetuate the cycle of ACEs. Qualitative analysis of participant discussions during these sessions may provide more insight into participant responses to the trauma-informed content.

The success of this feasibility study may also be attributed to the intervention being offered remotely. Multiple structural (eg, documentation status) [40] and system-level barriers (eg, accessibility, health insurance, and language concordant services) make mental health services and care inaccessible for Latina immigrant women [41]. Cuidándome eliminated several of these macrolevel barriers—there was no need for participants...
to present themselves in any establishment with
government-issued identification in order to obtain services,
participants did not have to travel to a physical location, health
insurance was not required, and the program was offered in
Spanish. Using telehealth and trained personnel eliminated
barriers that prevent marginalized groups from accessing a
program that may be beneficial for mental health. More research
with stakeholders is needed to determine how programs such
as Cuidádomo can be made more accessible and sustainable
in community-based settings.

Limitations
We acknowledge several limitations with this study. First, we
sought to establish acceptability and feasibility and did not
calculate a sample size a priori. Our relatively small sample size
may explain the few statistically significant findings between
Cuidádomo and the comparison program. In addition, our
sample represented women primarily in urban and suburban
settings with access to broadband services. A larger sample size
that includes some geographic diversity may yield more
generalizable findings.

Despite the limitations, this work contributes to the body of
literature highlighting specific useful strategies (telehealth and
nonlicensed personnel) that can be used to expand access to
mental health services for populations socially at risk and
underserved populations. Nonlicensed personnel such as
community health workers have successfully delivered mental
health services in low-resource settings [16]. This work aligns
with other studies demonstrating the acceptability and
effectiveness of training nonlicensed personnel to deliver mental
health interventions [39,42] as well as the use of a web-based
platform for administering these programs.

Conclusions
Our findings indicate that the Cuidádomo intervention can
improve depression and anxiety symptoms among Latina
immigrant ACE survivors. Further, Cuidádomo may also be
beneficial for decreasing maladaptive behaviors (avoidance and
impulsivity) associated with depression and anxiety symptoms.
As the Latina immigrant population continues to grow, so should
community-based mental health resources. More
methodologically rigorous study of Cuidádomo is needed;
however, this study shows the promise of an intervention that
leverages nonlicensed personnel and uses a web-based platform
to increase the availability of a beneficial mental health program.

Acknowledgments
FH-B developed the program on which Cuidádomo is based. This study was supported by the Robert Wood Johnson Foundation
Harold Amos Faculty Development Program.

Data Availability
The data sets generated and analyzed during this study are not publicly available due to ethical considerations but are available
from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
CONSORT e-HEALTH (V.1.6.1) checklist.
[PDF File (Adobe PDF File), 410 KB - formative_v8i1e52969_app1.pdf]

References
factors and disease in Hispanics/Latinos in the US: results from the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL) sociocultural ancillary study. Psychosom Med 2017;79(2):172-180 [FREE Full text] [doi:
10.1097/PSY.0000000000000394] [Medline: 27606797]

2. Ruiz Soto AG, Banulescu-Bogdan N, Clark-Ginsberg A, Lopez A, Velez A. Migration narratives in Northern Central
America: how competing stories shape policy and public opinion in Guatemala, Honduras, and El Salvador. Migration
Policy Institute. URL: https://www.migrationpolicy.org/research/migration-narratives-central-america [accessed 2023-09-01]

experiences, social problem-solving, and mental health among latina immigrants. J Interpers Violence

33. Adverse Childhood Experiences International Questionnaire (ACE-IQ). World Health Organization. URL: https://www.who.int/publications/m/item/adverse-childhood-experiences-international-questionnaire-(ace-iq) [accessed 2020-08-01]

Abbreviations

ACE: adverse childhood experience
AS: avoidance style
CONSORT: Consolidated Standards of Reporting Trials
GAD-7: Generalized Anxiety Disorder-7
ICS: impulsive-careless style
NPO: negative problem orientation
PHQ-8: Patient Health Questionnaire-8
PPO: positive problem orientation
REDCap: Research Electronic Data Capture
RPS: rational problem-solving
SPSI-R: Social Problem-Solving Inventory-Revised
Feasibility and Acceptability of a Mobile Technology Intervention to Support Postabortion Care After Surgical Abortion (the FACTS Study Phase 3): Mixed Methods Prospective Pilot Study

Roopan Gill1,2,3, BSc, MD; Gina Ogilvie2,4, MD, PhD; Wendy V Norman2,4, MD, CCFP, DTM&H, MHSC; Brian Fitzsimmons3,3, MD; Ciana Maher2, BA; Regina Renner2,3, MD, MPH

1Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
2Women's Health Research Institute, University of British Columbia, Vancouver, BC, Canada
3Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
4Department of Family Practice, University of British Columbia, Vancouver, BC, Canada

Corresponding Author:
Roopan Gill, BSc, MD
Department of Obstetrics and Gynecology
University of Toronto
123 Edward Street
Suite 1200
Toronto, ON, M5G1E2
Canada
Phone: 1 4169782216
Email: roopan.gill@gmail.com

Abstract

Background: In Canada, 1 in 3 women and people of gestational age undergo an abortion in their lifetime. Despite the liberal legal context, barriers continue to exist for women and people who can become pregnant to access this service.

Objective: This study aims to (1) conduct a pilot study to demonstrate the feasibility and acceptability of myPostCare to support follow-up care after a procedural abortion; (2) use the findings to understand whether myPostCare has the potential to improve contraceptive behavior and knowledge, emotional well-being, and sexual health knowledge; and (3) develop a better understanding of how innovative mobile solutions can support integrative health programs in British Columbia with the goal of expanding to other sites across Canada.

Methods: People of gestational age (aged 14–45 y) who underwent a procedural abortion were recruited from 2 urban abortion facilities in British Columbia. The participants completed a baseline quantitative survey and were provided access to myPostCare for up to 30 days. A follow-up quantitative survey was sent via email on day 30. Qualitative interviews were conducted to explore user satisfaction and usability of myPostCare. Responses to the survey questions were summarized using descriptive statistics, and the system usability scale (SUS) was scored according to the instructions. A secure analytics platform was implemented to obtain data on the overall use of the website by users. Qualitative analysis was conducted with NVivo using a thematic analysis approach. This study was approved by the Women’s and Children’s Research Ethics Board.

Results: Overall, 62 participants were recruited (average age 30 y); 40% (25/62) of the participants completed the exit surveys, and 24% (6/25) consented to participate in the semistructured interviews; 40 participants had undergone an immediate postabortion intrauterine device (IUD) insertion, and 22 did not have an IUD inserted. Participants were satisfied with myPostCare. The SUS average score was 81.5 (SD 9.7; median 82.5, IQR 77.5–87.5), indicating high usability of the tool. Overall, 88% (22/25) of the participants changed their contraceptive method to an IUD. Web-based analytics demonstrated that there were 61 unique visitors to the site, and the top pages visited were Postprocedure Care, Emotional Well-Being, and Contraception Explorer. The longest time spent on the website was 56 minutes. The overall email open rate was 80%, with a click rate of 36%.

Conclusions: This study demonstrates that communities and individuals are important collaborators in developing a mobile innovation that facilitates access to high-quality patient-centered abortion care. Through the cocreation process, a digital platform such as myPostCare highlighted a gap in abortion care in Canada, particularly around follow-up support after a procedural abortion.
Introduction

More than 30% of women and people who can become pregnant in Canada undergo an abortion. To support access to this essential service, Canadian federal legislation requires that abortion services be provided by each provincial and territorial health system [1,2]. Recent literature suggests that despite the prevalence of the procedure, stigma surrounding abortion in Canada leads to barriers for women and people who can become pregnant to access postabortion support and share their abortion experiences [3]. The provision of information is an essential part of good-quality abortion services, which include follow-up care after a procedural abortion [4,5]. According to the National Abortion Federation Clinical Policy Guidelines, “appropriate and accessible post-procedure and follow-up care is essential to patients’ wellbeing” [4]. There is little evidence to suggest that “mandatory” follow-up visits will detect conditions that women and people who can become pregnant cannot detect themselves; however, there is evidence to suggest that more novel methods of offering “follow-up” visits for postabortion support are desired [6]. This includes the use of innovative mobile health (mHealth) solutions defined by the World Health Organization as “the use of mobile and wireless technologies to support the achievement of health objectives” [6,7]. More importantly, given the potential reach of mHealth, evidence has pointed to its potential to provide remote support and follow-up, particularly for women and people who can become pregnant and live in rural and remote areas [8].

In Canada, geographic barriers impact abortion access, leading women and people who can become pregnant to travel long distances for services. Upon returning to their communities, they may face challenges in accessing minimal, ineffective, or nonexistent follow-up care [8,9]. A qualitative study further explored women’s abortion experiences in the Yukon territory, a remote Canadian service area, highlighting that “fragmented services left women unsatisfied, stressed, and upset about lack of information, multiple appointments, and lengthy wait times” [10]. Women further expressed frustration with lack of follow-up counseling and recommended that it be routinely offered as they feel contact with health care providers is cut off after the procedure [10]. In addition to access issues, barriers of cost, knowledge among the general public, and health care provider competence and attitudes have also been highlighted in the literature [9]. Another study explored women’s expressed desire for postabortion support services, highlighting the stigma surrounding abortion that exists in political and social contexts, preventing women from sharing their experiences [3]. This study specifically highlighted that although women may not necessarily need mandatory physical follow-up, they desire access to postabortion support for emotional well-being [3]. Furthermore, there is a great deal of inconsistency in the type of support and information available to women and people who can become pregnant after an abortion.

The New England Journal of Medicine published a special report on Telehealth in the United States, highlighting its utility and future. In 2016, Kaiser Permanente of Northern California reported that its virtual (email, telephone, and video) communications had exceeded in-person visits [11]. Similarly, research supports the safe and effective use of telehealth for the provision of medication abortion care globally [12-14].

Three trials of mHealth interventions have aimed to study the role of mobile interventions in increasing the use of contraception [15-18]. Mobile for Reproductive Health and Mobile Alliance for Maternal Action have used best practices from health communication programs to systematically develop family planning text messages [18]. Furthermore, Smith et al [13,14] explored women’s needs in Cambodia to develop a mobile phone–based intervention to support postabortion family planning, specifically contraceptive adherence. In the United States, research on the acceptability and feasibility of remote technologies for follow-up after medication abortion suggested that women prefer either a telephone call or a text message over a clinic visit [19]. Most recently, researchers from University of San Francisco’s Program in Women-Centered Contraception developed a tablet-based contraceptive decision support tool for women [20]. This study used a multiphase approach that incorporated the end user throughout the entire design of the project. The tool has been designed in collaboration with key stakeholders and designers from Bedsider [21]. Using an iterative process informed by patient and provider input throughout, this family planning innovation demonstrated that including users in development led to a more patient-centered innovation [22]. Despite the development and implementation of these mHealth innovations for family planning, research is limited in understanding the follow-up needs of women and people who can become pregnant and undergo an abortion, and how they would perceive a tool to support them and to engage them as active participants in the design process.

Given the existing evidence in support of mHealth for family planning innovations, we aimed to determine whether a mobile technology intervention would be acceptable and feasible for women and people who can become pregnant to support follow-up care after first or second trimester procedural abortion. We developed a 3-phased study based on human-centered design and the “Development-evaluation-implementation” process from the Medical Research Council Frameworks for Complex Interventions [23] rooted in 2 theories: Technology Acceptance Model and Theory of Reasoned Action [24,25] phases 1 and 2 have been published previously [26,27]. This study was a prospective pilot that aimed to determine whether the intervention was satisfactory, acceptable, and usable for women and people who can become pregnant to support them in follow-up after a procedural abortion. Ultimately, this study is
the first to use mHealth and human-centered design in Canada as a novel approach to support follow-up care for women and people who can become pregnant and undergo procedural abortion.

Methods

Participants

Participants were recruited from 2 publicly funded abortion clinics in British Columbia, Canada. The eligibility criteria were as follows: (1) consent to undergo a first or second trimester procedural abortion, (2) ability to read and write English, (3) ability to participate in study procedures, and (4) aged ≥14 years. Participants were excluded if they were (1) attending the clinics because of fetal anomaly or miscarriage, (2) undergoing medication abortion, (3) in a situation where it may be dangerous to use a mobile intervention, and (4) unable to provide consent to participate. To elicit whether a woman was in a dangerous situation, counselors asked the patients as part of routine care if they felt safe in their current relationships. In cases where a risk is identified, counselors provided resources and would refer to the appropriate provider or service.

Study Design

The overall study design is a mixed methods user-centered design approach with 3 phases based on the “Development—evaluation—implementation” process from the Medical Research Council Frameworks for Complex Medical Interventions [28]. This is the final phase of the 3-phase study, with the findings from phases 1 and 2 already published [26,27]. Phase 3 is a prospective pilot mixed methods study conducted in 2 urban clinics in Vancouver, British Columbia, between March and June 2018 to test the acceptability and feasibility of myPostCare when implemented as part of clinical care. This study was approved by the Children’s and Women’s Research Ethics Board (H18-00036).

Eligible participants were screened by a primary investigator. They were then introduced to the study and consented under the supervision of the research coordinator. Participants consented to be contacted for a qualitative interview at 4 weeks. A baseline questionnaire that was adapted from validated survey tools was filled out to collect demographic information, contraception history, and levels of perceived well-being and distress in the past 2 months before the abortion [29-31]. The Arizona Integrative Outcomes Score was used and is a validated 1-item visual analog tool that allows self-rated global assessment of spiritual, social, mental, emotional, and physical well-being over the past 24 hours and 1 month [32].

The participants were registered on the website at the end of each recruitment day. Participants received 7 automatic email notifications that were timed with what would be expected after the procedure and prompted them to the website over the course of 30 days. At the end of 30 days, participants received a link to their email to complete a questionnaire adapted from the validated questionnaires [29-31,33,34]. This questionnaire specifically included questions about satisfaction with myPostCare, a system usability scale (SUS) comprising 10 questions, and an evaluation of the impact of various aspects of myPostCare including emotional well-being, contraceptive behavior, immediate postprocedural care, and sexual health. Data analytics were collected using a secure data analytic platform housed at the BC Children’s Hospital. Participants were compensated for their participation.

Participants who consented to the qualitative part of the study were contacted and invited to participate in semistructured interviews to explore their engagement with the mobile tool. This included system usability, experience of receiving email notifications, emotional well-being, contraceptive decision-making, immediate postprocedural concerns, and questions about sexual health. Questions explored experience with receiving timed email messages, feedback on the content of the notifications themselves, if they found the notifications helpful and why, did they follow the recommendations of the notifications, and did they visit the website after being prompted by the notifications. Participants received additional compensation for their participation in the interview.

Data Analysis

Descriptive analysis of each variable from the quantitative surveys and secure data analytic platforms was reported as mean (SD) or median for continuous variables and count (percentage) for categorical variables. All statistical analyses were performed in R (R Foundation for Statistical Computing). Using Piwik, a secure web analytics through the BC Children’s Hospital Research Institute, specific user engagement data were gathered from February 20 to May 2, 2018. The semistructured interview transcripts were uploaded to NVivo 11 (Lumivero) and read by 2 researchers. Inductive analysis was performed to identify emerging themes that were further refined through collaborative analysis with the first author and coinvestigator [35]. The highlighted text was coded into nodes representing similar or repeated ideas. Some text was coded to >1 node, reflecting the number of ideas presented. The nodes were categorized into specific themes, forming a thematic map that was later discussed with the research team. To enhance the validity of the findings, a triangulation approach was used. This involved cross-referencing data from the quantitative survey and the subsequent 2 phases of this study.

Ethical Considerations

This study received ethics approval by the Children’s and Women’s Research Ethics Board (H18-00036). Informed consent was obtained from all the participants included in this study. The study data were anonymized and deidentified. All data were stored in an encrypted file only accessible to the research team involved in the analysis of the study. Compensation was not provided to those who had completed the survey. A CAD $25 (US $18.38) honorarium was provided to those who completed an interview.

Results

Participant Characteristics

Participants were recruited from 2 abortion clinics in Vancouver, British Columbia. A total of 62 participants were recruited and completed the baseline survey. Of the 62 participants recruited, 25 (40%) women and people who can become pregnant...
responded to the follow-up survey. We investigated whether systematic differences existed between women who responded and those who did not. Table S1 in Multimedia Appendix 1 provides a summary of the demographic information from the baseline survey and a comparison between responders and nonresponders. There were no substantial differences between these 2 groups for any of the variables listed, although there was a nonsignificant trend for the responders to have a lower Arizona Integrative Outcomes Score. These results were not statistically significant ($P<.05$). All the participants identified as ciswomen.

For the qualitative interviews, of the 25 participants who completed the exit survey, 6 (24%) consented to participate in semistructured individual interviews. These were conducted via telephone.

Quantitative

Change in Contraceptive Method

Most of the respondents (22/25, 88%) indicated that they had changed their contraceptive method to an intrauterine device (IUD) at the time of their abortion, and 21 (95%) of the 25 respondents indicated that they had changed to a Mirena, whereas 1 (4%) of the 25 respondents indicated changing from a copper to Mirena. The contraceptive method of choice was not influenced by the website; however, the website and email notifications helped reassure participants about the signs, symptoms, and effectiveness of the IUD.

System Usability Scale

The SUS comprised 10 questions [36]. The average SUS was 81.5 (SD 9.7), and the median was 82.5 (IQR 77.5-87.5), which revealed that 75% (19/25) of the respondents indicated an SUS score >77, which is a very high score.

Satisfaction

Most of the respondents were satisfied with the website. Figure 1 graphically displays these results as percentages.

![Figure 1. Graphical representation of the satisfaction results in percentage.](image)

Qualitative

Overview

Qualitative analysis of the interviews was completed using thematic analysis including both inductive and deductive themes. Nine key themes were identified and are listed in Textbox 1.
Theme

1. Ease of use
2. Usefulness of myPostCare
3. Website
4. Frequency of use
5. Time spent on the website
6. Suggestions for improvement
7. Recommend to friend
8. Privacy and security
9. Design features
10. Overall impressions of myPostCare

Ease of Use

Overall, there was unanimous agreement that myPostCare was easy to use with an organized and easy-to-navigate design. One participant highlighted the following:

> I thought it was very easy to use, which I really liked. I felt the information was well laid out with the menu sidebar on the side. The writing was easy to interpret and was not overly scientific. It was easy to navigate throughout the whole website. It didn’t feel like I was reading a research article. It was nicely spaced out and got to the point very quickly. [participant 3]

Furthermore, the language was accessible and user friendly. The participants felt that the drop-down features were very effective. We added this feature after the usability testing from phase 2, and therefore, it was consistent among our participants to hear that they appreciated this feature. The participants were highly satisfied with the ease of use of myPostCare. When asked about ease of use as it pertained to the information, 1 participant shared the following:

> The information there was superb. It was very user-friendly. Anyone could use that and get what they were looking for, no problem. [participant 5]

Usefulness of myPostCare

We asked about the overall usefulness of myPostCare by asking separately about the website and email notifications. Participants were satisfied with the overall frequency and timing of the email notifications:

> I like there was one email per week, it was not overwhelming. It gave you time to go back to the website in increments, not getting overwhelmed and not having it constantly on your mind, but it was a good refresher every week. This is what I needed. [participant 3]

> The timing was impeccable when you would get these e-mails and what you would be feeling. When they would come, they were right on point. I always felt like someone was at my fingertips if I needed help. [participant 5]

They found that the emails helped to navigate the recovery process from immediate signs and symptoms, emotional well-being, and contraception decision-making to general sexual health, such as a better understanding of their menstrual cycle. They also found that the emails helped them feel supported and not alone. This was an important point that resonated with all participants interviewed. A few participants stated the following:

> When I would get the email it would say, “Okay, now you might be going through this and this and this,” it gave me a moment to be like, “Right, I am. I might be going through this. I’m still having some symptoms. How am I actually feeling?” It was a reminder to check in with myself and also to think about how I may be experiencing symptoms at that time. [participant 1]

> It was nice to feel as though there was “someone” checking up on you even though it wasn’t a person. There was new content with each e-mail and helped to direct you to different stages of recovery process. I found that helpful. [participant 1]

The participants unanimously stated that myPostCare provided them the support that was needed at the right time. It was helpful for the resource to provide support over time and that it allowed them to navigate various aspects of their postcare journey. A few participants shared the following:

> I felt like I was cared for. It was amazing to get, “Hey, I hope you’re doing okay. Take care.” It just felt that someone was there for me and saying if you need to call or anything, you can at any time. [participant 2]

> I think this is a great resource. It was a really beneficial thing for me to have, for sure. [participant 6]

Website

Overall, all participants stated that they did not have a favorite page but that each category was helpful depending on the stage at which they were in the recovery process. Each participant mentioned that the Postprocedure care page and the Emotional Well-Being Support tool were the most effective:
The emotional well-being tool was helpful. I liked how each emotion had a little blurb about. I liked the meditation. [participant 2]

Talking about various emotions that occur was important because I found that one week I felt one way but then all of a sudden I would feel different. It was nice to go back to the website, have those feelings identified and made me feel normal. [participant 3]

Most found that the emails were well timed with the website, and providing links embedded within the emails to direct participants to the website was appreciated. Participants stated that they did not click on the emotion “Good” but did use the suggestions provided such as the meditation, journaling, and going for a walk:

I wrote an entire journal entry one day, and that was really good and definitely got some crying out while I was doing that, so I think the website prompted me to do that day, yes. [participant 3]

Just going through and trying to be at one with this, checking in, using the tools. There was good days, bad days. I have a wonderful program at work as well but I didn’t have to reach out to it because there was stuff here about meditation and making sure that I am looking after myself and doing something nice for myself. [participant 5]

In addition, a participant commented that the website had credible information, which helped to answer questions that she would have seen her physician about and, therefore, kept her out of the office or emergency room. When further asked if the website helped her understand when to seek hospital care, she mentioned that it was very clear. She specifically found the tool helpful.

It [myPostCare] kept my husband and I out of emergency rooms...Here we are, two weeks and three days, and all of a sudden there’s an email about IUDs being that you could have spotting for three to six months. I am like, “Okay. We are good.” Then the bleeding stopped. It was just very empowering to have that information. [participant 5]

Finally, some participants found the website useful to support them as they did not have anyone else to talk to about their abortion, and the website helped them not feel isolated:

I went every time I got an e-mail and then there were two times that I went on it by myself when I was feeling pretty emotional and the emotional support tool helped. [participant 2]

It was good for me because I didn’t tell anybody. I didn’t have anyone to talk to. [participant 4]

It [myPostCare] is so critical, and I hope it never goes away and that it’s there for as long as women need this procedure. I hope that this site is always there. It was truly instrumental to my whole well-being through this whole procedure, so I thank you. [participant 5]

Frequency of Use

Participants used the website on its own but also clicked on the links within the emails. Some participants saved all the emails so that they could return to them. Using the website for 1 month seemed to be sufficient for all participants. One participant stated that she had visited the website 10 to 15 times:

I went every time I got an e-mail and then there were two times that I went on it by myself when I was feeling pretty emotional and the emotional support tool helped. [participant 2]

Time Spent on Website

The time spent on the website, as expressed in the qualitative interviews, was consistent with the results from the web-based analytics presented in the Web-Based Secure Analytics section. Most participants stated that they were on the website for anywhere from 2 minutes to 1 hour:

I’d probably went all together 10 to 15 times. There was one time I was on it for probably an hour, but the other times, it was probably anywhere between two to five minutes. [participant 2]

I’d say around half an hour: [participant 3]

Maybe the first couple of weeks, I kind of looked at it. I looked through it for half an hour at dinner, 20 minutes, 15, half an hour. [participant 4]

...going to guess at least an hour going back through, making sure I didn’t miss anything going to the link, so at least an hour. [participant 5]

Suggestions for Improvement of myPostCare

There was a strong sentiment to include blogs and stories shared by women and people who can become pregnant and have undergone an abortion. This was available on the website, but these were found under the “Good” emotion. Many did not necessarily explore this section and mentioned that if they were feeling good, they did not necessarily explore the emotional support tool and would be keener on using the Contraception Explorer or Sexual Health pages. Furthermore, suggestions to add these on the main landing page or to have rotating articles that are specific to women and people who can become pregnant telling their stories would be very useful. This was highlighted by participants as a means of further enhancing the community feeling and not feeling alone in their experience. When further explored, this also highlighted that sharing stories was also a way to help destigmatize the experience that many women and people who can become pregnant and who participated in our interviews had internalized. The following excerpts highlight this theme:

I really wanted to hear someone’s story that was positive. I would have liked to listen to just having a couple of people’s stories and how it affected them just to compare myself to them. I don’t know. [participant 2]

Putting up videos or even having articles on different stories. [participant 2]
For me personally, if I’m feeling good or when I was starting to feel good about myself again, I wouldn’t have gone on the website to check that. [participant 2]

I think more testimonials and more quotes that you can use on that website from people who have been through the experience, the better because it gives validation for what women are going through and kind of makes us feel less alone. [participant 6]

The more testimonials and the more feedback you can get from women of all ages, all experiences, all the better. [participant 6]

Recommend to a Friend

All participants who were interviewed would recommend myPostCare to a friend. Some also suggested that this would be specifically good for friends who did not necessarily feel comfortable going to their physician or who did not have a family physician with whom they had a trusting relationship:

Yes, I think it totally would. I think it’d be very helpful to have. I don’t think it’s going to solve a friend’s problems or anything, but for me, it was helpful to have. [participant 2]

Yes, and it’s definitely one that I want to, like, if I ever know somebody that is going through that, I’m definitely going to recommend that to them. [participant 3]

I really would. This is a great resource for the person that doesn’t think that their issues always warrant a call to their doctor. [participant 6]

Privacy and Security

Our participants were satisfied with the level of privacy and security afforded by the emails and website. In particular, they noted that the emails were separate from the website, and some participants suggested that it would be essential to keep it this way when myPostCare would be made live. One participant stated the following:

It’s very discrete, and I liked that. The login is required to get on the website, so to me, it was certainty sufficient. My name is not all over the website, so even if I left it open, it is what it is, who knows what I was in. It’s not too specific so I was never worried if I had it open in public. [participant 5]

Design Features

All participants stated that the design was professional and the language was unbiased. Many participants commented that the design of the website and emails was calming and supportive. They also enjoyed the consistency between the website and email notifications. Words such as “clearly thought out,” “pleasant and cool pictures,” “nice blues and greys,” and “positive and well-crafted” came up frequently among our interview participants. One participant commented the following:

Overall, I don’t know if this is weird to say, but it was very calming. Approachable in a sense. It doesn’t hurt your eyes to stay on the website for a while. I really liked the colours. The layout was easy. [participant 6]

Other participants noted that the site was structurally thought through and that the design was relatable to them. One participant highlighted the following:

I thought it was clearly thought out and structurally too. The language is nicely worded and was very unbiased. [participant 2]

It was very nice and pleasant, the pictures were very cool. I liked the ranges of things that were on there, the whole thing about meditating and then also just needing actual straight up information was really helpful too. [participant 2]

Very soothing colours. The nice blues and then greys, yes. [participant 2]

I thought it was very easy to use. I felt that the information was well laid out with the menu sidebar. The images were quite big and spaced out so had to scroll quite a bit and not get through a lot of information. [participant 3]

There was no harsh colours. There was no in-your-face type of things that popped into the website, I liked there were no advertisements. I think the peaceful colourings, the “click this if you feel called to.” It’s nice to have that sense of well-being with positivity on a sensitive topic, it was well crafted. [participant 3]

Overall Impressions of myPostCare

Overall, the participants were satisfied with myPostCare. They felt supported by the resource. There were very strong sentiments that this went above and beyond what they had expected. One participant stated that she was surprised to have such a good experience with a website, as she had never had such an experience. Some of the participants used the site with their partners and appreciated the section that was specifically for partners. One participant stated that the emails and website helped to keep her out of the emergency department, as it highlighted the normalcy of postprocedural recovery. In general, all participants felt that it was a great experience to have this resource, and many participants expressed that this resource should be available as long as women need abortions:

I really liked the resources simply because it went beyond just what we went through. Yes, I think that was one of my favorite or one of the things that when I got to, I was like, “Okay, there is crisis lines, and there are counselors.” Yes, of course, that’s what I expected to be on there. It went past that. It went to sexuality. It went to LGBTQ, or it went through different topics, so I feel like it was good education beyond what I just went through. [participant 2]

Yes, I was really happy I signed up for it and I was getting those e-mails weekly. I was able to access it, once again, read about different perspectives. I think
there were some things that I felt like it was only me or it wasn’t normal, and then it would say something on the website that would make me feel better, more calm. [participant 2]

I would just grab my phone and then just go, look at the thing and, “Okay, this is normal to feel like this.” I don’t know if I had a favourite part, but I just found that everything was useful. [participant 4]

It was my other rock. My husband was my one rock, and the other one was this. It knew when things were going to happen, and when I was panicking about things, all of the sudden, there will be an e-mail. It was just perfect timing, and it was amazing. It truly was. I felt like I wasn’t alone. I went through every link. Even the links that were outside the website, I checked out every one of them. I read stories. It brought a sense of calm to me, I guess. It was truly, I never had such a good experience off of a website like this one. It was amazing. My husband went through everything. You would be panicking. I don’t know how many times we went back to this website to make sure that something that was going on wasn’t out of the ordinary, and of course, there would be, that it wasn’t out of the ordinary, so it was amazing. It truly was. [participant 5]

No, I think overall it was pretty straightforward. There wasn’t anything that I was surprised to see, and there wasn’t anything that I can remember that didn’t kind of fit in with what was expected through the e-mails. It all kind of made sense. [participant 6]

I think it was just a great experience to trial the website. I have my own personal reasons for my procedure and how I came about doing so, but I think it’s a great source for people that want to have that sense of community. I think it works really well for the specific areas that you’re trying to find more clarity. [participant 6]

Web-Based Secure Analytics

Table 1 presents the analytics results. Specifically, of the 62 participants, the number of unique visitors on the website was 61 (98%). Although only 25 participants completed the exit survey, all participants except 1 (98%) visited the website at least once. The number of returning visitors was 42. The average daily page views were 5; the total number of page views through the study period was 432; the highest number of hits at a single visit was 35; and the top 3 pages were Postprocedure Care, Emotional Well-Being, and Contraception Explorer. In total, 75% (47/62) of the participants were mobile users and 25% (16/62) were desktop visitors. The most popular contraceptive page visited was the IUD. The details of the number of page views throughout myPostCare are presented in Table 2.
<table>
<thead>
<tr>
<th>Web-based analytics data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique visitors to the website, n (%)</td>
<td>61 (98.4)</td>
</tr>
<tr>
<td>Average time spent on the website by visitors</td>
<td>1 min and 28 s</td>
</tr>
<tr>
<td>Longest visit on the website</td>
<td>35 hits</td>
</tr>
<tr>
<td>Total number of page views, n</td>
<td>432</td>
</tr>
<tr>
<td>Average daily page views, n</td>
<td>5</td>
</tr>
<tr>
<td>Participants who are mobile users, n (%)</td>
<td>47 (75)</td>
</tr>
<tr>
<td>Participants who are desktop visitors, n (%)</td>
<td>16 (25)</td>
</tr>
<tr>
<td>Participants who visited the Emotional Well-Being page, n (%)</td>
<td>28 (45)</td>
</tr>
<tr>
<td>Participants who visited the Contraception Explorer page, n (%)</td>
<td>27 (43)</td>
</tr>
<tr>
<td>Participants who visit the Postprocedure Care page, n (%)</td>
<td>46 (74)</td>
</tr>
<tr>
<td>Participants who visit the Sexual Health page, n (%)</td>
<td>21 (33)</td>
</tr>
<tr>
<td>Top 3 pages on the website</td>
<td>Postprocedure Care, Emotional Well-Being, and Contraception Explorer</td>
</tr>
<tr>
<td>Most popular contraceptives visited from the contraception tool in page views, n</td>
<td></td>
</tr>
<tr>
<td>Hormonal IUD<sup>a</sup></td>
<td>13</td>
</tr>
<tr>
<td>Sterilization</td>
<td>7</td>
</tr>
<tr>
<td>Copper IUD</td>
<td>3</td>
</tr>
<tr>
<td>Vaginal ring</td>
<td>3</td>
</tr>
<tr>
<td>Fertility awareness</td>
<td>2</td>
</tr>
<tr>
<td>Patch</td>
<td>2</td>
</tr>
<tr>
<td>Abstinence</td>
<td>1</td>
</tr>
<tr>
<td>Depo shot</td>
<td>1</td>
</tr>
<tr>
<td>Female condom</td>
<td>1</td>
</tr>
<tr>
<td>Male condom</td>
<td>1</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>1</td>
</tr>
<tr>
<td>Visits to given feelings (good, okay, and not so good) from the Emotional Well-Being tool<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Okay</td>
<td>18</td>
</tr>
<tr>
<td>Good</td>
<td>2</td>
</tr>
<tr>
<td>Not so good</td>
<td>5</td>
</tr>
<tr>
<td>Visits to given emotion from the Emotional Well-Being tool, n<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Grief</td>
<td>6</td>
</tr>
<tr>
<td>Relief</td>
<td>6</td>
</tr>
<tr>
<td>Supported</td>
<td>4</td>
</tr>
<tr>
<td>Sadness</td>
<td>2</td>
</tr>
<tr>
<td>Guilt</td>
<td>3</td>
</tr>
<tr>
<td>Regret</td>
<td>1</td>
</tr>
<tr>
<td>Shame</td>
<td>1</td>
</tr>
</tbody>
</table>

^aIUD: intrauterine device.

^bReturning and 1-time visitors.
Table 2. Number of page views for myPostCare.

<table>
<thead>
<tr>
<th>myPostCare pages</th>
<th>Values, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postprocedure Care</td>
<td>46</td>
</tr>
<tr>
<td>Emotional Well-Being</td>
<td>28</td>
</tr>
<tr>
<td>Contraception Explorer</td>
<td>27</td>
</tr>
<tr>
<td>Postprocedure FAQs</td>
<td>25</td>
</tr>
<tr>
<td>Emotional Support Tool</td>
<td>21</td>
</tr>
<tr>
<td>Sexual Health</td>
<td>21</td>
</tr>
<tr>
<td>Abortion Myth or Fact Quiz</td>
<td>15</td>
</tr>
<tr>
<td>Resources</td>
<td>13</td>
</tr>
<tr>
<td>Menstrual Cycle 101</td>
<td>12</td>
</tr>
<tr>
<td>Meditation 101: Meditation for Beginners</td>
<td>10</td>
</tr>
<tr>
<td>Book an Appointment</td>
<td>6</td>
</tr>
<tr>
<td>Dealing with Difficult Feelings</td>
<td>6</td>
</tr>
<tr>
<td>About Us</td>
<td>5</td>
</tr>
</tbody>
</table>

Email Notifications Analytics

Among the 62 participants enrolled, 2 (3%) unsubscribed from email notifications after the “Welcome Message” on day 0, and 2 (3%) participants’ email address was not valid. The average open rate was 80%, and the click rate was 36%. The highest open and click rates were for Welcome Message at 73.1% and 31.3%, respectively. Interestingly, the desktop device was 57.4% and mobile was 42.6%, which is different from the device from which the website was viewed. The email open rates were higher than the click rates throughout. The open rates declined for both IUD and no IUD over time; however, they remained stable at an average of 53.7% and 53.8%, respectively. Figure 2 graphically represents data of the IUD versus no IUD streams open and click rates for given days.

Figure 2. Comparison of email open and click rates for intrauterine device (IUD) versus no IUD stream in percentage.

Discussion

Principal Findings

myPostCare is the first comprehensive web-based postabortion tool in Canada and has the potential to be integrated as part of family planning services. Integration of myPostCare into clinical practice provides an opportunity to consider a new approach to supplement follow-up care for abortion care specifically but women’s health generally. This study demonstrates the design and development of a comprehensive mobile intervention to facilitate care for women and people who can become pregnant and undergo a procedural abortion to support and normalize the emotional and physical aspects after abortion. We used a human-centered design methodology, an iterative development process that was informed by input from key stakeholders such as patients, family planning experts, and administrators involved in abortion care [22,37,38]. The results from the pilot evaluation of myPostCare demonstrated that it was feasible, acceptable, and satisfactory for women and people who can become pregnant.

Specifically, this 3-phase study demonstrates the importance of including the end users and key stakeholders in the design, development, and evaluation of a mobile intervention that services a population and health care issue that continue to be stigmatized. Formative research has provided important information regarding women’s interactions with technology, their needs and desires around follow-up and access to information, and feedback on design, which is essential for the success of myPostCare. A unique finding of this study that was...
supported in the literature was the importance of including a component of emotional support as part of follow-up abortion care [39]. Furthermore, we learned that the success of myPostCare was not only owing to the interactive tools and information provided by the website but that the appropriately timed automatic email notifications that women received was an important aspect of their care throughout the 30 days after the procedure. An iterative design process was important to ensure that the research team was continually evaluating that myPostCare realized the needs of the target users.

We adopted a few theoretical frameworks, all of which use a comprehensive participatory approach to developing eHealth technologies. This was similarly performed by Gilbert et al [38] in the development of Get Checked Online, a web-based sexually transmitted infection testing resource. More specifically, integrating the Technology Acceptance Model and Theory of Reasoned action with the human-centered design methodology, we used a holistic approach to developing myPostCare. According to the Technology Acceptance Model, perceived ease of use and perceived usefulness of a system are the 2 predominant indicators of system adoption [27,32]. Participants in our study were accustomed to using some form of technology, either mobile phones or computers; did not require acquisition of new skills; and were keen on developing a technology-based tool to support follow-up care after an abortion. Importantly, myPostCare will not eliminate structural barriers to comprehensive abortion care, and although it may not directly affect health behavior and decision-making, it may assist in making the delivery of abortion care more efficient, convenient, patient centered, and accessible.

myPostCare is a unique addition to the literature because of its methodology and outcome. There is evidence to support eHealth technologies to improve health care; however, currently there is limited research on mobile interventions specifically to address postabortion care, although there are various interventions for contraception use. A randomized trial in Cambodia demonstrated that involving women in the design and testing of a mobile intervention to support postabortion contraception led to more women in the intervention group reporting use of effective contraception at 4 months; specifically, the use of long-acting contraceptives was higher in the intervention group at 4 and 12 months after the procedure [40]. Previous feasibility trials focused on usability and acceptability have highlighted the importance of conducting a pilot study first, which can then assist with the design of a larger randomized trial to measure effectiveness [41]. Finally, similar to studies on the development and testing of contraception tools, the integration of evaluation in real-time clinical care is essential to ascertain the barriers and challenges to implementation in the future [22].

The limitations of this study include overall generalizability to other populations, small convenience sample sizes for all 3 phases, loss to follow-up and low response rates in this challenging population, and recruitment bias. The sample size of 6 participants in the qualitative interviews was small, ideally requiring 20 participants to achieve meaningful saturation. Given that this study is an extension of 2 previous phases, researchers felt confident in the analysis being generalizable compared with the findings of the 2 previous phases and from previous studies highlighting the type of gaps that myPostCare fills as per the participants’ reflections. As it pertains to recruitment bias, those who consented to participate were likely individuals who are more engaged with technology, have higher socioeconomic demographics, and are more likely to be early adopters of a digital health intervention to support abortion care. In previous studies, this is referred to as a Digital Divide, which suggests that although many developers of technology-based health interventions are optimistic about their impact; this needs to be balanced by the fact that the pattern of adoption is along social gradients [38]. New technologies such as myPostCare may further reinforce these social divides. Furthermore, abortion continues to be a stigmatized issue, which can be a limitation for research, as this can be a sensitive topic for most and posed difficulties with recruitment and loss to follow-up in our study. We evolved throughout each phase of the study to consider the challenges faced with patient engagement. For instance, recruitment took longer than expected for the qualitative interviews. We assumed that lack of participant engagement may be associated with stigma about abortion. In addition, we recognized that conducting research immediately after the procedure might be a sensitive time for individuals. This will need to be taken into consideration for future studies, particularly when thinking about diversifying the participants recruited and obtaining robust response rates for analysis.

Balancing these limitations are the strengths of our study, including the successful development of human-centered design elements, wide stakeholder engagement, diverse expertise on the research team, a large proportion of our sample size that was from rural locations, rigorous research methodologies, iterative design process, and development of the first web-based postabortion tool in Canada.

Further research could involve evaluating the effectiveness of myPostCare.ca and the overall patient experience through a randomized controlled trial. In addition, as suggested in other web-based literature [38], a health equity impact assessment with expert consultation and literature review may also help identify ways in which myPostCare reinforces or alleviates health inequities in sexual health services.

Conclusions

myPostCare was found to be feasible and acceptable to women and people who can become pregnant to support follow-up care after a procedural abortion. There are obvious digital divides in health care specifically, as there are limited digital tools for women’s health in Canada. Thus, there is great potential for expansion of myPostCare. More specifically, since the introduction of Mifepristone in Canada, the first area of expansion will be for medication abortion. Generally, the expansion may then involve other aspects of women’s reproductive health.

We learned that key stakeholder engagement and understanding the organizational context are important. These factors are important for ongoing research initiatives and their implementation in clinical practice. Engaging stakeholders and potential users in a participatory process throughout the entire design and development of myPostCare was crucial to its...
success. Applying an iterative design and evaluation process that was flexible and dynamic, considering the factors of implementation at the outset, keeping in mind how myPostCare could change health care delivery, and the use of a multidisciplinary team were all unique and important aspects. This study demonstrated that a technology-based intervention for postabortion care is feasible and acceptable. The success of myPostCare was based on the incorporation of a multidisciplinary team; participatory user-centered design process; robust stakeholder engagement; and the provision of nonjudgmental, nondirective, and medically accurate information. This study provides an example of the ongoing development of technology-based family planning services and is aligned with a larger gender-equitable, evidence-based programmatic agenda in Canada.

Acknowledgments
The authors thank the clinics that participated in this study and offered time.

Data Availability
Qualitative and quantitative data are available upon request; however, the data will be destroyed 10 years after its collection for this study.

Conflicts of Interest
WVN declares funding support for work contributing to this article for a Chair in Family Planning Public Health Research from the Canadian Institutes of Heath Research and The Public Health Agency of Canada (2014-2024) and for a Scholar award from the Michael Smith Foundation for Health Research (2012 - 2020).

Multimedia Appendix 1
Demographic data.
[PDF File (Adobe PDF File), 146 KB - formative_v8i1e46284_app1.pdf]

References
3. LaRoche KJ, Foster AM. “I kind of feel like sometimes I am shoving it under the carpet”: documenting women’s experiences with post-abortion support in Ontario. FACETS 2017 Sep 01;2(2):754-763 [FREE Full text] [doi: 10.1139/facets-2017-0059]

38. Sauro J. Measuring usability with the system usability scale (SUS). MeasuringU®. URL: https://measuringu.com/sus/ [accessed 2017-08-21]

Abbreviations

IUD: intrauterine device
mHealth: mobile health
SUS: system usability scale

©Roopan Gill, Gina Ogilvie, Wendy V Norman, Brian Fitzsimmons, Ciana Maher, Regina Renner. Originally published in JMIR Formative Research (https://formative.jmir.org), 09.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
The Sukaribit Smartphone App for Better Self-Management of Type 2 Diabetes: Randomized Controlled Feasibility Study

Cecilia Josefsson¹, MSc; Thea Liljeroos², MSc; Margareta Hellgren³, PhD; Ulrika Pöder⁴, PhD; Mariann Hedström¹, PhD; Erik M G Olsson², PhD

¹Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
²Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
³Skaraborg Institute, Skövde, Sweden

Corresponding Author:
Cecilia Josefsson, MSc
Department of Public Health and Caring Sciences
Uppsala University
BMC, Husargatan 3
Uppsala, 751 22
Sweden
Phone: 46 18 471 66 72
Email: cecilia.josefsson@pubcare.uu.se

Abstract

Background: A new app, Sukaribit, was designed to enable contact between the caregiver and the patient with the intent to improve self-care and glycemic control (hemoglobin A₁c [HbA₁c]).

Objective: This study investigated the feasibility of the study methodology and the intervention in preparation for a larger effectiveness study.

Methods: Adults with type 2 diabetes were recruited in this randomized controlled feasibility study with a mixed methods design. The intervention group (n=28) tried Sukaribit for 2 months. They were encouraged to report blood glucose levels and medications, and they received feedback from a physician. The control group (n=31) received standard care. Both groups were evaluated with pre and postmeasurements of glycemic control (HbA₁c), diabetes distress, physical activity, and self-care. Feasibility was evaluated against 5 progression criteria regarding recruitment, study methods, and active participation.

Results: Of the 5 progression criteria, only 2 were met or partially met. The recruitment process exceeded expectations, and data collection worked well for self-reported data but not for HbA₁c measured with a home testing kit. The participants were less active than anticipated, and the effect sizes were small. Only the number of blood glucose tests per day was positively affected by the intervention, with 0.6 more tests per day in the intervention group.

Conclusions: Recruitment of participants to a future fully powered study may work with minor adjustments. The collection of HbA₁c using home testing constituted a major problem, and an alternative strategy is warranted. Finally, the app was not used as intended. In order to proceed with a larger study, the app and study procedures need improvement.

(JMIR Form Res 2024;8:e46222) doi:10.2196/46222

KEYWORDS
diabetes mellitus; type 2; health behavior; mobile health; mobile application; pilot study; mobile app; mHealth; diabetes; diabetic; RCT; randomized; glycemic; self care; self management; blood sugar; T2D; diabetes type 2; home-testing; digital health

Introduction

Background
Type 2 diabetes is a serious disease affecting the prognosis of many other diseases, including cardiovascular disease. Diabetes increases the risk of acute myocardial infarction, stroke, and heart failure [1,2]. To reduce the risk of both microvascular and macrovascular complications, it is important to control blood glucose levels [3] (ie, glycemic control), blood pressure, and lipid levels [4]. For people with type 2 diabetes, a prerequisite for good glycemic control is regular and frequent self-monitoring and knowledge of how blood glucose levels respond to food and physical activity. Many patients have
elevated levels of blood glucose, which suggests that self-management is often suboptimal [5].

Diabetes and Mobile Apps

Even if technical solutions to support diabetes self-management, such as smartphone apps, have become more common, they are used by a minority of patients [6]. It is not clear how many people use diabetes apps in Sweden, but in Australia, only 8% of people reportedly use diabetes mobile apps [6], despite almost unlimited availability with thousands of apps on the market. Reasons for people with diabetes to not use apps can be unawareness of their existence, technical literacy barriers, no need (the disease is not that bad or self-management is sufficient anyway), no recommendation from a health care professional, the resulting increased accountability for one’s own behaviors, or the time-consuming nature of some apps [7,8]. However, studies have shown that people with type 2 diabetes want to use smartphone apps, to reduce not only the practical burden but also the cognitive and emotional burden of diabetes self-management [9]. Studies also have shown that patients want to have more contact with their nurse or physician through digital media than is the case today [9,10]. The most effective app-based technical solutions, in terms of the potential to reduce hemoglobin A\(_1c\) (HbA\(_1c\)), are interactive and include components such as patient-generated health data, individualized feedback, 2-way communication, and tailored education [11,12]. These components are in line with the 2 behavior change techniques of “feedback on behavior” and “self-monitoring of behavior” that are associated with better glycemic control [13].

Figure 1. How the diabetes app is intended to improve glycemic control.

Sukaribit Smartphone App

The smartphone app Sukaribit (Beta version 1.1, Maishabit AB) was developed with a special focus on the interaction between the patient and caregiver. It has an intentionally basic design to be usable with more basic mobile phones, as it needs less capacity. The app stores and displays blood glucose measurements (patient-generated health data), enables digital 2-way patient-physician or nurse communication, provides individualized feedback, and delivers tailored education. For example, if the person with diabetes enters blood glucose measurements or steps (self-monitoring of behavior), the clinician can provide individualized feedback via the 2-way communication mechanism. The physician can give advice about medications or empower health-related behaviors (feedback on behaviors). The app aims to result in more frequent measurements, better blood glucose control, and better self-efficacy, which could be reflected in more optimal HbA\(_1c\) (see Figure 1). Sukaribit aims to complement standard care by enabling feedback from the caregiver when patients are not at the clinic. There are several diabetes apps on the market. However, the American Diabetes Association requests longer-term clinical evidence, and clinical outcomes have been published in peer-reviewed literature for only a few diabetes smartphone apps [14]. In line with the British Medical Research Council guidelines for developing and evaluating complex interventions [15], this is the first scientific evaluation of the feasibility of the diabetes app Sukaribit.

Aim

The purpose of this study was to investigate the feasibility of the study methodology and the intervention before conducting a larger effectiveness study. Our research questions were as follows: (1) Are the study procedures feasible and effective? (2) Is the Sukaribit smartphone app (version 1.1) usable and accepted by people with type 2 diabetes? (3) How large are the effect sizes for the use of the Sukaribit smartphone app on HbA\(_1c\) and other potential outcomes? In line with recommendations for feasibility evaluations, we developed predetermined progression criteria to decide whether to proceed to a full-scale randomized trial [16].

Methods

Research Design

The study was a randomized feasibility study with pre and postmeasurements from an intervention group and a control group. The control group received standard care. The report follows the Consolidated Standards of Reporting Trials (CONSORT) guidelines [17].

Ethical Considerations

The trial protocol was approved by the Swedish ethical review authority (diary number 2020-04894), and the participants provided written informed consent.
Feasibility data were collected in a log by the research assistant, and the automated activity log from the Sukaribit app was shared with the researchers by Maishabit AB. To further explore if the app is usable and accepted by people with type 2 diabetes, an additional qualitative evaluation was conducted. Participants were asked open-ended questions in the portal about opinions and possible improvement of the app. The intervention group also participated in semistructured telephone interviews for further input about the acceptability of the intervention. The interview guide contained questions about the participant’s diabetes, self-care, and study participation, as well as about the mobile app. The interviews were audio-recorded (average length: 25 minutes) and transcribed. The physician was also interviewed about participation with a separate but similar interview guide.

Participants and Procedures

The study included 59 adults (age >18 years) with type 2 diabetes. Exclusion criteria were other serious illnesses, HbA1c >70 mmol/mol, BMI <25 kg/m², no regular access to the internet, and not owning a blood glucose monitor. The following 2 initial exclusion criteria were abandoned as they were not that important and not feasible for effective recruitment: people with HbA1c <50 mmol/mol (4 were initially excluded) and an age >65 years.

Participants were recruited (between February 2021 and April 2021) at health care centers in Uppsala, through nationwide ads in 3 major Swedish newspapers, and via advertising on the national Swedish Diabetes Federation’s web page and in diabetes-specific social media groups. People with type 2 diabetes reported their interest on a study-specific website hosted by Uppsala University or directly to the research assistant via email or telephone. Thereafter, they were contacted by the research assistant who informed them about the study. People who were still interested provided written consent to participate. Thereafter, the research assistant checked the inclusion and exclusion criteria preliminarily and ensured that the participant had a pedometer app on their smartphone or helped them install one.

Participants were sent a home testing kit for HbA1c, which meant that they took a blood sample at home and sent it to an accredited laboratory for analysis. As recruitment proceeded, the authors recognized that the wait time for baseline HbA1c test results could be long (mean 15.6, SD 6.4 days). Therefore, we decided to include and randomize participants before the HbA1c test results arrived and exclude them afterwards if necessary; 4 participants were excluded on this premise.

All questionnaires were administered using the Uppsala University Psychosocial Care Program (U-CARE) Portal (the portal). The participants answered the questionnaires at the time of randomization and 8 weeks later (a delayed response of a maximum of 18 days was allowed). Randomization occurred in the portal (see the following paragraph), was totally automated, and occurred in blocks of 6 immediately after the completion of baseline questionnaires.

Those randomized to the intervention were supported in downloading the Sukaribit smartphone app and had a brief user education via telephone. They also received instructions in a PDF brochure. The intervention group was asked to share their blood glucose measurements in the app. Additional follow-up support was requested by 5 participants, as they were uncertain of particular features of the app (eg, input of medications). Those randomized to the control group received standard care [18]. All participants were contacted 2 months later for follow-up data. Those who participated in the intervention were also asked to participate in a semistructured interview about their experience with the intervention. Of those invited to the interview, 16 participants accepted (3 people declined) and were interviewed via telephone by 1 of the 2 research assistants.

Preliminary Effect Sizes

In addition to the feasibility of the app, the preliminary effect sizes of the Sukaribit smartphone app were also explored. They could be used to calculate the sample size for a fully powered study. Effect sizes were studied for (1) HbA1c, (2) number of blood glucose measurements reported the previous week, (3) physical activity, (4) general self-rated health (visual analogue scale from the EQ-5D) [19], (5) diabetes self-management, and (6) diabetes-related distress. This study only explored the changes in these measures, as the study was not sufficiently powered to detect efficacy.

HbA1c was analyzed from a home testing blood test at an accredited laboratory. The blood glucose measurements were recorded by the participants in their own diary of choice and reported in the portal as an outcome. The intervention group could use the app to record their measurements. Physical activity was measured as steps via pedometers on the participants’ smartphones, and the last 7 days were reported in the portal.

Research questions 1 and 2 and their respective progression criteria.

(1) Are the study procedures feasible and effective?

1. At least 60 people reported interest in participating in the study within 3 months of recruitment.
2. At least 50% of those who reported interest were eligible for inclusion in the study (ie, met the inclusion but not the exclusion criteria).
3. At least 75% of those randomized (to any of the groups) in the study completed the postmeasurements (ie, had complete data).

(2) Is the Sukaribit smartphone app usable and accepted by patients with type 2 diabetes?

1. At least 80% of those initially interested and eligible actually started participating.
2. At least 50% of those who participated in the intervention sent at least 8 blood glucose measurements during the 2 months the intervention lasted (about 1 per week).
Participants also reported the number of occasions per week over the last month they had exercised more than 30 minutes for fitness purposes. Diabetes self-management was measured using the Diabetes Self-Management Questionnaire (DSMQ) [20,21]. The DSMQ has 16 items divided into 4 subscales, namely (1) glucose management, (2) dietary control, (3) physical activity, and (4) health care use, with a maximum score of 64. A higher score indicates higher frequency of diabetes self-care behaviors. DSMQ has shown good psychometric properties in several contexts [21]. The Diabetes Distress Scale (DDS) was used to measure diabetes distress [22]. The DDS has 17 items divided into 4 subscales, namely (1) emotional burden, (2) physician-related distress, (3) regimen-related distress, and (4) diabetes-related interpersonal distress, with a maximum score of 102. A higher score indicates more distress. DDS has shown good psychometric properties in several contexts [22].

The Intervention
The intervention group used the smartphone app Sukaribit (version 1.1) for 2 months. In this app, participants entered their medication list, blood glucose levels, and (optionally) blood pressure levels. Participants could choose to send the recorded measurements to the study physician or not. They were encouraged to send blood glucose measurements at least once a week. The physician was a specialist in family medicine and an associate professor in general practice. She actively participated in the design of the study and evaluated and proposed changes to the app. When measurements were sent, the physician responded with feedback to the participant. All communication occurred through the Sukaribit app. The physician encouraged participants who did not send measurements on their own initiative to register and provide the requested information. This was done at least once for each participant at the start of intervention and regularly approximately once a week if no measurement was sent by the participant during that time. The physician checked messages and measures once a week and replied. There were 2 versions of the app: one for Android and one for iOS.

Data Analysis
The collected data on recruitment and intervention use were compared with the prespecified progression criteria to decide if they matched. Qualitative data were analyzed with quantitative content analysis [23]. Data from both the interviews and open-ended questions were analyzed together. Within and between-group effect sizes (Cohen d) were calculated for HbA1c and self-reported outcomes, dividing the mean differences with pooled SDs, with the aim of being the basis for statistical power and sample size calculations for a future study. The between-group effect sizes used the pooled baseline SDs as recommended by Morris [24]. A value of d>0.8 is classified as a large effect size, d=0.5 is classified as a medium effect size, and d=0.2 is classified as a small effect size according to Cohen [25]. Preliminary inference statistics were also performed utilizing linear regression analysis with the posttreatment value as the outcome and group allocation, baseline values, sex, and age included as covariates. The adjusted estimate can be interpreted as the adjusted mean difference for the treatment group when compared with the control group (the reference). P<.05 was considered significant.

Results
Participant Characteristics
Among the randomized participants (n=59), the majority were male (42/59, 71%), born in Sweden (54/49, 92%), and retired (32/59, 54%). The mean age was 61.1 (SD 10.3) years. Most participants (35/59, 59%) reported being lightly active at baseline (eg, practicing yoga, walking, and gardening), with main health issues including hypertension (39/59, 66%) and dyslipidemia (7/59, 46%). Diabetes complications, including eye disease, neuropathy, kidney disease, or sexual dysfunction, were reported by 29% (17/59). For a complete description of the participant characteristics, see Table 1.
Table 1. Participant characteristics at baseline (n=59).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total sample</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants randomized</td>
<td>a</td>
<td>28 (48)</td>
<td>31 (53)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>17 (29)</td>
<td>11 (39)</td>
<td>6 (19)</td>
</tr>
<tr>
<td>Male</td>
<td>42 (71)</td>
<td>17 (51)</td>
<td>25 (41)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>61.3 (10)</td>
<td>60.2 (12)</td>
<td>61.8 (9)</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>15 (25)</td>
<td>7 (25)</td>
<td>8 (26)</td>
</tr>
<tr>
<td>Cohabiting/married</td>
<td>41 (70)</td>
<td>20 (71)</td>
<td>21 (68)</td>
</tr>
<tr>
<td>Living alone but have a steady partner</td>
<td>3 (5)</td>
<td>1 (4)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Country of birth, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>54 (92)</td>
<td>25 (42)</td>
<td>29 (49)</td>
</tr>
<tr>
<td>Outside Sweden</td>
<td>5 (9)</td>
<td>3 (11)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Education level, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>8 (14)</td>
<td>1 (4)</td>
<td>7 (23)</td>
</tr>
<tr>
<td>Secondary</td>
<td>17 (29)</td>
<td>10 (36)</td>
<td>7 (23)</td>
</tr>
<tr>
<td>University (≤3 years)</td>
<td>17 (29)</td>
<td>7 (25)</td>
<td>10 (32)</td>
</tr>
<tr>
<td>University (>3 years)</td>
<td>17 (29)</td>
<td>10 (36)</td>
<td>7 (23)</td>
</tr>
<tr>
<td>Employment status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unemployed</td>
<td>2 (3)</td>
<td>0</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Retired</td>
<td>32 (54)</td>
<td>14 (50)</td>
<td>18 (58)</td>
</tr>
<tr>
<td>Employed (any status)</td>
<td>25 (42)</td>
<td>14 (50)</td>
<td>11 (36)</td>
</tr>
<tr>
<td>Employed full time</td>
<td>23 (39)</td>
<td>12 (43)</td>
<td>11 (36)</td>
</tr>
<tr>
<td>Employed part time</td>
<td>2 (7)</td>
<td>2 (7)</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exercise intensity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mostly sedentary</td>
<td>13 (22)</td>
<td>7 (25)</td>
<td>6 (19)</td>
</tr>
<tr>
<td>Lightly active</td>
<td>35 (59)</td>
<td>17 (60)</td>
<td>18 (58)</td>
</tr>
<tr>
<td>Moderately active</td>
<td>8 (14)</td>
<td>3 (10)</td>
<td>5 (16)</td>
</tr>
<tr>
<td>Very active</td>
<td>3 (5)</td>
<td>1 (4)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Days per week with ≥30 minutes of physical activity, mean (SD)</td>
<td>2.5 (2)</td>
<td>2.3 (2)</td>
<td>2.7 (2)</td>
</tr>
<tr>
<td>Steps per day in the last week, mean (SD)b</td>
<td>4966 (3862)</td>
<td>4798 (3164)</td>
<td>5094.5 (4371)</td>
</tr>
<tr>
<td>Current smoker (Yes), n (%)</td>
<td>6 (10)</td>
<td>2 (7)</td>
<td>4 (13)</td>
</tr>
<tr>
<td>Medical history, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>39 (66)</td>
<td>16 (57)</td>
<td>23 (74)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>27 (46)</td>
<td>11 (39)</td>
<td>16 (52)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1 (2)</td>
<td>0</td>
<td>1 (3)</td>
</tr>
<tr>
<td>History of mental illness</td>
<td>8 (14)</td>
<td>3 (11)</td>
<td>5 (16)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>4 (7)</td>
<td>2 (7)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Other cardiovascular disease</td>
<td>8 (14)</td>
<td>6 (21)</td>
<td>2 (7)</td>
</tr>
</tbody>
</table>
aNot applicable.
bMissing data for 6 (10%) participants.
cMissing data for 11 (19%) participants.
dFor example, eye disease, neuropathy, kidney disease, or sexual dysfunction.
eMissing data for 1 (2%) participant.

Feasibility of Study Procedures

Table 2 summarizes the progression criteria fulfilment. There were 182 people that reported interest in participating in the study; of this group, the majority (176/182, 96.7%) registered their interest on a web page. That met progression criterion 1 (n≥60) by a good margin. Of the 182 people interested, 133 were reached and assessed for eligibility. However, a considerable proportion of the participants who registered their interest were ineligible or unable to be included in the study; hence, progression criterion 2 (50% inclusion rate) was not met. The main reason for exclusion at this stage was a BMI <25 kg/m² (n=26). In total, 55 people were excluded. Of those eligible, 19 people never logged into the portal even after being reminded. Finally, 59 (76%) of the 78 eligible participants were randomized in the study (treatment: n=28; control: n=31). For the complete recruitment flow, see Figure 2.

Table 2. Summary of the progression criteria with goals and study values.

<table>
<thead>
<tr>
<th>Progression criteria</th>
<th>Value</th>
<th>Goal reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) At least 60 people reported interest in participating in the study within 3 months of recruitment.</td>
<td>182 people (in 2 months and 12 days)</td>
<td>Yes</td>
</tr>
<tr>
<td>(2) At least 50% of those who reported interest were eligible for inclusion in the study.</td>
<td>43% (78/182)</td>
<td>No</td>
</tr>
<tr>
<td>(3) At least 75% of those randomized in the study completed the postmeasurements (ie, had complete and valid data).</td>
<td>64% (38/59) with complete questionnaire data and HbA1c test results</td>
<td>Partially</td>
</tr>
<tr>
<td></td>
<td>81% (48/59) with complete questionnaire data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70% (41/59) with complete HbA1c test results</td>
<td></td>
</tr>
<tr>
<td>(4) At least 80% of those initially interested and eligible actually started participating.</td>
<td>76% (59/78)</td>
<td>No</td>
</tr>
<tr>
<td>(5) At least 50% of those who participated in the intervention sent at least 8 blood glucose measurements during the 2-month intervention (about 1 per week).</td>
<td>11% (3/28; based on the “Number of sent diagnostic data”)</td>
<td>No</td>
</tr>
</tbody>
</table>
Progression criterion 3, at least 75% complete data at follow-up, was met regarding questionnaire data (81%). However, when also considering HbA1c tests, the completeness was 64%; thus, the criterion was not met. At baseline, 5 HbA1c test results were missing. At follow-up, 11 randomized participants did not complete their questionnaires, and there were 18 missing tests (Table 3). For baseline HbA1c, 41 manual reminders were sent in total; for the follow-up HbA1c, 63 manual reminders were sent. See Table 3 for details.
Table 3. Feasibility data (n=59).

<table>
<thead>
<tr>
<th>Data collected</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>Self-reported instruments</td>
<td></td>
</tr>
<tr>
<td>Time between inclusion and completion of the baseline instruments (days), mean (SD)</td>
<td>5.7 (6.0)</td>
</tr>
<tr>
<td>HbA₁c<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Time between being sent the test kit and the test results (days), mean (SD)</td>
<td>15.6 (6.4)</td>
</tr>
<tr>
<td>Manual reminders for HbA₁c, n</td>
<td>41</td>
</tr>
<tr>
<td>Follow-up</td>
<td></td>
</tr>
<tr>
<td>Self-reported instruments</td>
<td></td>
</tr>
<tr>
<td>Participants with complete data, n</td>
<td>48</td>
</tr>
<tr>
<td>Time between the prompt and completion of the follow-up instruments (days), mean (SD)</td>
<td>4.4 (4.1)</td>
</tr>
<tr>
<td>Manual reminders, n</td>
<td>37</td>
</tr>
<tr>
<td>HbA₁c</td>
<td></td>
</tr>
<tr>
<td>HbA₁c test results<sup>b</sup>, n</td>
<td>42</td>
</tr>
<tr>
<td>Time between being sent the test kit and the test results (days), mean (SD)</td>
<td>15.4 (8.7)</td>
</tr>
<tr>
<td>Manual reminders for HbA₁c, n</td>
<td>63</td>
</tr>
<tr>
<td>Sukaribit user data</td>
<td></td>
</tr>
<tr>
<td>Participant activity</td>
<td></td>
</tr>
<tr>
<td>Active participants, n</td>
<td>27</td>
</tr>
<tr>
<td>Number of messages sent per participant, mean (range)</td>
<td>1.0 (1-5)</td>
</tr>
<tr>
<td>Number of messages received from physicians per participant, mean (range)</td>
<td>3.0 (0-6)</td>
</tr>
<tr>
<td>Technical issues reported by participants to the developer, n</td>
<td>4</td>
</tr>
<tr>
<td>Physician activity</td>
<td></td>
</tr>
<tr>
<td>Time spent on all participant responses per week (hours)</td>
<td>2</td>
</tr>
<tr>
<td>Time spent on participant responses per week per participant (minutes)</td>
<td>5</td>
</tr>
<tr>
<td>Technical issues reported by the physician to the developer, n</td>
<td>5</td>
</tr>
</tbody>
</table>

^aHbA₁c: hemoglobin A₁c.
^bMissing tests + defective tests: n=18.

Feasibility of the Intervention

Of the 28 participants in the treatment group who completed the study, 27 were active users of the app (ie, they completed 2299 data entries in total [blood glucose value, blood pressure value, and medications] in the app and sent 211 of the entries to the physician at some point). In addition, they sent 28 text messages to the physician (see Table 3).

For the 4 participants who requested technical support while using the app, the reasons for contact included difficulties logging in, issues with iOS graphic data, messages not being sent, or that the app had stopped working altogether.

Considering progression criterion 4, 76% of the eligible people actually started participating in the study. This was slightly lower than the criterion of 80%. Regarding criterion 5, only 11% of the participants sent diagnostic data 8 times in 2 months; thus, this criterion was not met.

Client Satisfaction and the Physician’s Evaluation

A summary of the interviews is presented in Table 4. The findings show that smartphones with the iOS operating system were the most commonly used among the responding participants (15/20, 75%). Concerning the overall quality of the app, a majority of the participants reported the app was of fair quality, with only a few of their individual needs having been met. The 4 technical issues reported to the developer mainly concerned the iOS version of the app. The physician had technical problems but thought the contact was rewarding when it worked. She also experienced varying activity from the participants (Table 4).
Table 4. Participants’ (n=20) answers from the telephone interviews and open-ended questions after completing the intervention, as well as the physician’s (n=1) evaluation.

<table>
<thead>
<tr>
<th>Questions and categories</th>
<th>Participants, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectations for the app and study</td>
<td></td>
</tr>
<tr>
<td>Want to have contact with a physician or health care professional (feedback)</td>
<td>8</td>
</tr>
<tr>
<td>Interest in diabetes apps</td>
<td>6</td>
</tr>
<tr>
<td>Contribute to research</td>
<td>4</td>
</tr>
<tr>
<td>Thinking that a diabetes app is part of the future for diabetes care</td>
<td>3</td>
</tr>
<tr>
<td>Help with more motivation to perform self-care</td>
<td>2</td>
</tr>
<tr>
<td>Want more knowledge</td>
<td>3</td>
</tr>
<tr>
<td>Ability to collect everything in the same place (though it is not working)/facilitate everyday life</td>
<td>2</td>
</tr>
<tr>
<td>Thoughts about the app</td>
<td></td>
</tr>
<tr>
<td>Technical problems</td>
<td>12</td>
</tr>
<tr>
<td>Difficult to add their medicine in the list</td>
<td>8</td>
</tr>
<tr>
<td>Technical problems when sending messages/values to the physician</td>
<td>3</td>
</tr>
<tr>
<td>Thought the app was difficult</td>
<td>6</td>
</tr>
<tr>
<td>Did not like the appearance of the app</td>
<td>2</td>
</tr>
<tr>
<td>Easy to navigate</td>
<td>8</td>
</tr>
<tr>
<td>Simple but functioning</td>
<td>2</td>
</tr>
<tr>
<td>Easier to manage more frequent blood glucose monitoring</td>
<td>3</td>
</tr>
<tr>
<td>Easy access to and communication with health care staff</td>
<td>3</td>
</tr>
<tr>
<td>Possible to get feedback on test results from physician</td>
<td>3</td>
</tr>
<tr>
<td>Increased motivation for self-care/increased awareness</td>
<td>3</td>
</tr>
<tr>
<td>Interesting to see how blood glucose is affected by food</td>
<td>1</td>
</tr>
<tr>
<td>Possibility to log data/follow data over time</td>
<td>3</td>
</tr>
<tr>
<td>Good support from the developer</td>
<td>2</td>
</tr>
<tr>
<td>Contact with the physician</td>
<td></td>
</tr>
<tr>
<td>Good and relevant replies</td>
<td>9</td>
</tr>
<tr>
<td>Good contact and fast communication</td>
<td>3</td>
</tr>
<tr>
<td>Some sort of miscommunication due to technical issues and maybe a lack of personal knowledge</td>
<td>1</td>
</tr>
<tr>
<td>No/very little communication with the physician</td>
<td>4</td>
</tr>
<tr>
<td>Desired improvements</td>
<td></td>
</tr>
<tr>
<td>Wish for an easier app</td>
<td>4</td>
</tr>
<tr>
<td>Improved design</td>
<td>1</td>
</tr>
<tr>
<td>Faster and more communication with caregiver</td>
<td>2</td>
</tr>
<tr>
<td>Direct communication between the app and blood glucose meter</td>
<td>5</td>
</tr>
<tr>
<td>Linked to other health applications</td>
<td>3</td>
</tr>
<tr>
<td>See old values and a graph function (to be able to learn)</td>
<td>4</td>
</tr>
<tr>
<td>Notifications when receiving message overview/table/graph</td>
<td>2</td>
</tr>
<tr>
<td>Wanted bigger text or a computer version</td>
<td>2</td>
</tr>
<tr>
<td>Information/news about diabetes in the app</td>
<td>3</td>
</tr>
<tr>
<td>Be able to send photos</td>
<td>1</td>
</tr>
<tr>
<td>Be able to log physical activities</td>
<td>1</td>
</tr>
<tr>
<td>Be able to set goals</td>
<td>2</td>
</tr>
</tbody>
</table>
Questions and categories | Participants, n
---|---
Be able to add notes to values | 3
No function was missing | 1

Overall impression
- The application did not improve self-care. | 11
- The app improved self-care. | 4
- The participants were positive about the concept and think the app should continue to be developed. | 3

The physician’s evaluation
- Lots of technical problems (messages, medicine list) | 1
- The contact and work were fun when the app worked. | 1
- Disadvantage not being their attending physician | 1
- The app as a good complement to diabetes care; could consider using it with her own patients | 1
- Varying participation of the participants; some very active but others never replied | 1
- Room for many improvements | 1
- Part of the future | 1

Effect Sizes of Outcome Measures
The effects of treatment on a number of potential outcomes were analyzed based on complete data. No imputations were used. Both the within and between-group Cohen d values suggested, at best, small effects. The largest between-group effect size ($d=0.36$) was achieved for the EQ-5D-VAS, and the effect was mainly dependent on the decrease in the control group. In the linear regression analysis, only the number of blood glucose tests per day was significant, indicating 0.57 more tests per day in the intervention group than in the control group (adjusted beta=0.57, 95% CI 0.09-1.06). This effect resulted from a reduction of tests per day in the control group, while the treatment group remained at a stable level. See Table 5.
Table 5. Complete case analyses of outcome measures.

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Treatment group</th>
<th>Control group</th>
<th>Between group (post), d<sup>a</sup></th>
<th>Linear regression analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline, mean (SD)</td>
<td>Post, mean (SD)</td>
<td>n</td>
<td>Within-group, d</td>
</tr>
<tr>
<td>HbA<sub>1c</sub> (mmol/mol)</td>
<td>50.1 (6.91)</td>
<td>49.3 (7.15)</td>
<td>20</td>
<td>-0.11</td>
</tr>
<tr>
<td>Blood glucose tests per day</td>
<td>1.27 (1.62)</td>
<td>1.23 (1.14)</td>
<td>20</td>
<td>-0.03</td>
</tr>
<tr>
<td>Physical activity per week<sup>c</sup></td>
<td>3.25 (1.8)</td>
<td>3.15 (1.8)</td>
<td>20</td>
<td>-0.06</td>
</tr>
<tr>
<td>Steps per day</td>
<td>4761 (3099)</td>
<td>5407 (3117)</td>
<td>18</td>
<td>0.21</td>
</tr>
<tr>
<td>EQ-5D-VAS (1-100)</td>
<td>55.1 (22.8)</td>
<td>57.8 (25.5)</td>
<td>18</td>
<td>0.11</td>
</tr>
<tr>
<td>Total DDS<sup>d</sup></td>
<td>2.45 (0.83)</td>
<td>2.35 (0.76)</td>
<td>20</td>
<td>-0.12</td>
</tr>
<tr>
<td>Total DSMQ<sup>e</sup></td>
<td>6.62 (1.34)</td>
<td>6.59 (1.53)</td>
<td>19</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

^aThe posttreatment between-group effect size was adjusted for baseline values.
^bThe difference between groups after treatment was adjusted for age, sex, and baseline values of the respective measure. The control group is the reference.
^cNumber of times, in the last month, the participant performed exercise for more than 30 minutes.
^dDDS: Diabetes Distress Scale.
^eDSMQ: Diabetes Self-Management Questionnaire.

Discussion

In this feasibility study, we explored the prerequisites for conducting a larger study (full-scale RCT) to investigate the effect of the smartphone app Sukaribit on glycemic control. Of the 5 prespecified progression criteria, only 1 was fully met, and 1 was partially met. This indicates that improvements should be considered both regarding study procedures and the intervention before further evaluations. The effect sizes were generally small. Given the low amount of participant activity, this was to be expected.

Another way to facilitate the recruitment process could be to add inclusion or exclusion questions on the study-specific website to better be able to reach the right target group.

Adding to the loss of potential participants in the early recruitment phases, the proportion of eligible and initially willing people who did not finally start participating was also slightly lower than that specified in criterion 2 (76% vs 80%). However, we could relatively easily compensate for these losses in recruitment with a longer and more aggressive recruitment campaign and by reconsidering the arguments for the BMI exclusion criteria.

Feasibility of Recruitment and Data Collection

Considering the recruitment of participants, the number of responses to the advertisements met and even exceeded that specified in criterion 1. However, the proportion of people who could not be reached or were ineligible to participate due to criterion 2 was slightly higher than ideal. Some alterations to the exclusion criteria were already made during the recruitment phase of the study (ie, including people with an HbA_{1c} <50 mmol/mol or age >65 years). This could potentially have resulted in the inclusion of participants with relatively well-managed diabetes (HbA_{1c} <50 mmol/mol) and participants with less technological experience (age >65 years) The remaining exclusion criterion of a BMI <25 kg/m² resulted in the largest number of exclusions. This was thought to exclude participants who would not likely benefit from the intervention. Although data collection from self-reported questionnaires worked well, meaning that progression criterion 3 was partially met, the collection of HbA_{1c} data through home testing kits did not work well. The first problem was the long administration time. The mean time from sending the kits out until the results were received by the project team was 16 days, with the main delay appearing to be at the participant’s home. There was also a large amount of missing data due to both defective tests and missing tests, even though several manual reminders were sent. Hence, there is a need to make the collection of HbA_{1c} data more reliable and efficient. Previous studies have also reported difficulties using these test kits [26]. Better or additional instructions, more telephone reminders, another test kit brand, or another lab are things to consider. Most likely, the biggest advantage can be gained by improving the participant handling of the test and posting. Other ways to handle this could be to...
conduct this kind of trial within the health care system so that the blood test is managed by health care professionals and not by the participant. Another thing that we could have done differently is to not have HbA\(_1c\) as an inclusion criterion. In a full-scale trial, the participant’s glycemic control at the start of the intervention could be a minor issue, since it is the effect of the intervention (the difference) that is measured.

Feasibility and Acceptability of the Intervention

Not all eligible participants who signed up for the trial started the intervention (progression criterion 4). We do not know the reasons for this; possibly, they just regretted the enrollment. When or if conducting a larger study, the possibility that not all who are accepting of study participation will actually join the study needs to be considered.

A few of the participants in the qualitative evaluation thought that the app improved self-care, but the majority did not think so. Many participants appeared to have been less active than anticipated, especially based on the amount of diagnostic data and messages sent to the physician. This was progression criterion 5, which was not met. Some participants described technical issues that interfered with the use of the app (e.g., lack of access to pedometer data in the app as well as difficulties logging medications and viewing summary features). These problems could most often be related to the iOS version. This could have had an impact on user motivation leading to less activity. Participants also suggested improvements in the message function and added features when logging data (e.g., in the calendar function, graph) in order to make the app more user-friendly. For the app to be beneficial, it is important that it is used. Previous studies [12] have shown that unsatisfied users will be less active and therefore will not benefit from using this kind of app. Multistep tasks, difficult system navigation, limited functionality, and limited interaction are generally the most common and important usability problems.

To improve user activity, the instructions given to the participants could be improved or routine follow-up telephone calls could be conducted with the participants in the treatment group. The intervention itself could have been more specific, with more guidelines for the participants to enhance their participation, and that might have led to more active self-care. However, this might have been perceived as a bigger effort. Nevertheless, the basic features of the app (i.e., self-monitoring and facilitating patient-caregiver communication) appear to be valued by participants. For some, it facilitated a shift in routines toward more frequent blood glucose measurements and a larger understanding of the underlying causes of variations in their blood glucose levels. A feature that may enhance patient engagement is personalized content; for example, individual messaging between the caregiver and user seems to have positive effects in other studies. However, this is something that has not been adequately studied [27].

Effect Sizes

The effect sizes were small or not existing. Due to the feasibility concerns already raised, it would be premature to calculate a sample size for a full-scale RCT based on these results. If one still would, the only significant result was the number of blood tests, which had an effect size of 0.19. This would result in a necessary sample size of 870 (435 per study group; power=.80, \(\alpha=.05\)). Based on the HbA\(_1c\) results, the required sample size would be close to 1000. One could, based on the almost nonexistent effect sizes, reconsider the choice of self-rated outcome measures. However, with the low activity levels, it is difficult to say if the measures were not sensitive enough or if the intervention did not have a large enough impact.

Clinical Significance

The results of this study demonstrate the importance of conducting a feasibility trial in order to avoid unnecessary financial as well as study burden for those involved. In order to proceed with a larger clinical trial, a number of problems both in study design and the intervention, as described in the previous sections, need to be addressed. The next step then is to perform a sufficiently powered RCT. If the results are favorable, this will be the first step toward clinical evidence for the intervention, and a new digital treatment helping people to better manage their type 2 diabetes may be available shortly [28].

The participants who signed up for this study were particularly interested in mobile apps; therefore, the results from this study are applicable for patients with type 2 diabetes who want a digital aid. The app could complement standard care and possibly increase empowerment and self-care management. The main advantage of this app is that it enables a new and, maybe, faster way for communication between the person with diabetes and the diabetes nurse or general practitioner. This app, along with other available apps, could be suitable for health care now as well as in future, more digital health care [29].

Limitations

The smartphone app needed improvements during the trial period. Both the participants and study physician experienced development problems. This probably affected the participants’ experiences with the app. Another possible area of development is of the intervention itself, perhaps with a bigger focus on lifestyle and possibly with other professions involved such as a dietitian, physiotherapist, or diabetes nurse. A possible bias in this study was that the study physician was part of the study team. Since she followed the study protocol and was not involved in the data collection, we believe this issue to be of minor importance. However, an independent physician or diabetes nurse would be preferable. The most preferable option would have been to involve the participants’ own family physician or diabetes nurse, who would have had personal knowledge of the patient. Another bias could be that the participants who signed up for this study were particularly interested in mobile apps. Therefore, the results from this study are applicable for people with type 2 diabetes who want a digital aid and not for the entire population.

Strengths

A strength of this feasibility study is that the trial was rather large and comprehensive for being a feasibility trial. Another strength is that the app and study methods have been evaluated in several ways with both quantitative and qualitative data, and the evaluation placed a lot of emphasis on the participants’
views. It is important to use different types of methods and validated instruments to get a more comprehensive evaluation of a diabetes app [30].

Conclusion

Recruitment of participants to a future fully powered study may work with adjustments. The collection of HbA1c using home testing constituted a major problem, and an alternative strategy for this measure is warranted. Finally, the app was not used by participants as intended, and further development is needed. In summary, in order to proceed with a larger randomized study, the app and study procedures need improvement.

Acknowledgments

The authors would like to thank the study participants. We also thank Michael Nahashon of Maishabit AB for making the Sukaribit app available and providing technical support.

The study was funded by Uppsala University Innovation and Uppsala University Project AB.

Authors' Contributions

EMGO and MH conceptualized the study. EMGO, UP, and MHed supervised the study. TL performed project administration. EMGO and MH designed the methodology. EMGO curated the data. CJ and EMGO performed the formal analysis. CJ created the visualizations. CJ and TL wrote the original manuscript draft and performed the investigation. CJ, MH, UP, MHed, and EMGO reviewed and edited the manuscript.

Generative AI was not used in any portion of the manuscript writing.

Conflicts of Interest

None declared.

References

Abbreviations

- **CONSORT**: Consolidated Standards of Reporting Trials
- **DDS**: Diabetes Distress Scale
- **DSMQ**: Diabetes Self-Management Questionnaire
- **HbA1c**: hemoglobin A1c
- **RCT**: randomized controlled trial
- **U-CARE**: Uppsala University Psychosocial Care Program
Office Workers’ Views About the Uses, Concerns, and Acceptance of Hand Hygiene Data Collected From Smart Sanitizers: Exploratory Qualitative Interview Study

Sophie Rutter¹, PhD; Sally Sanger¹, PhD; Andrew D Madden¹, PhD; Sukaina Ehdeed¹, PhD; Catherine Stones², PhD

¹Information School, University of Sheffield, Sheffield, United Kingdom
²School of Design, University of Leeds, Leeds, United Kingdom

Corresponding Author:
Sophie Rutter, PhD
Information School
University of Sheffield
The Wave 2, Whitham Road
Sheffield, S10 2AH
United Kingdom
Phone: 44 0114 222 2659
Email: s.rutter@sheffield.ac.uk

Abstract

Background: COVID-19 and the prospect of future pandemics have emphasized the need to reduce disease transmission in workplaces. Despite the well-established link between good hand hygiene (HH) and employee health, HH in nonclinical workplaces has received little attention. Smart sanitizers have been deployed in clinical settings to motivate and enforce HH. This study is part of a large project that explores the potential of smart sanitizers in office settings.

Objective: Our previous study found that for office workers to accept the deployment of smart sanitizers, they would need to find the data generated as useful and actionable. The objectives of this study were to identify (1) the potential uses and actions that could be taken from HH data collected by smart sanitizers (2) the concerns of office workers for the identified uses and actions and (3) the circumstances in which office workers accept HH monitoring.

Methods: An interview study was conducted with 18 office workers from various professions. Interview questions were developed using a framework from personal informatics. Transcripts were analyzed thematically.

Results: A wide range of uses of smart sanitizer data was identified including managing hygiene resources and workflows, finding operating sanitizers, communicating the (high) standard of organizational hygiene, promoting and enforcing organizational hygiene policies, improving workers’ own hygiene practices, executing more effective interventions, and identifying the causes of outbreaks. However, hygiene is mostly considered as a private matter, and it is also possible that no action would be taken. Office workers were also concerned about bullying, coercion, and use of hygiene data for unintended purposes. They were also worried that the data could be inaccurate or incomplete, leading to misrepresentation of hygiene practices. Office workers suggested that they would be more likely to accept monitoring in situations where hygiene is considered important, when there are clear benefits to data collection, if their privacy is respected, if they have some control over how their data are collected, and if the ways in which the data will be used are clearly communicated.

Conclusions: Smart sanitizers could have a valuable role in improving hygiene practices in offices and reducing disease transmission. Many actionable uses for data collected from smart systems were identified. However, office workers consider HH as a personal matter, and acceptance of smart systems is likely to be dynamic and will depend on the broad situation. Except when there are disease outbreaks, smart systems may need to be restricted to uses that do not require the sharing of personal data. Should organizations wish to implement smart sanitizers in offices, it would be advisable to consult widely with staff and develop systems that are customizable and personalizable.
Introduction

Hand Hygiene in Workplaces

Recent pandemics (such as severe acute respiratory syndrome 1, H1N1 influenza, Middle East Respiratory Syndrome, and COVID-19) have demonstrated that public health threats are synonymous with occupational health threats [1]. Good hygiene protects people from acquiring and spreading gastrointestinal infections and respiratory infections [2]. When employees work in close proximity with others (colleagues, clients, and customers), share spaces (such as offices, kitchens, and break rooms) and share resources (such as computers, photocopiers, water coolers, and sinks), infectious diseases can be easily spread [3]. Hygiene practices such as using sanitizer, washing hands, and disinfecting surfaces have proved to be effective in reducing pathogen spread [4,5] and reducing illness in workplaces [3] and may be adopted more readily than other public health measures such as mask wearing [6].

Several studies have found that good hand hygiene (HH) reduces both absenteeism and presenteeism (attending work when ill), increases productivity [3,7], reduces the pressure on health services, and helps to tackle antimicrobial resistance through the reduced use of antibiotics [8]. How much time is lost to work owing to poor hygiene is difficult to quantify [9] as hygiene-related absences may be brief organizations tend not to report them to authorities, and it is often not possible to directly connect an acquired illness with poor hygiene practice (eg, without specific tests, what led to an employee’s stomach upset is speculative). Nonetheless, many of the studies cited previously indicate that much time is lost to work because of poor hygiene practices. Furthermore, before COVID-19, for many workers, attending work was rarely considered a risk to health, but now, employees may be highly anxious about infections in the workplace [10].

The COVID-19 pandemic led to a proliferation of guidance about reducing infection transmission in the workplace [7,11,12]. People were, and still are in some settings, encouraged to work from home where possible, keep socially distant, wear masks, wash and sanitize hands, and get vaccinated. Workplaces can also use 3 strategies to control infections [13]. First, they can try to prevent infections from entering the workplace through health screenings and by reducing or eliminating contact between workers (eg, working-from-home policies). Second, workplaces can help stop the transmission of infection through ventilation strategies and by erecting barriers and screens to prevent movement of aerosols. Finally, workplaces can help protect the worker from acquiring infections with personal protective equipment. However, despite many of these measures being introduced into workplaces, infectious disease transmission remains as a challenge [1]. This matters because it is vital that workplaces are in a position to adopt infection prevention and control strategies as and when required for current and future infectious diseases [1].

Smart Sanitizers

Smart sanitizers are already on the market and deployed in clinical settings. In this study, we consider the potential of smart HH systems in offices. Also known as automated hand hygiene monitoring systems (AHHMS) and electronic monitoring systems, smart sanitizers are Internet of Things devices. The device (the “thing”) stores and dispenses soap when activated by a sensor. Sensors within the device collect information about soap consumption (activation of the soap dispenser and fill level of the dispenser). When networked with other sensor data, such as movement of people (eg, entry to a room or building) and person data (such as staff ID cards), the smart system can monitor a person’s HH based on where they are and what they are doing. The individual or aggregated data can then be shared on personal devices and apps, with sanitizer users and anyone else on the network. The system can also send messages and reminders and give feedback to registered users. The basic functionality has been established for >10 years and continues to develop and evolve. Recently, there has been a move to develop smart systems that can measure hand washing quality (correct technique and adequate time) [14].

Smart sanitizers have been adopted in clinical settings where HH is operationally crucial to help stop the spread of health care–associated infections, and there is a requirement to audit health care workers’ HH when caring for patients [15,16]. In clinical settings, smart sanitizers are generally considered to be effective in increasing HH, at least in the short term [17]. As HH is an important part of health care workers’ professional practice, many health care workers welcome the use of technology to improve hygiene adherence [18,19]. However, there are concerns about the loss of privacy and the potential for coercion, with many health care workers expressing a preference for systems that do not collect any personal data [14,19,20]. Health care workers are also concerned that the data collected may not accurately represent hygiene practices if the technology is prone to error, deliberately manipulated, or the context of HH (or rather, lack of HH) is not taken into account [14,18-20]. Furthermore, there are concerns about infrastructure costs and the potential for side effects of using systems that use radio frequency interference and UV light [14].

There has been little deployment of smart sanitizers outside clinical settings. Whether office workers would be as open as health care workers to adopting this technology needs further investigation, particularly because acceptance of smart sanitizers is dependent on organizational culture and how monitoring is implemented [17,18]. Moreover, as the professional concerns differ, how the technology is deployed and used in office settings may be different.

In 2021, Zivich et al [21] conducted a feasibility study for collecting HH data in offices and data about person-to-person contacts. Sensors were installed in soap and alcohol sanitizers in 2 US offices, and those participating (n=43) also carried sensors. From the data collected, first, the study authors found that office workers likely overestimate the frequency of their HH practices and, second, those with supervisory roles had fewer in-person interactions than those without supervisory responsibility. The authors also found that study participants were willing to carry sensors and have their interactions tracked. However, participation in the study was not obligatory and those participating were appropriately incentivized with a US $25 gift card. It is therefore not clear whether these office workers would be happy with such tracking as part of their usual working...
practices, and in fact, some study participants suggested that they would need an increase in compensation to participate in a long study. Together, these findings suggest that smart sanitizers could be useful in (1) helping office workers identify their HH practices and (2) understanding and managing disease transmission in offices. However, it is not clear whether office workers would be willing in everyday life to have their hygiene data and contacts with other people collected.

Further to this, we investigated the attitudes toward the use of smart sanitizers in the workplace using a survey of workers in nonclinical settings (n=314), followed up with a qualitative questionnaire (n=12) and interview (n=3) [22]. Survey participants were generally in agreement that at work, high standards of HH is important and that smart sanitizers could usefully inform maintenance staff when to refill. However, there was little consensus with regards to the acceptance of collecting data that would give office workers an overview of their own HH practice, allow them to compare their own practices with those of others, provide them with personal messages, and give managers an anonymized view of HH practices. What was clear from the written responses and interviews is that participants thought it important that the data should only be collected if they can be acted upon, that is, the data should not just be collected because the technology allows it. This means that, before introducing smart sanitizers to the workplace, it is necessary to identify what actions could be usefully informed by the data. This led to our first research question (RQ), for which we adopted an exploratory approach to identify all the potential actions: RQ1—What actions could be taken from HH data collected by smart sanitizers?

However, whether these actions would be accepted by office workers requires further investigation, because survey participants were also concerned that HH data could be misused and misinterpreted. In particular, participants were concerned that collecting HH data could be an invasion of privacy, and the data collected may not be accurate. What HH data are needed will depend on how the data are to be used; therefore, it would be helpful to know the concerns associated with possible actions. This led to our second RQ: RQ2—For the actions identified, what, if any, are the data collection concerns of office workers?

Finally, the survey was conducted during the pandemic (July 2021 to August 2021), at a time when participants may have considered HH as particularly important. Concern for their health could have influenced the extent to which participants were willing to accept monitoring. When else, if ever, office workers would be more likely to accept smart sanitizers is not known. This led to our final RQ: RQ3—Under what circumstances would office workers accept HH monitoring?

Methods

Overview

This study was conducted as part of a large project to develop a smart hand sanitizer for the office environment. The project is a collaboration between the University of Sheffield (Information School) and the University of Leeds (School of Design), together with Savortex (a manufacturer of HH technology). The study reported in this paper, including data collection and analysis, was conducted solely by the universities.

Recruitment

This was a qualitative study to identify the potential uses of smart sanitizers from the perspective of those who work in offices all or most of the time. Interviews were conducted either using video link or via telephone, and they occurred between January 2022 and March 2022. The questions were pilot-tested with 2 participants known to the project team. Participants from a previous survey of attitudes toward the use of smart sanitizers in the workplace [22], who had expressed interest in further participation, were invited to participate in this study: 11 participants consented. To elicit a range of views, additional 7 participants were recruited using the research team’s networks. Although half of the participants (9/18, 50%) were from the education sector, sector did not account for differences in responses in the previous survey [22]. There were 18 participants in total, 3 (17%) of whom had some responsibility for hygiene within their organization (Table 1).
Table 1. Distribution of study participants based on role, sector, and responsibility for hygiene.

<table>
<thead>
<tr>
<th>Participant number</th>
<th>Role</th>
<th>Sector</th>
<th>Responsibility for hygiene</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Health care professional (office based)</td>
<td>Private health services</td>
<td>No</td>
</tr>
<tr>
<td>P2</td>
<td>Educator</td>
<td>Education</td>
<td>No</td>
</tr>
<tr>
<td>P3</td>
<td>Administrator</td>
<td>Local government</td>
<td>No</td>
</tr>
<tr>
<td>P4</td>
<td>Administrator</td>
<td>Health services</td>
<td>No</td>
</tr>
<tr>
<td>P5</td>
<td>Researcher</td>
<td>Education</td>
<td>No</td>
</tr>
<tr>
<td>P6</td>
<td>Social worker</td>
<td>Local government</td>
<td>No</td>
</tr>
<tr>
<td>P7</td>
<td>Educator</td>
<td>Education</td>
<td>No</td>
</tr>
<tr>
<td>P8</td>
<td>Disability liaison officer and educator</td>
<td>Education</td>
<td>No</td>
</tr>
<tr>
<td>P9</td>
<td>Conveyancer</td>
<td>Legal</td>
<td>No</td>
</tr>
<tr>
<td>P10</td>
<td>Director</td>
<td>Research and design</td>
<td>No</td>
</tr>
<tr>
<td>P11</td>
<td>Facilities manager</td>
<td>Education</td>
<td>Yes</td>
</tr>
<tr>
<td>P12</td>
<td>Hearing impairment teacher</td>
<td>Education</td>
<td>No</td>
</tr>
<tr>
<td>P13</td>
<td>Not known</td>
<td>Media and culture</td>
<td>No</td>
</tr>
<tr>
<td>P14</td>
<td>Deputy facilities manager</td>
<td>Education</td>
<td>Yes</td>
</tr>
<tr>
<td>P15</td>
<td>Facilities manager</td>
<td>Soft service industry</td>
<td>Yes</td>
</tr>
<tr>
<td>P16</td>
<td>Educator</td>
<td>Education</td>
<td>No</td>
</tr>
<tr>
<td>P17</td>
<td>Finance officer</td>
<td>Local government</td>
<td>No</td>
</tr>
<tr>
<td>P18</td>
<td>Educator</td>
<td>Education</td>
<td>No</td>
</tr>
</tbody>
</table>

Data Collection

To prepare for data collection, we turned to the field of personal informatics. Personal informatics systems “help people collect personally relevant information for the purpose of self-reflection and gaining self-knowledge” [23]. As such, smart HH systems can also be considered as personal informatics systems because individuals can use them to collect and track data about their HH practices. A semistructured interview guide was developed based on the stage-based model by Li et al [23]. This model is widely used in the design of personal informatics systems and holistically describes, from a user perspective, the stages of collecting and using personal data. A set of main questions (Table 2) relating to the 5 stages (preparation, collection, integration, reflection, and action) was prepared, together with several possible prompts. To allow for the identification of all the potential uses of HH data, we did not restrict the discussion to smart sanitizers that are currently on the market; at the beginning of the interview, participants were told that “By hand hygiene we mean using any kind of hand cleaning facility. This includes hand washing, using a wall sanitiser or using your own sanitiser from a bottle or a wipe.”

Table 2. Study interview guide based on the stage-based model of personal informatics by Li et al [23].

<table>
<thead>
<tr>
<th>Stage-based model of personal informatics</th>
<th>Main question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>How could hand hygiene data be used and what data should be collected?</td>
</tr>
<tr>
<td>Collection</td>
<td>How should hand hygiene data be collected?</td>
</tr>
<tr>
<td>Integration</td>
<td>How should the collected data be prepared and processed?</td>
</tr>
<tr>
<td>Reflection</td>
<td>Who should see the data and how should this be presented?</td>
</tr>
<tr>
<td>Action</td>
<td>What might you do as a result?</td>
</tr>
</tbody>
</table>

Data Analysis

Data were analyzed inductively using a “codebook” approach to thematic analysis [24], whereby a structured coding framework is used to analyze the data. Preliminary open coding was performed by the second author. At a follow-up meeting, developing codes were discussed with the first, third, and fourth authors and an initial codebook was compiled. The second author completed the coding of the remaining transcripts. The first author mapped the open codes to the RQs. This was then further reviewed by the second author.

Ethical Considerations

This study received ethics approval (038337) from the University of Sheffield Research Ethics Committee on February 16, 2021. All study participants received an information sheet about the project, and they were given opportunities to ask questions and advised that they could withdraw with no negative
consequences. All participants gave their informed consent. For confidentiality, their data are anonymized.

Results

RQ1: What Actions Could Be Taken From HH Data?

Overview

An exploratory approach was adopted for the first RQ, and all potential actions were identified. It was thought that HH data could be acted upon to (1) manage hygiene resources and workflows, (2) find operating sanitizers, (3) communicate the (high) standard of organizational hygiene, (4) improve own practice, (5) promote an organization’s hygiene policy, (6) enforce organizational policy, (7) target the training according to needs, (8) execute more effective interventions, and (9) identify the causes of outbreaks, and whether (10) any action would be taken was also considered.

Manage Hygiene Resources and Workflows

Facilities managers could find HH data useful when planning and maintaining hygiene facilities, including the purchase and decommissioning of sanitizers, purchase of soap and gel, optimal placing of sanitizers, and identification of when maintenance is required. Maintenance data could also make work processes and workflows more efficient:

We then don’t have to send a cleaner every hour for no reason. [P15]

Find Operating HH Facilities

If stock fill level data were shared with everyone, building users could act upon the data to find operating HH facilities:

It’s a bit like “FindmyPC” isn’t it?... If there’s nothing [soap and gel] on [place] I can go to [place] and I can get the stuff there. [P11]

Communicate the (High) Standard of Organizational Hygiene

Organizations could use HH data as tangible evidence to reassure employees and visitors that there is a high standard of HH in the building. This could be particularly useful for organizations that work with vulnerable people:

This last calendar month we had 95% usage of all of our machines [that would communicate] we’re looking after our staff and the compliance of that. [P15]

Improve Own HH Practice

Through managing, tracking, and understanding their hygiene practices, including evaluating their HH technique, individuals could act upon the data to improve their HH practices:

Like, let’s say you have a ring, it’s not very clean around the ring, I would then know and I would spend more time obviously. [P13]

If the system collected contextual data (including what the person is doing at the time, how they are feeling, and the current risk of catching an infection), the system could usefully identify trends, give insights, and make recommendations that would enable individuals to further act upon their HH data:

Recommendations on my hand washing behaviour, like, you know: “In general, you do not seem to wash your hands very well on Tuesdays or on Wednesdays.” That might help me understand why that’s the case. Another thing that might be useful...then it might be nice to know if I’m washing hands when I’m meeting people more or if I have more meetings. So if it’s connected with the calendar then it might be able to give some more insight into why I think I’m not washing my hands more, when I’m washing them and where I’m going [next] so that might be good. [P2]

Participants thought that having access to other people’s HH data could enable people to benchmark and contextualize their own results:

If I could compare my handwashing with somebody else’s, and if mine looked that I was hand-washing too often, then I’d have to look at if we’re all doing the same number of visits in a day, am I sanitising my hands too much, but then if I’m not getting infections at the same rate as other people then maybe I’m not hand sanitising my hands too much. [P12]

Promote an Organizational Hygiene Policy

Organizations can use smart systems to communicate their HH policy. Smart systems could help promote policies by sending reminders and keeping employees motivated through comparisons, competitions, and other incentives:

I suppose they should have some sort of benchmark, you know, like “The rest of the organisation are all doing it really frequently and doing it for the right duration, but your team aren’t” so they have to have some sort of like benchmark as to where they fall on a scale, as it were. [P4]

It was thought that smart systems could be useful when new routines are introduced:

If there were changes in expectations, such as more restrictions were put in place, if there was another outbreak. [P6]

This would also apply when new staff join the organization.

Enforce Organizational HH Policy

Organizations can use smart systems to identify compliance and changes in compliance. If a lack of compliance has been identified, organizations could target particular events (such as after using the toilet), individuals, teams, and departments to set hygiene goals that align with their policy:

Showing trends, showing ups and downs, especially the downs, might highlight points to people to make them realise...you can use that to some effect then, can’t you, if you have a particular outbreak in a particular team or whatever. It might prompt people to take a bit more action to it maybe. [P9]
The data could also be synced with door entry systems to prevent people from entering spaces (such as food preparation areas), but none of the participants (0/18, 0%) thought this was a good idea.

Target HH Training According to Needs

An analysis of HH data could also help to identify who needs training and what their training needs are:

> If they’re looking at training needs and compliance and safety and all those sorts of things, could use those to identify if there are any gaps. [P4]

Execute More Effective Interventions

Organizations and researchers could evaluate the effectiveness of interventions in real time and adapt them according to the results:

> It doesn’t have to be Coronavirus, it could be the flu or something, it would be useful to see that, and to see how people responded to prompts and reminders. [P6]

Identify the Causes of Outbreaks

Participants also discussed the possibility that if HH data were combined with other health data, it could enable researchers to gain a better understanding of the impact of HH on health and the cause of infectious outbreaks:

> Reporting that there’ve been a lot of stomach upsets, and that was linked in with the data on hand washing, which was very low, then you could put two and two together, and that could be useful. [P5]

No Action

Whether any action would be taken was also discussed. HH was often thought to be a personal matter and the responsibility of the individual. Several participants stated that they would not say anything or take any action if they knew their colleagues had inadequate HH practices:

> I do think it’s pretty disgusting if people don’t wash their hands, [pause] but it’s not for me to tell them to...I’ve just got to be responsible for myself. [P17]

RQ2: For the Actions Identified, What, if Any, Are the Concerns of Office Workers?

Office workers are concerned that (1) intentions and messages could be misinterpreted and that data could be used for (2) bullying and coercion, (3) unintended purposes, (4) inaccurate representation of HH practices, and (5) incomplete representation of HH practices. Next, we have discussed which actions raise the concerns.

Intentions and Messages Are Misinterpreted

It was thought that messages generated by a smart sanitizer may not be received as intended. Using HH data to reassure building users about the status of HH in organizations could instead make them feel anxious:

> Then again it could let people, like I say, who are socially anxious think “Oh my God, no-one’s cleaning their hands, it’s a really dirty place.” You will get people that will freak out about that. [P3]

Although organizations may install smart HH systems to reassure office workers, office workers may feel that monitoring could imply that a person is not able to manage on their own. The installation of devices that monitor HH could be construed as a message conveying lack of trust:

> It felt like if we monitored something like that, then it would damage trust, it would make people less independent and capable of taking care of their health because it would set an expectation that someone else is going to monitor it. [P10]

Bullying and Coercion

Many interviewees felt that the data would be of particular interest to managers, but using the data to promote and enforce HH policy could lead to bullying, be divisive, and encourage rivalries:

> I’d be concerned in some bits of the organisation that I worked in, that some managers would use it punitively to, not necessarily call out people publicly, but use it to...bully people or shame them or whatever. [P4]

Benchmarking one’s own HH against others was thought to be helpful in improving one’s own HH practice, but it was also thought that office workers may feel harshly and unfairly judged:

> If my whole team does it, then if I don’t do it then I’m gonna surely [be] judged for, like, not cleaning my hands even though it [my reason for refusing] has nothing to do with that. [P13]

Used for Unintended Purposes

Participants thought that HH data could be (deliberately or inadvertently) used for purposes that do not benefit the organization or their employees. Moreover, HH data may reveal other personal information that would not be appropriate for organizations to know:

> You might feel forced to say, “Oh, actually, I’ve got a bit of morning sickness. I think I might be pregnant,” and then you might have a miscarriage or something like that, so then it could – that might all – oh, dear, yeah. Or you might – say it could be an emotional reason why you’re going to the toilet. You might be going because you’re very upset about something. But I think, yeah, it could reveal all sorts of things about human behaviour, and actually, in an unintended way, reveal things about that person that are very private. [P5]

There was some concern that manufacturers of sanitizers and cleaning products would use the data to increase sales:

> If the outcome is, how can we sell more hand sanitizer, what if we connected our hand sanitizer product to the internet...I don’t think that’s a good outcome, and I don’t think it comes from a good place. [P10]
Inaccurate Representation of HH Practices

Whether the data collected would be an accurate representation of HH practices and, therefore, whether any conclusions can be drawn from the data collected was also a concern. Participants worried that the use of smart systems could be manipulated, and therefore, the resulting data would be inaccurate and would misrepresent organizational HH practices:

I know some people who are just going to go round and just put their hand under every time they walk past just so they’ve triggered it whether they’re washing their hands or not. [P12]

Incomplete Representation of HH Practices

Participants expressed the concern that smart systems could not capture all the data necessary to represent all HH practices, and this also adds to concerns about whether any conclusions can be drawn from the data. First, smart systems alone cannot capture all HH events (such as an employee’s use of their own sanitizer and wipes, which may be a personal preference or a necessity, eg, if a person has allergies to a particular substance):

Maybe you think, “I don’t want to touch the wall hand sanitizer because everybody else has touched that, so I’m going to stick to my personal sanitizer,” in which case, that wouldn’t capture any of that, so you would need both, for a true figure. [P5]

Second, employees may work from home or in other locations outside the aegis of the organization, where it would be difficult for smart systems to capture HH events. Furthermore, for improving their own HH practices, people would want data beyond the work context:

How long I’m spending washing my hands, gaps in between, but also if there’s any variation in days. So, I mean, Saturday and Sunday might not be different if I’m out and about, on a personal level, than the Thursday or Friday if I’m working. I would expect there to be, but if I was shopping, and I went in 20 shops on a Saturday, that might reflect that I was handwashing the same as I was in a working day. [P12]

Finally, to fully interpret HH practices, it would also be necessary to collect data about what the employee was doing at the time and where. Otherwise, there is a danger that the system may incorrectly interpret HH practices as missing. Participants also questioned whether using HH data to draw comparisons between different departments would be meaningful, as different roles may have different HH requirements:

If I’ve just come from the toilet and I’ve washed my hands and walked past a hand sanitiser, if I got a pop up on my machine...that says “You’ve been past a hand sanitiser and you haven’t used it” I would expect to be able to interact with it and explain to it why I haven’t used it. [P4]

If it went like comparing groups within an organisation, then how do you know you’re comparing like with like? [P5]

RQ3: Under What Circumstances Would Office Workers Accept HH Monitoring?

The concerns expressed previously suggest that there will likely be some resistance to many of the uses of HH data. However, office workers suggested that they are more likely to accept HH monitoring (1) if they or others could not be identified, (2) in situations where HH is considered important, (3) when events considered as private are not recorded, (4) when data collection can be customized, (5) when data are used for a beneficial purpose, and (6) when uses of the data are clearly communicated.

When Identity Is Protected

Participants expressed little or no concern about organizations accessing data from sensors in which no personal data are collected and were therefore generally accepting of the uses of HH data for resource planning purposes.

Most participants thought that data about individuals should not be shared with others. However, 11% (2/18) of the participants thought that attributed personal data should be seen by senior managers (P4 and P6) and another 11% (2/18) thought that attributed personal data could be seen by team managers also (P12 and P14):

So with the data and reports, the only things that I think that someone else should be seeing about me are aggregate. So nothing where people can be identified. [P2]

Senior management team or board level or Health and Safety Executive should have all the information by teams or by individuals but the individual managers...I wouldn’t want my manager of my department to have individualised data that makes them be able to say “[name] is not washing her hands often enough.” I would prefer that it’s anonymised at that level. [P4]

Although participants were generally uncomfortable with personal data being shared with others, they were mostly comfortable with personal data collection if they or their colleagues could not be identified in any reports:

I think aggregated reports should be available to everyone, as a comparison purpose. I think maybe a little bit more detailed aggregated reports, for example, with a maximum, minimum, with a band, with a percentile band, with the longer period of change can be available to health and safety officer, can be a department manager, or what they call the senior manager group, steering committee. [P8]

Situations Where HH Is Considered Important

Monitoring was thought to be more acceptable when the importance of HH is clear. Therefore, monitoring was seen as more acceptable in certain settings, notably, health care and food preparation, and for certain teams or roles, for example, food technicians and carers:

If I worked in a food environment, it’d be very different. [P17]
It was also thought more acceptable during infectious disease outbreaks:

Suppose there’s another virus outbreak and it’s demonstrated that hand washing is key to preventing its spread, and that you’re doing it for the public good...if it was, like, three years ago, I would’ve said this is ridiculous. Now, I think maybe, OK, in the right circumstances, I would go along with it, because the context seems to have changed. [P7]

It was thought to be acceptable at places in buildings where HH is important such as food preparation areas and toilets:

I would like to know that the people preparing my food wash their hands, that would be a good thing to know, because it’s crucial for there. The rest of them, I don’t need to know that, I don’t think...Although, I would prefer if people washed their hands before they left the toilet -- if an alarm went off there. [P5]

When Events Considered Private Are Not Recorded

Although it was thought helpful to capture HH data in locations where HH is important, data capture was felt to be more acceptable in some parts of the building than others. For example, monitoring HH on building entry was less controversial than monitoring outside a toilet:

Some people might think that it’s a bit of an invasion of privacy, being monitored in the toilet as well. Is there nowhere safe? Is there nowhere that I can just not be monitored? [P4]

When Data Collection Can Be Customized

It was thought that office workers would be more likely to accept monitoring if they can customize the system and control what data are collected and how they are presented:

I think perhaps like with the alerts, perhaps [they] could have the option to turn that on [recommendations, encouragement, advice] if you so desired, but it shouldn’t be a requirement. [P5]

The system should allow users to correct any errors in data collection and add explanations, so that managers do not unfairly target individuals:

So that you’ve got the chance to correct yourself if you need to, like, you see I would be going back to my computer and I would expect then to have a message on my computer that says “You’ve walked past a hand sanitiser and you didn’t use it. What was the reason?” [P4]

When Data Are Used for a Beneficial Purpose

Participants felt that data need to be collected for a purpose. The purpose needs to be justified, and the data should be retained only for as long as necessary. Furthermore, systems should be used to support individuals rather than punish them:

If there was a real, proper reason that they were collecting it for, then they could collect it for the relevant time period. So if there was some sort of disease outbreak and it lasted six months, then collect

it for six months...it has to be justifiable...it’s not right to just collect it and hold that data. [P5]

It depends on what people perceive is the overall intention of whoever’s putting this policy in place. If it’s used--., if the perception is it’s used to beat people up about hygiene because it’s going to lead to a poor sick record or more transmissible covid than that is a different intention to “Well, I’m really bothered about how sore your fingers are becoming with all your hand washing.” [P12]

When Uses of the Collected Data Are Clearly Communicated

Participants recommended that the uses of the data need to be transparent and clearly communicated including how the data will be used and reported, who has access to what data, where and for how long the data are stored, and whether it is possible to opt out of data collection:

Why they’re doing it, who’s going to hold the data, who’s going to see it, how’s it going to be reported, who will it be shared with, yeah, where will the data go, how long will they hold the data for, and can I opt out, how do I opt out. [P2]

Discussion

Principal Findings

Our previous study found that office workers thought HH data should only be collected if they can be acted upon [22]. In this study, office workers were able to identify several actions that could usefully be informed by HH data (RQ1). These included using the data to manage hygiene resources and workflows, find operating sanitizers, communicate (high) organizational standards of hygiene, improve workers’ own practice, promote and enforce an organization’s hygiene policy, target the training according to needs, execute more effective interventions, and identify the causes of outbreaks. However, hygiene is mostly considered as a private matter, and it is possible that no action would be taken in practice. Furthermore, office workers expressed concerns (RQ2) that the data could be used to bully, to coerce and for unintended purposes. Moreover, the data could be misinterpreted, inaccurate, and an incomplete representation of hygiene practices. Office workers suggested that they would be more likely to accept monitoring for the identified uses (RQ3) when their privacy is respected, they have some control over how their data are collected, and how their data will be used is clearly communicated. Monitoring is also more likely to be accepted in situations where hygiene is considered important and there is a clear beneficial purpose for data collection.

HH Is (Mostly) a Personal Matter for Office Workers

Although the findings of this study suggest that facility managers, health and safety officers, departmental managers, building occupants and visitors, hygiene resource suppliers, researchers, and those interested in public health would find HH data useful, HH was thought to be a personal matter [25]. Several office workers reported that they would not take any action if they found that their colleagues’ HH practices were inadequate. For all the uses of HH data, there was a strong
preference for personal data to be anonymized or not collected at all. However, acceptance of HH monitoring is dynamic and dependent on the situation and the context within which the data are used. The findings of our study suggest that it is much more likely to be accepted during disease outbreaks, in certain locations (eg, entrance to buildings), and in sectors (eg, health and food) where HH is important to the ethos and culture of the organization (ie, will also influence office workers). Although none of the office workers (0/18, 0%) thought it acceptable to enforce HH by restricting access to areas (by syncing HH data with door entry system data), it is possible that under extreme circumstances and in certain locations, this could be acceptable.

Need for a Shared Understanding of “Good” Office HH

For those concerned about catching infectious diseases in the workplace [10], HH data could be used to reassure visitors to a building about the high standards of hygiene within the building and to promote and enforce organizational HH policies. In health care settings, smart sanitizers are already used to audit compliance and enforce the health sector’s policy of sanitizing hands before, during, and after patient care. Overall, 3 factors are likely to make smart sanitizers more acceptable in health care settings. First, they are used to enforce an HH policy that is considered important in professional practice [18]. Second, smart sanitizers can collect data that measure the compliance with policies such as the 5 moments for hygiene [26] that can be measured using the sanitizer supplied by the organization. Third, at least at a basic level, adherence to this policy can be monitored using room and sanitizer sensors, without the need for personal data collection.

For smart systems to be adopted in offices, it would help if there were an agreed-upon understanding of what is good hygiene practice, for example, how often and where (eg, entrances to buildings and exits from toilets) hygiene should be performed. Smart systems could then be used to reassure and promote HH in offices, if the policy can be complied with using office resources and without the need to collect personal data.

Office Workers Want Insights From All Their HH Practices

Health care workers may wish to track their HH practices around patients, as good HH is part of their professional identity [18], and having access to their personal HH data could help health care workers improve their HH practice [27,28]. Given that office workers are likely to be overestimating their HH practices [21], self-tracking could be beneficial. However, office workers in this study did not link self-tracking of HH with professional expectations and standards; rather, they were interested in gaining insights into their overall HH practices including in all locations (office, home, and when they are out of the office and across all facilities (sanitizer, soap, wipes, etc). No smart system (as yet) can automatically detect HH with such detail. This would only be possible if office workers were prepared to input data manually, and this would require considerable motivation.

Office Workers Share Health Care Workers’ Concerns

Many of the concerns that office workers expressed are similar to those of health care workers. Similar to health care workers [19,20], most office workers are concerned that personal data could be mishandled or used inappropriately, and use of HH data should be clearly and transparently communicated. It would be advisable to consult with office workers early in the system design process to engage them, explain what purposes the organization intends on the data, and identify what purposes they feel are acceptable and useful.

Another concern shared with health care workers is whether smart HH systems can accurately represent HH practices, because, first, systems can be gamed and deliberately misused, and second, systems may incorrectly interpret events as missed HH opportunities because they are not registering the correct context within which the event did or did not occur [18-20]. Given the shift to more hybrid and flexible working [29], it may also be necessary to analyze HH data alongside work patterns. More generally, studies of workplace tracking have found that systems that enable employees to customize and control what data are collected are more likely to be accepted [30].

Office workers were also concerned that the data could be used for purposes other than what it was intended for. This is understandable given that misuse of technologies is widely reported in the media; for example, AirTags designed to track property have been used to stalk individuals [31].

Useful for Health Researchers

Using sensors to remotely collect HH data resolves some of the challenges for health researchers who need to evaluate hygiene interventions. Researchers may evaluate interventions by observing HH practices, but the presence of an observer may change the behavior of the person being observed, particularly because HH is a social norm. Instead, researchers may use proxy measures such as changes in soap consumption. However, manually collecting soap consumption data from organizations is time consuming, and sensors can help in saving time [32].

Although it is thought likely that poor hygiene could contribute to disease transmission in workplaces, little data are available to support (or oppose) this point [9]. Connecting smart HH system data with other health data (such as data relating to employee absence) could help researchers understand the relationship.

Data collected from digital technologies (such as mobile phones, social media networks, and search engines) have been used to communicate public health messages and monitor and control outbreaks [33]. Smart HH systems could usefully be added to the arsenal of digital data sources that have been used to support health authorities’ response to COVID-19 and any future pandemics.

When Personal Data Are or Are Not Needed

To a large extent, how well a smart HH system is accepted depends on whether personal data are collected. We next consider what data smart HH systems can collect and what is needed for the identified actions (Table 3).
For some uses of HH data, there is no need for personal data to be collected. For resource and workflow planning and to find operating sanitizers, data about soap levels and soap consumption including date, time, and location of use can be collected from sensors in smart systems without the need to collect any personal data. Similarly, smart systems can give immediate feedback to users to improve their HH technique without collecting any personal data. It is also possible to communicate the overall standard of HH in an organization without collecting personal data. Smart system data combined with data from sensors that track movement in and out of spaces can be used to identify the extent to which all employees are practicing HH and whether they use HH facilities as they move around the building (eg, at the lift and after using the toilet). The data collected could also indicate overall compliance with organizational policy and be used to identify the overall education and training needs of the organizations. The same system could also give feedback to individuals at the point where they are using the facility.

Personal data are required for several of the uses of HH data identified in this study, particularly the uses where individuals are pinpointed such as identification of individual practices and training needs and enforcement of organizational policy. Sensors that track individuals (installed on staff ID cards, apps, or other personal devices) would be necessary to capture each person’s use of a hand sanitizer (date, time, technique, and location of use) and to send reminders. However, these data can be anonymized and aggregated to identify the uses of HH facilities by different groups (not individuals) within the organization. Good practice would be to offer a manual override that would allow employees to correct any system errors. For smart systems to fully represent a person’s HH practice, it would be necessary to allow users to manually input their use of any and all hygiene facilities such as wipes and their own sanitizer gel. To capture a person’s contextualized use of HH facility (including what the person had been doing and where they had been), the system would need to connect to other personal data such as calendars and mobile phones.

Whether personal data are needed to evaluate interventions will depend on the nature of the intervention and what needs to be evaluated. Identifying the causes of outbreaks will likely also require the collection of other personal data (eg, who is ill).

Limitations
Through this interview study, a wide range of applications for HH data collected via smart systems has been identified. However, this is an exploratory study; further investigation is needed to determine whether office workers would use smart sanitizers for the identified purposes. Such studies could build on these findings to further investigate the implementation and adoption of smart sanitizers, with trials in offices.

Conclusions
Smart sanitizers could, feasibly, make a contribution to the improvement of hygiene practices in offices [21], but for smart systems to be accepted, any data collected would need to be actionable [22]. This study contributes to knowledge by identifying the many potential uses for hygiene data collected from smart systems. As smart HH systems have not yet been introduced into offices, identification of constructive uses for data is important for their design and implementation.

Although smart sanitizers are widely deployed in clinical settings, health care workers recognize that HH is an important part of their professional practice [18,19]. Given that office workers consider HH to be a mostly personal matter, it seems less likely that they will want to adopt smart sanitizers. When there are disease outbreaks, office workers may consent to the sharing of personal data and the monitoring of their own and their colleagues’ HH. At other times, smart sanitizers may need...
to be restricted to uses that do not require any personal data collection. Should organizations wish to implement smart sanitizers in offices, it would be advisable to consult widely with the staff and to develop systems that are customizable and personalizable. It should also be noted that office workers may find it more useful to have insights from all their HH practices, but these data cannot (yet) be automatically collected from smart systems.

In contrast to health care workers, as yet, there is no widely accepted HH policy for office workers. Future studies could usefully investigate what office workers would consider to be an appropriately high standard of hygiene and how often and where hygiene should be performed. A better understanding of what would be effective and acceptable HH policies in nonclinical settings would help to clarify how smart systems can be used and hence inform their design. Importantly, it could help workplaces adopt infection prevention and control strategies that are necessary for current and future infectious disease outbreaks [1].

Acknowledgments
This study was funded by Innovate UK (grant 8154) and Economic and Social Research Council’s (ESRC’s) Impact Acceleration Account (project 172894). This Innovate UK–funded study is part of a large project conducted in collaboration with Savortex, a manufacturer of hygiene technology. However, the authors of this paper have no financial or nonfinancial interests in this study.

Data Availability
This study involved human research participant data and could contain potentially identifying information. The data that support the findings of this study are available upon request from the corresponding author.

Authors’ Contributions
SR and CS were involved in conceptualization. SS, SR, and ADM contributed to the methodology. SS, SR, ADM, and SE were involved in formal analysis. SS and SE were involved in investigation. SR was involved in writing the original draft. SS, ADM, SE, and CS were involved in reviewing and editing the paper. SR contributed to project administration. SR and CS were involved in funding acquisition. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest
None declared.

References

31. Matei A. 'I was just really scared': Apple AirTags lead to stalking complaints. Guardian. 2022. URL: https://www.theguardian.com/technology/2022/jan/20/apple-airtags-stalking-complaints-technology [accessed 2023-12-04]

Abbreviations

AHHMS: automated hand hygiene monitoring systems
HH: hand hygiene
RQ: research question

© Sophie Rutter, Sally Sanger, Andrew D Madden, Sukaina Ehdeed, Catherine Stones. Originally published in JMIR Formative Research (https://formative.jmir.org), 11.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Population-Level Portal-Based Anxiety and Depression Screening Perspectives in HIV Care Clinicians: Qualitative Study Using the Consolidated Framework for Implementation Research

Daniela Zimmer¹, MPH, MSW; Erin M Staab¹, MPH; Jessica P Ridgway¹, MD; Jessica Schmitt¹, MSW; Melissa Franco¹, MPH; Scott J Hunter¹,², PhD; Darnell Motley¹, PhD; Neda Laiteerapong¹, MS, MD

¹Section of General Internal Medicine, University of Chicago, Chicago, IL, United States
²Western Institutional Review Board- Copernicus Group, Princeton, NJ, United States

Corresponding Author:
Daniela Zimmer, MPH, MSW
Section of General Internal Medicine
University of Chicago
5841 S Maryland Ave
Chicago, IL, 60637
United States
Phone: 1 312 702 8847
Email: dazimmer@bsd.uchicago.edu

Abstract

Background: Depression and anxiety are common among people with HIV and are associated with inadequate viral suppression, disease progression, and increased mortality. However, depression and anxiety are underdiagnosed and undertreated in people with HIV owing to inadequate visit time and personnel availability. Conducting population-level depression and anxiety screening via the patient portal is a promising intervention that has not been studied in HIV care settings.

Objective: We aimed to explore facilitators of and barriers to implementing population-level portal-based depression and anxiety screening for people with HIV.

Methods: We conducted semistructured hour-long qualitative interviews based on the Consolidated Framework for Implementation Research with clinicians at an HIV clinic.

Results: A total of 10 clinicians participated in interviews. In total, 10 facilitators and 7 barriers were identified across 5 Consolidated Framework for Implementation Research domains. Facilitators included advantages of systematic screening outside clinic visits; the expectation that assessment frequency could be tailored to patient needs; evidence from the literature and previous experience in other settings; respect for patient privacy; empowering patients and facilitating communication about mental health; compatibility with clinic culture, workflows, and systems; staff beliefs about the importance of mental health screening and benefits for HIV care; engaging all clinic staff and leveraging their strengths; and clear planning and communication with staff. Barriers included difficulty in ensuring prompt response to suicidal ideation; patient access, experience, and comfort using the portal; limited availability of mental health services; variations in how providers use the electronic health record and communicate with patients; limited capacity to address mental health concerns during HIV visits; staff knowledge and self-efficacy regarding the management of mental health conditions; and the impersonal approach to a sensitive topic.

Conclusions: We proposed 13 strategies for implementing population-level portal-based screening for people with HIV. Before implementation, clinics can conduct local assessments of clinicians and clinic staff; engage clinicians and clinic staff with various roles and expertise to support the implementation; highlight advantages, relevance, and evidence for population-level portal-based mental health screening; make screening frequency adaptable based on patient history and symptoms; use user-centered design methods to refine results that are displayed and communicated in the electronic health record; make screening tools available for patients to use on demand in the portal; and create protocols for positive depression and anxiety screeners, including those indicating imminent risk. During implementation, clinics should communicate with clinicians and clinic staff and provide training on protocols; provide technical support and demonstrations for patients on how to use the portal; use multiple screening methods for broad reach; use patient-centered communication in portal messages; provide clinical decision support tools, training, and mentorship to help clinicians manage mental health concerns; and implement integrated behavioral health and increase mental health referral partnerships.
KEYWORDS

HIV; patient portal; clinic staff perspectives; depression and anxiety screening; implementation

Introduction

Barriers to Depression and Anxiety Diagnosis

Depression and anxiety are common mental health conditions among people with HIV, with a prevalence of 20% to 45% [1-10]. People with HIV experiencing symptoms of depression or anxiety are more likely to miss appointments and have lower medication adherence, higher HIV viral loads, and higher mortality rates than those without depression or anxiety [1,2,5,10,11]. However, depression and anxiety are often underdiagnosed and undertreated in people with HIV, particularly among African Americans and Hispanics, because of the perceived stigma of mental health disorders, racial discrimination, HIV-related discrimination, and medical mistrust [1,3,5,12,13]. In the HIV Cost and Service Utilization survey of people with HIV identified as experiencing depression, only 45% had a formal depression diagnosis in their medical chart [14].

For people living with chronic conditions, such as HIV, specialty care clinics often serve as their primary source of health care [3,4]. Given the frequency of visits people with HIV have with their HIV care team, establishing mental health screening in HIV clinics is a key opportunity to address depression and anxiety underdiagnosis in people with HIV [3,4]. Patients and physicians have noted that depression screening in clinics is helpful in identifying, assessing, and treating depression [3]. However, competing demands and priorities during appointments, a lack of staff to complete assessments, and a shortage of resources to offer patients after diagnosis discourage clinicians from screening and treating depression [1,3,6,7,9,15,16].

Novel Mental Health Screening

A novel strategy to increase depression and anxiety screening in people with HIV is to perform screening at the population level using the patient portal. In recent years, health care systems have increased the adoption of electronic patient portals, and patients have increasingly used portals to facilitate their health care [8,9,17-20]. Studies in primary care settings have found that depression screening rates increased significantly when clinics adopted portal-based screening [3,7,18]. Notably, a population-level portal-based screening intervention, in which patients were invited to complete a depression screener regardless of having a scheduled appointment, also increased depression screening and diagnosis rates [21]. This population-level portal-based approach identified more patients with moderate to severe symptoms than screening during clinic appointments [22]. Moreover, portal-based screening increases the likelihood of discussing depression diagnosis and treatment during an appointment [7,19,20,22].

Population-level portal-based screening has been shown to be promising in primary care settings but has not been examined in HIV care settings. Guided by the Consolidated Framework for Implementation Research (CFIR), we conducted and analyzed qualitative interviews with clinicians at an urban HIV clinic [23]. This study explored clinicians’ perspectives on facilitators of and barriers to implementing population-level portal-based depression and anxiety screening for people with HIV. The objective of this formative study was to use the identified facilitators and barriers to develop implementation recommendations for HIV clinics.

Methods

Study Design

We completed a qualitative study to inform the design and implementation of population-level portal-based depression and anxiety screening at an HIV clinic. This paper reports the results of interviews conducted with clinicians and clinical staff.

Study Setting

The study was conducted in the Ryan White HIV Care Clinic at an academic medical center on the South Side of Chicago, the main provider of HIV care services for Chicago South Side residents. The South Side of Chicago is one of the communities most impacted by the HIV epidemic in the United States [24]. The clinic provides care for >630 people with HIV, most of whom are African Americans and publicly insured. Currently, staffed with 15 physicians, 6 fellows, a nurse practitioner, a licensed practical nurse, 2 pharmacists, and 2 licensed social workers, the clinic also provides mental health services.

In November 2020, the HIV clinic adopted a protocol for conducting depression and anxiety assessments during in-person clinic visits. Medical assistants were asked to complete the 2-item Patient Health Questionnaire (PHQ) and the 2-item Generalized Anxiety Disorder (GAD) scale with patients due for annual screening, as indicated by health maintenance topics and best practice advisories in the electronic health record (EHR) [25,26]. Scores of ≥3 were reflexed into the PHQ-9 and GAD-7, respectively. Medical assistants were also asked to complete the PHQ-9 and GAD-7 with patients with a history of depression or anxiety, respectively, who were due for ongoing symptom monitoring or surveillance. Physicians and advanced practice nurses were alerted via a critical, noninterruptive best practice advisory to scores of ≥3.

Concurrent with this study, a population-level portal-based depression screening intervention was tested in the primary care clinic at the academic medical center. Patients were invited to complete depression screening using the patient portal regardless of having a scheduled appointment [21]. The clinic saw an increase in screening and identification of depression [21]. These advances in screening in the primary care clinic at the institution motivated us to gauge the interest in and feasibility of integrating population-level portal-based screening in the HIV clinic.
Study Participants
All clinicians at the HIV clinic were eligible for study enrollment, including physicians, advanced practice nurses, pharmacists, nurses, and social workers. HIV clinicians were informed about the study at a clinic meeting and by email, and if interested in participating, they were instructed to contact the study project manager. The participants verbally consented before each interview.

Data Collection
Semistructured interviews were conducted one-on-one with each participant from January to April 2021, after the newly adopted in-clinic screening protocol was implemented. Demographic information was collected via electronic surveys in the REDCap (Research Electronic Data Capture; Vanderbilt University). Interviews were conducted over Zoom (Zoom Video Communications) and lasted for approximately 60 minutes. The interview questions were created by the research team using the CFIR interview guide tool for all 5 CFIR domains. The full interview guide is available in Multimedia Appendix 1. The following are example questions by domain:

- Innovation characteristics: “Do you think assessing anxiety and depression using the patient portal will be effective? Why or why not?”
- Inner setting: “What is the general level of receptivity in the clinic to using the patient portal?”
- Outer setting: “Do you think measuring anxiety and depression using the patient portal will meet the needs of the patients served by your clinic? Why or why not?”
- Process: “Who are other key influential individuals to get on board with assessing anxiety and depressive symptoms using the portal?”

Data Analysis
Descriptive analysis was used to summarize the characteristics of the participants interviewed. Initially, the original CFIR domains and constructs from the codebook were used for our interview analysis. During the initial coding phase, research team members identified additional themes and subthemes to be added to the interview analysis. Once consensus was achieved on the codebook for our analysis, 2 independent coders analyzed each interview transcript, and coding discrepancies were discussed until a consensus was reached. Analysis of coded transcripts was performed in the web-based software Dedoose (version 9.0.17; SocioCultural Research Consultants, LLC). A total of 2 research team members independently reviewed the coded excerpts to find common themes within each domain, identified each as a facilitator or a barrier, and discussed them to consensus. On the basis of these facilitators and barriers, the 2 research team members proposed implementation strategies and presented these strategies to the entire study team for validation and refinement.

Ethical Considerations
The study was reviewed and approved by the University of Chicago Biological Sciences Division Institutional Review Board (20-1313). The research team obtained oral consent from participants before the beginning of the interviews. Interview audio was recorded, and transcripts were deidentified before qualitative coding. The data were accessible to the research team only. Participants were given a US $40 e-gift card for interview completion.

Results
Participant Characteristics
Interviews with HIV clinicians continued until the team agreed that data saturation was met, as indicated by the lack of new themes emerging in the interviews. In total, 10 HIV clinicians completed the interviews. The participants ranged in age from 31 to 64 years. Most participants were identified as White (8/10, 80%) or male (6/10, 60%). As shown in Table 1, 70% (7/10) worked as physicians at the HIV clinic, and the remaining staff included a social worker (1/10, 10%), a nurse (1/10, 10%), and a pharmacist (1/10, 10%).
Table 1. Demographic information of interview participants.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participants (N=10), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>5 (50)</td>
</tr>
<tr>
<td>40-49</td>
<td>2 (20)</td>
</tr>
<tr>
<td>50-59</td>
<td>2 (20)</td>
</tr>
<tr>
<td>60-69</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6 (60)</td>
</tr>
<tr>
<td>Female</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>1 (10)</td>
</tr>
<tr>
<td>White</td>
<td>8 (80)</td>
</tr>
<tr>
<td>Clinical role</td>
<td></td>
</tr>
<tr>
<td>Physician</td>
<td>7 (70)</td>
</tr>
<tr>
<td>Social worker</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Nurse</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Pharmacist</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Caring for people with HIV (y)</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>3 (30)</td>
</tr>
<tr>
<td>6-10</td>
<td>2 (20)</td>
</tr>
<tr>
<td>11-15</td>
<td>2 (20)</td>
</tr>
<tr>
<td>≥15</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Clinical experience (y)</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>5 (50)</td>
</tr>
<tr>
<td>6-10</td>
<td>2 (20)</td>
</tr>
<tr>
<td>≥15</td>
<td>3 (30)</td>
</tr>
</tbody>
</table>

Current Depression and Anxiety Screening Practice

When asked about their current mental health screening practices, most participants mentioned informally screening patients by asking how they were feeling or if the patient was experiencing any thoughts of self-harm or suicidal ideation. As 1 participant said, “Within the review of systems [during patient intake], I often will ask if any depression and anxiety-type symptoms [were experienced] recently, but there is no standard way I approach every patient” (Participant 6, physician). Participants reported that patients expressing depression or anxiety would typically be screened with the PHQ and the GAD questionnaire. A few participants spoke of the newly implemented in-clinic mental health screening procedure put in effect before the interviews were conducted. However, they stated that the screening protocol was not regularly followed during the clinic visits.

Similarly, the participants mentioned that initiating mental health services relied on patients requesting services or bringing up suicidal ideation or self-harm. The clinic relies on HIV-trained clinical social workers to connect patients with mental health resources based on the individual’s insurance. One participant explained, “I’ll have our social worker call them and set them up with a resource and have her—obviously she’s more trained in that than I am, I believe—and have her assess them and provide appropriate resources” (Participant 9, physician). Before the COVID-19 pandemic, patients were regularly introduced to social workers during in-clinic appointments. The participants emphasized that these in-person interactions were valuable, as they built trust between the patient, the social worker, and the physicians to increase intervention uptake.

Perceptions of Population-Level Portal-Based Screening

Overview

Facilitators of and barriers to population-level portal-based depression and anxiety screening were identified within the 5 CFIR domains (Tables 2 and 3).
Table 2. Facilitators to population-level portal-based depression and anxiety screening from qualitative interviews with HIV clinicians.

<table>
<thead>
<tr>
<th>Innovation characteristics</th>
<th>Facilitator quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages of systematic screening outside clinic visits</td>
<td>“I like the idea that it feels like it would make it a little less stressful on the clinic visit because it’s done independently of that. And then it might come up during the visit, but at least the initial screening and questions doesn’t get added to that clinic workflow. So from that standpoint, it’s a little bit relieving. Because we do want to do this, but you don’t want to have anyone having too much work or too many things on their plate. So from that standpoint, it feels like a good method to go about it.” (Participant 2, physician)</td>
</tr>
<tr>
<td>Expectation that assessment frequency could be tailored to patient needs</td>
<td>“I think if we did it this way, then we would have the information at the beginning of a visit, and could then walk into the visit knowing this. And maybe even have some additional background from our social worker, if they’ve reached out to them in the meantime, between the time they filled this out and got these results, and then the time we see it for an appointment.” (Participant 8, physician)</td>
</tr>
</tbody>
</table>

Outer setting

| Greater respect for patient privacy | “I kind of think that’s where you get the most honest answers, in the patient’s environment. In clinic, the patient’s mental status is, I’m ready for clinic. So they have that person put on, their clinic person. And unless something is like really, really outstanding, they’re not forthcoming with their information, right?” (Participant 4, nurse) |
| Normalizing mental health screening | „…what I’m thinking is I really liked the way it is being approached as making it a routine part of HIV [care]...just destigmatizing and routinizing those questions for people. I think once that becomes routine as part of your, whatever, yearly check-in, I think that’s helpful.” (Participant 3, social worker) |

Inner setting

| Compatible with clinic culture, workflows, and systems | “Overall positive feelings towards it. I like the idea that it feels like it would make it a little less stressful on the clinic visit because it’s done independently of that. And then it might come up during the visit, but at least the initial screening and questions doesn’t get added to that clinic workflow. So from that standpoint, it’s a little bit relieving. Because we do want to do this, but you don’t want to have anyone having too much work or too many things on their plate.” (Participant 2, physician) |
| Protocol for addressing positive screening results | “Would be nice to have a pathway that’s somewhat predetermined. So, it’s like, ‘Okay, we identified this patient has this. We’re not sure if they’re going to be able to see a mental health provider because it might take 2 months to get in.... But in the meantime, this is the plan. This is our protocol for what we should do. These are first-line medications. This is the plan from our social work standpoint of how we’re going to follow up with them.’ So, things like that. That would make it easier once we do identify the need to take some of the guesswork out of what the next steps are.” (Participant 8, physician) |

Characteristics of individuals

| Participant beliefs about the importance of mental health screening and benefits HIV care | “Some of it could be a little bit more work within the appointment if you’re then talking about some of these issues and how they affect their other medical care, but I think it would be time likely worth spent and gratifying, and probably maybe more time spent in the front would help decrease time later needing to if it were something that could be addressed and then would improve compliance, that would be very meaningful and worth discussion.” (Participant 6, physician) |
| Participant interest in evidence-based practices and desire to learn from prior implementation | “I think there’s a strong need to do it in general.... I haven’t read all the literature on it.... Most likely this needs to happen. We need to screen people. And then the question is just, ‘What’s the best way to screen?’ And looking at everything and talking through the pros and cons, it feels like this would probably be a good way to do it.” (Participant 2, physician) |

Process

Team-based approach that leverages strengths of all clinic staff	“Our patient population is a bit delicate, which is why we have different levels to our team approach, because what patients wouldn’t share with their doctor they will share with me, because they easily identify with me. So they accept it on an extended family member kind of like basis. So their level of trust is greater. And we use that. It’s very effective.” (Participant 4, nurse)
Clear planning and communication with staff	“In general having something that’s standardized is good. Having something that doesn’t totally disrupt the workflow in clinic. So using the patient portal is excellent. And having a really clear plan for what the follow-up is for the patient. I think those are the really important things. And if those are well communicated to the clinic, to the section beforehand.... We have our Monday meetings at noon, something like that.... So that way everyone’s comfortable. I would be comfortable going forward with something like this, but making sure that everyone’s on the same page.” (Participant 2, physician)
System that empowers patients to communicate about their mental health	“But most of our patient population is a very secretive population. So I believe being able to have something on their own terms...[The social workers could] be like, ‘Hey, if you ever feel A, B, and C.... Hey just answer these questions. I get an alert and I will respond or someone will respond in a reasonable timeframe.’ Yeah. So if patients have the information that you can use MyChart to let us know if something is going on, I think that would be more successful than just screening patients as they check-in in clinic.” (Participant 4, nurse)
Tables 3. Barriers to population-level portal-based depression and anxiety screening from qualitative interviews with HIV clinicians.

<table>
<thead>
<tr>
<th>Domain and barriers</th>
<th>Barrier quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation characteristics</td>
<td></td>
</tr>
<tr>
<td>Difficulty of ensuring prompt response to those in imminent risk to themselves or others</td>
<td>“I’d want to make sure that with this screener that we’re assessing for suicidal or homicidal ideation and that somehow that gets flagged to be address immediately because when you’re in the clinical setting, you can address it immediately. But over the portal, I worry that it might just like sit there, and then what happens if someone is actively suicidal and they fill this out and nobody addresses it.” (Participant 8, physician)</td>
</tr>
<tr>
<td>Outer setting</td>
<td></td>
</tr>
<tr>
<td>Limited patient access, experience, and comfort using the portal</td>
<td>“And the reality, with my patient population, there has been issues with just accessing MyChart for a variety of patient problems, if you will. Lack of technical skills, lack of just having no laptop or any way to do that, or just feel comfortable with that kind of thing.” (Participant 5, physician)</td>
</tr>
<tr>
<td>Limited availability of mental health services</td>
<td>“Our barrier is the resource pool that we have to select from...we’re extremely limited...if someone is not a threat to themselves or someone else, however they’re battling their issues that are too much for them to really handle, where do we refer our patients to? And the destinations are booked out. And I personally believe that time is a factor when we’re dealing with depression and anxiety.” (Participant 4, nurse)</td>
</tr>
<tr>
<td>Inner setting</td>
<td></td>
</tr>
<tr>
<td>Clinician variation in the use of electronic health records</td>
<td>“I think a lot of the physicians I work with don’t even check their in-basket, answer My Chart messages...I mean, I’ve been using it and I do like it.... But I think a lot of the people I work with.... They trained in a different time, none of this was around then. A lot of them give out their cell phone numbers to their patients and that’s how they end up communicating.” (Participant 10, physician)</td>
</tr>
<tr>
<td>Limited capacity to address mental health concerns during HIV visits</td>
<td>“We have a list of our own priorities that we need to address every visit. I think sometimes I’m like, ‘Well, they have a primary care physician. That’s the appropriate person that should assess and counsel, and hopefully they’re doing that.’ I kind of rely on that. And probably we’re often not as good at realizing when someone is in some kind of mental health distress. We see someone and they might seem like they’re doing okay and I’m like, ‘I don’t need to ask them how their mental health is: But obviously under the surface could be a very different story.” (Participant 9, physician)</td>
</tr>
<tr>
<td>Characteristics of individuals</td>
<td></td>
</tr>
<tr>
<td>Participant concerns about limited knowledge about mental health treatments</td>
<td>“I think that a lot of the actionable information or the action that I’ll most likely take will eventually fall on the [infectious disease] clinic social worker [based] on my previous behavior.... I’m not likely, to be honest, to start any medication. I just don’t feel well-versed enough or practiced enough to really prescribe pharmacologic interventions. So usually the interventions I would take are to refer them to their provider or have our social worker kind of provide resources in some way. I don’t feel equipped to provide nonpharmacologic interventions related to anxiety/depression or pharmacologic.” (Participant 9, physician)</td>
</tr>
<tr>
<td>Process</td>
<td></td>
</tr>
<tr>
<td>Impersonal approach to sensitive topic of mental health</td>
<td>“As you know, it takes patient buy-in to be able to feel like you’re not...exploiting people almost.... You’re getting into mental health and that sometimes can be a touchy subject to do in an impersonal manner, I would imagine, through something like an email or a text or MyChart.... I can envision certain patients not really warming up to it, just because it is impersonal and you’re just filling out.... I’m sure the patients, if they have the idea that this is totally for their upcoming visit and we just want to make sure we’re being complete and we want to take care of you, if there’s any concerns in the realm of depression/anxiety, we’d like to be able to address them appropriately.” (Participant 5, physician)</td>
</tr>
</tbody>
</table>

CFIR Domain 1: Innovative Characteristics

Codes within the innovation characteristics domain focused on the attributes of population-level portal-based screening. The participants spoke about its relative advantage, adaptability, complexity, evidence base, and design quality.

Facilitator: Advantages of Systematic Screening Outside Clinic Visits

The participants thought that population-level portal-based mental health screening would help make screening more consistent without imposing additional work or disrupting the clinic workflow. With screening completed ahead of time via the patient portal, the participants felt that they would be better prepared to address these concerns during the visit.

Facilitator: Expectation That Assessment Frequency Could be Tailored to Patient Needs

Participants generally thought that sending assessments via the portal every 6 months or once a year would be ideal; however, they mentioned that they would defer to the evidence on screening frequency best practices. The ability to send patients mental health screeners at a custom interval appealed to participants as it would keep them aware of the mental health concerns that arose. The participants also expressed interest in tailoring the screening frequency based on symptom severity.

Barrier: Difficulty Ensuring Prompt Response to Those in Imminent Risk to Themselves or Others

A common concern raised during the interviews was the complexity of responding to patients who indicated suicidal risk, self-harm, or homicidal ideation on the screener.
Participants were worried that patients with immediate mental health needs would not receive timely interventions if screening were performed via the portal.

CFIR Domain 2: Outer Setting

Codes within the outer setting domain focused on external factors that might affect the implementation of population-level portal-based screening, particularly the needs and resources of the patient population served by the clinic.

Facilitator: Greater Respect for Patient Privacy

Participants spoke about how patients seen at the HIV clinic value privacy. They thought that using the portal might increase screening uptake and encourage honest responses by allowing patients the flexibility to complete screening in environments where they are most comfortable.

Barrier: Limited Patient Access, Experience, and Comfort Using the Portal

The participants did not know if patients were familiar enough with the portal to complete the assessments electronically. The participants reported that several of their patients did not know how to access their laboratory work via the portal. Therefore, they were not confident that the patients could complete screeners via the portal without assistance or training. The participants were also concerned about usability issues regarding the small text and reading levels associated with using the portal.

Barrier: Limited Availability of Mental Health Services

Participants emphasized that accessible mental health referral pathways and resources were needed before the clinic could implement population-level portal-based screening. Otherwise, patients would be diagnosed without the proper resources to be treated. Although the clinic has existing partnerships with external mental health facilities, waitlists were long. Furthermore, transportation, insurance, and cost barriers limited patients’ access to mental health treatments. In addition, concerns about the capacity of the current referral network to handle an influx of newly diagnosed patients were expressed by participants.

CFIR Domain 3: Inner Setting

Codes within the inner setting domain focused on the clinic’s characteristics and readiness to implement population-level portal-based screening. Participants spoke about compatibility, available resources, access to knowledge and information, networks and communication, and culture.

Facilitator: Compatibility With Clinic Culture, Workflows, and Systems

Participants strongly expressed interest in implementing population-level portal-based screening for depression and anxiety through the portal and thought their colleagues would also be receptive. Participants stated that this would help create an open relationship with patients while prioritizing clinical values to provide holistic care to their patients. Participants said that using the portal for depression and anxiety screening would provide crucial information on patients’ mental health status without adding significant stress to clinical workflows.

Facilitator: Protocol for Addressing Positive Screening Results

Participants wanted a systematic process to manage patients who screened positive to avoid delays in connecting patients to resources. Specifically, participants expressed a desire for detailed guidance on available resources, referral pathways, and a follow-up plan for symptomatic patients. A few participants were interested in additional training or decision support tools to help them interpret screening results, connect patients to resources, and prescribe first-line medications.

Barrier: Clinician Variation in the Use of EHRs

Participants expressed concern that screening results in the EHR might be overlooked because clinicians did not always check their electronic in-basket reliably because of variations in their proficiency and comfort with the EHR.

Barrier: Limited Capacity to Address Mental Health Concerns During HIV Visits

Participants raised concerns about having adequate personnel, time, and expertise to manage depression and anxiety. They reported limited time during appointments to address their patients’ health issues and social needs, and there may not be enough time to address depression and anxiety management.

CFIR Domain 4: Characteristics of Individuals

Codes within the individual characteristics domain focused on the participants’ knowledge, beliefs, and self-efficacy.

Facilitator: Participant Beliefs That Mental Health Screening Is Important and Benefits HIV Care

Most participants agreed that mental health screening was essential and valuable. They saw population-level portal-based screening as an opportunity to learn more about their patients and to address concerns that might not otherwise arise during appointments. Participants recognized the effects of mental health problems on HIV outcomes and were hopeful that addressing depression and anxiety would improve engagement with care and general health.

Facilitator: Participant Interest in Evidence-Based Practices and Desire to Learn From Prior Implementations

Participants indicated their willingness to abide by evidence-based mental health screening and management recommendations. They expressed a desire to learn more about how population-level portal-based depression and anxiety screening had been implemented in the primary care clinic so that the lessons learned could be applied to the HIV clinic.
Barrier: Participant Concerns About Limited Knowledge About Mental Health Treatments

Some participants were hesitant to implement population-level portal-based mental health screening because they thought that they lacked adequate expertise in mental health treatment and navigating mental health resources.

CFIR Domain 5: Process

Codes within the process domain focused on planning the intervention and engaging clinicians and patients.

Facilitator: Team-Based Approach That Leverages the Strengths of All Clinicians

Participants believed that a team approach would be crucial for successfully implementing population-level portal-based screening. Social workers were identified as key team members to provide knowledge on available resources and support connecting patients to care. Participants also indicated that engaging clinicians with strong relationships with patients would help lower patient hesitancy to engage with the portal.

Facilitator: Clear Planning and Communication With Staff

Participants emphasized the importance of having a standardized protocol that included details on which staff member was responsible for each step, especially in response to positive results, and training for all clinic personnel on this protocol before implementation. Participants highlighted the need for clear communication throughout the intervention’s preimplementation, implementation, and sustainability phases. They advised monitoring the intervention logistics and collecting iterative feedback from staff and patients throughout the intervention rollout.

Facilitator: A System That Empowers Patients to Communicate About Their Mental Health

Participants thought that population-level portal-based mental health screening could prompt patients to discuss their mental health with their care team. The participants believed that providing patients with the flexibility to complete screening assessments at their convenience and through their preferred screening method would empower them to inform their care team about their symptoms. Some suggested that screeners should always be readily available in the portal so patients could report their mental health symptoms as they feel them.

Barrier: Impersonal Approach to the Sensitive Topic of Mental Health

Participants expressed concerns that portal-based screening might be impersonal and that unexpected messages about mental health might seem invasive or cause anxiety in some patients. The participants emphasized that clear and patient-centered conversations would need to occur to explain the purpose of mental health screening. Otherwise, the participants feared that patients who did not understand the purpose or context of mental health screening would be unlikely to respond. The participants believed that if patients were informed about how these assessments pertained to their general health, they would be more likely to complete the screeners.

Discussion

Principal Findings

This qualitative study explored facilitators of and barriers to implementing population-level portal-based depression and anxiety screening in an HIV clinic. A total of 10 facilitators and 7 barriers were identified across 5 CFIR domains. Facilitators included the following: advantages of systematic screening outside clinic visits; the expectation that assessment frequency could be tailored to patient needs; evidence from the literature and previous experience in other settings; respect for patient privacy; empowering patients and facilitating communication about mental health; compatibility with clinic culture, workflows, and systems; staff beliefs about the importance of mental health screening and benefits for HIV care; engaging all clinic staff and leveraging their strengths; and clear planning and communication with staff. Barriers included difficulty in ensuring prompt response to suicidal ideation; patient access, experience, and comfort using the portal; limited availability of mental health services; variations in how providers use the EHR and communicate with patients; limited capacity to address mental health concerns during HIV visits; staff knowledge and self-efficacy regarding the management of mental health conditions; and the impersonal approach to a sensitive topic. Several barriers mentioned by participants, such as limited appointment times and limited access to mental health resources after diagnosis, are common challenges cited in similar implementation efforts [2,3,6,7,25,27].

Findings from our analysis have been used to compile a list of proposed implementation strategies to help integrate population-level portal-based depression and anxiety screening into practice within the HIV clinic setting.

Clinician-Focused Implementation Strategies

Strategy 1: Conduct a Local Assessment of Clinicians and Clinic Staff

Clinicians and clinic staff are essential to successfully implementing population-level portal-based depression and anxiety screening in the HIV clinic. To increase the feasibility and sustainability of the intervention, clinicians and clinic staff should be asked how the intervention would fit with their beliefs and values, the clinic culture, and its current clinical workflows. Clinicians’ and clinic staff’s thoughts should be incorporated into the implementation plan to assist in intervention compatibility and uptake.

Strategy 2: Engage Clinicians and Clinic Staff With Various Roles and Expertise to Support Implementation

The success of the intervention depends on clinicians’ engagement through the implementation process to inform the intervention using clinicians and clinic staff’s strengths. Clinicians and clinic staff in various roles may have different perspectives and ideas on implementing the intervention. Therefore, diversifying the staff perspective may provide crucial implementation strategies that might not be known by only interviewing clinicians.
Strategy 3: Highlight Advantages, Relevance, and Evidence for Population-Level Portal-Based Mental Health Screening

Before implementing population-level portal-based mental health screening, the advantages of depression and anxiety screening must be communicated and emphasized to all clinicians. These benefits should highlight how timely mental health discussions between patients and clinicians make efficient use of the limited appointment time. Information on relevant evidence and current clinical screening guidelines should also be provided to garner clinic support. Describing barriers encountered and lessons learned in other practices that have implemented similar interventions could ease concerns about implementation challenges.

Strategy 4: Communicate With Clinicians and Clinic Staff Throughout Implementation and Provide Training on Protocols

Training and involving clinicians throughout the rollout of the intervention will facilitate iterative feedback to troubleshoot any challenges that arise and help aid clinicians and clinic staff uptake. As clinicians and clinic staff tend to have established relationships with their patients, receiving their and their patients’ concerns will aid clinicians, clinic staff, and patient engagement throughout the intervention rollout.

Patient-Focused Implementation Strategies

Strategy 5: Provide Technical Support and Demonstrations for Patients on How to Use the Portal

Providing technical support and conducting training on using the portal might increase intervention uptake among patients. Demonstrations could decrease technology-related barriers and encourage patients to use the portal to complete assessments.

Strategy 6: Use Multiple Screening Methods for Broad Reach

Multiple screening approaches might be needed to reach all patients attending the clinic. For example, options could include completing depression and anxiety screening in the waiting room before an appointment, over the phone, or during an in-person appointment (eg, during intake before the clinician enters the room). Providing additional screening options for patients who are not technologically proficient or have limited access to technology may increase patient uptake of depression and anxiety screening.

Strategy 7: Use Patient-Centered Communication in Portal Messages

Patient-centered messages emphasizing privacy and framing mental health screening as part of routine care can provide a context for portal-based screeners and decrease patient hesitancy to answer questions about the potentially sensitive and stigmatized topic of mental health. Using the patient portal to send patient-centered messages will also allow patients to ask questions about population-level patient-based screening and address concerns.

IT-Focused Implementation Strategies

Strategy 8: Make Screening Frequency Adaptable Based on Patient History and Symptoms

Adaptability of screening frequency and leveraging the staff-patient relationship may improve intervention uptake. Clinicians could adjust the frequency of depression and anxiety screenings based on their relationship with the patient. By allowing staff to adjust the screening frequency, the clinic can check in on patients experiencing uncontrolled depression and anxiety symptoms. Likewise, the staff can lengthen the screening intervals when the patient is in remission for depression and anxiety. This adaptability will signal to patients that the clinic is prioritizing the patient’s health needs.

Strategy 9: Use User-Centered Design Methods to Refine How Results Are Displayed and Communicated in the EHR

When designing how portal-based results will be stored and displayed in the EHR, clinicians and clinic staff need to be engaged to ensure the utility of the screening information. Using a user-centered design with these essential stakeholders could increase the likelihood that portal-based depression and anxiety screening will be used in practice.

Strategy 10: Make Screening Tools Available for Patients to Use on Demand in the Portal

On-demand assessments would support patient autonomy and allow patients to signal when they are experiencing depression and anxiety symptoms. This patient-centered approach could enhance the clinic’s capacity to treat patients when needed. This differs from the traditional annual one-time screening, which aims to identify depression and anxiety in asymptomatic patients. Traditional screening may increase the demand for services and reduce the clinic’s ability to provide timely and appropriate care for symptomatic patients. Moreover, prioritizing on-demand assessments outside of appointment times could facilitate outreach between appointments and reduce the time to treatment.

Clinic-Focused Implementation Strategies

Strategy 11: Create Protocols for Positive Depression and Anxiety Screening Results, Including Those Indicating Imminent Risk

Establishing a standardized protocol for patients who are symptomatic of depression or anxiety may ease concerns about managing patients who are at imminent risk to themselves or others. For example, the protocol can describe who will contact the patient after the clinic has received a positive PHQ or GAD and how to assist patients in crisis. This will ease clinicians’ concerns about screening patients for depression and anxiety via the portal.

Strategy 12: Provide Clinical Decision Support Tools, Training, and Mentorship to Help Clinicians Manage Mental Health Concerns

Providing evidence-based information on treatment or referral strategies through decision support tools, ongoing training, and
clinician mentorship for managing mental health treatment would support clinicians’ confidence and ability to manage symptomatic mental health concerns in their patients. Through shared collaborations with mental health specialists and community mental health services, clinicians will be equipped to manage a potential influx of symptomatic patients via the portal.

Strategy 13: Implement Integrated Behavioral Health and Increase Mental Health Referral Partnerships

In concurrence with strategy 12, the clinic will need to invest and establish partnerships with local mental health sites to support the clinic’s capacity to treat newly diagnosed patients. Expanding the clinic’s referral network would create a safety net that the clinic can leverage to refer patients. This would prevent long wait times for treatment after a depression or anxiety diagnosis. By creating a behavioral health referral network, HIV clinics can provide trusted resources to expand the clinic’s internal infrastructure, facilitate warm handoffs with community partners, and continue to support patient care.

Limitations

The study was conducted at a single academic HIV clinic. Therefore, the results of this qualitative analysis may not be generalizable to other HIV clinics with different patient populations, staffing needs, available resources, and portal uptake. The implementation strategies are merely recommendations from a single HIV clinic and may need to be adapted to fit the implementation setting. At the time of the interviews, clinic staff did not have experience with population-level portal-based mental health screening; therefore, their perspectives were based on how they perceived the intervention would be for patients and themselves once implemented. Although our study included perspectives from clinicians in various clinical roles, most interviewees were physicians, limiting available insight. Gaining patient perspectives through patient-focused interviews would provide further insight into facilitators, barriers, and intervention implementation strategies.

Conclusions

Our study provides information on clinicians’ views on population-level portal-based mental health screening within the HIV clinic setting. Participating clinicians expressed concerns about the accessibility of prompt mental health resources, patients’ perceptions of mental health screening, variation in clinician use of Epic (Epic Systems, Verona WI), and limited clinician training on mental health management. Nevertheless, clinicians were interested in establishing population-level portal-based screening at the HIV clinic and were amenable to creating protocols for addressing positive mental health screening, to participating in training about available mental health resources and best practices, and to feeling it was compatible with the clinic. Others may build upon this work by exploring and identifying additional facilitators, barriers, and implementation strategies that were not found in our analysis.

Acknowledgments

This publication was made possible with support from the Third Coast Center for AIDS Research, a National Institutes of Health–funded center (P30 AI117943).

Authors’ Contributions

EMS, JPR, JS, MF, SJH, DM, and NL contributed to study concept and design. Data acquisition was performed by MF. Data analysis and interpretation were performed by DZ, EMS, and NL. DZ wrote the initial manuscript draft. Critical revision of the manuscript for intellectual content was performed by all the authors.

Conflicts of Interest

JPR has received fees for legal consulting from Gilead Sciences.

References

Abbreviations

CFIR: Consolidated Framework for Implementation Research
EHR: electronic health record
GAD: Generalized Anxiety Disorder
PHQ: Patient Health Questionnaire
REDCap: Research Electronic Data Capture
Dentists’ Information Needs and Opinions on Accessing Patient Information via Health Information Exchange: Survey Study

Shuning Li1, PhD; Grace Gomez Felix Gomez1,2, BDS, PhD; Huiping Xu3, PhD; Anushri Singh Rajapuri1, BDS, MS; Brian E Dixon2,4, PhD; Thankam Thyvalikakath1,2, DMD, MDS, PhD

1Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry, Indianapolis, IN, United States
2Regenstrief Institute, Inc, Center for Biomedical Informatics, Indianapolis, IN, United States
3Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
4Department of Epidemiology, Indiana University Richard M Fairbanks School of Public Health, Indianapolis, IN, United States

Abstract

Background: The integration of medical and dental records is gaining significance over the past 2 decades. However, few studies have evaluated the opinions of practicing dentists on patient medical histories. Questions remain on dentists’ information needs; their perception of the reliability of patient-reported medical history; satisfaction with the available information and the methods to gather this information; and their attitudes to other options, such as a health information exchange (HIE) network, to collect patient medical history.

Objective: This study aims to determine Indiana dentists’ information needs regarding patients’ medical information and their opinions about accessing it via an HIE.

Methods: We administered a web-based survey to Indiana Dental Association members to assess their current medical information-retrieval approaches, the information critical for dental care, and their willingness to access or share information via an HIE. We used descriptive statistics to summarize survey results and multivariable regression to examine the associations between survey respondents’ characteristics and responses.

Results: Of the 161 respondents (161/2148, 7.5% response rate), 99.5% (n=160) respondents considered patients’ medical histories essential to confirm no contraindications, including allergies or the need for antibiotic prophylaxis during dental care and other adverse drug events. The critical information required were medical conditions or diagnosis, current medications, and allergies, which were gathered from patient reports. Furthermore, 88.2% (n=142) of respondents considered patient-reported histories reliable; however, they experienced challenges obtaining information from patients and physicians. Additionally, 70.2% (n=113) of respondents, especially those who currently access an HIE or electronic health record, were willing to use an HIE to access or share their patient’s information, and 91.3% (n=147) shared varying interests in such a service. However, usability, data accuracy, data safety, and cost are the driving factors in adopting an HIE.

Conclusions: Patients’ medical histories are essential for dentists to optimize dental care, especially for those with chronic conditions. In addition, most dentists are interested in using an HIE to access patient medical histories. The findings from this study can provide an alternative option for improving communications between dental and medical professionals and help the health information technology system or tool developers identify critical requirements for more user-friendly designs.

(JMIR Form Res 2024;8:e51200) doi:10.2196/51200

KEYWORDS
dentistry; medical history; integrated medical and dental records; health information exchange; medical record; dental record; dental; medical information; dental care; adverse drug effect; medication; allergies; cost; data safety; data accuracy
Introduction

More than 20 years ago, the first US Surgeon General’s Report on Oral Health in America established oral health as an essential component of overall health and well-being [1]. In 2021, the National Institutes of Health (NIH) reemphasized the importance of establishing integrated medical and dental care in their updated report on Oral Health in America [2]. In addition, the NIH identified integrating medical and dental records as critical to enhancing medical and dental care [2]. The integration of medical and dental records is gaining significance for several reasons. First, increased evidence during the last 3 decades indicates strong associations and shared risk factors between oral and systemic diseases such as diabetes and heart diseases [2,3]. Second, the siloed systems of dental and medical data create challenges in information sharing [2,4,5], often resulting in incomplete or inaccurate patient medical information, which may cause significant patient care and safety issues in dental care [6-9]. Third, recent studies have revealed discrepancies in medical conditions and medications in the electronic dental record (EDR) versus electronic health record (EHR) [3,6,10-14] and demonstrated substantial delays when dentists are required to request additional medical information from physicians [15]. Other reasons for the increased significance of integrated medical and dental records include the rapid development of information technologies, which provides a solid base for integration, and the impact of the COVID-19 pandemic, which proves the urgency and importance of integrating medical and dental records [16-18].

The use of an integrated EDR-EHR system has been growing in large health care organizations (HCOs) such as the Veteran Affairs health care systems, Department of Defense, health maintenance organizations, and federally qualified health centers, where medical and dental practices are colocated and share patient care and records [19-21]. Numerous studies have reported physicians using integrated EDR-EHR systems to refer patients to dentists and vice versa for preventive and comprehensive care [19,21-23]. However, for most dentists who work in small independent practices, patients continue to be the primary source of their medical history and dentists’ communications with medical providers are limited [24]. Nevertheless, the solo and small-group dental practices, which constitute 50% of the dental workforce [25], cannot adopt such integrated systems without being credentialed to a major HCO. It is also not practical for dental practices to have separate interfaces to different EHR systems, which may interfere with their clinical workflows and business processes, such as billings and regulatory policies [3].

With the support of several federal policies, such as the Health Information Technology for Economic and Clinical Health Act and the 21st Century Cures Act [26,27], and the financial incentives established by the Centers for Medicare and Medicaid Services [28,29], community and regional health information exchanges (HIEs) have expanded significantly since 2009. HIE systems provide another option for integrating medical and dental records [24]. In an earlier study by the team, we modeled 3 methods for dentists to access their patient’s medical histories: the patient-reported medical history followed by the optional medical consultations method, the integrated EDR-EHR, and the HIE approaches [24]. Our models showed that the HIE approach could provide benefits for reducing unnecessary medical consultations, avoiding the delay of care, improving information quality, and cutting additional technical and financial overheads for small independent practices. In addition, a report published in 2021 indicated a decrease in dentists working solo [25]. Nevertheless, an HIE-based integrated solution can help small and large group practices improve data completeness and compliance by obtaining data from multiple HCOs and taking advantage of expert services provided by an HIE. However, efforts to connect dentists with an HIE are minimal compared to the extensive studies on integrated EDR-EHR [19-22].

Despite the widespread interest in integrating dental and medical care, few studies have evaluated the opinions of practicing dentists on patient medical histories [26,30]. For example, a recent study published by the American Dental Association Clinical Evaluators Panel reported that most dentists gathered their patients’ medical history and medication list via patients’ self-report and recorded vital signs during dental visits [30]. However, questions remain on dentists’ information needs; their perception of the reliability of patient-reported medical history; satisfaction with the available information and the methods to gather this information; and their attitudes to other options, such as an HIE, to collect patient medical history.

Given this knowledge gap, we surveyed dentists in 1 US state about their information needs and practices concerning retrieving patient medical history information. Our objectives were to determine their information needs regarding patients’ medical information and their opinions on accessing it via an HIE.

Methods

Recruitment

We administered a web-based survey to the Indiana Dental Association (IDA) members from March 19, 2021, to April 30, 2021. All participants are general dentists or specialists either currently or previously practicing in the State of Indiana. We only included dentists in this survey because they are responsible for diagnosing and planning treatments, which also involve ruling out contraindications. The survey was administered through the Indiana University–approved Qualtrics Experience Management platform XM. We sent emails to 2148 IDA members over 6 weeks, including 1 initial invitation, 5 reminders, and 1 final thank you note.

Ethical Considerations

Participation in the survey was voluntary, responses were anonymous, and participants could only respond once (configurations blocked multiple responses in the web-based survey tool). Participants gave informed consent by accessing the link provided in the study invitation email. The patients were not compensated. This study received exemption approval from the Indiana University Institutional Review Board (Protocol #2012972646).
Survey Construction and Validation
The survey included 27 questions covering 3 topics: 12 on demographics, 11 on information needs and gathering, and 4 on exchanging patient medical information (Multimedia Appendix 1). Demographic information included sex, years in practice, primary practice information (type of practice, general practitioner or specialist, typical procedures, patient age groups), and EDR use. The information needs and data gathering section included questions related to dentists' information needs, existing methods for collecting information, and challenges in these approaches. Finally, the exchange of patient medical information section included dentists’ opinions on using an HIE-based information platform to receive and share patients’ medical information. The survey had 23 multiple-choice questions, two 0-10 Likert-scale questions, and 2 open-ended questions. We administered the survey after assessing the face validity and content validity of the questionnaire. The face validity was assessed with research team members who were not involved in the development of the survey questions, and the content validity was assessed with 3 dentists—2 from the Indiana University School of Dentistry and 1 from private practice. These tests ensured that the survey was appropriate, understandable, and could be completed within a reasonable time.

Statistical Analysis
Data analysis included only completed responses. Partially answered surveys were eliminated from the final analysis. Data were summarized using frequencies and percentages for categorical variables and mean and SDs for continuous variables. Associations between characteristics of dentists (years in practice, dental professions, and current access to an HIE or a hospital or medical practice–based EHR [hereby referred to as HIE-EHR]) and their opinions on the importance and reliability of patients’ medical histories and perceptions of accessing patients’ medical histories via an HIE were examined using multivariable regression. The ordinal logistic regression model was used due to the ordinal nature of these variables. All statistical analyses were performed using SAS (version 9.4, The SAS Institute). \(P < .05 \) were considered statistically significant.

Results
At the end of 6 weeks, 219 (10.2%) out of 2148 IDA members accessed the survey, and 188 (8.8%) members responded to at least 1 question, of which 161 (7.5%) members reached the end of the survey.

Demographics
A total of 64.6% (102/158) of the respondents were male (Table 1). Their average years in practice was 25.72 (SD 13.52) years. A total of 74.5% (120/161) of the respondents were general practitioners, and the rest were dental specialists (Table 1). A total of 8 dental specialties were reported: oral and maxillofacial surgery (10/41, 24.2%), periodontics (8/41, 19%), orthodontics (7/41, 16.7%), pediatric dentistry (7/41, 16.7%), endodontics (4/41, 11.9%), operative dentistry (2/41, 4.8%), prosthodontics (2/41, 4.8%), and oral and maxillofacial pathology (1/41, 2.4%). The total percentage is more than 100% since some respondents reported more than 1 specialty.
Table 1. Characteristics of survey respondents.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey respondents</td>
<td></td>
</tr>
<tr>
<td>Sex (n=158), n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>56 (35.4)</td>
</tr>
<tr>
<td>Male</td>
<td>102 (64.6)</td>
</tr>
<tr>
<td>Dental profession (n=161), n (%)</td>
<td></td>
</tr>
<tr>
<td>General practitioner</td>
<td>120 (74.5)</td>
</tr>
<tr>
<td>Dental specialist</td>
<td>41 (25.5)</td>
</tr>
<tr>
<td>Years in practice (n=161), mean (SD)</td>
<td>25.72 (13.52)</td>
</tr>
<tr>
<td>Survey respondents’ primary dental practices</td>
<td></td>
</tr>
<tr>
<td>Type (n=160), n (%)</td>
<td></td>
</tr>
<tr>
<td>Private dental practice owner</td>
<td>100 (62.5)</td>
</tr>
<tr>
<td>Associate dentist of a private practice</td>
<td>26 (16.3)</td>
</tr>
<tr>
<td>Major dental care organizations such as dental schools and health maintenance organizations</td>
<td>19 (11.9)</td>
</tr>
<tr>
<td>Public health practice, community health center, or publicity-funded clinic (but not a federal facility)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Federal government facility (Veterans Affairs, Department of Defense, and Public Health Service)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Other</td>
<td>11 (6.9)</td>
</tr>
<tr>
<td>Number of dentists (including the respondent; n=160), n (%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75 (46.9)</td>
</tr>
<tr>
<td>2-5</td>
<td>66 (41.3)</td>
</tr>
<tr>
<td>6-10</td>
<td>3 (1.9)</td>
</tr>
<tr>
<td>>10</td>
<td>16 (10)</td>
</tr>
<tr>
<td>Number of hygienists (n=161), n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>31 (19.3)</td>
</tr>
<tr>
<td>1-5</td>
<td>110 (68.3)</td>
</tr>
<tr>
<td>6-10</td>
<td>15 (9.3)</td>
</tr>
<tr>
<td>>10</td>
<td>5 (3.1)</td>
</tr>
<tr>
<td>Use EDR⁴ to manage clinical data (n=161), n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>128 (79.5)</td>
</tr>
<tr>
<td>No</td>
<td>33 (20.5)</td>
</tr>
<tr>
<td>EDR system brands (n=126), n (%)</td>
<td></td>
</tr>
<tr>
<td>Dentrix</td>
<td>45 (35.7)</td>
</tr>
<tr>
<td>EagleSoft</td>
<td>19 (15.1)</td>
</tr>
<tr>
<td>axiUm</td>
<td>14 (11.1)</td>
</tr>
<tr>
<td>OpenDental</td>
<td>10 (7.9)</td>
</tr>
<tr>
<td>SoftDent</td>
<td>10 (7.9)</td>
</tr>
<tr>
<td>Practice Works</td>
<td>6 (4.8)</td>
</tr>
<tr>
<td>Easy Dental</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>Other³²¹</td>
<td>19 (15.1)</td>
</tr>
<tr>
<td>Whether or not have access to a state-based health information exchange, exchange capability between dental software and electronic medical record system, or integrated dental-medical record system? (n=161), n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>24 (14.9)</td>
</tr>
<tr>
<td>No</td>
<td>137 (85.1)</td>
</tr>
</tbody>
</table>
In all, 78.8% (126/160) of respondents reported working in private practices as owners or associate dentists (Table 1). Approximately half (75/160, 46.9%) of the respondents reported having 1 dentist in their primary dental practices, while 10% (16/160) of respondents reported their primary practice having more than 10 dentists. Most respondents’ (110/160, 68.3%) primary practices had 2-5 hygienists, while 19% (31/160) of respondents’ practices had no hygienists. The 3 most frequently performed procedures were diagnostic and preventive such as an examination, X-rays, scaling, prophylaxis, sealants, fluoride, etc (136/161, 84.4%); restorations or fillings (125/161, 78.1%); and tooth-supported or implant-supported crowns (105/161, 65.3%). The respondents served a diverse age group of the patient population, with an average of 19.6% (31/157) of patients 18 years or younger and 22.5% (35/157) of patients 65 years or older (Table 1).

About 4 in 5 (128/161, 79.5%) respondents reported using an EDR for not only billing or scheduling but also for clinical or patient data management. The top 3 brands of EDR were Dentrix (145/161, 35.7%), EagleSoft (19/161, 15.1%), and axiUm (14/161, 11.1%; Table 1).

Dentists’ Opinions on the Importance of Medical Histories and Reliability of Patient-Reported Medical Histories

Almost all respondents (160/161, 99.5%) considered patients’ medical histories highly or moderately important during dental care (Table 2). They reviewed medical histories to (1) verify no contraindications exist to undergo a dental procedure (37/161, 23.2%), (2) confirm no need for antibiotic prophylaxis before the dental procedure (36/161, 22.7%), (3) rule out any allergies or adverse drug reactions (35/161, 22%), (4) assist with determining the prognosis of an oral disease or treatment outcomes (35/161, 21.7%), (5) detect normal and abnormal laboratory results (14/161, 8.4%), and (6) for other purposes (3/161, 1.9%). Only 1 respondent considered patients’ medical histories unimportant since they felt gathering medical history to be procedural and not essential for dental care. Regarding the reliability of patient-reported medical histories, 8% (n=13) of respondents considered them highly reliable, 79.5% (n=128) moderately reliable, and 12.4% (n=20) unreliable.

Table 1: Patient age distribution (%; n=157), mean (SD)

<table>
<thead>
<tr>
<th>Age Distribution</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 years and younger</td>
<td>19.6 (23.3)</td>
</tr>
<tr>
<td>19-44 years</td>
<td>26.1 (13.8)</td>
</tr>
<tr>
<td>45-64 years</td>
<td>31.8 (15)</td>
</tr>
<tr>
<td>65 years and older</td>
<td>22.5 (13.1)</td>
</tr>
</tbody>
</table>

*EDR: electronic dental record.

aOther EDR brands included Ascend (by Dentrix), Cloud9, Curve Dental, Dentsply, DRM plus, DSN PerioExec, EPMS, MacPractice, Mconsent, Florida Probe, Mogo, NextGen, OMSvision, Ortho2 Edge, Practice Fusion, and Practice Web.
Table 2. Respondents’ opinions on the importance and reliability of patients’ medical histories and their perceptions of accessing patient history via an HIE\(^a\) (n=161).

<table>
<thead>
<tr>
<th>Opinions to patients’ medical histories(^b)</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How important is obtaining patient’s up-to-date medical history for you?</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>7</td>
<td>3 (1.9)</td>
</tr>
<tr>
<td>8</td>
<td>13 (8.1)</td>
</tr>
<tr>
<td>9</td>
<td>18 (11.2)</td>
</tr>
<tr>
<td>10: Extremely important</td>
<td>126 (78.3)</td>
</tr>
<tr>
<td>How reliable is the patient-reported medical history?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>3</td>
<td>3 (1.9)</td>
</tr>
<tr>
<td>4</td>
<td>4 (2.5)</td>
</tr>
<tr>
<td>5</td>
<td>11 (6.8)</td>
</tr>
<tr>
<td>6</td>
<td>29 (18.0)</td>
</tr>
<tr>
<td>7</td>
<td>57 (35.4)</td>
</tr>
<tr>
<td>8</td>
<td>42 (26.1)</td>
</tr>
<tr>
<td>9</td>
<td>11 (6.8)</td>
</tr>
<tr>
<td>10: Extremely reliable</td>
<td>2 (1.2)</td>
</tr>
</tbody>
</table>

Perceptions of accessing patient history via an HIE

Do you think access to such a system would be useful?

1: No	8 (5.0)
2: Maybe	40 (24.8)
3: Yes	113 (70.2)

Would you consider using it to access your patient’s medical information?

1: No	9 (5.6)
2: Maybe	40 (24.8)
3: Yes	112 (69.6)

Would you allow other health care providers to access clinical information about your own patients?

1: No	15 (9.3)
2: Maybe	47 (29.2)
3: Yes	99 (61.5)

What is your interest to participate in a service to access such as a system?

1: Not interested at all	15 (9.3)
2: Slightly interested	19 (11.8)
3: Moderately interested	58 (36.0)
4: Very interested	39 (24.2)
5: Extremely interested	30 (18.6)

\(^a\)HIE: health information exchange.

\(^b\)10-level Likert scale was used with ranges as follows: 1-5=not important or reliable, 6-8=moderately important or reliable, and 9-10=highly important or reliable.
Dentists’ Information Needs Regarding Their Patient’s Medical History

The 3 most needed information categories for new and existing patients were medical conditions or diagnosis, current medications, and allergies. Other categories included hospitalizations in the last 2 years, substance abuse, procedures in the previous 5 years, laboratory results from the last 6 months, and immunization records. The respondents evaluated the information needs of new and existing patients separately, and there were no significant differences in the results (Table 3).

Table 3. Dentists’ most needed patient medical information during dental care.

<table>
<thead>
<tr>
<th>Patient medical information</th>
<th>Existing patients (n=161), n (%)</th>
<th>New patients (n=161), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical condition or diagnoses</td>
<td>150 (93.2)</td>
<td>153 (95)</td>
</tr>
<tr>
<td>Current medications</td>
<td>141 (87.6)</td>
<td>148 (91.9)</td>
</tr>
<tr>
<td>Allergies</td>
<td>138 (85.7)</td>
<td>143 (88.8)</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>76 (47.2)</td>
<td>81 (50.3)</td>
</tr>
<tr>
<td>Hospitalization in the last 2 years</td>
<td>70 (43.5)</td>
<td>68 (42.2)</td>
</tr>
<tr>
<td>Procedures in the last 5 years</td>
<td>44 (27.3)</td>
<td>49 (30.4)</td>
</tr>
<tr>
<td>Laboratory results from the last 6 months</td>
<td>17 (10.6)</td>
<td>17 (10.6)</td>
</tr>
<tr>
<td>Immunization records</td>
<td>4 (2.5)</td>
<td>3 (1.9)</td>
</tr>
<tr>
<td>Others</td>
<td>3 (1.9)</td>
<td>5 (3.1)</td>
</tr>
</tbody>
</table>

Dentists’ Access to Their Patient’s Medical History

We also asked the dentists how they collected patient-reported medical histories and obtained additional information if needed. Paper-based health history forms constituted the most used method (127/161, 78.9%), followed by web-based health history forms (62/161, 38.5%) and electronic devices such as tablets (35/161, 21.7%). The total percentage is more than 100% since some respondents reported using more than 1 method. The top 3 challenges in collecting patient-reported medical history were as follows: (1) patients do not remember or recall medication names and dosage (156/161, 96.9%); (2) patients do not recall previous procedures and medical conditions (129/161, 80.1%); and (3) patients’ reluctance to share their medical history (84/161, 52.2%). When the respondents needed additional information, most (158/161, 98%) contacted physicians’ offices or health care providers directly via phone, fax, or email. Other communication methods included paper-based medical consult forms through the patient (46/161, 28.6%), patient’s pharmacy (39/161, 24.2%), state-based HIE (19/161, 11.8%), exchange capability between dental software and electronic medical record system (5/161, 3.1%), integrated dental-medical record system (4/161, 2.5%), and other (9/161, 5.6%). However, they experienced challenges such as the need for multiple attempts (97/161, 60.2%), not receiving information on time (80/161, 49.7%), physician offices being nonresponsive (66/161, 41.0%), need to contact numerous providers or specialists (55/161, 34.2%), need for patient intervention (44/161, 27.3%), and not receiving requested information (35/161, 21.7%).

Dentists’ Perceptions of Accessing Patient History via an HIE

A total of 69.6% (113/161) of respondents considered access to a regional HIE useful (Table 2). If such a system were available, 69.9% (n=113) of the respondents would consider using it to access their patient’s medical information, and 61.5% (n=99) would be willing to allow other health care providers to access their patients’ clinical information (Table 2). Furthermore, 91.3% (n=147) of the respondents expressed various interests in participating in a service to access an HIE (Table 2). However, they expressed concerns over the design and implementation of such a system, including data accuracy, data security and HIPAA (Health Insurance Portability and Accountability Act) compliance, cost of implementation (both time and money), and system usability.

The association between respondent characteristics (including dental profession, number of years in practice, and current access to an EHR or HIE) and their opinions on the importance and reliability of patients’ medical histories and perceptions of accessing patients’ medical histories via HIE based on multivariable ordinal logistic regression is displayed in Table 4. Dental profession type (general practitioner vs dental specialist) does not significantly affect one’s opinions toward the importance (P=.98) and reliability (P=.31) of patients’ medical history. However, respondents with more than 40 years in practice were less likely to consider obtaining up-to-date patient information important compared to those with less than 40 years in practice (odds ratio [OR] 0.351, 95% CI 0.139-0.889; P=.03) and more likely to think self-reported information to be reliable (OR 2.267, 95% CI 1.011-5.084; P=.047). In addition, respondents with access to an HIE-EHR were more likely to consider obtaining up-to-date patient information important compared to those who do not have access to an HIE-EHR (OR 2.590, 95% CI 1.080-6.209; P=.03). Regarding the respondents’ perceptions of using an HIE to access patients’ medical histories, we found that dental specialists were more interested than general practitioners in participating in service to access patient information via an HIE (OR 2.267, 95% CI 1.174-4.378, P=.02). Compared to respondents without current access to an HIE-EHR, those with access to an HIE-EHR were more likely to think it worthwhile to access such a system (OR 6.306, 95% CI 2.671-14.886; P<.001), more likely to consider using such a system to access their patient’s information (OR 5.538, 95% CI 2.379-12.892; P<.001), more likely to allow other providers to access their patient’s data (OR 2.943, 95% CI 1.342-6.456;
In this study, we determined community practice dentists’ and medical care in large health care systems [19-21]. Through existing studies only highlight case studies of integrating dental care coordination between dental and medical providers and medical record data is critical to promote communication and dental providers’ use of such services. Integration of dental and accuracy, data safety, and implementation costs would drive Nevertheless, the participants commented that usability, data accuracy, data safety, and implementation costs would drive dental providers’ use of such services. Integration of dental and medical record data is critical to promote communication and care coordination between dental and medical providers and has gained tremendous attention in recent years [2]. However, existing studies only highlight case studies of integrating dental and medical care in large health care systems [19-21]. Through this study, we determined community practice dentists’ information needs and attitudes toward accessing patient medical information via an HIE. These study results contribute to dental professionals’ high-priority information needs and HIE functionalities for successfully using the expanding HIE network in the United States and other countries. In the sections below, we discuss the relevant findings in detail.

Discussion

Principal Findings

We surveyed Indiana dentists to determine their information needs regarding patients’ medical histories and their opinions of accessing patient-specific medical information via a community or regional HIE. The survey respondents’ demographics distribution closely matched the dentists’ demographics in the 2020 Indiana oral health workforce data report [31]. In addition, the response rate of 7.5% (161/2148) is comparable to previous surveys of health care professionals, especially web-based surveys [32-34]. The results demonstrated dentists’ high priority in obtaining their patients’ medical diagnoses or conditions, medication histories, and allergies to provide optimum dental care. The survey respondents also reported challenges in getting medical information from patients and medical providers, although they considered patient-reported medical histories moderately or highly reliable. It is also significant that 70% (112/160) of surveyed dentists who work primarily in community practices (Table 1) expressed willingness to use and participate in a service to access and share their patients’ medical histories via an HIE.

Nevertheless, the participants commented that usability, data accuracy, data safety, and implementation costs would drive dental providers’ use of such services. Integration of dental and medical record data is critical to promote communication and care coordination between dental and medical providers and has gained tremendous attention in recent years [2]. However, existing studies only highlight case studies of integrating dental and medical care in large health care systems [19-21]. Through this study, we determined community practice dentists’ information needs and attitudes toward accessing patient medical information via an HIE. These study results contribute to dental professionals’ high-priority information needs and HIE functionalities for successfully using the expanding HIE network in the United States and other countries. In the sections below, we discuss the relevant findings in detail.

Dentists with <40 years of experience or having access to an HIE-EHR system felt patients’ medical histories were more critical than those with >40 years of experience, even though almost 90% (145/161) of the dentists considered patients’ medical histories essential (Table 2). This difference could be because, until 2 decades ago, only limited information technology existed for dentists to access their patient’s medical information except for patient-reported medical history and medical consults. This limited access to EHR data may explain why dentists with more than 40 years in practice were more likely to think patient-reported information as reliable (Table 4). Additionally, dentist respondents who already have access to an HIE-EHR system may benefit more from their patients’ medical histories since they have easier access to the information and may have better quality of information.

Our survey found that the most needed information categories were medical conditions or diagnosis, current medications, and allergies (Table 3), which was consistent with a previous survey [26]. Together these findings showed that some categories of patient medical information were more helpful to dentists during dental care. These findings can also be used to optimize the user interface design in either an EDR-EHR system or an HIE to avoid information overload. However, our team’s earlier studies on medical consults discovered that dentists’ most requested information categories were laboratory values and written diagnostic reports, followed by recommendations or medical

Table 4. Impact of respondents’ demographics on their opinions on patient medical history and perceptions on accessing patient medical information via an HIE(a).

<table>
<thead>
<tr>
<th>Patient medical information</th>
<th>Dental specialist vs general practitioner OR^c (95% CI)</th>
<th>P value</th>
<th>>40 vs ≤40 years in practice OR (95% CI)</th>
<th>P value</th>
<th>Have access to HIE-EHR^b vs no access OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>How important is obtaining a patient’s up-to-date medical history for you?</td>
<td>0.988 (0.401-2.437)</td>
<td>.98</td>
<td>0.351 (0.139-0.889)</td>
<td>.03^d</td>
<td>2.590 (1.080-6.209)</td>
<td>.03^d</td>
</tr>
<tr>
<td>How reliable is the patient-reported medical history?</td>
<td>0.713 (0.374-1.360)</td>
<td>.31</td>
<td>2.267 (1.011-5.084)</td>
<td>.047^d</td>
<td>1.135 (0.554-2.327)</td>
<td>.73</td>
</tr>
<tr>
<td>Do you think access to such a system would be useful?</td>
<td>1.567 (0.674-3.643)</td>
<td>.30</td>
<td>2.435 (0.821-7.217)</td>
<td>.11</td>
<td>6.306 (2.671-14.886)</td>
<td><.001^d</td>
</tr>
<tr>
<td>Would you consider using it to access your patient’s medical information?</td>
<td>2.187 (0.908-5.264)</td>
<td>.08</td>
<td>1.577 (0.577-4.309)</td>
<td>.37</td>
<td>5.538 (2.379-12.892)</td>
<td><.001^d</td>
</tr>
<tr>
<td>Would you allow other providers to access clinical information about your own patients?</td>
<td>1.311 (0.623-2.759)</td>
<td>.48</td>
<td>1.517 (0.602-3.825)</td>
<td>.38</td>
<td>2.943 (1.342-6.456)</td>
<td>.007^d</td>
</tr>
<tr>
<td>What is your interest in participating in a service to access such a system?</td>
<td>2.267 (1.174-4.378)</td>
<td>.02^d</td>
<td>1.609 (0.722-3.585)</td>
<td>.24</td>
<td>3.894 (1.844-8.222)</td>
<td><.001^d</td>
</tr>
</tbody>
</table>

^aHIE: health information exchange.
^bEHR: electronic health record.
^cOR: odds ratio.
^dP<.05 were considered statistically significant.
clearances [15]. The inconsistency of these results indicates that
dentists’ information needs can evolve based on access to
relevant information. As they gain access to EHR information,
they can ask more specific and informed questions when
consulting their medical colleagues, leading to increased
responses from medical colleagues. This improved information
access may enhance dentists’ patient management and treatment
planning. The results also indicated dentists’ information needs
for new and existing patients were almost identical (Table 3).
Future studies should continue investigating dentists’
information needs as they gain direct access to patients’
up-to-date medical information via an EDR-EHR system or an
HIE.

The survey respondents, especially those with access to an
HIE-EHR, showed clear interest in using the HIE to optimize
the information collection process (Tables 2 and 3). For instance,
11.8% (19/161) of the respondents reported access to a
state-based HIE, which was higher than expected. This higher
access rate could be attributed to dental providers’ access to
state-wide information systems, such as Indiana’s Prescription
Drug Monitoring Program, and may have mistaken it for an
HIE. Nonetheless, several state-wide HIEs are promoting
dentists’ use of HIEs to improve access to patient information
[35-37]. However, the overall use during dental care remains
low. For instance, a study of New York dentists’ use of the
Rochester regional HIE demonstrated a 0.17% rate of use of
the HIE during dental encounters [35]. This low use is not
surprising given that the use of community HIEs, even by
nondental providers, is still growing, with 1% to 5% use in all
patient visits. In the New York dentists’ study, they accessed
the HIE primarily for patients with chronic conditions, gingival
and periodontal diagnosed diseases, and during the first dental
visit [35]. The most frequently visited sections were the
laboratory and radiology sections within the HIE, which is
consistent with our earlier study results of dentists’ medical
consult requests [15].

Although the emergence of community and vendor-supported
HIEs has improved medical providers’ timely access to patient
information [38-41], inefficient and cumbersome processes and
poor user experiences are significant barriers to HIE use [42,43].
Previous studies in medical settings reported that some HIEs
require users to have multiple logins; interrupt their workflow;
and display overloaded and poorly arranged information [42,43].
Our study respondents expressed similar concerns about the
usability of HIEs, such as difficulty accessing data, information
overload, and nonintuitive interface designs that could prevent
dentists’ use of HIEs. Therefore, future HIE tools’ design and
development should focus on the accuracy and integration of
the data (content) and the information display and navigation
(presentation). Few respondents including those willing to use
an HIE expressed concerns about accessing patients’ medical
histories via an HIE due to data safety and HIPAA compliance
concerns. This issue needs to be addressed both at the technical
level with more new tools and methods to ensure safe data
sharing and exchanging and at the regulatory level with new
protocols and rules to support the use of HIEs. Furthermore,
most respondents agreed that patients should be able to control
the use of their health care information, and their consent must
be received before any information exchange and sharing occur.

Limitations
This study only invited Indiana dentists who are IDA members.
A more geographically diversified pool of participants may help
improve the results’ validity and generalizability. In future
studies, we also want to include other dental professionals, such
dental hygienists and dental assistants. We are aware of the
relatively low response rate to the survey, which is not rare in
surveys of health care professionals, especially web-based
surveys [32-34]. This was an exploratory study and our initial
step to determine dentists’ information needs and to help
improve their information access. Based on the results of this
survey, we will conduct key informant interviews and focus
group studies to include a broader group of participants. Another
limitation was that dentists may not be familiar with some of
the terminologies used in the survey such as state-based HIEs.
Terminology definitions and examples should be included in
future survey designs.

Conclusions
Patients’ medical histories are essential for dentists to provide
high-quality dental care. In addition, information such as
medical conditions or diagnosis, current medications, and
allergies are more relevant to dentists’ clinical decision-making.
Paper-based health history forms and medical consults are still
the most widely used methods to gather information. However,
electronic forms and integrated systems are gaining attention
to have direct access to information. Most dentists are interested
in using an HIE to access patient medical histories. The findings
from this study can provide an alternative option for improving
communications between dental and medical professionals and
help the health information technology system or tool developers
identify critical requirements for more user-friendly designs.

Acknowledgments
This study was supported by the National Institute of Dental and Craniofacial Research of the National Institutes of Health under
award 5R01DE031259-02. The content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institutes of Health or the National Institute of Dental and Craniofacial Research.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request. Requests
may need approval from Indiana University.
References

Abbreviations

EDR: electronic dental record
EHR: electronic health record
HCO: health care organization
HIE: health information exchange
HIPAA: Health Insurance Portability and Accountability Act
IDA: Indiana Dental Association
NIH: National Institutes of Health
OR: odds ratio

©Shuning Li, Grace Gomez Felix Gomez, Huiping Xu, Anushri Singh Rajapuri, Brian E Dixon, Thankam Thyvalikakath. Originally published in JMIR Formative Research (https://formative.jmir.org), 11.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Promoting Self-Efficacy of Individuals With Autism in Practicing Social Skills in the Workplace Using Virtual Reality and Physiological Sensors: Mixed Methods Study

Sung-In Kim¹, MD; So-youn Jang², MS; Taewan Kim³, PhD; Bogoan Kim⁴, BA; Dayoung Jeong⁵, BS; Taehyung Noh⁶, BS; Mingon Jeong⁵, BS; Kaely Hall⁶, MS; Meelim Kim⁷,⁸,⁹,¹⁰, PhD; Hee Jeong Yoo¹¹,¹², MD, PhD; Kyungsik Han⁴,⁵, PhD; Hwajung Hong¹³*, PhD; Jennifer G Kim²*, PhD

¹Department of Psychiatry, Seoul National University Bundang Hospital, Bundang, Republic of Korea
²Georgia Institute of Technology, Atlanta, GA, United States
³Department of Industrial Design, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
⁴Department of Data Science, Hanyang University, Seoul, Republic of Korea
⁵Department of Artificial Intelligence, Hanyang University, Seoul, Republic of Korea
⁶School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, United States
⁷Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
⁸Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA, United States
⁹The Design Lab, University of California San Diego, San Diego, CA, United States
¹⁰Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
¹¹Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
¹²Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
¹³Center for Wireless & Population Health Systems Calit2's Qualcomm Institute, University of California San Diego, San Diego, CA, United States
* these authors contributed equally

Corresponding Author:
Jennifer G Kim, PhD
Georgia Institute of Technology
225 North Ave
Atlanta, GA, 30332
United States
Phone: 1 404 894 2000
Email: jennifer.kim@cc.gatech.edu

Abstract

Background: Individuals with autism often experience heightened anxiety in workplace environments because of challenges in communication and sensory overload. As these experiences can result in negative self-image, promoting their self-efficacy in the workplace is crucial. Virtual reality (VR) systems have emerged as promising tools for enhancing the self-efficacy of individuals with autism in navigating social scenarios, aiding in the identification of anxiety-inducing situations, and preparing for real-world interactions. However, there is limited research exploring the potential of VR to enhance self-efficacy by facilitating an understanding of emotional and physiological states during social skills practice.

Objective: This study aims to develop and evaluate a VR system that enabled users to experience simulated work-related social scenarios and reflect on their behavioral and physiological data through data visualizations. We intended to investigate how these data, combined with the simulations, can support individuals with autism in building their self-efficacy in social skills.

Methods: We developed WorkplaceVR, a comprehensive VR system designed for engagement in simulated work-related social scenarios, supplemented with data-driven reflections of users’ behavioral and physiological responses. A within-subject deployment study was subsequently conducted with 14 young adults with autism to examine WorkplaceVR’s feasibility. A mixed methods approach was used, compassing pre- and postsystem use assessments of participants’ self-efficacy perceptions.

Results: The study results revealed WorkplaceVR’s effectiveness in enhancing social skills and self-efficacy among individuals with autism. First, participants exhibited a statistically significant increase in perceived self-efficacy following their engagement with the VR system (P=.02). Second, thematic analysis of the interview data confirmed that the VR system and reflections on the data fostered increased self-awareness among participants about social situations that trigger their anxiety, as well as the
behaviors they exhibit during anxious moments. This increased self-awareness prompted the participants to recollect their related experiences in the real world and articulate anxiety management strategies. Furthermore, the insights uncovered motivated participants to engage in self-advocacy, as they wanted to share the insights with others.

Conclusions: This study highlights the potential of VR simulations enriched with physiological and behavioral sensing as a valuable tool for augmenting self-efficacy in workplace social interactions for individuals with autism. Data reflection facilitated by physiological sensors helped participants with autism become more self-aware of their emotions and behaviors, advocate for their characteristics, and develop positive self-beliefs.

Key words: autism; virtual reality; workplace; self-efficacy; social skills; data reflection

Introduction

Background

Approximately 40% of individuals with autism experience anxiety because of difficulties in socializing, sensory sensitivities, and other factors [1-3]. Specifically, workplace environments can amplify anxiety in individuals with autism, such as sensory overload, communication barriers, and unplanned interactions [4-8] as these environments are often designed with neurotypical expectations in mind. When people with autism constantly encounter situations that elicit anxiety, it can cause them to have negative self-beliefs about their skills and performance, which can lower their self-confidence in the workplace [9]. Therefore, self-efficacy—the personal judgment or belief in one’s ability to succeed in prospective situations—is crucial for people with autism because it can help individuals approach challenging workplace experiences from a positive perspective, as opposed to focusing on failure [10,11].

Virtual reality (VR) interventions have demonstrated potential effectiveness in promoting the self-efficacy of people with autism, as they provide a safe yet realistic environment to master specific social skills by offering opportunities to repetitively practice them [12-18]. Although this exposure and repetition are useful for mastering skills, gaining a deeper understanding of specific social situations that trigger anxiety can better prepare users to effectively manage those situations in the real world. An individual’s understanding of anxiety-inducing situations and crafting self-beliefs that they have the capabilities to succeed in those situations align with 2 key constructs of the self-efficacy theory by Bandura [19,20]—physiological states and verbal persuasion. Notably, VR can also support physiological state awareness and verbal persuasion. It can identify the VR situations that prompt significant changes in a user’s physiological data, enabling the user to reflect on these experiences and formulate strategies to respond effectively [18]. This process can empower the development of self-efficacy [19]. However, existing VR interventions often limit the scope of self-efficacy to mastery experiences only [21] and fail to provide the extended theoretical rationale or background of self-efficacy on the design or outcomes of the system.

In this study, we expanded the current VR system by incorporating a feedback model in which the user’s behavioral and physiological sensor data can be reviewed immediately following the experience simulation, allowing for situational reflection.

Our research aimed to increase self-efficacy through a VR-based social skill training system for individuals with autism. Furthermore, we investigated how the facilitation of self-understanding through incorporating reflection of physiological and behavioral data immediately after the social skills practice can impact self-efficacy in preparation for real-life scenarios.

Objectives

This study had 2 main objectives. First, we developed WorkplaceVR, a VR application that allows people with autism to engage in simulated work-related scenarios to help understand their performance through data-driven reflection, with users’ behavioral and physiological data collected during the VR experience. Second, we evaluated the feasibility of the WorkplaceVR by conducting a deployment study with 14 young adults with autism. Using a mixed methods approach, we investigated the changes in self-efficacy among users with autism using pre- and post-survey questionnaires. In addition, we conducted interviews to identify how participants with autism use, expect, and encounter challenges in the VR experience.

Methods

In this study, we designed and implemented WorkplaceVR, a VR-based system that offers simulations of work-related social situations and data-driven reflection of users’ behavioral and physiological responses (Figure 1).
WorkplaceVR is a virtual reality–based system that offers immersive experiences of work-related social situations. With WorkplaceVR, our participants practiced their social skills in a simulated café environment in 2 basic-level and 2 advanced-level scenarios. Our findings highlighted that participants with autism were actively engaged in WorkplaceVR: placing their hands on the physical desk where the virtual counter was (top) and turning to face the virtual manager when conversing (bottom).

Phase 1: Development of the VR System (WorkplaceVR)

Inclusive and Iterative Design for the VR Program Development

Our user-centered design approach to developing the VR system is to ensure inclusivity; technology must empower a more diverse and inclusive society [22,23]. We aimed to build a safe and less stressful virtual environment for people with autism, where they can become familiar with the workplace environment and practice interacting with others without fear of failure. Moreover, with inclusive design in mind, we conducted an iterative design process to incorporate the voices of people with autism into the VR program.

We first conducted a preliminary study to draw design suggestions for the VR program [24]. To elicit end-user feedback, we created a 5-minute video prototype demonstrating the overarching concept and the use scenario of the WorkplaceVR program. Using the video prototype, we conducted semistructured interviews with 20 participants, including individuals with autism (employees, job seekers, etc), managers of companies where people with autism are currently working, psychiatrists, and professional counselors, to uncover the various needs of individuals with autism at workplaces. Through the interview results, we identified the following key design insights. First, the participants emphasized the importance of designing realistic VR scenarios to help users engage in the program by reflecting on their personal experiences or challenges at work. Second, the system should guide users to reflect on their emotions and behaviors. Finally, during the data reflection phase, participants with autism should be able to take control of expressing their thoughts and behaviors and build confidence.

With insights from the preliminary study, we developed our WorkplaceVR program (Figure 1). The system comprises 2 parts: the simulation VR scenario and the physiological data visualization interface. WorkplaceVR was developed using the Unity3D engine (Unity Technologies) and the SteamVR plug-in (Valve Inc) and runs on a Windows 10 (Microsoft) PC with an Intel Core i7, GeForce RTX 2070 graphics card, and 16 GB RAM. A head-mounted display (HMD), VIVE Pro Eye VR headset (HTC) [25], and Empatica E4 wristband (E4 band, Empatica Inc) [22] were worn by the users for viewing the virtual world and sensing physiological signals.

We conducted a pilot study with 4 neurotypical participants to assess the study protocol and identify any risks and challenges that users might experience in trying WorkplaceVR. The participants were introduced to the VR system, experienced WorkplaceVR using an HMD, and then asked to provide feedback on the overall experiences, including task difficulty and scenario length, visual components of the interface, and side effects of the VR experience if there were any (eg, motion sickness, headache, and visual disturbance). On the basis of participants’ suggestions, we added additional visual cues, such as a shining effect to objects (eg, the bill receipt) for users to quickly find and interact with in the 3D environment and an arrow user interaction icon to lead the eye to a specific direction or object to draw attention to specific objects or areas of interest when needed. Another problem raised by the users was regarding the test environment setup. To facilitate an environment where the users can feel safe and private, we placed a blackout curtain in front of the desk where they stood during the experiment.

WorkplaceVR: System Design

In this section, we elaborate on the features and design considerations of the VR system, WorkplaceVR, based on the self-efficacy theory by Bandura [19,20].

Designing VR Contents for Mastery Experience

VR can offer mastery experiences by simulating real-world scenarios that can engage users with autism to accomplish tasks related to workplace settings. To achieve this, our design
approach focused on three key factors: (1) the inclusion of authentic work scenarios, (2) the integration of evidence-based social skills, and (3) the incorporation of multiple levels of difficulty within the scenarios.

1. Realistic work scenarios: we used café scenarios with work-related realistic visuals and auditory stimuli that provide a sense of surrounding in the immersive environment. For example, we designed café furniture and appliances (eg, a cash machine and a coffee machine) and instrumental background music to create a relaxing café atmosphere. Specifically, we selected a situation in which the barista must inform a customer that the drink they ordered is ready from among the situations that are required when working in a café (eg, greeting customers upon entry and taking customer drink orders).

2. Evidence-based social skills intervention: in specific café-based scenarios involving interactions between a barista and a customer, we incorporated evidence-based social skills (eg, active listening, initiating conversations, and not interrupting when someone else is talking) derived from interventions supported by previous research [26,27].

3. Levels of scenarios: for the users to build self-efficacy, it is important to help them reduce anxiety and fear of failure by designing attainable goals that gradually increase in difficulty [19,30-32]. Thus, we designed 4 scenarios with 2 levels of difficulty: basic and advanced. The basic level requires the users to explore and interact with a simulated 3D environment to practice basic conversational skills as baristas. Following this, the users are involved in starting a conversation with a customer avatar by offering a polite greeting, taking orders, and serving beverages such as coffee. The 2 scenarios at this level have the same structure but different order details (number and types of beverages). When the users perform these tasks successfully, they are moved on to the advanced-level scenarios. At the advanced level, the scenario adds complications that arise within the conversation with the customer avatar (eg, a customer avatar claiming that their drink order is wrong).

Physiological Data and Visualization Interface

In the self-efficacy theory, Bandura [19,20] explains that people can shape their perceptions and beliefs about their capabilities by examining one’s physiological and emotional states. Therefore, one of our goals in designing the VR program was to help users better understand their emotions and behaviors by identifying their physiological states and behaviors in social situations [12,33]. We aimed to support people with autism to become more aware of their physiological and emotional states when they face stressful or anxiety-raising situations in the virtual work environment. Hence, we collected the users’ behavioral and physiological data during the VR intervention using the E4 band and HMD. We synchronized the time stamp information transmitted from E4 with the HMD time stamp information using the open-source framework Flask [34].

In addition, we presented a data visualization interface for users to understand and interpret their data along with their recorded performance videos, as illustrated in Figure 2. On the interface, we present (1) anxiety-related physiological measures (eg, temperature, electrodermal activity [EDA], and heart rate [HR]; Figure 2B); (2) changes in voice volume (Figure 2C); and (3) detection of eye contact (Figure 2D). The following explains how we defined, processed, and visualized each data type: anxiety moments, voice volume, and eye contact.

1. Anxiety moments: anxiety moments were defined using the time stamp on data collected when the sensors detected radical changes in the signal because of the users’ physiological reactions to the stimuli. We calculated anxiety moments using an anomaly detector provided by the Microsoft Azure machine learning algorithm [35]. This involved 5 sensor types—HR, EDA, temperature, interbeat intervals, and blood volume pulse—provided by the E4 band. We presented the anxiety moments on the interface with a time stamp range in seconds; each time stamp is linked to the exact time of the performance video. Users can click on a time range to watch their performance video on the left, as shown in Figure 2A.

2. Voice volume: voice data were collected using the microphone of the HMD. We then presented the voice volume level as a graph with time stamps to help users recognize changes in their voice tone and volume (Figure 2C).

3. Eye contact: to help participants understand their eye movements during their moments of anxiety, we used a region of interest (ROI), which is a specific area within an image or video selected for analysis. In our study, we set the faces of the customer and manager avatars as ROIs. We used the box collider of Unity3D and measured whether a user gazes at ROIs through Tobii G20M [36], which is a machine learning algorithm that can accurately ascertain on which objects a user focuses. If the participant looked anywhere in that location, it was labeled as seen (1); if they looked at another area, it was labeled not seen (0) in 1-second units. On the basis of the labeling results, we presented the seen labeled periods as a bar graph to help users understand how they make eye contact with people during VR scenarios, as presented in Figure 2D.
Figure 2. WorkplaceVR interface for data-driven reflection: consisting of (A) a video player that replays the user’s virtual reality experience and physiological or behavioral information visualizations that captured (B) anxiety moments, which are the time stamps that the Azure algorithm uses to detect indications of anxiety based on sensor data (eg, electrodermal activity and heart rate), and of user’s (C) volume of voice and (D) eye contact with the customer and manager avatar.

Verbal Persuasion Through User-Driven Insights

In this study, we focused on facilitating a data-driven reflection process to leverage verbal persuasion for users with autism to engage in the sense making of their physiological data. Our goal was to provide an opportunity for users with autism to navigate their physiological and behavioral data results, identify their own strengths and interests, and gain confidence in speaking about themselves. Thus, the participants were given an active role in interpreting their data and answering questions such as What insights have you gained from the data about your characteristics or strengths? and What are your goals, taking data into account?

Phase 2: Implementation of the VR Program With Participants With Autism

We recruited participants with autism aged >16 years who are either currently employed or unemployed but plan on job searching in the near future. Our inclusion criteria for participants with autism were people who (1) have been diagnosed with autism; (2) can verbally articulate their thoughts, feelings, and experiences; (3) have no difficulties wearing an HMD for VR (eg, sickness or headaches while in VR or vision impairment, such as anisometropia); and (4) understand the study procedure and agree to participate. We posted the study posters to autism-related web-based communities on social networking services and web-based bulletin boards of autism-related institutions (eg, developmental disability social welfare centers and employment agencies for people with disability). In addition, we placed the flyers on the offline bulletin board of a child and adolescent psychiatry outpatient clinic in a hospital and a private counseling center for individuals with autism to outline the participant demographics.

Ethical Considerations

To ensure ethical conduct, our study received approval from the Institutional Review Board of Seoul National University Bundang Hospital (institutional review board number: B-2202-736-302). As this study involved the collection of sensitive information (eg, physiological data) from participants, we informed the participants about the data collection process and obtained their informed consent before they participated in the study. The researchers explained the consent form to the participants with autism in easily understandable terms. We also clarified to the participants with autism that any personal information, VR data and sensor data collected during the research would be anonymized for analysis and securely discarded to protect their privacy. In addition, we offered a compensation of US $50 for the research participants.

Measures

Perceived Self-Efficacy for VR Social Skill Training Scale

We developed the Perceived Self-Efficacy for VR Social Skill Training Scale (PSES-VR), an 8-item questionnaire with a 5-point Likert scale, to evaluate whether our VR intervention changed people’s beliefs regarding the self-efficacy of practicing social skills at the workplace. We developed this scale by modifying the Perceived Self-Efficacy questionnaire based on the theory of perceived self-efficacy by Bandura [37] and referencing existing scales, including the Perceived Social Self-Efficacy Scale [37], Perceived Improvement Scale [38], and Self-Efficacy Scale for Social Workers [39]. The questionnaires were revised to address the target social skills in the VR scenario. The 6 items consisted of communication skills required in general conversation situations. The 2 items evaluate whether participants respond appropriately to the situation required in the VR program scenario. Higher total scores on the items indicate better self-efficacy related to the social skills of the participants. The participants were asked to complete the same PSES-VR survey before the user study session and after the VR experience. All items of the PSES-VR are attached in Multimedia Appendix 1.
iGroup Presence Questionnaire

We used the iGroup Presence Questionnaire (IPQ), a 14-item questionnaire with a 7-point Likert scale, to investigate how users perceive a sense of presence of our VR system. The IPQ scale consists of 4 components: a general sense of being there (1 question), the sense of spatial presence (5 questions), involvement (4 questions), and experienced realism (4 questions), measuring the level of perceived presence during the VR experience [40]. Higher scores on the 4 components, as well as the total scores, indicate a better sense of presence in the VR system as perceived by the participants. All items of the IPQ are attached in Multimedia Appendix 1.

Study Procedure

Our study procedure included three stages: (1) pre-experiment, (2) VR experiment, and (3) postexperiment reflection phase. Figure 3 presents a summary of the procedure.

Before the Experiment

To start, the researchers provided a brief overview of the study purpose and conducted a brief interview with participants, asking questions about their work-related experiences and previous experiences with VR. Next, the researchers introduced WorkplaceVR with explanations of the contents of the VR system and sensor devices that the participants should wear during the VR experiment. After that, the participants had a tutorial session to learn the 2 basic-level scenarios through video and scripted role-play.

VR Experiment

When the participants were ready for the VR experiment, they were asked to wear the E4 band, which is used for sensing the physiological signals, and to put on the VR headset. We informed the participants that they could stop at any time if they started experiencing motion sickness. After they wore the devices, we asked the participants to explore the café environment to adjust to the VR environment. Then, all participants performed the same 4 scenarios in the order of basic to advanced scenarios in VR for approximately 10 to 15 minutes. (Figure 3)

After the Experiment

After the VR experience, we took a 5-minute break and conducted a data reflection on their VR performance with sensor data. In the data reflection process, participants were presented with various types of data related to their own anxiety moments, voice volume level, and eye contact while video recording their performance in VR using the interfaces and were asked to reflect on their performance based on these data. Here, we informed the participants that the data may not be accurate because of technical issues, so there can be errors or missing data in the interface. In the data reflection process, we asked the following to help participants reflect their data, such as “How was your performance in the VR scenarios?” “What were your strengths and challenges while performing the VR scenarios?” or “Did you find anything new about your behaviors while reviewing the data?” After the data reflection, we conducted a semistructured interview about the overall VR experience and data reflection. We asked participants how the VR content (eg, tasks and levels of scenarios, VR environment, and avatar design), data-driven reflection, and protocol (eg, watching a video and role-playing before the VR experiment) could be used to better understand their emotions and responses in potential workplace settings. We also asked questions to elicit feedback on the usefulness of data-driven reflection and its potential impact on their self-understanding of their behavior.

Data Analysis

For qualitative data analysis, the interview data were transcribed, coded, and analyzed based on open coding and thematic analysis [41] using ATLAS.ti (version 7; Scientific Software Development GmbH). A total of 3 researchers individually read the interview transcripts and generated open codes that were discussed among the research team to identify patterns and build themes around VR experience and data-driven reflection regarding self-efficacy. The coding procedure was iterative; it concluded once the researchers agreed that the themes were consistent and a distinct set of themes surfaced. Interviews and surveys were conducted and documented in Korean, and analyses were performed in the same language. This ensured that the original responses were analyzed with the utmost precision. For the quotations used in the article, an English-Korean bilingual-speaking researcher initially translated the responses into English and then revised them through consultation with a proofreading expert.

For quantitative analysis, we analyzed the scale results (IPQ and PSES-VR) of the participants with autism. As a case-control
group was not included in this study, it was difficult to confirm the statistical significance of the IPQ scale in identifying the presence of the VR system in participants with autism. For the IPQ scale, we calculated the mean and SD of the items corresponding to each of the 4 IPQ components and used it descriptively to analyze the VR presence of participants with autism. For the PSES-VR, we performed a paired 2-tailed t test to analyze whether there was a statistically significant change in perceived self-efficacy after using our VR system. For anxiety moments and eye contact sensor data, we conducted a 1-way ANOVA to analyze whether there was a statistically significant difference among the 4 scenarios in WorkplaceVR.

Results

Overview of the VR Experience

A total of individuals with autism participated in the study, including 2 women and 12 men, with an age range of 16 to 34 years. Table 1 shows the baseline characteristics of the participants.

There were no participants who reported difficulties such as motion sickness and headache during the VR experiments. Most (12/14, 86%) participants succeeded in completing the advanced-level scenarios without any support. In total, 2 participants (ND8 and ND13) completed the advanced-level scenario with minimal prompts from the researchers, such as guiding participants to find where the receipt was placed in the table.

Table 1. Demographic information about participants.

<table>
<thead>
<tr>
<th>Code</th>
<th>Sex</th>
<th>Age (y)</th>
<th>Work experience (work period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND1</td>
<td>Male</td>
<td>23</td>
<td>Food service experience at a fast-food restaurant (1 y)</td>
</tr>
<tr>
<td>ND2</td>
<td>Male</td>
<td>32</td>
<td>Office worker (8 y)</td>
</tr>
<tr>
<td>ND3</td>
<td>Male</td>
<td>23</td>
<td>Undergraduate student or part-time job (assistant at a counseling center; 2 y)</td>
</tr>
<tr>
<td>ND4</td>
<td>Male</td>
<td>24</td>
<td>Part timer for a cleaning service and daily paid jobs (event staff; 4 y)</td>
</tr>
<tr>
<td>ND5</td>
<td>Female</td>
<td>22</td>
<td>Undergraduate student or daily paid jobs (PowerPoint presentation design; 1 mo)</td>
</tr>
<tr>
<td>ND6</td>
<td>Male</td>
<td>19</td>
<td>Undergraduate student and no working experience</td>
</tr>
<tr>
<td>ND7</td>
<td>Male</td>
<td>27</td>
<td>Undergraduate student or café barista (1 y)</td>
</tr>
<tr>
<td>ND8</td>
<td>Male</td>
<td>25</td>
<td>Remote worker (data entry in Excel) or designer (making web-based banners; 3 y)</td>
</tr>
<tr>
<td>ND9</td>
<td>Male</td>
<td>20</td>
<td>Undergraduate student and no working experience</td>
</tr>
<tr>
<td>ND10</td>
<td>Male</td>
<td>20</td>
<td>Undergraduate student or part-time work experience (warehouse loading truck job and restaurant server; 3 mo)</td>
</tr>
<tr>
<td>ND11</td>
<td>Male</td>
<td>20</td>
<td>Customer service agent (8 mo); staff at a central radio management service (4 mo)</td>
</tr>
<tr>
<td>ND12</td>
<td>Female</td>
<td>27</td>
<td>Part-time worker (pet care; 1 y)</td>
</tr>
<tr>
<td>ND13</td>
<td>Male</td>
<td>33</td>
<td>Cleaning and maintenance (2 y)</td>
</tr>
<tr>
<td>ND14</td>
<td>Male</td>
<td>21</td>
<td>Freelancer (6 mo)</td>
</tr>
</tbody>
</table>

Quantitative Assessment of the VR System Use

Our results showed a significant increase in the perceived self-efficacy of participants with autism ($P=0.02$) before and after experiencing WorkplaceVR. In the IPQ result, the mean scores for “general presence” (or the “sense of being there”) and “experienced realism” were higher than the mean scores for the other 2 components (spatial presence and involvement). Table 2 presents the results of the questionnaires. Table 3 presents the physiological sensor data of the participants in the 4 VR scenarios.

Our hypothesis was that participants with autism would experience more anxiety moments in the advanced scenarios. Consistent with the hypothesis, the participants had more anxiety moments in the advanced scenarios than in the basic scenarios ($P<0.001$). This result shows that our physiological sensing data can effectively act as a proxy indicator for anxiety experienced by participants with autism. This is because individuals with autism tend to encounter elevated levels of anxiety in unexpected situations, such as the more advanced scenarios that we introduced.
Table 2. Results of the Self-Efficacy Scale and System Evaluation.

<table>
<thead>
<tr>
<th>Scales</th>
<th>Values, mean (SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSES-VRa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre</td>
<td>21.86 (7.33)</td>
<td>.02b</td>
</tr>
<tr>
<td>Post</td>
<td>39.07 (7.52)</td>
<td></td>
</tr>
<tr>
<td>IPQc</td>
<td></td>
<td>N/Ad</td>
</tr>
<tr>
<td>General presence</td>
<td>4.07 (1.86)</td>
<td></td>
</tr>
<tr>
<td>Spatial presence</td>
<td>3.87 (0.59)</td>
<td></td>
</tr>
<tr>
<td>Involvement</td>
<td>3.71 (0.79)</td>
<td></td>
</tr>
<tr>
<td>Experienced realism</td>
<td>3.89 (1.34)</td>
<td></td>
</tr>
</tbody>
</table>

aPSES-VR: Perceived Self-Efficacy for VR Social Skill Training Scale.
bThere was a significant increase in the perceived self-efficacy of participants with autism before and after their experience with WorkplaceVR.
cIPQ: iGroup Presence Questionnaire.
dN/A: not applicable.

Table 3. Physiological data of participants at each scenario.

<table>
<thead>
<tr>
<th>Sensor data</th>
<th>Basic scenarios</th>
<th>Advanced scenarios</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First</td>
<td>Second</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>First</td>
<td>Second</td>
</tr>
<tr>
<td>Anxiety momentsa (number of points), mean (SD)</td>
<td>2.43 (3.56)</td>
<td>3.21 (3.36)</td>
<td>9.43 (4.96)</td>
</tr>
</tbody>
</table>

aAnxiety moments are defined as the timestamps detected by the Azure algorithm’s anomaly detector when sensor signals (eg, electrodermal activity and heart rate) display fluctuations in response to users’ physiological reactions to stimuli.
bThere were significantly more anxiety moments in the advanced scenarios than the basic scenarios.

Qualitative Analysis of the VR System’s Impact on the Self-Efficacy

In this study, qualitative data analysis revealed 3 major themes that correspond to 3 of the 4 constructs of the self-efficacy theory by Bandura: physiological responses, verbal persuasion considered as encouragements, and mastery experience [19]. Below, we report how these findings can shed light on the feasibility of using the WorkplaceVR system to promote self-efficacy.

Impact of the VR Program on Self-Efficacy of Participants With Autism

Self-Awareness of Physiological and Emotional State Through Data Reflection

In the data reflection process, we provided an interface for visualizing the sensor data (ie, anxiety moments, voice volume level, and eye contact) to help the participants better recognize their emotions and behaviors in relation to their VR experiences. All our participants reviewed whether the presented data accurately reflected their emotions and behaviors. While reviewing their physiological signals (eg, HR, IBI, and EDA) presented by the VR system, the participants explained what they were feeling, thinking, or doing. For example, ND6 noticed that his HR increased when he was experiencing tense situations in VR and reported that he was aware of the stressors and reactions, drawing from his prior experiences:

I know that my heartbeat increases when I am in situations that make me anxious or nervous. I remember my heart beating so fast on the night of June 29th. There was also thunder that night [...] It was like the nervous feeling I get when I check my grades. [ND6]

In addition, participants noted that the physiological data visualization provided valuable insight into their emotional states that may have otherwise been difficult to discern:

I don’t think I felt bodily sensations like stress or anxiety during the VR experience. But now, looking at the physiological data, I am convinced I was anxious in these situations [pointing at the “anxiety moments”]. [ND12]

Moreover, the participants recognized and described the patterns of when and why they felt anxious in certain situations. By watching the recorded video of their performance at “anxiety moments,” participants actively described when they were most stressed or anxious while carrying out the simulated workplace tasks (eg, when a customer avatar approaches or when a customer avatar makes a sudden request to the user). For instance, ND2 had 3 events marked as “anxiety moments,” all of which were related to tasks where the user was required to start a conversation with the customer avatar. After playing back the recorded videos for all 3 events, ND2 reported that the data well represented his characters and that he usually becomes anxious when he has to initiate conversations with people at work:

Oh, I’m quite sensitive sometimes, especially before I start talking, because I feel like I have to say...
something important. I also tremble when I start talking or see someone for the first time. [ND2]

By reflecting on their physiological and emotional states and behaviors in advanced scenarios, it enabled participants to recollect their related experiences in the real world and talk about goals to tame anxiety. For example, after reflecting on anxious moments, ND6 discussed ways in which he can improve his comfort in similar situations in the future:

I don’t want to panic again when a problem arises. For example, I shouldn’t be too stressed about my exam results. Whether it be a good or bad result, what’s important is accepting the result and looking beyond it. [ND6]

ND4 realized that he almost always becomes exhausted after meeting other people:

When I come home after meeting someone, I get so tired and have a headache. I always wondered what the reason was. Now that I think of it, I think it was because I got so nervous and tense in social situations. [ND4]

In addition, some participants suggested that having more diverse data (eg, facial expressions, body movements, and gestures) could help them better reflect on and understand their behaviors:

It would be helpful to see how I make gestures and move my body because it is something that is hard to notice in real life. Having an observation camera might work. [ND7]

Verbal Persuasion Through Self-Expression in Data Reflection

We found that the data-driven reflection process of our system can help participants with autism better understand themselves and build positive self-beliefs about who they are and what they can achieve. This opportunity allowed participants with autism to engage in verbal persuasion experiences of self-efficacy [42,43], which means that they could speak about their own strengths and interests and gain confidence in expressing themselves:

I was worried that I am not usually good at making eye contact. But seeing the data, I am surprised to realize that I am, in fact, doing quite well on this. I’m feeling more confident about myself. [ND10]

In addition, some participants reported that they wanted to use behavioral and physiological data to explain the strengths and characteristics they recently discovered to others so they could express their thoughts or arguments more clearly. For example, ND12 reported that she feels misunderstood by people when they have the wrong impressions or ideas about her. She proposed ways to use the data to effectively communicate her opinions to decrease potential conflicts with others:

I often find myself in a state of persistent frustration when communicating with others. I believe that people do not truly understand or accept my thoughts or feelings. [...] However, with the physiological sensor data I currently possess, I am confident that I can convince others. [ND12]

Mastery Experience Through Realistic VR Scenarios

Our interview results suggested that participants with autism experienced a sense of mastery while using the VR program. For example, the participants with autism reported that the successful completion of realistic workplace interpersonal situations in a VR environment boosted their confidence in handling similar situations in the real world:

You have to taste the fruits of success in order to gain confidence and not be afraid of failure. I felt this was an important factor for me to go on to the advanced level because failure can have a huge damaging effect. [ND4]

This mastery experience was also supported by our VR system design that gradually increases the level of task difficulty from the basic-level scenarios to help users respond to unexpected situations with confidence:

Although it was new, it didn’t deviate too much from what I already experienced, so I could handle it. [ND14]

Consistent with the IPQ result, the participants also reported a high level of presence in WorkplaceVR. The participants explained that this was because our VR program provided high-fidelity simulation embodying realistic visual content (eg, “Face Mask Required” signs on the walls of the virtual café considering COVID-19 pandemic situations) and immersive scenarios where they could have a naturalistic social interaction with virtual customers and colleagues (eg, using gestures to communicate and giving receipts to customers). For example, notable observations indicating high engagement included participants attempting tasks such as making coffee or using the cash machine, even though these actions were not part of the assigned tasks (Figure 1). The lifelike experiences participants experienced during our VR program could have played a role in cultivating a sense of mastery.

Discussion

Principal Findings

Overview

This study demonstrated that the VR program, which enables individuals with autism to experience work-related social scenarios and reflect on their VR practice through physiological and behavioral data visualization, can significantly increase the individuals’ perceived self-efficacy in practicing social skills within a workplace context. The interview data further showed how the data reflection of VR practice can influence self-efficacy. The user-driven data review practice allowed individuals with autism to reflect on their physiological data, that is, by promoting self-awareness of their emotions, gaining insights into their real-world behaviors that they were unaware of, and self-advocating their characteristics to others based on their data. In particular, participants could understand when and why they feel anxious, enabling them to proactively devise strategies for self-comfort in anticipation of similar anxiety-provoking situations. Moreover, the increased self-awareness about the underlying causes of their anxiety and
related behaviors motivated them to communicate their experiences and advocate for their needs with others.

Promoting Self-Efficacy by Promoting Self-Awareness About Physiological States

We found that the physiological data reflection helped individuals better understand their emotional responses. This increased self-awareness that participants with autism obtained through our VR system motivated them to take their learnings from reflection in the real world to better explain and advocate for themselves to others. Therefore, in this section, we discuss how the self-reflection interface should be designed to present physiological and behavioral data in a way that encourages individuals to reflect on their experiences.

According to Bandura [19], recognizing and managing one’s own emotions and physiological states is essential in promoting self-efficacy, as this affects people’s decision-making process and performance. In line with the theory, our study found that behavioral and physiological sensor data (eg, eye contact, voice volume, EDA, and HR) could be used to support people with autism to become aware of their emotional states and, in turn, establish strategies to respond effectively to intense emotions. The participants became aware of their current affect state by mapping their physiological responses on the interface and sometimes wanted to examine data in depth to improve their self-understanding (eg, facial expression, standing posture, and hand gestures). Specifically, reflecting on the physiological data taken during the VR experience while watching the playback of the sessions allowed participants with autism to revisit how they felt and behaved in VR situations in specific moments that heightened their anxiety. This reflection reminded them of similar situations that induce anxiety in their daily lives, such as when they had to initiate conversations or when a conversational partner is approaching them. This increased self-awareness about their emotional responses—why they were anxious or nervous at specific times—further allowed participants with autism to make a resolution: how they might manage their emotional reactions in everyday lives.

Moreover, we found that the data reflection allowed participants with autism to gain insights about their real-world behaviors that they were unaware of (eg, “Why I was anxious when I had a conversation with coworkers?” or “Why I was always tired when I went to a place with a lot of people?”). Therefore, VR interventions for promoting self-efficacy could be designed to provide opportunities for users to investigate their emotional reactions through data reflection and to connect the insights to their real-world practices. To encourage reflection, Fleck and Fitzpatrick [44] suggest incorporating reflective questions into technology to prompt users to think about their behaviors and provide justifications or explanations for knowledge, actions, or events. Therefore, VR systems can present reflective questions such as “What about this scenario made you feel anxious?” to accompany data reflection and to provide scaffolding for individuals with autism to consider how their performance in the scenarios relates to their real-world experiences.

Finally, when reflecting on the physiological data marked during the VR simulations, the system can guide users to raise their emotional awareness by relating it to their real-world experiences. It is important for them to understand what factors trigger their emotional and physical responses, why these factors affect them in a certain way, and how they should respond to such emotions. Previous research suggests that careful observation of one’s behavior, either by themselves or by others, might be the most informative and applicable source of emotional self-awareness [45,46]. Similarly, in our study, participants with autism identified the situations where they felt anxious while reviewing the anxiety moments data and watching the recorded videos of their VR performance and described their feelings by recalling prior related experiences. Through this process, they planned more specific ways to respond to anxiety, which could be applicable to their real-world interpersonal situations.

Toward Data-Driven Self-Advocacy

Verbal persuasion, involving encouragement from others and self-advocacy practice, is an important source of self-efficacy because it can help individuals shape self-beliefs that they have the skills or knowledge to succeed in a given situation and have confidence in themselves [19,47].

Our study suggests that the data-driven reflection process could have a similar effect as verbal persuasion. Our participants with autism reported that they often received negative feedback about their behaviors from others but experienced validation of behaviors through our system, for example, when the data interface indicated that their voice volume was lower than they expected. These results show that data reflection creates an opportunity for individuals with autism to experience verbal persuasion through identifying what they can do well in VR scenarios and fostering internal motivation to apply what they learned about themselves in the real world.

Furthermore, the participants with autism wanted to advocate for their characteristics or strengths identified in the data reflection to others to resolve conflicts or difficulties in their interpersonal relationships (eg, family members’ negative comments on the behaviors of autistic individuals). This finding suggests that data reflection could help individuals with autism to advocate for themselves in their daily lives and workplace. To design systems that can effectively support self-advocacy, our findings suggest the importance of presenting data relevant to their daily lives and supporting them to use the data to reflect on their behaviors, build confidence, and foster self-advocacy.

In our study, reflective questions [48] enabled users with autism to take time to understand themselves and translate their thoughts and concerns into positive resolutions based on the data. The questions included the following: “[reviewing the anxiety moment data] Have you ever encountered a similar situation in real life? If so, why did you feel that way? How do you typically respond to stressful events that make you anxious?” Although the participants could not directly manipulate the data visualization interface, future studies are needed to uncover how the interface can be designed to engage users with autism to better reflect on their personal interests, skills, and experiences. This could be approached by visualizing data with metaphors familiar to individuals with autism and
customizing the user interface to reflect users’ priorities and topics of interest [49-51].

Limitations
Although our VR system could provide individuals with autism with opportunities to promote self-efficacy, there are several limitations. First, in our study, we only included participants with autism who are able to communicate and interact with others. This decision was made in our study because WorkplaceVR was designed to focus on a specific population with autism. However, future research should explore how VR interventions can also benefit participants with autism who have different communication abilities. To estimate anxiety moments, we used the algorithm offered by Microsoft Azure. Although our participants confirmed that the anxiety predictions were aligned with their subjective feelings (eg, anxiety and nervousness), future studies should investigate and apply more rigorous algorithms that can predict the anxiety levels of participants. In this study, we used the PSES-VR, a questionnaire written in Korean, and the IPQ, which was translated into Korean. However, neither of the 2 measures had been previously validated in the Korean population. Finally, we could not confirm whether participants’ experiences in the study would translate to their real-life situations through poststudy observations.

Conclusions
This study investigated how the VR system promotes the self-efficacy of individuals with autism for their success at work. For this, we presented WorkplaceVR, a VR system that allows users to experience work-related social situations and data reflection of the user’s behavioral and physiological data. Through the VR experiment and data reflection, we confirmed that the VR system significantly improved the perceived self-efficacy of participants with autism. Our study results revealed that the VR system provided participants with autism with an opportunity to have a mastery experience in VR scenarios, self-awareness of their emotional states, and self-advocacy of their strengths and characteristics through data reflection. By addressing the expectations and challenges in the VR system for people with autism, these results contribute to not only supporting researchers who design the technology for autistic people but also helping individuals with autism have a successful work experience.

Acknowledgments
The authors used generative artificial intelligence, ChatGPT (OpenAI, version 3.5, 2023), to correct the grammatical errors in the manuscript.

Data Availability
The data sets generated during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Contents of the two scales for evaluating social skills related to the perceived self-efficacy of the participants and the perceived sense of presence of our virtual reality system: (1) Perceived Self-Efficacy for VR Social Skill Training Scale and (2) iGroup Presence Questionnaire.

References

https://formative.jmir.org/2024/1/e52157 JMIR Form Res 2024 | vol. 8 | e52157 | p.145 (page number not for citation purposes)

25. VIVE Pro 2. VIVE. URL: [https://www.vive.com/us/product/vive-pro-eye/overview/] [accessed 2023-08-16]

29. Service and training manual. Smith Coffee and Cafe. 2019 Jan 30. URL: [https://static1.squarespace.com/static/5ad7d558f93fd4c94252090/t/5c54d4e6a4d014a4772292/1549062373251/SmithTraining.pdf] [accessed 2023-12-22]

36. Tobii G2oM. Tobii. URL: https://vr.tobii.com/sdk/solutions/tobii-g2om/ [accessed 2023-08-16]

Abbreviations

- **E4 band**: Empatica E4 wristband
- **EDA**: electrodermal activity
- **HMD**: head-mounted display
- **HR**: heart rate
- **IPQ**: iGroup Presence Questionnaire
PSES-VR: Perceived Self-Efficacy for VR Social Skill Training Scale
ROI: region of interest
VR: virtual reality

Please cite as:
Promoting Self-Efficacy of Individuals With Autism in Practicing Social Skills in the Workplace Using Virtual Reality and Physiological Sensors: Mixed Methods Study
JMIR Form Res 2024;8:e52157
URL: https://formative.jmir.org/2024/1/e52157
doi:10.2196/52157
PMID:38206652

© Sung-In Kim, So-youn Jang, Taewan Kim, Bogoan Kim, Dayoung Jeong, Tae Hyung Noh, Mingon Jeong, Kaely Hall, Meelim Kim, Hee Jeong Yoo, Kyungsik Han, Hwa Jung Hong, Jennifer G Kim. Originally published in JMIR Formative Research (https://formative.jmir.org), 11.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Mapping the Cardiometabolic Patient Experience and Self-Care Behaviors to Inform Design, Implementation, and Persistent Use of Digital Health Care Solutions: Mixed Methods Study

Jan Liska¹, MSc; Marie Mical¹, PharmD; Christophe Maillard¹, MA; Cécile Dessapt¹, CMPP, PhD; Europa Bendig², Dip Ing; Daniel Mai², MA, PhD; John D Piette³, MS, PhD; Sabina De Geest⁴,⁵, RN, PhD; Guillaume Fontaine⁶,⁷,⁸,⁹, RN, PhD

¹Sanofi, Paris, France
²STURM und DRANG, Hamburg, Germany
³Department of Health Behavior Health Education, School of Public Health, University of Michigan, Michigan, MI, United States
⁴Institute of Nursing Science, Department Public Health, University of Basel, Basel, Switzerland
⁵Academic Center for Nursing and Midwifery, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
⁶Ingram School of Nursing, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
⁷Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Montreal, QC, Canada
⁸Centre for Nursing Research, Jewish General Hospital – Centre intégré universitaire de santé et de services sociaux West-Central, Montreal, QC, Canada
⁹Centre for Implementation Research, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, QC, Canada

Corresponding Author:
Jan Liska, MSc
Sanofi
46-48 Avenue de la Grande Armée
Paris, 75017
France
Phone: 33 141247000
Email: Jan.Liska@sanofi.com

Abstract

Background: Cardiometabolic conditions including acute coronary syndrome (ACS) and type 2 diabetes (T2D) require comprehensive care and patient engagement in self-care behaviors, and the drivers of those behaviors at the individual and health system level are still poorly understood.

Objective: We aim to gain insights into self-care behaviors of individuals with cardiometabolic conditions.

Methods: A convenience sample of 98 adult patients with ACS and T2D was recruited in the United States, Germany, and Taiwan to participate in a mixed methods study using ethnographic methods. All participants completed 7-day web-based diaries tracking their level of engagement, and 48 completed 90-minute web-based semistructured interviews between February 4, 2021, and March 27, 2021, focusing on themes including moments of engagement. Qualitative analysis identified factors influencing self-care practices and a Patient Mind States Model prototype.

Results: Patient reports indicate that many patients feel social pressure to adhere to treatment. Patients’ experience can be understood within 5 categories defined in terms of their degree of engagement and adherence (“ignoring,” “struggling,” “juggling,” “controlling,” and “reframing”).

Conclusions: For people living with ACS and T2D, the self-care journey is defined by patterns of patient experiences, which can identify areas that tailored digital health care interventions may play a meaningful role.

(JMIR Form Res 2024;8:e43683) doi:10.2196/43683

KEYWORDS
self-care; adherence; digital health; design; implementation; coronary; type 2 diabetes; care; patient engagement; behavior; interview; treatment; tool; digital tool; support
Introduction

The development of effective self-care behaviors is essential for patients living with chronic health conditions [1]. However, the definition of self-care behavior varies considerably between medical disciplines. From recent concept analyses, a broad term for self-care has been defined as “the ability to care for oneself through awareness, self-control, and self-reliance in order to achieve, maintain, or promote optimal health and well-being” [2]. Indeed, inadequate engagement in these self-care ability driving areas, suboptimal adherence to medication, and failure to enact healthy behaviors (eg, smoking cessation and physical activity) can compromise patients’ quality of life and health outcomes [1]. Self-care is particularly important for patients diagnosed with cardiometabolic conditions such as acute coronary syndrome (ACS) and type 2 diabetes (T2D) [3,4]. Despite this, rates of adherence to a care plan including but not limited to medication and lifestyle modifications remain suboptimal for this population [5-8], and a number of patient-specific factors (eg, depressive symptoms, attitudes toward management, and daily activities) that impact self-care and outcomes have been identified [9].

Despite efforts to establish the psychosocial factors underlying self-regulatory or self-management behaviors [10,11], the typical driver of such studies is to assess how these factors may impact adherence. Behavioral models have been considered within this research, such as the capability, opportunity, motivation, and behavioral model and intervention mapping; however, the volume of frameworks available and a fragmented, confusing taxonomy remain barriers to their effective use [12]. Equally, these frameworks are often generalized and applicable in a range of clinical scenarios and are not exclusive to diabetes or ACS.

This model design approach from a general perspective may explain in part why these models have had a limited impact in diabetes or cardiovascular care, where individual behavior plays a dominant role in patient outcomes [13]. Establishing a behavioral framework that is tailored for those with a cardiometabolic condition will form an important step toward understanding attitudes in clinical care and how these may intrinsically fluctuate over time.

The determinants of effective self-care practices among people living with cardiometabolic diseases have been well-established and include self-efficacy, social support, cognitive skills, and positive attitudes [14-16]. Health care professionals (HCPs) and care systems play a central role in influencing self-care through these determinants as well as by optimizing health service delivery, addressing financial burdens, promoting engagement with technology, and encouraging community support initiatives [17,18]. As self-care determinants include both patient-level and system-level drivers, effective interventions must address both environmental factors and individual patient needs to achieve sustainable effects [19,20]. Designing these interventions requires a deep understanding of patients’ needs as well as their broader life context [21]. Patient activation–focused frameworks such as the Patient Activation Measure (PAM) or the Social, Psychological, Usage, Rational model have helped design interventions that improve medication adherence and lifestyle behaviors [22,23]. However, given ongoing changes in health systems’ use of digital patient support tools in the context of the COVID-19 pandemic, the ways in which tools such as the PAM and Social, Psychological, Usage, Rational model can best be used to support patient self-care needs further exploration. In particular, the COVID-19 pandemic has led to major shifts in clinical practice, including an increase in the use of digital health care approaches [24].

To better understand the ways in which health systems can support patients using digital support tools in the era of the pandemic, we conducted a survey of adult patients with ACS and T2D as well as their caregivers in the United States, Taiwan, and Germany. Our goal was to help establish a behavioral model based on the survey results, which would help inform how digital solutions may be utilized to improve adherence to therapy. This series of interviews and diaries, which drew on grounded theory and phenomenology, aimed to (1) provide deep human-centric insights into the behavioral dimension of the patient experience for people living with T2D or ACS and (2) identify the moments and motivational triggers in a patient’s life that have a strong impact on behavior and health outcomes.

Methods

Research Design

The survey consisted of 2 distinct phases, with all participants completing 7-day web-based, ethnographic diaries tracking their level of engagement in self-management and 48 participants completing web-based, semistructured interviews focused on themes including moments of engagement.

This survey used methods from the field of qualitative research, grounded theory [24] and phenomenology [25,26]. Grounded theory has been used to understand the processes through which patients manage new or chronic health problems [27], and as such, it has particular relevance to elucidating chronically ill patients’ experiences. Using grounded theory, data are collected and analyzed, and then a theory based on the resulting data was developed. The approach was designed to generate a theoretical explanation using both inductive and deductive approaches to a social phenomenon (ie, chronic disease self-care in this survey) from empirical data rather than a preconceived framework. Phenomenology is well suited to study the self-care of new or chronic health problems as it is based on the assumption that there is an essence to what people live with every day, and it aims to depict the basic structure of this experience [25]. As a qualitative research method that is particularly useful to study affective, emotional, and intense human experiences, phenomenology is a study of people’s conscious experience of their everyday life and social action [25].

Ethical Considerations

Informed consent was obtained from all individual participants included in this survey. The research is a qualitative behavioral research survey but not a clinical study or clinical survey. This research was conducted in accordance with the organization’s intended regulations for qualitative market research studies and no personal data or sensitive information were collected or presented in this publication. Information was recorded by the
investigator in such a way that the identity of the human subjects cannot be directly or indirectly ascertained. This study was exempt from the institutional review board oversight in accordance with exemption guidelines listed in the 45 Code of Federal Regulations Part 46 and the Secretary’s Advisory Committee on Human Research Protections Recommendations on benign behavioral intervention of the Health and Human Services regulation in United States[28,29]; the 2022 European Pharmaceutical Market Research Association Code of Conduct for the market research conducted in Germany [28]; and Article 5 of the Human Subjects Research Act of the Ministry of Health and Welfare, Republic of China (Taiwan), and the “Exempt Review Categories for Human Research” announced by Department of Health, Taiwan [29,30].

Sampling Methods

Patients diagnosed with either ACS or T2D and cardiovascular comorbidities were identified and recruited in 3 countries: the United States, Germany, and Taiwan. These countries were selected based upon the Hofstede 6D model of cultural dimensions. The 3 countries were noted for their diversity of cultural dimensions that may influence and nurture patient behavior while holding similar maturity of health care systems.

We aimed to recruit equal proportions of men and women as well as patients with a variety in types of health insurance. Potential patients were members of an ongoing research panel who have agreed to be approached for research studies and have provided basic demographic and health status information. Patients with ACS and T2D were screened for eligibility using elements for ACS and T2D patient profiles, as well as survey-specific data regarding demographics, digital behavior, and personality profiles. As part of the screening process, patients were asked if they use any technology, either app or device, to manage their condition. All patients screened were interested and open to the idea of digital health care (ie, the use of digital tools to support tracking or managing measurements used to help manage their condition).

Screening was conducted by an external recruiting agency who preselected relevant candidates out of their patient panel. In total, 32 participants per country were selected out of approximately 48 recommended profiles per country from an external recruiting agency. An appropriate mix of people was selected by the research lead, striving for maximum variation in the sample among those who fulfill the sampling criteria.

Our goal was to recruit 16 patients with ACS from each country, including 8 patients who had undergone an invasive procedure (eg, percutaneous coronary intervention and coronary artery bypass graft). We also sought to recruit roughly equal numbers of patients with ACS who were aged 40-50 years and 50-70 years. All patients had to be eligible for enrollment in a cardiac rehabilitation program (whether this was digital or analog was recorded); approximately 60% (10/16) should have attended rehabilitation, while 40% (6/16) should not. A focus was placed on those with higher severity levels for their condition and those with progressed treatment regimens. Eligibility for enrollment in a cardiac rehabilitation program was determined as a proxy for ACS severity levels and an indicator of having undergone a medical procedure. In recruiting patients with ACS, our goal was to represent a diversity of family situations (single, married, and with or without children) and a range of experiences using self-care technology for managing cardiovascular conditions.

Finally, we sought to recruit 10-16 caregivers of patient with ACS to assist in setting up patient support with the diaries, 8 of whom would also serve as interview participants.

Our goal was to recruit 16 patients with T2D from each country, with equal numbers having less severe (eg, hypertension) and more severe (eg, heart arrhythmia and heart failure) comorbidities. These groups were each further equally split into those on oral antidiabetic drugs and those who had initiated basal insulin in the past 12 months (18-24 months if recruitment was difficult). All participants in the T2D sample were aged 40-70 years, with the group being split equally between those who currently use health care technology (an app or device) and those who are considered lapsed users of health technology.

Within the screening process, patients with T2D were asked if they use any technology, either an app or device, to manage their disease. Lapsed users confirmed that they used technology to manage their condition but no longer do so.

Both the ACS and T2D samples were split into equal-sized groups of patients deemed to be fully adherent with medical advice and treatment and those considered either partly adherent or nonadherent. This was based on the assumption that the behavioral reasons for partial and nonadherence were similar. Adherence levels were determined based on patients’ self-reported assessment during the respondent recruitment process. Patients were asked a range of multiple-choice and open-ended questions, the results of which were used to quantitatively determine their adherence level. For instance, patients were asked to what extent they agree with the statement, “I am confident that I can follow through on medical recommendations my health care provider makes, such as changing my diet or regular exercise,” with which they could strongly agree, somewhat agree, somewhat disagree, or strongly disagree.

Data Collection

To increase internal validity of the survey through triangulation, 2 methods of data collection common in grounded theory and phenomenology research were used [26]. First, patients were asked to complete web-based diaries for 7 days, in which they recorded information including their daily experience of engagement with notable life events, health, and conditions (eg, photos and video) for acute versus chronic; a mind map of helpers (people, tools, and institutions); and observations of self-concept versus reality (projections and narratives around the self-care experience).

The diaries consisted of 5 chapters, with each one completed once within 7 days. Each chapter was completed in consecutive order: (1) “Me and My Body,” (2) “My Story,” (3) “My Day-to-Day Life with My Condition,” (4) “My Daily Health Regimen,” and (5) “My Helpful Tools and Resources.” Daily diary exercise was recorded based on open-ended questions with private responses recorded via video, audio, photographs, a map, or written statement.

https://formative.jmir.org/2024/1/e43683
Specifically, respondents were asked to answer a range of open-ended questions over the course of 5 days. They were structured in six thematic buckets: (1) personal background, (2) me and my body, (3) daily health regimen, (4) day-to-day life with my condition, (5) helpful tools and resources, and (6) my health story. In topic 2, we asked, for instance, “Please recall particularly pleasurable and positive moments during the day when you felt happy, in control, proud of yourself, content with regards to a) general state of mind, b) relating to health, and c) relating to your condition.”

For the interviews, participants were screened by an external recruiting agency, relying on their patient panels, and an appropriate mix of people was selected by the research lead, striving for maximum variation in the sample among those who fulfill the sampling criteria. In the ACS sample, patients and their caregivers took part in dyad interviews. In the T2D sample, interviews were carried out on a one-to-one basis between interviewers and patients. These interviews aimed to capture key moments of engagement to gain an understanding of levers of change or opportunities; elucidate the role or influence of the caregiver; and explore a prototype of the patient experience map produced from patient diary content. The “SturmundDrang” team of cultural researchers and anthropologists created the interview guide in an iterative approach. This guide provided information on field research preparations. Designed as a rough framework of topics and themes to explore, this document offered guidance for the ethnographic video interviews. The same discussion guide was used across all countries, providing open-ended questions and sufficient room for exploration in different cultural contexts. The respective researcher could modify the guides in each country, if deemed necessary.

Data Analysis

Data were analyzed using a constant comparative method [31], which involves comparing 1 segment of data in an interview with another segment of data to determine similarities and differences [26]. The diary data was treated as 1 hermeneutic unit that was then qualitatively analyzed in direct comparison with the interview data. The interview data formed a second hermeneutic unit. Diaries and interviews were conducted within 2 weeks, allowing the researchers to pursue a close comparative approach. These 2 hermeneutic units were then compiled in a comprehensive raw field note document for each market, outlining the total qualitative data set that could then be analyzed.

Analysis was guided by the principles of horizontalization, where all data are treated with equal weight, and phenomenological reduction, which is the process of continually returning to the essence of the experience to derive the inner structure (of disease self-care) in and of itself [26]. We grouped data together on similar dimensions of (1) patient modes of engagement and experience domains, (2) the ongoing process of gaining self-care expertise, and (3) patient mind states regarding disease self-care. Furthermore, we identified beliefs and biases, drivers of engagement and challenges to disease self-care.

In particular, interviews were analyzed to identify emerging themes through established social-scientific methods of data gathering, including writing semistructured fieldnotes [32], qualitative data analysis [33], and ethnographic insights building [34]. To establish key patient mind states, the data were clustered using spatial clustering, iterative loops, and narrative listening. Spatial clustering of codes and signals was used to group themes into a figure of overarching mind states to provide a framework for qualitative interpretation and a hypothesis. Following data collection, the resulting map was refined through iterative loops, whereby the data and theory were examined and re-examined by a team of 3 researchers; with each loop, the number of clusters and mind states was adapted and refined. During the final iteration loop, the mind states and their names were co-designed with the patients to ensure a patient-centric outcome. Narrative listening was used throughout, with patients describing and naming the chapters of their journey to allow for patient-led clustering and refining of the mind states [35].

Results

Sample Characteristics

In total, 98 patients with ACS or T2D and cardiovascular comorbidities were recruited, 32 from the United States and 33 from each of Germany and Taiwan. All 98 patients who were recruited completed the survey. All patients completed the 7-day ethnographic diaries (Germany or United States: February 4-11, 2021; Taiwan: February 17-24, 2021). Patients spent approximately 5 hours to complete the research questions. In total, 48 web-based interviews were conducted (Germany or United States: March 3-15, 2021; Taiwan: March 22-27, 2021). 24 with patients with T2D and 24 with patients with ACS and their caregivers. Respondents were selected for further interviews based on the depth of patient journey detail.

Survey Results

Overview

From the survey conducted through interviews and diaries, a number of theoretical themes were identified.

Insights Into the Behavioral Dimension of the Patient Experience

Interviews with patients living with T2D indicated that the disease continues to extract a heavy emotional toll. Participants commented: “The nurse made me feel like some pig, that all I do is sit around and eat and be obese”; “I used to eat gourmet food anywhere, anytime, and now all I have left is pay attention to controlling my diet”; “If I were to buy something to eat – I almost never do – then I would have to take everything apart and weight the ingredients individually; I can then calculated what units I need to inject afterwards”; and “I thought I’d just take a pill and everything will be ok, so I didn’t take it as seriously as I should.”

These patient insights highlighted how T2D is still a chronic condition that complicates every aspect of one’s life. Overarching themes from these interviews indicate that the condition is widely perceived to be a self-inflicted lifestyle disease; patients experience feelings of stigma, shame, self-blame, and a need to justify their lifestyle choices to acquaintances and HCPs. The general experience is underscored
by patient sacrifices and unsolicited social pressures to adhere to treatment regimens; generating a depressive, restrictive atmosphere rather than the positive outlook that could help patients pursue a better quality of life. The need for constant monitoring and tracking of the body increases adherence pressure and creates a heightened focus on hemoglobin A1c levels. Patients can also initially find diabetes easy to underestimate and ignore, adopting an acute rather than chronic mindset that makes it difficult to take ownership in the long term.

Acute events often are perceived by patients as inevitable consequences of living with chronic conditions. For example, 1 patient with ACS commented: “I learned that even without heart disease, unhealthy habits as far as eating and exercise can lead to stroke and heart failure. This really opened my eyes. At that point my life changed dramatically. I changed the way I shopped, I started eating healthier meals, and I began exercising regularly.” However, acute conditions may have a longer-term impact on social behaviors. ACS can lower social and career performance expectations; patients may feel forced out of the “rat race” by their condition or voluntarily take steps to reduce work-related burdens and pressures, as indicated by 1 patient who commented: “I see people around me going to work and realize how much my health prohibits me from working.”

Based on these moments and experiences, patients may feel that rehabilitation is a challenge and may not fully comprehend or appreciate the potential benefits. Once the advantages of rehabilitation are clearly communicated, the offering is compelling to patients if logistical barriers are no issue.

Participants also described the gradual acquisition of self-care expertise as a journey, which can support them in working toward better health. They also see this journey as influenced by universal health-related experiences, where a patient undergoes a cognitive or emotional change regarding their health engagement and self-care. Although each patient journey is unique, we identified 3 modes of engagement that determine the engagement and behavioral patterns in self-care (Figure 1). Underlying these modes are clusters of experiences called “experience domains.” At different points in the patient journey, health-related experiences from any domain can affect the patient’s mode of engagement, in a process of fluid exchange and even overlap between domains.

Self-care can be seen as an ongoing process of gaining expertise on how to deeply incorporate management routines into patients’ day-to-day lives (Figure 2). Over the years of encountering the full breadth of health care–related experiences, patients work out the best ways to manage their conditions in the context of their individual lives. This process takes patients from awareness of the need for self-care, through acquiring the necessary practices and tools to learning how to use them successfully. A set of applicable self-care practices are developed, which become habits in the form of routines. Highly engaged patients eventually become informal self-care experts on their own body and health.

Figure 1. Patient modes of engagement and experience domains. HCP: health care professional.
Interviews and patient log data indicate that a patient’s willingness to engage in self-care and gain expertise may be shaped by the cultural context in which they reside. Some of the participants in the United States expressed a growing mistrust of medical expertise and institutions, with a lack of medical insurance also disrupting the continuity of care. For example, patients from the United States shared: “Never trust someone just because they have a medical degree.” And “I’m on Medicare and Medicaid, I’m disabled, cannot work and now I’m getting paid back for the things I used to say because the clinic won’t cover it.” Effective self-care may also present challenges in countries such as Germany, where many health care systems rely primarily on paper-based clinical records, owing to historical and ongoing data privacy concerns. This impacts the patient experience. A man with T2D from Germany shared: “I am fortunate that my two doctors are located in one facility and can therefore coordinate closely. All the information [about my treatment] is centrally stored and can be viewed at the facility at any time.” Pseudoscientific or alternative approaches to health care, such as homeopathic or organic products as well as spiritual practice, also remain prevalent in Germany and Taiwan; however, participants in Taiwan expressed a high level of trust in HCPs’ expertise and authority, with 1 participant commenting: “I’ll strictly follow the doctor’s advice as best as possible.”

These differing experiences across countries was a common theme during the survey. Although, patients in the United States expressed a mistrust toward institutions, those surveyed were enthusiastic about trying new digital health solutions. However, this attitude was not reflected in Germany, with privacy concerns limiting the uptake of digital solutions. Many patients remain cautious around such technologies. Further, 1 patient with T2D in Germany stated: “I don’t really feel sick, because I don’t notice anything. I don’t have a different life in terms of ‘before’ or ‘after’ the diagnosis. Actually, I ignore the disease.”

Theorization of Patient Engagement: the Patient Mind States Model (PMM)

Based on analyses of the survey through patient interviews, we identified 5 patient mind states according to degree of patient engagement, adherence, and the experience domains that drive engagement (namely, the condition-, context-, and self-driven experiences; Figure 3). These mindsets comprise what we have called the Patient Mind States Model (PMM), which articulates these 5 mind states regarding disease self-care. A mind state is defined as a patient’s mental and emotional attitude toward self-care; these states are not related to age, gender, sociodemographic criteria, or culture of persons living with cardiometabolic conditions. The mind state has a large influence on a patient’s receptivity toward support and their ability to develop more healthy behavior. Patients’ mind states are not constant; shifts in mind state can be driven by external forces such as seasonal cycles and life changes. Self-care engagement and maturity of patients with chronic conditions change with their mindset. The 5 mind states identified are the following:

- Ignoring: patients carry on with life as it was prior to their diagnosis; depending on their culture and the extent to which they are stuck in an acute mindset, they may believe that a drug can fix the problem. For example, a 68-year-old woman with T2D from Germany commented: “I don’t really feel sick, because I don’t notice anything. I don’t have a different life in terms of ‘before’ or ‘after’ the diagnosis. Actually, I ignore the disease.”
- Struggling: patients feel overwhelmed and anxious; in desperately trying to make sense of what is happening, they can be paralyzed and oscillate between desperation and overambition. A 59-year-old woman with ACS from Germany shared: “I sleep very badly, have fears about my health. I feel completely overwhelmed and don’t know how to get out of this dilemma.”
- Juggling: people want to focus on positive aspects of life, which are viewed as part of the healing process; they see themselves as trying to find a balance between their own wants and the demands of their condition. One 64-year-old man with ACS from Germany commented: “Life should still be fun, you have to continue to participate in it, even if you are sick...I do not want to miss on the taste of a beer, a glass of wine or a good meal.”
• Controlling: patients have high familiarity with the effects of food and exercise on their body; they constantly learn more about their condition and have a high use of tools to maintain control and promote a feeling of self-reliance. As noted by a 63-year-old man with T2D from the United States: “Being in touch with my body, it has an equal ‘voice’ in determining what is best for me. This helps me to maintain an aggressive mindset and to immediately determine any abnormalities I might be experiencing and take appropriate action.”
• Reframing: people have learned to control their disease and focus on achieving life goals; they use organic methods and vitamins or supplements combined with physical exercise, breathing techniques and meditation to reduce stress. A 61-year-old man with T2D indicated: “Just because someone has a Medical degree doesn’t mean they don’t make mistakes, listen to their advice, but also do some research for yourself. Never blindly follow anyone or anything but find your own ways.”

These mind states may share common traits through their drivers for engagement, as detailed in Figure 1. Through this survey, each mind state is not exclusively self-, context-, or condition-driven, with each having a predominant motivation.

Figure 3. The Patient Mind States Model (PMM)—this model contains patient mind states regarding disease self-care identified in patients with chronic cardiometabolic disease.

Discussion

Principal Findings

Each mind state in the PMM is associated with specific beliefs and challenges and is susceptible to particular drivers of engagement that can be used to propel effective self-care behavior (Multimedia Appendix 1). In the ignoring mind state, these drivers of engagement include a fear of mortality and sense of urgency, social pressure from loved ones, and relatable role models who defy the stigma. As for the “why me” frame of mind of the struggling mind state, affirmative feedback from HCPs, realistic prognosis that shows possible points for medical intervention, and a sense of urgency that prioritizes the disease serve as drivers of engagement. In the juggling mind state, a mind state that focuses on the positive aspects of life as part of the healing process, clear images of cause and effect, gratification through joyful activities, and companionship with peer patients on their disease journey drive engagement. Moreover, people in the controlling mind state are driven to engage through curiosity for, and excitement about, innovation and what is novel; recognition of progress and being awarded for success; and having a sense of medical expertise. When patients are in the reframing mind state, drivers of engagement include an awareness that certain rules are malleable, deep trust in the individual’s own capabilities, and joy of helping peer sufferers. These emotional and social drivers of engagement across each mind state highlight the need for a holistic approach beyond the current physiological and intellectual drivers of engagement in health care, from gratification through device use to feelings of self-efficacy via immediate feedback and to encourage patient self-care behaviors.

Partitioning a person’s mind state into different stages is not a recent concept, with frameworks such as the transtheoretical model (TTM) examining different behavioral states that evolve over time [36]. The TTM consists of several stages of change and different behavioral processes that drive people to transition to a different state (eg, contemplation, determination, and action). However, the underlying assumption behind this model that decision-making is linear and unidirectional does not recognize how people may move back and forth between such
states over their lifetime, further deviating from expected behavior change trajectory by exponentially changing social and technological context. The PMM described in this survey allows us to nuance further TTM by its nonlinear nature where patient mind states do not necessarily occur in sequential fashion and may even coexist.

It should also be noted that existing behavioral models are used as tools to support clinical decision-making. In diabetes care, the PAM has been leveraged to predict the potential course of outcomes and how underlying social factors may contribute to activation levels. Mean scores obtained from various PAM instruments, such as PAM-13, may offer a concise summary of a person’s knowledge, skills, and motivation. However, the assessment of drivers underlying activation levels and broader consideration of patient context and its evolution are often decoupled from a PAM assessment. In a recent study on patient activation in individuals with T2D, generic health status topics, distress, and social support were all assessed in questionnaires separate from the primary PAM survey [37]. The PMM may offer complementary perspective for assessment of the context for an individual’s mind state through 1 centralized survey and establish the patient modes of engagement and wider experiences, as detailed in Figure 1. Further studies will be required to elucidate how the PMM could form the basis of a behavioral tool in practice.

Opportunities for Future-Focused Digital Solutions

Digital health care has an important role in chronic patient journey. However, many digital patient support programs may suboptimally tailor and target their support based on these important differences, in part because of a lack of data integration across platforms. Guidance on the day-to-day implementation of digital solutions is lacking, so patients often achieve success through trial and error.

Given a patients’ potential frustration with digital tools, engendering a level of comfort and trust in the technology is an important step to effective self-care. Along with privacy concerns, evidence for digital solutions remains as key challenges in establishing digital health as a viable solution for patient self-care [38-40].

Each patient has a unique experience in self-care, with the previous discussion outlining how we can understand the changing mind state of these individuals and how digital solutions may proffer opportunities to improve self-care.

For chronic care digital interventions, our findings suggest that it is important to tailor support to a patient’s mind state, with personal drivers of engagement potentially leading to optimized patient outcomes, adherence, and self-care expertise. Guiding patients throughout their individual health journey to a life worth living is critical and should be based on the individual, attainable life goals, and intelligently balanced compromises that undergo constant revision in the ever-changing context.

These dynamic patient experience mapping refined with help of the PMM may form a more optimal basis in which to effectively integrate digital solutions that enable and support disease self-care, while considering more holistically the context of those living with cardiometabolic conditions. These insights also may warrant further studies in the field of patient adherence and sustainable behavioral change. It will be of interest to further investigate the underlying motivations behind a change in patient mind state and how digital health care may help move individuals from “struggling” to “controlling” mind states, for instance, and effectively ignite intrinsic patient motivation drivers.

These initial data may form a basis of future studies through the validation and refinement of the PMM and the relationship between patient mind states and chronic disease self-care. In particular, future research should clarify patient self-care behaviors and attitudes toward specific digital health care interventions as a critical part of digital intervention design and development processes and verify that the user experience of participants with these 2 conditions in these 3 countries is consistent with patients in other contexts. Equally, it will be critical to understand more deeply the levers of progressive self-care expertise acquisition and use by patients.

The limitations of this survey include its geographic profile (only 3 countries) and the limited sample size of the patient populations (owing to the specific inclusion criteria). Participants who completed the survey may not be representative of the general patient population, as the survey was conducted via the web and patients participated on a voluntary basis. This approach may have introduced a selection bias, such that only the most motivated or educated patients were included. The educational needs of a representative patient population may have therefore been underestimated. Further, the PMM has been generated based on the inputs from participants who were managing ACS and T2D and has not included people living with cardiovascular chronic conditions alone or type 1 diabetes. This may result in that the PMM may not fully embrace the whole spectrum of cardiometabolic patient profiles. The focus on the social aspect of survey respondents (role of caregivers in building patient’s self-care motivation) has not been sufficient to frame more distinctly in the PMM. However, this survey had reflected the real-life experiences of patients in different clinical and geographic settings.

Conclusions

Any single journey with an acute or chronic condition is consistently shaped by moments, as well as motivational triggers, which may impact a patient’s growing expertise in self-care. Through this behavioral science survey, a heuristically useful framework has been defined on the underlying nature of how patients engage with self-care, which requires further testing and adaptations. Patients will gradually gain expertise in self-care before acquiring more confidence in proactively using a range of practices and tools. However, this path may be shaped by the patient’s mind state, which will impact treatment adherence and their willingness to engage in self-care practices.

For digital health care solutions to be fully integrated into the patient care journey, it is important to understand how such tools should be tailored to a patient’s mind state and how these states may shift when digital solutions are adopted. It will also be important to understand that such solutions may adapt according to changes in patient mind states.
Acknowledgments

Medical writing support for this paper was provided by Matthew Gunther, a medical writer for Ashfield Health, a UDG Healthcare company. Writing support was funded by Sanofi.

Data Availability

Qualified researchers may request access to documents related to this survey. Further details on Sanofi’s data sharing criteria, eligible studies, and process for requesting access can be found online. This survey was funded by Sanofi.

Conflicts of Interest

SDG received consultancy fees from Novartis and Sanofi. CD, CM, JL, and MM are Sanofi employees and may hold shares or stock options in the company. The other authors have nothing to disclose.

Multimedia Appendix 1

Key features of different patient mind states.

References

Abbreviations

ACS: acute coronary syndrome
HCP: health care professional
PAM: Patient Activation Measure
PMM: Patient Mind States Model
T2D: type 2 diabetes
TTM: transtheoretical model

©Jan Liska, Marie Mical, Christophe Maillard, Cécile Dessapt, Europa Bendig, Daniel Mai, John D Pickett, Sabina De Geest, Guillaume Fontaine. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Linguistic Variables and Gender Differences Within a Messenger-Based Psychosocial Chat Counseling Service for Children and Adolescents: Cross-Sectional Study

Zeki Efe¹, MSc; Sabrina Baldofski¹, PhD; Elisabeth Kohls¹,², PhD; Melanie Eckert³, MA; Shadi Saee³, MSc; Julia Thomas³, MA; Richard Wundrack³,⁴, MA; Christine Rummel-Kluge¹,², MD

¹Department of Psychiatry and Psychotherapy, Medical Faculty, Leipzig University, Leipzig, Germany
²Department of Psychiatry and Psychotherapy, University Leipzig Medical Center, Leipzig University, Leipzig, Germany
³Krisenchat gGmbH, Berlin, Germany
⁴Department of Psychology, Chair of Personality Psychology, Humboldt Universität zu Berlin, Berlin, Germany

Corresponding Author:
Christine Rummel-Kluge, MD
Department of Psychiatry and Psychotherapy
Medical Faculty
Leipzig University
Semmelweissstr 10
Haus 13
Leipzig, 04103
Germany
Phone: 49 341 9724464
Email: Christine.Rummel-Kluge@medizin.uni-leipzig.de

Abstract

Background: Text messaging is widely used by young people for communicating and seeking mental health support through chat-based helplines. However, written communication lacks nonverbal cues, and language usage is an important source of information about a person’s mental health state and is known to be a marker for psychopathology.

Objective: The aim of the study was to investigate language usage, and its gender differences and associations with the presence of psychiatric symptoms within a chat counseling service for adolescents and young adults.

Methods: For this study, the anonymized chat content of a German messenger–based psychosocial chat counseling service for children and adolescents (“krisenchat”) between May 2020 and July 2021 was analyzed. In total, 661,131 messages from 6962 users were evaluated using Linguistic Inquiry and Word Count, considering the following linguistic variables: first-person singular and plural pronouns, negations, positive and negative emotion words, insight words, and causation words. Descriptive analyses were performed, and gender differences of those variables were evaluated. Finally, a binary logistic regression analysis examined the predictive value of linguistic variables on the presence of psychiatric symptoms.

Results: Across all analyzed chats, first-person singular pronouns were used most frequently (965,542/8,328,309, 11.6%), followed by positive emotion words (408,087/8,328,309, 4.9%), insight words (341,460/8,328,309, 4.1%), negations (316,475/8,328,309, 3.8%), negative emotion words (266,505/8,328,309, 3.2%), causation words (241,520/8,328,309, 2.9%), and first-person plural pronouns (499,698/8,328,309, 0.6%). Female users and users identifying as diverse used significantly more first-person singular pronouns and insight words than male users (both \(P < .001 \)). Negations were significantly more used by female users than male users or users identifying as diverse (\(P = .007 \)). Similar findings were noted for negative emotion words (\(P = .01 \)). The regression model of predicting psychiatric symptoms by linguistic variables was significant and indicated that increased use of first-person singular pronouns (odds ratio [OR] 1.05), negations (OR 1.11), and negative emotion words (OR 1.15) was positively associated with the presence of psychiatric symptoms, whereas increased use of first-person plural pronouns (OR 0.39) and causation words (OR 0.90) was negatively associated with the presence of psychiatric symptoms. Suicidality, self-harm, and depression showed the most significant correlations with linguistic variables.

Conclusions: This study highlights the importance of examining linguistic features in chat counseling contexts. By integrating psycholinguistic findings into counseling practice, counselors may better understand users’ psychological processes and provide more targeted support. For instance, certain linguistic features, such as high use of first-person singular pronouns, negations,
negative emotion words, may indicate the presence of psychiatric symptoms, particularly among female users and users identifying as diverse. Further research is needed to provide an in-depth look into language processes within chat counseling services.

(\textit{JMIR Form Res 2024;8:e51795}) doi: 10.2196/51795

\textbf{KEYWORDS}

e-mental health; chat counseling; crisis; helpline; linguistic; language; Linguistic Inquiry and Word Count; LIWC; psychiatric symptoms

\textbf{Introduction}

Childhood and adolescence are known for their biological, social, and psychological changes as vulnerable periods, in which young people are at an increased risk for experiencing mental health problems. It is also known that an early age of onset of mental illness is a risk factor for poor mental health conditions in adulthood \cite{1,2}. The use of mental health care services for adolescents and young adults can have a positive influence on their attitudes, beliefs, and behaviors, which are known to be important predictors of their later mental health \cite{3}. A growing number of studies indicate that children, adolescents, and young adults use the internet to seek help for their mental health problems because the digital environment is familiar and easily accessible, offers anonymity, and accommodates their need for independence \cite{4-8}. Nearly all young people aged 12 to 19 years in Germany (94\%) own a smartphone \cite{9}.

With the increased use of smartphones, text messaging has become the primary communication tool for today’s youth \cite{10}. Studies on text messaging usage with mobile phones have shown that adolescents experience text messaging as a quick, easy, convenient, playful, and inexpensive way of communication \cite{11-14}. In line with this trend, a number of crisis helplines and similar services have begun to offer online support services such as chat or email counseling \cite{15-18}. Studies have shown that adolescents prefer texting to talking when seeking help for mental health problems and find it easier to write than to express serious concerns verbally \cite{18,19}. Recent studies support the acceptance, feasibility, and usability of online support services, especially among young people \cite{7,20}.

However, written language lacks nonverbal stimuli. Recent research has shown that facial expressions and prosody have an influence on the recognition of a speaker’s intention in face-to-face communication \cite{21,22}. In fact, in comparison to face-to-face interactions, people report higher levels of miscommunication when texting. This might represent a barrier in messenger-based counseling and may make it difficult for young people to understand and interpret the intentions of online counselors \cite{23,24}. This lack of nonverbal cues can also make it more difficult for crisis line counselors to establish and maintain a therapeutic relationship \cite{25,26}. In some studies, counselors reported greater difficulty and a lower perceived ability to establish a therapeutic relationship in the digital environment compared to a face-to-face counseling or therapy setting \cite{25,27}. In addition to nonverbal stimuli, language usage is an important source of information in the therapeutic context, and the way people use words conveys a great deal of information about themselves and their current situation \cite{28}.

Language reflects both conscious and unconscious thoughts and feelings \cite{29}. Linguists distinguish 2 aspects in the study of language: the formal and the content features of language. The formal aspect concerns grammar, syntax, reaction speed, speech tempo, etc, whereas content features consider vocabulary and word choice \cite{30}. The investigation of “lexical diversity” thus allows a better insight into the cognitive diversity of people \cite{31,32}.

Thus, in the 1970s, it was evidenced for the first time that language use can be a specific marker for psychopathology, especially depression \cite{30}. It was found that individuals with depression use more first-person singular pronouns (ie, “I,” “my,” “me,” and “mine”) in both spoken and written language \cite{33,34}, supporting cognitive theories of depression \cite{33}, which indicate that depression is associated with an increased self-focus. Recent research has shown that increased use of certain words, for example, sad (eg, “crying,” “grief,” and “sad”) or sleep (eg, “asleep” and “bed”), correlates positively with higher levels of depressive symptoms \cite{35}. Further studies also found gender differences in language usage. For example, it was found that women tend to use more language related to thoughts, emotions, senses, negations, and verbs in the present or past tense than men \cite{36}. Furthermore, women were shown to be more likely to use first-person singular pronouns than men, which is consistent with the higher prevalence of depression in women \cite{36,37}. Besides first-person singular pronouns and negative emotion words, causation words (eg, “because”) were also found to be used more by people having depression \cite{34,38}. In line with this, research confirmed the Seligman theory for learned helplessness, which postulates that individuals at risk for depression attribute the cause of a negative event as being internal, global, and stable, by showing that young adults with negative attributional styles were more likely to develop clinically significant depression than those without such attributional styles \cite{39}. There are also studies indicating negative attributional styles as predictive factors for developing depressive symptoms when experiencing negative life events \cite{40-42}. Due to the trend of digitalization in mental health care, linguistic investigations have been conducted in the digital environment as well. In doing so, a positive association was found between Twitter posts indicating loneliness and mental health problems of the users \cite{43}. In another study, which examined the language usage of users of loneliness forums, it was found that these users tended to use words associated with sadness or a desire for social contact, that is, their overall language leaned toward words with negative valence \cite{44}. Regarding associations with psychopathology, the newest findings indicate that individuals with depressive symptoms used fewer complex syntactic constructions, such as adverbial phrases, perhaps because these require greater cognitive effort.
The population of young smartphone users and texters remains a vulnerable and underserved group in crisis counseling, which is why further research on outcomes and the effectiveness of specific communication and counseling strategies is needed [34-37,44,53,54]. The following linguistic variables were considered in this study: first-person singular (eg, “I,” “me,” and “mine”) and first-person plural pronouns (eg, “we,” “us,” and “our”), negations (eg, “no,” “not,” and “never”), positive emotion words (eg, “love,” “nice,” and “sweet”), negative emotion words (eg, “hurt,” “worried,” and “sad”), cognitive process words such as words related to insight (eg, “think” and “know”), and words related to causation (eg, “because” and “effect”).

Psychiatric Symptoms
The presence of psychiatric symptoms was assessed during the counseling process and noted by krisenchat counselors. The identification of psychiatric symptoms was derived from the concerns reported by the users. Counselors distinguished between the presence of the following symptoms: depression, anxiety, suicidality, self-harm, addictive behavior, eating disorders, flashbacks, and obsessive-compulsive symptoms. Additionally, symptoms were summed up into a dichotomous variable “psychiatric symptoms” to indicate the presence or absence of psychiatric symptoms (0, “not present”; 1, “present”).

Statistical Analysis
Statistical analyses were performed using IBM SPSS Statistics version 27.0 (IBM Corp). A 2-tailed α value of .05 was applied to statistical testing. First, descriptive statistics were performed for sociodemographic variables and linguistic variables of the total sample. Additionally, Kruskal-Wallis H tests (because of nonnormality of the linguistic variables) were used to identify
gender differences in use, that is, metadata for the number of sessions, messages, and words of each user. Then, a 1-way multivariate analysis of variance (1-way MANOVA) was conducted to test for gender differences in language usage controlling for word count. Gender was considered as an independent variable, and all 7 linguistic variables (ie, first-person singular pronouns, first-person plural pronouns, negations, positive emotion words, negative emotion words, insight words, and causation words) were considered as dependent variables. Post-hoc univariate ANOVAs were conducted separately for every linguistic variable. Bonferroni correction was applied to account for multiple testing. Then, binary logistic regression analysis was conducted to examine the predictive effect of linguistic variables (first-person singular and plural pronouns, negations, positive and negative emotion words, insight words, and causation words) on the presence of psychiatric symptoms. The amount of explained variance as shown by Nagelkerke R^2 was interpreted as follows: $R^2 > 0.20$, “acceptable” or small effect size; $R^2 > 0.40$, “good” or average effect size; and $R^2 > 0.50$, “very good” or large effect size [55]. Additionally, Spearman correlation coefficients (ρ) were reported between linguistic variables. Finally, with the aim to examine the deeper relationship between linguistic variables and psychiatric symptoms, explorative Spearman correlations (ρ) between all 7 linguistic variables and all categories of psychiatric symptoms (suicidality, self-harm, depression, anxiety, eating disorder symptoms, flashbacks, obsessive-compulsive symptoms, and addictive behavior) were computed and interpreted as follows: $\rho = 0.10$, small effect size; $\rho = 0.30$, moderate effect size; and $\rho = 0.50$, large effect size [56].

Table 1. Gender-specific differences in metadata (N=5978).

<table>
<thead>
<tr>
<th>Metadata variables</th>
<th>Male, mean (SD)</th>
<th>Female, mean (SD)</th>
<th>Diverse, mean (SD)</th>
<th>$\chi^2 (df)^b$</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session count</td>
<td>3.23 (4.17)c</td>
<td>4.17 (6.94)d</td>
<td>5.43 (7.56)d</td>
<td>22.849 (2)</td>
<td><.001</td>
</tr>
<tr>
<td>Message count</td>
<td>79.05 (145.20)c</td>
<td>103.74 (287.43)d</td>
<td>189.14 (512.32)d</td>
<td>14.863 (2)</td>
<td><.001</td>
</tr>
<tr>
<td>Word count</td>
<td>1068.80 (1965.98)c</td>
<td>1392.55 (3279.22)d</td>
<td>2166.18 (4653.08)d</td>
<td>33.036 (2)</td>
<td><.001</td>
</tr>
</tbody>
</table>

aReduced sample size owing to missing data on gender.

bTest statistic for the Kruskal-Wallis H test.

c,dDifferent letters indicate significant differences between the groups, while same letters indicate no significant differences between the groups.

Descriptive Statistics of Linguistic Variables

In the total sample, the mean percentage of first-person singular pronouns among all words of a user during the whole counseling process was 11.59% (SD 2.46%), indicating that on average, more than one-tenth of all words written throughout all chat messages was a first-person singular pronoun (“I,” “me,” “my,” or “mine”). The next most used linguistic categories were positive emotion words (mean 4.85%, SD 1.70%) and insight words (mean 4.05%, SD 1.32%). The mean percentage of negations among all words of a user during the whole counseling process was 3.76% (SD 1.54%). Furthermore, negative emotion words were used with a mean percentage among all words of 2.93% (SD 1.04%). Finally, first-person plural pronouns were least frequently used with a mean percentage among all words of 0.43% (SD 0.63%).

Gender Differences in Linguistic Variables

Gender-specific descriptive statistics are displayed in Table 2. A 1-way MANOVA showed statistically significant differences in linguistic variables between genders ($F_{14, 1192} = 8.945; P < .001$; partial $\eta^2 = 0.01$; Wilk $\Lambda = 0.979$). Post-hoc univariate ANOVAs were conducted separately for every linguistic variable. Separate ANOVAs and respective Bonferroni-corrected post-hoc tests showed that when controlling for word count, there were statistically significant differences in the use of first-person singular pronouns between genders ($F_{2, 5972} = 49.780; $.
Predicting Psychiatric Symptoms by Linguistic Variables

The binomial logistic regression model was statistically significant ($\chi^2_{8}=25.0; \ P=.002$), resulting in a small amount of explained variance, as shown by Nagelkerke $R^2=0.124$ (Table 3). Of the 10 variables entered into the regression model, all but 3 contributed significantly to the presence of psychiatric symptoms: first-person singular and plural pronouns, negations, negative emotion words, causation words (all $P<.001$), and female gender ($P=.005$), while positive emotion words ($P=.08$), insight words ($P=.90$), and diverse gender ($P=.57$) showed no significant effects. Using first-person plural pronouns was associated with a lower likelihood of reporting psychiatric symptoms (odds ratio [OR] 0.39), as did using more causation words (OR 0.90). In contrast, a higher use of first-person singular pronouns was associated with an increased likelihood of reporting psychiatric symptoms (OR 1.39), as did using more negations (OR 1.11) or negative emotion words (OR 1.15). Finally, being female (OR 1.18) or having a higher age (OR 1.04) was also associated with an increased likelihood of reporting psychiatric symptoms.

Table 2. Gender-specific differences in language usage (N=5978).

<table>
<thead>
<tr>
<th>Linguistic variables</th>
<th>Malea (n=881), mean (SD)</th>
<th>Femaleb (n=4988), mean (SD)</th>
<th>Diversec (n=109), mean (SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-person singular pronouns</td>
<td>10.81 (2.60)b</td>
<td>11.71 (2.43)c</td>
<td>11.79 (2.55)c</td>
<td><.001</td>
</tr>
<tr>
<td>First-person plural pronouns</td>
<td>0.47 (0.84)</td>
<td>0.42 (0.59)</td>
<td>0.32 (0.43)</td>
<td>.05</td>
</tr>
<tr>
<td>Negations</td>
<td>3.62 (2.24)b</td>
<td>3.76 (1.39)c,d</td>
<td>3.94 (1.49)b,d</td>
<td>.007</td>
</tr>
<tr>
<td>Positive emotions</td>
<td>4.87 (1.80)</td>
<td>4.86 (1.67)</td>
<td>4.68 (1.79)</td>
<td>.61</td>
</tr>
<tr>
<td>Negative emotions</td>
<td>3.13 (1.37)b</td>
<td>3.24 (1.24)c</td>
<td>3.02 (1.43)b,c</td>
<td>.01</td>
</tr>
<tr>
<td>Insight words</td>
<td>3.81 (1.38)b</td>
<td>4.07 (1.30)c</td>
<td>4.20 (1.42)c</td>
<td><.001</td>
</tr>
<tr>
<td>Causation words</td>
<td>2.99 (1.12)</td>
<td>2.92 (1.02)</td>
<td>3.04 (0.92)</td>
<td>.09</td>
</tr>
</tbody>
</table>

aReduced sample size owing to missing data on gender.

b,c,dDifferent letters indicate significant differences between the groups, while same letters indicate no significant differences between the groups.
<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>P value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.04</td>
<td>0.01</td>
<td>22.04</td>
<td><.001</td>
<td>1.04 (1.02-1.06)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.16</td>
<td>0.06</td>
<td>7.94</td>
<td>.005</td>
<td>1.18 (1.05-1.32)</td>
</tr>
<tr>
<td>Diverse</td>
<td>0.12</td>
<td>0.21</td>
<td>0.33</td>
<td>.57</td>
<td>1.13 (0.75-1.70)</td>
</tr>
<tr>
<td>First-person singular pronouns</td>
<td>0.05</td>
<td>0.01</td>
<td>15.78</td>
<td><.001</td>
<td>1.05 (1.03-1.08)</td>
</tr>
<tr>
<td>First-person plural pronouns</td>
<td>−0.94</td>
<td>0.05</td>
<td>301.21</td>
<td><.001</td>
<td>0.39 (0.35-0.44)</td>
</tr>
<tr>
<td>Negations</td>
<td>0.11</td>
<td>0.02</td>
<td>32.14</td>
<td><.001</td>
<td>1.11 (1.07-1.16)</td>
</tr>
<tr>
<td>Positive emotions</td>
<td>−0.03</td>
<td>0.02</td>
<td>3.09</td>
<td>.08</td>
<td>0.97 (0.95-1.01)</td>
</tr>
<tr>
<td>Negative emotions</td>
<td>0.14</td>
<td>0.02</td>
<td>43.45</td>
<td><.001</td>
<td>1.15 (1.11-1.21)</td>
</tr>
<tr>
<td>Inscription</td>
<td>−0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>.90</td>
<td>1.00 (0.96-1.04)</td>
</tr>
<tr>
<td>Causation words</td>
<td>−0.11</td>
<td>0.03</td>
<td>13.80</td>
<td><.001</td>
<td>0.90 (0.85-0.94)</td>
</tr>
<tr>
<td>Constant</td>
<td>−0.87</td>
<td>0.24</td>
<td>13.07</td>
<td><.001</td>
<td>0.42 (N/A²)</td>
</tr>
</tbody>
</table>

⁷B: regression coefficient.
⁸Degrees of freedom were 1 for all Wald statistics.
⁹OR: odds ratio.
¹⁰N/A: not applicable.

The results of an additional correlation analysis between all linguistic variables are reported in Table 4. Among others, significant findings included a negative association between first-person singular pronouns and first-person plural pronouns (p=−0.24; P<.001). In line with this, first-person singular pronouns were positively correlated with negations (ρ=0.17; P<.001) and negative emotion words (ρ=0.15; P<.001).
Table 4. Spearman correlation coefficients between linguistic variables (N=6962).

<table>
<thead>
<tr>
<th>Variable</th>
<th>First-person singular pronouns</th>
<th>First-person plural pronouns</th>
<th>Negations</th>
<th>Positive emotions</th>
<th>Negative emotions</th>
<th>Insight words</th>
<th>Causation words</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-person singular pronouns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>1</td>
<td>-0.24^a</td>
<td>0.17a</td>
<td>0.04a</td>
<td>0.15a</td>
<td>0.29a</td>
<td>-0.02^b</td>
</tr>
<tr>
<td>P value</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>22^b</td>
</tr>
<tr>
<td>First-person plural pronouns</td>
<td>-0.24^a</td>
<td>1</td>
<td>-0.08^a</td>
<td>-0.01</td>
<td>-0.10^a</td>
<td>-0.03^a</td>
<td>-0.07^a</td>
</tr>
<tr>
<td>P value</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>0.34</td>
<td>$<.001$</td>
<td>0.01</td>
<td>$<.001$</td>
</tr>
<tr>
<td>Negations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.17a</td>
<td>-0.08^a</td>
<td>1</td>
<td>-0.02^a</td>
<td>0.02</td>
<td>0.13a</td>
<td>0.04a</td>
</tr>
<tr>
<td>P value</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>0.045</td>
<td>0.19</td>
<td>$<.001$</td>
<td>$<.001$</td>
</tr>
<tr>
<td>Positive emotions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.04a</td>
<td>-0.01</td>
<td>-0.02^a</td>
<td>1</td>
<td>-0.06^a</td>
<td>-0.03^a</td>
<td>0.04a</td>
</tr>
<tr>
<td>P value</td>
<td>.002</td>
<td>.34</td>
<td>.045</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>0.023</td>
<td>$<.001$</td>
</tr>
<tr>
<td>Negative emotions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.15a</td>
<td>-0.10^a</td>
<td>0.02</td>
<td>-0.06^a</td>
<td>1</td>
<td>0.03a</td>
<td>-0.07^a</td>
</tr>
<tr>
<td>P value</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$.19$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>0.023</td>
<td>$<.001$</td>
</tr>
<tr>
<td>Insight words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.29a</td>
<td>-0.03^a</td>
<td>0.13a</td>
<td>-0.03^a</td>
<td>0.03a</td>
<td>1</td>
<td>0.04a</td>
</tr>
<tr>
<td>P value</td>
<td>$<.001$</td>
<td>$<.01$</td>
<td>$<.001$</td>
<td>0.023</td>
<td>0.023</td>
<td>$<.001$</td>
<td></td>
</tr>
<tr>
<td>Causation words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>-0.02</td>
<td>-0.07^a</td>
<td>0.04a</td>
<td>0.04a</td>
<td>-0.07^a</td>
<td>0.04a</td>
<td>1</td>
</tr>
<tr>
<td>P value</td>
<td>.22</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td>$<.001$</td>
<td></td>
</tr>
</tbody>
</table>

aStatistical significance.

bNot applicable.

Associations Between Linguistic Variables and Psychiatric Symptoms

Finally, an exploratory correlation analysis indicated evidence for the relationship between linguistic variables and various psychiatric symptoms, which are displayed in Table 5. Suicidality, self-harm, depression, and anxiety showed the most significant correlations to linguistic variables. In particular, the use of first-person singular pronouns was positively associated with suicidality ($\rho=0.11$; $P<.001$) and self-harm ($\rho=0.10$; $P<.001$). The use of first-person plural pronouns was negatively associated with suicidality ($\rho=-0.10$; $P<.001$) and depression ($\rho=-0.14$; $P<.001$). The use of negations was positively associated with suicidality ($\rho=0.18$; $P<.001$) and self-harm ($\rho=0.12$; $P<.001$). Finally, the use of negative emotion words was positively associated with depression ($\rho=0.15$; $P<.001$) and anxiety ($\rho=0.15$; $P<.001$).
Table 5. Spearman correlation coefficients between linguistic variables and psychiatric symptoms (N=6962).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Suicidality</th>
<th>Self-harm</th>
<th>Depression</th>
<th>Anxiety</th>
<th>Eating disorder symptoms</th>
<th>Flashbacks</th>
<th>Obsessive-compulsive symptoms</th>
<th>Addictive behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-person singular pronouns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.11a</td>
<td>0.10a</td>
<td>0.08a</td>
<td>-0.01</td>
<td>0.05a</td>
<td>-0.02</td>
<td>0.00</td>
<td>-0.01</td>
</tr>
<tr>
<td>(P) value</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td>.46</td>
<td><.001</td>
<td>.08</td>
<td>.75</td>
<td>.33</td>
</tr>
<tr>
<td>First-person plural pronouns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>-0.10a</td>
<td>-0.08a</td>
<td>-0.14a</td>
<td>-0.04a</td>
<td>-0.04a</td>
<td>-0.01</td>
<td>-0.03a</td>
<td>-0.04a</td>
</tr>
<tr>
<td>(P) value</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td>.26</td>
<td>.007</td>
<td><.001</td>
</tr>
<tr>
<td>Negations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.18a</td>
<td>0.12a</td>
<td>-0.06a</td>
<td>-0.06a</td>
<td>0.01</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>(P) value</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td>.40</td>
<td>.07</td>
<td>.28</td>
</tr>
<tr>
<td>Positive emotions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>-0.05a</td>
<td>-0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.03a</td>
</tr>
<tr>
<td>(P) value</td>
<td><.001</td>
<td>.08</td>
<td>.41</td>
<td>.87</td>
<td>.06</td>
<td>.19</td>
<td>.09</td>
<td>.01</td>
</tr>
<tr>
<td>Negative emotions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.04a</td>
<td>0.03a</td>
<td>0.12a</td>
<td>0.15a</td>
<td>-0.03a</td>
<td>0.02</td>
<td>0.02a</td>
<td>0.00</td>
</tr>
<tr>
<td>(P) value</td>
<td>.002</td>
<td>.03</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td>.18</td>
<td>.045</td>
<td>.82</td>
</tr>
<tr>
<td>Insight words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.03a</td>
<td>-0.00</td>
<td>0.08a</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.00a</td>
<td>-0.04a</td>
</tr>
<tr>
<td>(P) value</td>
<td>.005</td>
<td>.73</td>
<td><.001</td>
<td>.65</td>
<td>.67</td>
<td>.61</td>
<td>.045</td>
<td><.001</td>
</tr>
<tr>
<td>Causation words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>-0.06a</td>
<td>-0.03a</td>
<td>-0.03a</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.04a</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>(P) value</td>
<td><.001</td>
<td>.007</td>
<td>.03</td>
<td>.10</td>
<td>.13</td>
<td><.001</td>
<td>.63</td>
<td>.32</td>
</tr>
</tbody>
</table>

aStatistical significance.

Discussion

Principal Findings and Comparison With Prior Work

The findings of this study provide first-time valuable insights into the psycholinguistic characteristics of children, adolescents, and young adults seeking psychosocial support through a messenger-based crisis counseling service (krisenchat). Previous findings that examined psycholinguistic characteristics in association with mental health, which however focused on texts (eg, from social media or online therapies), could be identified in the chat context as well. Specifically, linguistic variables were found to be associated with the presence of psychiatric symptoms [43,44,57]. The use of first-person singular pronouns, negations, and negative emotion words increased the likelihood of the presence of psychiatric symptoms, while the use of first-person plural pronouns and causation words was associated with a lower likelihood of the presence of psychiatric symptoms. Female gender was also associated with an increased likelihood of the presence of psychiatric symptoms, which is consistent with the higher prevalence of psychiatric symptoms in women [58]. Gender differences were found, with female users exhibiting more frequent use of certain linguistic features. Previous linguistic analyses, especially in the digital context, such as social media platforms, have been performed with a focus on the presence of psychiatric symptoms or associations with psychiatric symptoms, in particular, depressive symptoms [59]. Linguistic analyses of social media have proven useful in predicting depression, anxiety, loneliness, personality disorders, or other mental health issues [43,57,60-62]. As there are no other comparative studies in this field, the focus of the below comparison of the present results with previous findings relies on correlates of linguistic variables with the presence of psychiatric symptoms, especially depression or anxiety.

First-Person Pronouns

Starting with the most frequently used linguistic variable among those examined, an increased use of first-person singular pronouns was associated with a higher likelihood of the presence of psychiatric symptoms. Additionally, it was determined that they were used more often by female users and users identifying as diverse than by male users. In contrast, the linguistic variable of first-person plural pronouns was found to be the least used and did not predict the presence of psychiatric symptoms.
Taking into account the most frequently mentioned concerns among the users of krisenchat (see [20]), involving psychiatric symptoms, such as depression or anxiety, and the higher prevalence of depression in female samples [63], these findings are consistent with previous findings on language usage. Thus, in line with cognitive theories of depression (eg, according to [33]) indicating that depression is associated with an increased self-focus, previous research showed that individuals with depression used more first-person singular pronouns (ie, “I,” “my,” “me,” and “mine”) in both spoken and written language [33,34]. Similarly, first-person plural pronouns (ie, “we,” “us,” and “our”) were used significantly less by depressed individuals, which may be attributed to social isolation or lack of social integration and social engagement in the context of depression [64-66]. However, the increased use of first-person singular pronouns may also be a marker for increased vulnerability to stress and negative emotionality and not directly for depression [67,68].

Negations and Causation Words

Negations were found to be significantly associated with the presence of psychiatric symptoms and were used more frequently by female users than male users or users identifying as diverse. Contradicting the hypothesis, the present results indicate that the use of causation words reduces the likelihood of the presence of psychiatric symptoms, while no significant differences were found between genders. In line with this finding, previous studies indicated that low use of causation words is associated with positive treatment outcomes in treatment for personality disorders [53]. It was found that the use of fewer cognitive words, such as causation words, was associated with a more coherent personal story [69]. A recent study underlined this finding by pointing out that patients having depression tend to use significantly more aligned sentences than bringing them into a logical chain compared with a healthy control group [34]. This cross-sectional study design does not allow to draw conclusions about the trend of the use of causation words throughout the chat counseling. The meaning of these divergent results deserves further specific longitudinal research on the development and change of language use across chat counseling.

Negative and Positive Emotion Words

Elevated use of negative emotion words was associated with an increase in the presence of psychiatric symptoms. Negative emotion words were found to differ between genders, that is, more negative emotion words were used by female users than by male users. This is in line with previous research indicating a significantly higher general use of emotion words by women than men, while men were found to use more anger words [70,71]. This is also in accordance with findings showing that more frequent use of negative emotion words, including anxiety, sadness, and anger words, was positively correlated with higher anxiety and depression levels [54].

Depressive Symptoms

Taken together, the results underline a higher likelihood of depression (or anxiety) in users using more self-focused language (first-person singular pronouns), and more negative and fewer positive (emotion) words. The response style theory of rumination in depression, which could also be proven for worry in generalized anxiety, explains that symptoms of repetitive self-focused negative thinking become habitual over time [72,73]. In terms of language usage, this theory suggests that people with high levels of depression or anxiety might communicate using more self-focused language (ie, more I-related pronouns), and more negative and fewer positive words, and that this tendency may become habitual and outside of conscious awareness. In line with this, linguistic analyses of text-based therapy found reductions in the use of first-person singular pronouns, even though language usage was not being focused on in the treatment [74]. Moreover, changes in the use of positive and negative emotion words and words indicating certainty (eg, “always” and “never”) could be identified during the treatment for depression. Researchers interpret these findings as changes in cognitive processes [75].

Suicidality

In relation to depression, it is also important to keep suicidality in mind because messenger-based chat counseling services are used in acute crises, such as suicidality [76]. In accordance with the present findings, previous studies found that suicidal behavior is associated with the use of more I-related pronouns [77]. Likewise, in accordance with the present findings, previous literary analyses indicated that suicidal poets also used fewer first-person plural pronouns than nonsuicidal poets [66]. In addition, these studies showed that the use of more absolutist language, that is, superlatives and intensifiers (eg, “absolutely,” “completely,” “all,” “none,” etc), was associated with suicidality [60,77,78].

The results of this study indicate that by considering language usage, differences in the user population can be discovered and may also be linked to psychopathology. Thus, language usage should be integrated into the counseling strategy. In the context of computer-based analyses, it was found that in addition to the standardized diagnostic tools used to confirm a psychiatric diagnosis, linguistic research showed that systematic analyses of clients’ language may be used to reliably classify them into diagnostic groups [34]. Additionally, computer-based methods were shown to distinguish persons with depression from other clinical subgroups [79]. Thus, linguistic or, in general, qualitative analyses of text messages seem to be advisable to examine chat-based counseling services in more depth. This is even more true than for social media platforms because text messages are less influenced by social desirability, facilitating more granular visibility into changes in linguistic patterns [80].

Implications for Counselors in Chat-Based Counseling

Multiple implications for psychosocial chat counseling have emerged from the findings. First, counselors may use psycholinguistic analyses as an additional tool for assessing the mental health state of users. By monitoring the usage of specific linguistic features, counselors can identify individuals at risk for psychiatric symptoms and tailor interventions accordingly. For example, in cases of elevated use of first-person singular pronouns, negations, and negative emotion words, particularly for female users and users who identify as diverse, a more in-depth exploration of psychiatric symptoms, especially
depression, anxiety, or suicidality, is recommended. Regardless of the actual cause, it seems advisable to monitor the frequency of first-person singular pronouns throughout the chat history. For example, establishing a word-counting function during chat counseling may provide counselors with additional valuable information. In turn, increased use of first-person plural pronouns as well as causation words can be identified as protective factors, and also expanded and used as such. For example, increased use of first-person plural pronouns on the counselor’s side might be helpful to create a sense of “unity” or belongingness. Taking social belongingness into account as a protective factor for depression, suicidality, or mental disorders in general, it seems advisable to create closeness or sociality through language to initially stabilize the user emotionally, for example, meet their need for attachment or create a base to make further recommendations [81].

Furthermore, it can be helpful to mirror statements of users in the context of active listening (positively paraphrased) or to guide the users through targeted questioning techniques into positively formulated thoughts, goals, behavioral directions, etc (ie, in concrete terms) to avoid negations. This implication is also underscored by the fact that increased use of words referring to expectation, trust, and belongingness was associated with lower depression rates [80,81]. Furthermore, the establishment of logical chains, in the sense of causation, also appears to be of great importance. Thus, attempts should be made to bring concerns, feelings, etc into a logical coherent context in the sense of stimulus-reaction chains. Moreover, the use of insight words shows no influence on the presence of psychiatric symptoms, yet reflective functioning is known to be a protective factor [82]. An emphasis on self-reflection could potentially be integrated into psychoeducation by supporting an understanding of one’s own mind as an aspect of resilience and personal agency that can be fostered through social support and professional help [82]. In practice, repeated questions about what feeling is associated with particular problems or concerns, or identifying thoughts or cognition in terms of one’s own belief patterns, can help to practice such skills.

Strengths and Limitations

To the best of our knowledge, this study is the first to examine language usage in a messenger-based crisis counseling service among youth and young adults. In addition to the strength of the large sample size, this study acts as a reference and comparison for further studies in this area, in part because of the use of the internationally recognized method LIWC. Nevertheless, some limitations have to be taken into account. Owing to the retrospective study design, the data rely on convenience sampling, which limits the generalizability to a more mixed-gender population. It should also be noted that the counseling service is offered in German-speaking countries, which is why cultural and linguistic differences in language usage must be taken into account, and generalizability is limited. An international comparison between counseling services in different countries, cultures, and languages would provide insights into similarities and differences. Assuming that people in crisis reach out to the chat counseling service, high use of emotion words seems somewhat expected. Since the nature of the study was cross-sectional and the words were counted across all chat messages (ie, not in chronological order or within sessions), no data can be provided on the trend of the word count for either positive or negative emotion words, which is why no indications can be derived on whether the word count relates only to the beginning of the chat or also to the progression throughout the chat counseling. Longitudinal studies examining changes in language use across consecutive chat sessions may provide further insights into these associations. Consideration must also be given to the nested data structure, which cannot be clearly read owing to the format used to provide data by LIWC. Therefore, for future studies, in addition to the trend of the word count throughout the chat counseling, the consideration of levels (eg, within a message and during a session) is recommended. Therefore, a qualitative analysis of the chats may be beneficial for providing more in-depth insights into individual language usage as well as concerns. A qualitative approach would also ensure the quality of the classification of the presence of psychiatric symptoms. Likewise, no standardized measurement instruments were used, which in turn opens up further opportunities for future research, for example, implementing symptom-specific questionnaires to examine associations between (changes in) symptom severity and language usage.

Conclusion

This study underlines the options, possibilities, and chances of examining psycholinguistic characteristics in psychosocial online chat counseling services for children and adolescents. The identified associations between specific linguistic features and the presence of psychiatric symptoms provide valuable insights for the development of targeted interventions. By considering psycholinguistic findings in the counseling practice, counselors may enhance their understanding of the psychological processes of users and their interventions to offer a more targeted service for children and adolescents seeking help. Nevertheless, further research is needed to investigate the mechanisms underlying linguistic patterns and explore the effectiveness of linguistic-based interventions. At the same time, this would allow further research on the link between specific indicators and changes in specific psychopathology.

Acknowledgments

We acknowledge support from Leipzig University for open access publishing. The Federal Ministry of Health funded this project (ZMI1-2521FEP001).

Authors’ Contributions

ZE, SB, and CRK designed the study. The data set was prepared by ME, SS, JT, and RW. ZE performed the statistical analysis. ZE and SB drafted the article. All authors approved the final manuscript.

Conflicts of Interest

ZE, SB, EK, ME, SS, JT, and RW confirm no conflicts of interest. ME, SS, JT, and RW are paid employees at krisenchat gGmbH. CRK received lecture honoraria from Recordati and Servier outside and independent of the submitted work.

References

44. Andy A. Studying How Individuals Who Express the Feeling of Loneliness in an Online Loneliness Forum Communicate in a Nonloneliness Forum: Observational Study. JMIR Form Res 2021 Jul 20;5(7):e28738 [FREE Full text] [doi: 10.2196/28738] [Medline: 34283026]

59. Chancellor S, De Choudhury M. Manual de la Encuesta sobre la Comunicación 2018 [FREE Full text]

https://formative.jmir.org/2024/1/e51795

Abbreviations

LIWC: Linguistic Inquiry and Word Count
OR: odds ratio
Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Rosie, a Health Education Question-and-Answer Chatbot for New Mothers: Randomized Pilot Study

Quynh C Nguyen¹, PhD; Elizabeth M Aparicio², PhD; Michelle Jasczynski³, PhD; Amara Channell Doig², PhD; Xiaohe Yue¹, MSc; Heran Mane¹, BSc; Neha Srikanth¹, MSc; Francia Ximena Marin Gutierrez², MSW; Nataly Delcid¹; Xin He¹, PhD; Jordan Boyd-Graber³, PhD

¹Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD, United States
²Department of Behavioral and Community Health, University of Maryland School of Public Health, College Park, MD, United States
³Department of Computer Science, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States

Corresponding Author:
Quynh C Nguyen, PhD
Department of Epidemiology and Biostatistics
University of Maryland School of Public Health
4254 Stadium Dr.
College Park, MD, 20742
United States
Phone: 1 301 405 6425
Email: qtnguyen@umd.edu

Abstract

Background: Stark disparities exist in maternal and child outcomes and there is a need to provide timely and accurate health information.

Objective: In this pilot study, we assessed the feasibility and acceptability of a health chatbot for new mothers of color.

Methods: Rosie, a question-and-answer chatbot, was developed as a mobile app and is available to answer questions about pregnancy, parenting, and child development. From January 9, 2023, to February 9, 2023, participants were recruited using social media posts and through engagement with community organizations. Inclusion criteria included being aged ≥14 years, being a woman of color, and either being currently pregnant or having given birth within the past 6 months. Participants were randomly assigned to the Rosie treatment group (15/29, 52% received the Rosie app) or control group (14/29, 48% received a children’s book each month) for 3 months. Those assigned to the treatment group could ask Rosie questions and receive an immediate response generated from Rosie’s knowledgebase. Upon detection of a possible health emergency, Rosie sends emergency resources and relevant hotline information. In addition, a study staff member, who is a clinical social worker, reaches out to the participant within 24 hours to follow up. Preintervention and postintervention tests were completed to qualitatively and quantitatively evaluate Rosie and describe changes across key health outcomes, including postpartum depression and the frequency of emergency room visits. These measurements were used to inform the clinical trial’s sample size calculations.

Results: Of 41 individuals who were screened and eligible, 31 (76%) enrolled and 29 (71%) were retained in the study. More than 87% (13/15) of Rosie treatment group members reported using Rosie daily (5/15, 33%) or weekly (8/15, 53%) across the 3-month study period. Most users reported that Rosie was easy to use (14/15, 93%) and provided responses quickly (13/15, 87%). The remaining issues identified included crashing of the app (8/15, 53%), and users were not satisfied with some of Rosie’s answers (12/15, 80%). Mothers in both the Rosie treatment group and control group experienced a decline in depression scores from pretest to posttest periods, but the decline was statistically significant only among treatment group mothers (P=.008). In addition, a low proportion of treatment group infants had emergency room visits (1/11, 9%) compared with control group members (3/13, 23%). Nonetheless, no between-group differences reached statistical significance at P<.05.

Conclusions: Rosie was found to be an acceptable, feasible, and appropriate intervention for ethnic and racial minority pregnant women and mothers of infants owing to the chatbot’s ability to provide a personalized, flexible tool to increase the timeliness and accessibility of high-quality health information to individuals during a period of elevated health risks for the mother and child.

Trial Registration: ClinicalTrials.gov NCT06053515; https://clinicaltrials.gov/study/NCT06053515
Introduction

Background
Maternal morbidity and mortality have remained persistent problems in the United States and disproportionately affect women and birthing people from racial and ethnic minoritized backgrounds owing to embedded racism and bias across the medical and public health systems [1-3]. More concerning, >80% of maternal deaths in 2019 were designated as preventable by the Centers for Disease Control and Prevention’s (CDC’s) maternal mortality review committees [4]. In particular, the perinatal period is associated with high risk of depression and anxiety among mothers and is a leading cause of maternal mortality in the United States [1,4,5]. Other leading causes include hemorrhage, cardiovascular and coronary conditions, and substance use disorders [4,5].

Timely and reliable health information may help to reduce the adverse outcomes during pregnancy and in the postpartum period [6]. Children of single parents, with low household income, of a minority group, or whose parents perceived them as being more susceptible are seen more frequently in the emergency department [7-10]. Health education interventions have been shown to reduce emergency department use among infant caregivers [11]. Seeking health information on websites is common among soon-to-be and new parents; however, the quality of information and sources found on the web about pregnancy, birth, parenting, and maternal health were rated by pregnant women and new parents as having varying quality, or the information found was not sufficiently specific to fully answer questions [12,13]. Currently, some popular programs for these vulnerable populations involve resource-intensive home visits, which face challenges in scaling to assist more mothers owing to staff and cost constraints, or nonpersonalized SMS text messages that may not directly address an individual’s questions [14-18].

Recognizing that facilitating maternal and child health equity in the United States will require intervention at all levels of the socioecological model to address the deficits in medical and public health research and practice, our research team selected an innovative approach. This approach consisted of developing a maternal and child health information chatbot that would be iteratively improved through a multiyear, community-engaged research process. The chatbot addresses some limitations of previous strategies by providing personalized health information based on the users’ needs, is readily available at any time, and can include participants nationwide. Rosie offers timely health information from verifiable websites such as children’s hospitals or the CDC to help parents navigate infant care and find clinically correct information to tackle health issues as they arise. In addition, Rosie offers reminders about preventive care visits for infants (eg, well-baby visits) that can also encourage greater continuity of care, which have been shown to reduce emergency department visits for infants [19].

The research team developed the chatbot, named Rosie, to be able to respond to user questions about parenting, pregnancy, and infant development with vetted, trustworthy web-based sources. Question-answering (QA) chatbots such as Rosie, unlike informational sites and frequently asked questions (FAQs) pages, support their users with personalized responses based on the user’s input. They provide users with the unique opportunity to enter their questions in their own words and receive responses to their questions. We built the corpus or index of maternal and child health information using the information derived from expert sources such as federal agencies (eg, the National Institute for Child and Human Development), hospitals (eg, Mayo Clinic), and professional medical organizations (eg, the American Academy of Pediatrics). These sources provided vital information regarding topics such as pregnancy, parenting, infant development, maternal health, and postpartum care.

Chatbots developed to support maternal mental health and parenting have been shown to be a promising intervention needing further evaluation [20-22]. A mixed methods review of literature led by Chua et al [20] suggests that maternal and child health information chatbots have high acceptance among pregnant women and new parents; however, the reviewed papers noted that both development teams and test users expressed preferences for refining the language used in the responses to be more humanlike and for the chatbots to be familiarized with informal, descriptive language to be more adept at generating answers for users who may be describing symptoms or may not know the medical term for the topic of interest. Recognizing these recommendations from the literature, our research team used a multimethod approach to receive substantive, high-quality feedback from participants when launching our pilot evaluation of our maternal and child health information chatbot, Rosie.

Study Objectives
We conducted an experimental pilot study to examine the feasibility, acceptability, and appropriateness of Rosie for our target audience. The pilot study also allowed us to test all the software and equipment, study protocols, and staff coordination to enable remedies before scaling to a full randomized controlled trial. Pilot data were also used to enhance the accuracy of Rosie’s responses by refining the existing models and fine-tuning the mechanisms and heuristics. The focus was on determining access to the resources and the capability of implementing the components and activities of the intervention as planned. Challenges in the provision of any component or the performance of any activity of the intervention were identified and potential solutions were determined. A sample size of 30 was chosen to be within the typical sample size range of a phase 1 clinical trial, according to the National Institutes of Health guidelines. The pilot evaluation was planned to enable remedies before scaling to a full randomized controlled trial.
of Health definitions, to conduct the study protocols and elicit participant feedback about the Rosie app with sufficient representation from our target group. Preintervention and postintervention tests were completed to qualitatively and quantitatively evaluate Rosie and describe any changes across key health outcomes including postpartum depression and frequency of emergency room visits to inform the full trial’s sample size calculations. Analyses of these data allowed us to present the preliminary findings, which should be interpreted as preliminary evidence, given that the pilot study was not powered to assess treatment-control differences, and this was not the main objective of the pilot study.

Methods

Development and Functionality of Rosie, the Chatbot

Rosie was customized to meet the needs of the target audience through continuous community feedback. Over the course of 3 years, our research team conducted community listening sessions, >20 community demonstrations of Rosie [23], and focus groups with pregnant women and new mothers of color. With this feedback, we customized Rosie to respond to health topics that mothers requested such as feeding tips, sleep advice, and information about rashes and fevers. To the Rosie app, we also added a set of the most popular questions that were asked by mothers as an FAQs page and provided a list of additional resources (eg, Supplemental Nutrition Assistance Program) benefits and emergency hotlines). Moreover, we added the requested video library that features things such as how to swaddle a baby, change a diaper, or perform cardiopulmonary resuscitation.

To build Rosie’s robust knowledge base, we collected, scraped, and extracted text from 60 sources, including websites of government agencies, hospitals, and professional medical organizations. A corpus of documents about maternal and infant health was built by scraping text from these vetted web domains using Trafilatura, a Python package and a web document processing tool called Scrapy that extracts text from HTML source code [24]. Each web document was then parsed into approximately 73,000 passages by applying a set of heuristics that retain sentence context. These passages were edited as necessary to serve as answers to the mothers’ questions and were used in a question generation model, probably asked questions (PAQs), to produce likely questions from users. The generated questions and their source passages were reviewed by annotators, who either edited both the question and the passage as necessary or discarded the pairs that were unhelpful, inaccurate, or incomprehensible. The answers augmented the existing knowledge base.

In addition, the research team supplemented the knowledge base by manually writing 350 question-and-answer pairs based on feedback from focus groups and community events with pregnant women and new mothers of color, who asked Rosie questions and identified topics of particular interest (eg, rashes and infant sleep). Only verified sources of health information were used in Rosie’s knowledge base. Sources with sponsored or commercial content were excluded.

Rosie’s underlying QA system uses an unsupervised, dense passage retrieval model. When users ask questions to Rosie, the retrieval model finds relevant content from the knowledge base that best answers the questions. Rosie also provides a source link in her responses, which can direct users to the websites from where the answer was extracted.

To better communicate with the users and understand their needs, we implemented an intent classification model using Rasa, a conversational artificial intelligence software. This classification model is used to categorize users’ text and respond accordingly. For example, it can identify greetings, thank you messages, and requests for information. It is also able to detect potential mental and physical health emergencies and send alerts via Slack, an instant messaging program, to our team members. Upon detection of a possible health emergency, Rosie sends emergency resources and relevant hotline information. In addition, a study staff member, who is a clinical social worker, reaches out to the participant within 24 hours to follow-up.

Rosie was built using Flutter, an open-source user interface software platform by Google, and designed to be compatible with both iPhone and Android devices. The Rosie mobile app has a log-in page with Google authentication, a chat window page that allows users to ask Rosie questions and rate the answers, an FAQs and resources page, and a medical disclaimer page reminding users that Rosie is an informational tool that does not replace professional medical advice and care (Figure 1).
After downloading and logging into the Rosie app, users are asked to enter their estimated due date or their infant’s date of birth. With the users’ permission, Rosie sends push notifications with daily health tips that are generated based on the due date or birth date, thus allowing for personalized advice based on the week-by-week progression of the user’s pregnancy or infant’s health. The past 7 days’ tips are also saved on an app page for users to refer to if needed. The app development team also created an app monitoring system that can detect server-related issues or app interruptions and notify team members via Slack for prompt troubleshooting and resolution. All conversations between users and Rosie were securely stored in Firebase Database.

Recruitment and Enrollment

This was a prospective randomized controlled pilot study involving a mobile app intervention, Rosie the chatbot. To clarify the methods, we followed the CONSORT (Consolidated Standards of Reporting Trials) checklist (Multimedia Appendix 1). From January 9, 2023, to February 9, 2023, participants were enrolled on a rolling basis until the target sample size was met (N=30) for the 3-month randomized pilot study. Participants were recruited using social media posts, including targeted advertisements, and through partnerships with community-based organizations. In addition, our research assistants contacted mothers who had completed an interest form at a previous Rosie community event or focus group. Interested potential participants completed a screening questionnaire to determine eligibility. Inclusion criteria included being aged ≥14 years, being a woman of color, and either being currently pregnant or having a baby aged ≤6 months. Research assistants contacted each of the 248 potential participants to complete a brief video call to assess eligibility, explain study details, and obtain informed consent for participation. We identified fraudulent interest forms through video calls and review of interest survey meta-data, including IP addresses, to filter out potential participants who were falsely claiming to meet the inclusion criteria or were residing outside the United States.

Eligible participants were randomized into the control group (a monthly children’s book club) or the treatment group (Rosie, the chatbot) using a web-generated table with 15 slots for each study arm, for a total of 30 enrolled participants. After a participant assigned to the Rosie treatment group was unable to fully enroll owing to technical issues, we recruited an additional participant as a replacement. In addition, a mother in the control group experienced a stillbirth during the pilot study and did not complete the postintervention test. Thus, the final analytic sample was 52% (15/29) Rosie treatment group members and 48% (14/29) control group members (Figure 2). Among the 29 participants who were successfully recruited for the pilot study, 3 (10%) were recruited from partner organizations, 6 (21%) were recruited based on our interest forms at past Rosie events, and the remainder (n=20, 69%) were recruited using social media advertisements.
The control group participants were mailed a children’s board book once a month. The control group was modeled after similar programs across the United States that provide free monthly books to children [25]. Books were selected based on feedback from focus groups and community demonstrations with new parents or pregnant women of color, who expressed a desire to have books featuring diverse families.

At the initial enrollment meeting, our research team provided the Rosie treatment group participants instructions about how to install the Rosie app on their smartphones and provided a walkthrough of how to use the app and how to provide feedback about Rosie’s responses to their questions. We emailed each participant a weekly user engagement summary and sent reminder SMS text messages to encourage the use of the app.

Data Collection, Outcome Measures, and Analysis

We assigned each participant an identification number to link pretest and posttest data and to track progress through the pilot study using clinical trial management software. Enrolled participants completed a pretest and posttest Qualtrics survey. Pretest surveys included questions about demographics (maternal age, race and ethnicity, education, household size, and health insurance), whether they were pregnant or parenting a young infant, and their due date or their baby’s birth date (as applicable). Pretest surveys also included the Patient Health Questionnaire–9 (PHQ-9) depression scale [26] and assessed the frequency of emergency room visits for infants. Posttest surveys administered at the 3-month follow-up assessed pregnancy outcomes (birth weight and gestational age), emergency room visits for infants, PHQ-9 depression scale, and group-specific questions. Rosie treatment group members were asked how often they used Rosie and whether they experienced any of the following issues while using the app (eg, “application crashed,” “too long to get a response,” “was difficult to use,” and “was not satisfied with the answer[s] to my question[s]”). In contrast, the control group members were asked to rate how much they agreed with the following statements on a 5-point Likert Scale ranging from 5 (strongly agree) to 1 (strongly disagree): the books I received were of good quality, the content of the books I received is a good match for my baby’s needs, the books were helpful to me during my pregnancy or parenting my infant, the books were enjoyable to me during my pregnancy or parenting my infant, participating with the book club was easy for me, and I would recommend the book club to other parents.

Both groups were also asked open-ended questions to obtain qualitative feedback. Rosie treatment group members were asked the following open-ended questions: (1) Besides answering your questions, what other features would you like to see on an application like Rosie? (2) Do you have any concerns about using Rosie? If so, please tell us about them; and (3) Do you have any additional feedback to help us build the best Rosie app possible? In an open-ended question, the control group members were asked to provide any additional feedback or ideas about their experience with the book club.

Descriptive statistics of the study sample were calculated based on group assignment. Pretest and 3-month posttest values were examined for postpartum depression and emergency room visits for infants. To examine the statistical significance of between-group differences at baseline, Fisher exact tests were used for categorical variables and Wilcoxon rank sum tests were used for continuous variables. For the within-group pretest and posttest comparisons, paired 2-tailed t tests and McNemar tests were applied. Furthermore, 2-sample 2-tailed t tests were used to compare the between-group differences in the pretest to posttest changes. Qualitative feedback was organized and
presented separately for the Rosie treatment group and book club control group members.

Ethical Considerations

The consent form was read aloud by research assistants to each participant and verbal informed consent was obtained. Written consent was obtained through the completion of an web-based form, and a copy of the consent form was sent via email to each enrolled participant. Participants were also encouraged to use the app and were told that if they were continuously enrolled for 3 months and actively engaged with the app by asking questions to the chatbot at least once a week, they would receive a gift card worth US $50. In addition, participants were told that if, at the end of the 3-month pilot study, they were among the top 20% of active users, defined by the number of unique questions sent to Rosie, they would also receive a tablet preloaded with children’s books. Participants were also given a gift card worth US $15, disbursed through a participant incentive distribution platform, Tango, upon completing the pretest and posttest Qualtrics surveys. The study was reviewed and approved (institutional review board study ID: 1556200) by the institutional review board of the University of Maryland, College Park, based on procedures for studies involving human participants.

Results

Overview

Baseline key demographic characteristics were not statistically significantly different between the Rosie treatment and control groups (Table 1). The mean age of mothers for both groups was 31.7 (SD 4.7) years. Approximately half of the mothers (9/15, 60%) were pregnant, and the other half (6/15, 40%) took care of young infants. Among those with infants, the mean age of infants was 4 months among Rosie treatment group members and 4.6 months among control group members. Most participants (9/15, 60%) were African American or Black, with the remainder being Asian, Hispanic or Latina, or multiracial (Table 1).

<table>
<thead>
<tr>
<th>Participant characteristics</th>
<th>Rosie (treatment group; n=15)</th>
<th>Book club (control group; n=14)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (IQR)</td>
<td>31.7 (30-35)</td>
<td>31.6 (26-35)</td>
<td>.83</td>
</tr>
<tr>
<td>Race and ethnicity, n (%)</td>
<td></td>
<td></td>
<td>.14</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (7)</td>
<td>4 (29)</td>
<td></td>
</tr>
<tr>
<td>African American or Black</td>
<td>9 (60)</td>
<td>10 (71)</td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>5 (33)</td>
<td>2 (14)</td>
<td></td>
</tr>
<tr>
<td>Multiracial</td>
<td>2 (13)</td>
<td>1 (7)</td>
<td></td>
</tr>
<tr>
<td>Currently pregnant, n (%)</td>
<td>9 (60)</td>
<td>6 (43)</td>
<td>.36</td>
</tr>
<tr>
<td>Parenting infant, n (%)</td>
<td>6 (40)</td>
<td>8 (57)</td>
<td>.19</td>
</tr>
<tr>
<td>Currently pregnant and parenting infant, n (%)</td>
<td>0 (0)</td>
<td>1 (7)</td>
<td>.29</td>
</tr>
<tr>
<td>Infant age, months (Q1-Q3)</td>
<td>3.7 (2-5)</td>
<td>4.8 (4-6)</td>
<td>.15</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td>.37</td>
</tr>
<tr>
<td>High school</td>
<td>2 (13)</td>
<td>2 (14)</td>
<td></td>
</tr>
<tr>
<td>Associate degree</td>
<td>1 (7)</td>
<td>2 (14)</td>
<td></td>
</tr>
<tr>
<td>Bachelor degree</td>
<td>3 (20)</td>
<td>5 (36)</td>
<td></td>
</tr>
<tr>
<td>Master degree</td>
<td>3 (20)</td>
<td>4 (29)</td>
<td></td>
</tr>
<tr>
<td>Professional degree</td>
<td>6 (40)</td>
<td>1 (7)</td>
<td></td>
</tr>
<tr>
<td>Average family size, mean (range)</td>
<td>2.6 (2-3)</td>
<td>2.9 (2-3)</td>
<td>.49</td>
</tr>
</tbody>
</table>

*aTo examine the statistical significance of between-group differences at baseline, Fisher exact tests were used for categorical variables and Wilcoxon rank sum tests were used for continuous variables.

Acceptability of Rosie

More than 87% (13/15) of Rosie treatment group members reported using Rosie daily (5/15, 33%) or weekly (8/15, 53%) across the 3-month study period. Most users reported that Rosie was easy to use (14/15, 93%), and that they received a response from Rosie quickly (13/15, 87%). The remaining issues identified included crashing of the app during attempted use (8/15, 53%), and they were not satisfied with some of Rosie’s answers (12/15, 80%; Table 2).
Table 2. Acceptability statistics for Rosie treatment group (n=15).

<table>
<thead>
<tr>
<th>Questions and response options</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How often did you use Rosie?</td>
<td></td>
</tr>
<tr>
<td>Monthly or less</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Multiple times a day</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Once daily</td>
<td>5 (33)</td>
</tr>
<tr>
<td>Weekly</td>
<td>8 (53)</td>
</tr>
<tr>
<td>Did you experience any of the following issues while using the app?</td>
<td></td>
</tr>
<tr>
<td>Application crashed</td>
<td>8 (53)</td>
</tr>
<tr>
<td>It took too long to get a response</td>
<td>1 (7)</td>
</tr>
<tr>
<td>It was difficult to use</td>
<td>2 (13)</td>
</tr>
<tr>
<td>I was not satisfied with the answer(s) to my question(s)</td>
<td>12 (80)</td>
</tr>
</tbody>
</table>

Health Results: Quantitative

Pilot results suggested better health outcomes for the Rosie treatment group compared with the control group; however, between-group differences did not reach statistical significance. The estimated change in Rosie participants’ PHQ-9 mean depression scores from baseline to posttest period was −3.66 (SD 4.55) among Rosie treatment group participants compared with −2.77 (SD 4.92) among control group members (Table 3). This decline in depression scores between pretest and posttest period was only statistically significant for the Rosie treatment group (P=.008) and not the control group (P=.07). None of the participants from either group reported any emergency room visits for infants at baseline, but this percentage increased to 23% (3/13) for the control group members versus 9% (1/11) for the Rosie treatment group members (Table 3). Notably, 10 (67%) out of 15 mothers who were pregnant at baseline gave birth by the 3-month posttest period, and it could be a possible reason why emergency room visits for infants increased during the posttest period for both groups.

Table 3. Health and health behavior outcomesa.

<table>
<thead>
<tr>
<th></th>
<th>Rosie (treatment group)</th>
<th>Book club (control group)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal depression scaleb</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Pretest period, mean (SD)</td>
<td>5.33 (4.43)</td>
<td>5.31 (3.33)</td>
<td>N/A</td>
</tr>
<tr>
<td>Posttest period, mean (SD)</td>
<td>1.67 (2.64)</td>
<td>2.54 (2.96)</td>
<td>N/A</td>
</tr>
<tr>
<td>Post-pre change, mean (SD)</td>
<td>−3.66 (4.55)</td>
<td>−2.77 (4.92)</td>
<td>.62</td>
</tr>
<tr>
<td>Values, n (%)</td>
<td>15 (100)</td>
<td>13 (100)</td>
<td>N/A</td>
</tr>
<tr>
<td>Any emergency visit for infants</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Pretest period, n (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>N/A</td>
</tr>
<tr>
<td>Posttest period, n (%)</td>
<td>1 (9)</td>
<td>3 (23)</td>
<td>N/A</td>
</tr>
<tr>
<td>Pre-post change</td>
<td>+9.09</td>
<td>+23.08</td>
<td>.60</td>
</tr>
<tr>
<td>Values, n (%)</td>
<td>11</td>
<td>13</td>
<td>N/A</td>
</tr>
</tbody>
</table>

aFor the within-group pretest and posttest comparisons, paired 2-tailed t tests and McNemar tests were applied. Paired 2-tailed t tests comparing pretest and posttest Patient Health Questionnaire depression scores were statistically different for the treatment group (P=.008). No other within-group comparisons were statistically significant at P<.05. Moreover, 2-sample 2-tailed t tests were used to compare the between-group differences in the pretest to posttest changes. P values assess pre- to postperiod changes for treatment versus control groups.

bThe sample size for emergency room visits was smaller because this outcome was assessed among mothers with infants (excludes currently pregnant mothers during the posttest period).

cN/A: not applicable.

Rosie Results: Qualitative Feedback

The Rosie participants provided considerable qualitative feedback about their experiences (Textbox 1). Participants expressed that they liked having a personal library to ask all their pregnancy and parenting questions, but improvements were needed in both the user experience and the content of responses. Participants commented that the quality of Rosie’s responses to pregnancy-related questions seemed to be low in accuracy compared with questions about infant caretaking. Participants noted that they observed improvements in the app’s functionality as the trial progressed and that the addition of an FAQs library and daily tips about baby’s development were helpful.
Textbox 1. Qualitative feedback about Rosie.

Domain and feedback

Strengths
- “I really enjoyed having a personal library to ask all the questions. Especially because after losing my baby, I didn’t receive a ton of targeted ads since my questions were limited to this app.”
- “I liked it when the daily tips were added to the app. Before that, they were only notifications that I couldn’t go back to and often couldn’t fully read. I also liked when the previous day’s answers became available for viewing, so I didn’t have to screenshot or save links.”
- “I like everything else.”

Points system
- “Additionally, the point system didn’t fit with the original study. We were asked to use Rosie a minimum of once a week with a preference for more frequent use. But then the points were awarded for daily use. It was discouraging to not earn points, but with a newborn at home it was a struggle to do anything other than feed him daily.”

Content and technical concerns
- “Perhaps some answers were not very accurate for the age of my baby; they were for younger or older kids.”
- “Answers were not specific enough, lots of glitches with the app.”
- “The answers to the questions were often inaccurate.”
- “It does not answer me well.”
- “Not efficient. All of the answers take you to the same website. Using the app was a waste of time.”
- “My pregnancy-related questions were often answered inaccurately. The baby questions were mildly better, but if the chatbot is intended for both than it needs more training related to pregnancy symptoms and side effects.”
- “I had some trouble with the push notifications as well. At first, they were accurate for the number of weeks along I was in my pregnancy. Then they started to speed up, telling me that I was as many as two weeks ahead of my baby’s gestational age [e.g., it said I was 38 weeks when I was really 36]. I went in and reset it, using the same due date that I started with, and it continued to be incorrect. The app itself didn’t seem to have the same problem, just the notifications.”
- “Due to the high number of inaccurate responses, I was not motivated to continue using the app. I tried to stick with it, but to be honest this chatbot and the accompanying app have a long way to go before they’re ready for implementation.”
- “Finally, last week I had some issues with the app where it was giving me answers in a mix of text and source code formatting. Everything looked like a hyperlink but the links themselves did not work. I received an update notification, updated the app, and the problem persisted. It did fix itself after a couple of days though.”
- “At times when typing a question at the moment of submitting the keyboard would stay open and would not allow the user to hit submit. I had to exit out the app completely and reopen it and it would work again.”
- “Sometimes I had urgent questions, it could’t be use because it was under maintenance often.”
- “Hard to update.”
- “Rosie crashed a few times [like over multiple days when I tried asking a question].”

Suggestions
- “Sometimes Rosie gave me some answers that were not related to what I wanted to know, I understand sometimes terms can apply to two different things but perhaps Rosie can ask Do you mean this (1) or this (2), and then one chooses what is closer to the question one is asking. It happened to me a couple of times but I don’t remember the specific question.”
- “Answers were not specific enough, lots of glitches with the app.”
- “More accuracy with the answers would be great!”
- “Just implement user feedback.”
- “It would be nice to see some statistics [e.g., x% of kids do x by whatever age].”
- “I was pretty unlikely to visit the website Rosie referred me to. I think I would be more likely to view info right on the screen [even a click box with additional text or pics etc].”
- “Random suicide hotline warning was a little bit abrupt and unexpected.”
- “Answers were unrelated sometimes.”
- “Maybe something more personal with the week we are on if its more geared for pregnancy.”
- “I would say maybe [a] different app for moms and another version for expecting moms only due to the fact that some symptom questions were meant for a child rather than me who is pregnant. Overall the app is a great idea and good help/support for all. Thanks for the opportunity.”
As a result of the feedback, the development team has added more source websites to Rosie’s knowledge bank and has expanded the FAQs section of the app to include topics such as descriptions of the full schedule of well-baby visits and immunizations in the first 2 years of life. As this pilot study was designed to be part of a broad iterative process, negative, neutral, and positive feedback are all integral parts of refining the app’s functionality and expanding its knowledge base.

Book Club Results: Qualitative Feedback

Participants were extremely positive in their feedback about the book club, with participants rating the books as being of high quality and as a helpful tool for parenting (Textbox 2 and Table 4). All participants (14/14, 100%) agreed that they would recommend the book club to other new parents. Participants appreciated the “diversity and bilingual aspects of the books” and that their infants “really enjoyed the Global Babies book and loved to stare at the faces [presented in the books].” A participant offered a recommendation for an additional children’s book by an author whose works focus on social justice leaders in the United States to be offered in the book club.

Textbox 2. Qualitative feedback about the book club.

<table>
<thead>
<tr>
<th>Domain and feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths</td>
</tr>
<tr>
<td>“I so much love it.”</td>
</tr>
<tr>
<td>“I loved the diversity and bilingual aspects of the books.”</td>
</tr>
<tr>
<td>“Baby really enjoyed the global babies book and loved to stare at the faces.”</td>
</tr>
<tr>
<td>Suggestions</td>
</tr>
<tr>
<td>“The book[s] were good, but I think there are more popular/exciting book options for babies, especially books featuring babies of color. I am thinking of all the books by Jabari Asim for example. The last book was great though and the overall idea for a book club is fantastic. I loved knowing that new books were coming each month.”</td>
</tr>
<tr>
<td>“Oh, another thing: I got an automatic message from the book club quite frequently with the same message and it seemed redundant.”</td>
</tr>
</tbody>
</table>

Table 4. Acceptability statistics for the control group (n=13).

<table>
<thead>
<tr>
<th>Item</th>
<th>Score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please rate how much you agree with the following statements based your thoughts and experiences (1=strongly disagree; 5=strongly agree)</td>
<td></td>
</tr>
<tr>
<td>The books I received were of good quality</td>
<td>4.54 (0.14)</td>
</tr>
<tr>
<td>The content of the books I received is a good match for my baby’s needs</td>
<td>4.46 (0.18)</td>
</tr>
<tr>
<td>The books were helpful to me during my pregnancy or parenting my infant</td>
<td>4.38 (0.29)</td>
</tr>
<tr>
<td>The books were enjoyable to me during my pregnancy or parenting my infant</td>
<td>4.58 (0.19)</td>
</tr>
<tr>
<td>Participating with the book club was easy for me</td>
<td>4.77 (0.12)</td>
</tr>
<tr>
<td>I would recommend the book club to other parents</td>
<td>4.85 (0.10)</td>
</tr>
</tbody>
</table>
Health Results: Qualitative

A Rosie treatment group participant and a control group participant experienced pregnancy loss (a miscarriage and a stillbirth) during the study. An unexpected finding from one of the participants, who was assigned to the treatment group, was that using Rosie for maternal and child health information helped in shielding them from some emotional distress after their loss, with our participant stating the following:

I really enjoyed having a personal library to ask all the questions. Especially because after losing my baby, I didn’t receive a ton of targeted ads since my questions were limited to this app.

Recognizing that most of the currently available maternal and child health apps track user interactions for advertisers and feature advertisements, Rosie’s development as a no-cost, advertisement-free app may have additional benefits for mothers who value personal data privacy.

Discussion

Principal Findings

The pilot study demonstrates that Rosie is a feasible, acceptable, and appropriate intervention for pregnant women and new mothers of color. Rosie’s software was able to function with a given set of users and was generally able to generate responses to most of the asked questions. Our study found overall reduction in the PHQ-9 depression scale scores from baseline to the 3-month follow-up across both groups. However, the Rosie treatment group experienced a relatively large reduction from baseline to posttest follow-up. The reduction in maternal depression among both groups may correspond to known trajectories in maternal depression, which identified that depressive symptoms peak around birth and decrease as the infant ages [27,28]. Researchers have found variability in the timing and duration of perinatal and antenatal depression, but some studies have found that women who had depression symptoms during the antenatal period were likely to have more intense symptoms during pregnancy than during the postpartum period and that perinatal depression symptoms decreased over time [29,30]. With an expanded time frame of 12 months planned for intervention delivery during the full randomized controlled trial, the research team will be more able to precisely track trends in depressive symptoms and identify what, if any, congruence exists in our participants and the current literature about maternal depression and other mental health symptoms.

Although our small sample size and study design limit our ability to identify the causal pathways between Rosie and changes in depressive symptoms, our findings indicate that an association may exist between the use of the Rosie app and low maternal depression owing to increased parental confidence about their own health and infant caretaking through increased access to accurate health information. Rosie’s ability to provide rapid, accurate response with high-quality sources may also reduce the cognitive burden that pregnant women and new parents described in previous studies that emphasized that sorting through information, making comparisons, and determining the quality of the source of information were significant stressors. In addition, the Rosie app may also reduce maternal depression because it can help provide support to mothers who may not otherwise have access to many health-related supports and resources.

The low rates of emergency room use for infants in the Rosie treatment group compared with the control group aligns with previous study hypotheses that health information provided by Rosie can decrease acute health care use. Nonetheless, this could have occurred through multiple channels including potentially greater use of preventive health care services and Rosie assisting with the identification of relevant health information or clinical guidelines to support infant care.

The qualitative feedback the Rosie participants provided aligns with the conclusions obtained by Chua et al [20] during their review of maternal health chatbots that the first evaluations of these interventions often yield a need for improvement in the language models to understand the variety of ways in which users may ask questions about their pregnancy and child and to provide more precise and accurate responses to these questions.

New Rosie Features in Response to the Pilot Study

User experiences and feedback about the Rosie app has informed the further development of Rosie and continued precision of the QA model. For each of Rosie’s responses, users were able to click “thumbs up” or “thumbs down” to indicate their satisfaction or dissatisfaction with Rosie’s response to their question, and approximately 35% of questions received this additional level of feedback from users. The team analyzed this feedback and enhanced Rosie’s knowledge base by including topics that were not covered in previous iterations of the QA model and further refined the QA model based on the issues identified by the participants and the research team. We analyzed and discussed these interactions weekly with the goal of improving Rosie and initiating improvements in the user experience.

In addition, as a result of user feedback, we have expanded Rosie’s knowledge bank by >10 folds from 75,000 passages to >1.8 million passages extracted from 400,000 documents from verified health sources such as the CDC, National Institutes of Health, Mayo Clinic, and children’s hospitals. Rosie’s previous knowledge bank was restricted to only maternal and infant care questions, but Rosie users had requested information about topics such as managing chronic conditions, food safety and preparation, mental health, and self-care. The expanded corpus now enables mothers to ask any health-related question.

Strengths

This pilot study adds to the existing literature about chatbots broadly and their application in the context of maternal and child health. The team’s findings specific to reduction in maternal depression will help address one of the CDC-identified preventable causes of maternal death. In addition, low emergency room visits for infants suggest potential improvements in infant care and avoidance of some health crises. Our qualitative findings concur with those of previous studies, showing that improved precision in responses is needed [13,20]. Overall, participants found the chatbot as a helpful tool, and this intervention is delivered in a way that is easily
accessible and usable. They also believe that it is an appropriate and acceptable approach for women of color who are pregnant or parenting an infant to receive reliable information. The feedback from our participants is invaluable in the preparation for scaling to a full randomized controlled trial. The use of a multimethod approach that obtained both quantitative and qualitative feedback resulted in a broad understanding of participants’ experiences and needs and addressed some gaps recognized in previous trials of chatbots designed for improving health knowledge.

Limitations
The recruitment of study participants was conducted primarily through web-based advertisements, potentially yielding a sample of participants who are overall more comfortable with using apps and their phones as their primary way of seeking health information than other women who are pregnant or parenting infants. Our sample, overall, was highly educated and the most (26/29, 90%) had health insurance, which may have reduced our ability to detect the experiences and health information needs of mothers without the same level of education or identify the needs of mothers whose lack of insurance may be associated with more variability in the use of emergency rooms. The small sample size of this pilot study resulted in low statistical power. Several health outcomes were found to be different in the posttest period when making between-group comparisons of the Rosie treatment and control groups, but differences did not reach statistical significance. In addition, detection of other between-group differences or predictive relationships between group assignment or demographic variables and outcomes of interest was limited by the small sample size. It was also not feasible to compare pregnant women and those parenting infants within groups at pretest and posttest periods to determine whether there were statistically significant differences owing to the small sample size. However, our approach helped to accomplish our goals for the pilot study and has facilitated a robust planning process for scaling to the full randomized controlled trial.

Conclusions
This pilot study showed that the prototype of the Rosie app is a feasible and usable innovation during pregnancy and postpartum period. This study provides valuable insight into using chatbots to help pregnant women and new mothers of color access reliable information the moment it is requested. Promising pilot results suggest that chatbots may reduce adverse health outcomes among ethnic and racial minoritized mothers; however, additional evaluation is warranted including a planned randomized clinical trial to evaluate the effects of Rosie on maternal and infant outcomes. If successful, chatbots such as Rosie can help address the existing health disparities in maternal and child health that have important intergenerational and downstream health consequences for the nation.

Acknowledgments
The study reported in this paper was supported by research grants from the National Institute on Minority Health and Health Disparities (QCN and EMA; grant number R01MD016037) and by the National Library of Medicine (QCN; grant number R01LM012849). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors do not have any conflicts of interests relevant to this study.

Data Availability
The deidentified versions of data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Authors’ Contributions
Study conceptualization, design, and implementation were completed by QCN and EMA. MJ and FXMG facilitated participant recruitment, enrollment, and data acquisition activities, with supervision from EMA. Development, build-out, and amendments of natural language process models and information corpus were completed by XY, HM, NPS, and JB-G. QCN, MJ, ACD, XY, HM, and XH analyzed, interpreted, and created the tables and diagrams based on the study’s quantitative data. MJ, ACD, and FXMG analyzed and interpreted the qualitative data. QCN, MJ, ACD, XY, HM, FXMG, and XH completed the analysis of current literature about chatbot interventions and implications of previous studies, provided critical analysis of integrated results, drafted and revised the iterations of the manuscript. QCN, EMA, MJ, ACD, XY, HM, NPS, FXMG, ND, XH, and JB-G edited and reviewed the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
CONSORT (Consolidated Standards of Reporting Trials) checklist.
[PDF File (Adobe PDF File), 1262 KB - formative_v8i1e51361_app1.pdf]
References

Abbreviations

CDC: Centers for Disease Control and Prevention
FAQ: frequently asked question
PAQ: probably asked question
PHQ-9: Patient Health Questionnaire–9
QA: question-answering

©Quynh C Nguyen, Elizabeth M Aparicio, Michelle Jasczynski, Amara Channell Doig, Xiaohe Yue, Heran Mane, Neha Srikanth, Francia Ximena Marin Gutierrez, Nataly Delcid, Xin He, Jordan Boyd-Graber. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Clinical Needs Assessment of a Machine Learning–Based Asthma Management Tool: User-Centered Design Approach

Lu Zheng1*, MS, PhD; Joshua W Ohde1*, PhD; Shauna M Overgaard1, PhD; Tracey A Brereton1, MS; Kristelle Jose1, MS; Chung-Il Wi2,3, MD; Kevin J Peterson1, PhD; Young J Juhn2,3,4, MD, MPH

1Center for Digital Health, Mayo Clinic, Rochester, MN, United States
2Precision Population Science Lab, Mayo Clinic, Rochester, MN, United States
3Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
4Mayo Clinic Health System Research, Mayo Clinic, Rochester, MN, United States
*these authors contributed equally

Corresponding Author:
Lu Zheng, MS, PhD
Center for Digital Health
Mayo Clinic
200 1st Street South West
Rochester, MN
United States
Phone: 1 480 758 0664
Email: zheng.lu@mayo.edu

Abstract

Background: Personalized asthma management depends on a clinician’s ability to efficiently review patient’s data and make timely clinical decisions. Unfortunately, efficient and effective review of these data is impeded by the varied format, location, and workflow of data acquisition, storage, and processing in the electronic health record. While machine learning (ML) and clinical decision support tools are well-positioned as potential solutions, the translation of such frameworks requires that barriers to implementation be addressed in the formative research stages.

Objective: We aimed to use a structured user-centered design approach (double-diamond design framework) to (1) qualitatively explore clinicians’ experience with the current asthma management system, (2) identify user requirements to improve algorithm explainability and Asthma Guidance and Prediction System prototype, and (3) identify potential barriers to ML-based clinical decision support system use.

Methods: At the “discovery” phase, we first shadowed to understand the practice context. Then, semistructured interviews were conducted digitally with 14 clinicians who encountered pediatric asthma patients at 2 outpatient facilities. Participants were asked about their current difficulties in gathering information for patients with pediatric asthma, their expectations of ideal workflows and tools, and suggestions on user-centered interfaces and features. At the “define” phase, a synthesis analysis was conducted to converge key results from interviewees’ insights into themes, eventually forming critical “how might we” research questions to guide model development and implementation.

Results: We identified user requirements and potential barriers associated with three overarching themes: (1) usability and workflow aspects of the ML system, (2) user expectations and algorithm explainability, and (3) barriers to implementation in context. Even though the responsibilities and workflows vary among different roles, the core asthma-related information and functions they requested were highly cohesive, which allows for a shared information view of the tool. Clinicians hope to perceive the usability of the model with the ability to note patients’ high risks and take proactive actions to manage asthma efficiently and effectively. For optimal ML algorithm explainability, requirements included documentation to support the validity of algorithm development and output logic, and a request for increased transparency to build trust and validate how the algorithm arrived at the decision. Acceptability, adoption, and sustainability of the asthma management tool are implementation outcomes that are reliant on the proper design and training as suggested by participants.

Conclusions: As part of our comprehensive informatics-based process centered on clinical usability, we approach the problem using a theoretical framework grounded in user experience research leveraging semistructured interviews. Our focus on meeting
the needs of the practice with ML technology is emphasized by a user-centered approach to clinician engagement through upstream technology design.

(JMIR Form Res 2024;8:e45391) doi:10.2196/45391

KEYWORDS
asthma; formative research; user-centered design; machine learning (ML); artificial intelligence (AI); qualitative; user needs.

Introduction

Background

Transparency, suitability, and adaptability are cited reasons for the chasm between advances in artificial intelligence (AI) and implementation in health systems [1]. Hindering implementation is a lack of transparency about the data used to make decisions and recommendations [2]. The conceptual suitability of, or aversion to, an algorithm in clinical use is practically governed by a clinician’s autonomous decision to engage with the tool [3]. The adaptability of the algorithm to local patient populations and unique workflows further increases the likelihood of adoption [4]. Logically, a proactive and systematic approach to addressing barriers to transparency, suitability, and adaptability may propel the wider implementation and adoption of AI in patient care [5].

Ultimately, the foundation of this approach is rooted in clinician engagement at the earliest stages of AI development [6]. Determining the user’s complex and diverse requirements for effective machine learning (ML)–based clinical decision support (CDS) tools requires a thorough understanding of the clinical utility of data sources and suitable designs to facilitate contact and response in appropriate settings [7]. This formative usability approach can be achieved through an empathetic and sustained relationship within a multidisciplinary team initiated by early-stage formative research and upstream technology design [8].

In a personalized medical practice aiming to optimize a clinician’s management of asthma, an efficient review of the condition’s characterizing features is critical [9]. Unfortunately, efficient and effective review of these data using electronic health records (EHRs) and timely clinical decisions are impeded by the varied format, location, and workflow of data acquisition, storage, and processing [10]. To support clinicians, we aim to develop an ML-based CDS tool that (1) predicts future risk of asthma exacerbation (AE; risk stratification and resource management), (2) provides this risk evaluation in the context of a summary of relevant information for asthma management (reduction of EHR review burden), and (3) offers options for actionable intervention.

As described in our published work, our AI evaluation plan uses a phased framework (Figure 1 [11]) to address technical performance, usability and workflow, and health impact, and iteratively follows our model documentation steps [12]. This paper describes how we conduct phase 0 and phase 1, highlighting user experience (UX) design and formative research through clinical user shadowing and interviews.

Figure 1. Phased research framework for evaluation of AI applied to the A-GPS project based on Park et al [11]. A-GPS: Asthma Guidance and Prediction System; AI: artificial intelligence; FDA: United States Food and Drug Administration; IRB: institutional review board; NASSS: Nonadoption, Abandonment, Scale-up, Spread, and Sustainability; UX: user experience.
Theoretical Framework

Literature detailing ML-based CDS tool translation indicates an ineffective balance of tool intelligence with explainability, creating gaps in translation, implementation, and accountability [13]. This suggests the need for early engagement with clinical users to mitigate present gaps by gaining a comprehensive and multidisciplinary understanding of present challenges, as well as identifying requirements for development and integration that prioritize both intelligence and practical usability. This formative research required a structured methodology to gather unstructured qualitative data and draw reliable conclusions, especially when diverse aspects and roles are involved. Therefore, UX research methodologies were adopted throughout phase 0 and 1, including the Double Diamond design framework and participatory design method that strategically engaged clinical users to derive unmet needs and identify user requirements [14,15]. The Double Diamond design framework (Figure 2 [16,17]), a graphical guide following the phases of the design process, is widely used to customize and standardize the progression of UX research by incorporating iterative loops and feedback opportunities to progress development [16,18].

Figure 2. Dan Nessler [16] developed this revamped version of the Double Diamond process based on the British Design Council’s Double Diamond [17] (reproduced from Nessler [16], with permission from Dan Nessler). This paper demonstrated how we went through each step in the first diamond to discover and define “user needs,” thus complete certain aspects on the Phases 0 and 1. HMW: How-Might-We.

Study Objectives

The A-GPS tool is an ML-based CDS tool accessible from “within” the EHR workflow. It aims to summarize all asthma-related context information extracted from the EHR on 1 screen page [9,22]. The tool will be embedded with a functional component of the AE risk model (AE risk model), which applies ML algorithms to predict a patient’s risk of exacerbation in 1 year [23]. This study’s objectives were to qualitatively explore clinicians’ experience with the current asthma management system, identify user requirements to improve algorithm explainability and A-GPS prototype, and identify potential barriers to ML-based CDS system use. Research questions were developed to probe the challenges and pain points of gathering asthma-related information within the current asthma management system, thorough evaluation of clinical team member workflows, user requirements for prototype optimization, algorithm explainability and display.
Methods

Participant Selection and Recruitment
We invited a group of clinicians representing the key roles in asthma management to collect user requirements and listen to their suggestions for future implementation. These roles include physician, nurse practitioner, nurse, and coordinator in primary care and asthma management specialty. Most of them are practicing in the Department of Pediatric and Adolescents Medicine and Family Medicine outpatient practices, where A-GPS will be implemented. A total of 14 participants were recruited by email using a convenience sampling approach and scheduled for a one-on-one, 30 to 60-minute virtual interview.

Data Collection
This formative usability research was directed toward an understanding of user requirements and to facilitate optimal workflow integration, estimate the potential impact of health care delivery factors, and work capacity constraints on achieved benefit. We aimed to collect different facets of qualitative data to identify all stakeholders, understand user needs, probe for optimal tool design to support clinical decision-making and routine workflow for each group in a comprehensive manner. To obtain the clinical context of how the tool will be used in practice, 1 researcher shadowed both sites and described the general patient flow. Next, we scheduled a 60-minute virtual interview with each recruited participant. An introductory statement provided background on the ML-based CDS tool prototype and explained the goal of the interview, developing rapport with interview participants. Each interview session was composed of 2 parts. Part 1 was a routine 30-minute semistructured interview. Interview guides were created for stakeholders, clinicians who were part of the A-GPS project or practice leadership, such as a division or practice chair, and users, defined as those with no stake in A-GPS but are practicing clinicians. Detailed interview guides were attached as supplementary material (Multimedia Appendix 1). Stakeholders were asked specific questions regarding their role as stakeholders in A-GPS and as potential users. Nonstakeholder participants (users) were questioned about their experience and needs as end users. Within part 2 of the interview session, participants were invited to demonstrate an EHR walkthrough on their working computer. During this time, we observed how the clinician routinely uses the system and defines the asthma-related information required to make a medical decision. Additionally, follow-up questions were asked to explore their cognitive process. While part 1 focused on clinicians’ reported problems and individual opinions, part 2 allowed us to observe the current problems and workflow objectively. Each type of data supplemented the other to achieve problem-probing and user needs consolidation.

Data Analysis
UX specialized translational informaticians engaged with practice components to evaluate usability and workflow to determine effectiveness, efficiency, satisfaction, ease of use, explainability, and usage, as described in the AI Evaluation Framework by Overgaard et al [23]. Interviews were transcribed, reviewed, and coded by team members LZ, JWO, KAJ, and TAB. Using a web-based collaboration tool MURAL (Tactivos, Inc) [24], transcripts were coded by identifying emergent themes and categorized into primary research questions asking what, how, where, and when. Other themes included challenges or pain points, barriers to adoption, novel ideas, new insights, and stakeholder considerations. Subthemes were presented as opportunities for change using an HMW question format [19]. Figure 3 provides a brief look into the synthesis and analysis work completed using the MURAL tool. As for the EHR walk-through, we used the data as a reference to make the list of the acquired information in the EHR system.

Figure 3. MURAL (Tactivos, Inc) is an online collaborative tool. Key quotes from participant transcripts were added to the board, using colors to identify participants. Similar or consistent responses across participants were grouped within circles, as shown in the image, to form subthemes. AE: asthma exacerbation; AI: artificial intelligence; ED: emergency department; ER: emergency room; HMW: How-Might-We.
Ethical Considerations

This study was conducted as a quality improvement initiative defined by the Mayo Clinic Institutional Review Board and Mayo Clinic Policy. According to the Code of Federal Regulations, 45 CFR 46.102, the project does not require IRB review. Patient and provider consent were not required, but all participants provided oral consent. To protect participant privacy, the participant’s name and email were used for recruitment purposes only and never linked to audio or transcribed data. Data were used to improve the delivery of health care services at Mayo Clinic.

Results

Participant Characteristics

A total of 14 clinicians were interviewed across 4 Mayo Clinic Health System sites in Minnesota, including Rochester, Red Wing, Albert Lea or Austin, and Kasson. Of those who participated, 7 (50%) were women, 11 (79%) were physicians (Doctor of Medicine or Advanced Practice Registered Nurse) and 3 (21%) were nurses. Their roles included asthma specialist, allergist, pulmonologist, pediatrician, family medicine physician, asthma care coordinator, and medical resident.

Targeted Patient Population and Clinician Users of A-GPS Tool

Clinicians identified opportunities to enhance asthma management for the diagnosed and at-risk population through the use of the A-GPS tool. According to clinicians, the tool would best serve pediatric patients with a diagnosis of asthma and should also aim to cover pediatric patients not officially diagnosed but at high risk of developing asthma, including those identified with the following conditions: symptoms of wheezing or coughing, albuterol use, or oral steroids use, frequently reported respiratory conditions of pneumonia, lung infections, wheezing, or coughing.

Some patients probably have asthma that we don’t detect, but that’s where I think this tool would be helpful because maybe even though they don’t have a diagnosis of asthma, they’ve had wheezing, or other things listed in their diagnosis and problem list. That would be helpful to avoid missing those people. [P6]

Some kids had been given a bronchodilator because often at 18 months, they present with viral induced wheezes, and we find it improves with albuterol. So, we get a response to albuterol, and we know that these kids are potentially likely to get asthma, but we typically don’t make that diagnosis until after two. [P4]

Patients with pediatric asthma may be seen by multidisciplinary clinical roles including allergy specialists, pulmonologists, pediatricians, asthma care coordinators, rooming nurses, emergency department physicians, and primary care providers. When identifying proper clinician users of the tool, it was reported that any role that needs to provide asthma management care in practice would benefit from accessing and using A-GPS tool. To capture potential role-based variance in user requirements, the routine workflows and information needs were asked for each participant. It was found that asthma management is coordinated care by dynamic care teams, however, participants demonstrated a preference for a shared view of the tool to gain a shared understanding of patient cases. Even though the responsibilities and workflows vary among different roles, the core asthma-related information and functions they requested were highly cohesive, which allows for a shared information view of the tool.

Usability and Workflow Aspects of the ML System

In general, clinicians welcomed the integration of the AE risk model into the patient’s EHR. In practice, the prediction results are expected to help facilitate preventive actions to support better asthma management. To accomplish this, the AE risk prediction results cannot simply be in the EHR, it also needs to notify clinicians and prompt the care team to follow-up with patients in an expedited fashion.

If risk prediction results are added and approaching the threshold, and you will get a message letting you know that that is happening, that would be the best way to go. Because then you can prevent the next exacerbation, rather than waiting to see the patient the next time they come to the clinic, by then patient might have been through a couple of exacerbations. [P2]

If we are getting this risk score and especially if it were telling them that this is somebody that is at high risk of relapses and recurrences of episodes, then we can make that effort to reach out to those individuals. That should be flowing in my mind. That should be going to our care teams. [P14]

Despite the goal of being proactive, obtaining clinician’s attention to the right patient at the right time in an acceptable format is an issue. Notification methods were suggested by participants and opinions varied based on roles.

When you open the chart, it be helpful to have that notification sent via an in-basket message so that we’re aware and could follow up sooner. There might be cases where we’re aware that they’re high risk, but we can just delete it if we already have that plan for follow-up. [P9]

Best Practice Advisory (BPA) kind of prompts the provider that some action needs to be taken in these areas. And it might be a nice opportunity. Or one of the things we have is emergency action plans. Some similar way that incorporates into an action that needs to be taken or addressed for this patient. [P6]

In-basket message was mentioned by many clinicians as a common type of active alarm. However, it is necessary to balance effective information delivery and alert fatigue as clinicians, especially physicians, receive various alarms and notifications from multiple channels in their daily work.

I would just like the color coding in the records. I do not know if an in-basket message would be effective because we get a lot of them. If it was, I like the message was really clear and can quickly know what it is for. [P13]
Probably not an alarm for high-risk cases. I can imagine people getting annoyed at that, but if it came up in care gaps on the storyboard, like a reminder of something needing to be reviewed, that would be nice. [P4]

I hate to say in-basket messages because that just generates another inbox that the provider doesn’t have time to handle. I think having these folks show up as high-risk followed up by our care coordinators is the right way of handling this. It should be a trigger to get care coordinators or nurses to schedule a visit with the patient, which is more important than notifying the provider. [P14]

Additionally, the alarm or notification should reach clinicians with proper guidance for the next steps.

In BPA, we see alarms as this bright red thing with exclamation points. We’re going to want to act on that, but how do you act on it? Like, does it prompt then if you go into your plan, will it prompt something where you get some choices, like high-risk, you know. Whatever the risk score is, here are some options for you and you click those, and it goes into an order set, and you can order it and you’re done. [P7]

User Expectations and Algorithm Explainability

Expectations and Perceived Impact

Participants reported that the A-GPS tool is expected to have a positive impact on clinicians’ workflow and patient experiences. Clinicians anticipate a positive impact on usability and workflow by (1) streamlining the review of asthma information, (2) providing patients with “proactive” rather than “reactive” care, (3) empowering patients with a deeper and more personalized understanding of their condition, and (4) improving outcomes. Participants find the tool can be helpful in several situations, such as preparing for an upcoming patient visit, following up on a patient’s condition remotely, and changing or refilling medications based on changes in a patient’s condition. With well-organized asthma information presented at the appropriate time in the workflow, clinicians expect they can save time reviewing information and the care team will have a consistent understanding of patient cases.

Importantly, proactive and preventive care is anticipated with the AE risk model, allowing the prioritization of resources to patients of greatest need, and reduction of AE, emergency department visits, and hospitalizations. Clinicians hope to perceive good usability of the model with the ability to note patients’ high risks and take proactive actions to manage asthma efficiently and effectively. Ideally, with attention-grabbing model output visualization, both patient and caregivers would be more engaged in home-based care after seeing future risks. The potential to further drive higher quality outcomes was identified in the potential to monitor the relationship between patient adherence to medication, symptoms, and other contributing factors.

Algorithm Explainability

User requirements of the AE prediction algorithm output emphasized interpretability, logical justification, and validation as is shown in Textbox 1. Specifically, known definitions and levels of risk categories must be explainable, leading to efficient patient classification and resource allocation. Visual indications of severity, such as red, yellow, and green to define high, medium, and low-risk categories paired with a numerical indication were required. Supporting contextual information such as flagging primary features impacting risk prediction and providing a summary of additional asthma management variables were key requirements. Supporting information should be easily accessible and presented as hovering capabilities or links to relevant data (eg, patient history and baseline diagnostics). To assist with algorithm explainability and informing next steps, users required supplemental information on how the prediction score was calculated, bolstered by comparative diagnostics (eg, individual and population baseline values). Clinicians expressed concern regarding accuracy and reliability without significant validation of the model. Requirements included documentation to support the validity of algorithm development and output logic, and a request for increased transparency to build trust and validate how the algorithm arrived at the decision. For successful integration, users require that strategic education and phased implementation must be offered. Education and regular reports on the clear demonstration of value was the preferred strategy to gain an understanding of appropriate A-GPS use and limitations. Examples of stated learning preferences included hands-on training, such as workshops presented at monthly meetings, regular follow-up communication and showcasing of successful use cases, and video tutorials. Importantly, users require a clear demonstration of value to ease adoption, achieved by a phased implementation approach (multisite).
Barriers to Implementation in Context

Accuracy and Reliability

Many participants expect the AI model given by A-GPS will be validated for accuracy and reliability. They also stressed the importance of making the model explainable and transparent to users. Clearly explaining why the model predicted a specific risk score will allow users to understand the logic of the model and its relevance to the patient’s current asthma situation. Without demonstrating validation or providing transparency clinicians will lack trust in the tool and likely not use it, limiting its clinical value.

Clinician and Patient Concerns

Clinicians recognized the potential benefits of A-GPS but voiced several ethical concerns regarding the AE risk model. As is shown inTextbox 2, one concern was the misunderstanding of AI’s role in clinical practice and that AI will override clinician autonomy to make clinical decisions. However, 1 participant asserted that the goal of AI is to provide complementary information and that the clinician would still make the final clinical decisions. A similar concern was the impact the risk prediction model would have on a clinician’s intuition. More specifically, when the AE risk model contradicts the clinician’s professional judgment, the possibility of legal or ethical issues may arise depending on what action the clinician takes.

Textbox 1. Examples of interviewees’ statements about explainability of prediction outcomes.

- I want to be able to see that risk score. When the patient is in front of me, I also want to be able to see a whole lot more information about that patient, preferably in an easy to find format that I don't have to go digging in Epic for it, like I currently do. [P14]
- I would probably like something simpler, like not necessarily a percentage. And then I like, okay, it's red, which means they're at high risk. In the background, I could know what that means. And if you want more information, then you could click and find why it is high. [P13]
- I think high, medium, low would, you know, would be sufficient. And if you would have something popping up or even color-coded too, like they are low risk in green, medium in yellow. If they're high-risk and in red, that certainly will get your attention. I also want to know what is putting them at risk. Is it the severity of symptoms, their need for oral steroids, their hospitalization and ED visits? So that would certainly be helpful to know exactly where their risk area is. [P9]
- I would like it to give me a percentage score rather than a level. So, if I had a model, I would like to see a percentage within a certain period. Like within two years or within one year, there is a percentage chance that there'll be an asthma exacerbation. Some people like the simplicity of a one to five. But if I'm making my decisions, I kind of want a little bit more detail on it. Also, if I click on it, I would like to be able to see where and what data points they're using to make these predictions because sometimes the data in the Epic chart is incorrect. [P4]

Textbox 2. Examples of interviewees' statements about ethical concerns.

- Machine learning introduces a new wrench in things. Because now you're not giving me a necessarily a recommendation, but you're giving me insight that might either raise my intuition or lower it. How do you handle having that prediction result legally and ethically and everything else? [P12]
- As a pulmonologist, I am trying to understand how other systematic diseases impact asthma. So, I am also checking tests of other body systems and evaluating by talking to patients. For the populations I am seeing with asthma, hopefully, at some point artificial intelligence could help us, but I just do not see it at this point. [P2]
- This prediction score is not meant to override. This is complimentary information for you. I know you do mental calculations, but this is a data-driven calculation that gives you other complementary information. If there’s a discrepancy, is there anything you are thinking low in emotion, say “hi, just to think about it on this page.” So then, you know, you don't have to go to that page, just look through another page of the sectional summary. [P5]

A patient-specific concern was the potential for unnecessary anxiety and emotional burden on patients and their caregivers when told the AE risk model deems the child at “high risk.” The fear that an asthma event could occur based on a prediction tool that many patients and caregivers may not fully understand may provoke unnecessary changes in the child’s daily activities, as shown in the example below.

Parents may worry about their child if the AI tool says, “high risk of AE” and subsequently change daily decisions, such as not sending their child to school or letting them play outside. [P7]

Discussion

Principal Findings

Principal results are discussed by identified themes. In each theme, we started with “How Might We” questions to inspire discussions on challenges and opportunities.

Usability and Workflow Aspects of the ML System

Challenges and opportunities of usability and workflow aspects of the AI system prompt key questions such as the following: How might we incorporate the A-GPS tool to support workflows of different roles? Clinicians are tasked with a workload that involves increasing patient volumes, more complex diseases, and an overwhelming EHR system. Further, 1 goal of A-GPS is to help alleviate the time clinicians spend in the EHR to find asthma-related information and supplement the clinical decision process required to minimize a patient’s risk of AE. Successfully
incorporating A-GPS into the current workflow of various clinical roles is arguably as important as the tool itself. Participants suggested placing the A-GPS tool in the same location within the EHR and having the same view, regardless of roles. This will allow easier navigation in the EHR within the care team’s current practice as clinicians, nurses, and care coordinators frequently view each other’s screens during patient care.

User Expectations and Algorithm Explainability

Challenges and opportunities of user expectations and algorithm explainability prompt key questions such as the following: (1) How might we communicate A-GPS results in a way that is explainable to patients? Although patients and caregivers were not interviewed, they will receive some level of information from the A-GPS tool communicated to them by the clinician or care team. How the outcome of the AE risk model is explained to patients will be important. Limiting unnecessary anxiety or misunderstandings while still effectively communicating the model results needs to be carefully addressed so families can make appropriate decisions that improve the patient’s outcomes. Properly educating clinicians on how to explain the AE risk model to families is a step that could be tied into the overall education plan for A-GPS. (2) How might we remove barriers to adoption to increase clinician buy-in? The adoption of any new tool or technology rarely goes as planned, it takes time to achieve buy-in from users. To increase clinicians’ buy-in for A-GPS a few barriers should be addressed. First, clinicians need to see that the A-GPS tool is validated, accurate, reliable, and effective at saving time in the EHR. Communicating this data using various educational modalities can increase the reach among clinicians. Second, some clinicians will wait to see the value A-GPS brings to their colleagues before using it themselves. These individuals may be reached by leveraging clinician champions who believe the A-GPS tool improves UX with the EHR and patient outcomes. Ultimately, the best method to facilitate the adoption of the A-GPS tool is to ensure its functionality meets the user’s needs and expectations. Clinicians are more likely to use A-GPS if a clear and concise ML-based CDS tool is created that contains only asthma-related information with easy access to more detailed notes and test results. Moreover, clinicians may use and act on the AE risk model if they trust it, understand what the risk score means for their patient, and understand how the model came to its conclusion for their patient.

Barriers to Implementation in Context

Challenges and opportunities related to implementation and system use in context prompt key questions such as the following: How might we address ethical issues brought on by a difference between the AE risk model and a clinician’s professional judgment? The contradiction between the AE risk model and a clinician’s clinical assessment may pose an ethical and even legal issue. In practice, clinicians may feel pressured to act upon the model’s output in fear of legal challenges even if they believe the patient’s risk of AE is different based on their professional judgment. Although this topic deserves further exploration, it is reasonable to assume in educating clinicians that their clinical judgment supersedes the result from the AE risk model as the model does not take into consideration the multitude of variables the clinician assesses. Moreover, the reason for the development of the AE risk model in this context was to provide supplemental information to improve the care of patients with asthma, not replace the expertise of clinicians. Addressing this upfront with potential users should be a component of A-GPS implementation.

Acceptability, adoption, and sustainability of A-GPS are implementation outcomes that are reliant on the proper design and training as suggested by participants. Without following the guidance of clinicians given in this study the success of A-GPS will be limited, resulting in decreased user satisfaction and clinical effectiveness. To overcome potential barriers to implementation success several priority areas should be met. First, the A-GPS tool needs to be easily accessible within the EHR, in a location that is obvious and consistent across all clinical roles, contains all asthma-related information on a single page, and is visually concise and intuitive. To increase acceptability, the AE risk model needs to be validated for accuracy and reliability and made transparent to users. Transparency is necessary to build trust among clinicians and trust facilitates acceptance and adoption. The AE risk model output needs to be easily interpretable, clearly defined, and intuitive to improve adoption and sustainability. While the risk category output and descriptive statement is essential, an organized display of supporting information popping up in proper format is generally desired as part of the output. Except for the quality of model output, the importance of quality and strategy of education and training cannot be ignored. In a paper by Gordon et al [25], Mayo Clinic took a standardized and efficient approach to provide education and training sessions when implementing a new EHR system. The results demonstrated higher acceptance and confidence among users. This could be a good example for an A-GPS project in terms of successful implementation.

Strengths and Limitations

Conducting interviews with potential users of a new clinical tool not only gains insights into their needs but also encourages buy-in as seeking their input before implementation demonstrates that the research team values user feedback. To our knowledge, this study facilitated buy-in and support among participants as several thanked this study’s team for their efforts to understand user needs. For a broader scope of AI projects, the innovative multi-background collaboration between translational informatics, data science teams and engaged clinical stakeholders guided by the design framework at an early stage provides well-defined user requirements and implementation plans and delivers evidence documentation for upcoming implementation and validation stages. The method can be applied to a wide variety of CDS. In this project, the UX research method was used to engage with clinical stakeholders and prospective end users to gain a comprehensive and multidisciplinary understanding of the role A-GPS is expected to play in pediatric asthma care. Shadowing and interviewing clinical stakeholders were a source of engagement that gathered user requirements from the perspective of potential users, with the objective of informing tool development and translation efforts [21]. Once A-GPS tool is functioning technically, its fit
into the clinical workflow must be evaluated. Moreover, education and documentation must be provided to explain the algorithm and its limitations to effectively translate between the perspectives of experts who created and supported the technology and the perspectives of experts who use the solution to patients. Evaluating the interpretation needs of clinicians, preferences for the display of model output (eg, percentage vs binary threshold), and feature contributions will be assessed based on the data obtained from UX research efforts. Concurrently, the team will also engage clinician stakeholders in the development of model documentation to support explainability [26]. The data obtained from UX research will assist the translational informatics and data science teams in identifying the level of explainability needed to inform and validate the design of A-GPS and supplementally enhance existing workflows [27]. Strategic efforts to promote explainability include applying a documentation framework grounded in scientific research addressing known challenges. This encompasses interdisciplinary best practice reporting requirements that follow phases of model development (prepare, develop, validate, deploy, and maintain) for knowledge continuity throughout the solution’s life cycle [12].

A limitation of this study is the generalizability of design and implementation suggestions as the practice environment of participants has different features. Even though they are all within Mayo Clinic Health Systems, some are working on hospital campuses, while some are from community-based primary care, which led to various user needs. Another limitation is that the perspective of patients and their caregivers were not evaluated in this study. This was purposeful as the intended users of A-GPS are clinicians but the impact the AE risk model may have on families, as stated in the Ethical Considerations section, should be explored further.

Further Research

Future research will evaluate the sustainability and scalability of user requirements for enterprise, national, and international adoption of the ML-based CDS tool. Ethical considerations of AI interpretation, patient engagement, and clinician autonomy warrant further investigation. Our research team will conduct multiple studies as we approach the future stages of efficacy and side effects, therapeutic efficacy, and safety and effectiveness planned in our phased comprehensive AI evaluation framework (stage 1). There are more questions to answer in the future: How might we demonstrate to providers the accuracy and reliability of the AI output? How might we define required transparency for AI output? How might we provide an efficient educational module for users and show validation measures to support and explain AI output? How might we handle alarm fatigue, including situations where patients do not respond to providers’ intervention? How might we improve ML-model predicting the risk of AE when the provider’s proper and timely intervention may reduce the performance of the model (eg, positive predictive value)?

Conclusions

We aimed to anticipate barriers to the translation of our pediatric asthma management ML-based CDS tool by engaging clinicians in prototype development and optimization leveraging UX research methodologies. In efforts to bolster the transparency, suitability, and adaptability of our solution we qualitatively evaluated user requirements and potential barriers in 3 overarching themes: usability and workflow aspects of the ML system, user expectations and algorithm explainability, and barriers to implementation in context. We presented findings specific to our tool’s risk evaluation in the context of a summary of relevant information for asthma management. This work contributes to phases 0 and 1 of our comprehensive informatics-based AI evaluation frameworks developed by our multidisciplinary team of clinicians, data scientists, translational informaticians, and UX experts at Mayo Clinic [23]. The transparent evaluation and documentation of AI applications in health care enhances clinician and patient trust, supports sharing of AI between hospitals, and increases standards and shared responsibility across the continuum of care. The results of this development study further enhance the model documentation of A-GPS aimed to ensure rigorous evaluation, transparency, and knowledge continuity [12]. A sustainability and scalability evaluation of user requirements will strengthen the potential for national and international adoption of A-GPS.

Acknowledgments

We would like to deeply thank Dr Manuel Arteta, Dr Valeria Cristiani, Joy Fladager Muth, Dr Gregory Garrison, Dr Margret Gill, Dr Jason Greenwood, Darcy Hall, Dr Martha Hartz, Dr Julian Lynaugh, Dr Donnchadh O’Sullivan, Dr Sarah Scherer, Dr Eric Schnaith, and Dr David Soma for finding their time for interview and sharing their valuable insights into usability of A-GPS in clinical practice setting. This project was supported by the Center for Digital Health, Precision Population Science Lab, the AI Program of Department of Pediatric and Adolescent Medicine. We acknowledge no generative AI usage in the preparation of this paper.

Data Availability

The data sets generated and analyzed during this study are not publicly available due to participants’ privacy, but are available from the corresponding author on reasonable request.

Conflicts of Interest

None declared.
Multimedia Appendix 1

Interview question list.

[DOCX File , 17 KB - formative_v8i1e45391_app1.docx]

References

24. Tactivos Inc. MURAL. URL: https://www.mural.co/ [accessed 2023-12-07]

Abbreviations

A-GPS: Asthma Guidance and Prediction System
AE: asthma exacerbation
AI: artificial intelligence
CDS: clinical decision support
EHR: electronic health record
HMW: How-Might-We
ML: machine learning
UX: user experience

©Lu Zheng, Joshua W Ohde, Shauna M Overgaard, Tracey A Breerton, Kristelle Jose, Chung-Ii Wi, Kevin J Peterson, Young J Juhn. Originally published in JMIR Formative Research (https://formative.jmir.org), 15.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

Exploring Adolescents’ Attitudes Toward Mental Health Apps: Concurrent Mixed Methods Study

Helene Høgsdal¹, MSc; Henriette Kyrrestad¹, PhD; Marte Rye¹, PhD; Sabine Kaiser¹, PhD
Regional Centre for Child and Youth Mental Health and Child Welfare - North, Faculty of Health Sciences, Tromsø, Norway

Corresponding Author:
Helene Høgsdal, MSc
Regional Centre for Child and Youth Mental Health and Child Welfare - North
Faculty of Health Sciences
UiT The Arctic University of Norway
Campus Tromsø
Tromsø, 9019
Norway
Phone: 47 77646619
Email: helene.hogsdal@uit.no

Abstract

Background: Adolescence is a critical time in which many psychological disorders develop. Mental health promotion is important, especially during this period. In recent years, an increasing number of mobile apps geared toward mental health promotion and preventing mental illness have been developed specifically for adolescents, with the goal of strengthening their mental health and well-being.

Objective: This study aims to explore adolescents’ attitudes toward mental health apps, as well as the perceived usefulness of mental health apps.

Methods: In this mixed methods study, a total of 183 adolescents (mean age 15.62, SD 3.21 years) answered a cross-sectional questionnaire, with 10 questions (eg, “What do you think about mental health apps in general?”). To complement the quantitative findings, individual interviews were conducted with 9 adolescents, during which they could elaborate on their opinions about mental health apps.

Results: A total of 30% (56/183) of the adolescents in the quantitative study had used a mental health app. Over half of the respondents (77/126, 61.1%) reported that they would use a mental health app if they had a mental health problem as well as that they thought mental health apps were somewhat or very useful (114/183, 62.3%). Availability was the most frequently reported advantage of mental health apps (107/183, 58.8%). Possible associated costs of mental health apps were the most frequently mentioned barrier to their use (87/183, 47.5%). Findings from the interviews also pointed to the importance of the availability of mental health apps as well as their credibility and potential to provide adolescents with autonomy when seeking mental health advice and help.

Conclusions: Overall, the results indicate that adolescents have a positive attitude toward and an interest in mental health apps. However, adolescents are also more or less unaware of such apps, which might be one reason why they are often not used. The findings of this study have important implications for future research on mental health apps and for developers of mental health apps that target young people. The insights gained from this study can inform the development of more effective mental health apps that better meet the needs and preferences of adolescents.

(JMIR Form Res 2024;8:e50222) doi:10.2196/50222

KEYWORDS

mental health applications; mental health; adolescents; adolescent; youth; mobile health; app; apps; application; applications; opinion; opinions; cross sectional; survey; surveys; questionnaire
Introduction

Overview
The World Health Organization defines well-being as follows: “Well-being is a positive state experienced by individuals and societies. Similar to health, it is a resource for daily life and is determined by social, economic and environmental conditions” [1]. In today’s society, reference is often made to the importance of working to improve young people’s mental health and well-being as adolescence is a critical, transformative, and challenging time [2]. Research indicates that 10%-20% of adolescents worldwide experience mental health problems [3,4], and in approximately half of all mental disorders, the onset of symptoms occurs before the age of 15 years [5,6]. This illustrates that mental illness in adolescence can have negative effects also on adulthood [6,7]. Today, the need for mental health care and tools for young people is high, and it is argued that provided mental health services for adolescents are not sufficient to keep up with the growing demand [8]. It is therefore important to work toward developing targeted measures and evidence-based interventions that can help young people cope with stress and different challenges [9,9]. Furthermore, it is important to provide supporting tools and resources that can promote healthy habits and behaviors that contribute to overall well-being in adolescence.

In recent years, it has been suggested that mobile devices and the internet represent ideal tools to deliver such interventions to young people [10], and an increasing number of developers and researchers have been following this suggestion [11-14]. In a systematic review, Grist et al [13] highlight the importance of digital interventions developed for young people being of good quality. Furthermore, they point out that the development of digital products, intended for young people, should be designed in collaboration with young people, in order to develop customized and high-quality products for the target group. Thus, a broad understanding of what young people think about specific digital interventions can be beneficial for developing effective products suitable for the target group.

Mental Health Mobile Apps
Mobile apps (ie, apps) are tools where users can receive digital health interventions or information, these health apps have the intention of improving the user’s overall health [12]. Along those same lines, mental health apps are designed to improve mental health and well-being among their users [14-16]. These apps can be designed to address specific mental health disorders [17,18], or they can be more general, focusing on promoting mental health and preventing mental distress through a variety of tools and resources such as emotional self-monitoring and coping strategies [19,20].

One important advantage of mental health apps is their availability [16]. Users can gain access to them anytime and anywhere with a smartphone or other mobile devices. This is particularly useful for individuals who may not have easy access to mental health services due to geographic barriers or for individuals who might benefit from receiving frequent reminders or immediate support [15,16]. Furthermore, mental health apps can reach larger segments of the population compared with in-person therapy, and, in some cases, they have shown promising cost-effectiveness [10,16].

Adolescents’ Engagement With Mental Health Apps
Young people spend a considerable amount of time on their smartphones and use them for entertainment, social purposes, and to access information on different topics, including mental health [21-23]. There are several mental health apps available for adolescents, but as Grist et al [13] point out, the quality of the assessment on these apps is scarce. Research on mental health apps for adolescents indicates that young people are generally satisfied with the access to and ease of use of mental health apps [13,24]. Kenny et al [25] highlight in their study that adolescents prefer mental health apps to be safe, engaging, and easily accessible. The use of mental health apps can also allow people to maintain anonymity when seeking mental health advice or guidance, which is appreciated by young people, who often have a high threshold for help-seeking due to a desire for autonomy and the negative attitudes or stigma surrounding mental health services [26-28].

Nevertheless, the level of user engagement in existing mental health apps is relatively low or moderate and repeated long-time use of mental health apps after downloading them is rare [13,29,30]. This may indicate that despite the fact that young people find mental health apps appealing, it is not sufficient to ensure sufficient use over a long span of time. Regardless of the reasons, it is possible that low user engagement could decrease the overall effectiveness of mental health apps. Research on the effectiveness of mental health apps on adolescent mental health outcomes has revealed mixed results. Some research has failed to illustrate any effect [13,31,32], and others have indicated that mental health apps are promising and have the potential to provide improvement in mental health outcomes [14,33,34]. Yet, there is broad agreement that more research on the effectiveness of mental health apps is needed to fully understand their capacity to improve mental health outcomes [13,32,33]. In order to understand more about the effect mental health apps can have on young people’s mental health, it is also beneficial to examine what young people think about mental health apps and how they should appear in order to be effective for the target group.

This Study
The aim of this study is to explore adolescents’ attitudes toward mental health apps, and their perceived usefulness, using both quantitative and qualitative data. While the quantitative study focuses more on the use and usefulness of these apps as well as on their perceived advantages and disadvantages, the qualitative study examines adolescents’ more general thoughts on mental health apps and how they may be of help to them. Together these data sets provide important insight for the development of mental health apps. The results can help to ensure more user-targeted products and more user engagement, which in turn can contribute to a greater effectiveness of mental health apps.
Methods

Overview
This study used a convergent, parallel QUAN + qual mixed methods design [35]. Quantitative and qualitative data were collected simultaneously, and the qualitative study was used to complement the results of the quantitative study. The quantitative data are based on a cross-sectional survey and the qualitative data are based on semistructured interviews. A total of 2 authors (HK and SK) analyzed the quantitative data, and the other 2 authors (HH and MR) analyzed the qualitative data. The results of the 2 data sets are integrated in the discussion.

Quantitative Study

Participants and Procedure
Adolescents were invited to participate in the study during several events that took place in autumn 2022, including an innovation camp in Mosjøen (a municipality in Northern Norway), “The research days” at UiT The Arctic University of Norway, and the World Mental Health Day event organized by the municipality of Tromsø. To participate, adolescents were asked to scan a QR code, which led to a digital questionnaire [36]. Posters and flyers with the QR code were also distributed at various youth clubs and adolescent health centers in Northern Norway. The questionnaire was anonymous, and participation was voluntary. The final quantitative sample (N=183) consisted of 118 (64.5%) girls, 59 (32.2%) boys, and 6 (3.3%) adolescents that did not specify their gender. Participants were aged between 13 and 19 (mean 15.75, SD 1.65) years; 170 (92.9%) participants were Norwegian and 13 (7.1%) participants reported other nationalities (2.2% were Serbian, 1.1% were Swedish, and 3.8% did not specify their nationality).

Questionnaire

Overview
The questionnaire consisted of 10 questions. Information was collected on demographic characteristics like gender (boy, girl, and other), nationality (Norwegian, Serbian, Swedish, or other), and age (11 to 20 years). There were 5 or 6 questions about mental health apps that are described in the following and an open-ended question where the adolescents could give comments about the topic or the questionnaire in general.

Use of Mental Health Apps
Adolescents were asked 1 or 2 questions developed by Grist et al [37]: “Do you use (or have you used) any apps to help you with mental health problems?” with response options “yes” or “no.” Adolescents who answered “no” were asked a follow-up question: “If you had a mental health problem and there were apps available to help, would you use them?” with response options “yes” or “no.”

Perceived Usefulness of Mental Health Apps
Adolescents were asked: “What do you think of mental health apps in general?” with responses given on a 5-point Likert scale, ranging from (1) “not useful at all” to (5) “very useful.”

Advantages of Mental Health Apps
Adolescents were asked: “What do you think some of the advantages are of using an app for your mental health?” Adolescents were presented with 8 statements developed by Grist et al [37], such as “It is more private” and “I don’t have to talk to someone face to face.” One additional statement, “I can be anonymous” was added to the list by the authors. Adolescents could tick up to 3 statements with which they agreed the most.

Disadvantages of Mental Health Apps
Adolescents were asked: “What do you think some of the barriers are to using an app for your mental health?” Adolescents were presented with 9 statements developed by Grist et al [37], such as “I don’t trust apps,” “I am afraid someone will see the app on my phone,” and “It might cost money.” Adolescents could tick up to 3 statements with which they agreed the most.

Information About Mental Health
To examine where adolescents looked for information about mental health, they were asked: “Which media do you use to find information about mental health?” There were 7 response options as follows: Google, social media (eg, TikTok and Facebook), mental health apps, television, web-based newspapers, podcast or radio, and others, where adolescents could specify a different medium in an open-ended textbox. Adolescents were asked to tick all the media they used with no limitations.

Data Analytical Strategy
Data were analyzed with SPSS (version 29; IBM Corp). Descriptive statistics were calculated and included means, SDs, and frequency distributions. A multiple linear regression analysis was calculated to predict adolescents perceived usefulness of mental health apps, with gender (1=boy, 2=girl), age (11-20 years), and previous use of mental health apps (1=yes, 2=no) as predictors. A significance level of less than .05 was applied.

Qualitative Study

Participants and Procedure
Adolescents who answered the questionnaire were invited to contact the researchers if they wanted to participate in an interview and share their thoughts and opinions about mental health apps. A total of 9 adolescents (all Norwegian) chose to be interviewed (Table 1); 7 elected to be interviewed remotely (via telephone, Microsoft Teams, or Zoom) and 2 elected to be interviewed in person. Before each interview, the adolescents were informed that they were expected to talk about mental health apps, which were defined as mobile apps “developed with the thought of helping people manage their own mental health and wellness” [16]. All interviews were audio recorded on an Apple iPad with the app Diktafon [38], encrypted, and sent directly to Nettskjema [36] before they were transcribed. Two adolescents requested to be interviewed together, hence, 1 interview was conducted with 2 adolescents present (informant 3 and informant 4). These adolescents were considered as individual informants despite being from the same interview.
Table 1. Overview of informants and their experience with mental health apps.

<table>
<thead>
<tr>
<th>Informant</th>
<th>Gender</th>
<th>Age (years)</th>
<th>Experience with mental health apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informant 1</td>
<td>Girl</td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td>Informant 2</td>
<td>Boy</td>
<td>16</td>
<td>No</td>
</tr>
<tr>
<td>Informant 3</td>
<td>Girl</td>
<td>15</td>
<td>Yes</td>
</tr>
<tr>
<td>Informant 4</td>
<td>Boy</td>
<td>16</td>
<td>No</td>
</tr>
<tr>
<td>Informant 5</td>
<td>Girl</td>
<td>14</td>
<td>No</td>
</tr>
<tr>
<td>Informant 6</td>
<td>Girl</td>
<td>17</td>
<td>No</td>
</tr>
<tr>
<td>Informant 7</td>
<td>Girl</td>
<td>17</td>
<td>Yes</td>
</tr>
<tr>
<td>Informant 8</td>
<td>Boy</td>
<td>16</td>
<td>Yes</td>
</tr>
<tr>
<td>Informant 9</td>
<td>Girl</td>
<td>14</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Interviews

All interviews were conducted in Norwegian. The interviewer followed a semistructured interview guide, however, the adolescents were encouraged to talk freely without too much interruption from the interviewer. There were three key questions in the interview guide: (1) “What are your thoughts on mental health applications that are aimed at adolescents?” (2) “What do you think mental health applications can do with regard to adolescents’ knowledge about mental health?” (3) “How do you think mental health applications may be of help to young people?” The interviewer asked follow-up questions when it was natural to go more in-depth on the information the adolescent provided. The interviews varied in duration from 15 to 30 minutes.

Analytic Strategies

The qualitative data were analyzed using thematic analysis inspired by Braun and Clarke [39]. Our analysis was based on a constructionist epistemological position, assuming knowledge is socially constructed and developed through communication and interactions between people [40]. Audio recordings were transcribed by the first author, and transcripts were imported into NVivo [41] to support the organization and coding of the data. Transcripts were read carefully by the first and third authors to identify meaning and patterns in the data. Initial codes were created for the data material, which were then sorted into potential themes. The themes were reviewed and defined in order to identify the essence of each one and the relationship between them. All the codes, themes, and presented quotes are based on data from the Norwegian language. The translation was done using a contextualized hermeneutic approach to translation [42] where the data are presented as close to the original context as possible, hence the quotations in particular are directly translated from Norwegian to English.

Ethical Considerations

The questionnaire in the quantitative study was anonymous and no personally identifiable information was collected. To complete the questionnaire, adolescents had to scan the QR code of their own volition. Moreover, before they could access the questionnaire, the adolescents were presented with information about the study and they were told that they agreed to participate by answering the questions. The adolescents were also informed that they could stop answering the questionnaire at any time without consequences.

The qualitative study was evaluated and approved by the Norwegian Center for Research Data (reference 631424). Adolescents of 16 years or older could consent to take part in the interview themselves, while active parental consent was required from adolescents younger than 16 years of age. Consent was retrieved via a digital consent form in Nettskjema [36]. All interview informants received a cinema gift card with a value of NOK 150 (approximately US $15) as compensation.

Results

Quantitative Study

Of the 183 adolescents who completed the web-based questionnaire, 56 (30.6%) adolescents had used a mental health app. Among adolescents who had not used a mental health app (126/183, 68.9%), approximately half (77/126, 61.6%) said they would use one if they had a mental health problem and there were apps available to help, while 48 (38.4%) adolescents said they would not. When asked “What do you think about mental health apps in general?” 25 (13.7%) adolescents answered that they were not or not very useful, 44 (24.0%) adolescents answered “neither”, and 114 (62.3%) adolescents found them somewhat or very useful (mean 3.6, SD 1.1). The regression analysis to predict the perceived usefulness of mental health apps, identified only gender as a significant predictor ($\beta = .35; P < .001$) indicating that girls perceived mental health apps as more useful than boys.

The most frequently reported advantages of using a mental health app were as follows: “It will always be there when I need it” (107/183, 58.8%), “I don’t have to talk to someone face to face” (83/183, 45.4%), “It is more private” (75/183; 41.0%), and “I can be anonymous” (72/183, 39.3%; Table 2). The most frequently reported barriers were as follows: “It might cost money” (87/183, 47.5%), “I don’t know whether the information in them is accurate or true” (82/183, 44.8%), and “I am afraid someone will see the app on my phone” (78/183, 42.6%; Table 3). The most frequently cited media that adolescents used to find information about mental health were by far “Google” (151/183, 82.5%) and “Social media (for example Facebook, Instagram, TikTok)” (90/183, 49.2%; Table 4).
Table 2. Advantages of using mental health apps (N=183).

<table>
<thead>
<tr>
<th>Statement</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is more private</td>
<td>75 (41.0)</td>
</tr>
<tr>
<td>I don’t have to talk to someone face to face</td>
<td>83 (45.4)</td>
</tr>
<tr>
<td>It will always be there when I need it</td>
<td>107 (58.8)</td>
</tr>
<tr>
<td>I don’t have to wait to get information</td>
<td>45 (24.6)</td>
</tr>
<tr>
<td>I can get support and information whenever I need it</td>
<td>51 (27.9)</td>
</tr>
<tr>
<td>I don’t have to write things like my mood down on paper</td>
<td>13 (7.1)</td>
</tr>
<tr>
<td>It is personal to me</td>
<td>12 (6.6)</td>
</tr>
<tr>
<td>I can be anonymous</td>
<td>72 (39.3)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (3.3)</td>
</tr>
</tbody>
</table>

Table 3. Barriers to using mental health apps (N=183).

<table>
<thead>
<tr>
<th>Statement</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I don’t trust apps</td>
<td>49 (26.8)</td>
</tr>
<tr>
<td>I don’t know whether the information in them is accurate or true</td>
<td>82 (44.8)</td>
</tr>
<tr>
<td>I would prefer to speak to someone face to face</td>
<td>46 (25.1)</td>
</tr>
<tr>
<td>I don’t think apps can help me</td>
<td>36 (19.7)</td>
</tr>
<tr>
<td>I am afraid someone will see the app on my phone</td>
<td>78 (42.6)</td>
</tr>
<tr>
<td>It might cost money</td>
<td>87 (47.5)</td>
</tr>
<tr>
<td>Other</td>
<td>17 (9.3)</td>
</tr>
</tbody>
</table>

Table 4. Most often used media to find information about mental health (N=183).

<table>
<thead>
<tr>
<th>Media</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>151 (82.5)</td>
</tr>
<tr>
<td>Social media (eg, Facebook, Instagram, TikTok)</td>
<td>90 (49.2)</td>
</tr>
<tr>
<td>Mental health mobile apps</td>
<td>23 (12.6)</td>
</tr>
<tr>
<td>Television</td>
<td>28 (15.3)</td>
</tr>
<tr>
<td>Web-based newspapers</td>
<td>8 (4.4)</td>
</tr>
<tr>
<td>Podcast or radio</td>
<td>26 (14.2)</td>
</tr>
<tr>
<td>Other</td>
<td>12 (6.6)</td>
</tr>
</tbody>
</table>

Qualitative Study

Theme 1: Accessibility—The Significance of Approachable Mental Health Apps

A central theme that arose from the interviews, was the experienced and perceived accessibility of mental health apps. The adolescents highlighted that mental health apps were a readily accessible alternative to use in order to find information about health care as well as to get help. Further, they pointed out that mental health apps could be a more accessible helping tool than person-to-person offers. In addition, the adolescents talked about accessibility in terms of knowing about mental health apps’ existence, how appealing they are, and potential costs related to using them.

Many of the young people pointed out that they had neither heard of nor used mental health apps.

Some adolescents reflected on reasons why they had not heard of them. For instance 1 adolescent stated that her lack of knowledge of mental health apps may be attributable to marketing campaigns that do not target young people directly or correctly.

I don’t really know about any health-promoting apps that young people use [informant 6]

I don’t think, for example, that the makers of such apps have managed to reach out to young people [...]. I don’t know if I’m perhaps in the wrong target group or something, but at least it hasn’t really caught on yet, so to speak [informant 1]

The adolescents also pointed out that the information in the mental health apps must be easy to understand to be appealing to them. The adolescents stated that information found on internet might be challenging to comprehend, due to for example
the use of specialized terminology. Therefore, they highlighted that it is important that the information provided in mental health apps is specific to the topic that they want to learn more about.

I think that can be good, if you have a good app where the information is simply explained and that you understand it quite easily, then I think it can be used a lot [informant 1]

An app should be a place where people can read about exactly what they need and not so much medical stuff [informant 1]

The importance of free mental health apps was frequently mentioned in all interviews; adolescents stressed that apps should be equally accessible to everyone regardless of their economic situation. Further, some adolescents stated that charging a fee would weaken the credibility of such apps and call into question the developers’ intentions.

I've been on an app where it was obvious that they were going to make money off it. And then the information and everything seemed a bit wrong. Suddenly, I had to pay for a membership in order to continue to use the app; then they lost me [informant 3]

Theme 2: Trustworthiness—The Significance of Credible Mental Health Apps

Most adolescents stated that it is important that app developers are credible and that the information that is provided in apps comes from reliable sources.

It is important that young people find a reliable source. That it's not just random journalists, or someone who is just trying to get clicks, but that it comes from someone who actually knows something about it. So that you know you are getting the right information [informant 2]

Some adolescents also assumed that it would be easier to judge whether the information on a mental health app is correct, as compared with determining the accuracy of the information on the internet. One adolescent stated that apps developed by established, credible sources would be easier to trust than those created by unknown sources.

I think it would be very easy to just take in everything that's written there [in a mental health app]. Even the bad stuff. That is why I think that such an app should somehow be under Ung.no [a public information channel for young people in Norway] or something, some reliable sources [informant 5]

Theme 3: Autonomy—Mental Health Apps Can Help Adolescents Help Themselves

Several adolescents stated that self-determination was important to them, so they would appreciate an app, as it would allow them to manage their own mental health and difficulties without interference from adults.

In a way, you want to try to help yourself before it goes so far that you are dependent on others to help you [informant 1]

An app should contain information about what we can do ourselves to get better and where we can ask for help. Sometimes you may just need to get guidelines on how to do it yourself [informant 8]

Further, several adolescents pointed out that an app can be used to ask for help if one does not want to contact in-person services.

I think it's good that there are apps like that, that you don't have to go and talk to someone, but that you can have an app on your phone that you have all the time [informant 9]

Most adolescents stated that the apps should include a way to communicate with someone.

If it [an app] can be made so that you can communicate with someone, then perhaps the threshold [of asking for help] will be even lower [informant 1]

Mm, it would have been good if the app contained something like that, a way to talk to a person online [informant 2]

Adolescents were also interested in interacting within the app in ways that did not involve another person. Some suggested that the app could contain some predefined questions that could be used to give the user a more personalized experience, or that the app could refer them to the right professional.

And you are probably afraid that it will somehow..., you want to deal with it, but at the same time you are afraid that, for example, a nurse or someone will tell someone else and that there will be a lot of actions at school, and then everyone will know about it [informant 1]

Finally, a frequently mentioned topic in the interviews was the importance of being anonymous in the apps. Adolescents cited the value they placed on anonymity both if they needed information and if they needed actual help with their mental health, as this could make it easier for the adolescents to seek help.

It is important that you can remain anonymous, because not everyone likes to talk about such things if you are recognizable [informant 6]

Discussion

Principal Findings

In this study, we examined adolescents’ attitudes and general thoughts toward mental health apps using a concurrent, mixed methods approach. This research is an important contribution to understanding what young people think about mental health-promoting mobile apps, as well as their thoughts on what they should include and how they should appear.

Overall, the adolescents expressed positive attitudes toward mental health apps, even though few had experience with using them. A large proportion perceived such apps as useful tools
that can help them cope with normal stresses of life, which is important in order to promote well-being and prevent mental health problems [43,44]. In the quantitative section of the study, availability was the most chosen benefit of using mental health apps. This is not surprising as adolescents in Norway spend a lot of time on their phones and on social media [21]. Privacy, as well as the possibility of remaining anonymous, was the subsequent most chosen advantage. These results are in accordance with those reported in previous literature [16,25,37]. Further, in the interviews, adolescents expressed that mental health apps can be of help at any time of the day, also when in-person services are not available. However, the adolescents expressed, that for mental health apps to be accessible, they need to also be easily understandable and have no costs attached.

It is well-known that adolescents tend to be reluctant to seek help, despite the importance of obtaining help and support for improved well-being [45-47]. In this study, adolescents expressed that mental health apps can lower adolescents’ threshold for asking for help, by always being available and by offering anonymity in the help-seeking process. Several interviewees also highlighted the empowering potential of mental health apps. The adolescents valued how an app could provide them with the ability to help themselves without interference from others. Meeting young people’s need for autonomy is important to ensure that they ask for help when they need it [28]. The findings from this study concur with previous findings, which suggested that adolescents value the autonomy that mental health apps provide [48].

Further, the adolescents emphasized that mental health apps should provide an anonymous way for them to talk about their problems, with either a web-based assistant or a real person. In addition, some adolescents reported fear of someone else seeing a mental health app installed on their phone as a deterrent to using such apps. Anonymity is often mentioned as an important reason why adolescents use web-based services when searching for help or advice regarding mental health [16,49], our findings support that adolescents view anonymity as an advantage of using mental health apps, which agrees with previous findings [16,25].

Another important aspect adolescents highlighted was the difficulty they might have in judging whether the information contained in a mental health app was accurate. Most adolescents reported that they used the internet (ie, Google and social media) to search for mental health-related information. The adolescents stated that mental health apps should be developed by credible organizations or individuals that adolescents already trust. Adolescents also stated that, the information presented in the app should be clear and concise in order to be engaging for them. Previous research have also shown the importance of content and appearance to ensure engaging mental health apps [25,50].

Although adolescents generally have a positive attitude toward the increased development and use of mental health apps, few of the adolescents in our study sample were familiar with such apps. These results are in line with previous research which indicates that adolescents are not highly engaged in mental health apps [13,29]. Indeed, some adolescents believed that they had not heard of such apps due to poor marketing strategies. They stated that, if the apps were meant to target adolescents, then they should be marketed to young people directly. However, there are currently strict rules regarding advertising to children and adolescents in Norway [51], which may pose challenges in devising effective marketing strategies to reach adolescents.

Strengths and Limitations
By including both quantitative and qualitative data, this study provides valuable knowledge and insight into adolescents’ perspectives and opinions on mental health apps. However, there are several limitations that must be taken into consideration. In the quantitative study, the sample size was relatively small and not representative. One should therefore be careful about drawing general conclusions from the findings. However, the results can be an important contribution to the field of research on what adolescents think about mental health apps. Moreover, the interviews were of short duration, which may have influenced the depth of the answers. However, the adolescents were encouraged to speak freely, and they were not interrupted until they had concluded. Follow-up questions were asked when they brought up topics that the interviewer found interesting or considered meaningful for the adolescent to elaborate on. Furthermore, because the qualitative study was intended to complement the quantitative study, we perceive the length and depth of the interviews as sufficient.

One interview was conducted with 2 adolescents together, based on the participants’ own desires. Since they stated it would increase their sense of security during the interviews, the request was accepted. However, we cannot exclude the possibility that the presence of another adolescent influenced the answers the adolescents provided.

Conclusions
Mental health apps can be a useful resource for adolescents, and several apps geared toward adolescents have been developed. Our findings show that there is a lack of knowledge about the existence of mental health apps among adolescents. A large proportion of adolescents expressed that they would use these apps if they knew they were available. This study shows that apps directed toward adolescents should be easily accessible, free of charge, and provide easily understandable information. Adolescents also emphasized the significance that apps should be developed by credible sources or institutions, offer a choice between human and web-based support, and enable users to remain anonymous while seeking help. Future development of mental health apps should take these considerations into account.
Acknowledgments

The authors would like to thank the adolescents who participated in this study, both those who answered the web-based questionnaire and those who were interviewed. Further, the authors would like to thank Eirik Fjukstad and Annelene Moberg for helping with the recruitment and promotion of the study to adolescents in youth clubs and adolescent health centers in Tromsø. The publication charges for this paper have been funded by a grant from the publication fund of UiT The Arctic University of Norway.

Data Availability

The data sets generated or analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions

All authors provided substantial contributions to this study. HH and MR analyzed the qualitative data and HK and SK analyzed the quantitative data. HH wrote the first draft of the manuscript. HK, MR, SK read, edited, and approved the final manuscript.

Conflicts of Interest

None declared.

References

The Impact of Social Media Use on Mental Health and Family Functioning Within Web-Based Communities in Saudi Arabia: Ethnographic Correlational Study

Bdour Alwuqaysi¹, MA; Alfie Abdul-Rahman¹, PhD; Rita Borgo¹, PhD
King’s College London, London, United Kingdom

Corresponding Author:
Bdour Alwuqaysi, MA
King’s College London
155 Wandsworth Road
Apt 3004, Sky Gardns
London, SW8 2FZ
United Kingdom
Phone: 44 07470334344
Email: bdour.alwuqaysi@hotmail.com

Abstract

Background: In recent years, increasing numbers of parents, activists, and decision-makers have raised concerns about the potential adverse effects of social media use on both mental health and family functioning. Although some studies have indicated associations between social media use and negative mental health outcomes, others have found no evidence of mental health harm.

Objective: This correlation study investigated the interplay between social media use, mental health, and family functioning. Analyzing data from 314 users, this study explores diverse mental health outcomes. The study places particular emphasis on the Saudi Arabian sample, providing valuable insights into the cultural context and shedding light on the specific dynamics of social media’s impact on mental well-being and family dynamics in this demographic context.

Methods: We collected data through a subsection of an anonymous web-based survey titled “The Effect of COVID-19 on Social Media Usage, Mental Health, and Family Functioning.” The survey was distributed through diverse web-based platforms in Saudi Arabia, emphasizing the Saudi sample. The participants indicated their social media accounts and estimated their daily use. Mental health was assessed using the General Health Questionnaire and family functioning was evaluated using the Family Assessment Device Questionnaire. In addition, 6 mental health conditions (anxiety, self-esteem, depression, body dysmorphia, social media addiction, and eating disorders) were self-reported by participants.

Results: The study demonstrates a pattern of frequent social media use, with a significant portion dedicating 3-5 hours daily for web-based activities, and most of the sample accessed platforms multiple times a day. Despite concerns about social media addiction and perceived unhealthiness, participants cited staying connected with friends and family as their primary motivation for social media use. WhatsApp was perceived as the most positively impactful, whereas TikTok was considered the most negative for our Saudi sample. YouTube, Instagram, and Snapchat users reported poorer mental health compared with nonusers of these platforms. Mental health effects encompassed anxiety and addiction, with age and gender emerging as significant factors. Associations between social media use and family functioning were evident, with higher social media quartiles correlating with a greater likelihood of mental health and unhealthy family functioning. Logistic regression identified age and gender as factors linked to affected mental health, particularly noting that female participants aged 25-34 years were found to be more susceptible to affected mental health. In addition, multivariable analysis identified age and social media use quartiles as factors associated with poor family functioning.

Conclusions: This study examined how social media affects mental health and family functioning in Saudi Arabia. These findings underscore the need for culturally tailored interventions to address these challenges, considering diverse demographic needs. Recognizing these nuances can guide the development of interventions to promote digital well-being, acknowledging the importance of familial connections in Saudi society.

(JMIR Form Res 2024;8:e44923) doi:10.2196/44923
KEYWORDS
social media use; mental health; family functioning

Introduction

Individual’s lives worldwide are now mostly impacted by social media [1]. By enabling individuals to retain offline connections and provide a more welcoming setting for emotional self-disclosure and help-seeking, social media might have a positive influence on their lives [2]. However, there have been rising worries about the possible detrimental impact of social media on individual mental health among certain scholars, governmental organizations, and the public [3]. Prior research has related social media use to multiple mental health conditions including body dissatisfaction, eating disorders, depressive symptoms, and social anxiety [4]. Facebook users, for instance, report higher body dissatisfaction than nonusers, according to a study involving male and female adults [5]. Another example of female adults revealed that although there was no difference between Instagram users and nonusers in terms of body dissatisfaction, Instagram users reported greater body monitoring than nonusers [6,7]. However, each of these works studied these conditions separately, and the combination of these conditions and how they are impacted by social media use has been overlooked. Given this, it becomes evident that there is a pressing need to conduct more in-depth investigations into the specific factors related to social media use that contribute to the development or exacerbation of these mental health concerns.

Family functioning pertains to how well family members fulfill their responsibilities and navigate life challenges [8]. It involves their interactions, growth, and responses to external influences [9]. Research highlights the need to investigate the potential risks posed by mobile device use to family functioning [10,11]. This suggests that families with flexibility and limited mobile device use may experience better cohesion and functioning, emphasizing the necessity for a more in-depth examination of the relationship between family functioning and social media use. Excessive social media use may lead to decreased emotional well-being, which negatively affects relationships [12]. For example, recent Indonesian research connects social media addiction to mild depression in university students, emphasizing the importance of bracing mental health by promoting family relationships and religiosity while addressing social media overuse [13]. Another study of mental health outpatients suggested a potential association between family functioning and psychological distress [14]. Although research has explored the link between social media and factors such as social connectedness, friendship quality, emotional well-being, and interpersonal relationships [15,16], there is a research gap regarding the impact of social media use on family functioning. Thus, it is imperative to conduct comprehensive research on family functioning and mental health, while analyzing their correlation with social media use.

In this paper, we looked at the relationships between social media use, mental health, and family functioning. Specifically, we examined various mental health conditions such as anxiety, self-esteem, depression, body dysmorphia, addiction to social media, and eating disorders. We selected Saudi Arabia as our sample for this study because of the increasing rates of internet penetration and social media use (90%) [17]. This high prevalence provides a valuable opportunity to examine the potential impact of social media on mental health and family functioning in this specific cultural context. Family is a fundamental unit in Saudi Arabian culture, and understanding the dynamics altered by social media is essential to comprehending broader societal changes. Investigating this aspect will not only enrich the existing literature, but also provide valuable insights into the evolving role of technology in shaping familial relationships and dynamics within the Saudi Arabian context. Thus, Saudi Arabia offers a unique setting characterized by a blend of traditional values, rapid modernization, and an evolving digital landscape. These factors create an intriguing environment in which to investigate the effects of social media on mental health and family dynamics. Two studies on social media use in Saudi Arabia’s web-based community have been conducted, one highlighting the mental health problems associated with social media use [3] and the influence of social media on food consumption among individuals [18]. To our knowledge, there is no research on how social media use may affect family functioning in Saudi Arabia. Thus, our study aimed to provide insights tailored to this cultural context. We aimed to investigate the relationship between social media use and mental health outcomes, with a particular focus on age and gender differences. Gender plays a significant role in this context, and research indicates that women are more likely than men to experience these mental health issues and they also tend to use social media platforms more frequently than their male counterparts [19,20].

Methods

Procedures

The data collected in this study were gathered through a subsection of an anonymous web-based survey titled “The Effect of COVID-19 on Social Media Usage, Mental Health, and Family Functioning.” The survey was designed based on a review of previous studies and surveys on pandemic effects [21-24]. Recruitment for this survey used diverse web-based social media platforms such as Facebook and Twitter. The survey was distributed to participants in Saudi Arabia with a clear emphasis on targeting a Saudi sample. We obtained informed consent from all participants before they completed the survey. The survey was designed to be anonymous and voluntary. Participants were given the option to answer the survey in English or Arabic. The survey targeted social media users who were at least 18 years old, and included sections on demographics, COVID-19, social media use, and well-being. Refer to Multimedia Appendix 1 for more information on the survey.

Participants were asked to choose which of the following prominent social networking sites they had an account on: Instagram, Facebook, Twitter, Snapchat, Google+, Vine, Tumblr, Pinterest, YouTube, and others. Participants were also
provided with the option to specify “Other” platforms or “I do not have any social media accounts.” Participants were asked to estimate how much time they would spend on each platform during a typical day of browsing. No time (0), <5 minutes (1), 5-15 minutes (2), 15-30 minutes (3), 30 minutes - 1 hour (4), 1-2 hours (5), 4-6 hours (7), 6-8 hours (8), 8-10 hours (9), or >10 hours (10). Participants were asked to respond to a variety of questions regarding the activities they engaged in on social media in general (not on specific platforms). Only participants who indicated that they had at least one social media account were presented with questions on social media activities. The web-based survey used in this study, designed based on a review of previous studies and surveys on the pandemic, can serve as a model for future research on the effects of social media use on mental health and family functioning.

Measures

Mental Health Status

We used the General Health Questionnaire-12 (GHQ-12), a well-established 12-item self-report assessment tool, to assess the mental health status of the survey participants. The Likert Scale was used to score all 12 questions in the GHQ-12, generating 3 distinct statistical indicators: typical, suggestive evidence of distress, and severe problems with psychological distress. This tool is widely used to assess psychological distress and mental well-being. The validity and reliability of this scale have been demonstrated [25-27].

Family Functioning Status

We used the Family Assessment Device Questionnaire (FAD) to estimate participants’ family functioning status. FAD is a self-reported scale specifically designed to provide insights into the overall dynamics and functionality within a family. It assesses family relationships and identifies areas of potential dysfunction by adhering to the McMaster Model of Family Functioning. Within the scope of this study, participants were presented with the general functioning scale of the FAD, comprising 12 questions and yielding 4 distinct statistical outputs: healthy, almost healthy, almost unhealthy, and unhealthy. FAD was chosen for this study because it best suited the study objectives and demonstrated its validity and reliability [28-30].

Mental Health Conditions

We present 6 mental health conditions—anxiety, self-esteem, depression, body dysmorphia, addiction to social media, and eating disorders—collected through direct survey questions where participants self-reported whether social media affected those conditions. The inclusion of these conditions in our study is justified based on their prevalence, established links to social media use, public health importance, diverse impacts on mental health, and practical implications for interventions and policies [31-34]. Notably, these issues are dominant, with a high incidence of social media addiction among individuals experiencing these mental health challenges [35].

Pilot Testing

To assess the initial survey, 4 participants participated in a pilot test. User feedback was collected to identify potential problems. The study had improved readability and validity because of this iterative process.

Statistical Analysis

Descriptive statistics were reported as numbers and percentages for categorical variables. The mean and SD are reported for the numerical values. A score was calculated based on the frequency of social media access and the average time spent on social media. The participants were classified based on their scores into 4 quartiles (Q1-Q4). Participants in the first quartile had the lowest social media use, whereas those in the fourth quartile had the highest social media use. To calculate the mental health score for the GHQ-12, we summed the assigned values (0-3) for each response, with higher scores indicating a greater likelihood of mental health issues. For family functioning using the FAD, we assigned values (1-4) to each response, with higher scores indicating a greater likelihood of unhealthy family functioning. To assess self-reported mental health conditions, including anxiety, self-esteem, and depression, we analyzed respondent’s answers to identify correlations with their social media scores. A chi-square test was performed to determine the association between social media use, mental health, and family functioning scores. Logistic regression was performed to identify the factors associated with mental health and family functioning. SPSS 28 (IBM Corp) was used for the analysis, and statistical significance set at $P<.05$ is considered statistically significant.

Recruitment

A total of 314 social media users who participated in this study were surveyed between the periods of 2021 to 2023 across 2 rounds to validate the results. Furthermore, 74.5% (n=234) were female, and 24.2% (n=76) were male. Most participants (n=293, 93.3%) were from Saudi Arabia, whereas the rest (n=21, 6.7%) represented other nationalities because of the nature of web-based sampling. The Saudi sample serves as an interesting case study for investigating the impact of social media on mental health and family functioning. First, Saudi Arabia is a highly conservative society that is undergoing rapid modernization, with social media playing a significant role in this transformation. According to recent statistics, 29.10 million social media users in Saudi Arabia access it through their mobile devices [17]. Second, there is a lack of research on the effects of social media on mental health and family functioning in Saudi Arabia. Finally, given that Saudi Arabia is a highly collectivist society, family dynamics play a significant role in shaping individual behaviors and attitudes, making it an ideal context to explore the interplay between social media use and family functioning. The largest group of participants was aged 35-44 years old (n=80, 25.5%), followed by 55-64 years (n=75, 23.9%). Regarding psychological and medical conditions, most respondents did not report having any psychological (n=271, 86.3%) or medical condition (n=216, 68.8%). Regarding the respondents’ educational background, the highest reported level of education was a bachelor’s degree (n=138, 43.9%), followed closely by a doctorate (n=81, 25.8%). A small proportion of respondents reported having a master’s degree (n=60, 19.1%), whereas a minority reported having a high school degree (n=26, 8.3%). Only a small percentage of the respondents reported having no formal education (n=9, 2.9%). Regarding participants’
race, most respondents identified as Arab (n=284, 90.4%), whereas a minority identified as non-Arab (n=30, 9.6%). Table S1 in Multimedia Appendix 2 provide more details on the sample demographics.

Ethical Considerations
The Effect of COVID-19 on Social Media Usage, Mental Health, and Family Functioning survey was ethically approved by King’s College London ethics committee LRS-19/20-19717.

Results
The purpose of this report was to summarize the results of a survey on the perceived impact of social media platforms on mental health.

Social Media Use
The data show that most respondents accessed social media frequently, with (n=115, 36.6%) reporting that they go on social media every couple of hours. When asked about the amount of time they spent on social media per day, the most common response was 3-5 hours (n=86, 27.4%), followed by 1-2 hours (n=58, 18.5%). When asked about the duration of their social media sessions, most respondents reported spending approximately 15 minutes or less logged in (n=129, 41.1%). A significant majority of respondents (n=238, 75.5%) reported that they did not feel it was healthy to spend much time on the internet. Most respondents (n=267, 85.03%) reported accessing social media in the evening, whereas 25.48% (n=80) reported accessing it at midnight. When asked about their addiction to social media, 41.1% (n=129) of the respondents reported feeling addicted. Table 1 provides more details on the social media use of the participants. The most common reason for using social media was to keep in touch with friends and family (n=243, 77.39%). Other reasons included inspiration (n=160, 50.96%), browsing or wasting time (n=135, 42.99%), and entertainment (n=130, 41.4%). Around 29.94% (n=94) of the participants reported using social media for work or business purposes, and only 5.1% (n=16) reported using social media for dating or romantic purposes. Table 2 elaborates the reasons for using social media.
Table 1. Social media use among participants.

<table>
<thead>
<tr>
<th>How often currently do you go on social media?</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost never or rarely</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Just about every month</td>
<td>3 (1.0)</td>
</tr>
<tr>
<td>Every couple of days</td>
<td>10 (3.2)</td>
</tr>
<tr>
<td>Just about every day</td>
<td>83 (26.4)</td>
</tr>
<tr>
<td>Every couple of hours</td>
<td>115 (36.6)</td>
</tr>
<tr>
<td>Just about every hour</td>
<td>55 (17.5)</td>
</tr>
<tr>
<td>Every couple of minutes</td>
<td>47 (15.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On average how much time do you think you spend on social media per day? (h)</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>25 (8.0)</td>
</tr>
<tr>
<td>1-2</td>
<td>58 (18.5)</td>
</tr>
<tr>
<td>2-3</td>
<td>63 (20.1)</td>
</tr>
<tr>
<td>3-5</td>
<td>86 (27.4)</td>
</tr>
<tr>
<td>5-7</td>
<td>47 (15.0)</td>
</tr>
<tr>
<td>>7</td>
<td>35 (11.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Every time you log in to social media, on average how long do you spend logged in?</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>About 15 min or less</td>
<td>129 (41.1)</td>
</tr>
<tr>
<td>About 30 min</td>
<td>83 (26.4)</td>
</tr>
<tr>
<td>About an hour</td>
<td>65 (20.7)</td>
</tr>
<tr>
<td>More than an hour</td>
<td>37 (11.8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do you feel it is healthy to spend that much time online?</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>237 (75.5)</td>
</tr>
<tr>
<td>Yes</td>
<td>77 (24.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When do you currently access social media? (multiple answers allowed)</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning (from 5 AM to 11:59 AM)</td>
<td>149 (47.45)</td>
</tr>
<tr>
<td>Afternoon (from 12 PM to 6 PM)</td>
<td>125 (39.81)</td>
</tr>
<tr>
<td>Evening (from 6 PM to 11:59 PM)</td>
<td>267 (85.03)</td>
</tr>
<tr>
<td>Midnight (exactly 12 AM to 4:59 AM)</td>
<td>80 (25.48)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do you consider yourself addicted to social media?</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>185 (58.9)</td>
</tr>
<tr>
<td>Yes</td>
<td>129 (41.1)</td>
</tr>
</tbody>
</table>
Table 2. Reasons for using social media.

<table>
<thead>
<tr>
<th>What do you use social media for? (multiple answers allowed)</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keeping in touch with friends and family</td>
<td>243 (77.39)</td>
</tr>
<tr>
<td>Event planning</td>
<td>49 (15.61)</td>
</tr>
<tr>
<td>Buying and selling</td>
<td>50 (15.92)</td>
</tr>
<tr>
<td>Inspiration</td>
<td>160 (50.96)</td>
</tr>
<tr>
<td>News about COVID-19 (coronavirus) pandemic</td>
<td>125 (39.81)</td>
</tr>
<tr>
<td>To make new friends</td>
<td>8 (2.55)</td>
</tr>
<tr>
<td>To find employment</td>
<td>13 (4.14)</td>
</tr>
<tr>
<td>To browse or time waste</td>
<td>135 (42.99)</td>
</tr>
<tr>
<td>To raise awareness</td>
<td>62 (19.75)</td>
</tr>
<tr>
<td>To provide support to others</td>
<td>58 (18.47)</td>
</tr>
<tr>
<td>To share your posts</td>
<td>66 (21.02)</td>
</tr>
<tr>
<td>To work</td>
<td>76 (24.20)</td>
</tr>
<tr>
<td>None of the above</td>
<td>3 (0.96)</td>
</tr>
</tbody>
</table>

Participants Attitudes

When asked if social media distracted them when they needed to be productive, 33.8% (n=106) of the respondents reported that it did. In contrast, 66.2% (n=208) of the respondents reported that social media does not distract them when they need to be productive. The data also revealed that a significant majority of respondents (n=238, 75.5%) did not care about how many people like or view their posts or pictures, whereas 24.5% (n=77) of respondents reported that they do care. When asked about cyberbullying on social media, 12.1% (n=38) of the respondents reported that they had been cyberbullied in some way, whereas 87.9% (n=276) reported that they had not. In terms of how social media affects self-esteem, only 30.9% (n=97) of the respondents reported that they had experienced a decline in self-esteem. Conversely, 69.1% (n=209) reported that social media did not affect their self-esteem.

Social Media Impact via Self-Reporting

Participants were asked to rate each platform on a scale of 0 to 5, with 0 indicating that they did not use the platform and 5 indicating that it was the most positive social media platform in their opinion. After those who reported not using the platform, an average score was calculated based on each participant’s opinion, with a lower score indicating a negative impact and a higher score indicating a positive impact.

The platform perceived as having the most positive effect was WhatsApp (4.08), followed by Telegram (3.86), and Pinterest (3.85). The lowest score, indicating the most negative outcome, was observed for TikTok (1.98), followed by Snapchat (3.02). Table S2 in Multimedia Appendix 2 presents a comprehensive analysis of the perceived impact of each social media platform, as reported by the participants. The effects of individual platforms are shown in Figure 1. In addition, Figure 2 provides an overview of the mean scores indicating the perceived impact of social media platforms. Regarding self-reported mental health conditions, the most common effects were anxiety (n=217, 69.09%) and social media addiction (n=206, 65.45%). Other reported effects included depression (n=108, 34.55%), self-esteem (n=97, 30.91%), body dysmorphia (n=69, 21.82%), and eating disorders (n=46, 14.55%) as illustrated in Table 3. However, 25.45% (n=80) of the respondents who reported an impact stated that social media did not affect them. Finally, when asked about the emotions they experienced when using social networking sites, the most common responses were inspiration (n=159, 50.64%), motivation (n=83, 26.43%), and happiness (n=78, 24.84%). Other reported emotions included the fear of missing out (n=31, 9.87%), boosted self-esteem (n=64, 20.38%), jealousy (n=11, 3.5%), and rejection (n=9, 2.87%). Only 2.55% (n=8) of the respondents reported experiencing lower self-esteem when using networking sites. Table S3 in Multimedia Appendix 2 elaborates on social media use habits and their impact on participants.

Regarding the impact of social media on relationships with family members, 76.8% (n=241) of respondents reported that social media did not affect their relationships, whereas 23.2% (n=73) of respondents reported that it did. Among those who reported an impact, 15.3% (n=48) reported a positive effect, whereas 15.9% (n=50) reported a negative effect. When asked if they had a web-based persona, 91.1% (n=286) of the respondents reported that they did not, whereas only 8.9% (n=28) reported that they did.
Figure 1. The perceived effect of each social media platform as indicated by the participants.

Figure 2. Mean scores for the perceived effect of social media platforms.
Table 3. Social media impact.

<table>
<thead>
<tr>
<th>What impact has social media had on your mental health?</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety</td>
<td>38 (69.09)</td>
</tr>
<tr>
<td>Self-Esteem</td>
<td>17 (30.91)</td>
</tr>
<tr>
<td>Depression</td>
<td>19 (34.55)</td>
</tr>
<tr>
<td>Body dysmorphia</td>
<td>12 (21.82)</td>
</tr>
<tr>
<td>Addiction to social media</td>
<td>36 (65.45)</td>
</tr>
<tr>
<td>Eating disorder</td>
<td>8 (14.55)</td>
</tr>
<tr>
<td>It has not affected me</td>
<td>14 (25.45)</td>
</tr>
<tr>
<td>None of the above</td>
<td>22 (40.00)</td>
</tr>
</tbody>
</table>

Social Media Impact via Statistical Tools

Regarding mental health, most respondents (n=274, 87.3%) had a score that indicated mental health within the normal range, whereas (n=40, 12.7%) had a score that indicated affected mental health. For family functioning, most respondents (n=269, 85.7%) had a score that indicated healthy or almost healthy family functioning, whereas (n=45, 14.3%) had a score that indicated unhealthy or almost unhealthy family functioning. Table 4 shows the mental health and family functioning of the participants.

Statistical analysis using the chi-square test showed a statistically significant association between social media use and mental health ($P<.001$). Participants in the higher social media quartiles had a higher percentage of affected mental health (26.7% for the fourth quartile and 14.6% for the third quartile) as compared with participants in lower quartiles of social media use (9.1% in the first quartile and 4.8% in the second quartile). Table 5 shows the association between social media use and mental health. Statistical analysis using the chi-square test showed a statistically significant association between social media use and family functioning ($P<.001$). Participants in the higher social media quartiles had a higher percentage of unhealthy or almost unhealthy family functioning (30% for the fourth quartile and 14.6% for the third quartile) as compared with participants in the lower quartiles of social media use (9.1% for the first quartile and 8.3% for the second quartile). Table 6 illustrates the association between social media use and family functioning. Logistic regression was performed to identify the factors associated with mental health. Age and sex showed statistically significant results in the multivariate analysis. Female participants were more likely to have affected mental health as compared with male participants (odds ratio [OR] 4.69, 95% CI 1.42-15.49; $P=0.01$).

For age participants who were between 25 and 34 years were more likely to have affected mental health as compared with participants who were 18 to 24 years (OR 6.10, 95% CI 1.42-26.15; $P=0.02$). Table 7 illustrates the factors associated with affected mental health.

Logistic regression was applied to identify the factors associated with unhealthy or unhealthy family functioning. The age and social media use quartiles showed statistically significant differences. For gender, female participants were more likely to have unhealthy or almost unhealthy family functioning as compared with male participants (OR 3.32, 95% CI 1.17-9.46; $P=0.02$). Regarding social media use quartiles, participants in the fourth quartile were more likely to have unhealthy or almost unhealthy family functioning as compared with participants in the first quartile (OR 4.22, 95% CI 1.45-12.31; $P=0.008$). Table 8 illustrates the factors associated with unhealthy or almost unhealthy family functioning.

Table 4. Mental health and family function of participants.

<table>
<thead>
<tr>
<th>Mental health</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected</td>
<td>40 (12.7)</td>
</tr>
<tr>
<td>Within normal range</td>
<td>274 (87.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family functioning</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy or almost healthy</td>
<td>269 (85.7)</td>
</tr>
<tr>
<td>Unhealthy or almost unhealthy</td>
<td>45 (14.3)</td>
</tr>
</tbody>
</table>
Table 5. Association between social media use and mental health.

<table>
<thead>
<tr>
<th>Social media use quartiles</th>
<th>Mental health</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within normal range, n (%)</td>
<td>Affected, n (%)</td>
<td>P value</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>80 (90.9)</td>
<td>8 (9.1)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>80 (95.2)</td>
<td>4 (4.8)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>70 (85.4)</td>
<td>12 (14.6)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>44 (73.3)</td>
<td>16 (26.7)</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Association between social media use and family functioning.

<table>
<thead>
<tr>
<th>Social media use quartiles</th>
<th>Family functioning</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Healthy or almost healthy, n (%)</td>
<td>Unhealthy or almost unhealthy, n (%)</td>
<td>P value</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>80 (90.9)</td>
<td>8 (9.1)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>77 (91.7)</td>
<td>7 (8.3)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>70 (85.4)</td>
<td>12 (14.6)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>42 (70)</td>
<td>18 (30.0)</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Factors associated with affected mental health.

<table>
<thead>
<tr>
<th></th>
<th>Univariate</th>
<th>Multivariable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>1 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>25-34</td>
<td>4.77 (1.29-17.68)</td>
<td>.02</td>
</tr>
<tr>
<td>35-44</td>
<td>1.65 (0.43-6.32)</td>
<td>.47</td>
</tr>
<tr>
<td>45-54</td>
<td>0.97 (0.22-4.36)</td>
<td>.97</td>
</tr>
<tr>
<td>55-64</td>
<td>0.43 (0.08-2.25)</td>
<td>.32</td>
</tr>
<tr>
<td>65-74</td>
<td>0.00 (0.00)</td>
<td><.99</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Female</td>
<td>3.27 (1.13-9.52)</td>
<td>.03</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>0.00 (0.00)</td>
<td><.99</td>
</tr>
<tr>
<td>Residency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Saudi Arabia</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Outside Saudi Arabia</td>
<td>0.71 (0.16-3.15)</td>
<td>.65</td>
</tr>
<tr>
<td>Level of education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>0.67 (0.23-1.99)</td>
<td>.47</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>0.55 (0.16-1.94)</td>
<td>.36</td>
</tr>
<tr>
<td>Doctorate degree</td>
<td>0.34 (0.09-1.21)</td>
<td>.09</td>
</tr>
<tr>
<td>None of the above</td>
<td>2.10 (0.39-11.43)</td>
<td>.39</td>
</tr>
<tr>
<td>Social media use quartiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Q2</td>
<td>0.28 (0.11-0.69)</td>
<td>.006</td>
</tr>
<tr>
<td>Q3</td>
<td>0.14 (0.04-0.44)</td>
<td>.001</td>
</tr>
<tr>
<td>Q4</td>
<td>0.47 (0.20-1.09)</td>
<td>.08</td>
</tr>
<tr>
<td>Do you consider yourself addicted to social media?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Yes</td>
<td>0.59 (0.30-1.15)</td>
<td>.12</td>
</tr>
</tbody>
</table>

aN/A: not applicable.
Table 8. Factors associated with unhealthy or almost unhealthy family functioning.

<table>
<thead>
<tr>
<th></th>
<th>Univariate</th>
<th></th>
<th>Multivariable</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio (95% CI)</td>
<td>P value</td>
<td>Odds ratio (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>1 (N/A)</td>
<td>N/A</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>25-34</td>
<td>1.24 (0.42-3.69)</td>
<td>.69</td>
<td>1.43 (0.40-5.09)</td>
<td>.58</td>
</tr>
<tr>
<td>35-44</td>
<td>0.82 (0.28-2.41)</td>
<td>.72</td>
<td>0.83 (0.25-2.77)</td>
<td>.77</td>
</tr>
<tr>
<td>45-54</td>
<td>0.86 (0.28-2.66)</td>
<td>.79</td>
<td>1.08 (0.29-4.07)</td>
<td>.90</td>
</tr>
<tr>
<td>55-64</td>
<td>0.41 (0.12-1.37)</td>
<td>.15</td>
<td>0.39 (0.09-1.62)</td>
<td>.19</td>
</tr>
<tr>
<td>65-74</td>
<td>0.00 (0.00)</td>
<td><.99</td>
<td>0.00 (0.00)</td>
<td><.99</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Female</td>
<td>2.84 (1.08-7.49)</td>
<td>.04</td>
<td>3.32 (1.17-9.46)</td>
<td>.02</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>4.73 (0.41-54.20)</td>
<td>.21</td>
<td>3.89 (0.29-52.68)</td>
<td>.31</td>
</tr>
<tr>
<td>Residency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Saudi Arabia</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Outside Saudi Arabia</td>
<td>0.28 (0.04-2.16)</td>
<td>.22</td>
<td>0.46 (0.05-4.04)</td>
<td>.48</td>
</tr>
<tr>
<td>Level of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>0.75 (0.26-2.22)</td>
<td>.61</td>
<td>0.51 (0.15-1.68)</td>
<td>.27</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>0.30 (0.07-1.23)</td>
<td>.09</td>
<td>0.27 (0.06-1.26)</td>
<td>.10</td>
</tr>
<tr>
<td>Doctorate degree</td>
<td>0.73 (0.23-2.31)</td>
<td>.59</td>
<td>0.89 (0.24-3.27)</td>
<td>.86</td>
</tr>
<tr>
<td>None of the above</td>
<td>2.10 (0.39-11.43)</td>
<td>.39</td>
<td>3.36 (0.45-24.99)</td>
<td>.24</td>
</tr>
<tr>
<td>Social media use quartiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Q2</td>
<td>0.91 (0.31-2.63)</td>
<td>.86</td>
<td>0.94 (0.30-2.93)</td>
<td>.92</td>
</tr>
<tr>
<td>Q3</td>
<td>1.71 (0.66-4.43)</td>
<td>.27</td>
<td>1.89 (0.65-5.46)</td>
<td>.24</td>
</tr>
<tr>
<td>Q4</td>
<td>4.29 (1.72-10.68)</td>
<td>.002</td>
<td>4.22 (1.45-12.31)</td>
<td>.008</td>
</tr>
<tr>
<td>Do you consider yourself addicted to social media?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
<td>1.00 (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>Yes</td>
<td>1.45 (0.77-2.73)</td>
<td>.25</td>
<td>0.72 (0.33-1.58)</td>
<td>.42</td>
</tr>
</tbody>
</table>

aN/A: not applicable.

Discussion

Principal Findings

This study’s insights, grounded in a sample from Saudi Arabia, provide a culturally specific lens at the intersection of social media use and mental health. The prevalence of frequent social media access and reported durations align with the global trend [36], highlighting the pervasive nature of these platforms in the Saudi context. However, it is crucial to interpret these findings within the cultural framework of Saudi Arabia, where familial and social ties are of significant importance [37]. The primary motivation for social media use, namely staying connected with friends and family, resonates strongly with the cultural emphasis on community bonds in Saudi society. This underscores the integral role that social media plays in facilitating and maintaining relationships, which is a culturally significant function. The findings of our study suggest that social media is a popular and frequently used technology in Saudi Arabia, with a significant proportion of users expressing concern about their use habits. Unlike previous research, which analyzed social media platforms and their effect on mental health [38-41], our study applied an in-depth investigation across platforms to evaluate each platform’s impact on mental health. We first tested the effect of time spent on each platform by participants and found no particular association between time spent on various platforms and mental health. Despite small negative correlations between time spent on YouTube, Instagram, and Snapchat and body satisfaction and a small positive correlation between time spent on YouTube and depressive symptoms. Our findings
imply that future research might benefit from changing attention from time spent generally perusing platforms to participant’s attitudes when engaging with social media platforms. The platform-specific analysis, with WhatsApp emerging as the most positively perceived and TikTok as the most negatively perceived, was influenced by cultural preferences and content norms in the Saudi context. Understanding these variations is essential for tailoring interventions and guidelines to align with the cultural values and sensitivities of the Saudi population.

Participants’ attitudes toward social media platforms may have affected their mental health. For instance, these platforms may be a hotspot for frequent and unjustified comparisons of appearances, which might be harmful to mental health. Performing more appearance comparisons with others and thinking that others are more attractive than you are on social media were both independent predictors of lower body satisfaction, more eating disorders, and higher levels of eating disorders. Our results support previous research on teenagers and adults, emphasizing the significance of appearance comparisons as a potential mechanism through which social media use may be detrimental to mental health [42,43]. Our results further imply that, despite their emphasis on physical appearance, these comparisons may have a detrimental effect on issues that are not just related to beauty, such as body satisfaction and eating disorders, but also on general mental health (such as depressive symptoms and anxiety). In our results, compared with men, women frequently paid greater attention to and regarded their beauty as a measure of their self-worth. Therefore, women may be less satisfied with their appearance and more depressed than men are. This is because women may engage in more frequent appearance comparisons on social media [44,45]. The identified effects on mental health, particularly anxiety and addiction, have cultural implications. Given the societal importance placed on mental well-being in Saudi Arabia, these findings underscore the need for targeted mental health awareness and support initiatives within a cultural context.

Logistic regression findings indicate that age and gender are factors associated with affected mental health and unhealthy family functioning. This is in line with a study that emphasized the significance of demographic factors when studying mental health in a Saudi sample [46]. According to our logistic regression findings, age and gender significantly influenced mental health and family functioning in the Saudi context. Female participants had a higher likelihood of experiencing mental health issues (OR 4.69, 95% CI 1.42-15.49; P=.01), emphasizing the need for gender-specific support. In addition, participants aged 25-34 years were more likely to face mental health challenges than those aged 18-24 years (OR 6.10, 95% CI 1.42-26.15; P=.02), suggesting the importance of age-targeted interventions. In terms of family functioning, female participants were more likely to report unhealthy dynamics (OR 3.32, 95% CI 1.17-9.46; P=.02), whereas older individuals in higher social media use quartiles were more likely to experience such challenges (OR 4.22, 95% CI 1.45-12.31; P=.008). Recognizing these age and gender dynamics is vital for tailoring mental health and family support strategies in Saudi Arabia.

Limitation and Implications

It is important to consider the following limitations when interpreting the results of our study. More in-depth longitudinal studies are needed to explore the association between social media use and mental health over time. The sample’s specificity of the sample to Saudi Arabia’s demographic and cultural context may restrict the generalizability of the results to more diverse populations. To enhance the external validity, future research should aim for a broader and more representative sample that encompasses a range of cultural, socioeconomic, and demographic backgrounds. The study’s implications of this study are multifaceted and have significant relevance for the development of targeted interventions and public health initiatives in Saudi Arabia. First, the identified associations between social media use and mental health outcomes underscore the need for specific culturally sensitive interventions. Tailored mental health programs can address these challenges faced by different demographic groups, such as female participants and individuals aged 25 to 34 years, who were found to be more susceptible to affected mental health. These interventions could include educational campaigns, support groups, and digital resources tailored to the cultural nuances of the Saudi context. Moreover, the observed link between social media use and family functioning emphasizes the interconnected nature of web-based behavior and familial relationships. Culturally informed strategies should not only address individual well-being, but also promote healthier family dynamics in the digital age. Public health campaigns can play a pivotal role in raising awareness of the potential impact of social media on family relationships and fostering open discussions within families and communities about responsible digital practices. This study not only contributes to the global discourse on social media, mental health, and family functioning but also offers nuanced insights specific to Saudi Arabia. Recognizing and understanding these cultural nuances are paramount for developing effective policies, educational programs, and support systems that promote positive mental health outcomes tailored to the sociocultural landscape of Saudi Arabia.
Conclusions
This study investigated the perceived impact of social media platforms on mental health and family functioning in a Saudi Arabian sample. The findings reveal important insights with implications for public health initiatives and targeted interventions. This study highlighted the observable association between social media use, mental health, and family functioning. Notably, age and gender have emerged as significant factors influencing mental health and unhealthy family functioning. This underscores the necessity for culturally sensitive strategies to address these identified challenges and tailor interventions to the specific needs of different demographic groups. Recognizing the nuanced associations observed in this study can inform the development of interventions that promote digital well-being, considering the crucial role of familial ties in the societal framework of Saudi Arabia.

Data Availability
The data sets generated during and analyzed during this study are available from the author upon reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Effect of COVID-19 on social media use, mental health, and family functioning survey.
[DOCX File, 3525 KB - formative_v8i1e44923_app1.docx]

Multimedia Appendix 2
Statistical analysis tables.
[DOCX File, 33 KB - formative_v8i1e44923_app2.docx]

References

https://formative.jmir.org/2024/1/e44923
12. Christensen SP. Social media use and its impact on relationships and emotions. Brigham Young University. 2018 Jun 1. URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7927&context=etd [accessed 2023-12-19]

23. Covid-19 social study - UK. University College London. URL: https://redcap.idhs.ucl.ac.uk/surveys/?s=TTXKND8JMK [accessed 2023-12-19]

Abbreviations

FAD: Family Assessment Device Questionnaire
GHQ-12: General Health Questionnaire-12
OR: odds ratio

©Bdour Alwuqaysi, Alfie Abdul-Rahman, Rita Borgo. Originally published in JMIR Formative Research (https://formative.jmir.org), 16.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Enabling Personalization for Digital Cognitive Stimulation to Support Communication With People With Dementia: Pilot Intervention Study as a Prelude to AI Development

Nick Hird¹, PhD; Tohmi Osaki², PhD; Samik Ghosh³, PhD; Sucheendra K Palaniappan³, PhD; Kiyoshi Maeda², MD, PhD

¹Aikomi Ltd Co, Yokohama, Kanagawa, Japan
²Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
³Data Science and Engineering, SBX Corporation, Tokyo, Japan

Corresponding Author:
Nick Hird, PhD
Aikomi Ltd Co
Yokohama Blue Avenue 12th Floor
4-4-2 Minatomirai
Yokohama, Kanagawa, 220-0012
Japan
Phone: 81 70 4538 2854
Email: nick.hird@aikomi.co.jp

Abstract

Background: Maintaining good communication and engagement between people with dementia and their caregivers is a major challenge in dementia care. Cognitive stimulation is a psychosocial intervention that supports communication and engagement, and several digital applications for cognitive stimulation have been developed. Personalization is an important factor for obtaining sustainable benefits, but the time and effort required to personalize and optimize applications often makes them difficult for routine use by nonspecialist caregivers and families. Although artificial intelligence (AI) has great potential to support automation of the personalization process, its use is largely unexplored because of the lack of suitable data from which to develop and train machine learning models.

Objective: This pilot study aims to evaluate a digital application called Aikomi in Japanese care homes for its potential to (1) create and deliver personalized cognitive stimulation programs to promote communication and engagement between people with dementia and usual care staff and (2) capture meaningful personalized data suitable for the development of AI systems.

Methods: A modular technology platform was developed and used to create personalized programs for 15 people with dementia living in 4 residential care facilities in Japan with the cooperation of a family member or care staff. A single intervention with the program was conducted with the person with dementia together with a care staff member, and for some participants, smell stimulation was provided using selected smell sticks in conjunction with the digital program. All sessions were recorded using a video camera, and the combined personalized data obtained by the platform were analyzed.

Results: Most people with dementia (10/15, 67%) showed high levels of engagement (>40 on Engagement of a Person with Dementia Scale), and there were no incidences of negative reactions toward the programs. Care staff reported that some participants showed extended concentration and spontaneous communication while using Aikomi, which was not their usual behavior. Smell stimulation promoted engagement for some participants even when they were unable to identify the smell. No changes in well-being were observed following the intervention according to the Mental Function Impairment Scale. The level of response to each type of content in the stimulation program varied greatly according to the person with dementia, and personalized data captured by the Aikomi platform enabled understanding of correlations between stimulation content and responses for each participant.

Conclusions: This study suggests that the Aikomi digital application is acceptable for use by persons with dementia and care staff and may have the potential to promote communication and engagement. The platform captures personalized data, which can provide suitable input for machine learning. Further investigation of Aikomi will be conducted to develop AI systems and create personalized digital cognitive stimulation applications that can be easily used by nonspecialist caregivers.
KEYWORDS
dementia; digital technology; communication; engagement; cognitive stimulation; artificial intelligence; AI

Introduction

Background
The lack of effective drugs for dementia [1] means that, for the foreseeable future, high-quality care remains the best option to maintain quality of life (QOL) for persons with dementia. However, cognitive decline and behavior changes associated with dementia increase the complexity and difficulty of caregiving, often making it challenging for families and care staff [2]. In particular, responsive behaviors, known medically as behavioral and psychological symptoms of dementia (BPSD), are a range of neuropsychiatric disturbances that affect most persons with dementia and can greatly disrupt caregiving, causing both poor QOL for the person with dementia and physical and mental stress for their caregivers [3]. Communication and engagement between people with dementia and their caregivers lie at the heart of good-quality caregiving [4,5], which is usually provided in dyadic or triadic structures [6] formed by the person with dementia and professional care staff and family caregivers. Communication plays a key role in the successful functioning and quality of care relationships in these care structures as well as greatly influencing the well-being and QOL of everyone involved [7]. Unfortunately, the progression of dementia can significantly impair the communication process for both persons with dementia and their caregivers and lead to inadequate or 1-sided interactions. Overcoming communication issues requires skill, patience, and sensitivity on the part of caregivers, which further adds to the difficulties and stress of caregiving [8]. In addition, the lack of time and resources available for caregivers can deprioritize communication as an activity in itself and result in it being conducted while performing other care activities, which may not be sufficiently personal or meaningful to maintain the psychological well-being of the person with dementia [9].

Communication and engagement are also integral to person-centered care [10], which has been shown to support QOL and help manage responsive behaviors and is widely accepted as best practice in dementia care. Communication difficulties between persons with dementia and their caregivers can prevent adequate expression and understanding of needs, desires, and intentions for both [11], presenting a major barrier to implementing person-centered care [12] including in Japan [13]. Communication and engagement are also important for implementing most psychosocial interventions [14], which are widely used to support caregiving activities to maintain well-being and QOL and manage BPSD. Many psychosocial interventions are based on different types of cognitive stimulation activities, such as cognitive training [15], reality orientation [16], reminiscence therapy [17], multisensory stimulation [18], and music therapy [19]. Several psychosocial interventions have shown promising clinical evidence, in some cases comparable with drug therapies, especially when implemented at the individual level. One of the most well-validated psychosocial interventions is cognitive stimulation therapy (CST) [20], which is based on person-centered care and consists of systematic protocols that combine reminiscence therapy and reality orientation designed to promote enjoyable and meaningful activities for persons with dementia. Clinical studies in groups have demonstrated improved cognition and QOL for persons with dementia [21] and improved caregiver relationships when conducted at the individual level (individual CST; iCST) [22]. Culturally adapted CST protocols have been developed for >20 countries, including CST-J for Japan [23], although its adoption in Japanese care settings remains limited, especially at the individual level.

The lack of trained care staff and practical difficulties associated with the regular and consistent implementation of psychosocial interventions have generated considerable interest in the use of digital technologies [24,25], a trend that was accelerated by the COVID-19 pandemic [26]. Recently, several applications have become available to promote personalized communication and engagement between people with dementia and their caregivers [27], and personalization has been recognized as an important factor in obtaining sustainable benefits [28]. Digital storytelling is a promising approach based on the well-established life story book concept in reminiscence therapy, which uses a person’s own and other relevant content to create fully individualized interventions [29]. In digital storytelling, the physical materials commonly used to facilitate life story book interventions, such as photographs, books, and memorable objects, are replaced with digital media, such as images, videos, and audio. In addition to engagement, digital storytelling aims to help the person tell their own story and has also been used outside dementia in other areas of mental health. Feasibility studies with digital storytelling applications have shown improvements in memory, QOL, and depression [30] as well as additional benefits from the use of digital media. Similar results have been observed in both Western and Asian contexts [31], indicating the wide potential of this approach. However, one of the difficulties of digital storytelling is that preparation requires digital skills, time, and effort [32], which presents a significant adoption barrier for many caregivers and families. The need to create personalized content is avoided through a digital iCST application [33] that uses a pool of precreated generic stimulation activities, including quizzes and games designed to promote engagement, that can be used according to the interests and preferences of the users. A feasibility study showed promising results [34]: however, the lack of personalized content and content diversity was identified as an issue for maintaining engagement and long-term use. Given the importance of personalization, reducing the time and effort required for tailoring applications is a key concern to facilitate broader adoption by nonexpert care staff and families. Data generated by digital technologies can be used to develop artificial intelligence (AI) systems to support caregiving for dementia [35], which can aid the personalization process. However, the development of personalization applications is still at an early stage, and the lack of high-quality personalized data sets related to communication and engagement for people with dementia hinders progress in this area. To address this, a prototype...
application called Aikomi was developed to support communication with people with dementia while also capturing high-context personalized data, including behaviors, that would provide a suitable source for developing machine learning models to automate the personalization process. Such AI systems could reduce the personalization burden of digital cognitive stimulation applications and enable their use by nonspecialist caregivers to support communication and engagement with people with dementia in real-world settings.

Aims and Objectives
The aim of this pilot study was to evaluate the Aikomi application in Japanese residential care homes for its potential to (1) create and deliver personalized cognitive stimulation programs and promote communication and engagement between people with dementia and their usual care staff and (2) capture meaningful personalized data suitable for the development of AI systems.

Methods
Technology Development
The Aikomi application was designed by a multidisciplinary team with expertise in occupational therapy (TO); clinical dementia care and psychiatry (KM); digital health (NH); engineering, data science, and machine learning (SG and SKP); the design process also received input from frontline care staff in Japan. The design goal was to create an application that could be routinely used by care staff and family members to promote communication with people with dementia living in both residential care and community settings and would not require expert knowledge, training, or long preparation times. The technology goals were to (1) construct the technology platform using a modular architecture with stand-alone applications for each key function to allow for “plug-and-play” integration of software and hardware applications and (2) incorporate an open connectivity platform to allow for convenient data flow between application modules and facilitate the development of machine learning applications. The connectivity platform used was Garuda (Garuda Alliance) [36], which is a community-driven open connectivity platform previously developed by one of the authors (SG). The modular design provides flexibility to develop fit-for-purpose applications as well as “future-proof” the platform to incorporate other technologies and data sources to enhance optimization and scaling of the personalization process.

A 6-step workflow for using the application was designed through informal discussions with professional care staff and families (Figure 1). The first step is to conduct an interview with families or care staff to obtain information about the person with dementia, including their life history, hobbies, interests, preferences, and abilities, which are used to create a standardized personal profile. On the basis of this personal profile, relevant digital media content is selected or created, and if available, the person’s private content obtained from the family is digitized (as necessary) and uploaded to the system. Next, relevant content is compiled into audiovisual stimulation programs, which are displayed as the intervention. Finally, the behavioral responses of the person with dementia during the intervention are recorded and analyzed to adapt and optimize the content and stimulation programs for the next intervention. To minimize the burden of the personalization process on families and care staff, their participation is limited to the initial interview and the intervention itself. The remaining personalization processes were conducted manually by the research team for this pilot study and will be automated in the future.

The software for all the components (modules) was developed as an independent web application whose integration was facilitated by the Garuda connectivity platform. The content management system (CMS) is a repository for generic digital media content, such as images, videos, and audio files. It allows users to upload, create, edit, and store content that can be used by all persons. A separate private CMS module performs the same function as the CMS for the private content of the person, but its use is restricted to this person only. The simulator module is a function to create stimulation elements (called STIMs) from the content in the CMS and private CMS. A STIM consists of a short audiovisual sequence created from combinations of image, audio, and video data and is the building block used to create stimulation programs. The user has complete flexibility to create and select STIMs and compile them in any sequence order to generate the stimulation program. The personal CMS and simulator modules operate at the level of each individual and are not accessible to other users and caregivers. The simulator module also includes a function to create and edit a standardized personal profile of the person. The home and control modules are both used to conduct the intervention. The home module displays the stimulation programs viewed by the person with dementia, and the control module is used by the caregiver to select and control the display of the stimulation program on the home module during the intervention. The control module has functions to pause the program to talk or go back to a previous STIM or forward to a new STIM depending on the response of the person with dementia. A web meeting function was integrated into the home and control modules to allow for the remote use of the Aikomi application, but it was not used in this pilot study, in which only in-person sessions were conducted. The design of the functions and user interfaces for the home and control modules was conducted in collaboration with care staff primarily for use with tablets, but they can also be used on a PC. An example of the home and control modules during use is shown in Figure 2.

The response dashboard module enables the storage, review, and data analysis of video recordings of the person with dementia during the intervention. It was intended for video recordings to be made using the camera on the home tablet; however, this function was not fully operational at the time of the pilot study. Hence, a remote camera was used to record the interventions, and the data were subsequently uploaded to the response dashboard. Each module was a separate web application integrated with the Garuda connectivity platform. The tablets used in the pilot study were installed with SIM cards to avoid the need to use the local network at the residential care home, which can sometimes be unreliable.
Figure 1. Aikomi workflow and system modules.

Figure 2. Home and control module display.
Pilot Study

Study Design and Participants

The study was conducted using Aikomi as a single intervention lasting approximately 30 minutes with 15 people with dementia living in 4 urban residential care homes in Japan and their usual care staff. The participants were nominated by the care managers at each facility based on the following selection criteria: (1) a diagnosis of dementia, (2) displaying negative BPSD such as anxiety or apathy, (3) no hearing or visual difficulties that would prevent using a tablet, and (4) agreement from their family to participate in the study. Participants with a diagnosis of frontotemporal dementia or who had other mental conditions were excluded from this study. All the care staff members who participated in this study were qualified professionals at the residential facilities.

Procedure

The protocol and timeline for the pilot study are shown in Figure 3.

Figure 3. Pilot study plan. EPWDS: Engagement of a Person with Dementia Scale; MENFIS: Mental Function Impairment Scale; NPI-NH: Neuropsychiatric Inventory–Nursing Home version.

Participant Selection

Care managers at participating care homes explained the details of Aikomi and the pilot study to the families of candidate persons with dementia using materials provided by the research team. After the explanation, written consent was obtained from the families who agreed to participate in the study.

Program Preparation

The research team conducted in-person or telephone interviews with family members to obtain information about the person’s life story, interests, and preferences as well as other topics that the family thought could be meaningful. In addition, the families were asked to provide any suitable family photos if they had them. In one case, a family member was not available for interview, and it was instead conducted with the care manager at the facility. The obtained information was used to create a profile for each person, and relevant digital content was selected and used to create STIMs that corresponded to items in the profile, such as hometown, childhood, family, work, life and cultural events, hobbies, sports, travel, pets, and music. The duration of each STIM ranged from 30 seconds to 3 minutes, and each stimulation program was created by compiling 10 to 20 STIMs in a sequential order expected to be easy for the person with dementia to follow. For this pilot study, all non–family-derived content was obtained by the research team from publicly available sources, and the programs were prepared by the research team within approximately 2 weeks following the family interview.

Intervention

The intervention was conducted as a 1:1 session with the person with dementia and the care staff member seated next to each other at a table in a quiet area of the care home. The home tablet was placed at a comfortable viewing distance for the person with dementia and the care staff member. The control tablet was operated by a research team member seated on the opposite side of the table. A camera was placed at an appropriate position to record the behavioral responses of the person with dementia and care staff member during the intervention. As the application was to be operated by the research team, the care staff were only given a brief overview of the device, and a rehearsal was conducted before the session to familiarize them with the intervention conditions. In addition, to allow the person with dementia to lead responses to the stimulation program as much as possible, the care staff were requested to adopt a passive role during the intervention and respond appropriately according to the person’s behavior and mood, although prompting according to their own judgment was permitted. The stimulation program was started as soon as the participant was seated and appeared comfortable, and apart from initial greetings, the research team member avoided direct interaction with the person with dementia during the session unless actively addressed by them. The intervention began with a few general reminiscence STIMs to act as a “warm up” and accustom the person with dementia to the device, after which STIMs related to personalized topics were played. The selection of STIMs was adjusted according to the mood and responses of the participant, and if a participant showed good engagement with a particular theme, the STIM was repeated or a related STIM was shown. In cases in which
the participant showed little engagement, the STIM was stopped and a STIM of a different topic was shown. The target time for each intervention was 30 minutes but was shortened if the participant appeared tired or uninterested, and the STIM was changed immediately if the participant appeared uncomfortable. The intervention was concluded by showing STIMs such as nature or landscapes as a “cool down” period, and if the participant was agreeable, smell stimulation was conducted using 5 synthetic smells that were embedded on paper strips (such as those used for sampling perfumes) supplied by a commercial smell product company [37]. The decision to use the smell sticks was made after asking each person with dementia and the care staff member after completion of the main stimulation program. The 5 smells used for the evaluation were chocolate, miso (fermented soy paste cooking ingredient), grass, earth, and soap. A smell stick was provided to both the participant and the caregiver without revealing the identity of the smell, and at the same time, a STIM related to the smell was displayed on the home module, for example, showing a bar of a famous brand of chocolate for the chocolate smell. Following the first smell, the remaining smell sticks were similarly used individually according to the participants’ interest in continuing.

Evaluation Scales

Baseline

BPSD assessment of the participants was conducted during the month before the intervention by the appropriate care staff using the Neuropsychiatric Inventory–Nursing Home version (NPI-NH) [38]. Cognitive ability was recorded using the most recent cognitive assessment conducted at the care home using one of the following cognitive scales: Mini-Mental State Examination (MMSE) [39], revised Hasegawa Dementia Scale (HDS-R) [40], or Nishimura Mental State Scale for the Elderly (NM) [41]. In total, 3 different cognitive assessments were used because of the different types of cognitive tests routinely used at each participating care home.

Intervention

Engagement during the intervention was measured using a Japanese translation of the Engagement of a Person with Dementia Scale (EPWDS) [42] prepared by the research team. The EPWDS is a 10-item assessment measuring positive and negative engagement in 5 domains—affect, visual, verbal, behavioral, and social—and was administered soon after the intervention by the attending care staff member, who was also asked to provide their comments on the intervention. Psychological well-being was measured using the 6 motivational and emotional dysfunction items of the Mental Function Impairment Scale (MENFIS) [43]. The MENFIS assessment was conducted at the care home by a care staff member on 3 consecutive days spanning the intervention: the day before the intervention (day 1), on the day of the intervention a few hours after it was conducted (day 2), and the day after the intervention (day 3). The care staff member was also asked to provide their written comments for each assessment. All 3 MENFIS assessments were conducted by the same care staff member, who was not always the same care staff member who was present at the intervention. As the study was intended as a preliminary pilot study, the EPWDS and MENFIS scores were only used as a guide for the qualitative assessment of the intervention.

Ethical Considerations

Ethics approval was obtained from the Kobe Gakuin University Human Research Ethics Committee (sourin 18-14). Written approval to conduct the study was obtained from the directors of each of the participating care facilities as well as the families of all the persons with dementia participating in the study.

Results

Overview

The characteristics of the 15 participants enrolled in the study are shown in [Table 1](#). A total of 5 (33%) people did not meet all the selection criteria: 2 (13%) were “suspected” to have Alzheimer disease but had not received a formal diagnosis of dementia, and 3 (20%) did not show BPSD as defined by the NPI-NH. However, it was decided to include all 5 in the pilot study as the primary purpose was to evaluate Aikomi for its acceptability and communication effects on persons with dementia, and there was agreement to proceed from the care staff and families. The people who did show BPSD were reported to have a wide range of symptoms.
Table 1. Baseline characteristics of persons with dementia in the pilot study.

<table>
<thead>
<tr>
<th>Person</th>
<th>Care homea</th>
<th>Sex</th>
<th>Age (y)</th>
<th>Dementia typeb</th>
<th>Cognitive scores</th>
<th>BPSDc</th>
<th>Care leveld</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Male</td>
<td>93</td>
<td>ADi</td>
<td>8</td>
<td>17</td>
<td>ND</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Female</td>
<td>89</td>
<td>AD</td>
<td>7</td>
<td>11</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>Female</td>
<td>86</td>
<td>AD</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Female</td>
<td>86</td>
<td>AD</td>
<td>ND</td>
<td>21</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Male</td>
<td>79</td>
<td>AD</td>
<td>ND</td>
<td>24</td>
<td>ND</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>Male</td>
<td>76</td>
<td>AD</td>
<td>ND</td>
<td>8</td>
<td>ND</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>Female</td>
<td>87</td>
<td>AD</td>
<td>ND</td>
<td>17</td>
<td>ND</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>Female</td>
<td>84</td>
<td>AD</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Male</td>
<td>79</td>
<td>AD</td>
<td>ND</td>
<td>20</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>Female</td>
<td>83</td>
<td>AD</td>
<td>ND</td>
<td>9</td>
<td>ND</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>Female</td>
<td>86</td>
<td>AD</td>
<td>ND</td>
<td>15</td>
<td>ND</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>Female</td>
<td>90</td>
<td>AD</td>
<td>6</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>Female</td>
<td>86</td>
<td>AD</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>14</td>
<td>D</td>
<td>Female</td>
<td>77</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>D</td>
<td>Female</td>
<td>90</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>25</td>
</tr>
</tbody>
</table>

aA: group home; B: residential nursing home; C and D: older adult rehabilitation facility.
bReported dementia diagnosis.
cBPSD: behavioral and psychological symptoms of dementia.
dJapanese long-term care insurance rating scale [44].
eHDS-R: revised Hasegawa Dementia Scale [40].
fMMSE: Mini-Mental State Examination [39].
gNM: Nishimura Mental State Scale for the Elderly [41].
hNPI-NH: Neuropsychiatric Inventory–Nursing Home version [38].
iAD: Alzheimer disease.
jND: not determined.

Engagement

The responses of the persons with dementia during the intervention are shown in Table 2 and Multimedia Appendix 1. The extent of the intervention ranged from 15 to 38 minutes, most persons (13/15, 87%) showed strong positive responses to at least 1 of the STIMs, and none showed discomfort toward Aikomi or requested the session to be stopped. In total, 67% (10/15) of the participants had an EPWDS score of >40 (out of a maximum of 50), indicating both a high incidence of positive engagement and a low incidence of negative engagement. The remaining 33% (5/15) of the participants showed an EPWDS score of >30, which was due to low positive engagement scores (lack of engagement with the stimulation program) rather than the high incidence of negative responses such as anger, anxiety, or discomfort, which were not observed for any participant. Interestingly, person 14, who showed few positive responses during the intervention itself, spoke to thank the research team after the session was completed, which the care staff member said was highly unusual behavior for them.

The types of STIM topics and the responses they generated were analyzed from the video recordings and are shown in Table 3. The most common STIM topic to generate good engagement was family photos, which prompted self-initiated talk and the identification of persons they recognized. However, some participants (6/15, 40%) struggled to recognize their family members and even themselves. One person (person 3) showed no response, and person 4 responded most strongly to photographs of herself in early adult life rather than of her family. Music was also a popular STIM topic, prompting several participants to initiate singing and clapping to both traditional Japanese children’s songs (doyo) and Japanese popular music. The STIM of popular singers known to be liked by the persons with dementia often generated verbal dialogue with the care staff (persons 4, 6, 8, and 13). Japanese traditional arts, such as the tea ceremony, dance, and calligraphy, generated good responses from most women who had performed them (persons 2, 4, 7, 8, and 13). Japanese traditional arts, such as the tea ceremony, dance, and calligraphy, generated good responses from most women who had performed them (persons 2, 4, 7, 8, 11, and 13), and sports themes (baseball, sumo, and boxing) were popular for all the men (persons 1, 5, 6, and 9). Work-related themes induced mixed responses; however, STIMs related to actions performed during their work (eg, using a
Japanese typewriter, counting money, or preparing fish) generated responses from 33% (5/15) of the participants (persons 2, 6, 7, 8, and 15). Wartime navy service STIMs generated strong positive engagement from person 1 and prompted a detailed recollection of his experiences; this is described in more detail in case study 1.

Table 2. Engagement during the session with the Aikomi device.

<table>
<thead>
<tr>
<th>Person</th>
<th>EPWDS score<sup>a</sup></th>
<th>Caregiver written comment provided after the session (translation from Japanese)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>He showed very spontaneous reaction to family and the warship.</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>She concentrated for volleyball and knitting but could not remember family faces or names. She has severe memory loss.</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>She quickly responded to music, but the response is similar to what the care staff can obtain using tablets.</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>She was able to concentrate due to the music, and was very focused for one singer. Usually, her concentration doesn’t last for 5 minutes, it was very unusual for her to maintain concentration for 30 minutes.</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>He turned to look at the tablet as soon as the images appeared and focused on talking about them, including in great detail about the movies. This is behavior not usually observed by the care staff.</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>Despite being a shy person, he was able to sing in front of everyone. He usually can’t recognize things, but was able to for some pictures. He was anxious because he couldn’t understand many things.</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>She did hand gestures to songs and Japanese dance and hula dance. She did not say much because she is a naturally reserved person, but she showed concentration and seemed excited.</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
<td>She looked at the tablet and talked continuously but not related to the themes shown. She showed good responses to music and smell.</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
<td>He talked about his mother and explained to us in detail about his old hobbies. He was anxious because he was able to detect the smells.</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
<td>She showed good expression and mood. Usually she doesn’t continue laughing, and I think it was due to the continuous stimulation.</td>
</tr>
<tr>
<td>11</td>
<td>45</td>
<td>She clapped her hands and sang to the music, which is the same response as she regularly shows with karaoke.</td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>She had pneumonia before the test, which reduced her will, and she only responded weakly to themes.</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>She is usually not a person who can show good concentration but was calm and concentrated during the test and could recall her memories.</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>She showed most interest in the old photos. At the end of the test, she smiled and said “thank you”.</td>
</tr>
<tr>
<td>15</td>
<td>47</td>
<td>She sang along to the music and looked nostalgic when watching the old photos.</td>
</tr>
</tbody>
</table>

^aEPWDS: Engagement of a Person with Dementia Scale. Range of scores is 10-50, higher scores indicate higher level of positive engagement, lower scores indicate higher levels of disengagement or negative engagement [42].

^bTranslation by the research team.
Table 3. Engagement by stimulation element (STIM) topic.

<table>
<thead>
<tr>
<th>Person</th>
<th>Self-initiated talk<sup>a</sup></th>
<th>Prompted talk<sup>b</sup></th>
<th>Notes<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Family, navy service</td>
<td>Hometown, baseball, photography</td>
<td>Viewed war service STIM several times, adding new anecdotes each time. Responded strongly to family photos.</td>
</tr>
<tr>
<td>2</td>
<td>Volleyball, Japanese typewriter, kimono</td>
<td>Family, music, cooking, childhood</td>
<td>Husband of participant 1 but did not respond to family photos. Was good at volleyball. Used typewriter at work.</td>
</tr>
<tr>
<td>3</td>
<td>None</td>
<td>Music</td>
<td>Only responded to music (sang). Did not react to personal topics.</td>
</tr>
<tr>
<td>5</td>
<td>Archery, 100-km walk, food, pigeon racing, gardening, childhood</td>
<td>Family, school, life, pet, hot spring bath, hometown</td>
<td>Talked in detail about participating in 100-km walk. Said that gardening STIM showed incorrect way to grow orchids. Talked about difficult times during childhood.</td>
</tr>
<tr>
<td>6</td>
<td>Boat race, Japanese singer, sumo, food</td>
<td>Baseball, cooking fish, family, music, cultural event</td>
<td>Nervous at first but calmed down when the program started. Talked about working at a fish restaurant. Did not recognize many family members. Sang to music.</td>
</tr>
<tr>
<td>7</td>
<td>Family, Hawaii, and Japanese arts</td>
<td>Bank, counting money</td>
<td>Talked about cousin who lived in Hawaii. Remembered how to count money. Looked closely at calligraphy and flower arranging.</td>
</tr>
<tr>
<td>8</td>
<td>Yakitori (grilled chicken), dog, Japanese poetry</td>
<td>Japanese singer, family, music, hometown</td>
<td>Talked continuously but not related to STIM. Stopped talking to look at yakitori and Japanese poetry. Sang to music.</td>
</tr>
<tr>
<td>9</td>
<td>Family, movies, boxing, baseball</td>
<td>Detective novel, dog</td>
<td>Talked about family life and children and in great detail about films, naming actors and directors. Identified boxers and baseball players and talked in detail.</td>
</tr>
<tr>
<td>10</td>
<td>Watercolor painting, hill walking, athletics</td>
<td>Family, knitting, television drama, food</td>
<td>Said that she wanted to try watercolor painting and knitting. Named some mountains she had climbed. Said she was fast at running at school.</td>
</tr>
<tr>
<td>11</td>
<td>Family, hometown, music, tea ceremony</td>
<td>Schools, school sports, music, cooking</td>
<td>Could identify more family members on repeated viewing. Repeated name of hometown several times. Watched tea ceremony closely for several minutes. Sang to music.</td>
</tr>
<tr>
<td>12</td>
<td>None</td>
<td>None</td>
<td>Did not look at the screen for most of the session. Showed no reaction to any STIM.</td>
</tr>
<tr>
<td>13</td>
<td>Hometown, Japanese singer, koto (Japanese musical instrument), childhood</td>
<td>Kobe, childhood songs</td>
<td>Talked about growing up in Tokyo and sad life of Japanese singer. Watched koto playing closely for several minutes.</td>
</tr>
<tr>
<td>14</td>
<td>None</td>
<td>None</td>
<td>Looked continuously at the tablet but did not show any reaction to any STIM</td>
</tr>
<tr>
<td>15</td>
<td>Family, travel, childhood, hotel work</td>
<td>Paper making, hot spring bath, music, son’s work</td>
<td>Talked about family and climbing Mount Fuji with her son. Recalled working at a hotel and her son’s company.</td>
</tr>
</tbody>
</table>

^aTalk initiated by the person with dementia without prompting.

^bPerson responded to prompting by the care staff member.

^cOn the basis of a video review by the research team.

Smell

A total of 60% (9/15) of the participants tried the smell stick stimulation in conjunction with paired audiovisual stimulation, and 13% (2/15) of the participants tried all 5 smell sticks. The responses are shown in Table 4. In most cases, the smell sticks led to pleasurable responses from both the participant and the care staff member, with more laughter than was observed during the audiovisual programs. Almost all the people with dementia (8/9, 89%) had difficulty explicitly identifying the smell; however, majority (6/9, 67%) were able to notice that the smells were different, and recognition of the smell identity did not appear to affect the engagement with the caregivers. Although it was not the intention, some participants perceived the smell program as a test, which may have caused some confusion (person 15) and prompted one person to say that she had lost her sense of smell (person 5). This shows that care must be exercised when using smell stimulation to reduce the risk of causing anxiety to users who may no longer have a sense of smell or be stressed by the inability to correctly identify the smells.
Table 4. Response of participants to smell sticks combined with audiovisual stimulation.

<table>
<thead>
<tr>
<th>Person</th>
<th>Smell stick used</th>
<th>Response<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First</td>
<td>Second</td>
</tr>
<tr>
<td>1</td>
<td>Chocolate</td>
<td>Soap</td>
</tr>
<tr>
<td>3</td>
<td>Chocolate</td>
<td>Miso</td>
</tr>
<tr>
<td>5</td>
<td>Chocolate</td>
<td>Soap</td>
</tr>
<tr>
<td>8</td>
<td>Chocolate</td>
<td>Soap</td>
</tr>
<tr>
<td>9</td>
<td>Chocolate</td>
<td>Soap</td>
</tr>
<tr>
<td>10</td>
<td>Chocolate</td>
<td>Soap</td>
</tr>
<tr>
<td>11</td>
<td>Chocolate</td>
<td>Soap</td>
</tr>
<tr>
<td>13</td>
<td>Chocolate</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>Chocolate</td>
<td>Soap</td>
</tr>
</tbody>
</table>

^aOn the basis of a video review by the research team.

^bNot used.

Well-Being and Behavior Changes

The results of the MENFIS well-being assessment of the persons with dementia conducted by the care staff over the consecutive 3-day intervention period are shown in **Table 5**. In total, 13% (2/15) of the participants showed improvement (reduction in MENFIS score) on the third day compared with the first, and 7% (1/15) of the participants (person 13) showed a reduction only on the second day (after the intervention). All other participants showed similar or identical MENFIS scores for all 3 days except for person 12, who showed worsening over the 3 days, which was attributed to her catching a cold during the period of the intervention. The data for persons 14 and 15 were disregarded as the care staff member mistakenly conducted the second-day assessment before the Aikomi session instead of after. In many cases, the participants had no recollection of the intervention the following day. Little inference can be drawn from the MENFIS data except that there appeared to be no adverse effects on the well-being of the people with dementia after using the Aikomi application.
Table 5. Well-being and behavior changes over the course of the intervention.

<table>
<thead>
<tr>
<th>Person</th>
<th>MENFIS score<sup>a</sup></th>
<th>Care staff written comments (translation from Japanese)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
<td>Day 2</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>27<sup>e</sup></td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>16<sup>e</sup></td>
</tr>
</tbody>
</table>

^aMENFIS: Mental Function Impairment Scale (6 noncognitive items). Day 1: evaluation the day before the session; day 2: evaluation on the day of the session after it was conducted; day 3: evaluation the day after the session.

^bTranslation by the research team.

^cBPSD: behavioral and psychological symptoms of dementia.

^dDLB: dementia with Lewy bodies.

^eRecorded before the session was conducted.

Selected Case Studies

Person 1

Although not formally experiencing BPSD according to the NPI-NH, the care staff member said that person 1 usually displayed apathetic behavior, and the staff member was very surprised by the amount of self-initiated dialogue in response to the family and wartime navy service STIM, which was shown several times during the test. The STIM included a photograph of the ship he served on as well as a Japanese navy song. The person became conversational and could recall the names of former navy colleagues as well as events in detail, providing new information and anecdotes with every repetition of the STIM. The care staff used this information to continue to manually provide stimulation using photographs on the following day, which is likely to have contributed to the continuing improvement trend observed in the MENFIS score from the second to the third day. In contrast, person 2, who was his spouse and lived at the same facility but showed more advanced dementia symptoms, did not respond strongly to the same family STIM used for person 1. However, at the request of the care staff member, an additional session with the Aikomi application was conducted with both persons 1 and 2 watching the family STIM together. In this case, person 1 provided prompts to person 2, who showed a much stronger response than when she viewed the STIM with the care staff member.

Person 10

The caregiver reported that the person had shown agitated behavior in the period before the intervention but was able to come into the room and quickly settled when the session started. She responded to several of the STIMs and actively talked about several of the themes presented. As she was an excellent athlete during her school days, the program included a STIM video of a modern high school girls’ 100-meter race, in which she showed great interest, including making a humorous comment about the lack of clothes worn by current athletes. In addition, she showed quiet concentration on the STIM related to her hobbies of watercolor painting and hill walking and told the care staff member that she wanted to do both again and recalled the names of several mountains that she had climbed. During the smell intervention, she laughed and engaged with the care staff member and research team and appeared to enjoy the experience even though she did not recognize any of the smells. The care staff member said that her behavior during the intervention was not usual and that she was not agitated when she returned to her living area. However, this was not reflected in the MENFIS score.
scores, which were assessed by a different care staff member and showed no changes over the 3-day period.

Person 13

During the intervention, she showed good responses to STIMs about her hometown (Tokyo), her hobby of playing the koto (musical instrument), and a popular Japanese singer. She momentarily cried on 2 occasions when viewing her hometown and the Japanese singer, but her sadness did not persist and was followed by self-initiated talk to the care staff member about her wartime childhood and the Japanese singer’s unhappy life story. The care staff member reported that she usually could not show good concentration, and they were surprised that she was calm and could concentrate during the intervention and recall her memories. In the evening after the test, the care staff member reported that she said that she felt good and that other residents noticed that she was not as agitated as usual; however, on the day after the test, her agitated behavior returned to normal, and this pattern was reflected in the MENDIS scores.

Discussion

Principal Findings

Maintaining communication and engagement for persons with dementia is integral to caregiving, implementing person-centered care, and managing BPSD. It is also vital for facilitating the positive aspects of care that foster good QOL and sustainable caregiving relationships [45]. Over the last decade, several digital applications have become available to support communication and engagement for people with dementia [27], and to the authors’ knowledge, this pilot study is the first investigation of a digital application for personalized multi-sense stimulation conducted in Japan. All participants in this study were able to accept viewing the programs on the tablet, and these preliminary findings are broadly consistent with those of previous studies that demonstrate the importance of tailoring cognitive stimulation content to the individual profile and abilities of each person to obtain good engagement [28]. As reported for other applications, themes based on personal photographs or music often generated positive responses from participants, although for many people in the study, these themes did not generate the strongest responses during the intervention (Table 4). Instead, a wider range of themes specifically associated with the person’s lived experiences, such as wartime service (person 1), and interests such as gardening (person 5) and Western movies (person 9) were often the ones that resulted in prolonged and in-depth participant-initiated communication with care staff. This is in agreement with digital storytelling studies that have demonstrated the need to use a diverse range of relevant topics to adequately personalize interventions to obtain good engagement [29,30]. In addition, the benefits of using applications that combine both generic activity-promoting content and personally sourced content have been demonstrated with the CIRCA and CIRCUS application [46]. The role of the care staff was important to facilitate engagement in this study, especially to allow persons with dementia sufficient time to respond to the stimulation. It has been reported that caregivers sometimes do not allow sufficient time for the person with dementia to respond, which can lead to carer-directed engagement and suppression of the person with dementia’s own ability to initiate and maintain conversation [47]. In several cases, participants did not respond immediately to the stimulation content and required some time to view and “acclimatize” to the content before responding. This suggests that adapting the duration and complexity of the STIM according to the responses of each person may enhance their ability to respond and avoid premature transition to the next STIM, which will be explored in the future. The example of a husband and wife (persons 1 and 2) suggests the potential of people with dementia using the Aikomi application together without the active presence of care staff when the content has a high personal meaning for both. In total, 13% (2/15) of the participants, who had advanced dementia (persons 12 and 14), showed almost no engagement; however, good engagement was observed with another 13% (2/15) of the participants, who had low cognition (persons 6 and 10), suggesting that other factors in addition to cognition, such as content relevance, mood, and care staff behavior, may also be important for engagement.

One of the features of the Aikomi platform is that it allows for flexible navigation through a sequence of personalized stimulation themes that provide options for caregivers to select and adapt the content of the stimulation program according to the mood and responses of the user. The usefulness of this function was illustrated in person 1, who showed an unexpectedly strong reaction to the war-themed pictures triggering extended dialogue with the caregiver that was facilitated by several repetitions of the same STIM. In contrast, when person 13 started to make negative comments while viewing a STIM, it was possible to quickly change to a new STIM about her hobby, after which she started to make positive comments. Furthermore, the ability of the Aikomi application to easily modify and add new content enables the convenient creation of new personalized stimulation programs each time the Aikomi device is used. This is important for longer-term use to minimize or avoid the repeated use of the same content, which may lead to reduced interest from users and caregivers and has been found to be an issue for applications restricted to a fixed pool of content [33]. In addition, the flexible use of personally targeted activity content has been reported to promote curiosity and encourage self-directed learning in people with dementia [48] and suggests that personalizable digital cognitive stimulation applications such as Aikomi may be able to expand the range and depth of self-expression of people with dementia.

A secondary objective of this study was to explore the potential benefits of using paired smell and audiovisual stimulation to promote improved engagement compared with audiovisual stimulation alone. Currently, the use of smell stimulation in dementia care is limited and mainly focused on aromatherapy approaches to improve mood and reduce responsive behaviors using natural oils. However, other studies have shown that smell may play a role in triggering autobiographical and implicit memory [49], and it was thought that synthetic smells associated with daily life experiences could encourage not only the person with dementia but also the care staff member to share their own experiences, as well as being enjoyable. The engagement during paired smell and digital stimulation appeared to involve more smiling and laughter for both the participant and care staff.
member compared with responses to the audiovisual program alone. Interestingly, this was the case even when the person with dementia did not identify the smell and suggests that the combined use of digital audiovisual stimuli with smell may be more effective than smell alone [50].

From its inception, the Aikomi platform has aimed to develop AI capabilities to minimize the time and expertise required by non-specialist care staff and families to use personalized digital applications. This is a critical issue for adoption and sustained use in dementia care, where caregivers are often older and not “digital natives” and have limited time or support to learn how to use and personalize applications [51]. Currently, most digital applications support personalization using two types of approaches: (1) supported collaboration with families to create bespoke interventions or (2) provision of pre-designed content for on-demand selection during application use [28]. The bespoke approach often focuses on personal reminiscence and identity-reinforcing applications such as digital storytelling [29,30] and memory books [52,53], but preparation requires extensive family involvement over weeks or months, which may be challenging to sustain. Conversely, on-demand selection approaches, usually providing content curated by expert research teams, allow for immediate use and scalability but may fall short of generating sufficient interest and maintaining long-term use and be more suitable for social interaction [54] and activity-based applications such as iCST [33], music [55], and games [56]. The data obtained by digital technologies open up new opportunities to use machine learning to develop automation that can overcome these personalization barriers as well as optimize and adapt interventions. However, the lack of available high-quality and personalized data sources for people with dementia has limited progress in AI development for dementia care [35], especially for applications to support communication and engagement. To address this, Aikomi’s modular architecture facilitates the seamless capture of user data across key function domains: personal profile, content tagging, sequence ordering, and response analysis. This approach can combine the precision of the bespoke approach with the convenience of using the preprepared on-demand content. In this pilot study, data from the interviews and the provided content were used with the preprepared generic content to create bespoke programs in approximately 2 weeks, a reduction from the 6 to 8 weeks reported for digital storytelling [28]. In addition, it was possible to evaluate the performance of personalization using high-context data such as personal profiles, content and sequence attributes, and behavioral responses captured by the Aikomi platform. A related approach was reported by another personalized digital application called Scrapbook, which demonstrates the importance of obtaining multiple personal context–related data inputs to enable analysis [57]. Although AI system development was not the focus of this pilot study and personalization was conducted manually by the research team, this study demonstrates the potential of using the Aikomi platform as a tool to generate personalized data for AI development, and a preliminary investigation was conducted to create machine learning models to automate the personalization process, which is reported elsewhere [58]. In addition, chatbot technology, pioneered by a reminiscence intervention called ReminX [59], demonstrates an alternative trajectory for AI-driven personalization in dementia care.

Although no effects on BPSD were expected from this single-intervention study, the transient behavior changes reported by care staff for some persons (persons 1, 10, and 13) after using the Aikomi application suggest that there may be potential for investigating Aikomi to affect more lasting behavior changes related to BPSD. Although there is currently only a weak clinical evidence base to support the use of cognitive stimulation to manage BPSD, the use of personalized digital interventions embedded with data capture functions may offer the potential to not only create more effective therapeutics but also generate personalized monitoring data that can provide more robust clinical evidence. In the last few years, digital therapeutics (DTX) has emerged as a new category of regulatory-approved medical products that are distinct from drugs and medical devices [60,61]. To date, no DTX interventions for dementia have received regulatory approval, but several applications have been developed for supportive care [62]. DTX for dementia was pioneered by ReminX [59], which was designated as a breakthrough medical device by the Food and Drug Administration (FDA), and more recently by CST Assistant [63], which is a clinical evidence–supported CST-based game application that is now commercially available in Europe. Given the continuing challenges in developing effective and affordable drug therapies for dementia and BPSD, digital interventions for personalized cognitive stimulation such as Aikomi may have potential for clinical development as DTX and offer non-drug options for the management of BPSD and improvement in QoL. In addition to the primary objective of addressing therapeutic goals, the importance of preserving care relationships and creating opportunities for positive aspects of care for caregivers is also gaining increasing attention in dementia care [64,65]. With the growing shortage of professional caregivers, which is particularly acute in Japan, digital technologies that can promote meaningful engagement and improve QoL for both people with dementia and caregivers may become important tools to foster greater participation by family and informal caregivers in caring for their loved ones.

Limitations

As this study was the first evaluation of the Aikomi application conducted in a care setting and limited to a single intervention to confirm its safety and acceptability for people with dementia, all inferences are preliminary and need to be confirmed via further multiple-intervention studies. Furthermore, although the aim was for Aikomi to be used independently by the care staff, the research team was required to be present during the interventions for this pilot study, which was a potential source of bias. This was necessary as the Aikomi platform was still a prototype, and the care staff were not familiar with operating digital technologies and required support to use Aikomi and overcome any technical difficulties. In fact, no application-related technical problems were encountered during the intervention, and connectivity issues were largely avoided by using tablets with SIM cards and addressed before the intervention. However, the provision of appropriate training and technical support for care staff to set up, use, and maintain the Aikomi application was not investigated in this pilot study.
Another limitation was that most staff members were unfamiliar with conducting EPWDS and MENFIS evaluations, and the evaluations of some participants were conducted by multiple care staff members because of shift changes, which may have led to some inconsistencies in the results. Furthermore, the EPWDS is not yet available in Japanese, and an unvalidated translation prepared by the research team was used. These limitations need to be addressed in future studies.

Future Research

The next step is to conduct multiple-intervention studies to investigate the effects of longer-term use of the Aikomi application when the program content of each intervention is adapted based on the behavioral responses of the person with dementia. The data derived from these studies will become the basis for developing machine learning models to create algorithms that can optimize personalization and increase the convenience for the care staff to use the system. To generate evidence to support the use of the Aikomi application in dementia care, it is necessary to conduct clinical trials to evaluate its effects on QOL and BPSD, from which its potential for further development as a digital therapeutic can be assessed. Separately, use by family caregivers in their own homes will be investigated to obtain feedback and data that will guide the development of the Aikomi application for community use. In addition, further work is needed to increase the pool of diverse and culturally relevant content that has been curated for people with dementia to reduce the lead time required to prepare stimulation programs. In this pilot study, all non–family-derived content was selected or created by the research team from publicly available sources, and copyright issues were not considered because of the noncommercial nature of this research. However, ensuring copyright compliance for the use of all digital media content, for both content owners and content providers, is a significant issue that must be addressed before the commercial deployment of personalized cognitive stimulation approaches. Finally, to enable more convenient use of smell stimuli with cognitive stimulation, automated smell delivery devices such as diffusers should be investigated for integration with the Aikomi platform.

Conclusions

This pilot study demonstrated that the Aikomi application was able to create personalized cognitive stimulation programs that were acceptable for use in Japanese care homes and may have the potential to promote communication between people with dementia and their care staff. The use of smell stimuli paired with audiovisual stimulation was found to promote enjoyable interactions for many users. In addition, the Aikomi platform captured several types of personalized data, including the behavioral responses during the intervention, which enabled a detailed analysis of the stimulation content preferences of each person with dementia. These results indicate that the Aikomi application has the potential to be used as a tool to provide personalized cognitive stimulation and also generate high-context data suitable for the future development of AI systems to automate the personalization process. Further research will be conducted to develop the Aikomi application as a communication tool that can be easily used by nonspecialist care staff and families in residential and community care settings to enhance care relationships and positive aspects of care and aid the therapeutic management of BPSD.

Acknowledgments

The authors would like to thank all the people with dementia and their families and participating care staff for their support and cooperation in participating in this study. The help and advice of the care managers at the participating care homes is gratefully appreciated. Ken Inoue (chief executive officer, Promotool Corporation) is thanked for his kind advice and supply of the smell sticks.

Data Availability

The data sets generated and analyzed in this study are not publicly available as the data contain information that could compromise the privacy of the research participants. The data are available from the corresponding author upon reasonable request.

Authors’ Contributions

NH, SG, and SKP collaboratively developed the Aikomi technology platform. KM and TO provided guidance throughout the development as well as advice and supervision of the pilot study in Japanese care homes. NH supported the conduct of the pilot study.

Conflicts of Interest

NH is a cofounder and chief scientific officer of Aikomi. NH and the SBX Corporation are shareholders of Aikomi.

Multimedia Appendix 1

Full details of engagement during the session with the Aikomi device.

References

https://formative.jmir.org/2024/1/e51732

JMI R Form Res 2024 | vol. 8 | e51732 | p.237

(page number not for citation purposes)

33. Rai HK, Schneider J, Orrell M. An individual cognitive stimulation therapy app for people with dementia: development and usability study of thinkability. JMIR Aging 2020 Nov 16;3(2):e17105 [FREE Full text] [doi: 10.2196/17105] [Medline: 33196451]
34. Rai HK, Schneider J, Orrell M. An individual cognitive stimulation therapy app for people with dementia and their carers: protocol for a feasibility randomized controlled trial. JMIR Res Protoc 2021 Apr 08;10(4):e24628 [FREE Full text] [doi: 10.2196/24628] [Medline: 3380058]
37. Promotool. URL: https://www.promotool.jp [accessed 2023-12-19]

Abbreviations

- **AI**: artificial intelligence
- **BPSD**: behavioral and psychological symptoms of dementia
- **CMS**: content management system
- **CST**: cognitive stimulation therapy
- **DTX**: digital therapeutics
- **EPWDS**: Engagement of a Person with Dementia Scale
FDA: Food and Drug Administration
HDS-R: revised Hasegawa Dementia Scale
iCST: individual cognitive stimulation therapy
MENFIS: Mental Function Impairment Scale
MMSE: Mini-Mental State Examination
NM: Nishimura Mental State Scale for the Elderly
NPI-NH: Neuropsychiatric Inventory–Nursing Home version
QOL: quality of life

Edited by A Mavragani; submitted 10.08.23; peer-reviewed by J Li, A Aguirre; comments to author 10.10.23; revised version received 30.10.23; accepted 22.11.23; published 16.01.24.

Please cite as:
Hird N, Osaki T, Ghosh S, Palaniappan SK, Maeda K
Enabling Personalization for Digital Cognitive Stimulation to Support Communication With People With Dementia: Pilot Intervention Study as a Prelude to AI Development
JMIR Form Res 2024;8:e51732
URL: https://formative.jmir.org/2024/1/e51732
doi:10.2196/51732
PMID:38227357

©Nick Hird, Tohmi Osaki, Samik Ghosh, Sucheendra K Palaniappan, Kiyoshi Maeda. Originally published in JMIR Formative Research (https://formative.jmir.org), 16.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Designing and Developing a Mobile App for Management and Treatment of Gestational Diabetes in Nepal: User-Centered Design Study

Aarthi Shanmugavel¹, MPH; Prabin Raj Shakya², MS; Archana Shrestha³,⁴,⁵, PhD; Jyoti Nepal⁴, MPH; Abha Shrestha⁶, MD; Jean-Francois Daneault⁷, PhD; Shristi Rawal⁸, PhD

¹Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
²Biomedical Knowledge Engineering Lab, Department of Dentistry, Seoul National University, Seoul, Democratic People's Republic of Korea
³Institute for Implementation Science and Health, Kathmandu, Nepal
⁴Department of Public Health, Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
⁵Department of Chronic Disease and Epidemiology, Center of Methods for Implementation and Prevention Science, Yale School of Public Health, New Haven, CT, United States
⁶Department of Obstetrics and Gynecology, Dhulikhel Hospital, Dhulikhel, Nepal
⁷Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, Newark, NJ, United States
⁸Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States

Corresponding Author:
Shristi Rawal, PhD
Department of Clinical and Preventive Nutrition Sciences
School of Health Professions
Rutgers, The State University of New Jersey
Stanley S Bergen, Jr Building, Suite 923
65 Bergen Street
Newark, NJ, 07107
United States
Phone: 1 973 972 2710
Fax: 1 973 972 7403
Email: shristi.rawal@rutgers.edu

Abstract

Background: Mobile apps can aid with the management of gestational diabetes mellitus (GDM) by providing patient education, reinforcing regular blood glucose monitoring and diet/lifestyle modification, and facilitating clinical and social support.

Objective: This study aimed to describe our process of designing and developing a culturally tailored app, Garbhakalin Diabetes athawa Madhumeha—Dhulikhel Hospital (GDM-DH), to support GDM management among Nepalese patients by applying a user-centered design approach.

Methods: A multidisciplinary team of experts, as well as health care providers and patients in Dhulikhel Hospital (Dhulikhel, Nepal), contributed to the development of the GDM-DH app. After finalizing the app’s content and features, we created the app’s wireframe, which illustrated the app’s proposed interface, navigation sequences, and features and function. Feedback was solicited on the wireframe via key informant interviews with health care providers (n=5) and a focus group and in-depth interviews with patients with GDM (n=12). Incorporating their input, we built a minimum viable product, which was then user-tested with 18 patients with GDM and further refined to obtain the final version of the GDM-DH app.

Results: Participants in the focus group and interviews unanimously concurred on the utility and relevance of the proposed mobile app for patients with GDM, offering additional insight into essential modifications and additions to the app’s features and content (eg, inclusion of example meal plans and exercise videos). The mean age of patients in the usability testing (n=18) was 28.8 (SD 3.3) years, with a mean gestational age of 27.2 (SD 3.0) weeks. The mean usability score across the 10 tasks was 3.50 (SD 0.55; maximum score=5 for “very easy”); task completion rates ranged from 55.6% (n=10) to 94.4% (n=17). Findings from the usability testing were reviewed to further optimize the GDM-DH app (eg, improving data visualization). Consistent with social cognitive theory, the final version of the GDM-DH app supports GDM self-management by providing health education...
and allowing patients to record and self-monitor blood glucose, blood pressure, carbohydrate intake, physical activity, and gestational weight gain. The app uses innovative features to minimize the self-monitoring burden, as well as automatic feedback and data visualization. The app also includes a social network “follow” feature to add friends and family and give them permission to view logged data and a progress summary. Health care providers can use the web-based admin portal of the GDM-DH app to enter/review glucose levels and other clinical measures, track patient progress, and guide treatment and counseling accordingly.

Conclusions: To the best of our knowledge, this is the first mobile health platform for GDM developed for a low-income country and the first one containing a social support feature. A pilot clinical trial is currently underway to explore the clinical utility of the GDM-DH app.

(JMIR Form Res 2024;8:e50823) doi:10.2196/50823

KEYWORDS
mHealth; mobile health; gestational diabetes; telehealth; usability testing; LMICs; low- and middle-income countries; user-centric design; social cognitive theory; South Asians; maternal health; diabetes; diabetes mellitus; daily glucose monitoring; hospital; medical institution; health center; clinical utility; Nepal; low income; clinical trial; focus group; interview; health care provider; medical practitioner; mobile app; application; digital health; app; apps; health education; web based; self-monitoring; glucose; physical activity; intervention

Introduction
Gestational diabetes mellitus (GDM), defined as hyperglycemia with onset during pregnancy, is a major public health issue worldwide. South Asians, who represent approximately one-fourth of the world’s population, are at a disproportionately higher risk of GDM [1-3], and the prevalence of GDM is increasing rapidly in South Asian countries, including Nepal [3-5]. Geographically situated between the two epicenters of the global diabetes epidemic, India and China [6], Nepal has a reported GDM prevalence ranging from 6.6% to 28% [7-9]. These estimates are alarming as GDM is associated with serious adverse perinatal outcomes and unfavorable long-term cardiometabolic consequences in both women and their children [10-14]. Although the short-term health and economic burden of GDM is substantial [15,16], its long-term implications are even more concerning, particularly among South Asian populations who are known to develop cardiometabolic complications at a relatively lower BMI than people with European ancestry [17-19]. Among women with GDM, those with South Asian ethnicity are also known to have a significantly higher risk of developing type 2 diabetes (T2D) compared to other ethnic groups [3,20]. Scalable and cost-effective solutions are thus needed to address the growing burden of GDM and its sequelae, particularly in low-resource South Asian countries, such as Nepal.

Successful GDM management relies on patient adherence to a complex care regimen, including dietary modification, adequate physical activity, weekly-to-biweekly antenatal follow-ups, and regular blood glucose monitoring and logging. Providing dietary and physical activity recommendations is a critical part of GDM management, but in resource-limited settings, such as Nepal, time for diet/lifestyle counseling often competes with other components of care. Face-to-face counseling for diet/lifestyle is also fraught with low participation rates and high attrition, as it is resource intensive for the health care providers and poses time and travel barriers for the patients [21,22]. Additionally, in many countries like Nepal, GDM counseling is only performed once, which is not conducive to facilitating a meaningful behavior change in diet and lifestyle. Mobile health (mHealth) technology provides new opportunities to circumvent these challenges [23] and support the treatment and management of GDM in low-resource settings. Mobile apps can aid in the management of GDM by providing patient education, reinforcing regular glucose monitoring and diet/lifestyle modification, and allowing health care providers to communicate and exchange health information with patients [24]. Mobile technology may offer cost-effective strategies to improve outcomes in patients with GDM by augmenting clinical care and empowering patients with GDM to self-manage their condition, yet this approach has not been tested previously in any low-income country [24].

App-based lifestyle interventions for GDM management are not common, especially in low-income countries, such as Nepal, where its prevalence is rapidly increasing [23,25,26]. To address this gap, our goal was to develop a mobile app that supports self-management and treatment among women with GDM in Nepal. In addition to making the app culturally tailored, our priority was also to design an app that matches the user needs and technological sophistication of the target users. Thus, taking a user-centered design approach [27], we developed the Garbhakalin Diabetes athawa Madhumeha—Dhulikhel Hospital (GDM-DH) app in collaboration with our target users, patients with GDM and providers, in Dhulikhel Hospital, a flagship university hospital in Dhulikhel, Nepal. Consistent with Bandura’s social cognitive theory (SCT) framework [28], the GDM-DH app supports GDM management by providing patient education, reinforcing regular blood glucose/carbohydrate monitoring, increasing self-efficacy for diet/lifestyle modification, and facilitating clinical and social support. Here, we aim to describe the app development process and features of the GDM-DH app.

Methods

Overall Study Design
The study was conducted at Dhulikhel Hospital, a community-based tertiary-level university hospital of Kathmandu University (Nepal). We took a user-centered design approach to develop a culturally tailored mobile app (GDM-DH)
for management of patients with GDM at the hospital. Figure 1 outlines the steps in GDM-DH app development. In the qualitative/requirement-gathering phase, patients with GDM were recruited for a focus group and structured interviews to show them the app prototype and obtain their feedback on its features and functions. Key informant interviews (KIIs) were conducted with clinicians and patients’ spouses. Incorporating and revising the app prototype based on user input, we built a minimum viable product (MVP), after which additional patients with GDM were recruited for usability testing including the think-aloud protocol [29]. The final GDM-DH app was developed following an iterative process of product design and user testing.

Figure 1. Schematic representation of the user-centered approach for GDM-DH app development among target users (women with gestational diabetes mellitus; GDM-DH: Garbhakalin Diabetes athawa Madhumeha—Dhulikhel Hospital; KII: key informant interview.

Recruitment Procedure and Inclusion Criteria

Located in a periurban setting, about 20 km from the capital city of Kathmandu in Dhulikhel, Nepal, Dhulikhel Hospital has a catchment population of 1.9 million people and delivers approximately 3000 babies annually. All pregnant women receiving antenatal care at the Obstetric Outpatient Department at Dhulikhel Hospital undergo routine screening for GDM at 24-28 weeks of gestation. Inclusion criteria were pregnant women who (1) received antenatal care at Dhulikhel Hospital, (2) received a GDM diagnosis (within the preceding year), (3) owned a smart phone, and (4) could understand and read Nepali. Patients with a confirmed GDM diagnosis were recruited into the study with the help of a senior obstetrician-gynecologist (OB-GYN; coinvestigator in the study) and other staff in the OB-GYN department at Dhulikhel Hospital. A convenience sampling strategy was used to recruit participants meeting the aforementioned inclusion criteria for usability testing (n=18) and qualitative user research (n=19); for the latter, participants were recruited until data saturation was achieved.

Ethical Considerations

The study protocol was approved by the Rutgers Newark Health Sciences Institutional Review Board (Pro2019001883) and the Ethical Review Board of the Nepal Research Health Council (NHRC; registration number 735/2019). Signed written informed consent was obtained from all participants by the research assistant at Dhulikhel Hospital. To ensure participant confidentiality, all documents including participant identifiers, such as the master list and consent forms, are stored separately in a locked cabinet and in a secure password-controlled Health Insurance Portability and Accountability Act (HIPAA)-compliant BOX folder. Only select research staff have access to the documents and folders containing participant identifiers and data. The participants (women with GDM and their spouses) received a mobile recharge card worth Nepalese rupees (NRs) 500 (US $3.77) to compensate for their time for the interview/focus group or usability testing.

App Development Stages

Prototype Development

A multidisciplinary team including experts in GDM, mHealth, and behavior and implementation sciences, as well as health care providers and patients at Dhulikhel Hospital, contributed to the development of the GDM-DH app. Content modules and features to be included in the app prototype were selected based on a literature review, theory-based behavioral strategies, discussions with subject matter experts, and international recommendations and guidelines (including the Package of Essential Noncommunicable [PEN] disease interventions for primary health care in low-resource settings) [30]. A series of meetings and a full-day workshop were conducted with the research team to select and finalize the features of the app prototype. During the meetings, app features were selected based on expected user needs, alignment with theory-based constructs for behavior change, and the logistical and economic feasibility of incorporating these features in the app. The meetings and deliberations spanned over several weeks until differences were resolved and consensus was reached.

Qualitative User Research

After finalizing the app’s content and features, a focus group and structured interviews were conducted to explore the perceived barriers to and facilitators of GDM management and to seek feedback on the GDM app prototype. A total of 12 women with a GDM diagnosis (either current or in the preceding 1 year) were recruited from Dhulikhel Hospital, 4 (33.3%) of whom participated in a focus group and the remaining 8 (66.7%) in structured interviews. KIIIs were also conducted with health care providers (n=5) and spouses of patients with GDM (n=2). All interviews were audio-taped and transcribed verbatim.
thematic analysis [31] of the interviews was performed to generate interview themes and memos.

The focus group and interviews explored the in-depth understanding of the target users’ views and opinions about GDM and its management, including knowledge and treatment gaps, perceived self-efficacy and barriers to GDM management, strategies to increase adherence to dietary/lifestyle management of GDM, and related social, cultural, and environmental factors. At the end of the focus group/Interviews, the participants were given a demonstration of the app’s wireframe prototype, which is a schematic illustration that shows the app’s proposed interface, navigation sequences, and features and function. Feedback was then solicited from patients/providers/spouses on (1) the app dashboard, layout, and navigation; (2) usefulness of app features; (3) data entry burden; (4) usefulness of educational modules covered (5) clarity of graphs and data visualizations; and (6) additional features and content.

Usability Testing
Incorporating and revising the app prototype based on user input, we built an MVP, the simplest-possible version of the GDM-DH app, which retained the key features and functionalities of the app. The MVP was user-tested with 18 patients with GDM via the think-aloud protocol [29]. Individual 1-on-1 usability testing sessions were conducted in a private space and overseen by 2 facilitators; 1 facilitator led the session, while a designated notetaker recorded patients’ verbalizations. Usability testing consisted of a 2-step think-aloud protocol [32], in which the patients were asked to verbalize their thoughts as they navigated and completed various specified tasks (eg, profile setup, diet entry, weight visualization review, open video lesson) on the app. Patients were also asked to rate the difficulty of completing each task on a 5-point scale ranging from very easy to difficult. Additionally, they were asked to provide feedback on how the features and functions of the app could be improved upon [33]. Content analysis [34] was used to analyze and summarize the notes and verbalizations from the think-aloud protocol.

Final GDM-DH App Development
The facilitators’ notes and observations from the usability testing were compiled and scanned for indicators of usability problems experienced by the patients, such as annoyance, doubt, confusion, and slow/incomplete task completion. Based on the findings of the usability testing and recommendations provided by patients with GDM, a list of recommended modifications was compiled and discussed with the app developer (Ayata Inc, Kathmandu, Nepal). The results were used by the app developer to address the key usability barriers and patients’ preferences/feedback and develop a final version of the GDM-DH app for testing in a pilot clinical trial.

Results
Prototype and Content Development
Based on discussions with subject matter experts over a series of conference calls and workshops, we decided that the GDM-DH app suite would have 2 components: a mobile app for patients and a web-based portal for health care providers and researchers. The features and functionalities of the GDM-DH app were guided by Bandura’s SCT [28], which was selected as it has been widely applied in the dietary/lifestyle management of chronic health conditions [35] and is shown to be a suitable framework for promoting healthy behaviors among pregnant women, including those with GDM [36,37]. We focused our intervention modules on the SCT constructs of self-efficacy (confidence in one’s ability to take action and overcome perceived barriers to a behavior change), self-regulation/self-control (ability to understand and manage feelings, behaviors, and actions to achieve goals), behavioral capabilities (knowledge and skills needed to perform a given behavior), reinforcements (responses to a person’s behavior that increase or decrease the likelihood of occurrences), and outcome expectations/expectancies (anticipated outcomes of a behavior and values a person places on the probable outcomes of a behavior) [38]. Behavior change techniques (BCTs) [39] for the GDM-DH intervention content were selected based on the published literature [40] that maps the BCTs with the SCT constructs for behavior change (eg, the BCT of information about health consequences aligns with the SCT construct of outcome expectations). The SCT constructs observational learning (acquiring a new behavior by watching someone else performing it and observing their outcomes) and environment (physically external factors that can influence a behavior) were not targeted, as it was not feasible to achieve them at this time using the mobile app.

Using the SCT framework for behavior change, we decided that the content and features included in the GDM-DH app would support self-management of GDM by (1) providing health education, (2) helping patients identify and set target health goals (eg, diet, physical activity, and glucose levels), (3) enhancing their self-efficacy to meet target goals, and (4) facilitating desired support from family members. In SCT, self-monitoring of behavior is the first and most important step in self-regulating appropriate behavior changes [28]. Self-monitoring is also known to be a powerful behavior change strategy for changing diet and physical activity [41]. Hence, we decided that the core features of the GDM-DH app would facilitate the users to record and self-monitor their blood glucose, blood pressure, carbohydrate intake, physical activity, and gestational weight gain (GWG). The app would use automatic feedback and data visualization to aid in self-monitoring, as well as innovative technological features to minimize the self-monitoring burden, including visual aids for estimating carbohydrate portion sizes and smartphone GPS and accelerometer sensors for obtaining physical activity data [42]. Health care providers would be able to use the web-based portal of the GDM-DH app to enter/review blood glucose readings, track patient progress, and accordingly guide treatment and counseling [42].

In many South Asian countries, women are not the sole health decision makers, with mothers-in-law and husbands having a strong influence on their health decisions during pregnancy [43-45]. Additionally, family members are closely involved in a pregnant woman’s food selection and preparation, thus influencing her dietary behaviors. Hence, the team decided that the GDM-DH app would be designed to garner social support.
from family members by allowing the patient to add friends and family members to the app, providing them with access to track and follow the patient’s progress toward stated goals.

Educational Modules

The educational content for the app was adapted from international recommendations and guidelines, including PEN disease interventions for primary health care in low-resource settings [30]. The topics covered information included on GDM and associated risk factors, short- and long-term health consequences of GDM for mother and child, clinical and lifestyle management of GDM, dietary and physical activity recommendations for GDM, the role of social support in GDM management, and the proper use of insulin and a glucometer. The educational materials for the app included text- and image-based materials written at less than an eighth-grade reading level and brief 5- to 10-minute videos narrated by the health care providers in Dhulikhel Hospital.

Qualitative User Research

Qualitative findings from the focus group and interviews, which have been described in detail previously [46], provided insight into the app content and features, as well as design elements that needed to be added or modified. Briefly, we identified several facilitators of GDM management, including at the individual level (eg, concern for the baby’s health), family level (eg, spousal accompaniment to hospital visits, emotional support), and health system level (eg, universal GDM screening, team approach to management). Notable barriers included inadequate time for diet/lifestyle counseling during hospital visits, an abrupt change in the diet/lifestyle from pre- to post-GDM diagnosis, misconceptions around diet and physical activity, and social/cultural barriers, including food-centered traditions and festivities and a lack of decision-making power in the household. The majority of patients with GDM and their spouses indicated that they lacked sufficient information to manage GDM and were frustrated by frequent hospital visits.

> They gave me a diet chart where it was written what to eat in the morning, daytime, and evening, but I didn’t receive any kind of other documents to read about my disease. [Patient with GDM on lack of information about GDM]

> They think that like hypertension or thyroid medication, if they start to take an insulin injection, they have to use it throughout their life, and they think it is required for serious conditions only...you know there are a lot of myths. [Provider on common misconceptions]

> There are traditions...you have to bless her and give her daid chiura; she has to eat many things. In that time, I think she ate curd and more sweet food; that is why earlier I think when I saw her last blood report, it was under control, but now again, it is all high. I think it is because she ate more during that time...these festivals...earlier too, her sisters came to bless, and she ate more curd and sweets, and again, she started eating rice instead of roti. So, I think that is why her blood sugar level is high again. [Spouse of a patient with GDM on social/cultural barriers to blood glucose management]

All participants agreed that the proposed mobile app and features would be useful and relevant to women with GDM. They believed it would help overcome existing barriers by empowering pregnant women with information and tools to manage GDM and track their progress.

> If we had seen this app before, I think we would have been able to control blood sugar levels, and we would have been able to plan. I think after seeing this, it would have helped, it would be useful. [Spouse of a patient with GDM on the GDM-DH mobile app]

> Just knowing that this app on its own records and tells you about your physical activity makes us alert...we will know how much more activity we need to do...it makes it easier. [Patient with GDM on the GDM-DH mobile app]

However, both patients with GDM and health professionals requested more content with respect to medical management and diet/lifestyle modification for GDM. Based on findings from the qualitative study, we changed some app features and design elements (eg, data visualization), in addition to modifying the educational materials and other resources to further tailor the GDM-DH app culturally. For example, the educational modules were revised to address specific cultural and social challenges faced by our patients (eg, food-centered festivals, long-held dietary/cultural practices surrounding pregnancy), and appropriate strategies were provided to problem-solve around these barriers. Based on our target users’ suggestions, we added example meal plans with locally available and culturally staple foods, video demonstrations of safe and culturally staple foods, video demonstrations of safe and culturally relevant exercises during pregnancy (eg, yoga, mild hiking, walking), and revised visual aids for carbohydrate estimation to include standardized pictures of staple Nepalese foods with common portion sizes shown in locally used utensils, such as plates, bowls, and cups.

Usability Testing

In total, 18 newly diagnosed patients with GDM participated in the usability testing [29] with the MVP. The mean age of patients in the usability testing was 28.8 (SD 3.3) years. All patients were married, and slightly more than half (n=10, 55.6%) were homemakers. The mean gestational age was 27.2 (SD 3.0) weeks, and the average number of years of schooling was 13.3 (SD 2.8) years. Results from the think-aloud protocol are described in Table 1. The mean usability score across the 10 tasks was 3.50 (SD 0.55; maximum score=5 for very easy). The task completion rates ranged from 55.6% (n=10) to 94.4% (n=17) across the 10 tasks, with the lowest completion rate for the task requiring the patients to look up their next scheduled appointment on the app. All patients except 1 (5.6%) were able to successfully complete tasks requiring them to enter their weight and systolic and diastolic pressure into the app.
Table 1. Usability testing of key important features of the GDM-DH\(^a\) app among target users (women with GDM\(^b\)) in Dhulikhel Hospital, Nepal (n=18).

<table>
<thead>
<tr>
<th>Usability testing task</th>
<th>Successful completion, n (%)</th>
<th>Very difficult, n (%)</th>
<th>Difficult, n (%)</th>
<th>Normal, n (%)</th>
<th>Easy, n (%)</th>
<th>Very easy, n (%)</th>
<th>Score(^c), mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter fasting blood glucose levels.</td>
<td>16 (88.9)</td>
<td>2 (11.1)</td>
<td>0</td>
<td>5 (27.8)</td>
<td>11 (61.1)</td>
<td>2 (11.1)</td>
<td>3.8 (0.6)</td>
</tr>
<tr>
<td>Enter postprandial blood glucose levels and view the glucose chart.</td>
<td>16 (88.9)</td>
<td>2 (11.1)</td>
<td>0</td>
<td>5 (27.8)</td>
<td>13 (71.2)</td>
<td>0</td>
<td>3.7 (0.5)</td>
</tr>
<tr>
<td>Enter the systolic blood pressure level.</td>
<td>17 (94.4)</td>
<td>1 (5.6)</td>
<td>0</td>
<td>6 (33.3)</td>
<td>10 (55.6)</td>
<td>2 (11.1)</td>
<td>3.8 (0.6)</td>
</tr>
<tr>
<td>Enter the diastolic blood pressure level and view the blood pressure chart.</td>
<td>17 (94.4)</td>
<td>1 (5.6)</td>
<td>0</td>
<td>5 (27.8)</td>
<td>13 (71.2)</td>
<td>0</td>
<td>3.7 (0.5)</td>
</tr>
<tr>
<td>Open a video on GDM nutrition.</td>
<td>16 (88.9)</td>
<td>2 (11.1)</td>
<td>0</td>
<td>2 (11.1)</td>
<td>3 (16.7)</td>
<td>12 (66.7)</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Add a friend or family member in the app.</td>
<td>12 (66.7)</td>
<td>6 (33.3)</td>
<td>1 (5.6)</td>
<td>4 (22.2)</td>
<td>5 (27.8)</td>
<td>7 (38.9)</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Enter weight.</td>
<td>17 (94.4)</td>
<td>1 (5.6)</td>
<td>0</td>
<td>0</td>
<td>4 (22.2)</td>
<td>12 (66.7)</td>
<td>2 (11.1)</td>
</tr>
<tr>
<td>Find out the daily step count from today.</td>
<td>12 (66.7)</td>
<td>6 (33.3)</td>
<td>1 (5.6)</td>
<td>3 (16.7)</td>
<td>6 (33.3)</td>
<td>7 (38.9)</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Figure out how many carbohydrates were consumed at breakfast today.</td>
<td>12 (66.7)</td>
<td>6 (33.3)</td>
<td>0</td>
<td>4 (22.2)</td>
<td>6 (33.3)</td>
<td>8 (44.4)</td>
<td>0</td>
</tr>
<tr>
<td>Find out when the next appointment is.</td>
<td>10 (55.6)</td>
<td>8 (44.4)</td>
<td>2 (11.1)</td>
<td>5 (27.8)</td>
<td>5 (27.8)</td>
<td>6 (33.3)</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\)GDM-DH: Garbhakalin Diabetes athawa Madhumeha—Dhulikhel Hospital.
\(^b\)GDM: gestational diabetes mellitus.
\(^c\)Patients were asked to rate the difficulty of completing each task on a 5-point scale ranging from 5 for “very easy” to 1 for “very difficult.” The mean (SD) score represents an average score for the corresponding task across all patients.

Modifications to the GDM-DH App After Usability Testing

Findings from the focus group, interviews, and usability testing were reviewed to identify recurring themes of feedback with respect to the GDM-DH app’s content, usability, navigation, and functionalities. These findings allowed us to gain insight into participants’ thought processes with regard to app use, places where they encounter difficulties, and ways to improve the app’s usability. As shown in Textbox 1, these themes served as valuable insights that were used by the app developer to address the key usability barriers and participants’ preferences/feedback and develop a final version of the GDM-DH app for testing in a pilot clinical trial. For example, considering that nearly half of the usability testing participants struggled in identifying their upcoming antenatal appointments, we decided that the upcoming appointments would be shown in a list, in addition to the calendar. Additionally, we included a comprehensive video tutorial on how to navigate the GDM-DH app and use its features. In the web-based portal, in addition to the features decided on by the research team and software development company, we incorporated new features requested by the providers, including a patient finder tool, data export customization, and additional analytics in the dashboard, such as the average number of antenatal visits per patient and the percentage of patients under medical therapy for GDM.
Textbox 1. Modifications requested and incorporated in the Garbhakalin Diabetes athawa Madhumeha—Dhulikhel Hospital (GDM-DH) app based on user research and usability testing among target users (women with gestational diabetes mellitus [GDM]) in Dhulikhel Hospital, Nepal.

Educational resources
- Use simple and clear language in educational resources, avoiding jargon and using terms understandable to the target users.
- Provide clear guidance on healthy food selections and appropriate portion sizes, including example meal plans with locally available foods.
- Clarify common misconceptions around diet and physical activity during pregnancy.
- Address specific cultural and social challenges faced by target users with respect to diet/lifestyle modification and provide appropriate strategies to problem-solve around those barriers.
- Add information about the signs and symptoms of hypoglycemia, along with practical strategies for effective management.
- Clarify criteria for when insulin or medication is indicated for GDM.
- Add examples of physical activity and exercise videos that are appropriate for pregnant women.
- Include information about contraindications for physical activity during pregnancy, including warning signs to stop exercising.
- Add an educational module on how family members can provide support to women with GDM.

App interface and features
- Use bigger font sizes; enlarge and make the images clearer.
- Revise the visual aids to include standardized pictures of common food portion sizes in locally used utensils, such as plates, bowls, and cups.
- Add reminders to input blood glucose, weight, diet, and blood pressure data.
- Use pop-ups to confirm data input and avoid double entries.
- Use bar graphs instead of line graphs to present blood glucose, weight, and blood pressure visualizations.
- Make glucose, weight, diet, and blood pressure data visible both as a list and in graphical format.
- Show upcoming appointments in a list, in addition to the calendar.
- Add the hospital hotline number under Help and Support.
- Include a video tutorial on how to navigate the GDM-DH app and use its features.

Web-based portal
- Include a patient finder feature to search for a patient quickly.
- Add a function to customize data export based on specific parameters and layout.
- Add dashboard analytics based on patient data (eg, average number of antenatal visits per patient, percentage of patients under medical therapy for GDM)

The decision to retain or disregard the requested modifications was based on their potential influence on behavioral and clinical outcomes, budget feasibility, the implementation time frame, and their potential impact on the app’s scalability in the future. For example, meal plans were added because they could be easily incorporated with minimal time and cost but would have maximal health gains. However, our target users also suggested that we add a feature to connect and chat with other app users with GDM, as well as a platform to communicate directly with health care providers via the app; these features were not added due to logistical, technical, and funding constraints but may be considered in the future.

Final GDM-DH App
Based on the SCT framework, the final version of our culturally tailored GDM-DH app supports GDM management by providing patient education, reinforcing regular blood glucose/carbohydrate/weight monitoring, increasing self-efficacy for diet/lifestyle modification, and facilitating clinical and social support. A detailed description and justification of the app features as well as their alignment with the SCT constructs are provided in Table 2.
Table 2. Description and justification of the GDM-DH\(^a\) app features designed for self-management and treatment of Nepalese women with GDM\(^b\).

<table>
<thead>
<tr>
<th>Feature and description</th>
<th>Rationale</th>
<th>SCT(^c) constructs</th>
</tr>
</thead>
</table>
| **Educational modules** | The level of knowledge about GDM is significantly associated with self-management efficacy and glycemic control [47-49]. It also facilitates better information retention as patients can go through the lessons at their own pace and revisit them at their convenience. | ● Self-efficacy
● Behavior capabilities
● Outcome expectancies |
| Educational modules consist of text- and image-based materials and brief videos covering various health and nutrition topics related to GDM and its management. | | |
| **Blood glucose monitoring** | Self-monitoring of glucose levels is associated with an increase in self-efficacy and better glycemic control [50]. Data visualizations increases patient awareness and helps health care providers with timely and informed clinical decision-making. | ● Self-regulation
● Self-efficacy |
| Blood glucose levels can be logged in for fasting and postprandial levels 3 times daily. These data are displayed in color-coded graphs (red and green bars for above- and within-target ranges, respectively). | | |
| **Carbohydrate monitoring** | It builds the user’s self-efficacy for understanding and changing their carbohydrate intake patterns. | ● Self-regulation
● Behavior capabilities |
| The app incorporates standardized pictures of local Nepalese foods with common portion sizes to help the user estimate and track calories and carbohydrate (grams) in their meals. | | |
| **Blood pressure monitoring** | Data visualization increases patient awareness and helps health care providers with timely and informed clinical decision-making. | ● Self-regulation
● Self-efficacy |
| Users can log/track their systolic and diastolic blood pressure. These data are displayed in color-coded graphs (red and green bars for above- and within-target ranges, respectively). | | |
| **GWG\(^d\)** | Weight monitoring builds the user’s self-efficacy for understanding and managing their GWG. | ● Self-regulation
● Self-efficacy |
| Based on weights entered by the user, the app creates a graph comparing the user’s weekly GWG rate with the recommended guidelines for optimal GWG, depending on the pre-pregnancy BMI. | | |
| **Physical activity** | It builds the user’s self-efficacy for understanding and changing their physical activity patterns. | ● Self-regulation
● Self-efficacy |
| The app integrates with the Google-Fit app to pull and graph physical activity data, including the step count. | | |
| **Appointment reminder** | The reminder system enables patient adherence to the antenatal care regimen [51]. | ● Reinforcement |
| The app has an in-built calendar, which the users can use to record and view upcoming antenatal appointments. | | |
| **Social network** | The app helps a user garner social support from friends/family and offers a source of accountability, motivation, and shared experience. | ● Reinforcement |
| Via a social network “follow” feature, the patient is able to list 1 or more friends/family members as contacts in the app and give them the permission to view their logged data or progress summary. | | |
| **Web -based portal** | It streamlines the providers’ workflow, as they can quickly look at patient data visualizations to understand patient behaviors and progress and accordingly guide their treatment and counseling. | ● Reinforcement |
| Health care providers can use the web-based admin portal to register a new patient, as well as enter, update, or review clinical and other patient-related information (glucose/blood pressure/weight/diet, clinical history/notes). | | |

\(^a\)GDM-DH: Garbhakalin Diabetes athuwa Madhumeha—Dhulikhel Hospital.
\(^b\)GDM: gestational diabetes mellitus.
\(^c\)SCT: social cognitive theory.
\(^d\)GWG: gestational weight gain.
Mobile App

The mobile app, which is patient facing, includes 6 feature icons on its home page: (1) Blood Glucose, (2) Food Intake, (3) Blood Pressure, (4) Weight, (5) Physical activity, and (6) Appointment (Figure 2). Using these features, the app allows patients to record and self-monitor their blood glucose, blood pressure, carbohydrate intake, physical activity, and GWG and track them over time. The app has a goal-setting feature and uses innovative technological features to minimize the self-monitoring burden, such as visual aids for carbohydrate estimation and integration with the Google-Fit app to automatically log physical activity data. Based on the data entered, the app provides automatic feedback about blood glucose, blood pressure, and GWG via a feedback engine that compares the user data to existing guidelines and recommendations. The app also generates visual displays summarizing their blood glucose, blood pressure, diet, physical activity, and weight patterns, allowing the user to easily monitor their alignment and progress toward target goals. In addition to the self-monitoring features, multimedia video- and text-based modules are included in the app as educational resources. The GDM-DH app also includes a social network “follow” feature, allowing the user to list 1 or more friends/family members as contacts in the app and give them the permission to view their logged data or progress summary. The app has an in-built calendar, which the users can use to record and view upcoming antenatal appointments.
Figure 2. Key app features of the GDM-DH app designed for self-management and treatment of Nepalese women with GDM. GDM: gestational diabetes mellitus; GDM-DH: Garbhakalin Diabetes athawa Madhumeha—Dhulikhel Hospital.

Web-Based Portal

The web-based portal can be securely accessed by researchers and health care providers from any device that supports modern web browsers. The web-based portal has features for patient management, data capture and review, and data dashboard/visualization. Health care providers can register a new patient; enter, update, or review clinical and other patient-related information (patient vitals, measurements, clinical notes, medications, etc); and schedule or make changes in appointments. Using Apache Kafka, the web-based portal syncs with the mobile app and allows providers to access data and graphs summarizing the patient’s diet, physical activity, weight, blood pressure, and blood glucose patterns. This streamlines the providers’ workflow and allows them to easily track patient progress and accordingly guide their treatment and counseling.
Researchers and admin users can use the web-based portal to add new users, add/update the app modules/images/visualization, and audit changes made by users.

Data Security
Data from the mobile app are stored in a HIPAA-compliant, secure server hosted by Amazon Web Services. MongoDB is used to implement the database service, which is a free, open source, non-Structured Query Language (no-SQL) database program tailored to support big data. It is encrypted and access-controlled using tokens to ensure it cannot be accessed outside the app. Apache Kafka is the core of the streaming service to ensure reliability, high availability, and scalability. All communications are transmitted using the Secure Sockets Layer (SSL) standard protocol, and data are encrypted at rest to ensure security. App access is controlled using a secure username-password combination.

Discussion
Principal Findings
Self-management of GDM is vital for controlling blood glucose levels and minimizing complications for both mother and baby [10,52]. In this paper, we described the design and development of GDM-DH, a culturally tailored GDM management app targeted for use among patients and health care providers in Nepal. Following the SCT framework [53], the GDM-DH app assists in self-management of GDM by enhancing the patients’ knowledge of and self-efficacy in adhering to blood glucose monitoring and recommended diet and physical activity regimens. With respect to the health care providers, the app’s web-based portal offers easy data visualization to track patient progress and treatment response, facilitating informed clinical decision-making at the point of care.

The growing literature highlights the importance of culturally tailoring health interventions, that is, adapting the intervention content and instructions according to the target users’ culture, diet, language, religion, customs, and beliefs [54-56]. Several studies [56-59], including systematic reviews [60], have found that culturally tailored programs and interventions are effective at improving disease knowledge, behavioral outcomes (eg, physical activity), access to care, and clinical outcomes, including glycated hemoglobin (HbA1C) levels in patients with diabetes. Our GDM-DH app development incorporated a user-centered design approach that actively involved end users and used ethnographic and human-computer interaction methodologies to better understand and meet their needs. The user-centered design approach is especially paramount to developing culturally tailored mobile interventions, ensuring app engagement, and promoting digital health equity in low-income countries, such as Nepal [54].

Although mobile technology has been widely applied and proven efficacious for self-management of diabetes outside of pregnancy [29,32,41,61], mobile app–based lifestyle interventions for GDM are just emerging, even in high-income countries [62-68]. To date, there are only a few published randomized controlled trials that have evaluated mobile app–based solutions for GDM management [63-68]. Two recent reviews [69,70] on app-based interventions for GDM concluded that most existing studies were of moderate quality and were underpowered to detect effects on perinatal outcomes but, overall, indicated improved glycemic control in the mobile intervention groups compared to standard care alone. However, most existing app-based interventions for GDM management focus on remote blood glucose monitoring, with manual feedback from health care providers [24,69,70], which can be resource intensive and burdensome for both providers and participants, thus limiting the potential for widespread dissemination and impact, particularly in low-resource settings, such as Nepal. Additionally, despite evidence showing that lifestyle and T2D interventions based on behavior change theory are more effective [71-73], we found only 2 studies [67,68] that incorporated relevant theories in their mobile intervention for GDM. Furthermore, only 2 studies [65,67] involved input from target users during app design and development, which is critical for ensuring the effectiveness and acceptability of evidence-based interventions [74].

Strengths
Our GDM-DH app overcomes existing limitations and represents an advance over previous mobile interventions for GDM as it provides a comprehensive solution for GDM management without the need for additional work from health care professionals and incorporates user-centered principles and theory-based BCTs to meet the specific needs and technological literacy of our target users. To the best of our knowledge, the GDM-DH app is also the first to contain a social support component by including a social network feature. Although the educational content and custom food tracker (and visual aids for calorie/carbohydrate estimation) in our GDM-DH app were specifically designed for our target population of Nepalese women, they can be easily adapted and scaled to other contexts and populations by applying similar user-designed principles.

Limitations
Several limitations of the GDM-DH app and its development process are worth mentioning. First, the number of participants in our usability study was limited. Additionally, during usability testing, we may have observed the best-case scenario for comfort and confidence in using the app, leading us to overestimate the true usability and technological proficiency. Second, we did not use a structured framework, such as the Delphi method [75], to organize and structure the discussions to guide our GDM-DH app and intervention development, which will make it difficult for others to replicate our study procedures. Nonetheless, we used many of the elements of the Delphi framework, including an iterative approach, the use of experts, and group-based responses. Similarly, although we did not use a structured framework to guide the modification and optimization of the GDM-DH app and intervention content, our prespecified criteria, including feasibility, scalability, and affordability, align with existing frameworks designed to optimize and evaluate an intervention prior to implementation (eg, multifase optimization strategy, or MOST [76], and Acceptability, Practicability, Effectiveness, Affordability, Spill-Over Effects, and Equity, or APEASE [77], criteria). Due to resource limitations, we were unable to address all the needs and
suggestions provided by our target users. For instance, the current version of the app has limited social support, but future versions could incorporate features such as a discussion forum to foster a stronger network and support system among users. The manual entry of blood glucose and blood pressure levels is also a limitation. Since the app was designed to address the cultural barriers and technological literacy of a specific population, generalizability is a potential issue, and adapting the app to other settings and contexts would require a similar level of user research and testing among the target populations. Large-scale cluster-randomized clinical trials at multiple urban and rural sites in Nepal are needed to establish the effectiveness and generalizability of the GDM-DH app to women with GDM across the country.

Future Research

In the future, we plan to further optimize the GDM-DH app by including Bluetooth-enabled data entry and advanced smartphone functionalities, such as multimedia push notifications, and gamification features, which have been shown to increase retention and improve engagement with mHealth interventions [78-80]. Push notifications enable on-the-go delivery of intervention content, providing the necessary trigger and reinforcement when the specific intervention is most needed or is most convenient for the user. Gamification (application of game elements) features provide entertainment and intrinsic/extrinsic motivation (eg, point scores, badges, levels, a leaderboard) to promote sustained engagement with the app [81-85].

Conclusion

The GDM-DH app targets specific needs identified by our target population in our pilot research and has unique features, including a social support feature, visual aids for carbohydrate estimation, and a comprehensive support system without imposing an additional provider burden. A proof-of-concept pilot clinical trial (NCT04198857) to study the feasibility, acceptability, and preliminary efficacy of the GDM-DH app is currently underway.

Acknowledgments

This project was supported by the National Institutes of Health/Fogarty International Center (grant #NIH 1R21TW011377-01).

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Authors' Contributions

Study concept and design were managed by SR; acquisition, analysis, and interpretation of data, AS (Aarthi Shanmugavel), PS, AS (Archana Shrestha), JN, AS (Abha Shrestha), J-FD, and SR; drafting of the manuscript and literature review, AS (Aarthi Shanmugavel) and SR; critical revision of the manuscript for important intellectual content, AS (Aarthi Shanmugavel), PS, AS (Archana Shrestha), JN, AS (Abha Shrestha), J-FD, and SR; and statistical analysis, JN and SR. All authors have read and approved the final manuscript.

Conflicts of Interest

None declared.

References

30. World HO. Package of essential noncommunicable disease interventions for primary health care in low-resource settings. World Health Organization. 2010. URL: [https://www.who.int/publications/i/item/9789241598996] [accessed 2023-12-20]

85. MacPherson MM, Merry KJ, Locke SR, Jung ME. Effects of mobile health prompts on self-monitoring and exercise behaviors following a diabetes prevention program: secondary analysis from a randomized controlled trial. JMIR Mhealth Uhealth 2019 Sep 05;7(9):e12956 [FREE Full text] [doi: 10.2196/12956] [Medline: 31489842]

Abbreviations

BCT: behavior change technique
GDM: gestational diabetes mellitus
GDM-DH: Garbhakalin Diabetes athawa Madhumeha—Dhulikhel Hospital
GWG: gestational weight gain
HIPAA: Health Insurance Portability and Accountability Act
KII: key informant interview
mHealth: mobile health
MVP: minimum viable product
PEN: Package of Essential Noncommunicable
SCT: social cognitive theory
T2D: type 2 diabetes
Original Paper

Preoperative Virtual Reality to Expose Patients With Breast Cancer to the Operating Room Environment: Feasibility and Pilot Case Series Study

Jordana L Sommer1,2, MA; Kristin Reynolds2,3, PhD; Pamela Hebbard4,5, MD; Michael S D Smith6, MSc; Natalie Mota3,7, PhD; W Alan C Mutch1, MD; Jessica Maples-Keller8, PhD; Leslie Roos2, PhD; Renée El-Gabalawy1,2,3,5,7, PhD

1Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
2Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
3Department of Psychiatry, University of Manitoba, Winnipeg, MB, Canada
4Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
5CancerCare Manitoba, Winnipeg, MB, Canada
6National Research Council Canada, Winnipeg, MB, Canada
7Department of Clinical Health Psychology, University of Manitoba, Winnipeg, MB, Canada
8Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States

Corresponding Author:
Jordana L Sommer, MA
Department of Anesthesiology, Perioperative and Pain Medicine
University of Manitoba
AE207 Harry Medovy House
671 William Avenue
Winnipeg, MB, R3E 0Z2
Canada
Phone: 1 204 787 4713
Email: sommerj@myumanitoba.ca

Abstract

Background: Clinically elevated preoperative distress and anxiety are common among patients undergoing cancer surgery. Preoperative interventions have been developed to mitigate this distress and anxiety but are inconsistent in efficacy and feasibility for broad implementation.

Objective: This preliminary pilot study aims to assess the feasibility and utility of a newly developed virtual reality (VR) intervention to expose patients awaiting breast cancer surgery to the operating room environment and a simulation of anesthetic induction.

Methods: Patients undergoing breast cancer surgery (N=7) were assigned to the VR intervention or control (treatment as usual) group and completed self-report measures of distress and anxiety before surgery, on the day of surgery, and after surgery (5 and 30 d postoperatively). Those in the intervention group trialed the VR simulation 1 to 2 weeks preoperatively and provided qualitative and quantitative feedback. We assessed the feasibility of recruitment capability and study design and evaluated participants’ impressions of the intervention using self-report rating scales and open-ended questions. We also descriptively examined distress and anxiety levels throughout the duration of the study.

Results: Recruitment occurred between December 2021 and December 2022 and progressed slowly (rate: 1 participant/7 wk on average; some hesitancy because of stress and being overwhelmed). All participants who consented to participate completed the entire study. All participants were female and aged 56 (SD 10.56) years on average. In total, 57% (4/7) of the participants were assigned to the intervention group. On average, intervention participants spent 12 minutes engaged in the VR simulation. In general, the intervention was rated favorably (eg, clear information, enjoyable, and attractive presentation; mean% agreement 95.00-96.25, SD 4.79-10.00) and as helpful (mean% agreement 87.50, SD 25.00). Participants described the intervention as realistic (eg, “It was realistic to my past surgical experiences”), impacting their degree of preparedness and expectations for surgery (eg,
“The sounds and sights and procedures give you a test run; they prepare you for the actual day”), and having a calming or relaxing effect (eg. “You feel more relaxed for the surgery”).

Conclusions: This preoperative VR intervention demonstrated preliminary feasibility among a sample of patients undergoing breast cancer surgery. Results and participant feedback will inform modifications to the VR intervention and the study design of a large-scale randomized controlled trial to examine the efficacy of this intervention.

Trial Registration: ClinicalTrials.gov NCT04544618; https://clinicaltrials.gov/study/NCT04544618

(JMIR Form Res 2024;8:e46367) doi:10.2196/46367

KEYWORDS
virtual reality; preoperative anxiety and distress; breast cancer surgery; anesthesia; feasibility; pilot

Introduction

Preoperative Distress
Preoperative distress, a situational emotional reaction (eg, fear, worry, and helplessness), is common among surgical patients [1,2]. Extant research has identified several adverse health-related perioperative outcomes of preoperative distress in both the presence and absence of a mental disorder [3-7]. In particular, patients undergoing cancer surgery experience clinically meaningful elevated rates of preoperative distress, ranging from 23% to 77% in recent research [8-10]. Preoperative distress is also associated with various adverse health-related outcomes for patients undergoing cancer surgery specifically, including increased postoperative pain, nausea, discomfort, and fatigue, among others [11-15]. In recognition of its detrimental impact, the National Comprehensive Cancer Network (NCCN) designated distress as the “6th vital sign” [16].

Preoperative Psychological Interventions
Receiving a cancer diagnosis is a significant and life-altering event, often intensified by the necessity for major surgical intervention and an uncertain health trajectory. In considering the adverse health implications of psychological distress, several preoperative interventions (eg, education, relaxation training, and stress management) have been developed that seek to improve psychological and physical functioning before surgery by establishing realistic expectations of the surgical process and helping patients cope with surgery-related uncertainty and distress [17-24]. However, the literature reveals conflicting evidence regarding the efficacy of many such interventions [17-23]. Importantly, the interventions that are supported by evidence require delivery by licensed health care providers [21,22] and often require multiple sessions, rendering them impractical for large-scale implementation, particularly within the constraints of a publicly funded health care system.

Virtual Reality Interventions
Virtual reality (VR) interventions have shown considerable promise in reducing psychological distress in nonsurgical contexts [25-30]. Research in this area has examined the effectiveness of VR exposure therapy for the treatment of anxiety and posttraumatic stress disorder [25,27,28,31-33], where the user virtually and systematically confronts feared content to overcome anxiety. Patients often prefer using VR for exposure therapy over traditional in vivo exposure [34,35], and it may also be more straightforward to administer. This innovative technology has also been gaining popularity in broader medical contexts and has shown promising results in pain management [36-40] and cognitive and physical rehabilitation among various medical populations [37,41-43]. In contrast to therapist-guided VR exposure used in mental health settings, which may be used as a component of one-on-one psychotherapy over a duration of months, VR interventions developed for use in medical settings do not typically require a specialized health care professional to administer and can often achieve desirable outcomes following a shorter duration of use [37,44-47].

Preparatory Interventions for Stress Exposure
In a preoperative context, VR could be used to psychologically intervene before patients develop clinically elevated distress and are affected by the adverse downstream effects of distress (while also targeting any existing distress about surgery). This is similar to stress inoculation training, a form of cognitive behavioral intervention, aimed at psychologically preparing individuals for future exposure to a stressful environment through preliminary exposure to elements of that environment [48]. This form of intervention has been adapted using VR technology [48-52], and preliminary evidence supports reductions in predeployment distress for military personnel using such interventions to prepare for combat [50,53,54]. In fact, similar methods have been applied to psychologically prepare patients before surgery, including operating room (OR) tours before surgery [55], given that the OR environment is noted as distressing for many surgical patients [3,56,57]. Although this intervention was associated with reductions in preoperative distress [55], it has limited feasibility for broad administration because of the infrequent availability of ORs for such purposes and the limited resources and personnel to implement this intervention.

Preoperative Applications of VR
The use of VR to expose patients to the OR environment and preoperative process resolves some of these limitations. A few studies have implemented such interventions to target preoperative distress and other perioperative outcomes, largely among pediatric patients (all but one of the identified studies) undergoing variable types of surgeries (eg, general, neurological, and plastics or ear, nose, and throat) [58-64]. Small-scale meta-analyses examining this literature support the initial efficacy of such interventions in reducing preoperative distress [65-67], although some studies have used VR distraction interventions (eg, using games or relaxation) as opposed to
exposing users to the OR environment. Importantly, this research is in its infancy, and only a few studies exist in this area to date, supporting the need for further exploration.

Gaps in the Literature

Although the preoperative VR interventions described in the preceding section demonstrate preliminary efficacy in mitigating preoperative distress and potential for broad implementation within the constraints of our health care system (ie, relatively low cost, do not require specialized professional training to administer, can be used repeatedly in different settings, translated into multiple languages, and adapted across surgery types), studies examining these interventions are not without limitations. First, most studies in this area have focused on samples of pediatric patients undergoing surgery; further research is needed to establish the efficacy of such interventions among adult patient samples. Second, no identified studies to date have evaluated a preoperative VR intervention using participants scheduled to undergo an oncological procedure, a population with elevated levels of preoperative distress [8-10]. Third, existing preoperative VR interventions have limited immersion capabilities (eg, lack of user embodiment [ie, the ability to visualize and manipulate virtual representations of the user’s body] and use of prerecorded virtual videos as opposed to a fully immersive virtual environment), which may weaken their impact on mitigating distress through reduced realism. Fourth, these studies lacked follow-up data beyond the acute postoperative phase (eg, <1 wk after discharge), which is needed to understand the long-term impact on postoperative recovery. Finally, many of these studies did not gather user feedback on the intervention, which is vital to help maximize the potential impacts of these interventions.

This Study

In light of these identified gaps, this study aims to assess the feasibility of, and preliminarily pilot (in case series format), a novel VR OR simulation targeting preoperative distress and anxiety among a sample of patients undergoing breast cancer surgery. Specifically, regarding feasibility, the aims are to assess recruitment capability and identify resulting sample characteristics, understand participants’ impressions of the study design and intervention, and evaluate data collection procedures and outcome measures. Finally, this study will also pilot-test the preliminary impact of the intervention on perioperative distress and anxiety in a case series format. The results of this study will inform modifications to the VR simulation and the design of a large-scale randomized controlled trial (RCT) to evaluate the efficacy of this intervention.

Methods

Overview

This study used a single-blind randomized design to assess the feasibility of and pilot the VR simulation to expose patients undergoing breast cancer surgery to the OR and preoperative process. This study represents an in-depth preliminary analysis of a larger pilot study (ClinicalTrials.gov; NCT04544618). Participants were assigned to the VR intervention group or the treatment-as-usual (control) group at the time of recruitment.

Randomization was stratified according to the type of breast cancer surgery (with vs without reconstruction) and whether neoadjuvant chemotherapy was received to enable equal proportions of participants with these characteristics across study groups; research demonstrates differences in distress levels according to these factors [68]. All participants completed self-report measures 1 to 2 weeks before surgery (ie, baseline; VR group participants tested the intervention at this time), on the day of surgery, 5 days after surgery, and 30 days after surgery. Notably, the initial planned design included a third study arm (ie, non–surgery-related VR; Nature Treks), which was ultimately dropped because of recruitment challenges. Ethical amendments were approved supporting this change (and others noted in the Recruitment Capability and Sample Characteristics section), and the trial registry has been updated accordingly.

Participants

We recruited a convenience sample of adult patients undergoing breast cancer surgery by describing the study at patients’ surgical oncology appointments and preoperative information sessions and circulating study posters. Interested patients provided their contact information to enable a telephone discussion with the research coordinator and eligibility screening (those viewing the poster contacted the coordinator directly). Participants were eligible if they were being scheduled to undergo breast cancer surgery under general anesthesia at the Health Sciences Centre (a tertiary care hospital in Winnipeg, Canada) and could speak and read English. Those unable to provide informed consent or unable to participate in a VR intervention (eg, owing to visual or auditory impairment) were excluded. Our initial target was to recruit 15 participants per group, with a study aim to evaluate recruitment capability.

Procedure

Participants randomized to the VR group trialed the intervention 1 to 2 weeks before surgery (baseline). Those in the control group received no additional intervention beyond their standard medical appointments and optional preoperative information sessions (offered to all patients). All participants completed self-report measures at baseline (those in the VR group received additional measures to assess intervention feedback). On the day of surgery, preoperative distress and anxiety were reassessed while the participants were in the preoperative holding area and again in the OR before anesthetic induction. At 5 days and 30 days after the operation, all participants were readministered a subset of the baseline measures, and those in the VR group provided additional intervention feedback at the 5-day postoperative assessment. The participants in the VR group completed baseline measures in person (at the time of the intervention), and all participants completed the day-of-surgery measures in person. All other measures were completed online through the web-based survey platform, Qualtrics (Qualtrics International Inc).

Intervention

A VR development team at the National Research Council of Canada, in collaboration with coauthors (RE and JLS), developed the VR OR simulation for use in this research (a
technical paper describing the simulation more in depth is in progress). The simulation development stages included creating an initial prototype based on the observation of surgeries and consultation with medical personnel, developing an anesthetic induction script based on example scripts provided by several anesthesiologists, integrating input from an anesthesiologist (WACM) on the initial prototype, and refining the platform through multiple iterations of feedback from coauthors. The VR simulation begins with the participant sitting on an examination table (reflected as the OR table in the simulation), wearing the VR head-mounted display, and holding the controllers (enabling user embodiment and visualization and manipulation of virtual arms). The participant is instructed to imagine it is their day of surgery, including how they might be feeling that day. The participant then spends at least 5 minutes exploring the virtual OR, which includes relevant machinery and equipment, personnel, sounds, and details such as a mammogram displayed on a computer screen. This free exploration is followed by a scripted portion, where the participant is instructed to lie supine on the virtual OR table and is taken through a mock anesthetic induction process led by the virtual anesthesiologist and nurse; the patient is prompted to answer questions similar to those they will be asked on the day of surgery (eg, name, date of birth, type of surgery, and allergies) and is virtually prepared with monitoring devices by the nurse (eg, blood pressure cuff, a pulse oximeter, and electrocardiogram stickers and electrodes). The simulation ends after the virtual oxygen mask is placed on the patient’s mouth and the screen darkens (refer to Multimedia Appendix 1). We used the Oculus Rift S VR system (Meta Platforms) with a cable connection to a laptop computer for the intervention administration.

Ethical Considerations
This study was approved by the University of Manitoba Health Research Ethics Board (#HS23957). All participants provided written informed consent before participation. No participant-identifying information was included with the study data. Each participant was assigned a study identification number, which was used to collate participant data over the study duration. All participants were provided with a CAD $25 (US $18.94) gift card after completing the study, and the cost of parking for those attending an intervention appointment was reimbursed.

Measures
Preoperative Distress
A total of 4 self-report measures assessed preoperative distress, including 2 preoperative-specific scales (Preoperative Intrusive Thoughts Inventory [PITI] and Amsterdam Preoperative Anxiety Information Scale [APAIS]) and 2 nonspecific visual analog scales (NCCN Distress Thermometer and adapted “Anxiety Thermometer”). The PITI and APAIS were only administered at baseline and on the day of surgery, whereas the Distress and Anxiety Thermometers were assessed at all 4 time points (and in the OR before induction). At the 5-day postoperative follow-up, the participants were asked which measure best captured their experience of distress or anxiety, which will inform the selection of the primary outcome measure for the upcoming RCT. At 5-day postoperative follow-up, they were also prompted to retrospectively rate their level of distress/anxiety from 0 (no distress/anxiety) to 10 (extreme distress/anxiety) corresponding to 8 different “events” ranging from prediagnosis (average level of distress/anxiety before receiving a cancer diagnosis) until the 5-day follow-up.

The PITI is a validated and reliable 20-item self-report measure of preoperative anxiety [69]. Items (eg, “I worry that I won’t wake up”) are rated on a 4-point scale, ranging from 0 (not at all) to 3 (most of the time). Summing the items yields a total score ranging from 0 to 60, where a score ≥15 indicates clinically significant preoperative anxiety [69]. The APAIS is a validated and reliable 6-item measure of preoperative anxiety [70]. Items (eg, “I am worried about the procedure”) are rated on a 5-point scale, ranging from 1 (not at all) to 5 (extremely). A total score is calculated by summing all items, ranging from 6 to 30, where a score ≥10 indicates clinically elevated preoperative anxiety [70]. The NCCN Distress Thermometer is a visual analog scale that resembles a thermometer, with a scale ranging from 0 (no distress) to 10 (extreme distress) [71]. This has been validated among several oncology samples [72,73]. Distress is rated using a “past-week” timeframe (modified to present time in the OR), and a cut-off score of 4 indicates clinically elevated distress [73]. Because of the common interchangeable use of the terms distress and anxiety within the perioperative and oncology literature and the lack of clear differentiation between these terms, we adapted the Distress Thermometer to create an Anxiety Thermometer.

VR Impressions and Feedback
Participants provided self-reported feedback on the VR simulation at 2 different time points. Feedback measures were developed in accordance with previous research [74]. After trialing the intervention, the participants were provided with a list of statements about their experience using the simulation (eg, “I found the VR intervention was helpful”), which they rated from 0% (completely disagree) to 100% (completely agree). The participants are also asked whether they experienced any motion sickness during the intervention (0 [none] to 3 [severe]), followed by open-ended questions prompting intervention impressions (eg, what they liked or disliked) and whether they found the intervention worthwhile. Finally, the participants were asked about additional elements they wished to include in the intervention and were offered multiple response options for selection (eg, being wheeled into the OR). At the 5-day postoperative follow-up, the VR participants provided additional intervention feedback (eg, overall impressions). The participants are then asked if or how they think the intervention impacted their surgery or recovery, whether they disliked anything about it, and if they have any other suggestions for improvements. The participants are prompted to elaborate on their responses to these questions.

Presence
The iGroup Presence Questionnaire [75] assessed the presence associated with the VR intervention at baseline, defined as the sense of being in the virtual environment. This valid and reliable (Cronbach α=.87) self-report measure is comprised of 14 items (eg, “I had a sense of acting in the virtual space, rather than
operating something from outside”), which are rated on a 7-point scale (−3 [fully disagree] to +3 [fully agree]). Items are summed to create 3 subscale scores (spatial presence, involvement, and realism), where higher scores indicate increased presence in the virtual environment.

Sample Characteristics

Participants self-reported their sociodemographic characteristics and health history at baseline, including age (assessed continuously), sex (female or male), marital status (single, married or common law, divorced or separated, or widowed), highest level of education (high school or less or some college or higher), stage of breast cancer, type of breast cancer surgery (eg, lumpectomy or single or double mastectomy with or without reconstruction), whether they are receiving chemotherapy before surgery, history of prior surgeries, mental health service use since receiving their cancer diagnosis, and history of receiving a mental health diagnosis. Various other self-report measures were administered throughout the study (eg, assessing depression, coping, and quality of life) to determine their feasibility for inclusion in the upcoming RCT (by calculating the proportion of missing data).

Analytic Strategy

Descriptive statistics assessed the consent rate, recruitment speed, attrition rate, and sample characteristics. We calculated the participation rate among the intervention and control groups, and we assessed quantitative and qualitative intervention feedback descriptively. We then calculated the proportion of missing data, and descriptive statistics determined which measure of preoperative distress or anxiety was rated most favorably. Finally, we presented participants’ levels of distress and anxiety across the perioperative period (baseline to 30-day follow-up) descriptively in a case series format.

Results

Feasibility Aims

Recruitment Capability and Sample Characteristics

Recruitment was initiated on December 1, 2021. Between initiation and December 1, 2022, a total of 14 prospective participants were identified (n=5, 36% were identified in the final 2 months of recruitment). Of these 14 individuals, 12 (86%) contacted the study coordinator directly, 1 (7%) had their information provided by a health professional, and 1 (7%) expressed interest while attending a preoperative information session (in-person sessions were suspended until November 2022). Of these 14 individuals, 7 (50%) consented and participated, 4 (29%) were ineligible (eg, required to isolate until surgery or already had surgery), and 3 (21%) withdrew after providing verbal consent but before providing written consent (reasons: n=1, 33% too many appointments and unable to focus on anything else; n=1, 33% unwilling to come in person to try the VR; and n=1, 33% overwhelmed with family responsibilities; n=2, 67% had been randomized to the initial third arm before dropping out). The approximate recruitment speed for those who consented was 1 participant every 7 weeks, on average. In total, 57% (4/7) of the participants were assigned to the intervention group. Of those who provided written informed consent, 100% (7/7) completed the study. Because of ongoing recruitment challenges, the study target population was broadened 5 months after the initiation of recruitment to include any patients undergoing cancer surgery, as opposed to patients undergoing breast cancer surgery only. To date, no patients undergoing non-breast cancer surgery have expressed an interest in participating.

The participants were aged 56.43 (SD 10.56) years on average, and all were female. The participants were most commonly married (3/7, 43%), and the majority (5/7, 71%) had some college education or higher. The breast cancer stage of patients was most commonly uncertain or unknown (4/7, 57%). The most common surgical procedure was lumpectomy (4/7, 57%), and 43% (3/7) of the participants were planning to undergo reconstructive surgery. Most participants (6/7, 86%) had not received chemotherapy before their surgery, and most participants (6/7, 86%) had ≥1 prior surgeries. A total of 57% (4/7) of the participants reported receiving a mental health diagnosis in their lifetime (depression, anxiety, or substance use disorder), and 29% (2/7) of the participants indicated that they sought professional mental health support after receiving their cancer diagnosis. Most participants (4/7, 57% to 6/7, 86%) had clinically elevated preoperative distress or anxiety at baseline (Table 1).
Table 1. Sample characteristics for patients undergoing breast cancer surgery participating in the feasibility and pilot study to evaluate preoperative virtual reality (n=7).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean (SD)</td>
<td>56.43 (10.56)</td>
</tr>
<tr>
<td>Sex (female), n (%)</td>
<td>7 (100)</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>2 (29)</td>
</tr>
<tr>
<td>Married or common law</td>
<td>3 (43)</td>
</tr>
<tr>
<td>Divorced or separated</td>
<td>2 (29)</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
</tr>
<tr>
<td>High school or less</td>
<td>2 (29)</td>
</tr>
<tr>
<td>Some college or higher</td>
<td>5 (71)</td>
</tr>
<tr>
<td>Stage of breast cancer, n (%)</td>
<td></td>
</tr>
<tr>
<td>Uncertain (0-1, 1-2, or other unknown)</td>
<td>4 (57)</td>
</tr>
<tr>
<td>Stage 1</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Stage 2</td>
<td>2 (29)</td>
</tr>
<tr>
<td>Type of surgery, n (%)</td>
<td></td>
</tr>
<tr>
<td>Lumpectomy</td>
<td>4 (57)</td>
</tr>
<tr>
<td>Single mastectomy without reconstruction</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Single mastectomy with immediate reconstruction</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Double mastectomy with immediate reconstruction</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Undergoing reconstruction, n (%)</td>
<td>3 (43)</td>
</tr>
<tr>
<td>Neoadjuvant chemotherapy, n (%)</td>
<td>1 (14)</td>
</tr>
<tr>
<td>History of prior surgery, n (%)</td>
<td>6 (86)</td>
</tr>
<tr>
<td>Sought professional mental health support since cancer diagnosis, n (%)</td>
<td>2 (29)</td>
</tr>
<tr>
<td>Lifetime mental health diagnosis, n (%)</td>
<td>4 (57)</td>
</tr>
<tr>
<td>Clinically significant preoperative distress or anxiety at baseline, n (%)</td>
<td></td>
</tr>
<tr>
<td>PITI\footnote{a}</td>
<td>4 (57)</td>
</tr>
<tr>
<td>APAIS\footnote{b}</td>
<td>6 (86)</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td>4 (57)</td>
</tr>
<tr>
<td>Anxiety thermometer</td>
<td>5 (71)</td>
</tr>
<tr>
<td>Intervention group, n (%)</td>
<td>4 (57)</td>
</tr>
</tbody>
</table>

\footnote{a}{PITI: Preoperative Intrusive Thoughts Inventory.}
\footnote{b}{APAIS: Amsterdam Preoperative Anxiety Information Scale.}

Participant Impressions of the Study Design and Intervention

All participants assigned to the control group completed the entire study. All participants assigned to the intervention group, who provided written informed consent, tested the intervention within 2 weeks before their surgery and completed the study. The participants in the intervention group spent 12 minutes engaged in the simulation, on average, and reported variable levels of presence while trialing the VR simulation (spatial presence: mean 8.75, involvement: mean 0.75, and realism: mean −2.50; refer to Table 2 for maximum ranges); the participants reported having a sense of being physically present in the virtual environment, with only partial attention devoted to the virtual environment, and moderate ratings of realism.
Table 2. Quantitative intervention impressions at baseline for patients undergoing breast cancer surgery assigned to the intervention group for the feasibility and pilot study evaluating preoperative virtual reality (VR; n=4).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR duration (min), mean (SD)</td>
<td>11.64 (1.08)</td>
</tr>
<tr>
<td>Presence: spatial presence subscale (maximum range: −15 to 15), mean (SD)</td>
<td>8.75 (3.30)</td>
</tr>
<tr>
<td>Presence: involvement subscale (maximum range: −12 to 12), mean (SD)</td>
<td>0.75 (1.26)</td>
</tr>
<tr>
<td>Presence: realism subscale (maximum range: −15 to 15), mean (SD)</td>
<td>−2.50 (3.70)</td>
</tr>
<tr>
<td>The way information was presented was clear and understandable (0%-100%), mean (SD)</td>
<td>95.00 (10.00)</td>
</tr>
<tr>
<td>I enjoyed my session with the VR program (0%-100%), mean (SD)</td>
<td>96.25 (4.79)</td>
</tr>
<tr>
<td>I could understand and act on the information provided by the program (0%-100%), mean (SD)</td>
<td>93.75 (7.50)</td>
</tr>
<tr>
<td>The program had a very attractive presentation (0%-100%), mean (SD)</td>
<td>95.00 (5.77)</td>
</tr>
<tr>
<td>I had to look for assistance when I used this program (0%-100%), mean (SD)</td>
<td>42.50 (43.49)</td>
</tr>
<tr>
<td>The VR program froze or stopped unexpectedly (0%-100%), mean (SD)</td>
<td>5.00 (10.00)</td>
</tr>
<tr>
<td>I found the VR intervention was helpful (0%-100%), mean (SD)</td>
<td>87.50 (25.00)</td>
</tr>
<tr>
<td>The VR intervention eased my anxiety/concerns about the OR(^a) (0%-100%), mean (SD)</td>
<td>55.00 (47.96)</td>
</tr>
<tr>
<td>The VR intervention eased my anxiety/concerns about the anesthesia (0%-100%), mean (SD)</td>
<td>60.00 (45.46)</td>
</tr>
<tr>
<td>The VR intervention eased my anxiety/concerns about my surgery (0%-100%), mean (SD)</td>
<td>46.25 (38.16)</td>
</tr>
<tr>
<td>The VR intervention worsened my anxiety/concerns about the OR (0%-100%), mean (SD)</td>
<td>37.50 (47.87)</td>
</tr>
<tr>
<td>The VR intervention worsened my anxiety/concerns about the anesthesia (0%-100%), mean (SD)</td>
<td>25.00 (28.87)</td>
</tr>
<tr>
<td>The VR intervention worsened my anxiety/concerns about my surgery (0%-100%), mean (SD)</td>
<td>30.00 (51.96)</td>
</tr>
<tr>
<td>Experienced motion sickness, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Participating in the VR intervention was worthwhile considering time commitment, n (%)</td>
<td>4 (100)</td>
</tr>
<tr>
<td>Other elements you would have liked to included, n (%)</td>
<td></td>
</tr>
<tr>
<td>Being wheeled into the OR</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Try on equipment (eg, oxygen mask) while engaged in the simulation</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Learn about the various machines I saw in the OR</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Ask the virtual anesthetist or nurse questions about my surgery</td>
<td>1 (25)</td>
</tr>
<tr>
<td>None of the above</td>
<td>2 (50)</td>
</tr>
<tr>
<td>Other (“real time pulse/heart rate”)</td>
<td>1 (25)</td>
</tr>
</tbody>
</table>

\(^a\)OR: operating room.

There were minor technical difficulties for all 4 participants during the simulation (eg, difficulty finding the correct position lying down when prompted by the VR nurse), and the program needed to be restarted midway for 2 of the participants. In general, the participants found that the intervention presented information clearly, was enjoyable, easy to understand, and had an attractive presentation (mean\(^\%\) agreement range: 93.75-96.25, SD range: 4.79-10.00). It was also generally rated as helpful (mean\(^\%\) agreement 87.50, SD 25.00), and all participants considered participating in the VR intervention worthwhile considering the time commitment. The participants gave mixed ratings at baseline regarding the impact of the intervention on anxiety and concerns about the OR, anesthesia, and surgery. Given a list of suggestions for elements to be added to the intervention, a single participant selected each of the following: (1) being wheeled into the OR, (2) learn about the machines I saw in the OR, (3) ask the virtual anesthesiologist or nurse questions about surgery, and (4) other: “real time pulse/heart rate.”

Regarding open-ended feedback, multiple participants commented on the realism of the intervention, the impact of the intervention on expectation formation regarding surgery, and the calming or relaxing effect of the intervention (Textbox 1).
Textbox 1. Qualitative intervention impressions for patients undergoing breast cancer surgery assigned to the intervention group for the feasibility and pilot study evaluating preoperative virtual reality (VR; n=4).

Open-ended feedback (at baseline)
- What did you like about the VR intervention
 - “It is very realistic”
 - “It was realistic to my past surgical experiences, it was interactive and could play a bit with it”
 - “What to expect”
 - “Just getting the feel of an OR” [operating room]
- What did you dislike about the VR intervention
 - “Nothing”
 - “Scary”
 - “The program calibrated my body position a few times and had to be reset which is why I was more present in the real world than in the VR world”
 - “Seemed like I was waiting for an hour until it told me to lie down”
- If you found it helpful: in what ways was the VR intervention helpful
 - “The sounds and sights and procedures give you a test run- prepares you for the actual day”
 - “Yes”
 - “Was helpful in that it reminded me of all the noises, lights, and people necessary in an OR”
 - “You feel more relaxed for the surgery”
- Explain why it was or was not worthwhile
 - “Gave me information and made me think of my feelings, made me feel better”
 - “I like to help with research and I’m curious about VR and mental health initiatives”
 - “Knowing what to expect”
 - “Think I can relax a bit now when it’s time for me to have my surgery”

Assessed 5 d after surgery
- Overall impression of the VR intervention
 - “It was very good, very real to life. I liked it”
 - “Head set didn’t work well”
 - “I had past surgery and it was familiar from memory and with current surgery experience”
 - “I thought it was a good way to help calm some of my fears”
- Elements from the OR that were missing from the VR which would have been helpful to include
 - “No I think they covered everything”
 - “If when they are putting stickers on etc. you would maybe lightly touch the spot”
 - “Not that I remember. I wasn’t paying much attention to what everyone was doing or the equipment”
 - “More condensed room, just focus on the 2 people in your face”
- Images or experiences from the VR intervention that stuck with you following the intervention
 - “No”
 - “The mask at the end”
 - “The nurse moved in on my too quickly and startled me because she was so close so suddenly”
 - “The lights”
- Components of in-hospital experiences on day of surgery that would have been helpful to include in VR
• “The waiting in the surgical admitting area. Sitting for a long time in a chair in the gown with IV pick in”
• “I didn’t get to wake up in the VR but it may be cool to wake up. You aren’t alone when they wake you up in case that unknown freaks people out”
• “The actual experience happened a lot quicker than the virtual experience. Speed up the simulation”

• How, if at all, do you think the VR simulation impacted your surgery or recovery
 • “It makes a person more relaxed in the operating room”
 • “Once they had me in the surgery room it was very fast”
 • “If I didn’t have past experience then it would have helped me a lot but I was already familiar”
 • “I believe it assisted me in that I was able to see the inside of an OR”

• Was there anything you disliked about the VR intervention (if yes, please describe)
 • “No”
 • “Sadly the program had to be reset a bunch of times because...the orientation was off. It brought me out of it”
 • “It was way too long just sitting there and waiting for something to happen”

• Suggestions regarding how we can improve the VR simulation
 • “No it was very informative”
 • “Have the room smaller and things not so far away. People need to be closer to you”

Data Collection Procedures and Outcomes Measures
Across all the time points, only 0.7% of the data were missing. Most participants (5/7, 71%) reported that, of the different measures assessing anxiety and distress, the PITI best captured their experiences.

Table 3. Participant characteristics.

| Participant ID | Group | Age (y)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Control</td>
<td>60s</td>
</tr>
<tr>
<td>P2</td>
<td>Control</td>
<td>60s</td>
</tr>
<tr>
<td>P3</td>
<td>Control</td>
<td>40s</td>
</tr>
<tr>
<td>P4</td>
<td>Intervention</td>
<td>60s</td>
</tr>
<tr>
<td>P5</td>
<td>Intervention</td>
<td>40s</td>
</tr>
<tr>
<td>P6</td>
<td>Intervention</td>
<td>50s</td>
</tr>
<tr>
<td>P7</td>
<td>Intervention</td>
<td>50s</td>
</tr>
</tbody>
</table>

P1: Control

P2: Control

P3: Control

P4: Intervention

P5: Intervention

P6: Intervention

P7: Intervention

Mental health history

P1: None

P2: Depression

P3: None

P4: None

P5: Depression

P6: Depression and anxiety

P7: Depression and substance use disorder

Overview
Table 3 outlines the sample characteristics, and Table 4 outlines the perioperative levels of distress and anxiety of the participants in the control and intervention groups.

Table 3.

Participant ID	Group	Age (y)	Current surgery	Prior surgery	Mental health history
P1 | Control | 60s | Lumpectomy | None | None |
P2 | Control | 60s | Lumpectomy | Single mastectomy (>10 y ago) | Depression |
P3 | Control | 40s | Double mastectomy with immediate reconstruction | Broken arm and appendectomy | None |
P4 | Intervention | 60s | Lumpectomy | “Replacements” and “abnormal cell removals” | Mental health leave (no diagnosis) |
P5 | Intervention | 40s | Single mastectomy with immediate reconstruction | Thyroid surgery >5 y ago | None |
P6 | Intervention | 50s | Lumpectomy | Lumpectomy, fibroids removed, hysterectomy, cervix and ovaries removed, and deviated septum repair | Depression and anxiety |

P7: Intervention

Age range.
Table 4. Perioperative distress or anxiety for patients ongoing breast cancer surgery participating in the feasibility and pilot study to evaluate preoperative virtual reality.

<table>
<thead>
<tr>
<th>Participant ID, group, and measure</th>
<th>Perioperative distress or anxiety<sup>a</sup></th>
<th>Clinically elevated<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Preoperative</td>
</tr>
<tr>
<td>P1: control group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITI<sup>d</sup> total</td>
<td>13.00</td>
<td>7.00</td>
</tr>
<tr>
<td>APAIS<sup>d</sup> total</td>
<td>10.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Anxiety thermometer</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P2: control group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITI total</td>
<td>26.00</td>
<td>32.00</td>
</tr>
<tr>
<td>APAIS total</td>
<td>13.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td>3.00</td>
<td>6.50</td>
</tr>
<tr>
<td>Anxiety thermometer</td>
<td>3.00</td>
<td>6.50</td>
</tr>
<tr>
<td>P3: control group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITI total</td>
<td>42.00</td>
<td>37.00</td>
</tr>
<tr>
<td>APAIS total</td>
<td>19.00</td>
<td>17.00</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td>8.00</td>
<td>9.00</td>
</tr>
<tr>
<td>Anxiety thermometer</td>
<td>9.00</td>
<td>9.00</td>
</tr>
<tr>
<td>P4: intervention group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITI total</td>
<td>10.00</td>
<td>12.00</td>
</tr>
<tr>
<td>APAIS total</td>
<td>11.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td>6.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Anxiety thermometer</td>
<td>6.00</td>
<td>3.00</td>
</tr>
<tr>
<td>P5: intervention group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITI total</td>
<td>47.00</td>
<td>40.00</td>
</tr>
<tr>
<td>APAIS total</td>
<td>21.00</td>
<td>24.00</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Anxiety thermometer</td>
<td>10.00</td>
<td>9.00</td>
</tr>
<tr>
<td>P6: intervention group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITI total</td>
<td>11.00</td>
<td>10.00</td>
</tr>
<tr>
<td>APAIS total</td>
<td>9.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td>3.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Anxiety thermometer</td>
<td>4.00</td>
<td>3.00</td>
</tr>
<tr>
<td>P7: intervention group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITI total</td>
<td>43.00</td>
<td>49.00</td>
</tr>
<tr>
<td>APAIS total</td>
<td>21.00</td>
<td>22.00</td>
</tr>
<tr>
<td>Distress thermometer</td>
<td>7.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Anxiety thermometer</td>
<td>7.00</td>
<td>9.00</td>
</tr>
</tbody>
</table>

^aValues represent total scores on each measure at each time point.

^bValues represent the number of times a score is clinically elevated across the total number of measurements.

^cOR: operating room.

^dPITI: Preoperative Intrusive Thoughts Inventory.

^eN/A: not applicable; PITI and Amsterdam Preoperative Anxiety Information Scale are specific to the preoperative period and were not administered.
in the OR or during the postoperative phase.

APAIS: Amsterdam Preoperative Anxiety Information Scale.

Missing data because of surgery scheduling change.

Retrospective Reports of Distress or Anxiety

As shown in Figure 1, among the control group, ratings of distress/anxiety remained stable (P1) or increased (P2 and P3) between baseline (within 2-wk preoperatively) and being in the OR on the day of surgery. Among the intervention group, ratings decreased between baseline (within 2-wk preoperatively; when VR was administered) and being in the OR for 50% (2/4; P4 and P5) of the participants.

Figure 1. Retrospective reports of distress/anxiety among the control group and intervention group for patients undergoing breast cancer surgery participating in the feasibility and pilot study to evaluate preoperative virtual reality (VR). Blue guidelines outline the period between when the intervention group trialed the VR and participants’ day of surgery.

Discussion

Overview

To our knowledge, this is the first study to date to examine the feasibility of, and preliminarily pilot, a novel preoperative VR intervention exposing patients undergoing breast cancer surgery to the OR and preoperative process. Overall, despite some recruitment challenges, the intervention was generally rated favorably and described, on average, as 87.5% (SD 25.00%) helpful by participants. The results of this study will inform modifications made to the VR intervention and the study design of an upcoming RCT evaluating this intervention.

The newly developed VR intervention exposed patients undergoing breast cancer surgery to the OR environment (including machinery, sounds, personnel, and other medical items [eg, surgical tools and mammogram]) and preoperative process (from being seated on the OR table until completion of anesthetic induction). The simulation was developed to mimic the real-life OR and preoperative experience based on a large tertiary care hospital in Winnipeg, Manitoba. Compared with other recently developed preoperative VR interventions [58-64], this was designed to be more immersive through the integration of user embodiment (including visualization of one’s virtual body and real-time manipulation of virtual arms) and is one of the few interventions designed for adult use and the only such intervention developed and tested in Canada.

Although some technical difficulties arose during the intervention (eg, simulation needing to be restarted and slight delay in progression because of imprecise positioning of participant arm or body), likely detracting from immersion, the participants described the intervention as realistic and commented on its impact on feeling more prepared or knowing what to expect for surgery and feeling more relaxed or calm about their upcoming surgery. The participants also rated the intervention favorably in terms of enjoyment, clarity of information, attractiveness, and helpfulness. Although the sample size of this study limits our ability to establish trends regarding the impact of the intervention on distress and anxiety, the participants rated 46% to 60% agreement (SD range 38.16%-47.96%), on average, that the intervention eased their anxiety, and for half of the intervention group participants (2/4, 50%), retrospective ratings of distress/anxiety declined between trialing the intervention and being in the OR. Notably, the participants also rated 25% to 38% (SD range 28.87%-51.96%) agreement, on average, that the intervention worsened their anxiety (immediately postintervention), although they did not indicate this when providing feedback postoperatively. This may suggest the activation of the “fear structure” within the simulation, which is noted as an important component of anxiety-based exposure interventions [76].
Although preliminary data support the feasibility of the VR intervention, we encountered challenges regarding recruitment for the study. This may have been impacted by various factors including changes to surgical scheduling during the COVID-19 pandemic (noted in recent research on patients with cancer [77]), prospective participants’ reported feelings of being overwhelmed and stressed by their own health or other commitments, and a strained health care system resulting in reduced resources to support recruitment (including canceling in-person preoperative information sessions for 10 months during the recruitment period, where recruitment was planned to take place). As noted, recruitment began improving over the final 2 months of the recruitment period, wherein 80% (4/5) of the individuals who expressed interest in the study provided consent to participate. Although speculative, this may suggest an impact of the changing centrality of the pandemic on recruitment capability. Interestingly, most participants (6/7, 86%) had a history of prior surgeries, which could have resulted in an increased willingness to participate. It may be worthwhile to consider modifications to our recruitment poster (eg, including the rationale for the intervention) to entice participation from those who have not undergone prior surgery. The study design elements, including data collection, intervention engagement, and participant retention, appear feasible based on the current data.

Strengths and Limitations

Despite the strengths of this study, including the novel preoperative VR intervention integrating user embodiment, evaluation of the feasibility of this intervention in a population with elevated estimates of clinically significant distress [8-10], collection of qualitative and quantitative intervention feedback, and inclusion of 2 iterations of postoperative follow-up data (5 and 30 days postoperatively; to be evaluated in an upcoming larger study), this study is not without limitations. First, recruitment challenges limited our sample size for this initial study; however, these challenges provided important information regarding the feasibility of implementing a larger study in the future. Second, there were a few technical difficulties encountered when administering the VR intervention, detracting from user immersion. Finally, although not directly investigated, distress in this population (and assessed using nonspecific measures) is likely to be influenced by many factors in addition to surgery. This particular intervention may not be very beneficial or impactful for those with primarily non–surgery-related distress.

Implications

Importantly, these limitations, along with the data collected as part of this study, provide important insights to inform modifications to the intervention and study design before the implementation of a large-scale RCT to evaluate the efficacy of this intervention. Regarding recruitment, we will consider ways to target enhancing the involvement of health care professionals in spreading awareness of the study to potentially eligible patients while continuing to attempt recruitment at the newly reinstated in-person preoperative information sessions. In addition, we will consider including additional information about the intervention (and thus removing participant blinding) as part of the recruitment process. Changes to consider for the VR simulation include modifying requirements for the user’s body positioning to avoid unnecessary interruptions and potentially adding elements that participants noted would have been helpful (eg, the opportunity to learn about OR machines and ask questions to the virtual anesthetist or nurse). On the basis of participant feedback, this intervention has the potential to reduce levels of preoperative distress/anxiety by helping participants form more realistic expectations of the day of surgery before their operation (thus potentially reducing their perception of threat associated with the preoperative experience and enhancing their perceived ability to cope with this stressor).

In line with recommendations based on other VR exposure-based interventions [78], having repeated exposure to the simulation may enhance the potential impact on mitigating distress/anxiety. Thus, it may be beneficial to assess the utility of providing participants with a 2D “screen-capture” video recording of their VR trial to watch on their own device multiple times in between trialing the intervention and their surgery. This may be an important avenue for future research evaluating this intervention.

Overall, this study established the initial feasibility of a novel preoperative VR intervention to expose patients undergoing breast cancer surgery to the OR and anesthetic induction process. These results will inform the study design of an upcoming large RCT to further examine this intervention. Participant feedback supports the utility and acceptability of this intervention and will inform future adaptations to the simulation. If demonstrated as efficacious in upcoming research, this intervention has the potential to be adapted across multiple surgery types and implemented on a broad scale to help mitigate preoperative distress.

Acknowledgments

The authors acknowledge Gabrielle Logan and Bronwen Grocott for their contributions to this research and Catherine Proulx and Vincent Gagnon Shaigetz for their contributions to the development of the virtual reality software. This study received funding from the Canadian Institutes of Health Research Canada Graduate Scholarship-Doctoral Award, University of Manitoba Graduate Fellowship, University of Manitoba Sheu L Lee Family Scholarship in Oncology Research, Women’s Health Research Foundation of Canada Graduate Scholarship, National Register for Health Service Psychologists Doctoral Award (Sommer), University of Manitoba Start-Up Funds, and Tri-Agency New Frontier’s in Research Grant (El-Gabalawy).

Data Availability

Data access is restricted to protect the confidentiality of participants and in light of ongoing research to expand the data set.
Conflicts of Interest

None declared.

Multimedia Appendix 1

Virtual reality simulation screen captures.

References

Abbreviations

APAIS: Amsterdam Preoperative Anxiety Information Scale
NCCN: National Comprehensive Cancer Network
OR: operating room
PITI: Preoperative Intrusive Thoughts Inventory
RCT: randomized controlled trial
VR: virtual reality

Edited by A Mavragani; submitted 08.02.23; peer-reviewed by W Trapp; comments to author 27.10.23; revised version received 16.11.23; accepted 04.12.23; published 17.01.24.

Please cite as:
Preoperative Virtual Reality to Expose Patients With Breast Cancer to the Operating Room Environment: Feasibility and Pilot Case Series Study
JMIR Form Res 2024;8:e46367
URL: https://formative.jmir.org/2024/1/e46367
doi:10.2196/46367
PMID:38231570

https://formative.jmir.org/2024/1/e46367
JMIR Form Res 2024 | vol. 8 | e46367 | p.274
(page number not for citation purposes)
Educational Video Intervention to Improve Health Misinformation Identification on WhatsApp Among Saudi Arabian Population: Pre-Post Intervention Study

Ebtihal Alsaad¹,²*, DDS, MSc; Sharifah AlDossary¹,²*, MSc, PhD
¹Department of Health Informatics, College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
²King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
*all authors contributed equally

Corresponding Author:
Ebtihal Alsaad, DDS, MSc
Department of Health Informatics
College of Public Health and Health Informatics
King Saud bin Abdulaziz University for Health Sciences
Al Haras Al Watani St
Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Ar Rimayah, Riyadh
Riyadh, PO Box 3660/ 11481
Saudi Arabia
Phone: 966 114299999
Email: ebtihalalsaad@gmail.com

Abstract

Background: Health misinformation can adversely affect individuals’ quality of life and increase the risk of mortality. People often fail to assess the content of messages before sharing them on the internet, increasing the spread of misinformation. The problem is exacerbated by the growing variety of digital information environments, especially social media, which presents as an effective platform for spreading misinformation due to its rapid information-sharing capabilities. Educational interventions have been developed to help consumers verify the validity of digital health information. However, tools designed to detect health misinformation on social media content have not been validated. Given the increased use of social media platforms, particularly WhatsApp, it is crucial to develop tools to help consumers assess the credibility of messages and detect misinformation.

Objective: The main objective of this study is to develop and assess an educational tool aimed at educating consumers about detecting health misinformation on WhatsApp. The secondary objective is to assess the association between demographic factors and knowledge levels.

Methods: The study used a single-arm, pre-post intervention design to evaluate the effectiveness of an educational video in improving participants’ ability to detect health-related misinformation in WhatsApp messages. In the first phase, an educational video intervention was developed and validated. In the second phase, participants were invited to complete a web-based survey that consisted of pre-evaluation questions, followed by the educational video intervention. Subsequently, they were asked to answer the same questions as the post-evaluation questions.

Results: The web-based survey received 485 responses. The completion rate was 99.6% (n=483). Statistically significant associations existed between knowledge level and age, gender, employment, and region of residence (P<.05). The video intervention did elicit a statistically significant change in the participants’ abilities to identify misinformation in WhatsApp messages (z=-6.887; P<.001). Viewing the video was associated with increased knowledge about the following concepts: checking the “forwarded” label (P<.001), looking for spelling and grammatical errors (P=.001), analyzing the facts (P=.03), checking links (P=.002, P=.001), and assessing the photos and videos (P<.001). There was a statistically significant difference in knowledge level before and after the intervention (P<.001).

Conclusions: This study developed and evaluated the effectiveness of an educational video intervention to improve health misinformation identification on WhatsApp among the Saudi Arabian population. The results indicate that educational videos can be valuable tools for improving participants’ abilities to identify misinformation. The outcomes of this research can contribute to our understanding of what constitutes an effective tool for enhancing health misinformation awareness. Such interventions can play a crucial role in combating the spread of misinformation on social media platforms.
may be particularly useful in combating misinformation among Arabic-speaking populations on WhatsApp, which may ultimately improve eHealth literacy. Limiting the prevalence and impact of misinformation allows people to make better-informed health decisions.

(JMIR Form Res 2024;8:e50211) doi: 10.2196/50211

KEYWORDS
misinformation; education; WhatsApp; intervention; pre-postintervention design; health literacy; educational; video; videos; consumer; consumers; patient education; survey; surveys; web-based information; health information; reliability; accuracy; reliable; social media

Introduction

Background

Researching health problems and learning about health via the internet has become a prevalent practice [1]. The level of credibility of this health-related information and the way it is used by patients, caregivers, and other health consumers have garnered the attention of health care providers and authorities [2]. There are many inaccurate sources of information on the internet, and this can lead to users becoming misinformed. According to Chou et al [3], health misinformation is defined as any health-related factual claim that is false according to recent scientific evidence. Misinformation about health can adversely affect quality of life and even increase one’s mortality risk [1].

When the COVID-19 pandemic first started, the amount of information related to this new global pandemic increased at an unprecedented rate. The volume of information, as well as the rate at which new information appeared, increased rapidly [4]. Global pandemics such as COVID-19 are likely to lead to the increased spread of misinformation as people explore massive amounts of information about the disease and its health implications. The term “infodemic” is used to describe the current media environment, which is characterized by an overflow of both true and false information. During the pandemic, individuals generally look for accurate, unbiased information, but these sources may be hidden among misinformation spread through the infodemic [5].

Due to its capacity to rapidly disseminate information, social media can serve as a platform for the propagation of misinformation. The abundance of available information can lead to the predominance of misinformation, thus negatively affecting cognitive, logical, and decision-making capacities. WhatsApp, Twitter, and Facebook are the most commonly used social media platforms for spreading false information. Since the beginning of the COVID-19 pandemic, internet use has expanded worldwide, which has resulted in the proliferation of incorrect information via social media [6].

Saudi Arabia, with a population of over 35 million, is the second largest Arab country [7]. The COVID-19 pandemic has had a significant impact on internet usage in Saudi Arabia, with a reported increase to 91.2% (n=28,775,889) in 2020. This represents a rise of 2.6 percentage points compared to the previous year [8]. Alshareef and Alotiby [6] used a web-based survey to investigate the most widely used social media platforms in Saudi Arabia, the proportions of Saudi Arabians who used these platforms to share information, and these users’ perceptions of the medical information shared on these platforms. According to their survey results, WhatsApp was used by 52.4% (n=144) of health care workers and 51.3% (n=500) of non–health care workers to circulate information. The findings of their study concluded that WhatsApp is the most commonly used social network among Saudi Arabians. COVID-19–related information is, therefore, more likely to be shared on this application [6].

Another study by Alasmari et al [9] found that social media platforms, with their capacity to quickly disseminate information, comprised the primary source of falsehoods spread in the community. Based on an examination of the social media platforms, the study revealed that WhatsApp users accounted for approximately 46% (n=41) of rumor sources on the internet in Saudi Arabia.

Additionally, research by Tan et al [10] examined daily WhatsApp use for receiving, forwarding, or discussing COVID-19–related content a in 1-week period. The results indicate that almost every respondent participated in conversations about COVID-19. However, users were more likely to share or receive forwarded messages than to engage in active, original conversations about COVID-19. A high volume of forwarded messages was observed; this is concerning because the developers of WhatsApp have linked forwarded messages with misinformation.

People rarely assess the content of messages before sharing them on social media platforms, and they frequently fail to verify whether the messages are accurate. Educating consumers about identifying misinformation and dealing with the infodemic is essential. The false information epidemic compromises public health as misinformation spreads throughout social media. It is critical to increase awareness about the nature of social media and how to use it effectively. Personal responsibility is the first and most crucial step in safeguarding our community from the harmful phenomena of misinformation [11].

To effectively access health-related information on the internet, consumers must be able to assess the quality of the information that they find. This is a crucial aspect of eHealth literacy. It remains difficult for digital health consumers to determine the quality of the information placed in front of them. The problem becomes more complex as the digital information environment becomes more complicated and heterogeneous, especially with the rise of social media, where anyone can spread information about health and where low-quality and misleading information
The choice of the intervention media was guided by the cognitive theory of multimedia learning, which is built from the cognitive load theory and states that working memory contains 2 channels for acquiring and processing information: an auditory or verbal channel and a visual or pictorial channel. Although each channel has a limited capacity, the 2 can be used together to integrate new information more easily. Working memory can function at its best when both channels are used. However, 1 or both channels can become overloaded by a heavy cognitive load. It is possible to improve learning through the use of multimedia learning materials that manage the cognitive load across both channels. Furthermore, the cognitive theory of multimedia learning states that any learning should involve cognitive processing to be meaningful. Cognitive processing requires a learner to pay attention to the material presented, organize it mentally, and integrate it into prior knowledge [23].

Objectives

The main objective of this study is to develop and assess an educational tool aimed at educating consumers about detecting health misinformation on WhatsApp. The secondary objective is to assess the association between demographic factors and knowledge levels.

Methods

Study Design

The study used a single-arm, pre-post intervention design to evaluate the effectiveness of educational video in improving participants’ ability to detect health-related misinformation in WhatsApp messages. The study’s first phase was developing and validating an educational video intervention. In the second phase, participants were invited to complete a web-based survey that contained pre-evaluation questions, the intervention, and postevaluation questions.

Participants

A web-based survey was distributed among the general Saudi population from November 24 to December 25, 2022. The survey was disseminated through social media networks (WhatsApp, Instagram, Twitter, Facebook, and Telegram), and the data were collected using Google Forms. It has been estimated that 82% (n=29.50 million) of Saudis use social networks daily, with varying usage rates among different platforms. Among these platforms, WhatsApp is the most widely used social network with 87.4% (n=30.67 million) of internet users in Saudi Arabia, followed by Instagram (n=27.40 million, 78.1%), Twitter (n=25.23 million, 71.9%), Facebook (n=22.25 million, 63.4%), and Telegram (n=20.88 million, 59.5%) [24]. In order to target a wide range of the population, the web-based survey was disseminated across all of these social media platforms.

The study population consisted of social media users in the general population of the Kingdom of Saudi Arabia. The inclusion criteria were (1) having the ability to complete an anonymous survey questionnaire on the internet, (2) being at least 18 years of age, and (3) understanding Arabic.
The sample size was calculated using the Raosoft sample size calculator, based on the total population of Saudi Arabia (n=35,013,414), with a 95% CI [7,25]. This calculation yielded a minimum sample size of 385 using absolute error or precision of 0.05. This sample size is sufficient to detect a difference between pre and postscore with an effect size of 0.15 (small effect size) using a power of 80% and α of .05.

The study population was targeted using a convenience sampling technique with no predetermined sampling frame. Convenience sampling is a nonprobability method in which individuals are sampled simply because they are “convenient” data sources [26].

Several specific methods were used for the recruitment process. First, as there are social accounts run by the public to share news and announcements related to each region in Saudi Arabia, the survey was distributed to these public social networking groups on various social media platforms. Second, the researchers approached social media influencers on different platforms to spread the survey to more participants. Third, the researchers asked all their social media contacts to consider completing the survey and sharing it with their contacts on social networks.

The web-based survey had 4 sections. In the first section, the participants were asked to provide demographic information. In the second section, they were given a set of pretest questions asking them to identify whether a WhatsApp message contained correct or false information. In the third section, the participants were shown an educational video. After finishing the video, the participants moved to the last section, which contained the same set of questions as the pretest.

There were no records of participant identity, and confidentiality was ensured. Upon completion of the survey, a message of thanks appeared. No incentives were offered for completing the survey.

Intervention (Educational Video)

Educational Video Design

This study used a short video intervention. The content of the educational video was developed based on three sources: (1) the recommendations on WhatsApp’s official website regarding how to prevent the spread of misinformation; (2) the World Health Organization’s (WHO’s) advice on how to navigate the infodemic and identify misinformation; and (3) the CRAAP test, a tool for evaluating the quality of a social media source by assessing its currency, relevance, authority, accuracy, and purpose [27-29]. The educational tool introduced 6 concepts that could be used to assess and identify misinformation in WhatsApp messages. These concepts included checking the “forwarded” label, looking for spelling and grammatical errors, reading beyond the headline, analyzing the facts, checking links, and assessing photos and videos (Table 1).

Table 1. Concepts used in the video to evaluate and identify misinformation in WhatsApp messages.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check the “forwarded” label</td>
<td>WhatsApp [27]</td>
</tr>
<tr>
<td>Look for spelling and grammatical errors</td>
<td>WHO, WhatsApp, and CRAAP Test [27-29]</td>
</tr>
<tr>
<td>Read beyond the headline</td>
<td>WHO [28]</td>
</tr>
<tr>
<td>Analyze the facts</td>
<td>WHO, WhatsApp, and CRAAP Test [27-29]</td>
</tr>
<tr>
<td>Check links</td>
<td>CRAAP Test [29]</td>
</tr>
<tr>
<td>Assess the photos and videos</td>
<td>WHO [28]</td>
</tr>
</tbody>
</table>

WHO: World Health Organization.

The design of the educational video was based on literature guidelines for the design of health education messages [30]. Following Hugo recommendation, the construction of the educational material included the consideration of communication principles and sociocultural factors, including the literacy levels and language preferences of the audience, to design appropriate messages. When designing the audiovisual content, simplicity (text and visual composition) and the audience’s emotional involvement were considered [30]. The educational video was developed in classical Arabic to make it accessible to a wider audience. Multimedia Appendix 1 shows the developed educational video, while screenshots of the educational video are shown in Figure 1.
Educational Video Validation Process

Yusoff [31] recommended that when validating the content of a tool, a minimum of 6 (but no more than 10) experts should be involved in the assessment process. The validation of the educational material included assessments by 7 experts (Multimedia Appendix 2). For this study, it was essential that the specialists were well-versed in the Arabic language (spoken and written).

To identify the broad range of expertise needed, roles were categorized into different fields. Four roles were identified: (1) health informatics experts, (2) health education specialists, (3) infodemic managers, and (4) public health experts.

Each category was populated with a representative through purposeful sampling. A panel of experts was formed with at least 1 representative from each role; email was used to contact the representatives and provide information about the study.

The validation forms and the educational video were delivered to the specialists via email.

The validation form was created by combining 2 tools from which items relevant to the study were selected. Questions Q2 through Q11 were adopted from the Educational Content Validation Instrument in Health developed by Leite et al [32], and questions Q1 and Q12 through Q17 were adopted from an audiovisual content evaluation instrument constructed by Rosa et al [33].

The final evaluation form contained 17 questions covering three areas: objectives, structure and presentation, and audiovisuals (Multimedia Appendix 3). The “objectives” section focused on purposes and goals, whereas the “structure and presentation” section emphasized organization, structure, strategy, sufficiency, and consistency. As for the “audiovisual” area, the emphasis was on the technological aspect. A score of 0 indicated disagreement, 1 indicated partial agreement, and 2 indicated strong agreement with the value of the items [34].

Educational Video Validation Result

A content validity index was used to analyze the results. Content validity indexes can be computed in 2 ways. One type of validity is item-level content validity indexes (I-CVIs), which consider the content validity of individual items. The other type is scale-level content validity indexes, which involve a scale’s overall content validity [35]. For the scale-level content validity,
calculations were conducted using the scale-level content validity index averaging method (S-CVI/Ave) as recommended by Polit and Beck [36].

The calculations were carried out manually. The items ranked “disagree” were scored as 0, whereas the items ranked “partially agree” and “strongly agree” were scored as 1 [34].

To obtain excellent content validity, the content of educational videos must have items with I-CVIs above 0.78 for (6 to 10 experts) and an S-CVI/Ave of 0.90 or higher [36]. When the I-CVI is below 0.78 and the S-CVI/Ave is below 0.90, the content modification should be considered for that particular educational video area.

As shown in Table 2, all items had I-CVIs greater than 0.78 (78%), indicating agreement between the experts’ answers. In terms of scale evaluation, all the 3 areas (objectives, structure and presentation, and audiovisual) had S-CVI/Aves above 0.90 (90%). In the objectives area, item 5 (“stimulates interest in the theme”) had the lowest specialist agreement score (6 out of 7 or an I-CVI of 0.86). The overall S-CVI/Ave for the objectives area was 0.97.

Table 2. A content validity index calculation using 7 expert ratings to validate the video’s content.

<table>
<thead>
<tr>
<th>Item</th>
<th>Expert 1</th>
<th>Expert 2</th>
<th>Expert 3</th>
<th>Expert 4</th>
<th>Expert 5</th>
<th>Expert 6</th>
<th>Expert 7</th>
<th>Experts In Agreement</th>
<th>I-CVIa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectivesb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0.86</td>
</tr>
<tr>
<td>Proportion relevance</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>Structure and presentationc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Proportion relevance</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audiovisuald</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0.86</td>
</tr>
<tr>
<td>Q15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Q17</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0.86</td>
</tr>
<tr>
<td>Proportion relevance</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aI-CVI: item-level content validity index.
bThe S-CVI/Ave and average proportion of items judged as relevance across the 7 experts for objectives is 0.97.
cThe S-CVI/Ave and average proportion of items judged as relevance across the 7 experts for structure and presentation is 1.
dThe S-CVI/Ave and average proportion of items judged as relevance across the 7 experts for audiovisual is 0.94.

The structure and presentation area had the highest level of agreement (100% S-CVI/Ave). In the audiovisual area, 2 items (“the illustrations are expressive and sufficient” and “the characters/images are appropriate for the target audience”) had scores of 6 out of 7 or I-CVIs of 0.86. The overall S-CVI/Ave for the audiovisual area was 0.94.
Data Collection Tool

Development of the Survey

The study aimed to develop and assess an interventional tool to educate the Saudi population on how to identify health misinformation in WhatsApp messages. The developed Arabic survey contained 4 sections: demographic data, pretest questions, educational intervention, and posttest questions.

The first section (sociodemographic information) included 7 questions about each participant’s background information, including gender, age, educational level, employment status, region of residence, city of residence, and nationality. The second section included 8 questions that assessed each participant’s ability to identify misinformation based on the WhatsApp messages evaluation concepts mentioned in Table 1. Multimedia Appendix 4 shows the complete list of questions that were assigned to the concepts. The third section included the educational tool, which discussed 6 concepts that could be used to identify misinformation in WhatsApp messages. The fourth section included the same 8 questions as the second domain to measure the effectiveness of the educational tool.

The assessment questions were based on real examples representing the different domains of WhatsApp messages. The 8 pre and posttest questions included 5 messages with misinformation (based on messages circulated during the pandemic) and 3 with correct information (obtained from the Saudi Ministry of Health’s official website) [37]. The evaluation concepts, selection of the messages, and their relevancy were assessed by 2 authors (EA and SA). EA collected the messages and placed them under each domain, and SA assessed the relevancy; any uncertainty was resolved by consensus. Finally, a summary of the study’s goal was included in the survey, as was a statement assuring the respondents’ confidentiality.

The highest possible score for the survey questions was 8 points (correct answers were scored as 1 point; incorrect answers and responses of “I do not know” were scored as 0 points). We used a modified Bloom cutoff value of 75% to categorize participants’ knowledge. As a result, we considered participants with scores ≥75% to have high knowledge. Participants with scores below 75% were considered to have low knowledge. This cutoff value is based on previous publications [38,39].

Pilot Survey

The web-based survey was pilot tested, and a total of 31 participants responded. During the first piloting stage, the survey was sent to 15 participants, 3 of whom commented that the instructions needed clarification. Subsequently, an instruction section containing a description of the other survey sections was added at the beginning, and the survey was distributed again to 16 participants. In the second stage, no further comments were received; all participants indicated that the survey was clear. The internal consistency of the final survey was measured using Cronbach α. The scale had a Cronbach α of .847, demonstrating good internal reliability. The final version of the survey can be found in Multimedia Appendix 5.

Ethical Considerations

The study was approved by King Abdullah International Medical Research Center (reference RYD-22-419812-107000). The survey included a summary of the study’s purpose and a statement that, by completing the survey, the respondents agreed to participate in this research. The confidentiality of the study participants was ensured by not collecting identifiable data, encrypting files, and requiring a password to open or modify files.

Statistical Analysis

The demographic characteristics of the participants were reported using descriptive statistics, such as frequencies and percentages. Categorical variables were analyzed using chi-square tests to determine the associations between the demographic variables and the knowledge levels of the participants. A modified Bloom cutoff was used to categorize the knowledge levels. The normality of the variables was analyzed using the Kolmogorov-Smirnov test and the Shapiro-Wilk test. The median scores from before and after the educational video were compared using the Wilcoxon signed-rank test. The McNemar test for categorical data was used to compare the answers and differences in knowledge levels before and after the educational video intervention. The analyses were performed using SPSS Statistics (version 29.0; IBM). A P-value of .05 or less was considered statistically significant.

Results

Characteristics of Study Participants

The web-based survey received 485 responses, and 2 did not agree to participate, giving a 99.6% (n=483) completion rate. In total, 483 responses were analyzed. The socioeconomic characteristics of the participants are shown in Table 3. Most of the study respondents (n=457, 94.6%) were Saudis. More than half of the participants (n=300, 62.1%) were female, and more than half were in the age range of either 18-24 or 25-34 years (n=130, 26.9% and n=173, 35.8%, respectively). More than half of the sample (n=275, 56.9%) had bachelor degrees. With regard to the employment status, 45.5% (n=220) of the respondents were employed. The highest number of participants came from the eastern region (n=181, 37.5%), followed by the central (n=132, 27.3%) and western (n=83, 17.2%) regions.
Table 3. Participant demographics of the full sample (N=483) who participated in a web-based survey about the ability to identify health misinformation on WhatsApp messages between November and December 2022.

<table>
<thead>
<tr>
<th>Nationality</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saudi</td>
<td>457 (94.6)</td>
</tr>
<tr>
<td>Non-Saudi</td>
<td>26 (5.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>130 (26.9)</td>
</tr>
<tr>
<td>25-34</td>
<td>173 (35.8)</td>
</tr>
<tr>
<td>35-44</td>
<td>99 (20.5)</td>
</tr>
<tr>
<td>45-54</td>
<td>47 (9.7)</td>
</tr>
<tr>
<td>55 or older</td>
<td>34 (7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>183 (37.9)</td>
</tr>
<tr>
<td>Female</td>
<td>300 (62.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Educational level</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school and below</td>
<td>94 (19.4)</td>
</tr>
<tr>
<td>Diploma</td>
<td>39 (8.1)</td>
</tr>
<tr>
<td>Bachelor degree</td>
<td>275 (56.9)</td>
</tr>
<tr>
<td>Postgraduate degree</td>
<td>75 (15.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employment status</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>114 (23.6)</td>
</tr>
<tr>
<td>Employed</td>
<td>220 (45.5)</td>
</tr>
<tr>
<td>Not employed</td>
<td>122 (25.3)</td>
</tr>
<tr>
<td>Retired</td>
<td>27 (5.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region of residence</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>181 (37.5)</td>
</tr>
<tr>
<td>Central</td>
<td>132 (27.3)</td>
</tr>
<tr>
<td>West</td>
<td>83 (17.2)</td>
</tr>
<tr>
<td>North</td>
<td>48 (9.9)</td>
</tr>
<tr>
<td>South</td>
<td>39 (8.1)</td>
</tr>
</tbody>
</table>

Despite some variations, the sample matched the age and sex distribution of the Saudi Arabian population. Similarities in regional distribution between our sample and the populations of certain regions were also evident in the sample, with 27.3% (n=132) from the central region and 9.9% (n=48) from the northern region aligning with the national census in Saudi Arabia (n=5,365,700, 28.5% and n=1,877,108, 9.9%, respectively). In the eastern region, our sample showed a higher representation at 37.5% (n=181) compared with 15.7% (n=2,949,854) reported in the census data [40]. Our sample also showed a difference in educational level, with 56.9% (n=275) of participants holding bachelor degrees, in contrast to the national statistic of 23% (n=2,812,477) [41].

Association Between Knowledge Level and Demographic Variables

The highest possible score for the survey questions was 8 points (correct answers were scored as 1 point; incorrect answers and responses of “I do not know” were scored as 0 points). We used a modified Bloom cutoff value of 75% (6 points) to categorize the participants’ knowledge. A knowledge score of ≥6 indicated a high level of knowledge, while a score of <6 indicated a low level of knowledge.

The associations between knowledge about identifying misinformation in WhatsApp messages and demographic variables were assessed using chi-square tests (Table 4). There were statistically significant associations between knowledge level and age, sex, employment, and region of residence (P<.05).
Table 4. Chi-square tests to examine the association between knowledge about identifying misinformation in WhatsApp messages before the intervention and demographic variables (N=483).

<table>
<thead>
<tr>
<th>Factor</th>
<th>Low knowledge, n (%)</th>
<th>High knowledge, n (%)</th>
<th>Chi-square (df)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nationality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saudi</td>
<td>136 (29.8)</td>
<td>321 (70.2)</td>
<td>0.529 (1)</td>
<td>.47</td>
</tr>
<tr>
<td>Non-Saudi</td>
<td>6 (23.1)</td>
<td>20 (76.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>22 (16.9)</td>
<td>108 (83.1)</td>
<td>43.030 (4)</td>
<td><.001</td>
</tr>
<tr>
<td>25-34</td>
<td>37 (21.4)</td>
<td>136 (78.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-44</td>
<td>41 (41.4)</td>
<td>58 (58.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-54</td>
<td>22 (46.8)</td>
<td>25 (53.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 and above</td>
<td>20 (58.8)</td>
<td>14 (41.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>64 (35)</td>
<td>119 (65)</td>
<td>4.409 (1)</td>
<td>.04</td>
</tr>
<tr>
<td>Female</td>
<td>78 (26)</td>
<td>222 (74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school and below</td>
<td>35 (37.2)</td>
<td>59 (62.8)</td>
<td>7.289 (3)</td>
<td>.06</td>
</tr>
<tr>
<td>Diploma</td>
<td>16 (41)</td>
<td>23 (59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor degree</td>
<td>71 (25.8)</td>
<td>204 (74.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postgraduate degree</td>
<td>20 (26.7)</td>
<td>55 (73.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>19 (16.7)</td>
<td>95 (83.3)</td>
<td>21.378 (3)</td>
<td><.001</td>
</tr>
<tr>
<td>Employed</td>
<td>71 (32.3)</td>
<td>149 (67.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not employed</td>
<td>36 (29.5)</td>
<td>86 (70.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>16 (59.3)</td>
<td>11 (40.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region of residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>61 (33.7)</td>
<td>120 (66.3)</td>
<td>35.330 (4)</td>
<td><.001</td>
</tr>
<tr>
<td>Central</td>
<td>25 (18.9)</td>
<td>107 (81.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>13 (15.7)</td>
<td>70 (84.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>27 (56.3)</td>
<td>21 (43.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>16 (41)</td>
<td>23 (59)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effectiveness of the Intervention
The Kolmogorov-Smirnov test and the Shapiro-Wilk test indicated that the knowledge scores before and after the educational video were not normally distributed (P<.001). Since the distribution was not symmetric, it is negatively skewed, and there are a few outliers on the left side contributing to the skewness; nonparametric tests were used to assess statistical significance.

The median scores were assessed both before (median = 7, IQR = 5-8) and after (median = 8, IQR = 6-8) the video intervention, using the Wilcoxon signed-rank test. This comparison revealed that the video intervention did elicit a statistically significant change in the participants’ abilities to identify misinformation in WhatsApp messages (z=−6.887; P<.001).

Knowledge Questions
The proportions of correct answers per individual test question before and after the video intervention were compared using the McNemar test. Significant differences in the participants’ pre- and postintervention knowledge about identifying misinformation were found for specific questions (Table 5). Viewing the video was associated with increased knowledge about the following concepts: checking the “forwarded” label (P<.001), looking for spelling and grammatical errors (P<.001), analyzing the facts (P=.03), checking links (P=.002, P=.001), and assessing the photos and videos (P<.001).
Table 5. Participants’ answers before and after viewing the educational video (N=483).

<table>
<thead>
<tr>
<th>Domains and answer</th>
<th>Preintervention, n (%)</th>
<th>Postintervention, n (%)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check the “Forwarded” label</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>387 (80.1)</td>
<td>423 (87.6)</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>96 (19.9)</td>
<td>60 (12.4)</td>
<td></td>
</tr>
<tr>
<td>Look for spelling and grammatical errors</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>357 (73.9)</td>
<td>402 (83.2)</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>126 (26.1)</td>
<td>81 (16.8)</td>
<td></td>
</tr>
<tr>
<td>Read beyond the headline</td>
<td></td>
<td></td>
<td>.061</td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>416 (86.1)</td>
<td>430 (89.0)</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>67 (13.9)</td>
<td>53 (11)</td>
<td></td>
</tr>
<tr>
<td>Analyze the facts</td>
<td></td>
<td></td>
<td>.028</td>
</tr>
<tr>
<td>Q5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>418 (86.5)</td>
<td>435 (90.1)</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>65 (13.5)</td>
<td>48 (9.9)</td>
<td></td>
</tr>
<tr>
<td>Check links</td>
<td></td>
<td></td>
<td>.54</td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>387 (80.1)</td>
<td>402 (83.2)</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>96 (19.9)</td>
<td>81 (16.8)</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td></td>
<td></td>
<td>.002</td>
</tr>
<tr>
<td>Correct</td>
<td>326 (67.5)</td>
<td>354 (73.3)</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>157 (32.5)</td>
<td>129 (26.7)</td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td></td>
<td></td>
<td>.001</td>
</tr>
<tr>
<td>Correct</td>
<td>377 (78.1)</td>
<td>403 (83.4)</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>106 (21.9)</td>
<td>80 (16.6)</td>
<td></td>
</tr>
<tr>
<td>Assess the photos and videos</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Q7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>333 (68.9)</td>
<td>368 (76.2)</td>
<td></td>
</tr>
<tr>
<td>Incorrect</td>
<td>150 (31.1)</td>
<td>115 (23.8)</td>
<td></td>
</tr>
</tbody>
</table>

Improvement in Knowledge Level
The health misinformation education intervention involved 483 participants. Pretest results showed that 70.6% (n=341) of participants had high knowledge (score \(\geq 6 \)), while 29.4% (n=142) had low knowledge (score >6). After the posttest, 10.6% (n=51) of the sample had improved to high knowledge and 3.3% (n=16) had lower scores, indicating 77.8% (n=376) had a score of 6 or above. McNemar test determined that there was a statistically significant difference in knowledge level before and after the intervention (\(P < .001 \); Table 6).

Table 6. McNemar test to compare knowledge level before and after the intervention (n=483; \(P < .001 \)).

<table>
<thead>
<tr>
<th>Before, n (%)</th>
<th>After, n (%)</th>
<th>(\text{High})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>91 (18.9)</td>
<td>51 (10.5)</td>
</tr>
<tr>
<td>High</td>
<td>16 (3.3)</td>
<td>325 (67.3)</td>
</tr>
</tbody>
</table>
Discussion

Overview

This study aimed to design and evaluate the effectiveness of an educational video to improve the abilities of participants in Saudi Arabia to identify health misinformation within the WhatsApp app. The study used a single-arm, pre-post intervention design and was conducted on the web. The effectiveness of the intervention was assessed. Furthermore, the participants’ knowledge levels about identifying misinformation were assessed before and after the intervention as were the associations between the participants’ characteristics and their knowledge.

The proliferation of health-related misinformation on social media has raised public health concerns in many countries [42]. Chen et al [43] found that people with limited health literacy were more likely to trust health-related information found on social media and blogs. Thus, improving the public’s ability to evaluate health information may be necessary. In Saudi Arabia, WhatsApp is the most popular social network, which is used by 87.4% (n=30.67 million) of internet users [6,24]. This platform has been identified as one on which misinformation may be easily spread [44]; therefore, it was the platform on which this study focused.

Principal Results

The participants’ ability to identify misinformation in WhatsApp messages significantly improved following the educational intervention (P<.001). This result supports the finding of a systematic review by Cusack et al [13], which showed that, at least in the short term, educational interventions could improve knowledge and skills. This finding is also in line with the message interpretation process theory and the inoculation theory, in which interventions and prior messages are identified as factors that effectively protect against the harm caused by misinformation [19,21].

Additionally, the findings of this study suggest that literacy interventions combined with visual multimedia may improve misinformation detection. Apuke et al [45] found that participants who received visual multimedia education had better knowledge of literacy concepts than those who were educated without visual multimedia. Thus, as previously mentioned in this study, multimedia enhances memory, as stated in the cognitive theory of multimedia learning. The receiver’s exposure to the various message components makes it easier to integrate new information [23].

In this study, the items that assessed the following concepts (checking the “forwarded” label, looking for spelling and grammatical errors, analyzing the facts, assessing the photos and videos, and checking links) were significantly associated with improvements in the participants’ knowledge (P<.05 for all). However, the item related to the concept of reading beyond the headline was not significantly associated with improvement (P>.05).

It was noticed that WhatsApp messages with misinformation are characterized by requests to forward the message to many people. Further, many forwarded messages include fake information sources such as links or names and are vague about timelines, authors, and origins. Consequently, most forwarded messages are found to contain misinformation [46].

By recognizing the most prominent characteristics of health misinformation, users can improve their abilities to identify it on social media. Some studies have proposed criteria such as accuracy, authority, objectivity, and currency, but it is challenging for laypeople to evaluate these indicators. The role of such criteria is quite limited for general users, who, by definition, are not professionals [47]. Li et al [47] proposed a feature scheme and incorporated semantic, grammatical, and peripheral features of messages in evaluating their credibility. Their developed feature scheme allowed users to improve both their abilities to recognize health misinformation and their levels of digital health literacy.

This study found a significant association between knowledge level and age, sex, employment, and region of residence (P<.05 for all). Bapaye and Bapaye [48] noted that those engaged in elementary occupations and those older than 65 years of age were most likely to get false information from WhatsApp in a developing country. Workers in the health care industry were not immune from the impact of false information and were found to be just as susceptible as those in other professions.

The pretest results showed that 70.6% (n=341) of participants had good levels of knowledge about identifying misinformation on WhatsApp. There may have been factors contributing to an increase in knowledge, such as public awareness campaigns and government efforts. During the pandemic, the Saudi Arabian Ministry of Health conducted a comprehensive media campaign that included television, websites, and social media. Taking advantage of social media platforms, the Ministry of Health also engages with the public and the media. In addition to these early initiatives, efforts have been made to combat rumors and misinformation and engage the public in prevention and control measures [49].

Higher health literacy levels are associated with more favorable perceptions of health information. However, health literacy varies depending on the situation, and thus even those with high levels of health literacy may need help occasionally. For instance, those unfamiliar with medical language may find it challenging to distinguish between materials that provide accurate information and those with inaccurate information. Health care professionals and organizations must evaluate the population’s level of health literacy in order to ensure that people have access to adequate information when it matters most. Strategies like awareness-raising campaigns, community engagement, educational interventions, and training programs should be implemented when needed [50]. In accordance with the first Infodemiology Conference of the World Health Organization, public health authorities must create, evaluate, implement, and adapt tools and strategies for managing infodemics in acute public health crises in a manner that is suitable for their countries and situations [15]. This study’s findings may provide insight to public health authorities about developing an appropriate intervention for the population.
Strengths and Limitations
The strength of this study is that it involved developing and validating an educational video in the Arabic language to identify misinformation on WhatsApp. Few Arabic educational materials exist to combat misinformation. The study's limitations include some sampling bias due to the use of convenience sampling, which is a nonprobability sampling technique. While this technique may limit the generalizability of the results, it was appropriate for our study because it is more cost-effective, faster, and more direct than other sampling techniques.

Conclusions
Health misinformation is an issue threatening public health because it dominates social media. Training people on the characteristics and practical applications of social media is urgently necessary. This study developed and evaluated the effectiveness of an educational video intervention to improve health misinformation identification on WhatsApp among the Saudi Arabian population. The results indicate that educational videos can be valuable tools for improving participants' abilities to identify misinformation. The outcomes of this research can contribute to our understanding of effective tools for enhancing health misinformation awareness. These interventions can be particularly useful in combating misinformation in Arabic-speaking populations on WhatsApp, which may ultimately improve eHealth literacy. Limiting the prevalence and impact of misinformation allows people to make better-informed health care decisions. Our findings may also be helpful for health care professionals and organizations deciding on interventions suitable for providing access to adequate information to certain populations when needed.

Acknowledgments
The authors appreciate the support provided by the Office of Research in KSAU-HS, especially Mr Ahmed Aldakhil, for his valuable biostatistics consultations. The authors gratefully acknowledge King Abdullah International Medical Research Center for funding the publication of this paper.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions
The study was designed and planned by EA and SA. EA took on the task of developing the educational video and survey. Data collection, results interpretation, and manuscript writing were all carried out by EA, SA reviewed the work. EA and SA discussed the findings, contributed to the final manuscript, and shaped the research.

Conflicts of Interest
None declared.

Multimedia Appendix 1
The developed educational video (Health Misinformation Identification on WhatsApp).

Multimedia Appendix 2
Experts names and positions.

Multimedia Appendix 3
The video content validation form.

Multimedia Appendix 4
WhatsApp messages evaluation concepts and the corresponding survey questions used to assess them.

Multimedia Appendix 5
The final version of health misinformation identification survey.

References

46. Durul SS. (Mis)information in baby boomers' WhatsApp messages. Eskisehir, Turkey: Anadolu University; 2020 Presented at: 17th International Symposium Communication in the Millenium; November 5-6, 2020; Istanbul, Turkey p. 290-298 URL: http://tinyurl.com/37ce63ax
Abbreviations

I-CVI: item-level content validity index
S-CVI/Ave: scale-level content validity index averaging method
WHO: World Health Organization
A Blended Intervention Targeting Emotion Dysregulation in Adults With Attention-Deficit/Hyperactivity Disorder: Development and Feasibility Study

Emilie S Nordby, MSc; Frode Guribye, PhD; Viktor Schønning, MSc; Sander Lindholm Andersen, MSc; Jonna Kuntsi, PhD; Astrid J Lundervold, PhD

1Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
2Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
3Department of Information Science and Media Studies, Faculty of Social Sciences, University of Bergen, Bergen, Norway
4Department of Child and Adolescent Psychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
5Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom

Corresponding Author:
Emilie S Nordby, MSc
Division of Psychiatry
Haukeland University Hospital
Sandviksleiet 1
Bergen, 5036
Norway
Phone: 47 45440197
Email: emilie.nordby@uib.no

Abstract

Background: Many adults with attention-deficit/hyperactivity disorder (ADHD) experience difficulties related to emotion regulation. Such difficulties are known to substantially impact quality of life and overall functioning. Yet, there is a lack of treatment interventions specifically designed to address these challenges.

Objective: This study aimed to describe the development and assess the feasibility, along with the initial clinical outcomes, of a novel blended intervention for adults with ADHD. The blended intervention combines both face-to-face and digital components and is specifically designed to address emotion dysregulation in ADHD.

Methods: This intervention was an 8-week blended intervention combining weekly face-to-face group sessions with a supplementary digital companion app. The intervention is based on elements from dialectic behavioral therapy skills training and positive psychology. To evaluate its feasibility, we performed a 10-week feasibility study with an uncontrolled pre-post study design, including 16 adults with ADHD and co-occurring emotion dysregulation. The feasibility measures encompassed adherence, satisfaction, and perceived credibility of the intervention. Clinical outcomes were evaluated by self-reported symptoms of emotion dysregulation, inattention, hyperactivity-impulsivity, executive function, depression, anxiety, and a measure of quality of life. Paired sample 2-tailed t tests were used to analyze clinical outcomes with a Bonferroni-corrected significance level.

Results: Both treatment credibility and treatment satisfaction were rated favorably by the majority of the participants. In particular, the participants emphasized meeting others with ADHD as beneficial. In terms of adherence, 3 participants withdrew before initiating the intervention, while another 4 participants did not complete the intervention. On average, the participants who enrolled in the intervention attended 6.2 of the 8 group sessions and completed 6.7 of the 8 skills training modules in the companion app. In terms of clinical outcomes, there was a reduction in symptoms of emotion dysregulation from before to after the intervention (d=2.0). Significant improvements were also observed in measures of inattention (d=1.1) and hyperactivity-impulsivity (d=0.9). However, no significant improvements were found in the domains of depression, anxiety, quality of life, and executive functioning.

Conclusions: The results are encouraging, both in terms of feasibility and the preliminary clinical results on emotion dysregulation. The blended format, combining digital and face-to-face elements, may also seem to offer some advantages: the group-based format was valued as it facilitated peer interaction, while a rather high completion of modules in the companion app highlights its potential to enhance skills training between the group sessions. Future randomized controlled trials are called for to further evaluate the clinical effectiveness of the intervention.
Introduction

Attention-deficit/hyperactivity disorder (ADHD) affects approximately 2.6% of the adult population [1]. Although symptoms of ADHD initially present themselves in childhood, most individuals diagnosed with ADHD as children continue to experience symptoms and associated impairments into adulthood [2]. Moreover, there is a rising trend of individuals first receiving their ADHD diagnosis in adulthood [3]. ADHD manifests through symptoms of inattention, hyperactivity, and impulsivity that significantly disrupt the individual’s daily functioning [4]. Beyond these core symptoms, ADHD is accompanied by an array of co-occurring symptoms and difficulties, both somatic and psychological, which can further complicate and amplify the challenges associated with the diagnosis [5].

Emotion dysregulation is a common deficit observed across many mental health conditions [6]. It is characterized by challenges in effectively managing and modulating one’s emotions, including the emotional experience (e.g., intensity and duration) and expression [7]. Emotion dysregulation commonly coexists with ADHD, impacting as many as 34%-70% of the adults with the diagnosis [8]. Emotion dysregulation also occurs in adults with ADHD without the presence of other comorbid diagnoses [9], giving support to the notion that it is a core component of ADHD [10-12]. The co-occurrence of emotion dysregulation with ADHD is linked to a range of negative outcomes, including occupational challenges, interpersonal conflicts, financial struggles, parenting stress, as well as tendencies for self-harm, illicit drug use, and suicidal ideation [13-15]. Moreover, research indicates that emotion dysregulation serves as an independent predictor of impairment in ADHD [16]. Its adverse influence on self-esteem and quality of life has further been observed to exceed the effects of inattention and hyperactivity [17]. Given the high prevalence of emotion dysregulation in ADHD and the associated negative outcomes, adults with ADHD should be offered treatment interventions that specifically aim to strengthen their emotion regulation skills.

While pharmacological treatment remains the main treatment approach for the management of ADHD in adults, the UK National Institute for Health and Care Excellence recommends supplementing with psychological interventions, such as psychoeducation or psychotherapy [18]. Psychological alternatives are especially critical in cases where the individual does not want to take medications or when medications either do not lead to sufficient clinical improvement or result in unwanted side effects. This may be particularly relevant for those with co-occurring emotion dysregulation, as ADHD medications appear to be less effective for these difficulties [19]. A systematic review and meta-analysis showed that traditional ADHD medications, including methylphenidate, atomoxetine, and lisdexamfetamine, only had small to moderate effects on emotion dysregulation among adults, which were significantly lower than the effect sizes reported for core symptoms of inattention, hyperactivity, and impulsivity [20]. As such, the authors of the abovementioned review emphasize that there is a need for more research on both pharmacological and psychological treatments targeting emotion dysregulation in adults with ADHD [20].

There is limited access to psychological treatments among adults with ADHD, and most available interventions mainly address the core symptoms of inattention and hyperactivity [21,22]. To the authors’ knowledge, there are currently 8 studies that have included emotion dysregulation as an outcome measure in studies of psychological interventions for adults with ADHD, including 2 randomized controlled trials [23-30]. However, only 2 of the studies reported emotion dysregulation to be the primary treatment target [24,26]. Carroll et al [26] developed and tested the psychological intervention “Group Therapy for Improving Emotional Acceptance and Regulatory Skills in Adults with ADHD” (GEARS), which consists of 14 weekly group sessions. In an uncontrolled pilot study with 226 participants, both treatment credibility and treatment satisfaction were rated as high, and preliminary clinical effects showed a reduction in emotion dysregulation symptoms with large effect sizes [26]. These findings are also supported by other studies [23,25,27-29]. On the other hand, Halmøy et al [24] did not find any significant difference in measures of emotion regulation between the control group and the treatment group in a randomized controlled trial of a 14-week dialectic behavioral therapy–based intervention. With the current evidence, it is thus premature to conclude whether psychological interventions are effective for adults with ADHD with co-occurring emotion dysregulation.

Digital psychological interventions have become increasingly popular in the past decade. The inclusion of digital tools in treatment interventions for adults with ADHD may be useful in addressing common challenges such as forgetfulness, nonadherence to treatment, and incomplete homework assignments [31,32]. For example, content from face-to-face therapy sessions, such as coping skills or psychoeducation, could be made available on the web through a website or a mobile app. The increased accessibility of such treatment elements may facilitate the generalization of therapeutic skills in everyday life for the clients, which is a central aim of most psychological interventions [33]. Blended interventions, where elements from face-to-face and digital treatment formats are combined, could be advantageous as they use the strengths of both treatment formats [33]. A systematic review of blended...
interventions in mental health care suggests that these interventions may save clinician’s time, lead to lower dropout rates, and help to maintain positive changes made in psychotherapy over time [34]. However, there have been few studies examining a blended treatment format among adults with ADHD. To our knowledge, there has been 1 randomized controlled trial examining the effect of a mobile app to deliver psychoeducation in a group-based intervention for adults with ADHD [35]. In this study, it was found that the participants who used the mobile companion app had a greater reduction in ADHD symptoms and a higher completion rate of homework assignments as compared to participants who received a printed version of the psychoeducation [35]. As such, this study provides evidence that psychological interventions for adults with ADHD may be augmented by the implementation of digital tools.

The overall aim of this study was to describe the development of and assess the feasibility and preliminary clinical effects of a blended psychological intervention for adults with ADHD. This intervention integrates face-to-face group sessions with a digital companion app for skills training, designed to address emotion regulation. The developmental process and the core content of the intervention are outlined in the methods section. Through the feasibility study of the intervention, the following research questions were addressed:

1. How do participants with ADHD rate their satisfaction and the credibility of the intervention?
2. What is the participants’ adherence level to the intervention?
3. What are the preliminary clinical effects of the intervention on emotion regulation, inattention, hyperactivity-impulsivity, quality of life, anxiety, depression, and executive functioning?

Methods

Phase 1: Development of Intervention

Participants

The participants who took part in the development phase of the intervention included 5 adults with ADHD, 2 clinical psychologists, 1 clinical psychology student, 2 human-computer interaction experts, and 2 user experience designers. The adults with ADHD were originally recruited from the local ADHD patient association. The adults with ADHD received a gift certificate worth NOK 400 (US $37) in total for their participation in the design workshop and evaluation meeting.

Methods of Development

The intervention was developed over 2 years through an iterative process. Multiple methods were used during this development (Table 1 shows an overview of methods and findings).
Table 1. Overview of the methods applied in the development of the intervention and key findings in the 2-year developmental process.

<table>
<thead>
<tr>
<th>Method</th>
<th>Content</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of quantitative literature</td>
<td>A synthesis of previous studies examining psychological interventions targeting emotion dysregulation in ADHD was conducted. In this step, we examined the format, treatment approach, and common psychotherapeutic elements in the interventions.</td>
<td>• Various psychological frameworks have been used in interventions targeting emotion dysregulation in ADHD, including DBT, cognitive behavioral therapy, goal management training, and mentalization-based therapy.</td>
</tr>
<tr>
<td>Synthesis of qualitative literature</td>
<td>A synthesis of previous qualitative examining the experience of participating in psychological intervention for adults with ADHD was conducted. In this step, we sought to understand the needs and preferences of psychological interventions among adults with ADHD.</td>
<td>• In previous interventions, the opportunity to share experiences with peers was perceived as valuable by adults with ADHD.</td>
</tr>
<tr>
<td>Expert meetings</td>
<td>The development process included several expert meetings. In these meetings, the format and elements of the intervention were discussed and reviewed. Suggestions regarding intervention content and design were made based on clinical expertise and experience.</td>
<td>• Beneficial elements that should be included in the intervention based on clinical experience: group-based format, focus on positive aspects, option to choose from a variety of coping strategies, interactive in-class exercises and discussions, and short homework assignments.</td>
</tr>
<tr>
<td>Co-design workshop</td>
<td>The workshop included 5 adults with ADHD, 2 clinical psychologists, and 2 HCI experts. In the workshop, the adults were given information about the project and a general idea of the intervention. Following this, the adults were asked about challenging situations in terms of emotion dysregulation, common coping strategies, and their preferences for intervention content and features.</td>
<td>• Emotion dysregulation was a common challenge among adults with ADHD.</td>
</tr>
<tr>
<td>Design sprint of companion app</td>
<td>A design sprint lasting 5 days was conducted to create a prototype of the companion app. An HCI expert led the design sprint, with the inclusion of 2 UX designers and 1 clinical psychologist as participants.</td>
<td>• Perceived useful coping strategies by adults with ADHD: acceptance, self-compassion, distraction, reappraisal, timeout, and relaxation.</td>
</tr>
<tr>
<td>Co-creation of intervention manual</td>
<td>The first author created the intervention manual based on the previous findings. The protocol was then reviewed and revised by 2 other clinical experts, including 1 expert with ADHD.</td>
<td>• Useful features in companion app: reminders, note-taking, overview of coping strategies, calendar, peer support, and inclusion of videos.</td>
</tr>
<tr>
<td>Evaluation seminar with adults with ADHD</td>
<td>The evaluation seminar included the same participants as the co-design workshop. In the first part of the seminar, a clinical psychologist presented the content of 8 group sessions and the participants could give feedback. In the second part, an HCI expert presented a walk-through of the companion app, and participants could give feedback.</td>
<td>• Review of the intervention, both the group sessions and the companion app.</td>
</tr>
<tr>
<td>Consultations with software company</td>
<td>We conducted several consultations with the software company that had the technical infrastructure for the companion app.</td>
<td>• Revision of the intervention, including limiting the amount of text and clarifying instructions in companion app.</td>
</tr>
</tbody>
</table>

a ADHD: attention-deficit/hyperactivity disorder.
b DBT: dialectic behavioral therapy.
c HCI: human-computer interaction.
d UX: user experience.
The Emotion Regulation Intervention for ADHD

Overview

The development process led to the “Emotion Regulation Intervention for ADHD” (ERIA), which is a structured psychological intervention aimed at improving emotion regulation skills in adults with ADHD. The intervention is manual-based and includes components from dialectic behavioral therapy skills training and positive psychology. ERIA consists of 8 face-to-face group sessions and a digital companion app for skills training in between sessions. Table 2 contains an overview of the intervention content in ERIA.

Table 2. Overview of the intervention, including session themes, content for group sessions, weekly homework, and skills training assignments.

<table>
<thead>
<tr>
<th>Session</th>
<th>Content</th>
<th>Homework and skills training</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>• Introduction to group members and therapists
• Overview of the program
• ADHD(^a) and emotion
• Discussion on challenges and strengths of ADHD
• Strategies for homework completion</td>
<td>• Goal setting
• Identifying own strengths
• Complete plan for homework</td>
</tr>
<tr>
<td>2. Mindfulness I</td>
<td>• Mindfulness practice
• Homework discussion
• Mindfulness
• Introduction to “what skills” in mindfulness
• Exercise: “observe object in room”
• Exercise: “describe the pictures”</td>
<td>• Practice “what” skills in mindfulness (observation, description, and participation)
• Skills training log</td>
</tr>
<tr>
<td>3. Mindfulness II</td>
<td>• Mindfulness practice
• Homework discussion
• Common barriers for homework completion
• Introduction to “how skills” in mindfulness
• Exercise: “judgmental vs nonjudgmental claims”
• Exercise: “multitasking”</td>
<td>• Practice “how” skills in mindfulness (being nonjudgmental, doing 1 thing at the time, and doing what works)
• Skills training log</td>
</tr>
<tr>
<td>4. Emotion regulation I</td>
<td>• Mindfulness practice
• Homework discussion
• Emotions and emotion regulation
• Emotion regulation skills: part I
• Introduction to the emotion diary
• Exercise: “linking situations to emotions”</td>
<td>• Practice emotion regulation skills (observation of emotions and naming and describing emotions)
• Emotion diary
• Skills training log</td>
</tr>
<tr>
<td>5. Emotion regulation II</td>
<td>• Mindfulness practice
• Homework discussion
• Adaptive vs maladaptive regulation strategies
• Emotion regulation skills: part II</td>
<td>• Practice emotion regulation skills (check the facts, opposite action, and problem-solving)
• Emotion diary
• Skills training log</td>
</tr>
<tr>
<td>6. Emotion regulation III</td>
<td>• Mindfulness practice
• Homework discussion
• Emotion regulation skills: part III
• Tips for planning and organization</td>
<td>• Practice emotion regulation skills (covering basics needs and planning for challenging situations)
• Planning positive activities
• Emotion diary
• Skills training log</td>
</tr>
<tr>
<td>7. Crisis management</td>
<td>• Mindfulness practice
• Homework discussion
• Skills for crisis management and intense emotions
• Discussion on distraction strategies</td>
<td>• Practice skills in crisis management (stop and check-in, physical exercise, cold water, muscle relaxation, breath work, and distraction)
• Skills training log</td>
</tr>
<tr>
<td>8. Summary</td>
<td>• Mindfulness practice
• Homework discussion
• Self-compassion
• Exercise: “supportive words”
• Summary of program
• Road ahead: maintaining change and setbacks</td>
<td>• N/A(^b)</td>
</tr>
</tbody>
</table>

\(^a\)ADHD: attention-deficit/hyperactivity disorder.

\(^b\)N/A: not applicable.
Group Sessions

ERIA comprises 8 weekly group sessions. The group sessions are closed, and each group includes 6-8 adults with ADHD. In this study, the groups were led by 2 clinical psychologists with a minimum of 3 years of clinical experience. Each group session lasts approximately 1.5 hours, divided into 2 segments with a 15-minute break interlude. All sessions begin with a brief mindfulness exercise, led by 1 of the 2 psychologists. Afterward, group members are encouraged to share their reflections on the exercise. Following this, the group members share their experiences with the previous week’s homework assignment. After the break, the lead psychologist presents relevant theoretical and psychoeducational information and the new skills for the participants to practice at home. There are also discussion breaks and some practical exercises incorporated in the presentation of new skills.

Companion App

The participants are given access to a companion app, which they are asked to use for skills training at home between the group sessions. This app is organized with modules, where new skills training modules are released on a weekly basis following the course of the group sessions. The skills training modules include the weekly skills that the participants are to practice at home. In addition, the participants can use the companion app to message the group leader, log their skills training sessions, and access the PowerPoint presentations for the group sessions, as well as other relevant resources (eg, relevant websites or scientific papers on the weekly theme). The participants also receive an SMS text message reminder when the skills training modules are available and another SMS text message reminder if they have not accessed the module within 2 days. Given that this was a feasibility study, the app did not encompass all features originally present in its prototype. For instance, a peer-support feature suggested during the co-design workshop was excluded due to its resource-intensive nature. If the feasibility study yields encouraging outcomes, we intend to incorporate more sophisticated features in the app.

The app was a web-based application that could be accessed both through a computer and a smartphone. To access the app, the participants had to use the Norwegian web-based authentication platform, BankID, for a secure 2-factor log-in. BankID is a widely used platform for electronic identification for services within banking, health care, and education in Norway. The companion app was hosted on the eHealth platform developed by the software company “Youwell,” which is partnered with the Western Norway Regional Health Authority for clinical use and research. The platform has a patient and therapist portal, where participants can access the app through the patient portal, and the therapist can set up the program and monitor their patient’s progress in the therapist portal. The platform is also used for building the app and allows for the input of content, such as text, audio, videos, and images, to create modules. It has previously been used for other internet-delivered programs, including programs for ADHD [36], social anxiety [37], and cognitive residual symptoms after depression [38].

Figure 1 shows screenshots of the companion app. The first screen from the left shows the main page with an overview of the modules. The first box from the left reads, “Week 4: Emotion regulation I. This week we will practice skills in emotion regulation.” The second screen shows the instructions to a mindfulness skill with the text “Choose an option below and take 5 minutes to describe this in a nonjudgmental way.” The circles show 6 options they can choose from, which include describing (1) own emotions, (2) bodily sensations, (3) a tree or plant, (4) people walking by, (5) an object in the room, or (6) own thoughts. The third screen shows the side menu that participants can use to navigate within the module. This screen shows the mindfulness module and the side menu includes the specific module pages: “Welcome back,” “Skills,” “Observation,” “Description,” “Participate,” “Skills diary card,” and “Resources.”
Phase 2: Feasibility Study

Participants

Eligible participants for this feasibility study were adults with ADHD living in Bergen, Norway. The inclusion criteria for the study were as follows: (1) minimum age of 18 years; (2) a diagnosis of ADHD according to the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders [Fifth Edition]) criteria; (3) current problems with emotion dysregulation as indicated by a score of ≥80 on the Difficulties in Emotion Regulation Scale (DERS); (4) having a smartphone or computer to access the companion app; and (5) the ability to attend in-person group sessions in Bergen, Norway. Exclusion criteria were (1) a high risk of suicidality, as indicated by having attempted suicide within the past year, having previously attempted suicide and reporting current suicidal ideations, or reporting current suicidal ideations and having a plan and preferred method; (2) co-occurring severe mental illness, including substance abuse disorder, psychosis, and major depressive disorder; and (3) current participation in another psychological treatment intervention. However, participants could still partake in the study if they had less severe psychiatric conditions, such as mild to moderate anxiety or depression, and if they received pharmacological treatment for their ADHD or other conditions.

Recruitment

Participants were recruited through the ADHD patient advocacy group “ADHD Norge,” which shared information about the study with its members through email and social media. The study opened for participants to sign up on November 24, 2022, and closed within a week (November 30, 2022) due to a large number of individuals signing up for the study. Interested participants signed up through a website that contained a screening survey to examine eligibility as well as information about the study. Eligible participants were contacted for a face-to-face screening with a clinical psychologist. During this screening, eligibility in terms of psychiatric comorbidities and suicidality was examined using the Mini International Neuropsychiatric Interview [39]. Participants were also asked about the date, clinic, and diagnosing clinician for their ADHD diagnosis. In addition, the participants were asked open questions about ADHD symptoms (ie, could you tell me about your current ADHD symptoms?) and everyday functioning (ie, how do you experience that ADHD affects you in your daily life?). The participants had to report symptoms and functional impairments that were in accordance with the DSM-5 criteria for ADHD, as assessed by a clinical psychologist. Those who were deemed eligible for participation following this screening were invited to take part in the study and to sign an informed consent form through the companion app.

Outcome Measures

Overview

The participants were given the preassessment 1 week before the intervention started and the postassessment 1 week after the intervention ended. The assessments were completed on the internet, except for the Behavior Rating Inventory of Executive Functioning–Adult version (BRIEF-A), which was given in-person at the first and last group session.

Credibility

The third item of the Credibility and Expectancy Scale (CEQ) was used to examine treatment credibility of the intervention [40]. The item states, “Would you recommend this treatment to a friend with similar challenges?” and the responses are given on a scale from 1 (not certain at all) to 9 (very certain).
Treatment Satisfaction
The participants were asked about whether they thought they would continue using the coping skills they had learned in the future and responded on a 4-point scale from 1 (not very likely) to 4 (very likely). They were also asked about which elements of the intervention they considered to be most useful (multiple choice with option to add own text). The participants were also asked about negative experiences with the intervention (yes or no), which they could elaborate on in an open-text field.

Adherence
Adherence was assessed by the number of group sessions attended and the number of completed skills training modules in the companion app. Participants that attended at least 6 of 8 group sessions were defined as treatment completers. The participants were also asked about how many days per week they practiced the coping skills.

Difficulties in Emotion Regulation Scale
DERS is a self-report questionnaire that is commonly used to assess emotion dysregulation in clinical populations [41]. The scale includes 36 items rated on a 5-point Likert scale ranging from 1 (never) to 5 (almost always), yielding a total score between 36 and 180, with 180 indicating the most severe problems with emotion dysregulation.

The Adult ADHD Self-Rating Scale
The Adult ADHD Self-Rating Scale (ASRS) is a self-report questionnaire that is used to assess symptoms of inattention and hyperactivity-impulsivity [42]. The scale includes 18 items, with 9 items reflecting inattentive symptoms and 9 items reflecting hyperactive-impulsive symptoms. Responses are given on a 5-point scale with options 0 (never), 1 (rarely), 2 (sometimes), 3 (often), or 4 (very often), giving a total score between 0 and 72 and a score between 0 and 36 for the inattention and hyperactivity-impulsivity subscales.

The Adult ADHD Quality of Life Measure
The Adult ADHD Quality of Life (AAQoL) measure is used to assess quality of life among adults with ADHD [43]. The scale includes 29 items rated on a scale from 1 (not at all or never) to 5 (extremely or very often), yielding a total score between 0 and 100.

Hospital Anxiety and Depression Scale
The Hospital Anxiety and Depression Scale (HADS) is a self-report questionnaire used to assess symptoms of depression and anxiety [44]. The scale includes 14 items, with 7 items reflecting anxiety symptoms and 7 items reflecting depressive symptoms. The response options range from 0 to 3, with 3 being the most severe level. The scale yields a total score between 0 and 42 and a score between 0 and 21 for the anxiety and depression subscales.

The Behavior Rating Inventory of Executive Functioning
BRIEF-A is a self-report questionnaire used to assess executive functioning in everyday life [45]. The scale consists of 75 items, which are rated on a 3-point scale (1=never, 2=sometimes, and 3=often). For this study, we report the Global Executive Composite score, which is an overall summary score including 9 clinical BRIEF-A subscales.

Statistical Analysis
SPSS software (IBM Corp) was used for all statistical analyses [46]. The participant demographics, adherence measures, and treatment credibility measures were assessed using descriptive statistics, which include calculation of means, frequencies, ranges, and SDs. To evaluate preliminary clinical outcomes, paired sample t tests were used with an initial significance level set at .05. Due to the risk of family-wise error (type I error) associated with multiple t tests, a Bonferroni correction was included. This adjustment was achieved by dividing the α level by the number of conducted hypotheses tests, that is, t tests (.05/8), resulting in a corrected significance level of .006. The choice of analytic approach necessitated the inclusion of cases with both pre- and postassessment. The magnitude of treatment effect was quantified using standardized effect sizes, estimated through Cohen d, with the formula $(M_2 - M_1) / SD_{pool}$. The pooled SD was calculated by $\sqrt{(SD_1^2 + SD_2^2)/2}$. Effect sizes were interpreted according to conventions, where $d=0.20$, $d=0.50$, and $d=0.80$ are defined as small, moderate, and large, respectively.

Ethical Considerations
The study was reviewed and approved by the Regional Ethics Committee of Norway, Region West (494659). The participants were informed about the study and their rights both in-person and in writing. Before participation, all participants signed an informed consent form, acknowledging that they could withdraw their consent at any time without any repercussions. The data were pseudonymized and stored on a dedicated research server according to regulative standards at the university and hospital. The participants were compensated NOK 1000 (US $90) for their participation in the study.

Results

Participants
A total of 16 participants took part in this study (Table 3 shows participant characteristics). The majority were diagnosed with ADHD in adulthood, with the mean age for receiving the diagnosis being 30.4 (SD 11.7) years.

All participants were recruited within 1 week. During the recruitment period, 68 adults completed the digital prescreening, of whom 92.6% (n=63) met the inclusion criteria and provided contact information (Figure 2). However, due to the limited number of study places in this feasibility study, we only assessed the first 27 individuals who signed up for the phone screening, as this was sufficient to reach the maximum capacity of 16 included participants. We sent an SMS text message to the remainder of the people who signed up, informing them that the study was fully booked. To ensure a more balanced sex distribution in the study, 6 study places were reserved for men, as we wanted to make sure we received feedback from both sexes.
Table 3. Participant characteristics in the feasibility study (n=16).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10 (62.5)</td>
</tr>
<tr>
<td>Male</td>
<td>6 (37.5)</td>
</tr>
<tr>
<td>Age group (years)</td>
<td></td>
</tr>
<tr>
<td>18-34</td>
<td>7 (43.8)</td>
</tr>
<tr>
<td>35-44</td>
<td>7 (43.8)</td>
</tr>
<tr>
<td>45-55</td>
<td>1 (6.2)</td>
</tr>
<tr>
<td>55-64</td>
<td>1 (6.2)</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>8 (50)</td>
</tr>
<tr>
<td>College or university level</td>
<td>8 (50)</td>
</tr>
<tr>
<td>Occupational status</td>
<td></td>
</tr>
<tr>
<td>Employed or student</td>
<td>9 (56.2)</td>
</tr>
<tr>
<td>Work assessment allowance or sick leave</td>
<td>6 (37.5)</td>
</tr>
<tr>
<td>Disability pension</td>
<td>1 (6.2)</td>
</tr>
<tr>
<td>ADHD medication status</td>
<td></td>
</tr>
<tr>
<td>Daily medication usage</td>
<td>13 (81.3)</td>
</tr>
<tr>
<td>Weekly or monthly usage</td>
<td>2 (12.4)</td>
</tr>
<tr>
<td>Rarely, a few times a year</td>
<td>1 (6.2)</td>
</tr>
</tbody>
</table>
Treatment Adherence, Credibility, and Satisfaction

In terms of adherence, a total of 3 participants dropped out of the study before starting the intervention, making a pretreatment dropout rate of 18.8% (3/16). Among the participants who received the intervention (n=13), the average number of group sessions attended was 6.2 out of 8 sessions. A total of 4 (26.6%) participants were treatment dropouts, defined as participants who attended less than 6 group sessions. Consequently, the cumulative dropout rate, including the participants who dropped out before starting the intervention, reached 43.7% (n=7).

Regarding the use of the companion app, the participants had a mean completion of 6.8 out of 8 modules. On average, the participants reported practicing the skills 4.3 days per week. The intervention was generally well received in terms of treatment credibility with a mean rating of 7.1 (SD 2.6; range 1-9). Among the 10 participants who completed the postassessment, 7 participants reported that they were very certain or certain that they would recommend the treatment to a friend facing similar challenges as themselves; 2 were somewhat certain, whereas 1 was not at all certain about recommending it.

Feedback from participants highlighted overall satisfaction with the intervention, with a mean rating of 3.3 (SD 0.9; range 1-4). All but 1 participant planned to continue using the learned skills. The participants rated meeting others with ADHD (n=10), the in-person group sessions (n=7), the skills (n=7), and therapist support (n=4) as the most useful elements of the intervention. Their feedback also included suggestions for improvement, with 3 participants recommending more time for group interactions and discussions among the group members. Regarding this, 1 participant suggested that the group members should be able to interact between the sessions through the companion app. Other suggestions for improvements included an extension of the program by adding more group sessions, making the companion app available for direct download, incorporating more reminders, providing participants with a printed version of the skills, and involving an individual with ADHD as a group presenter for skills demonstration and experience sharing. While feedback was largely positive, 2 participants expressed negative experiences with the program: 1 found the skills in the crisis management module to be inadequate in emotional crises, and another felt that the intervention was not sufficiently tailored to ADHD. Importantly, there were no reports of clinical deterioration among the participants.
Clinical Outcomes

There was an overall statistically significant decrease in self-reported emotion dysregulation from before to after treatment, with a strong effect size ($d=2.0$). Table 4 shows the individual scores for emotion dysregulation, indicating a change in the positive direction for all participants.

Overall, the group of participants showed a significant decrease in secondary clinical outcome scores, reflecting the level of inattention and hyperactivity-impulsivity from before to after assessment. While initial analyses showed a change in quality of life and depressive symptoms, these changes were nonsignificant with a Bonferroni correction. No significant improvement was found in measures of executive functioning or anxiety symptoms (Table 5 contains an overview of all preliminary clinical outcomes).

Table 4. Individual scores for the Difficulties in Emotion Regulation Scale from before to after assessment ($n=10$).

<table>
<thead>
<tr>
<th>Participant</th>
<th>Preassessment scores</th>
<th>Postassessment scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>138</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>147</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>96</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>130</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>107</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>139</td>
<td>117</td>
</tr>
<tr>
<td>9</td>
<td>133</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>107</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5. Clinical outcomes of emotion dysregulation, inattention, hyperactivity-impulsivity, quality of life, depression, anxiety, and executive functioning from before to after assessment ($n=10$).

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Preassessment, mean (SD)</th>
<th>Postassessment, mean (SD)</th>
<th>P value<sup>a</sup></th>
<th>Effect size, Cohen d</th>
<th>Difference, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DERS<sup>b</sup></td>
<td>123.7 (17.2)</td>
<td>95.4 (9.6)</td>
<td><.001</td>
<td>2.0</td>
<td>15.8 to 40.8</td>
</tr>
<tr>
<td>ASRS<sup>c</sup> full scale</td>
<td>51.9 (9.6)</td>
<td>41.9 (8.9)</td>
<td><.001</td>
<td>1.1</td>
<td>6.2 to 13.8</td>
</tr>
<tr>
<td>ASRS inattention</td>
<td>26.9 (4.1)</td>
<td>22.3 (5.2)</td>
<td><.001</td>
<td>1.0</td>
<td>2.3 to 6.9</td>
</tr>
<tr>
<td>ASRS hyperactivity-impulsivity</td>
<td>25.0 (6.4)</td>
<td>19.6 (5.1)</td>
<td>.002</td>
<td>0.9</td>
<td>2.5 to 8.3</td>
</tr>
<tr>
<td>AAQoL<sup>d</sup></td>
<td>44.4 (9.6)</td>
<td>56.7 (11.8)</td>
<td>.03</td>
<td>–e<sup>e</sup></td>
<td>–23.3 to –1.3</td>
</tr>
<tr>
<td>HADS<sup>f</sup> Anxiety</td>
<td>10.8 (4.3)</td>
<td>9.8 (3.6)</td>
<td>.24</td>
<td>–</td>
<td>–0.8 to 2.8</td>
</tr>
<tr>
<td>HADS Depression</td>
<td>6.0 (3.7)</td>
<td>4.3 (3.2)</td>
<td>.03</td>
<td>–</td>
<td>0.2 to 3.2</td>
</tr>
<tr>
<td>BRIEF-A<sup>g</sup> GEC<sup>h</sup></td>
<td>154.5 (15.9)</td>
<td>150.8 (12.6)</td>
<td>.20</td>
<td>–</td>
<td>–7.8 to 15.1</td>
</tr>
</tbody>
</table>

^aSignificance level set to .006 with Bonferroni correction.
^bDERS: Difficulties in Emotion Regulation Scale.
^cASRS: Adult ADHD Self-Rating Scale.
^dAAQoL: Adult ADHD Quality of Life.
^eNot available.
^fHADS: Hospital Anxiety and Depression Scale.
^gBRIEF-A: Behavior Rating Inventory of Executive Functioning.
^hGEC: Global Executive Composite.

Discussion

Principal Findings

The aim of this study was to describe the development and assess the feasibility of ERIA, a blended digital and face-to-face intervention targeting emotion dysregulation in adults with ADHD. Overall, the findings were promising and supported the feasibility of ERIA. Both treatment satisfaction and credibility were generally good, which aligned with findings from other psychological interventions targeting emotion dysregulation in adults with ADHD [26]. More specifically, the participants emphasized the group component and meeting others with
ADHD as useful aspects of the intervention. This is in line with previous studies showing that providing a forum where one can share experiences with peers is particularly valuable in treatment settings for this group of adults [47]. While the results are promising, there is room for refinements, including an even better tailoring of the intervention to ADHD. An important step forward would be to involve adults with ADHD in the review and refinement process to ensure that all key aspects of the interventions are well-adapted to the challenges and difficulties facing adults with ADHD. Nonetheless, the heterogeneous nature of ADHD requires finding a balance between including intervention components that fit most participants and including specialized strategies addressing the specific needs of a subset of individuals with ADHD.

This study highlighted concerns regarding treatment adherence, especially regarding pretreatment dropout. A total of 3 participants dropped out before starting the intervention, while another 4 participants did not complete the intervention. This finding aligns with well-known challenges related to treatment adherence among adults with ADHD [48,49]. The issues related to adherence in this study may be partially attributed to our community-based sample. Motivation for completing psychological treatment may thus have been lower than among clinic-recruited participants. However, there could also be intervention-specific factors related to dropouts, such as dissatisfaction with the intervention or finding the intervention too demanding. Yet it is also worth noting that although high levels of treatment adherence are generally seen as favorable for the patient, treatment dropout does not necessarily equate to clinical failure for the patients themselves. Still, when reviewing the current intervention, it may be necessary to include more strategies to prevent early termination of treatment. A literature review on the topic found that strategies such as pretherapy preparation, patient selection, time-limited treatment contracts, appointment reminders, motivation enhancement, facilitation of a therapeutic alliance, and facilitation of affect expression were specific strategies that could be applied to reduce premature termination of treatment across different psychiatric disorders [50]. As we progress, understanding the multifaceted factors associated with dropout will be crucial.

With regard to the companion app, it is interesting to note that the participants who initiated the intervention generally completed a high number of skills training modules in the companion app, with the majority completing all modules. This finding is in line with the results from Selaskowski et al [35], which showed that the inclusion of a mobile app in a group-based intervention for adults with ADHD was linked to higher homework compliance [35]. Given the importance of homework for behavioral change as well as the common challenges related to homework compliance in psychological interventions, facilitating methods to ensure high attrition of homework may be particularly useful [51]. However, it is important to note that with the design of this study, we cannot determine whether the companion app resulted in higher homework compliance as opposed to not including the app; this would be an interesting topic for future studies.

The results were promising in terms of preliminary clinical findings, with participants showing a significant and large reduction from pre- to post treatment in emotion dysregulation. These findings are in accordance with findings from other psychological interventions targeting emotion dysregulation in individuals with ADHD [26]. Significant improvements were also observed in the secondary clinical outcome measures, including inattention and hyperactivity-impulsivity. However, given the study’s small scale, nonrandomized, and uncontrolled design, the clinical findings must be considered with caution. Moreover, we found no significant changes in the measures of anxiety, depression, quality of life, or executive functioning. Regarding executive functioning, previous research has shown that measures of executive control remain stable in ADHD, regardless of remission or persistence [52]. More generally, the effect of interventions that are designed to improve cognitive abilities or executive functioning appears to be domain-specific and show mixed results [53,54].

Taken together, the results from this study were encouraging and call for further development of the intervention and a more extensive examination of clinical effects in a randomized controlled trial.

Limitations
This feasibility study has some limitations that should be noted, in particular the small sample size, the absence of a control group, and the lack of randomization. Due to these limitations, conclusions regarding the intervention’s clinical effects remain elusive, and we cannot rule out placebo or other random effects. Yet, the aim of this study was not to examine the effectiveness of the intervention but rather to assess its feasibility before paving the way for larger trials.

A further limitation is that 3 participants who took part in the intervention did not complete the postassessment. Therefore, it is possible that this could have impacted the treatment satisfaction and credibility scores of the interventions. Furthermore, the participants were recruited from the community and may therefore differ in some way from typical clinic-recruited adults with ADHD. The reliance on self-report scales to evaluate clinical outcomes in this study should also be considered a limitation. In future studies, it would be interesting to include other measures, such as those generated from sensor technology, clinician ratings, and performance on cognitive tests.

Conclusion
In conclusion, the results from this feasibility study support the potential of ERIA as a feasible intervention for addressing emotion dysregulation in adults with ADHD and call for further investigation in a randomized controlled trial. The blended approach, integrating digital and face-to-face elements, may offer some advantages compared to an exclusively digital or face-to-face treatment format. The in-person group sessions were especially valued because they provided opportunities to interact with peers. Meanwhile, the high completion rate of the companion app modules indicates their potential to facilitate skills training.
Acknowledgments
The study was funded by Helse Vest research funds. The authors would like to thank all the participants in this study and the experts to experience. We would also like to thank the patient advocacy group “ADHD Norge” for sharing information about this study. We would further like to thank Hedda Bakken, Sara Furuholmen, and Nanna Skram for their contributions to the project.

Authors’ Contributions
ESN, AJL, and FG contributed to the development, idea, and design of the study. ESN, AJL, SLA, and VS contributed to the data collection for the feasibility study. ESN conducted the statistical analyses, while AJL, FG, JK, SLA, and VS contributed to the interpretation of the results. ESN was responsible for the drafting of the manuscript, while AJL, FG, JK, SLA, and VS critically reviewed and revised the draft. All authors approved the final version of the manuscript and take full accountability for the work.

Conflicts of Interest
JK has delivered talks at educational events sponsored by Medice; all funds were received by King’s College London and used for studies of ADHD. AJL has received speaker fees and travel expenses from Medice.

References

Abbreviations

AAQoL: Adult ADHD Quality of Life
ADHD: attention-deficit/hyperactivity disorder
ASRS: Adult ADHD Self-Rating Scale
BRIEF-A: Behavior Rating Inventory of Executive Functioning--Adult version
CEQ: Credibility and Expectancy Scale
DERS: Difficulties in Emotion Regulation Scale

https://formative.jmir.org/2024/1/e53931

(page number not for citation purposes)
DSM-5: Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition)
ERIA: Emotion Regulation Intervention for ADHD
GEARS: Group Therapy for Improving Emotional Acceptance and Regulatory Skills in Adults with ADHD
HADS: Hospital Anxiety and Depression Scale

Edited by A Mavragani; submitted 25.10.23; peer-reviewed by M Guth; comments to author 12.12.23; revised version received 17.12.23; accepted 17.12.23; published 17.01.24.

Please cite as:
A Blended Intervention Targeting Emotion Dysregulation in Adults With Attention-Deficit/Hyperactivity Disorder: Development and Feasibility Study
JMIR Form Res 2024;8:e53931
URL: https://formative.jmir.org/2024/1/e53931
doi:10.2196/53931
PMID:38231536

©Emilie S Nordby, Frode Guribye, Viktor Schønning, Sander Lindholm Andersen, Jonna Kuntsi, Astri J Lundervold. Originally published in JMIR Formative Research (https://formative.jmir.org), 17.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Designing a Web-Based Navigation Tool to Support Access to Youth Mental Health Services: Qualitative Study

Alison L Calear¹, BAppPsych (Hons), PhD; Philip J Batterham¹, BSc Hons, MPH, PhD; Sonia M McCallum¹, GradCertPHC, BHlthSC (Hons), BSc, PhD; Michelle Banfield¹,², BA (Hons), BSc, PhD; Elizabeth Moore³, GradCertHPE, BS, MB; Natalie Johnson³, GradCertPM; Alyssa R Morse¹, AMusA, BPsych (Hons), PhD

¹Centre for Mental Health Research, The Australian National University, Canberra, Australia
²ALIVE National Centre for Mental Health Research Translation, Melbourne, Australia
³Office for Mental Health and Wellbeing, ACT Health, Canberra, Australia

Abstract

Background: Many young people with mental health problems do not readily seek help or receive treatment and support. One way to address low help-seeking behavior is to improve access to information on mental health services and how to navigate the mental health system via a web-based tool. Seeking input from the end users (young people and parents or caregivers) on key features of the tool is imperative to ensure that it is relevant, engaging, and likely to meet their needs and expectations.

Objective: This study aims to investigate young person and parent or caregiver views on the design, content, functioning, and user experience of a web-based mental health navigation tool to support connection to mental health services for children and young people aged up to 25 years.

Methods: A total of 4 online focus groups were conducted: 2 with young people aged 16 years and older (total n=15) and 2 with parents or caregivers (total n=13). Focus groups were structured around a series of guiding questions to explore participants’ views on content, features, user experience, and design of a mental health navigation website. Focus groups were audio recorded with detailed notes taken. In addition, 53 young people aged 16-25 years and 97 parents or caregivers completed an online survey, comprising closed- and open-ended questions; open-ended responses were included with the focus group data in the qualitative analysis. All qualitative data were analyzed using thematic analysis.

Results: A total of 2 topic areas and 7 themes were developed. The first topic area covered the types of information needs of young people and parents. Identified themes concerned the scope of the navigation website, as well as the provision of up-to-date and practical information on how to navigate the whole help-seeking process. The second topic area covered website features that would be beneficial and included the consideration of the website design; search engines; supported navigation; and forums, reviews, and user accounts.

Conclusions: This study provides important insights into the navigation needs of young people and parents or caregivers in seeking mental health services. Key findings identified through this research have directly informed the development of MindMap, a web-based youth navigation tool providing a searchable database of local services, including a clear description, their location, and potential wait times. The website can be navigated independently or with support.

(JMIR Form Res 2024;8:e48945) doi:10.2196/48945

KEYWORDS

mental health services; youth; navigation tool; mental health; website; user experience; design; service; services; access; accessibility; health care system

https://formative.jmir.org/2024/1/e48945

(XSL•FO)
Introduction

Globally, mental disorders are common and often emerge during childhood and adolescence [1,2]. The worldwide pooled prevalence of mental disorders in children and adolescents has been reported to be between 12.7% and 13.4% [2,3], while suicide is one of the leading causes of mortality in this age group [4]. Timely access to appropriate services and supports for mental disorders and suicidal distress can mitigate the persistence of poorer health, academic, and social outcomes into adulthood [5].

Research suggests, however, that many young people do not readily seek or receive treatment or support for psychological distress, suicidal ideation, or suicidal behavior [3,6,7]. A recent systematic review and meta-analysis of the prevalence of mental disorders in children and adolescents in high-income countries found that only 44.2% of young people with mental disorders received any services for their conditions [3]. Another study conducted in Australia reported slightly higher rates of service use among children and adolescents, with 56% accessing services for emotional and behavioral problems [7]. However, Sawyer et al. [8] reported that only 12% of Australian young people aged 6-17 years with a mental health condition received what was considered adequate treatment.

Several possible drivers of low help-seeking behavior among young people, parents, and other caregivers have been identified. A recent review found that limited mental health knowledge, embarrassment and perceived social stigma, a lack of perceived confidentiality and trust in mental health providers, financial costs, logistical barriers, and limited availability of services were common barriers to accessing professional help for mental health problems among young people [5]. Similar barriers were identified among parents seeking treatment for mental health problems in their children and adolescents, with a lack of knowledge of where or how to seek help and a limited understanding of the mental health system identified as key barriers to service use [9].

One way to address some of these barriers may be to provide young people and parents or caregivers with a navigation tool they could use to identify available services and traverse often complex and disconnected mental health systems. Similar to other high-income countries, there are multiple entry points into the mental health care system in Australia, but access is often dependent on the individual knowing about them. As such, being able to access all service options in the same place would overcome service knowledge barriers and save users’ time trying to identify what is available in their area. Providing such tools online through an interactive website would also make this information more accessible, as adolescents and parents report seeking mental health information online [10-13] and a website would allow greater reach and timely updating of service information. In a survey assessing parents’ help-seeking for their adolescent’s mental health, over 75% of participants indicated that they would use the internet to find information about services [14]. In developing such a website, it is imperative that young people and parents or caregivers are involved, as there is clear evidence in the literature that the involvement of end users is essential to ensuring uptake and that the website meets the needs and expectations of users [15,16].

This paper reports the outcomes of focus groups and online surveys conducted with young people, parents, and other caregivers to identify the design, content, functioning, and user experience of a web-based mental health services navigation tool for children and young people aged up to 25 years in the Australian Capital Territory (ACT). This study was conducted in partnership with the ACT Office for Mental Health and Wellbeing and provides unique insights into the navigation needs of this population, with a dearth of previous research in this area, and the importance of the consultation process in producing an interactive website that is relevant, engaging, and likely to meet the needs of end users.

Methods

Participants

A total of 4 online focus groups (N=28), with 5-10 participants each, were conducted. Of these focus groups, 2 focus groups (15/28, 54%; 10/15, 66% female) were conducted with young people aged 16 years and older. These groups were conducted with members of 2 existing youth mental health reference groups: the ACT Youth Advisory Council and the ACT headspace Youth Advisory Group, who had experience representing the wider interests and views of their peers. The other 2 focus groups involved parents or caregivers (13/28, 46%; 12/13, 92% female). Participants for these were drawn from expressions of interest from the community and included parents with and without mental health service experience. To attract diverse representation in the focus groups, we advertised for recruitment through ACT mental health sector newsletters and on the social media website Facebook. Facebook advertising targeted adults in the ACT who identified as a parent or caregiver of a child aged 10-25 years. The online modality for the focus groups was chosen to maximize ease of attendance and minimize potential COVID-19 exposure.

Alongside the focus groups, 150 people participated in an online survey to further garner the perspectives of young people and parents or caregivers. Participants were young people aged 16-25 years (53/150, 35%; 44/53, 83% female; mean age 20, SD 2.8 y) and the parents or caregivers (97/150, 65%; 90/97, 93% female; mean age 45.5, SD 7.6 y) of young people aged 0-25 years (0-6 y: 20/97, 21%; 7-11 y: 38/97, 39%; 12-15 y: 47/97, 48%; 16-18 y: 30/97, 31%; and 19-25 y: 37/97, 38%). Participants for the survey were recruited through Facebook advertising. The Facebook advertisements were delivered to 21,600 accounts, with 1,300 people engaging with the Facebook post and 374 clicking the link and commencing the survey. Of those who commenced the survey, 40.1% (150/374) went on to complete and submit the survey for analysis. The majority of participants reported English as their first language (47/53, 89% young people and 93/97, 96% parents or caregivers) and had accessed pediatric mental health services in the past (45/53, 85% young people and 86/97, 89% parents or caregivers). Just over half (28/53, 53%) of the young people who completed the survey identified as lesbian, gay, bisexual, transgender, intersex,
queer (LGBTIQ+), whereas 21% (11/53) reported having a disability.

Ethical Considerations

Ethical approval for this study was obtained from the Australian National University Human Research Ethics Committee (protocol 2020/200). All participants were provided with an information sheet outlining the study. Participants in the focus groups were required to return a signed consent form via email before attending the online focus group, whereas survey participants consented to participate in the survey by checking a box at the beginning of the survey. All survey data were collected anonymously, whereas all focus group data were deidentified before analysis and data storage. All focus group participants were provided with a small honorarium of AU $60 (US $40) in recognition of their time and contribution to the study.

Materials

The focus groups were structured, with a series of guiding questions and prompts that explored the views of young people and parents or caregivers on the potential design, content, functioning, and user experience (eg, optional phone and email support) of a web-based navigation tool (the full list of questions and prompts is given in Multimedia Appendix 1). Questions and prompts were developed in collaboration with staff members from the ACT Office for Mental Health and Wellbeing to gather information required to progress website development from an early concept and include youth and parent perspectives in the design process. Participants were encouraged to share their perspectives verbally with the group or to note any thoughts or ideas in the chat function.

The online survey assessed a range of topics relevant to the development of a youth navigation tool including website features (eg, information, links, quizzes, and service contact details), features and topics by which services could be searched (eg, cost, location, age, and gender), navigation support (eg, phone and online), and possible account functions (eg, acceptable account details and storage of information). Questions were developed with iterative feedback from the ACT Office for Mental Health and Wellbeing and the Youth Coalition of the ACT (peak body for youth affairs in the ACT) to ensure that they covered key issues for website design and were appropriate and accessible for young people. Participants were asked to share their preferences through a combination of close-ended and free-text responses.

Procedure

Because of the COVID-19 pandemic, all focus groups were conducted online in June 2020 using the Zoom videoconferencing platform (Zoom Video Communications). Given that this study was conducted in partnership with the ACT Office for Mental Health and Wellbeing, all focus groups were cofacilitated by a member of the research team and the ACT Office for Mental Health and Wellbeing. A second member of the research team was also present at all focus group sessions. Their role was to take notes, assist with linking participants with clinical support (if required), and monitor any discussion via the chat function, which was encouraged. All focus groups ran for approximately 90 minutes, online discussions were audio recorded, and any chat conversations were also saved for inclusion in the analysis. One author (ARM) listened to each focus group recording and took detailed point-by-point notes on the content of participant discussions. These were combined with researcher notes taken during the session and participants’ chat conversations for analysis. Because of this approach, all illustrative quotes were drawn from survey data. Participants were provided with help-seeking resources at the conclusion of each focus group, and clinical support or debriefing was available on request.

Two separate surveys were developed for young people and parents or caregivers and were administered online in June 2020 using Qualtrics online survey software (Qualtrics). Surveys took approximately 20 minutes to complete. All participants were provided with a list of help-seeking resources at the conclusion of the survey.

Data Analysis

Qualitative data were managed using the NVivo 12 software (QSR International). A thematic analysis [17,18] was conducted by 1 author (ARM) on focus group data notes, chat conversations, and free-text survey responses to identify and summarize the key topics and preferences raised by parents and young people within each area of questioning, while preserving the breadth and diversity of perspectives presented. ARM is a lived experience academic with personal experience of mental health service use and professional expertise in youth mental health and service evaluation. Analyses and developing categories were regularly discussed with other members of the research team, including researchers and ACT Office for Mental Health and Wellbeing staff members present at the focus groups, to test assumptions and clarify developing categories. A combination of deductive and inductive approaches to coding was applied. Before commencing data analysis, an initial broad coding framework was developed based on the key areas of questioning during the focus groups: content, features, user experience, and design. Focus group data were deductively coded within each category. As coding progressed, subcategories of describing specific areas of preference and new categories not represented by the deductive framework were developed inductively. A detailed coding framework was developed from the focus group data, including the original broad areas of questioning and inductively developed categories and subcategories. This framework was applied to free-text survey responses, adjusting the framework as necessary to adapt to new information. Finally, data were examined across categories to construct common themes in participants’ preferences. The key topic areas were summarized and grouped under 2 broad categories: the most important types of information for a service navigation tool and important website features.

Results

Overview

The overarching topic areas arising from the focus groups and surveys covered the types of information needs identified by young people and parents and the website features that would be beneficial to support the mental health of young people.

https://formative.jmir.org/2024/1/e48945
Themes collectively developed from the focus groups and surveys are described within these 2 areas. Data from the focus groups and surveys are integrated throughout this section. Where findings relate only to a specific group (parents or young people) or data collection format (focus group or survey), this is noted in the text.

Types of Information

Up-to-Date Information About Services

Preferences and needs for mental health service information were key topics of discussion in the focus groups and one of the most frequent topics raised in open-ended survey responses. Participants emphasized that it was important for the information on a mental health service navigation website to be regularly updated, with an indication of when updates last occurred, and for no information about listed services to be missing. Content should be relevant to the local region targeted by the website (ACT and surrounding region), as national-level websites can be difficult to navigate and regional content may better cover the full spectrum of services available in that area.

> Anything that is Canberra specific is great - wait times, contacts, prices, explaining which professionals do what. For general advice there are lots of national mh [mental health] services already. [Young person, survey participant]

> It would need to be regularly updated to match service changes. It would need to be all evidence based. [Parent, survey participant]

Current and accurate information about service wait times was particularly desirable for all participant groups. Families commonly experienced a lag between identifying that a young person had a problem and being able to access support services. Providing wait time information on a service navigation website could change the way families choose to access services and direct them to services with better availability. Knowing about wait times at the beginning of the help-seeking process would also inform young people and families about likely time frames for receiving support and enable them to plan ahead.

> I think the idea of including information about wait list times is very important - as this is usually critical at the time that you are seeking information and support. [Parent, survey participant]

> I think most people are primarily looking for immediate reassurance and advice. If they can get an idea on how long it might take to access different services this also gives them a time-frame so they can plan. [Parent, survey participant]

Young people highlighted the value of a navigation website in providing detailed information about services that would help them make informed choices. Information about accessibility was particularly important for young people. Specifically, cost and parental consent were identified as key barriers to service access, which could be partly addressed by providing detailed cost information (eg, service fees, rebates, and what benefits a child or family may be entitled to), indicating whether parental consent was required to use a service, and noting any relevant legal considerations. Young people also wanted to know if they would be able to physically access a service before they arrived and recommended that the website include information about wheelchair access (eg, presence of ramps and elevators), accessible and gender-neutral toilets, the languages spoken by staff members, whether tailoring was available for people who are vision- or hearing-impaired, and the age range targeted by a service. The content of a service navigation website should also specifically address issues faced by different minority groups, including LGBTIQ+ communities, people with disabilities, and migrant communities.

> Along with a list of mental health services, also ways of accessing them, with or without parental involvement and potential cost. [Young person, survey participant]

> Information specifically geared towards minority groups (BIPOC, LGBTIQIA+, people with disabilities etc.). Having information about different mental health issues is great but it would be a mistake not to factor in the relationship between mental health and other aspects of people’s identities. [Young person, survey participant]

Parents wanted a navigation website that provided clear information about the kinds of services available in their area, including government and private services and general practitioners who specialize in youth mental health. The ideal website would provide specific information about how to contact services, referral pathways, referral requirements, and whether new referrals were being accepted. Details about service specializations and appointment options (eg, availability of telehealth appointments) were also indicated as helpful across both participant groups.

> Information about accessing public v [versus] private mental health services and explaining the difference. [Parent, survey participant]

> Make sure info on telehealth is clear on if it’s: via the internet text-based, internet video-call, via the telephone, via text message. Don’t just say “this place offers telehealth services.” [Young person, survey participant]

How to Seek Help, and What Happens Next?

Parents emphasized that a service navigation website should include practical information about how to navigate the whole help-seeking process—from recognizing signs and providing support for their child through to good questions to ask a general practitioner when seeking a mental health referral and how to advocate for and manage the ongoing care of their child. Real stories of how other families navigated mental health issues, practical step-by-step instructions, and diagrams were suggested as useful tools to facilitate access to appropriate services. Young people also wanted clear step-by-step instructions describing how to access help, including how to access services without parental involvement. They noted that finding and visiting a new location can be scary. Providing extra information about the service location, including a map, pictures of the building and the front door, and pictures of staff members, could make the process easier. Information about different types of therapies...
and how they work were also considered helpful for young people.

Lists/help navigating processes - how to get a mental health plan [Mental Health Treatment Plan], how to see a specialist...who to see for gender dysphoria issues etc. [Parent, survey participant]

Maybe some little (short time, a few minutes only) video scenarios with intros to the various services to give a sense of what / who is involved, what to expect...to get a sense of what the service is about... [Parent, survey participant]

Participants noted that help-seeking resources should foster hope, rather than disappointment, if a service access attempt did not work out. For example, a parent who completed the survey suggested that a service navigation website could illustrate what a good mental health service arrangement looks like and let people know it is okay to try different clinicians and services if the first referral was not a good fit. Parents also suggested that a navigation website should include easily accessible information on how to recognize, respond to, and seek urgent help during a crisis situation. One parent suggested including a function that could directly link people to a crisis service if needed (eg, a crisis telephone service like Lifeline); however, other participants felt that most people would already know about commonly advertised crisis hotlines.

Information on what a good mental health service arrangement should look like - depending on individual need - and it is ok to not just stick with one person/service forever or choose none. [Parent, survey participant]

I think you need information clearly on the homepage about crisis care...and other urgent items that you don't want to have to sift through a website for. [Parent, survey participant]

Defining Website Scope

In all 4 focus groups and the online surveys, participants raised questions about the ideal scope of a service navigation website. Participants tended to agree that the website’s scope should not be too broad. However, there was uncertainty about whether a navigation website should provide information about mental health in general or only provide information about services. Some participants also expressed a preference for a broader focus on health and well-being, rather than limiting information to mental health services. Young people suggested that broader content could include information about career and employment guidance, coping with current events, mental health at school, and quick references for self-management strategies that could be used while waiting for services (eg, mindfulness, distress tolerance, and coping with panic attacks). Parents were interested in content about mental illnesses (including mood, anxiety, and eating disorders), how to recognize them in specific age groups, and information about common comorbidities and related issues like aggression and self-harm.

This is far too mental illness and mental health service focused than I would be wanting. As a parent it’s helpful to have that information but I would also like resources that are tailor made for the site and have a focus on more on early intervention and mental wellbeing. [Parent, survey participant]

Providing links to different websites or existing online programs was suggested as an acceptable option to prevent the scope of a service navigation website from becoming too broad. For example, a navigation website could provide links to existing early intervention and mental well-being resources to support young people’s and parents’ well-being and assist parents to provide support when issues were first identified. Young people suggested providing links to research papers; stories about other people’s lived experience; and different forms of media that represent mental health in a productive way, such as video games, books, and movies. Participants noted that this approach could also connect a website to resources that fall beyond what they would typically define as a “mental health service,” including information about physical health, disability services, drug and alcohol services, and community programs and events that support and empower young people.

I would like to see it link not just mental health services, but other services to help a child overcome all the problems that may be adding to the mental health issue. For example, if the child is experiencing a lot of pain, if the child needs weight management help, if the child is being bullied or needs to develop resilience, if the child is on the autism spectrum, etc. [Parent, survey participant]

Stories from people who struggle with their mental well-being but have found support and renewed belief in themselves. [Young person, survey participant]

Website Features

Website Design

Participants generally agreed that website design would be an important element of a service navigation website’s success. Elements of website design highlighted by young people included a quality user interface that was easy to use and attractive to the intended audience. Young people described a well-designed website as colorful (but not too colorful or gimmicky), engaging, private, welcoming, local, and informed by what we know about young people and how they think. A level of seriousness in the design was required to ensure that the website was viewed as a reliable resource. Government-branded websites were viewed as a trustworthy source of local information but could be off-putting for young people who had previous negative experiences with government mental health services. A list of organizations that support the website could also signal the trustworthiness of information. Young people were also very aware of accessibility issues, recommending that a navigation website be designed to work across different platforms, for people with slow internet connections, and that it met relevant accessibility standards (eg, for people with low vision or lower literacy levels). A parent suggested that the name of the website was also important and needed to be inviting, explanatory, and nonstigmatizing.

Easy website navigation was another key design issue. When trying to communicate about one’s own mental health in a
difficult time, participants felt that the most important thing was to access information easily. Participants indicated that they would be more likely to visit a service navigation website for a specific need or to find specific information. The website content should be set out plainly, with clear pathways to the kind of information the user is looking for. Website design should not be overly complicated, avoiding the need to navigate through tabs and the presence of too many distractions (e.g., moving images or videos). Young people were described as multitaskers; thus, a service navigation website needed to capture their attention quickly. To achieve this, it would be helpful to present information clearly and concisely, and to avoid walls of text that could be overwhelming. A frequently asked question section and fact sheets were seen as helpful, but only when presented as a dedicated webpage and not solely as a downloadable document.

Search Engines

Parents and young people agreed that a service navigation website should systematically connect people to relevant services quickly. A good quality search engine and filtering system was a particularly important aspect of young people’s user experiences; the search bar can be the first port of call for young people trying to find help. A good search engine was described as easy to navigate, with tags and search terms updated as service information changes. In 1 focus group, young people suggested that a service navigation website could be designed like a nice online shopping experience, with tabs and subtabs for different categories of services and filters that allow users to refine their search and locate the most relevant services. However, 1 parent survey participant noted that a filter system would make them feel terrible if it indicated that there were no services matching their child’s needs, indicating that a balance between detail and generalizability may be required. Participants suggested that if there were no services meeting a young person’s search criteria, the website could direct them to resources, fact sheets, or other information they may find helpful.

...a search engine that finds services that are relevant to you. E.g. you could put in the tags “stressed” “self harming” “aged 17” “don’t want to involve parents” and the search engine would suggest; things you could do to help yourself, services you could access, and a helpline. [Young person, survey participant]

The filter would make me feel terrible if meant that my child had no services available so I think that you need to be careful regarding putting too many. [Parent, survey participant]

Focus group participants suggested having a quiz or questionnaire to help young people and parents navigate the website. For example, a pop-up box could appear when a person first accessed the website with some questions about what visitors are looking for. Answers could direct young people and parents to appropriate website sections, services, or self-help strategies. Parents suggested that a navigation website could include a symptom checklist, providing recommendations on whether a person needs to seek help from a health professional and within what time frame. Participants noted that any quizzes or checklists should be accompanied by a disclaimer stating that the website could not provide a diagnosis, and questions should be symptom or problem based, not diagnosis based. The results should be anonymous unless a young person chose to disclose them. However, some participants thought it would be important to determine if a young person was in immediate danger and requiring assistance. To facilitate help-seeking, a symptom checklist tool would ideally lead to an outcome, such as connecting users with a real person who can assist with identifying an appropriate service or next step.

Wouldn’t it be easier to complete a mental health survey upon entering the site that directs you to all the relevant pages? [Young person, survey participant]

Adolescence is a tricky time. Parents don’t know when to worry, when to escalate to professional help, and when to leave kids to muddle through. A quiz that helps navigate that would be super helpful. [Parent, survey participant]

Supported Navigation

Participants were enthusiastic about having the option to contact a person, by phone or text-based chat, to help them gauge the seriousness of their issue, navigate the mental health system, connect with appropriate services, and answer questions about what to expect at an appointment. Parents emphasized the importance of creating a sense of trust, confidence, and reliability when a person makes a connection through a navigation website. Finding the right service could take a lot of time, research, and mistakes, particularly during times of stress. Some participants described help seeking as overwhelming, emphasizing the importance of positive experiences that could renew confidence in seeking help and support future service use. An interaction with a real person could be an opportunity to foster hope, positive regard, empathy, reassurance, and a sense of not being alone.

This is a great idea. I found navigating the system to be impossible to start with. I was googling everything, calling all these people, being passed from service to service and getting nowhere. None of the service providers knew what any of the other service providers could do. Someone to help you navigate that would be amazing - especially if you are out of your mind with worry and sleep deprivation like I was! [Parent, survey participant]

When asking questions about mental health problems, some young people reported preferring to talk to a health professional, whereas some parents and young people suggested that this would be a good opportunity for peers to support young people and carers and that young adult peers may be better able to connect with younger website users. However, 1 young person noted that talking to a healthy peer may be intimidating for some young people. Across the surveys and focus groups, participants suggested that the person they contacted should be genuine, engaged, supportive, friendly, empathetic, unhurried, unscripted, and well trained, with appropriate counseling skills to support stressed or distressed callers. Their understanding of
mental health and local health services should be broader than the understanding provided by the caller’s own experiences.

Having an advisory line (telephone or chat) which is supportive, anonymous if wanted, friendly and unhurried, staffed by a real person who is quietly supportive but knowledgeable would be great to help people navigate the system and get a sense of where they are best placed to use their energies in pursuing or connecting with services. [Parent, survey participant]

Participants emphasized that the purpose of any phone or text-based contact options and the roles of the people running them need to be very clear. Contact information should be clearly stated and easy to find, and ideally some contact options would be available outside of normal business hours (eg, evenings, nights, and weekends). Participants had concerns around potential privacy issues, particularly related to data collection and storage, and the need to support people who disclose thoughts of suicide and self-harm. Parents recommended that all interactions end with some kind of closure, for example, actions such as making an appointment for the person with an appropriate service or taking a concrete step that progresses the issue, with timely outcomes.

I’d also be more comfortable in knowing how any conversations via the website were recorded and stored since there is always the chance of personal stuff coming up in conversations, and I wouldn’t want that to be accessible by anyone except those who are directly working to help me. [Young person, survey participant]

Further, participants discussed the option of receiving a follow-up call or text, after interacting with a person via a service navigation website. Some participants felt that a follow-up call could be comforting for people who were currently on a waitlist, for example, by providing updates on wait times and identifying alternative sources of support. Survey participants were primarily interested in receiving follow-ups related to service access, for example, checking in to see if services had connected with a young person, how effective the service has been, and if the young person’s needs are being met. Although some participants also wanted the opportunity to give feedback about services, some parents felt oversurveyed by mental health services. Other participants felt that a follow-up would not be helpful in all circumstances. For example, 1 parent felt that receiving a phone call may just be more frustrating if accessing services was not going well. Participants agreed that any follow-up from a service navigation website should be opt-in, the user should have control over how and when they are contacted, young people should decide whether their parents are contacted, and any promises made by a navigation service should be honored (ie, call if you say you will call). Choice and control over contact was seen as particularly important for young people living in high-risk situations, where receiving a phone call or message could potentially be unsafe.

I think having options is good, especially for kids in potentially dangerous situations. And I do think texting is popular with kids. [Young person, survey participant]

I think it is also important to see how well people went with actually accessing the services and whether their child’s needs were met and what negatives there were. [Parent, survey participant]

Forums, Reviews, and User Accounts

Website functions that could allow users to share information were met with a mixed reception. The options discussed included forums, service reviews, and user accounts. Forums received the most positive reception, but with important safety considerations for implementation. They were described as a positive tool for young people and parents to connect with peers who have had similar experiences and share coping techniques or to connect with health professionals. However, to be safe and useful, a forum or chat room would require careful moderation. Participants suggested that forums could be provided by a service navigation website itself or the website could instead provide links to external, good quality, moderated mental health social media pages or similar services.

Particularly when I was younger, online resources were huge! Whether that was headspace’s online counselling, or online chat forums with other people. I think those chats were absolutely fantastic, however they definitely needed expert moderation. [Young person, survey participant]

I'm a little concerned about forums and/or chat rooms. They would need to be carefully monitored to make sure there are no trolls responding negatively or people using cyber bullying. [Parent, survey participant]

User reviews of mental health services were raised as a possibility, but this option had both advantages and disadvantages. Reviews could provide information to help young people choose a suitable service and prepare for their own visit. However, mental health service needs and preferences were seen as highly individual; thus reviews may deter young people from accessing services that would actually suit them. One young person suggested that a government “check mark” (ie, accreditation), indicating that services were legitimate, could be an alternative to reviews, and a parent suggested including a feature where young people and parents could post questions to be answered by a website staff member.

User accounts were the least desirable function of a service navigation website. Young people’s responses to implementing user accounts were overwhelmingly negative, due to concerns around privacy, security, safety, stigma, and limiting access to website features for people without accounts. Young people thought their peers may also associate accounts with costs like subscription fees. A small number of survey participants thought it would be helpful to have a single digital record of the services they had tried and a “wish list” of services they would like to try in the future. However, most parents and young people were uncomfortable with the idea of their mental health information being stored online and believed that this could create a barrier to people using a service navigation website. Young people
emphasized the need to be able to access a service navigation website anonymously, particularly when living in high-risk situations where internet use was monitored, and some felt that an optional user account would overcomplicate a navigation website. Young people suggested a range of other, less invasive, ways to tailor user experiences, including features that made it easy to save pages to favorites in a browser, copy content to the clipboard, email a link to service contact information, and save records of service contact information into another application (eg, into the Notes or Photos app on a phone).

A record of interactions makes me feel insecure, because I know the website is keeping data on me. This is not just “not helpful,” but distinctly unhelpful. [Young person, survey participant]

I would be concerned about a portal where you sign in. While it might be good to have information all in one place, really mental health information belongs in a doctor’s office. If your child is displaying mental health problems, you don’t really want that recorded when you don’t know how that information will be used into the future. [Parent, survey participant]

Discussion

We conducted focus groups and online surveys to inform the design of a mental health services navigation website. Although the research activity was conducted with a specific region in mind, the findings may assist other organizations designing websites or apps to assist young people and parents in navigating mental health systems. Many of the themes represent common issues faced by young people in need of mental health support.

Participants emphasized the need for, and importance of, up-to-date and accurate information about local mental health services (public and private) and guidance on how to access them (including referral pathways). Participants were aware of existing lists and directories of services, but these were described as incomplete, out of date, and difficult to search. Navigation tools were seen to be most helpful if they could provide local, tailored information, including service information that could not be accessed elsewhere. Transparent information about service cost, wait times, and how to access services without parental permission was in particularly high demand. This information could support young people and parents to make informed choices about which services to select and pursue. Future research exploring the specific service information that is needed to adequately meet end-user needs and that translates into actual service contacts would be beneficial.

Similarly to previous research, participants also emphasized the need for information about referral pathways and how to navigate the mental health system [9,19]. Parents and caregivers shared that they often acted like case managers and advocates for their children, and they wanted access to information and resources that could support them. Step-by-step instructions, flow charts, and real-life stories of accessing mental health care, tailored to the local system, could all support young people and their parents on their journeys from first seeking help to accessing specialist services [19].

An effective search engine was an important aspect of the navigation tool’s design. All information within the navigation tool needs to be searchable, and users should be able to refine their search results using relevant filters. Young people and parents felt that they should be able to independently find service information more easily than they could with a web search engine and that a navigation tool should be broadly accessible, functional, easy to navigate, and tailored to its audience in content and appearance. This finding highlights again the importance of the co-design process, and end-user testing, to ensure that the tool developed is fit for purpose and fully meets the needs of those who will use it [15]. Relatedly, digital tools should also be designed in accordance with web accessibility standards to ensure that all users can effectively use them, including those with disabilities [20].

Participants also felt that it would also be helpful for the navigation tool to provide a phone, text, and/or web chat service. Specifically, participants wanted a phone line or web chat option that could help people to identify relevant and appropriate mental health services and support them to decide which service to contact first. Including this feature would reduce the burden on young people and parents to identify, research, and select services alone. Offering an option to receive a follow-up call or text from a phone line or web chat may also be beneficial.

Underlying many of these findings was the need to have control over the help-seeking process. Control over how and when to interact with content is an important concern for young people in the design of online mental health interventions [16,21]. Providing choices was important to participants in our study; both choice in how they could contact a support person through the navigation tool (eg, phone call, web chat, SMS text messaging, or email) and choice in if, how, and when they were contacted by the navigation tool or engaged with a service.

Other potential navigation tool elements, such as being able to create a user account, were not as desirable. Storing records of health information online, particularly mental health information, raised serious concerns around privacy. Generally, participants felt that people would primarily use the navigation tool anonymously and independently. This aligns with previous findings from the development of mental health interventions for young people and adults, which highlighted confidentiality, privacy, and trust in the organization delivering the service as key areas of importance for end users [21-23]. Some people felt that it could be helpful to be able to record their activity (eg, service wish lists) while using the navigation tool and/or service use in a single location, but participants emphasized that user account features should be opt-in. Such features may be off-putting for potential users.

The involvement of end users in the design of the navigation tool was highly valued by the commissioners of this research and resulted in the development of a youth navigation website called MindMap [24], which captures the key elements identified by participants. The findings of this study provided formative information for the development of MindMap, although there was additional development and testing involved to create the final website, which is beyond the scope of this paper. MindMap is an accessible web-based tool that provides a comprehensive...
searchable database of local services and provides a clear description of the service, its location, and potential wait times. It is an initiative of the ACT Office of Mental Health and Wellbeing and delivered by a nongovernmental organization with strong connections into the local mental health sector, enabling frequent refreshing of service information. Users of MindMap can use the navigation tool independently or receive navigation support during the week or on weekends from members of the MindMap team via telephone, email, or web chat. Young people and parents or caregivers were involved in the iterative development and testing of MindMap to ensure that it continued to meet their needs.

There are some limitations to this research that should also be considered. First, the participants in the focus groups and survey may not have been representative of all young people and parents or caregivers in the community, and the study may have attracted people with a greater interest in mental health. Preferences for website appearance, content, and features may have varied by age and personal experience of mental health issues [16,25]. Future research would benefit from sampling more young men, and young people and parent or caregivers without mental health service experience, to ensure that the needs and preferences of all targets are adequately captured and met.

The scope of the questions in the focus groups may also have guided the discussion, placing more emphasis on the areas covered by the questions and consequently may have missed other issues. This issue was partly mitigated by providing time within focus groups for participants to identify issues not covered by the questions. The timeline of the project necessitated the use of point-by-point note-taking from focus group recordings, rather than verbatim transcripts, for data analysis. We acknowledge that this approach may have a higher risk of introducing research bias; however, this was mitigated through regular discussion of the analysis with the research team and the inclusion of qualitative survey data in the analysis. Lastly, the research was conducted with a specific region in mind, and thus not all findings may be relevant to other contexts.

Overall, this study provides important insights into the navigation needs of young people and their parents or caregivers seeking mental health services and how best to support them in this process. The focus groups and surveys identified the need for tailored local information, the provision of up-to-date service details, and the opportunity for users to navigate the site independently or with support. Ensuring that young people and their parents or caregivers can access mental health services in an efficient and timely manner is essential to the longer-term health and well-being of young people. Future research assessing the effectiveness of navigation tools in meeting this goal should be strongly encouraged.

Acknowledgments

We would like to thank and acknowledge the young people, parents, and carers who participated in this research. This research was funded by the Office for Mental Health and Wellbeing, ACT Health. ALC is supported by a National Health and Medical Research Council (NHMRC) fellowship (1173146). ARM is supported by a Suicide Prevention Australia Post-Doctoral fellowship.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions

ALC and PJB led the design of the study, with input from all other authors. ALC, SMM, EM, NJ, and ARM contributed to data collection. ARM and MB conducted the analyses. ALC and ARM drafted the paper. All the authors critically reviewed and approved the final manuscript.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Focus group questions and prompts.

[DOCX File, 11 KB - formative_v8i1e48945_app1.docx]

References

Abbreviations

ACT: Australian Capital Territory
LGBTIQ+: lesbian, gay, bisexual, transgender, intersex, queer
Development and Usability Testing of an mHealth Tool for Trauma-Informed Prevention of Substance Use, HIV Acquisition, and Risky Sexual Behaviors Among Adolescents: Mixed Methods Study

Carla Kmett Danielson1, PhD; Angela Moreland1, PhD; Austin Hahn1, PhD; Devin Banks2, PhD; Kenneth J Ruggiero3, PhD

1Department of Psychiatry & Behavioral Science, Medical University of South Carolina, Charleston, SC, United States
2Department of Psychology, University of Missouri-Saint Louis, Saint Louis, MO, United States
3College of Nursing, Medical University of South Carolina, Charleston, SC, United States

Corresponding Author:
Carla Kmett Danielson, PhD
Department of Psychiatry & Behavioral Science
Medical University of South Carolina
67 President Street
Charleston, SC, 29425
United States
Phone: 1 8437922945
Email: danielso@musc.edu

Abstract

Background: Youth who experience traumatic events are at a substantially higher risk of engaging in substance use and sexual risk behaviors and problems (e.g., HIV acquisition) than their non–trauma-exposed counterparts. Evidence-based substance use and risky sexual behavior prevention may reduce the risk of these outcomes. Trauma-focused mental health treatment provides a window of opportunity for the implementation of such preventive work with these youth. However, overburdened clinicians face challenges in adding prevention content while implementing evidence-based treatments. Mobile health (mHealth) tools can help reduce this burden in delivering prevention curricula. Trauma-Informed Prevention for Substance Use and Risky Sexual Behavior (TIPS) is an mHealth app that was developed to aid trauma-focused cognitive behavioral therapy (TF-CBT) clinicians in the implementation of an evidence-based risk behavior prevention curriculum.

Objective: The goal of this paper is to describe the rationale for and development of the TIPS app and present the results of a mixed methods approach for the initial evaluation of its usability.

Methods: Participants included clinicians (n=11), adolescents (n=11), and caregivers (n=10) who completed qualitative interviews and an adapted version of the Website Analysis and Measurement Inventory.

Results: In total, 4 overarching themes emerged from the participants’ answers to the qualitative interview questions, demonstrating a generally positive response to the app. The themes were (1) strength of app content, (2) suggestions about app content, (3) esthetics and usability, and (4) benefits to the patient and session implementation. Clinicians, adolescents, and caregivers all agreed that the content was very relevant to adolescents and used examples and language that adolescents could relate to. All 3 groups also discussed that the content was comprehensive and addressed issues often faced by adolescents. All 3 groups of users made suggestions about the esthetics, which mostly comprised suggestions to change the font, color, or pictures within the app. Of all the groups, adolescents were most positive about the esthetics and usability of the app. Results from the Website Analysis and Measurement Inventory further illustrated the users’ favorable reaction to the TIPS app, with 100% (11/11) of clinicians, 100% (10/10) of caregivers, and most adolescents (7/11, 64%) selecting strongly agree or somewhat agree to the following statement: “This app has much that is of interest to me.” Adolescents generally found the app easier to use than did caregivers and clinicians.

Conclusions: The TIPS app shows promise as an mHealth tool for TF-CBT clinicians to integrate evidence-based substance use, risky sexual behavior, and HIV prevention during treatment. Future research, including a randomized controlled trial comparing
TF-CBT implementation with and without the inclusion of the app, is necessary to evaluate the feasibility and efficacy of the app in reducing the risk of substance use and risky sexual behavior among trauma-exposed adolescents.

Trial Registration: ClinicalTrials.gov NCT03710720; https://clinicaltrials.gov/study/NCT03710720

(JMIR Form Res 2024;8:e52835) doi:10.2196/52835

KEYWORDS

traumatic stress; prevention; substance use; HIV; qualitative methods; adolescents; mobile phone

Introduction

Background

Children and adolescents who experience traumatic events are at a substantially higher risk of engaging in sexual risk behaviors and substance use than their non–trauma-exposed counterparts [1,2]. Early traumatic experiences also have long-term effects on behavioral health as youth exposed to trauma are more likely than their nonexposed peers to develop substance use disorders [3,4] and experience unexpected pregnancy and sexually transmitted infections (STIs) [5,6], including increased risk of HIV acquisition [7,8]. Models addressing the link between trauma exposure and risk behavior have suggested that, although these behaviors are multidetermined, trauma exposure plays an important role by manifesting impairments in affect regulation, impulse control, identity development, and socialization [2,9].

Given the strong relationship between trauma exposure and problematic behavioral health outcomes, preventing morbidity related to substance use and sexual risk behavior may be best addressed from a trauma-informed lens. That is, an important prevention approach may involve addressing risk behavior in the context of trauma-focused assessment and treatment. However, data suggest that clinicians are often reluctant to integrate interventions related to substance use in the context of trauma treatment [10] because of clinical, systemic, and training barriers and limited resources (including limited support) relative to caseload demands [10-13]. Given the need for substance use and risky sexual behavior prevention for trauma-exposed adolescents—and to combat these barriers and demands for time and resources—clinicians may benefit from a structured tool to help efficiently implement evidence-based prevention strategies for risk behaviors common among trauma-exposed youth [14]. Such a tool may be best delivered via a mobile health (mHealth) approach, which can reduce the need for extensive clinician training in multiple new prevention intervention curricula, augment the formal training they do receive, and enhance or extend the effectiveness of the traditional clinical encounter [15,16]. As such, clinicians would be significantly more likely to deliver substance use prevention if a ready-made mHealth tool were available that helped them deliver it efficiently and accurately. This study describes the development and feasibility evaluation of an mHealth app designed to supplement trauma treatment among adolescents, targeting prevention of substance use, sexual risk behavior, and associated health consequences (eg, HIV).

Adolescent Trauma Treatment as an Opportunity for Prevention

The gold-standard treatment for addressing adolescent trauma is trauma-focused cognitive behavioral therapy (TF-CBT) [17,18]. With >20 completed randomized controlled trials (RCTs)—including international studies—supporting its effectiveness in addressing a range of mental health problems and improving functioning among trauma-exposed youth, TF-CBT has received the highest ranking for empirical support from professional organizations and federal agencies [19-38]. TF-CBT has achieved widespread dissemination through numerous implementation efforts, including comprehensive training programs (eg, community-based learned collaboratives), educational materials, and collaborations with mental health organizations, ensuring its accessibility and use by therapists and clinicians across various regions and populations. In fact, the widespread utility of TF-CBT is exemplified by the staggering number of clinicians who have accessed TF-CBT Web 1.0 and 2.0 (original and updated versions of the TF-CBT web-based learning course); as of August 31, 2023, a total of 496,061 clinicians worldwide are registered users of the web-based training in the TF-CBT model, and 305,120 clinicians have completed the training [39]. Modules of TF-CBT, including psychoeducation and enhancing safety, may include general psychoeducation about sex and sexual revictimization risk reduction; however, information and skill development specific to HIV and STIs, pregnancy, and healthy dating and sexual decision-making are not detailed in the model manual or training. Similarly, skill development for preventing substance use problems that extends beyond psychoeducation and helps translate this knowledge into skills is not formally or typically incorporated into TF-CBT, limiting the potential impact of these psychoeducation modules. In other words, these clinicians do not systematically receive the training and support needed to feel confident in their delivery of psychoeducation content or in the ways to translate this education into skills (eg, realistic refusal skills) [10].

Although clinicians can informally incorporate risk behavior topics into their implementation, the data suggest that this is uncommon. A national survey of mental health clinicians found that providers feel ill-equipped to address topics of substance use and sexual risk behavior when treating trauma-exposed adolescents even when trained in trauma-informed treatment models [10]. Most clinicians did not report receiving formal training for addressing substance use disorder (54%) or sexual risk behavior (67%), suggesting that this reluctance may be related to deficits in training on these topics [10]. These data reflect a global lack of training in evidence-based practice for adolescent prevention, which results in limited translation and
accessibility despite the availability of numerous efficacious preventive interventions [40]. In summary, although effective sexual risk and substance use prevention interventions are available, there is a significant gap in the implementation of these interventions even among those at high risk of such behaviors because of trauma exposure.

mHealth as a Viable Approach to Address Prevention

The availability of mobile technology has increased dramatically over the past decade, with 85% of Americans reporting smartphone ownership in 2022 compared with 35% in 2011 [41,42] and 95% of American adolescents reporting smartphone access [43,44]. As mobile technology has rapidly developed, so have health care approaches that leverage mHealth—the use and development of mobile technology, including mobile apps, to improve health care [16,45]. Within mental and behavioral health care, mHealth interventions are diverse, targeting different stages of treatment from education and engagement to the maintenance of treatment gains [16]. mHealth administrations are also diverse and may be stand-alone, client-led interventions or supplements to traditional clinician-facing treatments [16].

Most of the extant mHealth approaches to behavioral health among adolescents are stand-alone interventions rather than supplements to face-to-face treatment [46]. Several stand-alone treatments have shown strong feasibility and efficacy for both primary and secondary prevention of substance use and sexual risk behavior [47-50]. However, most stand-alone behavioral interventions for adolescents lack a theoretical framework in their design and show inconsistent efficacy [46,51]. Furthermore, although data suggest that digital mental health tools delivered in real-world contexts are more likely to be accessed than professional services, they are less likely to be delivered with a sufficient therapeutic dose [52]. These limitations are compounded by clinician- and patient-reported barriers to stand-alone treatments, including the lack of personalization [51,53], lack of privacy and security with regard to sensitive behavioral topics [53,54], limited follow-up [51], and attrition and low completion rates [54,55]. Researchers have suggested that these barriers could be overcome with more support and involvement from clinicians [53]. Accordingly, behavioral health treatments that blend face-to-face and technology-based approaches have been found to save clinician time, demonstrate lower dropout rates, and lead to better treatment outcomes among adolescents and young adults [56,57].

With regard to trauma treatment, 3 popular mHealth apps have emerged for use with adults: Posttraumatic Stress Disorder (PTSD) Coach, Cognitive Processing Therapy Coach, and Prolonged Exposure Coach [58]. The most widely used of these is PTSD Coach, a stand-alone treatment that suffers from limitations similar to those mentioned previously [58], including high attrition and inconsistent efficacy [59]. Conversely, Cognitive Processing Therapy Coach and Prolonged Exposure Coach are supplementary to existing evidence-based treatments for PTSD. Although these apps have not been evaluated for efficacy via RCTs, clinician perceptions of such apps have been favorable, particularly regarding their relative advantage over exclusively face-to-face practices and compatibility with clinicians’ needs [60]. In addition, supplementary mHealth approaches have demonstrated effectiveness in the treatment of comorbid trauma conditions (eg, panic disorder, anxiety, and depression) [61], including comorbid PTSD and substance use [62].

Despite evidence of the feasibility and effectiveness of mHealth interventions in trauma treatment among adults, mHealth approaches to trauma treatment among adolescents are limited. In total, 3 stand-alone prevention approaches for adolescents exposed to acute trauma have demonstrated effectiveness in reducing persistent trauma symptoms, depressive symptoms, and behavioral problems [63-65]. Although no studies have examined the effectiveness of supplementary mHealth approaches for adolescent trauma treatment, the perspectives of trauma-focused clinicians indicate that these approaches would be feasible and useful. For example, Orengo-Aguayo et al [66] found that 96% to 100% of surveyed TF-CBT providers reported that an mHealth supplement would be helpful for enhancing TF-CBT components, extending coping skill development, and improving out-of-session practice among adolescents and families. Clinicians, patients, and families have also responded favorably to pilot versions of a supplemental Apple iPad–based app designed to improve patient engagement and provider fidelity in-session during TF-CBT [67,68]. Thus, mHealth supplements to adolescent trauma treatment may be a feasible and acceptable way to extend and improve behavioral health prevention among adolescents.

This Study

The purpose of this paper is to report on the development and perceived usability of Trauma-Informed Prevention for Substance Use and Risky Sexual Behavior (TIPS), a novel mHealth tablet-based app designed to supplement trauma treatment targeting the prevention of adolescent risk behavior (trial registration: ClinicalTrials.gov NCT03710720). We used a mixed methods approach based on qualitative interviews and quantitative ratings to assess the usability of the TIPS app with clinicians, adolescent patients, and their caregivers engaged in TF-CBT in a community-based outpatient clinic.

Methods

TIPS App Structure

The first author, a national trainer in the TF-CBT model, led a small team of TF-CBT clinicians and trainees in the development of the content of the TIPS mHealth app. This included 7 total topics (Figure 1) designed to be used as psychoeducational tools for TF-CBT clinicians to implement with adolescents and caregivers throughout the TF-CBT treatment process. The tool helps clinicians assess their clients’ and caregivers’ current knowledge and comfortability surrounding topics related to risky sexual behaviors, STIs, drug use, and healthy relationships. Thus, there are 3 intended users of the app: clinicians, adolescents, and caregivers. Each user sets up a unique log-in, and the content displayed on the app is tailored to the user type. For example, Family Check-Up example videos demonstrating parenting skills are displayed for the caregiver but not for the youth, and a sexting decision-making activity is displayed for the youth but not for...
the caregivers; clinicians view both caregiver and youth content but also have unique introduction videos for each app topic tailored to a clinician audience and have additional drop-down menus on the app, such as suggested homework that the clinician can assign.

Figure 1. Trauma-Informed Prevention for Substance Use and Risky Sexual Behavior (TIPS) home screen (after log-in) listing the 7 topics and activities.

In particular, the app was designed to map onto the psychoeducation, parenting, and enhancing safety treatment components of TF-CBT. Each topic of the app is introduced by a short video that explains the aims of the section as well as the directions needed to successfully complete the section. After the completion of each component activity (briefly described in this section), users are presented with feedback relevant to their performance on the current activity as well as resources (links to websites) to help further their education on the topic. Specifically, the What Do You Know? component is formatted as a multiple-choice trivia game that serves as a psychoeducational tool to educate trauma-exposed teenagers and their caregivers on the effects of drugs and alcohol. The Myth Busters component educates users on the common facts and myths about HIV and other STIs. This section was designed as a drag-and-drop game and includes a video that demonstrates how to perform an at-home HIV test kit. The inclusion of the video aimed to reduce negative connotations that may currently exist related to getting tested for HIV (eg, scary, involving needles, and time-consuming). The Hot or Not component was designed as a psychoeducational tool to aid adolescents in recognizing unhealthy behaviors within romantic relationships. This section comprises engaging videos, multiple-choice trivia, and feedback that is presented after response submission. A main goal was to highlight warning signs that may precede more obvious unhealthy behavior as trauma-exposed teenagers may be more likely to stay in unhealthy romantic relationships. Make a Play helps guide adolescents through tough yet common situations that teenagers may experience. This component consists of 5 activities that educate users on choices involving sending nude pictures, having unprotected sex, consuming alcohol, and being offered different types of drugs. These activities are presented as choose-your-own-adventure screenplays that allow adolescents to make different choices for each situation that is presented and view the results for their different decisions. Figure 2 illustrates an adolescent presented with the choice to accept or decline the offer of marijuana by a peer. The Family topic of the app presents the empirically supported Family Check-Up [69] in an engaging way, educating caregivers on the different components involved in positive parenting (eg, communication, encouragement, and supervision). This section consists of videos, text information, and quizzes. Cyber Life was created to aid in the education regarding safe web behaviors and choices. This component presents users with possible situations that they may encounter on the web and the choices they can make in a multiple-choice format. Each choice is followed by feedback on its positive aspects and the risks involved. The Vision 25 topic is to be used as a guide in goal setting. This section helps users think about their current goals, what choices they can make to help them successfully accomplish their goals, and what choices they can make that may result in their goals becoming harder to reach. This section presents users with a road map (Figure 3) where they can choose different ages at which to set goals, providing guidance for both short- and long-term goals.
The TIPS platform was developed using AppBuilder, a content management system developed by our digital health team under our institution’s Clinical and Translational Science Award. AppBuilder includes a wide array of design templates and features to ensure that native iOS and Android apps can be created by researchers, program staff, and other team members who have no formal coding experience. Investigators and innovators use it to wireframe, pilot test, change and add content, and launch and evaluate mHealth apps without the extensive involvement of a technical development team. Mobile app developers often become involved in AppBuilder-based initiatives only on a strategic, limited basis, consistent with our goal of significantly shortening the timeline and costs associated with building mHealth apps.

Usability Testing Overview

Usability testing is incorporated into technology development to improve user experience by measuring whether the user can successfully and effectively use the tool. Usability testing incorporating both qualitative and quantitative methods can also help identify barriers to task completion and examine areas that take the user off topic, create confusion, or decrease satisfaction [70]. The purpose of usability testing in this study was to obtain objective metrics and refine the final TIPS product before formal efficacy testing.

Ethical Considerations

All procedures were approved by the Medical University of South Carolina Institutional Review Board (Pro00041527). Participants (ie, clinicians, caregivers, and teenagers) were given an information sheet that detailed the purpose of the research; procedures; risks, discomforts and benefits; costs and compensation; alternatives; and confidentiality. Participants provided verbal consent in lieu of written consent. Participant data were deidentified to preserve confidentiality. In addition,
participants were compensated for their participation with US $30 in the form of a gift card, cash, or money order.

Participants

Participants included mental health clinicians (11/32, 34%; 26/32, 82% female), trauma-exposed adolescents (11/32, 34%; 26/32, 82% female), and caregivers of adolescents (10/32, 31%; 25/32, 80% female). More specifically, with regard to inclusion criteria, clinicians were master’s or doctoral-level mental health providers in the area local to the study who were fully trained and experienced in TF-CBT and carried active child trauma caseloads. Adolescents were aged between 13 and 18 years, had experienced at least one traumatic event, were in the process of completing or had recently completed TF-CBT, and assented to participate (with caregiver consent). To be included, caregivers needed to have served for at least the previous 2 months in the role of primary caregiver of a teenager in treatment for PTSD who was in the process of completing or had recently completed TF-CBT. Among the clinicians, 72% (8/11) were aged between 25 and 34 years, whereas 27% (3/11) were aged between 35 and 44 years. The adolescents ranged in age from 13 to 18 (mean 15.25, SD 1.90) years, with most (9/11, 82%) falling between the ages of 13 and 17 years. Finally, caregivers ranged in age from 34 to 53 (mean 44.2, SD 6.65) years.

Procedures

Participants (clinicians, adolescents, and caregivers) were recruited from community-based mental health centers that specialized in the treatment of traumatic stress and served multiple counties (including urban and rural areas) in a large city in the Southeast United States. There were 2 primary methods through which participants were recruited: (1) flyers were posted in and around the clinics with contact information for the study project coordinator and (2) potential participants were informed by clinic staff that they may qualify for a study and asked whether they would be interested in learning more. When potential participants responded positively, the study coordinator contacted them and provided a full description of the study, screened them to ensure that the inclusion criteria were met (see the previous section), and consented them to participate in a qualitative interview regarding the TIPS app and completion of the Website Analysis and Measurement Inventory (WAMMI; see the following section).

Measures

The semistructured qualitative interview consisted of a study team member providing the participant with an iPad loaded with the TIPS app and walking the participant through each section. Following each section of the app, the interviewer asked several open-ended questions (eg, “First, tell me, what are you thinking when you look at this page?” “What do you like about this activity?” “What don’t you like about this activity?” and “How can we make this more interesting to teens?”). Follow-up probes were used to clarify the information provided whenever necessary.

The WAMMI [71] is a standardized 20-item assessment measure that captures users’ personal opinions on a given website’s ease of use. The items were slightly revised to refer to the application rather than the website. In the measure, users are asked to rate various aspects of their experience with the app (eg, content, navigation, and design) on a 5-point Likert scale from strongly agree to strongly disagree. Items are then scored to produce 5 subscales measuring the app’s attractiveness (level of visual interest of the app in terms of both function and information provision), control (app navigation ease), learning (users’ ability to easily understand the content of the app and learn what they expect to learn), helpfulness (usefulness and expected content and structure of the app), and efficiency (users’ ability to quickly find and do what interests them on the app). The WAMMI was developed using latent variable analysis, has high reliability, and reports standardized scores (eg, 50 = average; 100 = perfect) for the 5 aforementioned themes based on a reference database [72].

Data Analysis Plan

Quantitative Approach

All descriptive analyses were performed using Stata (version 17; StataCorp LLC) [73]. The data were screened for outliers and impossible values. Group differences in the WAMMI items were compared using 2-tailed paired t tests.

Qualitative Approach

Data analysis consisted of a qualitative content analysis [74] informed by grounded theory [75], which is used to explore participants’ unique perspectives via the identification of themes and patterns that naturally emerge from the data and the systematic classification of these themes. Specifically, a 3-step inductive approach was used, which involves collecting and analyzing data without preconceived categories or theories. To analyze using this approach, each participant’s interview responses (ie, raw data) were carefully examined to develop a comprehensive codebook to capture all possible themes emerging from the data. The codebook was then used by 2 independent coders to code and analyze each participant’s responses to the interview questions [74,76]. Coders were able to apply more than one code to the participant responses if applicable. The intrarater reliability for the double-coded interview responses was 86% and ranged from 82% to 93%. Interrater discrepancies were discussed and resolved by the 2 independent coders. Finally, themes were refined, merged, or divided into subthemes via collaborative discussions in multiple in-person meetings until a comprehensive codebook was developed. The NVivo software (version 11.1; Lumivero) was used for data management and analysis. The interviews were approximately 45 minutes in length and were audio recorded and transcribed.

Results

Technology and App Use Descriptive Information

Clinicians answered some descriptive questions about comfort using smartphones and apps and the benefits and drawbacks of using websites or apps in treatment. All clinicians (10/10, 100%) reported (1) being comfortable using smartphones and tablets and (2) that the primary benefit of using websites and mHealth app tools is that they engage teenagers in treatment and that they are readily accessible. Other benefits reported by clinicians
included that apps are free and that teenagers feel comfortable using them. Drawbacks reported by clinicians included that it is difficult to get teenagers to stop using apps and that not all homes have Wi-Fi access.

Adolescents and caregivers were asked about their use of tablets and cell phones. Most adolescents (8/11, 73%) and caregivers (8/10, 80%) reported personally owning a tablet, and all adolescents (11/11, 100%) and caregivers (10/10, 100%) reported owning a cell phone. The primary uses of tablets by adolescents included accessing social media, playing games, watching television shows or movies, SMS text messaging, and completing schoolwork. Adolescents reported that they primarily used their cell phones for talking to friends, SMS text messaging, accessing social media, playing games, and listening to music. Caregivers reported that they primarily used their tablets for playing games, paying bills, surfing the internet, watching television shows and movies, school and work, accessing social media, and checking email. Caregivers primarily used their cell phones for talking to people, SMS text messaging, accessing social media, and surfing the internet.

Qualitative Results

Overview

Through the individual interviews, valuable information about the usability and perceived effectiveness of TIPS was obtained from clinicians, adolescents, and caregivers. Four overarching themes, each with its own subthemes, emerged from the participants’ answers to the interview questions: (1) strength of app content, (2) suggestions about app content, (3) esthetics and usability, and (4) benefits to the patient and session implementation. Table 1 shows the app themes that emerged. Each is described in greater detail in the following sections, with representative quotes provided throughout for illustrative purposes.

<table>
<thead>
<tr>
<th>Theme</th>
<th>Responses, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths of app content</td>
<td>64 (32.9)</td>
</tr>
<tr>
<td>Comments regarding appropriateness of content for adolescents</td>
<td>27 (13.9)</td>
</tr>
<tr>
<td>Content of modules</td>
<td>10 (5.2)</td>
</tr>
<tr>
<td>Pictures or videos</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Content is entertaining or would keep adolescents' attention</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Changes in or suggestions for app content</td>
<td>90 (46.3)</td>
</tr>
<tr>
<td>Make content more engaging</td>
<td>17 (8.8)</td>
</tr>
<tr>
<td>Revise the video or picture content</td>
<td>9 (4.6)</td>
</tr>
<tr>
<td>Suggestions for content topics to add</td>
<td>20 (10.3)</td>
</tr>
<tr>
<td>Revise the language to make it more relatable to teenagers</td>
<td>22 (11.3)</td>
</tr>
<tr>
<td>Allow content to be more individualized</td>
<td>15 (7.7)</td>
</tr>
<tr>
<td>Esthetics and usability</td>
<td>30 (15.5)</td>
</tr>
<tr>
<td>Strengths regarding esthetics of the app</td>
<td>8 (4.1)</td>
</tr>
<tr>
<td>Suggestions for esthetics of the app</td>
<td>17 (8.8)</td>
</tr>
<tr>
<td>Dislikes regarding esthetics of the app</td>
<td>5 (2.6)</td>
</tr>
<tr>
<td>Benefits to the patient and session implementation</td>
<td>6 (3.1)</td>
</tr>
<tr>
<td>Increases comfort of the adolescent in the session</td>
<td>5 (2.6)</td>
</tr>
<tr>
<td>Would be more likely to use the TIPS app</td>
<td>2 (1)</td>
</tr>
</tbody>
</table>

Themes that emerged from the responses of all users during the qualitative interviews (32 participants and 194 responses).

Theme 1: Strengths in the App Content

A total of 62% (20/32) of the participants discussed the strengths of the content of the TIPS app. Most strengths mentioned within this theme included comments about the appropriateness of the content for adolescents (21/32, 66%), the content of the modules (17/32, 53%), pictures or videos (13/32, 41%), or that the content was entertaining and would keep an adolescent’s attention (11/32, 34%). Other comments centered on language content, diversity of content, positive framing of information, or that the content differed by activity. Clinicians, adolescents, and caregivers all agreed that the content was very relevant to adolescents and used examples and language that adolescents could relate to. All 3 groups also discussed that the content was comprehensive and addressed issues often faced by adolescents. For example, clinicians commented the following:

I really like the feedback sessions when you give the examples. They’re very detailed, but not overly detailed.

I think the language is really accessible to most kids.
Examples of strengths stated by adolescents include the following:

The videos are funny. I definitely like those.
I actually think that the text itself, that was pretty cool how y’all made it like the iPhone with all the emojis and stuff. And it is kind of relatable to people my age, at least, text. And the responses to it were...like sending the cat picture, that’s definitely something people would do if they don’t feel comfortable and they’re trying to make it funny.

Strengths mentioned by caregivers included the following:

I think the Let’s talk about Sext [video] needs to come as soon as you put the phone in their hand. Plain and simple, right off the rail. It’s not like there’s going to be a certain age, it’s like having the talk about the birds and the bees.

Man, I liked the points they’re making. You know, I think they’re absolutely making the right points with, you know, being present, you know, when your kids are around. Knowing your kids’ friends, knowing where they are, surprise phone calls. I like all that stuff.

Theme 2: Changes in or Suggestions for App Content
A total of 59% (19/32) of the participants discussed changes or suggestions regarding the TIPS app content. Most comments within this theme included making content more engaging (22/32, 69%), revising the video or picture content (22/32, 69%), suggestions for content topics to add (17/32, 53%), revising the language to make it more relatable to teenagers (15/32, 47%), and allowing the content to be more individualized (8/32, 25%).

Other comments included language suggestions, adding more outside resources, increasing cultural sensitivity, clarifying content, improving instructions, and removing potentially triggering content. Although the specific suggestions differed among the clinicians, adolescents, and caregivers, the feedback overlapped in that adding more interaction and individualizing some of the content would help improve the app. Some examples of comments made by clinicians include the following:

I’ve seen a lot of kids get through school that can’t read, so try to look at all factors. Maybe some more visual aids along with the words.

Some statements made by adolescents included the following:

Add a game or something. I don’t know what type of game, but a game that you can play for the answer.
Maybe even include something about rape in a relationship, because a lot of people that I’ve talked to, they don’t think that you can be raped in a relationship.

Comments made by caregivers included the following:

You know, make it a little bit more interesting. If it could be made more interactive.
A lot of kids don’t have parents. They’re already living with a family member, or in foster care. Another line to put in there somewhere is, talk to someone you trust...doesn’t have to be a parent.

Theme 3: Esthetics and Usability
A total of 25% (8/32) of the participants discussed the aesthetics and usability of the TIPS app. The most common comments within this theme involved strengths regarding the esthetics of the app (15/32, 47%), suggestions for the esthetics of the app (13/32, 41%), and dislikes regarding the esthetics of the app (9/32, 28%).

Participants also made a few comments about usability, including suggestions and strengths regarding the functionality of the app. All 3 of the groups (clinicians, adolescents, and caregivers) made suggestions about the esthetics, which mostly comprised suggestions to change the font, color, or pictures within the app. Of all the groups, adolescents were the most positive about the esthetics and usability of the app. Some specific comments made by clinicians included the following:

Maybe use highlight and change the color or something to make it clear. I think that the progress bar at the bottom is so simple. It stays out of the way, so you’re not sacrificing real estate.
[I like] the progress bar on the bottom. It’s a nice touch because then I don’t have to keep wondering how many more questions. I can see that I’m almost done, so that helps me not get frustrated, especially for a teen.

Some examples of statements made by adolescents include the following:

The activities are very easy to operate.
I think it’s a good font size, I wear glasses, and I didn’t have to squinch my eyes to see. I also like how the page is light blue, and it’s dark blue for the words to stick out. So you’ll be able to look at it. That’s one thing I like about it.

Specific comments made by caregivers included the following:

I like the subtitles on the bottom, because I feel like you sometimes get lost in the words, so I like that they’re there.
I like the bright colors. The bright colors catch my eye.

Theme 4: Benefits to the Patient and Session Implementation
A total of 19% (6/32) of the participants discussed how the TIPS app benefits the patient or made comments about session implementation. Most comments within this theme included that the TIPS app increases the comfort of the adolescent in the session (10/32, 31%) or that clinicians would be more likely to use the TIPS app with particular patients (10/32, 31%), such as female individuals or sexually active teenagers. Other comments in this theme included that the app makes the session more interactive, increases engagement for teenagers, is easy to incorporate into the session, and allows the clinician to modify or select content based on patient needs. Some examples of comments made by clinicians include the following:
This is good for me, too, the way I’m able to give feedback to the patient, or at least talk about it, cuz once it’s there, okay, I get it, and I can explain it to them, so I really like it.

Comments made by adolescents included the following:

The app makes it easier because it’s just awkward to talk about these things.

Some statements from caregivers included the following:

I think for this exercise as far as getting them to wrap their brain around where they really have established rapport with you, it’s probably a nice way of doing that where they don’t really have to look you in the eye and tell you about what they want.

Quantitative Results

The results of the WAMMI across the 3 groups are shown in Table 2. Responses across the groups indicated that all participant groups viewed the app favorably. In general, clinicians tended to report the most critical responses to the app. Overall, adolescents found the app (relatively) easier to use and understand compared with clinicians and caregivers. Clinicians had a greater propensity to report the app having annoying features compared with caregivers and adolescents. All clinicians (11/11, 100%) and caregivers (10/10, 100%) and 64% (7/11) of adolescents selected somewhat agree or strongly agree for the following statement: “This app has much that is of interest to me.” All adolescents (11/11, 100%) somewhat agreed or strongly agreed with the following statements: “I can quickly find what I want on this app,” “Using this app for the first time is easy,” and “Everything on this app is easy to understand.”
Table 2. Website Analysis and Measurement Inventory (WAMMI) responses regarding the Trauma-Informed Prevention for Substance Use and Risky Sexual Behavior app by group.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Clinicians (n=11)</th>
<th>Medians (range)</th>
<th>Caregivers (n=10)</th>
<th>Medians (range)</th>
<th>Adolescents (n=11)</th>
<th>Medians (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This app has much that is of interest to me.</td>
<td>1.73 (1.19)</td>
<td>1 (1-5)</td>
<td>1.20 (0.42)</td>
<td>1 (1-2)</td>
<td>2.36 (0.81)</td>
<td>2 (1-4)</td>
</tr>
<tr>
<td>It is difficult to navigate this app.</td>
<td>2.91 (1.04)</td>
<td>2 (2-4)</td>
<td>3.90 (1.79)</td>
<td>5 (1-5)</td>
<td>4.64 (0.92)</td>
<td>5 (2-5)</td>
</tr>
<tr>
<td>I can quickly find what I want on this app.</td>
<td>2.36 (1.03)</td>
<td>2 (1-4)</td>
<td>1.40 (0.70)</td>
<td>1 (1-3)</td>
<td>1.45 (0.52)</td>
<td>1 (1-2)</td>
</tr>
<tr>
<td>This app seems logical to me.</td>
<td>1.55 (1.21)</td>
<td>1 (1-5)</td>
<td>1.50 (1.27)</td>
<td>1 (1-5)</td>
<td>1.36 (0.67)</td>
<td>1 (1-3)</td>
</tr>
<tr>
<td>This app needs more introductory explanations.</td>
<td>3.45 (0.93)</td>
<td>4 (2-4)</td>
<td>3.80 (1.40)</td>
<td>4 (1-5)</td>
<td>3.82 (1.54)</td>
<td>4 (1-5)</td>
</tr>
<tr>
<td>This app is very attractive.</td>
<td>2.55 (1.37)</td>
<td>2 (1-5)</td>
<td>1.90 (1.29)</td>
<td>1 (1-4)</td>
<td>2.36 (1.03)</td>
<td>2 (1-4)</td>
</tr>
<tr>
<td>I feel in control when I’m using this app.</td>
<td>2.09 (1.04)</td>
<td>2 (1-4)</td>
<td>1.50 (0.97)</td>
<td>1 (1-4)</td>
<td>1.73 (0.79)</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>This app is too slow.</td>
<td>4.0 (1.0)</td>
<td>4 (2-5)</td>
<td>3.90 (1.60)</td>
<td>5 (1-5)</td>
<td>4.18 (0.98)</td>
<td>4 (2-5)</td>
</tr>
<tr>
<td>This app helps me find what I am looking for.</td>
<td>2.09 (0.94)</td>
<td>2 (1-4)</td>
<td>1.70 (1.06)</td>
<td>1 (1-4)</td>
<td>1.73 (0.65)</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>Learning to find my way around this app is a problem.</td>
<td>3.45 (1.04)</td>
<td>4 (2-5)</td>
<td>4.30 (1.34)</td>
<td>5 (1-5)</td>
<td>4.73 (0.47)</td>
<td>5 (4-5)</td>
</tr>
<tr>
<td>I don’t like using this app.</td>
<td>4.09 (1.58)</td>
<td>5 (1-5)</td>
<td>4.80 (0.42)</td>
<td>5 (4-5)</td>
<td>4.09 (1.04)</td>
<td>4 (2-5)</td>
</tr>
<tr>
<td>I feel efficient when I’m using this app.</td>
<td>2.27 (1.19)</td>
<td>2 (1-4)</td>
<td>1.60 (0.97)</td>
<td>1 (1-4)</td>
<td>2.09 (1.14)</td>
<td>2 (1-5)</td>
</tr>
<tr>
<td>It is difficult to tell if this app has what I want.</td>
<td>3.18 (1.47)</td>
<td>3 (1-5)</td>
<td>3.90 (1.66)</td>
<td>5 (1-5)</td>
<td>3.72 (1.19)</td>
<td>4 (2-5)</td>
</tr>
<tr>
<td>Using this app for the first time is easy.</td>
<td>2.64 (1.21)</td>
<td>2 (1-4)</td>
<td>1.50 (1.27)</td>
<td>1 (1-5)</td>
<td>1.45 (0.52)</td>
<td>1 (1-2)</td>
</tr>
<tr>
<td>This app has some annoying features.</td>
<td>2.73 (1.49)</td>
<td>2 (1-5)</td>
<td>4.40 (1.07)</td>
<td>5 (2-5)</td>
<td>4.18 (1.17)</td>
<td>5 (2-5)</td>
</tr>
<tr>
<td>Remembering where I am on this app is difficult.</td>
<td>3.18 (1.08)</td>
<td>3 (2-5)</td>
<td>3.70 (1.70)</td>
<td>4.5 (1-5)</td>
<td>4.82 (0.40)</td>
<td>5 (4-5)</td>
</tr>
<tr>
<td>Using this app is a waste of time.</td>
<td>4.45 (0.93)</td>
<td>5 (2-5)</td>
<td>4.90 (0.32)</td>
<td>5 (4-5)</td>
<td>4.64 (0.92)</td>
<td>5 (2-5)</td>
</tr>
<tr>
<td>I get what I expect when I click on things on this app.</td>
<td>2.00 (1.10)</td>
<td>2 (1-4)</td>
<td>1.80 (1.48)</td>
<td>1 (1-5)</td>
<td>1.55 (0.52)</td>
<td>2 (1-2)</td>
</tr>
<tr>
<td>Everything on this app is easy to understand.</td>
<td>2.45 (1.13)</td>
<td>2 (1-4)</td>
<td>1.30 (0.48)</td>
<td>1 (1-2)</td>
<td>1.36 (0.50)</td>
<td>1 (1-2)</td>
</tr>
</tbody>
</table>

aWAMMI responses among all users interviewed, including clinicians, adolescents, and caregivers. Each item was scored on a Likert scale (1=strongly agree, 2=somewhat agree, 3=neutral, 4=somewhat disagree, and 5=strongly disagree). Lower numbers indicate greater agreement with the statement.

bSignificant differences between the caregiver and adolescent groups (P<.05).

cSignificant differences between the clinician and adolescent groups (P<.05).

dSignificant differences between the clinician and caregiver groups (P<.05).

Discussion

Principal Findings

As of October 2021, a national state of emergency in child mental health has been jointly declared by the American Academy of Pediatrics, American Academy of Child and Adolescent Psychiatry, and Children’s Hospital Association because of the rising rates of behavioral health problems coupled with a limited and overburdened mental health workforce [52]. To address this public mental health crisis, it is critical to enlist a broad and creative range of approaches, including those that leverage mHealth tools, to implement empirically supported content and interventions that target the significant drivers of this state of emergency. Also critical to this crisis is the need for more robust prevention of substance use problems (including opioid overdose and opioid use disorders) and HIV and other STI acquisition (particularly among young people at the highest
risk for new HIV acquisition) [77,78], which is signaled by every public health indicator. The goal of this paper was to describe the development and usability testing of an mHealth app tool that collectively targets the aforementioned problems (ie, high prevalence of trauma-related mental health problems, substance use disorder, and opioid overdose and new HIV acquisition risk, as well as limited resources and opportunities dedicated to implementing substance use prevention and training clinicians in doing so).

The primary overall finding from the usability testing of the app leveraging a mixed methods approach was that the TIPS app was perceived by all 3 user types to be a highly usable mHealth tool to be implemented during the course of TF-CBT. Qualitative data collected from the usability testing of the app yielded positive feedback from clinicians, adolescents, and caregivers, and the quantitative data (ie, responses to the WAMMI) concurred with the qualitative findings (eg, 27/32, 84% of all users agreed or strongly agreed that “The app has much of interest to me”). However, more generally, the results of this study provide valuable insights into the use of technology and apps in adolescent mental health treatment. Clinician responses illustrated that they generally felt comfortable using smartphones and tablets and believed that these mHealth tools yielded benefits of engagement and accessibility for their adolescent clients. Moreover, the fact that all clinicians reported comfort with using these devices suggests a high level of digital readiness among this workforce in need of resources and support, which is a shared sentiment among other clinicians [79]. Despite this positive feedback, clinicians also identified potential drawbacks related to apps and mHealth tools, including the challenge of teenagers potentially overusing or being distracted by apps and issues related to limited wireless internet access in some homes. Indeed, equitable access to technology is essential when developing, evaluating, and implementing mHealth tools as augmentations to mental health interventions.

Specific to the interview responses, 4 overarching themes related to the TIPS app’s usefulness and effectiveness emerged. The first theme, strengths of the app content, highlights the positive aspects of the app, such as content tailored well to an adolescent audience, modules that are viewed as engaging, and relatable language. These strengths are crucial for maintaining adolescent clients’ attention and fostering meaningful interactions during trauma treatment, particularly when talking about what may be perceived as sensitive topics (eg, sexual decision-making). The second theme, changes in or suggestions for app content, points to the need for interactivity, revisions in video and picture content, and the inclusion of important topics such as consent and rape in relationships. Echoing findings of previous studies, these suggestions underscore the importance of user input and continuous improvement and adaptation of app content to meet evolving needs [80]. This also highlights the importance of using tools that allow for efficient and inexpensive minor edits (eg, to language and images) to mHealth apps when possible, as was done using the AppBuilder platform for the TIPS app. The third theme, esthetics and usability, emphasizes the significance of the app’s design and functionality, with users offering both praise and suggestions for improvement. Beyond further underscoring the importance of having the capacity to revise content within an app as part of the iterative app development process, these praise interview responses also help inform implementation strategies, indicating what end users like most and find most engaging about the app. For example, regarding TIPS, the Make a Play activity emerged as a favorite (eg, the opioid pill activity and Let’s talk about Sex), and it may be an activity to highlight when first explaining the app to a clinician or adolescent client (eg, engaging). Finally, the fourth theme, benefits to the patient and session implementation, highlights the app’s potential to enhance adolescent and caregiver comfort during sessions and improve engagement, particularly for sensitive topics. It also suggests that clinicians are more likely to use the app with specific patient demographics, such as sexually active teenagers.

Regarding one of the clinicians’ comments that it can be difficult to get teenagers to stop using apps, it is important to note that a detailed implementation manual for the TIPS app is provided to clinicians when they are trained in how to use the app. Specifically, they are guided on how to structure the time spent on activities on the app, which occurs in the context of a TF-CBT treatment session. Thus, TF-CBT clinicians are able to contain adolescents’ use of the TIPS app in sessions.

The quantitative results, presented in Table 1, reinforce the positive reception of the TIPS app across all participant groups. Adolescents in particular found the app less difficult to use and more understandable compared with clinicians and caregivers, but clinicians expressed some critical feedback, including minor annoyance with certain features. Notably, all clinicians and caregivers, along with most adolescents, expressed a strong interest in the app’s content. In addition, adolescents found the app easy to navigate and understand, suggesting that user-friendliness is a key factor in their engagement with digital mHealth tools [81]. Overall, these quantitative findings align with the qualitative feedback, highlighting the promising utility of the TIPS app for clinician implementation among adolescents and caregivers receiving TF-CBT while also emphasizing areas for improvement.

A strength of the TIPS tool is that it offers a platform that is telehealth compatible. The past several years have underscored the value of ensuring access to mental health treatment and risk behavior prevention through telehealth strategies. In addition to the benefits of breaking down geographical barriers, the integration of mHealth tools such as TIPS with telehealth helps promote confidential and convenient interactions for patients with mental health clinicians, fostering a sense of privacy and comfort that is crucial for therapy [82,83]. This may be particularly helpful when addressing sensitive topics such as trauma, substance use, and HIV. Ultimately, the synergy between mHealth tools and telehealth in behavioral care represents a transformative shift toward prevention-focused holistic and inclusive mental well-being support.

Limitations

The primary limitation of this study is that it is limited in scope to usability testing with a small sample of clinicians, adolescents, and caregivers. To establish the feasibility and efficacy of the app in reducing the risk of substance use and risky sexual behavior, a fully powered RCT is necessary to compare TF-CBT...
Implementation with and without the inclusion of the app, including assessment time points that follow youth and their caregivers over time. Although this study informs possible revisions to the app and suggests that clinicians, adolescents, and caregivers will respond positively to its inclusion in trauma-focused treatment, the efficacy trial will ultimately reveal whether indeed the app is able to make a dent in the youth mental health state of emergency and help eliminate some of the burden on clinicians in implementing a prevention curriculum.

Conclusions
In conclusion, this study demonstrates the positive reception of technology—and the TIPS app in particular—in adolescent trauma-focused treatment, with clinicians, adolescents, and caregivers recognizing the benefits of engagement, accessibility, and user-friendliness of this novel mHealth tool. The qualitative themes shed light on the strengths of the app’s content, areas for improvement, esthetics, and usability as well as its potential to enhance adolescents’, caregivers’, and clinicians’ experiences during TF-CBT sessions. These findings underscore the importance of the ongoing development and refinement of digital tools in mental health care—including those that can be integrated into telehealth mental health care delivery—to better meet the evolving needs of trauma-affected adolescents and their caregivers.

Acknowledgments
This study was supported by K24DA039783 (principal investigator [PI]: CKD) and in part by the National Center for Advancing Translational Sciences of the National Institutes of Health under grant UL1 TR001450 (multiple PIs [MPIs]: Kathleen Brady and Patrick Flume). The manuscript preparation was also supported in part by grants from the National Institute of Mental Health (R01MH112209 [PI: CKD] and T32MH018869 [MPIs: CKD and Dean Kilpatrick]) and the National Institute on Drug Abuse (R01DA031285 and 1R01DA03288 [MPIs: CKD and Paula Riggs]; K23DA050800 [PI: AH]).

Data Availability
The data are available from the study principal investigator (CKD) upon request.

Conflicts of Interest
None declared.

References

13. Thieleman JF, Kasparik B, K...

Vo V, Auroy L, Sarradon-Eck A. Patients’ perceptions of mHealth apps: meta-ethnographic review of qualitative studies. JMIR Mhealth Uhealth 2019 Jul 10;7(7):e13817 [FREE Full text] [doi: 10.2196/13817] [Medline: 31293246]

Claridge N, Kirakowski J. Website analysis and measurement inventory questionnaire. WAMMI. URL: http://www.wammi.com/index.html [accessed 2023-09-06]

77. Coady JA. Youth substance use prevention month. Substance Abuse and Mental Health Service Administration. 2022. URL: https://www.samhsa.gov/blog/youth-substance-use-prevention-month [accessed 2023-12-10]

Abbreviations

mHealth: mobile health
PTSD: posttraumatic stress disorder
RCT: randomized controlled trial
STI: sexually transmitted infection
TIPS: Trauma-Informed Prevention for Substance Use and Risky Sexual Behavior
TF-CBT: trauma-focused cognitive behavioral therapy
WAMMI: Website Analysis and Measurement Inventory

©Carla Kmett Danielson, Angela Moreland, Austin Hahn, Devin Banks, Kenneth J Ruggiero. Originally published in JMIR Formative Research (https://formative.jmir.org), 18.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Virtual Exercise in Medicine: A Proof of Concept in a Healthy Population

Barbara Le Roy1,2, PhD; Charles Martin-Krumm1,2,3, Prof Dr; Charlotte Poupon4, PhD; Raphaëlle Richieri5, Prof Dr Med; Eric Malbos5, MD, PhD; Fanny Barthélémy6; Eric Guedj6, Prof Dr Med; Marion Trousselard1,2,7,8, Prof Dr Med
1Unité neurophysiologie du stress, Institut de recherche biomédicale des armées, Brétigny-sur-Orge, France
2Adaptation, mesure et évaluation en santé. Approches interdisciplinaires, Metz, France
3Vulnérabilité, capabilité, rétablissement, Unité religion, culture et société, École des psychologues praticiens, Paris, France
4École nationale supérieure de création industrielle, Paris, France
5Département psychiatrie, Hôpital de la Conception, Institut Fresnel, Marseille, France
6Département de médecine nucléaire, Centre européen de recherche en imagerie médicale, Institut Fresnel, Marseille, France
7Service de santé des armées, Paris, France
8Réseau ABC des Psychotraumas, Montpellier, France

Corresponding Author:
Barbara Le Roy, PhD
Unité neurophysiologie du stress
Institut de recherche biomédicale des armées
Place Général Valérie André
Brétigny-sur-Orge, 91220
France
Phone: 33 123456789
Email: barbara.m.le.roy@gmail.com

Abstract

Background: Science is beginning to establish the benefits of the use of virtual reality (VR) in health care. This therapeutic approach may be an appropriate complementary treatment for some mental illnesses. It could prevent high levels of morbidity and improve the physical health of patients. For many years, the literature has shown the health benefits of physical exercise. Physical exercise in a VR environment may improve the management of mild to moderate mental health conditions. In this context, we developed a virtual environment combined with an ergocycle (the augmented physical training for isolated and confined environments [APTICE] system).

Objective: This study aims to investigate the impact of physical exercise in a VR environment.

Methods: A total of 14 healthy participants (11 men and 3 women; mean age 43.28, SD 10.60 years) undertook 15 minutes of immersive physical exercise using the system. Measures included mindfulness and immersion disposition, subjective perceptions of sensory information, user experience, and VR experience (ie, psychological state, flow, and presence).

Results: First, the APTICE system appears to be a useful tool because the user experience is positive (subscales in the AttrakDiff questionnaire: pragmatic quality=0.99; hedonic quality–stimulation=1.90; hedonic quality–identification=0.67; attractiveness=1.58). Second, the system can induce a positive psychological state (negative emotion, P=.06) and an experience of flow and presence (P values ranging from <.001 to .04). Third, individual immersive and mindful disposition plays a role in the VR experience (P values ranging from <.02 to .04). Finally, our findings suggest that there is a link between the subjective perception of sensory information and the VR experience (P values ranging from <.02 to .04).

Conclusions: These results indicate that the device is well accepted with positive psychological and exteroceptive outcomes. Overall, the APTICE system could be a proof of concept to explore the benefits of virtual physical exercise in clinical medicine.

(KEYWORDS
countermeasures; mental health; physical activity; virtual reality; user experience)
Introduction

The Roman poet Juneval wrote “mens sana in corpore sano” (a healthy mind in a healthy body) [1]. Still relevant today, it has never made as much sense. The body and the mind seem to be indivisible, truly part of a whole [2].

Virtual Reality

In recent years, virtual reality (VR) has been recognized as a new approach to health [3-6] that seeks to connect the body and mind [7]. The term was first used by Jaron Lamier in 1986 to refer to an advanced technological interface in which the user interacts with a 3D environment that is generated by a computer to simulate real-world experiences [8,9]. The tool can simulate reality and stimulate the body’s senses in ways that are only limited by our imagination. It creates a new space-time that is halfway between the real and the unreal, pushing back the boundaries of reality and experimenting with new paradigms that we would not otherwise have access to [10,11]. Thus, VR goes beyond a simple simulation of the external world. The modulation of interoceptive, exteroceptive, and vestibular information leads the participant to create a representation of their own body. This conceptualization is described as the body matrix, which refers to the multisensory representation of the body in the brain and the space directly around the body [12]. Through VR, it is possible to induce the illusion of being and moving in a fake body. This interstice allows individuals to perceive, interpret, and interact with their environment through an internal representation of the world [13]. Repeated VR use may stimulate changes in the brain based on neuroplasticity mechanisms [14]. Riva et al [7] noted that the effects may be heightened by immersive VR systems and the induced sense of presence in the surrounding virtual environment.

Immersion is a characteristic of VR systems and is created when the virtual environment replaces the user’s sensory stimuli with virtual sensory stimuli. Through immersion, it is possible to induce the sense of presence. Multisensory integration generates a feeling of being there and can sometimes lead to the illusion of being in an alternative body [15,16]. Slater [17] defined presence as “the strong illusion of being in a place despite the sure knowledge that you are not there.” Thus, participants have the strong illusion of being in the virtual environment and being able to perceive what is happening in it such as the virtual precipice. However, they consciously know that this is only a perceptual illusion not a reality [18]. Presence is related to flow, which refers to “the holistic sensation that people feel when they act with total involvement” [19]. It is a psychological state corresponding to enjoyment, cognitive absorption, and distortions in time perception. The literature on VR highlights the influence of immersion, induced by VR systems, on both presence and flow in the virtual environment [20,21].

Nevertheless, interindividual differences have been noted regarding both presence and flow. One relevant factor is mindfulness disposition (MD). MD is characterized by the awareness that emerges when paying purposeful attention to the present moment and responding nonjudgmentally to the unfolding experience [22,23]. It is associated with a protective function in both a healthy population and among patients [24,25]. A recent study by Lefranc et al [26] highlighted that high MD is associated with better positive emotions, interoception, and subjective extrasensory acuity. Top-down conceptual representations and bottom-up multisensory inputs contribute to body awareness. Moseley et al [12] suggested that these representations be integrated with exteroceptive data in the body matrix.

Over the years, VR has become increasingly accessible. It has been particularly beneficial in the field of medicine, whether in the context of medical training, surgery, the treatment of certain neurodegenerative diseases, rehabilitation, pain management, or cognitive and psychological disorders [11,27-34]. The literature shows the value of using VR as a therapeutic tool to treat mental disorders such as anxiety, depression, posttraumatic stress disorder, and phobias [8,31,33-38]. Antidepressants, such as selective serotonin-norepinephrine reuptake inhibitors, or benzodiazepines are the first-line treatment for anxiety symptoms in patients while cognitive behavioral therapy has been found to be effective in reducing them [39-41]. VR interventions such as exposure therapy have been shown to be effective as a coadjuvant in mental illness and appear to have the same effects as drug treatments, although the results take longer to become apparent [34]. Used as a complementary therapy, VR may have many advantages, including the ability to recreate a realistic traumatic environment under controlled conditions, which can be complex in vivo [33,42,43]. Most studies show that participants have a high degree of acceptance, and VR use is consistent with postintervention improvements in symptom awareness; a decrease in depressive symptoms; greater motivation to exercise; and better enjoyment, engagement, and affect, particularly in clinical populations [35,37]. VR therapy can stimulate emotion (notably fear), as the participant has the feeling of being present in the unreal environment [18,44]. Thus, it appears to be an innovative nondrug supplement to other treatments that can be demanding for the patient and may have side effects. Although the quality of the technology may play a role in positive outcomes [45], it appears to be an interesting new tool that poses no serious threat to participants [46].

The Potential of Immersive Physical Activity

In recent years, an increasing body of the literature has investigated the power of immersive physical activity. Physical activity preserves health and protects individuals from many pathologies [47-49]. It can be defined as “any bodily movement produced by skeletal muscles that results in the expenditure of more energy than the resting metabolism” [50]. One of the components of physical activity is physical exercise, understood as “planned, structured, repetitive physical activity whose objective is to improve or maintain one or more components of physical fitness” [50]. For many years, the literature has shown the benefits of physical activity on health, not only physical (ie, reduced mortality, reduced risk of cardiovascular pathologies, reduced incidence of cancer, or weight maintenance) but also cognitive (ie, improved cognitive function, improved sleep, or reduced risk of dementia) and psychological (ie, reduced signs of anxiety and depression or reduced risk of depression), both in the general population (ie, adults, children, and older adults) and in the context of various chronic diseases and health
conditions [47-49,51]. However, it is only recently that the scientific community has begun to take an interest in the biological and physiological mechanisms underlying these outcomes [52,53]. People with mental illness often exhibit disrupted sensory processing and perception [54]. Thus, physical activity therapy can be both a physical and psychological countermeasure. However, compliance is a key issue as regular practice is necessary for optimal mental illness management.

Few studies have examined the use of VR in this context, although the pioneering work of Plante et al [55-57] seems to indicate real benefits in terms of well-being, particularly in women [56]. The addition of VR has been found to enhance mood, increase enjoyment and energy, reduce tiredness, enhance motivation and confidence, and increase compliance [57,58]. Enjoyment may play an important role in the benefits gained from exercise [58].

In recent years, there has been an increase in the number of studies that encourage the practice of sports to prevent anxiety disorders and protect against anxiety and depression [59,60]. A recent study demonstrated its importance in the context of the COVID-19 pandemic, where it was able to improve well-being through improved physical and cognitive outcomes and limit psychological disorders related to isolation and confinement [61]. Thus, the literature suggests that VR coupled with physical activity may be a useful way to improve the symptomatology of individuals with anxiety disorders, posttraumatic stress disorder, and depression [61]. Furthermore, many studies have highlighted the ability of natural environments to induce positive emotions, promote well-being, reduce anxiety, improve self-esteem, and reduce negative emotions (ie, fatigue, confusion, tension, depression, and anger-hostility) compared with urban or indoor environments [62,63]. The same observation has been made in VR environments [64]. A virtual environment that offers physical activity in a natural setting seems to have the potential to improve the benefits of VR, especially for people with mental illness [65,66].

Gaps in the Literature and Objectives of the Study

Many of the systematic reviews and meta-analyses that have been carried out have important limitations, notably related to differences in technology. There is also a lack of longitudinal studies on the long-term effects of VR. Most studies are one-shot experiments that evaluate its benefits before and after the intervention. Evaluation itself is problematic as subjective measures (questionnaires) are typically used and few studies have measured physiological effects (ie, heart rate variability, heart rate, and electrodermal activity). As it can be complex to overcome these gaps, caution is advised in interpreting any results or conclusions [33,35,62,65,67,68]. Given these gaps in the literature, there is a need for more rigorous testing. Any evaluation should be based on three assessment criteria: (1) the activity does not duplicate other countermeasures; (2) it must improve the experience of sport and thus increase its attractiveness (especially relevant for patients with depression) [55,56]; and (3) immersion must provide a multimodal sensory input to the user [69-72]. The benefits of multisensory stimulation have been demonstrated in the context of cognitive and sensorimotor rehabilitation [73] and emotion regulation [10,74].

Thus, the aim of this preliminary proof-of-concept study was to investigate the association between VR and physical exercise in a virtual natural environment to improve the psychological state of healthy participants and the underlying processes, before evaluating its benefits in clinical medicine. We measured the user experience (UX) and evaluated 3 hypotheses:

- **Hypothesis 1**: positive changes in psychological state are associated with flow and presence during the session in the VR environment.
- **Hypothesis 2**: both MD and immersion disposition are positively related to change in the participant’s psychological state, flow, and presence.
- **Hypothesis 3**: there is a relation between the subjective evaluation of sensory information, immersive disposition, and mindful disposition and psychological change.

Methods

Ethical Considerations

This study was approved by the Minarm Ethical Committee (N 125 132/MIP/DGA/MINARM). Written consent was obtained from all participants in accordance with the Declaration of Helsinki and subsequent amendments.

Participants

In total, 14 volunteers (3 women and 11 men), who were declared medically fit, were recruited during the 3 innovation open days at the French Armed Forces Biomedical Research Institute in 2019. They ranged in age from 22 to 59 (mean 43.28, SD 10.60) years and were either working for the French Armed Forces Biomedical Research Institute (n=9) or the French Football Federation (n=5). See Table 1 for the demographic information. The participants were recruited by email and contacted to determine whether they met the inclusion and exclusion criteria. If eligible, they were assigned an appointment for the laboratory session. All participants were asked to abstain from exercise on the day of their participation to ensure that the results were due to the experiment. The inclusion criteria were based on the following: affiliation to a health care system (social security); age between 18 and 75 years; and no history of neurological or cardiovascular disease, diabetes, or medications that could affect the response. Exclusion criteria included pregnancy, the presence of a contraindication to VR (people who had experienced anxiety or nausea during a VR experience, photosensitive epilepsy, vestibular disorder, or severe myopia >3.5 diopters).
Table 1. Sociodemographic characteristics of participants (N=14).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean (SD)</td>
<td>43.28 (10.60)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>11 (78.57)</td>
</tr>
<tr>
<td>Women</td>
<td>3 (21.42)</td>
</tr>
<tr>
<td>Screen time, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Professional</td>
<td>300.00 (164.73)</td>
</tr>
<tr>
<td>Personal</td>
<td>111.42 (63.95)</td>
</tr>
<tr>
<td>Physical activity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>10 (71.42)</td>
</tr>
<tr>
<td>No</td>
<td>4 (28.57)</td>
</tr>
<tr>
<td>Video games, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4 (28.57)</td>
</tr>
<tr>
<td>No</td>
<td>8 (57.14)</td>
</tr>
<tr>
<td>Ocular correction, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>10 (71.42)</td>
</tr>
<tr>
<td>No</td>
<td>4 (28.57)</td>
</tr>
</tbody>
</table>

Participants who practiced a physical activity or engaged in video games completed the Addictive Intensity Evaluation Questionnaire (AIEQ). The analysis found that 10 out of 14 (85%) participants engaged in physical activity (mean 31.00, SD 6.20) and 4 (35%) played video games (mean 28.20, SD 14.34). No addictive behaviors were found among the participants in either of these modalities.

Augmented Physical Training for Isolated and Confined Environments

This proof-of-concept study is based on the augmented physical training for isolated and confined environments (APTICE) system. The aim of the system is to use physical exercise in a VR environment to improve the well-being of patients with depression. It is composed of a VR - enabled cycle ergometer (VirZOOM Bike Controller) and a VR-based head-mounted display (Oculus Rift CV1, Oculus VR), which provides visual and auditory inputs. The VR application was developed by GAMIT (Petit-Quevilly) and ran on an Asus A15 TUF566IU-HN326T laptop with an AMD Ryzen 5 4600H 16 GB processor, a 512 GB solid state drive, and an Nvidia GeForce GTX1660 Ti 6 GB graphics card. The VR environment consisted of natural areas of forests and mountain plains (Figure 1). See Multimedia Appendix 1 for further images of the APTICE device.

Figure 1. Natural virtual environment images. (A) Forest with stretches of water. (B) Mountain plain with sheep.
Data Collection

Population Overview
A 7-item sociobiographical questionnaire was developed to collect standard sociodemographic data such as gender, age, hobbies, physical activity, video game use, and VR experience. The AIEQ evaluated addictive practices [75]. Two versions were used: the 14-item AIEQ-g that measures the intensity of video game playing and the risk of its problematic use and the 14-item AIEQ-s that measures sports practice and the risk of its problematic use.

UX of the APTICE Device
The UX of the APTICE device was assessed using the 10-item AttrakDiff questionnaire, which evaluates the hedonic and pragmatic qualities of interactive systems [76]. It is divided into 4 subscales: pragmatic quality, hedonic quality–identity, hedonic quality–stimulation, and attractiveness. Values close to the mean (from 0 to 1) are considered standard values. They indicate that the device meets its objectives with no negative impacts on the user.

Psychological Questionnaires
Two questionnaires were used to evaluate psychological dispositions. The 14-item Freiburg Mindfulness Inventory was used to measure MD [77]. It is divided into 2 subscales: acceptation and presence. Immersion disposition was assessed using the 18-item immersive tendencies questionnaire, which is divided into 4 subscales: focus, involvement, emotions, and games [78]. Two questionnaires were used to evaluate psychological state. First, the 12-item Scale of Positive and Negative Experience (SPANE) questionnaire assessed subjective feelings of well-being [79]. The overall scale is divided into 2 subscales: positive and negative emotions. Second, the 20-item Activation-Deactivation Adjective Checklist (AD-ACL) evaluates the level of awareness and emotional disposition [80]. This is divided into 2 dimensions: energetic arousal (from energy to tiredness) and tense arousal (from tension to calmness). The energetic arousal is further divided into 2 subscales—general activation and deactivation—while the tense arousal is subdivided into general tenseness and calmness.

Subjective Evaluation of the Quality of Sensory Information
We developed the Personal Evaluation of Six Senses questionnaire to assess subjective perceptions of vision, sound, touch, olfaction, taste, and equilibrium. Participants evaluated the accuracy of their perceptions from each of their 6 senses using a ranked scale running from 1 to 6.

The VR Experience
The VR experience was assessed using the 12-item Educational Flow Questionnaire (EduFlow2), which measures flow [81]. It is divided into 4 dimensions: cognitive control, immersion and time transformation, loss of self-consciousness, and autotelic experience. Cognitive absorption (a summary of the first 3 dimensions) was added as the fourth scale. The 24-item Presence Questionnaire assessed presence [82]. It is divided into 7 subscales: realism, possibility of action, quality of interface, possibility of examination, self-evaluation of performance, sounds, and haptic. APTICE device sickness was assessed using the 16-item Simulator Sickness Questionnaire [83]. It is divided into 2 subscales: nausea and oculomotor.

Procedure
The experimental protocol is illustrated in Figure 2. Upon arrival, the participants were asked a few questions to ensure they met the inclusion criteria and signed the consent form. They then completed a series of questionnaires in the following order: sociobiographical questionnaire, AIEQ-g, AIEQ-s, Freiburg Mindfulness Inventory, Personal Evaluation of Six Senses, 18-item immersive tendencies questionnaire, SPANE, and AD-ACL. Then, they engaged in a moderate-intensity bout of exercise in a natural environment for 15 minutes while wearing the VR headset. They could choose their trajectory along various predefined paths and, by turning their head, obtain a 360° view of the virtual environment. At the end of the session, they were asked to complete another series of questionnaires in the following order: SPANE, AD-ACL, EduFlow2, 24-item Presence Questionnaire, AttrakDiff, and Simulator Sickness Questionnaire.
Figure 2. The augmented physical training for isolated and confined environments (APTICE) experimental protocol. AD-ACL: Activation-Deactivation Adjective Checklist; FMI: Freiburg Mindfulness Inventory; ITQ-f: Immersive Tendencies Questionnaire; SPANE: Scale of Positive and Negative Experience; SSQ: Simulator Sickness Questionnaire; VR: Virtual Reality.

Statistical Analysis
Statistical analyses were performed using the RStudio software (version 1.2.5001). Descriptive statistics are expressed as mean (SD). The Shapiro-Wilk test was used to determine whether the data were normally distributed. The effects of the APTICE device experience on emotional and activation-deactivation states were assessed as follows: a t test (2-tailed) for pre-post comparisons and parametric data or the Mann-Whitney U test for nonparametric data. Kendall correlations were run to explore the relationship among virtual exercise, subjective sensory accuracy, and VR experience. For all analyses, significance was set at \(P < .05 \). Trends were considered when \(.05 < P < .10\). Deltas were calculated to compare the temporal impact of the experience measured using the SPANE questionnaire and the AD-ACL.

Results
The UX
The APTICE tool was assessed in terms of UX. Participants reported a positive experience measured as pragmatic quality, hedonic quality–stimulation, hedonic quality–identification, and attractiveness (Figure 3). The scores were particularly high for hedonic quality–stimulation and attractiveness. No participant reported any cybersickness.
Figure 3. AttrakDiff’s subscales. Values close to the mean (from 0 to 1) are considered standard and indicate that the device meets its objectives with no negative impacts on the user. However, they also suggest that improvements could be made to the system to obtain high positive values. Values outside this neutral zone are considered positive (1-3) or negative (−1 to −3). X1: pragmatic quality; X2: hedonic quality (stimulation); X3: hedonic quality (identification); X4: attractiveness.

Relationships Between Psychological Assessments, Exteroception, and VR Experience

Overview

Multimedia Appendix 2 summarizes the significant correlations between the tested variables.

Hypothesis 1: The VR Experience (Change in Psychological State, Flow, and Presence)

The analysis of emotional and arousal states only identified a trend for negative emotions. Participants tended to have fewer negative emotions after the APTICE experiment (t_{12}=2.06, P=.06).

There were significant positive and negative correlations between flow and presence. Participants who scored high for possibility to examine also scored high for flow cognitive control (τ=0.45, P<.001), flow cognitive absorption (τ=0.67, P=.001), and flow immersion and time transformation (τ=0.55, P=.01).

Participants who scored high for possibility to act also scored high for flow cognitive absorption (τ=0.58, P=.004), flow cognitive control (τ=0.76, P<.001), flow immersion and time transformation (τ=0.58, P=.006), and flow-autotelic experience (τ=0.58, P=.001). As realism increased, flow cognitive control also increased (τ=0.52, P=.01). However, as haptic increased, flow loss of self-consciousness (τ=−0.52, P=.02) decreased.

Concerning change in psychological states related to flow and presence, our results suggest that there is no correlation between change in emotional state (measured with the SPANE questionnaire) and either flow or presence. However, there were significant negative correlations between flow and changes in activation-deactivation states (measured using the AD-ACL). An increase in tense activation (positive delta) was associated with lower scores for flow immersion and time transformation (τ=−0.46, P=.04) and flow-autotelic experience (τ=−0.52, P=.01). No correlation was found between presence and flow, and there were no changes in activation-deactivation.

Hypothesis 2: Disposition and the VR Experience (Change in Psychological State, Flow, and Presence)

No relationship was observed between immersive disposition and MD for any subscale.

The analysis found a significant positive correlation between MD and presence. More precisely, higher MD-acceptation was associated with a higher score for possibility to examine (τ=0.49, P=.02). There was also a significant positive correlation between MD and flow. High scores for MD-acceptation were associated with high scores for flow cognitive control (τ=0.45, P=.03).

Finally, there was a significant positive correlation between involvement and flow. Specifically, high scores for flow loss of self-consciousness were slightly associated with high scores for involvement (τ=0.54, P=.01).

Concerning disposition and the VR experience, the analysis found no correlation between change in emotional state and either immersive or mindful disposition. Significant positive and negative correlations were found between immersion and change in activation-deactivation. An increase in tense activation (positive delta) was associated with higher scores for games (τ=0.45, P=.04). However, an increase in general activation...
(positive delta) was associated with lower scores for involvement \((\tau=-0.52, P=.02)\).

Hypothesis 3: Subjective Exteroceptive Accuracy, Disposition, and the VR Experience

The analysis found no relation between the subjective exteroceptive evaluation and changes in emotional and activation states, presence, or MD. However, significant positive and negative correlations were observed between immersion and subjective acuity.

Correlation matrices for immersion and subjective acuity variables are shown in Figure 4.

Figure 4. Correlation matrices for immersion and subjective acuity variables. Distributions are shown on the diagonal. Trend curves are shown at the bottom of the diagonal scatter plots. The top diagonal shows correlation coefficients and significance levels. A1: olfaction; A3: vision; I1: focus; I2: involvement. *>.99, **.10, ***.05, ****.01.
Increased involvement was associated with higher subjective visual acuity ($\tau=0.48$, $P=.03$). In contrast, an increase in focus was associated with lower subjective smell acuity ($\tau=-0.43$, $P=.04$). Low scores for subjective hearing were associated with high scores for flow cognitive absorption ($\tau=-0.43$, $P=.04$) and flow immersion and time transformation ($\tau=-0.047$, $P=.03$). Similarly, low scores for subjective taste were associated with high scores for flow cognitive control ($\tau=-0.49$, $P=.02$).

Discussion

Principal Findings

The main aim of this proof-of-concept study was to investigate the effect of VR associated with physical activity on the psychological state of healthy participants before further evaluation of patients with depression in a randomized controlled trial. This exploratory study evaluated a new device, named APTICE, which couples physical exercise with a VR headset. This pilot feasibility study proposed variables of interest, which will form the basis for our next randomized controlled trial. The latter will investigate clinical and neurofunctional subects in a population affected by depression using VR associated with physical activity. Results from this study provide new insights into the benefits of this type of technology when used in clinical medicine to improve health.

A Positive UX Experience

As Hassenzahl et al [84] demonstrated, the evaluation of the hedonic and pragmatic qualities of a system is known to influence overall perceptions of its attractiveness. Understanding the UX is crucial in the design of a new device, which is often ignored. The participants in our study were very positive regarding both the hedonic quality–stimulation and the attractiveness of the device. However, pragmatic quality and hedonic quality–identification scores were lower. Furthermore, the responses were the most disparate for these 2 dimensions. Hedonic quality–stimulation was associated with ideas such as outstanding, impressive, exciting, or interesting. Although the response to the UX appears to be positive, there is room for improvement. The relatively low scores for hedonic quality–identification are not surprising, as this aspect relates to the ability of the system to reflect the user’s identity. Similarly, pragmatic quality needs to be improved with a focus on usability. Both the appropriateness of the functionality and its accessibility need further attention. However, this short 15-minute experiment allowed us to conclude that the APTICE system meets its development and quality objectives—specifically, to design a device that supports physical exercise in VR. In the longer term, we will need to consider how to improve it, particularly in light of the technological development that has taken place since its creation.

Psychological Changes Induced by the APTICE Device

Our main hypothesis was that physical exercise in a VR environment could create a positive experience, measured as psychological and sensory feedback from the participants.

Consistent with the literature, our initial results suggest that the APTICE device experience decreases negative emotions [44,85-89]. However, our first hypothesis (that the APTICE device would induce a positive psychological state and an experience of flow and presence) was only partially confirmed. The literature [7,17] notes that presence and flow are usually positively linked, although a negative correlation has been found between haptic presence and loss of self-consciousness in flow experiments. In the absence of a meaningful haptic system, interactions with objects in the VR environment can widen the gap between actual and virtual realities [90]. In our experiment, haptic feedback from the interaction with the ergocycle did not reflect reality, which suggests its key role in inducing flow. For example, there was no body movement when going around the bends and almost no return on effort. The poor quality of the correspondence between the virtual exercise environment and reality could explain the absence of a change in positive emotions.

Our initial results suggest a close relationship between the quality of the technology and the VR experience. This is all the more important as flow (characterized by a deep involvement and absorption in an activity) promotes a state of inner well-being and positive emotions [91,92]. Overall, our results suggest that practicing a physical activity in a VR setting could be used to improve psychological outcomes. According to previous studies [60,61,66], the APTICE device may have potential benefits for patients, especially those with mental illness. The literature also shows that natural scenes support a positive psychological state both in general [65,86] and in the treatment of mental illness [67,93]. This is in line with the reduction in negative emotions in individuals following our study’s APTICE session. Although APTICE needs improvement, both the positive response to the UX and its effect on the user’s psychological state suggest that regular use may have a positive impact on mental health.

Relationships Between Disposition and VR Experience

Our results partially confirm our second hypothesis, which focused on the impact of immersive disposition and MD on the VR experience. We found no relationship between immersive disposition and MD in our sample. Immersive disposition is used to evaluate the potential to immerse a subject in a situation, whereas MD is characterized by the ability to be in the here and now. Therefore, it is possible that these 2 dimensions are unrelated. Our experiment showed that the involvement subscale of immersive disposition was associated with a loss of self-consciousness in terms of flow effect. An individual’s interest in a target object [94] or their motivational state in relation to a target object [95] has been described as a condition for flow experience in VR [96]. Furthermore, our experiment found that immersion was unrelated to presence, which conflicts with the literature [15,37]. A key difference compared with earlier work is that our participants were asked to make a physical effort. It is possible that this effort counteracted their immersive disposition. If we turn to the relationship among MD, presence, and flow, acceptance seems to be the most relevant dimension. Acceptance consists of accepting inner events such as emotions, thoughts, or beliefs as they are felt [97]. It does not mean resignation but rather perceiving one’s own experience with an attitude that acknowledges it, rather than judging it as either good or bad. Thus, the ability to accept what is happening now may be a more useful way to examine
presence and cognitive control than simply being in the here and now. Collectively, these results suggest that physical exercise in VR may be improved by acceptance, which enhances the feeling of presence.

APTICE Device and Exteroceptive Modulations

Our final hypothesis concerning the relationship between subjective exteroceptive perceptions of sensory information and physical exercise in the VR experience was exploratory. On the one hand, our results show that there is an assumption that information provided by all 5 senses may help the user to become immersed in the experience of where they are, whom they are with, and what they are doing. The feeling of a real experience gives rise to presence. On the other hand, mindful participants pay more attention to information from their bodies, leading to better adaptation to the environment [98]. Using functional magnetic resonance imaging, Farb et al [99] identified several brain regions associated with mindfulness. In particular, they found that deactivation of the medial prefrontal cortex and increased activation of parietal areas were associated with proprioception and sensory–motor body experiences. Mehling [100] reported the use of external stimulation when attempting to understand how felt sensations are used internally to regulate stress or attention. Such information is integrated and linked to the person’s emotional state as a function of whether the body is experienced as safe [98,100].

Our results suggest that subjective preferences in exteroception-perception are linked to the experience of physical exercise in the VR environment. Furthermore, they show that immersion is correlated with subjective visual acuity. The participants in our experiment were cycled in a virtual environment based on natural visual information. Unsurprisingly, high scores for subjective visual acuity were associated with flow. Many studies have highlighted the potential of external sensory information to enrich the lived experience [101-104]. Exteroceptive information can generate intense emotional processes [105] and flavor manipulation within VR [101-104]. However, the evidence is weak, and it is also possible that such an environment may inhibit VR experiences because of its limited capacity to provide wider sensory inputs [105]. Another outcome of our study was that individual preferences may play a role in the VR experience. Our findings showed that this experience is negatively associated with all forms of external sensory stimulation (ie, hearing, taste, and smell) except vision. This suggests that other senses are partially inhibited, and only vision is recruited on a large scale. Vision is an essential component of the APTICE experience.

In this context, Slater and Usoh [106] suggested that an individual’s experience is encoded by visual, auditory, and kinesthetic systems of representation. Depending on the context, the person will naturally tend to favor one system over another. However, the latter authors noted that the visual system predominates in individuals who report a higher sense of presence and those who process information in the first person. Thus, individual characteristics may be a key factor in any experiment. Overall, our study suggests that the APTICE system may alter multisensory representations during physical exercise. Future studies should address this issue, which remains unexplored.

Future Clinical Applications

VR technologies appear to complement established approaches to mental health care. Its association with physical activity makes it an interesting new approach that merits further investigation. Furthermore, the use of VR in health care is expanding rapidly. There are many new opportunities in clinical medicine, including mental illness, where VR may be an alternative treatment [4,5,107,108]. Our findings validated the impact of physical exercise in a VR environment on negative emotions in a healthy population. Although our results should be interpreted with caution, because of the small sample size, they highlight the importance of better understanding the processes involved in healthy participants. Beyond the efficacy of interventions to determine which populations might benefit from VR combined with physical activity, it is important to understand the processes that predispose this state in healthy individuals. Further studies with larger sample sizes are required to evaluate the role of these processes in clinical research. Thus, the next step is to study clinical and neurofunctional subtracts in a population with depression before proposing the tool as a countermeasure (ID-RCB: 2020-A03415-34) for this population and other people in health care. There is an untapped opportunity to use VR as a prevention tool and to target the processes that make an individual poorly adapted to the environment. This is particularly the case for people who work in challenging confined and isolated environments or extreme and unusual environments [65].

Limitations

This study has 4 main limitations. The first and most important factor is the small sample size. This study was intended to be a pilot feasibility study that will support a future controlled randomized trial. In this context, it validated the usefulness of the APTICE system and highlighted the interaction between the variables of interest. In the next phase of our work, we will launch a larger clinical study of participants with depression. The second limitation relates to the use of subjective self-report measures. An objective sensory evaluation needs to be developed for healthy participants, which would help researchers to better investigate the human-body relationship. Subjective variables should be combined with physiological measures, such as heart rate variability. Third, our results cannot be generalized because the study population was recruited from among armed forces personnel and footballers, who are usually different from the general population in terms of fitness and psychological state. Finally, the last limitation concerns the VR equipment used in our experiment, which is becoming dated. A new version of the Oculus headset is already available, with a better graphics interface.

Conclusions

This exploratory proof-of-concept study investigated some of the processes implicated in physical exercise in a VR environment with the aim of better understanding their relationship with psychological state in a sample of healthy individuals. It represents the first step in a larger randomized
controlled trial that will investigate clinical and neurofunctional
subtracts in a population with depression. Our results suggest
that the APTICE environment can change negative emotional
states, consistent with the experiences of flow and presence.
Moreover, our findings demonstrate that immersive and mindful
disposition play an important role in the VR experience. Finally,
they also suggest that the subjective exteroceptive perception
of sensory information may be a key aspect and seems to
indicate that one sense may prevail over another at the level of
the individual. Our study has several implications for clinical
medicine: (1) VR can help enhance and reinforce the beneficial
actions of physical activity; (2) APTICE is a promising system
and may be effective in improving mental health; and (3)
APTICE has the potential to be used as an alternative treatment
to drugs and to improve quality of life. However, many
questions remain unanswered, and further work is needed to
exploit the potential of VR associated with physical activity
both as prevention and treatment.

Acknowledgments
The authors wish to thank Eric Malbos. The authors thank the French Armed Forces Biomedical Research Institute and French
Football Federation for their involvement. They would like to thank Florent Samat and Nicolas Greverie from GAMIT France
for the development of the APTICE system. Finally, the authors would like to thank the Centre Nationales des Études Spatiales
and the Direction Générale de l’Armement for their support.

This research was funded by the Direction Générale de l’Armement (N 2016/017/S).

Data Availability
The data sets generated and analyzed during this study are not publicly available because they are the property of the French
Armed Forces Health Service. Although data are not available to the public, they are available from author MT upon reasonable
request.

Authors’ Contributions
BLR, CMK, CP, RR, EM, FB, EG, and MT conceptualized the study and developed the methodology. All authors actively
contributed to the experimental process. BLR, CMK, and MT wrote the original manuscript. BLR conducted the formal analysis.
All authors have read and approved the final manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Augmented Physical Training for Isolated and Confin ed Environments (APTICE) system description.
[DOCX File, 2387 KB - formative_v811e45637_app1.docx]

Multimedia Appendix 2
Significant correlations between tested variables as a function of the 3 hypotheses.
[DOCX File, 31 KB - formative_v811e45637_app2.docx]

References
2017;9(9):3867-3880 [FREE Full text] [Medline: 28979666]

https://formative.jmir.org/2024/1/e45637

JMIJR Form Res 2024 | vol. 8 | e45637 | p.346

(page number not for citation purposes)

Quebecoise pour la Recherche en Psychologie (SQRP); November 1-3, 2002; Trois-Rivieres, Canada. [doi: 10.1037/h0081306]

Abbreviations

AD-ACL: Activation-Deactivation Adjective Checklist
AIEQ: Addictive Intensity Evaluation Questionnaire
APTICE: augmented physical training for isolated and confined environments
MD: mindfulness disposition
SPANe: Scale of Positive and Negative Experience
UX: user experience
VR: virtual reality
Experiences Among Patients With Cystic Fibrosis in the MucoExocet Study of Using Connected Devices for the Management of Pulmonary Exacerbations: Grounded Theory Qualitative Research

Maxime Morsa¹,², PhD; Amélie Perrin¹; Valérie David³, Dr med; Gilles Rault⁴, Dr med; Enora Le Roux⁵,⁶, PhD; Corinne Alberti⁵,⁶, Prof Dr; Rémi Gagnayre², Prof Dr; Dominique Pougheon Bertrand², PhD

¹Adaptation, Resilience and Change Research Unit, University of Liège, Liège, Belgium
²Laboratory Health Promotion and Education (UR3412), Sorbonne Paris North University, Bobigny, France
³Paediatrics CF Centre, Nantes University Hospital, Nantes, France
⁴Laboratoire Educations et Pormotion de la santé, Université Sorbonne Paris Nord, Bobigny, France
⁵Institut National de la Santé et de la Recherche Médicale (UMR 1123 ECEVE), Université de Paris, Paris, France
⁶Unit of Clinical Epidemiology (CIC-EC 1426), Hôpital Universitaire Robert Debré, Assistance Publique des Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale, Paris, France

Corresponding Author:
Maxime Morsa, PhD
Adaptation, Resilience and Change Research Unit
University of Liège
1 Place des Orateurs
Liège, 4000
Belgium
Phone: 32 4 3662272
Email: maxime.morsa@uliege.be

Abstract

Background: Early detection of pulmonary exacerbations (PEx) in patients with cystic fibrosis is important to quickly trigger treatment and reduce respiratory damage. An intervention was designed in the frame of the MucoExocet research study providing patients with cystic fibrosis with connected devices and educating them to detect and react to their early signs of PEx.

Objective: This study aims to identify the contributions and conditions of home monitoring in relation to their care teams from the users’ point of view to detect PEx early and treat it. This study focused on the patients’ experiences as the first and main users of home monitoring.

Methods: A qualitative study was conducted to explore patients’ and professionals’ experiences with the intervention. We interviewed patients who completed the 2-year study using semistructured guides and conducted focus groups with the care teams. All the interviews were recorded and transcribed verbatim. Their educational material was collected. A grounded analysis was conducted by 2 researchers.

Results: A total of 20 patients completed the study. Three main categories emerged from the patients’ verbatim transcripts and were also found in those of the professionals: (1) task technology fit, reflecting reliability, ease of use, accuracy of data, and support of the technology; (2) patient empowerment through technology, grouping patients’ learnings, validation of their perception of exacerbation, assessment of treatment efficacy, awareness of healthy behaviors, and ability to react to PEx signs in relation to their care team; (3) use, reflecting a continuous or intermittent use, the perceived usefulness balanced with cumbersome measurements, routinization and personalization of the measurement process, and the way data are shared with the care team. Furthermore, 3 relationships were highlighted between the categories that reflect the necessary conditions for patient empowerment through the use of technology.

Conclusions: We discuss a theorization of the process of patient empowerment through the use of connected devices and call for further research to verify or amend it in the context of other technologies, illnesses, and care organizations.

Trial Registration: ClinicalTrials.gov NCT03304028; https://clinicaltrials.gov/ct2/show/results/NCT03304028
Introduction

Background

Pulmonary exacerbations (PEx) are the main cause of decline in lung function in patients living with cystic fibrosis (CF), representing the leading cause of death. Recommendations emphasize the importance of diagnosing PEx early to treat patients effectively and for them to have the best chance of regaining their previous baseline lung function after treatment [1]. Identifying warning signs of PEx requires many skills from patients daily—studies have shown that they must be able to monitor a combination of physiological parameters and patient-reported perceptions, such as weight loss, decreased spirometry, increased coughing, or increased sputum production reported daily, to diagnose PEx episodes and put in place the appropriate treatment [2,3]. Nevertheless, patients living with CF do not systematically monitor these warning signs, as few are equipped with devices to monitor variations in their physiological parameters or their perceptions over time, with the exception of patients who have received a lung transplant, who may be equipped with spirometers to detect a decrease in their respiratory function, which is a warning sign of acute rejection. However, patients need to access accurate and reliable measurements to monitor their lung function.

In recent years, a contemporary trend has emerged in health improvement and disease prevention: the “quantified self.” It refers to the quantitative measurement of various parameters linked to the state of one’s health (eg, heart rate and weight) or to lifestyle (eg, diet and physical activity) to monitor a disease or improve well-being. The premise is that one cannot improve what they cannot quantify. This quantification, which was still difficult to achieve a few years ago, has become more accessible through the development of new technologies and connected devices. These devices are connected to the internet and can collect, store, process, and transmit health-related data through sensors [4].

Connected devices can help patients gain a better understanding of disease and treatment and increase their levels of satisfaction and adherence to treatment when combined with patient education interventions [5,6]. Patient education is an empowerment approach for patients with chronic diseases aiming to improve their understanding and adherence to treatment by transferring knowledge from health care providers to patients through educational workshops and also by using patients’ experiential knowledge, which helps them adjust their management of the disease in their daily lives [7]. Patient education is known to have a significant positive impact on bioclinical indicators and on the well-being of patients [8]. Connected devices would act as a learning aid for patients by promoting real-life behavioral experimentation thanks to quick (or even immediate) access to objective data and to the development of knowledge about oneself anchored in one’s memory [9]. The use of connected devices by patients in their daily lives allows them to transfer what they learned during the workshops provided by health care providers to real-life situations, thus expanding on patient education. Experiential and continuous learning is facilitated when it is supported by health care providers to learn to interpret real-life data and compare them with the data collected at the hospital.

This way, connected devices could promote the process of empowerment, a concept that is understood as the development of patients’ ability to identify and meet their own needs, solve their own problems, mobilize the necessary resources to take action, and feel that they are in control of their health and their own lives [10]. According to Funnell and Anderson [11], empowerment is a process that is facilitated by counseling, educational, or psychological techniques to help the individual take control of the day-to-day management of their illness.

Currently, data are scarce on how connected devices are used in real-life situations by patients with chronic diseases and on how they influence knowledge of oneself and of one’s body, health, and disease [12]. However, we know that the dropout rate of connected devices can be high because of how cumbersome their use may be or the fact that they are too pressing a reminder of the person’s disease in their daily life [13,14], whereas adherence is mainly observed in young people and high-income socioprofessional categories who are more familiar with new technologies [15]. People’s experiences of using such connected devices vary depending on the person, the context, and their care environment. Therefore, the assessment of health technology is now moving toward a contextualized, patient-based evidence approach. According to this approach, the evaluation of eHealth devices is based on knowledge that originates directly from patients about their experiences of health, quality of life, and health services [16]. This approach is represented internationally by the work of the Warwick Patient Experiences Framework or the National Institute for Health and Care Excellence Patient Experience Guideline Development Group [17].

Drawing from the humanities and social sciences, it is now recommended for qualitative studies to be centered on patients’ feedback to understand the processes through which connected devices facilitate their acquisition of knowledge (of the body, risks, and diseases), in particular through the intimate and empirical experiences of the quantified body translated into data [18].

Objectives

Therefore, we conducted a qualitative study with patients living with CF and with specialized CF centers in metropolitan France to explore the processes through which connected devices become an essential part of patients’ knowledge to allow them to self-manage their health and to contribute to a theory of individual patient empowerment through technology. The aim
of the study was to understand how patients and health care providers lived and perceived this new intervention based on connected devices associated with patient education workshops to identify the contributions and conditions of home monitoring. The work is focused on stakeholders’ experience with the intervention. This study is part of an interventional project based on the hypothesis that an intervention that combines the provision of connected devices set up with personalized alert thresholds and a patient education intervention by health care providers can enable patients with CF to detect early signs of PEx and begin managing it themselves in a timely manner. For this self-management process to lead to the implementation of appropriate patient behavior, it is assumed that the educational intervention teaches patients to identify and respond appropriately to alerts.

Methods

Overview

The MucoExocet (from the French for “Cystic Fibrosis Exacerbation Connected Devices Therapeutic Education”) study, a pilot interventional study, was conducted from 2018 to 2021 and involved 22 adults and 14 adolescents (aged >12 years) with CF to assess whether the use of connected devices was feasible and useful to detect and treat PEx early (trial registration: ClinicalTrials.gov NCT03304028). As part of the overall research project, this qualitative study explored the users’ experiences at the end of the intervention. The intervention and protocol have been extensively described previously [19]. We used the EQUATOR (Enhancing the Quality and Transparency of Health Research) standards for reporting qualitative research elaborated by O’Brien et al [20] to present our study design.

Summary of the Intervention in Its Context

Since 2005, a national organization associating health care providers from CF centers and patients and parents in France has been working to define the patient and parent competency framework (in pediatrics) and the associated set of educational tools. A therapeutic education tool named “React to PEx” (“Réagir en cas d’exacerbation”) was used to support patients’ and parents’ self-management of PEx episodes at home (Multimedia Appendix 1).

The intervention designed for the MucoExocet study combined the provision of connected devices with an educational program based on the React to PEx tool. It was renamed “React with CDs” and incorporates measurements from connected devices and personalized alerts (Figure 1). The goal of the intervention was to develop the patients’ (or parents’) ability to take action at the first signs of exacerbation identified through measurement deviations by connected devices. For this study, connected devices were used to collect 13 parameters, including 6 physiological parameters measured by the devices (forced expiratory volume in 1 second [FEV1], cardiac frequency, arterial hemoglobin oxygen saturation, weight, sleep duration [min/night], and physical activity [step count/d]) and 7 patient-reported perceptions described using emoticons in a journal provided by the spirometer application (trouble breathing, need for more airway clearance, increased symptoms at night, difficulty performing usual activities, greater fatigue, loss of appetite, and change in sputum [color or quantity]). At the request of both physicians and patients, the option chosen in the study was to not send the data collected via connected devices to the physician but only to the patient. However, the data could be shared during a consultation at the center or during a phone call or email exchange if the patient (or parent) wished to do so.

Figure 1. Design of the study intervention. CD: connected device; EW: educational workshop; M0: month 0; M3: month 3; M6: month 6; M9: month 9; M12: month 12; M15: month 15; M18: month 18; M21: month 21; PEx: pulmonary exacerbation.
Thresholds of irregular variation for patients’ parameters were calculated using the cumulative sum control chart method based on the data collected during phase 1 of the implementation of connected devices (3 months); this allowed physicians to set alert thresholds for each parameter and each patient during the first educational workshop with patients. Thus, alerts could be sent by email to the patients or parents throughout the period of routine monitoring using connected devices (12 months). An action plan was agreed upon by the physician and the patient or parent during this educational workshop to respond to alerts.

Development of the Educational Tool and Educational Intervention in the Centers

One of the centers played a leading role in the implementation of the study because of its leading role in therapeutic education for patients with CF in France (the CF center in Nantes). During phase 2, the physician and therapeutic patient education nurse developed the different educational tools for the 3 stages of the program (educational workshops 1-3) based on the statistical analyses of patient data and with the participation of an adult patient expert and tested these tools with a parent and an adolescent patient from their center. The tools and educational program are described in the publication cited previously [19].

Beyond the patient recruitment process, a physician and a health care provider (nurse or physiotherapist) from each investigating center were involved in handing the connected devices to the patients or parents, setting them up with the patients or parents and explaining how to use them, solving technical problems with the patients or parents with the help of the device suppliers, and participating in the interpretation of statistical analysis of the data collected during the implementation phase (3 months) to define personalized alert thresholds for their patients. They were trained in the use of the React with CDs educational tool to agree with their patients on an action plan in the event of PEx; they educated their patients in the 3 sessions provided as part of the educational program (“Your impressions of using connected devices during the implementation phase” and “Your action plan for responding to exacerbation warning signs, and Review of your action plan after 6 months of routine monitoring”). At the end of the study, health care providers participated in a focus group to report on their experience with the study and this monitoring method.

Study Population and Study Centers

The centers were selected by the research group on a voluntary basis among centers who had participated in the quality improvement program. They were familiar with the educational tool “React to an exacerbation.” The 7 CF centers were selected to include patients and their families of various conditions of life, economic statuses, and geographic areas (either urban or rural). Finally, the 7 centers were located in 4 different geographical areas; 3 (43%) were pediatric centers (4 patients per center), and 4 (57%) were adult centers (6 patients per center). None had previous experience with connected devices for their patients at the initiation of the study. In total, 36 patients, adults or adolescents, were included in the MucoExocet study. The sample was defined according to the recruitment capacities of the centers and the possibility of observing a saturation phenomenon in the qualitative study [21].

The recruitment process conducted by physicians in the centers was carried out based on patients’ voluntary participation and their interest in using new technologies. The participant inclusion criteria were as follows: age of ≥12 years, clinically stable condition (no PEx requiring intravenous antibiotics within the previous 4 weeks), at least one PEx within the previous 12 months, current follow-up at a participating CF center (and no plans to change centers during the course of the study), no history of having undergone solid organ transplants, prescription of at least one pulmonary medication (eg, inhaled mucolytic, inhaled or oral antibiotic therapy, or hypertonic saline), ability to speak French, ability to connect a tablet to Wi-Fi, and provision of written informed consent.

The number of individuals to be recruited took into account an estimated dropout rate of 20%. A form was offered to the patients leaving the study to identify the main reasons for their withdrawal (Multimedia Appendix 2).

Data Collected by the Patients Using the Connected Devices

The 13 parameters were collected using 5 different connected devices, and a few of them collected more than one parameter. During the first 3 months, data were to be collected twice a week. During the routine phase, the frequency was agreed upon between the patient and the care team from twice a week to once every 2 weeks depending on the patient’s health outcomes and life conditions. The procedure used to collect the data was explained in a document given to the patients at inclusion (Textbox 1).

Owing to the great variety of measurements taken, the time spent on the measurements was not recorded.

Textbox 1. Procedure to collect the data.

- Data collected without any participation from the patient (sleep, steps, and cardiac frequency): the duration of sleep was measured by the sensor under the mattress, and the step count and cardiac frequency were measured by the watch.
- Clinical data (spirometry and oxygen) required patient participation; at the end of the spirometry measurement, emoticons were presented for each of the 7 perceptions.
- Weight was expected to be measured in the morning (naked) the same day as the clinical data.

Qualitative Data Collection

Patients’ experiences were collected through semistructured interviews using an interview guide with 8 open-ended questions (Textbox 2), derived and adapted from validated protocols for patient narrative elicitation in outpatient care experiences [22]. The experience and workload of the care teams were explored.
in focus groups using an interview guide with 5 open-ended questions (Textbox 3).

Three sources of data were collected: (1) data collected during patient or parent interviews using an interview guide with open-ended questions (Textbox 2), (2) data regarding the educational program with the physician (the documents completed by the patient and the clinician, including the personalized action plan in case of PEx), and (3) data from the focus groups with care teams at the end of the study using a semistructured guide (Textbox 3).

Textbox 2. Guide for the semistructured interviews with patients or parents.

1. For you, what are the most important aspects in the management of your respiratory exacerbations in your daily life?
2. How do you rate the conditions for managing exacerbations during the study (based on what is most important to you)?
3. Can you tell us about a positive experience you had during this study concerning the management of your exacerbations? What happened and how did it make you feel? Did you do anything in particular after this positive experience (eg, change your attitude or behavior)?
4. Can you tell us about an experience that turned out differently than you expected? What happened and how did you feel at the time?
5. Regarding this last experience where you wished things had turned out differently, did you or your doctor do anything to rectify the situation?
6. Did your participation in the study change your outlook on the way you manage your exacerbations?
7. What do you think would be the best way to integrate this type of long-term follow-up so that it addresses the aspects that are most important to you in the management of your exacerbations?
8. Is there anything else you wish to tell us about?

Textbox 3. Guide for the focus groups with care teams.

1. From the point of view of the health care team, what are the most important aspects in the management of patients’ respiratory exacerbations, particularly in their daily lives?
2. In your opinion, how have the proposed monitoring methods, including connected devices and patient education, addressed these priorities or with what limitations?
3. During this research project, what changes have you noticed in the way the team works or in its workload with regard to monitoring patients for the management of their exacerbations? Have you noticed a change in your relationship with the patients’ out-of-hospital physiotherapist?
4. What difficulties or bad experiences have you had in the process of managing patient exacerbations using connected devices?
5. Do you feel that you had positive experiences during this study with the management of patient exacerbations? How would you rate these experiences in relation to the most important aspects of the management of respiratory exacerbations?
6. In your opinion, should this type of long-term patient follow-up be included in the management of exacerbations or in other aspects of their management? If so, what would be the best way to integrate it and for which patients and with which objectives?
7. Is there anything else you wish to tell us about?

Analysis Framework

All the interviews were transcribed verbatim and subjected to a descriptive qualitative analysis. The analysis framework used was grounded theory [23].

Grounded theory is a qualitative research method with an inductive approach aimed at constructing a theory on a cultural, social, or psychological phenomenon by proceeding with the progressive and valid conceptual representation and mapping of qualitative empirical data [24]. In this study, the phenomenon explored was learning and empowerment in health management through the use of connected devices. Grounded theory is relevant as this phenomenon is currently sparsely studied. Studies on connected devices in patients with chronic conditions, and especially in patients with CF, are mostly intended to demonstrate the efficacy of the use of connected devices on various health outcomes. The theories mostly reported in the literature, such as digital behavior change interventions or the theory of reasoned action, are mainly focused on compliance with connected devices. However, the concept of empowerment includes other dimensions, such as understanding, the ability to decide, and self-assessment. Using grounded theory, we aimed to complete the current knowledge by eliciting the various dimensions of empowerment from the patient experiences with the use of connected devices for remote monitoring of their symptoms and by identifying elements that could enrich the theories in the field of remote monitoring.

According to the constructivist grounded theory method by Charmaz [25], which focuses on social processes or actions and the meaning of human actions, we adopted a social psychological approach to explore how and in which context individuals feel that connected devices have an impact on their learning to take care of themselves and on their empowerment. In grounded theory, verbatim transcripts are analyzed using codes to highlight what was stated by the participants in the study and derive meaning from it. We applied the standard steps of grounded theorizing. In initial coding, we generated as many ideas as possible inductively from the initial data. In focused coding, we relied on the most prevalent and important codes to select the central codes for analysis. In theoretical coding, we refined the final categories of the theory by connecting them to
each other, thus allowing for the integration of the categories into a model and the construction of a theory on the phenomenon studied [26].

The grounded dimensional analysis of patients’ or parents’ and health care providers’ data was conducted by 2 researchers (MM and DPB) using NVivo (QSR International) taking into account their evolution over the course of the study and the various natures and production conditions of the collected material while constantly comparing the data within and across patients or parents and health care providers. A constant comparison between the verbatim transcripts of patients and health care professionals was carried out to bring out the invariant elements as “the essence of the phenomenon,” which elaborate “conceptual categories” remaining as close as possible to the lived realities of patients [27]. The 2 researchers who analyzed the verbatim transcripts were a psychologist and the parent of a child with CF, and both had PhDs in public health and great experience in qualitative research.

Analysis of the Educational Documents

The educational documents filled in by the physician and the patient during the educational session (educational workshop 2) were collected by the research team and reviewed globally but were not analyzed in connection with the patient interview. The aim was to understand which actions had been agreed upon between the patient and the physician when symptoms of a PEx were detected by the patient at home (central column) and whether they could resolve the PEx episode and prevent deterioration through their actions.

Ethical Considerations

The research project was submitted for evaluation by the Committee for the Protection of Persons designated randomly under conditions provided for in the Code of Public Health (Article L. 1123-14). The study was approved by the Committee for the Protection of Persons (CPP North West III) on June 10, 2017 (2017-A00723-50). Free and informed consent was obtained before any act related to research was undertaken.

Results

Population Interviewed and Dropout Rates During the Study

A total of 56% (20/36) of the study participants were interviewed. The population interviewed in relation to the population included in the study and who benefited from the different stages of the educational program (educational workshops 1-3) is listed by center in Table 1. The dropout rate at the end of the first phase of intensive data collection (3 months) was 25% (9/36). In total, 3% (1/36) of the patients died during the study. The death was unrelated to the study. A total of 67% (24/36) of the patients were educated in the first 2 workshops (educational workshops 1 and 2), allowing them to enter the routine monitoring phase using connected devices. Only 39% (14/36) of the patients attended the third educational workshop held at the midpoint of the routine monitoring phase using connected devices. At the end of the study, the nonresponse rate to interview solicitations compared with the number of patients who entered the routine monitoring phase was 25% (6/24). These results differed from one center to another. The gender, age, and geographic area characteristics of the patients interviewed (presented in Table 2) were similar to those of the entire study population. However, the patients interviewed had a higher level of education and employment rate than the entire study population.

A total of 12 health care providers from 7 hospitals participated in focus groups between May 2020 and February 2021 (Table 3).

Table 1. Number of patients interviewed per center (n=20).

<table>
<thead>
<tr>
<th>Patients included (n=36), n (%)</th>
<th>Patients educated, n (%)</th>
<th>Patients interviewed (n=20), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EW a 1 (n=30)</td>
<td>EW 2 (n=24)</td>
</tr>
<tr>
<td>Pediatric CF b centers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4 (11)</td>
<td>4 (13)</td>
</tr>
<tr>
<td>2</td>
<td>5 (14)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>3</td>
<td>5 (14)</td>
<td>4 (13)</td>
</tr>
<tr>
<td>Adult CF centers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8 (22)</td>
<td>6 (20)</td>
</tr>
<tr>
<td>5</td>
<td>6 (17)</td>
<td>6 (20)</td>
</tr>
<tr>
<td>6</td>
<td>3 (8)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>7</td>
<td>5 (14)</td>
<td>4 (13)</td>
</tr>
</tbody>
</table>

aEW: educational workshop.

bCF: cystic fibrosis.
Table 2. Characteristics of the study participants (patients; n=20).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Adolescents, n (%)</td>
<td>8 (40)</td>
</tr>
<tr>
<td>Adults, n (%)</td>
<td>12 (60)</td>
</tr>
<tr>
<td>Age of adolescents (years; n=8), median (SD)</td>
<td>14.5 (1.1)</td>
</tr>
<tr>
<td>Age of adults (years; n=12), median (SD)</td>
<td>29.6 (7.7)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>9 (45)</td>
</tr>
<tr>
<td>Female</td>
<td>11 (55)</td>
</tr>
<tr>
<td>Geographical area, n (%)</td>
<td></td>
</tr>
<tr>
<td>Living in a city</td>
<td>12 (60)</td>
</tr>
<tr>
<td>Living near a city</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Living in the countryside</td>
<td>3 (15)</td>
</tr>
</tbody>
</table>

Table 3. Focus group participant characteristics.

<table>
<thead>
<tr>
<th>Hospital (n=20), n (%)</th>
<th>Date</th>
<th>MD(^a) (n=3), n (%)</th>
<th>Nurse (n=4), n (%)</th>
<th>Physiotherapist (n=3), n (%)</th>
<th>Other (n=2), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>November 6, 2020</td>
<td>1 (33)</td>
<td>1 (25)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>2</td>
<td>February 5, 2021</td>
<td>1 (33)</td>
<td>1 (25)</td>
<td>1 (33)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>3</td>
<td>November 9, 2020</td>
<td>1 (33)</td>
<td>1 (25)</td>
<td>1 (33)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>4</td>
<td>October 11, 2020</td>
<td>0 (0)</td>
<td>2 (50)</td>
<td>1 (33)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>5</td>
<td>December 9, 2020</td>
<td>1 (33)</td>
<td>1 (25)</td>
<td>1 (33)</td>
<td>1 (50; coach in physical activities)</td>
</tr>
<tr>
<td>6</td>
<td>June 23, 2020</td>
<td>1 (33)</td>
<td>1 (25)</td>
<td>1 (33)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>7</td>
<td>May 19, 2020</td>
<td>1 (33)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (50; clinical research assistant)</td>
</tr>
</tbody>
</table>

\(^a\) MD: doctor of medicine.

The forms completed by patients exiting the study reported technical difficulties with certain connected devices, in particular with the tablet computer provided to synchronize data before sending them to the research server. These difficulties were also reported by health care providers in the focus groups, who mentioned that a member of the team (nurse, physiotherapist, or clinical research associate) had spent a significant amount of time solving technical problems with the device suppliers, sometimes unsuccessfully. The reasons for dropping out of the study were multiple and are listed in Multimedia Appendix 3.

Results From the Educational Documents

The educational documents collected after educational workshop 2 show that the first column (“normal state of health, routine activities and treatments actually followed”) was filled with detailed information on the treatments and activities of the patient in their daily life, unlike the central column, which contained little information. The agreed upon actions in case of signs of exacerbation were mainly “increase physiotherapy” or “try to do more physical activity” and always “call or send a message to the center team.” The actions were aimed more at the diagnosis of the exacerbation by the physician, who then decided what the patient should do, than at the actions that the patients should take by themselves. Most of the physicians added the following comment—“They already know what to do”—meaning that they had not delegated new actions to the patients. One pediatrician decided to give conditional prescriptions of oral antibiotics to the parents after the educational session, thus delegating to them the decision to start the treatment and asking them to inform the team that they had started the treatment.

Descriptive Results From the Interviews

Stage 1: Initial Coding

A total of 12 codes emerged from the patients’ verbatim transcripts. In total, 10 codes emerged from the health care providers’ verbatim transcripts. The analysis allowed for the assignment of a name to each code that identified its area of interest (Table 4).
Table 4. Codes and categories of transcripts from patient interviews and focus groups with health care providers.

<table>
<thead>
<tr>
<th>Category and codes from patient interview transcripts</th>
<th>Codes from transcripts of caregiver focus groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1: patient empowerment</td>
<td></td>
</tr>
<tr>
<td>• Learnings</td>
<td>• Learnings</td>
</tr>
<tr>
<td>• New knowledge mentioned by patients that helps them understand alerts and manage PExa</td>
<td>• Confirmation of the patients’ perceptions of symptoms using measurements; better understanding of their state of health at the first signs of exacerbation</td>
</tr>
<tr>
<td>• Empowerment</td>
<td>• Patient-physician relationship</td>
</tr>
<tr>
<td>• Impression of being more capable of self-managing their treatments, their health, and their life projects</td>
<td>• Better understanding by the physician of the patient’s situation, their life circumstances, and their care; better understanding by the physician of the treatments carried out and the patient’s behavior in the event of exacerbation or in life in general</td>
</tr>
<tr>
<td>• Loss of control</td>
<td>• Remobilization of the team to manage PEx</td>
</tr>
<tr>
<td>• Impression of being less capable of self-managing their care, health, and life projects</td>
<td>• Renew the motivation of the teams to focus on the main objective of jointly managing PEx through a different approach with the patient</td>
</tr>
<tr>
<td>Category 2: TTFb</td>
<td></td>
</tr>
<tr>
<td>• Perceived usefulness</td>
<td>• Usefulness of monitoring using CDs</td>
</tr>
<tr>
<td>• Needs expressed by patients to monitor PEx and expectations of the use of CDs to help them self-monitor</td>
<td>• Depending on the patient’s health status (unstable or stabilized), on the caregiver’s previous experience with telemonitoring, and on the patient’s ability to use devices and keep them in good operating condition</td>
</tr>
<tr>
<td>• Perceived reliability</td>
<td>• Technical reliability and accuracy of measure-</td>
</tr>
<tr>
<td>• Patients’ level of trust in the reliability of the data collected by the devices during the study</td>
<td>• Checking the accuracy of the measurements taken using CDs in comparison with hospital standards and reliability over time</td>
</tr>
<tr>
<td>• Negative experiences</td>
<td>• Negative experiences</td>
</tr>
<tr>
<td>• Problems encountered using CDs; negative conse-</td>
<td></td>
</tr>
<tr>
<td>quences described by patients</td>
<td>• Problems encountered using CDs and negative consequences described by people—1 death that was not related to the study but that CDs did not prevent</td>
</tr>
<tr>
<td>Category 3: use of technology by patients and health care providers</td>
<td></td>
</tr>
<tr>
<td>• Conditions for a favorable use of CDs</td>
<td>• Conditions of integration of the use of CDs into the organization of care</td>
</tr>
<tr>
<td>• Technical, human, and environmental conditions of CD use considered favorable for the optimal management of PEx</td>
<td>• Technical, human, and organizational conditions for the health care team to integrate the support of the use of CDs by patients—resources and time needed for education and remote support of patients</td>
</tr>
<tr>
<td>• Motivation</td>
<td>• Factors of motivation in health care provi-</td>
</tr>
<tr>
<td>• Personal and contextual factors that motivate patients to use CDs</td>
<td>• Monitoring method that cannot be overlooked considering the current demographic increase in the number of adult patients; necessary monitoring method (using telecommunications) in case of a crisis (COVID-19)</td>
</tr>
<tr>
<td>• Hindrances</td>
<td></td>
</tr>
<tr>
<td>• Personal and contextual factors negatively affect-</td>
<td></td>
</tr>
<tr>
<td>ing the use of CDs</td>
<td></td>
</tr>
<tr>
<td>• Support from health care providers in the use of CDs</td>
<td></td>
</tr>
<tr>
<td>• Support provided by health care providers in the use of data from CDs for the management of PEx that helps promote the use of CDs by patients</td>
<td>N/A</td>
</tr>
<tr>
<td>• Use of CDs</td>
<td>• Use of CDs</td>
</tr>
<tr>
<td>• Modalities of CD use reported by patients</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Stage 2: Focused Coding

Overview
Following the analysis of the initial codes, the codes from patients’ and health care providers’ verbatim transcripts were used to construct unified categories (Table 4) fed by the diversity of patients’ and health care providers’ perspectives. These categories are independent from one another and do not include the same codes. At this stage of analysis, some codes (“Patient recommendations” and “Implementation approach”) were set aside as they did not correspond to the modeling purpose. They will be considered later in the model. Each category was defined with a general title, a description, and detailed transcripts.

Category 1: Patient Empowerment
During the process of analysis, empowerment was defined as individual empowerment, characterized by the learning achieved during the intervention, the decisions and actions implemented by the patient for their care or health, and their sense of control over their health. Connected devices allow patients to access data on their health status daily to monitor episodes of PEx, prevent them, and adjust the course of action when they happen. They contribute to making some patients more autonomous in the early management of PEx by supporting their decision-making and ability to take action without seeing or contacting primary health care providers:

 CDs allow for a better assessment of one’s health status, and to take better care of oneself. It helps to be more autonomous and to avoid waiting until we are very sick to go to the doctor’s. It also helps to complement one’s care with extra physiotherapy, more sports, things like that... [Adult patient]

The use of connected devices in the management of PEx not only allows for the adoption of preventive behaviors or better adherence to medical recommendations. Through their use of connected devices, patients also learn to manage their health with new data about themselves that confront the objective evolution of their health status with the way they feel and the effects of their lifestyle and their attitude toward their care. This process is characterized by the acquisition of new knowledge of one’s state of health, the validation of subjective perceptions, a better understanding of what happens on a physiological level, and focusing more attention on certain monitoring indicators. These learnings can be observed as early as during adolescence:

Well, I found that the fact that I could make my own measurements ... allowed me to understand better...to be able to compare and to feel when I was not doing so well. And for example, I found it interesting when I thought I was doing less well but still had good results. I waited a little while to see if I should rely more on the results or more on how I felt, and I actually relied more on my results. And, yes, I thought it was good, because it’s mostly meant for prevention, and it helped me a few times. [Teenage patient]

However, it has been found that measurements reflecting a deterioration can lead to higher stress levels and a loss of empowerment when no action plan has been put in place in advance with health care providers. A lack of patient education to support the understanding of data, including the meaning of alerts, can cause a feeling of helplessness in patients, especially if the caregiver also appears to be confused by the new monitoring method. Obtaining data on one’s health status on a near-continuous basis only enhances patient empowerment if the patient possesses the skills to interpret and act on the data. Similarly, connected devices lead patients to think almost constantly about their health despite not always being in the right mental state to do so:

In the past, I probably used to desaturate without really realising it. I probably had headaches, but there you go...But now, I’m constantly stressed out, because I check my measurements pretty much all the time. [Adult patient]

Well, no. I can’t see the results of the measurements on the connected devices, and when the nurse called customer services, she was told that it was me who had the data anyway. But I don’t understand the data, and neither does she. So, perhaps we need to be taught how to interpret them better or to get clearer explanations in the alerts we receive. [Adult patient]

Health care providers focused more on the concordance between the perceptions reported by patients and the data collected than on patients learning to manage their PEx. Empowerment was seen by health care providers as patients’ ability to detect PEx and respond to it to limit its effects. Health care providers’ objective was to ensure the effectiveness of the device in

<table>
<thead>
<tr>
<th>Category and codes from patient interview transcripts</th>
<th>Codes from transcripts of caregiver focus groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 4: recommendations and suggestions for long-term monitoring using CDs</td>
<td></td>
</tr>
<tr>
<td>- Patient recommendations</td>
<td>- Implementation approach for the routine use of CDs in the organization of care</td>
</tr>
<tr>
<td>- Recommendations made by patients for an empowering use of CDs in managing their PEx</td>
<td>- The approach should define at which patients it is aimed, with possible adjustments over time; with which devices to collect which data (eg, when, how much, and the utility of alert notifications) with which devices to collect which data; which health care professionals will supervise this kind of routine monitoring; and the support from health care providers in the use of data from CDs to monitor patients.</td>
</tr>
</tbody>
</table>

PEx: pulmonary exacerbation.
TTF: task technology fit.
CD: connected device.
N/A: not applicable.
improving patients’ state of health. Some health care providers emphasized the beneficial relational change fostered by the educational intervention that accompanied the implementation of connected devices, owing to which they communicated better with their patients. This allowed them to better understand their living conditions with the disease and how they cared for themselves daily. From their point of view, the data collected using connected devices increased patients’ level of information and of awareness of their condition. This gave the team the feeling of having a new tool to involve patients in the management of PEx and, thus, the capacity to influence the evolution of the disease:

Behind the word “anticipation,” we mean they should know how to spot the early signs and manage to put things in place and then call us. They should know not to wait for one or two weeks before calling to tell us they haven’t been feeling well for two weeks. So, for me, the study had an aspect of therapeutic education, thanks to the information panel (“React with CDs” Tool) that allowed us to sit down with the patients and have them think a little bit about what exactly they were doing. [Health care provider]

Category 2: Adequacy of Technology (Combined With Education) to the Needs of Patients

Often found in the literature as “task technology fit” (TTF) [28], this category includes aspects related to the reliability of the devices, the accuracy of the data measured (in comparison with a standard), the ease of access to the data, and how adequate the educational program is, all of which shape patients’ perception of how well this “technology” fits their monitoring needs. Patients expressed concern that the devices should accurately reflect their condition. The adequacy of the devices for monitoring purposes can be assessed based on several criteria over time as patients experience the use of connected devices. The first criterion is the perceived reliability of connected devices over time and the accuracy of the measurements compared with measurements taken at the hospital:

When I took several measurements, I sometimes got very contradictory results. I sometimes wasn’t sure whether it was reliable. [Adult patient]

The second criterion is the ergonomics and ease of use to connect to the tablet to access data and send them to the research server, which enables the sending of alert notifications:

But the fact is that the spirometer...it does not save the results. So, I could get a good score at the beginning, but I tried again and because I coughed a little bit the result wasn’t so good, so I started again from the start, but it’s a bit difficult. Results should be saved automatically. [Teenage patient]

The third criterion is the technical support provided for the implementation of the devices:

What bothered me was that the curves on the graph—there were two curves—I never knew what they represented. And I even asked the nurse, and the nurse replied: “Indeed, it’s weird, what does it mean?” Even she searched for an explanation. To this day, I don’t actually have the answer... [Adult patient]

These aspects were supposed to be controlled in the context of interventional research, but some patients had a disappointing experience even though they were aware that they were participating in a pilot study that would sometimes involve “teething problems”:

We told them that they were the first ones to go through all the steps and that everything was not necessarily perfectly set up for them...I told them that future patients would have fewer difficulties because we would manage to solve some things with them in the study. They tested the tools from beginning to the end and therefore experienced all the computer bugs. [Health care provider]

The reliability of the devices used to monitor patients was mainly assessed by health care providers in comparison with the measurements taken using standard hospital equipment. This reliability was, from their point of view, guaranteed by the research context. Some patients felt that their health care providers did not have answers to the technical problems they faced:

I received several emails from the CF centre telling me that they were not getting the data. But I assured them that I was sending the results. I managed to show them that I had uploaded the data...I went onto HealthMate as I was getting an update every Sunday by email for the Withings devices. So, I forwarded it to them, and in fact, they said that the data were loading, but not on the research server. [Adult patient]

Patients’ interest in technology may vary according to the connected devices proposed, the need they feel to monitor certain health indicators, and the attractiveness of the device. Moreover, patients may not wish to use them for fear of being confronted with poor results on certain critical measurements for the patient (or for the physician):

So, I found the sleep analysis option rather useful. Because I do sleep well at night, but I cough without realising it. I was either a little tired when I woke up in the morning, or even not at all tired, while it turned out that I had exacerbations at night. So, I could see that from two criteria: the first one was the decibel peak levels at night, and then the second one was when I didn’t have a restless night’s sleep. So, these were two rather useful criteria, I think. And then...yes, there also was a third one...It is my heart rate, which increased as soon as I coughed. [Adult patient]

The integration of technology and patient education into the care process was seen as an additional workload by health care providers. Although dealing with technical problems took more time than expected for those in charge of the study (nurse or clinical research associate), physicians mainly mentioned the time spent on the patient education workshop (education workshop 2). Patient education undertaken by physicians in the adult patient care pathway is new for some adult centers, and those centers hope to benefit from a “return on investment”
from it in the future. From the point of view of the care team, taking measurements using connected devices adds to the time already spent by patients managing their disease daily:

For us, it takes time, but obviously, for the patients it represents a lot of time too. In patients’ daily lives, it clearly adds minutes to their basic treatment. In terms of the team’s workload, it obviously adds work, and the therapeutic education workshops linked to the protocol were particularly cumbersome. It’s a lot of work at the time, but it clearly is really beneficial for the future. [Health care provider]

Although the educational tool proposed in the study (educational workshop 2) was generally appreciated by adult patients, it may have seemed complicated to the adolescent audience although it was developed by a pediatric team and tested with several teenagers before releasing it to be used for research:

Therapeutic education went well too...The information pane (“React with CDs” tool) was really well done, and it allowed us to look into many habits that we didn’t have, well at least that I didn’t have. [Adult patient]

The dashboard was not bad, but super complicated to use for a teenager. There is too much stuff on it. And clearly, too much information on the same page. You can’t go straight to what you’re looking for...I mean, you really need to look for it. In that sense, I think this table needs to be more legible, because there was a lot of data on it. And reading a lot of data in a table with many columns, it’s...it’s not appealing. [Parent]

Personalized alert thresholds were set for each patient based on data collected during the first phase of the study following the statistical analysis (cumulative sum control chart). However, these alerts were rarely used by patients to manage their exacerbation episodes as reading measurement results alone allowed them to understand their health status or the lack of updates to thresholds rendered the alerts irrelevant:

At the end of the year, my FEV1 had increased by quite a bit, so when I started the new year with a new secondary infection, my FEV1 didn’t drop lower than the year before. As a result, I never received any alerts. So, I think in this case, we need to update the thresholds, because things can really fluctuate. [Adult patient]

Questions emerged among health care providers on the profile or profiles of patients for whom it is more relevant to introduce self-monitoring measures via connected devices. The inclusion criteria of the study targeted patients with good to moderate lung function (FEV1 >50%) so as to limit the risk of patients leaving the study because of lung transplantation, which is considered as soon as FEV1 decreases to <40%. Some physicians who followed adult patients believed that stabilized patients are good candidates for this follow-up through connected devices, whereas others pointed out that very unstable patients could benefit from this reactive warning system to manage decompensation. In such a critical situation, physicians emphasized the importance of systematically transmitting patient data to the center to help monitor the patients using alerts. Although most physician investigators wanted the study not to send patient data to the center as they felt that they did not have the resources to treat them, other physicians considered it not to be viable for patients who were critically ill. The fear of widening existing social inequalities in health was also mentioned by the care teams:

I think it is useful to integrate the use of such devices with severely ill patients who have frequent exacerbations, who are hospitalised...It can really have a positive impact by confirming the patient’s perception that they are not doing so well, and that they may need to begin an intravenous treatment. It can help patients and us, health care providers, for patients who are severely ill, by providing objective data on exacerbations.... But at the same time, we must not delude ourselves. It is with these severely ill patients that it will be more difficult to set up a monitoring process with CDs. Because they often are in complicated situations socially, psychologically, and so on. So, I don’t know whether it will really be possible with these patients. There are biases and inequalities that will remain true with CDs. Whereas patients who are already autonomous and stabilised will more easily appropriate the CDs. [Health care provider]

However, some patients want to maintain control over their data and make decisions themselves as they feared that connected device monitoring would increase the control of the care team:

I don’t need a doctor’s supervision to tell me to be careful and that today’s measurement was not good. Because on the contrary, I find it more worrying than anything else. But then, it depends on the CF centre. For example, some CF centres will use the measurements and overprescribe antibiotics, while others will want to see the patient in consultation.... It should be up to us, it’s our responsibility. [Adult patient]

Category 3: Device Use by Patients (and Health Care Providers)

In the context of this study, device use refers to the ways in which patients used connected devices, whether continuously or intermittently, which may have evolved during the course of the intervention according to factors linked to the patients’ life circumstances, what they experienced during the study, and the conditions of integration of the new monitoring process into the organization of the care team’s work. These uses reflect patients’ perceptions of the benefit-risk balance of the technology and its evolution during the study. Patients adapted the frequency of their connected device use to their need to self-monitor between quarterly visits to the center or, instead, to their need to “let go” slightly on disease management. This need for monitoring increases in periods such as the introduction or cessation of treatment, and it fluctuates depending on life circumstances (work), events related to the environment (high pollen count), or symptoms linked to the disease.
The following is an example of patients’ need for self-monitoring in between consultations at the hospital:

This allows us to watch the evolution of our data. The problem is that we go to the hospital once a month, or even every three months. So, we don’t have a regular follow-up as such. Whereas with these devices, for example, if I do a spirometry test once a week, I get a score every week, and I will check quite regularly, either it is effective or it is not. It’s complementary to my usual care and it could perhaps help patients be more autonomous. [Adult patient]

The following is an example of adopting connected device monitoring in specific situations or for particular diagnoses:

I am planning to get pregnant, and therefore, I think connected devices will be very useful during that time. Indeed, I may not be able to take all the treatments that I can usually take when I am not pregnant. So, I think the devices will be useful then and I also think I’ll be more conscientious in such circumstances.

[Adult female patient]

The use of connected devices also depends on the way measures are integrated into the patient’s personal organization, also known as the routinization process, which, when compatible with their lifestyle, can alleviate the feeling of burden related to the use of devices and contribute to making the collected data more reliable. In the absence of a routine, the use of connected devices can also be taught through therapeutic education sessions and become part of a self-normative approach connected to the patient’s perceptions of their health status:

I do it when I have a quiet moment before leaving in the morning, before physiotherapy, and that’s it. I always tried to do it in the same conditions, so that it wouldn’t skew the data. [Adult patient]

In the particular case of adolescents monitored using connected devices, their use was regulated by the parents, which adds to the burden of preparation and control of certain treatments. The collaboration with an out-of-hospital physiotherapist in this monitoring was seen as a relief for the parent caregiver, and it emphasizes the importance (credibility) of the follow-up for the adolescent patient. The question of maturity related to patients’ age was raised regarding the implementation of monitoring using connected devices in adolescence. Conversely, a parent mentioned the help that these connected devices could bring for the empowerment of young patients. Additional notification functionalities inspired by other applications could also support their use of connected devices:

The greatest thing that could happen for kids would be that the watch sent them a notification if the scores were low and told them what to do. For example, we would set up some instructions onto the app, and as a result, they would receive notifications with the steps to follow on their watch. It would really make them autonomous then. Some apps allow the creation of a schedule and then send out notifications. Youngsters just have to look at their watch and it reminds them they have to bring a check on Monday at 10 AM to the school secretary to pay for the canteen. So, it doesn’t replace the parents, but it would relieve them of the task of always repeating things like a parrot, which causes a lot of conflicts in families. [Parent]

Sometimes, connected devices reactivated conflicts between parents and adolescents regarding the fear of addiction to the tablet for users other than health monitoring or because they give parents access to data on the adolescent’s behavior:

There’s a very intrusive aspect to it. It feels quite overwhelming for teenagers to know that they have lost 200 grams and that mum and dad want them to eat more to get the weight back on. Parental monitoring of sleep also creates conflict, and it was the case for almost all teens, with the parents saying: “You’re going to bed too late, that’s why you’re tired, it’s not healthy for you...” Some parents decided not to look at the data for that reason. [Health care provider]

The use of connected devices by patients is also determined by the interest and attention that health care teams pay to discussions on these data during consultations, phone calls, or teleconsultations with patients, which we will refer to as “patient support”:

So, I thought it was nice. It was really...I was sending screenshots of the saturation, well you know...and the FEV1. We had real conversations, and I found it interesting. It was more precise, less vague, the explanations I had to give...I had to give numbers, you know... [Parent]

Conversely, when health care providers fail to take into account information from connected devices in patient monitoring, it can make patients doubt the importance and usefulness of such data, which, in addition to the burden of taking measurements, can lead to a lack of interest in these devices:

We talked about it, but then, we didn’t focus the consultations on it at all...I expected there would be more guidance in terms of therapeutic education...we did it once about the information panel (“React with CDs” Tool), it took a very long time, it lasted almost two and a half hours. But I expected it would be that way during consultations, precisely to teach us to manage it ourselves...Sometimes, I wonder how it would be like if we had a chat every month, just for five minutes, just to ask me if things were going well, if there were any problems, or if I thought something was wrong. [Adult patient]

Beyond the use of connected devices for monitoring purposes between consultations, some patients suggested that this follow-up could allow them to space out their visits to the center, particularly when they lived far from the center or to limit the risk of contamination at the hospital:

Not on a regular basis, but sometimes when needed, to avoid going to the CF centre, because I live a little over an hour away. So, to avoid the journey, especially if I’m going to the hospital just to do a spirometry test to analyse FEVI, then yes, I might as
well do it with the device at home...it allows me to do the measurements myself. At the time of the consultation, we can either have a video call or talk over the phone, and then, we just give the results...in addition, we can extract our data, so we can even send them by email and the doctor can look at them beforehand. [Adult patient]

Stage 3: Theoretical Coding

The comparison of verbatim transcripts in the 3 categories revealed the relationships between them, as shown in Figure 2. These bidirectional relationships can be explained as follows. First, the TTF–empowerment relationship: this is reflected in patients’ trust in technology as a necessary condition to consolidate their learnings, which in turn strengthens their trust in the support they receive from technology. Second, the empowerment-use relationship: patients’ capacity to take action and their feeling of control over their health condition with the way the technology is used, which in turn strengthens their capacity to act on their health. This relationship is mediated by the support provided by the care team to help patients adjust the use of technology for their daily management of the disease and, therefore, improve the PEx diagnoses and the suitability of the prescription. Third, the TF-use relationship: the adequacy of the technology to patients’ needs influences its use by patients, reflecting the perceived advantage for patients of being monitored using devices compared with their “standard” follow-up at the CF center. Patients use devices more if they seem adapted to their needs and if they are reliable and easy to use. This relationship is mediated by the care team’s appropriation of the technology, which translates to their coordination of the remote monitoring, the use of real-life data in patient education, and them learning to master the use of devices for patient care.

![Figure 2. Category modeling and mapping. CD: connected device.](image)

Connecting all the results leads to theorization, the final stage of grounded theory analysis, which can be formulated as follows. The use of connected devices by patients results in an increase in their ability to take action over their health (empowerment) through the continuous adjustment of this use to their degree of autonomy, which influences and is also influenced by the conditions in which the technology is integrated into the organization of the care teams and the patient educational program. The motivation of patients with CF to use connected devices to prevent and manage PEx is dynamic. It depends on the patients’ priorities and specific concerns as well as triggers that will increase the feeling of usefulness related to the connected devices. The data provided by connected devices become a source of new knowledge (eg, about their disease and health) and capacities (eg, to prevent and manage) if a learning process to use them in daily life is implemented. This learning process can be supported by patient education.

This theory accounts for the conditions under which the implementation of connected devices for the management of PEx in patients living with CF can increase their capacity to act on their health.

Discussion

Principal Findings

Our study theorized the conditions that favor individual empowerment in patients living with CF in the management of PEx using connected devices as part of the MucoExocet study. This study took place in the context of a rare disease, proposed by the health care team to patients who could be interested in the technology. This theorization of the individual empowerment of patients through the use of connected devices is provisional, similar to any theory derived from the grounded theory approach, and remains subject to verification.
Our study places the concept of individual empowerment through the use of technology at the center of our research. Indeed, empowerment is an important mechanism of eHealth self-management, but validated assessment tools are rare [29]. In our theorizing, we viewed empowerment as the ability of individuals to identify and meet their own needs, solve their own problems, and mobilize the necessary resources through connected devices and education provided by health care providers to feel in control of the management of PEx [10]. This leads us to consider the success of the implementation of connected devices from the perspective of the patient empowerment outcome, weighted by a typology of the intensity of connected device use by the patient deduced from our results. First, low use: patients doubt the feasibility and usefulness of this continuous monitoring; they are in favor of a “standard” follow-up at the CF center using data collected from the clinical examinations in situ. Second, advanced use: patients know that this monitoring can be useful in case symptoms appear or when a follow-up appointment at the CF center is not easily accessible. The use of connected devices remains optional and selective between the “standard” clinic visits at the center. Third, high use: patients experiment with the use of connected devices when in particular situations or because of particular behaviors, enabling them to consolidate or develop skills in relation to their health and the factors that influence it. This use is connected to their desire to improve their health and control its evolution and to the belief that the use of connected devices can support them in doing so. Depending on the patient’s situation (eg, developmental, emotional, and environmental), the level of motivation to engage in less or more intense connected device use will vary.

We suggest that empowerment, adherence to treatment, and quality of life be favored as primary outcomes of remote digital follow-up. In a recent study using a randomized trial that compared 2 groups of patients (using the tracker device against not using the device), Wildman et al [30] highlighted that the health improvement objectives were not achieved but that the intermediate objective of improving adherence to treatment was exceeded. These findings tend to confirm that, when assessing how effective the implementation of technology is with patients, the improvement of health indicators may not be the first outcome to be expected. This strengthens the case for a patient-based evidence evaluation approach.

In addition, the identification of “opposite cases” encountered in our study, for which patient empowerment was compromised, supports the theory stated—cases in which the devices were unreliable (TTF) or no action plan was defined in response to alerts or variations in measurements or cases of difficulties reaching health care providers (lack of support or difficulty integrating the use of technology into their organization) all led to lower levels of patient empowerment. Our study questions eHealth-backed education models, for which data are currently scarce. Following the work of Greenhalgh et al [31], our results highlight the interaction among the patient, the device, and the organizational and social system as the cornerstone of the learning process in patients. This interdependence underscores the systemic approach to connected device implementation, wherein connected device adoption and use and the positive experience with them cannot be attributed to the patient’s lack of motivation alone. Indeed, connected devices introduce a technopedagogical transformation among health care providers, which pushes them to rethink organizational and educational activities to support a new relationship with patients.

This study shows that connected devices may have enabled health care providers to gain a new understanding of patients thanks to the quality and novelty of the information obtained via connected devices. In this sense, connected devices could help bridge the gap that is sometimes observed between theoretical models based on medicine that is “centered on the person and their family” and the practice of care that lacks understanding of patients’ experiences in daily life [32]. Health care providers are made to understand the daily lives of patients living with a chronic disease in physical, psychological, and social terms, thereby creating a more symmetrical relationship of information sharing [33]. Our study shows that caregiver-patient interactions are modified by the introduction of connected devices. They are enriched by a new outlook on patients’ daily lives mediated by technology, which leads to a new understanding by health care providers.

In addition, this study confirmed that the implementation of connected devices should be considered based on patients’ health goals and not simply focused on education on the device [34]. Patient empowerment depends on the connected devices’ capacity to meet the needs of patients’ health project. Patients then enter a learning process supported by the connected device and with educational support from health care providers structured in 4 phases, as described by Almalki et al [35]: identification of an area of interest (the patient is focused on a specific health goal that requires the collection of data about themselves), personal analysis (analyzing one’s behavior in light of the objective data collected), self-experimentation (structuring a reasoning based on the trends identified in support of the experimentation carried out with the connected device), and activation (confirmation of the hypotheses made during the experimentation phase and development of personal knowledge). This process must be structured and accompanied to unfold properly.

Although a recent review of the literature [36] on the use of mobile devices (phones, patient monitoring devices, digital assistants, and other wireless devices) by patients with CF has shown medical, psychological, and behavioral benefits as well as benefits in terms of level of satisfaction with care, the psychological aspect has thus far received little attention, as is the case with the educational dimension of technological devices. In adolescence, although the disease significantly influences the development of one’s body image and self-concept [37], the integration of new technologies into self-care leads to a new understanding of oneself and, therefore, to a potentially modified relationship with one’s body, health, and illness. This process is an integral part of the use of new technologies. Therefore, it is a potential topic for future research, which is necessary to understand the use of new technologies in care and their effects on people.
Limitations of the Study
This pilot study was based on an interventional research protocol. On the one hand, this protocol was implemented differently depending on the centers and the devices selected for the research—the teams applied the educational program differently, the elaboration of self-management action plans in the event of exacerbations was done differently (educational workshop 2), or the midterm review session of the routine follow-up of the patient was different (educational workshop 3). These differences in the implementation of the protocol were noted when collecting the experience of patients and data from the focus groups; they contributed to enriching the definitions of the categories and the relationships between them. In contrast, within the framework of this research protocol, we could not modify the tools that proved to be unreliable (which had been selected in 2016 via a market analysis while planning for the study), adjust the formatting of the data, or more generally adapt the intervention according to the results collected throughout the early phases of the study. Thus, having a protocol that is too fixed is probably a mistake to avoid in health technology research if we wish to adapt the intervention during its implementation to explore the best way of using health technology. In the context of the intervention, the choice of connected devices and the setup chosen did not allow patients to access a dashboard displaying the data collected by all connected devices. Some more motivated patients created their own dashboards separately. Furthermore, the pulmonologists in charge of patient follow-up were not always involved in the study, and this dichotomy made routine monitoring more complicated for patients. Similarly, when the clinical research associate in charge of the study was not the patient’s coordinating nurse, the latter was unable to answer patients’ questions during consultations or phone calls. Eventually, the study included people interested in technology, which could have biased the results based on the experience of using technology.

If this had been a descriptive pilot study, a quality improvement approach would have allowed for adjustments and improvements to the intervention over the course of the study and would have been directly driven by the care team. This format has been used to introduce connected devices into the patient care process for CF in the United States [38], which enabled patients to be equipped and monitored remotely when CF centers were closed during the COVID-19 pandemic by using a connected spirometer coupled with teleconsultation. The quality approach allowed for the evaluation of the results during the course of implementation, and adjustments were made to the intervention to improve its impact. The results were convincing:

In March 2020, the beginning of the pandemic, 37% (49/131) of patients owned a HS (home spirometer) and around 50% (920) of patients were using a telemedicine performed spirometry at home. By September 2020, 97% (127/131) of adult patients at UVA owned a HS, and by October 2020, 96% (2425) of patients provided spirometry results during their telemedicine encounters.

Prospects for Transferability
Assessing how transferable the theory could be outside the context of its development would require studying the introduction of connected devices in other circumstances: with patients living with different diseases, using different devices, or with a different organization of care.

Two opposite contexts could be studied in terms of patient empowerment through technology: (1) a context of patient dependence on self-regulated or caregiver-driven technology, whether it is telemonitoring, implantable devices for which the use is predetermined (dependence on technology and on health care providers making the care decision in the event of an alert or emergency), or protocolized treatment with little margin for adaptation or action because of side effects (eg, protocol dependence in cancer treatments); and (2) a context of patient-developed technologies [39] made available to patients living with the same condition in open source, as is the case with type 1 diabetes mellitus (T1DM). T1DM has the highest degree of patient empowerment and has recently led to the publication of an international consensus for the guidance of professionals caring for patients who use such devices. The case of T1DM is also interesting as research was conducted on the transition of patients from devices that allow for the management of glycemia and insulin delivery in a semiautomated way to a closed-loop insulin delivery system, which is designed to “free” the patient from self-management by automating the process of insulin delivery. However, this specific case might also lead patients to feel that they lose control over their glucose levels before they take back control over some other parameters of the automated process.

Contribution to an Extended Theory of Empowerment From Remote Monitoring for Health Symptom Tracking
A recent publication by White et al [40] reports on a systematic review to help define engagement with remote monitoring for health symptom tracking (RMT) and how to measure it. Engagement is seen as a mediating factor that eventually explains the impact of RMT on patient health outcomes. Their analysis is of most interest to our own work and shows that concepts still need to be clarified in the context of RMT. They propose a definition of engagement through a remote monitoring protocol (dropouts), objective engagement, subjective engagement, and interactions between objective and subjective engagement. Although objective engagement (with remote monitoring itself, with symptom tracking compliance, and with app use of statistics) is clearly measurable, subjective engagement appears to gather a wide range of concepts, some of them from the technology acceptance model literature (usability, TTF, satisfaction with the technology, utility for symptom management, ease of use, and intention for future use; Davis [41] revised by Venkatesh et al [28] and Chang et al [42]).

In a further extended theory, we would rather build on certain determinants of the technology acceptance model and distinguish them from the concept of patient engagement. These determinants leading to the “behavioral intention of use” would be the personal characteristics (age and sex, expectations, social influence, hedonic motivations, and previous experiences with
information and communication technologies), the facilitating conditions over time, TTF (over time as technologies are continuously refined), and the mediating factors (perceived ease of use and perceived usefulness). We would propose to include the “engagement with the research protocol” by White et al [40] as a determinant, renamed as “conditions for the RMT introduction/intervention” (either research or routine care or self-care). Our study aimed to add elements to modulate the “behavior use” in the RMT context, which is not explained by the previous theories and not necessarily consistent with the “behavioral intention of use.” From our study, these elements could refer to patient empowerment, such as their learnings about their own body, their trust in the technology, and the relationship and support they receive from their care team. We agree with the conclusion of White et al [40] to explore the RMT field in its own right as separate from Digital Behavior Change Interventions or general eHealth literature.

Conclusions

Our study allowed us to propose a theory on individual patient empowerment through the use of connected devices based on patients’ and health care providers’ experiences in the context of an interventional pilot study. This theory needs to be validated with a larger sample and verified in the context of different diseases, different devices, and a different organization of care. It implies that, if the empowerment of patients with chronic diseases is indeed a desirable goal for all parties involved (patients, health care providers, and the health care system), the necessary conditions for the successful implementation of connected devices cannot be looked at separately for each party (health care providers, patients, and health care system). On the contrary, these conditions must be adjusted to the overall collaboration among these stakeholders, who cooperate toward patient empowerment. Only if all these conditions are met can patient empowerment be the outcome of the use of technology.

Conflicts of Interest

None declared.

Multimedia Appendix 1
The “React to PEx” educational tool.

[DOCX File , 180 KB - formative_v8i1e38064_app1.docx]

Multimedia Appendix 2
Exit interview questionnaire.

[DOCX File , 108 KB - formative_v8i1e38064_app2.docx]

Multimedia Appendix 3
Reasons for leaving the study.

[DOCX File , 70 KB - formative_v8i1e38064_app3.docx]

References

Abbreviations

CF: cystic fibrosis
EQUATOR: Enhancing the Quality and Transparency of Health Research
FEV1: forced expiratory volume in 1 second
PEX: pulmonary exacerbation
RMT: remote monitoring for health symptom tracking
TIDM: type 1 diabetes mellitus
TTF: task technology fit

©Maxime Morsa, Amélie Perrin, Valérie David, Gilles Rault, Enora Le Roux, Corinne Alberti, Rémi Gagnayre, Dominique Pougheon Bertrand. Originally published in JMIR Formative Research (https://formative.jmir.org), 23.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Culturally Adapting the World Health Organization Digital Intervention for Family Caregivers of People With Dementia (iSupport): Community-Based Participatory Approach

Anna Messina¹, PhD; Rebecca Amati¹, PhD; Anna Maria Annoni¹, MS; Beatrice Bano¹, MS; Emiliano Albanese¹, MPH, MD, PhD; Maddalena Fiordelli¹, PhD

Institute of Public Health, Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland

Corresponding Author:
Anna Messina, PhD
Institute of Public Health
Faculty of Biomedical Sciences
Università della Svizzera italiana
Via Buffi 13
Lugano, 6900
Switzerland
Phone: 41 0782104055
Email: anna.messina@usi.ch

Abstract

Background: Informal caregivers of people with dementia are at high risk of developing mental and physical distress because of the intensity of the care provided. iSupport is an evidence-based digital program developed by the World Health Organization to provide education and support for the informal everyday care of people living with dementia.

Objective: Our study aims to describe in detail the cultural adaptation process of iSupport in Switzerland. We specifically focused on the participatory strategies we used to design a culturally adapted, Swiss version of iSupport that informed the development of the desktop version, mobile app, and printed manual.

Methods: We used a mixed methods design, with a community-based participatory approach. The adaptation of iSupport followed the World Health Organization adaptation guidelines and was developed in 4 phases: content translation, linguistic and cultural revision by the members of the community advisory board, validation with formal and informal caregivers, and refinement and final adaptation.

Results: The findings from each phase showed and consolidated the adjustments needed for a culturally adapted, Swiss version of iSupport. We collected feedback and implemented changes related to the following areas: language register and expressions (eg, from “lesson” to “chapter” and from “suffering from” dementia to “affected by” dementia), resources (hyperlinks to local resources for dementia), contents (eg, from general nonfamiliar scenarios to local and verisimilar examples), graphics (eg, from generalized illustrations of objects to human illustrations), and extra features (eg, a glossary, a forum session, and a read-aloud option, as well as a navigation survey).

Conclusions: Our study provides evidence on how to culturally adapt a digital program for informal caregivers of people living with dementia. Our results suggest that adopting a community-based participatory approach and collecting lived experiences from the final users and stakeholders is crucial to meet local needs and to inform the further development, testing, and implementation of digital interventions in a specific cultural context.

(JMIR Form Res 2024;8:e46941) doi:10.2196/46941

KEYWORDS
informal caregivers; iSupport; dementia; digital interventions; mHealth; community-based participatory research; community; caregiver; mental distress; physical distress; support; development
Introduction

Background

Approximately 55 million people are currently living with dementia worldwide [1]. Switzerland accounts for >150,000 cases of dementia, with an expected doubling by 2050 [2]. In Switzerland, as in most countries, the majority of people living with dementia live at home assisted by an informal caregiver, who is usually a family member who provides daily support and coordinates care delivery [3]. There are positive outcomes that may be associated with the caring role, such as the perception of a better relationship and closeness with the care recipient [4]. Nonetheless, the increasing complexity of taking care of a person affected by dementia exposes informal caregivers to psychological distress and increases the risk of loneliness and developing symptoms of anxiety and depression [5,6]. Caregivers’ psychological distress is also associated with a lower quality of care provided [7] and with the worsening of behavioral and psychological symptoms in the care recipients [8].

Providing guidance and support to informal caregivers is one of the priority areas identified by the World Health Organization (WHO) to reduce the global impact of dementia and to improve the quality of life of caregivers and their families [9]. In the last 2 decades, digital educational and psychosocial interventions for caregivers have bloomed [10,11]. Internet-based interventions are more easily accessible [12,13] and adaptable to the time and geographic constraints of caregivers [14]. Some reviews suggest that multiple components of digital interventions can contribute to reducing the burden and improving the quality of care and be even more beneficial if tailored to caregivers’ specific needs and contexts [10,15,16]. The active involvement of the final users and relevant stakeholders in the design and local adaptation as well as the testing and piloting of interventions is crucial for need-centered interventions in terms of their uptake, integration, and scalability at the community level [17,18]. However, more evidence is required to understand the most effective methods and strategies needed to involve participants in the design and adaptation of digital interventions [19,20].

iSupport is an evidence-based digital training intervention developed by the WHO to provide support and education to informal caregivers of people with dementia [21]. The original program consists of 22 thematic lessons distributed across 5 modules (Figure 1). Each lesson covers a specific topic associated with care that ranges from the daily assistance of the care recipient (eg, toileting, personal care, and nutrition) to the self-care of the carer (eg, reducing stress and involving others in care duties). All lessons include theoretical and informative sections and case scenarios with interactive multiple-choice questions. The WHO provides guidelines to culturally adapt iSupport contents to the local language, culture, and context before implementation [22]. The reporting of adaptation processes of complex interventions is limited but extremely important [23]. Knowledge exchange of methodologies and approaches as well as evidence on barriers and facilitators to local adaptation are crucial preliminary steps to inform the implementation of interventions and their mid- to long-term uptake and sustainability [24].

https://formative.jmir.org/2024/1/e46941
Objectives
This study aims to describe in detail the cultural adaptation process of iSupport in Switzerland. We specifically focused on the participatory strategies we used to design a culturally adapted, Swiss version of iSupport that informed the development of the desktop version, mobile app, and printed manual. Our purpose is to inform the implementation of not only iSupport but also other complex health interventions, specifically in the context of the cultural adaptation process.

Methods

Study Setting
The study took place in the Italian-speaking part of southern Switzerland, namely the canton of Ticino.

Ethical Considerations
Before initiating the study, we sought ethics oversight by submitting our project to the cantonal ethics committee, and we obtained a waiver of ethics approval and official authorization to proceed with the study (project ID: 2020-02030 / CE 3731).

Specifically, the ethics committee determined that our project did not fall within the scope of the Swiss Federal Human Research Act [25], thereby granting us permission to proceed.

Theoretical Approach
The overall process of culturally adapting iSupport in Switzerland was based on principles from the community-based participatory research (CBPR) framework, which can be defined as “an approach to research that involves collective, reflective and systematic inquiry in which researchers and community stakeholders engage as equal partners in all steps of the research process” [26]. In intervention research, adopting CBPR has the advantage of facilitating knowledge exchange between the community and the researchers, reducing potential power imbalances, and increasing the likelihood of intervention uptake and success [27].

We based the specific phases and procedures of the adaptation process on the WHO iSupport adaptation guidelines [22], which, in turn, are based on the ecological validity framework proposed by Bernal et al [28] that is widely used for developing culturally sensitive interventions and strengthening their ecological validity [29-31].
Study Procedure

The Community Advisory Board

At the outset, we established a community advisory board (CAB) comprising community members and organization representatives who shared a common identity, geography, language, culture, and other values and principles [32].

We identified potential members of the CAB through a structured stakeholder analysis and mapping that accounted for the different levels of power, importance, and interest of the stakeholders in the project. We included representatives of the project’s funding agencies and other collaborating partners, caregivers of people with dementia, and members of the IT service in charge of developing the iSupport web platform and app. Once consensus among researchers was reached, we contacted and informed the identified members via email using a brief description of the project, the scope of the CAB, and their expected roles and responsibilities.

In the context of iSupport adaptation, the specific roles of establishing a CAB were to (1) help researchers to identify the needs and legitimate interests as well as the expectations of the different stakeholders and the final users and (2) inform the development of the intervention throughout a purposely co-designed process.

The adaptation process of iSupport consisted of four phases: (1) content translation, (2) linguistic and cultural revision, (3) validation with formal and informal caregivers, and (4) refinement and final adaptation. Each phase was based on, and adapted from, the WHO guidelines. Any change or proposed addition was discussed with, and approved by, the WHO. The members of the CAB were constantly informed and updated on the progress of the study. A flowchart of the phases is summarized in Figure 2.

Figure 2. Flowchart of the adaptation process of iSupport in Switzerland. CAB: community advisory board; WHO: World Health Organization.

Phase 1: Content Translation

The first step in the cultural adaptation of iSupport was the translation of the contents (approximately 60,000 words) from English, the original language of the program, into Italian, the local language in southern Switzerland. The process started in May 2020 and ended in August 2020. According to the WHO guidelines, the translation should be accurate while recognizing the local culture and its people. In line with this, we conducted a preliminary adaptation of culturally sensitive terms, including (1) personal names of the characters used in the case studies, (2) available information materials and local services, and (3) reference to cultural habits and leisure activities in the region [22].

One member of the research team fluent in English, AM, a psychologist with previous expertise in the dementia field, translated the original contents of the iSupport program into Italian. Subsequently, a senior member of the team, MF, with expertise in the field of health communication, checked the translations and proposed changes and modifications. All disagreements or doubts about the translation of sensitive terms were discussed and resolved with the WHO.

https://formative.jmir.org/2024/1/e46941
and expressions were documented and discussed within the research team in meetings until a consensus was reached. We sought the support of an external professional translator to resolve some specific language locations and terms.

Throughout the process, translators applied the international standards and available dementia guidelines to avoid stigmatizing expressions and to use language that promotes the inclusion and dignity of people living with dementia and their carers [33]. During this phase, we did not apply any changes to the meanings of the original structure of the iSupport program, including case studies or activities. All translations were copied into secure Microsoft Word files and stored in a dedicated Microsoft Teams workspace to optimize efficiency.

Phase 2: Linguistic and Cultural Revision

In September 2020, the first CAB meeting took place with the main goals of introducing the members of the CAB to the iSupport program and the research team and clarifying their roles and involvement throughout the research process. During the meeting, we answered all questions and proposed an interactive activity where participants were asked to provide the translation from English into Italian of a selection of sensitive terms and expressions used in iSupport that were noted by researchers during phase 1. At the end of the introductory meeting, participants were asked to sign a letter of intent that summarized the functioning of the CAB and their role and commitment as members of the local iSupport CAB. We explicitly specified the structure and definition of the CAB; goals, roles, and responsibilities (of both CAB members and the research team); and duration (Multimedia Appendix 1). All 9 invited participants agreed to join the iSupport CAB: 4 (44%) were informal caregivers, and the remaining 5 (56%) included representatives of the government (1/5, 20%), the local Alzheimer association (1/5, 20%), a health care service provider (1/5, 20%), the IT service (1/5, 20%), and the University of Applied Sciences and Arts of Southern Switzerland (1/5, 20%).

In October 2020, we shared the translated contents of iSupport with the members of the CAB and asked them to evaluate, and provide feedback on, each chapter and module of the program by the end of December 2020.

On the basis of the work of previous adaptations of iSupport [34], participants were asked to carefully go through the 23 thematic lessons and assess the translation and preliminary adaptation of iSupport considering six main parameters: (1) familiarity, (2) sensitivity, (3) comprehensibility, (4) precision, (5) cultural adequacy, and (6) overall evaluation. In addition, they were asked to assess the extent to which (1) the terms used were familiar to the target group (eg, the use of idioms and figures of speech), (2) the language used respected and promoted the dignity of people living with dementia and their carers (eg, the use of stigmatizing terms), (3) the contents were intelligible and easy to understand (eg, minimal use of technical jargon), (4) the contents were presented in an accurate way (eg, they were in accordance with the facts, and there were no mistakes), (5) the contents were appropriate and reflected the experiences of local people (eg, case studies), and (6) the content of each chapter was overall culturally appropriate. At the end of each chapter, participants were asked to fill out a digital survey via Research Electronic Data Capture (REDCap; Vanderbilt University) [35,36] to evaluate each of the aforementioned parameters using a Likert scale ranging from 1=requiring an extensive revision to 4=no additional revision needed. We also invited participants to provide additional comments about individual chapters through a dedicated open-ended question in the survey or to provide free feedback on the overall program via email. The survey was specifically designed for the purpose of this phase and was based on the work of Teles et al [34] to evaluate the cultural adequacy of the contents, as recommended by the WHO adaptation guidelines [22].

After the data collection period, AM and BB (a research assistant with a degree in psychology and health communication) performed a descriptive analysis of the quantitative data and a thematic analysis of the qualitative data. For the quantitative analysis, we used SPSS statistical software (version 25.0; IBM Corp) [37] for Windows to compute mean scores for each program module and survey parameters. For the qualitative analysis, we performed a thematic content analysis of open comments [38]. The maintenance of scientific rigor was ensured through regular meetings among research team members, particularly involving MF and RA, both experts in qualitative research methods.

In January 2021, the main findings of this phase were summarized in a report shared across, and approved by, all CAB members.

Phase 3: Validation With Formal and Informal Caregivers

We adopted a qualitative descriptive design, and we used focus groups (FGs) as a data collection method [39]. Between June 2021 and August 2021, we conducted FGs with formal and informal caregivers to explore their attitudes toward, and impressions of, the adapted version of iSupport. We prompted and collected suggestions for improvement, as also recommended by the WHO guidelines. In addition, we decided to expand our inquiry to caregivers’ attitudes toward support measures and help-seeking behaviors, which we have previously reported in detail elsewhere [40].

From April to May 2021, we crafted an invitation letter and a flyer presenting the project, the main purpose of the FGs, the eligibility criteria, and contact information. We disseminated these materials in a local newspaper, to members of the CAB and their associations and institutions, to daycare centers for people with dementia, and to participants of other ongoing research projects who had consented to be informed about further research activities.

Eligibility criteria for both formal and informal caregivers included (1) having (at present or in the past) experience in caring for a person living with dementia, (2) being fluent in Italian, and (3) living in the canton of Ticino. Caregivers who met the inclusion criteria could contact us via email or telephone. Those who contacted us were given an overview of the iSupport program, with excerpts from the same translated material used in phase 2, and the informed consent form (Multimedia Appendix 2). The FGs, which lasted approximately 2 hours, were audio recorded and took place either digitally via the Zoom
platform (Zoom Video Communications, Inc) or in person at the Università della Svizzera italiana in Lugano, Ticino. AM moderated all FGs, with the supervision of MF and RA. The discussions were transcribed verbatim and pseudonymized by EB, an independent research assistant. AM, RA, and MF performed a thematic content analysis to identify key themes [38]. Initially, the researchers familiarized themselves with the data through repeated reading of notes and transcripts to get an idea of the overall meaning and begin discerning key themes. Subsequently, each researcher independently identified codes within each FG (vertical analysis) and across the whole data set (horizontal analysis) to uncover variations and patterns within the data. Themes were progressively refined and consolidated through discussion in weekly meetings over 4 months (from November 2021 to February 2022) and until a consensus was reached. Data management and coding processing were facilitated by NVivo 12 software (Lumivero) [41]. Additional methodological details have been previously reported [40].

Phase 4: Refinement and Final Adaptation

All data collected during phases 2 and 3 were collated to generate a set of proposed changes and adaptations to the iSupport program. AM and BB familiarized themselves with the data and differentiated the feedback between cross-cutting and general comments and specific chapter–related comments and arranged them across 5 dimensions: language, resources, contents, graphics, and extra features. Each comment was then discussed between AM and BB and categorized as (1) rejected/not applicable, (2) possibly applicable, and (3) applicable. The categorization was based on the number and contents of suggestions received as well as in accordance with the WHO adaptation guidelines [22]. The feedback data that were considered possibly applicable and applicable were then discussed with the other members of the team to agree on their potential implementation.

Subsequently, all specific and applicable comments were charted using the iSupport WHO adaptation spreadsheet (Multimedia Appendix 3). All proposals of change were then supported by a rationale and by the source of the proposal: the research team (preliminary adaptation during phase 1), the members of the CAB (results from the linguistic and cultural adaptation during phase 2), and FG participants (data collected during phase 3). Attached to the adaptation spreadsheets, we also sent a list of general suggestions and feedback. The material was sent for revision to the authors of the WHO iSupport program in October 2021, and the results of their final fidelity check were received in January 2022. Subsequently, the local research team implemented all approved changes and uploaded the new adapted contents on the beta version of the iSupport Swiss web platform.

Results

A detailed description of all final adaptations made to the original iSupport program, resulting from the 4 phases of the adaptation process, is presented in Multimedia Appendix 4. The results of phases 2 and 3 are summarized in the subsections that follow.

Adaptations From Phase 2: Linguistic and Cultural Revision

Overview

All 9 members of the iSupport CAB revised ≥1 modules of iSupport and provided feedback, with each module revised by at least 1 CAB member. Module 5, which dealt with behavior changes, was the most revised and received the most comments (7/9, 78%). Descriptive analysis showed that all modules were generally positively evaluated with an overall mean evaluation score of 3.72 (SD 0.00) out of 4. Mean scores of the parameters across all modules ranged from 3 (SD 0.00) to 3.89 (SD 0.47) for sensitivity, from 3 (SD 0.00) to 4 (SD 0.00) for familiarity, from 3.93 (SD 0.26) to 4 (SD 0.00) for comprehensibility, from 3.67 (SD 0.58) to 4 (SD 0.00) for the accuracy of the information, and from 3.59 (SD 0.62) to 4 (SD 0.00) for cultural adequacy (Table 1).

We conducted a qualitative thematic analysis of the open comments and identified 7 potential areas for the improvement of iSupport (for more details, refer to Multimedia Appendix 4).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Module 1, mean (SD)</th>
<th>Module 2, mean (SD)</th>
<th>Module 3, mean (SD)</th>
<th>Module 4, mean (SD)</th>
<th>Module 5, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>3.60 (0.55)</td>
<td>3.59 (0.62)</td>
<td>3.00 (0.00)</td>
<td>3.87 (0.52)</td>
<td>3.89 (0.47)</td>
</tr>
<tr>
<td>Familiarity</td>
<td>3.60 (0.55)</td>
<td>3.65 (0.61)</td>
<td>3.00 (0.00)</td>
<td>3.67 (0.62)</td>
<td>4.00 (0.00)</td>
</tr>
<tr>
<td>Comprehensibility</td>
<td>4.00 (0.00)</td>
<td>3.94 (0.24)</td>
<td>4.00 (0.00)</td>
<td>3.93 (0.26)</td>
<td>4.00 (0.00)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>3.75 (0.50)</td>
<td>3.76 (0.44)</td>
<td>3.67 (0.58)</td>
<td>3.73 (0.70)</td>
<td>4.00 (0.00)</td>
</tr>
<tr>
<td>Cultural adequacy</td>
<td>3.60 (0.55)</td>
<td>3.59 (0.62)</td>
<td>4.00 (0.00)</td>
<td>3.80 (0.56)</td>
<td>3.89 (0.47)</td>
</tr>
<tr>
<td>Overall assessment</td>
<td>3.20 (0.45)</td>
<td>3.65 (0.49)</td>
<td>3.00 (0.00)</td>
<td>3.80 (0.41)</td>
<td>4.00 (0.00)</td>
</tr>
</tbody>
</table>

Familiarity With Terms and Expressions

The unfamiliarity with the terms referred especially to some expressions that were largely used throughout the text to designate caregivers and health care workers or dementia health and social care facilities, and the comments by the CAB members allowed us to improve the translations; for instance, “informal carers” and “paid in-home helpers” were newly translated using local terms that were easily identifiable and familiar to participants (eg, “informal carer” was replaced with “familiare curante,” which literally means “family carer”). Importantly, the term is also used at an institutional level [42] to refer to people who take care of a loved one (relative or friend) affected by a chronic disease.
Sensitivity of the Language

Participants also suggested improving the sensitivity of the language by removing expressions potentially stigmatizing such as “suffering from dementia,” which was replaced with “affected by dementia” (affetto da demenza), or “show compassion,” which was replaced with “show comprehension” (mostrare comprensione).

Scientific Accuracy of the Terms

The jargon used was generally perceived as comprehensible and easy to understand. However, some of the participants (2/9, 22%), especially those working in the field of dementia, reported the need to use scientific terms to improve the accuracy of the language and ultimately the users’ literacy. As a result, the expression “memory loss” was, for example, replaced with “memory impairment” (difficoltà di memoria), and “helpful/unhelpful thoughts” was replaced with “functional or dysfunctional thoughts” (pensieri funzionali e disfunzionali).

Educational Approach

The educational approach referred to the use of terms considered scholastic and potentially belittling by participants, such as “lesson” and “learn,” which were replaced with “chapter” (capitolo) and “know more about” (conoscere di più), respectively.

Use of English

Some English terms that were retained during the content translation because they are normally used in spoken Italian were translated into Italian, including “focus” (obiettivo) and “relax” (rilassa).

Use of Numbers

To make the reading smoother, some of the participants (3/9, 30%) suggested replacing numbers with sentences (eg, from “20%-30%” to “approximately one-third”; circa un terzo).

Language Register

Finally, almost all participants (8/9, 89%) found that the tone and prose were at times informal or even childish; therefore, for example, the original sentence at the end of each chapter “you finished the lesson, well done” was replaced with “you finished the chapter, let’s go to the next!!” (hai completato il capitolo, passa al successivo!).

Adaptation From Phase 3: Validation With Formal and Informal Caregivers

Overview

Between May 2021 and August 2021, we conducted 6 FGs: 1 (17%) with formal caregivers and 5 (83%) with informal caregivers. Most of the participants (16/19, 84%) were female, and the formal caregivers (6/19, 32%) had longer years of caring experience than the informal caregivers (13/19, 68%). The main characteristics of the caregivers are reported in detail in Tables 2 and 3.

Table 2. Sociodemographic characteristics of formal caregivers.

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>Age (y)</th>
<th>Employment status</th>
<th>Years of professional caring experience</th>
<th>Years of personal caring experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female</td>
<td>52</td>
<td>Housewife or retired</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>54</td>
<td>Housewife or retired</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>28</td>
<td>Housewife or retired</td>
<td>6-10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>45</td>
<td>Employed</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>29</td>
<td>Housewife or retired</td>
<td>1-2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Female</td>
<td>59</td>
<td>Employed</td>
<td>>10</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3. Sociodemographic characteristics of informal caregivers.

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Employment status</th>
<th>Relationship with the person with dementia</th>
<th>Living situation of the person with dementia</th>
<th>Years of caring experience</th>
<th>The person with dementia has passed away</th>
<th>Focus group attended</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female</td>
<td>58</td>
<td>Housewife or retired</td>
<td>Spouse</td>
<td>Own residence</td>
<td>3-5</td>
<td>No</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>55</td>
<td>Housewife or retired</td>
<td>Daughter</td>
<td>Own residence</td>
<td>3-5</td>
<td>No</td>
<td>1, 3, and 4</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>59</td>
<td>Housewife or retired</td>
<td>Spouse</td>
<td>Own residence</td>
<td>3-5</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>67</td>
<td>Employed</td>
<td>Son</td>
<td>Own residence</td>
<td>3-5</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>58</td>
<td>Housewife or retired</td>
<td>Spouse</td>
<td>Carer’s residence</td>
<td>1-2</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>57</td>
<td>Employed</td>
<td>Son</td>
<td>Own residence</td>
<td>3-5</td>
<td>No</td>
<td>1 and 4</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>74</td>
<td>Employed</td>
<td>Son</td>
<td>N/A b</td>
<td>>10</td>
<td>Yes</td>
<td>1 and 2</td>
</tr>
<tr>
<td>8</td>
<td>Female</td>
<td>55</td>
<td>Employed</td>
<td>Daughter</td>
<td>Own residence</td>
<td>3-5</td>
<td>No</td>
<td>2 and 4</td>
</tr>
<tr>
<td>9</td>
<td>Female</td>
<td>75</td>
<td>Housewife or retired</td>
<td>Daughter</td>
<td>N/A</td>
<td>>10</td>
<td>Yes</td>
<td>1, 2, 4, and 5</td>
</tr>
<tr>
<td>10</td>
<td>Female</td>
<td>76</td>
<td>Housewife or retired</td>
<td>Spouse</td>
<td>Own residence</td>
<td>3-5</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>Female</td>
<td>82</td>
<td>Housewife or retired</td>
<td>Spouse</td>
<td>Carer’s residence</td>
<td>1-2</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Female</td>
<td>55</td>
<td>Employed</td>
<td>Daughter</td>
<td>Own residence</td>
<td>1-2</td>
<td>No</td>
<td>3 and 4</td>
</tr>
<tr>
<td>13</td>
<td>Female</td>
<td>81</td>
<td>Housewife or retired</td>
<td>Spouse</td>
<td>Carer’s residence</td>
<td>3-5</td>
<td>No</td>
<td>2 and 4</td>
</tr>
</tbody>
</table>

aNumber of the focus group attended.
bN/A: not applicable.

FG With Formal Caregivers

Formal caregivers are professionals who are trained, hired, and paid to provide care to a person living with dementia. In our study, all formal caregivers (n=6) actively participated in the digital discussions. All participants were female. Their mean age was 44 (range 28-59) years. All participants had professional experience in taking care of a person living with dementia. Of the 6 participants, 3 (50%) reported having >10 years of experience in dementia care. In addition to the professional caregiving experience, 3 (50%) of the 6 participants also reported taking care, or having taken care in the past, of a relative affected by dementia (Table 2). The main findings of the FG are summarized in the following paragraphs.

Participants agreed that an intervention aiming to support and improve the knowledge of informal caregivers of people with dementia was much needed. A caregiver compared information learning to a safeguard not only for the carer but also for the care recipient:

I hope that this program will spread because information protects all of us: the carer, and especially the person who is cared for. [ID 6]

iSupport was generally appreciated and acknowledged by participants as a useful tool. The contents were found appropriate and sufficiently comprehensive. The difficulty regarding accepting the disease and the changes in the relationship with the care recipient were found to be the main challenges and contents to cover in the program:

Relatives find it extremely difficult to accept the disease and the change...I believe a very strong support is needed...also at a social level because the disease is often associated with shame. [ID 1]

Similarly, a participant also suggested adding to the program specific resources for social and psychological support:

You could mention [the existence or the opportunity for family members] to benefit from psychological support because they need it, always. [ID 2]

This quote underscored the recognition by formal caregivers of the potential emotional and psychological strain on family members as they witness the progression of the disease of their care recipients.

In light of the participants’ perspectives, an important feature to add to the original iSupport format was the inclusion of a platform for caregivers to engage with each other and that facilitated the caregivers’ interactions with each other (this adaptation was also needed to differentiate iSupport from another repository of information or digital available resources on dementia):

There are a billion guides on dementia...I think people need to interact. [ID 4]
Regarding case scenarios, the caregivers generally found that the examples were appropriate and consistent with their experiences. However, the answer options often did not reflect the variety of, and differences in, caregiving situations and experiences, including the age of the person affected by dementia, the severity of dementia, the living situation, or the type of dementia (eg, Alzheimer disease and frontotemporal dementia). A participant suggested adding general guidelines to the examples to include more answers:

If the examples aim to increase knowledge, they should give general indications that can apply to different caring situations. [ID 6]

FG With Informal Caregivers

Of the 20 informal caregivers who contacted us, 13 (65%) joined the FGs. Reasons for nonparticipation were lack of time and geographic distance. Most of the caregivers (10/13, 77%) were female; nearly half were spouses (6/13, 46%) of the persons living with dementia, and more than half were children (7/13, 54%); daughter: n=4, 57%; son: n=3, 43%) of the persons living with dementia. Their age ranged from 55 to 82 years. Most of the participants (10/13, 77%) reported a caregiving experience of at least 3 years, and most of them (8/13, 62%) cared for a relative who lived at their own residence. Of the 13 participants, 2 (15%) reported that the person they cared for had passed away.

The number of caregivers attending each FG ranged from 2 to 7: of the 13 caregivers, 6 (46%) attended FG 1 on June 14, 2021; a total of 7 (54%) attended FG 2 on July 12, 2021; a total of 2 (15%) attended FG 3 on July 15, 2021; a total of 6 (46%) attended FG 4 on August 18, 2021; and 2 (15%) attended FG 5 on August 24, 2021. Of the 13 participants, 7 (54%) attended >1 FG (Table 3). The main findings of the 5 FGs are summarized in the following paragraphs.

Participants generally believed that iSupport holds the promise to be useful, to increase dementia knowledge, and provide information about available services and support measures for people living with dementia and their families:

The idea is brilliant because everything can be useful...In my opinion, the most interesting thing is the overview of what is locally available to support caregivers. [ID 9; spouse]

The need for guidance and orientation to services was felt owing to a perceived lack of support and direction, likely stemming from the uncertainty and confusion that frequently followed the diagnosis. This feeling of bewilderment was echoed by a participant:

It’s confusing outside, you don’t know where to go, whom to turn to...there are no guidelines, no support. [ID 2; daughter]

Regarding the contents, participants reported familiarity with most of the case scenarios.

A participant commented as follows on a scenario (module 3, chapter 3) involving a person affected by dementia who cannot find the house keys and does not want the carer to leave him alone at home:

It happened to me many times, not always with the keys though. [ID 12; daughter]

However, despite the familiarity reported and the need to obtain information and increase knowledge to cope with difficult situations, the original exercise format was seen as a limitation by some of the participants. A participant reported feeling diminished when choosing between wrong and right answers:

It’s almost guilt-inducing...There is the best solution and if you guess wrong you are doing your role wrong. [ID 8; daughter]

In addition, some of the answer options were considered to be so wrong as to be offensive to the carer; for example, in module 5, chapter 9, a case scenario described a situation where the person affected by dementia (Matteo) makes sexual remarks toward a domestic worker, and the user is asked what they would do in this situation. A participant commented on the option “shout at Matteo and shame him for his conduct” as inconceivable:

Shout?!...We do know what we’re doing! [ID 9; daughter]

Similar to what formal caregivers reported about case scenarios, participants also highlighted the risk of generalizing solutions that may not be appropriate for all caregiving situations:

It should be clear that each user has to transpose his or her situation by taking cues from the scenario, but unfortunately it isn’t black and white. [ID 13; spouse]

Finally, the informal caregivers too suggested adding interactive features to the digital version of iSupport to minimize the risk of the caregivers isolating themselves; for instance, a participant commented as follows:

For me, the biggest utility is in connecting people...there should be people behind the app. [ID 5; spouse]

Discussion

Overview

This study described in detail the main steps taken to culturally adapt the WHO iSupport program for informal caregivers of people living with dementia in Switzerland. Our results demonstrate the complexity as well as the necessity of adapting an evidence-based complex intervention to a specific cultural context and population. We collected feedback and implemented changes, in accordance with the WHO authors of the program, to the original iSupport version in the areas of the language, resources, contents, graphics, and features used in the program.

In the following paragraphs, we summarize and comment on the main lessons learned.

Valuing Experiential Knowledge

One of the main messages we took away during the adaptation process was the importance placed by informal caregivers on being recognized for their role and expertise. This finding is consistent with the findings of other studies, including the works reporting on iSupport adaptation processes in other countries [31,34,43-45]. Our participants suggested that the learning
approach used in the original iSupport program was too scholastic and recommended the removal of expressions that likely resulted from a top-down approach to content and compilation. Referring to case scenarios, some of the informal caregivers (5/13, 38%) felt that the simplicity of certain answer options was offensive. Informal caregivers claimed to be recognized because of their lived experience as experts in the field who could contribute to not only locally adapting iSupport but also integrating and shaping it. This echoes the inclusive procedures used to develop iSupport in the first place [21] and the work done for the iSupport adaptation process in Portugal and the United Kingdom [34,43]. Informal caregivers can spend on average 170 hours a month providing care to a loved one affected by dementia [46]. In our study, more than half of the caregivers (10/13, 77%) reported a caregiver experience of at least 3 years and up to 10 years. Although one may argue that caregivers acquire and improve their learning by doing, it is undeniable that they can become experts in caring; surely, they provide a unique perspective of the person with dementia and their own needs. However, besides the years of personal experience, caregivers’ knowledge of dementia and caring may also depend on other factors and may be influenced by their educational level and sociocultural background. Similar to any complex health intervention [47], it is important to ensure that the final version of iSupport is adapted to the real user’s experience and preexisting abilities. An early, timely, and active involvement of caregivers is needed [48,49]. The adoption of a language register and skills training techniques that promote preexisting abilities, rather than replace them, may enhance the acceptance and use of the intervention.

Enhancing Social Contacts

According to participants, iSupport could benefit from the inclusion of interactive features (eg, chat and forum) that allow the user to communicate with other caregivers and share experiences and problem-solving strategies. This finding is consistent with a recent study [50] that found that peer support can be complementary to professional support and beneficial in reducing social isolation, as well as in connecting patients and caregivers to others with similar issues. Similarly, Greenwood et al [51] found that, besides providing psychosocial support, peer support interactions for caregivers of people with dementia can offer practical information and guidance in managing difficult situations and gaining new perspectives on their caring role.

The adoption of peer support programs for informal caregivers of people with chronic diseases and disabilities is well established in the literature [52]. A recent scoping review [53] found that peer support was often part of multicomponent interventions that also addressed information sharing, skills development, personal coping skills, and self-management. Despite the difficulty in identifying what component may or may not be beneficial for the carers, the authors concluded that peer support, particularly if delivered digitally, could represent a cost-effective medium and opportunity to meet caregivers’ needs and preferences.

Importantly, digital meets among peers seem more promising, usable, and potentially effective for caregivers when embedded in digital interventions [10] such as iSupport.

Facilitating Access to, and Navigation of Local Services

Another suggested feature to implement in the program was the inclusion of contacts of local resources for dementia, such as health care services and facilities, charities, or other relevant organizations. Consistent with what our participants reported, informal caregivers often experience a lack of information and support, especially at the beginning of the caregiver journey, when it is best to establish fruitful contacts and interactions with local health and social care services and offers in general [1]. According to the latest World Alzheimer Report [3], <50% of informal caregivers are advised to contact the local Alzheimer association or receive postdiagnostic support information. The navigation of the services and various offers for both people living with dementia and informal caregivers is taxing, often ineffective, and can be frustrating. The lack of information about existing services and support is associated with caregiver burden and distress [54]. A recent review on the needs of family caregivers revealed that information provided on available support services and measures was one of the main needs reported by caregivers after their loved one was diagnosed with dementia [55]. Caregivers may seek support autonomously, mainly digitally. However, the variety of information and sources available on the internet about dementia may contribute to creating feelings of bewilderment and difficulties in finding relevant and reliable information [56]. Hence, digital interventions that also include contacts with external and local resources may help users to access and navigate the health care system and find the most appropriate service or information for their situation.

Limitations

We acknowledge that our study has limitations. First, we included only a few participants for each phase of the adaptation process. Because of their pressing needs and duties, informal caregivers are a challenging population to reach and involve in research [57]. However, the number of caregivers and experts that we included in our study was adequate for the qualitative methods used and is higher than the minimum recommended by the WHO guidelines to adapt iSupport to local contexts [22]. In addition, we set up a CAB that included both stakeholders and caregivers who worked continually and with great dedication through the adaptation process of iSupport. Second, the discrepancy in FG size between formal and informal caregivers and the attendance of informal caregivers in >1 FG may have contributed to reaching data saturation, but this may have reduced social desirability bias, thanks to both the progressive cementing of positive small group dynamics among participants and the variety of the contents discussed. Third, our study was conducted in Switzerland, a high-income country, equipped with a National Dementia Strategy that aims to improve the quality of life of people affected by dementia and to promote awareness and education on dementia [58]. Therefore, the feedback and experiences that we collected may not be easily generalized to all contexts. However, the adaptation strategies and phases described in our study may be useful for...
all countries interested in adapting digital interventions for caregivers of people with dementia, not only iSupport. Our findings suggest that digital interventions benefit from a community-based participatory approach and the involvement of caregivers to ensure that the final program meets the needs and preferences of users [17].

Future Research
The recommendations and feedback that we collected during this study allowed us to adapt the original contents of the iSupport program to the Swiss context and to inform the development of the iSupport desktop version, mobile app, and printed manual. Following the Medical Research Council guidelines for the development of complex health interventions [59], we will proceed to assess the usability and feasibility of iSupport before its implementation. Evidence not only on the effectiveness but also on the ease of implementation and scalability of caregivers’ interventions is still rare in our country. We are determined to design and conduct good-quality studies to address these gaps and to promptly disseminate our findings and experience widely through peer-reviewed publications, the WHO knowledge exchange platform [60], and the global WHO iSupport network coordinated by the Brain Health Unit at the WHO.

Finally, the iSupport original program was developed by the WHO based on evidence related to carer training and support interventions and in collaboration with experts and caregivers [21]. Therefore, the program can be adapted to the extent that it maintains the original aims and structure [22]. During the study, we collected recommendations and feedback that would have required a consistent change in terms of resources and digital infrastructure to be implemented. These included, for instance, contents based on the type of dementia and stage of the disease, a comprehensive map of all digital and local resources available, and consultation from professionals as well as legal and financial assistance. Therefore, further development of iSupport could focus on supporting specific groups of caregivers, such as young carers or caregivers of people with rare dementia, and on providing personalized support tailored to the stage of the caregiver journey and the care needs of the care recipient.

Conclusions
Despite the recognized importance of culturally adapting interventions to implement them in real-world settings, the evidence on how to conduct this process is still limited. Our study enriches this landscape by underscoring that an active engagement of the final users and stakeholders allows to adapt an intervention to their culture, values, and needs. In addition, this study provides examples of concrete strategies and methods to involve community members and stakeholders across different phases of the intervention. Indeed, despite the emerging importance of coconstructing research together with people as collaborators, rather than as simply subjects of traditional research, there is limited evidence regarding the modalities of this practice.

Our experience confirms that the adoption of a CBPR approach is necessary to identify and address criticisms and potential barriers to the use and acceptance of a digital educational intervention before its implementation. In conclusion, we envision this study as a potential driver for enhancing a more robust dialogue between researchers and communities. We firmly believe that CBPR represents a transformative research opportunity where the needs of academics and community members can be met and where both groups can find opportunity for mutual knowledge exchange and growth.

Acknowledgments
The authors thank all informal and formal caregivers of people with dementia for their time and precious contribution to this work. The authors also wish to acknowledge the support provided by the members of the community advisory board, the funders, and collaborators for the realization of this project.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Community advisory board agreement.
[PDF File (Adobe PDF File), 187 KB - formative_v8i1e46941_app1.pdf]

Multimedia Appendix 2
Informed consent.
[PDF File (Adobe PDF File), 246 KB - formative_v8i1e46941_app2.pdf]

Multimedia Appendix 3
World Health Organization adaptation spreadsheet.
References

Abbreviations

CAB: community advisory board
CBPR: community-based participatory research
FG: focus group
REDCap: Research Electronic Data Capture
A Bluetooth-Enabled Device for Real-Time Detection of Sitting, Standing, and Walking: Cross-Sectional Validation Study

Reza Daryabeygi-Khotbehsara1, MSc, PhD; Jonathan C Rawstorn1, PhD; David W Dunstan2, PhD; Sheikh Mohammed Shariful Islam1, MD, PhD; Mohamed Abdelraze3k, PhD; Abbas Z Kouzani4, PhD; Poojith Thummala5, MSc; Jenna McVicar1, MSc, PhD; Ralph Maddison1, PhD

1Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne Burwood, Australia
2Baker-Deakin Department of Lifestyle and Diabetes, Melbourne Burwood, Australia
3School of Information Technology, Deakin University, Melbourne Burwood, Australia
4School of Engineering, Deakin University, Geelong, Australia

Abstract

Background: This study assesses the accuracy of a Bluetooth-enabled prototype activity tracker called the Sedentary behaviOR Detector (SORD) device in identifying sedentary, standing, and walking behaviors in a group of adult participants.

Objective: The primary objective of this study was to determine the criterion and convergent validity of SORD against direct observation and activPAL.

Methods: A total of 15 healthy adults wore SORD and activPAL devices on their thighs while engaging in activities (lying, reclining, sitting, standing, and walking). Direct observation was facilitated with cameras. Algorithms were developed using the Python programming language. The Bland-Altman method was used to assess the level of agreement.

Results: Overall, 1 model generated a low level of bias and high precision for SORD. In this model, accuracy, sensitivity, and specificity were all above 0.95 for detecting sitting, reclining, standing, and walking. Bland-Altman results showed that mean biases between SORD and direct observation were 0.3% for sitting and reclining (limits of agreement [LoA]=–0.3% to 0.9%), 1.19% for standing (LoA=–1.5% to 3.42%), and –4.71% for walking (LoA=–9.26% to –0.16%). The mean biases between SORD and activPAL were –3.45% for sitting and reclining (LoA=–11.59% to 4.68%), 7.45% for standing (LoA=–5.04% to 19.95%), and –5.40% for walking (LoA=–11.44% to 0.64%).

Conclusions: Results suggest that SORD is a valid device for detecting sitting, standing, and walking, which was demonstrated by excellent accuracy compared to direct observation. SORD offers promise for future inclusion in theory-based, real-time, and adaptive interventions to encourage physical activity and reduce sedentary behavior.

(JMIR Form Res 2024;8:e47157) doi:10.2196/47157

KEYWORDS
activity tracker; algorithms; deep neural network; machine learning; real-time data; Sedentary behaviOR Detector; sedentary behavior; SORD; standing; validation; walking; wearables

Introduction

Sedentary behavior (SB) is defined as “any waking behavior characterized by an energy expenditure of less than 1.5 metabolic equivalents while in a sitting, reclining, or lying posture” [1,2]. SB is an independent risk factor for many noncommunicable diseases, with the risk being most pronounced in those who are also physically inactive (ie, not meeting physical activity [PA] guidelines) [3-5]. Reducing SB for all
people, including those who are physically active, can assist in producing health benefits [6]. Interrupting SB with standing or light or moderate intensity PA can improve chronic risk factors including glucose homeostasis, insulin sensitivity, blood lipid concentrations, and diastolic blood pressure [7-10]. Recent World Health Organization guidelines on PA and SB explicitly state the importance of reducing sedentary time in addition to promoting PA for adults and older adults, including those with chronic conditions [11]. This has subsequently led to the development of interventions targeting SB reduction, although interventions to date have been compromised by the lack of a tool that can capture SB accurately and in real time. Accurate measurement of sitting, standing, and walking in real time will enable the design of interventions that can adapt to changes in the activity state and can be delivered at times when an individual is most responsive to the intervention, therefore maximizing the potential opportunity for reducing SB and increasing PA [12].

To date, the majority of interventions to reduce SB and promote PA have relied on subjective measurement of these behaviors, which are subject to self-report bias [13,14] and may underestimate daily sitting time by up to 2 hours compared with objective measurement [15]. Few activity trackers, including research-grade (eg, activPAL) and commercial (eg, GENEactive and Fitbit One), measure sedentary time with reasonable precision [16-22], but they are not optimal for SB change interventions [23]. The 2 main issues involve technical difficulty in using support software for real-time interventions and concerns about device accuracy in distinguishing postural states (sitting, standing, etc) [24,25]. Most activity trackers use similar technologies, including accelerometers, magnetometers, and gyroscopes, to detect posture and activity [26]. However, the placement of devices on the body can considerably influence accuracy [27]. Commercial wrist-worn devices such as the Garmin Vivofit are unable to detect sit-to-stand transition [23,28]. Other thigh-worn devices, such as activPAL and SitFIT, are capable of detecting sitting and standing due to their horizontal placement [23]. In terms of behavioral intervention, activPAL does not offer any real-time prompts or feedback to participants [29]. The SitFIT device provides real-time feedback to the user, and its accuracy, although acceptable, was lower when compared to the activPAL, which is considered the preferred device for research purposes [30]. However, SitFIT is pocket-worn, which limits its use for those not wearing suitable clothing (eg, trousers) or garments without pockets (eg, dresses) [30]. More importantly, SitFIT does not distinguish standing from walking [31] and therefore cannot be used to assess standing as a unique outcome both for real-time and adaptive interventions. It should be noted that these devices (SitFIT and Fitbit One) are no longer available on the market and were included in our discussion to provide historical context and illustrate the evolution of activity-tracking technology. Evidence on the positive impact that standing may have on health outcomes in different population groups is emerging from short-term and small-scale studies [32,33], although real-time assessment and behavior change interventions are missing. This, in turn, suggests a need for a platform to momentarily evaluate both sedentary and standing outcomes to study their exclusive health effects and intervene accordingly.

In summary, despite the presence of activity tracker devices, few have included evidence- and theory-based interventions or strategies to promote PA and reduce SB (eg, self-monitoring and goal setting), and the use of some other devices is restricted due to a lack of real-time assessment of outcomes (eg, standing). In response, we designed and developed a new wearable platform called “Sedentary behaviOR Detector” (SORD), which collects real-time sedentary data, including lying, reclining, sitting, and standing, as well as walking activity time. Therefore, this study aimed to assess the validity of the SORD device in detecting sedentary and walking activities among adult participants.

Methods

Overview

A cross-sectional, laboratory-based study was conducted to assess the criterion validity (SORD vs direct observation) and convergent validity (SORD vs activPAL). Adults were recruited to take part in this laboratory-based study through print and email advertisements at a university campus. Adults aged 18 years or older, without gait abnormalities, able to walk on a treadmill easily, with no skin sensitivity to plasters or tapes, and able to communicate in English were included.

Upon arrival, participants completed a demographic questionnaire including age, sex, ethnicity, job status, marital status, education, and the Physical Activity Readiness Questionnaire [34] for safe exercise. Anthropometric measures, including height to the nearest 0.1 cm and weight to the nearest 0.1 kg, were taken using a stadiometer (Seca 213) and Tanita scale (Tanita Innerscan 50), respectively.

Participants were given a printed activity protocol to help familiarize them with the required activities and the order in which they were to be performed. Textbox 1 presents a range of different states of activities included in the study protocol to mimic typical postures that may be encountered during everyday life.

Hypoallergenic retention dressing tape (Hypafix) was used to attach the SORD and activPAL devices on the midline of the right thigh. Participants were then instructed to engage in a combination of activities in the order of sitting, reclining, sitting, standing, walking, standing, sitting, lying, and walking on a treadmill. Each activity variation lasted for a minimum of 2 minutes and a maximum of 3 minutes and 30 seconds, except walking, which involved participants walking at their regular walking pace along a 10-m-long path. Participants had 2 minutes of optional resting to break up the activities if needed. Ground truth, or the true time spent on each of the activities, was measured by a researcher with the help of a video camera for direct observation.

Textbox 1

A range of different states of activities included in the study protocol to mimic typical postures that may be encountered during everyday life.

https://formative.jmir.org/2024/1/e47157

JMIR Form Res 2024 | vol. 8 | e47157 | p.384

(page number not for citation purposes)
Textbox 1. Details of the Sedentary behaviOR Detector phase 1 activities.

<table>
<thead>
<tr>
<th>Lying</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Face up, on the right shoulder, face down, or on the left shoulder</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reclining</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (135 slope chair), left leg over right, or right leg over left</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sitting</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright, ankle-on-knee (left-right and right-left), right foot move, left foot move, both feet move, elbows on legs, or sitting with outstretched legs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand normal, casual standing (more weight on the right foot), casual standing (more weight on the left foot), right shoulder on the wall, or left shoulder on the wall</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Walking</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal on level, on treadmill at 4 km/h, or on treadmill at 6 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Sedentary behaviOR Detector

Overview

The SORD is a wearable electronic device (Figure 1A) that collects and provides real-time data associated with sitting, reclining, lying, and PA. Data provided by the device can be used to separate sitting versus standing versus ambulation. To separate sitting time from lying time, 2 same devices will be attached to 2 different locations of the body.

The SORD device includes a number of internal components (Figure 1B): a low-power processor and transceiver, inertial measurement unit, voltage regulator, battery charger, battery, antenna, micro-USB connector, LEDs, motherboard, and an enclosure. These components have been described below.

Figure 1. (A) Sedentary behaviOR Detector (SORD). (B) Internal components of the SORD device. The SORD is a small device with the following dimensions: 0.9 mm (height), 37 mm (width), and 68 mm (length). It is also lightweight, with a weight of 23.5 g. The device can operate for about 45 hours on a single charge. The SORD device measures 3-axis orientation using the accelerometer that gives acceleration signals for 3 axes, the gyroscope that provides rotation along 3 axes, and the magnetometer that gives motion in the magnetic field in 3 axes. It hosts an embedded C firmware that continuously reads from the sensors, records their data at 25-Hz frequency, preprocesses the data, and transmits the data wirelessly. No initialization is required for the SORD device, as the data are captured and transmitted through the 2.4-GHz Bluetooth Low Energy 5.0 transceiver in real time.

Processor and Transceiver

The ATSAMB11-ZR210CA is used that includes a low-power ARM Cortex M0 32-bit processor, 128 KB of RAM, 128 KB of stacked flash memory, a 2.4 GHz Bluetooth Low Energy 5.0 transceiver and modem, a power management unit, a ceramic high-gain antenna, and a printed circuit board with a small footprint.

Inertial Measurement Unit

The BNO055 is used that includes a single-chip integrated circuit incorporating an intelligent inertial measurement unit with a triaxial 14-bit accelerometer, a triaxial 14-bit gyroscope, a triaxial geomagnetic sensor, an I2C communication interface, and an ARM Cortex M0+ 32-bit processor executing a sensors data fusion algorithm.

Voltage Regulator

The XC9264B755MR-G is used which includes a synchronous step-down DC/DC voltage regulator. It operates within the voltage range of 3-18 V and provides a 500 mA output current. It has a selectable switching frequency of 500 kHz, 1.2 MHz, or 2.2 MHz. It also features overcurrent protection as well as thermal shutdown.
Battery Charger
The BQ25101YFPR is used which includes a linear Li-Ion and Li-Pol battery charger with a very small footprint. It has a single power output that charges a battery in 3 steps: conditioning, constant current, and constant voltage. The junction temperature of the device is monitored to control the charge current.

Micro-USB Connector
A micro-USB connector is used for programming the processor and also for establishing serial communications as well as charging the onboard battery.

LEDs
A total of 2 multicolor LEDs are used to illuminate different functional states of the device to the user.

Battery
A 3.7-V, 700-mAh, 303759 Lithium Polymer rechargeable battery is used. Its height, width, and length are 3 mm, 37 mm, and 59 mm, respectively, and its weight is 14 g.

Antenna
A Freedom 2.4-GHz flex circuit PCB antenna is used.

Motherboard
A printed circuit motherboard is designed and fabricated to host all the electronic components of the SORD device.

Enclosure
A small enclosure for the SORD device is designed and 3D printed. It hosts all the components of the device.

ActivPAL
ActivPAL is a thigh-worn triaxial accelerometer that classifies an individual’s activity into periods of time spent sedentary (lying or sitting), standing, and walking, as well as the number of steps and stepping speed [29,35]. ActivPAL devices were initialized before the data collection and date-time stamped 1-second epoch files were used for comparative analysis.

Direct Observation
True time spent engaging in activities was logged by a trained researcher (RDK). This was assisted by a video camera positioned in the room and checked by another researcher (JM). If there was any discrepancy, RDK and JM reviewed the camera data together to achieve consensus. No formal intra- or interrater reliability was conducted.

Data Handling and Analysis
SORD data were transmitted to a computer through Bluetooth Low Energy. A program was developed in MATLAB (MathWorks) and run on a Microsoft Windows (Microsoft Corp)–based computer to receive data from the SORD devices in real time and store it into a Microsoft Excel (Microsoft Corp) file. The program starts by initializing relevant variables and a communications port, creates a file name based on the current date and time, continuously receives data from the SORD devices, and stores the incoming data in the Microsoft Excel file in real time. Each data packet received from the SORD devices includes values obtained from the onboard sensors at the current time. For a data packet, the following information is then stored in the file in real time: date, time, angle, accelX, accelY, accelZ, gyroX, gyroY, gyroZ, magX, magY, magZ, and battery voltage. To avoid potential Bluetooth transmission package loss, this study used the time-stamp data from the SORD device instead of the computer receiver (ie, the sending time stamp rather than the receiving time stamp). Thus, we had computer receiver and accelerometer data, along with their timestamps. Based on the real sampling rate, the computer calculated the time stamp difference between each data point (ΔT). In this research, the number of missing data points was defined by missing = ΔT/(1/25Hz) – 1. The values of these data points were filled by the average of the 2 data points before and after the missing data points (eg, Vi[missing] = [Vi – 1 + Vi + 1]/2). Before sending data to the server for inference, the phone app waits until all required data have been received (processing buffer length). Using the VANE (standard) classification algorithms, activPAL data were processed and collected using proprietary software (activPAL Professional Research Edition, PAL Technologies). The software-generated event file was used. This file contains a chronological list of all episodes of sedentary, standing, and stepping (ie, walking) activities recorded at 1-second intervals. The frequency of the recorded signals from SORD was subsequently reduced to 1 Hz (ie, 1-second epochs) for comparative analysis. This reduction in frequency simplifies data processing and facilitates direct comparison with activPAL, which was also sampled at 1 Hz. Furthermore, outliers or irregular data points were identified and removed. Once individual data sets were cleaned, they were combined for subsequent comparative analysis. The combining process involved aligning the data sets temporally so that corresponding data points from both devices were synchronized for direct comparison.

Due to multiple limitations, we did not use the available open-source activity recognition algorithms. These limitations include (1) inconsistency in the data format and ranges, (2) differences in the frequency of raw data assumed by these algorithms compared to SORD (which is 28 measurements per second), and (3) the variations of activities considered by these algorithms were not exactly the same as the ones we wanted to address in this research at this stage and in the future. Thus, we developed the data engineering and activity recognition models. Although ensemble learning techniques outperform deep learning, they demand higher computation resources and have longer processing latency [36,37]. Therefore, for practical reasons and real-world applications of SORD, this study used deep neural network models—a combination of convolutional neural network and recurrent neural network—to develop algorithms. Deep neural network can learn features automatically from the raw data, therefore performing better than statistical and basic machine learning methods, and they are suitable for recognizing complex activities [38].

A data scientist developed deep learning algorithms to classify activity type and postural states from preprocessed motion sensor data using the Python programming language [39]. First, machine learning classifiers were developed, trained, and tested for the SORD device. A dynamic sliding window approach was used for machine learning [40], where each window was related
to a particular activity and multiple variables were examined within each window to identify patterns. When a particular activity was detected in the sensor readings, features were extracted to classify activities between the previous one and the current one (further details are provided below). Then, criterion validity (against direct observation) and convergent validity (against activPAL micro) were evaluated. Using Python, the Bland-Altman method was used to assess the level of agreement between SORD and each reference measure (criterion agreement=directly observed time and convergent agreement=activPAL). Mean difference represents the systematic bias, and the limits of agreement (LoA) show the range of agreement between SORD and reference methods, where a positive value indicates underestimation and a negative value indicates overestimation by SORD. For all activity states, we predefined the acceptable LoA between ±10%.

Classification Algorithms
A single data set included SORD, activPAL, and direct observation data for 1 participant. Deep learning was used to randomly select 6 data sets for training, 1 for validation, and 7 for testing. In the training set, similar patterns were identified for the previous 35 data points to specify an activity. Confusion matrices were used to visualize the model’s performance. In a confusion matrix, each row represents the instances in the predicted activity, and each column represents the instances in the actual activity.

Ethical Considerations
Ethics approval was granted by the Deakin University Human Research Ethics Committee’s Human Ethics Advisory Group (HEAG-H 109_2019). All participants provided written informed consent. All research data were anonymized before cleaning and analysis. Participants were remunerated with an Aus $20 (US $14) gift voucher.

Results
Overview
In total, 15 adults (12 female adults) aged between 20 and 62 years completed the experimental study. Table 1 presents the demographic characteristics of the participants.
Deep Learning Results

A total of 4 models were presented for SORD. Model 1 classified 3 activities, including sedentary (lying, reclining, or sitting), standing, and walking separately. As illustrated in Figure 2, model accuracy, sensitivity, and specificity for detecting sedentary time were 0.92, 0.99, and 0.87; for standing, they were 0.95, 1.00, and 0.91; and for walking, they were 0.96, 0.92, and 1.00, respectively.

Model 2 included 4 activities: sitting, reclining, standing, and walking; lying was excluded (ie, lying moments observed by video camera were omitted from the data set). As illustrated in Figure 3, model accuracy, sensitivity, and specificity for detecting sitting and reclining were 1.00, 1.00, and 1.00; for standing, they were 0.99, 0.99, and 1.00; and for walking, they were 0.98, 1.00, and 0.95, respectively.

Model 3 included 3 activities: sitting, standing, and walking; reclining and lying were excluded. Respectively, model accuracy, sensitivity, and specificity for detecting sitting were

| Table 1. Demographic information of study participants. |
|---------------------------------|-----------------|
| Variables | Values |
| Age (years) | Values |
| Mean (SD) | 35.2 (11.6) |
| Range | 20-62 |
| Weight (kg) | 70.4 (10.5) |
| Range | 55.2-84.8 |
| Height (cm) | 168.1 (9.6) |
| Range | 147.0-186.5 |
| BMI (kg/m^2) | 24.9 (3.0) |
| Range | 20.1-29.4 |
| Sex, n (%) | |
| Female | 12 (80) |
| Male | 3 (20) |
| Ethnicity, n (%) | |
| Australian | 4 (27) |
| European | 6 (40) |
| Asian | 4 (27) |
| South American | 1 (7) |
| Education level, n (%) | |
| Degree higher than bachelor’s | 7 (47) |
| (bachelor’s with honors, masters, | |
| or PhD) | |
| Bachelor’s degree | 5 (33) |
| Technical and further education | 2 (13) |
| or university course below a | |
| bachelor’s degree | |
| Other school qualifications (eg,| 1 (7) |
| overseas school, Cambridge | |
| examination, or A level) | |
| Job status, n (%) | |
| Full-time salary or wage earner| 6 (40) |
| Part-time salary or wage earner | 2 (13) |
| Student | 7 (47) |
| Marital status, n (%) | |
| Married or living with a partner| 8 (53) |
| Single or never married | 1 (7) |
| Separated, divorced, or widowed | 6 (40) |
0.97, 1.00, and 0.94; for detecting standing, they were 0.95, 0.91, and 1.00; and for walking, they were 0.98, 1.00, and 0.97 (Multimedia Appendix 1).

Model 4 included all 5 activities: lying, sitting, reclining, standing, and walking. Respectively, model accuracy, sensitivity, and specificity for detecting lying were 0.70, 0.54, and 1.00; for sitting and reclining, they were 0.85, 1.00, and 0.75; for standing, they were 0.75, 0.63, and 0.93; and for walking, they were 0.99, 1.00, and 0.98 (Multimedia Appendix 2).

Figure 2. Confusion matrix for model 1 classification algorithms. Sedentary (lying, sitting, and reclining), standing, and walking were included in the model.

Figure 3. Confusion matrix for model 2 classification algorithms. “Sitting and reclining,” standing, and walking were included in the model.
Agreement

For models 1 and 2, results of the Bland-Altman analysis comparing second-by-second data on sedentary, standing, and walking time between direct observation versus SORD and activPAL versus SORD are presented in Figures 4 and 5. Multimedia Appendices 3 and 4 illustrate Bland-Altman for the other models. Percentage values are presented in the text (see Figures 4 and 5 and Multimedia Appendices 3 and 4 for true values).

Figure 4. Bland-Altman plot comparing seconds of sedentary behavior, standing, and walking between direct observation and activPAL against the Sedentary behaviOR Detector (SORD) activity tracker (model 1).
Figure 5. Bland-Altman plot comparing seconds of “sitting and reclining,” standing, and walking between the direct observation and activPAL against the Sedentary behaviOR Detector (SORD) activity tracker.

Mean differences (biases) between SORD model 1 and direct observation were 6.4% for sedentary (LoA=–4.3% to 17.1%), –8.7% for standing (LoA=–23.5% to 6.1%), and –8.9% for walking (LoA=–22.2% to 4.4%). Results of model 1 show wide limits, although the mean biases were below 10% for all activities. Relative to total activity durations, mean biases between SORD model 1 and activPAL were –2.5% for sedentary (LoA=–15.0% to 9.9%), 1.7% for standing (LoA=–23.3% to 26.9%), and 7.4% for walking (LoA=–2.3% to 17.1%). Results of model 1 comparing SORD to activPAL show wide limits.

Mean biases between SORD model 2 and direct observation were 0.3% for sitting and reclining (LoA=–0.3% to 0.9%), 1.1% for standing (LoA=–1.05% to 3.42%), and –4.71% for walking (LoA=–9.26% to –0.16%). Model 2 showed the narrowest LoA for “sitting and reclining,” standing, and walking, denoting excellent agreement with direct observation. All the mean biases were within ±10%. Relative to total activity durations, mean biases between SORD Model 2 and activPAL were –3.45% for sitting and reclining (LoA=–11.59% to 4.68%), 7.45% for standing (LoA=–5.04% to 19.95%), and –5.40% for walking (LoA=–11.44% to 0.64%). Results of model 2 comparing SORD to activPAL show a wider LoA, although mean biases are relatively low for “sitting and reclining” and walking.

Mean biases between SORD model 3 and direct observation were –6.4% for sitting (LoA=–18.6% to 5.7%), 12.4% for standing (LoA=–6.6% to 31.5%), and –4.9% for walking (LoA=–12.5% to 2.5%). Therefore, sitting and walking were
overestimated, while standing was underestimated. The mean bias was acceptable for sitting and walking but not standing. A narrow LoA were observed for walking.

Mean biases between SORD model 4 and direct observation were 52.2% for lying (LoA=–6.9% to 111.4%), –32.0% for sitting and reclining (LoA=–78.2% to 14.1%), 48.8% for standing (LoA=–13.7% to 111.4%), and –2.2% for walking (LoA=–6.7% to 2.2%). Therefore, “sitting and reclining” and walking were underestimated while lying and standing were overestimated. Model 4 shows the broadest LoA for “sitting and reclining” and standing, while the narrowest LoA were observed for walking in this model.

Discussion

This laboratory-based study assessed the criterion and convergent validity of a prototype activity tracker (ie, SORD). A high level of accuracy in detecting sitting, standing, and walking for the SORD device among adults was confirmed. Based on the Bland-Altman plots, high levels of agreement with direct observation demonstrated high criterion validity.

ActivPAL is a triaxial accelerometer that has been validated for detecting sitting, standing, and walking activity \(29,41,42\) and has been widely used in previous intervention studies \(43-47\). However, a recent review found that activPAL has lower accuracy during fidgeting \(48\). In this study, the agreement between SORD and activPAL was not ideal. The discrepancy observed might result from the inclusion of various fidgeting states. In addition, since activPAL does not enable real-time transmission of data to external devices or networks \(29\), it cannot be used for real-time or adaptive interventions. SitFit \(30\) is among the few devices that provide real-time feedback on SB. SitFit (PAL Technologies Ltd) is a pocket-worn device that requires appropriate clothing (eg, trousers with a front pocket), which is a barrier to its usability \(30\). SitFit has an embedded screen to provide visual feedback to users and is also Bluetooth-enabled for connectivity to smartphones, tablets, and PCs. However, outputs generated by SitFit include sedentary time (sitting or lying), upright time, and step count \(30\). The upright time includes both quiet standing and stepping \(30\), meaning that SitFit alone is not suitable for measuring standing as an outcome. Measuring standing and its variations (eg, fidgeting while standing) in real time will enable future intervention studies to identify distinct behavioral determinants of standing and to study its long-term clinical implications. As described in this study, SORD accurately measures sedentary (sitting and reclining), standing, and walking time. Other deep learning models (eg, model 4) examined whether the algorithms could distinguish lying from other sedentary states. A lower accuracy was observed for SORD in distinguishing lying from other sedentary activity states. Since the thigh is horizontal during lying posture, distinguishing sitting and lying postures with thigh-worn devices would be difficult. Methods that include rotational angle thresholds to determine the orientation of the thigh have been able to distinguish lying from sitting \(49\), even though these techniques require validation against direct observation to produce robust evidence.

A strength of this study is the inclusion of several variations of activity states (eg, sitting with outstretched legs, sitting while ankle-on-knee, and standing while shoulder on the wall), allowing more robust testing of the device accuracy and improving the generalizability of findings. For example, detecting standing as it appears in real-life situations and distinguishing from walking will enable the design of interventions measuring standing as a behavioral or clinical outcome. There are also limitations with this study, including the laboratory-based nature of the study. As with any laboratory-based experiment, it is possible that participants behave differently (eg, sit tall and neat and not as they would do normally). Moreover, a comparison between devices in terms of walking intensities was not conducted. This work is the first step in the validation of SORD, and longer-term studies in free-living environments would be necessary future steps to assess its practicality and accuracy under diverse conditions. The majority of participants in this study were female, and that might be considered a source of bias, that is, sex bias. However, evidence suggests that there are no significant differences between female individuals and male individuals in terms of posture, including sitting, standing, and walking \(50\). Most participants were younger adults, and therefore the findings may not be generalizable to older adults. Investigating the usability of SORD in populations beyond young adults can help determine its broader applicability. Finally, we observed errors in the raw data from 2 participants for SORD and 3 others for activPAL.

In this study, we did not intend to compare or advance the activity recognition models; rather, the goal was to use the best approach for real-world applications of SORD for real-time intervention. The future development of SORD will include exploring other models (eg, ensemble learning).

In conclusion, SORD accurately detected sitting, standing, and walking activities among healthy young adults, and measurement accuracy was excellent compared to direct observation. While the current iteration of SORD displays promising levels of accuracy, it requires more work and real-world testing in an intervention to assess its applicability. Therefore, SORD holds potential for future integration into evidence- and theory-driven, real-time adaptive interventions to promote activity and reduce sedentary time.

Conflicts of Interest

None declared.

Multimedia Appendix 1
Supplemental Figure 1. Confusion matrix for Model 3 classification algorithms. Sitting, standing and walking were included in the model.

[PNG File, 231 KB - format_v81e47157_app1.png]

Multimedia Appendix 2
Supplemental Figure 2. Confusion matrix for Model 4 classification algorithms. Lying, sitting, reclining, standing and walking were included in the model.

[PNG File, 352 KB - format_v81e47157_app2.png]

Multimedia Appendix 3
Supplemental Figure 3. Bland-Altman plot comparing seconds of sitting, standing and walking between the direct observation and SORD activity tracker (Model 3).

[PNG File, 99 KB - format_v81e47157_app3.png]

Multimedia Appendix 4
Supplemental Figure 4. Bland-Altman plot comparing seconds of lying, sitting, reclining, standing and walking between the direct observation and SORD activity tracker (Model 4).

[PNG File, 129 KB - format_v81e47157_app4.png]

References

34. Physical Activity Readiness Questionnaire PAR-Q and YOU. CSEP. 2002. URL: https://www-ons.org/sites/default/files/par-q.pdf [accessed 2023-12-12]

Abbreviations

- LoA: limits of agreement
- PA: physical activity
- SB: sedentary behavior
- SORD: Sedentary behaviOR Detector
Demographics and Social Factors Associated With Persistent Nonuse of Video Appointments at a Multisite Health Care Institution: Cross-Sectional Study

Pravesh Sharma¹, MD; Celia Kamath², PhD; Tabetha A Brockman³, MA; Anne Roche⁴, PhD; Pamela Sinicrope⁵, MPH, DrPH; Ruoxiang Jiang², BS; Paul A Decker², MS; Vanessa Pazdernik², MS; Christi Patten⁵, PhD

¹Psychiatry and Psychology, Mayo Clinic Health System, Eau Claire, WI, United States
²Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
³Health Equity and Community Engagement Research, Mayo Clinic, Rochester, MN, United States
⁴Psychology, Mayo Clinic, Rochester, MN, United States
⁵Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States

Corresponding Author:
Pravesh Sharma, MD
Psychiatry and Psychology
Mayo Clinic Health System
1221 Whipple Street
Eau Claire, WI, 54703
United States
Phone: 1 7158385369
Email: sharma.pra vesh@mayo.edu

Abstract

Background: During the COVID-19 outbreak, video appointments became a popular method for health care delivery, particularly in the early stages of the pandemic. Although Mayo Clinic aimed to reduce face-to-face (F2F) appointments to prevent the spread of the virus, some patients continued seeing their health care providers in person. In the later stages of the pandemic, many patients became comfortable with video appointments, even if they were initially hesitant. However, a subset of patients continued to avoid video appointments. It is not yet clear what sociodemographic factors may be associated with this group of patients.

Objective: This cross-sectional study aimed to examine demographic and social determinant of health (SDoH) factors associated with persistent nonusers of video appointments among a sample of patients within a multistate health care organization. We also explored patient beliefs about the use of video for health care appointments.

Methods: We conducted a 1-time cross-sectional paper survey, mailed between July and December 2022, of patients matching the eligibility criteria: (1) aged ≥18 years as of April 2020, (2) Mayo Clinic Midwest, Florida, or Arizona patient, (3) did not use video appointment services during April-December 2020 but attended F2F appointments in the departments of primary care and psychiatry/psychology. The survey asked patients, “Have you ever had a video appointment with a healthcare provider?” “Yes” respondents were defined as “users” (adapted to video appointments), and “no” respondents were defined as “persistent nonusers” of video appointments. We analyzed demographics, SDoH, and patient beliefs toward video appointments in 2 groups: persistent nonusers of video appointments and users. We used chi-square and 2-tailed t tests for analysis.

Results: Our findings indicate that patients who were older, lived in rural areas, sought care at Mayo Clinic Midwest, and did not have access to the patient portal system were likely to be persistent nonusers of video appointments. Only 1 SDoH factor (not having a disability, handicap, or chronic disease) was associated with persistent nonuse of video appointments. Persistent nonusers of video appointments held personal beliefs such as discomfort with video communication, difficulty interpreting nonverbal cues, and personal preference for F2F appointments over video.

Conclusions: Our study identified demographic (older age and rural residence), sociodemographic factors (not having a disability, handicap, or chronic disease), and personal beliefs associated with patients’ decisions to choose between video versus F2F appointments for health care delivery. Health care institutions should assess patients’ negative attitudes toward technology prior to introducing them to digital health care services. Failing to do so may result in its restricted usage, negative patient experience,
and wasted resources. For patients who hold negative beliefs about technology but are willing to learn, a “digital health coordinator” could be assigned to assist with various digital health solutions.

(JMIR Form Res 2024;8:e50572) doi:10.2196/50572

KEYWORDS
digital health; telemedicine; telehealth; video visits; appointments; SDoH, social determinants of health; social determinants; appointment; users; sociodemographic; prevention; discomfort; video communication; communication; willingness; mobile phone

Introduction

Since the COVID-19 pandemic, video appointments have been widely implemented for remotely delivered health care [1,2]. Both prepandemic and pandemic literature suggest that video visits improve provider access to patients, reduce patient travel and wait times, and provide health care quality comparable to face-to-face (F2F) appointments [3-6]. Despite these positive associations with telemedicine, video appointments for nonemergent care have not been as widely used by patients as expected. Studies show that individuals who could not adapt to digital health care delivery have faced significant health care access barriers during and since the pandemic [7]. In the current post-COVID-19 era, digital health care services are a new standard of care [8], and patients who need to be connected to the health care system digitally but are struggling to adapt to telemedicine may experience suboptimal health care [9]. Therefore, factors associated with nonengagement with video visits, especially in patients who have persistently not engaged in video appointments, require further exploration. While patients’ attitudes to telemedicine, especially in the COVID-19 era [10-12], have been explored, gaps remain in understanding social and individual characteristics associated with the persistent nonuse of video appointments for health care.

A large body of evidence suggests that older age, low education, poor digital access (broadband [BB] internet and smart devices), [13] and personal preferences [14] are independently and interactively associated with lower engagement with digital health care [14-17]. This is ironic, given that a critical reason behind the embarkation of digital health care technology was to provide uninterrupted health care access to those who live in remote areas where access to health care providers is limited, those who experience low socioeconomic status and associated transportation challenges and those with poor mobility due to old age and other constraints [18,19]. Evidence also shows that if the individual digital barriers are addressed [20-22], people are willing to engage in technology and participate in telemedicine programs. Preliminary public and institutional efforts to mitigate patient-related barriers to telemedicine are in their infancy but may include brief verbal and printed technology instructions, digital navigation programs for those who have poor digital literacy (comfort and ease of using technology), use of public Wi-Fi and “to-go kits” (smart devices with written instructions on connecting for a visit) [18,23]. Despite nationwide initiatives that accelerated after COVID-19 to encourage patients to use digital health care, many still chose to engage in F2F appointments [14,24]. This phenomenon was observed with and without social distancing associated with the COVID-19 pandemic.

Social determinants of health (SDoH) such as economic stability, access to quality education and health care, neighborhood safety and housing, community and social contexts, and experiences of racism and discrimination [25] significantly impact people’s well-being. The adverse outcomes associated with SDoH inequitably impact marginalized groups and prevent them from accessing quality health care. SDoH not only impact how easily and efficiently people can access health care, but also how they will access it (video vs F2F vs both).

For example, evidence shows that patients who identified as Black, indigenous, or people of color, and were non-English speaking patients and lived in neighborhoods with low socioeconomic status were less likely to engage in digital health care [17,26]. However, it has not been investigated yet which SDoH factor is linked to the persistent use and nonuse of video technology for health care appointments.

This cross-sectional study aimed to examine demographic and SDoH factors associated with no video use (self-reported persistent nonusers of video appointments) among a sample of patients within a large multisite health care organization. We also explored patient beliefs about the use of video for health care appointments. We hypothesized that certain demographic factors, including older age, being a woman, low education, rural residence, and SDoH, such as financial constraints and limited transportation options, may be associated with the persistent nonuse of video appointments.

Methods

Setting

Mayo Clinic consists of a large academic medical center and associated health system spanning the United States in 5 states (Minnesota, Wisconsin, Iowa, Florida, and Arizona). Mayo Clinic’s main campuses are located in Rochester, Minnesota; Phoenix, Arizona; and Jacksonville, Florida. Mayo Clinic Health System (MCHS) consists of clinics, hospitals, and other health care facilities in 4 regions in southern Minnesota, western Wisconsin, and northern Iowa. The Mayo Clinic Midwest (MN, WI, and IA) serves patients that are predominantly White, older people, and living in rural areas. In contrast, Mayo Clinic in Florida and Arizona serve a more diverse patient population.

Ethics Approval

This study was approved by the Mayo Clinic Institutional Review Board (21-004523).

Study Overview and Design

During earlier phases of COVID-19, in early 2020, the US government and the Centers for Disease Control and Prevention
recommended social distancing measures, including stay-at-home orders and video appointments with health care providers [27]. Despite Mayo Clinic’s attempts to minimize F2F appointments to prevent the spread of the virus, many patients requested F2F appointments with their health providers. We were therefore interested in examining whether demographic and SDoH, including area-based metrics (where patients live), were associated with F2F visits. This study used a cross-sectional design with data collected from a 1-time survey administered to Mayo Clinic and MCHS patients.

Survey Instrument and Measures

The survey was designed using results from a prior qualitative study detailed elsewhere [14]. Guided by the qualitative results and informed by a scoping literature review, the survey items were developed to address existing gaps in the literature. The finalized paper survey was pretested with study staff with an estimated 10-15 minutes to complete. The survey included 21 items querying patient’s digital access such as BB internet connection and smart devices, digital literacy (the ease and comfort of using digital technology), use of the patient portal (Mayo Clinic patient online messaging system), use of video appointments, attitudes, and beliefs toward F2F versus video appointments and barriers to engaging in video appointments. The SDoH-related questions included in our survey were adapted from the Social Needs Screening Tool [28] (Multimedia Appendix 1).

Demographic characteristics (age, gender, and race or ethnicity), education status (highest during this study’s period), patient portal status (yes or no), and residence zip codes were extracted from the electronic health record (EHR). Rurality was ascertained from patient zip codes to identify corresponding rural-urban commuting area (RUCA) codes based on the University of Washington classification C method classification [29].

The dependent (outcome) variable was a dichotomous response (yes or no) to the question, “Have you ever had a video appointment with a healthcare provider?”

Data Collection or Procedure

We extracted data from the EHR of adult patients with this study’s eligibility of (1) being aged ≥18 years as of April 2020, (2) being a Mayo Clinic Midwest (Rochester or MCHS), Florida or Arizona patient, (3) not using video appointment services during the time frame of April-December 2020 but attending F2F appointments for nonemergent outpatient clinical care in the departments of primary care and psychiatry/psychology.

The Mayo Clinic Survey Research Center mailed eligible patients a survey in a prelabeled return envelope in early July 2022. By that time, a significant number of patients were oriented and made aware of video appointment procedures through self-learning and efforts by our health care institutions. Thus, the following survey item: “Have you ever had a video appointment with a healthcare provider?” with dichotomous responses “Yes/No,” provided valuable cross-sectional information distinguishing patients in this cohort in terms of their ability to adapt or not to evolving remote health care delivery appointments through video appointments for nonemergent care after April 2020. The respondents who marked “no” were defined as “persistent nonusers.” In contrast, those who responded “yes” were defined as “users” who, despite not having used video appointments between April and December 2020, adapted to the changing digital landscape, using them later.

Surveys were mailed to eligible patients stratified by departmental visit type (psychiatry/psychology versus primary care), demographic characteristics (gender, race, and Mayo Clinic location), and if the patient has an active patient portal account. The Survey Research Center mailed reminder letters to nonresponders in August 2022 and then conducted phone call reminders to nonresponders in October-December 2022. Survey participation was closed in January 2023. Survey respondents received a sheet of forever stamps valued at US $5.

Statistical Analysis

Demographics, SDoH, and patient beliefs about video encounters were compared across groups, persistent nonusers of video appointments, and users groups, using the chi-square (exact) test for categorical variables and the 2-sample t test (rank sum) for continuous variables. In all cases, P values <.05 were considered statistically significant.

Results

Overview

Respondent sociodemographic characteristics (N=321) are described in Table 1 overall and by use of video appointments. The survey response rate was 11% (321/3000). In the total respondent sample, 172 (54%) were women, 217 (68%) were White, 169 (53%) had bachelor’s or higher education degrees (persistent nonusers vs users; 84, 52.5% vs 85, 52.8%), and 282 (88%) were urban dwelling (persistent nonusers vs users; 133, 83.1% vs 149, 92.5%; $P=.01$). In addition, 266 (83%) had access to an online patient portal account (persistent nonusers vs users; 122, 76.2% vs 144, 89.4%; $P=.002$).
Table 1. Demographic factors associated with the using and not using video appointments.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Total (N=321), n (%)</th>
<th>Persistent nonusers of video (n=160), n (%)</th>
<th>Users of video (n=161), n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
<td></td>
<td>.001a</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>57.440 (16.400)</td>
<td>60.434 (16.849)</td>
<td>54.465 (15.425)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>18.111-90.010</td>
<td>18.111-90.010</td>
<td>21.791-86.867</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td>.05b</td>
</tr>
<tr>
<td>Women</td>
<td>172 (53.6)</td>
<td>77 (48.1)</td>
<td>95 (59)</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>149 (46.4)</td>
<td>83 (51.9)</td>
<td>66 (41)</td>
<td></td>
</tr>
<tr>
<td>Specialty</td>
<td></td>
<td></td>
<td></td>
<td>> .99c</td>
</tr>
<tr>
<td>Community medicine</td>
<td>309 (96.3)</td>
<td>154 (96.2)</td>
<td>155 (96.3)</td>
<td></td>
</tr>
<tr>
<td>General internal medicine</td>
<td>6 (1.9)</td>
<td>3 (1.9)</td>
<td>3 (1.9)</td>
<td></td>
</tr>
<tr>
<td>Psychiatry and psychology</td>
<td>6 (1.9)</td>
<td>3 (1.9)</td>
<td>3 (1.9)</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
<td>.02b</td>
</tr>
<tr>
<td>Arizona</td>
<td>134 (41.7)</td>
<td>67 (41.9)</td>
<td>67 (41.6)</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>96 (29.9)</td>
<td>38 (23.8)</td>
<td>58 (36)</td>
<td></td>
</tr>
<tr>
<td>Mayo Clinic Midwest</td>
<td>91 (28.3)</td>
<td>55 (34.4)</td>
<td>36 (22.4)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td>.38b</td>
</tr>
<tr>
<td>Non-White</td>
<td>89 (27.7)</td>
<td>47 (29.4)</td>
<td>42 (26.1)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>15 (4.7)</td>
<td>5 (3.1)</td>
<td>10 (6.2)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>217 (67.6)</td>
<td>108 (67.5)</td>
<td>109 (67.7)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td>.54b</td>
</tr>
<tr>
<td>Less than equal to 12th grade</td>
<td>30 (9.3)</td>
<td>16 (10)</td>
<td>14 (8.7)</td>
<td></td>
</tr>
<tr>
<td>Some college, no degree</td>
<td>22 (6.9)</td>
<td>9 (5.6)</td>
<td>13 (8.1)</td>
<td></td>
</tr>
<tr>
<td>Associate degree</td>
<td>36 (11.2)</td>
<td>18 (11.2)</td>
<td>18 (11.2)</td>
<td></td>
</tr>
<tr>
<td>Bachelors</td>
<td>84 (26.2)</td>
<td>36 (22.5)</td>
<td>48 (29.8)</td>
<td></td>
</tr>
<tr>
<td>Higher education</td>
<td>85 (26.5)</td>
<td>48 (30)</td>
<td>37 (23)</td>
<td></td>
</tr>
<tr>
<td>Decline to answer</td>
<td>64 (19.9)</td>
<td>33 (20.6)</td>
<td>31 (19.3)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td>.36c</td>
</tr>
<tr>
<td>Married</td>
<td>238 (74.1)</td>
<td>117 (73.1)</td>
<td>121 (75.2)</td>
<td></td>
</tr>
<tr>
<td>Single, separate, divorced, or widowed</td>
<td>71 (22.1)</td>
<td>39 (24.4)</td>
<td>32 (19.9)</td>
<td></td>
</tr>
<tr>
<td>Unknown or chose “N”</td>
<td>12 (3.7)</td>
<td>4 (2.5)</td>
<td>8 (5)</td>
<td></td>
</tr>
<tr>
<td>Rural versus urban</td>
<td></td>
<td></td>
<td></td>
<td>.01b</td>
</tr>
<tr>
<td>Rural</td>
<td>39 (12.1)</td>
<td>27 (16.9)</td>
<td>12 (7.5)</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>282 (87.9)</td>
<td>133 (83.1)</td>
<td>149 (92.5)</td>
<td></td>
</tr>
<tr>
<td>Portal (online patient messaging system)</td>
<td></td>
<td></td>
<td></td>
<td>.002b</td>
</tr>
<tr>
<td>No</td>
<td>55 (17.1)</td>
<td>38 (23.8)</td>
<td>17 (10.6)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>266 (82.9)</td>
<td>122 (76.2)</td>
<td>144 (89.4)</td>
<td></td>
</tr>
</tbody>
</table>

aTwo-sample 2-tailed t test.
bChi-squared test.
cFisher exact test.
Demographic Correlates to Persistent Nonuse of Video Appointments

Persistent nonusers of video appointments were older than users ($P=.001$). In addition, patients living in rural residences ($P=.01$) were more likely to be persistent nonusers of video appointments. Other demographic factors, such as gender, education, and race, were not significantly different between persistent nonusers and users of video appointments (Table 1).

Institution Site Correlates to Persistent Nonuse of Video Appointments

Patients who sought care at Mayo Clinic Midwest, comprising Mayo Clinic, Rochester, and MCHS, were more likely to be persistent nonusers of video appointments ($P=.02$; Table 1).

Social Correlates to Persistent Nonuse of Video Appointments

Patients without any disability, handicap, or chronic disease were more likely to be persistent nonusers of video appointments than users ($P=.01$; Table 2). Other SDoH-related factors were not statistically significant.
Table 2. Social determinant of health factors associated with using and not using video appointments.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (N=321)</th>
<th>Persistent nonusers of video (n=160)</th>
<th>Users of video (n=161)</th>
<th>P value^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within the past 12 months, did you worry that your food would run out before you got money to buy more?</td>
<td></td>
<td></td>
<td></td>
<td>.12</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No, n (%)</td>
<td>311 (97.2)</td>
<td>157 (98.7)</td>
<td>154 (95.7)</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>7 (2.2)</td>
<td>1 (0.6)</td>
<td>6 (3.7)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer, n (%)</td>
<td>2 (0.6)</td>
<td>1 (0.6)</td>
<td>1 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Within the past 12 months, did the food you bought just not last, and you did not have money to get more?</td>
<td></td>
<td></td>
<td></td>
<td>.45</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No, n (%)</td>
<td>311 (97.5)</td>
<td>156 (98.7)</td>
<td>155 (96.3)</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>7 (2.2)</td>
<td>2 (1.3)</td>
<td>5 (3.1)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer, n (%)</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
<td>1 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Do you have housing?</td>
<td></td>
<td></td>
<td></td>
<td>.10</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No, n (%)</td>
<td>9 (2.8)</td>
<td>7 (4.4)</td>
<td>2 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>310 (96.9)</td>
<td>152 (95.6)</td>
<td>158 (98.1)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer, n (%)</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
<td>1 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Are you worried about losing your housing?</td>
<td></td>
<td></td>
<td></td>
<td>>.99</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No, n (%)</td>
<td>309 (96.6)</td>
<td>154 (96.9)</td>
<td>155 (96.3)</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>9 (2.8)</td>
<td>4 (2.5)</td>
<td>5 (3.1)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer, n (%)</td>
<td>2 (0.6)</td>
<td>1 (0.6)</td>
<td>1 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Within the past 12 months, have you or your family members you live with been without utilities?</td>
<td></td>
<td></td>
<td></td>
<td>.62</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No, n (%)</td>
<td>311 (98.4)</td>
<td>155 (99.4)</td>
<td>156 (97.5)</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>4 (1.3)</td>
<td>1 (0.6)</td>
<td>3 (1.9)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer, n (%)</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
<td>1 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Within the past 12 months, lack of transportation?</td>
<td></td>
<td></td>
<td></td>
<td>.28</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No, n (%)</td>
<td>312 (97.5)</td>
<td>154 (96.9)</td>
<td>158 (98.1)</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>7 (2.2)</td>
<td>5 (3.1)</td>
<td>2 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer, n (%)</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
<td>1 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Within the past 12 months, did you have trouble paying your bills?</td>
<td></td>
<td></td>
<td></td>
<td>.89</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No, n (%)</td>
<td>304 (95)</td>
<td>152 (95.6)</td>
<td>152 (94.4)</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>14 (4.4)</td>
<td>6 (3.8)</td>
<td>8 (5)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer, n (%)</td>
<td>2 (0.6)</td>
<td>1 (0.6)</td>
<td>1 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Does any disability, handicap, or chronic disease make it difficult for you to engage in your typical activities?</td>
<td></td>
<td></td>
<td></td>
<td>.01</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No, n (%)</td>
<td>279 (87.2)</td>
<td>147 (92.5)</td>
<td>132 (82)</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>36 (11.2)</td>
<td>11 (6.9)</td>
<td>25 (15.5)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer, n (%)</td>
<td>5 (1.6)</td>
<td>1 (0.6)</td>
<td>4 (2.5)</td>
<td></td>
</tr>
<tr>
<td>Are you currently working for pay?</td>
<td></td>
<td></td>
<td></td>
<td>.61</td>
</tr>
</tbody>
</table>
Video Encounter-Related Beliefs Correlate to Persistent Nonusers of Video Appointments

Scenario 1: “Imagine you are having a video appointment with a Mayo Clinic doctor for a general medicine health check-up that does not require any procedures or exams. Further, imagine you have seen this doctor before for a face-to-face or in-person visit.” A significantly lower proportion of persistent nonusers responded “agree,” while a significantly higher proportion of persistent nonusers of video appointments responded “somewhat disagree” or “disagree,” respectively, to the following statements in response to this scenario: “I am confident my doctor would be able to address any medical concerns effectively” ($P=.047$), “I am confident I would be able to express all my concerns clearly” ($P=.04$) and “I am confident I would feel comfortable enough to talk openly” ($P<.001$) compared to users (Table 3). No other responses were statistically significantly associated with the comparison groups.
Table 3. Patients' beliefs about video encounters and their association with the use of video appointments.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (N=321)</th>
<th>Persistent nonusers of video (n=160)</th>
<th>Users of video (n=161)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am confident my doctor would be able to address any medical concerns effectively</td>
<td></td>
<td></td>
<td></td>
<td>.047a</td>
</tr>
<tr>
<td>N=miss</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1=agree, n (%)</td>
<td>186 (58.7)</td>
<td>80 (51)</td>
<td>106 (66.2)</td>
<td></td>
</tr>
<tr>
<td>2=somewhat agree, n (%)</td>
<td>91 (28.7)</td>
<td>52 (33.1)</td>
<td>39 (24.4)</td>
<td></td>
</tr>
<tr>
<td>3=somewhat disagree, n (%)</td>
<td>19 (6)</td>
<td>12 (7.6)</td>
<td>7 (4.4)</td>
<td></td>
</tr>
<tr>
<td>4=disagree, n (%)</td>
<td>21 (6.6)</td>
<td>13 (8.3)</td>
<td>8 (5)</td>
<td></td>
</tr>
<tr>
<td>I am confident I would be able to express all my concerns clearly</td>
<td></td>
<td></td>
<td></td>
<td>.04a</td>
</tr>
<tr>
<td>N=miss</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1=agree, n (%)</td>
<td>222 (70.3)</td>
<td>99 (63.1)</td>
<td>123 (77.4)</td>
<td></td>
</tr>
<tr>
<td>2=somewhat agree, n (%)</td>
<td>64 (20.3)</td>
<td>41 (26.1)</td>
<td>23 (14.5)</td>
<td></td>
</tr>
<tr>
<td>3=somewhat disagree, n (%)</td>
<td>16 (5.1)</td>
<td>9 (5.7)</td>
<td>7 (4.4)</td>
<td></td>
</tr>
<tr>
<td>4=disagree, n (%)</td>
<td>14 (4.4)</td>
<td>8 (5.1)</td>
<td>6 (3.8)</td>
<td></td>
</tr>
<tr>
<td>I feel video appointments should cost the same and are of equal value to face-to-face appointments</td>
<td></td>
<td></td>
<td></td>
<td>.09a</td>
</tr>
<tr>
<td>N=miss</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1=agree, n (%)</td>
<td>66 (21)</td>
<td>25 (16)</td>
<td>41 (25.9)</td>
<td></td>
</tr>
<tr>
<td>2=somewhat agree, n (%)</td>
<td>80 (25.5)</td>
<td>45 (28.8)</td>
<td>35 (22.2)</td>
<td></td>
</tr>
<tr>
<td>3=somewhat disagree, n (%)</td>
<td>91 (29)</td>
<td>43 (27.6)</td>
<td>48 (30.4)</td>
<td></td>
</tr>
<tr>
<td>4=disagree, n (%)</td>
<td>77 (24.5)</td>
<td>43 (27.6)</td>
<td>34 (21.5)</td>
<td></td>
</tr>
</tbody>
</table>

Scenario #2: Imagine you are having an appointment with a Mayo Clinic psychiatrist or psychologist that does not require any procedures or exams. Further, imagine you have seen this doctor before for a face-to-face or in-person visit.

I am confident my doctor would be able to address any medical concerns effectively | .09a |
N=miss	7	4	3	
1=agree, n (%)	179 (57)	79 (50.6)	100 (63.3)	
2=somewhat agree, n (%)	81 (25.8)	43 (27.6)	38 (24.1)	
3=somewhat disagree, n (%)	32 (10.2)	21 (13.5)	11 (7)	
4=disagree, n (%)	22 (7)	13 (8.3)	9 (5.7)	

I am confident I would be able to express all my concerns clearly | .03a |
<p>| N=miss | 9 | 5 | 4 |
| 1=agree, n (%) | 193 (61.9) | 84 (54.2) | 109 (69.4) | |
| 2=somewhat agree, n (%) | 72 (23.1) | 41 (26.5) | 31 (19.7) | |
| 3=somewhat disagree, n (%) | 27 (8.7) | 19 (12.3) | 8 (5.1) | |
| 4=disagree, n (%) | 20 (6.4) | 11 (7.1) | 9 (5.7) | |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (N=321)</th>
<th>Persistent nonusers of video (n=160)</th>
<th>Users of video (n=161)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=miss</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1=agree, n (%)</td>
<td>202 (64.7)</td>
<td>84 (54.2)</td>
<td>118 (75.2)</td>
<td></td>
</tr>
<tr>
<td>2=somewhat agree, n (%)</td>
<td>67 (21.5)</td>
<td>42 (27.1)</td>
<td>25 (15.9)</td>
<td></td>
</tr>
<tr>
<td>3=somewhat disagree, n (%)</td>
<td>24 (7.7)</td>
<td>15 (9.7)</td>
<td>9 (5.7)</td>
<td></td>
</tr>
<tr>
<td>4=disagree, n (%)</td>
<td>19 (6.1)</td>
<td>14 (9)</td>
<td>5 (3.2)</td>
<td></td>
</tr>
</tbody>
</table>

I feel video appointments should cost the same and are of equal value to face-to-face appointments

N=miss	9	5	4	.26
1=agree, n (%)	94 (30.1)	39 (25.2)	55 (35)	
2=somewhat agree, n (%)	84 (26.9)	46 (29.7)	38 (24.2)	
3=somewhat disagree, n (%)	70 (22.4)	38 (24.5)	32 (20.4)	
4=disagree, n (%)	64 (20.5)	32 (20.6)	32 (20.4)	

Video encounter-related beliefs not specific to any discipline

<table>
<thead>
<tr>
<th></th>
<th>Total (N=321)</th>
<th>Persistent nonusers of video (n=160)</th>
<th>Users of video (n=161)</th>
<th>P value</th>
</tr>
</thead>
</table>
| I am confident I would be able to understand when the doctor explains my symptoms or health

N=miss	7	5	2	.046
1=agree, n (%)	206 (65.6)	90 (58.1)	116 (73)	
2=somewhat agree, n (%)	79 (25.2)	47 (30.3)	32 (20.1)	
3=somewhat disagree, n (%)	17 (5.4)	10 (6.5)	7 (4.4)	
4=disagree, n (%)	12 (3.8)	8 (5.2)	4 (2.5)	

I am confident I would be able to read my doctor’s facial expressions or nonverbal cues

N=miss	6	5	1	.05
1=agree, n (%)	140 (44.4)	57 (36.8)	83 (51.9)	
2=somewhat agree, n (%)	114 (36.2)	62 (40)	52 (32.5)	
3=somewhat disagree, n (%)	41 (13)	25 (16.1)	16 (10)	
4=disagree, n (%)	20 (6.3)	11 (7.1)	9 (5.6)	

I am confident I would be able to hear my doctor clearly

N=miss	7	6	1	.004
1=agree, n (%)	200 (63.7)	85 (55.2)	115 (71.9)	
2=somewhat agree, n (%)	79 (25.2)	43 (27.9)	36 (22.5)	
3=somewhat disagree, n (%)	22 (7)	16 (10.4)	6 (3.8)	
4=disagree, n (%)	13 (4.1)	10 (6.5)	3 (1.9)	

I would enjoy connecting with my doctor as much as if the appointment were face-to-face

N=miss	4	3	1	.009
1=agree, n (%)	108 (34.1)	40 (25.5)	68 (42.5)	
2=somewhat agree, n (%)	88 (27.8)	46 (29.3)	42 (26.2)	
3=somewhat disagree, n (%)	68 (21.5)	38 (24.2)	30 (18.8)	
4=disagree, n (%)	53 (16.7)	33 (21)	20 (12.5)	

I would feel comfortable talking with a doctor I have met before in-person

N=miss	7	5	2	.16
1=agree, n (%)	221 (70.4)	101 (65.2)	120 (75.5)	
2=somewhat agree, n (%)	64 (20.4)	36 (23.2)	28 (17.6)	
3=somewhat disagree, n (%)	15 (4.8)	8 (5.2)	7 (4.4)	
We further observed that about 50% (161 of 321) of respondents persistently have not engaged with video appointments for health care in a multisite medical institution. We observed that about 50% (161 of 321) of respondents have not used video appointments for health care in our institution (April 2020). We further speculatively observed that factors other than just digital access barriers (which requires smart devices and internet BB connection), we considered to be older, have limited education, and lack the financial resources to invest in BB connections and smartphones. Overall, we observed that those who did not have access to the patient portal system were more likely to be persistent nonusers of video appointments. Only a single SDoH-related factor (not having a disability, handicap, or chronic disease) was associated with persistent nonuse of video appointments. We also observed that individuals held certain personal beliefs about video appointments that were associated with their decision to use versus not use video appointments for health care. The persistent nonusers of video appointments held beliefs that included being potentially uncomfortable communicating with their doctor through video, difficulty reading their doctor’s facial expressions or nonverbal cues, struggle to hear the doctor clearly, and overall better comfort with F2F appointments over video appointments. Much evidence has demonstrated that older patients have limited engagement with telemedicine, including using video appointments for their health care needs [30-32]. Our study observed an analogous association with older age correlated with persistent nonuse of video appointments for health care. Given that few individuals in our sample experienced substantial limitations in SDoH (Table 2) and that most respondents lived in urban dwellings and had access to the online patient portal (which requires smart devices and internet BB connection), we speculate that factors other than just digital access barriers should be considered when approaching older patients for increasing digital engagement. One possible factor is limited interest in digital health care due to negative personal beliefs toward video appointments. Given that older adulthood is a period when many individuals experience a decline in physical and cognitive health and could lose interest in exploring newer concepts (technology in this case), it is essential for health care providers and health care systems to take a patient-centered approach to understand the reasoning behind an older adult patient’s preference for in-person versus video appointment and provide the appropriate support and develop barrier mitigating strategies tailored to age to engage these individuals with needed care. This study found that patients who lived in rural areas were more likely to be persistent nonvideo users. This finding has been established by many studies. A key reason for the rural-urban digital health disparity is unequal access to BB connections. Additionally, individuals living in rural areas tend to be older, have limited education, and lack the financial resources to invest in BB connections and smartphones. Overall, our research effectively collected information on demographic factors associated with persistent nonusers of video appointments.

Discussion

Principal Findings

This cross-sectional study demonstrated demographic and SDoH factors associated with persistent nonusers of video appointments for health care in a multisite medical institution. We observed that about 50% (161 of 321) of respondents persistently have not engaged with video appointments for nonemergent primary and psychiatric care since the start of video appointments in our institution (April 2020). We further observed that patients of older age, those living in rural residences, those who sought care at Mayo Clinic Midwest and those who did not have access to the patient portal system were more likely to be persistent nonusers of video appointments. Only a single SDoH-related factor (not having a disability, handicap, or chronic disease) was associated with persistent nonuse of video appointments. We also observed that individuals held certain personal beliefs about video appointments that were associated with their decision to use versus not use video appointments for health care. The persistent nonusers of video appointments held beliefs that included being potentially uncomfortable communicating with their doctor through video, difficulty reading their doctor’s facial expressions or nonverbal cues, struggle to hear the doctor clearly, and overall better comfort with F2F appointments over video appointments.

Much evidence has demonstrated that older patients have limited engagement with telemedicine, including using video appointments for their health care needs [30-32]. Our study observed an analogous association with older age correlated with persistent nonuse of video appointments for health care. Given that few individuals in our sample experienced substantial limitations in SDoH (Table 2) and that most respondents lived in urban dwellings and had access to the online patient portal (which requires smart devices and internet BB connection), we speculate that factors other than just digital access barriers should be considered when approaching older patients for increasing digital engagement. One possible factor is limited interest in digital health care due to negative personal beliefs toward video appointments. Given that older adulthood is a period when many individuals experience a decline in physical and cognitive health and could lose interest in exploring newer concepts (technology in this case), it is essential for health care providers and health care systems to take a patient-centered approach to understand the reasoning behind an older adult patient’s preference for in-person versus video appointment and provide the appropriate support and develop barrier mitigating strategies tailored to age to engage these individuals with needed care. This study found that patients who lived in rural areas were more likely to be persistent nonvideo users. This finding has been established by many studies. A key reason for the rural-urban digital health disparity is unequal access to BB connections. Additionally, individuals living in rural areas tend to be older, have limited education, and lack the financial resources to invest in BB connections and smartphones. Overall, our research effectively collected information on demographic factors associated with persistent nonusers of video appointments.

Video Encounter-Related Beliefs as a Correlate to Persistent Nonuse of Video Appointments

A significantly lower proportion of persistent nonusers of video appointments responded “agree,” while a significantly higher proportion of persistent nonusers of video appointments responded “somewhat disagree” or “disagree,” respectively, to the following statements: “I am confident I would be able to understand when the doctor explains my symptoms/health” (P=.03), and “I am confident I would feel comfortable enough to talk openly” (P=.001) compared to users. No other responses were statistically significantly associated with the comparison groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (N=321)</th>
<th>Persistent nonusers of video (n=160)</th>
<th>Users of video (n=161)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I would feel comfortable talking with a doctor I have never met before in-person</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4=disagree, n (%)</td>
<td>14 (4.5)</td>
<td>10 (6.5)</td>
<td>4 (2.5)</td>
<td>.01^a</td>
</tr>
<tr>
<td>N=miss</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1=agree, n (%)</td>
<td>84 (26.8)</td>
<td>34 (21.9)</td>
<td>50 (31.4)</td>
<td></td>
</tr>
<tr>
<td>2=somewhat agree, n (%)</td>
<td>102 (32.5)</td>
<td>44 (28.4)</td>
<td>58 (36.5)</td>
<td></td>
</tr>
<tr>
<td>3=somewhat disagree, n (%)</td>
<td>76 (24.2)</td>
<td>44 (28.4)</td>
<td>32 (20.1)</td>
<td></td>
</tr>
<tr>
<td>4=disagree, n (%)</td>
<td>52 (16.6)</td>
<td>33 (21.3)</td>
<td>19 (11.9)</td>
<td></td>
</tr>
</tbody>
</table>

^aChi-squared test.

^bFisher exact test.

Scenario 2: “Imagine you are having an appointment with a Mayo Clinic Psychiatrist or Psychologist that does not require any procedures or exams. Further, imagine you have seen this doctor before for a face-to-face or in-person visit.” A significantly lower proportion of persistent nonusers of video appointments responded “agree,” while a significantly higher proportion of persistent nonusers of video appointments responded “somewhat disagree” or “disagree,” respectively, to the following statements in response to this scenario: “I am confident I would be able to express all my concerns clearly” (P=.046), “I am confident I would be able to read my doctor’s facial expressions or non-verbal cues” (P=.05), “I am confident I would be able to hear my doctor clearly” (P=.004), “I would enjoy connecting with my doctor as much as if the appointment were face-to-face” (P=.009), and “I would feel comfortable talking with a doctor I have never met before in-person” (P=.01) compared to users. No other responses were statistically significantly associated with the comparison groups.
indicators associated with not using video appointments that parallels the geographic demographics of Mayo Clinic, Rochester and various MCHS locations in rural areas with mostly older White residents.

As part of this study, we also aimed to evaluate the social factors or SDoH-related concerns that contributed to the persistent nonusers of video appointments. In our sample, the only factor associated with not using video appointments was not having a disability, handicap, or chronic disease. It is possible that their mobility or health allowed for greater flexibility in choosing an F2F visit or that they simply had fewer visits overall and were, therefore, less likely to choose video visits as an alternative. On the other hand, video appointments could be specifically beneficial for patients with disabilities or chronic illnesses who may have challenges with physical energy or mobility, be at higher risk for contracting illness when in public or have more health care appointments to attend overall. Given that there was limited variation in SDoH within our sample, this may have limited our ability to identify potential correlations between SDoH factors and selecting video or F2F appointments. Large-scale studies with socially diverse patients are required to fully understand the extent to which SDoH factors play in patients’ decision-making in choosing health care delivery methods. This understanding will further enhance patient outreach efforts and strengthen high-impact population health and research initiatives.

Since the pandemic, a significant public effort has been made to increase patients’ digital access at state, federal, and institutional levels [33]. Still, some patients may be unenthusiastic about attending video appointments [14,34]. We found that persistent nonusers of video appointments feel that they may not be able to “express” their concerns and are not able to “feel comfortable enough to talk openly” when having video appointments with primary care and psychiatry practicing physicians. Enjoying F2F encounters better than video appointments and potentially being unable to hear doctors clearly during a video appointment were 2 other beliefs that persistent nonusers of video appointments cited in high proportion. These patients conveyed these beliefs despite evidence of never engaging in video appointments in our institution. It is possible that individuals who consistently do not use video appointments have formed their opinions based on information obtained from sources other than their personal experience. These sources may include internet forums or the opinions of their peers. Another potential explanation could be poor digital experience when they attempted to engage in video appointments due to limited digital access (low-speed internet), language barrier, and low digital and health literacy [35]. It has been widely understood that poor digital experience could trigger patients’ anxiety regarding existing and emerging technology used in health care and may lead to its avoidance. This problem could be solved by appointing a “digital health coordinator” at the institutional level whose sole responsibility should be assisting patients with digital health solutions. This could overcome the perceived reluctance of patients to use digital services for health consultations. In addition, health care institutions should take into account the strong negative attitudes of this group toward video appointments when introducing them to digital technology for health care delivery.

Overall, our study results may inspire researchers to initiate a conversation about video adoption that goes beyond digital access and literacy. Our research examined the impact of SDoH and confidence or belief in video appointments adoption. Previous studies have not investigated which SDoH is most closely associated with video use. Furthermore, individuals with digital access and digital literacy may still choose to refrain from using video appointments. Therefore, objective measures should consider patient beliefs. Health care institutions should assess and evaluate patient preferences when implementing digital health care, especially those with digital competencies.

We have yet to identify any digital literacy (validated) scales that have assessed an individual’s digital belief as one of the variables (negative vs positive) to assess overall digital literacy. From the perspective of behavior change theories [36], it is widely accepted that targeting one’s beliefs is essential for behavior change (digital adoption in this case). Therefore, our study adds novelty to the literature by informing researchers about understanding digital beliefs as a confounder in digital literacy and adoption. We suggest that through the community-based participatory research (CBPR) approach, researchers should attempt to identify facilitators to expedite behavior change. In a subsequent study with a larger sample size, it would be worth exploring if patients with limited interest in video appointments have sufficient digital access and literacy.

Limitations

Our study has several limitations, including the low survey response rate, which may have led to selection bias, resulting in a study population that does not accurately represent the target population, and respondents may differ systematically from nonrespondents. We used the self-reported data and the possibility of recall bias. To help alleviate such a concern, we did verify eligibility and the existence of an F2F appointment via EHR. Additionally, though we tried to enroll participants from diverse backgrounds, the majority of patients in our sample were White, lived in urban areas, and did not experience major social challenges, limiting the generalizability of our findings. Our demographic variables were not extensive due to lack of availability or missing values in the data extracted from EHR.

In addition, the survey did not include factors related to the health care system, such as whether patients requested a video appointment, if video appointments were encouraged and offered to patients, or if video appointments were offered but declined by the patient. The results of our study may also lack generalizability because the sample was derived from Mayo Clinic patients and there was no feasible way to assess if patients sought care outside Mayo Clinic and used video visits. However, we enrolled patients who have their primary care providers (PCPs) at Mayo Clinic (ie, paneled patients), reducing the likelihood of video visits being done outside of our health care system. According to FAIR Health [37], a national database of private and Medicare claims data, only 0.1% of all claims nationally in 2019 were related to telehealth. This percentage was even lower in rural areas. Based on these data, it is highly unlikely for patients with a PCP at Mayo Clinic to seek outside video-based care. It’s important to note that FAIR Health data

https://formative.jmir.org/2024/1/e50572

JMIR Form Res 2024 | vol. 8 | e50572 | p.407

(page number not for citation purposes)
include not just video visits, but also other telehealth technologies such as mobile health, remote patient monitoring, and store and forward technologies. We aimed to gather diverse data by including Mayo Clinic, Arizona, and Mayo Clinic, Florida. Despite a larger number of responses from Florida, the participants who responded were not from a diverse population. The studies show that there are differences in participation rates based on race, including lower rates of completing consent forms and responding to surveys, with Blacks and Hispanics being the most underrepresented [38]. Future work should explore the patterns of video use in more diverse patient populations, especially those who may be more likely to face barriers to health care (eg, patients living in rural areas and patients experiencing challenges with transportation). Our study also had several strengths, including that our sample was drawn from a multistate institution spanning rural and urban settings, the use of a validated measure of SDoH and the inclusion of scenario-based questions to better understand patients’ beliefs about video encounters.

Conclusions
Our study identified sociodemographic factors and personal beliefs about video appointments that influenced patients’ decisions to choose between video versus F2F appointments for health care delivery. The patients who were older, lived in rural residences, sought care at Mayo Clinic Midwest, and who did not have access to the patient portal were more likely to be persistent nonusers of video appointments. We observed a single SDoH factor, that is not having a disability, handicap, or chronic diseases associated with persistent nonusers of video appointments. Not being able to adequately "express" their medical concerns and not “feel comfortable enough to talk openly” and adequately listen to their provider were notable beliefs held by persistent nonusers of video appointments. We recommend that health care institutions consider and evaluate patients’ strong negative beliefs toward video appointments when introducing them to digital technology for health care delivery. Conducting large-scale studies that encompass a diverse range of social and demographic backgrounds is imperative to comprehend why patients prefer video or in-person appointments. Only through such research can we identify the factors that influence their decision-making process.

Acknowledgments
This work was supported by a Mayo Clinic Clinical Practice Committee Eradicating Racism Award and Clinical and Translational Science Awards (CTSA) from the National Center for Advancing Translational Science (grant UL1 TR002377). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health. The funding source had no role in this study’s design or in the collection, analysis, and interpretation of data; in writing the paper; or in the decision to submit the paper for publication. We thank the Mayo Clinic Survey Research Center for providing assistance with the survey design and data collection.

Authors’ Contributions
PS and CP conceptualized this study, performed the investigation, acquired funding, provided resources, designed the methodology, wrote the original draft of the paper, and reviewed and edited the paper. RJ and PAD performed the formal analysis and reviewed and edited the paper. TB, CK, AR, PS, and VP reviewed and edited the paper.

Conflicts of Interest
PS is a recipient of the Robert A Winn Diversity in Clinical Trials Career Development Award, funded by the Bristol Myers Squibb Foundation.

Multimedia Appendix 1
Novel Strategies to Increase Telehealth Engagement (NSITE) Survey.
[PDF File (Adobe PDF File), 1455 KB - formative_v8i1e50572_app1.pdf]

References

Abbreviations

BB: broadband
EHR: electronic health record
F2F: face-to-face
MCHS: Mayo Clinic Health System
PCP: primary care provider
SDoH: social determinants of health
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Transfer of Knowledge on Pneumoconiosis Care Among Rural-Based Members of a Digital Community of Practice: Cross-Sectional Study

Brian Soller¹, PhD; Orrin Myers², PhD; Akshay Sood³,⁴, MPH, MD

¹Department of Sociology, Anthropology, and Public Health, University of Maryland Baltimore County, Baltimore, MD, United States
²Department of Family and Community Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
³Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
⁴Miners Colfax Medical Center, Raton, NM, United States

Corresponding Author:
Akshay Sood, MPH, MD
Department of Internal Medicine
University of New Mexico Health Sciences Center
1 University of New Mexico MSC 10 5550
Albuquerque, NM, 871310001
United States
Phone: 1 5052724751
Fax: 1 5052728700
Email: asood@salud.unm.edu

Abstract

Background: Given the re-emergence of coal workers’ pneumoconiosis in Appalachia and Mountain West United States, there is a tremendous need to train rural professionals in its multidisciplinary management. Since 2016, the Miners’ Wellness TeleECHO (Extension for Community Health Outcomes) Program held by the University of New Mexico, Albuquerque, and Miners’ Colfax Medical Center, Raton, New Mexico, provides structured longitudinal multidisciplinary telementoring to diverse professionals taking care of miners by creating a digital community of practice. Program sessions emphasize active learning through discussion, rather than didactic training. Professional stakeholder groups include respiratory therapists, home health professionals, benefits counselors, lawyers or attorneys, clinicians, and others. Rural-urban differences in knowledge transfer in such a community of practice, however, remain unknown.

Objective: We aim to evaluate the role of the rurality of the patient or client base in the transfer of knowledge to professionals caring for miners using the digital community of practice approach.

Methods: This is a cross-sectional study of 70 professionals participating in the Miners’ Wellness TeleECHO Program between 2018 and 2019. Drawing insights from social network analysis, we examined the association between the rurality of participants’ patient or client base and their self-reported receipt of knowledge. Our focal independent variable was the respondent’s self-reported percentage of patients or clients who reside in rural areas. We measured knowledge transfer sources by asking participants if they received knowledge regarding the care of miners by creating a digital community of practice. Program sessions emphasize active learning through discussion, rather than didactic training. Professional stakeholder groups include respiratory therapists, home health professionals, benefits counselors, lawyers or attorneys, clinicians, and others. Rural-urban differences in knowledge transfer in such a community of practice, however, remain unknown.

Results: Respondents, on average, identified 4.46 (SD 3.16) unique knowledge sources within the community, with a greater number of cross-stakeholder knowledge sources (2.80) than same stakeholder knowledge sources (1.72). The mean knowledge source range was 2.50 (SD 1.29), indicating that, on average, respondents received knowledge sources from roughly half of the 5 stakeholder groups. Finally, the mean heterogeneity of knowledge sources, which can range between 0 and 0.80, was near the midpoint of the scale at 0.44 (SD 0.30). Multivariable analyses revealed that as the rurality of patient or client bases increased, participants reported more knowledge sources overall, more knowledge sources from outside of their stakeholder groups, a higher knowledge source range, and greater heterogeneity of knowledge sources (P<.05 for all comparisons).

Conclusions: Our findings suggest that participants who serve rural areas especially benefit from knowledge transfer within the TeleECHO community of practice. Additionally, the knowledge they receive comes from diverse information sources,
emphasizing its multidisciplinary nature. Our results underscore the capacity of the TeleECHO model to leverage technology to promote rural health equity for miners.

JMIR Form Res 2024;8:e52414 doi:10.2196/52414

KEYWORDS

community of practice; knowledge transfer; pneumoconiosis; telementoring; rural health care; transfer; information; rural; virtual community; lung diseases; lung disease; rural professionals; rural professional; multidisciplinary management; multidisciplinary; miners; miner; health equity

Introduction

Recent studies reveal an increasing prevalence and severity of pneumoconiosis (ie, dust-related lung diseases) among US coal workers since the late 1990s [1-7]. Data from the US Coal Workers Health Surveillance Program indicated that the 2017 prevalence of radiographic pneumoconiosis for coal miners with over 25 years of underground mining experience was greater than 10%, which was double the prevalence from the late 1990s. Similarly, the 2014 rate of complicated pneumoconiosis (a particularly deadly form) among long-tenured underground coal miners was 1.1%, compared to 0.3% at its lowest point in the late 1990s [7,8]. This re-emergence of pneumoconiosis presents unique challenges for rural communities. US counties with the highest mortality rates for pneumoconiosis are concentrated in rural contexts with long histories of mining, such as the Rocky Mountain states and central Appalachia [9]. The prevalence of radiographic pneumoconiosis and complicated pneumoconiosis in rural central Appalachian miners, in particular, is much higher than the national average [6]. While the number of miners requiring specialized care has increased, multidisciplinary expertise and access to complex care for pneumoconiosis have decreased in rural areas [10]. Compared with urban residents, residents of rural areas have less access to outpatient pulmonary rehabilitation [11] or pulmonologist services [12]. Rural practitioners also face unique challenges, including professional isolation and complex patient profiles [13], and describe multiple barriers to knowledge acquisition, such as resources and personal costs, physical distance, and time [14]. Such challenges amplify health inequities and mandate innovative approaches to enhance the health and well-being of rural miners, who constitute an underserved, geographically isolated, medically vulnerable, and often underinsured population [10].

Increasing access to education and mentoring of rural professionals involved in the multidisciplinary care of miners can ameliorate the current dearth of skilled expertise in mining-related diseases in rural areas. The multidisciplinary skills required include medicolegal, clinical, and “soft” skills, the latter including the interpersonal and communication skills needed to navigate highly collaborative work in the care of miners. Insufficient expertise among rural providers in these diverse skills demands innovative education and mentoring solutions.

The Miners’ Wellness TeleECHO (Extension for Community Health Outcomes) Program was established in 2016 to provide structured longitudinal multidisciplinary telementoring to members of professional groups caring for miners who reside in pneumoconiosis mortality hotspots in the United States [9]. Professional stakeholder groups include respiratory therapists, home health professionals, benefits counselors, lawyers or attorneys, clinicians, and others. These members from various stakeholder groups constitute a digital community of practice, or a group of people who “share a concern or a passion for something they do and learn how to do better as they interact regularly” [15]. This approach facilitates knowledge transfer and translation among participants. Knowledge transfer refers to the transmission of information and insights between people or groups [16,17], and knowledge translation involves enhancing users’ awareness of multidisciplinary knowledge and its use in day-to-day work and decision-making in the “real world” [16-18]. Importantly, little is known about how digital communities of practice transfer knowledge across professional stakeholder groups that tend to be geographically isolated, such as rural home health care workers and clinicians or specialists. Thus, examining the patterns of knowledge transfer in such communities of practice can provide insight into how technology can be leveraged to enhance care of complex disease in rural settings and how to promote shared objectives within communities of practice.

Preliminary studies indicate a favorable impact of the ECHO telementoring strategies on providers’ self-efficacy in the care of miners [19], adding to the knowledge base about how the ECHO model can enhance the management of other chronic diseases [20-22]. The rurality of the patient bases for those serving miners limits professionals’ capacity to seek and obtain specialized knowledge concerning the care of pneumoconiosis. This specialized knowledge tends to be concentrated within groups from urban areas, where academic health centers are located. Conversely, urban and suburban practitioners may have limited knowledge concerning the day-to-day challenges of rural patients undergoing treatment for complex diseases. The complexity and interdisciplinary nature of care for pneumoconiosis, coupled with the decline of multidisciplinary knowledge sources within rural areas, underscores the need for specialized knowledge transfer to underserved rural areas. Digital communities of practice are well-equipped to transfer multiple kinds of knowledge [23] across stakeholder groups. First, digital meetings help counteract large geographic distances, thereby providing opportunities for transmitting knowledge concerning facts (eg, know-what) and practical knowledge, skills, and expertise (eg, know-how) among otherwise isolated community members. Perhaps equally important, digital communities of practice help members make social connections and leverage their social
networks to gain more access to practical skills and best practices and to adapt to the evolving needs of patients [23]. Understanding knowledge transfer between the community of practice participants from urban and rural patient or client bases is, therefore, essential but has not been fully evaluated—in turn, constituting a critical gap in knowledge. Addressing this knowledge gap can inform evidence-based interventions to enhance future efforts aimed at providing interdisciplinary care for rural miners.

This study evaluates the transfer of knowledge to professionals caring for miners using the digital community of practice approach. We integrate methods from social network analysis to examine patterns of knowledge transfer within and across stakeholder groups within a digital community of practice. We consider the association between the rurality of professionals’ patient or client base and (1) the number of knowledge sources from within the community of practice, (2) the number of knowledge sources outside one’s stakeholder group, (3) the number of knowledge sources within one’s stakeholder group, and (4) the range and heterogeneity in knowledge sources across stakeholder groups. Our study represents a crucial step in assessing the potential to reduce health inequity through greater investment in workforce diversity and interprofessional telementoring efforts that promote collaborative health care in medically underserved mining communities. Our study thus has important implications for understanding how technology fused with specialized expertise can be used to address complex health issues within rural, remote, and medically underserved communities and begin to address health inequities rooted in unequal access to medical care, more broadly. This approach may help rural communities counter the re-emergence of the pneumoconiosis epidemic.

Methods

Study Design

This is a cross-sectional study of professionals participating in the Miners’ Wellness TeleECHO Program, a community-university partnership between a small rural hospital—Miners’ Colfax Medical Center—and its academic partner—University of New Mexico School of Medicine, together constituting the “hub” site of experts. Stakeholder groups include clinical professional groups (clinicians, respiratory therapists, and home health professionals) and nonclinical professional groups (ie, benefits counselors, lawyers or attorneys, and others, including policymakers, administrators, and mine safety officers), constituting the “spoke” sites located across the United States. The hub and spoke partners regularly engage in telementoring and together form a digital community of practice.

Recruitment

This study was based on a convenience sample of 70 participants who volunteered to complete this study’s survey, among all program attendees invited, during the 1-year study duration from September 12, 2018, to September 18, 2019. Core program faculty did not participate in the survey.

Program Description

As detailed in a previous publication [19], TeleECHO sessions have a uniform format and are held at the same time twice every month, lasting 75 minutes. Program sessions begin with 10-minutes of introductions and announcements, followed by a 15-minute didactic delivered by an invited expert and a 20-minute facilitated question-answer session. Next, the program director facilitates a 30-minute interactive case discussion. Program sessions emphasize active learning through discussion, rather than didactic training. Participants earn continuing medical education (CME) credits without charge, upon completing a CME survey. A multidisciplinary curriculum committee follows a structured curriculum that is continually adapted based on the needs of the learning community, which are identified through review of the CME feedback reports. Attendance at ECHO sessions is open and voluntary, which allows those not presenting a case to view the didactic, partake in case discussions, contribute insight from professional experiences, and learn from the expert panel. Participants can also access experts at hub or spoke sites for urgent consultation outside of program sessions through telephone or electronic correspondence. Recorded didactic sessions are made available through a web-based archive.

Program Development

Since July 2016, our program has used the ECHO model to provide long-term and structured telementoring in the care of miners. This approach deviates from traditional telemedicine where providers assume short-term direct care of individual patients [24]. Further, unlike webinars or traditional didactic lectures, the ECHO model provides an interactive discussion of cases with expert panels in real-time that is highly contextualized and adheres to key learning theory principles. As detailed in a previous publication [19], the ECHO model is based on the following five key principles. (1) The model uses internet-based technology for multipoint videoconferencing, to leverage scarce resources. (2) It uses an established disease-management model associated with best evidence for that disease that has been demonstrated to improve outcomes by reducing variation in processes of care and sharing best practices [21,22,25,26]. (3) It uses the principle of case-based learning for participants to learn with guidance from mentors, based on discussion, questions, and investigation of patient cases under their care. Over time, with iterative practice and feedback, participants gain knowledge and skills and progressively become more independent. (4) It creates a digital community of practice, which emphasizes reciprocity in the sharing of skills and information, and acknowledges that all participants bring useful expertise in the care of miners. Through regular interaction, community members increase their own expertise and that of other participants. As a result, the program aims to increase the ability of individual participants to (a) refer miners appropriately to other experts, (b) accept miner referrals from other experts, and (c) to serve as local experts for less experienced community professionals, thereby improving the care of miners. (5) Finally, it uses an internet-based database (ie, iECHO software) to monitor participant outcomes.
Outcomes

We conceptualized knowledge transfer as the transmission of “facts, experiences, and insights” between people or groups [16,17]. We used a social network approach to examine knowledge transfer among community members by measuring respondents’ number of unique knowledge sources. We also considered the stakeholder group where knowledge originates, which allows us to examine the extent to which participants receive interdisciplinary knowledge from others outside of their own stakeholder groups as well as the overall distribution of knowledge sources across stakeholder groups.

We measured knowledge transfer sources by asking participants if they received new and important knowledge regarding the care of miners during and outside of TeleECHO sessions from each of the other participants. To measure knowledge transfer, respondents were given rosters that included names of all registered participants, with the option of providing additional names not on the roster. Rosters were arranged by stakeholder groups to reduce respondent burden and assist recall. We used these nominations to measure our dependent variables that capture unique dimensions of knowledge transfer. Our first dependent variable, number of knowledge sources, is the count of other participants from whom respondents received new and important knowledge (regardless of the source’s stakeholder group).

Apart from the number of knowledge sources, we tested whether rural participants report greater numbers of knowledge sources from outside of their primary stakeholder group. We thus measured the number of cross-stakeholder knowledge sources, which captures the number of participants from whom respondents received knowledge who were outside of respondents’ stakeholder group. We also analyzed the number of same stakeholder knowledge sources, with a measure capturing the number of participants from whom respondents received knowledge that were in the same stakeholder group as the focal respondent.

We also consider 2 dimensions of diversity in the sources of knowledge transfer among respondents. Range captures the extent to which individuals are connected to others from different social systems or interpersonal environments (eg, employers, associations, and schools) [27,28]. Importantly, a higher range level translates to greater access to nonredundant information [29]. We measure knowledge source range by calculating the number of unique stakeholder groups from which respondents reported receiving knowledge. This variable ranges from 0 to 5, with 0 indicating respondents reported no knowledge sources to 5 indicating respondents received knowledge from at least one member from each of the 5-stakeholder groups.

Our second measure capturing the diversity of knowledge sources is heterogeneity of knowledge sources. Our measure of heterogeneity of knowledge sources taps the distribution of knowledge sources across stakeholder groups for each respondent and is calculated as follows [30]:

Here, A_j is the number of knowledge sources that belong to a stakeholder group j, ks is the number of knowledge sources, and n is the total number of stakeholder groups from which the focal respondent reported receiving knowledge (ie, knowledge source range). Heterogeneity increases when respondents receive knowledge from a larger number of different stakeholder groups (ie, have high knowledge source range) and the knowledge sources are equally distributed across the stakeholder groups. In our study, this measure potentially ranges from 0 to 0.8, with higher values indicating greater heterogeneity in knowledge sources. Note, heterogeneity is undefined for respondents reporting 0 knowledge sources, which was the case for 2 of our respondents, who were excluded for analyses of heterogeneity.

Independent Variables

Our focal independent variable captures the level of rurality among a respondent’s patient or client base. The measure is based on the percent of patients or clients who reside in rural areas, as self-reported by the participant. Initial responses were ordinal and included five categories: 1 (0% to 20%), 2 (21% to 40%), 3 (41% to 60%), 4 (61% to 80%), and 5 (81% to 100%). For this study, we collapsed the ordinal variable into a binary variable indicating rural patient or client base, which equals 1 if 41% to 100% of a respondent’s patient or client base resided in rural areas, and 0 if only 0% to 40% of their patients or clients lived in rural areas. We collapsed the categories for 2 reasons. First, exploratory analyses revealed that only 5 respondents reported serving a 21% to 40% rural patient or client base. Second, comparisons of the means of the knowledge source variables across levels of patient or client rurality suggested a threshold effect, with only minimal differences in the outcomes for those serving 0% to 20% versus 21% to 40% rural patient or client base but large differences between these combined categories and those serving a 41% or greater rural patient or client base. The results based on the original 5-category ordinal variable were similar to those presented in this study.

Covariates

Multivariable models include control variables to account for potential confounding between the association between patient or client rurality and our outcomes. Experienced versus fresh participant: fresh participants were defined as those who first attended the community of practice in or after the summer of 2018 (defined as from May 9, 2018, onwards) versus experienced participants (defined by those who had first attended any time between July 1, 2016, and May 8, 2018). Experienced participants had greater cumulative participation and therefore, experience with the TeleECHO Program than fresh participants (11.4, SD 9.8 vs 4.6, SD 4.6 total sessions attended before or during this study’s timeframe: $P=.03$). This cutoff date was chosen based on the date of funding by the sponsor, which allowed the frequency of the TeleECHO Program to be raised from monthly to twice a month. Respondents’ length of care for miners taps the number of years each participant reported having served miners. Initial responses were measured in years. To aid in the interpretation of our regression results, we divide the reported number of years cared for miners by 10, so that the variable captures the number of decades respondents reported having cared for miners.
We also control for participant demographics. We control for age with 2 dummy variables indicating 51 to 60 years old and older than 60 years (1=yes, 0=no) with younger than 50 years old serving as the reference category. Male sex is binary and indicates the respondent reported a male sex identity (1=yes, 0=no). Respondents reported their race and Hispanic ethnicity status. Based on the responses from these questions, respondents were initially categorized as either Asian, non-Hispanic-Black or African American, Hispanic, multiracial or some other race, or non-Hispanic White. We report the percentages of respondents in each race or ethnic category but collapsed categories into a binary variable indicating non-White (1=yes, non-Hispanic White is the reference) in our regression analyses due to the small sizes of non-White racial or ethnic groups in the sample. Alternative methods of collapsing race or ethnic categories resulted in similar findings as those presented here.

Data Collection
The program monitored the number of sessions, learners, unique learners, geographical sites of learners, and patient cases presented (using the iECHO software). Survey data were collected using the REDCap (Research Electronic Data Capture; Vanderbilt University), a secure web app for building and managing online surveys and databases.

Analytic Strategy
All analyses were conducted in Stata/MP (version 16.0; StataCorp LLC). We used negative binomial regressions to analyze the total number of knowledge sources, number of cross-stakeholder knowledge sources, and number of same stakeholder knowledge sources, which were discrete counts and were over dispersed. Ordinary least squares regression was used to analyze knowledge source diversity and knowledge source heterogeneity. Model coefficients (\(b\)) and SE were used to summarize effect sizes. Data missingness due to nonresponse was minimal, with 2 respondents declining to report their age, 1 respondent declining to report on length of care for miners, and 1 respondent declining to report on rurality (for a total of 3 respondents having missing data on at least 1 variable). Missing values on these measures were imputed using the Stata ice procedure [31], and models were estimated with 10 imputed data sets using the mi command suite in Stata 16. The results based on unimputed data using listwise deletion were nearly identical to those presented here.

Ethics Considerations
Approval was obtained from the institutional review board, Human Research Protections Office, at the University of New Mexico Health Sciences Center (18-386). Anonymized consent was obtained from all participants. Study data were deidentified for analysis to maintain confidentiality. All participants were provided an electronic merchandise card of US $50 upon survey completion.

Results
Table 1 shows the descriptive characteristics of the 70 ECHO participants caring for pneumoconiosis in a cross-sectional study during the timeframe of 2018-2019.
Table 1. Descriptive characteristics of study participants (N=70).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge source variables, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Number of knowledge sources (N=70)</td>
<td>4.46 (3.16)</td>
</tr>
<tr>
<td>Same stakeholder knowledge sources (n=61)</td>
<td>1.72 (1.46)</td>
</tr>
<tr>
<td>Cross-stakeholder knowledge sources (n=61)</td>
<td>2.80 (2.63)</td>
</tr>
<tr>
<td>Knowledge source range (N=70)</td>
<td>2.50 (1.29)</td>
</tr>
<tr>
<td>Heterogeneity of knowledge sources (n=68)</td>
<td>0.44 (0.30)</td>
</tr>
<tr>
<td>Age group (y), n (%)</td>
<td></td>
</tr>
<tr>
<td>50 or younger</td>
<td>36 (51)</td>
</tr>
<tr>
<td>51 to 60</td>
<td>15 (21)</td>
</tr>
<tr>
<td>Older than 60</td>
<td>19 (27)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45 (64)</td>
</tr>
<tr>
<td>Male</td>
<td>25 (36)</td>
</tr>
<tr>
<td>Race or ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>6 (9)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>5 (7)</td>
</tr>
<tr>
<td>Non-Hispanic Black or African American</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>55 (79)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Primary stakeholder group, n (%)</td>
<td></td>
</tr>
<tr>
<td>Clinician</td>
<td>20 (29)</td>
</tr>
<tr>
<td>Respiratory therapist</td>
<td>12 (17)</td>
</tr>
<tr>
<td>Lawyer or attorney</td>
<td>7 (10)</td>
</tr>
<tr>
<td>Benefits counselor</td>
<td>8 (11)</td>
</tr>
<tr>
<td>Home health professional</td>
<td>14 (20)</td>
</tr>
<tr>
<td>Others</td>
<td>9 (13)</td>
</tr>
<tr>
<td>Rurality of patient or client base, n (%)</td>
<td></td>
</tr>
<tr>
<td>Nonrural patient or client base</td>
<td>19 (27)</td>
</tr>
<tr>
<td>Rural patient or client base</td>
<td>51 (73)</td>
</tr>
<tr>
<td>Participant experience, n (%)</td>
<td></td>
</tr>
<tr>
<td>Fresh participant</td>
<td>40 (57)</td>
</tr>
<tr>
<td>Experienced participant</td>
<td>30 (43)</td>
</tr>
<tr>
<td>Decades serving miners (N=70), mean (SD)</td>
<td>0.76 (0.72)</td>
</tr>
</tbody>
</table>

Knowledge Source Variables Among all Participants
Respondents, on average, identified 4.46 (SD 3.16) unique knowledge sources within the community. Respondents, on average, reported greater numbers of cross-stakeholder knowledge sources (2.80, SD 2.63) than same stakeholder knowledge sources (1.72, SD 1.46). The mean knowledge source range was 2.50 (SD 1.29), indicating that, on average, respondents received knowledge sources from roughly half of the 5 stakeholder groups. Finally, the mean heterogeneity of knowledge sources, which can range between 0 and 0.80, was near the midpoint of the scale at 0.44 (SD 0.30).

Knowledge Source Variables Among Participants Serving Rural Versus Nonrural Bases
We explain the means of the knowledge source measures among those serving rural versus nonrural patient or client bases. Those serving rural patient or client bases, on average, reported 5.00 (SD 3.13) unique knowledge sources compared to 3.00 (SD 2.88) among those primarily serving nonrural patients or clients. There was only a minor difference in the mean number of same
stakeholder knowledge sources for those serving rural (1.68, SD 1.42) versus nonrural (1.86, SD 1.66) patients or clients. However, rural providers, on average, identified 3.30 (SD 2.61) cross-stakeholder knowledge sources, whereas nonrural providers, on average, identified 1.14 (SD 1.99) cross-stakeholder knowledge sources. Finally, comparing the measures of diversity of knowledge sources, those serving rural patients or clients had a higher mean knowledge source range 2.78 (SD 1.22) versus 1.74 (SD 1.19) and mean knowledge source heterogeneity 0.52 (SD 0.25) versus 0.23 (SD 0.31) than those serving primarily nonrural patients or clients.

Multivariable Results

Table 2 presents results from multivariable regression models of the different dimensions of knowledge transfer.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Model 1: number of knowledge sources (N=70)</th>
<th>Model 2: same stakeholder knowledge sources (n=61)</th>
<th>Model 3: cross-stakeholder knowledge sources (n=61)</th>
<th>Model 4: knowledge source range (n=70)</th>
<th>Model 5: heterogeneity of knowledge, sources (n=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b (SE)</td>
<td>P value</td>
<td>b (SE)</td>
<td>P value</td>
<td>b (SE)</td>
</tr>
<tr>
<td>Rurality</td>
<td>0.50 (0.22)</td>
<td>.02</td>
<td>0.04 (0.26)</td>
<td>.89</td>
<td>0.91 (0.37)</td>
</tr>
<tr>
<td>Age (y; ≤50 y is the reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-60</td>
<td>-0.05 (0.24)</td>
<td>.84</td>
<td>0.67 (0.30)</td>
<td>.03</td>
<td>-0.33 (0.34)</td>
</tr>
<tr>
<td>>60</td>
<td>-0.35 (0.28)</td>
<td>.22</td>
<td>0.14 (0.34)</td>
<td>.68</td>
<td>-0.52 (0.40)</td>
</tr>
<tr>
<td>Male sex (female sex is the reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-White (non-Hispanic White is the reference)</td>
<td>0.32 (0.22)</td>
<td>.14</td>
<td>-0.24 (0.30)</td>
<td>.41</td>
<td>0.62 (0.34)</td>
</tr>
<tr>
<td>Stakeholder group (clinical provider is the reference)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory therapist</td>
<td>0.15 (0.27)</td>
<td>.58</td>
<td>-0.50 (0.36)</td>
<td>.17</td>
<td>0.54 (0.37)</td>
</tr>
<tr>
<td>Lawyer or attorney</td>
<td>-0.04 (0.32)</td>
<td>.89</td>
<td>-0.50 (0.41)</td>
<td>.23</td>
<td>0.36 (0.45)</td>
</tr>
<tr>
<td>Benefits counselor</td>
<td>0.29 (0.29)</td>
<td>.31</td>
<td>-0.82 (0.43)</td>
<td>.06</td>
<td>0.84 (0.39)</td>
</tr>
<tr>
<td>Home health professional</td>
<td>0.34 (0.25)</td>
<td>.18</td>
<td>0.20 (0.30)</td>
<td>.50</td>
<td>0.38 (0.36)</td>
</tr>
<tr>
<td>Others</td>
<td>0.20 (0.29)</td>
<td>.50</td>
<td>-0.17 (0.21)</td>
<td>.42</td>
<td>0.74 (0.25)</td>
</tr>
<tr>
<td>Experienced participant (fresh participant is the reference)</td>
<td>0.37 (0.17)</td>
<td>.03</td>
<td>-0.17 (0.21)</td>
<td>.42</td>
<td>0.74 (0.25)</td>
</tr>
<tr>
<td>Decades serving miners</td>
<td>0.18 (0.16)</td>
<td>.24</td>
<td>0.08 (0.19)</td>
<td>.68</td>
<td>0.17 (0.24)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.68 (0.30)</td>
<td>.02</td>
<td>0.66 (0.35)</td>
<td>.06</td>
<td>-0.58 (0.45)</td>
</tr>
</tbody>
</table>

a P values obtained from 2-tailed tests.

b In these models, our dependent variables are knowledge sources, that is, other participants from whom respondents (ie, targets) received new and important knowledge (within and outside the source’s stakeholder group).

c Not available.

Number of Knowledge Sources

Model 1 examines the number of knowledge sources using a negative binomial regression. The results indicate that rural patient or client base is positively associated with the number of knowledge sources (*b*=0.50; *P*=.02). This finding suggests that providers serving rural clients or patients identify greater numbers of knowledge sources within the community of practice than participants whose patients or clients reside in nonrural areas, even after accounting for key confounders. Compared with fresh participants, experienced participants report greater numbers of knowledge sources (*b*=0.37; *P*=.03). No other participant characteristics were significantly associated with the number of knowledge sources (all *P*>.05).

Number of Same Stakeholder and Cross-Stakeholder Knowledge Sources

Models 2 and 3 examine the number of same stakeholder and cross-stakeholder knowledge sources, respectively. These models provide insight into whether participants tend to identify
knowledge sources from within or outside of their primary stakeholder groups. Note, participants from “Other” stakeholder groups were dropped from Models 2 and 3, as they by definition have all different stakeholder ties and 0 same stakeholder ties. The results from Model 2 indicate that rural patient or client base has a nonsignificant association with the number of same stakeholder knowledge sources \((b=0.04; P=.89)\). Compared with those aged 50 years or younger, participants between the ages of 51 and 60 years report more ties to members of the same stakeholder group \((b=0.67; P=.03)\). Turning to Model 3, which examines the number of cross-stakeholder knowledge sources, the rurality of the patient or client base was positively associated with the number of cross-stakeholder ties \((b=0.91; P=.01)\). This indicates that participants serving larger proportions of rural patients or clients reported larger numbers of cross-stakeholder knowledge sources than those serving smaller proportions of rural patients or clients. Additionally, experienced participants report larger numbers of cross-stakeholder knowledge sources than fresh and new participants \((b=0.74; P=.003)\) and benefits counselors report larger numbers of cross-stakeholder knowledge sources than clinicians \((b=0.84; P=.03)\).

Range and Heterogeneity of Knowledge Sources

The final models in Table 2 examine the range and heterogeneity of participants’ knowledge sources. These models provide insight into the number of different stakeholder groups from which participants received knowledge, and the extent to which participants’ knowledge sources are equally dispersed across different stakeholder groups. Turning to Model 4, which is a linear regression of knowledge source range, we found that a rural patient or client base has a positive and significant coefficient \((b=0.92; P=.01)\). Model 4 also indicates that experienced participants reported higher knowledge source range than fresh and new participants \((b=0.70; P=.03)\).

Finally, Model 5 examines the association between rurality and participants’ knowledge source heterogeneity. Whereas range is the count of the number of unique stakeholder groups from which participants receive knowledge, knowledge source heterogeneity also assesses whether stakeholders from which participants receive knowledge tend to be concentrated in 1 stakeholder group (low heterogeneity) versus equally distributed across multiple groups (high heterogeneity). Note, that because knowledge source heterogeneity can only be measured among participants with at least one knowledge source, Model 5 excludes 2 respondents who reported 0 knowledge sources. Patient or client rurality was positively associated with participants’ heterogeneity of knowledge sources \((b=0.25; P=.003)\), indicating knowledge sources are more equally distributed across stakeholder groups as the rurality of their patient and client bases increased.

Discussion

Principal Findings

Community of practice participants with higher proportions of rural patient or client base, on average, report more knowledge sources overall, more knowledge sources from outside of their stakeholder groups, a higher knowledge source range, and greater heterogeneity of knowledge sources than those with a lower proportion of rural patient or client base. These findings were confirmed after adjustment for potential confounders in regression analyses. More broadly, these findings suggest participants who serve rural areas especially benefit from knowledge transfer within the TeleECHO community of practice. Additionally, the knowledge they receive comes from diverse information sources, emphasizing its multidisciplinary nature.

Further, 1 primary objective of Project ECHO is to decentralize knowledge for the care of patients through exchanging insights and information. Knowledge transfer is key to enhancing the care of complex disease by timely, evidence-based information shared by experts who have used, amplified, and applied this knowledge with interested professionals who (1) are seeking knowledge to assist their patients or clients and (2) through its application, increase access to complex disease care for patients in rural and underserved communities. Project ECHO supports knowledge transfer within the community of practice, through experts sharing and discussing evidence in association with challenging questions with which professionals at program spoke sites are wresting. Our study suggests this knowledge transfer may be particularly effective among professionals with longer experience with the program.

Professionals in rural mining communities often lack access to traditional knowledge sources. This disparity results from professional isolation; challenges with continuing professional education that requires travel to a distant site for participation with resultant closure of their practices, often without adequate coverage available; and unavailability of specialists with more in-depth knowledge about the clinical, medicolegal, and interpersonal aspects of care of miners. The need to increase access to information for rural professionals is, therefore, obvious. To this end, information technology has come to the fore. However, research suggests that even when electronic information services are provided to rural practitioners, they may not be well used [32]. The lack of information handling skills, lack of time, and perceived peripherality to the job are all seen as major constraints [33,34]. However, our study challenges this belief by demonstrating that professionals serving rural areas especially benefit from access to knowledge through the innovative TeleECHO model, which would otherwise remain siloed within stakeholder groups. Further, the knowledge source range and heterogeneity that the TeleECHO model promotes may allow greater access to thought-provoking ideas that foster learning and other growth-enhancing actions [27,35]. To the best of our knowledge, our approach of studying patterns of knowledge transfer, using social network analysis tools, has never been used previously.

Strengths

Our study has multiple strengths. It involves an innovative intervention that addresses the barriers to the care of miners by using the TeleECHO model, which provides a multidisciplinary community of practice approach, using internet-based technology, an approach that has been well studied in other diseases [21,22,25,26]. This study is topical and significant because it addresses a critical gap related to the emerging pneumoconiosis epidemic in the rural United States. Since the
ECHO model has been adopted nationally and globally to improve rural access to care for patients with numerous chronic diseases, there already exists infrastructure to allow for rapid scaling of the Miners’ Wellness TeleECHO Program nationally and globally.

Limitations
There are also limitations to this study. We are unable to correlate knowledge transfer to patient outcomes or changes in provider behavior. We have, however, previously published a listing of qualitative changes that our ECHO participants reported they were going to make in their practice, obtained as part of a CME survey requested at the end of each TeleECHO session [36]. Although a small sample size raises the possibility of a type I error, individual professionals and teams of professionals trained in the ECHO model can reach a large number of miners, with the potential for creating exponential change. High-risk individuals who did not volunteer to participate in this study would not have provided information in the estimation of the program effects, thus introducing an element of potential participation bias. The knowledge transfer instrument was not validated in this study. Program participants had variable competencies, with varying levels of sophistication, commitment, expertise, experience, and historic levels of collaboration within the TeleECHO Program. However, adjustment for participant experience with the TeleECHO Program or length of care for miners in the multivariable models did not change our study findings. Intergenerational, interinstitutional, and rural-urban disparities in ability to leverage technology by participating professionals may challenge empirical examinations of knowledge transfer. Finally, data limitations, including survey nonparticipation by the core program faculty and survey nonresponse among the TeleECHO Program participants, preclude the use of complex social network analysis methods (eg, exponential random graph models) commonly used to examine network selection processes in our study. Although our methods are adequate for examining associations between participating characteristics and the number, range, and heterogeneity of knowledge sources, we are unable to examine how network processes such as reciprocal knowledge transfer operate within the learning community.

Conclusions
Despite these limitations, our findings suggest participants who serve rural areas especially benefit from knowledge transfer within the TeleECHO community of practice. Additionally, the knowledge they receive comes from diverse information sources, emphasizing its multidisciplinary nature. Our results underscore the capacity of the Project ECHO model to leverage technology and workforce diversity to facilitate knowledge transfer to rural professionals and ultimately promote health equity among rural and medically underserved mining communities. Although this approach addresses a critical gap related to the emerging pneumoconiosis epidemic in rural United States, future research will evaluate whether this translates into improved patient outcomes in rural mining communities.

Acknowledgments
This study was funded by the Alpha Foundation (grant AFC719-14). The sponsors played no role in the conduct, analysis, and dissemination of this study and in the review and approval of this paper for publication.

Data Availability
The data sets generated or analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions
All authors were involved with the following: (1) substantial contributions to the conception or design of the work (BS, OM, and AS) or the acquisition (BS, OM, and AS), analysis (BS and OM), or interpretation of data for the work (BS, OM, and AS); (2) drafting the work or reviewing it critically for important intellectual content (BS, OM, and AS); (3) final approval of the version to be published (BS, OM, and AS); and (4) agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved (BS, OM, and AS).

Conflicts of Interest
None declared.

References

Abbreviations

CME: continuing medical education
ECHO: Extension for Community Health Outcomes
REDCap: Research Electronic Data Capture
Improving Medical Photography in a Level 1 Trauma Center by Implementing a Specialized Smartphone-Based App in Comparison to the Usage of Digital Cameras: Prospective Panel Study

Jan Siad El Barbari¹, MD; Maxim Fikuart¹, MD; Nils Beisemann¹, MD; Michael Müller², PhD; Hannah Syrek², MSc; Paul Alfred Grützner¹, Prof Dr, PhD; Jochen Franke³, Prof Dr, PhD; Sven Yves Vetter¹, Prof Dr, PhD

¹Department of Orthopaedics and Traumatology, BG Klinik Ludwigshafen, Ludwigshafen am Rhein, Germany
²mbits imaging GmbH, Heidelberg, Germany
³Department of Orthopaedics and Traumatology, Tauernklinikum, Zell am See, Austria

Corresponding Author:
Sven Yves Vetter, Prof Dr, PhD
Department of Orthopaedics and Traumatology
BG Klinik Ludwigshafen
Ludwig-Guttmann-Str 13
Ludwigshafen am Rhein, 67071
Germany
Phone: 49 621 6810 2480
Email: sven.vetter@bgu-ludwigshafen.de

Abstract

Background: Medical photography plays a pivotal role in modern health care, serving multiple purposes ranging from patient care to medical documentation and education. Specifically, it aids in wound management, surgical planning, and medical training. While digital cameras have traditionally been used, smartphones equipped with specialized apps present an intriguing alternative. Smartphones offer several advantages, including increased usability and efficiency and the capability to uphold medicolegal standards more effectively and consistently.

Objective: This study aims to assess whether implementing a specialized smartphone app could lead to more frequent and efficient use of medical photography.

Methods: We carried out this study as a comprehensive single-center panel investigation at a level 1 trauma center, encompassing various settings including the emergency department, operating theaters, and surgical wards, over a 6-month period from June to November 2020. Using weekly questionnaires, health care providers were asked about their experiences and preferences with using both digital cameras and smartphones equipped with a specialized medical photography app. Parameters such as the frequency of use, time taken for image upload, and general usability were assessed.

Results: A total of 65 questionnaires were assessed for digital camera use and 68 for smartphone use. Usage increased significantly by 5.4 (SD 1.9) times per week (95% CI 1.7-9.2; \(P=0.005\)) when the smartphone was used. The time it took to upload pictures to the clinical picture and archiving system was significantly shorter for the app (mean 1.8, SD 1.2 min) than for the camera (mean 14.9, SD 24.0 h; \(P<.001\)). Smartphone usage also outperformed the digital camera in terms of technical failure (4.4% vs 9.7%; \(P=0.04\)) and for the technical process of archiving (\(P<.001\)) pictures to the picture archiving and communication system (PACS) and display images (\(P<.001\)) from it. No difference was found in regard to the photographer’s intent (\(P=.31\)) or reasoning (\(P=.94\)) behind the pictures. Additionally, the study highlighted that potential concerns regarding data security and patient confidentiality were also better addressed through the smartphone app, given its encryption capabilities and password protection.

Conclusions: Specialized smartphone apps provide a secure, rapid, and user-friendly platform for medical photography, showing significant advantages over traditional digital cameras. This study supports the notion that these apps not only have the potential to improve patient care, particularly in the realm of wound management, but also offer substantial medicolegal and economic benefits. Future research should focus on additional aspects such as patient comfort and preference, image resolution, and the quality of photographs, as well as seek to corroborate these findings through a larger sample size.
Introduction

Medical photography serves 3 primary purposes: documentation of diseases and procedures, education of patients and medical personnel, and publications in various forms [1-3]. The potential of medical photography lies in its ability to objectify conditions that cannot be properly illustrated by laboratory results or medical imaging. This mitigates the risk of biased descriptions or inconsistent measurements across clinicians, particularly those from different specialties [4]. Additionally, unlike written diagnoses, photos can also be proof of missed diagnoses or negative findings, as they are not limited to the perception and experience of the examiner [5].

Additionally, medical photography provides several key advantages, including supporting medical diagnoses in legal cases, enhancing diagnostic accuracy and therapeutic outcomes, improving the quality of consultations, and offering documentation for billing purposes [6-10]. The digital era and the technological revolution with digital imaging and smart devices have further lowered the threshold of medical photography [11-13]. Now, every adequately instructed person can produce medical photos anywhere at any time, repealing restrictions such as the availability of a trained medical photographer, time pressure in an emergency setting, or missing equipment. An exemption from this are specialized photographs for scientific or educational purposes, or in certain kinds of fields, that is, aesthetic surgeries, in which higher resolution and quality necessitate the use of more professional equipment.

However, data security and patient confidentiality need to be upheld. Thus, current guidelines, such as Recital 26 of the European Directive (EU) 2016/679, demand informed consent of the patient; a defined medical need for this photography; correct documentation; and safe, restricted, and password-protected storage with an access log [14]. Nonetheless, in a recent systematic review analyzing ethical aspects of medical photography, the consent process was found to be insufficient or inadequate in 95% of all cases [15].

Digital cameras are mainly used for medical photography in the clinical setting, and most patients seem to prefer these over smartphones [1,11,16]. This is because it is not clear how the data are stored and protected on either a clinically owned or private device. In both cases, people tend to estimate a higher risk of data-protection infringement in smartphones than in cameras, impairing their general acceptance as a reliable tool for medical photography [17-19]. Additionally, patients’ will to approve is influenced not only by individual consent depending on the reasoning, particularly concerning web-based publication, but also by situational preferences, such as the difference between emergency departments and aesthetic surgeries [15]. In high-paced emergency settings such as trauma units, obtaining immediate verbal consent, witnessed by another health care provider, can often be the most practical approach. This should be followed up with written consent as soon as the patient is stabilized or conscious. In contrast, nonemergency cases allow for a more thorough process where the patient can take the time to understand the implications before giving written consent. Across both scenarios, the ethical principles of autonomy, beneficence, and confidentiality remain paramount, ensuring that patient data are secure and used only for medical purposes.

Inherently, both devices bear the same risk of data infringement. Digital cameras cannot be password protected, do not encode their data, and are not usually stored as would be required: either under supervision or locked away. The last aspect is not a problem with smartphones since they are usually kept within reach all the time. Yet if the phone is not password protected or the pictures are saved in the photo app, they can be accessed by people close to the owner or may accidentally be transferred to cloud storage that is not properly protected and where access is not documented [17].

However, if the photos are taken with a password-protected app and are not stored on the device but directly in the picture archiving and communication system (PACS), data protection would be secured. Moreover, this would diminish the risk of false identification of the photo, and so all legislative demands would be met.

The use of smartphones with apps that fulfill the data-protection requirements in medical photography is being increasingly examined. Yet an extensive literature search revealed that no study has compared the use of such an app with digital cameras in terms of the quantity and efficiency of medical photography [1,3,16-18,20-22]. The following hypothesis was tested: using an app for medical photography would increase the quantity of pictures taken and the efficiency of this process.

Methods

Study Design

A prospective panel study design with 3 stages was chosen. This was realized in the period from June to November 2020 at a level 1 trauma center. No restrictions were made on where and how pictures should be taken, as the usage in clinical routine was to be evaluated. Pictures could be taken in the emergency department, as well as during surgical procedures, in the surgical ward, or in the outpatient clinic. The study focused on general usage patterns and did not collect data on the specific clinical situations in which the photographs were taken or the type of photographs captured. As a first step, the use of digital cameras was assessed using a printed questionnaire, which was handed...
out to trauma and orthopedic residents of different years of training with the instruction to fill one out at the end of every week. As a second step, this process was repeated after the installation of a specialized medical imaging app on the clinically owned smartphones, using the same questions adapted to smartphone use. At the end of this second stage, a separate web-based questionnaire about the experiences with the app and its usability and interface could be filled out by all members of the medical staff, not just the residents participating in steps 1 and 2. Since the questionnaire was designed to assess what opportunities and benefits could result from the implementation of the smartphone app in comparison to the digital camera, no respective questionnaire for the usage of the camera was deemed necessary. Both questionnaires were specifically designed for this study; an example of each is included as Multimedia Appendices 1-3.

We used a Likert scale (ranging from −2 to +2) to express experiences with smartphone usage, with −2 representing “strongly nonbeneficial,” +2 as “highly beneficial,” and 0 resembling indifference or no benefit, allowing an intuitive interpretation of the results.

Digital Camera

Every resident who entered employment received a digital camera (Lumix DMC-FT30, 16 megapixels; Panasonic Corporation) to be used for medical photography. After taking a photo, the resident had to use 1 of 3 workstations in the clinic that offer the capability to upload the photos to the clinical PACS with certain predefined keywords, that is, preoperative or surgical site, to categorize what kind of image had been taken. After uploading, the images had to be deleted from the secure digital card. The digital camera has a 28-mm² sensor with a pixel pitch of 1.3 μm and a resolution of 16 megapixels.

Specialized Smartphone Application

For clinical communication, each resident received a smartphone (Galaxy xCover 4; Samsung) that only allowed phone calls and viewing of radiological images through mRay (version 6.0.3; mbits imaging GmbH), which is a certified app for medical imaging and processing. The smartphone camera has a 20-mm² sensor with a pixel pitch of 1.1 μm and a resolution of 16 megapixels.

In this study, the fully digitalized photo documentation of mRay was used. This is divided into 3 main steps (Figure 1). First, an existing wound is photographed using the smartphone camera (Figure 1A and B). More than 1 picture can be taken if necessary for the patient’s case. In the next step, the wound image can be assigned to the respective body area (Figure 1C). Using a barcode scan or direct search in the clinical PACS, the images can be keyworded and assigned directly to the associated patient’s data (Figure 1D).

Figure 1. Digital photo documentation workflow through mRay.

Patient Confidentiality and Data Protection

In accordance with the hospital’s standard operating procedures (Multimedia Appendix 4), each patient is informed upon admission that, in addition to radiological images, clinical photographs necessary for their treatment may also be taken during their course of stay, and a written consent is signed. Additionally, as soon as a photo is to be taken, the patient is educated again about what kind of picture will be taken, where it will be stored, and why it is necessary, and verbal consent is obtained. In emergency situations, another staff member acts as a witness during the process of taking the photograph. Patient consent is subsequently obtained as soon as the individual regains responsiveness.

For digital cameras, data protection protocols require staff to promptly upload images to the clinical PACS, associating them with the respective patient’s file. Once uploaded, images must be deleted from the secure digital card. When not monitored, the camera should be securely stored. Regarding smartphones,
they are designated solely for clinical use and feature password protection. Additionally, photographs are exclusively taken through a specialized app, which is also password protected, ensuring direct storage of clinical photographs in the PACS.

Statistics
Primary end points were effective usage of a camera or smartphone in times per week and the time taken from capturing to uploading the taken pictures in minutes. Secondary end points were the estimated time necessary to archive and display images from the PACS, as well as the intention and reasoning behind the photographs. Additionally, it evaluated how users experienced the introduction and usage of the app, but this was not statistically analyzed. The continuous variables, usage and time to upload, were expressed using mean (SD), and time to archive photos and display them from the PACS were expressed using median (IQR). Evaluations were conducted using the Mann-Whitney U test, as these variables were considered estimations despite being interval-scaled as an International System of Units variable. The other categorical variables were analyzed using the chi-square test. The level for statistical significance was set at \(P < .05 \). Statistics were made using Prism (version 8.2.1; GraphPad Software).

Ethical Considerations
All procedures performed in this study involving human participants were in accordance with the ethical standards of the Ethics Committee of the State Medical Association of the Rhineland-Palatinate and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Since the actual photographs taken were acquired as part of the daily clinical routine and were not part of this study, neither informed nor written consent from the patients was necessary. Informed consent was obtained from all individual participants included in the study, and all data were deidentified. No financial compensation was provided to any of the study participants. Data collection, coding, routing, and analysis were in accordance with the legal data protection policy.

Results
A total of 65 questionnaires regarding digital camera use were collected from June to July 2020, and 68 questionnaires regarding the smartphone app were collected from September to November 2020. The questionnaires were filled out by 5 orthopedic residents. Additionally, 19 fully completed web-based questionnaires were received.

A comparison of the usage of both devices revealed no significant differences. Cameras were used 16.4 (SD 7.7) times per week for taking pictures and 11.2 (SD 9.7) times per week for showing pictures for consultation, whereas for smartphones, these values were 18.8 (SD 5.9; \(P = .10 \)) times per week and 9.8 (SD 4.4; \(P = .47 \)) times per week, respectively. In 17.5% (SD 16.1%) of cases for taking pictures and 18.6% (SD 22.6%) for showing pictures, a missing digital camera was mentioned; however, this issue never arose with smartphones. Technical failure occurred significantly less if the smartphone was used, with a rate of 9.7% (SD 18.2%) of cases with the digital camera and 4.4% (SD 9.1%) with the smartphone (\(P = .04 \)). If the total amount of usage (taking photos and demonstrating them) is adjusted for the cases of missing devices and technical failure, then the corrected usage for the digital camera is 20.8 (SD 11.4) times per week and for the smartphone, 26.2 (SD 10.1) times per week. This difference was statistically significant (\(P = .005 \); Table 1).

Table 1. Primary end points. Values are presented as mean (SD), and \(P \) values were calculated using the Mann-Whitney U test.

<table>
<thead>
<tr>
<th>Primary end points</th>
<th>Camera (n=65), mean (SD)</th>
<th>Smartphone (n=68), mean (SD)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage, adjusted total (times per week)</td>
<td>20.8 (11.4)</td>
<td>26.2 (10.1)</td>
<td>.005</td>
</tr>
<tr>
<td>Time to upload (hours or minutes)</td>
<td>14.9 (24.0) (^a)</td>
<td>1.8 (1.2) (^b)</td>
<td><.001</td>
</tr>
<tr>
<td>Usage (times per week)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taking images</td>
<td>16.4 (7.7)</td>
<td>18.8 (5.9)</td>
<td>.10</td>
</tr>
<tr>
<td>Displaying images</td>
<td>11.2 (9.7)</td>
<td>9.8 (4.4)</td>
<td>.47</td>
</tr>
<tr>
<td>Missing device (% of usage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taking images</td>
<td>17.5 (16.1)</td>
<td>0 (0)</td>
<td>N/A (^c)</td>
</tr>
<tr>
<td>Displaying images</td>
<td>18.6 (22.6)</td>
<td>0 (0)</td>
<td>N/A</td>
</tr>
<tr>
<td>Technical failure (% of usage)</td>
<td>9.7 (18.2)</td>
<td>4.4 (9.1)</td>
<td>.04</td>
</tr>
</tbody>
</table>

\(^a\) Hours.
\(^b\) Minutes.
\(^c\) N/A: not applicable.

Statistical differences were also found for the time taken from taking pictures until completion of the upload, the time the technical upload took, and the amount of time needed to view pictures after request (all \(P < .001 \); Table 1). The time until upload presented the biggest difference, with a mean time of 14.9 (SD 24.0) hours with the digital camera compared to 1.8 (SD 1.2) minutes with the smartphone (Table 1).

A comparison of the time the technical archiving and display of pictures took revealed a significant difference in favor of the smartphone (both \(P < .001 \), Tables 2 and 3).
Table 2. Secondary end points.

<table>
<thead>
<tr>
<th>Secondary end points</th>
<th>Camera (n=65), n (%)</th>
<th>Smartphone (n=68), n (%)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intention(^a)</td>
<td></td>
<td></td>
<td>.31</td>
</tr>
<tr>
<td>Soft tissue conditions</td>
<td>48 (74)</td>
<td>53 (78)</td>
<td></td>
</tr>
<tr>
<td>Wounds</td>
<td>53 (82)</td>
<td>56 (82)</td>
<td></td>
</tr>
<tr>
<td>Deformities</td>
<td>19 (29)</td>
<td>22 (32)</td>
<td></td>
</tr>
<tr>
<td>Range of motion</td>
<td>2 (3)</td>
<td>9 (13)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>19 (29)</td>
<td>15 (22)</td>
<td></td>
</tr>
<tr>
<td>Reasoning(^a)</td>
<td></td>
<td></td>
<td>.94</td>
</tr>
<tr>
<td>Legal requirement</td>
<td>34 (52)</td>
<td>32 (47)</td>
<td></td>
</tr>
<tr>
<td>Improving therapy</td>
<td>17 (26)</td>
<td>21 (31)</td>
<td></td>
</tr>
<tr>
<td>Preoperative planning</td>
<td>33 (51)</td>
<td>42 (62)</td>
<td></td>
</tr>
<tr>
<td>Postoperative control</td>
<td>6 (9)</td>
<td>9 (13)</td>
<td></td>
</tr>
<tr>
<td>Consultation</td>
<td>29 (45)</td>
<td>31 (46)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>14 (22)</td>
<td>15 (22)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Percentages exceed 100% because multiple selections were allowed, and the \(P \) value was calculated using the chi-square test.

Table 3. Comparison of time to upload, time to view, and reasons for delay.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Camera (n=65), n (%)</th>
<th>Smartphone (n=68), n (%)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upload</td>
<td>Viewing</td>
<td>Upload</td>
</tr>
<tr>
<td>Time taken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10 s</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>10-30 s</td>
<td>1 (2)</td>
<td>0 (0)</td>
<td>8 (12)</td>
</tr>
<tr>
<td>30-60 s</td>
<td>4 (5)</td>
<td>11 (17)</td>
<td>27 (40)</td>
</tr>
<tr>
<td>1-5 min</td>
<td>35 (53)</td>
<td>24 (37)</td>
<td>32 (47)</td>
</tr>
<tr>
<td>>5 min</td>
<td>26 (40)</td>
<td>30 (46)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Reasons for delay(^a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical issues</td>
<td>4 (6)</td>
<td>8 (12)</td>
<td>11 (16)</td>
</tr>
<tr>
<td>Distance to workstation</td>
<td>49 (75)</td>
<td>37 (57)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Organizational reasons</td>
<td>42 (65)</td>
<td>29 (45)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>None</td>
<td>7 (11)</td>
<td>20 (31)</td>
<td>44 (65)</td>
</tr>
<tr>
<td>Others</td>
<td>0 (0)</td>
<td>15 (23)</td>
<td>16 (24)</td>
</tr>
</tbody>
</table>

\(^a\)Percentages exceed 100% because multiple selections were allowed, and the \(P \) value was calculated using the chi-square test.

However, both groups did differ in the reasons as to why there had been a delay \((P<.001) \). The main reasons mentioned with the digital camera were the distance to one of the workstations and organizational reasons, that is, being preoccupied in the operating theater. With the smartphone, there were mostly no reasons for a delay, yet in a quarter \((16/68, 24\% \text{ and } 17/68, 25\%) \) of cases, a time lag or app crashes were mentioned \((Table \ 3) \).

No difference was found in the intention behind the photo, which was mostly documentation of soft tissue conditions \((74\% \text{ and } 78\%, \text{ respectively}) \) and wounds \((both \ 82\%; \ P=.31) \), nor in the reasoning why the photo had been taken \((legal requirements, improving therapy, and consultation; \ P=.94) \).

The smartphone app’s high acceptance and approval could be deduced from the web-based questionnaire, especially in terms of time savings and an easier workflow \((Table \ 4) \), with a mostly positive rating on the applied Likert scale \(\text{ranging from } -2 \text{ to } 2; \text{ Figure } 2 \). There were 2 indifferent evaluations regarding higher usage and improved communication. Only the responsiveness of the app was evaluated negatively with a median of \(-1\), which concurs with the written answers about the occurring time lag and crashes of the app \((Table \ 3 \text{ and Figure } 2) \).
Table 4. Web-based questionnaire.

<table>
<thead>
<tr>
<th>Question</th>
<th>Value (n=19), n (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Where do you see the main benefit of mRay in an inpatient trauma setting?</td>
<td></td>
</tr>
<tr>
<td>Time savings</td>
<td>17 (90)</td>
</tr>
<tr>
<td>Easier communication with increased quality of treatment</td>
<td>8 (42)</td>
</tr>
<tr>
<td>Easier and more comfortable workflow</td>
<td>13 (68)</td>
</tr>
<tr>
<td>No benefit</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Where the functions of mRay sufficient for carrying out image evaluation?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18 (95)</td>
</tr>
<tr>
<td>No</td>
<td>1 (5)</td>
</tr>
<tr>
<td>What other functions would you like to see in mRay?</td>
<td></td>
</tr>
<tr>
<td>Automated wound measurement</td>
<td>9 (47)</td>
</tr>
<tr>
<td>Automated assessment of wound conditions</td>
<td>5 (26)</td>
</tr>
<tr>
<td>Entering comments on photo findings</td>
<td>11 (58)</td>
</tr>
<tr>
<td>Others</td>
<td>3 (16)</td>
</tr>
</tbody>
</table>

^aPercentages may exceed 100% because multiple selections were allowed.

Figure 2. Results of the web-based questionnaire.

Usage and usability

- How often do you use smartphones privately?
- What was your overall impression of mRay?
- How much time could you save by using mRay?
- Did you look more often at photo data by using mRay?
- Has mRay improved communication with colleagues?
- How do you rate the usage of mRay overall?
- How do you rate the responsiveness of mRay?
- How do you rate the user interface of mRay?
- How do you rate the clarity of the user interface?
- How do you rate the intuitivity of the user interface?

Discussion

Overview

This prospective study highlighted the advantages of workflow and data security for medical photography by integrating a smartphone app. One key indication is the reduced time taken from capturing the photo to its storage in the PACS: almost instantaneous with smartphones, in contrast to an average 12-hour duration using digital cameras. While viewing photos is feasible at all workstations, uploading is confined to specific stations due to network security concerns. Especially in a time-critical specialty such as traumatology and emergency medicine, such a tool could be particularly beneficial. By lowering the threshold and simplifying the cumbersome workflows of medical photography, the photography process and the number of photos taken could be increased to the benefit of the patient. This would take away the argument that there is no structured assessment or procedure for documentation of acute wounds because the required effort is considered too high and time-consuming [13,23,24].

Such reasoning might originate from studies such as Bronsard et al [23], which tried to establish a pathway for the secure handling of patient data. In their workflow, the photo was sent to a coordinator after it had been taken. This person assessed it and converted it to a DICOM file, which was then cropped by a secretary and finally uploaded. Each week, it took 3 individuals 1-2 hours to generate 1 image from 3-5 photos. It is therefore hardly surprising that they only managed to produce 300 images in 2 years.

Furthermore, previous studies showed that adequate medical photography can improve the care for and decision-making about complex injuries, especially when soft tissues are at risk [7-9,25]. In the case of traumatology, this would mainly be open
fractures. Inaccuracies in the description and extent of the concomitant soft tissue injury could affect the planning of the surgical approach and, in the worst case, necessitate the recurrent removal of the dressings to reassess the wound, facilitating a rise in infection risk [26].

The need for an easier and safer way to perform medical photography in traumatology is also enhanced by the argument of Friesen et al [27]. With the rising incidence of older patients in trauma wards, they estimated that 25% of in-house patients could exhibit chronic wounds requiring structured care and documentation [27].

The key aspect that needs to be addressed is the medicolegal aspect and risk of data infringement, which have been shown to be insufficiently addressed in most studies focusing on the adequacy of protocols for patient consent and publication in current practice [15]. First, because the workflow must uphold data security and patient confidentiality, and second, because the acceptance of photography performed with smartphones still needs to be increased, particularly among older patients [18,20].

Anonymous interviews from O'Farrell and Ferreira [1] showed that in 74% of cases, photos taken using a smartphone were not deleted. Furthermore, 58% were stored on a laptop and 26% on a flash drive, while 16% admitted that the device in question was not password protected, and in 21% of cases, third parties could have accessed the pictures. The distribution methods further raise concerns: 58% of the photos were sent for consultation through WhatsApp and 80% through email. Given European Union regulations, these findings underscore a pressing need to address security and privacy challenges in medical photography [1,14].

On the contrary, although the acceptance of clinically owned cameras is fairly high, ranging from 75% to 95%, they also pose a considerable data breach risk. They cannot be password protected, the data are not encoded, and they are mostly not stored safely when not in use [1,17,18,20]. Using an app akin to the one examined in this study, these concerns can be dismissed. Furthermore, the study of Accetta et al [20] showed that in such cases, smartphone photography, under the premise of special information, could reach a comparable acceptance rate of 88%.

Requirements for performing medical photography are an easy and fast appliance, secure storage of data, and prevention of data infringement. This can be achieved using specialized smartphone apps [28].

In addition to the medical value, efficient and extensive medical imaging can also provide economic benefits. If the pictures taken lead to a new diagnosis or therapeutic purpose, then this could be a billable service [2,21,29]. In a study examining smartphone-based medical photography, Jordan et al [21] demonstrated that in 20% of medical audit cases where photos were used, they helped confirm a diagnosis or procedure. This resulted in additional revenue of US $330 per case, amounting to a total of approximately US $70,000 annually.

Besides the possible benefits for acute fracture care and inpatient management, the third benefit could lie in the effect on medical certificates [2,30-33]. These aim to offer an objective assessment of medical outcomes after injuries and rely, therefore, on measurable findings and reliable tools to avoid bias and achieve interrater agreement. Using goniometry to clinically examine the range of motion is important in this regard, but the interrater reliability and agreement for this are not remarkably high. However, Naylor et al [32] could prove that measuring the range of motion from photos taken could achieve an agreement rate of >0.983.

Finally, a key aspect of modern medicine is the informed consent of patients and patient education, as patient compliance and outcomes could be beneficially affected by this [1,34]. Nair et al [22] showed that over two-thirds of patients stated that after being shown images of their condition, their understanding of their condition increased, they believed that this had improved their therapy, and they would therefore recommend this approach to other patients.

In the future, additional applications, such as automatic measurement and categorization of wounds, could be possible if standardization of acquisition of these photos can be achieved [35-38]. This could be further simplified if technology such as light detection and ranging scanners becomes widely available on smartphones. Then maintaining specific distances or including measurement references would no longer be necessary for accurate measurements, especially in depth [38-40].

Limitations

This study has some limitations. Despite its prospective design, the sample size is quite small, and so the evidence base is limited. Additionally, the study was restricted to a single study site. As the data were acquired using questionnaires, a certain amount of bias cannot be excluded. This is especially true for the outcome parameter “time to upload or view,” which is only a subjective estimation but has been treated as a categorical variable. That is the main limitation of this study. For digital camera usage, in particular, an electronic measurement of these parameters was not feasible, and neither were such analyses incorporated in the app. However, any bias should influence both the data acquired from the digital camera and the smartphone app similarly, and we only aimed to analyze any differences found between them. Therefore, the evidence should not be relevantly impaired by these limitations. Another limitation is that smartphone photography can compete with digital cameras in regard to the standards and quality of small versions meant for small everyday tasks but not for scientific, educational, or other more challenging purposes requiring higher resolution and quality. Especially in light of this, another limitation is that usage in general was assessed, not the situations, the content, or the quality of the photographs. In this study, however, the sensor and resolution of the cameras were comparable on both devices.

Finally, no questioning or evaluation of the patients’ comfort and preference with both devices has been conducted.

Conclusions

Specialized smartphone apps offer a secure, fast, and easy way to acquire medical photos and could possibly improve patient education and care in terms of wound management, in particular,
while also offering medicolegal and economic benefits. Future studies should focus on a more objective assessment of differences and take factors such as patient comfort and preference, image resolution, and picture quality into consideration, as well as a larger sample size.

Acknowledgments
The authors would like to thank the IT department of the trauma center for supporting this study by implementing the infrastructural environment.

Data Availability
The data sets used and analyzed during this study are available from the corresponding author on request.

Authors' Contributions
SYV designed and supervised the study. The study was conducted and analyzed by JSEB, who wrote the first draft of the manuscript. MM and HS provided the software used, and HS wrote the technical part of the methods. All authors commented on previous versions of the manuscript and approved the final version.

Conflicts of Interest
The authors declare the following potential conflicts of interest concerning the research, authorship, and publication of this article: the BG Trauma Center Ludwigshafen and mbits imaging GmbH (Heidelberg, Germany) cooperate in the research field of medical digitalization without economic ties. This cooperation influenced neither the outcome of the study nor the manuscript. MM and HS are employees of mbits imaging GmbH. They provided the software "mRay".

Multimedia Appendix 1
Questionnaire on the daily usage of a digital camera for photo documentation in everyday clinical practice.

Multimedia Appendix 2
Questionnaire on the daily usage of the mobile application “mRay Foto” for photo documentation in everyday clinical practice.

Multimedia Appendix 3
Questionnaire for the qualitative survey at study completion.

Multimedia Appendix 4
Standard Operating Procedure Medical Photography.

References

Abbreviations

PACS: picture archiving and communication system

©Jan Siad El Barbari, Maxim Fikuart, Nils Beisemann, Michael Müller, Hannah Syrek, Paul Alfred Grützner, Jochen Franke, Sven Yves Vetter. Originally published in JMIR Formative Research (https://formative.jmir.org), 25.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Background: Degenerative cervical myelopathy (DCM), a progressive spinal cord injury caused by spinal cord compression from degenerative pathology, often presents with neck pain, sensorimotor dysfunction in the upper or lower limbs, gait disturbance, and bladder or bowel dysfunction. Its symptomatology is very heterogeneous, making early detection as well as the measurement or understanding of the underlying factors and their consequences challenging. Increasingly, evidence suggests that DCM may consist of subgroups of the disease, which are yet to be defined.

Objective: This study aimed to explore whether machine learning can identify clinically meaningful groups of patients based solely on clinical features.

Methods: A survey was conducted wherein participants were asked to specify the clinical features they had experienced, their principal presenting complaint, and time to diagnosis as well as demographic information, including disease severity, age, and sex. K-means clustering was used to divide respondents into clusters according to their clinical features using the Euclidean distance measure and the Hartigan-Wong algorithm. The clinical significance of groups was subsequently explored by comparing their time to presentation, time with disease severity, and other demographics.

Results: After a review of both ancillary and cluster data, it was determined by consensus that the optimal number of DCM response groups was 3. In Cluster 1, there were 40 respondents, and the ratio of male to female participants was 13:21. In Cluster 2, there were 92 respondents, with a male to female participant ratio of 27:65. Cluster 3 had 57 respondents, with a male to female participant ratio of 9:48. A total of 6 people did not report biological sex in Cluster 1. The mean age in this Cluster was 56.2 (SD 10.5) years; in Cluster 2, it was 54.7 (SD 9.63) years; and in Cluster 3, it was 51.8 (SD 8.4) years. Patients across clusters significantly differed in the total number of clinical features reported, with more clinical features in Cluster 3 and the least clinical features in Cluster 1 (Kruskal-Wallis rank sum test: $\chi^2 = 159.46; P<.001$). There was no relationship between the pattern of clinical features and severity. There were also no differences between clusters regarding time since diagnosis and time with DCM.

Conclusions: Using machine learning and patient-reported experience, 3 groups of patients with DCM were defined, which were different in the number of clinical features but not in the severity of DCM or time with DCM. Although a clearer biological basis for the clusters may have been missed, the findings are consistent with the emerging observation that DCM is a heterogeneous disease, difficult to diagnose or stratify. There is a place for machine learning methods to efficiently assist with pattern recognition. However, the challenge lies in creating quality data sets necessary to derive benefit from such approaches.

(JMIR Form Res 2024;8:e54747) doi:10.2196/54747
KEYWORDS
cervical; myelopathy; machine learning; cluster; clusters; clustering; spine; spinal; compression; neck; degenerative; k-means; patient reported; degenerative cervical myelopathy

Introduction

Degenerative cervical myelopathy (DCM) is a progressive spinal cord injury caused by spinal cord compression from degenerative pathology and consists of various subcategories of pathology, including cervical spondylotic myelopathy, ossification of the posterior longitudinal ligament, ossification of the ligamentum flavum, and degenerative disc disease [1-4]. It is estimated to affect 2% of adults, although fewer than 10% are currently diagnosed [5,6]. Surgery is the mainstay of treatment for DCM, aiming to decompress the spinal cord [2,7-9].

DCM often presents with neck pain, sensorimotor dysfunction in the upper or lower limbs, gait disturbance, and bladder or bowel dysfunction [2,10-14]. Examination findings include upper motor neuron signs in the limbs, such as positive Babinski sign, positive Hoffman sign, hyperreflexia, and increased tone [2,10-13]. Its symptomatology is very heterogeneous, making early detection difficult. This heterogeneity makes it difficult to measure or understand what drives consequences. For instance, the heterogeneity has made it harder to understand health-related quality of life [15]. This has also hindered comparisons between studies and the development of clinical practice guidelines and recommendations for DCM [16,17]. Additionally, once detected, DCM is unpredictable due to a lack of reliable methods to determine prognosis.

Increasingly, evidence suggests that DCM may consist of subgroups of the disease, which still need to be defined [18-20]. Machine learning can help in finding them. In fact, machine learning has shown potential in predicting health-related quality of life [15]. This was also hindered comparisons between studies and the development of clinical practice guidelines and recommendations for DCM [16,17]. Additionally, once detected, DCM is unpredictable due to a lack of reliable methods to determine prognosis.

Methods

Data Set

A mixed methods cross-sectional study was conducted by a team from the University of Cambridge through Myelopathy.org [26], a global charity dedicated to DCM. A focus group session of people with DCM and their supporters was used to inform the development of a web-based survey to explore the consequences of living with DCM. The survey was advertised using the Myelopathy.org website, an international nonprofit organization dedicated to promoting understanding and awareness of DCM. Survey participants were asked to specify the clinical features they had experienced, their principal presenting complaint, and time to diagnosis as well as demographic information, including disease severity, age, and sex. The data consist of 189 yes or no responses to a list of 76 clinical features. This was published in a paper, titled “Targeting earlier diagnosis: what symptoms come first in degenerative cervical myelopathy?” [23], wherein the full methodology is detailed.

Analysis

Patients were grouped into subsets with similar characteristics using k-means clustering. K-means clustering is a method that groups data into “k” nonoverlapping, distinct subsets by finding centroids in the data representing each cluster’s center and allocating data points to each cluster by minimizing within-cluster variance around centroids. K-means clustering was used due to its efficiency for small data sets and explainability, aiming to group respondents into clusters based on their clinical features, using the Euclidean distance measure and the Hartigan-Wong algorithm [27]. The optimal number of clusters (k) was determined through the inspection of 3 ancillary methods, namely, the elbow, silhouette, and gap statistic methods [28]. The clinical significance of groups was subsequently explored by comparing their time to presentation, time with disease severity, and other demographics. DCM severity was assessed using total Modified Japanese Orthopaedic Association scores [29]. Noncomplete records were not excluded, and missing data were not imputed. All analyses were conducted in R (version 4.1.0; R Foundation for Statistical Computing) [30].

Ethical Considerations

This study was conducted with ethical approval from the University of Cambridge (HBREC.2019.14). At the start of the survey, participants were provided with an overview of the study and definition of DCM, and by continuing into the survey, participants were confirming their diagnosis of DCM and providing informed consent to participate. All data collected were anonymous. No incentives were offered for the completion of the surveys.

Results

Cohort Demographics

Of the 189 participants, 134 were female and 49 were male (6 did not report biological sex). Respondents were on average 54.1 years of age. A total of 29 of them had mild DCM, 68 had moderate DCM, and 92 had severe DCM. The majority (131/189, 69%) reported having had surgery for DCM.

Cluster Analysis

Ancillary methods suggested different optimal numbers of clusters (k). Elbow, silhouette, and gap statistic methods identified k=3, k=2, and k=5, respectively (Figure 1A). The
data were hence clustered into multiple values of k and inspected (Figure 1B). After a review of both ancillary and cluster data, it was determined by consensus between AYT and BD that the optimal number of DCM response groups was 3. The reasoning behind this was that the ancillary curves in 2 out of 3 ancillary methods plateaued from k≥3 (Figure 1A), but clusters above k≥4 overlapped (Figure 1B).

Figure 1. (A) Determining the optimal number of clusters; (B) k-means clustering (euclidean).

Characterization Analysis

In Cluster 1, there were 40 respondents, and the ratio of male to female participants was 13:21. In Cluster 2, there were 92 respondents, with a male to female participant ratio of 27:65. Cluster 3 had 57 respondents, with a male to female participant ratio of 9:48. A total of 6 people did not report biological sex in Cluster 1. The mean age was 56.2 (SD 10.5) years in this cluster; in Cluster 2, it was 54.7 (SD 9.63) years; and in Cluster 3, it was 51.8 (SD 8.4) years.

A spider chart was subsequently generated to explore the clinical significance of the clusters, wherein the curves did not cross (Figure 2A; Multimedia Appendix 1).

It was also checked if patients in the different groups experienced differing numbers of features (Figure 2B). Patients across clusters significantly differed in the total number of clinical features reported, with more clinical features in Cluster 3 and the least clinical features in Cluster 1 (Kruskal-Wallis rank sum test: $\chi^2=159.46; P<.001$).
To check whether patients with more clinical features had a more severe form of DCM, patterns of clinical features against severity were compared. The results showed no relationship between the pattern of clinical features and severity (Figure 2C).

Patterns of clinical features against both time since diagnosis and time with DCM were also analyzed. As shown in Figures 2D and 2E, there did not seem to be any differences between clusters in these distributions.

Figure 2. (A) Spider charts showing survey responses across clusters (the abbreviations along the circumference are detailed in the table in the Multimedia Appendix 1); the radius represents relative frequency, normalized to 1; (B) total number of clinical features reported across clusters; (C) proportions of degenerative cervical myelopathy (DCM) severity across clusters (based on the Modified Japanese Orthopaedic Association scores); (D) distribution of time taken to be diagnosed with DCM in each cluster; (E) distribution of time with DCM in each cluster.
Discussion

Principal Findings
Cluster analysis suggested 3 optimal subgroups based on clinical features. When exploring why these groups differed in terms of cohort demographics, only the number of reported symptoms differed significantly. The pattern of clinical features within each of the 3 groups was similar. Notably, the 3 curves in the spider chart appear to peak and trough in a similar pattern, suggesting that there was no difference in the pattern of clinical features. The concentricity of curves, however, suggested that clustering may be due to the total number of features experienced. This possibility was statistically significant (Kruskal-Wallis rank sum test). Finally, there was no link between the groups and disease severity, time with DCM, and time since diagnosis.

Limitations
This study has several limitations. The data represent a single time point cross-sectional survey of an internet-recruited cohort of patients, which could limit the generalizability of the findings. Additionally, information on disease characteristics, used for exploring the clinical significance of clusters, was limited to time with symptoms and a self-reported modified Japanese Orthopaedic Association score [31]. A more diverse data set would be more insightful, especially in DCM, wherein the nuances of symptom presentation and progression are critical. The sample size is also relatively small by machine learning standards. Finally, only 1 analysis method (k-means clustering) was performed, which may prevent us from capturing the full complexity of DCM symptomatology, especially with the increasing prominence of personalized approaches [32].

That being said, this is a unique data set, formed from the unrestricted perspectives of almost 200 patients; it was formed without any preconceptions regarding what symptoms were considered related to DCM. The result is also not unexpected. Standard analytical approaches, using more traditional data sets, have failed to stratify patients by symptoms [33]. Consequently, although a clearer biological basis for the clusters may have been missed, the findings are consistent with the emerging observation that DCM is a heterogeneous disease, difficult to diagnose or stratify [15-17]. This has been highlighted by the work of Cook et al [34] (2022) and is perhaps reflected in our inability to explain the variability in the quality of life in DCM [15].

This study shows that there is certainly a role for machine learning methods to efficiently assist with pattern recognition, but data sets must be large, valid, and comprehensive. In DCM, the challenge and priority appear to be less focused on data set size and more focused on the type of data [35]. For example, our redefinition of DCM in terms of time, mechanical stress, and vulnerability to sustain a spinal cord injury has highlighted the potential significance of various disease factors; these factors range from frailty and genetics to the type of pathology causing compression, encompassing the likely heterogeneous mechanical loading they induce [20]. Further, there are few valid and reliable outcome measures available, with most relying on face-to-face presentations to measure changes over the course of months, exhibiting low statistical power. The work of Cook et al [34] (2022) has highlighted that the experience of DCM is driven by social determinants—features such as ethnicity as well as educational, and economic status [34]. This means subjectivity in outcomes will drive current variability. Novel biomarkers, including imaging, blood, and digital biomarkers, are likely to hold value in this context, offering more disease-specific and sensitive disease indicators [36]. The need for more comprehensive and improved measurement is a firm priority in DCM [16]. Therefore, artificial intelligence undoubtedly has an important role in the future of DCM research and care. To our knowledge, such measures do not currently exist. Analysis of one of the most detailed cohorts also failed to identify biologically significant strata [22,37]. Therefore, the short-term challenge for our community lies in creating quality data sets necessary to derive benefit from these emerging analytical approaches.

Conclusions
Using machine learning and patient-reported experience, 3 groups of patients with DCM were defined. These groups differed in the number of clinical features reported but not in the severity of DCM, time since diagnosis, or time with DCM. The significance and generalization of this study remain uncertain. Overall, this study confirms the role of machine learning in DCM research, but more pressing, it confirms the need to curate the right data sets.

Acknowledgments
BMD is supported by a National Institute for Health Research (NIHR) Clinical Doctoral Fellowship.

The views expressed in this publication are those of the authors and not necessarily those of the National Health Service (NHS), the NIHR, or the Department of Health.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
BMD is the director of MoveMed Ltd.

https://formative.jmir.org/2024/1/e54747

JMIR Form Res 2024 | vol. 8 | e54747 | p.437
(page number not for citation purposes)
References

Abbreviations

DCM: degenerative cervical myelopathy
Testing a Behavioral Activation Gaming App for Depression During Pregnancy: Multimethod Pilot Study

Rachel C Vanderkruik, MSc, PhD; Craig Ferguson, MS; Lauren A Kobylski, MPH; Joseph J Locascio, PhD; Gabriella E Hamlett, MA; Parker C Killenberg, BS; Robert Lewis, MSc; Noah Jones, MS; Ella T Rossa, BA; Hannah Dineen; Rosalind Picard, ScD; Lee S Cohen, MD

1 Center for Women’s Mental Health, Massachusetts General Hospital, Boston, MA, United States
2 Department of Psychiatry, Harvard Medical School, Boston, MA, United States
3 MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
4 Department of Psychological & Brain Sciences, George Washington University, Washington, DC, United States
5 Department of Neurology, Harvard Medical School, Boston, MA, United States
6 Department of Psychology, Harvard University, Cambridge, MA, United States

Corresponding Author:
Rachel C Vanderkruik, MSc, PhD
Center for Women’s Mental Health
Massachusetts General Hospital
185 Cambridge St
Ste 2200
Boston, MA, 02114
United States
Phone: 1 781 691 9071
Email: rvanderkruik@mgh.harvard.edu

Abstract

Background: Depression during pregnancy is increasingly recognized as a worldwide public health problem. If untreated, there can be detrimental outcomes for the mother and child. Anxiety is also often comorbid with depression. Although effective treatments exist, most women do not receive treatment. Technology is a mechanism to increase access to and engagement in mental health services.

Objective: The Guardians is a mobile app, grounded in behavioral activation principles, which seeks to leverage mobile game mechanics and in-game rewards to encourage user engagement. This study seeks to assess app satisfaction and engagement and to explore changes in clinical symptoms of depression and anxiety among a sample of pregnant women with elevated depressive symptoms.

Methods: This multimethod pilot test consisted of a single-arm, proof-of-concept trial to examine the feasibility and acceptability of The Guardians among a pregnant sample with depression (N=18). Participation included two web-based study visits: (1) a baseline assessment to collect demographic and obstetric information and to assess clinical symptoms and (2) an exit interview to administer follow-up measures and explore user experience. Participants completed biweekly questionnaires (ie, Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7) during the trial to assess depression and anxiety symptom severity. App satisfaction was measured using 2 self-report scales (ie, Mobile Application Rating Scale and Player Experience of Needs Satisfaction scale). Engagement with The Guardians was captured using game interaction metric data. We used backward-eliminated mixed effects longitudinal models to examine the effects of app engagement and satisfaction and length of time in the study on symptoms of depression and anxiety. Content analysis was conducted on qualitative data from exit interviews.

Results: The 15-day and 30-day overall app retention rates were 26.6% and 15.1%, respectively. Mixed effects models found significant negative main effects of week in study ($\beta=-.35; t_{(61)}=-3.05; P=.003$), number of activities completed ($\beta=-.12; t_{(61)}=-2.05; P=.04$), days played ($\beta=-.12; t_{(58)}=-2.9; P=.005$), and satisfaction, according to the Mobile Application Rating Scale ($\beta=-3.05; t_{(58)}=-2.19; P=.03$) on depressive symptoms. We have reported about similar analyses for anxiety. There is preliminary evidence suggesting harder activities are associated with greater mood improvement than easier activities. Qualitative content analysis resulted in feedback falling under the following themes: activities, app design, engagement, fit of the app with lifestyle, perceived impact of the app on mood, and suggestions for app modifications.
Conclusions: Preliminary results from this multimethod study of *The Guardians* indicate feasibility and acceptability among pregnant women with depression. Retention and engagement levels were more than double those of previous public mental health apps, and use of the app was associated with significant decrease in depressive symptom scores over the 10-week trial. *The Guardians* shows promise as an effective and scalable digital intervention to support women experiencing depression.

(JMIR Form Res 2024;8:e44029) doi: 10.2196/44029

KEYWORDS
perinatal depression; pregnancy; behavioral activation; mobile app; digital intervention; mobile phone

Introduction

Background

There is growing recognition of the burden of depression during the perinatal period (ie, pregnancy and postpartum periods). Prevalence estimates of perinatal depression (PD) range between 10% and 15% in high-income countries and are even higher in low- and middle-income countries [1,2]. If left untreated, there can be significant and detrimental consequences for both the mother and infant [3,4]. In response to this public health problem, the US Preventive Services Task Force recently recommended that clinicians provide or refer pregnant and postpartum individuals who are at increased risk of PD to counseling interventions [5]. Pharmacologic and nonpharmacologic treatments to manage symptoms of depression during pregnancy are available, yet most women do not receive the treatment they need [6]. Furthermore, targeting depression specifically during pregnancy is critical in addressing PD, as depression during pregnancy is a key risk factor for postpartum depression [7], and thus, reducing depression during pregnancy can reduce the risk for postpartum depression. Given the number of individuals affected by PD and significant barriers to care [8,9], strategies that provide increased access to evidence-based treatment approaches are needed.

There is evidence suggesting that women may prefer psychotherapeutic approaches over antidepressant medications during pregnancy [10]. Behavioral activation (BA) is one such psychotherapeutic approach based on the theory that, as individuals become depressed, they tend to engage in avoidance and isolation, which then maintains or worsens their depressive symptoms. BA encourages the individual to gradually increase engagement in activities that serve as “behavioral antidepressants” and decrease their avoidance and isolation [11]. Several meta-analyses support the effectiveness of BA [12,13], and it has been found to be comparable in efficacy with antidepressant medications among adults with major depression [14]. BA has been considered to be advantageous compared with other treatments given the simplicity of the intervention, strong retention rates, and enduring effects over a 2-year follow-up, without the concern of side effects associated with some medications [15,16]. There is emerging evidence supporting BA, specifically among pregnant individuals, with findings that BA can offer significant depression-related, anxiety-related, and stress-related benefits for this population [17].

There is support for scalability and even global dissemination of BA given how it can be delivered by nonspecialists, is cost-effective, and has demonstrated cross-cultural fit and adaptability [18]. Furthermore, BA has been identified as being suitable for “computer-based interventions that would involve no therapist input beyond an initial assessment,” which could dramatically improve the accessibility of effective treatments for depression [15]. Digital technology, including mobile health apps, has been cited as a promising strategy for increasing access to evidence-based interventions for mental health for several reasons, including constant availability, equity of availability, immediate support, low costs, lack of geographic barriers, and reduced need for direct mental health service provision (particularly given the shortage of clinicians in certain locations) [19]. A systematic review of the effectiveness of mobile apps for monitoring and managing mental health symptoms or disorders concluded that there is support for the potential of mobile apps to effectively reduce the burden of mental health symptoms; yet, further robust studies are needed to develop and test evidence-based apps [20]. Therefore, a digital BA app could be a promising way to increase access to support for depression among vulnerable or underrepresented populations.

It is, thus, not surprising that there have been recent efforts to develop BA apps, including a self-help brief BA app focused on activity scheduling for the general population called Moodivate. A preliminary randomized controlled trial (RCT) recruited adults with elevated depression from primary care practices (N=52) and randomized them to receive (1) Moodivate, (2) an active control cognitive behavioral therapy–based mobile app (MoodKit), or (3) treatment as usual (no app) [21]. Study retention was relatively high, with approximately 70% of Moodivate participants continuing to use the app 1 month after trial enrollment and 50% at the end of the 8-week study period. Compared with treatment as usual, participants in both app conditions experienced significant reductions in depressive symptoms over time, and these treatment gains were sustained throughout the trial period. These preliminary results support the potential feasibility of a BA app, such as Moodivate, as a treatment for depression. Other preliminary studies have exhibited promising findings regarding the BA apps’ abilities to provide motivation for adults with depression to plan enjoyable activities [22] and acquire insight into their own behavior and impact on mood [23]. However, these BA apps are not widely and freely available to the public, and more rigorous studies are needed regarding their impact on depressive symptoms and among certain populations.

A recent meta-analysis provides support for the efficacy and acceptability of internet-delivered interventions for pregnant women and highlights the opportunity to leverage technology for interventions targeting this population, including for mental health symptoms during pregnancy [24]. Given the challenges
of engaging pregnant people in treatment, preferences for depression treatment in nonspecialty settings, and limited availability of services targeting depression during pregnancy [25], a widely available and engaging BA app could be a highly impactful service for individuals with PD. Although a variety of apps designed to improve health and well-being have been developed, most are not grounded in evidence-based principles, and most struggle to keep users engaged [26-28]. Many such apps used typical “gamification” techniques (ie, awarding users with badges or points for using the app), which are designed to increase adherence but often fail to give the user reasons to care about those rewards. Thus, long-term retention and engagement in the app may be affected [29]. A different approach used by a mobile game called The Guardians: Unite the Realms provides immediate rewards for using BA therapeutic techniques as part of the app and gives those rewards inherent value and meaning through their use within the game’s mechanics [30,31].

The Guardians: Unite the Realms is a novel gaming BA app that is free to be downloaded by the general public with iPhone Operating System and Android. The app was developed by an author of this paper (CF) with input from experts in digitizing therapies to ensure that it maintains the core qualities and effectiveness of BA. The Guardians was designed to increase adherence to app-delivered BA by embedding BA techniques into the unique context of a mobile game, giving intrinsic incentives for users to continue using the app [30]. Since its launch in April 2020, The Guardians has collected anonymized gameplay data from about >12,500 users and saved them to its secure backend database for research and gameplay recovery purposes, as specified in the app’s privacy policy [29]. The 15-day and 30-day overall retention rates of 10% and 6.6%, respectively, are more than double the average retention rates for mental health apps of 3.9% (IQR 10.3%) and 3.3% (IQR 6.2%), as reported by Baumel et al [27] and Ferguson et al [30]. Furthermore, the 1-day and 28-day observed retentions of 37.9% and 7.3%, respectively, suggest that The Guardians has retention rates that are comparable with those of the top 15% of mobile games. Although there has not yet been a formal study of how the use of The Guardians app may influence depressive symptoms, >80% of the BA activities completed as part of the app resulted in the user feeling at least “a little bit better” [30]. The Guardians is a widely available BA gaming app with a novel approach to engage users, and preliminary data show a positive impact on mood among its users.

This Study
To the best of our knowledge, there are no gaming BA apps that have been developed specifically for a pregnant population with elevated depressive symptoms. Given the promising preliminary data about The Guardians in terms of engagement metrics and user-reported improvement in mood from app-related activities, along with the need for more novel approaches to address depressive symptoms during pregnancy, this pilot study sought to assess app engagement and to explore the potential resulting changes in mental health symptoms among a pregnant sample with elevated depressive symptoms. As anxiety is often comorbid with depression during pregnancy [32] and there is some preliminary evidence suggesting that BA may also be beneficial for anxiety symptoms, we also sought to explore the changes in anxiety symptoms among users of The Guardians app [33,34].

Furthermore, we sought to capture feedback from study participants about how a future version of The Guardians could be specifically tailored for a pregnant population, as we used the publicly available app geared for a general population in this pilot study. Incorporating a user-centered design into app development is linked to high usability, low risk of failure, reduced costs, and high overall quality [35] and can help inform app design and implementation according to feedback about the target users’ needs [36,37]. Thus, the aims of this pilot study were to explore engagement with and impact of The Guardians among pregnant individuals with elevated depressive symptoms, while also qualitatively exploring user experience and gathering suggestions for a future iteration of the app that could be tailored specifically for the context of pregnancy.

Methods

Participants and Recruitment
Consistent with a pragmatic trial, the inclusion criteria for this single-arm pilot study were minimal. Women were eligible to participate if they were pregnant, aged >18 years, and English speaking; had access to a smartphone; and had a Patient Health Questionnaire-9 (PHQ-9) score of at least 10 (indicative of a possible depressive episode). Exclusion criteria included a diagnosis of bipolar or psychotic disorder, active mania, psychosis, substance abuse, or immediate risk of self-harm based on PHQ-9 responses and clinician judgment. For this initial pilot study, we focused on pregnancy and excluded women in the postpartum period as there are other complicating factors in the postpartum period (eg, sleep disruption and demands of caring for a newborn) that could affect the ability to engage in the app and completion of app activities. As this was a completely web-based study, participants could be located anywhere in the United States. Participants were recruited through social media advertising, clinician referrals, and the Massachusetts General Hospital Center for Women’s Mental Health website [38]. Individuals interested in participating were instructed to reach out via mobile phone or email to the study’s research assistant using the contact information provided in the study advertisements.

Procedures
Following an eligibility screening via mobile phone, participants provided verbal informed consent and completed a baseline assessment with a trained research assistant. During the baseline interview, demographic variables, pregnancy characteristics, and psychiatric history (ie, diagnosis and treatment) were collected. At the conclusion of the baseline assessment, the research assistant instructed the eligible participants about how to download The Guardians app onto their personal smartphone. To approximate real-world mobile app use, there were no further app-related engagement prompts from study staff after the baseline assessment.

During the 10-week study period, participants were invited to complete web-based biweekly surveys via REDCap (Research Electronic Data Capture; Vanderbilt University) [39,40] to...
assess their depressive and anxiety symptoms (refer to details in the Measures section). If participants did not complete these biweekly assessments, a research assistant contacted the participant to remind them to complete the survey. A final assessment was conducted over mobile phone at the end of the 10-week trial to administer follow-up measures and conduct a brief qualitative exit interview. In addition to assessments via REDCap surveys, app analytics (eg, days played and activities completed) were captured through The Guardians via the game’s cloud save and gameplay recovery functionality. The participant data were compared with the anonymized gameplay data gathered from the app’s public users. All data gathered by The Guardians were anonymized and collected for research purposes, as stated in the app’s privacy policy [30].

Ethical Considerations

All the study procedures were approved by the Mass General Brigham institutional review board (protocol number 2021P001400). All participants provided informed consent, and all study data were deidentified before analysis. Participants were not provided compensation for their participation in the study.

Overview of The Guardians: Unite the Realm App

As noted previously, The Guardians: Unite the Realms is a mobile game designed to increase adherence to a modified BA therapy. A detailed description of the game has been published previously [30]. In brief, The Guardians is divided into 3 realms, each of which unlocks automatically after 28 days, regardless of game progression. In each realm, the user is asked to defeat an enemy character by collecting pets and sending them on missions. The pets automatically complete each mission after 10 to 60 seconds in real time. Once the pets complete a mission, they are given experience points and other rewards that can be used to further the in-game progress. Players are given a limited amount of regenerable “stamina,” which they must spend to send pets on missions. Thus, the challenge comes from carefully managing which pets should go on which missions based on the resources and stamina currently available. Players cannot lose the game or undo any progress. Every day, the player is prompted through the app to complete activities that will reward them with more pets. Players are notified to complete their daily activity in the game and via mobile phone notifications.

The player is prompted to either pick from a list of 75 suggested real-world activities or to choose their own activity. The preselected activities are divided into 3 effort levels (low, medium, and high) and into 5 categories (basics, arts and crafts, social, fitness, and fun); in-game rewards are the same regardless of effort level and category. Once the player chooses their activity for the day, the game instructs the participant to log the activity in the app once it is complete. Players cannot log the activity until sufficient time to complete their activity has passed. After logging an activity, players are prompted to reflect about how they feel after completing it, rating their post activity mood improvement on a scale of “1: Much worse” to “5: Much better.” Reflecting about how an activity affects mood is a key ingredient from BA therapy that has been integrated into The Guardians.

Measures

Diagnostic Assessment

In addition to collecting demographic information, the Mini International Neuropsychiatric Interview [41] was administered at the baseline assessment to evaluate the diagnostic criteria for a current major depressive episode (MDE) and to assess comorbid psychiatric illnesses. It is a structured diagnostic assessment that evaluates the current existence of a variety of psychiatric disorders based on the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) criteria. To meet the MDE criteria, participants must report having had a depressed mood most of the day or markedly diminished interest or pleasure in activities for a period of at least 2 weeks. They must also endorse at least 5 of the following symptoms: significant unintentional weight or appetite change, insomnia or hypersomnia, psychomotor agitation or retardation, fatigue, feelings of worthlessness or inappropriate or excessive guilt, decreased ability to concentrate or make decisions, and recurrent thoughts of death or suicidal ideation.

Primary Outcome: App Satisfaction and Engagement

Overall, 2 self-report measures were used to assess satisfaction with The Guardians among this sample at the end of the 10-week trial using the Mobile Application Rating Scale (MARS) and the Player Experience of Needs Satisfaction scale (PENS). MARS is a 23-item self-report survey that contains 4 objective quality scales (engagement, functionality, esthetics, and information quality) and 1 subjective quality scale to classify and assess the quality of mobile health apps [42]. All items are rated on a scale of 1 to 5, and the participants’ score is averaged across all items. High MARS ratings indicate a more usable and high-quality app. PENS is a 6-item survey measuring participants’ play experiences: 3 items measuring competence (eg, “I feel competent at the game”) and 3 items measuring autonomy (eg, “The game lets you do interesting things”) [43,44]. This self-report scale is based on the theory that video games have the potential to satisfy the basic psychological needs for competence, autonomy, and relatedness. Items are rated on a scale of 1 (do not agree) to 5 (strongly agree), and high PENS ratings indicate that the player felt the game met more of their otherwise unmet needs and are associated with high long-term retention [43].

Metrics of engagement captured in the app included Day-N user retention, defined as the proportion of users who interact with the game or complete an activity on the Nth day since they installed the game, where day 1 is the first day after installation, and the denominator is the number of users who install the game on day 0 [30,45]. To compare retention rates among participants in this study with those of public users of The Guardians, we used data collected from public users (as per the privacy policy [30] and stored them in The Guardians database. Other engagement metrics and data collected in the app included days played (ie, the number of days a participant logged into the app) and activities completed (ie, the total number of activities that a participant completed in the game). The exit interview, described further in the following sections, additionally captured qualitative feedback about app acceptability, quality, and overall satisfaction.
Secondary Outcomes: Changes in Depression and Anxiety Symptom Severity

Depressive symptom severity was assessed using PHQ-9 on a biweekly basis during the 10-week trial using a REDCap survey. PHQ-9 is a well-validated self-report measure consisting of 9 Likert-style items assessing various depressive symptoms [46]. If a participant endorsed suicidality at any point during the trial or via the PHQ-9 suicidality item, further assessment of suicidal ideation and behaviors was performed using the Columbia Suicide Severity Rating Scale [47]. A safety protocol was triggered if the participant endorsed item 9 of PHQ-9 (thoughts of being better off dead) or if the participant endorsed suicidal intent or plan upon completion of the Columbia Suicide Severity Rating Scale. Following a safety protocol trigger, a study clinician would contact the participant as soon as possible and, according to clinical judgment, call the participant’s emergency contact. Participants were also provided with safety resources, including the National Suicide Prevention Hotline, and the safety protocol was modeled after that used in a large federally funded study (Preventing Depressive Relapse in Pregnant Women with Recurrent Depression; National Institute of Mental Health; NCT03623620), where participants (N=500) were assessed for depression across the pregnancy and postpartum periods [48].

Participants also completed the Generalized Anxiety Disorder-7 (GAD-7) scale, a 7-item scale assessing symptoms of anxiety biweekly [49]. As noted in the description of The Guardians previously, an additional assessment of post activity mood improvement was captured in the app by prompting users to rate how they felt after completing an app-based activity on a scale of “1: Much worse” to “5: Much better.”

Qualitative Inquiry: Exit Interview

Participants were invited to complete a brief, 30-minute, web-based exit interview with a research assistant at the end of the 10-week trial. During this interview, participants were asked about perceptions regarding their level of engagement with the app, approach to selecting activities, motivation levels, and aspects of the game that they liked or disliked. Participants were also invited to share their experiences with using the app, perceptions about its impact on their mood, and any recommendations regarding how to best tailor the app for pregnant individuals. Refer to Multimedia Appendix 1 for the exit interview questions.

Data Analysis

Quantitative data were analyzed using SAS software (version 9.4; SAS Institute). Demographics, user engagement, ratings of satisfaction with the app (eg, activities completed, days played, MARS, and PENS), average post activity mood improvement, and depression and anxiety symptoms were analyzed using descriptive statistics. Pearson correlation analyses were conducted to explore the correlation between metrics of app satisfaction (ie, MARS and PENS) and engagement metrics (ie, activities completed and days played). A best-fit curve for the participant app user data was created by assuming an exponential decay in app retention. The user retention must have a day-0 retention of 1 by definition and can be assumed to have an eventual plateau of long-term dedicated users, resulting in the formula, $y = (1 - \alpha) e^{-\lambda t} + \alpha$ [50]. A series of independent group 2-tailed t tests explored the differences in baseline measures of depression (PHQ-9) and anxiety (GAD-7) among participants who completed the final 10-week assessment and those who did not complete this final study assessment. A mixed effects General Linear Model was run with a dependent variable of post activity mood improvement rating versus the fixed effect of effort level (ie, easy, medium, and hard). The random term was the participants.

We also conducted analyses to explore how app engagement metrics (ie, activities completed and days played) were associated with symptoms of depression (PHQ-9) and anxiety (GAD-7) over the 10-week trial. To examine the effects of the intervention, as predicted by number of activities completed and days played, in separate analyses, on symptoms of depression and anxiety, we used backward-eliminated mixed effects longitudinal models for the dependent variables of PHQ-9 and GAD-7, also in separate analyses. The fixed predictors in these models were the numeric variable week in study (both linear and quadratic components) and either number of activities completed or number of days played and their interactions with week in study. We included baseline age and gestational age as additional covariates in the models. The random term was participants interacting with linear week in study. For all models, model residuals were checked for conformance to model assumptions of normality.

We also used backward-eliminated mixed effects longitudinal models to examine the effect of the overall app satisfaction rating (MARS), needs met through the app (PENS), and a binary predictor indicating whether treatment (ie, psychotropic medication or psychotherapy) was started midstudy for symptoms of depression (PHQ-9) and anxiety (GAD-7), in separate analyses. The random term was participants interacting with time, week in study. For all models, we calculated the proportion of variance in the dependent variable accounted for by the fixed effects and by fixed and random variables combined.

Content analysis [51] of the transcribed exit interviews was conducted to identify key themes regarding design features that participants reported as important for the usability and acceptability of the app. A team of 2 coders (LAK and HD) first familiarized themselves with the transcripts, making notes about the themes observed in the qualitative data. Key concepts from the transcripts were used to develop a codebook; codes were developed inductively from the data and deductively from interview topic areas, in addition to exploring the study participants’ perceptions about the design and usability of the app, the app’s impact on mood, and recommendations for the app’s improvement. The coders met to review the codebook and organize codes into broad categories, with guidance from the first author of this paper, who has experience in qualitative methods (RCV). Deidentified transcripts were coded and analyzed using Dedoose (version 9.0.17), a qualitative analysis software program [52].
Results

Overview
During the study enrollment period from September 2021 to April 2022, a total of 96 women indicated interest in participating in this pilot study. Refer to Figure 1 for the flow of participants, including reasons for ineligibility. Ultimately, 24% (23/96) women screened eligible for participation, and 19% (18/96) women enrolled in the study. Of the 18 participants, 10 (56%) completed the final assessment at the end of the 10-week study; we only have data on this 56% (10/18) of the participants for certain measures captured only at the end of the study (e.g., PENS, MARS, and exit interview). Table 1 describes the baseline characteristics and demographics of the enrolled sample.

Figure 1. Study participant flow diagram. PHQ-9: Patient Health Questionnaire–9.
Table 1. Participant characteristics at baseline (N=18).

<table>
<thead>
<tr>
<th>Categories</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>34.3 (3.0)</td>
</tr>
<tr>
<td>Gestational age (weeks), mean (SD)</td>
<td>17.1 (7.1)</td>
</tr>
<tr>
<td>Race and ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>4 (22)</td>
</tr>
<tr>
<td>Hispanic or Latina</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Non-Hispanic or Latina</td>
<td>16 (89)</td>
</tr>
<tr>
<td>White</td>
<td>12 (67)</td>
</tr>
<tr>
<td>Sexual orientation, n (%)</td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>15 (83)</td>
</tr>
<tr>
<td>Bisexual</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Queer</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>12 (67)</td>
</tr>
<tr>
<td>Divorced</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Never married</td>
<td>5 (28)</td>
</tr>
<tr>
<td>Employment status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>16 (89)</td>
</tr>
<tr>
<td>Student</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Disabled or unable to work</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Insurance status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Private health insurance</td>
<td>17 (94)</td>
</tr>
<tr>
<td>Medicaid</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Education level, n (%)</td>
<td></td>
</tr>
<tr>
<td>Postgraduate training</td>
<td>12 (67)</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>4 (22)</td>
</tr>
<tr>
<td>Associate degree</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Some high school</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Treatment, n (%)</td>
<td></td>
</tr>
<tr>
<td>Psychiatric medication in past 2 months</td>
<td>9 (50)</td>
</tr>
<tr>
<td>Psychosocial treatment in past 2 months</td>
<td>8 (44)</td>
</tr>
<tr>
<td>Symptom severity (score), mean (SD)</td>
<td></td>
</tr>
<tr>
<td>PHQ-9(^a)</td>
<td>13.2 (4.7)</td>
</tr>
<tr>
<td>GAD-7(^b)</td>
<td>9.8 (4.2)</td>
</tr>
<tr>
<td>MINI(^c) diagnoses at baseline, n (%)</td>
<td></td>
</tr>
<tr>
<td>Major depressive episode</td>
<td>18 (100)</td>
</tr>
<tr>
<td>Generalized anxiety disorder</td>
<td>10 (56)</td>
</tr>
<tr>
<td>Agoraphobia without panic disorder</td>
<td>5 (28)</td>
</tr>
<tr>
<td>Panic disorder with agoraphobia</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Social phobia</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Obsessive-compulsive disorder</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>
Values

<table>
<thead>
<tr>
<th>Categories</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posttraumatic stress disorder</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Drug dependence</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

\(^a\)PHQ-9: Patient Health Questionnaire–9.
\(^b\)GAD-7: Generalized Anxiety Disorder–7 item.
\(^c\)MINI: Mini International Neuropsychiatric Interview.

App Satisfaction and Engagement

The average number of activities completed in *The Guardians* by participants (N=18) was 11.07 (SD 13.65), and the average number of days played was 16.67 (SD 17.52). The average activity completion rate (ie, rate at which a participant, on average, would complete an activity on any given day that they opened the gaming app) was 68.2% (SD 0.33). Of all the activities that study participants completed across the study period, 43.6% (65/149) were classified as easy, 27.5% (41/149) as medium, and 13.4% (20/149) as hard in effort level (the remaining were classified as other for effort level). Among the 56% (10/18) of the participants who completed MARS and PENS ratings at the final 10-week assessment, the average MARS rating was 3.49 (SD 0.76), and the average PENS rating was 4.13 (SD 1.66). All the correlations between engagement metrics (ie, days played and activities completed) and satisfaction measures (ie, MARS and PENS) were moderately positive (r=0.44-0.50) but not significant (with P values ranging from .13 to .20). Day-N study participant retention curves mapped on to those of the public *The Guardians* users are displayed in Figure 2. The optimal fit with all study data included is α=.13 and λ=0.12 with \(R^2=0.93 \).

Figure 2. Day-N user retention. Day-N user retention rates from day 1 to day 50 for public users of *The Guardians: Unite the Realms* and the study participants, with both raw data and its best-fit line.

Change in Clinical Symptoms

Overview

A series of independent 2-tailed \(t \) tests indicated no baseline differences in depression or anxiety scores between study completers (10/18, 56%) and noncompleters (8/18, 44%; \(P > .05 \)). Table 2 summarizes the change in PHQ-9 and GAD-7 scores across the 10-week study.

Regarding postactivity mood improvement ratings, participants reported feeling at least “a little better” 76% (113/149) of the time after completing an activity as part of *The Guardians* app. On average, participants reported having a greater improved mood after completing hard activities (mean 4.47, SD 0.21) compared with after completing activities identified as medium (mean 4.17, SD 0.16) or easy (mean 3.89, SD 0.14) in effort level. There was a significant (\(P=.05 \)) relation between activity effort level and post activity mood improvement, with a gradually increasing mean post activity mood improvement rating from Easy to Medium to Hard effort levels of activities, as shown in Figure 3.

Table 2. Average scores on the 9-item Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder Scale-7 (GAD-7) across study assessment time points.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Baseline (N=18)</th>
<th>2 weeks (n=16)</th>
<th>4 weeks (n=12)</th>
<th>6 weeks (n=13)</th>
<th>8 weeks (n=12)</th>
<th>10 weeks (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHQ-9 score, mean (SD)</td>
<td>13.17 (4.73)</td>
<td>9.88 (5.70)</td>
<td>8.67 (3.77)</td>
<td>9.92 (6.61)</td>
<td>9.58 (5.67)</td>
<td>7.2 (3.65)</td>
</tr>
<tr>
<td>GAD-7 score, mean (SD)</td>
<td>9.8 (4.18)</td>
<td>10.29 (5.62)</td>
<td>9.25 (4.03)</td>
<td>9.39 (5.46)</td>
<td>8.50 (3.50)</td>
<td>7.10 (4.12)</td>
</tr>
</tbody>
</table>
Change in PHQ-9 Score According to Time (Week in Study) and Activities Completed

For all the mixed effects models in the following sections, baseline age and gestational age were removed from the model as nonsignificant. For the first mixed effects model where the dependent variable was the PHQ-9 score, there was a significant negative main effect of linear week in study (unstandardized partial regression coefficient $\beta=-.35; t_{61}=-3.05; P=.003; 95\% CI -0.59 to -0.12$) and number of activities completed ($\beta=-.12; t_{61}=-2.05; P=.04; 95\% CI -0.25 to -0.003$). Overall, these fixed effect predictors accounted for 20.8% of the variance in the PHQ-9 score.

Change in PHQ-9 Score According to Time and Days Played

The same model as described previously was run except that number of days played replaced the number of activities completed. Results were analogous to those mentioned previously. There was a significant negative main effect of days played ($\beta=-.12; t_{58}=-2.9; P=.005; 95\% CI -0.21 to -0.04$) and linear week in study ($\beta=-.34; t_{58}=-2.86; P=.006; 95\% CI -0.57 to -0.10$). Overall, fixed effects accounted for 29.31% of the variance in the PHQ-9 score.

Change in GAD-7 Score According to Time and Activities Completed

The same model with the independent variables, activities completed and week in study, was rerun with GAD-7 score as the dependent variable. There were no significant effects of activities completed and only a marginally significant quadratic relation for week in study (β for linear term=.3; $P=.38; \beta$ for quadratic term=.06; $t_{45}=-1.89; P=.07; 95\% CI -0.125 to 0.004$). Overall, fixed effects accounted for only 4.2% of the variance in the GAD-7 score, whereas combined fixed and random effects accounted for 77.96% of the variance. Figure 4 displays the predicted values for this model and essentially indicates an accelerating decline in GAD-7 score across time, beginning at approximately week 4.
Figure 4. Mean values for Generalized Anxiety Disorder Scale-7 (GAD-7; with 95% CI) predicted by significant fixed effects in the fitted longitudinal model of GAD-7 versus week in study and activities completed. For fixed effects, a quadratic function for week in study was retained (marginally significant; $P=.07$), whereby the model–predicted GAD-7 values remained essentially stable up to approximately week 4.

Change in GAD-7 Score According to Days Played

The same model as described previously was run with *days played* as a fixed effect substituted for *activities completed*. Although the main effect terms for linear *week in study* and for *days played* were not significant, there was a marginally significant interaction effect of linear *week in study* and *days played* ($\beta=-.01; t_{55}=-1.97; P=.05; 95\%$ CI -0.02 to 0.0002), whereby GAD-7 score was predicted as essentially stable across time for participants with low numbers of *days played* but showed increasingly steep declines across time for those with increasingly high numbers of *days played* (Figure 5). Fixed effects accounted for 11.31% of the variance in the GAD-7 score.
Figure 5. Mean values for Generalized Anxiety Disorder Scale-7 (GAD-7; with 95% CI) predicted by significant fixed effects in the fitted longitudinal model of GAD-7 versus week in study and days played. For fixed effects, only an interaction of days played × linear week in study was retained as significant (P=.05), whereby GAD-7 values were predicted by the model to remain essentially stable across time when the number of days played was relatively low (below 10) but showed an increasingly steep linear decline across time when the numbers of days played was increasingly high. Predicted values for GAD-7 are shown at selected illustrative strata of number of days played ranging from the minimum observed value of 2 up to the maximum observed value of 57 and at equally spaced intervals in between.

Change in PHQ-9 Score Over Time According to MARS, PENS, and Treatment Started

In the model with MARS, PENS, week in study, and whether medication was started midstudy as independent variables and PHQ-9 score as the dependent variable, we found a significant negative main effect for linear week in study (β=-.35; t₄₅=-2.74; P=.009; 95% CI -5.86 to -0.24) and MARS (β=-3.05; t₄₅=-2.19; P=.03; Figure 6). The PENS variable was nonsignificant and was removed in the backward elimination. Additive to these effects, there was a marginally significant effect of treatment initiation (β=-3.25; t₄₅=-1.84; P=.07), with the treatment started group (ie, medication or therapy started during the study period) estimated to have an adjusted mean of 11.45 (SD 1.2588), whereas the no treatment started group had a low adjusted mean of 8.20 (SD 1.2393). Overall, fixed effects accounted for 35.01% of the variance in the PHQ-9 score. There was no interaction effect between treatment started and reduction in PHQ-9 score across time; therefore, there was no significant difference in the slopes of change across time between the 2 medication groups.
Figure 6. Mean values for Patient Health Questionnaire-9 (PHQ-9; with 95% CI) predicted by significant fixed effects in the fitted longitudinal model of PHQ-9 versus week in study, Mobile Application Rating Scale (MARS), Player Experience of Needs Satisfaction Scale, and treatment initiation (ie, whether medication or therapy was started or not started during the study). For fixed effects, only negative main effects for linear week in study ($P=.009$), MARS ($P=.03$), and treatment initiation (marginal; $P=.07$) were retained. Predicted values for PHQ-9 are shown in the respective panels for those who started or did not start treatment, across time within each panel and at selected illustrative strata of MARS ranging from the minimum observed value of 2.256 up to the maximum observed value of 4.283 and at equally spaced intervals in between.

Change in GAD-7 Score Over Time According to MARS, PENS, and Treatment Started

For the backward-eliminated mixed effects model for total GAD-7 score, there was a significant interaction between MARS and *weeks in study* ($\beta=-.64; t_{43}=-3.27; P=.002$), reflecting the fact that as MARS ratings increased, GAD-7 score was predicted to decline more across time (Figure 7). PENS and *treatment started* variables were nonsignificant and removed in the backward elimination. Overall, fixed effects accounted for 18.07% of the variance in the GAD-7 score.
Figure 7. Mean values for Generalized Anxiety Disorder Scale-7 (GAD-7; with 95% CI) predicted by significant fixed effects in the fitted longitudinal model of GAD-7 versus week in study, Mobile Application Rating Scale (MARS), Player Experience of Needs Satisfaction Scale, and treatment initiation. For fixed effects, only an interaction of MARS × linear week in study was retained as significant ($P=.002$), whereby GAD-7 values were predicted by the model to vary from rising linearly across time among individuals with relatively lower MARS ratings to declining linearly across time for those with relatively higher MARS ratings. Selected illustrative strata of MARS in the figure were chosen to range from the minimum observed value of 2.256 up to the maximum observed value of 4.283 and at equally spaced intervals in between. The slight crossover of lines before approximately week 3 is likely just an artifact of the linear constraint for the lines and probably should not be interpreted with substantive meaning.

Qualitative Feedback

Overview
Themes from the exit interviews fell into the following major categories: app activities, app design, app engagement, fit of The Guardians with lifestyle, and perceived impact of The Guardians on mood. Positive and negative feedback were identified in each of these categories. Participants also provided suggestions for app modifications, some of which were general recommendations and others were specific to pregnant app users.

App Activities
Participants reported that The Guardians encouraged completion of activities outside the game, as described in the following quote:

So, I would try to do daily house tasks...Like there was one, “clean-up a junk drawer,” and another one, like, “clean a room in your house.” So, I would try to pick those activities because, let’s face it, nobody ever wants to do those kinds of things. And that, I think, was kind of helpful for me, especially because I knew we were going to be moving, and it helped me declutter some stuff before we moved, so that was really awesome.

Participants also reported appreciating the variety of activities available. A participant shared the following:

I enjoyed the activities that were offered...there’s a wide variety of activities that would suit a lot of different people.

Some participants, however, had difficulty in completing certain activities (eg, “Doing longer [activities] was harder because at the time I was having some health issues myself...”). Others felt that it was easy to select activities that they were already doing in their daily lives, as described by a participant:

I mean, most of [the activities] were things that I was kind of doing already, like taking a shower, or I think, like, doing dishes...So honestly, I kind of picked the easy ones I was automatically doing.

App Design
Overall, participants appreciated the design of The Guardians’ characters (eg, “The aesthetics were adorable; they’re really cute.”). A participant noted that the characters in the game motivated her to continue engaging with the app:

I think within the game itself, my biggest motivator was probably getting new pets. As someone who really likes arts and things like that, the designs of the creatures were really interesting. Being able to get a new creature each day was great.
Participants also appreciated the design of The Guardians itself, in terms of its esthetics (eg, “I did enjoy that the different levels had different world feels.”) and mechanics (eg, “...It’s one of the only apps that never crashed on me.”).

Some participants also had more critical feedback regarding the app’s design. For instance, a person felt that the app was difficult to navigate (eg, “If I didn’t feel like I was...fumbling my way through it, I could have maybe engaged faster and more.”). Others were frustrated that they had to wait before the next level unlocked (eg, “At one point, I think I had to wait, like, thirty days or something in order for the next level to open up, and I was like, ‘Oh, my goodness—what do I do now?’”). Similarly, some participants were frustrated by the length of the game’s introduction and overall complexity, as summarized by a woman:

I would say that the learning curve was just too much...like the mental state I’m in, plus, like, the amount that I’m trying to juggle. It was just a lot to try to add the additional learning of a game...

App Engagement

Participants shared that The Guardians allowed them to develop a sense of routine (eg, “When I was trying to get myself out of bed and stuff like that, [the app] just gave me another reason to get out of bed...”). They also enjoyed the gamification of daily household activities that may otherwise be difficult to complete while pregnant or experiencing elevated depressive symptoms (eg, “I definitely liked the aspect of...the little challenges of doing laundry and cleaning and stuff like that, because it kind of gamified doing that type of stuff.”). Furthermore, engagement with the app even helped a participant to start and maintain a healthy coping behavior beyond the end of the trial:

I think having that structure, having that reward to engage in a very common coping mechanism for me, really helped to motivate and get me in a pattern of reading that has continued, even if I’m not actively engaging with the app right now.

Not all participants, however, found The Guardians to be motivating or engaging (eg, “I didn’t really feel like [the app] was pushing me to come back in any way.”). Some found the app to be very complex, as previously described, whereas others felt that it was very simple (eg, “I think if it was a little bit more complex, it would have been more engaging for a longer period of time.”).

Fit of The Guardians Into Lifestyle

Some participants found that using The Guardians was an easy fit into their existing lifestyle (eg, “I would use [the app]...on the way to work.”). Furthermore, a participant felt that the game helped them return to a previous routine:

Once I started using the app in the mornings, I was able to get out of bed and do things that I [had previously] been doing. So, it kind of snapped me back into my regular routine...

In terms of negative feedback, some participants felt that their busy schedules and lifestyles were not compatible with using The Guardians consistently. A participant stated the following:

I already have three kids, so I needed something to kind of be easy and mindless, and this was like...you had to be focused in on what you’re doing to even learn the game. So, for me, it was just too much.

Perceived Impact of The Guardians On Mood

Some participants reported that The Guardians positively influenced their mood (eg, “I think that the reward [was] my mood improving.”). Other participants did not find the app effective in influencing their mood (eg, when a participant was asked whether The Guardians affected their mood, the participant responded, “No, not really.”).

Suggestions for App Modifications

Participants had various recommendations for future improvements to The Guardians. Broadly, participants recommended simplifying the introduction to the app (eg, “Make it a little bit easier so it’s not so much upfront...to make sense of it.”). In addition, participants suggested a way to track activities in the game to monitor progress (eg, “I think if...it tracked [the activities], that would be really helpful, too.”).

Recommendations also centered around ideas for making The Guardians more relevant and engaging for pregnant individuals. Participants suggested adding more pregnancy-specific activities, as described in the following quote:

I think maybe for pregnant women specifically...if you made one of those activities, like, do your kick counts, or something...just a reminder to some people, especially first-time moms, because they might not know to do those kinds of things...

Furthermore, some participants recognized that potential activities could differ based on gestational age. A participant shared the following:

For pregnant women, even having, like, a first trimester versus second trimester versus third trimester...There are different goals in there too, if you look at, like, pregnancy guidelines. Like, maybe, “Pick out something for the nursery today.” I think it could be interesting...to even look at how you can engage at different points of your trimesters.

Others recommended that The Guardians incorporate educational content related to pregnancy, as described in the following quote:

I think there are elements too, where there's pregnancy education that could be added into a gamification setting, where you are educating people at the same time as encouraging...healthy habits and things like that.

Discussion

Principal Findings

Our findings from this pilot study provide preliminary support for The Guardians as a potentially desirable intervention to engage and improve mood among some pregnant women. All enrolled participants met the criteria for a current MDE and the average baseline depressive symptoms fell into the moderate...
symptom severity level according to PHQ-9 [53], suggesting that The Guardians may be of interest to and able to engage pregnant individuals with moderate depressive symptom levels. Without providing any compensation for participation in the study, we enrolled 18 pregnant women within a brief, 8-month recruitment period, indicating that a gaming app such as The Guardians may be of interest to some individuals in the target pregnant population. Furthermore, one-third of the sample (6/18, 33.3%) identified as non-White, which is encouraging in that the app may be acceptable to a diverse population. However, we recognize that this was a small and relatively highly educated and employed sample; further studies are needed to assess the ability to engage a diverse perinatal population with elevated depressive symptoms using The Guardians.

Our user engagement data aligned with previous studies suggesting that The Guardians may be effective in improving long-term engagement relative to other digital mental health interventions [30]. The 15-day and 30-day overall app retention rates of 26.6% and 15.1%, respectively, compare favorably with the median retention rates of 3.9% (IQR 10.3%) and 3.3% (IQR 6.2%) for mental health apps, as reported by Baumel et al [27]. Furthermore, our retention rates suggest that The Guardians is favorably consistent with rates observed in the top 15% of entertainment-only mobile games that include engagement rates [54]. Such retention and engagement metrics are particularly encouraging, as there were no external (ie, outside the app) reminders for participants to use The Guardians, unlike other digital mental health interventions (eg, use of a therapist or coach to check in and encourage engagement). Although not statistically significant (likely owing to the small sample size in this study), it is not surprising that there were positive, moderate correlations between ratings of satisfaction with the app (as assessed using PENS and MARS) and engagement with the app (as assessed using days played and activities completed).

This was the first study to explore the change in depressive and anxiety symptoms among users of The Guardians. Our findings demonstrated reduction in both depressive and anxiety symptoms over the course of the 10-week study on average among study participants. Although we cannot attribute the decrease in clinical symptoms to the app owing to the lack of control group and this being an underpowered pilot study focused on feasibility, our analyses indicated statistically significant relationships between depression improvement and app engagement when there were less depression symptoms (according to PHQ-9), more activities were completed, and more days played. This offers some preliminary support that there may be improvement in depression when pregnant women engage more with The Guardians. Furthermore, low depressive symptoms were associated with high MARS rating of app satisfaction, indicating that there may be great improvement in depressive symptoms when a user is more satisfied with The Guardians. Overall, of the 2 app satisfaction ratings (ie, MARS and PENS), our mixed effects models found MARS to be a better predictor of change in clinical symptoms (main effect for decrease in PHQ-9 score; interaction with time for decrease in GAD-7 score) relative to PENS, which was removed in backward elimination for all of our analyses.

Our findings also suggest that there may be great improvement in mood after completing activities that require more effort. However, the effort level of app activities was assigned by the app developers, and activities determined to be easy or hard may not align with how a user would rate the effort for these activities. Further studies are needed to explore the relationship between the types and effort levels of activities completed and impact on mood. In addition, this study focused on individuals only during pregnancy and not during the postpartum period, as it seems there are unique aspects of the postpartum period (eg, sleep deprivation and demands of a newborn) that may influence the ability to engage with the app or complete certain activities. Future studies could assess the impact of this app in the postpartum period and further explore how certain activities in the postpartum period are perceived in terms of effort level and impact on mood.

Our findings regarding change in anxiety symptoms revealed an interaction between days played and time, indicating that there were relatively stable anxiety levels on average among participants who used the app less, but there was great improvement in anxiety scores for those who used the app more (ie, great number of days played). This provides some support for the potential benefit of using The Guardians among this sample of pregnant individuals with anxiety and elevated depression, yet only for those who used the app more often. Not surprisingly, given the nonsignificant but positive correlation between app satisfaction (ie, MARS) and days played, there was great improvement in anxiety symptoms when the MARS ratings were high (ie, high acceptability). Again, further studies are needed with a powered RCT to explore these changes in clinical symptoms among users of The Guardians, including assessment of other factors that may be contributing to change in clinical symptoms (eg, specifics about treatment changes during the study and major life events). Our findings indicate that participants who started treatment (medication or psychotherapy) during the course of the trial had great depressive symptoms both at baseline and at the end of the 10-week trial; however, the rate of change in depressive symptoms between these groups over the course of the study period was similar.

The qualitative feedback provided by participants indicated that there were contrasting opinions about certain aspects of the app. Participants tended to positively assess the activities on the app if they were novel to the participant or suited their individual lifestyles and abilities. Participants tended to negatively assess the activities if they felt that they were very difficult or did not have a significant or positive effect on their mood. There were also some contrasting views about the nature of the app; some felt that it was “mindless” and fun, whereas others felt that it was very demanding and time consuming. Future studies could explore ways to tailor the app to make it more or less challenging, depending on a person’s preferences or needs. On the basis of participants’ recommendations, other features could be added in future iterations of the app, such as an activity tracking module to help monitor activity completion and impact on mood over time. Other feedback from participants will be critical in informing the adaptation of The Guardians to a perinatal population to include pregnancy-specific activities.
Limitations

This study has several limitations. As indicated previously, the study sample was small and relatively highly educated and employed. Thus, we do not know how generalizable these findings are to a broad population. As this pilot study did not have a control condition, we cannot make any causal claims regarding the impact of the app on clinical symptoms. Furthermore, future studies should assess how access to smartphones or comfort with technology may influence who would engage with an app such as The Guardians. A large RCT is needed to further explore how The Guardians may be used among pregnant individuals across socioeconomic levels and to rigorously assess the app’s effectiveness in treating PD.

Conclusions

The Guardians is a widely available and highly engaging gaming app that incorporates BA principles. In this study, we sought to explore the usability, acceptability, and preliminary effectiveness of this app among a small sample of pregnant individuals with elevated depressive symptoms. Findings from this small pilot study provide initial support for The Guardians as an acceptable and engaging app, and there may be some improvement in mood and anxiety among certain users in the target population. This was one of the first longitudinal pilot studies to explore the effectiveness of a BA gaming app on PD. Further studies, including a powered RCT, is needed to follow-up on these preliminary findings.

Acknowledgments

The study was supported by the Brain and Behavior Research Foundation, National Institute on Aging, National Institutes of Health, and SAGE Therapeutics. Advisory and consultation support was provided by JDS Therapeutics LLC.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

Multimedia Appendix 1

Exit interview questions.
[DOCX File , 15 KB - formative_v8i1e44029_app1.docx]

References

https://formative.jmir.org/2024/1/e44029

JMIR Form Res 2024 | vol. 8 | e44029 | p.457

(page number not for citation purposes)

38. Home page. Massachusetts General Hospital Center for Women's Mental Health. URL: https://womensmentalhealth.org/ [accessed 2023-12-12]

54. A global analysis of gaming benchmarks. GameAnalytics. 2018. URL: https://gameanalytics.com/benchmarks/ [accessed 2023-12-12]

Abbreviations
- BA: behavioral activation
- GAD-7: Generalized Anxiety Disorder-7
- MARS: Mobile Application Rating Scale
- MDE: major depressive episode
- PD: perinatal depression
- PENS: Player Experience of Needs Satisfaction scale
- PHQ-9: Patient Health Questionnaire-9
- RCT: randomized controlled trial
- REDCap: Research Electronic Data Capture

©Rachel C Vanderkruik, Craig Ferguson, Lauren A Kobylski, Joseph J Locascio, Gabriella E Hamlett, Parker C Killenberg, Robert Lewis, Noah Jones, Ella T Rossa, Hannah Dineen, Rosalind Picard, Lee S Cohen. Originally published in JMIR Formative Research (https://formative.jmir.org), 26.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

Telephone-Based Training Intervention for Using Digital Communication Technologies for Social Housing Residents During the COVID-19 Pandemic: Mixed Methods Feasibility and Acceptability Evaluation

Tim Walker¹, BA, MSc, PhD; Sarah Ann Buckingham¹, BSc, ResM, PhD; Ria Poole¹, BSc, PhD; Lewis Roland Elliott¹, BSc, MSc, PhD; Tamaryn Menneer¹, BSc, PhD; Gengyang Tu², MA, PhD; Karyn Morrissey³, BA, MA, PhD

¹European Centre for Environment and Human Health, University of Exeter Medical School, Truro, United Kingdom
²International Business School Suzhou, Xi’an Jiaotong-Liverpool University, Suzhou, China
³Department of Technology, Management and Economics, Technical University of Denmark, Lyngby, Denmark

Corresponding Author:
Tim Walker, BA, MSc, PhD
European Centre for Environment and Human Health
University of Exeter Medical School
Knowledge Spa
Truro, TR1 3HD
United Kingdom
Phone: 44 (0) 1872 258131
Email: t.w.walker@exeter.ac.uk

Abstract

Background: In an era in which digital communication technologies play a pivotal role in everyday life, social housing residents remain highly susceptible to digital exclusion.

Objective: This study aims to evaluate the feasibility and acceptability of a telephone-based training intervention designed to empower people to confidently use digital communication technologies (ie, video calls and web-based messaging).

Methods: Conducted in collaboration with a UK social housing association, the intervention was facilitated by a unitary authority’s Digital Inclusion Team during the COVID-19 pandemic. A mixed methods approach was used, encompassing quantitative and qualitative data collection on demand, reach, implementation, and potential outcomes. Demographic and qualitative data on the reasons for undertaking or not undertaking the training were collected via telephone interviews during the recruitment process. Digital competency and well-being data were collected via a self-reported survey before and after the intervention.

Results: Among the 4485 residents who were offered training, 67 (1.49%) expressed interest, of whom 12 (18%) of the 67 completed the training. The findings indicate a demand for basic digital training among social housing residents. The key findings revolve around the substantial dropout rate among those who were interested in undertaking the training. Barriers were strongly influenced by socioeconomic and health circumstances, reflecting the sociodigital inequalities commonly found in this group. For the training participants, the intervention was acceptable and achieved its goals, demonstrating the potential of tailored, persistent training efforts in overcoming barriers. There were no changes in self-reported well-being or digital competency outcomes (but this was limited by the small sample size).

Conclusions: Sociodigital inequalities impact the reach, implementation, and acceptability of telephone-based digital training for social housing residents. Barriers to reaching and training digitally excluded groups can be overcome through the use of trusted intermediaries, personalized recruitment approaches, the minimization of administrative barriers, and tailored and agile training programs. Recognizing the resource-intensive nature of such initiatives, this study calls for enhanced recognition of intermediary efforts in national digital inclusion policies.

(JMIR Form Res 2024;8:e45506) doi:10.2196/45506

https://formative.jmir.org/2024/1/e45506
KEYWORDS
digital training; telephone-based; social housing; feasibility; acceptability; communication technologies; sociodigital inequalities; mobile phone

Introduction

Background
Facilitated by near-ubiquitous digital connectivity in the global north, digital technologies are increasingly used across all areas of life and bestow significant benefits upon those who use them [1,2]. In response, many organizations, not least public service providers, proceed as if access to the internet and digital technology is already universal [3]. However, although connectivity has increased, access to digital technologies and the competencies to use them are not yet universal [4,5]. In the United Kingdom, the 2021 Consumer Digital Index found that approximately 10 million people (14% of the population) do not have the basic digital competencies needed for use of everyday digital technologies [6]. Digital exclusion can no longer be seen as a product of rural or remote living, place-based infrastructural and connectivity issues, or older age. Instead, digital exclusion is currently most likely a product of wider social and economic inequalities. Sociodigital inequalities [7] refer to the interplay between traditional (ie, social, economic, and health) and digital inequalities and have led to systematic differences in the ability and opportunity of different groups to beneficially use digital technology and participate in society. These differences, in turn, contribute to deeper social inequalities, which lead to greater digital inequalities over time [8].

A growing body of literature has begun to document the extent of digital inequalities and highlight the specific barriers to digital use in different social contexts [8]. In the United Kingdom, the Digital Inclusion Strategy sets out how the government and partners from the public, private, and voluntary sectors will increase digital inclusion [9] by targeting the following 4 interconnected barriers to digital inclusion: digital access, skills, confidence, and motivation [10]. However, although national policies are imperative to improve inclusion from an infrastructure and digital connectivity [1] perspective, localized interventions are much better placed to address digital skills, confidence, and motivation across previously excluded groups [11]. In the United Kingdom, localized digital training interventions are typically delivered by intermediaries, such as voluntary and community sector organizations and public libraries, and include formalized group programs, one-to-one digital buddy programs [12], and peer support [13]. Specifically, the United Kingdom’s Local Government Association’s Digital Inclusion Programme is funding councils to reach residents and provide personalized digital training programs for those who do not have access to or confidence in using digital communication platforms [14]. However, there is limited evidence on whether these digital training interventions are effective in increasing “digital readiness,” the competency and increased motivation to use digital technologies [15-17]. However, evidence does suggest that individuals who participate in these digital interventions have a higher socioeconomic status, higher education, higher social participation, and a greater experience with technology [18,19]. Conversely, those who are already experiencing sociodigital inequalities remain the hardest to reach [20-22] owing to reported barriers, including physical health issues, a negative attitude toward technology, caring for a sick spouse, a lack of energy, and a lack of time [23,24].

This Study
Within the context of the digital needs of hard-to-reach populations, this study focused on social housing residents in Southwest England. In the United Kingdom, social housing associations (HAs) are not-for-profit organizations that provide rental properties at 50% to 60% of market rates to those whose circumstances exclude them from the private market [25]. Overall, 3.9 million people live in social housing for various socioeconomic reasons [25]. Studies have shown that the demographic and socioeconomic profile of social housing residents means that they are significantly more likely to be digitally excluded and harder to reach than other groups in the United Kingdom [10,26-28]. This is because the factors that are known to increase digital exclusion are found at higher incidences among social housing residents than among those outside the social housing system [29,30]. These factors include lower incomes, fewer qualifications, older age, physical and mental health issues, disabilities, and living in more deprived areas [31,32].

The Smartline project [33] worked with 200 social housing households in one of the most deprived areas of England [34] to understand the potential of everyday digital technology to address health and well-being challenges. A qualitative scoping study on the feasibility and acceptability of digital technology among Smartline participants found that although the participants had positive perceptions of technology and were keen to try new technologies, digital readiness and the desired digital destination (goals) varied greatly among the community [28]. Several concerns surrounding technology use were identified, including data security and privacy concerns and the fear of “making a mistake” or “pressing the wrong button.” Many participants expressed a strong desire for further training and support.

Following this research, a training intervention was conducted to help Smartline participants get on the web and use digital communication technologies, such as web-based video calls and messaging, with confidence. The Getting Online: Staying Connected (GO:SC) intervention was originally planned as a face-to-face intervention with peer-to-peer support on how to use video calling technology. However, as with many research interventions during this time [35], the outbreak of the COVID-19 pandemic in March 2020 meant that the study had to be redesigned as a smaller-scale telephone-based training intervention for social housing residents delivered in conjunction with the Cornwall Council’s Digital Inclusion Team (DIT). The aim of this study was to evaluate the feasibility of the telephone-based training intervention. Specifically, informed by the feasibility framework of Bowen et al [36] and RE-AIM...
(Reach, Effectiveness, Adoption, Implementation, and Maintenance) model of Glasgow et al [37], this study aimed to evaluate the (1) reach and demand, (2) implementation, (3) acceptability, and (4) potential efficacy of the telephone-based digital training intervention for social housing residents [36,37]. These are established frameworks for evaluating digital health interventions [38,39] and are suitable and credible for testing an unexamined intervention in a real-life setting where constraints exist over conditions [36,38,39].

Methods

Overview of the Study Design

This was a mixed methods feasibility study. The protocol and ethics application were informed by best practices for the process evaluation of public health interventions [40]. An overview of the study procedure, including recruitment and data collection, is provided in Figure 1 and Table 1 and detailed throughout the subsequent subsections.

![Figure 1. Feasibility study process map for the digital training program covering recruitment, data collection, and intervention delivery.](https://formative.jmir.org/2024/1/e45506/p.462)
Recruitment of Participants

Recruitment took place between October 2020 and June 2021. As we did not expect potential participants to have email addresses, recruitment was initially planned to take place via telephone, targeting only the Smartline participants. Participants who identified as having low digital competency or confidence in the Smartline baseline survey [41] were contacted via telephone and completed the recruitment survey asking respondents if they were interested in undertaking the digital training (Figure 1). The Smartline survey data enabled the analysis of the characteristics of those who did not respond and were not interested in the training offer.

As recruitment was lower than expected, it was decided to extend the intervention to all Coastline Housing residents in the greater Camborne area. Extending to all the residents of the HA meant that individual phone calls were no longer possible. The recruitment survey was sent to all Coastline residents who had an email address. A specially designed advertisement for digital training was also disseminated to the residents using the communication channels of the HA, including the residents' monthly newsletter (printed and electronic), the HA's Facebook (Meta Platforms, Inc) page, and printed posters placed in community areas. The recruitment survey asked the participants to outline their reasons as to why they were interested or not interested in receiving the training. The survey thus enabled the analysis of the characteristics of both the participants who were interested and participants who were not interested in the training intervention.

Residents who expressed an interest in the digital training either via telephone or email were posted the study information sheet, the consent form, and a baseline survey assessing well-being and digital competency (Multimedia Appendices 2-4). Participants returned the completed forms via a Freepost envelope to the research team, who forwarded the participants’ phone numbers and digital training interests to the Cornwall Council’s DIT via email. The DIT then directly telephoned each participant to arrange the provision of the training.

The inclusion criteria were adult (aged >18 y) social housing residents in Cornwall who defined themselves as lacking either the competency or confidence to use digital communication apps. These included existing participants in the Smartline project and residents of the wider Coastline HA. Participants were excluded if they did not have access to an internet connection or at least 1 internet-enabled device. Training was provided free of charge to participants (in line with the DIT’s protocol).

The Intervention

The intervention is described in line with the TIDieR (Template for Intervention Description and Replication) standards for intervention reporting [42]. The training intervention was based on a 4-week, face-to-face, and basic digital skills course that was established by the DIT and delivered in libraries and community venues across Cornwall before the COVID-19 pandemic. The course structure adhered to the UK government’s Essential Digital Skills Framework [43], encompassing fundamental computer skills, problem-solving skills, communication skills, transactional skills, and skills for handling...
digital information and content, as detailed in Multimedia Appendix 5.

In response to the social distancing measures in place during the COVID-19 pandemic, the DIT adapted the training to be delivered over telephone. This adaptation was informed by best practices in digital inclusion initiatives [44] and participant preferences identified in our prior qualitative scoping work [28]. The adapted training approach emphasized informality; flexibility; person-centeredness; and task-specific, on-demand delivery, diverging from traditional, predetermined, and technically focused programs imposed by training organizations [44]. This informal model aligns with research indicating that training success factors encompass participant autonomy, personalized learning, practice opportunities, and individualized support [13,45]. Informal learning, in particular, enhances self-efficacy and proves highly effective for digitally marginalized groups [46].

The overall purpose of the training intervention was to support participants in achieving active and continued use of digital devices and communication apps of their choice (eg, WhatsApp [Meta Platforms, Inc], Zoom [Zoom Video Communications, Inc], and Facebook). The training was delivered through one-on-one phone calls facilitated by a digital inclusion officer from the DIT, all of whom possessed a background in education. To provide course content guidance and ensure consistent and best-practice training delivery, the DIT used a bank of task-specific instructions (ie, step-by-step guide to installing WhatsApp), which could be printed and posted to participants on demand (Multimedia Appendix 6). Training sessions varied in duration (between 5 min and 2.5 h) according to each participant’s individual learning needs, often including follow-up calls as necessary.

Ethical Considerations

Overarching ethics approval to conduct research with Coastline Housing (a social HA in Cornwall) residents was granted by the University of Exeter Business School Research Ethics Committee as part of the Smartline project (eUEBS002996 v4.0). Specific approval for the GO:SC project was granted by the College of Life and Environmental Science Penryn Research Ethics Committee (eCORN002229). Written informed consent was obtained from all participants involved in the study (Multimedia Appendices 3 and 4). Data were anonymized using pseudonyms. Participants who completed the follow-up survey received a £10 (US $12.7) shopping voucher as compensation for their time.

Data Overview

The following 4 qualitative and quantitative data sources were used to assess the feasibility and acceptability of the intervention: a recruitment log, recruitment survey, well-being and digital competency survey (administered at baseline and 6-month follow-up), and digital training call log (Table 1). Previously piloted by the Smartline participants, the well-being and digital competency survey (Multimedia Appendix 2) used quantitative rating scales and was completed at baseline (immediately before training commencement) and 6 months following the training, with the aim of assessing potential outcomes. This survey (disseminated via post) was based on a validated survey, the “Happiness Pulse” [47], and included 4 domains of psychological well-being (general, emotional, behavioral, and social). A bespoke module on digital attitudes, behaviors, and competence was developed by the research team for the wider Smartline project. This digital module was informed by behavior change and technology acceptance theories [48-51] and included questions adapted from existing sources, including the UK government’s Digital Inclusion Evaluation Toolkit [52]. The module contained specific questions on video calls and messaging in addition to questions on technology in general. The theoretical basis of this module is provided in Multimedia Appendix 7 [47,49-63].

Data Analysis

To determine the reach of and demand for the intervention, as well as participants’ levels of engagement with the training, descriptive statistics (frequencies and percentages) from the recruitment log, recruitment survey (n=168), and training call log (n=12) were calculated. A probit model was used with the recruitment survey data to identify the socioeconomic factors associated with initial interest in participating in the digital training program. The analysis was performed in Stata (version 17; StataCorp) [64].

For the well-being and digital competency survey, the scoring protocol for the Happiness Pulse was followed [53], with means and SDs calculated from summary scores to describe each of the 4 well-being domains. As digital competency outcomes were measured on interval scales, medians and IQRs were calculated for these outcomes.

The COREQ (Consolidated Criteria for Reporting Qualitative Research) criteria [65] for reporting qualitative research were adhered to throughout the analyses. Qualitative data analysis used data from the recruitment log, recruitment survey, and digital training call log. To manage the qualitative data analysis process with transparency and traceability [66], NVivo (QSR International) [67] was used. In line with best practices [68], 3 rounds of inductive coding were conducted using a constant comparative method [69,70]. The first round of coding was open and focused on identifying and labeling discrete incidents. For example, “I have a smartphone, but I struggle to use it” contains 2 incidents: an object (smartphone) and a construct (competency). The second round of coding was axial, where open codes were compared (via contradiction, expansion, and support) and integrated into themes, and the third round of coding was selective, where connections between themes were compared and refined to build the grounded theory. The lead researcher (TW) conducted the initial coding, and the themes identified were discussed with a second researcher (SAB). To further improve rigor and reliability [71,72], a third researcher (KM) was consulted, and minor discrepancies were resolved through discussion. Pseudonyms were applied to protect participants’ identities.

The quantitative and qualitative data were integrated within the selected feasibility criteria of reach, demand, acceptability, implementation, and potential outcomes [36] to provide a complete picture of the feasibility, acceptability, and potential impact of the intervention. This use of mixed methods enabled...
triangulation to strengthen the validity of the findings and complementarity to explore different facets of a phenomenon [73].

Results

Reach and Demand of the GO:SC Digital Training Intervention

Recruitment and Reach

Digitally excluded groups within social housing are known to be difficult to reach [20,26]. In total, 4485 social housing residents were offered the training either via email (n=4365, 97.32%) or phone call (n=120, 2.68%; Table 2). The total number of responses to the recruitment survey (conducted via phone and email) was 168. A much higher proportion of phone survey respondents (37/120, 30.8%) were interested in the training, compared with the proportion of email survey respondents who were interested (30/4365, 0.69%). Although the HA actively promoted the intervention via its various web-based and printed communication channels over several months, none of the residents responded to these advertisements.

Phone calls were the most successful means for recruiting older and more digitally excluded groups. This success can be attributed to their familiarity as a channel for communication and the person-centered approach they enable [44]. Phone conversations also facilitated a further understanding of personal circumstances (eg, social, financial, or health needs) and desired outcomes (eg, connecting with friends or family or accessing health services), making it easier to adapt the conversations to include relevant training benefits. Furthermore, a previous study [74] found that women tend to be more receptive to recruitment contact via phone, which may explain the gender bias found.

Overall, 39.9% (67/168) of the recruitment survey respondents were interested in potentially undertaking the intervention. Among those initially contacted via email and phone, older women residents and those contacted by the HA were more interested in the intervention (probit model; Table 3). None of the interested participants who responded to the email survey completed the training. Our results affirm the substantial challenge of reaching and recruiting individuals interested in foundational digital training using conventional communication channels.

Table 2. Demand for and uptake of the digital training in and demographic characteristics of each group

<table>
<thead>
<tr>
<th>Group Description</th>
<th>Total (n=168), n (%)</th>
<th>Women residents, n (%)</th>
<th>Men residents, n (%)</th>
<th>Residents with missing gender data, n (%)</th>
<th>Residents aged 18 to 24 y, n (%)</th>
<th>Residents aged 25 to 34 y, n (%)</th>
<th>Residents aged 35 to 44 y, n (%)</th>
<th>Residents aged 45 to 54 y, n (%)</th>
<th>Residents aged 55 to 64 y, n (%)</th>
<th>Residents aged 65 to 74 y, n (%)</th>
<th>Residents aged 75 y, n (%)</th>
<th>Residents with missing age data, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not interested in the training</td>
<td>101 (60.1)</td>
<td>55 (54.5)</td>
<td>35 (34.7)</td>
<td>11 (10.9)</td>
<td>4 (4)</td>
<td>10 (9.9)</td>
<td>12 (11.9)</td>
<td>14 (13.9)</td>
<td>15 (14.9)</td>
<td>22 (21.8)</td>
<td>7 (6.9)</td>
<td>17 (16.8)</td>
</tr>
<tr>
<td>Interested in the training</td>
<td>67 (39.9)</td>
<td>41 (61.2)</td>
<td>23 (34.3)</td>
<td>3 (4.5)</td>
<td>0 (0)</td>
<td>3 (4.5)</td>
<td>5 (7.5)</td>
<td>8 (11.9)</td>
<td>17 (25.4)</td>
<td>24 (35.8)</td>
<td>8 (11.9)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Interested in the training but did not complete the training</td>
<td>55 (82.1),b</td>
<td>31 (56.4)</td>
<td>21 (38.2)</td>
<td>3 (5.5)</td>
<td>0 (0)</td>
<td>3 (5.5)</td>
<td>5 (9.1)</td>
<td>8 (14.5)</td>
<td>12 (21.8)</td>
<td>19 (34.5)</td>
<td>6 (10.9)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Interested in the training and completed the training</td>
<td>12 (17.9),b</td>
<td>9 (75)</td>
<td>3 (25)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>5 (41.7)</td>
<td>5 (41.7)</td>
<td>2 (16.7)</td>
<td>0 (0)</td>
<td></td>
</tr>
</tbody>
</table>

a The percentage values in columns 3 to 13 were calculated using the corresponding n value in column 2.
b The percentage value was calculated with 67 as the denominator.
Table 3. Probit model analysis results, that is, factors associated with the initial interest in the digital training intervention (n=168)a.

<table>
<thead>
<tr>
<th>Explanatory variable</th>
<th>Description of variables</th>
<th>Coefficient</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacted by HAb (dummy)</td>
<td>If contacted by HA</td>
<td>0.863</td>
<td>.001</td>
</tr>
<tr>
<td>Disable (dummy)</td>
<td>Respondent is disabled=1</td>
<td>0.228</td>
<td>.55</td>
</tr>
<tr>
<td>Age55+ (dummy)</td>
<td>Age > 55 years</td>
<td>0.828</td>
<td>.003</td>
</tr>
<tr>
<td>Disable Age55+</td>
<td>_ (c)</td>
<td>0.221</td>
<td>.66</td>
</tr>
<tr>
<td>Women (dummy)</td>
<td>Respondent is women=1</td>
<td>0.105</td>
<td>.63</td>
</tr>
<tr>
<td>Cornish (dummy)</td>
<td>Respondent’s ethnic group is Cornish=1</td>
<td>0.009</td>
<td>.98</td>
</tr>
<tr>
<td>English (dummy)</td>
<td>Respondent’s ethnic group is English=1</td>
<td>0.135</td>
<td>.72</td>
</tr>
<tr>
<td>British (dummy)</td>
<td>Respondent’s ethnic group is British=1</td>
<td>0.159</td>
<td>.64</td>
</tr>
<tr>
<td>Constant</td>
<td>—</td>
<td>—1.314</td>
<td><.001</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>—</td>
<td>—101.080</td>
<td>—</td>
</tr>
<tr>
<td>Number of respondents</td>
<td>—</td>
<td>168</td>
<td>—</td>
</tr>
</tbody>
</table>

aDependent dummy variable: interested in participating.

bHA: housing association.

cNot available.

Digital Training and Reach

Of the 37 potential participants who indicated interest via phone, 12 (32%) completed the training. Of these 12 participants, 9 (75%) were women. Only respondents aged ≥55 years undertook the training, of whom 42% (5/12) were aged 55 to 64 years, 42% (5/12) were aged 65 to 74 years, and 17% (2/12) were aged ≥75 years (Table 2). Overall, 50% (6/12) of the participants reported a disability, 42% (5/12) of the participants reported no disability, and 8% (1/12) of the participants were missing data on disability. The majority of the participants racially identified as White (9/12, 75%) and culturally identified as British (5/12, 42%) or British Cornish (4/12, 33%). The demographic, disability, racial identity, and cultural identity profiles of participants who completed the training were proportionally similar to those who did not complete the training.

The small sample size recruited for digital training is consistent with the small sample sizes recruited to other feasibility studies on interventions for digitally excluded populations. For example, Barbosa Neves et al [39] recruited only 12 participants in residential care to a feasibility study concerning the use of digital communication for social connectedness. Nonetheless, given their research objectives focused on uncovering feasibility, this sample size was appropriate and useful [36,75]. Similarly, we argue that our findings are useful for interpreting the feasibility of this digital intervention among social housing residents.

Training Demand

The most salient factors influencing the demand for the intervention were digital competency, preference for nondigital communication, and social networks. These multifaceted factors underscore the intricate dynamics surrounding digital training interventions and highlight the need for tailored strategies to address diverse participant needs and circumstances.

Among those interested in undertaking the intervention, demand was highest for training on video calling, primarily using Zoom; setting up and using devices, primarily a tablet; and improving digital skills, knowledge, and confidence in general, with most participants (37/67, 55%) who indicated interest in the recruitment survey noting multiple training needs across the 3 areas. In line with the initial scoping study conducted by Buckingham et al [28], it was a lack of competency in using digital devices, rather than device ownership and internet connectivity, that hindered digital technology use: “I am not able to use it [device] properly” (James, a man resident aged 55 to 64 years) and “I am interested in video calling, I have a smartphone, laptop, tablet, and mini-iPad, but I struggle to connect to the internet” (Mary, a woman resident aged 55 to 64 years).

The primary reason people were not interested in accessing the training was because they were already competent in using web-based video calling and messaging tools (57/101, 56.4%). However, those who were already competent were supportive of the intervention, reporting a need for digital training in general. Further reasons for the lack of demand included preferences for nondigital communication technology (“I prefer to just pick the phone up and call people” [Thomas, a man resident of unknown age]) and a feeling that the training was not personally necessary (“No, don’t think I need to learn things like this at my age, manage just fine thanks” [Deborah, a woman resident aged 65 to 74 years]).

Social networks played a key role in demand among participants who replied to the initial recruitment survey about the intervention. The lack of a digitally engaged social network was commonplace among those contacted, as was a small social network in general: “I don’t know anyone who I would call. I only have my sister and she doesn’t use internet stuff” (John, a man resident aged 55 to 64 years). Unsurprisingly, living farther away from family and friends was a key reason for engaging with digital communication technology: “My family live a distance away, so keeping in touch is important” (Sharon, a woman resident aged 86 years). However, for us, a key finding

https://formative.jmir.org/2024/1/e45506
was that people remain happy to rely on their broader support group, particularly younger family members. Having family and friends that could be relied on for help was a disincentive to undertake the training: “No help necessary, grandchildren able to help” (Rebecca, a woman resident aged 65 to 74 years).

Regarding the overall reach of the intervention, although initial recruitment calls found a moderate level of demand for this training, this interest did not translate into the same level of reach, with only 18% (12/67) of the interested participants completing the training. A key reported factor contributing to the lack of reach was health status, either personal health status (12/67, 18%) or the health status of family members (9/67, 13%); however, long-term disability (23/67, 34%) or impairments also affected the capacity to use technology and communicate, particularly among participants with visual, speech, or hearing difficulties (4/67, 6%). Caring responsibilities also acted as an impediment to uptake, particularly among older women:

I am interested [in the training], but my head is just full of decisions about my husband who will be in a nursing home for the rest of his life, I need to focus on what is important to me now. [Martha, a woman resident aged 55 to 64 years]

Implementation of the GO:SC Digital Training Intervention

The main implementation finding relates to the reduction in the number of participants between those who expressed initial interest in the training and those who completed the training. The study found that key facilitators included the HA's established relationship with a digitally susceptible population and the flexible, informal approach of the DIT. Barriers involved issues with written consent, internet access, and device functionality. Here, we discuss each of these in turn.

The tangible and intangible positive roles that the HA played as an intermediary [76,77] in the implementation of the intervention cannot be overstated. In the United Kingdom, the role of HAs has evolved over recent decades to include supporting the health and well-being of their residents [78]. As a result, many HAs have built meaningful, trust-based relationships with their residents, and this factor played an important role in this project. From a practical perspective, this meant that the collaboration of Smartline with the HA enabled a wider reach in advertising the training offer. For example, the HA was able to use its customer relationship management system with phone numbers and email addresses to contact over 4000 residents. Indeed, examining the socioeconomic factors associated with initial interest in participating in the digital training program revealed that respondents who were contacted by the HA were more likely to be interested in the training program (P<.001; Table 3).

Another factor important for reach was customer liaisons by the HA with known susceptible residents who they felt would be interested in and would benefit from the training. Although recruitment remained difficult and the uptake of the intervention was low, the implementation of the recruitment survey and associated data collection would not have been possible without the help of the HA.

Participant dropout at the recruitment stage negatively affected implementation; only a small proportion of those who expressed an initial interest went on to complete the training. Among those (n=67) who were initially interested in the training, many (n=37, 55%) required multiple callbacks (up to 4) before they could be reached again; for reasons discussed next, many (55/67, 82%) dropped out. Making multiple callbacks was an administratively complex task that required many hours and email exchanges within the recruitment team. The need for written consent was a key factor for recruitment dropout, as was the need for a working digital device and an internet connection. Completing and returning the necessary consent forms was found to be a particular challenge for some participants. Participants noted that “filling in forms is a worry” (Julia, a woman resident aged 65 to 74 years) and that making time for the task was difficult: “I have the forms but have a lot on at the moment” (Jess, a woman resident aged >75 years). The possession of an internet-enabled device and internet connection was a requirement for participation in the training. Although we found high rates of digital technology ownership and internet connection possession among the participants contacted, 17.3% (29/168) of the respondents to the recruitment survey did not have a tablet, 5.9% (10/168) of the residents did not have a smartphone, and 7.1% (12/168) of the residents did not have an internet connection. Financial constraints, in particular, were a key reason for the lack of internet:

If I could get internet I would be interested [in the training], but not at the moment due to affordability issues. [Thomas, a man resident of unknown age]

I live in poverty so am scared I will incur charges using the tablet and smartphone. [James, a man resident aged 55 to 64 years]

For other interested participants, the working condition of the device was also a barrier to participation in the training:

I need to learn how to adjust settings so my old PC can cope. [David, a man resident aged 55 to 64 years]

I am not sure if my phone is smart enough. [Grace, a woman resident aged 55 to 64 years]

In addition, it is important to reflect on the implementation of the training itself. In practice, 3 different digital inclusion officers delivered the telephone-based training to 12 participants. The calls lasted between 5 minutes and 2.5 hours. To fit around participants’ caring responsibilities and day-to-day lives, all participants required multiple calls to arrange and rearrange training times. Training sessions lasted as long as required for the participant to learn to use the digital application, and follow-up support calls (up to 5) with the digital inclusion officer were arranged to ensure that the training objectives were achieved (Table 4). Successful delivery of the training required flexibility and persistence from the DIT. This indicates that there is a wide range of digital needs that are best served by informal and one-to-one support directed by individual needs [13,46].
<table>
<thead>
<tr>
<th>Participant</th>
<th>Training objectives</th>
<th>Digital training needs</th>
<th>DIT training calls, n</th>
<th>Outputs</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary, a woman resident aged 55 to 64 years who reported having a disability</td>
<td>To be able to video call daughter(s)</td>
<td>Needed help connecting a device to the internet and to learn how to video call</td>
<td>1</td>
<td>Received training to connect device to the internet and video calling</td>
<td>Uses video calls to talk to her daughters at dinnertime every week</td>
</tr>
<tr>
<td>Julia, a woman resident aged 65 to 74 years who reported having a disability</td>
<td>To order medicine for a church group</td>
<td>Needed to learn how to use emails, use web-based prescriptions, perform an internet search, and browse a website</td>
<td>5</td>
<td>Received training on web-based form-filling and purchasing, and internet searching.</td>
<td>Ordered flowers for family members and ordered medication for her son</td>
</tr>
<tr>
<td>Jade, a woman resident aged 55 to 64 years who reported having a disability</td>
<td>To be able to video call</td>
<td>Needed to learn how to unmute the computer microphone and how to video call</td>
<td>1</td>
<td>Received video call training</td>
<td>Increased competence in video calling</td>
</tr>
<tr>
<td>Susan, a woman resident aged 55 to 64 years who reported having a disability</td>
<td>To be safe and secure on the web, digitally record and mix music, and improve digital competency</td>
<td>Needed to learn about web-based safety and security and about different music recording software products, help purchasing music recording software, help setting up music recording software, and help connecting guitar mic to the computer and recording software</td>
<td>4</td>
<td>Received training to purchase music recording software, set up the music recording software, and connected guitar mic to the computer and recording software</td>
<td>Increased competence in recording and mixing guitar playing audio</td>
</tr>
<tr>
<td>Grace, a woman resident aged 55 to 64 years</td>
<td>To be able to video call daughter</td>
<td>Needed to purchase a device through which a video call could be made, help sorting passwords to activate internet connection, help connecting a device to the internet, and to learn how to video call</td>
<td>1</td>
<td>Received training to fix password issue, activate internet connection and video calling</td>
<td>Video calls her daughter</td>
</tr>
<tr>
<td>Rosie, a woman resident aged 65 to 74 years</td>
<td>To record and mix audio from a singing group</td>
<td>Needed to learn about different music recording software products and learn how to use software to merge several singing voices together</td>
<td>1</td>
<td>Received training on using software to mix multiple audio tracks</td>
<td>Mixes tracks together for a barbershop singing group</td>
</tr>
<tr>
<td>Tracy, a woman resident aged 55 to 64 years</td>
<td>To be digitally competent</td>
<td>Needed help completing the Learn My Way digital training course</td>
<td>3</td>
<td>Supported to complete the Learn My Way digital training course</td>
<td>Increased digital competence</td>
</tr>
<tr>
<td>Jess, a woman resident aged >75 years</td>
<td>To better manage digital communication administration for a church group</td>
<td>Needed a refresher on using Zoom, to learn how to attach pictures to emails and save emails to folders, and to learn how to rearrange text and line gaps in Microsoft Word</td>
<td>3</td>
<td>Received training on attaching pictures to emails, saving emails to folders, and using Microsoft Word</td>
<td>Increased ability to manage digital communication administration for the church group</td>
</tr>
<tr>
<td>Daniel, a man resident aged 65-74 years</td>
<td>To be able to video call mother and print envelopes</td>
<td>Needed help setting up video call software and guidance on printing</td>
<td>1</td>
<td>Received video call training and guidance on printing</td>
<td>Video calls to mother and prints envelopes</td>
</tr>
<tr>
<td>Paul, a man resident aged 65 to 74 years</td>
<td>To be able to video call family and friends</td>
<td>Needed help setting up video call software</td>
<td>1</td>
<td>Received video call training</td>
<td>Ability to video call</td>
</tr>
<tr>
<td>Holly, a woman aged >75 years</td>
<td>To be able to keep in touch with family</td>
<td>Needed help connecting a device to the internet, help sorting intermittent internet problems, help navigating device settings to complete software update, and to learn how to video call</td>
<td>2</td>
<td>Received training on connect a device to the internet and sort intermittent internet problems</td>
<td>Unresolved internet connection issue</td>
</tr>
</tbody>
</table>
Acceptability of the GO:SC Digital Training Intervention

Similar to the key findings on implementation, the study’s key findings on acceptability revolve around the substantial dropout rate, highlighting the challenges of translating training interest to training participation. Participants dropped out because of competing priorities, including health issues, caregiving responsibilities, and time constraints. However, all the 12 participants who started the training completed it; this suggests high acceptability of the intervention itself.

As with all research conducted during this period, the COVID-19 pandemic impacted all aspects of the intervention. We found the lockdown to have both a positive and negative impact on acceptability. For some, it was a driver for learning how to use video calls to access health services, social groups and classes, and resident groups, which had transitioned to function on the web:

- *I need help to connect to video appointments with the health professionals helping me.* [Katy, a woman resident aged 25 to 34 years]
- *I would really like to join the online Coastline meetings [HA residents’ group] but don’t know how to use Zoom. It’s a priority for me to get online now.* [Lily, a woman resident aged >75 years]

The timing of the training was an important factor for participation, particularly for those who were working or had chronic health issues: “I have ME [myalgic encephalomyelitis or chronic fatigue], so afternoon is better for me” (Susan, a woman resident aged 55 to 64 years). Therefore, despite the increased need for digital communication at this time [79], the already complex social and health needs of the Smartline participants [80] meant that the recruitment and retention of interested participants was time intensive and a major challenge for the acceptability of the intervention.

Outcomes of the GO:SC Digital Training Intervention

Of the 12 people who participated in the training, 9 (75%) completed the baseline and follow-up well-being and digital competency surveys (Multimedia Appendix 2). Table 5 provides the summary well-being scores for participants who undertook the digital training intervention; there were no changes in the mean general, emotional, or social well-being between baseline and follow-up.

Counter to the overall aim of the intervention, we found a small reduction in behavioral well-being for participants who had undertaken the intervention [53]. The behavioral well-being measures included a question asking whether participants were attending courses and a further question on whether respondents were learning a new skill. As such, respondents would have indicated “yes” to these questions at baseline; however, at follow-up, participants were unlikely to be undergoing any other training given the ongoing COVID-19 restrictions. As such, this decrease could be explained by a confounding reduction in training levels from before to after the intervention, rather than an actual decrease in behavioral well-being.

Table 6 provides the summary digital competency scores of the intervention participants (n=9) at baseline and follow-up. From...
Table 6, it can be inferred that there were no clear changes over time in any of these scores.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Intervention, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td>General well-being</td>
<td>5.44 (2.36)</td>
</tr>
<tr>
<td>Emotional well-being</td>
<td>6.43 (1.78)</td>
</tr>
<tr>
<td>Behavioral well-being</td>
<td>6.85 (1.83)</td>
</tr>
<tr>
<td>Social well-being</td>
<td>6.75 (3.68)</td>
</tr>
</tbody>
</table>

Higher scores indicate higher well-being in each domain. The range was 0 to 10 for all domains.

Table 6. Summary digital competency scores for participants who undertook the digital training intervention (n=9).

<table>
<thead>
<tr>
<th>Digital module question(^a)</th>
<th>Intervention, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td>Video calling and messaging</td>
<td></td>
</tr>
<tr>
<td>questions</td>
<td></td>
</tr>
<tr>
<td>Frequency of use(^bc)</td>
<td>5 (4-6)</td>
</tr>
<tr>
<td>Perceived ease of use</td>
<td>3 (3-4)</td>
</tr>
<tr>
<td>Perceived usefulness</td>
<td>4 (3-4)</td>
</tr>
<tr>
<td>Perceived reliability</td>
<td>3 (3-4)</td>
</tr>
<tr>
<td>Intentions to use</td>
<td>4 (4-4)</td>
</tr>
<tr>
<td>Autonomy</td>
<td>2 (2-4)</td>
</tr>
<tr>
<td>Feeling close to others</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>Desire to use technology, as</td>
<td>3 (2-4)</td>
</tr>
<tr>
<td>friends are using it</td>
<td></td>
</tr>
<tr>
<td>Desire to use technology, as</td>
<td>4 (4-4)</td>
</tr>
<tr>
<td>family is using it</td>
<td></td>
</tr>
<tr>
<td>Other people think that I</td>
<td>4 (3-4)</td>
</tr>
<tr>
<td>should use it</td>
<td></td>
</tr>
<tr>
<td>General technology questions</td>
<td></td>
</tr>
<tr>
<td>General technology self-efficacy</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>Enjoyment of using technology</td>
<td>3 (2-4)</td>
</tr>
<tr>
<td>Self-rated ability to use the</td>
<td>3 (3-3)</td>
</tr>
<tr>
<td>internet(^b)</td>
<td></td>
</tr>
<tr>
<td>Perception that the internet</td>
<td>3 (3-4)</td>
</tr>
<tr>
<td>makes life easier</td>
<td></td>
</tr>
<tr>
<td>Self-rated ability to use</td>
<td>3 (3-3)(^f)</td>
</tr>
<tr>
<td>smartphones(^b)</td>
<td></td>
</tr>
<tr>
<td>Frequency of searching online</td>
<td>2 (1-2)</td>
</tr>
<tr>
<td>for health information(^b,c)</td>
<td></td>
</tr>
<tr>
<td>There are people I can talk</td>
<td>2 (2-4)</td>
</tr>
<tr>
<td>to online if feeling lonely</td>
<td></td>
</tr>
</tbody>
</table>

Higher scores indicate higher perceived competence, greater frequency of use, and more positive attitudes toward technology.

Reverse-coded responses were used for these questions. Scores range from 1 to 6 for the frequency of use questions; scores range from 1 to 5 for all other questions. \(^n=7\) (data are missing; therefore, the number of responses is indicated). \(^n=6\) (data are missing; therefore, the number of responses is indicated). \(^n=5\) (data are missing; therefore, the number of responses is indicated).

Although conclusions on potential efficacy based on the survey data are limited owing to the small sample size, the qualitative data indicated that participants had achieved their original training objectives. Table 4 provides a summary of the training objectives, training needs, and the level to which they were met.

From Table 4, it can be inferred that increased competency in using video calling apps, particularly help with the installation and setting up of these apps, were key training needs. Participants’ training needs were motivated by both social and personal goals, such as contacting family members and becoming more competent with digital technology in general. Although advertised as training on video calling and messaging, participants received a diverse range of training, from training on how to order prescriptions on the web to training on more...
complex tasks such as recording and mixing music using web-based platforms. The flexibility to deliver such diverse and tailored training was not initially planned as part of the intervention yet proved a successful strategy. Overall, from the qualitative data, we found that participants achieved their training objectives and social and personal goals and have the potential to use other digital technologies in the future.

Discussion

Principal Findings

The findings indicate a demand for basic digital training among social housing residents, and the intervention was acceptable for those who received it. However, recruitment and implementation were challenging, with potential participants experiencing barriers that reflected the sociodigital inequalities commonly found in this group [10,26-28]. Barriers were strongly influenced by socioeconomic and health circumstances, which were closely related to preexisting digital readiness (eg, preexisting skills, confidence, motivation, and access) and further compounded by the COVID-19 pandemic. Our results confirm that the factors known to increase digital exclusion are particularly high among social housing populations [29,30] and highlight the interplay between traditional inequalities (ie, social, economic, and health) and digital inequalities [7]. However, social and personal goals were achieved by the participants who received the intervention. This demonstrates that tailored, flexible, and persistent training efforts can overcome barriers.

Implications for Policy and Recommendations for Practice

Regarding policy, the UK’s Digital Inclusion Strategy aims to “equip the whole country with the skills, motivation and trust to go on the internet, be digitally capable and to make the most of the internet” [81].

Although national policies are imperative to improve infrastructure, access, and digital connectivity [1,9,10], the implications of this study are that an effective policy also needs to focus on strategies for reaching digitally excluded groups [20-22]. The essential strategies and recommendations for practice derived from our findings are listed in Textbox 1.

Textbox 1. Essential strategies and recommendations for practice.

1. Partnerships with trusted intermediaries: forge partnerships with trusted local intermediaries, such as housing associations (HAs), community organizations, councils, and public libraries [76,77]. Prioritize intermediaries with established relationships and direct contact with the target group for effective reach.

2. Personalized recruitment approaches: use personalized recruitment methods, such as personal phone calls or face-to-face conversations. Understand individuals’ social, economic, health, and digital circumstances and align training benefits with their specific goals [7].

3. Minimize administrative barriers: reduce administrative burdens by minimizing form-filling processes, which negatively impact recruitment efforts. Be mindful of research monitoring procedures that may affect recruitment numbers, aiming for a streamlined approach.

4. Tailored and agile training programs: offer a flexible combination of device provision and internet access tailored to individual needs. Implement agile, person-centered training programs that adapt to participants’ personal goals and requirements.

5. Resource allocation and recognition: recognize the resource-intensive nature of initiatives targeting digitally excluded groups. Advocate for a stronger recognition of the efforts and resources required by intermediaries in national digital inclusion policies.

By implementing these strategies, policy makers, organizations, and communities can address sociodigital inequalities. However, in making these recommendations, we recognize that this places a considerable burden on individuals delivering such interventions. Future feasibility research of this nature could investigate the burden on intervention deliverers and the associated economic costs, which were not examined here.

Limitations

A strength of this study is its focus on social housing residents, an understudied population with associated socioeconomic inequalities that can present particular barriers to digital technology use. Another strength of this study is the collection of quantitative and qualitative data from various sources to enable rich insights into feasibility, acceptability, and potential impact, including the capture of data on those who initially expressed an interest in participating but did not go on to receive the intervention.

A limitation of the study is the small sample size for quantitative evaluation; however, as this is a feasibility study, quantitative outcomes (well-being and digital competency) were only intended to be indicative of the potential impact and were supplemented by qualitative findings on the achievement of training objectives. Owing to the unexpected difficulties in recruiting participants to the intervention, follow-up interviews were not possible within the time frame of the project.

We measured psychological constructs with individual items to balance theory alignment with reducing participant burden. However, we suggest that future feasibility and acceptability studies use established multiitem measures to assess such constructs. The final limitations to note are those with regard to intervention delivery fidelity and economic costs. The study did not assess how the DIT delivered the intervention, other than following the “standard operating procedure.” It is possible that variations occurred in training delivery with regard to relationships with participants. Future studies should consider structured approaches to assessing intervention fidelity [82].

Finally, the intervention’s cost could not be specified, as it was provided through a county council’s DIT. Despite their personalized nature, similar personalized digital training programs are common in UK councils [14]. Therefore, the results of this study are valuable for providers facing challenges in engaging specific resident groups.
Conclusions
This study contributes to the contemporary literature, theory of “sociodigital inequalities” [7], and need to redefine digital inequalities in terms of their relation to other forms of socioeconomic and health inequalities. To address sociodigital inequalities, this study highlights that future policies need to be more proactive in reaching excluded groups, and such initiatives need to be considerate of people’s everyday lives, which will be conditioned by social and health circumstances. To achieve this, initiatives need to be appropriately resourced and include a flexible combination of digital provision with an agile person-centered approach to training based on personal needs and goals.

Acknowledgments
The authors would like to thank Karen Spooner (Volunteer Cornwall), Phil Gilbert (Coastline Housing), and Adrian Ankers (Coastline Housing) for their help and support with recruitment. They thank the University of Exeter’s Smartline team, namely Belinda Broughton, Chloe Bines, and Claire Wilcox, for support in managing survey administration. They thank the Cornwall Council’s Digital Inclusion Team, namely Dawn Stodern (Digital Inclusion Team lead), Simon Gooding (digital inclusion officer), Kym Ley (digital inclusion officer), and Peter Finlay (digital inclusion officer), for delivering the digital training. They thank the rest of the Smartline team, particularly Emma Bland, for their feedback on the manuscript. They are grateful to all of the Smartline participants who gave their time to be involved in this study.

The Smartline project (05R16P00305) received £3,740,920 (US $4,752,989) and the Smartline Extension project (05R18P02819) received up to £3,307,703 (US $4,203,172) of funding from the England European Regional Development Fund as part of the European Structural and Investment Funds Growth Programme 2014-2020. The Ministry of Housing, Communities and Local Government (and in London, the intermediate body Greater London Authority) is the Managing Authority for the European Regional Development Fund. Established by the European Union, the European Regional Development Fund helps local areas stimulate their economic development by investing in projects that support innovation, businesses, job creation, and local community regeneration. The study received additional funding of £25,000 (US $31,768) from the Southwest Academic Health Science Network and £200,000 (US $254,162) from the Cornwall Council.

Data Availability
The anonymized quantitative data sets analyzed during this study are available from the University of Exeter Open Research Exeter repository. Qualitative data cannot be shared because they contain sensitive participant information, identifying information, and information whose dissemination would violate the agreement to which the participants consented.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Recruitment survey.
[DOCX File, 16 KB - formative_v8i1e45506_app1.docx]

Multimedia Appendix 2
Well-being and digital competency survey.
[PDF File (Adobe PDF File), 512 KB - formative_v8i1e45506_app2.pdf]

Multimedia Appendix 3
Information sheet.
[PDF File (Adobe PDF File), 1751 KB - formative_v8i1e45506_app3.pdf]

Multimedia Appendix 4
Consent form.
[PDF File (Adobe PDF File), 349 KB - formative_v8i1e45506_app4.pdf]

Multimedia Appendix 5
Course content guidance.
[DOCX File, 285 KB - formative_v8i1e45506_app5.docx]

Multimedia Appendix 6
References

12. Digital eagles: helping you get the most out of being online. Barclays. URL: https://www.barclays.co.uk/digital-confidence/eagles/ [accessed 2022-04-16]

33. Smartline homepage. Smartline. URL: https://www.smartline.org.uk/ [accessed 2021-09-09]

Abbreviations

COREQ: Consolidated Criteria for Reporting Qualitative Research
DIT: Digital Inclusion Team
GO:SC: Getting Online: Staying Connected
HA: housing association
RE-AIM: Reach, Effectiveness, Adoption, Implementation, and Maintenance
TIDieR: Template for Intervention Description and Replication

©Tim Walker, Sarah Ann Buckingham, Ria Poole, Lewis Roland Elliott, Tamaryn Menneer, Gengyang Tu, Karyn Morrissey. Originally published in JMIR Formative Research (https://formative.jmir.org), 26.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

Acceptance of a Web-Based Intervention in Individuals Who Committed Sexual Offenses Against Children: Cross-Sectional Study

Sonja Schröder¹, MSc; Claudia Buntrock², PhD; Louisa Neumann³, MSc; Jürgen L Müller¹, MD; Peter Fromberger¹, PhD

¹Clinic for Psychiatry and Psychotherapy – Forensic Psychiatry, University Medical Center Göttingen, Göttingen, Germany
²Institute of Social Medicine and Health Systems Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
³Clinic for Forensic Psychiatry and Psychotherapy, KRH Psychiatry Wunstorf, Wunstorf, Germany

Corresponding Author:
Sonja Schröder, MSc
Clinic for Psychiatry and Psychotherapy – Forensic Psychiatry
University Medical Center Göttingen
Rosdorfer Weg 70
Göttingen, 37081
Germany
Phone: 49 5514022114
Email: sonja.schroeder@med.uni-goettingen.de

Abstract

Background: Individuals who have committed sexual offenses against children often have difficulties finding treatment, despite its potential effectiveness. Although the development of web-based interventions could enhance therapeutic supply, up to now the acceptance thereof among this target group is unknown.

Objective: For the first time, this study assesses the acceptance of a web-based intervention among individuals who committed sexual offenses against children and analyzes variables that predict acceptance. Following the Unified Theory of Acceptance and Use of Technology (UTAUT), it is assumed that acceptance of web-based interventions in individuals who have committed sexual offenses against children follows the same mechanisms as for individuals in general psychiatry.

Methods: This cross-sectional study is based on the data from an ongoing clinical trial (@myTabu) evaluating the effectiveness of a web-based intervention in individuals who committed sexual offenses against children (N=113). Acceptance level was measured using a questionnaire based on the UTAUT and modified for the target group. Furthermore, predictors of acceptance from the UTAUT (performance expectancy, effort expectancy, and social influence [SI]), attitudes toward web-based interventions, and internet anxiety were assessed at baseline.

Results: Most participants (61.1%, 69/113), reported high acceptance, while 36.3% (41/113) of them indicated moderate acceptance, and 2.7% (3/113) of them expressed low acceptance. In a linear regression model, the predictors explained 41.2% of the variance ($F_{11,101}=9.055; P=.01$). Attitudes toward web-based interventions ($B=0.398, 95\% CI 0.16-0.64; P=.001$) and SI ($B=0.183, 95\% CI 0.03-0.38; P=.04$) significantly predicted acceptance. Post hoc explorative analysis showed that the participants’ belief that people close to them would recommend the use of a web-based intervention is a predictor of acceptance. In contrast, the belief that their community supervisor would recommend the use thereof was not predictive in this respect.

Conclusions: For the participants of this study, we identified high acceptance of web-based interventions for the majority of participants. SI and the participants’ attitudes toward web-based interventions were important in predicting acceptance.

Trial Registration: German Clinical Trial Registration (DRKS, Deutsches Register Klinischer Studien) DRKS 00021256; https://drks.de/search/de/trial/DRKS00021256

(JMIR Form Res 2024;8:e48880) doi:10.2196/48880

KEYWORDS
mHealth; web-based intervention; acceptance; Unified Theory of Acceptance and Use of Technology; UTAUT; sexual offenses against children; child abuse; child pornography; children; sexual offense; cross-sectional study; community; anxiety; psychiatry
Introduction

Background

Sexual abuse during childhood has disruptive short and long-term effects for children who are victims of such an offense [1,2] and the treatment of individuals who committed sexual offenses against children should be a major part of efforts to reduce the risk of recidivism. Despite findings that therapy can reduce the risk of recidivism [3], many individuals who committed sexual offenses against children struggle to find a therapist. Therapists often express a low willingness to work with individuals who are convicted of a sexual offense—especially with those who have a pedophilic disorder [4]. The result, at least in Germany, is that only limited therapeutic treatment is available [5]. Web-based interventions represent a possible enhancement in the therapeutic supply [6].

Web-based interventions can be advantageous in comparison to face-to-face (f2f) therapy for the users, as they can be anonymous, flexible in time and space, and can be cost-effective [6,7]. Anonymity could be especially advantageous, as individuals who committed sexual offenses against children can feel ashamed and guilty which may hinder the willingness to find a therapist. To date, only a few web-based interventions exist for individuals who have committed sexual offenses against children and the majority of them have not yet been evaluated [8]. In a placebo-controlled trial, Läthl et al [9], showed for the first time that a guided web-based intervention for individuals who consume child exploitation material can reduce the amount of time thus spent. In addition, the study showed that, as is the case in web-based interventions in general psychiatry [10], many persons who signed up for a web-based intervention did not participate by logging in or completing the therapeutic content [9]. Also, in f2f therapy for individuals who have committed offenses, roughly one-third of individuals do not complete therapy [11,12]. Up to now the variables that predict why and for how long individuals who have committed sexual offenses against children use web-based interventions are unknown. In general, a factor that is expected to predict whether someone uses web-based interventions in general psychiatry is acceptance [13,14]. Thus, this predictor might also be important in the treatment of individuals who committed sexual offenses against children.

To study acceptance and its predictors, research on web-based interventions for general mental health often uses the Unified Theory of Acceptance and Use of Technology (UTAUT) as a theoretical framework [15,16]. The UTAUT states that the use of a technology can be predicted by acceptance. Acceptance is thereby defined as the behavioral intention to use a technology. Further, 4 core predictors are assumed, which are performance expectancy (PE), effort expectancy (EE), social influence (SI), and facilitating conditions (FC). PE is related to whether or not the person believes that the web-based intervention can help him or her; EE is related to the perceived ease of use of the web-based intervention; SI is the perception of whether people close to him or her would recommend the use of the web-based intervention; and FC is related to the belief that there is an organizational and technical infrastructure that would help him or her in case of problems with the web-based intervention. According to the UTAUT, FC together with acceptance predict the use of technology. The other 3 variables, PE, EE, and SI, predict acceptance.

Although the UTAUT was first conceptualized to explain the use of technology in organizational settings, it has been generalized to many different fields including the use of technology for treatment in general psychiatry [16]. Philippi et al [16] conducted a secondary analysis in which they integrated the data of 1588 participants from 10 UTAUT studies. The original studies analyzed the participants’ acceptance and its predictors based on the UTAUT for web-based interventions, for example, for treating depression, chronic pain, or aftercare for inpatients. In the study by Philippi et al [16], the basic structure of the UTAUT with PE, EE, and SI predicting acceptance was replicated. PE was found to be the strongest predictor, in accordance with results from prior studies [15,17,18].

Gender, age, degree of voluntary use of technology, and experience with the technology were included next to predictors in the UTAUT as moderators [15]. The authors showed that the effect of PE was stronger for younger and male individuals; the effects of EE was stronger for older, female, and less experienced individuals; and the effect of SI was stronger for older, female, and less experienced individuals as well as under conditions of mandatory use [15]. In web-based interventions in general psychiatry, however, Philippi et al [16] could not replicate a moderating effect of age, gender, or experience on any predictor. Next to moderating effects, a direct effect on acceptance of participant age was analyzed. In some studies on web-based interventions in general psychiatry, it was found that a lower age predicted higher acceptance [19-21] whereas other studies found no effect [16,22].

In the field of web-based interventions in general psychiatry, the variables attitudes toward web-based interventions and internet anxiety were also integrated into the UTAUT to predict acceptance. Attitudes refers to the evaluative judgment of a web-based intervention, which can be expressed in attributes ranging for example, from pleasant to unpleasant or likable to dislikable [20,23]. Internet anxiety is the fear, distrust, or apprehension that is experienced when using the internet [16,24]. Attitudes and computer anxiety were removed from the final UTAUT model because the explorative power of the variable was captured by EE [15]. In recent studies, however, attitudes was found to be a strong predictor for acceptance [20,25,26]. Similarly, internet anxiety studies have shown that persons with lower internet anxiety have a higher acceptance for web-based interventions in general psychiatry [16,22,26].

Objective

The goal of this study is to address the following research questions for individuals who committed sexual offenses against children, either by contact or noncontact offense (ie, child sexual exploitation material offenses): (1) how high is the acceptance of web-based interventions? (2) Which variables predict acceptance of web-based interventions?
As shown above, no data exist for the specific target group of this study. Therefore, we assume that acceptance of web-based interventions for individuals who have committed sexual offenses against children follows the same mechanisms as for individuals who use web-based interventions in general psychiatry (Figure 1). As a consequence, it is expected that higher scores in PE, EE, SI, attitudes toward web-based interventions, and lower scores in internet anxiety predict higher scores in acceptance. In addition, we will examine whether age has a moderating and direct effect on acceptance.

Figure 1. Conceptual study model with the UTAUT predictors [15] and additional variables as well as age as moderator. UTAUT: Unified Theory of Acceptance and Use of Technology. *Age as a moderator variable.

Methods

Study Design and Data Collection

This cross-sectional study used data collected between March 1, 2021, and March 1, 2022, of an ongoing clinical trial to evaluate the effectiveness of the web-based intervention @myTabu [27,28]. Participants were individuals convicted of child abuse, of child sexual exploitation material use, or of both under the German Penal Code and were under community supervision. Further eligibility requirements were adulthood (18 years of age or older), a community supervision period of at least 6 months at study inclusion, internet access, no severe acute psychiatric disorder, no severe cerebro-organic disorder, and no severe cognitive impairment. For the recruiting process, research staff informed community supervisors of the clinical trial and asked them to inform eligible clients. When an eligible client was interested in the clinical trial, he or she was informed about the study by research staff in a personal interview. During the recruitment period, 118 interviews were conducted and 113 individuals agreed on taking part in the study.

Measures

Sociodemographic and Criminological Data

For each participant, 1 research staff member (out of a total of 3 research staff members) collected sociodemographic and criminological data using a standardized data collection form. The written court judgment and records of the Federal Central Criminal Register were used as the primary source of information. If information was missing from these documents, corresponding information was obtained from participants. The modified Static-99, which is a version of the original Static-99 that omits victim-related variables, was assessed [29]. The Static-99 includes variables that have been found to be predictive of sexual reoffending among individuals who have previously committed a sexual offense. A higher score represents a higher risk [30]. Scores of the modified Static-99 range from 0 to 9. Information on the additional data that were coded during that process can be found in the study protocol of the @myTabu clinical trial [28].

Acceptance and Predictors

To measure acceptance and its predictors, the German adaptations of the UTAUT questionnaire by Baumeister et al.
and Apolinário-Hagen et al [25] were used. These adaptations were based on the well-established UTAUT questionnaire [15] and the adaptations to the field of general psychiatry [17,32-34]. For this study, the questionnaires were modified to the context of a web-based intervention for individuals who committed sexual offenses against children based on face validity (Textbox 1, see Multimedia Appendix 1 for original German questionnaire).

Textbox 1. Items of the questionnaire for acceptance of technology with references to original studies; the sections that have been adapted for this study are italicized.

Questionnaire description: Please read the following questions carefully and answer as spontaneously as possible. The following questions refer to a therapeutically guided program, which you can complete online and which supports you during your probation to avoid recidivism and to lead a crime-free life. The program consists of sessions that are unlocked weekly. In the questions, this program is called “online program.”

Acceptance
1. I can imagine trying an online program [31].
2. I can imagine using an online program regularly [...] [31].
3. I would recommend an online program to a friend [31].
4. I would be willing to pay for an online program [31].

Performance expectancy
1. Using an online program would help me not to commit a further child abuse or to consume child sexual exploitation material [31].
2. Using an online program would improve my ability to live a crime-free life [31].
3. Overall, an online program would help me during my community supervision [31].

Effort expectancy
1. Using an online program would be simple [31].
2. Using an online program would be an easy task for me [31].
3. An online program would be clear and easily comprehensible to me [31].

Social influence
1. People close to me would recommend me to use an online program [31].
2. My community supervisor would recommend me to use an online program [31].

Attitudes toward web-based interventions
1. Using the online program is a good idea [25].
2. Using the online program would be interesting [25].
3. Using the online program could be fun [25].
4. I would like to work with the online program [25].

Internet anxiety
1. The internet is something threatening to me [31].
2. I am afraid making an irrevocable mistake while using the internet [31].

According to the UTAUT, acceptance was operationalized as behavioral intention and was measured using 4 items. The UTAUT predictors PE and EE were measured using 3 items each and SI was measured using 2 items. Attitudes toward web-based interventions and internet anxiety were measured using 4 and 2 items, respectively. Responses were made on a 5-point Likert scale ranging from 1 (does not apply at all) to 5 (applies absolutely). McDonald ω total [35,36] were 0.59 for acceptance, 0.80 for PE, 0.81 for EE, and 0.83 for attitudes toward using web-based interventions, showing good reliability for PE, EE, and attitudes toward using web-based interventions and a poor reliability for acceptance [37]. For scales with 2 items, Spearman-Brown coefficient was calculated [38]. Spearman-Brown coefficient of SI was 0.21 and of internet anxiety was 0.65, showing a questionable reliability of internet anxiety and an unacceptable reliability for SI [37].

In addition to the above named scales, scales were measured on FC [31], planning behavior [39], and study compensation for hypotheses that were not part of this study.

Statistical Analyses

Research Questions 1 and 2: Acceptance and its Predictors

Data analysis was performed using the software R (version 4.2.1; R Core Team) [40].
calculated and its distribution was assessed. The acceptance mean score was categorized as low (1-2.34), moderate (2.35-3.67), and high (3.68-5), in accordance with previous studies [41,42].

To test for predictors of acceptance, a multiple linear regression with acceptance as the criterion was conducted. The variables PE, EE, SI, attitudes toward web-based interventions, internet anxiety, and age were included along with a moderation of age on all variables (age x variable). The predetermined α level was .05. Variables were included simultaneously to account for multiple comparisons. For meaningful interpretation of the coefficients of the first-order terms in the presence of interactions, we mean-centered the variables prior to computation [43]. For missing items responses, the mean across the available items of each scale was calculated. There were missing items for 5 participants with a maximum of 6 missing items (mean 2.2, SD 2.17). There was no missing scale, as every participant answered at least 1 item on every scale [44]. To test for outliers, Cook distance, leverage value, and studentized deleted residuals were calculated. After correcting for coding errors, there were 23 participants who were considered outliers by the above named criteria. To test the model assumptions, we looked at linear relationships between the variables and acceptance, normality of residuals [45], homoscedasticity [46], and multicollinearity [47-49]. There were signs of nonnormality of residuals; the other analyses showed no assumption violation. Because of the outliers and the nonnormality of residuals, a bootstrap procedure was used with the number of bootstrap samples of 1000. By using bootstrapping, results are less sensitive to extreme values and thus no participant had to be excluded from the analysis [49,50].

Explorative Analysis

Because of the low internal consistency of SI, a multiple linear regression was conducted with acceptance as the criterion and the items of the SI scale as factors with the lowest value as reference. In addition, the predictors PE, EE, internet anxiety, attitudes toward web-based interventions, and age were included. For the SI item (asking whether the community supervisor recommends the use of a web-based intervention), values 1 and 2 were too infrequent for a statistical analysis and were thus combined into 1 category with 3. Because of missing values on SI items, 2 participants were excluded from the analysis. There were 9 outliers according to Cook distance, leverage value, and studentized deleted residuals. There were signs of nonnormality of residuals [45]; the other analyses showed no assumption violation. Therefore, a bootstrap procedure with the number of bootstrap samples of 1000 was used [49].

Ethical Considerations

This study was conducted in accordance with the Declaration of Helsinki, was approved by the medical ethical board of the Human Medical Center Göttingen, Göttingen, Germany (16/2/20), and was preregistered on AsPredicted (107090). During study enrollment, informed consent was obtained from all participants. In the informed consent, participants agreed on the study conditions and data protection and processing. Study data were saved and deidentified by using pseudonyms for each participant. During participation, identification of each individual was only possible by the respective community supervisor. After participation, identification lists were stored separately from the study data in paper form in a safe. Individuals received monetary compensation for their participation; the compensation level was dependent on the number of sessions completed in the web-based intervention. A maximum of €120 (US $131.06; €1 is approximately US $1.2 at the start of the clinical trial) could be obtained.

Results

Demographic and Criminological Data

All 113 participants were male and had a median age of 38 years with a range of 20-72 (mean 40.67, SD 12.75 years). The participants had on average 1.25 previous convictions (SD 2.47). For 57.1% (64/112; 1 missing) of the participants, the present conviction was their first. For their present conviction, 38.9% (44/113) of the participants were convicted for sexual abuse of children (German Penal Code section 176 in the version in effect before July 01, 2021), 14.3% (16/113) for aggravated sexual abuse of children (German Penal Code section 176a in the version in effect before July 01, 2021), and 74.3% (84/113) for dissemination, procurement, and possession of child pornographic content (German Penal Code section 184b). Note that 28 participants had more than 1 present conviction. The mean score for the modified Static-99 was 1.87 (SD 1.19; range 0-6).

Descriptive Data of Acceptance and Predictors

The mean (SD) acceptance level in this study was 3.78 (SD 0.66). The distribution of acceptance is negatively skewed with a skewness of 1.65 and a kurtosis of 4.17. There were 28 participants who had a score below the median acceptance level of 3.5. The mean acceptance level was significantly higher in participants with a high conviction rate (4.08, SD 0.77) than in participants with a low conviction rate (3.43, SD 0.85) (t-test (22)=4.34, p<0.001; Table 1). There were no significant differences in acceptance between participants with a low (3.88, SD 0.81) and a high (3.92, SD 0.77) conviction rate.

Prediction of Acceptance

According to the F test (F=2.35-3.67, and high (3.68-5), acceptance is significantly higher in participants with a high conviction rate (4.08, SD 0.77) than in participants with a low conviction rate (3.43, SD 0.85) (t-test (22)=4.34, p<0.001; Table 1). There were no significant differences in acceptance between participants with a low (3.88, SD 0.81) and a high (3.92, SD 0.77) conviction rate.

The mean acceptance level was significantly higher in participants with a high conviction rate (4.08, SD 0.77) than in participants with a low conviction rate (3.43, SD 0.85) (t-test (22)=4.34, p<0.001; Table 1). There were no significant differences in acceptance between participants with a low (3.88, SD 0.81) and a high (3.92, SD 0.77) conviction rate.
Table 1. Regression results using bootstrapping with acceptance as the criterion (N=113)a.

<table>
<thead>
<tr>
<th>Variables</th>
<th>B (SE)</th>
<th>95% CI</th>
<th>T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.77 (0.056)</td>
<td>3.64 to 3.87</td>
<td>67.129</td>
<td><.001</td>
</tr>
<tr>
<td>PEb</td>
<td>0.03 (0.093)</td>
<td>−0.15 to 0.23</td>
<td>0.332</td>
<td>.74</td>
</tr>
<tr>
<td>EEc</td>
<td>0.09 (0.104)</td>
<td>−0.13 to 0.29</td>
<td>0.882</td>
<td>.38</td>
</tr>
<tr>
<td>SId</td>
<td>0.18 (0.087)</td>
<td>0.03 to 0.38</td>
<td>2.109</td>
<td>.04</td>
</tr>
<tr>
<td>Attitudese</td>
<td>0.40 (0.118)</td>
<td>0.16 to 0.64</td>
<td>3.372</td>
<td>.01</td>
</tr>
<tr>
<td>Anxietyf</td>
<td>−0.03 (0.068)</td>
<td>−0.19 to 0.09</td>
<td>−0.462</td>
<td>.64</td>
</tr>
<tr>
<td>Age</td>
<td>0.01 (0.005)</td>
<td>0.01 to 0.01</td>
<td>1.036</td>
<td>.30</td>
</tr>
<tr>
<td>PE × age</td>
<td>−0.01 (0.008)</td>
<td>−0.03 to 0.00</td>
<td>−1.543</td>
<td>.13</td>
</tr>
<tr>
<td>EE × age</td>
<td>−0.01 (0.009)</td>
<td>−0.03 to 0.00</td>
<td>−1.435</td>
<td>.15</td>
</tr>
<tr>
<td>Attitudes × age</td>
<td>−0.003 (0.010)</td>
<td>−0.02 to 0.01</td>
<td>−0.340</td>
<td>.73</td>
</tr>
<tr>
<td>SI × age</td>
<td>0.01 (0.007)</td>
<td>−0.001 to 0.03</td>
<td>1.630</td>
<td>.11</td>
</tr>
<tr>
<td>Anxiety × age</td>
<td>−0.01 (0.006)</td>
<td>−0.02 to 0.00</td>
<td>−1.099</td>
<td>.27</td>
</tr>
</tbody>
</table>

aR2=0.412; $P<.001$; 95% CI 0.20-0.48.

bPE: performance expectancy.

cEE: effort expectancy.

dSI: social influence.

eAttitudes: attitudes toward web-based interventions.

fAnxiety: internet anxiety.

Explorative Analysis

The mean (SD) score for the item of the SI scale asking whether people close to the participant recommend the use of a web-based intervention was 3.24 (SD 1.20). The mean (SD) score for the item of the SI scale asking whether the community supervisor recommends the use of a web-based intervention was 4.49 (SD 0.80).

The variables in the regression model explained 35.95\% of the variance of acceptance ($F_{11,99}=6.273$; $R^2=0.3595$; $P<.001$). Attitudes toward web-based intervention ($B=0.331$; 95\% CI 0.09-0.55; $P=0.01$) and the perceived opinion of people close to the participant significantly predicted acceptance. Participants who indicated a score of 5 ($B=0.455$; 95\% CI 0.07-0.96; $P=0.04$) or 4 ($B=0.502$; 95\% CI 0.17-0.89; $P=0.01$) had significantly higher acceptance than participants who indicated a score of 1. There was no significant effect for participants who indicated a score of 3 ($B=0.340$; 95\% CI 0.01-0.72; $P=0.07$) or 2 ($B=0.182$; 95\% CI −0.31 to 0.60; $P=0.42$) in comparison to participants who indicated a score of 1. PE ($B=0.108$; 95\% CI −0.08 to 0.28; $P=0.24$), EE ($B=0.106$; 95\% CI −0.12 to 0.29; $P=0.30$), internet anxiety ($B=−0.06$; 95\% CI −0.22 to 0.09; $P=0.46$), age ($B=0.006$; 95\% CI −0.005 to 0.01; $P=0.22$), and perceived opinion of the community supervisor, when scored 4 ($B=−0.05$; 95\% CI −0.47 to 0.25; $P=0.79$) or 5 ($B=0.094$; 95\% CI −0.18 to 0.42; $P=0.55$) in comparison to lower or equal to 3, did not significantly predict acceptance.

Discussion

Principal Results

This study examined for the first time the acceptance of web-based interventions and variables predicting it among individuals who committed sexual offenses against children. For the majority of participants, the acceptance of web-based interventions was high. Persons with higher scores in SI and attitudes toward web-based interventions showed significantly higher acceptance. In contrast to expectations, the other predictors of the UTAUT, PE and EE, as well as internet anxiety and age did not predict acceptance. An explorative analysis of the 2 items comprising the SI scale revealed that the belief that people close to the participant would recommend the use of a web-based intervention predicts acceptance but the same is not true for the belief that the community supervisors would recommend the use thereof.

Comparison With Prior Work

In comparison to prior work from general psychiatry, the average acceptance was higher in this study with a smaller variance. In the secondary analysis from Philippi et al [16], in which results from 10 original studies were included, the mean acceptance for male participants was low to moderate (mean 2.68, SD 1.12). One explanation for the high acceptance scores in this study may be that it is difficult for individuals who committed sexual offenses against children to find f2f therapy [5]. Another explanation for the divergent acceptance levels may be differences in the sample selection. A common recruiting method to contact specific target groups in the studies incorporated in the secondary analysis by Philippi et al [16] was
to contact patients directly in clinics [31,32,41], for example by recruiting in the waiting rooms [14]. To protect the identity of clients, recruitment in this study involved collaboration with community supervisors. Thus, the research staff did not contact eligible clients directly but instead asked the community supervisors to inform eligible clients of the study. Through this approach, it is likely that some clients were never informed about the study because they were considered unsuitable by the community supervisor. In addition, clients who declined after first being informed by the community supervisor never met with research staff. Further, the participants in this study all agreed to participate in an evaluation study for a web-based intervention. The aim of most of the studies incorporated in the secondary analysis by Philippi et al [16] was to test acceptance-facilitating interventions and participants were not given access to a web-based intervention. Thus, it is likely that the results are based on a selected group of individuals in community supervision, which may not be representative of individuals who committed sexual offenses against children in general. This explanation is in line with the study by Lin et al [22], who recruited participants by sending invitations to individuals who had earlier expressed interest in participating in an evaluation study on a web-based intervention and (thus) assessed comparatively high acceptance (mean 3.44, SD 0.89; values were divided by 4 to match the scale used in this study). Despite this potential bias, the results of this study show that there exists a group of individuals who committed sexual offenses against children in community supervision that has high acceptance of web-based interventions.

Participants in this study rated web-based interventions as more helpful (PE), easier to use (EE), more enjoyable (attitudes toward web-based interventions), and perceived that their social surroundings would recommend the use of web-based interventions more (SI) than did participants in studies of web-based interventions in general psychiatry. All of these predictors are positively correlated with acceptance [16,25]. As mentioned above, this positive view of web-based interventions can be partly explained by the selection of the sample. In comparison, internet anxiety, which has a negative correlation with acceptance, was found to be slightly lower in studies from general psychiatry [16]. For individuals who were not convicted for a crime using the internet, this result could be understood when considering that internet anxiety is negatively correlated with internet use [51] and convicted individuals often lack the skills and resources to use the internet or specific technologies [52]. Although the internet anxiety levels in this study cannot be considered as high, a lack of experience with the internet could be a more important issue for individuals who committed sexual offenses against children compared to individuals who have not been convicted of a crime.

The proportion of explained variance of 41.2% in the regression model can be considered as high according to the Cohen criteria [53]. However, this proportion is lower than in other UTAUT studies, where UTAUT predictors explained for example 57% to 63% of the variance of acceptance [21,54,55]. This could mean that, for individuals who have committed a crime, further predictors are relevant that have to be investigated in order to fully understand the acceptance of web-based interventions. In this study, to test our hypotheses, only selected variables that were replicated in previous studies on web-based interventions in general psychiatry were examined for their prediction on acceptance [16,20,25]. In studies on web-based interventions in general psychiatry, further variables that have been investigated include, among others, perceived reliability [56] and perceived privacy risks [54]. Next to these variables, those that predict the treatment motivation for f2f therapy in individuals who committed sexual offenses against children, for example, antisocial personality disorder, might also be relevant for web-based interventions [57]. In addition, web-based interventions are becoming more common in general mental health care [58] and are increasingly being developed for individuals who committed sexual offenses against children [8]. Therefore, it is likely that an increasing number of individuals have some experience with web-based interventions which could have a direct or moderating effect on acceptance [15]. These and other variables could be important when explaining the variance of acceptance of web-based interventions in individuals who committed sexual offenses against children.

In previous studies, it has been repeatedly shown that the original UTAUT predictors PE, EE, and SI are predictive of acceptance [16,59]. In this study, against our expectations, the predictive effect of PE and EE could not be replicated for individuals who had committed sexual crimes against children. In contrast, SI and attitudes toward web-based interventions were significant predictors of acceptance. Attitudes toward web-based interventions was also found to be a strong predictor of acceptance in other subject groups and was equally as strong as PE [20,25]. The importance of attitudes for acceptance may be related to the fact that the participants in this study most likely had no specific knowledge or experience with web-based interventions at the time they answered the UTAUT items. In this state of indecision, positive attitudes might be more important than cognitive beliefs about the web-based intervention. That could be a reason why the hypothesis that PE and EE are predictive for acceptance was refuted in this study [25].

The significant prediction by SI of acceptance could be explained by the fact that participants are influenced by how other people, especially their community supervisors, evaluate their community supervision time. However, in the exploratory analysis, it was found that the perceived higher opinion of people close to the participant but not the perceived lower or higher opinion of the community supervisor significantly predicted higher acceptance. A reason why the perceived opinion of the community supervisor was not predictive could be that most participants rated the opinion of their community supervisor as high. This may be because community supervisors who did not support web-based interventions may have not informed their clients. Thus, the results of this explorative analysis could imply that especially in a situation where the community supervisors support a web-based intervention, the opinion of people close to the participant predicts acceptance.

In previous studies, it was found that lower age predicted higher acceptance [19-21] and that the effect of PE, EE, and SI was moderated by age [15]. In this study, however, no direct or moderating effect of age could be observed in individuals who...
committed sexual offenses against children. This is in line with studies by Philippi et al [16] and Lin et al [22], who also could not replicate a direct or moderating effect of age.

Limitations
The first limitation arises from the sample selection. As mentioned above, participants were preselected by community supervisors and the participants were persons who already agreed to take part in a web-based intervention study. Because of that, it is not clear if and how representative the sample is of individuals who committed sexual offenses against children and who are presently in community supervision and thus how generalizable the results of this study are.

The second limitation could have resulted from the preselection. The variances in this study are low, which could be an indicator that the sample variance is lower than the actual population variance. Because of that restriction of variance, the statistical power to detect interactions is reduced [43].

The third limitation is that the scales acceptance, SI and internet anxiety show low reliability. For this study, we used the well-established UTAUT questionnaire [15] and adaptations used in the field of general psychiatry [17,32-34]. The questionnaire for this study was based as closely as possible on this format. However, some aspects of general psychiatry may not be transferable to the context of this study. For example, the acceptance scale includes an item asking whether participants would recommend a web-based intervention to a friend. For individuals convicted of a crime, shame and the need to hide the conviction from those close to them could be relevant aspects that might influence the answer to this item [60].

The fourth limitation is that the questionnaire was completed in the presence of the research staff. Therefore, the participants might have answered in a socially desirable manner, for example, to appear cooperative toward the study.

Future Directions and Clinical Implications
Future research should examine the predictive power of further variables that go beyond the UTAUT model. Variables that are possibly relevant are described in the previous section (eg, perceived reliability, antisocial personality disorder, and experience with web-based interventions). To increase acceptance, it should be tested whether acceptance-facilitating interventions, that highlight the positive aspects of using a web-based intervention (attitudes toward web-based interventions) and address reasons why the potential users assume that people close to them may not be in favor of them (SI) are especially effective. To that end, it should be investigated whether there are differences in acceptance depending on the characteristics of the potential users (eg, conviction type and the number of previous convictions). By doing that, acceptance-facilitating intervention could be tailored to the specific needs of the potential participants and may be more effective [31]. Further, research should look at the actual use of web-based interventions and test whether acceptance, as hypothesized by UTAUT, can predict factors like satisfaction or need fulfillment [61] and the actual use of a web-based intervention.

Conclusions
This study is the first to analyze the acceptance of web-based intervention in individuals who committed sexual offenses against children. In this study the acceptance levels of the majority of participants were high. The perceived opinion of the social contacts, as well as, the attitudes toward web-based interventions was important in predicting acceptance. To increase acceptance, it may be important to incorporate these predictors when designing acceptance-facilitating interventions.

Acknowledgments
This study was funded by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, 01KR1807A). The funder has not, and will not, participate in the study design, data collection, management, analysis, and interpretation of data, or writing of reports. They do not have the authority over the decision to submit reports for publication or the conclusions herein. The publication was created as part of the @myTabu research-consortium. We acknowledge support by the Open Access Publication Funds of the Göttingen University. We thank Bruno Siegel, for his help in data collection. He was not compensated for his contributions beyond his established salary. Further, we thank all Departments of Justice, community supervisors, and participants for their contribution to this research project.

Data Availability
The data sets analyzed during this study are not publicly available due to their high sensitivity (eg, conviction of sexual abuse of children), the lack of possibility for complete anonymization, and the fact that the @myTabu clinical trial is ongoing but are available from the corresponding author on reasonable request.

Authors' Contributions
CB, JLM, and PF contributed to the conceptualization of the clinical trial the data are derived from. SS, CB, LN, JLM, and PF contributed to the methodology of the clinical trial. PF coded the web-based interventions within the clinical trial. SS initiated and conceptualized this study, conducted the statistical analyses, interpreted the data, and wrote the first draft of the paper. SS and LN performed the data collection. CB supported the statistical analyses. CB, JLM, and PF contributed to the data interpretation of this study. CB, LN, JLM, and PF critically revised the initial paper. All authors approved the final paper.
None declared.

Multimedia Appendix 1
German questionnaire items used in this study with references to original studies.

References

27. Bauer L, Schröder S, Tozdan S, Muller JL, Fromberger P. @myTabu—konzept einer Therapeuten-gestützten online-intervention für verurteilte Personen, die kindesmissbrauch begangen oder Missbrauchsschäden konsumiert haben | @myTabu—Concept of a guided web-based intervention for convicted individuals who have committed sexual offenses against children or who have consumed child sexual exploitation material. Bewährungshilfe. 2021. URL: https://www.dbh-online.de/sites/default/files/bewh/bewh_1-2021_inhaltsverz.pdf

Abbreviations

EE: effort expectancy
FC: facilitating conditions
f2f: face-to-face
PE: performance expectancy
SI: social influence
UTAUT: Unified Theory of Acceptance and Use of Technology

Edited by A Mavragani; submitted 10.05.23; peer-reviewed by M Kirschstein, J Hoyer; comments to author 12.09.23; revised version received 30.10.23; accepted 22.11.23; published 26.01.24.

Please cite as: Schröder S, Buntrock C, Neumann L, Müller JL, Fromberger P
Acceptance of a Web-Based Intervention in Individuals Who Committed Sexual Offenses Against Children: Cross-Sectional Study
JMIR Form Res 2024;8:e48880
URL: https://formative.jmir.org/2024/1/e48880
doi: 10.2196/48880
PMID:38277200
Original Paper

Development and Implementation of Digital Diagnostic Algorithms for Neonatal Units in Zimbabwe and Malawi: Development and Usability Study

Hannah Gannon1,2, MBChB, MRCPCH; Leyla Larsson3, MSc; Simbarashe Chimhuya4, MD; Marcia Mangiza5, MBChB; Emma Wilson1, PhD; Erin Kesler6, MSN, CRNP; Gwendoline Chimhini4, MBChB, MPH; Felicity Fitzgerald2,7, PhD; Gloria Zailani8, MBBS; Caroline Crehan4, MBChB; Nushrat Khan1, PhD; Tim Hull-Bailey1, MPhil; Yali Sassoon9, MPhil; Morris Baradza10, BA; Michelle Heys1, MBBS, MD; Msandeni Chiume8*, MBBS, MSc

1Population, Policy and Practice, Institute of Child Health, University College London, London, United Kingdom
2Biomedical Research and Training Institute, Harare, Zimbabwe
3Institute of Computational Biology, Computational Health Centre, Helmholtz, Munich, Germany
4Department of Child, Adolescent and Women’s Health, Faculty of Medicine and Health Science, University of Zimbabwe, Harare, Zimbabwe
5Sally Mugabe Central Hospital, Harare, Zimbabwe
6Children’s Hospital of Philadelphia, Philadelphia, PA, United States
7Department of Infectious Disease, Imperial College London, London, United Kingdom
8Kamuzu Central Hospital, Lilongwe, Malawi
9Snowplow Analytics, London, United Kingdom
10Baobab Web Services, City of Cape Town, South Africa

* these authors contributed equally

Corresponding Author:
Hannah Gannon, MBChB, MRCPCH
Population, Policy and Practice
Institute of Child Health
University College London
30 Guildford Street
London, WC1N 1EH
United Kingdom
Phone: 44 (0) 20 7905 ext 2600
Email: h.gannon@ucl.ac.uk

Abstract

Background: Despite an increase in hospital-based deliveries, neonatal mortality remains high in low-resource settings. Due to limited laboratory diagnostics, there is significant reliance on clinical findings to inform diagnoses. Accurate, evidence-based identification and management of neonatal conditions could improve outcomes by standardizing care. This could be achieved through digital clinical decision support (CDS) tools. Neotree is a digital, quality improvement platform that incorporates CDS, aiming to improve neonatal care in low-resource health care facilities. Before this study, first-phase CDS development included developing and implementing neonatal resuscitation algorithms, creating initial versions of CDS to address a range of neonatal conditions, and a Delphi study to review key algorithms.

Objective: This second-phase study aims to codevelop and implement neonatal digital CDS algorithms in Malawi and Zimbabwe.

Methods: Overall, 11 diagnosis-specific web-based workshops with Zimbabwean, Malawian, and UK neonatal experts were conducted (August 2021 to April 2022) encompassing the following: (1) review of available evidence, (2) review of country-specific guidelines (Essential Medicines List and Standard Treatment Guidelines for Zimbabwe and Care of the Infant and Newborn, Malawi), and (3) identification of uncertainties within the literature for future studies. After agreement of clinical content, the algorithms were programmed into a test script, tested with the respective hospital’s health care professionals (HCPs), and refined according to their feedback. Once finalized, the algorithms were programmed into the Neotree software and implemented at the tertiary-level implementation sites: Sally Mugabe Central Hospital in Zimbabwe and Kamuzu Central Hospital in Malawi, in
December 2021 and May 2022, respectively. In Zimbabwe, usability was evaluated through 2 usability workshops and usability questionnaires: Post-Study System Usability Questionnaire (PSSUQ) and System Usability Scale (SUS).

Results: Overall, 11 evidence-based diagnostic and management algorithms were tailored to local resource availability. These refined algorithms were then integrated into Neotree. Where national management guidelines differed, country-specific guidelines were created. In total, 9 HCPs attended the usability workshops and completed the SUS, among whom 8 (89%) completed the PSSUQ. Both usability scores (SUS mean score 75.8 out of 100 [higher score is better]; PSSUQ overall score 2.28 out of 7 [lower score is better]) demonstrated high usability of the CDS function but highlighted issues around technical complexity, which continue to be addressed iteratively.

Conclusions: This study describes the successful development and implementation of the only known neonatal CDS system, incorporated within a bedside data capture system with the ability to deliver up-to-date management guidelines, tailored to local resource availability. This study highlighted the importance of collaborative participatory design. Further implementation evaluation is planned to guide and inform the development of health system and program strategies to support newborn HCPs, with the ultimate goal of preventing preventable neonatal morbidity and mortality in low-resource settings.

(JMIR Form Res 2024;8:e54274) doi:10.2196/54274

KEYWORDS

mobile health; mHealth; neonatology; digital health; mobile apps; newborn; Malawi, Zimbabwe; usability; clinical decision support

Introduction

Background

In 2021, overall, 2.3 million children died in their first month of life, and the proportion of deaths below the age of 5 years attributed to neonates has risen from 40% in 1990 to 47% in 2021 [1]. The main causes of neonatal death include intrapartum-related complications and prematurity. Accurate, evidence-based identification and management of neonatal conditions could improve outcomes by standardizing care. It has been demonstrated in the literature that poor-quality care delivered by undertrained and overstretched health care professionals (HCPs) in low-resource settings can be attributed to approximately 60% of deaths from treatable conditions [2]. Clinical decision support (CDS) tools aim to standardize the assessment process and provide evidence-based guidance at the bedside, improving HCPs’ knowledge and competence. Previous studies have demonstrated that, owing to limited laboratory diagnostic capabilities, within these low-resource settings, there is significant reliance on clinical findings to make a diagnosis [2-4]. The implementation of diagnostic pathways could improve outcomes for this vulnerable neonatal population [4]. In addition, the development of management pathways adaptable and modifiable to resource availability is paramount [5]. There is potential for digital CDS tools to support HCPs to deliver improved neonatal care despite resource limitations and hence optimize outcomes.

The use of decision support tools has been well established and supported in health systems globally [6]. In this digital age, mobile phone coverage and digital uptake in low-resource settings has surged. Together with the low-dose, high-frequency education strategies [7,8] to improve newborn care, digital interventions appear to present a promising approach to improving newborn care [9,10].

Digital CDS tools are designed to aid directly in clinical decision-making and can use individualized patient data to guide management to implement evidence-based clinical guidelines at the bedside [11]. Paper-based guidelines are established resources, but these often get lost, are placed on shelves, and become easily outdated and therefore redundant. The systematic review of CDS systems by Kawamoto et al [12] identified four features for improved clinical practice:

1. Automatic provision of decision support as part of clinician workflow
2. Provision of recommendations rather than just assessments
3. Provision of decision support at the time and location of decision-making
4. Computer-based decision support

To date, most digital tools have implemented CDS as stand-alone tools to provide additional support to clinicians [9,13]. Consequently, the use of these tools can be limited as their use is voluntary and assumes clinician readiness and preparedness to adopt digital tools for which they may not have preexisting training or knowledge [14]. There is a growing evidence base for newborn digital interventions in low-resource settings ranging from patient level (NeMo tool trialed in Uganda, designed to support mothers in identifying newborns who are sick [15]) to system level (such as the World Health Organization standards-based, machine-readable, adaptive, requirements-based, and testable guidelines) for systematic pathways for the development and implementation of localized digital systems [16]. Digital interventions have the potential to both improve neonatal quality of care in low-resource settings and, in turn, improve neonatal outcomes, but there is a growing need for these interventions to be rigorously evaluated and to move from pilot or small-scale projects to scale [17]. Key elements to optimize the generalizability and scalability of such interventions are the vital importance of software sharing and the ability to have the intervention open source, which offers lower costs; greater transparency; faster iterations; and importantly, for the low-resource setting, local ownership in comparison with proprietary and, often siloed, digital interventions.
Neotree

Neotree was developed as an integrated, open-source, digital, quality improvement system for hospital-based sick and vulnerable newborns [18-20]. The evidence suggests that up to 70% of newborn deaths could be prevented by the implementation of evidence-based interventions [21]. The system guides HCPs through the admission and clinical care of newborns. It combines evidence-based clinical guidelines with real-time newborn data collection, data visualization, data export, and newborn education on a single platform [22]. This tablet-based digital system is for use at the hospital bedside by HCPs with a range of skills and competencies supporting the care and treatment of newborns. It is currently implemented in the neonatal units at Sally Mugabe Central Hospital (SMCH) and Chinhoyi Provincial Hospital in Zimbabwe and at Kamuzu Central Hospital (KCH) in Malawi. SMCH’s neonatal unit is a physician-led unit with mainly junior physicians (1-2 years after graduating) using Neotree and providing neonatal care, with consultant oversight; Chinhoyi Provincial Hospital and KCH are both nurse-led or midwife-led units with consultant oversight. Neotree offers a solution that integrates directly into everyday care for all admitted newborns. Crucially, the CDS functionality is not dependent on nurses or clinicians having any specialist knowledge about the care of the newborn. This integration and development process is consistent with the suggestions by Kawamoto et al [12]. An overview of the development and implementation experience so far can be found elsewhere [18,22]. To date, Neotree has aided in the care of approximately 35,000 newborns and the education and training of >1000 HCPs at the implementation sites in Malawi and Zimbabwe and has demonstrated high acceptability, feasibility, and usability with perceived and observed improvements in newborn care [18,22].

The CDS Function Development

The aim of the CDS function was to ultimately provide a personalized, integrated, evidence-based management plan (with embedded educational messaging around newborn care), tailored to the health care facility’s workflow and resource availability. In addition, a list of potential clinical problems was provided to facilitate pattern recognition and for education purposes. Evidence-based algorithms were precoded into Neotree management guidelines for the programmed conditions. Therefore, the entered data instantaneously provide a list of potential clinical problems and associated clinical management actions at the bedside.

The algorithms fell into four categories:

1. Simple condition-based decision trees based on good evidence (eg, prematurity or low birth weight or resuscitation)
2. Simple conditional expressions based on weak evidence and best clinical judgment (eg, jaundice)—these require additional refinement with evidence review and clinical consensus
3. Complex conditional expressions based on good evidence (eg, Thompson score for neonatal encephalopathy)
4. Complex conditional expressions with weak evidence base (eg, sepsis)—these require analytical refinement of the algorithm and testing

Phase 1

First-phase CDS development in Zomba Central Hospital, Malawi, included developing and implementing neonatal resuscitation and stabilization algorithms, conducting a Delphi study to review key algorithms (neonatal sepsis, hypoxic ischemic encephalopathy, respiratory distress of the newborn, and hypothermia) [23], and developing the initial versions of CDS to address a range of neonatal conditions [20]. The resuscitation and stabilization algorithms were configured in 2016 based on the World Health Organization guidelines and Helping Babies Breathe and have been activated throughout implementation, so that, for example, if a baby is not breathing, Neotree will advise how to resuscitate [20]. Clinical management support pages were also configured for several potential diagnoses. These appeared in Neotree at the end of the admission process according to the HCPs’ chosen diagnosis and included hypoxic ischemic encephalopathy or birth asphyxia, prematurity, neonatal sepsis, gastroschisis, and transient tachypnoea of the newborn. The development of these clinical management support pages continued through 2018 and 2019. Neotree uses a web-based editor function using “variable expressions” to describe the condition, which is coding depicted by a “$” and brackets (“’). The paper by Khan et al [22] describing the software development of Neotree describes the web editor function in detail; an example can be found in Multimedia Appendix 1.

Evaluating solutions such as CDS is important for both improvement and assessment of the effectiveness of the app [24]. For Neotree, evaluation and user feedback has been collected in three distinct ways: (1) on an ongoing basis, (2) during usability workshops, and (3) through questionnaire evaluation [20,25].

Phase 2

This study aimed to conduct the second phase of the algorithm development. In addition, we aimed to understand the user experience of the CDS functionality. As integrating such tools in routine care is not part of standard practice, we hoped to understand the strengths and weaknesses of these solutions and how we can optimize the implementation of such solutions in the future.

Methods

Overview

The second phase of CDS development was to integrate the clinical data entered during admission to trigger evidence-based diagnostic algorithms alongside personalized management guidelines, tailored to health care facility’s resource availability. On the basis of the clinical data entered by the HCP using Neotree, nested algorithms would determine whether a diagnosis should be triggered and, if so, would provide a suggested diagnosis, as shown in Figure 1.
First, it allows the HCPs to select their own diagnoses from a list of differentials. It then provides all the algorithmic diagnoses generated from clinical data (but not selected by the HCP) as “suggested diagnoses.” Phase-2 development of the CDS algorithms was planned in 3 stages (Figure 2).

Figure 1. Overview of the clinical decision support (CDS) pipeline in Neotree. HCP: health care professional.
Figure 2. Phase-2 clinical decision support development process (3 stages).

Stage 1
Diagnosis-specific web-based workshops with Zimbabwean and Malawian neonatal experts encompassing the following:
1. Review of available evidence and refinement of existing algorithms
2. Review of country-specific guidelines
3. Identification of uncertainties within the literature for future studies

Stage 2
Algorithms programmed into the Neotree software and implemented at the tertiary-level study sites in two phases, in December 2021 and May 2022. Study sites were the following:
1. Sally Mugabe Central Hospital, Zimbabwe
2. Kamuzu Central Hospital, Malawi

Stage 3
Usability was evaluated at Sally Mugabe Central Hospital through two usability workshops and usability questionnaires:
1. Post-Study System Usability Questionnaire
2. Systems Usability Scale

Stage 1
To develop the algorithms required to implement CDS, a team of subject matter experts was formed and comprised of neonatal clinicians based in Zimbabwe, Malawi, and the United Kingdom. The experts were selected based on their extensive experience in and knowledge about delivering newborn care within the settings and the limitations within their environment and context; the UK-based experts had both neonatal experience and detailed knowledge about the Neotree system. Importantly, the Zimbabwean and Malawian experts had detailed knowledge of resource and equipment availability within each setting, which ensured the development of actionable management guidance. Web-based workshops were conducted to discuss each clinical diagnosis. All clinical problems and potential diagnoses were described clearly under the following headings:
1. Measurement (how and when)
2. Categorization (with reference to evidence)
3. Variable expression (how the diagnosis is or will be coded within Neotree)
4. Clinical management advice (with reference to evidence)
5. Needs for further refinement (next steps required)

The algorithm triggers were clearly defined and agreed upon, and subsequent clinical management was based on local, national, and international clinical guidelines and adapted based on local resource availability. Textbox 1 shows an example of the discussions, and “$” denotes the variable being described. The national guidelines used were the Essential Medicines List and Standard Treatment Guidelines for Zimbabwe [26] and Care of the Infant and Newborn, Malawi.

Mock clinical test cases were created by the expert team and were used for active testing in Neotree to ensure that the algorithms were triggered in the correct circumstances and were intuitive to use, leading to further refinement. This testing was performed by Neotree team members and then a cohort of HCPs who had been trained and used Neotree in their everyday clinical practice.
Stage 2
Following the finalization of the individual algorithm pathways, the CDS functionality was deployed in 2 cycles (December 2021 and May 2022). The first cycle included the first set of clinical diagnoses (update to resuscitation and stabilization, thermoregulation, convulsions, low birth weight, prematurity, hypoglycemia, HIV, and respiratory distress), and the second cycle comprised clinical diagnoses that required more extensive review and definition by the expert team (neonatal encephalopathy; sepsis; jaundice; and congenital abnormalities, which include cleft lip or palate, congenital dislocation of the hip, talipes, gastroschisis, omphalocele, and spina bifida). These were to be deployed only in the 2 central hospitals (SMCH in Zimbabwe and KCH in Malawi), as both centers have senior neonatal clinical oversight.

Stage 3
Usability evaluation was planned to include usability workshops and usability questionnaires.

The usability workshops were conducted to understand the user experience and to provide specific information about the steps and items that require improvement in CDS design and development. The workshops were conducted using a think-aloud approach [27]. The HCPs, familiar with Neotree, were provided with a specific medical scenario (designed by the expert team) and asked to complete a Neotree admission in real time. These workshops were conducted in a nonneonatal environment to allow users to focus on their experience and understanding of the app instead of having to focus on neonatal clinical care. The provided scenario simulated a typical admission. Interviews were conducted by the interviewer in English (the clinical working language of both Zimbabwe and Malawi). The interview was recorded and later transcribed by the interviewer. While the user thought out loud and provided feedback about the app, the interviewer took short notes to prompt further questioning, especially about the CDS functionality.

Usability questionnaires such as the System Usability Scale (SUS) and the Post-Study System Usability Questionnaire (PSSUQ) provide additional quantifiable insights and metrics into the user experience of CDS [28]. PSSUQ assesses 3 categories: system usefulness, information quality, and interface quality. These 3 domains cover 16 questions, rated on a Likert scale ranging from 1 (strongly agree) to 7 (strongly disagree). Participants could also indicate if the question was not applicable to them. The SUS is a 10-item Likert scale questionnaire with options ranging from 1 (strongly agree) to 5 (strongly disagree). The SUS score was compared with an internationally recognized measure of acceptable usability of 68 out of 100. Both survey questionnaires were chosen because of their popularity in assessing mobile health solutions in low-resource settings. For the quantitative measurements (SUS and PSSUQ), means and SDs were calculated using Stata (version 17.1).

Ethical Considerations
The Neotree study, including the wider implementation evaluation of Neotree and the CDS functionality development, received approval from SMCH Research ethics committee (reference HCHEC070618/58), University College London ethics committee (5019/004), Biomedical Research and Training Institute (AP148/18), Medical Research Council of Zimbabwe (MRCZ/A/2570), and Electronic Health Records Department of the Zimbabwe Ministry of Health and Child Care. The collection of qualitative data from HCPs using Neotree to assess the usability of all functionalities was also approved. Written informed consent was obtained from all usability evaluation participants, and their results were deidentified and stored anonymously. Attendance at the workshops was compensated through reimbursement of travel costs and refreshments. Participants were reimbursed US $10 for their time and travel costs as per the Zimbabwean Medical Research Council policy.

Textbox 1. Example of stage-1 discussions—thermoregulation (“$” denotes the variable being described).

<table>
<thead>
<tr>
<th>Example</th>
<th>Measured or recorded—based on temperature recorded on admission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorization— according to the World Health Organization guidelines, there are 5 possible categories for temperature on admission:</td>
<td></td>
</tr>
<tr>
<td>Mild hypothermia: temperature $36.4°C</td>
<td></td>
</tr>
<tr>
<td>Moderate hypothermia: $32°C</td>
<td></td>
</tr>
<tr>
<td>Severe hypothermia: $32°C</td>
<td></td>
</tr>
<tr>
<td>Normal: $36.5°C-37.5°C</td>
<td></td>
</tr>
<tr>
<td>Hyperthermia: $37.5°C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable expression ($ denotes the variable being described)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm version 2: proposed from the workshop</td>
</tr>
<tr>
<td>Mild hypothermia: $temperature >35.9°C and $temperature <36.5°C</td>
</tr>
<tr>
<td>Moderate hypothermia: $temperature >31.9°C and $temperature <36°C</td>
</tr>
<tr>
<td>Severe hypothermia: $temperature <32°C</td>
</tr>
</tbody>
</table>

| Categorization— according to the World Health Organization guidelines, there are 5 possible categories for temperature on admission: |
| Mild hypothermia: $temperature 36°C-36.4°C |
| Moderate hypothermia: $32°C-35.9°C |
| Severe hypothermia: $temperature <32°C |
| Normal: $36.5°C-37.5°C |
| Hyperthermia: $37.5°C |

<table>
<thead>
<tr>
<th>Variable expression ($ denotes the variable being described)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm version 2: proposed from the workshop</td>
</tr>
<tr>
<td>Mild hypothermia: $temperature >35.9°C and $temperature <36.5°C</td>
</tr>
<tr>
<td>Moderate hypothermia: $temperature >31.9°C and $temperature <36°C</td>
</tr>
<tr>
<td>Severe hypothermia: $temperature <32°C</td>
</tr>
</tbody>
</table>
Results

Algorithm Development

Overall, 11 diagnosis-specific web-based workshops with Zimbabwean and Malawian neonatal experts were conducted between August 2021 and April 2022, encompassing the following:

1. Review of available evidence
2. Review of country-specific guidelines (Essential Medicines List and Standard Treatment Guidelines for Zimbabwe and Care of the Infant and Newborn for Malawi)
3. Identification of uncertainties within the literature for future studies

Table 1 shows the diagnoses discussed and the phase they were introduced in.

Table 1. Diagnosis-specific algorithms and their introduction (cycle 1 and cycle 2).

<table>
<thead>
<tr>
<th>Data source and diagnosis</th>
<th>Cycle 1 introduction (December 2021)</th>
<th>Cycle 2 introduction (May 2022)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple conditional-based decision trees based on strong evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low birth weight</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Prematurity</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>HIV exposure</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Thermoregulation</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Simple conditional expressions based on weak evidence</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Jaundice</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Convulsions</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Complex conditional expressions based on strong evidence</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Neonatal encephalopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory distress</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Complex conditional expressions based on weak evidence (in low-resource settings)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sepsis</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Congenital abnormalities</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Detailed discussions and clinical triggers, documented in the A to E format (discussed previously), alongside the country-specific management plans and the coding used for Neotree can be found in Multimedia Appendix 2 [23,26,29-35]. Where national management guidelines differed, for example, birth weight thresholds for admissions to the neonatal unit, country-specific guidelines were created. Management guidelines were created based on resource and equipment availability in each setting. These international meetings also facilitated cross-site learning and quality improvement discussions. The clinical content and Neotree algorithm coding for each developed algorithm can be found in Multimedia Appendix 2.

The first-cycle algorithms developed, including low birth weight, convulsions, and hypoglycemia, had internationally defined descriptions and management guidelines, with minimal variation between nationally agreed management pathways. These diagnoses were relatively straightforward to discuss among the experts and gain unanimous agreement on the clinical content. The more complex diagnoses proved to be more challenging and required multiple meetings with the experts to be clearly defined. As a result, neonatal encephalopathy and neonatal sepsis were assigned to ongoing international working groups for continuing research. The respiratory distress algorithm was split into term (defined as ≥37 weeks of gestation) respiratory distress and preterm (defined as <37 weeks of gestation) respiratory distress, and we identified the need for a more formal review of the literature within the global health context.

After agreement of clinical content, the algorithms were programmed into a test script, tested with the respective hospital’s HCPs, and refined according to their feedback. Figure 3 shows how the algorithm-derived diagnoses are presented within Neotree.
Usability Workshop Results

Overview
In total, 2 workshops were conducted in both Zimbabwe and Malawi after the release of each CDS—in January 2022 and in June 2022. An example of the recorded feedback is shown in Figure 4. In Zimbabwe, the workshops were attended by 5 HCPs—2 (40%) female participants and 3 (60%) male participants. In Malawi, the workshops were attended by 4 HCPs—3 (75%) female participants and 1 (25%) male participant, and feedback was recorded.

From the usability workshops that were conducted, three main themes emerged, two of which related directly to CDS, and the last one related to the Neotree tablet:

1. Education
2. Streamlining of processes
3. Technical challenges

Education
The main theme prevailing across interviews was the positive feedback toward the availability of information and clinical guidance provided through Neotree and CDS. As most of the clinicians using Neotree are junior physicians, especially at SMCH, they have limited experience in the management of neonates:

This might seem obvious but on your first day it is not. [Participant 2]

Streamlining of Processes
HCPs highlighted that CDS in Neotree was found to streamline and systematize clinical diagnosis and management at the hospital, resulting in better and more effective care. This was done by implementing diagnostic algorithms that provide...
data-driven results and by providing management for the clinical diagnoses that are based on the most up-to-date guidelines. By providing the management pages for each diagnosis (and a repertoire of all management pages) in a centralized location, Neotree provides streamlined care for newborns as clinicians do not resort to a multitude of different resources that may not agree in management:

These are the nevirapine doses? You have outdone yourself. I like this very much because we learn about HIV guidelines but sometimes you just forget so this is nice. [Participant 5]

Despite the ability of Neotree to provide data capture, CDS, and clinical management, this proved to extend the admission process. Clinicians highlighted the duration of admission completion to be a problem, especially in an already overstretched and understaffed hospital:

Sometimes when you’re on call you don’t have time to go through it. [Participant 2]

Takes a lot of time when you have 6 babies screaming. [Participant 4]

Admitting a patient really does take 15-20 minutes. [Participant 1]

Technical Challenges

During the workshops, the tablets had issues with general degradation as they had just reached 3 years of use in the hospitals. These challenges resulted in the app crashing or not reacting to user input. The users, however, did not show frustration and mentioned that because it happens in the ward, they have grown used to it and have adapted to the challenges. Despite the clinicians adapting to these issues, this is severely affecting their experience of using the tablets and CDS, which may provide explanation for the relatively low scores in the SUS and PSSUQ questionnaires with respect to technical capability:

Can we have better tablets. [Participant 2]

Just delete the ones that clicked themselves here. [Participant 4]

I guess I’ll wait for it. [Participant 4]

Usability Questionnaire Results

In this study, usability of the Neotree CDS was also assessed using the PSSUQ (8/9, 89%) and SUS (9/9, 100%) questionnaire at SMCH.

The same group of HCPs was asked to complete 2 questionnaires (SUS and PSSUQ). One person failed to complete the PSSUQ due to time constraints on the neonatal ward. The SUS results are shown in Table 2, and the PSSUQ results are shown in Table 3. SUS showed generally high usability of the CDS system in Neotree, especially relating to aspects such as desire to use the system (questions 1, 7, and 9) and ease of use (questions 3 and 7). In contrast, the CDS system scored low on questions relating to technical complexity and difficulties (questions 2, 4, 6, 8, and 10).

The PSSUQ showed results similar to those of the SUS, where the technical complexities of the system (question 8) was highlighted as an issue.

Overall, both usability scores (SUS mean score 73.8 out of 100 [higher score is better]; PSSUQ overall score 2.28 out of 7 [lower score is better]) demonstrated high usability of the CDS function (comparable with previous SUS scores assessing the usability of Neotree data capture and dashboard functionalities in Malawi [mean score 88.1 out of 100] [25]) but highlighted issues around technical complexity, which have been subsequently addressed.

Table 2. System Usability Scale (SUS) results (N=9)^a^b.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I think I would like to use this system frequently</td>
<td>4 (1.4)</td>
</tr>
<tr>
<td>2. I found the system unnecessarily complex</td>
<td>2 (1.5)</td>
</tr>
<tr>
<td>3. I thought the system was easy to use</td>
<td>3.9 (1.4)</td>
</tr>
<tr>
<td>4. I think that I would need the support of a technical person to be able to use this system</td>
<td>2.1 (0.9)</td>
</tr>
<tr>
<td>5. I found the various functions in this system were well-integrated</td>
<td>3.7 (1.4)</td>
</tr>
<tr>
<td>6. I thought there was too much inconsistency in this system</td>
<td>1.9 (0.6)</td>
</tr>
<tr>
<td>7. I would imagine that most people would learn to use this system</td>
<td>3.9 (1.4)</td>
</tr>
<tr>
<td>8. I found the system very cumbersome to use</td>
<td>1.8 (1.1)</td>
</tr>
<tr>
<td>9. I felt very confident using the system</td>
<td>4.4 (1.1)</td>
</tr>
<tr>
<td>10. I needed to learn a lot of things before I could get going with this system</td>
<td>1.8 (0.8)</td>
</tr>
</tbody>
</table>

^a^Questions were answered using a Likert scale ranging from 1-5, where 1=strongly disagree and 5=strongly agree.

^b^Calculated SUS score (total converted mean scores × 2.5)=73.8.
Table 3. Post-Study System Usability Questionnaire (PSSUQ) results (n=8)a,b.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. It was simple to use this system</td>
<td>1.9 (1.7)</td>
</tr>
<tr>
<td>2. I was able to complete the tasks and scenarios quickly using this system</td>
<td>1.9 (1.7)</td>
</tr>
<tr>
<td>3. I felt comfortable using this system</td>
<td>2.3 (1.6)</td>
</tr>
<tr>
<td>4. It was easy to learn to use this system</td>
<td>2.1 (1.7)</td>
</tr>
<tr>
<td>5. I believe I could become productive quickly using this system</td>
<td>1.8 (1.8)</td>
</tr>
<tr>
<td>6. The system gave error messages that clearly told me how to fix problems</td>
<td>2.1 (1.4)</td>
</tr>
<tr>
<td>7. Whenever I made a mistake using the system, I could recover easily and quickly</td>
<td>2.3 (0.9)</td>
</tr>
<tr>
<td>8. The information (such as online help, on-screen messages, and other documentation) provided with this system was clear</td>
<td>4.1 (2)</td>
</tr>
<tr>
<td>9. I needed to learn a lot of things before I could get going with this system</td>
<td>2.5 (1.6)</td>
</tr>
<tr>
<td>10. It was easy to find the information I needed</td>
<td>2.6 (1.5)</td>
</tr>
<tr>
<td>11. The information was effective in helping me complete the tasks and scenarios</td>
<td>2.1 (1.4)</td>
</tr>
<tr>
<td>12. The organisation of information on the system screens was clear</td>
<td>1.9 (1.7)</td>
</tr>
<tr>
<td>13. The interface of this system was pleasant</td>
<td>1.6 (0.5)</td>
</tr>
<tr>
<td>14. I liked using the interface of this system</td>
<td>1.6 (0.7)</td>
</tr>
<tr>
<td>15. This system has all the functions and capabilities I expect it to have</td>
<td>3 (1.3)</td>
</tr>
<tr>
<td>16. Overall, I am satisfied with this system</td>
<td>2 (1.3)</td>
</tr>
</tbody>
</table>

aQuestions were answered using a Likert scale ranging from 1-7, where 1=strongly agree and 7=strongly disagree.

bCalculated total PSSUQ score=2.28.

Discussion

Principal Findings

This study describes the successful development and pilot implementation of the only known neonatal CDS system incorporated within a bedside data capture system with the ability to deliver up-to-date management guidelines, tailored to local resource availability. Bucher et al [9], Mitchell et al [36], and Long et al [17], as examples, describe CDS digital tools generally designed for the pediatric population, not specifically neonatal, and without incorporated digital data capture. To date and to the best of the authors knowledge, there is no other neonatal digital intervention designed to improve neonatal care using these methods. As a significant proportion of the global mortality below the age of 5 years is attributed to neonatal deaths in low-resource settings, the development of sustainable interventions targeting this vulnerable group are vital. The incorporated real-time usability evaluation demonstrated high usability from HCPs actively using Neotree in their everyday practice, within 2 low-resource settings—Zimbabwe and Malawi. The adaptability of the Neotree system allowed for real-time changes to the app to improve the processing times and algorithm function. This enabled changing the surfacing format of the algorithm-selected diagnoses to improve the usability of the CDS function.

It has been well documented in the literature that improving adherence to evidence-based clinical guidelines can improve the quality of care and, in turn, patient outcomes. However, this has been challenging to effectively implement, particularly in low-resource settings [37,38]. A multifaceted approach is required, and a system with the ability to adapt is therefore essential, both to resource availability and guideline updates. With the plethora of digital health interventions implemented in low-resource settings, centralizing information for HCPs instead of relying on memory, wall charts, or printed guidelines has been demonstrated to improve adherence [36]. The target product profile developed by Pelle et al [37], for electronic CDS algorithms in low-resource settings, sets out specific guidance about the development of such interventions. The algorithms need to be based on evidenced clinical guidelines and be customizable to the context. This has been heavily incorporated into the design and methodology of the development of the Neotree CDS functionality.

Comparison can be made with studies within the pediatric population. Several studies have reviewed the feasibility of the implementation of electronic, user-friendly Integrated Management of Childhood Illness tools, for example, in both Tanzania and South Africa [36,39]. In the Tanzanian setting, adherence to guidelines was demonstrated to improve the use of electronic versus paper-based systems [36]. In comparison, the South African study demonstrated the challenges with technical issues and workload implications [39]. Technical challenges and workload implications were also highlighted in the usability workshops for Neotree; however, despite these challenges, the system scored well on the usability questionnaires. The HCPs stated that they had adapted to these challenges.

Detailed understanding of the context and setting within which the digital intervention has been implemented is an essential component for sustainability. Many of the comments from the
interviewed HCPs described the understaffed, demanding, and poorly resourced environment they work within, which has been described in the literature and is common across many health institutions in low-resource settings [40]. Understanding this context and the complexities of adding a digital intervention, such as power failures within degrading infrastructures or additional workload, is key in successful implementation [17]. Alongside this aspect is the importance of collaborative participatory design. Many health care interventions have been developed from the high-income–setting perspective with minimal attention to the real-life adaptation within low-resource health care settings. Collaborative participatory design and research can help to close the gap between research, policy, and practice [41]. The contextual reality that many low-resource settings face with frequent crises or shocks, such as economic crises, natural disasters, or health crises, inevitably has an impact on how well the interventions are implemented. Damshcroder et al [42] have stated that “Many intervention studies have been found to be effective in health services research but fail to translate into meaningful patient care outcomes across multiple contexts.” The Neotree algorithm workshops including Zimbabwean and Malawian experts demonstrated the key importance of these international relationships for the CDS algorithms to be usable within their intended context. The customizability of the CDS algorithms to resource availability and the perceived streamlining of processes from diagnosis to management increased the usability of Neotree by incorporating the detailed knowledge about the working environment.

Limitations

The introduction of the algorithms had a perceived impact on the duration of the admission process. In an already overburdened neonatal unit, the increased time of use could have implications on both its acceptability and use. However, the time-use analysis and cost analysis (paper in progress) by Haghparast-Bidgoli et al [43] found that admission times were similar when comparing Neotree with paper-based systems. Implementation in low-resource settings is always going to be influenced by the environment and context it is used in. In Zimbabwe, a degrading health care system [40] poses challenges to any digital tool to be implemented in this setting. The usability questionnaires were only performed in SMCH in Zimbabwe. As SMCH is a predominantly physician-led unit, comparative Malawian and Zimbabwean CDS functionality qualitative data are needed to ensure that usability evaluation across all HCP cadres is reviewed; more comprehensive usability data are required and therefore planned to be collected.

Next Steps

Further usability evaluation is planned 1 year after implementation as part of the wider sustainability program of Neotree. This will again include the usability workshops and questionnaires with real-world observation, similar to previous usability testing of the data capture functionality. Approvals from the Pediatric Associations of Zimbabwe and Malawi are pending. The assigned international working groups for continuing research are ongoing. The Neonatal Sepsis Working Group is currently in the process of an in-depth review of neonatal sepsis guideline use within low-resource settings [44], conducting a scoping review [45], and developing a robust clinical prediction model with integrated machine learning technology to be implemented within Neotree. The Neonatal Encephalopathy Working Group published their study of risk factors for mortality [46], is evaluating the use of the Thompson score and its applicability in the low-resource setting, and is developing a neurodevelopmental follow-up pathway to be implemented in Zimbabwe and Malawi. Ongoing studies from the respiratory distress workshop include an in-depth scoping review of the literature about clinical features and risk factors for neonatal respiratory distress in low-resource settings to be incorporated into the respiratory distress algorithm and evaluation of the uptake of the TRY (T: Tone is good, R: Respiratory distress, and Y: Yes) continuous positive airway pressure algorithm [47] and associated outcomes in Malawi. A similar project is underway for neonatal jaundice. A mixed methods, large-scale evaluation of impact on neonatal quality of care and survival is planned. A key gap within the Neotree system is the potential to link with point-of-care diagnostic technology that is low cost, suitable and adaptable to the low-resource setting; early discussions have been made with potential collaborators.

Conclusions

This study describes the successful development and implementation of the only known neonatal CDS system incorporated within a bedside data capture system with the ability to deliver up-to-date management guidelines, tailored to local resource availability. The methods used in this study highlighted the importance of collaborative participatory design and South to South learning. Real-world usability testing could further enhance effective implementation. Detailed understanding of the context and setting within which the digital intervention has been implemented is an essential component for sustainability. Effective, motivated local and international partnerships are key to the success of CDS integration into routine practice. Further review of newborn CDS functionality impact and implementation evaluation is planned to guide and inform the development of health system and program strategies to support HCPs, who are overstretched and underresourced, with the ultimate goal of reducing preventable neonatal morbidity and mortality in low-resource settings.

Acknowledgments

The funders include the Wellcome Trust: Digital Innovation Award (215742/Z/19/Z to MH). This study, MH, and FF were further supported by the National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre. HG was further supported by the Medical Research Council Clinical Research and Training Fellowship (MR/V029126/1). The funders had no role in the design of the study; collection, analysis, and interpretation of the data; preparation of this report; or decision
to publish the results. The authors are very grateful to the staff members and families at Sally Mugabe Central Hospital’s neonatal unit and Kamuzu Central Hospital’s neonatal unit for their enthusiasm and commitment to the Neotree project, without which this study would not be possible.

Data Availability
Researchers interested in accessing the usability data will first need to send a request to the medical research council of Zimbabwe by email.

Authors’ Contributions
The study concept was designed by MH, SC, HG, THB, and MC. The workshops were designed and conducted by HG, MH, and THB, with support and attendance from GC, SC, MC, LL, EK, MM, CC, and FF. Stage 2 was supported by MB, YS, NK, and THB. User evaluation was planned by EW and MH and conducted by LL. The original draft was written by HG and LL, with review and edits for the final draft from all authors.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Description of the web editor function of Neotree.

[DOCX File, 240 KB - formative_v8i1e54274_app1.docx]

Multimedia Appendix 2
Detailed description of the diagnosis specific algorithms with the associated country-specific management guidelines.

[DOCX File, 3164 KB - formative_v8i1e54274_app2.docx]

References

44. Fitzgeral F. Assessing the use of neonatal bloodstream infection guidelines in two sub-Saharan African countries: what is used and what is useful? In: Proceedings of the European Society for Paediatric Infectious Diseases Annual Congress. 2023 Presented at: European Society for Paediatric Infectious Diseases Annual Congress; May 8-12, 2023; Lisbon, Portugal. URL: https://cslide.ctimeetingtech.com/espid23/attendee/confcal/session/list?q=fitzgerald

Abbreviations

CDS: clinical decision support
HCP: health care professional
KCH: Kamuzu Central Hospital
PSSUQ: Post-Study System Usability Questionnaire
SMCH: Sally Mugabe Central Hospital
Patient Phenotyping for Atopic Dermatitis With Transformers and Machine Learning: Algorithm Development and Validation Study

Andrew Wang1, BSc; Rachel Fulton2, MD; Sy Hwang1, MS; David J Margolis1*, MD, PhD; Danielle Mowery1*, MS, PhD

1University of Pennsylvania, Philadelphia, PA, United States
2Lankenau Medical Center, Wynnewood, PA, United States
*these authors contributed equally

Corresponding Author:
Danielle Mowery, MS, PhD
University of Pennsylvania
A206 Richards Building
3700 Hamilton Walk
Philadelphia, PA, 19104
United States
Phone: 1 2157466677
Email: dlmowery@pennmedicine.upenn.edu

Abstract

Background: Atopic dermatitis (AD) is a chronic skin condition that millions of people around the world live with each day. Performing research into identifying the causes and treatment for this disease has great potential to provide benefits for these individuals. However, AD clinical trial recruitment is not a trivial task due to the variance in diagnostic precision and phenotypic definitions leveraged by different clinicians, as well as the time spent finding, recruiting, and enrolling patients by clinicians to become study participants. Thus, there is a need for automatic and effective patient phenotyping for cohort recruitment.

Objective: This study aims to present an approach for identifying patients whose electronic health records suggest that they may have AD.

Methods: We created a vectorized representation of each patient and trained various supervised machine learning methods to classify when a patient has AD. Each patient is represented by a vector of either probabilities or binary values, where each value indicates whether they meet a different criteria for AD diagnosis.

Results: The most accurate AD classifier performed with a class-balanced accuracy of 0.8036, a precision of 0.8400, and a recall of 0.7500 when using XGBoost (Extreme Gradient Boosting).

Conclusions: Creating an automated approach for identifying patient cohorts has the potential to accelerate, standardize, and automate the process of patient recruitment for AD studies; therefore, reducing clinician burden and informing the discovery of better treatment options for AD.

(JMIR Form Res 2024;8:e52200) doi:10.2196/52200

KEYWORDS
atopic dermatitis; classification; classifier; dermatitis; dermatology; EHR; electronic health record; health records; health; informatics; machine learning; natural language processing; NLP; patient phenotyping; phenotype; skin; transformer; transformers

Introduction

Background

Atopic dermatitis (AD) is a common skin disease with a population prevalence of approximately 30% [1]. It is often diagnosed in early childhood, but onset can occur at any age [2-5]. Symptoms of AD include inflamed, red, irritated, and itchy skin and can cause significant physical and emotional distress. AD is often associated with other allergic illnesses, including asthma, seasonal allergies, and food allergies [2,3,5-7]. AD is thought to be associated with skin barrier dysfunction and immune dysregulation [5]. AD has also been associated with genetic variation as well as environmental factors [5]. Classic treatment for AD has included the use of moisturizers, topical steroids, and other topical anti-inflammatory agents [8]. However, in the past few years, there have been significant
treatment advances, which include systemic agents that alter immune function, such as dupilumab. Therefore, due to the widespread nature of AD, the need for improved knowledge of the natural history of AD, the need to understand the efficacy of new treatments, and the need to develop new treatments, there is an urgent need to understand the clinical course of individuals with AD. However, identifying appropriate cohorts of patients for medical studies can be difficult and time-consuming. Because AD is so common as well as being diagnosed and managed by many different clinicians in varying health care settings, a potential source population would be patients from a health system’s electronic health records (EHRs) [9]. Investigators often ascertain a patient’s illness using International Classification of Disease (ICD) hospital billing codes as recorded during routine office visits. However, it has been previously demonstrated that reliance on ICD codes is not an accurate method for the ascertainment of study cohorts with AD [9,10]. Furthermore, epidemiologic studies have used different methods and algorithms, including the UK Working Party (UKWP) diagnostic criteria and the Hanifin and Rajka (HR) criteria [11,12]. Investigators attempting to conduct clinical trials and observational studies have also relied on manual, large-scale chart reviews, a process that is inefficient, slow, and tedious [9]. This motivates the need for a standard method to accurately, automatically, and efficiently identify potential patient cohorts from their text medical records by using natural language processing (NLP) and machine learning (ML) techniques.

Previous Work

Previously, researchers aimed to phenotype patients with AD using EHR data. In particular, Gustafson et al [10] trained a logistic regression model with lasso regularization to identify cases of AD from the Northwestern Medical Enterprise Data Warehouse, which contained both structured data (ICD Ninth and Tenth Revision codes, medication prescriptions, and laboratory results) as well as unstructured data (clinician notes from patient encounters). A gold standard diagnosis was assigned to each patient in their data set by 2 rheumatologists following a chart review when using the UKWP criteria and (alternatively) when using the HR criteria.

Although similar, this study differs in the following ways: (1) we survey a wide range of supervised ML algorithms as opposed to only using lasso regularized logistic regression, (2) we use transformer embeddings of sentences to represent information in each patient’s records and aggregate these embeddings with multilayer perceptron (MLP) networks to create a patient vector representation for patient phenotyping, and (3) we performed an ablation study of processing methods to compare the impact on performance in using a probability-based versus binary label of whether each patient meets various AD diagnostic criteria when creating a vector to represent each patient for input to our final patient phenotyping algorithms.

Contributions

The primary contributions of this study are as follows:

- We introduce and validate a rules-based approach for aggregating information from patient EHR data to generate binary-valued patient vectors that are used with standard ML algorithms for patient phenotyping.
- We introduce and validate a transformer-based approach for aggregating information and patient phenotyping by using “Bidirectional Encoder Representations from Transformers” (BERT) models (ie, BERT Base Uncased and BioClinical BERT) to generate patient vectors of probabilities, which are used with standard ML algorithms for patient phenotyping.
- We compare the aforementioned approaches to (1) discern whether a transformer model pretrained on clinical text can provide performance benefits over a transformer model not pretrained on clinical text, and (2) discern whether a transformer-based approach for aggregating information could outperform a rules-based approach for aggregating information.
- We demonstrate that MLP networks can be used with BERT sentence embeddings to identify which sentences in patient records are relevant to the diagnosis of AD. These MLP networks can then be used during clinician chart review to highlight sentences that are relevant to diagnosis and therefore accelerate the process of chart review during clinical trial recruitment.

Methods

Overview

To predict whether a patient may qualify as a participant for an AD study based on their EHR, we first assigned patients in our data set to either the training or testing sets. Then, for each patient, we aggregated the text from their EHR and constructed a vector representation of clinical features indicative of AD according to the UKWP criteria. Lastly, we leveraged our vectorized patient representations to train several ML classifiers to predict whether each patient has AD. In the following sections, we detail this process.

Data Set Creation

We initially sampled 2000 patients and their clinical records from Epic Clarity, Penn Medicine’s EHR database. We selected Penn Medicine patients who were diagnosed with a subset of AD-related ICD codes [9]. As shown in Figure 1, of the 2000 sampled patients, we identified 1926 patients who had clinical notes for processing. We then deidentified these patient records according to the Safe Harbor method using the “Protected Health Information filter” (Philter) [13]. Each patient in the data set was also manually reviewed and labeled according to the UKWP diagnostic criteria for AD. According to the UKWP criteria, in order to qualify as having AD, a patient must have an itchy skin condition along with 3 or more of the following: a history of flexural involvement, a history of asthma or hay fever, a history of dry skin, an onset of rash when aged 2 years or younger, or a visible flexural dermatitis. Our data set was validated by 2 clinicians (a board-certified dermatologist [DM] and a medical fellow [RF]), resulting in 137 patients with AD and 1789 patients without AD.
Figure 1. Waterfall diagram of cohort. AD: atopic dermatitis.

Figure 2. Atopic dermatitis (AD) phenotyping pipeline across all 3 experiments. BERT: Bidirectional Encoder Representations from Transformers; MLP: multilayer perceptron.

Training and Testing Split

We first created our training set. Due to the heavy class imbalance in our data set, we decided to create a balanced training set to prevent biasing the model toward either patients with AD or patients without AD. In particular, we created the training set by assigning 80% (109/137) of the 137 patients with AD to our training set and undersampling the patients without AD to match the number of patients with AD. The remaining 20% (28/137) of the 137 patients were assigned to both of our testing sets. This resulted in a training set that had 109 patients with AD and 109 patients without AD.

Next, we created 2 testing sets. The first testing set was class-balanced and was intended to show how our patient classification model can generalize to unseen samples if the class distribution is kept the same. The second testing set was class-imbalanced (28/91, 30% of patients with AD and 63/91, 70% of patients without AD) and was intended to show how our patient classification model can perform when the class-distribution of the data set matches the prevalence of AD in the United States.

We created the first (balanced) testing set by including the 20% (28/137; previously reserved for testing) of the 137 patients with AD and combining them with an equal number of patients without AD who have not been used during training. This resulted in a balanced testing set that had 28 patients with AD and 28 patients without AD.

Furthermore, we created the second (unbalanced) testing set by including the same 20% (28/137) patients with AD but instead combining them with a greater number of patients without AD to match the 30% prevalence rate of AD found in the United States [1]. This resulted in an unbalanced testing set with 28 patients who have AD and 63 patients without AD.

We chose not to create a separate hyperparameter tuning set and instead applied cross-validation for hyperparameter tuning on the training set due to the data-scarce setting of our experiments.

Vector Representation for AD Classification

Next, we created a vector representation for each patient. We performed 3 experiments to compare different methods of creating each patient’s vector representation (Figure 2).
Description of Patient Vector Representation

Each patient’s vector representation is 8 elements long, where each element of the vector is representative of whether the patient fulfills a different AD diagnosis criteria based on the UKWP criteria as well as clinician feedback (Table 1). Across all 3 experiments, each element in the patient vector corresponds to a distinct classification task; however, in experiments 1 and 2, each element is a probability, and in experiment 3, each element is a binary value.

In experiments 1 and 2, elements 1-8 of each patient’s vector represent the highest probability that any sentence in the patient’s EHR mentions (1) AD or synonyms of AD, (2) keywords that suggest hay fever allergies, (3) keywords that suggest atopic allergies, (4) keywords that suggest eczema or rashes, (5) keywords that indicate dry or itchy skin, (6) keywords denoting nonasthma medications, (7) keywords suggesting the presence of asthma, and (8) keywords indicating the use of asthma medications.

In experiment 3, instead of each element representing a probability, each element represents a binary value of whether there was at least 1 sentence in the corresponding patient record suggesting the presence of the corresponding AD indicator.

In the first 2 experiments, each patient’s vector elements represent probabilities (ranging from 0 to 1). Each probability value is derived from a distinct MLP classifier. Experiments 1 and 2 were performed to compare the use of 2 BERT models (BERT Base Uncased [14,15] in experiment 1 and BioClinical BERT [16,17] in experiment 2) for creating sentence embeddings used to train MLP networks (or alternatively, sentence classifiers). A separate MLP network is trained for each element of the patient vector. Each MLP network is trained to distinguish sentences in 1 of the 8 AD indicator categories from sentences in all other categories. Furthermore, medSpacy (Eyre et al [18]) was used to split documents into sentences and label each sentence with different categories. After each sentence classifier is trained, embeddings of all sentences in each patient’s full EHR are passed through each sentence classifier, and an aggregation function (max operator) is used to assign a value to each element of each patient’s vector. Our goal in experiments 1 and 2 was to test the hypothesis that a BERT model pretrained on clinical text (BioClinical BERT) could outperform a BERT model trained on nonclinical text (BERT Base Uncased).

In experiment 3, each patient’s vector elements are binary (either 0 or 1). Each element corresponds to a diagnostic criterion and represents whether medSpacy was able to identify at least 1 sentence in the patient’s record with a keyword and affirming context that suggests the patient meets the corresponding diagnostic criteria. Our goal was to conduct an ablation study to test the hypothesis that an AD phenotyping classifier leveraging BERT embeddings to create the patient vector representation will better discern whether a patient has AD than an AD Phenotyping Classifier without BERT embeddings.

<table>
<thead>
<tr>
<th>Table 1. Meaning of each patient vector element.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

\(^a\)AD: atopic dermatitis.

\(^b\)EHR: electronic health record.

Preprocessing for Experiments 1-3

Before each experiment, we applied the same preprocessing steps to assign 1 or more labels to each sentence in our corpus of documents in both our training and testing sets. Each sentence can be labeled as applying to 1, multiple, or none of the 8 AD indicators previously defined.

For each of the 8 diagnostic criteria, we first created a list of keywords and phrases (for each vector element) that suggested the presence of the corresponding diagnostic criteria. Next, we used medSpacy with the ConText (Harkema et al [20]) algorithm to split each document into sentences and categorize each sentence [18]. Using medSpacy allows us to obtain sentences that suggest the presence of each of the 8 diagnostic criteria due to medSpacy’s use of regex and rules-based keyword matching. Furthermore, medSpacy’s implementation of the ConText algorithm allows us to discern between sentences that affirm from negated assertions. We define negated sentences for each AD indicator as sentences where the indicator is ruled out, sentences where the indicator is experienced by someone other than the patient, and sentences where the existence of the indicator is hypothetical [19-22].

After assigning 1 or more categorical labels to each sentence with medSpacy, we then performed 3 different experiments to create a vectorized representation of each patient.

In Tables 2 and 3, we include some statistics on the data set obtained after preprocessing.
As shown in Table 2, patients with AD have approximately twice as many sentences as patients without AD. The average number of documents and sentences is the same (within patients with AD and similarly within patients without AD) between BERT Base Uncased and BioClinical BERT experiments because these values are only dependent on medSpacy’s preprocessing of documents. Furthermore, using BioClinical BERT to tokenize sentences tends to yield more tokens (on average) per patient and per document. We hypothesize this is because the BioClinical BERT tokenizer is able to recognize more clinical terms and therefore yields more tokens for the same sentence than using the tokenizer from BERT Base Uncased.

As shown in Table 3, sentences in category 5 (relating to dry or itchy skin) tend to have the most tokens, whereas sentences in category 6 (relating to the use of nonasthma medications related to treating AD) tend to have the least number of tokens. We hypothesize that this is because categories where the average number of tokens per sentence is greater tend to correspond to more general categories where many terms and sentences could apply, whereas categories where the average number of tokens per sentence is lower tend to correspond to more specific categories, thus yielding a lower average number of tokens per sentence. Additionally, similarly to before, we can see that using BioClinical BERT tends to result in a greater number of tokens per sentence than using BERT Base Uncased for the same sentence.

Table 2. Differences in the number of documents, sentences, and tokens between patients with atopic dermatitis (AD) and those without AD.

<table>
<thead>
<tr>
<th></th>
<th>Patients with AD</th>
<th>Patients without AD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BERT Uncased</td>
<td>BioClinical BERT</td>
</tr>
<tr>
<td>Average number of documents (per patient)</td>
<td>23.44</td>
<td>7.99</td>
</tr>
<tr>
<td>Average number of sentences (per patient)</td>
<td>392.99</td>
<td>193.69</td>
</tr>
<tr>
<td>Average number of tokens (per patient)</td>
<td>16035.39</td>
<td>17054.11</td>
</tr>
<tr>
<td>Average number of sentences (per document)</td>
<td>16.77</td>
<td>43.40</td>
</tr>
<tr>
<td>Average number of tokens (per document)</td>
<td>684.16</td>
<td>37.38</td>
</tr>
</tbody>
</table>

Table 3. Mean number of tokens for sentences identified in each category.

<table>
<thead>
<tr>
<th>Category</th>
<th>BERT Uncased (tokens per sentence), mean</th>
<th>BioClinical BERT (tokens per sentence), mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>99.49</td>
<td>106.16</td>
</tr>
<tr>
<td>Category 2</td>
<td>81.18</td>
<td>92.41</td>
</tr>
<tr>
<td>Category 3</td>
<td>79.20</td>
<td>82.07</td>
</tr>
<tr>
<td>Category 4</td>
<td>83.74</td>
<td>92.55</td>
</tr>
<tr>
<td>Category 5</td>
<td>106.64</td>
<td>112.58</td>
</tr>
<tr>
<td>Category 6</td>
<td>74.93</td>
<td>80.17</td>
</tr>
<tr>
<td>Category 7</td>
<td>92.85</td>
<td>109.40</td>
</tr>
<tr>
<td>Category 8</td>
<td>76.13</td>
<td>83.57</td>
</tr>
</tbody>
</table>

Experiments 1 and 2: Patient Vector Construction With BERT Embeddings

In experiments 1 and 2, we first used the sentences medSpacy identified in each category to create class-balanced training and testing sets for each MLP network classifier, as shown in Table 4. The same training and testing set was used for both experiment 1 (BioClinical BERT) and experiment 2 (BERT Base Uncased).

Next, we used pretrained BERT models to generate embeddings of the sentences in each classifier’s training and testing set. We incorporated pretrained BERT models because these models have been trained on a much larger corpus than our existing data set, and BERT provides a context-sensitive embedding of text that other techniques, such as bag of words, do not provide. Furthermore, we used BERT Base Uncased in experiment 1 and Alsentzer et al’s [16] BioClinical BERT in experiment 2 because we wanted to quantify how much of a difference in performance using a model pretrained on clinical text can provide over a model that has not been pretrained on clinical text.

Using these embeddings, we trained a MLP network to distinguish sentence embeddings in each category from sentence embeddings that are not in the corresponding category. Each of our MLPs was trained with the following architecture: a fully connected input layer of shape 768 × 100, followed by a Rectified Linear Unit (ReLU) activation, further followed by a fully connected output layer of shape 100 × 2. We trained each...
of our MLPs for 10 epochs with the cross-entropy loss function, the stochastic gradient descent (SGD) optimizer, a learning rate of 0.001, and a momentum value of 0.9. The final layer of each MLP can then be used to obtain the probability that any given sentence embedding comes from the category for which the MLP is being trained by passing the logits of the final layer to the softmax function.

We used the ReLU activation function as defined below, where \(x \) is the input to the ReLU function:

\[
\text{ReLU}(x) = \max(0, x)
\]

We also used the softmax function as defined below, where \(e \) is the standard exponential function and \(s_i \) is element at index \(i \) of the \(K \) element long input vector \(\mathbf{s} \).

We chose to embed our sentences once with pretrained BERT models and then feed these saved embeddings to our MLP networks as opposed to adding a classification head (a linear layer) to the end of our pretrained BERT models. Although doing so only allows us to fine-tune the weights in our MLP network (as opposed to also fine-tuning the weights BERT uses to embed the sentences), doing so allows us to iterate over different experiments more quickly and with less computational power. In particular, we are able to (1) avoid the large computational expense of gradient calculations during backpropagation for all 12 layers of transformers used by BERT when fine-tuning the model, (2) avoid the computational expense of repeatedly generating the same embeddings from BERT multiple times (if we choose to freeze the weights of BERT and only fine-tune an added classification head or linear layer), and (3) iterate more efficiently over different hyperparameter combinations across different experiments with our MLP networks.

After training a separate MLP network for each of the 8 categories, we generated a vector representation for each patient, where each of the 8 vector elements represents the highest probability that any given sentence in the patient record affirms the presence of the corresponding AD indicator (Figure 3). We accomplished this by iterating through all sentences in each patient’s full EHR and passing the sentence embedding through each of our 8 trained MLP networks to obtain 8 probabilities for each sentence corresponding to the probability that the sentence affirms each of the 8 AD indicators we previously selected. Then, for each patient and for each AD indicator, we kept the highest probability that any given sentence in the patient’s record affirms the presence of the AD indicator.

Table 4. Training and testing data set size for each classifier.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Number of training samples, (n)</th>
<th>Number of testing samples, (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2766</td>
<td>862</td>
</tr>
<tr>
<td>2</td>
<td>1302</td>
<td>392</td>
</tr>
<tr>
<td>3</td>
<td>532</td>
<td>168</td>
</tr>
<tr>
<td>4</td>
<td>9822</td>
<td>2454</td>
</tr>
<tr>
<td>5</td>
<td>1466</td>
<td>354</td>
</tr>
<tr>
<td>6</td>
<td>9114</td>
<td>2316</td>
</tr>
<tr>
<td>7</td>
<td>1596</td>
<td>520</td>
</tr>
<tr>
<td>8</td>
<td>4764</td>
<td>1070</td>
</tr>
</tbody>
</table>

Figure 3. Patient vector representations of atopic dermatitis indicators in experiments 1 and 2. BERT: Bidirectional Encoder Representations from Transformers; MLP: multilayer perceptron.

Experiment 3: Patient Vector Construction Without BERT Embeddings

In experiment 3, we generated each patient’s vector representation by assigning a 1 to each element of the patient vector if medSpacy with the ConText algorithm identified at least 1 sentence in the patient’s record that affirms or suggests the presence of the AD indicator for which the vector element corresponds (Figure 4). Experiment 3 was conducted as an
ablation study to quantify the performance benefit (if at all) of using contextual BERT text embeddings to generate probability scores that the patient meets various AD indicators.

Figure 4. Patient vector representations of atopic dermatitis (AD) indicators in experiment 3.

\[
v_i = \begin{cases}
1 \text{ if } c_i > 0 \\
0 \text{ otherwise }
\end{cases}
\]

\(c_i = \text{Number of sentences medSpacy identified as suggesting presence of AD indicator for category i in current patient’s records}\)

AD Phenotyping With Vector Representations

In all 3 experiments, after generating a vector representation for each patient, we collated each patient’s vector representation with the corresponding label our clinicians assigned the patient when validating the data set. Then, we fed the vector patient representation and corresponding patient label through a variety of classification algorithms. These include logistic regression, support vector machines (SVM), decision trees, random forests, k-nearest neighbor (KNN), Extreme Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost). During training for each of the previously mentioned classifiers, we used 5-fold cross validation to determine the best set of hyperparameters to use (as opposed to creating a separate validation set) due to the data-scarce setting of our experiments. We then used the selected hyperparameters to train each algorithm on the entire training set and evaluated performance on the unbalanced and balanced testing sets. In addition to using the previously mentioned classifiers, we also used the stacking algorithm provided by scikit-learn to obtain an ensemble prediction from the different classifiers [23]. To quantify performance, we calculated the accuracy, precision, recall, \(F_1\)-score, negative predictive value (NPV), and specificity of each algorithm on both testing sets.

We define accuracy, precision, and recall as follows, where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives, and FN is the number of false negatives:

Additionally, we define the \(F_1\)-score, NPV, and specificity as follows:

Ethical Considerations

This research protocol was reviewed and approved by the University of Pennsylvania Institute Review Board and determined to be exempt (IRB#843922).

Results

Performance of MLP Networks

In this section, we compare the performance of several MLP classifiers in distinguishing sentences relevant to the diagnosis of AD. This corresponds to the “Train separate MLP network (sentence classifier) for each of 8 AD indicators” box in Figure 2.

As part of our AD phenotyping pipeline, we trained various MLP networks to classify when a given sentence embedding indicates the presence of an AD indicator, and we compared the performance of BioClinical BERT embeddings to BERT Base Uncased embeddings when training these MLP networks. In both cases, the classifier with the highest accuracy was the classifier for category 1 (sentences with direct mentions of AD). The classifiers with the 2 lowest accuracies were either the classifier for category 5 (sentences with mentions of dry or itchy skin) or the classifier for category 7 (sentences with mentions of asthma) for both the use of BioClinical BERT embeddings and the use of BERT Base Uncased embeddings. However, the accuracy in classifier 7 was lower when using BERT Base Uncased embeddings than when using BioClinical BERT embeddings.

In experiment 1, the accuracies across AD indicator classifiers ranged from 0.7373 (classifier 5) to 0.9002 (classifier 1), as shown in Table 5.

In experiment 2, the accuracies across AD indicator classifiers ranged from 0.7269 (classifier 7) to 0.9153 (classifier 1), as shown in Table 6.
Table 5. Accuracy of different multilayer perceptron networks in discerning sentences by atopic dermatitis (AD) indicator categories using “BioClinical Bidirectional Encoder Representations from Transformers” sentence embeddings.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>AD indicator</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Direct mention of AD</td>
<td>0.9002</td>
</tr>
<tr>
<td>2</td>
<td>Mention of hay fever allergies</td>
<td>0.8954</td>
</tr>
<tr>
<td>3</td>
<td>Mention of atopic allergies</td>
<td>0.8214</td>
</tr>
<tr>
<td>4</td>
<td>Mention of eczema or rash</td>
<td>0.8284</td>
</tr>
<tr>
<td>5</td>
<td>Mention of dry or itchy skin</td>
<td>0.7373</td>
</tr>
<tr>
<td>6</td>
<td>Mention of nonasthma medications</td>
<td>0.8204</td>
</tr>
<tr>
<td>7</td>
<td>Mention of asthma</td>
<td>0.7712</td>
</tr>
<tr>
<td>8</td>
<td>Mention of asthma medications</td>
<td>0.8299</td>
</tr>
</tbody>
</table>

Table 6. Accuracy of different multilayer perceptron networks in discerning sentences by atopic dermatitis (AD) indicator categories using “Bidirectional Encoder Representations from Transformers Base Uncased” sentence embeddings.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>AD indicator</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Direct mention of AD</td>
<td>0.9153</td>
</tr>
<tr>
<td>2</td>
<td>Mention of hay fever allergies</td>
<td>0.7730</td>
</tr>
<tr>
<td>3</td>
<td>Mention of atopic allergies</td>
<td>0.7976</td>
</tr>
<tr>
<td>4</td>
<td>Mention of eczema or rash</td>
<td>0.8439</td>
</tr>
<tr>
<td>5</td>
<td>Mention of dry or itchy skin</td>
<td>0.7288</td>
</tr>
<tr>
<td>6</td>
<td>Mention of nonasthma medications</td>
<td>0.8096</td>
</tr>
<tr>
<td>7</td>
<td>Mention of asthma</td>
<td>0.7269</td>
</tr>
<tr>
<td>8</td>
<td>Mention of asthma medications</td>
<td>0.8738</td>
</tr>
</tbody>
</table>

AD Phenotyping With Patient Vector Representations

In this section, we compare performance in patient classification when using different methods for creating patient vector representations. This encompasses all 3 experiments and corresponds to the “Use vector patient representations to classify whether patient has AD” box in Figure 2.

In experiment 1, we leveraged BioClinical BERT sentence embeddings to train various MLP networks to discern sentence embeddings in different AD indicator categories. Then, we applied these trained MLP networks (sentence classifiers) along with an aggregation function (max operator) to assign values to each element of each patient’s vector representation. Lastly, we used each patient’s vector representation with their validated label to train various ML algorithms. We evaluated these on both a balanced and unbalanced testing set.

As shown in Table 7, the accuracy on the balanced testing set ranges from 0.5893 (decision tree) to 0.7321 (logistic regression and SVM).

As shown in Table 8, the range of accuracies on the unbalanced testing set is slightly lower, ranging from 0.5824 (decision tree) to 0.7253 (stacking classifier).

In experiment 2, we followed the same process as in experiment 1; however, we used BERT Base Uncased instead of BioClinical BERT. As shown in Table 9, the accuracy of our AD classifiers on the balanced testing set ranges from 0.5179 (AdaBoost) to 0.6250 (random forest).

As shown in Table 10, the range of accuracies of our AD classifiers on the unbalanced testing set is slightly higher, ranging from 0.5714 (logistic regression and SVM) to 0.6703 (random forest).

In experiment 3, we performed an ablation study and assigned binary labels to the elements of each patient’s vector based on whether *medSpacy* was able to identify at least 1 sentence in each of the AD indicator categories that each vector element corresponds to. As shown in Table 11, the accuracy across our AD classifiers on the balanced testing set ranges from 0.6964 (KNN) to 0.8036 (XGBoost).

As shown in Table 12, the lower bound of the range of accuracies across our AD classifiers on the unbalanced testing set is higher, and the upper bound of the accuracies is lower. The accuracies on the unbalanced testing set range from 0.7143 (Stacking Classifier) to 0.7582 (Random Forest and Stacking Classifier).
Table 7. Atopic dermatitis phenotyping performance on balanced testing set in experiment 1 (BioClinical Bidirectional Encoder Representations from Transformers).

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F_1-score</th>
<th>NPVa</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>0.7321</td>
<td>0.7241</td>
<td>0.7500</td>
<td>0.7368</td>
<td>0.7407</td>
<td>0.7500</td>
</tr>
<tr>
<td>SVMb</td>
<td>0.7321</td>
<td>0.7826</td>
<td>0.6429</td>
<td>0.7059</td>
<td>0.6970</td>
<td>0.7857</td>
</tr>
<tr>
<td>Decision tree</td>
<td>0.5893</td>
<td>0.6316</td>
<td>0.4286</td>
<td>0.5106</td>
<td>0.5676</td>
<td>0.7500</td>
</tr>
<tr>
<td>Random forest</td>
<td>0.6964</td>
<td>0.7037</td>
<td>0.6786</td>
<td>0.6909</td>
<td>0.6897</td>
<td>0.8214</td>
</tr>
<tr>
<td>KNNc</td>
<td>0.6786</td>
<td>0.7273</td>
<td>0.5714</td>
<td>0.6400</td>
<td>0.6471</td>
<td>0.7857</td>
</tr>
<tr>
<td>XGBoostd</td>
<td>0.6071</td>
<td>0.6154</td>
<td>0.5714</td>
<td>0.5926</td>
<td>0.6000</td>
<td>0.8571</td>
</tr>
<tr>
<td>AdaBooste</td>
<td>0.6429</td>
<td>0.6538</td>
<td>0.6071</td>
<td>0.6296</td>
<td>0.6333</td>
<td>0.7857</td>
</tr>
<tr>
<td>Stacking classifier</td>
<td>0.6964</td>
<td>0.7391</td>
<td>0.6071</td>
<td>0.6667</td>
<td>0.6667</td>
<td>0.7500</td>
</tr>
</tbody>
</table>

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

Table 8. Atopic dermatitis phenotyping performance on unbalanced testing set in experiment 1 (BioClinical Bidirectional Encoder Representations from Transformers).

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F_1-score</th>
<th>NPVa</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>0.6813</td>
<td>0.4884</td>
<td>0.7500</td>
<td>0.5915</td>
<td>0.8542</td>
<td>0.6984</td>
</tr>
<tr>
<td>SVMb</td>
<td>0.6923</td>
<td>0.5000</td>
<td>0.6429</td>
<td>0.5625</td>
<td>0.8181</td>
<td>0.7302</td>
</tr>
<tr>
<td>Decision tree</td>
<td>0.5824</td>
<td>0.3438</td>
<td>0.3929</td>
<td>0.3667</td>
<td>0.7119</td>
<td>0.7143</td>
</tr>
<tr>
<td>Random forest</td>
<td>0.7143</td>
<td>0.5313</td>
<td>0.6071</td>
<td>0.5667</td>
<td>0.6845</td>
<td>0.7619</td>
</tr>
<tr>
<td>KNNc</td>
<td>0.6593</td>
<td>0.4571</td>
<td>0.5714</td>
<td>0.5079</td>
<td>0.7857</td>
<td>0.7937</td>
</tr>
<tr>
<td>XGBoostd</td>
<td>0.6264</td>
<td>0.4211</td>
<td>0.5714</td>
<td>0.4848</td>
<td>0.7736</td>
<td>0.7619</td>
</tr>
<tr>
<td>AdaBooste</td>
<td>0.6044</td>
<td>0.4048</td>
<td>0.6071</td>
<td>0.4857</td>
<td>0.7755</td>
<td>0.7302</td>
</tr>
<tr>
<td>Stacking classifier</td>
<td>0.7253</td>
<td>0.5429</td>
<td>0.6786</td>
<td>0.6032</td>
<td>0.8393</td>
<td>0.6984</td>
</tr>
</tbody>
</table>

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.
Table 9. Atopic dermatitis phenotyping performance on balanced testing set in experiment 2 (Bidirectional Encoder Representations from Transformers Base Uncased).

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F_1-score</th>
<th>NPVa</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>0.5893</td>
<td>0.5758</td>
<td>0.6786</td>
<td>0.6230</td>
<td>0.6087</td>
<td>0.5000</td>
</tr>
<tr>
<td>SVMb</td>
<td>0.6071</td>
<td>0.5938</td>
<td>0.6786</td>
<td>0.6333</td>
<td>0.6250</td>
<td>0.5357</td>
</tr>
<tr>
<td>Decision tree</td>
<td>0.6071</td>
<td>0.6071</td>
<td>0.6071</td>
<td>0.6071</td>
<td>0.6071</td>
<td>0.6071</td>
</tr>
<tr>
<td>Random forest</td>
<td>0.6250</td>
<td>0.6522</td>
<td>0.5357</td>
<td>0.5882</td>
<td>0.6061</td>
<td>0.7143</td>
</tr>
<tr>
<td>KNNc</td>
<td>0.5536</td>
<td>0.5714</td>
<td>0.4286</td>
<td>0.4898</td>
<td>0.5429</td>
<td>0.6786</td>
</tr>
<tr>
<td>XGBoostd</td>
<td>0.5536</td>
<td>0.5556</td>
<td>0.5357</td>
<td>0.5455</td>
<td>0.5517</td>
<td>0.5714</td>
</tr>
<tr>
<td>AdaBooste</td>
<td>0.5179</td>
<td>0.5185</td>
<td>0.5000</td>
<td>0.5091</td>
<td>0.5172</td>
<td>0.5357</td>
</tr>
<tr>
<td>Stacking classifier</td>
<td>0.6071</td>
<td>0.6071</td>
<td>0.6071</td>
<td>0.6071</td>
<td>0.6071</td>
<td>0.6071</td>
</tr>
</tbody>
</table>

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

Table 10. Atopic dermatitis phenotyping performance on unbalanced testing set in experiment 2 (Bidirectional Encoder Representations from Transformers Base Uncased).

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F_1-score</th>
<th>NPVa</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>0.5714</td>
<td>0.3878</td>
<td>0.6786</td>
<td>0.4935</td>
<td>0.7857</td>
<td>0.5238</td>
</tr>
<tr>
<td>SVMb</td>
<td>0.5714</td>
<td>0.3878</td>
<td>0.6786</td>
<td>0.4935</td>
<td>0.7857</td>
<td>0.5238</td>
</tr>
<tr>
<td>Decision tree</td>
<td>0.6484</td>
<td>0.4474</td>
<td>0.6071</td>
<td>0.5152</td>
<td>0.7925</td>
<td>0.6667</td>
</tr>
<tr>
<td>Random forest</td>
<td>0.6703</td>
<td>0.4737</td>
<td>0.6429</td>
<td>0.5455</td>
<td>0.8113</td>
<td>0.6825</td>
</tr>
<tr>
<td>KNNc</td>
<td>0.6264</td>
<td>0.4000</td>
<td>0.4286</td>
<td>0.4138</td>
<td>0.7377</td>
<td>0.7143</td>
</tr>
<tr>
<td>XGBoostd</td>
<td>0.6374</td>
<td>0.4286</td>
<td>0.5357</td>
<td>0.4762</td>
<td>0.7679</td>
<td>0.6825</td>
</tr>
<tr>
<td>AdaBooste</td>
<td>0.5934</td>
<td>0.3784</td>
<td>0.5000</td>
<td>0.4308</td>
<td>0.7407</td>
<td>0.6349</td>
</tr>
<tr>
<td>Stacking classifier</td>
<td>0.6484</td>
<td>0.4474</td>
<td>0.6071</td>
<td>0.5152</td>
<td>0.7925</td>
<td>0.6667</td>
</tr>
</tbody>
</table>

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.
Table 11. Atopic dermatitis phenotyping performance on balanced testing set in experiment 3 (binary vector encoding).

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F$_1$-score</th>
<th>NPVa</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>0.7679</td>
<td>0.7586</td>
<td>0.7857</td>
<td>0.7719</td>
<td>0.7778</td>
<td>0.7500</td>
</tr>
<tr>
<td>SVMb</td>
<td>0.7857</td>
<td>0.7857</td>
<td>0.7857</td>
<td>0.7857</td>
<td>0.7857</td>
<td>0.7857</td>
</tr>
<tr>
<td>Decision tree</td>
<td>0.7857</td>
<td>0.7667</td>
<td>0.8214</td>
<td>0.7931</td>
<td>0.8077</td>
<td>0.7500</td>
</tr>
<tr>
<td>Random forest</td>
<td>0.7857</td>
<td>0.8077</td>
<td>0.7500</td>
<td>0.7778</td>
<td>0.7667</td>
<td>0.8214</td>
</tr>
<tr>
<td>KNNc</td>
<td>0.6964</td>
<td>0.7391</td>
<td>0.6071</td>
<td>0.6667</td>
<td>0.6667</td>
<td>0.7857</td>
</tr>
<tr>
<td>XGBoostd</td>
<td>0.8036</td>
<td>0.8400</td>
<td>0.7500</td>
<td>0.7925</td>
<td>0.7742</td>
<td>0.8571</td>
</tr>
<tr>
<td>AdaBooste</td>
<td>0.7857</td>
<td>0.7857</td>
<td>0.7857</td>
<td>0.7857</td>
<td>0.7857</td>
<td>0.7857</td>
</tr>
<tr>
<td>Stacking classifier</td>
<td>0.7500</td>
<td>0.7500</td>
<td>0.7500</td>
<td>0.7500</td>
<td>0.7500</td>
<td>0.7500</td>
</tr>
</tbody>
</table>

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

Table 12. Atopic dermatitis phenotyping performance on unbalanced testing set in experiment 3 (binary vector encoding).

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F$_1$-score</th>
<th>NPVa</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>0.7253</td>
<td>0.5366</td>
<td>0.7857</td>
<td>0.6377</td>
<td>0.8800</td>
<td>0.6984</td>
</tr>
<tr>
<td>SVMb</td>
<td>0.7473</td>
<td>0.5641</td>
<td>0.7857</td>
<td>0.6567</td>
<td>0.8846</td>
<td>0.7302</td>
</tr>
<tr>
<td>Decision tree</td>
<td>0.7473</td>
<td>0.5610</td>
<td>0.8214</td>
<td>0.6667</td>
<td>0.9000</td>
<td>0.7143</td>
</tr>
<tr>
<td>Random forest</td>
<td>0.7582</td>
<td>0.5833</td>
<td>0.7500</td>
<td>0.6563</td>
<td>0.8727</td>
<td>0.7619</td>
</tr>
<tr>
<td>KNNc</td>
<td>0.7363</td>
<td>0.5667</td>
<td>0.6071</td>
<td>0.5862</td>
<td>0.8197</td>
<td>0.7937</td>
</tr>
<tr>
<td>XGBoostd</td>
<td>0.7582</td>
<td>0.5833</td>
<td>0.7500</td>
<td>0.6563</td>
<td>0.8727</td>
<td>0.7619</td>
</tr>
<tr>
<td>AdaBooste</td>
<td>0.7473</td>
<td>0.5641</td>
<td>0.7857</td>
<td>0.6567</td>
<td>0.8846</td>
<td>0.7302</td>
</tr>
<tr>
<td>Stacking classifier</td>
<td>0.7143</td>
<td>0.5250</td>
<td>0.7500</td>
<td>0.6176</td>
<td>0.8627</td>
<td>0.6984</td>
</tr>
</tbody>
</table>

aNPV: negative predictive value.
bSVM: support vector machines.
cKNN: k-nearest neighbor.
dXGBoost: Extreme Gradient Boosting.
eAdaBoost: Adaptive Boosting.

Discussion

Sentence Classification Results

We hypothesized that using BioClinical BERT sentence embeddings to train sentence classifiers would provide better performance than using BERT Base Uncased sentence embeddings due to the clinical setting of our data. Given the results in Tables 5 and 6, we observed that this was most often true in the context of sentence classification because we were able to achieve better performance in the majority (5 out of 8) of the sentence classification tasks when using BioClinical BERT embeddings as opposed to BERT Base Uncased embeddings.

Using BioClinical BERT sentence embeddings yielded stronger performance when distinguishing sentences in 5 of the 8 sentence categories: category 2 (mentions of hay fever allergies), category 3 (mentions of atopic allergies), category 5 (mentions of dry or itchy skin), category 6 (mentions of nonasthma medications), and category 7 (mentions of asthma). More specifically, we observed higher accuracies when using BioClinical BERT sentence embeddings for classifiers 2 (0.8954), 3 (0.8214), 5 (0.7373), 6 (0.8204), and 7 (0.7712) than their corresponding counterparts when using BERT Base Uncased embeddings for classifiers 2 (0.7730), 3 (0.7976), 5 (0.7288), 6 (0.8096), and 7 (0.7269). We observed that the differences in performance between using BioClinical BERT embeddings and BERT Base Uncased embeddings are most pronounced for classifiers 2 and 7, which correspond to mentions of hay fever allergies and asthma mentions, respectively. We hypothesize this is because hay fever allergies and asthma (and their synonyms) may be very common terms in clinical notes; therefore, models trained on clinical data (BioClinical BERT) may be able to provide stronger...
performance than models trained on nonclinical text (BERT Base Uncased), which may not have as many mentions of hay fever allergies or asthma.

Conversely, using BERT Base Uncased embeddings yielded stronger performance when distinguishing sentences in the other 3 of 8 sentence categories: category 1 (direct mentions of AD), category 4 (mentions of eczema or rashes), and category 8 (mentions of asthma medications). More specifically, we observed higher accuracies when using BERT Base Uncased sentence embeddings for classifiers 1 (0.9153), 4 (0.8439), and 8 (0.8738) than their corresponding counterparts when using BioClinical BERT embeddings for classifiers 1 (0.9002), 4 (0.8284), and 8 (0.8299). We observed differences in performance between using BERT Base Uncased embeddings and BioClinical BERT embeddings, which are most evident for classifier 8, which corresponds to mentions of asthma medications. Although this is counterintuitive at first (we would expect a classifier using embeddings generated from BioClinical BERT to be able to better recognize allergy medications), we believe that the performance benefit from using BERT Base Uncased can be attributed to the list of terms we gave to medSpacy when asking it to identify sentences in category 8. Many of the asthma medications in category 8 sentences are either monoclonal antibody medications ending in -mab (benralizumab, mepolizumab, omalizumab, etc) or hydrofluoroalkanes (hfa; atrovent hfa, flovent hfa, xopenex hfa, etc). Because monoclonal antibodies are very specialized types of medication, they may not occur as frequently as other terms in the corpus used to train BioClinical BERT, so a more general model such as BERT Base Uncased may provide more robust performance. Additionally, because the hydrofluoroalkane allergy medications in category 8 sentences are often abbreviated with “hfa,” which can have alternate medical meanings such as high-functioning autism or health facility administrator, the BioClinical BERT embeddings might not be representative of the presence of allergy medications in the sentence, so a more general model such as BERT Base Uncased may be able to provide better performance.

More broadly, looking at the results in Tables 5 and 6, we can see that the least accurate classifier has an accuracy of 0.7288, while the most accurate classifier is able to achieve an accuracy of 0.9153. Furthermore, when aggregating the most accurate classifiers from both tables we can see that we are able to achieve accuracies of 0.9153 (classifier 1) for identifying sentences that directly suggest the patient has AD, 0.8954 (classifier 2) for identifying sentences that mention hay fever allergies, 0.8214 (classifier 3) for identifying sentences that mention atopic allergies, 0.8439 (classifier 4) for identifying sentences that mention eczema or skin rashes, 0.7373 (classifier 5) for identifying sentences that mention dry or itchy skin, 0.8204 (classifier 6) for identifying sentences that mention nonasthma medications related to diagnosis of AD, 0.7712 (classifier 7) for identifying sentences that mention asthma, and 0.8738 (classifier 8) for identifying sentences that mention asthma medications. Because our training and testing sets were both class-balanced and the majority (6 of the 8) of the most accurate classifiers previously mentioned achieved accuracies between 0.8204 and 0.9153, we believe these results are promising and indicate that our sentence classifiers could potentially be used to save time in a clinical setting during chart review by identifying (and highlighting for review) sentences relevant to the diagnosis of AD when recruiting for clinical trials.

AD Phenotyping Results

As per Tables 7-10, our earlier hypothesis holds: using clinical embeddings (BioClinical BERT) to generate the patient vector representation does provide better performance in patient phenotyping than using nonclinical embeddings (BERT Base Uncased). Comparing evaluations on the balanced testing set in Tables 7 and 9, we observe that using BioClinical BERT embeddings provides higher accuracy in almost all models, with the exception of Decision Trees where BERT Base Uncased provides better performance (accuracy of 0.6071) as compared with BioClinical BERT (accuracy of 0.5893). Comparing evaluations on the unbalanced testing set in Tables 8 and 10, we observed that the same trend follows: using BioClinical BERT embeddings provides higher accuracy in almost all models, with the exception of Decision Trees and XGBoost, where using BERT Base Uncased embeddings provides better performance (accuracy of 0.6484 for Decision Trees and 0.6374 for XGBoost) as compared with their counterparts with BioClinical BERT embeddings (accuracy of 0.5824 for Decision Trees and 0.6264 for XGBoost).

As part of our experimental design, we included an ablation study in experiment 3 so we could compare the difference in performance during patient phenotyping when removing the use of BERT models to create each patient’s vector representations. On the class-balanced testing set, we observed that accuracies range from 0.6071 to 0.7321 when using BioClinical BERT embeddings in Table 7, accuracies range from 0.5179 to 0.6250 when using BERT Base Uncased embeddings in Table 9, and accuracies range from 0.6964 to 0.8036 when removing the use of BERT models in Table 11 (experiment 3). On the unbalanced testing set, we observed that accuracies range from 0.5824 to 0.7253 when using BioClinical BERT embeddings in Table 8, accuracies range from 0.5714 to 0.6703 when using BERT Base Uncased embeddings in Table 10, and accuracies range from 0.7143 to 0.7582 when removing the use of BERT models in Table 12 (experiment 3).

In both cases (evaluation on the balanced testing set and evaluation on the unbalanced testing set), we found that models in experiment 3 (ablation study) generally outperform (or are as good as) their corresponding counterparts in experiments 1 and 2 (BERT experiments) across all metrics (accuracy, precision, recall, F1-score, NPV, and specificity), with the exception that the stacking classifier in experiment 1 (BioClinical BERT) has marginally stronger accuracy and precision than the stacking classifier in experiment 3. This shows that traditional rules-based approaches (experiment 3) can outperform BERT-based approaches for generating a patient vector representation for downstream patient phenotyping.

We hypothesize that models in experiments 1 and 2 showed lower performance because errors from our sentence classifiers in earlier stages of the pipeline could have propagated to later stages of the pipeline during patient phenotyping. Because we
leveraged the max operator to aggregate probabilities that any given sentence in the patient record applies to each category, more sentences in each patient record would lead to a greater chance that an erroneous prediction with a high probability would lead to a false positive error in the creation of each patient’s vector representation in experiments 1 and 2.

Although there is a wide range in performance for our patients with AD phenotyping algorithms, we believe that we have reached our goal of developing a system capable of patient with AD phenotyping for clinical trial recruitment because Tables 11 and 12 show promising results. Furthermore, our system can be used as a first step during AD clinical trial recruitment to filter out most patients who may not qualify for AD trials and therefore save valuable clinician time. We believe our pipeline is important and valuable because, unlike other diseases, such as influenza, COVID-19, and cancer, there is no gold-standard test result that can be used to determine when a patient has AD. Instead, clinicians must spend large amounts of time undergoing chart reviews to individually determine whether each patient has AD.

Limitations

One limitation of this study was the small size of our data set. Although we had a total of 1926 patients in our data set, only 137 of them were validated as having AD. During training, we leveraged 109 of the 137 patients with AD and sampled another 109 patients without AD to create a class-balanced training set. The small size of the training set could lead to overfitting and therefore result in reduced performance on the testing set. Future work could involve obtaining more data from patients with AD as well as exploring the use of an imbalanced dataset but using a class-weighted loss function to counteract the class imbalance.

A second limitation of this study was the input-limit size of the large language models that were used. Both BERT Base Uncased and BioClinical BERT had an input limit of 512 tokens. This meant that any input text that was longer than 512 tokens would be ignored when training BERT. Consequently, we could not simply directly concatenate all documents from each patient’s EHR and feed the tokenized documents of each patient into BERT with an added classification head for training as well as direct prediction of whether the patient has AD. Instead, we designed a pipeline around distilling information from all documents in each patient’s EHR into a patient vector representation and then using this patient vector representation to train various classical ML algorithms for phenotyping the patient. Future work could involve exploring the use of other large language models that are suited for long inputs, such as Longformer or Doc2Vec, for predicting when a patient should be labeled as having AD.

A third limitation of this study was the list of AD indicators we selected. We did not consider additional AD indicators, and we also did not consider the use of different combinations (or subsets) of the AD indicators selected. This is particularly relevant in considering that (1) our pipeline is intended to be used for identifying patients with AD, and (2) one of our AD indicators (category 1) directly targets whether there is any given sentence in the patient’s record that mentions AD, which could be in the context of a family history of AD, a potential (but not confirmed) diagnosis of AD, as well as a confirmed diagnosis of AD, among other possibilities. If this AD indicator is removed, then 1 interesting research question could be whether our pipeline is still able to maintain performance similarly to what it is currently able to achieve. Future work could involve assessing the performance impact of removing or adding the use of various AD indicators. We could then determine if our pipeline is relying too much on or overfitting 1 or more indicators. Furthermore, we could also redesign our patient vector and separate the feature for category 1 (any sentence that mentions AD) into 3 separate indicators: whether there is (1) a family history of AD, (2) an affirmed diagnosis that the patient has AD, and (3) uncertainty of whether the patient has AD. Doing so could potentially improve precision.

Potential Applications

Given the aforementioned results, we believe our AD classifier could be operationalized to facilitate reliable and efficient EHR chart review. For example, sentence classifiers could visually indicate AD indicators inline text, therefore reducing information foraging efforts by clinicians. Additionally, AD phenotyping classifiers could indicate the strength of a patient match to UKWP criteria, exact or partial, based on AD indicator sentence classifications. Furthermore, ranking patient cases by match strength could reduce the number of cases reviewed to generate both case and matched controls.

Conclusions

In conclusion, we present and validate a promising pipeline for phenotyping patients with AD during clinical trial recruitment. To do so, we compare a rules-based and transformer-based approach for creating a vector representation of each patient and compare downstream performance in patient phenotyping with various standard ML algorithms. We find that a traditional rules-based approach outperforms using a transformer-based approach (experiment 3). We hope that our pipeline can be deployed in hospital settings during clinical trial recruitment as an initial step to automatically filter candidates before manual review. Additionally, we show that MLP networks can identify whether sentences are relevant to AD diagnosis. These MLP networks can later be deployed in clinical settings to highlight which sentences are relevant for physicians during manual chart review, therefore reducing physician burden. Future work can involve extending our patient phenotyping pipeline to other data sets and other diseases.

Acknowledgments

This study was partially funded by the National Institutes of Health (NIH) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) P30-AR069589 as part of the Penn Skin Biology and Diseases Resource-Based Center (core: DJM and DM).

https://formative.jmir.org/2024/1/e52200

©2024 Wang et al. JMIR Form Res 2024 | vol. 8 | e52200 | p.516
(page number not for citation purposes)
Authors' Contributions

AW designed the experiments, wrote the code, performed the experiments, wrote the first draft of the manuscript, and revised the manuscript. DJM conceptualized and implemented the chart abstraction study, annotated the data set, interpreted the results, and revised the manuscript. RF annotated the data set and revised the manuscript. SH queried and deidentified the data set as well as revised the manuscript. DM conceptualized the study and experiment design, interpreted results, wrote and revised the manuscript, and provided secure storage and computer resources.

Conflicts of Interest

DJM is or recently has been a consultant for Pfizer, Leo, and Sanofi with respect to studies of atopic dermatitis and served on an advisory board for the National Eczema Association.

References

Abbreviations

AD: atopic dermatitis
AdaBoost: Adaptive Boosting
BERT: Bidirectional Encoder Representations from Transformers
EHR: electronic health record
FN: false negatives
FP: false positives
HFA: hydrofluoroalkanes
HR: Hanifin and Rajka
ICD: International Classification of Disease
KNN: k-nearest neighbor
ML: machine learning
MLP: multilayer perceptron
NLP: natural language processing
NPV: negative predictive value
Philter: Protected Health Information filter
ReLU: Rectified Linear Unit
SGD: stochastic gradient descent
SVM: support vector machines
TN: true negatives
TP: true positives
UKWP: UK Working Party
XGBoost: Extreme Gradient Boosting
Examining a Remote Group-Based Type 2 Diabetes Self-Management Education Program in the COVID-19 Era Using the ORBIT Model: Small 6-Week Feasibility Study

Madison S Hiemstra1, MSc; Sonja M Reichert2, MSc, MD, CCFP; Marc S Mitchell1, PhD

1School of Kinesiology, Western University, London, ON, Canada
2Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada

Corresponding Author:
Marc S Mitchell, PhD
School of Kinesiology
Western University
1151 Richmond Street
Thames Hall, Room TH 3199
London, ON, N6A 3K7
Canada
Phone: 1 (519) 661 2111 ext 87936
Email: marc.mitchell@uwow.ca

Abstract

Background: To date, most group-based diabetes self-management education (DSME) programs for type 2 diabetes (T2D) have been delivered in person. The rapid transition to remote care at the outset of the COVID-19 pandemic presented opportunities to test, evaluate, and iterate a new remote DSME program.

Objective: We aim to refine the delivery and evaluation of a multicomponent remote DSME program for adults living with T2D by examining several feasibility outcomes.

Methods: We recruited a convenience sample of patients from a London, Canada, outpatient diabetes clinic (serving high-risk, low-income adults) to participate in a 6-week, single cohort feasibility study from November 2020 to March 2021. This small ORBIT phase 1b feasibility study represents the first in a planned series guided by the ORBIT model for developing behavioral interventions for chronic diseases (phase 1: design; phase 2: preliminary testing; phase 3: efficacy; and phase 4: effectiveness). The feasibility of delivering and evaluating a remote DSME program, including (1) live video education classes, (2) individualized physical activity (PA) prescription and counseling, and (3) intermittently scanned continuous glucose and wearable PA monitoring, was assessed. Feasibility outcomes included recruitment and retention rates, program adherence, and acceptability (ie, technology issues and exit survey feedback). PA was assessed with Fitbit Inspire 2 (Fitbit Inc) and estimated glycated hemoglobin (HbA1c) using the FreeStyle Libre (Abbot). Given the small study sample, group- and individual-level data are reported descriptively.

Results: A total of 10 adults living with T2D were recruited (female 60%; age 49.9, SD 14.3 years; estimated HbA1c 6.2%, SD 0.5%). Recruitment and retention rates were 29% and 80%, respectively. Participants attended 83% (25/30) and 93% (37/40) of education classes and PA counseling phone calls, respectively. There were 3.2 (SD 2.6) technology issues reported per person, most of which were related to study data transfer. Exit survey responses suggest most participants (8/9, 89%) were “satisfied” with the program. Recognizing the small sample size and the fact that no inferential statistics were conducted, the mean (SD) for the weekly daily step count and estimated HbA1c are provided for illustrative purposes. Participants accumulated 7103 (SD 2900) and 7515 (SD 3169) steps per day at baseline and week 6, respectively. The estimated HbA1c was 6.2% (SD 0.5%) and 6.2% (SD 0.6%) at baseline and week 6, respectively.

Conclusions: This ORBIT phase 1b study served to refine the delivery (eg, automatic study data upload process recommended to reduce participant burden) and evaluation (eg, purposeful sampling of participants with baseline HbA1c >8% recommended to address selection bias) of a remote DSME program. Preliminary proof-of-concept testing (ORBIT phase 2) incorporating some of these learnings is now warranted.

Trial Registration: ClinicalTrials.gov NCT04498819; https://clinicaltrials.gov/study/NCT04498819

https://formative.jmir.org/2024/1/e46418
Introduction

Chronic conditions such as type 2 diabetes (T2D) are best treated when the individual living with diabetes is engaged and supported in effective self-management [1,2]. Programs, such as diabetes self-management education (DSME), that promote successful T2D self-management behaviors can dramatically lower the risk of serious complications [2]. Group DSME programs promote sustained self-care [2]; however, in response to the COVID-19 pandemic, most group DSME programs were quickly transitioned to remote, one-on-one delivery [3]. To support this rapid transition, contemporary technologies were thrust into the forefront, including videoconferencing services (eg, WebEx and Cisco), intermittently scanned continuous glucose monitors (eg, FreeStyle Libre and Abbott’s Diabetes Care Division), and wearable activity trackers (eg, Fitbit) [3]. This preparatory study examined the feasibility of delivering and evaluating remote group DSME programming for adults with T2D in the COVID-19 era. This small cohort study, aligning with phase 1b of the ORBIT model for developing behavioral treatments for chronic diseases [4], is the first in a planned series aiming to systematically develop an efficacious remote group DSME program for broad rollout in Canada (the “LIBERATE” program [5]). The central goal of this work is to refine the delivery and evaluation of a remote group DSME program (the “treatment”) to promote efficiency while producing potentially relevant changes in behavioral (eg, physical activity [PA]) and clinical risk factors (eg, glycemic control) [4].

Methods

Overview

A single-arm feasibility study (ORBIT phase 1b) was conducted between November 2020 and March 2021 in London, Ontario. Ontario COVID-19-related physical distancing policies were in place throughout the study period, with strict stay-at-home orders for 9 out of 16 weeks [6]. Despite well-documented pandemic-related recruitment challenges [7], we sought to recruit a convenience sample of 10 to 20 new patient intakes [8-12] from St Joseph’s Primary Care Diabetes Support Program, a London, Ontario outpatient clinic serving higher-risk, lower-income adults [13]. Prospective participants, physician-cleared to exercise and with access to a smartphone (ie, iPhone 7 iOS or higher or Android [operating system 5 or higher]), were invited to a study recruitment session by their physician during usual care.

Intervention

A 6-week remote group DSME program was delivered to participants between November 2020 and March 2021. A rolling intake was used, with participants completing the program over 6 consecutive weeks. The program included (1) live-video delivery (ie, WebEx) of biweekly group education classes by a multidisciplinary team (ie, physician, diabetes nurse educator, and exercise specialist) and grounded in Diabetes Canada’s Self-Management Education Guidelines [2]; (2) biweekly one-on-one PA counseling phone calls; and (3) enhanced self-monitoring using intermittently scanned continuous glucose (FreeStyle Libre; Abbot) and wrist-worn PA (Fitbit Inspire 2; Fitbit Inc) monitors. The Inspire 2 was selected as it was the most affordable Fitbit model, offering features required for the study (eg, daily step tracking and data exporting). Group education classes and PA counseling calls were designed to help participants learn from the biofeedback they were receiving (eg, draw important linkages between FreeStyle Libre-assessed glucose trends, diet, and PA behaviors) [14]. Fitbit data were used to generate individualized and adaptive daily step count goals [15] (ie, daily step count median from the past 14 days + 500 steps, equivalent to 5 more minutes of brisk walking [16]). The exercise specialist reviewed step goals with participants during biweekly PA counseling calls. Participants were instructed to submit Fitbit data (by downloading a Fitbit Excel file and uploading it to a secure file sharing website) and scan their FreeStyle Libre frequently.

Outcomes

The primary study objective was to refine the delivery and evaluation of the remote group DSME program in preparation for an ORBIT phase 2a study (preliminary testing: proof-of-concept). To do this, (1) recruitment and retention, (2) program adherence (ie, attendance, Fitbit data submission rates, and FreeStyle Libre data capture rates [active time]), and (3) acceptability (ie, number of technology issues reported and exit survey responses) data were collected. “Active time” is the mean biweekly percent of total glucose data captured by the FreeStyle Libre every 24 hours. To examine the potential impact of the program on behavioral and clinical risk factors, device-assessed (4) weekly mean daily step count and (5) estimated glycated hemoglobin (HbA1c; the average glucose level from the FreeStyle Libre readings for 14 or more days [17]) were collected.

Analysis

Given the small, single cohort and preparatory nature of this ORBIT phase 1b feasibility study, individual and group-level data are presented descriptively rather than with inferential statistics.

Ethical Considerations

This study was registered at ClinicalTrials.gov (NCT04498819) and approved by Western University’s Health Science Research Ethics Board (116071). Patients provided informed consent before participating. Deidentified study data were stored on Western University’s password-protected and encrypted OneDrive (Microsoft Corporation).
Results

Among 35 eligible new patient intakes, 10 were enrolled, meeting our a priori recruitment target (Table 1; 29% recruitment rate). Reasons for nonparticipation (n=5) included work-time conflict, a sick partner, being too busy, not wanting to wear the FreeStyle Libre, and feeling exercise and nutrition were well-managed. A total of 2 participants dropped out of the study (ie, participant 1 missed 2 consecutive biweekly group education classes, and participant 8 withdrew during week 5 citing lack of time). A total of 8 participants completed follow-up assessments (80% retention). Regarding program adherence, 83% (25/30) and 93% (37/40) of participants attended group education classes and one-on-one PA counseling phone calls, respectively. Additionally, 53% (16/30) of participants submitted Fitbit data, and the FreeStyle Libre captured 81% of blood glucose data during the intervention period (“Active time”). FreeStyle Libre use may have waned after week 4, as 4 out of 8 (50%) participants had their lowest data capture rates in weeks 5 and 6 (Table 2).

Table 1. Participants’ characteristics.

<table>
<thead>
<tr>
<th>Sociodemographics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD); range</td>
<td>49.9 (14.3); 36-73</td>
</tr>
<tr>
<td>Sex (female), n (%)</td>
<td>6 (60)</td>
</tr>
<tr>
<td>Ethnicity (White), n (%)</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Highest education level, n (%)</td>
<td></td>
</tr>
<tr>
<td>Less than high school</td>
<td>2 (20)</td>
</tr>
<tr>
<td>High school diploma or equivalent</td>
<td>4 (40)</td>
</tr>
<tr>
<td>College certificate, university, or higher</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Employment status (employed full time), n (%)</td>
<td>5 (50)</td>
</tr>
<tr>
<td>Household income (< US $39,277.30), n (%)</td>
<td>5 (55.5)</td>
</tr>
<tr>
<td>Car ownership, n (%)</td>
<td>8 (80)</td>
</tr>
<tr>
<td>Relationship status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Married or equivalent</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Separated, divorced, or equivalent</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Widowed</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Health characteristics</td>
<td></td>
</tr>
<tr>
<td>Years since diabetes diagnosis, mean (SD)</td>
<td>2.6 (3.3)</td>
</tr>
<tr>
<td>Estimated baseline glycated hemoglobin (%), mean (SD)</td>
<td>6.2 (0.5)</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg), mean (SD)</td>
<td>131 (16.7)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg), mean (SD)</td>
<td>79.4 (7.9)</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>6 (60)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Anxiety</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Depression</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Other psychiatric condition</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Heart disease<sup>a</sup></td>
<td>3 (30)</td>
</tr>
<tr>
<td>Baseline physical activity (steps per day), mean (SD)</td>
<td>7103 (2900)</td>
</tr>
</tbody>
</table>

^aIncluding coronary artery disease, heart failure, or arrhythmia.
Table 2. Biweekly mean estimated glycated hemoglobin (HbA1c) and “Active time” by participant and for the total sample.

<table>
<thead>
<tr>
<th>By participant (%)</th>
<th>Mean (SD)</th>
<th>By participant (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active time</td>
<td>Estimated HbA1c</td>
<td>Active time</td>
<td>Estimated HbA1c</td>
</tr>
<tr>
<td>1c</td>
<td>N/A</td>
<td>34</td>
<td>N/A</td>
</tr>
<tr>
<td>2c</td>
<td>6.0</td>
<td>99</td>
<td>6.0</td>
</tr>
<tr>
<td>3c</td>
<td>N/A</td>
<td>52</td>
<td>6.7</td>
</tr>
<tr>
<td>4c</td>
<td>6.1</td>
<td>83</td>
<td>6.0</td>
</tr>
<tr>
<td>5c</td>
<td>7.0</td>
<td>89</td>
<td>7.0</td>
</tr>
<tr>
<td>6c</td>
<td>5.6</td>
<td>97</td>
<td>5.6</td>
</tr>
<tr>
<td>7c</td>
<td>N/A</td>
<td>95</td>
<td>N/A</td>
</tr>
<tr>
<td>8c</td>
<td>6.2</td>
<td>89</td>
<td>6.2</td>
</tr>
<tr>
<td>9c</td>
<td>6.7</td>
<td>87</td>
<td>7.0</td>
</tr>
<tr>
<td>10c</td>
<td>5.8</td>
<td>66</td>
<td>5.7</td>
</tr>
<tr>
<td>Total (%)</td>
<td>6.2 (0.5)</td>
<td>77 (22)</td>
<td>6.3 (0.6)</td>
</tr>
</tbody>
</table>

aThe estimated HbA1c levels are percentages as measured by the FreeStyle Libre.
bActive time is the mean percentage of total blood glucose data captured in a 24-hour period.
cParticipant identification number.
dN/A: not applicable.

Participants reported at least 1 technology issue, with 3.2 (SD 2.6) issues reported per person, including difficulties submitting Fitbit data (n=14), lost WebEx remote group education class link (n=6), FreeStyle Libre monitor falling off prematurely (n=7 of 32 sensors distributed in total), difficulty synchronizing Fitbit with participant smartphone (n=3), and losing a Fitbit altogether (n=2). Exit survey responses (Table S1 in Multimedia Appendix 1) suggested participants were satisfied with the program, with most (8/9, 89%) agreeing with the statement, “Overall, I was satisfied with the program.” Exit survey responses also indicated that combined biofeedback from FreeStyle Libre and Fitbit (4/9, 44%) was most helpful in optimizing self-management. Daily step counts for the total sample were 7103 (SD 2900) steps and 7515 (SD 3169) steps at baseline and week 6, respectively (Table 3). Lastly, estimated HbA1c was 6.2% (SD 0.5%) and 6.2% (SD 0.6%) at baseline and week 6, respectively (Table 2).
Table 3. Biweekly daily step count, in mean (SD), by participant and for the total sample.

<table>
<thead>
<tr>
<th></th>
<th>Baseline, mean (SD)</th>
<th>Weeks 1-2, mean (SD)</th>
<th>Weeks 3-4, mean (SD)</th>
<th>Weeks 5-6, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>By participant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^a</td>
<td>N/A^b</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2^a</td>
<td>9729 (2985)</td>
<td>11,158 (3917)</td>
<td>9521 (4002)</td>
<td>8165 (5222)</td>
</tr>
<tr>
<td>3^a</td>
<td>2114 (663)</td>
<td>1790 (585)</td>
<td>1779 (948)</td>
<td>2103 (746)</td>
</tr>
<tr>
<td>4^a</td>
<td>9191 (2794)</td>
<td>8001 (1800)</td>
<td>9187 (1654)</td>
<td>8987 (2203)</td>
</tr>
<tr>
<td>5^a</td>
<td>6112 (1762)</td>
<td>6154 (1590)</td>
<td>5052 (1526)</td>
<td>5487 (1823)</td>
</tr>
<tr>
<td>6^a</td>
<td>8954 (2569)</td>
<td>8979 (1890)</td>
<td>10,286 (1279)</td>
<td>10,111 (1744)</td>
</tr>
<tr>
<td>7^a</td>
<td>11,114 (3595)</td>
<td>13,114 (1736)</td>
<td>12,484 (1743)</td>
<td>12,930 (2619)</td>
</tr>
<tr>
<td>8^a</td>
<td>4877 (1733)</td>
<td>4355 (1212)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9^a</td>
<td>4721 (2063)</td>
<td>5113 (1195)</td>
<td>5366 (2177)</td>
<td>6511 (2936)</td>
</tr>
<tr>
<td>10^a</td>
<td>7115 (2622)</td>
<td>7570 (2741)</td>
<td>6786 (1999)</td>
<td>6634 (4062)</td>
</tr>
<tr>
<td>Total</td>
<td>7103 (2900)</td>
<td>7359 (3485)</td>
<td>7558 (3449)</td>
<td>7515 (3169)</td>
</tr>
</tbody>
</table>

^aParticipant identification number.
^bN/A: not applicable.

Discussion

Overview

The aim of this study was to refine the delivery and evaluation of a remote group DSME program in preparation for an ORBIT phase 2a study (preliminary testing: proof-of-concept). This DSME program showed promise, albeit with a small convenience sample, with most participants being satisfied with the program. Fitbit and FreeStyle Libre data capture was also high (>80% in both cases). Moreover, preliminary data suggest potential for behavioral risk factor (ie, PA) improvement over a short 6-week period. However, several opportunities to improve the protocol were identified (Table 4). These should be addressed before moving onto the ORBIT phase 2a study. For instance, reducing participant burden by offering automatic study data upload may increase evaluation and program efficiency. Additionally, purposefully sampling participants with higher baseline HbA1c (ie, HbA1c>8%) [18] may help address selection bias and the “floor effect” [19] in the future (eg, T2D was generally well-controlled among participants at baseline).

The findings should be considered in light of similar research. Our 29% recruitment rate, for example, was comparable to recruitment rates of 21% to 78% in similar studies [10,11,20-22]. However, given the sample sizes of comparable studies [10,11,24] and the objectives of this preparatory work, we contend it is appropriate given the conclusions being drawn. Future recruitment rates may improve with the easing of COVID-19-related restrictions [25] and as we embark on year-round recruitment in the next study in this planned series. Second, this program was only 6 weeks long, providing little insight into sustained program adherence in a field where attrition is the norm [26]. Third, this program was resource-intensive (eg, required significant staff time). Scaling the program (ie, having monthly classes after the first 6 weeks) to reduce resource requirements for a longer program may be necessary. Lastly, discrete exit survey responses only provided so much insight (eg, compared to conducting focus groups [4,9]). Moving ahead to ORBIT phase 2a, focus groups will be conducted to gather deeper insights.
Table 4. Study protocol areas for improvement and recommendations.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Areas for Improvement</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| Recruitment | • Low recruitment rate (29%), likely due to a low referral rate to study recruitment sessions by clinicians or the colder winter season
• Potentially high participant burden | • Clearer recruitment instructions for clinicians
• Streamline recruitment procedures (eg, in-person sign-up for study recruitment sessions, etc)
• Recruit year-round for the ORBIT phase 2a trial |
| Sample | • Possible selection bias with generally well-controlled diabetes (baseline estimated HbA1c = 6.2%) and technology as participation barriers
• Both insulin and noninsulin users are included | • Purposeful sampling to include baseline estimated HbA1c > 8% and individuals who do not have ready smartphone access
• Conduct subanalyses of insulin versus noninsulin users |
| Technology | • Issues (14 total) with study data submissions
• Remote classes sound-related “feedback” issue
• Early evidence of FreeStyle Libre attrition, with lower “active time” observed for some participants in Weeks 5 and 6 | • Provide the option to email or text a screenshot of the 2-week Fitbit step count summary or implement automatic data upload
• Ensure class facilitators have “mute” capabilities
• Create short booster sessions to encourage exploration of personal FreeStyle Libre data and shared experiences |
| Group class | • Limited group discussions leading to more didactic education
• Difficulty “reading the room” when telephoning into remote classes
• Rolling intake format | • Emphasize the importance of sharing and peer learning; provide 1-page content summaries to review before class; and provide assignments to reinforce learning
• Encourage participation through a video platform with the camera on or off
• Remove the rolling intake. Instead, have set start and end dates |
| Physical activity | • Daily step count prescriptions only. Participants had a choice on “how” to accumulate the steps
• Cardiovascular fitness outcomes were not assessed
• A daily step count of 500 steps or more was considered a full day worth of data (valid day) | • Offer a choice of time, type, and frequency of a preferred exercise (to compliment the daily step count goal); increase the frequency and automation of feedback
• Use validated field test measures to assess cardiovascular fitness level changes (eg, a 6-minute walk test)
• A “valid day” may include the time between the first and last daily step recorded |

HbA1c: glycated hemoglobin; an estimation provided from 2 weeks or more of glucose data collected by the FreeStyle Libre.

Active time is the mean percentage (%) of total glucose data captured in a 24-hour period every two weeks (the FreeStyle Libre requires at least 1 scan every 8 hours to collect the past 8 hours of data).

Conclusions

This ORBIT phase 1b study has served to refine the delivery and evaluation of this remote DSME program. Proof-of-concept testing is warranted, with plans to progress to ORBIT model phases 3 (efficacy) and 4 (effectiveness). This may ultimately increase access to strong remote-group DSME programming in Canada.

Acknowledgments

The FreeStyle Libre devices were donated in-kind by Abbott’s Diabetes Care Division. The Fitbit Inspire 2 activity monitors were purchased through funding from the St Joseph’s Health Care Foundation Innovation Grants. The authors would like to thank Betty Harvey for her contribution to the conceptualization of this program and for providing invaluable feedback throughout the intervention’s development. We would also like to thank Amanda Mikalachki for her dedication to the ongoing development and her involvement in running the intervention. Finally, we would like to thank the study participants.

Data Availability

The data sets generated or analyzed during this study are available from the corresponding author upon reasonable request.

Authors’ Contributions

MSH, SMR, and MSM were involved in conceptualizing and designing the study. MSH led the intervention delivery, data collection, and data analysis. MSH and MSM were involved in data presentation and visualization. MSH wrote the manuscript with revisions and consultations from MSM and feedback from SMR. SMR led and supervised the intervention delivery on-site and provided guidance and direction on intervention rollout and adjustments to MSH. MSM supervised the project. All authors...
References

5. Study aims to empower patients with type 2 diabetes to take control of their health. Lawson Research. 2022. URL: https://www.lawsonresearch.ca/media-releases/study-aims-empower-patients-type-2-diabetes-take-control-their-health [accessed 2023-01-03]

Multimedia Appendix 1
Exit survey results.

[DOCX File , 16 KB - formative_v8i1e46418_app1.docx]

Abbreviations

DSME: diabetes self-management education
HbA1c: glycated hemoglobin
PA: physical activity
T2D: type 2 diabetes

©Madison S Hiemstra, Sonja M Reichert, Marc S Mitchell. Originally published in JMIR Formative Research (https://formative.jmir.org), 29.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Home Blood Pressure Telemonitoring Technology for Patients With Asymptomatic Elevated Blood Pressure Discharged From the Emergency Department: Pilot Study

Karen C Tran1,2, MSc, MD; Meagan Mak3, BA; Laura M Kuyper1, MD; Jesse Bittman1, MD; Birinder Mangat1, MD; Heather Lindsay3, MD; Chad Kim Sing1, MD; Liang Xu2, MSc; Hubert Wong2, PhD; Martin Dawes4, MD; Nadia Khan1,2, MD; Kendall Ho3, MD

1Division of General Internal Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
2Center for Health Evaluation and Outcome Sciences, Vancouver, BC, Canada
3Department of Emergency Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
4Division of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada

Corresponding Author:
Karen C Tran, MSc, MD
Division of General Internal Medicine
Faculty of Medicine
University of British Columbia
2775 Laurel Street, 7th Floor
Vancouver, BC, V5Z 1M9
Canada
Phone: 1 604 875 5181
Email: karen.tran4@vch.ca

Abstract

Background: Hypertension affects 1 in 5 Canadians and is the leading cause of morbidity and mortality globally. Hypertension control is declining due to multiple factors including lack of access to primary care. Consequently, patients with hypertension frequently visit the emergency department (ED) due to high blood pressure (BP). Telehealth for Emergency-Community Continuity of Care Connectivity via Home-Telemonitoring Blood Pressure is a pilot project that implements and evaluates a comprehensive home blood pressure telemonitoring (HBPT) and physician case management protocol designed as a postdischarge management strategy to support patients with asymptomatic elevated BP as they transition from the ED to home.

Objective: Our objective was to conduct a feasibility study of an HBPT program for patients with asymptomatic elevated BP discharged from the ED.

Methods: Patients discharged from an urban, tertiary care hospital ED with asymptomatic elevated BP were recruited in Vancouver, British Columbia, Canada, and provided with HBPT technology for 3 months of monitoring post discharge and referred to specialist hypertension clinics. Participants monitored their BP twice in the morning and evenings and tele-transmitted readings via Bluetooth Sensor each day using an app. A monitoring clinician received these data and monitored the patient’s condition daily and adjusted antihypertensive medications. Feasibility outcomes included eligibility, recruitment, adherence to monitoring, and retention rates. Secondary outcomes included proportion of those who were defined as having hypertension post-ED visits, changes in mean BP, overall BP control, medication adherence, changes to antihypertensive medications, quality of life, and end user experience at 3 months.

Results: A total of 46 multiethnic patients (mean age 63, SD 17 years, 69%, n=32 women) found to have severe hypertension (mean 191, SD 23/mean 100, SD 14 mm Hg) in the ED were recruited, initiated on HBPT with hypertension specialist physician referral and followed up for 3 months. Eligibility and recruitment rates were 40% (56/139) and 88% (49/56), respectively. The proportion of participants that completed ≥80% of home BP measurements at 1 and 3 months were 67% (31/46) and 41% (19/46), respectively. The proportion of individuals who achieved home systolic BP and diastolic BP control at 3 months was 71.4% (30/42) and 85.7% (36/42) respectively. Mean home systolic and diastolic BP improved by –13/–5 mm Hg after initiation of HBPT to the end of the study. Patients were prescribed 1 additional antihypertensive medication. No differences in medication adherence from enrollment to 3 months were noted. Most patients (76%, 25/33) were highly satisfied with the HBPT program and 76% (25/33) found digital health tools easy to use.
Conclusions: HBPT intervention is a feasible postdischarge management strategy and can be beneficial in supporting patients with asymptomatic elevated BP from the ED. A randomized trial is underway to evaluate the efficacy of this intervention on BP control.

(JMIR Form Res 2024;8:e49592) doi: 10.2196/49592

KEYWORDS
hypertension; remote-home monitoring; feasibility study; health monitor; telehealth; pilot study; mobile phone; monitoring; telemonitoring; blood pressure; emergency department; hypertension; morbidity; mortality; primary care; physician care; management; hypertension medication

Introduction

Hypertension is the leading cause of death and disability worldwide [1,2]. Long-term poor control of blood pressure (BP) can result in significant cardiovascular (CV) morbidity and mortality [3]. Severely asymptomatic elevated BP in the emergency department (ED) has recently been associated with undiagnosed hypertension and adverse CV outcomes [4,5], regardless of the initial reason (eg, pain or anxiety) for the ED visit [6]. In a meta-analysis of 12 studies (n=1240) of individuals with elevated BP in ED, 43.4% were diagnosed with hypertension at follow-up [7]. Among individuals discharged from ED with elevated BP, two-thirds still had uncontrolled BP at 6 months [8].

Hypertension is one of the few chronic conditions that can be monitored online, with home blood pressure telemonitoring (HBPT), which allows tele-transmission of BP in real time to central health portal, eliminating the need for in-person BP visits between patients and health care providers. Importantly, close monitoring of BP and data can be summarized by patients and providers, including calculating of BP averages, graphing temporal BP, and flagging high or low values [9,10]. This is particularly important for patients with asymptomatic elevated BP presenting to and discharged from the ED. Current ED guidelines recommends no routine ED management and outpatient follow-up without suggesting any additional monitoring or intervention with a few exceptions [11,12]. As these patients transition from acute to community settings, their BP can remain dangerously elevated or lowered with initiation of antihypertensive medications. Hypertension telemedicine studies have been shown to be highly feasible, effective, and acceptable to patients [13-17]. Although a promising intervention, to date, no studies have leveraged HBPT as a postdischarge management strategy for patients discharged from the ED with asymptomatic elevated BP.

Telehealth for Emergency-Community Continuity of Care Connectivity via Home-Telemonitoring Blood Pressure (TEC4Home-BP) is a pilot study to evaluate the feasibility of HBPT and physician case management as an integrated component of health delivery to support patients with asymptomatic elevated BP discharged from the ED to home. The primary objective of this pilot study is to report the feasibility of HBPT as a postdischarge management strategy and the secondary objective is to determine acceptability of this initiative. We hypothesize that the study procedures would be feasible and acceptable to patients.

Methods

Recruitment Procedures

The feasibility pilot study was an unblinded trial. Participants were prospectively recruited from 1 large academic urban ED in Vancouver, British Columbia, Canada, from May to December 2021. We included adults (older than 19 years of age) who presented to the ED with asymptomatic elevated BP confirmed at ED triage and average of 3 subsequent measurements performed in the ED (systolic blood pressure [SBP] ≥ 160 mm Hg or diastolic blood pressure [DBP] ≥ 100 mm Hg), who owned or had daily access to a smartphone, and agreeable to follow-up at the Vancouver General Hospital (VGH) Hypertension Clinic and tele-transmit home BP readings via the Sphygmo app. Individuals with 1 of the following conditions were excluded, patients with hypertensive emergencies with evidence of end organ involvement, stroke or acute coronary syndrome, people who are pregnant, acute intoxication, acute surgical or trauma, patients who are psychiatrically unstable, advanced cognitive impairment, patients requiring admission to hospital, inability to use or care for home BP monitor correctly, from long-term care facility, unstable housing, and are non–English-speaking with no family members who can help translate.

Participants were recruited through 2 recruitment pathways. Potential participants were first identified via referrals from hospital ED staff and were screened by a research assistant in hospital ED (recruitment pathway 1). ED staffs were asked to refer the study team any patients presenting to the ED with suspected hypertension, patients whose BP was above SBP ≥ 160 mm Hg or DBP ≥ 100 mm Hg and in stable condition. Once the research assistant was notified of the patient referrals, the research assistant reviewed their medical records and excluded any patients who met exclusion criteria from screening. Only patients who appear to meet all inclusion criteria and remain potentially eligible were approached for further screening and have subsequent BP readings measured to confirm their eligibility. During the recruitment, the study team expanded referral streams to include patients with asymptomatic elevated BP who were referred to the VGH Hypertension Clinic following discharge from the ED to increase recruitment numbers due to limits on research activities in the ED during the COVID-19 pandemic (recruitment pathway 2). Physicians at the Hypertension Clinic screened all incoming referrals based on inclusion and exclusion criteria, and selected eligible patients for further contact. Eligible patients were contacted either in ED, immediately after discharge, or once the referral to

https://formative.jmir.org/2024/1/e49592
Hypertension Clinic was received. Participants completed the consent process and were enrolled within 7 days from ED discharge.

Ethical Considerations

Ethics approval was obtained from the University of British Columbia Research Ethics Board (#H20-03207). The written informed consent was obtained from all participants. All data collected from the participants are de-identified and remain anonymous. A privacy impact assessment was completed to ensure the telemonitoring application is compliant with all University of British Columbia and Vancouver Coastal Health privacy policies. Participants were allowed to keep the BP telemonitor device at the end of the monitoring period as a gift for participating in the study.

HBPT and Hypertension Clinic Intervention

All patients were provided with a validated electronic upper arm oscillometric BP telemonitor device (A&D Ltd UA-641BLE) with wireless data transfer (Bluetooth) capabilities using a smartphone [18,19]. The research assistant assisted the patients to set up the Sphygmo app on their smartphones, and connected the BP telemonitor device to their smartphones via Bluetooth. Patients were then taught to follow the on-screen instructions in the app to complete and submit their BP readings, properly measure their BP, and view their current and previous BP readings. They were instructed to perform home BP monitoring schedules recommended by Hypertension Canada and International Society of Hypertension Virtual Management of hypertension guidelines, consisting of duplicate measurements in the morning and evening for 7 consecutive days [20,21]. For each 7-day HBPT series, the first day’s measurements were discarded and the mean of subsequent measurements calculated and used to guide medication titration. Home BP readings were transmitted and telemonitored via Sphygmo app on a smartphone, which is PIPEDA (Personal Information Protection and Electronic Documents Act)-, PIPA (Personal Information Protection Act)-, and HIPAA (Health Insurance Portability and Accountability Act)-compliant, with encryption on both ends and a medical server based in Ontario, Canada. Tele-transmitted home BP readings were monitored daily by a monitoring clinician, who would contact participants by phone if BP was uncontrolled (SBP ≥ 180, DBP ≥ 100 mm Hg or SBP ≤ 100 mm Hg) according to BP management algorithm (Multimedia Appendix 1). Urgency of hypertension clinic follow-ups was dependent on severity of telemonitored home BP readings post-ED discharge (Multimedia Appendix 1).

Patients were seen at the VGH Hypertension Clinic either in person or phone assessment. Physicians assessed patients using standardized hypertension intake forms, administered behavioral counseling, encouraged medication adherence, reviewed telemonitored BP summaries, adjusted BP medications accordingly, and arranged clinical follow-up as needed based on Hypertension Canada guidelines [20]. At minimum, patients were seen at the time of enrollment for initial consultation, and at 1 and 3 months for follow-up. Target home BP values were defined by Hypertension Canada of <135/85 mm Hg or <130/80 mm Hg for those with diabetes [20].

Data Collection and Outcomes

Overview

Baseline data including sociodemographic, ethnicity, education level, health behaviors, and relevant medical history were collected. Antihypertensive medication history was reconciled and number of antihypertensive medications, class of antihypertensive medications, and hypertensive defined daily dose (HDDD) were recorded according to patient self-report at enrollment and at 3 months (Multimedia Appendix 2). HDDD quantitatively describes the intensity of a patient’s overall antihypertensive medication regimen [22]. Medication adherences were assessed using the validated Hill Bone Medication Adherence Scale (HB-MAS) at the time of enrollment and at 3 months [23]. Health-related quality of life (QoL) was assessed using EQ-5D-5L at the end of the study [24]. Satisfaction surveys were sent to participants for completion at the end of 3 months via REDCap (Research Electronic Data Capture; Vanderbilt University; Multimedia Appendix 3). A total of 3 reminder emails were sent to participants to complete the surveys.

Feasibility outcomes were eligibility, recruitment, retention rate, and adherence rate. Eligibility rate was defined as proportion of participants who were deemed eligible to participate among all the patients that were screened. Recruitment rate was defined as the proportion of participants who are deemed eligible and who consented to participate in the study. Retention rate was defined as the proportion of the participants that completed 1 week of HBPT and attended first Hypertension Clinic visit. Home monitoring adherence was defined as the percentage of participants that completed 80% of HBPT at 1- and 3-month follow-up visits.

Secondary outcomes included the proportion of the participants meeting the definition of hypertension at 3 months (defined as mean home SBP ≥ 135 mm Hg or DBP ≥ 85 mm Hg or antihypertensive prescription), mean change in HBPM from enrollment to 1- and 3-month follow-ups, and proportion of participants meeting home BP targets (defined as mean home BP readings of <135/85 mm Hg or <130/80 mm Hg if having diabetes) at 3 months. Additional outcomes of interest were number of antihypertensive medications, HDDD, medication adherence (HB-MAS), health-related QoL (EQ-5D), and patient satisfaction questionnaires.

Statistical Analysis

Characteristics of included participants were described as mean, SD, median, IQR, and proportions. BP changes and changes in other study outcomes (baseline to 3 months) were summarized using means and SDs or median and IQR. For participants who had BP recordings within a window from 14 days before to 14 days after the target 90-day follow-up date, the 3-month BP was taken to be the average the BP recordings of up to 3 days closest to the target date. For participants who did not have BP recordings within this window, but who had data over at least 60 days, multiple imputation was used to assign the 3-month BP (see Multimedia Appendix 4 for details). The remaining
participants were excluded from the analysis of BP change as it was deemed not possible to assign them reliable 3-month BP values. Patients who completed either 3-month questionnaire were included in the analysis and descriptive statistics were used. Data were analyzed using Stata (StataCorp) and R (version 4.1.2; R Core Team).

Results

Recruitment

From May to December 2021, a total of 139 patients presenting to the ED with asymptomatic elevated BP were screened, including 99 identified in ED (recruitment pathway 1) and 40 identified from ED referrals to Hypertension Clinic (recruitment pathway 2). Potentially eligible patients that were referred to the research team by ED staff had an average triage BP of 192/94 and were contacted by the research assistant for additional BP measurements. Among the patients who had additional BP measured by the research assistant, those who were ineligible had an average BP of 147/81 (n=26), whereas eligible patients had an average BP of 194/99 (n=32). Including patients identified and screened through ED referrals to the Hypertension Clinic (recruitment pathway 2), 56 patients were eligible to be consented to the study (Figure 1), and 49 were enrolled. Eligibility and recruitment rates were 40% (56/139) and 88% (49/56), respectively. After enrollment, 3 participants were deemed ineligible and were excluded from the study due to requiring hospitalization (n=3). The final analyzed cohort consisted of 46 participants. Of which, 44/46 patients completed at least 1 week of HBPT and 1 clinic visit at the Hypertension Clinic, resulting in a retention rate of 98% (44/66). Home monitoring adherence was defined as the percentage of participants that completed ≥80% of the prespecified home blood pressure monitoring schedule at 1 and 3 months from enrollment. The proportion of participants that completed ≥80% of home BP measurements at 1 and 3 months were 67% (31/46) and 41% (19/46), respectively (Figure 2). A total of 4 patients did not have sufficient home BP readings at the end of 3 months to determine mean home BP and were lost to follow-up.

Figure 1. Flow diagram of patient participant screening and recruitment. BP: blood pressure; ED: emergency department.
Characteristics of Participants
Participants were mostly women (69%, n=32) with an average age of 63 (SD 17) years (Table 1). The ethnic diversity of participants was White (30%, n=14), Filipino (22%, n=10), and Chinese (15%, n=7). At baseline, the mean (SD) SBP and DBP in the ED were 193 (SD 23) mm Hg and 100 (SD 13) mm Hg, respectively. Of all the participants, 44 (96%) had been previously diagnosed with hypertension. Of all participants, 17 (37%) had an antihypertensive medication initiated or increased in the ED. Those who had an intensification of medications had higher mean BP in ED of 205/104 mm Hg compared to those who did not of 186/98 mm Hg.

Figure 2. Home monitoring adherence rates at 1, 2, and 3 months of home blood pressure telemonitoring (n=46).
<table>
<thead>
<tr>
<th>Baseline</th>
<th>All participants (N=46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographic</td>
<td></td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>63 (17)</td>
</tr>
<tr>
<td>Women, n (%)</td>
<td>32 (69)</td>
</tr>
<tr>
<td>Race and ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>14 (30)</td>
</tr>
<tr>
<td>Filipino</td>
<td>10 (22)</td>
</tr>
<tr>
<td>Chinese</td>
<td>7 (15)</td>
</tr>
<tr>
<td>South Asian</td>
<td>4 (9)</td>
</tr>
<tr>
<td>Indigenous</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Korean</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Southeast Asian</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Preferred not to answer</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Did not answer</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Health behavior, n (%)</td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Education level, n (%)</td>
<td></td>
</tr>
<tr>
<td>University degree above bachelor’s level</td>
<td>3 (7)</td>
</tr>
<tr>
<td>University degree at bachelor’s level</td>
<td>15 (33)</td>
</tr>
<tr>
<td>University certificate below bachelor’s level</td>
<td>4 (9)</td>
</tr>
<tr>
<td>Trade certificate or diploma from a vocational school or apprenticeship training</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Nonuniversity certificate or diploma from a community college</td>
<td>6 (13)</td>
</tr>
<tr>
<td>High school graduation</td>
<td>11 (24)</td>
</tr>
<tr>
<td>Less than high school graduation</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Preferred not to answer</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Did not answer</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Medical history, n (%)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>44 (96)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>9 (20)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>21 (46)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>4 (9)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Stroke</td>
<td>4 (9)</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Vascular dementia</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Antihypertensive medications</td>
<td></td>
</tr>
<tr>
<td>Taking antihypertensive medication, n (%)</td>
<td>10 (22)</td>
</tr>
<tr>
<td>Number of antihypertensive medication, mean (SD)</td>
<td>1.58 (1.32)</td>
</tr>
<tr>
<td>Clinical measures, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Framingham risk score</td>
<td>14.8 (3.9)</td>
</tr>
</tbody>
</table>
All participants (N=46)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>All participants (N=46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB-MAS<sup>a</sup></td>
<td>36 (3)</td>
</tr>
<tr>
<td>EQ-5D-5L index<sup>b</sup></td>
<td>0.765 (0.23)</td>
</tr>
<tr>
<td>EQ-5D-5L VAS<sup>c</sup></td>
<td>68.88 (19.91)</td>
</tr>
<tr>
<td>Blood pressure in emergency department, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Systolic BP<sup>d</sup></td>
<td>193 (23)</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>100 (14)</td>
</tr>
</tbody>
</table>

^aHB-MAS: Hill Bone Medication Adherence Scale.

^bIndex value calculated from 5 domains: mobility, self-care, usual activities, pain or discomfort, and anxiety or depression. Value calculated using cross walk tool, range 0.3-1; higher scores are better quality of life [24].

^cVAS: Visual Analogue Scale. Range 0-100; higher scores are better quality of life [24].

^dBP: blood pressure.

Patient Outcomes and Experience

There were sufficient HBPT data to determine the 3-month BP end point for 42 (91%) participants, with imputation used for 1 participant. Mean home SBP and DBP decreased by 67.0 (SD 24.4) and 24.9 (SD 10.3), respectively, from ED triage or screening to study completion. Similarly, mean home SBP and DBP decreased by 13.2 (SD 17.8) mm Hg and 5.1 (SD 9.0) mm Hg, respectively, from the first 7 days to study completion. The proportion of individuals who achieved home SBP and DBP control at 3 months was 71% (30/42) and 86% (36/42), respectively (n=42). The number of adjustments in participant medications was 87 for the entire study, with most commonly having initiation of new antihypertensive medication (36/87), increase in dosage of current antihypertensive medication (23/87), and change in class of antihypertensive medication (14/87). Decreasing antihypertensive medications (9/87) and stopping antihypertensive medications (5/87) were uncommon. At the end of the study, patients were prescribed 1 additional antihypertensive medication (2 vs 1 antihypertensive medication), but no difference in HDDD was noted from enrollment to end of the study (mean 1.58, SD 1.32 vs mean 1.77, SD 1.47; P=0.39; Table 2). Most commonly patients at the beginning of the study were taking angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (40%, 18/45), calcium channel blockers (40%, 18/45), and beta-blockers (24%, 11/45). At the end of the intervention, more patients were prescribed single pill combination antihypertensive medications (9%, 4/45 vs 29%, 13/45; Figure 3).

The response rate for completion of both the HB-MAS at enrollment and the end of the study was 72% (33/46). Among those who completed both questionnaires, no difference in medication adherence was noted (36 [IQR 36-33] vs 36 [IQR 36-35]) from enrollment to 3 months (Table 2). The response rate for completion of the EQ-5D validated questionnaire was 97% (44/46; Table 1). EQ-5D-5L and EQ-5D Visual Analogue Scale (EQ-5D VAS) scores were 0.77 (SD 0.23) and 69 (SD 20), respectively. Due to the pilot nature of the study, adverse events were not captured.

The response rate for the patient satisfaction surveys was 72% (33/46). Overall, patients were highly satisfied with the HBPT program (75%, 24/33) and would recommend it to others (79%, 26/33; Table 3). The majority of the participants found digital health tools easy to use (76%, 25/33) and felt that the intervention prevented the need to return to the ED with elevated BP readings (64%, 21/33). In total, 14% (7/46) of participants required family assistance to participate in the study. The most common reasons for assistance were language barrier (71%, 5/7), inability to apply the home BP monitor on their arm independently (14%, 1/7), and lack of their own smartphone (14%, 1/7). Patients who did not have their own smartphones navigated this barrier by using their family members’ phones.
Table 2. Change in blood pressure and additional secondary outcomes.

<table>
<thead>
<tr>
<th>Participants</th>
<th>Enrollment (N=46)</th>
<th>First week of HBPT(^a) (N=46)</th>
<th>3-month F/U(^b) (N=42)</th>
<th>Change at 3-month F/U (from enrollment; N=42)</th>
<th>P value</th>
<th>Change at 3-month F/U (from first week of HBPT; N=42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP(^c), mean (SD)</td>
<td>193 (23)</td>
<td>140 (16)</td>
<td>127 (12)</td>
<td>-66 (24)</td>
<td>N/A(^d)</td>
<td>-13 (17)</td>
</tr>
<tr>
<td>DBP(^c), mean (SD)</td>
<td>100 (13)</td>
<td>81 (12)</td>
<td>75 (9)</td>
<td>-25 (10)</td>
<td>N/A</td>
<td>-5 (9)</td>
</tr>
<tr>
<td>Number of antihypertensive medications, mean (SD)</td>
<td>1.58 (1.32)</td>
<td>1.58 (1.32)</td>
<td>1.77 (1.47)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>HDDD(^f), mean (SD)</td>
<td>1.49 (1.22)</td>
<td>1.58 (1.32)</td>
<td>1.77 (1.47)</td>
<td>N/A</td>
<td>.39</td>
<td>N/A</td>
</tr>
<tr>
<td>HB-MAS(^g) (IQR), mean (SD)</td>
<td>36 (3)</td>
<td>36 (3)</td>
<td>36 (2)</td>
<td>0.66 (2)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

\(^a\) HBPT: home blood pressure telemonitoring.
\(^b\) F/U: follow-up.
\(^c\) SBP: systolic blood pressure.
\(^d\) N/A: not applicable.
\(^e\) DBP: diastolic blood pressure.
\(^f\) HDDD: hypertensive daily defined dose.
\(^g\) HB-MAS: Hill Bone Medication Adherence Scale.

Figure 3. Change in distribution of antihypertensive medication classes from study enrollment to 3-month follow-up in a group of participants with elevated blood pressure (n=46). ACEI: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; BB: beta-blocker; CCB: calcium channel blocker; SPC: single pill combination.
Table 3. The proportion of participants (n=33) that selected “highly satisfied” or “strongly agree” to questions on the participant satisfaction questionnaire following completion of the study.

<table>
<thead>
<tr>
<th>Survey question</th>
<th>Selected highly satisfied and strongly agree, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall satisfaction</td>
<td>24 (75)</td>
</tr>
<tr>
<td>Satisfaction with health care coaching</td>
<td>26 (79)</td>
</tr>
<tr>
<td>Would recommend to other patients</td>
<td>26 (79)</td>
</tr>
<tr>
<td>Easy to use</td>
<td>25 (76)</td>
</tr>
<tr>
<td>Better management of health conditions</td>
<td>24 (73)</td>
</tr>
<tr>
<td>Satisfaction with progress toward health goals</td>
<td>22 (67)</td>
</tr>
<tr>
<td>More informed about chronic conditions</td>
<td>21 (64)</td>
</tr>
<tr>
<td>Less need to visit ED(^a)</td>
<td>21 (64)</td>
</tr>
<tr>
<td>Improvement in QoL(^b)</td>
<td>17 (52)</td>
</tr>
<tr>
<td>Family satisfied with care provided</td>
<td>17 (52)</td>
</tr>
<tr>
<td>Less need to visit family doctor</td>
<td>16 (49)</td>
</tr>
</tbody>
</table>

\(^a\) ED: emergency department.
\(^b\) QoL: quality of life.

Discussion

Overview

TEC4Home-BP is a pilot study to evaluate the feasibility of HBPT and physician case management as an integrated component of health delivery to support patients with asymptomatic elevated BP discharged from the ED to home. We found that HBPT was feasible as a postdischarge management strategy, given our recruitment and retention rate was 88\% (56/139) and 98\% (44/46), respectively. Patients reported high acceptability and satisfaction with the HBPT program.

Principal Results

HBPT combined with timely physician follow-up and management is a novel and promising postdischarge management strategy to help bridge the transition from ED to home and can play a proactive role in treating asymptomatic elevated BP in the ED. Our results show that the proportion achieving home SBP and DBP control at 3 months was 71\% (30/42) and 86\% (36/42), respectively, which is higher than the current Canadian hypertension control rates of 65\% [25]. Furthermore, home BP decreased from the first week of completing HBPT to 3 months (final BP assessment) by −13/−5 mm Hg. This may correspond to an estimated 30\% and 26\% risk reduction in CV disease and stroke, respectively, but likely overestimated due to the limitations of our study design with regression of the mean and lack of a comparator group [26]. Overall, patients only required 1 additional antihypertensive medication to be prescribed. Improvement in BP may be due to increased use of evidence-based medications, including single pill combination therapies or the act of self-monitoring. Patients were highly satisfied with the program and found the technology to be user-friendly.

Comparison With Prior Work

Previous studies have shown that text-messaging services to encourage measuring home BP using a wrist cuff was a feasible intervention in patients who were discharged from the ED with high BP and reduced SBP by 9.1 (95\% CI 1.1-17.6) mm Hg, but patients did not use remote HBPT program where home BP readings were transmitted to physicians to review and provide management strategies directly to patients [27]. Our results showed that the adherence to home BP monitoring was 67\% (31/46) and 41\% (19/46) at 1 and 3 months, respectively. This is similar to meta-analysis showing that among 13 studies (n=1662 patients), the average adherence to telemedicine-based hypertension management was high (76.8\%; range 48\%-90\%) [28]. This is not surprising that as time persists from their initial ED event, patients may not be as adherent to strict BP monitoring. It will be important for our future randomized controlled trial (RCT) to develop a more pragmatic home BP monitoring schedule that is acceptable to patients and provide accurate information to health care professionals to monitor and manage their hypertension.

Previous studies from ED and inpatient hospital settings have shown that in patients discharged with asymptomatic elevated BP, 43.4\% were diagnosed with hypertension at follow-up [7]. Our study showed that among individuals presenting the ED with an average SBP ≥ 160 mm Hg and DBP ≥ 100 mm Hg in ED, most had established hypertension that was uncontrolled and required additional treatment. This reaffirms that elevated BP in the ED is not benign and a significant proportion of these individuals have undiagnosed or undertreated hypertension. Of similar importance, is the portion of patients that do not go on to have a diagnosis of hypertension and are at risk of misdiagnosis and unnecessary treatment without close follow-up. Furthermore, with worsening hypertension awareness and control rates in Canada, the ED may be a useful location to screen individuals for hypertension, as BP is measured in all individuals regardless of the presenting complaint. Despite the
guideline recommendations that close follow-up is needed for individuals with asymptomatic elevated BP discharged from ED [12], only 7%-29% of patients with elevated BP receive any hypertension assessment, treatment, or referral in the ED [29-32]. Therefore, the development of novel postdischarge management pathways to ensure that these individuals have a close follow-up for their hypertension is greatly needed. At a minimum, ED practice guidelines should consider changing to at least recommend home BP monitoring for these patients immediately postdischarge and timely follow-up with physicians should BP remain elevated.

Our intervention improved BP after 1 week of HBPT to 3 months (final BP assessment) by –13/–5 mm Hg. Meta-analyses have shown that home BP monitoring supported by cointerventions (including medication adjustments by physicians or pharmacists, education, and lifestyle counseling) results in significant BP reduction (~6.1, 95% CI –9.0 to –3.2 mm Hg) that persists for 12 months [16]. Another meta-analysis of 23 RCTs (n=7037 patients) reported that HBPT significantly reduced BP by 5/3 mm Hg compared to the usual care (P<.001) [17]. Our results need to be verified by conducting a powered RCT to address issues with regression to the mean and lack of a comparator group.

Studies have shown that HBPT alone improved antihypertensive medication prescription and QoL [17,33], but we were not able to show this in our pilot study as it was not powered to detect these differences. Although there were no differences in HDDD prescribed, there was an increase in the number of single pill combination antihypertensive medications prescribed. We hypothesize that HDDD did not change because single pill combinations were more frequently prescribed which confers better BP lowering with combination therapy than full doses of antihypertensive medication [34]. Hypertension follow-up after an ED visit for asymptomatic elevated BP has been shown to improve evidence-based hypertension management [35]. Single pill combinations are endorsed by hypertension guidelines [20] as they have been shown to improve medication adherence and BP control while reducing medication side effects and CV events [36-39].

Our intervention was noted to be highly acceptable and usable by patients and their families, which is similar to other HBPT studies where patients reported higher satisfaction and greater convenience compared with usual hypertension care [40]. Almost 15% (7/46) of participants required assistance with our intervention, specifically due to language barriers. Given our multiethnic population, future RCT design should incorporate different languages in the technology to improve usability for everyone.

Limitations

There are a number of limitations in this study. The sample size for the TEC4Home-BP pilot study was relatively small and there may be systematic differences between those who enrolled for the study and adhered to the monitoring protocol and those who did not. Although the retention rate for participants attending the first visit was high, adherence to the monitoring schedule declined throughout the study and 4 patients were lost to follow-up. This insight on monitoring frequency has provided us with information on how to redesign on monitoring protocol to improve patient adherence. There is increasing evidence that a minimum of 12 BP readings is needed for home BP measurements to be valid [41], and more recently 3 days of BP readings appeared sufficient to prognostic home BP readings [42]. Furthermore, the exclusion criteria excluded many patients who presented to the ED with elevated BP and only stable patients who would be a good candidate for HBPT were recruited for the study. This limitation prevents our feasibility study from assessing the feasibility of HBPT in the full group of patients who present to the ED with elevated BP, and who may still benefit from and accept HBPT. The eligibility criteria may be underestimated, as we did not document all the reasons why patients were not eligible to be in the study due to resource issues. A majority of patients who had elevated triage BPs were not eligible to participate because their BP was below the inclusion criteria after the research assistant measured their BP 3 times consecutively. In addition, those who did not meet the incomplete survey questionnaires may limit the true acceptability and usability of this intervention, as participants who responded and did not respond may be very different. Finally, the lack of data from a control comparison is a true limitation of our feasibility study design and needs to be addressed. Although, these findings are promising and informative of the next steps, a more rigorous RCT design with a comparator group is required to test the true efficacy of this intervention.

Conclusions

HBPT with physician management is a feasible and acceptable postdischarge management strategy to monitor patients with asymptomatic elevated BP when they are discharged from the ED. Future multicenter RCTs are needed to evaluate the efficacy of this intervention in a large population.

Acknowledgments

We thank the TEC4Home team for answering our many questions. We also thank Vancouver Coastal Health Research Institute, University of British Columbia and Vancouver General Hospital Foundation, Vancouver General Hospital, University of British Columbia, and Sphygmo app for their support for this project.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.
Conflicts of Interest

JB has received speaker fees from Novo Nordisk, Bausch Health, and AstraZeneca; a travel bursary from Novo Nordisk; and an unrestricted grant from Bayer. JB is also on the advisory board for Novo Nordisk, Bausch Health, and Bayer.

Multimedia Appendix 1

Physician decision management tool.
[DOCX File, 91 KB - formative_v8i1e49592_app1.docx]

Multimedia Appendix 2

Hypertension defined daily dose.
[DOCX File, 20 KB - formative_v8i1e49592_app2.docx]

Multimedia Appendix 3

Participant survey.
[DOCX File, 28 KB - formative_v8i1e49592_app3.docx]

Multimedia Appendix 4

Statistical methods.
[DOCX File, 13 KB - formative_v8i1e49592_app4.docx]

References

Abbreviations

BP: blood pressure
CV: cardiovascular
DBP: diastolic blood pressure
ED: emergency department
EQ-5D VAS: EQ-5D Visual Analogue Scale
HB-MAS: Hill Bone Medication Adherence Scale
HBPT: home blood pressure telemonitoring
HDDD: hypertensive defined daily dose
HIPAA: Health Insurance Portability and Accountability Act
PIPA: Personal Information Protection Act
PIPEDA: Personal Information Protection and Electronic Documents Act
QoL: quality of life
RCT: randomized controlled trial
REDCap: Research Electronic Data Capture
SBP: systolic blood pressure
TEC4Home-BP: Telehealth for Emergency-Community Continuity of Care Connectivity via Home-Telemonitoring Blood Pressure
VGH: Vancouver General Hospital
Acceptability of a Self-Led Mindfulness-Based Intervention for Teens with Type 1 Diabetes: Pilot Randomized Controlled Trial

Tori Humiston1, MA; Caroline Cummings2, PhD; Stephen Suss3, MS; Laura B Cohen1, MA; Holly Hazlett-Stevens4, PhD; Amy Hughes Lansing4, PhD

1Department of Psychological Sciences, University of Vermont, Burlington, VT, United States
2Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States
3Department of Psychology, Florida International University, Miami, FL, United States
4Department of Psychology, University of Nevada, Reno, NV, United States

Corresponding Author:
Tori Humiston, MA
Department of Psychological Sciences, University of Vermont
2 Colchester Ave
Burlington, VT, 05401
United States
Phone: 1 8026562670
Email: tori.humiston@uvm.edu

Abstract

Background: Diabetes distress among adolescents with type 1 diabetes has been associated with suboptimal diabetes outcomes, including lower quality of life, increased diabetes self-management challenges, and suboptimal glycemic outcomes.

Objective: This study examined the feasibility and acceptability of a scalable self-led mindfulness-based intervention to reduce diabetes distress in adolescents with type 1 diabetes.

Methods: Adolescents (N=25) aged between 14 and 18 years diagnosed with type 1 diabetes completed a baseline assessment. Participants were randomized to receive a 10-week self-guided mindfulness-based stress reduction workbook program (e-book or paper option) immediately (n=15) or after a 10-week wait (n=10). During the intervention period, participants completed weekly assignments and feedback surveys. At 10 weeks and 20 weeks, follow-up assessments were completed.

Results: Findings indicated that participants did not find the original intervention feasible or acceptable. Adolescents reported barriers to completing the weekly material, such as that they forgot or that the material was not sufficiently related to their diabetes management. Adolescents also reported that a digital format rather than a workbook or e-book may be more acceptable. Results from weekly surveys provided the foundation for recommendations for future iterations of the mindfulness-based intervention for adolescents with type 1 diabetes.

Conclusions: Participant feedback informed recommendations for self-led mindfulness programs for youth with type 1 diabetes. Adolescents indicated that a shorter, digital mindfulness-based intervention focused on diabetes-specific behaviors may be more helpful.

Trial Registration: ClinicalTrials.gov NCT05115175; https://clinicaltrials.gov/study/NCT05115175

(JMIR Form Res 2024;8:e45659) doi:10.2196/45659

KEYWORDS
adolescents; diabetes distress; diabetes; health group intervention; intervention; mindfulness; psychosocial intervention; self-led mindfulness; type 1 diabetes

Introduction

Adolescents with type 1 diabetes, an autoimmune disease that destroys insulin-producing cells in the pancreas, must engage in numerous daily health behaviors to manage their symptoms and prevent short- and long-term health complications [1]. The persistent challenges of disease management often result in diabetes distress, characterized as the burden, worries, and frustrations associated with diabetes [2]. Adolescents with greater diabetes distress experience lower quality of life, increased diabetes self-management challenges, and suboptimal
glycemic outcomes (glycosylated hemoglobin; HbA1c) [3,4]. Heightened diabetes distress may affect type 1 diabetes outcomes both indirectly, through decreased engagement in disease self-management behaviors, and directly, through the effects of physiological arousal, hormone secretion, and insulin resistance on blood glucose levels and the microvascular system [5,6]. Current interventions aimed at fostering diabetes self-management in adolescence have targeted distress management [7] and quality of life [8], yet less research has examined mindfulness-based stress reduction (MBSR) interventions in the context of adolescents’ type 1 diabetes distress and self-management. This is despite cross-sectional data supporting the link between greater mindfulness, greater diabetes self-management, lower diabetes stress, and lower HbA1c levels in adolescents with type 1 diabetes [9].

Increased mindfulness, enhanced through mindfulness-based interventions, is linked to numerous health benefits. One example is the MBSR intervention, a mind-body public health group intervention developed for medical patients to manage the stress of chronic medical conditions. MBSR consists of eight 2.5-hour-long, weekly sessions and 1 all-day practice session [10]. In adults with type 1 or type 2 diabetes, the benefits of mindfulness-based interventions include reduced distress and cardiovascular risk [11,12], and similar outcomes emerged for adolescents with chronic diseases generally [13]. More recently, mindfulness-based interventions have been considered in the context of improving type 1 diabetes management in emerging adults [14]. For example, among emerging adults with type 1 diabetes and suboptimal glycemic levels, an MBSR intervention was found to improve psychosocial outcomes but not glycemic outcomes and was highly acceptable [15,16]. Further, an additional study within the type 1 diabetes context found that a brief self-compassion intervention, which is a core component of MBSR, was acceptable and feasible among adolescents with disordered eating and improved mindfulness and coping [17]. These findings support the possible benefits of improved mindfulness in reducing diabetes distress and improving diabetes self-management in adolescents with type 1 diabetes.

The goal of this study was to begin an iterative approach to developing a self-led, scalable MBSR intervention for adolescents with type 1 diabetes. The intervention was modeled on a 10-week bibliotherapy MBSR program implemented by Hazlett-Stevens and Oren [18] that was found to be feasible and acceptable for college students and to reduce distress and anxiety for those who completed the program. A self-led MBSR program approach may be particularly helpful for disseminating MBSR to adolescents with type 1 diabetes, a population that already experiences the intensive time burden of diabetes management [19]. This study examined the acceptability, feasibility, and potential utility of a 10-week self-led workbook (e-book or paper option) MBSR intervention for adolescents with type 1 diabetes through a randomized waitlist control design. It was hypothesized that participation in a self-led MBSR intervention would be feasible and acceptable, as evidenced by low treatment attrition and positive participant feedback. Finally, we provide recommendations for future iterations of self-led, digital MBSR interventions for adolescents with type 1 diabetes based on recommendations by participants.

Methods

Ethical Considerations

All procedures and documents were approved by the institutional review board at the University of Nevada, Reno (1221205). Web-based parental consent was obtained for children aged 18 years or younger, in which case child assent was also obtained. Participants 18 years of age or older provided web-based consent. Participants earned US $10 for each assessment (up to US $30), US $10 for completing at least 6 of the 10 weekly surveys over the 10-week intervention period, and an additional US $10 for completing all 10 weekly surveys. The maximum earnings for each participant were US $50, in the form of an Amazon gift card. All measures were completed electronically through Research Electronic Data Capture (REDCap; Vanderbilt University). Participants were informed during the informed consent process that their answers and data would not be shared with individuals outside of the research team unless the research team was concerned about the participant’s safety.

Participants

Participants for this study included a sample of 25 adolescents (n=14, 56% female) aged between 14 and 18 years (mean age 16.25, SD 1.6 years) from urban and rural areas of Nevada. Most participants identified as White (n=22, 88%), 1 participant as Asian, 1 participant as Native Hawaiian or Pacific Islander, and 1 participant as biracial. Participants reported a wide range of diagnosis lengths, from less than a year to 16.15 years (mean diagnosis length 5.3, SD 4.1 years). A total of 19 (76%) participants reported using a continuous blood glucose monitor, and 17 (68%) endorsed using an insulin pump. Additionally, through self-report, 10 (40%) participants reported that they qualify for free lunch at school. Inclusion criteria included being an adolescent (aged between 13 and 19 years) with a type 1 diabetes diagnosis currently attending school or being a recent high school graduate. Participants were excluded if they were wards of the state, had severe psychiatric disturbances (eg, active psychosis), or had severe developmental delays that hindered their ability to self-report. Participants were not excluded based on the length of their type 1 diabetes diagnosis.

Procedures

Participants were recruited with flyers at a regional diabetes camp, flyers sent to community diabetes support groups, and direct recruitment by research staff in a local pediatric endocrinology clinic. All enrolled participants completed a baseline survey, including a self-report of their most recent HbA1c percentage value, and were randomized to either begin the 10-week intervention period immediately or after 10 weeks, with participants randomized to start the intervention after the 10-week waiting period acting as a control group. Randomization was computerized and stratified based on sex, duration of type 1 diabetes diagnosis (2 years or less vs more than 2 years), and most recent HbA1c (8.5% or below vs 8.6% or above). Participants also completed assessment questionnaires 10 weeks and 20 weeks after the study start date and a weekly survey for the 10 weeks of intervention participation.
Recruitment for this project began in the fall of 2018 and was completed in early spring 2020. Research staff were trained by 2 graduate students on recruitment procedures and eligibility criteria. A total of 64 participants contacted our research staff, indicating interest in participating in the study and providing permission to contact them either on the internet or in-person (Figure 1). Of the 64 participants who indicated interest in the study, 5 declined further screening, and 2 were not eligible after screening. During the study period, after 29 participants had consented and enrolled, it was determined, due to feedback from those enrolled participants as well as attrition and loss of follow-up, that the intervention required revision to increase acceptability; accordingly, recruitment was stopped at that time. An additional 28 participants expressed interest in enrolling but did not complete the consent process before the interim study end point was reached; this was also before the original goal of 60 participants was reached. Participant recruitment and enrollment are further discussed below as part of the analysis of feasibility and acceptability.
Intervention Program

The mindfulness-based intervention in this study was delivered through a teen MBSR workbook, either an e-book or paper workbook, and web-based communication across a 10-week period. If selected, the paperback workbook was mailed to participants’ home address; otherwise, access to the e-workbook was provided through email. Participants were assigned weekly readings and activities from an MBSR workbook [19]. Topics included understanding stress, an introduction to mindfulness, and mindfulness-based exercises recommended to be completed daily (eg, mindful eating). Mindfulness-based exercises were either self-led per instructions provided in the workbook or completed using audio-recorded instructions. Participants received emails twice per week with reminders about the current week’s assignments and to practice mindfulness each day. At the end of the week, participants received a reminder to complete a brief survey on the acceptability of that week’s content. This
survey included both multiple-choice questions and open-ended questions regarding how helpful participants found each exercise and what hindered them from completing the exercises that week. Participants completed the following measures at baseline and immediately following intervention completion.

Measures
Multiple measures were administered in the study. Only those relevant to this study are described below.

HbA1c Percentage
At intake, participants self-reported their most recent HbA1c level. Higher HbA1c percentages are associated with less optimal glycemic control in the past 2-3 months.

Intervention Acceptability and Feedback for Recommendations
Acceptability was measured both objectively based on participant engagement as well as per participant report. First, attrition was used as a proxy variable for acceptability. Second, at the end of each week of the intervention, participants completed both multiple-choice and open-ended questions pertaining to the intervention content that week. Information from weekly surveys was used to create recommendations for future intervention development. Specifically, the following questions were asked: “How much of the suggested readings from the book did you read over the past week?” (0=“not at all” to 5=“I read all of the suggested readings”) “What percentage of exercises from the suggested readings for the previous week did you complete while reading the chapter?” (0=“not at all” to 5=“I read all of the suggested exercises”) “How often did you engage in the exercises suggested in the chapter during the previous week?” (0=“none” to 3=“almost daily”) “What got in the way of you following the workbook?” (0=“I forgot”; 1=“I didn’t have time”; 2=“I didn’t understand the material,” “the material was too difficult to follow,” or “the instructions were unclear”; or 3=“other: explain”) and “Please tell us any other thoughts you had on the workbook readings, weekly exercises, or audio tracks this week.” (open-ended).

Analyses
To assess the feasibility and acceptability of the self-led MBSR intervention for adolescents with type 1 diabetes, we conducted descriptive statistics of level of attrition and quantitative questions from participants’ weekly feedback surveys. Qualitative feedback from the weekly feedback surveys was brief and informally and visually analyzed and summarized. We created recommendations for a more acceptable mindfulness-based intervention based on the feedback from the weekly surveys.

Results
All feasibility and acceptability analyses pointed to issues with the acceptability and feasibility of the initial intervention model. First, consistent with problems with study feasibility, many participants did not complete the full study period and were lost to follow up. Among the 29 enrolled participants, 25 completed their baseline survey and were randomized to intervention now (n=15) or waitlist (n=10); groups were not balanced as enrollment was stopped early. A total of 4 of the 29 participants passively declined to complete the baseline survey and were not randomized. Overall, 2 participants withdrew from the study after intake (reasons: busy with school and study participation was stressful). Additionally, 2 participants were lost to follow-up during the program, and 7 participants were lost to follow-up at 10 weeks (3 from intervention-first and 4 from the waitlist group). Another 6 were lost to follow-up at 20 weeks, 3 of those from the intervention first group that was now completing extended follow-up. This suggested challenges with the waitlist design at a minimum, as well as with maintaining participant engagement in the study process.

Second, we examined participant feedback on both reasons for attrition and low engagement. The indicated reasons for attrition included the conflict of busy schedules and the weekly time commitment for the intervention. In the weekly surveys, participants reported, through a Likert scale, barriers to engaging in the weekly material. Options for barriers were “I forgot,” “I didn’t have time,” “I didn’t understand the material or instructions,” and “other.” Average frequencies of selected barriers indicated that the most common barrier to engaging in the material was lack of time (50/120, 41.7%). Average frequencies for the 3 other barriers included 21.7% (26/120; “I forgot”), 23.3% (28/120; “other”), and 13.3% (16/120; “I didn’t understand the material”). When participants selected “other,” they were prompted to fill in a textbox describing the barrier. For the participants who did enter a reason in the textbox, responses included that they felt they did not need a mindfulness practice and noted that diabetes-specific activities would be more helpful than general activities. Additional responses included that the workbook intervention format reflected school tasks and that some of the reading and activities felt geared toward a younger audience. Textbox responses were brief, categorized by 2 graduate students, and reviewed by the principal investigator. However, due to the brevity of responses, no formal codebook was used to code responses. Feedback on acceptability and feasibility was integrated, and recommendations for a digitally tailored MBSR intervention for teens with type 1 diabetes were generated by the study team, including experts in adolescent diabetes management and mindfulness-based interventions.

Discussion

Overview
This study evaluated the feasibility and acceptability of a self-led MBSR intervention. Although there was no support for the feasibility and acceptability of the intervention model, participants provided feedback on multiple improvements that would enhance the feasibility and acceptability of the intervention program. Participants’ weekly feedback pointed to multiple domains where an MBSR intervention might be tailored to the type 1 diabetes context. Hurdles remain in understanding the feasibility and acceptability of these programs, especially in more scalable, self-led forms. For example, in the type 1 diabetes context, there are limited studies examining the feasibility of mindfulness-based interventions for young persons.
of color with type 1 diabetes populations [15]. Additional research on mindfulness-based interventions for adolescents with type 1 diabetes indicates that brief, digital sessions may be more acceptable and feasible for this population [17]. Further research is needed to clarify the long-term benefits and acceptability of mindfulness-based interventions on diabetes distress and glycemic outcomes for adolescents with type 1 diabetes.

Our research has identified multiple potential areas for increasing the acceptability of a self-led mindfulness program for adolescents with type 1 diabetes. In this intervention, feasibility and acceptability assessments indicated that adolescents prefer a shorter, web-based intervention focused on mindfulness regarding diabetes-specific behaviors. We have since identified 5 potential avenues for future mindfulness intervention development in the adolescent type 1 diabetes context that would address the concerns raised by the adolescents in our sample while maintaining a connection to mindfulness-based therapy approaches. First, decrease the amount of content in the self-led form to emphasize the connections between everyday mindfulness, acceptance skills, and diabetes management. Some participants indicated that the original modules and instructions were difficult to understand. Therefore, it may be beneficial to focus the program on a few basic mindfulness skills that are connected to diabetes management to help build an insightful mindfulness repertoire that is meaningful to daily diabetes management. For example, the early sessions of a self-led mindfulness-based intervention might teach an introduction to mindfulness with a guided body scan aimed at increasing self-compassion around diabetes symptoms and tasks. Body scans are a foundational mindfulness practice in MBSR and can be modified to emphasize self-compassion for physiological sensations and experiences that occur during diabetes management (wearing diabetes technology or experiencing hyper- or hypoglycemia). Following this early session, adolescents might be guided to engage in a formal practice audio recording of a diabetes-oriented body scan. Follow-on sessions might continue this same training and expand the experience with a diabetes-oriented body scan with new attention toward self-monitoring and glycemic awareness (symptoms of hypo- or hyperglycemia). Increasing interoceptive awareness through guided meditation may foster adolescent awareness of hyper- and hypoglycemia. Further, acceptability and feasibility may increase if the intervention were delivered through a website or mobile app. Second, the acceptability of a self-led mindfulness-based intervention for adolescents with type 1 diabetes might be increased by contextualizing the emotionally evocative nature of diabetes-management behaviors (changes in eating patterns and emotions in social environments) as life events where mindfulness may be a useful practice. For example, additional sessions might teach mindful eating practices to increase nonjudgmental awareness of food cravings or other hunger- or thirst-related diabetes experiences. Building mindful eating practices may also increase self-compassion about the changes in eating habits necessary to maintain on-target glycemic levels. In addition, mindful eating practice may also help build a repertoire of acceptance and nonjudgmental awareness to decrease diabetes distress when eating habits and glycemic levels are not aligned with medical professionals’ guidelines for type 1 diabetes management. Third, it may also be beneficial for acceptability to incorporate dialectical behavior skills into the mindfulness practice to balance the notion that diabetes-management behaviors are not naturally reinforcing (eg, finger sticks and pump site or sensor placements), yet they are still necessary to maintain health. Later sessions might introduce and teach mindful stopping for stress management to teach adolescents how to pause and engage in mindful savoring of positive life events when diabetes is challenging. Incorporating mindful stopping skills for diabetes-related stressors and activities in everyday life, as well as rumination about past and future diabetes challenges, might particularly benefit reductions in diabetes distress. Fourth, the acceptability of self-led mindfulness programs might be increased by adding a peer support component or a parent component. Although Ellis and colleagues [16] did not find links between a mindfulness-based intervention and improved glycemic outcomes, they did find that a control group peer support program did effectively improve glycemic outcomes, despite the peer support aspect of the program not focusing on diabetes management. The group learning environment is a key feature of live MBSR training that is not available in a self-led format. Periodic (eg, quarterly or monthly) web-based chat rooms or discussion boards moderated by a support staff member might allow a space to encourage peer support around learning self-led mindfulness skills without requiring the greater costs and time invested in live group-based MBSR programs. Further, adding a parent component may help reinforce skills that are learned and support a positive parent-adolescent relationship, the latter of which has downstream effects on glycemic control in this pediatric population [20,21]. Finally, future studies may benefit from the following methodological changes. First, researchers may consider incorporating the use of focus groups and semistructured interviews, as well as other approaches toward conducting community-based participatory research, to obtain information on intervention content and acceptability before recruitment. Second, researchers may consider monitoring recruitment for a representative sample and incorporate recommendations for race-conscious research [22,23] when examining if mindfulness is appropriate in light of historical antecedents.

These recommendations would benefit from testing and exploration in future research studying self-led mindfulness-based interventions in adolescents with type 1 diabetes.

Limitations
This study is limited by multiple factors. The sample that consented to the study was predominantly White and therefore is not generalizable to other races and ethnicities. The study was also limited in the scope of the time period in which participants were recruited and completed the study. Some participants had already completed the study before the COVID-19 pandemic, while others completed the study during the pandemic, which may have confounded the stress and mindfulness levels of the participants. Due to the sample size, we were not able to analyze the data for potential differences across participants who were enrolled before and during the COVID-19 pandemic. Most of the participants reported an
HbA$_{1c}$ that was 8.5% or lower, which may limit the generalizability of the recommendations to adolescents with a higher HbA$_{1c}$. Although not asked in this study, it may be helpful for future studies to ask participants about their previous history with mindfulness and meditation.

Conclusions and Future Directions

While keeping the limitations in mind, the findings of this study provide important data to contextualize the content and delivery of mindfulness-based interventions for adolescents with type 1 diabetes and provide guidance for developing an acceptable and scalable self-led mindfulness-based intervention. First, mindfulness and stress-related processes may be particularly important to understand in the context of type 1 diabetes management, given the long-term health complications that involve the vascular system. For example, the primary cause of death in middle-aged and older adults with type 1 diabetes is cardiovascular disease [24], and cardiovascular disease as well as other macro- and microvascular complications [25] contribute to an almost 17-year decrease in life span for those with an early age of type 1 diabetes onset [1]. Mindfulness-based interventions have been shown to also diminish chronic biological stress regulatory system activation that directly contributes to cardiovascular disease [26], highlighting the importance of developing mindfulness-based interventions that are acceptable and feasible for adolescents and emerging adults with type 1 diabetes. Further research is needed to examine the long-term physiological effects associated with mindfulness-based interventions for individuals with type 1 diabetes and the potential cardio-protective benefits.

Second, the data from study participants provided critical information for guiding the development of scalable self-led mindfulness-based intervention models, including emphasizing content that directly links mindfulness practice to diabetes management with the inclusion of diabetes-specific mindfulness activities. Further research examining the acceptability and effects of self-led mindfulness-based interventions that meet the recommendations provided herein and within a sample of youths that includes persons of color and with socioeconomic disadvantages is needed to better understand and support research on mindfulness interventions and type 1 diabetes management in adolescents.

Finally, mindfulness-based interventions might have a role in addressing internalizing psychopathology that is known to impact glycemic outcomes and quality of life for adolescents with type 1 diabetes. Depressive symptoms may contribute to an environment where adolescents experience decreased energy, leading to decreased engagement in diabetes-management behaviors. Decreased energy then contributes to a coercive cycle where decreased glycemic control contributes to greater depressive symptoms [27]. Adolescents may also experience anxiety symptoms, such as worry. Rechenberg and colleagues [28] found that adolescents with type 1 diabetes reported increased worry about managing their health, particularly regarding hypoglycemia and correct insulin dosing. Mindfulness-based interventions may be useful in disrupting this cycle by reducing the underlying stress associated with many psychological concerns. Further research is needed to identify if subpopulations of adolescents with type 1 diabetes, such as those with internalizing symptoms, might particularly benefit from self-led mindfulness-based interventions.

Acknowledgments

This work was supported by a grant to the AlterMed Research Foundation’s coprincipal investigators, HH-S and AHL.

Data Availability

The data sets generated and analyzed during this study are not publicly available as participants were informed during the informed consent process that their answers and data would not be shared with individuals outside of the research team unless the research team was concerned about the participant’s safety.

Conflicts of Interest

None declared.

References

Abbreviations

HbA1c: glycosylated hemoglobin
MBSR: mindfulness-based stress reduction

©Tori Humiston, Caroline Cummings, Stephen Suss, Laura B Cohen, Holly Hazlett-Stevens, Amy Hughes Lansing. Originally published in JMIR Formative Research (https://formative.jmir.org), 30.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
"I Just Wanted a Dentist in My Phone"—Designing Evidence-Based mHealth Prototype to Improve Preschool Children’s Oral and Dental Health: Multimethod Study of the Codevelopment of an App for Children’s Teeth

Waraf Al-yaseen1*, BDS, MSci, DipME, MDPH, PhD; Daniela Procida Raggio1, DDS, PhD; Mariana Araujo2, DDS, PhD; Nicola Innes1*, BDS, BMSc, PhD

1School of Dentistry, Cardiff University, Cardiff, United Kingdom
2FDI World Dental Federation, Geneva, Swaziland
*these authors contributed equally

Corresponding Author:
Waraf Al-yaseen, BDS, MSci, DipME, MDPH, PhD
School of Dentistry
Cardiff University
Heath Park
Cardiff, CF14 4XY
United Kingdom
Phone: 44 07413162068
Email: Al-yaseenw1@cardiff.ac.uk

Abstract

Background: Dental caries in preschool children is a global health concern. With increased access to technology and the disruption of health care during the pandemic, mobile health apps have been of interest as potential vehicles for individuals’ health maintenance. However, little is known about caring for their child’s teeth and what their preferences would be regarding the content or design of an oral health app.

Objective: This study aims to co-design the prototype of an app named App for Children’s Teeth with parents, providing a source of information for them about caring for their children’s teeth and promoting positive dental habits.

Methods: This multimethod study conducted user involvement research with a purposive sample of parents or carers of children aged ≤6 years to (1) understand their use of the internet through the eHealth Literacy Scale and interviews, (2) determine their opinions about content related to children’s oral health, and (3) collect feedback about the app’s acceptability using the Theoretical Framework of Acceptability. There were three stages: (1) interviews with parents to understand their needs, preferences, and abilities; (2) prototype design with app developers; and (3) parent feedback interviews using the think aloud method for data collection. Data were deductively analyzed using a codebook strategy, whereas data from the think aloud sessions were analyzed inductively using reflexive thematic analysis.

Results: The prototype design stage involved 10 parents who reported using the internet for health information but found it to be scattered and contradictory. Parents generally welcomed the App for Children’s Teeth but expressed concerns about screen time and practicality. They suggested guidance regarding oral hygiene practices, teething symptoms, and pain relief. Parents appreciated features such as clear fonts, categorization according to their child’s age, and “In a Nutshell” bullet points. Topics that resonated with parents included information about teething, finding a dentist, and breastfeeding. They believed that the app aligned with their goals and offered suggestions for future developments, such as outlining the process of finding a dentist and incorporating a forum for parents to communicate and exchange ideas.

Conclusions: The coproduction design approach highlighted parents’ need for solutions such as mobile health apps to access reliable information about oral health. Parents identified key design concepts for the app, including a simple and uncluttered interface, content categorization according to their child’s age, and practical guidance supported by visual aids. Despite potential challenges related to screen time restrictions, parents provided insights into how such an app could fit seamlessly into their lives.

Trial Registration: Open Science Framework; https://osf.io/uj9az
Introduction

Background

Dental caries is the most common chronic disease of childhood, affecting >621 million children worldwide [1]. It negatively affects the quality of life of children and their parents [2]. The condition, dental caries, is biofilm mediated, diet modulated, multifactorial, and noncommunicable. It is dynamic in nature; it can start and stop depending on external factors (such as biofilm removal), and it can progress and regress (demineralization and remineralization), again depending on external factors such as the amount and frequency of sugar in the diet [3], removal of the biofilm, and fluoride application to the teeth during toothbrushing [4]. Evidence-based guidelines recommend that parents take responsibility for their children’s daily activities, care, and food choices to prevent dental caries [5]. These guidelines emphasize managing the external factors through personal care, including toothbrushing with fluoridated toothpaste (>1000 parts per million) and sugar reduction in food choices [5,6].

In recent years, the development and growth of mobile health (mHealth) apps have provided an opportunity to improve access to health information and promote health and well-being using mobile technologies [7]. mHealth has been defined by the World Health Organization as the “use of mobile and wireless technologies to support the achievement of health objectives” [8]. Smartphones are ubiquitous, with an estimated 88% of adults owning one in the United Kingdom in 2021 [7]. Internet use exclusively through smartphones is increasing, and in 2022, overall, 21% of users accessed the internet exclusively through their phones. As such, there is potential for high-quality and engaging health information to be easily accessible and affordable through mHealth. Although there is evidence that mHealth apps can play a role in improving health outcomes, including for oral health and dental plaque control [9], the quality and accuracy of internet-based health information is variable, with potential for harm from misinformation.

To maximize the potential of mHealth apps, it is crucial to prioritize user engagement by involving target stakeholders such as patients, caregivers, and health care providers in the co-design process. Co-design fosters collaboration and leverages the valuable insights of users and designers in the development of products or services. By incorporating user feedback and preferences into the design process, mHealth apps can better meet the needs of their target audience. Theoretical Framework of Acceptability (TFA) is a valuable tool to guide co-design process. TFA proposes that the acceptability of any intervention, such as an mHealth app, is determined by its perceived appropriateness, effectiveness, and feasibility [10]. TFA provides an evidence-based checklist to assess these individual components in an mHealth app prototype, allowing deficiencies to be addressed and ensuring that it meets the needs and preferences of the target stakeholders, and guides the next steps in the development process.

As co-design is a user-centered process, it considers the target audience’s specific characteristics. Context, education, age, and eHealth competence of the end users, among other factors, can significantly influence the design and structure of mHealth apps. The eHealth Literacy Scale (eHLS) is a tool that measures individuals’ ability to access, comprehend, and use health information to make health care judgments. By considering the eHealth literacy of the target stakeholders, an app can be designed to be more appropriate, accessible, and user-friendly, thus improving the likelihood of it being used and, ultimately, its effectiveness [11].

The development of an mHealth app for parents and caregivers of young children that addresses gaps in knowledge and presents evidence-based information in a usable format might promote healthy oral hygiene practices and prevent dental caries in children.

Aims and Objectives

This study aimed to provide proof of concept for designing eHealth technologies in collaboration with the parents of young children, as end users, by designing a prototype of a medical health app to identify gaps in information, develop content, and collect feedback about acceptability.

The objectives were to conduct user involvement studies with parents or carers of children aged ≤6 years at the initial stage to do the following:

- Understand their use of the internet through eHLS and interview
- Determine their opinions about mHealth app content related to children’s oral health

Then, at a later stage of development of the medical health application, we aimed to do the following:

- Collect feedback about the acceptability of the medical health application according to the domains of TFA

Methods

Design

This was a single-site, multimethod, qualitative research study that evaluated parents or carers’ acceptability of a smartphone app prototype.

Ethical Considerations and Data Management

A favorable ethical opinion from Cardiff School of Dentistry Research Ethical Committee (reference number 2210a) was provided by the Dental School Research Ethics Committee on September 13, 2022. The study was conducted from October 2022 to May 2023. The project ensured participant safety and privacy by conducting interviews in safe and private locations.
implementing measures to keep both participants and researchers safe, and maintaining confidentiality of personal information. If sensitive information or harm was disclosed, the research team collectively decided about the further steps and documented the process. Participants seeking dental advice were directed to National Health Service (NHS) Wales. No identifiable information was used in reports or research papers. Study protocol was registered on the Open Science Framework.

All information collected from participants during the study was maintained strictly confidential, and any personal information they provided was managed according to Cardiff University requirements and following General Data Protection Regulation recommendations for data protection (2018) [12]. Records and study documents were stored in a password-protected folder within the university’s OneDrive (Microsoft Corp) cloud space and were accessible only to the research team. Paper-based consent forms were stored in a secure, locked drawer within a locked room on the university premises. Anonymized information and consent forms will be retained for 5 years before being destroyed. However, it could be retained indefinitely when it is likely to have continuing value for research purposes. None of the individuals were identifiable from the data in the reports provided to the funders and partners or in the published research papers.

Participants

Sample Size

A sample size was not set a priori with recruitment continuing until the research team agreed that the data set was sufficiently comprehensive and rich to address the research objectives. On the basis of similar research projects, the sample size was expected to be approximately ≤10 parents or carers [13].

Inclusion Criteria

Adults (aged ≥18 y) who (1) were parents or carers of children aged ≤6 years; (2) were willing to attend 2 in-person interviews; and (3) considered themselves to be fluent in English, Arabic, or Portuguese were eligible to participate.

Exclusion Criteria

Anyone who was working or had worked in the dental profession in any capacity was not eligible to participate.

Procedure

Overview

An overview of the project design is shown in Figure 1. In this study, a multimethod approach was used to comprehensively investigate the research question. Multiple qualitative methods were used, consisting of structured interviews conducted during the 2 stages of data collection, complemented by think aloud methods during feedback interviews. The structured interviews were designed in accordance with TFA, enabling a systematic exploration of various acceptability dimensions. Concurrently, think aloud methods provided real-time insights into participants’ interactions with the app. This integrated approach aimed to thoroughly assess parental perceptions about app acceptability and elucidate the underlying factors. The structured interviews offered a systematic framework, whereas think aloud methods provided spontaneous insights, augmenting the depth and validity of the analysis.

The study used structured interviews as the primary data collection method. These interviews followed a standardized format, with predetermined questions aligned with the research objectives and the TFA. The structured interview approach ensured consistency across all interviews and facilitated a comprehensive exploration of acceptability dimensions. The interviews were conducted in 2 stages to capture the initial impressions and feedback after app use and were set up in one-to-one format between the participant and one of the research team members (DPR or WA). They were conducted at a mutually agreed time and in either a quiet room in the university or at a community center, depending on participants’ preferences. Both were appropriate for conducting interviews—safe, accessible, and private.
Phase 1: Recruitment

Overview

A purposive recruitment strategy was adopted, in which 2 different routes were targeted (Cardiff University employees and attendees of a community center). A web-based invitation was posted on the “Taking Part in the Research” Cardiff University Yammer and on Cardiff University’s social media pages and shared within the researchers’ local community networks (Multimedia Appendix 1). Recruitment from Grangetown Community Centre was conducted by attending public engagement events, such as community fairs and local meetings, and by directly approaching the attendees. The researchers worked with the staff at the community center to help coordinate the recruitment and data collection efforts.

Participant Screening, Information Sharing, and Consent Process

Figure 1 describes the process further. The web-based invitation for both groups referred interested individuals to a web-based questionnaire for further information (Multimedia Appendix 2). This also acted as a first-line screen to guide potential participants regarding whether they met the inclusion criteria and asked them to give their contact details. A member of the research team contacted each person via phone or email within 2 weeks to perform further screening to identify those meeting the inclusion criteria and to explain the study, its aim, that it involved one-to-one interviews with the researchers, and any risks and benefits anticipated by participating in the study.

If they were eligible and still interested in participating, the participant information sheet (Multimedia Appendix 3) and a
consent form (Multimedia Appendix 4) were sent to the potential participants via email for them to review before meeting with the researchers during the face-to-face interview.

During the interview meetings, the interviewers discussed the study and checked the participants’ understanding, and a paper-based consent was signed if they were still agreeable to participate, before conducting the interview.

Phase 2: Requirement Definition and Design Interview

For the first data collection session (design interviews), participants were invited to complete a demographic questionnaire and the eHLS questionnaire. The interviewer explored with the participants the way they currently found and accessed information related to oral health, experience with using technology for health purposes, and potential ideas for the technical development of the app (Multimedia Appendix 5).

Phase 3: Develop a Prototype With an App Development Team

Participants’ inputs were analyzed and shared with the International Dental Federation (Fédération Dentaire Internationale) research team and the Swiss Tomato app development team to conduct brainstorming discussion meetings. The multidisciplinary team examined the results, proposed content and features for the app, and developed the blueprint for the app. The development team used the blueprint to further develop the prototype.

Phase 4: Feedback Interview (Assess the App’s Acceptability)

For the second data collection session (feedback interviews), the researchers maintained the same arrangements as in the first session and conducted the interview in person at a suitable and quiet location. Before the interview, a member of the research team contacted the participants to confirm the location, time, and date of the interview.

During the interview, the interviewer presented the prototype to the participant as a web page and explained how to use it (Multimedia Appendix 6). The data were collected using 2 strategies. First, “Think Aloud,” where the participants were asked to navigate the prototype while expressing their thoughts and perceptions out loud. In addition, the interviewer asked questions based on the TFA theory at this stage. These questions may have focused on the user’s attitudes and perceptions toward the prototype, such as its perceived usefulness, ease of use, and intention to use the system.

Data Handling and Analysis

Recordings were transcribed verbatim using a Cardiff University–approved service. The research team anonymized all personal data collected from or about the participants, except for signed consent forms. Personal information in transcripts that could identify the participants was masked with pseudonyms or omitted if it did not affect the transcript’s context.

Descriptive analysis was used for the participant demographic questionnaire and eHLS data. Qualitative data were analyzed separately for each data collection session using NVivo software (Lumivero) under the Cardiff University license and then interpreted together using a complementary approach. Codebook thematic analysis was used for the design interviews and TFA data [10]. Data from think aloud transcripts were analyzed inductively using reflective analysis.

Participants’ demographic and eHLS details were presented in frequencies. Qualitative data were presented according to the topic summary, with direct quotations from participants’ accounts.

Results

Participants and Interviews

Demographics

The study included 10 parents, with 8 (80%) from Cardiff University and 2 (20%) from Grangetown Community Centre. Table 1 presents their respective demographic characteristics.
Table 1. Participant demographics and interview summary information (n=10).

<table>
<thead>
<tr>
<th>Characteristics and groups</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Woman</td>
<td>8 (80)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
</tr>
<tr>
<td>25-34</td>
<td>2 (20)</td>
</tr>
<tr>
<td>35-44</td>
<td>8 (80)</td>
</tr>
<tr>
<td>≥45</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Self-identified ethnicity</td>
<td></td>
</tr>
<tr>
<td>White British</td>
<td>7 (70)</td>
</tr>
<tr>
<td>White non-British</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Attended college course</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Attended university course</td>
<td>7 (70)</td>
</tr>
<tr>
<td>Other postgraduate education</td>
<td>2 (20)</td>
</tr>
</tbody>
</table>

Interview Characteristics

All participants (10/10, 100%) participated in interview 1. The interviews ranged from 17 to 58 (mean 29.2, SD 11.4) minutes and lasted for a total duration of 292 minutes. However, for interview 2, a participant was unable to attend any of the proposed dates or times owing to a family illness. Therefore, 90% (9/10) of the participants was interviewed during this phase. The duration of the interviews varied, ranging from 23 to 52 (mean 31.1, SD 11.4) minutes and lasting for a total of 280 minutes.

Phase 2: Understand Parents’ Needs and Their Thoughts About and Experience With mHealth Apps

Parents were asked to fill an eHLS survey before the first interview. The survey was completed by 90% (9/10) of the participants. Most of them (7/9, 78%) thought that the internet was useful or very useful in helping them to make health decisions, and 89% (8/9) of the parents felt that it was important or very important for them to be able to access health resources on the internet (Multimedia Appendix 7).

The remaining 7 questions (Figure 2) showed that most parents (7/10, 70%) agreed or strongly agreed with the positive statements about their abilities related to using the internet for health purposes.

Figure 2. Participants’ responses to the eHealth Literary Scale questions (Qs) 3 to 10 (n=9).
Thematic Analysis of Interviews

Overview

The topic guide prompted the parents to discuss several key areas. First, they shared insights about their current sources of information, highlighting both the positive and negative aspects of the different sources they used. Second, they reflected upon their previous experiences with mHealth apps. Finally, they expressed their opinions about the development of an app to assist them in caring for their children’s teeth. During the discussions, the parents freely discussed a range of topics, which could be categorized into three main groups: (1) general comments, encompassing the perceived need for such an app and its compatibility with their lifestyles; (2) desired content and features they would like to see in the app; and (3) preferences regarding the app’s design and visual elements.

Current Sources of Information

Parents stated that they consulted many sources for a broad range of oral health information, with a focus on teething, oral hygiene practices, and identifying oral conditions. These searches were mainly through the internet, especially Google and government websites such as the NHS website. Although they perceived this as an easy-to-access and readily available tool to find information and give peace of mind regarding a topic, they highlighted several issues, including the often scattered and sometimes contradictory nature of the information on the internet:

...It’s so segregated, so almost every question you have is a separate search. [Parent 8]

Another issue they felt was that the information they found was very general in terms of the management without appreciating the variety of normal presentations:

...The problem with looking on the Internet for a picture of a condition is you’re often shown the worst example and also, you’re not showing the full spectrum of possible images...various health conditions can present in various different ways. [Parent 4]

They also felt that technical details about oral hygiene advice were often lacking:

The main things around the technicalities of it [Brushing]...Everything from selection of toothbrush, the firmness of bristles, the length of brushing and whether the age range that it’s safe for a child to brush themselves. [Parent 6]

There was a perceived lack of information on what parents thought were reliable sources of information, such as NHS website, especially about common oral issues that affected them, such as teething. Web-based forums such as Mumsnet and Facebook groups such as Gentle Parents were also commonly used, providing interactive, specific tips from other parents. A participant found Facebook groups to be particularly helpful for finding green alternatives to oral products:

They are [Gentle Parents Facebook group], generally very ethical and environmentally aware and quite

into natural products rather than more standardised. [Parent 9]

When it comes to credibility of other parents’ advice, parents used their experience to judge:

...If it resonates with my experience, then I would probably go ahead with that. [Parent 9]

Parent’s Previous Experience With mHealth Apps

The parents who were interviewed shared a diverse range of experiences with mHealth apps. Mental health apps, particularly the Headspace app, were the most common types of apps that parents had used. Some parents stated that they downloaded the app because their university provided free access to the “Paid” service, which they considered to be a good deal. Some parents mentioned that they still occasionally used the app as it provided easy-to-follow relaxing exercises, and they appreciated receiving regular updates and notifications. Other popular apps among the parents were the NHS COVID-19 app, which provided instant help about laboratory tests and nearest testing centers during the pandemic, and apps that focus on weight loss and tracking physical activity. None of the interviewed parents (0/10, 0%) reported using or looking for an app to help them find health information.

Parents’ Thoughts About the Development of an mHealth App for Oral Health

General Comments

Participants were positive about having access to an app to assist with children’s dental care, citing the need for a reliable and convenient source of information. They talked about potential challenges to using it. Several parents (2/10, 20%) questioned the app’s effectiveness, as people can easily search for answers to their questions on Google. They also worried about whether users would remember to use the app regularly. A possible solution was suggested by a parent: incentivizing app use by giving users “gold stars” for using it every day to encourage regular use. Another issue discussed was the challenge of integrating the app into busy morning routines. Finally, a parent noted the potential difficulty of using the app alongside other devices or apps and fitting it into their lifestyle but also tried to address these challenges with suggestions:

I still haven’t quite worked out how we could fit it in, in the morning because it’s so staggered...So, the whole idea of teeth time is this time in the morning is much more difficult to kind of work out rather than we’re all heading towards bed and therefore we’re all doing our teeth. [Parent 8]

Screen time concerns were highlighted by some parents as the app is intended to be used by both parents and their child:

I think a lot of parents in this day and age struggle already with the amount of screen time. So that would be a bit of a two-edged sword for me. [Parent 5]

Content Suggestions

Suggestions for the content of the app include accessible guidance to help identify potential oral health problems and about how to manage them. They particularly mentioned
teething, including timings, managing symptoms, providing relief, and understanding when things were normal or not in development:

I just wanted a dentist in my phone...I can check whether I need to go and see the doctor, or this is something I shouldn’t be worried about. [Parent 3]

They also wanted guidance and more precise details about how to perform oral hygiene practices, such as when to start brushing their child’s teeth, introducing flossing, how to handle brushing when the child is using inhalers, and importance of supervised brushing for proper cleaning:

Stuff about how you do it [brushing]? at what age do you let them have more control over it? Till when am I still doing it? Is the whole 2 minutes is still a thing if they don’t have all their teeth? [Parent 7]

Design Suggestions

Parents suggested incorporating notifications, videos, engaging games, stories, and brushing timers into the app. They emphasized the need for brushing timers to be in the form of a song as children may not have a proper perception of time:

Kids don’t actually have the ability to understand time...I would say five more minutes till we got to leave the park. That doesn’t actually necessarily mean anything to a child, but following a song they would be able to know that they’re in the middle of the song. [Parent 6]

Parents stressed the importance of using concise and straightforward language in the app and requested a simple design with the ability to return to the main screen at any time. They also suggested categorizing the app according to age for more targeted guidance. Incentives to download the app were discussed, with recommendations from health care professionals and trusted individuals being the most popular suggestions:

The midwives, they give you like a list of some good apps on new-born babies or these are good apps for tracking how often they’re feeding. [Parent 2]

I go to mother and baby groups, and they always have like posters or information. I guess if I saw something in that environment, I’d kind of be like, Oh, okay, maybe this is something that I should look at. [Parent 3]

Phase 3: Design and Develop a Prototype

The design stage of the study resulted in a prototype of an app named *App for Children’s Teeth (ACT)* based on parents’ views and their suggestions for content and design ([Figure 3](#fig3)). The app was aligned with the Health Belief Model [14], including features to increase parents’ knowledge and self-efficacy regarding their children’s oral health practices as follows:

1. **Perceived susceptibility**—informs parents about the risks associated with poor oral health practices for their child’s overall health
2. **Perceived severity**—highlights the consequences of dental diseases if left untreated
3. **Perceived benefits**—educates parents about the benefits of proper oral health practices and incentivizes children with the stamps feature to brush their teeth regularly for better oral health outcomes
4. **Perceived barriers**—addresses common barriers to proper oral health practices, such as lack of knowledge, time, and resources, and provides strategies to overcome them, such as finding a local dentist
5. **Cues to action**—includes reminders and notifications to help parents establish good oral hygiene habits for their child
6. **Self-efficacy**—provides guidance and resources to help parents feel confident in their ability to perform proper oral health practices and prevent dental diseases from developing
Phase 4: Assess the App’s Acceptability

Demographics
All participants, except for a woman parent (9/10, 90%), were interviewed for feedback about the app. Demographic information was similar to that in stage 1.

Main Findings
These data were gathered using the think aloud methodology by asking parents to share their thoughts about the design app prototype as they used it.

Content
The subjects that parents particularly wanted to see incorporated into the app included information about teething, how to brush children’s teeth, how much toothpaste to use, and what kind of toothpaste and toothbrush should be used. They also wanted a feature included to help them find a dentist. Although it was not possible to include everything in the prototype, they recognized when something they had asked about appeared in the app:

When I had my daughter, one of the things that I have researched the most was teething symptoms, signs, everything like that. The fact that it’s there and signs of it, how to alleviate. Amazing, love that. [Parent 3]

Design
Parents felt that the structure fitted with their suggestions and it was simple, easy to navigate, and user-friendly. Having a unique character (the beaver) was perceived as a good way to engage the children with the app activities. A parent suggested allowing the child to name their beavers to enhance familiarity and, hence, engagement. Stamps provided upon completing brushing was also another feature that they felt would improve children’s engagement.

Other positive feedback about the design was having a “home button” on the screen all the time, which allows the users to go back to the main screen regardless of wherever they are. The font used (Sans Serif font) was found to be clear; however, a parent suggested checking the accessibility of the text and whether it is sufficiently clear for people with neurodiverse needs.

During the feedback interview, parents found several aspects of the app design to be useful, including the “In a Nutshell” bulletin points at the beginning of each subject, topics being categorized according to child’s age, and the ability to set reminders. In addition, some parents suggested sending notifications about new updates to keep parents engaged with the app for long term but with the ability for parents to control the frequency of these notifications:
You have reminders for toothbrushing. That’s really good for an older child you can get them to put their reminders on. I think they’ll like that. You could also have some notification, if new research comes out, for example, on a topic that you have in...not daily because people are likely to turn them off. [Parent 9]

TFA Questionnaire Analysis
As part of assessing the acceptability of the app, the TFA constructs were analyzed using the parent responses (Table 2).
<table>
<thead>
<tr>
<th>TFA constructs</th>
<th>Definition</th>
<th>Relevance to this study</th>
</tr>
</thead>
</table>
| **Affective attitude** | “Experienced Affective Attitude: How an individual feels about the intervention, after taking part” | • Parents thought that the app prototype satisfied parents’ needs for oral health education, but because it is only a prototype, here is scope for improvement:
 • “It’s very intuitive and I think parents will find this really helpful and easy to use. Obviously, there’s a few things to complete.” [Parent 9] |
| **Ethicality** | “The extent to which the intervention has good fit with an individual’s value system” | • Parents found the app to be aligned with what they value about their children’s oral health:
 • “I would say so, especially this day and age, everything is so busy. I rely on my phone for many things. It’s helpful to have an app that offers options for setting reminders and schedules.” [Parent 6]
 • “The app is prioritising children, I think that’s brilliant.” [Parent 7] |
| **Burden** | “Experienced burden: the amount of effort that was required to participate in the intervention” | • Thoughts about using an app such as ACT on a routine basis are variable; some parents thought that they can use such as app, but it will not be realistic to use it on a routine basis:
 • “I don’t think a parent is likely to read about oral hygiene every day or every other day. You’ll read it if there’s an issue.” [Parent 5]
 • Others felt that it provides convenience owing to its structure and being an app:
 • “No not at all, I think something that you can download on your phone, you can choose a convenient time when you want to look at it and you can just access it any time and just look at the tabs that you want to, I think it’s really useful you’ve got all of the mini tabs, just to quickly click into, right at the front page, so you don’t even have to go digging for information because you can just choose what information you want to access straight away really, so yes I think it would be really useful.” [Parent 5] |
| **Opportunity costs** | “Experienced opportunity cost: the benefits, profits or values that were given up engaging in the intervention” | • Participants feel that using such a tool will be beneficial to learn about oral health:
 • “I think it will be easier because usually, whenever it’s a health-related issue about my children, I just Google things, but now I know there is one place for all information.” [Parent 1]
 • It can also be a useful option if the dentist is not accessible:
 • “If I couldn’t get on a list to go to a dentist which is a big problem for lots of people, it would maybe feel like, well, I can’t do that but at least- Here’s an app that’s giving me information that doesn’t feel like a stretch, I’ve downloaded this app so I’m doing something.” [Parent 9] |
| **Perceived effectiveness** | “Experienced effectiveness: the extent to which the intervention is perceived to have achieved its intended purpose” | • ACT prototype was found to achieve its goals albeit having different priorities, but most parents emphasized the need to keep the app updated to continue achieving its objectives:
 • “I’ve learned two things just by looking at it. but the information should be regularly updated, I suppose.” [Parent 7] |
| **Self-efficacy** | “The participant’s confidence that they can perform the behaviour(s) required to participate in the intervention” | • Parents have different views about whether they feel confident that using the ACT app will keep them informed. Most cautious opinions where around whether the app follows the child’s growth:
 • “You’d have to see more. it certainly will keep me informed because I have a resource to go to, but it would depend on the full functionality. As the child ages up, does the information change to stay current? Does it prompt you that maybe you should be buying a different type of toothbrush at this age?” [Parent 3] |
Suggestions for Further Development

A wide range of suggestions was made for the app’s next stages of development, but one of the main suggestions was around finding a dentist:

> If you could outline the process of applying for a dentist, and the approximate wait times and things like that? I know that a lot of parents won’t be thinking about it until they need to do it. [Parent 4]

Other suggestions were to enhance the app by addressing teeth shedding time, creating forum spaces for parent communication, and integrating augmented reality for guided brushing.

Discussion

Principal Findings

This study found that the interviewed parents felt there was a need for a reliable tool that they had confidence in, to assist them in managing their children’s oral health. This resonates with the worldwide trend of people using health apps to improve public health. With >55,000 health apps available globally on Google Store [15], these tools have, in some cases, been carefully evaluated to see how well they help with things such as diet [16,17], physical activity [18], or managing blood sugar [19]. mHealth apps are the most popular downloads from app stores.

They felt this would be particularly useful for young children who experience multiple landmarks during dental development such as teething, breastfeeding, and starting to brush their teeth.

An mHealth app for oral health was considered by them to be a viable possibility in filling this gap and would be easily accessible and useful for parents. Although a loose topic guide was used for the interviews, the parents were given the opportunity to talk broadly about oral health information, its sources, and the potential use of apps. Unsurprisingly, engaging the target population helped us understand their needs and preferences, and the iterative nature of the design process emphasized the need to continuously refine the prototype based on feedback. This is important in the development of digital health interventions such as mobile apps, which require a user-friendly interface and a seamless user experience to be effective.

Health Literacy and Participants’ Demographics

Health literacy is a relatively new concept. It is “linked to literacy and entails people’s knowledge, motivation and competencies to access, understand, appraise and apply health information in order to make judgments and take decisions in everyday life concerning health care, disease prevention and health promotion to maintain or improve quality of life during the life course” [20]. It is known to be linked to better health outcomes, as individuals with high levels of health literacy are more able to navigate health care systems, advocate for themselves, and make good health and prevention-based choices [20]. Approximately half of the adults in the United States have been found to have a low or marginal level of health literacy [21], with similar findings in Europe [22]. With both the risk of dental caries and low health literacy being linked to socioeconomically disadvantaged groups, there is a risk that those who are most in need of easily available evidence-based preventive advice and oral health information are the least likely to be able to find, access, and use it. Using eHLS, the population that volunteered for this study showed an overall high level of health literacy and was likely not representative of the overall Welsh and UK populations. Nevertheless, they were in a good position to help inform the development of the prototype and comment about it. We tried to recruit different populations by accessing a group through university employees and a separate population in an area of Cardiff with low socioeconomic status. We used a community hub to invite participants and it may be that those who attend the hub are more likely to have reached a higher level of education and therefore health literacy than those who do not access the hub. For the further development stages of the app, we would actively seek a more representative group, possibly by accessing patient groups.

It was interesting that some of the parents mentioned screen time for their children as perhaps being a barrier to having the child engage with the app. The 2022 Ofcom Report about media use for parents and children found that in the UK nations, parents in Wales were more likely to be very concerned about their child’s media use [7,23].

Design Process

Parents’ Current Source of Information

During the design interviews, parents reported that they primarily relied on search engines and government websites, such as the NHS website, for information about children’s oral health. However, they did not mention any specific resources dedicated to children’s oral health, indicating a need for better education and awareness about reliable sources of information. This may suggest that existing reliable resources have limited impact and reach, despite the funding and man power that are

<table>
<thead>
<tr>
<th>TFA constructs</th>
<th>Definition</th>
<th>Relevance to this study</th>
</tr>
</thead>
</table>
| Intervention coherence | “The extent to which the participant understands the intervention and how it works” | - Parents thought that using technology such as an interactive app to achieve engagement with the target population (parents and young children) is a suitable intervention to improve children’s oral health:
- “Thinking of my daughter, now, I know that she loves interacting with apps because they have iPads at school. They have Chromebooks. So, I think children over five, maybe, who are in school already, would love to have something for them in there, like the one here, like the brushing, the videos, the timers and music and all that.” [Parent 9] |
| aACT: App for Children’s Teeth. | | |

Al-yaseen et al. JMIR FORMATIVE RESEARCH https://formative.jmir.org/2024/1/e49561
potentially invested in developing them. It will be crucial to
develop a clear marketing plan during the further development
stage of the app to increase its visibility. For example, some
parents mentioned using apps related to pregnancy and parenting
that were recommended by their midwives. This suggests that
leveraging home visitors’ accessibility or dentists and general
medical practitioners could be effective routes to promote the
app. Parents also emphasized the value of peer experiences and
word-of-mouth recommendations, as Facebook groups were
frequently mentioned as a source of information and advice. In
a similar way to mental health apps, leveraging social media
platforms through health care providers might be a way to reach
out to parents and promote the app through these channels [24].

Acknowledging the significance of trusted endorsements in
mHealth apps for parents is crucial. In our study, all parents
(10/10, 100%) consistently emphasized the importance of NHS
endorsement as a key factor in their decision to download and
trust the app. NHS holds weight and credibility as it signifies
alignment with recognized health care standards. Therefore, it
is essential to include a plan for obtaining such an endorsement
during the design and development process. However, this
journey is complex, lengthy, and multidisciplinary, involving
registration as a medical device and adherence to NHS values
and specifications.

Parents’ General Thoughts About the Development of
an mHealth App for the Oral Health of Children
The parents were positive about the idea of an app for delivering
oral health education to children. This positive reception was
further evident in the recruitment process, which surpassed
expectations, with parents actively providing feedback and
suggestions. In addition, their willingness to receive follow-up
emails showed their engagement. The enthusiastic response
from parents highlights the potential impact of a well-designed
and user-centric mHealth app in promoting positive health
outcomes for children. By actively involving parents in the
development and implementation processes, their perspectives
and insights can be integrated into the app, ensuring better
alignment with their expectations and health care needs.

Previous Experiences With Health Apps
Parents’ experiences with mHealth apps such as Headspace
and MyFitnessPal provide valuable insights into the factors that
contribute to their positive perceptions. The simplicity of these
apps, characterized by user-friendly interfaces and intuitive
navigation, resonated with parents seeking a hassle-free and
user-friendly experience. The availability of free content in
Headspace allowed parents to explore meditation and
mindfulness practices without financial constraints, which was
highly appreciated. Notifications related to mental health and
well-being served as gentle reminders and motivators for parents
to engage with the app. The wide applicability and provision
of relevant information in MyFitnessPal were also highly valued
by parents, highlighting the importance of addressing users’
needs and expectations. These insights were carefully considered
and incorporated into the design stage of our app prototype, as
demonstrated in the Results section.

Development With an App Development Team
During the development of the dental app, collaboration with
the app development team brought both excitement and the
natural occurrence of differing priorities. Cross-disciplinary
synergy was a highlight, with the app developers effectively
responding to parent feedback by creating a user-friendly
interface with quick 1-click buttons and a home button for easy
navigation. However, differing priorities emerged with the app
developers aiming for minimization of the number of screens
for cost control, whereas the dental team prioritized clinical
relevance and usability. These variations in focus were resolved
during dialogue and compromise, leading to a better product.

Feedback About the Prototype
The ACT app design and its content, created based on parents’
feedback and underpinned by the Health Belief Model, were
felt by parents to have the potential to promote good oral health
practices among children and parents. The positive findings
of our project are consistent with the available evidence regarding
the end user’s accessibility of using such technologies for oral
health promotion [25-27]. Parents emphasized the importance
of simplicity and user-friendliness of the app. These features
were considered just as important as the quality of information
provided in the app, highlighting the need to consider user
experience in the design process and the importance of involving
users in the development of health interventions. These findings
are consistent with those of previous studies.

Key features of the app that were positively received included
the incorporation of unique features such as a relatable character
(the beaver). The character may have provided a sense of
personalization and connection to the app. The “stamps” feature
was designed based on gamification principles, providing a
tangible and visible reward for completing oral-related tasks
[9]. This type of engagement strategy has been shown in a
meta-analysis to be effective in promoting positive oral health
behavior change, such as regular toothbrushing and flossing,
among children and parents [28]. The reminder and notification
feature of the ACT app was positively received by parents,
indicating its potential value in promoting long-term engagement
with the app. Reminders and notifications can increase
engagement and retention in digital health interventions and
can lead to improved health outcomes.

Although the app has several positive features, some feedback
highlighted the aspects to be considered for future development.
Many parents (6/10, 60%) expressed the need for NHS
endorsement as a crucial factor in engaging with the app.
Securing NHS endorsement poses significant challenges owing
to the stringent standards and guidelines established by NHS
[29]. These complexities span clinical validation, regulatory
adherence, incorporation of user feedback, engagement with
stakeholders, conducting health economic assessments, and
intricate management of legal and ethical considerations. Each
of these facets demand meticulous attention and allocation of
resources to align with NHS’s rigorous criteria and secure their
indispensable support. Therefore, careful planning and
consideration of these factors are necessary in further
development stages.

https://formative.jmir.org/2024/1/e49561
A parent also commented about the accessibility considerations of the app for individuals with neurodiverse needs. Incorporating accessible, evidence-based recommendations into the design process can ensure that the app reaches a broad audience and promotes better oral health outcomes [25].

Finally, concerns about screen time were raised by parents. Studies have highlighted the adverse impacts of excessive screen time on various aspects of children’s well-being, including cognitive and socioemotional development [30,31].

Hence, to ensure successful adoption and sustained use of the mHealth app, it is essential to address these concerns and mitigate the potential impact of increased screen time. Strategies can be implemented within the app to promote responsible screen time practices. This may include incorporating features that allow parents to set time limits on app use, providing guidance about optimal screen time duration for different age groups, and emphasizing the importance of engaging in offline activities and interactions to complement the app’s use [32]. Including ideas for interactive, off-screen activities such as games and quizzes may also be beneficial [33].

Limitations
The study’s results may have been limited by several factors. First, most of the participants (8/10, 80%) were highly educated women, most (participants had university education; 9/10, 90%), and the age range was relatively narrow, with all participants (10/10, 100%) aged between 25 and 44 years. This was probably related to the recruitment strategy despite efforts to recruit diverse groups by targeting both a university employee cohort and local community center members.

Furthermore, the recruitment process relied on convenience sampling, which may have resulted in a sample that is not representative of the broad population. Although the researchers made efforts to recruit participants through multiple channels, all participants (10/10, 100%) were from 1 city, which may limit the applicability of the findings. This is particularly relevant because the app was developed in collaboration with the International Dental Federation (Fédération Dentaire Internationale), which aims to further refine the app with global perspective.

It is crucial to highlight that the exclusion of children as participants in our study significantly hampers our comprehension of their perspectives regarding the app. This is particularly important considering that parents expressed the belief that the app should be used collaboratively by both the parent and the child. By omitting children from the study, we miss valuable insights that could contribute to a more comprehensive understanding of the app’s use dynamics.

In addition, the development process may have been constrained by limited funding and man power, which may have influenced the extent of user testing and refinement of the app. However, despite these limitations, the study provides valuable insights into the importance of user-centered design and testing in the development of mHealth apps. Future studies can use these insights to further refine and evaluate the effectiveness of the app in improving oral health outcomes in diverse populations.

Conclusions
Digital health interventions, such as the ACT app, have the potential to promote healthy behaviors among children and have important implications for public health. The incorporation of theoretical framework, user cocreation in the design process, and emphasis on simplicity and user-friendliness have been identified as key factors contributing to the success of the intervention. These strategies have also been shown to be effective in promoting engagement and adoption of the intervention. Further studies are needed to build the app based on parents’ views and pilot test to evaluate its impact on promoting healthy behaviors among children.

The study highlights the importance of user-centered design when developing health-related tools and the value of conducting user research and iterative testing to ensure that the tool meets the needs of the target audience. The findings of this study can inform the development of similar tools in the future and ultimately help to improve oral health outcomes for young children.

Acknowledgments
This study was supported by the Higher Education Funding Council Wales Research Wales Innovation Fund through Cardiff University (Innovation for All). The sponsor had no role in data collection or publication. The authors would like to express their gratitude to Ms Annalisa Willmott for her valuable contributions and insightful discussions.

Data Availability
Preliminary data are available upon reasonable requests.

Authors’ Contributions
DPR, WA, NI, and MA conceived the study. WA and DPR conducted the participant interviews and collected the data. WA analyzed the data. WA, DPR, and NI drafted the manuscript. All authors read and approved the final manuscript before submission.

Conflicts of Interest
None declared.
Multimedia Appendix 1
Document to engage participants.
[DOCX File, 100 KB - formative_v8i1e49561_app1.docx]

Multimedia Appendix 2
Registration form.
[DOCX File, 458 KB - formative_v8i1e49561_app2.docx]

Multimedia Appendix 3
Participant information sheet.
[DOCX File, 89 KB - formative_v8i1e49561_app3.docx]

Multimedia Appendix 4
Consent form.
[DOCX File, 101 KB - formative_v8i1e49561_app4.docx]

Multimedia Appendix 5
Interview guide.
[DOCX File, 81 KB - formative_v8i1e49561_app5.docx]

Multimedia Appendix 6
Example of the mobile app’s layout.
[DOCX File, 1019 KB - formative_v8i1e49561_app6.docx]

Multimedia Appendix 7
Participants’ responses to the eHealth Literacy Scale (eHLS) questions (Qs; A) 1 and (B) 2 (n=9).
[PNG File, 82 KB - formative_v8i1e49561_app7.png]

References

Abbreviations

ACT: App for Children’s Teeth
eHLS: eHealth Literacy Scale
mHealth: mobile health
NHS: National Health Service
TFA: Theoretical Framework of Acceptability
Administrative Dashboard for Monitoring Use of a Web-Based Parent Training Intervention: Usability Study

Susan M Breitenstein¹, PhD; Julia Berteletti², MSW; Shea Smoske¹, MPH; Charles Barger², BFA; Kyrie Tipps¹, BA; Nathan P Helsabeck³, PhD

¹College of Nursing, The Ohio State University, Columbus, OH, United States
²Klein Buendel, Inc, Golden, CO, United States

Corresponding Author:
Susan M Breitenstein, PhD
College of Nursing
The Ohio State University
1577 Neil Avenue
Columbus, OH, 43210
United States
Phone: 1 6146884614
Email: breitenstein.5@osu.edu

Abstract

Background: Web-based parent training (PT) programs can strengthen parent-child relationships by equipping caregivers with knowledge and evidence-based strategies to manage behavior. Hybrid facilitation of PT includes facilitator interaction paired with self-administered and web-based PT. Web-based administrative dashboards provide users (eg, administrators, facilitators, and researchers) with an integrated platform to monitor parent progress and activities within a PT program or website. Despite the utility and prevalence of administrative dashboards for web-based behavioral interventions, to our knowledge, no research studies have explored the perspectives and insights of dashboard users to enhance user experience and program delivery.

Objective: The purpose of this study is to evaluate the usability of the administrative dashboard (ezDashboard) for the ezParent program, a 6-module web-based PT program for parents of children aged 2-5 years.

Methods: This study used a descriptive, single-group design with administrators who were overseeing the implementation of the ezParent program and trained facilitators for hybrid ezParent delivery. Participants spent at least 30 minutes reviewing and evaluating the ezDashboard and then completed a survey of their experience with the dashboard. The survey included the validated 10-item System Usability Scale and open-ended questions focusing on user performance, navigation ease, and overall usefulness of the ezDashboard.

Results: Participants (N=15) indicated high usability of the ezDashboard with System Usability Scale scoring a total mean score of 83.5 (SD 16.3). Most participants (n=13, 87%) rated the overall user-friendliness of the ezDashboard as good (n=3, 20%), excellent (n=9, 60%), or best imaginable (n=1, 7%). Open-ended questions revealed the ezDashboard is or would be useful to monitor parent progress and trends in engagement (n=8, 53%) and for reviewing topics for discussion and communicating with parents (n=5, 33%). ezParent administrators (n=4) identified that real-time data for ezParent use helps overall management of program uptake. Suggestions for features to add to the ezDashboard included the ability to track partial progress of program modules (4/14, 29%), total time spent per module (2/14, 14%), and exportable reports (4/14, 29%). Other ideas for improvement included direct messaging capabilities, videoconferencing platform integration, and being able to modify participant account and contact information.

Conclusions: Results indicate that the ezDashboard is easy to use and provides functional information to facilitators and administrators in delivering ezParent. Qualitative results indicate that integrating suggested features into the ezDashboard may help provide a smoother experience for facilitators, administrators, and ultimately the parents using the program. Providing resources for facilitators and administrators in real time to monitor intervention participants’ progress in a program can be helpful in tracking progress and providing facilitated support in tailoring program content and program completion.

(JMIR Form Res 2024;8:e53439) doi:10.2196/53439
Introduction

Parent training (PT) programs—the gold standard for prevention and treatment of child behavior problems [1-3]—aim to strengthen parent-child relationships by providing caregivers with knowledge and evidence-based strategies to effectively strengthen their parenting skills and support their child’s positive behavior. Parents who have participated in PT programs have demonstrated improvements in multiple areas, including improvements in positive parenting skills, self-efficacy, and parent-child interactions; and reductions in negative or harsh parenting and parenting stress [2,4,5]. PT participants’ children exhibit improvements in child behavior, display decreased conduct problems and aggression, improvements in academic performance, enhanced coping skills, and strengthened relationships with both caregivers and peers [2,4]. Traditionally, PT programs have been offered in-person in group or individual settings; however, web-based adaptations have emerged to mitigate the geographic, logistical, and personal barriers of face-to-face delivery [6-8].

In addition to web-based programs, web-based administrative dashboards have emerged as a promising method to improve delivery and management of web-based interventions [9-11]. These dashboards provide an integrated platform to monitor user progress and activities within a program or website. Administrative dashboards are particularly useful tools for administrators, implementers, researchers, and others who require access to detailed information regarding user usage patterns, performance and achievements, and program progress and completion [10,12,13]. For example, in a research and practice context, dashboards can be used to monitor program fidelity and provide clear metrics to understand how the program is being used in real time.

In the context of web-based programs delivering behavioral interventions, administrative dashboards prove particularly valuable. For example, administrative dashboards can include timestamps for login and logout; activity completion; and fill-in responses to in-program prompts, quiz results, page clicks, and diary entries [9,11,14,15]. These program usage metrics enable administrators to make data-driven decisions, identify areas for improvement, and provide critical support to program and research staff when offering personalized guidance to users [10]. Researchers and program facilitators working directly with participants can leverage the dashboard to prepare for discussions by reviewing the participant’s last logins and progress, using fill-in prompt responses to ask tailored questions, and providing troubleshooting recommendations to encourage program engagement [9,11]. Armed with these data points, facilitators can improve their support of participant use of a program, tailor program materials, and ultimately support improvement for child and parent social-behavioral outcomes.

Despite the utility and use of administrative dashboards, to our knowledge, there are no research studies exploring the user experience of an administrative dashboard related to web-based behavioral interventions. Thus, there is an opportunity for further research to optimize existing functionalities and address limitations to better support administrative dashboard users. Usability, which plays a crucial role in the adoption, engagement, and overall effectiveness of web-based administrative dashboards supporting behavioral health interventions, becomes paramount. The usability of a web-based innovation is commonly assessed on several domains including the efficiency, intuitiveness, ease of use, and satisfaction experienced by the user [16]. The purpose of this study was to investigate the usability of the administrative dashboard for the ezParent program, a web-based PT program. Specifically, our goal was to establish a baseline for user performance, ease of navigation, and usefulness.

Methods

Study Design

This study was a descriptive, single group survey design with participants who were overseeing the implementation of the ezParent program (administrators) or trained facilitators for hybrid ezParent delivery (facilitators).

ezParent Program

The ezParent Program is the web-based delivery of the Chicago Parent Program (CPP). The CPP has been shown to be effective in improving positive parenting skills, parenting self-efficacy, and child behavior problems in a population of low-income, urban parents of children aged 2-5 years old [17,18]. The ezParent Program teaches parents and caregivers the evidence-based strategies of CPP using 6 modules that include a video narrator and vignettes of families using the skills, reflection questions, program activities, and in-home practice assignments [19]. In a pilot randomized controlled trial (RCT) of ezParent (n=83), parents completed 82% of the 6 modules, reported high satisfaction with the program, and we found comparable effect sizes in improvements in parenting practices and reductions in parenting stress and child behavior problems to the group-based CPP [20,21]. In an RCT of self-administered ezParent in primary care (n=287), we failed to find significant main effects for parent and child behaviors [22]. Based on our findings and the extant literature suggesting web-based programs are more effective when provided along with human support [22,23] we are currently testing 2 models of hybrid delivery. The first includes 1:1 brief coaching as part of an RCT funded study (see Greene et al [24]) and community-based delivery of ezParent paired with web-based group sessions [25].

ezParent Dashboard Design and Development

The ezParent program tracks user progress as parents use the program. Custom data tables collect and store user data with...
timestamps for logins, completed modules, end-of-module surveys, badges, practice assignments, and practice reviews. The administrative dashboard (ezDashboard) was developed to include these data points for hybrid delivery facilitators to monitor parent progress in the program and to inform hybrid sessions to encourage and support parent program uptake.

ezDashboard logins are created internally by programming staff and are provided to administrators and facilitators. Users access a “Parent Lookup” form by entering the unique ID given to parents during ezParent enrollment and the parent’s last name. These form fields are used together to ensure participant data security. The parent is added to the home page or “Parent List” if the user ID and last name match an individual user in the database. The parent list displays the user ID, last name, last login date, and the last viewed module. When a parent has completed their time in the ezParent program, users can easily remove that parent from their home page.

From the parent list, ezDashboard users can access more details for an individual parent user by clicking on a “Details” button. The top of the “Details” page displays the user ID, name, phone number, and participant email for easy contact. Contact information is followed by detailed use metrics, including a scrollable list of all login dates, completed modules with a green check mark to indicate completion and the date they were completed, module survey responses, completed badges and dates earned, and responses for practice assignments and practice reviews. Finally, a downloadable, individualized completion certificate is accessible once the last (sixth) module is completed. See Figures 1 and 2 for ezDashboard screenshots.

The ezDashboard’s user interface was made in React (version 17.0.2; MetaOpenSource), using responsive web design principles to allow access across different device sizes. Microsoft SQL Server stores real time user data, which the user interface fetches and displays.

Figure 1. ezDashboard home page: a detailed description of parent use in the program.
Ethical Considerations
The research protocol for this study was determined exempt by the institutional review board at The Ohio State University (study number 2023E0289). Participants completed a web-based consent form. All survey data were deidentified and participants were informed that deidentified data may be used or shared without additional informed consent. Participants who consented and completed the survey received a US $25 gift card for participation in this study.

Participants
We invited ezParent administrators (n=4; individuals overseeing implementation of ezParent) and facilitators (n=19; trained facilitators for hybrid ezParent delivery) to participate in the usability study with a goal for a sample size between 10 and 15. Administrators and facilitators were invited as they may have unique perspectives related to usability depending on their ezParent role. Macefield [26] suggests that a sample size of 3-20 is valid in a usability study to discover usability and potential problems and a sample of 10 will probably reveal a minimum of 82% of the problems and be useful in future design changes. Of the 23 invited to participate in the usability study, 16 consented to participate, and 15 completed the review of the ezDashboard and usability survey.

Procedures
Potential participants received an email inviting them to participate in the usability study. The email invitation included a description of the project and a link to the consent form in REDCap (Research Electronic Data Capture; Vanderbilt University) [27]. Once consent was obtained, participants were instructed to spend at least 30 minutes reviewing the ezDashboard and evaluating the features. Participants who were not current users of the ezDashboard were provided with login access and instructed to add 2 sample users to their Parent List. Current users of the ezDashboard were instructed to sign into their accounts and review user accounts on their existing Parent List. Both groups were instructed to evaluate their users’ activity on the main page and on the detailed page of all modules in order to evaluate the usefulness of the ezDashboard. These procedures include typical tasks that a facilitator would take in evaluating and monitoring parent use of ezParent. Then, participants were prompted to complete the survey and asked to identify their current role using the ezParent program (eg, facilitator or administrator). At the completion of the survey, participants received a US $25 gift card for their participation.

Measures
The 10-item System Usability Scale (SUS) is a tool for assessing the usability of a product (eg, websites, cell phones, and apps). The 10 items are scored on a 5-point Likert scale (range 0 strongly disagree to 4 strongly agree). A total usability score,
representing a composite measure of usability is created by reversing the score of even-numbered items, summing the items, and multiplying by 2.5 to convert the original total scores of 0-40 to a 0-100 scale [28]. A score of 70 is considered average, 80 good, and 90 or above excellent usability [29,30]. The SUS is a simple and efficient tool for assessing the usability and user-friendliness of a technological platform with demonstrated reliability across multiple studies (α=.91) and strong evidence of a single factor structure [29]. Our administration of SUS reflected the revised language and overall rating of the user-friendliness introduced in Bangor and colleagues [30]. Survey responses were collected in REDCap [31,32].

Following completion of the SUS, participants were prompted to respond to open-ended questions to elicit further information on their opinions of the ezDashboard. Questions included the frequency of use and the helpfulness of the ezDashboard and items that may be missing or could be changed in future iterations. Facilitators were asked specifically how access to this real time information helps them work with parents using the ezParent program and administrators were asked how the information helps them with overall management of the program. Finally, participants were asked to self-report their race or ethnicity, age, and gender.

Analysis Plan

The composite SUS score was calculated by reverse scoring even-numbered items so that all items were scored in the same direction. Composite scores were then calculated by summing the item responses and multiplying them by 2.5 so that they fell on a scale of 0-100. Summary statistics were calculated for the composite scores and frequencies are reported for the overall rating of user-friendliness.

For analysis of the open-ended questions, 2 authors organized the responses by group (eg, administrators and facilitators) and conducted a thematic analysis of all responses based on the steps outlined by Braun and Clarke [33]. First, we reviewed all the responses and generated initial themes and categories. These categories were reviewed by the 2 authors and confirmed by a third author. Finally, we categorized the themes in order to provide a description and examples in this report. We quantified the comments in each category in order to provide a frequency related to participants’ ideas, suggestions, and ideas provided related to the usability of the ezDashboard.

Results

Participants

A majority of participants (N=15) were women (n=12, 80%), White (n=11, 73%), with a mean age of 40.9 years (SD 13.9; range 20-68; Table 1). Participants were ezParent facilitators (n=10) and administrators (n=4); 1 participant did not report their role with ezParent. Participants (n=9) who were actively using the ezDashboard at the time of the survey reported weekly use (n=3, 33%), once every few weeks (n=1, 11%), monthly (n=1, 11%), and less than monthly (n=4, 44%).

<table>
<thead>
<tr>
<th>Demographic characteristic</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>12 (80)</td>
</tr>
<tr>
<td>Men</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Missing</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>3 (20)</td>
</tr>
<tr>
<td>More than 1 race*</td>
<td>1 (7)</td>
</tr>
<tr>
<td>White</td>
<td>11 (73)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Chose not to answer or missing</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Not Hispanic</td>
<td>13 (87)</td>
</tr>
</tbody>
</table>

*In total, 1 participant reported their race as Black and other.

About SUS

Scoring of the SUS indicated high usability of the ezDashboard with a total mean score of 83.5 (range 47.5-100; SD 16.3; median 90, IQR 72.5-97.5). Overall, most participants (n=10, 67%) rated the overall user-friendliness of the ezDashboard as excellent (n=9, 60%), or best imaginable (n=1, 7%; Table 2). On average new users (n=6) ranked the ezDashboard higher (mean 90.8, SD 8.01) than existing users (n=9; mean 78.6, SD 18.84); however, this difference was not statistically significant (P=.16) and may be the result of high variability associated with small samples.
Open-Ended Survey Responses

Usefulness of the ezDashboard

Participants (N=15) reported that the dashboard allowed them to keep track of parent progress and identify potential problems that may arise with parent completion of ezParent modules and serves as a helpful cue for discussion with parents. Specifically, 53% (8/15) of participants, both current users and participants who had not yet interacted with the ezDashboard, identified that the ezDashboard is or would be useful for monitoring parent progress and identifying trends in parent participation. As 1 facilitator reported, “I typically check it right before the calls to see the participant’s last login and how much of the program they have completed.” Another reported, “This makes it much easier to track program adherence and help support parents who need a little extra help in completing the program.” Finally, a participant wrote, “Overall trends of participation are helpful to learn if any systemic barriers to participation need to be addressed.” In addition to monitoring progress, participants (n=5, 33%) identified the ezDashboard as useful in reviewing topics for discussion and communicating with parents during the hybrid session. For example, 1 participant wrote “I would use the dashboard to…Refer back to specific content from modules,” and another “use it to inform the next group meeting, for example, if I noticed that everyone thought a previous module was difficult, I would give more time to that discussion.”

ezParent administrators (n=4) identified that real-time data for ezParent use helps overall management of program uptake and promotes parent motivation and accountability for module completion. For example, 1 program provides incentives for module completion and uses the ezDashboard for tracking program use for the provision of these parent incentives. Administrators also provided that this information “would also be helpful for facilitators in learning when/how/if they need to modify their approach” when facilitating hybrid ezParent and allows them to respond to questions from parents more promptly.

Suggested ezDashboard Changes

Participants (N=15) were asked if there was any information missing from the ezDashboard (14 responded). Overall, participants suggested potential data points in the ezDashboard to allow a more in-depth assessment of parent program use. Participants (n=4, 29%) identified that the ability to track partial progress through the modules would be useful, with suggestions of “it would be nice to see the # of logins for a week” and “it would be nice to differentiate if modules were completed or started, such as a sliding scale of how far through the module the parent has gotten so far.” In total, 2 (14%) participants suggested tracking the total time spent in each module as a method to understand meaningful engagement with the program and whether “a parent may be working a little too quickly through the program.” The administrative participants (n=4) believed “exportable, customizable reporting” would be useful for overall program management. In addition, more control in terms of modifying ezDashboard information was identified, including amending parent information (eg, name and phone number) and the ability to group parents by cohort for tracking. In total, 38% (6/14) of the participants indicated that they would change nothing to make the ezDashboard easier to use.

Beyond program metrics, participants identified changes that would integrate the hybrid delivery methods into the ezDashboard. For example, including attendance records for hybrid meetings and integrating a method to directly communicate and contact parents (eg, texting) with parents in the dashboard so they could “nudge parent to modules.” Another suggestion included integrating the videoconference system into the dashboard so all program activities could occur in 1 place.

Discussion

Principal Findings: ezDashboard Usability

The purpose of this usability study was to identify the overall performance of the ezParent administrative dashboard and understand users’ perceptions of the ease of navigation and usefulness of the ezDashboard in implementing hybrid delivery of the ezParent program. Further, we were interested in collecting users’ suggestions for changes or additions to the ezDashboard to improve the overall user experience for real-world use.

Overall, ratings on the SUS indicate good usability (mean 83.5, SD 16.3; median 90, IQR 72.5-97.5). According to Bangor and colleagues [29], a mean score of 83.5 is in the fourth quartile of scores, rated as acceptable, and falls between the good to excellent range using an adjective rating scale. In addition, overall ratings of the user-friendliness of the ezDashboard among all participants were positive (ok, good, excellent, and best imaginable). These initial ratings are promising, show an
acceptable level of usability, and the written feedback provides us with concrete methods for improving the ezDashboard.

This study’s participants reported variable use of the ezDashboard (eg, ranging from weekly to less than monthly). The differences in use may be a function of the individual’s role using ezParent (eg, administrators may only need to use the dashboard monthly for overall program management while a coach conducting weekly calls would use it weekly). We do, however, need to consider the variability of use as a potential function of the overall usefulness of the information provided in the ezDashboard. Therefore, our next steps will be to provide clear instructions and descriptions of ezDashboard use as well as integrate suggested changes. Changes to the ezDashboard to provide desired information of parent use may increase regular use and uptake.

Harrington and colleagues [10] highlight the importance of including program usage metrics in dashboards to allow interventionists to make data-driven decisions, identify areas for program improvement, and support the ability to provide personalized support to program users. Further, real-time data can support tailored approaches to increase program uptake. Overall, our participants reported that they were able to use the ezDashboard information to take an individualized approach to the hybrid delivery of the ezParent program, and administrators used the ezDashboard data to provide oversight and incentives to parent participants. In addition, there were several excellent suggestions for ezDashboard improvements. The suggested changes varied by participant role with ezParent.

Facilitator suggestions were primarily fine-tuning the data presented in the ezDashboard to provide more nuanced use metrics beyond module completion. Since most digital analytics provide summary statistics, the ability to gather use metrics at the individual level provides important information for the facilitation of program engagement [14]. The data points suggested were partial module completion, identifying the actual location within the module of last use, and average time spent on the page. While the ezDashboard currently provides time stamps for date and time, the modules were completed and allows for a rough estimate of the speed at which a parent is moving through the program; more specific analytics for time in the program could provide more meaningful estimates for engagement. In our previous work, we found that on average parents spent 37.2 (SD 22.2) minutes per module with a range from 26.4 (module 5) to 47.9 (module 2) minutes [21]. Variations across modules occurred because of variations in pages per module; however, there was a significant decrease in minutes/module over time (eg, participants spent less time on later modules) [21]. This information is important for facilitators to monitor parent engagement and to encourage active involvement in the modules, particularly in later modules when data support a decrease in overall time of engagement.

The administrative participants identified other types of metrics and functions that would be helpful for program management (eg, the ability to download individual and cohort reports of usage metrics to allow for more streamlined monitoring and administrative access to modify participant demographics). The goal of the ezDashboard is to present individual use data and adaptations to include monitoring cohorts, which could increase administrative efficiencies. A benefit of web-based interventions is the reach and accessibility of programs and the integration of administrator dashboards for monitoring and management and has the potential to increase program uptake and overall efficiencies in program delivery. Future evaluation of the ezDashboard will focus on the effects of ezDashboard use on implementation factors related to organizational and individual program uptake and delivery.

Limitations

Although deemed sufficient for usability testing to acquire feedback on user experience, our sample size was small. This study was an initial evaluation of the ezDashboard and provides valuable information for modifications. Our next steps are to integrate these findings into the ezDashboard to evaluate overall use of ezParent and dashboard use in a pragmatic ongoing setting. Users’ feedback may change after continued use of the ezDashboard. The administrative dashboard was only tested for 1 specific intervention, ezParent; however, we believe these results could be applicable and inform the development of dashboards for different types of web-based programs.

Conclusions

The ezDashboard was initially developed to provide individual parent usage data to facilitators in real-time to monitor parent progress in the program and support parent program uptake. The results of usability testing indicate that the ezDashboard is easy to use and provides functional information to facilitators in delivering the ezParent intervention. Providing resources for facilitators and administrators to aid in facilitation of the hybrid intervention may lead to improved parent uptake and outcomes [34]. Qualitative results indicate that integrating suggested features into the ezDashboard may help provide a smoother experience for facilitators, administrators, and ultimately the parents using the program. Administrative dashboards that provide real-time program usage data require an investment in the upfront cost of program development. The user facing program, in this case the ezParent, must be built to collect the user data that are to be displayed in the dashboard. For those considering integrating a dashboard for a web-based intervention, we suggest early planning during the initial development.
Acknowledgments
The authors gratefully acknowledge the coaches, facilitators, and administrators who participated in the evaluation of the e:Dashboard. This study is supported in part by a grant from the National Institute of Child Health and Human Development (NICHD; R01HD104072).

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request. Generative artificial intelligence was not used in any portion of this paper’s writing.

Conflicts of Interest
None declared.

References

Abbreviations

- **CPP**: Chicago Parent Program
- **PT**: parent training
- **RCT**: randomized controlled trial
- **REDCap**: Research Electronic Data Capture
- **SUS**: System Usability Scale
Web-Based Mindfulness Meditation as an Adjunct to Internet-Delivered Cognitive Behavioral Therapy for Public Safety Personnel: Mixed Methods Feasibility Evaluation Study

Caeleigh A Landry1,2,3, MSc; Hugh C McCall1,2,3, MA; Janine D Beahm1,2,3, PhD; Nickolai Titov4, PhD; Blake Dear4, PhD; R Nicholas Carleton1,2,3, PhD; Heather D Hadjistavropoulos1,2,3, PhD

1Department of Psychology, University of Regina, Regina, SK, Canada
2PSPNET, University of Regina, Regina, SK, Canada
3Canadian Institute for Public Safety Research and Treatment, Regina, SK, Canada
4eCentreClinic, School of Psychological Sciences, Macquarie University, Sydney, Australia

Corresponding Author:
Heather D Hadjistavropoulos, PhD
Department of Psychology
University of Regina
Administration-Humanities, AH 345
3737 Wascana Parkway
Regina, SK, S4S 0A2
Canada
Phone: 1 306 585 5133
Email: heather.hadjistavropoulos@uregina.ca

Abstract

Background: Public safety personnel (PSP) are individuals who work to ensure the safety and security of communities (eg, correctional workers, firefighters, paramedics, and police officers). PSP have a high risk of developing mental disorders and face unique barriers to traditional mental health treatments. The PSP Wellbeing Course is a transdiagnostic, internet-delivered cognitive behavioral therapy (iCBT) course tailored to assist PSP with symptoms of depression, anxiety, and posttraumatic stress disorder (PTSD). The initial course outcomes are promising, but some clients report some challenges with learning skills and recommend adding additional resources. Mindfulness meditations, which help people to experience the world and their reactions to the world in open and nonjudgmental ways, may complement the existing PSP Wellbeing Course.

Objective: This study aims to examine the feasibility of mindfulness meditations in iCBT tailored for PSP. Information was gathered to evaluate engagement and client experiences with mindfulness meditations, symptom change, and the relationship between mindfulness meditation use and symptom change.

Methods: A mixed methods study was conducted on PSP enrolled in the PSP Wellbeing Course who were offered 5 mindfulness meditations during the program (ie, 1/lesson). Clients completed questionnaires on depression, anxiety, PTSD, anger, insomnia, resilience, and mindfulness at pretreatment and at 8 weeks; an 8-week treatment satisfaction questionnaire; and brief weekly measures of mindfulness meditation engagement. We used paired sample t tests (2-tailed) to assess changes in outcomes over time and partial correlations to assess whether mindfulness meditation use predicted outcomes at posttreatment. A total of 12 clients were interviewed about their perceptions of the mindfulness meditations, and interviews were analyzed using directed content analysis.

Results: Among the 40 clients enrolled, 27 (68%) reported using the mindfulness meditations, practicing for an average of 4.8 (SD 8.1) minutes each week. Most interviewees described the mindfulness meditations as beneficial but also reported challenges, such as discomfort while sitting with their feelings. Clients provided suggestions for better integration of mindfulness into iCBT. Overall, clients who completed the PSP Wellbeing Course with mindfulness meditations experienced statistically significant improvements in symptoms of anxiety ($P=.001$), depression ($P=.001$), PTSD ($P=.001$), and anger ($P=.001$) but not insomnia ($P=.02$). Clients also experienced improvements in resilience ($P=.01$) and mindfulness ($P=.001$). Self-reported time spent meditating was not associated with changes in symptoms over time.

Conclusions: This study provides new insight into the integration of mindfulness meditations with iCBT for PSP. It demonstrates the partial feasibility of adding mindfulness meditations to iCBT, revealing that some, but not all, PSP engaged with the meditations.
and reported benefits. PSP reported using the mindfulness meditations inconsistently and described challenges with the meditations. Improvements can be made to better integrate mindfulness meditation into iCBT, including offering mindfulness meditation as an optional resource, providing more psychoeducation on managing challenges, and offering shorter meditations.

(JMIR Form Res 2024;8:e54132) doi: 10.2196/54132

KEYWORDS

public safety personnel; PSP; internet therapy; mindfulness; meditation; internet-delivered cognitive behavioral therapy; iCBT

Introduction

Background

Public safety personnel (PSP; eg, border services officers, correctional workers, firefighters, Indigenous emergency managers, operational intelligence personnel, paramedics, police officers, public safety communicators, and search and rescue personnel) have greater exposure to potentially psychologically traumatic events than the general population and a greater risk for several psychological disorders. This heightened risk is, in part, attributable to the nature of their vocations [1-3]. In a recent pan-Canadian study, 44.5% of PSP screened positive for at least 1 mental disorder on a set of questionnaire measures [1], which is far higher than the rate of mental disorder diagnoses in the general population (ie, 10% [4]). Other studies show PSP also report high levels of anger [5] and sleep difficulties [6]. Despite the significant need for mental health treatment, PSP face several unique barriers to treatment as a function of their vocational cultures and requirements [7]. PSP report concerns about engaging in face-to-face mental health treatment options, including geographical barriers; the cost of treatment; difficulty navigating services; long wait times; and, in particular, concerns about privacy, confidentiality, and stigma [6,8-10].

Internet-delivered cognitive behavioral therapy (iCBT) appears to be well positioned to address barriers to treatment experienced by PSP, as it delivers treatment materials in a private and accessible web-based format. There is strong evidence that iCBT has comparable effectiveness with face-to-face cognitive behavioral therapy (CBT) among the general population [11]. A recent observational trial found that iCBT tailored specifically for PSP was associated with large pre-post reductions in symptoms of generalized anxiety disorder, major depressive disorder, and posttraumatic stress disorder (PTSD), although it was not compared with a control condition [9]. In written feedback, PSP who participated in iCBT reported appreciating several aspects of iCBT, including the format and content, the accessibility of the course, the additional resources and examples, and the therapist guidance [12]. Nevertheless, some PSP also reported challenges with learning skills [13] and provided suggestions for improving iCBT, including adding more resources [12].

The addition of mindfulness resources represents a promising addition to iCBT with PSP, given the growing research attention on the benefits of mindfulness [14-16] and its use in CBT [17]. Kabat-Zinn [18] provided the most commonly used definition of mindfulness: a three-component definition that calls for paying attention (1) on purpose, (2) in the present, and (3) nonjudgmentally. Mindfulness shifts awareness to focus on present-moment activities, thoughts, and sensations, which over time improves emotion regulation and, in turn, reduces symptoms [19]. Mindfulness may be cultivated through numerous activities that bring individuals into the present moment and into their experience without judgment. Mindfulness meditation, in particular, is a practice to cultivate mindfulness and refers to the practice of silently observing one’s own internal and external environment without attempting to change anything [19]. In the general population, several studies have shown that web-based mindfulness programs result in small but significant improvements in symptoms such as depression and anxiety [14-16]. In terms of PSP, mindfulness-based interventions have been associated with reductions in stress, insomnia, burnout, anger, anxiety, and depression [20,21]; however, research has been limited to pilot or feasibility studies, police populations, and in-person class delivery style [3,22].

Recent literature suggested that incorporating mindfulness may enhance the benefits derived from traditional therapies [17]. Mindfulness practice has been successfully integrated within face-to-face interventions, such as mindfulness-based stress reduction, mindfulness-based cognitive therapy, and acceptance and commitment therapy [17]. Moreover, a recent systematic review and meta-analysis reported that mindfulness-enhanced iCBT has demonstrated significant reductions in anxiety and depression in clinical populations, above and beyond comparison conditions [17], but to date, no research has focused on offering web-based mindfulness-enhanced iCBT for PSP. Although it is possible that the results of mindfulness-enhanced iCBT will generalize to the use of iCBT for PSP, this remains an empirical question. Some past research among PSP suggests that they may be more skeptical of mental health support [7]. Some studies on mindfulness among PSP have yielded mixed results, with only some participants reporting improvements [21]. Therefore, it is important to explore whether mindfulness meditations will be used and positively evaluated by PSP within the context of iCBT and whether adding mindfulness to iCBT will positively or negatively impact engagement, satisfaction, and outcomes. Adding mindfulness meditation to iCBT has the potential to increase the engagement, satisfaction, and effectiveness of iCBT. However, adding additional components could also reduce effectiveness through additional burden placed on users or if users have negative views of mindfulness meditations.

Objectives

As a first step in understanding the use of mindfulness meditation as part of iCBT for PSP, this study was designed to examine the feasibility of adding mindfulness meditations to an existing iCBT program for PSP, called the PSP Wellbeing Course, by (1) evaluating the level of engagement with the...
mindfulness meditations (eg, practice length and frequency) as well as with the intervention; (2) assessing client experiences with mindfulness meditations during and after treatment; (3) measuring changes in measures of anxiety, depression, and PTSD to compare outcomes with previously published outcomes of the PSP Wellbeing Course [9]; and (4) assessing the relationship between mindfulness meditation use and outcome measures. We hypothesized that clients would actively participate in the mindfulness meditations, report positive experiences, and also identify areas for improvement in the mindfulness meditations. We also hypothesized that clients would report statistically significant improvements in symptoms of anxiety, depression, and PTSD and that greater mindfulness meditation use (ie, length and frequency) would predict less severe self-reported symptoms at posttreatment [23]. This feasibility study is the first step in assessing whether mindfulness meditations will be deemed usable and acceptable in iCBT for PSP.

Methods

Ethical Considerations

This study was approved by the Research Ethics Board of the University of Regina (2019-157). Clients were made aware of the details of the study and the potential risks and benefits of participating, and they provided informed consent before participation. Clients were given access to the PSP Wellbeing Course but were not otherwise offered incentives to encourage participation. Client data were stored on a secure server and deidentified before analyses.

Clients and Procedure

PSP were informed of the PSP Wellbeing Course offered by PSPNET through presentations, emails distributed through PSP organizations, social media, and word of mouth and encouraged to visit the PSPNET website [24]. PSPNET is a clinical research unit based at the University of Regina that develops, delivers, and conducts research on iCBT for PSP. In addition to offering a therapist-guided PSP Wellbeing Course, PSPNET also offers a therapist-guided PSP PTSD Course and a self-guided version of the PSP Wellbeing Course, all of which were available for PSP to select from at the time they visited the website. Prospective clients who were interested in the PSP Wellbeing Course read about the program and completed a consent form and a brief web-based screening questionnaire. Once they completed the web-based screening, they scheduled and completed a phone screening with a trained clinician. To be eligible for the intervention and thereby this study, clients needed to be current or past PSP (career or volunteer), be residing in an eligible Canadian province or territory (at the time of this study, this included Alberta, New Brunswick, Nova Scotia, Ontario, Prince Edward Island, Saskatchewan, and Nunavut), be aged at least 18 years, have access to an internet connection, and be willing to provide an emergency medical contact. Prospective clients were ineligible and referred to other services as appropriate if they reported a high suicide risk; reported a past-year suicide attempt or suicidality-related hospitalization; reported a primary problem with psychosis, mania, or substance use; or reported current involvement in another psychological treatment. The eligibility criteria were assessed during the web-based screening and the subsequent phone screening. Suicide risk was first assessed using item 9 from the Patient Health Questionnaire-9 (PHQ-9) [25], which inquires about suicidal ideation. Clinicians then conducted a clinical interview by phone to assess suicide risk, including asking about past-year attempts and hospitalizations. Severe alcohol or drug problems were assessed using validated questionnaires (ie, scored ≥20 on the Alcohol Use Disorder Identification Test [26] or ≥25 on the Drug Use Disorder Identification Test [27]). Psychosis and mania were assessed based on clinical history but were not reported by any client. Eligible clients were enrolled in the intervention and assigned to therapists who were either registered master’s-level social workers or registered psychologists. Therapists would email or call clients once or twice a week, depending on client preference. Therapist support was designed to help clients work on skills within the course, apply the skills to their lives, and troubleshoot difficulties. Clients were asked to complete regular symptom measures throughout the course on a weekly basis and at 8 weeks. At 10 weeks, the first 30 clients were invited to complete an interview assessing their perspectives on the mindfulness meditations and the course in general. There were 12 clients who agreed to participate in the interviews.

Materials

The iCBT Intervention

The PSP Wellbeing Course is a transdiagnostic iCBT course for PSP adapted from a previous Canadian iCBT course, the Wellbeing Course, which was initially developed at the Macquarie University in Australia and has been successful in treating a range of symptoms in Australia [28-31] and Canada [32-35]. More information on the origins of the intervention [25] and the adaptations of the intervention [29-32] can be found elsewhere. The course uses a theoretical, pragmatic approach to treatment that teaches clients skills that can be applied to various symptom presentations. The intervention specifically includes five core lessons: (1) introduction of CBT and identifying symptoms, (2) monitoring and challenging automatic thoughts, (3) management of physical symptoms, (4) graded exposure, and (5) goal setting and relapse prevention. Lessons are presented in a slideshow format and include text, diagrams, and case stories about PSP. Clients can download materials, homework assignments, and supplementary information on many topics (eg, panic, assertiveness, sleep, and grief). The intervention is designed to be completed in 8 weeks, but clients can have access to a therapist for up to 16 weeks and to the course materials for up to 1 year. Clients receive automated emails encouraging them to work through the materials during this period.

Mindfulness Meditations

Unlike the previous versions of the PSP Wellbeing Course, the version used in this study included a downloadable, guided, audio mindfulness meditation for each of the 5 lessons of the intervention and psychoeducational material on mindfulness meditations before the first meditation. Each lesson included a different type of mindfulness meditation designed to complement the CBT skills taught in that lesson and was based...
on evidence of successful implementation in other programs [22,36-39]:

- **Lesson 1: grounding** (eg, turning attention to physical sensations)
- **Lesson 2: loving kindness** (eg, cultivating feelings of love for self and others)
- **Lesson 3: awareness of breath** (eg, focusing on breathing slowly and deeply)
- **Lesson 4: awareness of the 5 senses** (eg, cultivating awareness of the environment through the 5 senses)
- **Lesson 5: body scan** (eg, focusing on the body for areas of tension)

Each mindfulness meditation was audio-recorded by a voice actor and was designed to be approximately 10 minutes long, consistent with previous recommendations [39-41]. Each mindfulness meditation was accompanied by a text script that clients could read in lieu of the audio. All clients who enrolled in the PSP Wellbeing Course were provided with access to the mindfulness meditations. Clients were encouraged to complete 10 minutes of mindfulness meditation practice per day while completing the intervention.

Measures

Overview

During eligibility screening, we administered a questionnaire to assess demographic and occupational characteristics. We also asked about pretreatment engagement in a mindfulness meditation practice. At both pretreatment and 8 weeks postenrollment, consistent with past research on the PSP Wellbeing Course, we administered the following measures: the PHQ-9 to measure symptoms of depression [25], the Generalized Anxiety Disorder-7 (GAD-7) to measure symptoms of generalized anxiety [42], and the Posttraumatic Stress Disorder Checklist for the DSM-5 (PCL-5) to measure symptoms of PTSD [43]. As anger and sleep problems are common among PSP [5,6], we also administered the Dimensions of Anger Reaction Scale-5 (DARS-5) to measure problems related to anger [44] and the Insomnia Severity Index (ISI) to measure sleep difficulties [45]. In an effort to help advance the growing research literature on resilience among PSP [46], we also administered the Brief Resilience Scale (BRS) to measure clients' resilience to life stressors [47]. Finally, the Five Facet Mindfulness Questionnaire (FFMQ-15) was administered to measure the degree to which clients engage in 5 aspects of mindfulness (ie, observing, describing, acting with awareness, nonjudging of inner experience, and nonreactivity to inner experience) [48].

Patient Health Questionnaire-9

The PHQ-9 is a 9-item self-report measure of the frequency of symptoms of depression in the past 2 weeks. Items are rated on a 4-point Likert-type scale ranging from 0 (not at all) to 3 (nearly every day). Higher scores are indicative of greater symptoms of depression. The PHQ-9 has demonstrated good sensitivity, specificity, and convergent validity [49,50]. Reliability was good to excellent for this study (range of before and after treatment, α=.78-.85; ω=.79-0.85).

Generalized Anxiety Disorder-7

The GAD-7 is a 7-item self-report measure of the frequency of anxiety symptoms in the past 2 weeks. Items are rated on a 4-point Likert-type scale ranging from 0 (not at all) to 3 (nearly every day). Higher scores are indicative of greater symptoms of anxiety. The GAD-7 has demonstrated good internal consistency (α=.89) and good test-retest reliability (r=.83) [42]. The reliability was good to excellent for this study (α=.87-.91; ω=.87-0.92).

Posttraumatic Stress Disorder Checklist for the DSM-5

The PCL-5 is a 20-item measure of each of the 4 clusters of PTSD (ie, intrusive thoughts, avoidance, negative alterations in mood, and alterations in arousal and reactivity). Items are rated on a 5-point Likert-type scale ranging from 0 (not at all) to 4 (extremely). Higher scores are indicative of greater symptoms of PTSD. The PCL-5 has demonstrated strong diagnostic utility within the general population [51] as well as strong test-retest reliability (r=.82) and high internal consistency (α=.94) [43]. Reliability was good to excellent for this study (α=.85-.95; ω=.94-0.95).

Dimensions of Anger Reaction Scale-5

The DAR-5 is a 5-item self-report measure of the dimensions of anger reactions, especially in stressful situations, over the past 4 weeks. Items are rated on a 5-point Likert-type scale ranging from 1 (none or almost none of the time) to 5 (all or almost all of the time). Higher scores are indicative of greater levels of distress. The DARS-5 has demonstrated convergent and discriminant validity [44,45] as well as high internal consistency (α=.95) [44]. Reliability was good to excellent for this study (α=.88; ω=.89-0.90).

Insomnia Severity Index

The ISI is a 7-item self-report measure designed to assess difficulties with sleep and insomnia [45]. Frequency items regarding how often someone experienced a problem in the last 2 weeks are rated on a 5-point Likert-type scale ranging from 0 (not at all) to 4 (very severe). Items regarding satisfaction with sleep, noticeability of sleep problems, worries about sleep, and interference with daily functioning are rated on a 5-point Likert-type scale, with higher scores indicating greater sleep difficulties. The ISI has demonstrated adequate concurrent validity and good internal consistency (α=.74 [45]).

Brief Resilience Scale

The BRS is a 6-item self-report measure of resilience. Items are rated on a 5-point Likert-type scale ranging from 1 (strongly disagree) to 5 (strongly agree). Higher scores are indicative of higher levels of resilience. The BRS has demonstrated good validity and good to excellent internal consistency (α=.80-.91) [47]. Reliability was good to excellent for this study (α=.87-.91; ω=.87-0.91).

Five Facet Mindfulness Questionnaire

The FFMQ-15 is a 15-item short-form self-report mindfulness measure designed to assess 5 facets of mindfulness using 5 subscales: observing, describing, acting with awareness, nonjudging of inner experience, and nonreactivity to inner
experience. Statements are rated on a 5-point Likert-type scale ranging from 1 (never or very rarely true) to 5 (very often or always true). Higher scores are indicative of higher levels of mindfulness. The FFMQ-15 has good convergent validity with the FFMQ-39 [48]. Reliability for the total scale was good for this study ($\alpha=.79-.85$; $\omega=0.80$). Subscale reliability for this study was also good ($\alpha=.77-.90$; $\omega=0.81-0.91$).

Treatment Use and Satisfaction

Each week during the course, clients were asked how much time they spent practicing mindfulness meditation throughout the week in minutes and how many days they practiced. At 8 weeks postenrollment, we administered a bespoke questionnaire assessing satisfaction with the mindfulness meditations and the intervention overall.

Posttreatment Semistructured Interview

After completing their 8-week measures, clients were invited to participate in semistructured telephone interviews to discuss their perspectives on the mindfulness meditations and the course in general. Invitations were extended upon completion of the course to ensure that clients had sufficient opportunities to review all course materials. Invitations continued until 12 interviews were conducted, which was deemed sufficient given the objectives and the exploratory nature of this study, and this is consistent with prior recommendations [53,54]. Interviews were conducted by a clinician and a research assistant and included questions such as “What parts of the course did you find to be the most helpful? Why?” and “Were there parts of the meditation that you did not like? Why?” Interviews ranged from 10 to 20 minutes and were recorded for later transcription and analysis. The clients were asked to provide both positive and negative constructive feedback on the mindfulness meditations. Informed consent was obtained before the commencement of each interview and confirmed verbally before each recording was initiated. Table 1 shows a summary of all measures used.

Table 1. Summary of measures.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Instrument</th>
<th>Description</th>
<th>Data collection time points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographics</td>
<td>Web-based questionnaire</td>
<td>Self-report web-based questionnaires with questions about gender, province, PSP(^a) sector, ethnicity, and age</td>
<td>Web-based screening</td>
</tr>
<tr>
<td>Depression</td>
<td>PHQ-9(^b)</td>
<td>9-item self-report measure of symptoms of depression</td>
<td>Web-based screening; 8 weeks postenrollment</td>
</tr>
<tr>
<td>Anxiety</td>
<td>GAD-7(^c)</td>
<td>7-item self-report measure of symptoms of anxiety</td>
<td>Web-based screening; 8 weeks postenrollment</td>
</tr>
<tr>
<td>Posttraumatic stress</td>
<td>PCL-5(^d)</td>
<td>20-item self-report measure of symptoms of posttraumatic stress</td>
<td>Web-based screening; 8 weeks postenrollment</td>
</tr>
<tr>
<td>Anger</td>
<td>DAR-5(^e)</td>
<td>5-item self-report measure of dimensions of anger reactions</td>
<td>Web-based screening; 8 weeks postenrollment</td>
</tr>
<tr>
<td>Insomnia</td>
<td>ISI(^f)</td>
<td>7-item self-report measure of symptoms of insomnia</td>
<td>Web-based screening; 8 weeks postenrollment</td>
</tr>
<tr>
<td>Resilience</td>
<td>BRS(^g)</td>
<td>6-item self-report measure of resilience</td>
<td>Web-based screening; 8 weeks postenrollment</td>
</tr>
<tr>
<td>Mindfulness</td>
<td>FFMQ-15(^h)</td>
<td>15-item self-report measure of 5 facets of mindfulness</td>
<td>Web-based screening; 8 weeks postenrollment</td>
</tr>
<tr>
<td>Treatment use and satisfaction</td>
<td>Web-based questionnaire</td>
<td>Self-report web-based questionnaires with questions about treatment use, treatment adherence, and satisfaction with treatment</td>
<td>8 weeks postenrollment</td>
</tr>
<tr>
<td>Perspectives on the mindfulness meditations and the course</td>
<td>Posttreatment semistructured interview</td>
<td>Semistructured interview with a trained researcher inquiring about perspectives on mindfulness and the course</td>
<td>10 weeks postenrollment</td>
</tr>
</tbody>
</table>

\(^a\)PSP: public safety personnel.
\(^b\)PHQ-9: Patient Health Questionnaire-9.
\(^c\)GAD-7: Generalized Anxiety Disorder-7.
\(^d\)PCL-5: Posttraumatic Stress Disorder Checklist for the DSM-5.
\(^e\)DAR-5: Dimensions of Anger Reaction Scale-5.
\(^f\)ISI: Insomnia Severity Index.
\(^g\)BRS: Brief Resilience Scale.
\(^h\)FFMQ-15: Five Facet Mindfulness Questionnaire.
Analyses

Quantitative Analyses
SPSS (version 26; IBM Corp) was used to conduct the quantitative analyses. Data were deidentified before the analysis. Descriptive statistics were used to describe the sample’s demographic and clinical characteristics, engagement in mindfulness meditation practice, and satisfaction with the mindfulness meditations and the course in general. Completer analysis was used (ie, we did not impute missing data), as is common in pilot studies [55]. Paired sample t tests (2-tailed) were conducted to measure changes from baseline to posttreatment in the total scores on the GAD-7, PHQ-9, PCL-5, DAR-5, FFMQ-15, ISI, and BRS. Partial correlations were used to test for relationships between posttreatment measures (as measured by the GAD-7, PHQ-9, DAR-5, FFMQ-15, ISI, and BRS) and minutes spent meditating, when controlling for pretreatment measures.

Qualitative Analyses
Client interview data were deidentified and analyzed using NVivo 12 (Lumivero). The data were analyzed using a directed content analysis approach [56]. An initial codebook was developed by CAL to align with the questions posed during the semistructured interview. The data were then grouped into categories by CAL using a realist approach, whereby client data were treated as their descriptions of reality [57]. New codes were created by CAL when the data did not fit into the preexisting codes. The codebook and data were independently reviewed by JDB, a research associate with extensive experience in qualitative research. CAL and JDB convened to address conflicts in the codebook and continued discussions until a consensus was reached.

Results
Client Flow and Demographics
Figure 1 shows the flow of clients through this study, with 40 clients enrolling in and initiating the course and 32 (80%) clients completing the outcome measures. The mean age of the clients was 40.57 (SD 9.75) years. Most clients identified as White (37/40, 93%) and women (26/40, 65%) and reported currently residing in Saskatchewan (27/40, 68%). Most clients (22/40, 55%) reported that they were police, although other occupational groups were also represented (Table 2). In total, 30% (11/40) of the clients had scores above the clinical cut-off on the PHQ-9, 27% (11/40) above the cut-off on the GAD-7, 15% (6/40) above the cut-off on the PCL-5, and 45% (18/40) screened positive for at least 1 mental disorder. In terms of program completion at 8 weeks, 80% (32/40) of the clients had completed all lessons. On average, clients sent 5.42 (SD 3.57) messages to their therapists and received 9.48 (SD 3.18) messages. They also had 2.39 (SD 3.13) phone calls with therapists.
Figure 1. Client flow diagram.

Completed web-based screening (n=72)

Excluded (n=13)
• Only wanted to examine the screening process (n=1)
• Could not be reached for telephone screening (n=12)

Completed telephone screening (n=59)

Did not enroll in the intervention (n=17)
• Enrolled in another PSPNET course (n=15)
• Service not required (n=2)

Enrolled in the intervention (n=42)

Did not begin the intervention (n=2)

Began the intervention (n=40)
• Accessed lesson 1 (n=40/40, 100%), Viewed meditation (n=26/40, 70%)
• Accessed lesson 2 (n=38/40, 95%), Viewed meditation (n=28/40, 70%)
• Accessed lesson 3 (n=35/40, 86%), Viewed meditation (n=18/40, 45%)
• Accessed lesson 4 (n=34/40, 85%), Viewed meditation (n=21/40, 53%)
• Accessed lesson 5 (n=32/40, 80%), Viewed meditation (n=21/40, 53%)

Did not complete the intervention (n=8)
• Accessed lesson 1 (n=8/8, 100%), Viewed meditation (n=3/8, 38%)
• Accessed lesson 2 (n=6/8, 75%), Used meditation (n=0/8, 0%)
• Accessed lesson 3 (n=3/8, 38%), Used meditation (n=1/8, 13%)
• Accessed lesson 4 (n=2/8, 25%), Used meditation (n=1/8, 13%)
• Accessed lesson 5 (n=0/8, 0%), Used meditation (n=0/8, 0%)

Completed primary measures at 8 weeks (n=32)

Did not complete semistructured interview (n=20)
• Not invited to participate (n=2)
• Declined to participate (n=5)
• No response (n=12)

Completed the semistructured interview (n=12)
Table 2. Clients’ demographic characteristics and occupations (N=40).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Clients, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>26 (65)</td>
</tr>
<tr>
<td>Men</td>
<td>14 (35)</td>
</tr>
<tr>
<td>Province</td>
<td></td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>27 (68)</td>
</tr>
<tr>
<td>Other province (eg, Prince Edward Island, Alberta, New Brunswick, Nova Scotia, Nunavut, and Ontario)</td>
<td>13 (33)</td>
</tr>
<tr>
<td>PSP^b sector</td>
<td></td>
</tr>
<tr>
<td>Police</td>
<td>22 (55)</td>
</tr>
<tr>
<td>Fire</td>
<td>5 (13)</td>
</tr>
<tr>
<td>Corrections</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Communications (eg, 911 and dispatch)</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Other</td>
<td>5 (13)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Ethnic minority (eg, First Nations, Inuit, and Metis; Asian; Middle Eastern; Black; and South Asian)</td>
<td>3 (8)</td>
</tr>
<tr>
<td>White</td>
<td>37 (93)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>6 (15)</td>
</tr>
<tr>
<td>30-39</td>
<td>10 (25)</td>
</tr>
<tr>
<td>40-49</td>
<td>16 (40)</td>
</tr>
<tr>
<td>≥50</td>
<td>7 (17)</td>
</tr>
</tbody>
</table>

^aCells are merged owing to the small cell size to protect confidentiality.
^bPSP: public safety personnel.

Meditation Use

No prospective clients reported participating in regular mindfulness practice at the time of their enrollment. Figure 1 shows that of the 40 clients, 28 (70%) viewed the grounding meditation in lesson 1, 28 (70%) viewed the loving kindness meditation in lesson 2, 18 (45%) viewed the meditation on awareness of breath in lesson 3, 21 (53%) viewed the meditation on awareness of the 5 senses in lesson 4, and 21 (53%) viewed the body scan meditation in lesson 5, as tracked through automatic computer system logs. Meditations were available for download; as such, some clients may have listened to the meditations more often than indicated by the system. Clients who completed the course tended to spend more time on the meditations overall, although this difference was not statistically significant (P>.16). Table 3 shows the mean number of text views and audio listens for each meditation and suggests that clients demonstrated a preference for reviewing the text over listening to the audio. Table 3 shows that the clients who completed the course accessed the written meditations an average of 4.91 (SD 2.91) times. Table 4 shows the self-reported number of times meditating and the number of minutes spent meditating and shows that those who meditated, meditated on average 5.67 times for a total of 28.48 minutes of meditation. As shown in Table 4, there was wide variability in days meditating (0-28 days) and minutes meditating (0-290 minutes) over the course. Of note, 9 clients opened meditation materials but reported that they did not use those materials.
Table 3. Web-based meditation views and listens.

<table>
<thead>
<tr>
<th></th>
<th>All clients (N=40), mean (SD; range)</th>
<th>Course completers (n=32), mean (SD; range)</th>
<th>Course noncompleters (n=8), mean (SD; range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Text views</td>
<td>Audio listens</td>
<td>Text views</td>
</tr>
<tr>
<td>Lesson 1</td>
<td>1.25 (1.19; 0-4)</td>
<td>0.73 (0.93; 0-3)</td>
<td>1.39 (1.22; 0-4)</td>
</tr>
<tr>
<td>Lesson 2</td>
<td>1.05 (0.96; 0-4)</td>
<td>0.48 (0.85; 0-4)</td>
<td>1.15 (0.97; 0-4)</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>0.60 (0.84; 0-4)</td>
<td>0.43 (0.75; 0-3)</td>
<td>0.67 (0.85; 0-4)</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>0.73 (0.82; 0-3)</td>
<td>0.18 (0.38; 0-1)</td>
<td>0.85 (0.83; 0-3)</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>0.78 (0.92; 0-3)</td>
<td>0.25 (0.44; 0-1)</td>
<td>0.85 (0.87; 0-3)</td>
</tr>
<tr>
<td>Total</td>
<td>4.40 (3.14; 0-12)</td>
<td>2.05 (2.25; 0-9)</td>
<td>4.91 (2.91; 0-12)</td>
</tr>
</tbody>
</table>

Table 4. Days and minutes spent meditating.

<table>
<thead>
<tr>
<th></th>
<th>All clients (N=40), mean (SD; range)</th>
<th>Course completers (n=32), mean (SD; range)</th>
<th>Course noncompleters (n=8), mean (SD; range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days mediated</td>
<td>Minutes mediated</td>
<td>Days mediated</td>
</tr>
<tr>
<td>Week 2</td>
<td>0.57 (1.26; 0-6)</td>
<td>1.68 (6.90; 0-40)</td>
<td>0.70 (1.36; 0-6)</td>
</tr>
<tr>
<td>Week 3</td>
<td>0.45 (0.78; 0-3)</td>
<td>3.25 (6.94; 0-20)</td>
<td>0.55 (0.83; 0-3)</td>
</tr>
<tr>
<td>Week 4</td>
<td>0.88 (1.42; 0-6)</td>
<td>3.13 (10.66; 0-60)</td>
<td>1.06 (1.50; 0-6)</td>
</tr>
<tr>
<td>Week 5</td>
<td>0.48 (1.01; 0-3)</td>
<td>4.20 (10.75; 0-60)</td>
<td>0.58 (1.09; 0-3)</td>
</tr>
<tr>
<td>Week 6</td>
<td>0.80 (1.57; 0-6)</td>
<td>4.38 (12.26; 0-60)</td>
<td>0.97 (1.69; 0-6)</td>
</tr>
<tr>
<td>Week 7</td>
<td>0.75 (1.50; 0-6)</td>
<td>4.00 (14.99; 0-70)</td>
<td>0.91 (1.65; 0-6)</td>
</tr>
<tr>
<td>Week 8</td>
<td>0.75 (1.60; 0-6)</td>
<td>2.88 (8.00; 0-40)</td>
<td>0.91 (1.72; 0-6)</td>
</tr>
<tr>
<td>Total</td>
<td>4.68 (6.50; 0-28)</td>
<td>23.50 (49.07; 0-290)</td>
<td>5.67 (6.76; 0-28)</td>
</tr>
</tbody>
</table>

Changes in Symptoms, Resilience, and Mindfulness

The 32 clients who completed the 8-week measures reported statistically significant reductions in total scores on the GAD-7, PHQ-9, PCL-5, and DAR-5 (all \(P < .001 \)) and a statistically significant increase in BRS total scores (\(P = .01 \)). No statistically significant change in ISI total scores was observed. Clients who completed the 8-week measures reported statistically significant increases in overall FFMQ-15 scores, with examination of the subscales revealing changes in mindfulness nonjudging and nonreactivity scores but not describing, acting with awareness, or observing. Time spent meditating was not associated with posttreatment measures while controlling for pretreatment measures (all \(P = .09-.67 \)). The details are presented in Table 5.
Table 5. Changes in outcome measures.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Pretreatment score, mean (SD)</th>
<th>Posttreatment score, mean (SD)</th>
<th>t test (df)</th>
<th>P value</th>
<th>Cohen d</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAD-7<sup>a</sup></td>
<td>7.88 (6.13)</td>
<td>1.48 (4.07)</td>
<td>−3.74 (32)</td>
<td><.001</td>
<td>−1.23</td>
</tr>
<tr>
<td>PHQ-9<sup>b</sup></td>
<td>8.81 (5.41)</td>
<td>5.27 (3.51)</td>
<td>−5.10 (32)</td>
<td><.001</td>
<td>−0.78</td>
</tr>
<tr>
<td>PCL-5<sup>c</sup></td>
<td>20.12 (15.61)</td>
<td>10.42 (10.48)</td>
<td>−6.13 (32)</td>
<td><.001</td>
<td>−0.74</td>
</tr>
<tr>
<td>DAR-5<sup>d</sup></td>
<td>9.85 (4.23)</td>
<td>7.40 (2.84)</td>
<td>−3.87 (32)</td>
<td><.001</td>
<td>−0.67</td>
</tr>
<tr>
<td>ISI<sup>e</sup></td>
<td>10.42 (6.06)</td>
<td>9.09 (4.59)</td>
<td>−1.70 (32)</td>
<td>.02</td>
<td>−0.30</td>
</tr>
<tr>
<td>BRS<sup>f</sup></td>
<td>3.15 (0.74)</td>
<td>3.42 (0.71)</td>
<td>2.72 (32)</td>
<td>.01</td>
<td>−0.46</td>
</tr>
<tr>
<td>FFMQ-15<sup>g</sup></td>
<td>38.27 (8.25)</td>
<td>40.58 (7.40)</td>
<td>3.51 (32)</td>
<td><.001</td>
<td>0.47</td>
</tr>
<tr>
<td>Acting with awareness</td>
<td>9.52 (2.53)</td>
<td>9.48 (2.51)</td>
<td>−0.11 (32)</td>
<td>.91</td>
<td>0.03</td>
</tr>
<tr>
<td>Describing</td>
<td>9.34 (3.14)</td>
<td>9.90 (2.85)</td>
<td>1.57 (32)</td>
<td>.13</td>
<td>0.30</td>
</tr>
<tr>
<td>Nonjudgmental</td>
<td>10.00 (2.93)</td>
<td>10.85 (1.43)</td>
<td>2.68 (32)</td>
<td>.01</td>
<td>0.42</td>
</tr>
<tr>
<td>Nonreactivity</td>
<td>9.36 (2.83)</td>
<td>10.33 (2.16)</td>
<td>2.55 (32)</td>
<td>.02</td>
<td>0.44</td>
</tr>
<tr>
<td>Observing</td>
<td>8.48 (2.98)</td>
<td>8.79 (2.87)</td>
<td>2.72 (32)</td>
<td>.40</td>
<td>0.15</td>
</tr>
</tbody>
</table>

^aGAD-7: Generalized Anxiety Disorder-7.
^bPHQ-9: Patient Health Questionnaire-9.
^cPCL-5: Posttraumatic Stress Disorder Checklist for the DSM-5.
^dDAR-5: Dimensions of Anger Reaction Scale-5.
^eISI: Insomnia Severity Index.
^fBRS: Brief Resilience Scale.
^gFFMQ-15: Five Facet Mindfulness Questionnaire.

Treatment Satisfaction

The 32 clients who completed the 8-week measures generally reported feeling satisfied with the course. The 27 clients who accessed the mindfulness meditations also generally reported that they were satisfied with the mindfulness meditations. Most clients reported that they would recommend the intervention to a friend (32/32, 100%) and that they would recommend the mindfulness meditations to a friend (25/32, 93%). Table 6 provides details.
Table 6. Treatment satisfaction (n=32).

<table>
<thead>
<tr>
<th></th>
<th>Intervention (n=32), n (%)</th>
<th>Mindfulness meditations (n=27), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommend to a friend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>32 (100)</td>
<td>25 (93)</td>
</tr>
<tr>
<td>No</td>
<td>0 (0)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Satisfaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very dissatisfied</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Dissatisfied</td>
<td>1 (3)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Neutral</td>
<td>4 (13)</td>
<td>11 (41)</td>
</tr>
<tr>
<td>Satisfied</td>
<td>15 (47)</td>
<td>10 (37)</td>
</tr>
<tr>
<td>Very satisfied</td>
<td>12 (38)</td>
<td>5 (19)</td>
</tr>
<tr>
<td>Worth the time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>32 (100)</td>
<td>25 (89)</td>
</tr>
<tr>
<td>No</td>
<td>0 (0)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Increased confidence in the ability to manage symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>No change</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Increased</td>
<td>22 (69)</td>
<td>17 (63)</td>
</tr>
<tr>
<td>Greatly increased</td>
<td>10 (31)</td>
<td>10 (37)</td>
</tr>
</tbody>
</table>

Qualitative Results

Overall, clients reported that the mindfulness meditations were beneficial (Table 7). Key themes from the qualitative analysis included clients liking the simplicity of following the mindfulness meditations, incorporating other strategies into the mindfulness meditations, and the variety of mindfulness meditations that were presented. Suggestions included providing videos alongside the mindfulness meditations for individuals who consider themselves to be more “visual,” providing distinct end points in the mindfulness meditations (eg, a bell chime to indicate when the meditation end), and providing shorter mindfulness meditations to start. Suggestions for technical or presentation changes, including creating an atmosphere for mindfulness meditations to be completed in a group setting, were also provided.
Table 7. Results of the qualitative analyses (n=12).

<table>
<thead>
<tr>
<th>Theme</th>
<th>Endorsing theme, n (%)</th>
<th>Client quotations reflecting the themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tried meditation before beginning the course (n=9, 75%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes, beneficial</td>
<td>7 (78)</td>
<td>“I’d used mindfulness quite a bit in the past [and I] still use it to some extent” [Client 26]</td>
</tr>
<tr>
<td>Yes, skeptical</td>
<td>2 (22)</td>
<td>“I kinda thought it would be maybe hokey-pokey...um, a little wishy-washy...yeah, I was a little skeptical shall we say” [Client 20]</td>
</tr>
<tr>
<td>Have not tried meditation before beginning the course</td>
<td>3 (25)</td>
<td>N/A</td>
</tr>
<tr>
<td>Beneficial for PSP</td>
<td>10 (83)</td>
<td>“It’s nice to, it’s probably a really good idea for most of us, ’cause I think anybody who is in, ah, policing and-and stuff is, ah, likely type A...go-go-go type of personality...so it’s good to take a step back, focus on what you can control, because everything we deal with is out of our control” [Client 21]</td>
</tr>
<tr>
<td>Mindfulness reduced stress and improved relaxation</td>
<td>7 (58)</td>
<td>“I think definitely with stress I found if I was stressing about something in my job or my life or whatever, once I did the meditation usually I would—during meditation I’d be able to reflect on what I was stressed about.” [Client 18]</td>
</tr>
<tr>
<td>Mindfulness helped them to slow down and regulate their bodies and emotions</td>
<td>5 (42)</td>
<td>“It was kinda nice ’cause it just got me to slow down and actually focus on my breathing. And just doing that kinda helped regulate everything else that was going on with my body.” [Client 16]</td>
</tr>
<tr>
<td>Mindfulness can be completed on their own time</td>
<td>2 (17)</td>
<td>“I found that helpful to be able to go back and replay them basically whenever I needed.” [Client 36]</td>
</tr>
<tr>
<td>Mindfulness reminded them to be gentle with themselves</td>
<td>2 (17)</td>
<td>“It made me talk to myself a little bit differently and be a little bit kinder to myself instead of like, focusing on everything I was doing wrong.” [Client 26]</td>
</tr>
<tr>
<td>Challenges with mindfulness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeling uncomfortable sitting with their feelings</td>
<td>8 (67)</td>
<td>“I think most people struggle with quieting their minds and actually taking the time to do it. It seems really painful to sit there and keep refocusing your mind as it wanders.” [Client 20]</td>
</tr>
<tr>
<td>Difficulty finding motivation, time, and quiet space</td>
<td>8 (67)</td>
<td>“It’s kind of hard sometimes to find quiet time or quiet space in my house.” [Client 18]</td>
</tr>
<tr>
<td>Technical issues</td>
<td>2 (17)</td>
<td>“I struggled with the meditations because the audio never worked for me.” [Client 32]</td>
</tr>
<tr>
<td>Suggestions for improvement</td>
<td>5 (42)</td>
<td>“For me anything more than five to ten minutes, then I’m off the rails and I can’t concentrate anymore, so shorter is better for me.” [Client 21]</td>
</tr>
</tbody>
</table>

\[a\]N/A: not applicable.

\[b\]PSP: public safety personnel.

Discussion

Principal Findings

In this study, we explored the feasibility of adding mindfulness meditations to the PSP Wellbeing Course, as there is a gap in the literature with regard to the use of mindfulness meditations among PSP participating in iCBT. Overall, the study suggested that there was highly variable use of mindfulness meditations among PSP in the PSP Wellbeing Course, with 70% (28/40) of the clients reviewing the first 2 meditations and then about half of clients (ie, 18/40, 45% to 21/40, 53%) viewing the last 3 meditations. Client more often looked at the text of the meditations rather than the audio of the meditations. There was significant variability among clients in the use of the meditations, with some clients never using the meditations and others using the meditations 3 to 4 times a week. Similarly, in terms of practice, there was high variability observed, with clients on average practicing 23 minutes a week. The use data alone suggest that the incorporation of mindfulness within iCBT will not be universally used when offered. It is not fully known why some clients did not use the meditations. It is possible that the high amount of content in the PSP Wellbeing Course itself may be a factor in the lower use of mindfulness meditations by some clients (ie, some clients may not have had enough time or willingness to practice mindfulness meditation in addition to other skills taught in the course).

In terms of improvements on measures over 8 weeks, clients in this course reported statistically significant improvements in symptoms of anger, anxiety, depression, PTSD, and insomnia. These findings are consistent with previous results regarding the PSP Wellbeing Course [9]. Although this was not a randomized controlled trial comparing iCBT alone with iCBT enhanced with mindfulness meditations, the results suggest that the addition of mindfulness did not have a marked positive or negative impact on the effectiveness of the course.
Other benefits observed in this study included improved resilience and improved mindfulness scores from pre- to posttreatment. In terms of mindfulness, the results suggested that the course was specifically associated with improvements in nonjudging and nonreactivity mindfulness scores. It appears that the course reduced the frequency with which clients labeled their thoughts and feelings as “good” or “bad” and enhanced client’s ability to detach from thoughts and feelings rather than getting caught up in their thoughts and feelings. The course was not associated with changes in observing (ie, noticing internal and external experiences), describing (ie, being able to express one’s experiences in words), or acting with awareness (ie, attending to present-moment experiences) mindfulness scores. The skills of observing, describing, and acting with awareness may be more specifically associated with the practice of mindfulness, and clients may not have participated in sufficient mindfulness meditations to experience these benefits.

As this was not a randomized controlled trial, we could not determine whether the changes in mindfulness were related to the mindfulness meditations or would have resulted from the PSP Wellbeing Course alone. In general, clients who participated in the interviews on mindfulness meditations reported a number of perceived benefits of mindfulness despite variable engagement with the mindfulness meditations. Most clients reported that mindfulness meditation helped reduce stress and improved relaxation and that mindfulness meditation can be beneficial with practice. Mindfulness has previously been associated with stress reduction and improved relaxation, among other benefits [16,58,59]. Clients also reported that they liked that other skills (eg, controlled breathing and emotion labeling) could be incorporated with the mindfulness meditations.

The interviews shed light on the challenges of offering mindfulness meditations to PSP as part of iCBT. A common challenge with the meditations that clients reported was the difficulty in sitting with their emotions. Clients also commonly reported difficulties with finding time or quiet space in which to complete the mindfulness meditations and reported that the mindfulness meditations were too lengthy. Beginning with shortened meditations that slowly increase in length may be better to help PSP to learn to cultivate mindfulness gradually. Future iterations of the intervention may benefit from including information on how mindfulness meditation can be practiced throughout the day in smaller timeframes to increase the accessibility of mindfulness meditation. A suggestion for improvement included providing shorter mindfulness meditations (eg, 2-3 min) to help people learning mindfulness meditation to work their way up to longer mindfulness meditations and gain increased comfort while sitting with their feelings.

Overall, the high degree of treatment satisfaction across the previous version of the PSP Wellbeing Course and this version enhanced with mindfulness meditation suggests that mindfulness meditations, at the very least, did not markedly decrease course satisfaction or negatively impact clients’ perceptions of the course. Of note, there was also no evidence to suggest that this version of the course impacted course completion. At 8 weeks, 80% (32/40) of the clients in this trial had completed all 5 lessons. Similarly, at 8 weeks, 77% of the clients in a prior study of the original PSP Wellbeing Course had completed the course [9]. In terms of therapist engagement, clients in this course sent an average of 5.24 emails and received 9.48 emails from their therapists. In the previous version of the course, on average, clients sent 4.98 (SD 5.53) messages to their therapists and received 9.80 (SD 4.71) messages [9]. Descriptively, treatment satisfaction was lower for mindfulness meditations than for other aspects of the course (ie, lesson material, meditations, and additional resources). The lower satisfaction with the mindfulness meditations may indicate that work is needed to improve the meditations and that some PSP are not open to practicing mindfulness.

Our sample of clients, who voluntarily enrolled in a therapist-guided iCBT course, may have been more interested in CBT skills than mindfulness skills. The large variation in the quality of publicly available mindfulness meditation programs means the clients in this study may have been justifiably skeptical of mindfulness meditation or unsure about the potential benefits of mindfulness meditation [60].

Of note, in this study, no statistically significant relationships were observed between time spent practicing mindfulness meditations and reductions in symptoms, which contrasts with previous evidence that increased time spent meditating is associated with increased symptom reduction [23]. This discrepancy may be a result of the small sample size and having inadequate power to detect effects. This discrepancy may also be explained by the finding that the intervention was already associated with significant reductions in symptoms, and the addition of mindfulness meditations could not meaningfully add to the results. Furthermore, previous studies on PSP and mindfulness appear to focus on the intervention as a whole (ie, the impact of the intervention and mindfulness combined) and have not considered the independent impact of mindfulness on outcomes. It should be noted that the extant research suggests that mindfulness can have positive effects when practiced for 10 minutes daily, but shorter periods can also be associated with benefits [39-41]. Evidence also suggests that the quality of mindfulness meditation may be more important than the amount of mindfulness meditation practiced [61]. Few studies have reported the actual time their clients reported practicing mindfulness [61]. In this study, it may have been preferable to assess the quality of practice rather than the minutes practiced.

Limitations
This study has important limitations that will help to inform future research. First, the sample size of the study was small; however, the detailed data collected allowed for an understanding of the usability and credibility of mindfulness meditation in a sample of PSP seeking treatment. The detailed data also allow for iterative improvements to the intervention, such as providing increased psychoeducation on mindfulness meditation and introducing ultrabrief meditations for clients who want to work for longer periods. Future studies on iCBT should be conducted using larger samples of PSP from diverse communities across Canada (and internationally), as this study is not generalizable cross-culturally. It should also be noted that the clients in this study overall had variable clinical symptoms. On average, the scores of this particular subsample suggested...
that clients had milder symptoms of depression, anxiety, anger, and PTSD, although 30% (11/40) of the clients had scores above the clinical cut-off on the PHQ-9, 27% (11/40) above the cut-off on the GAD-7, 15% (6/40) above the cut-off on the PCL-5, and 45% (18/40) screened positive for at least 1 of the aforementioned mental disorders. It is possible that the lower symptom severity overall in the sample may have impacted the relationship between minutes meditating and outcomes owing to floor effects. It is also notable that in this sample, there were more women than men, which may have affected the findings. Second, this study does not contain a randomized design and involves short-term follow-up; thus, it is descriptively compared with the previously published trial on the PSP Wellbeing Course. Future studies of the program could benefit from a randomized design and a larger sample size to evaluate potential differences in experiences between versions of the course. In addition, such studies could explore how the course compares with control conditions. Third, only a subsample of the clients was interviewed, and the experiences of those who did and did not consent to an interview could have differed (eg, clients with more favorable attitudes toward the mindfulness meditations may have been more likely to consent to an interview). Fourth, our ability to determine whether time spent meditating predicted outcome measure changes may have been limited by the low engagement from clients in the mindfulness meditations. Future studies should consider means to encourage mindfulness meditation use without clients feeling forced to complete the exercises.

Clinical Implications and Future Directions

This study has several important potential implications. First, results from this study replicated previous results regarding the PSP Wellbeing Course, indicating that the intervention is associated with statistically significant reductions in symptoms of anxiety, depression, PTSD, and anger with medium to large effect sizes [62]. Contributing to the literature on iCBT for PSP, the study showed that improvements were also observed in resilience and mindfulness with this version of the course.

Use data showed that a significant percentage of clients used the mindfulness meditations. The information gathered from the interviews indicated that clients enjoyed that the mindfulness meditations could be incorporated with other strategies. Therapists may be able to help support future clients in understanding what works for them and how to incorporate their existing strategies with mindfulness meditation to achieve increased benefits. Future programs may benefit from increasing psychoeducation regarding the potential discomfort associated with mindfulness meditation and encourage clients to consider practicing more to allow them to get used to experiencing emotions. Clients also made suggestions for improvement. The mindfulness meditations may be offered after the completion of the course as an additional resource for clients who may be interested in pursuing the meditations. Additional research is needed to identify who can benefit from mindfulness meditations and to ensure that those who do not benefit are not distracted from the rest of the course content in attempting to complete mindfulness activities. One potential solution is to include mindfulness meditations as an optional component, allowing interested individuals to use mindfulness within the course while not distracting individuals who are not interested in mindfulness.

Conclusions

To the best of our knowledge, this is the first study to assess web-based mindfulness meditations as an adjunct to a preexisting iCBT intervention among PSP. The incorporation of mindfulness meditation was largely acceptable to many clients enrolled in the intervention, although our findings were limited by variable client engagement with the mindfulness meditations. The mindfulness meditations were used by approximately half of the clients, and the clients who used them reported that they enjoyed the meditations. The addition of mindfulness meditations did not appear to remarkably affect the overall engagement, satisfaction, or outcomes of the course. Clients also expressed several challenges and suggestions for improvement, which represent opportunities to improve mindfulness meditations and iCBT for PSP in general. The presentation of shortened mindfulness meditations may serve as an important adjustment to allow PSP to experience the benefits of mindfulness while maintaining their busy schedules. The results of this study suggest that mindfulness meditations, when offered along with iCBT, may be an acceptable intervention for Canadian PSP. Future research is required to further explore how best to incorporate mindfulness into iCBT for PSP and the potential benefits of doing so now that we have demonstrated partial feasibility.

Acknowledgments

The authors would like to acknowledge the contributions of all public safety personnel (PSP) who participated and the members of the PSPNET team for their support with this project. The authors would also like to acknowledge the many stakeholders and organizations that assisted them in tailoring the PSP Wellbeing Course and distributing information about PSPNET to PSP. Acknowledgments are due to the Online Therapy Unit for their support in setting up PSPNET. The authors are indebted to Information Services at the University of Regina, especially Max Ivanov, for his pivotal role in developing the Online Therapy Unit platform that is used to host PSPNET. The authors would like to thank Dr Shadi Beshai, Dr Natasha Gallant, and Dr Jenn deLugt for providing valuable feedback on this study. The authors would also like to thank Ailesh Abrams and Isabelle Dene for helping complete the interviews and Peace Dukuye for her efforts. This manuscript is based on a published thesis defended by Caelleigh Landry [63]. This research was made possible by scholarship funding provided to CAL by the Canadian Institutes for Health Research, Mental Health Research Canada, and Saskatchewan Health Research Foundation. This study was also supported by PSPNET, which is funded by the Canadian Government’s Ministry of Public Safety and Emergency Preparedness. The funders had no involvement in the design of the study or in the collection, analysis, and interpretation of the data.
Data Availability

As part of the consent form, participants were informed that their data would only be shared with members of the research team. Therefore, we are unable to share data.

Conflicts of Interest

HDH is the director of PSPNET and executive director of the Online Therapy Unit. BD and NT are the authors and developers of the Wellbeing Course but do not derive any personal or financial benefit from it. The other authors have no conflicts of interest to declare.

References

Abbreviations

BRS: Brief Resilience Scale
CBT: cognitive behavioral therapy
DAR-5: Dimensions of Anger Reaction Scale-5
FFMQ-15: Five Facet Mindfulness Questionnaire
GAD-7: Generalized Anxiety Disorder-7
iCBT: internet-delivered cognitive behavioral therapy
ISI: Insomnia Severity Index
PCI-5: Posttraumatic Stress Disorder Checklist for the DSM-5
PHQ-9: Patient Health Questionnaire-9
PSP: public safety personnel
PTSD: posttraumatic stress disorder

©Caeligh A Landry, Hugh C McCall, Janine D Beahm, Nickolai Titov, Blake Dear, R Nicholas Carleton, Heather D Hadjistavropoulos. Originally published in JMIR Formative Research (https://formative.jmir.org), 30.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Formative Evaluation of a Comprehensive Self-Management Intervention for Irritable Bowel Syndrome, Comorbid Anxiety, and Depression: Mixed Methods Study

Kendra Kamp1, MS, PhD; Pei-Lin Yang2, MSN, PhD; Emily Friedman3, MID; Alejandro Lopez1, BS; Sarah Iribarren1, PhD; Pamela Barney1, MN; Sean Munson4, PhD; Margaret Heitkemper1, PhD; Rona Levy5, MSW, PhD, MPH

1Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, United States
2National Defense Medical Center, Taipei, Taiwan
3Alacrity Center, University of Washington, Seattle, WA, United States
4Human Centered Design and Engineering, University of Washington, Seattle, WA, United States
5School of Social Work, University of Washington, Seattle, WA, United States

Corresponding Author:
Kendra Kamp, MS, PhD
Department of Biobehavioral Nursing and Health Informatics, School of Nursing
University of Washington
1410 NE Campus Parkway
Seattle, WA, 98195
United States
Phone: 1 206 221 4617
Email: kamp@uw.edu

Abstract

Background: Irritable bowel syndrome (IBS) is a disorder of the gut-brain interaction that is associated with abdominal pain, altered bowel patterns, and reduced quality of life. Up to 50\% of patients with IBS also report anxiety or depressive symptoms. Although effective self-management interventions exist for individuals with IBS, few have been effectively implemented, and most do not consider the unique needs of patients with comorbid IBS and anxiety or depression.

Objective: This study aimed to determine the anticipated acceptability, appropriateness, feasibility, and usability of a comprehensive self-management intervention using an implementation science and human-centered design approach among individuals with comorbid IBS and anxiety or depression and health care providers.

Methods: A convergent mixed methods design was used to elicit feedback on the comprehensive self-management intervention outline and content to identify refinement needs before testing. Patients with IBS and moderate to severe anxiety or depression and health care providers were purposefully sampled from primary care and gastroenterology settings. Participants completed semistructured interviews and surveys on anticipated acceptability, appropriateness, feasibility, and usability.

Results: Patient participants (n=12) were on average 36.8 (SD 12.2) years of age, and 42\% (5/12) were currently receiving psychological therapy. Health care providers (n=14) were from primary care (n=7) and gastroenterology (n=7) settings. The mean usability scores (out of 100) were 52.5 (SD 14.5) for patients and 45.6 (SD 11.6) for providers. For patients and providers, qualitative data expanded the quantitative findings for acceptability and appropriateness. Acceptability findings were the comprehensive nature of the intervention and discussion of the gut-brain interaction. For appropriateness, participants reported that the intervention provided structure, accountability, and support. Feasibility was confirmed for patients, but there was a divergence of findings between quantitative and qualitative measures for providers. Patients focused on intervention feasibility, while providers focused on implementation feasibility in the clinic. Identified usability issues to address before implementation included the intervention delivery format, length, and lack of integration into health care settings that, if not addressed, may limit the reach of the intervention.

Conclusions: Patients and health care providers found the intervention acceptable and appropriate. Several feasibility and usability issues were identified, including intervention delivery methods, length of intervention, and the best methods to implement in the clinic setting. The next steps are to refine the intervention to address the identified issues and test in a pilot study whether addressing usability issues leads to the anticipated improvements in implementation and uptake.
acceptability; anxiety; depression; design; effectiveness; feasibility; implementation; intervention; irritable bowel syndrome; management; mixed methods; patient; self-management; support; usability

Introduction

Irritable bowel syndrome (IBS) is a disorder of gut-brain interaction that affects 6%-18% of individuals worldwide [1,2]. Many evidence-based practice interventions (EBPIs) have been developed to address symptoms of IBS, such as abdominal pain, and improve quality of life [3]. However, a gap exists in translating EBPIs into clinical practice settings. Clinical practice guidelines support the use of behavioral EBPIs for IBS [4,5], yet only a small proportion of patients actually receive such interventions [6]. Implementation science is a field that focuses on translating evidence-based practice into real-world settings [7]. Attending to implementation outcomes such as acceptability, feasibility, appropriateness, and usability can assist in identifying facilitators and barriers to successful intervention implementation and adoption within clinical practice settings [7-9].

When integrating EBPIs for IBS into real-world settings, an important consideration is the common comorbidities that exist among many individuals with IBS. Most notably, 30%-50% of patients diagnosed with IBS also have a diagnosis of anxiety or depression [10]. Psychological distress is linked to the onset and exacerbation of IBS symptoms, and reducing symptom severity and burden is a key component of behavioral approaches. With the publication of the consensus-driven Rome IV criteria [11], there is a growing appreciation that IBS is a disorder of gut-brain interaction. Although many studies have examined the effectiveness of interventions for IBS, including cognitive behavioral therapy and dietary interventions [6,12,13], few have focused specifically on interventions for individuals with IBS and comorbid anxiety or depression. Given the high prevalence of IBS in the United States, along with comorbid anxiety and depression, there is a significant need to implement effective therapeutic strategies to address both IBS and psychological distress [12,14].

One EBPI, the comprehensive self-management (CSM) intervention, has been shown in multiple randomized controlled trials to reduce abdominal pain symptoms and improve quality of life [15-17]. The intervention content has been published as a book, Master Your IBS [15-17]. Although initially developed for IBS symptoms, the intervention has elements of a transdiagnostic approach, reducing other common symptoms of anxiety, depression, extraintestinal pain, fatigue, and sleep disturbances [18,19]. The intervention consists of 8 1-hour sessions, which can be provided by a psychiatric nurse practitioner or similarly trained health professional. However, there is a gap in knowledge regarding how to implement the CSM intervention into clinical practice, specifically from the perspective of key stakeholders: individuals with IBS and comorbid anxiety or depression and health care providers.

Research has argued for applying human-centered design and usability principles to address the lack of intervention implementation by redesigning interventions to improve usability while retaining the effective components [20-22]. Although usability has been most often applied in technology-based applications, usability evaluation principles can also be used to assess other products and services, including interventions and implementation strategies [9,23,24]. Human-centered design approaches focus on developing usable interventions through stakeholder input [21]. By addressing design and content issues, interventions can have increased usability and acceptability to better integrate into clinical settings.

In this research, we sought to examine the usability and acceptability of the current, paper-based CSM intervention from the perspectives of patients with IBS and comorbid anxiety or depression and health care providers in primary care and gastroenterology settings. Our formative evaluation was intended to support (1) refining and adapting the CSM to a digital format and (2) the identification of implementation strategies to facilitate adoption in clinical practice settings. The initial impressions patients and health care providers form regarding the anticipated acceptability, feasibility, appropriateness, and usability of an intervention affect their likelihood of adopting it and help characterize their needs, and these impressions can inform intervention refinement or redesign as well as the selection of intervention strategies to plan for integration into clinical practice. Our research questions were as follows: (1) What are patient and provider perspectives on the acceptability, appropriateness, feasibility, and usability of the current CSM intervention? (2) What recommendations do patients and providers have for improving this intervention?

Methods

Design
We used a convergent mixed methods design to collect both quantitative (ie, surveys) and qualitative (ie, semistructured interviews) data [25] from patients with IBS and comorbid anxiety or depression, as well as primary care and gastroenterology health care providers. In this study, participants received the paper-based intervention content to review and critique, not the intervention directly. Each patient and health care provider participated in a semistructured interview to discuss the intervention content and structure and answer survey questions. Our interview and survey questions were guided by the discover, design, build, and test framework, which combines perspectives from implementation science and human-centered design [7,8,20]. To gain a comprehensive understanding of issues and recommended strategies, we designed our qualitative interview questions to align with the concepts addressed in the surveys [25]; these included acceptability, feasibility,
Sample

Individuals with IBS and self-identified comorbid anxiety or depression symptoms (referred to as patients) were recruited on the internet through 2 methods: the University of Washington Institute of Translational Health Sciences listservs and ResearchMatch, a national health volunteer registry supported by the US National Institutes of Health as part of the Clinical Translational Science Award program.

Patients were eligible if they met the following inclusion criteria: (1) aged between 18 and 70 years; (2) ROME IV IBS criteria of recurrent abdominal pain at least 1 day per week in the past 3 months that is associated with 2 or more of defecation, onset associated with a change in frequency of stool, or change in form of the stool; (3) have a diagnosis of IBS by a health care provider; (4) report moderate to severe anxiety or depression (Generalized Anxiety Disorder-7 [GAD-7] score of >10 [27]; Patient Health Questionnaire-9 [PHQ-9] score of >10 [28]); and (5) be able to read and write in English. Participants were excluded if they had a first-degree relative with colorectal cancer before the age of 60 years or had multiple “red flag” symptoms (ie, loss of 10 or more pounds without trying, blood in stool, or anemia). Patients completed a web-based screening questionnaire to assess their eligibility. All patients who expressed thoughts of hurting themselves were immediately directed to contact the National Suicide Prevention Lifeline.

Health care providers were recruited from primary care and gastroenterology clinics in Washington State. Individuals were eligible to participate if they self-reported caring for more than 3 patients with IBS per month. Health care providers from primary care clinics were recruited through the WWAMI (Washington, Wyoming, Alaska, Montana, and Idaho) region Practice and Research Network, a practice-based research network of primary care clinics and clinical organizations. Health care providers from Seattle gastroenterology clinics were recruited through purposeful convenience sampling. Health care providers received emails regarding the study and self-identified if they met the criteria of caring for at least 3 individuals with IBS per month.

Description of the CSM Intervention at the Start of the Study

The CSM intervention was developed as a comprehensive approach to improving quality of life and reducing abdominal pain among individuals with IBS [15-17]. The intervention is delivered in 8 individual sessions, with sessions lasting 60 minutes. Participants had up to 12 weeks to complete the 8 sessions, to allow for unexpected events. Participants can elect to complete the intervention in-person, over the telephone, or through a mixture of telephone and in-person sessions since there is no difference in intervention effectiveness between in-person and telephone modalities [16]. Each participant receives a paper-bound “IBS Managing Symptoms Workbook,” which includes information, worksheets, and homework assignments. Additionally, participants received CD audio recordings of the relaxation exercises. The CSM intervention includes content such as healthy thought patterns, problem-solving, healthy eating, and relaxation. Additionally, the intervention addresses practical topics such as sleep, travel, eating out, and physical intimacy. Participants receive verbal and written instructions regarding the use of the manual.

Measures

An overview of the measures by participant group (patients and health care providers) is presented in Table S1 in Multimedia Appendix 1.

Demographics

Age, sex, and race were assessed for patients and providers. For patients, the IBS subtype of constipation, diarrhea, or mixed was reported. Anxiety was measured using the GAD-7 questionnaire, which asks how often participants have been bothered by a list of 7 symptoms over the past 2 weeks [27]. Depression was measured with the PHQ-9, which asks participants how often they are bothered by 9 problems [28]. For both anxiety and depression measures, response options are on a 4-point scale, including “not at all,” “several days,” “more than half the days,” and “nearly every day.” Health care providers answered questions on the type of provider, years of working experience, and number of patients with IBS cared for per month.

Anticipated Acceptability, Appropriateness, and Feasibility

Anticipated acceptability, appropriateness, and feasibility were each measured with 4 items [26]. Participants responded on a 5-point Likert scale from 1 (completely disagree) to 5 completely agree. A higher score indicates greater agreement. Acceptability measures anticipate responsiveness to adopting a new implementation plan. Appropriateness measures the anticipated suitability of the intervention and the perceived fit of the intervention. Feasibility measures the anticipated likelihood of implementing the intervention.

Anticipated Usability

The anticipated usability of the CSM intervention was assessed using the Intervention Usability Scale, which has 10 items and was derived from the System Usability Scale [9,29]. Participants respond from “strongly disagree” to “strongly agree.” The scale ranges from 0 to 100. A score above 68 is considered average; a score below 68 is considered below-average usability.

Procedures

Institutional review board approval was obtained from the University of Washington (IRB# 00009463) before participant recruitment. All individuals were provided with a description of the risks and benefits of participating in the research study as well as an explanation that they could stop participating at any time. Individual interviews were conducted with patients and health care providers. For this study, participants provided feedback on the intervention content and format overall without participating in individual intervention sessions. The second phase of this study (data not reported in this manuscript) focused on obtaining feedback on the intervention redesign of the first 3 intervention sessions.
Patients and health care providers were asked questions using a semistructured interview guide. For example, introductory questions were asked about symptoms (patients) and the type of practice (health care providers). Next, both patients and health care providers were shown an outline of the current CSM content and completed a card sorting activity to categorize the intervention content into 3 categories (“most helpful,” “seems okay,” or “least helpful”). Additionally, the current CSM intervention format was described (eg, in-person and telephone-delivered intervention that included a paper-based workbook); we asked for patients’ and health care providers’ thoughts on the intervention content outline and format and how it could best be designed to integrate into their lives and promote adherence to the intervention. At the end of the interview, patients and health care providers were sent postinterview participatory design session questionnaires regarding the anticipated acceptability, appropriateness, feasibility, and usability of the intervention.

Data Analysis and Integration
Integration in quantitative and qualitative methods occurred through merging [25]. Quantitative and qualitative data were initially analyzed separately and brought together for analysis. For qualitative data, the interview recordings were transcribed. The 2 authors (KK and PLY) coded 2 transcripts from health care providers and 2 transcripts from patients to develop the coding scheme and reach a consensus using a framework approach [30]. The coding scheme was guided by the research questions to understand anticipated barriers and facilitators to acceptability, appropriateness, feasibility, and usability. Each coder then proceeded to code half of the interviews. Any discrepancies were discussed, and consensus was reached. The codes and results were presented to the entire team for further discussion. The mixed methods findings are presented within the text and highlight how the quantitative and qualitative findings align and show a confirmation of the findings, as well as those that are disparate and demonstrate discordance in findings [25]. By integrating the qualitative and quantitative data, we expanded our insights on which intervention components were acceptable and feasible and which needed modification. Mixed methods enabled us to gain new insights into the data, particularly by assessing numeric data to further explore themes from the qualitative interviews where usability or feasibility was lowest.

Ethical Considerations
This study was reviewed by the University of Washington Institutional Review Board (IRB# 00009463). All participants provided verbal consent before the interview. Data are presented as deidentified and do not include links to participant characteristics to protect the privacy and confidentiality of the research participants. Participants received a US $50 gift card for participating in the study.

Results

Demographics
A total of 12 patients completed the qualitative interview (Table 1). Patients had a mean age of 36.8 (SD 12.2) years and were predominantly female. Overall, 42% (n=5) were currently receiving psychological therapy for anxiety or depression. A total of 14 health care providers completed the interview; half (7/14) were primary care providers, and half (7/14) specialized in gastroenterology. Professional roles included 7 physicians, 1 physician’s assistant, and 6 nurse practitioners. One provider did not complete the questionnaires. Provider experience ranged from 4 to 26 years. On average, providers cared for 26 (SD 20; range 3-80) patients with IBS per month. Interviews lasted between 27 and 43 minutes for health care providers (mean 35, SD 5 minutes) and between 32 minutes and 1 hour and 11 minutes for patients (mean 47, SD 12 minutes).

Table 1. Characteristics of patients with irritable bowel syndrome and comorbid anxiety or depression and health care providers.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients (n=12)</th>
<th>Health care providers (n=14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>36.8 (12.2)</td>
<td>38.8 (5.8)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3 (25)</td>
<td>3 (23)</td>
</tr>
<tr>
<td>Female</td>
<td>9 (75)</td>
<td>10 (77)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>1 (8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (16)</td>
<td>5 (38)</td>
</tr>
<tr>
<td>White</td>
<td>9 (75)</td>
<td>7 (54)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (8)</td>
<td>1 (8)</td>
</tr>
</tbody>
</table>

Anticipated Acceptability, Appropriateness, and Feasibility

Acceptability
Mean acceptability was 4.0 (SD 0.8) out of 5 by patients and 4.4 (SD 0.5) out of 5 by providers, indicating that on average, the current CSM intervention content and format were acceptable (Table S2 in Multimedia Appendix 1 for individual acceptability items).

The qualitative results confirm the intervention was acceptable through its comprehensive nature, in which patients could try different components and see what works for them (Table 2 for...
Participants reported that, given the gut-brain interaction that exists, a comprehensive approach to management of both gastrointestinal and anxiety or depressive symptoms was an important component. Patients scored acceptability lower than health care providers, particularly for the item that asks if the intervention is appealing. Patients identified that several of the intervention topics were familiar, especially those who have struggled to manage their IBS for many years. Health care providers focused on individual intervention components such as access and literacy, cost or insurance coverage, and culture or race that could be potential barriers to patients engaging in a self-management intervention like the CSM. The card sorting activity identified content that was of higher priority to participants. Patients found content related to sleep, traveling, and trigger foods most helpful, whereas providers found content related to relaxation, introduction to IBS, sleep, and trigger foods most helpful.
Table 2. Qualitative findings among 12 patients with irritable bowel syndrome and comorbid anxiety or depression and 14 primary care and gastroenterology health care providers.

<table>
<thead>
<tr>
<th>Theme</th>
<th>Illustrative qualitative quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptability</td>
<td>• “I like the fact that there’s a wide variety of things; I feel confident that at least 1 or 2 of these things from the 7 kind of content weeks would be helpful.” [Patient 7]</td>
</tr>
<tr>
<td></td>
<td>• “I do think something like this could fit into my day-to-day life, because... it would give me some type of structure.” [Patient 8]</td>
</tr>
<tr>
<td></td>
<td>• “I really think this looks like a very comprehensive plan to address holistically what may be contributing to people who have irritable bowel syndrome.” [Provider 3]</td>
</tr>
<tr>
<td></td>
<td>• “I think improving accessibility, such that it’s one that I can give to [all] sort[s] of patients, regardless of their insurance status, regardless of where they live, or sort of their profession, would be good.” [Provider 8]</td>
</tr>
<tr>
<td>Appropriateness</td>
<td>• “I feel like it would keep me more accountable, and it would give me somebody I can talk through everything with instead of just trying to figure it out on my own.” [Patient 11]</td>
</tr>
<tr>
<td></td>
<td>• “I think just having that intentionality and having structure is really important if someone wants to make a change.” [Patient 4]</td>
</tr>
<tr>
<td></td>
<td>• “So, I’ve done that in my therapy with a psychologist, but my therapist doesn’t know very much about IBS, and my doctor that knows about IBS, I just see them like for 15 minutes every 3 months or something. So, it would be nice to have someone who is aware of the integration of those things.” [Patient 7]</td>
</tr>
<tr>
<td></td>
<td>• “When you’re doing something yourself and it doesn’t rely on a medication and this gives people a little bit of power. It gives them structure.” [Provider 12]</td>
</tr>
<tr>
<td></td>
<td>• “I think that it also gives some accountability in terms of, ‘Did you do these exercises?’ ‘Did you bring your record?’ and these kinds of things.” [Provider 8]</td>
</tr>
<tr>
<td></td>
<td>• “When you’re depressed or anxious and when your body feels like it’s turning against you, which is what a lot of people with IBS I hear being said to me, it gives you a facet of control. When you’re doing something yourself and it doesn’t rely on a medication and this gives people a little bit of power. It gives them structure.” [Provider 10]</td>
</tr>
<tr>
<td>Feasibility</td>
<td>• “I guess the part that might be difficult is just making sure someone actually does it, and sticking with it, which is the hard part.” [Patient 4]</td>
</tr>
<tr>
<td></td>
<td>• “I just think that somebody new to [IBS] would be more apt to get into this versus somebody who’s been through all this; they’d be like, ‘I’ve done all this stuff already.’” [Patient 5]</td>
</tr>
<tr>
<td></td>
<td>• “I’m curious, but also, I’m skeptical. I don’t know why. Just because I feel like I’ve tried so many things and I’m like, ‘Really? Fiber is going to be the thing?’ Maybe I just have more to learn.” [Patient 10]</td>
</tr>
<tr>
<td></td>
<td>• “I think the hard part is having a person that’s motivated enough to actually go through and do this on their own... unless there’s some accountability.” [Provider 12]</td>
</tr>
<tr>
<td></td>
<td>• “I think if they go in for counseling, they have more time to do CBT-type stuff. They have more time to talk to the patient about it. Whereas in primary care we don’t always have that kind of time... unless there’s some accountability.” [Provider 10]</td>
</tr>
<tr>
<td>Usability</td>
<td>• “I’d like it with an app, something that’s visual on the app as well as verbal. I’d like some types of video content to actually show me certain tasks for working through planning out certain things, as well as verbalized communication.” [Patient 8]</td>
</tr>
<tr>
<td></td>
<td>• “In an e-course-esque environment I think would be really helpful or an app, if that’s a possibility.” [Patient 10]</td>
</tr>
<tr>
<td></td>
<td>• “If you construct your own. Build your own. I don’t know, Amazon cart, I don’t like the bundle.” [Patient 1]</td>
</tr>
<tr>
<td></td>
<td>• “I’d rather do it by myself and if there was somebody after the fact that wanted to check up on me for 5 minutes and say, how did it go? Do you have any questions? Did you have any concerns? Did it work?” [Patient 2]</td>
</tr>
<tr>
<td></td>
<td>• “I have a very geriatric[ic] heavy panel, which certainly would not do well with an app and need kind of person kind of contacting them on a weekly basis in some shape or form phone call or something. Whereas I could definitely see my more hyper-focused, got a lot of stuff going on, needing it more as an app with an alert that pops up on their phone that says, ‘Hey, it’s time to work on your skill for today. Let’s set aside 15 minutes to do this,’ or whatever.” [Provider 1]</td>
</tr>
<tr>
<td></td>
<td>• “Just a very brief: Patient’s doing well. Patient does not seem to be progressing. Patient is not participating. They haven’t returned any of their journals.” [Provider 7]</td>
</tr>
<tr>
<td></td>
<td>• “Afterwards as a summary, was this overall sort of useful or which parts of it did you find use in? And, so then I know what are your residual symptoms that we can sort of work on and address because I think it’s also hard to see the clear benefit right away can sometimes take a while even with patients. Once it’s even kicked in, they have... for them to start suddenly realizing so many months down the road, ‘Actually my symptoms are doing a lot better. This used to be something I would think about all the time, and now it’s kind of rare.’” [Provider 8]</td>
</tr>
</tbody>
</table>

Appropriateness

Mean appropriateness was rated by patients as 4.0 (SD 0.7) and by providers as 4.2 (SD 0.5) out of 5. The qualitative data confirmed the quantitative finding by indicating that the intervention was appropriate because it provided accountability, support, and structure. This was especially important, as many patients felt they had tried multiple other strategies on their own through a trial-and-error approach and viewed the addition of a support person as very helpful and important. Patients discussed accountability within the context of having someone help them navigate and talk through their experiences. Health
care providers also identified the importance of accountability, although they discussed accountability within the context of patients completing assignments and activities.

Patients and health care providers also addressed the appropriateness of the intervention in relation to patients with IBS who had comorbid anxiety or depression. Health care providers noted that structure was especially important as individuals with IBS and comorbid anxiety or depression often feel that a lot of things are out of their control. Even individuals who already received psychological therapy for anxiety or depression (n=5) saw the benefit of integrating IBS and mental health. The integration of an intervention that could address symptoms of IBS along with anxiety and depression was viewed positively by patients.

Feasibility
Mean feasibility was rated by patients as 3.9 (SD 0.7) and by providers as 3.9 (SD 0.7) out of 5. Among patients, the qualitative findings confirmed the quantitative findings. Patients identified specific situations that could influence feasibility, such as a lack of motivation to participate or “stick with” the intervention. Another factor affecting motivation is that many individuals with IBS and comorbid anxiety or depression have already tried multiple strategies to manage their symptoms. Several of the participants felt that components of the intervention were familiar and were perhaps better suited for newly diagnosed individuals. Due to having tried multiple previous strategies, some participants were skeptical that an intervention could truly help manage their symptoms. Yet, they were still interested in trying it due to experiencing symptoms. Patients primarily focused on the intervention feasibility.

Among health care providers, the quantitative and qualitative findings were discordant; the quantitative feasibility score was positive; however, the qualitative portion identified multiple barriers to implementation within a clinic setting. Similar to patients, health care providers also identified patient lack of motivation as a barrier to the intervention. Health care providers felt their clinic visits were so short that they did not have time to review the CSM self-management approaches. Health care providers’ comments regarding feasibility were focused on the feasibility of implementing the intervention in a health care clinic setting (see Perceived Usability section).

Perceived Usability
Overview
The mean score for the Intervention Usability Scale was 52.5 (SD 14.5) for patients and 45.6 (SD 11.6) for health care providers, which fell below the average usability cutoff of 68. Usability conversations provided confirmation that the intervention needed to be revised and focused on improving the delivery of the intervention, the time demands of the intervention, and integration into health care settings. Textbox 1 presents a summary of recommended changes.

Textbox 1. Summary of recommended changes.

- Patients were interested in moving through the intervention content at their own pace, but they still prefer a professional to check-in with for questions.
- Patients preferred the intervention content in a digital format.
- Reduce the face-to-face time required by providers to increase the likelihood that the intervention is adopted in clinical settings.
- Make the tracking (food, sleep, and symptoms) required by the intervention easier to do.
- Create content summarizing patient progress through the intervention to facilitate communication with their provider when they meet.

Delivery of Intervention
The original CSM was designed for in-person or telephone delivery with a paper workbook. Both patients and health care providers discussed the importance of continuing to have a person, either a health care provider or a peer, involved in the intervention. Patients, in particular, discussed the delivery of intervention content in online formats such as apps and e-courses where they could review content independently with weekly check-ins. All but 1 patient desired weekly check-ins. Some patients preferred web-based check-ins to be with an expert in IBS, whereas others noted that it may be helpful to have a peer mentor because they do not know many people with IBS. Regardless of who delivers the intervention (ie, health care provider or peer), the most important characteristic was someone who was skilled and knowledgeable in IBS. Health care providers said the delivery method depended on the age of the population. Some health care providers discussed the potential benefits of using videos to present information and demonstrate skills. However, most discussions with health care providers focused on in-person intervention delivery.

Intervention Time Demands
Patients had a variety of opinions regarding the length of the 8-week CSM intervention and the daily time commitment for practicing skills. Patients who preferred a shorter intervention typically identified content that was not applicable or of interest to them. For some, 8 weeks seemed reasonable, whereas others identified that 8 weeks may not be enough time to obtain results. Health care providers identified that the CSM, as originally designed, required more time to deliver the content than the providers were able to fit into their current practices. This creates an implementation barrier to incorporating the therapy into clinics.

Integration Into Health Care Settings
Health care providers thought the easiest integration into health care settings was for the providers to introduce the intervention to the patient and have another health care professional (eg, nurse or social worker) who was an expert in IBS deliver the intervention. Health care providers desired feedback on the patients’ progression through the intervention, such as a summary of symptoms, strategies that worked, and an overview.
of patient engagement. Most providers preferred a brief end-of-intervention update. Patients also preferred to learn about the intervention from their primary care provider or gastroenterologist.

Discussion

Overview

Overall, individuals with IBS and comorbid anxiety or depression, as well as health care providers, found the content and format of the CSM intervention acceptable and appropriate; however, challenges were identified related to anticipated feasibility and usability. The qualitative findings expanded the quantitative findings for acceptability and appropriateness. For feasibility, patient qualitative findings expanded the quantitative findings, whereas for providers, the qualitative findings indicated barriers to feasibility while the quantitative findings indicated feasibility. Overall, participants reported the intervention was comprehensive and provided structure, accountability, and support. However, participants warned that engagement in the intervention would be influenced by time, motivation, literacy, culture, and cost, in addition to a variety of usability issues (improving the delivery of the intervention, time demands of the intervention, and integration into health care settings). Addressing the anticipated acceptability, feasibility, appropriateness, and usability of the CSM intervention has the potential to influence key barriers to implementation and uptake among those with IBS and comorbid anxiety or depression.

Acceptability

Previous research has noted that patients with medically unexplained symptoms and comorbid anxiety or depression may have less favorable cognitive behavioral therapy outcomes [31]. Thus, our approach of human-centered design methods to elicit feedback from patients with IBS and comorbid anxiety or depression may serve as 1 method to create interventions to address the unique needs of this population. Specifically, patients with IBS and comorbid anxiety or depression discussed the importance of structure and support in completing the intervention. They also mentioned the importance of integrating IBS and mental health as previous health care encounters had focused independently on either IBS or mental health but did not take a holistic approach to symptoms. Recent evidence has highlighted the benefits of integrated care approaches, which include a team comprising gastroenterologists, nurses, dietitians, psychiatrists, hypnotherapists, and behavioral therapists. Individuals with IBS who were randomized to an integrative care arm had greater reductions in global symptoms as well as IBS symptom severity compared to those in the standard care group [32].

 Appropriateness

Patients and health care providers both identified the importance of support from a person throughout the intervention. It is unclear if the desire for a support person is unique to patients with comorbid IBS and mental health. For instance, a meta-analysis found that computer-assisted cognitive behavioral therapy for depression in primary care is effective if clinicians offer modest support (60-194 minutes) throughout the intervention (7-16 weeks) [33]. In this study, patients preferred to review the content and practice independently and have someone available to follow up with them. Additionally, health care providers indicated that in-person sessions would be preferred but acknowledged that, with the COVID-19 pandemic, telemedicine visits could also be useful. Although a review article highlighted the effectiveness of primary care provider–delivered self-management interventions, this study highlights the time limitations of clinicians in delivering such an intervention [34]. Even if primary care providers do not deliver the intervention, there is a need for integrated care approaches so that primary care providers can receive feedback on their patients’ progress through the intervention. Future research should examine innovative methods to integrate comprehensive interventions into primary care, gastroenterology, and other health care settings.

Feasibility

Patients indicated that the intervention may be best suited for newly diagnosed individuals to promote self-management earlier in the disease course. Thus, additional research is needed to understand if the intervention effects differ based on time since diagnosis or time since symptom onset. Health care providers had varied opinions regarding the feasibility of the intervention, specifically highlighting barriers to implementation. Yet few studies have focused on implementation strategies within the population of patients with IBS and anxiety or depression overlap. Implementation frameworks such as the Consolidated Framework for Implementation Research [35], the Practical, Robust Implementation, and Sustainability Model [36], and the Reach Effectiveness Adoption Implementation and Maintenance framework [37] can be used to guide such research.

Usability

Both patients and health care providers identified several ways to improve the usability of the intervention. Patients emphasized the benefits of accessing intervention content on the internet and being able to track and monitor symptoms. Health care providers identified age as a factor influencing intervention delivery methods, although this theme did not arise among the small sample of patients aged between 20 and 59 years. Previous research has indicated that older adults may avoid using technology due to fear of confirming negative stereotypes [38]. Thus, considerations should be made for understanding the specific technology needs of older adults with IBS and comorbid anxiety or depression and designing accessible systems that benefit all patients.

Patients had a variety of opinions regarding the length of the intervention. Patient differences such as disease severity, previous intervention experiences, or lifestyle may influence intervention length preferences. A previous study by Lackner et al [6] identified no statistically significant differences in the proportion of patients with IBS responding to a 10-week standard cognitive behavioral therapy (87.5%) compared to a brief 4-week cognitive behavioral therapy (80%, P = .55) [6]. Thus, there is a need to identify ways to tailor the intervention length based on the content participants are familiar with and their tolerance for intervention length.
Limitations

Strengths of the study include incorporating the perspectives of both patients and health care providers into the intervention evaluation. Using implementation science and a human-centered design approach provided an established framework to elicit feedback regarding the intervention. Yet, this study has several limitations. Patients and health care providers were recruited during the COVID-19 pandemic. Patients were recruited on the internet and therefore may have different characteristics than those typically obtained in primary care and gastroenterology settings, such as greater levels of computer literacy and comfort with technology-delivered interventions. Additionally, we did not have access to clinical records for patients. It is possible that selection bias may have occurred such that health care providers with a large number of patients with IBS were more likely to participate in the study and had different barriers than health care providers seeing fewer patients with IBS. Another limitation is that patients and providers did not complete the intervention but rather provided feedback on the overall content and intervention; therefore, additional implementation barriers may be found when using the intervention.

Conclusions

Patients and health care providers reported the CSM intervention was acceptable and appropriate but identified several potential feasibility and usability challenges. Thus, before applying the intervention among a population of individuals with IBS and comorbid anxiety or depression, there is a need to modify intervention delivery methods, consider the length of the intervention, and address the best methods of implementing in the clinic setting. Considerations should be made to improve the ease of tracking, allow participants to move through the intervention at their own pace, and provide a summary of patient progress through the intervention. Future work will assess whether addressing feasibility and usability leads to the anticipated improvements in implementation and adoption.

Acknowledgments

This study was supported by the National Institute of Mental Health (grant P50 MH115837) and the National Center for Advancing Translational Sciences of the National Institutes of Health under award number UL1 TR002319. KK is funded, in part, by the National Institute of Nursing Research (grant K23NR020044). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Study Measures Completed by Patients with Irritable Bowel Syndrome and Comorbid Anxiety and/or Depression and Healthcare Providers.

[DOCX File, 23 KB - _formative_v8i1e43286_app1.docx_]

Multimedia Appendix 2

Individual items from the acceptability, appropriateness, and feasibility measures.

[DOCX File, 21 KB - _formative_v8i1e43286_app2.docx_]

References

Abbreviations

CSM: comprehensive self-management
EBPI: evidence-based practice intervention
GAD-7: General Anxiety Disorder-7
IBS: irritable bowel syndrome
PHQ-9: Patient Health Questionnaire-9

©Kendra Kamp, Pei-Lin Yang, Emily Friedman, Alejandra Lopez, Sarah Iribarren, Pamela Barney, Sean Munson, Margaret Heitkemper, Rona Levy. Originally published in JMIR Formative Research (https://formative.jmir.org), 31.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Investigating the Potential of a Conversational Agent (Phyllis) to Support Adolescent Health and Overcome Barriers to Physical Activity: Co-Design Study

Richard Moore1, MSc‡; Abdel-Karim Al-Tamimi2, PhD; Elizabeth Freeman3, PhD

1Sheffield Hallam University, Sport and Physical Activity Research Centre / Advanced Wellbeing Research Centre, Sheffield, United Kingdom
2Department of Computing, Sheffield Hallam University, Sheffield, United Kingdom
3Department of Psychology, Sociology & Politics, Sheffield Hallam University, Sheffield, United Kingdom
‡Conversational AI Research Cluster

Corresponding Author:
Richard Moore, MSc
Sheffield Hallam University
Sport and Physical Activity Research Centre / Advanced Wellbeing Research Centre
Sheffield Hallam University, Olympic Legacy Park, 2 Old Hall Road
Advanced Wellbeing Research Centre
Sheffield, S9 3TU
United Kingdom
Phone: 44 7751234185
Email: r.moore@shu.ac.uk

Abstract

Background: Conversational agents (CAs) are a promising solution to support people in improving physical activity (PA) behaviors. However, there is a lack of CAs targeted at adolescents that aim to provide support to overcome barriers to PA. This study reports the results of the co-design, development, and evaluation of a prototype CA called “Phyllis” to support adolescents in overcoming barriers to PA with the aim of improving PA behaviors. The study presents one of the first theory-driven CAs that use existing research, a theoretical framework, and a behavior change model.

Objective: The aim of the study is to use a mixed methods approach to investigate the potential of a CA to support adolescents in overcoming barriers to PA and enhance their confidence and motivation to engage in PA.

Methods: The methodology involved co-designing with 8 adolescents to create a relational and persuasive CA with a suitable persona and dialogue. The CA was evaluated to determine its acceptability, usability, and effectiveness, with 46 adolescents participating in the study via a web-based survey.

Results: The co-design participants were students aged 11 to 13 years, with a sex distribution of 56% (5/9) female and 44% (4/9) male, representing diverse ethnic backgrounds. Participants reported 37 specific barriers to PA, and the most common barriers included a “lack of confidence,” “fear of failure,” and a “lack of motivation.” The CA’s persona, named “Phyllis,” was co-designed with input from the students, reflecting their preferences for a friendly, understanding, and intelligent personality. Users engaged in 61 conversations with Phyllis and reported a positive user experience, and 73% of them expressed a definite intention to use the fully functional CA in the future, with a net promoter score indicating a high likelihood of recommendation. Phyllis also performed well, being able to recognize a range of different barriers to PA. The CA’s persuasive capacity was evaluated in modules focusing on confidence and motivation, with a significant increase in students’ agreement in feeling confident and motivated to engage in PA after interacting with Phyllis. Adolescents also expect to have a personalized experience and be able to personalize all aspects of the CA.

Conclusions: The results showed high acceptability and a positive user experience, indicating the CA’s potential. Promising outcomes were observed, with increasing confidence and motivation for PA. Further research and development are needed to create further interventions to address other barriers to PA and assess long-term behavior change. Addressing concerns regarding bias and privacy is crucial for achieving acceptability in the future. The CA’s potential extends to health care systems and multimodal support, providing valuable insights for designing digital health interventions including tackling global inactivity issues among adolescents.
physical activity; inactivity; conversational agent; CA; adolescent; public health; digital health interventions; mobile phone

Introduction

Background

There is indisputable evidence supporting the positive effects of regular physical activity (PA) on the physical and emotional well-being of adolescents [1], enhanced cognitive function [2], and improved educational attainment [3,4]. The UK government recommends that children and young people engage in 60 minutes of PA per day, with 30 minutes taking place at school and an additional 30 minutes outside of school hours. However, despite this guideline, only 57% of children participate in ≥30 minutes of PA outside of school, compared with 40% during school hours [5].

Inactivity is a global challenge, with a considerable number of adolescents worldwide failing to engage in sufficient PA [6]. It is crucial that adolescents maintain a consistent level of PA during adolescence as this may lead to healthy habits that extend into adulthood, lowering the risk of inactivity in later years and reducing the possibility of developing hypokinetic conditions [7-9]. There is a consensus that evidence-based approaches involving multicomponent interventions targeted at inactive adolescents are needed on a global scale [10-12].

Although schools provide equal opportunities for adolescents to participate in PA, making them valuable settings to focus resources [12], multiple barriers exist that prevent schools from allocating adequate time and resources to PA programs [13,14]. In addition, various barriers relating to physical, psychological, social, and environmental factors hinder PA participation in the adolescent population [15-17]. It is generally accepted that limited progress has been made in supporting adolescents to overcome these barriers, necessitating the development of innovative interventions [12]. This rationale underlies the launch of the Global Action Plan on PA in 2018 by the World Health Organization, aimed at promoting and supporting adolescents in achieving the recommended levels of PA [18]. As part of this plan, digital approaches were advocated, emphasizing that interventions should prioritize understanding and addressing barriers that prevent adolescents’ engagement in PA. By doing so, interventions can be effectively designed to facilitate sustainable changes in the PA habits and behaviors of adolescents [15-17].

Digital health interventions have emerged as a promising approach to promoting PA and overall well-being through digitally delivered support, providing PA education and motivational guidance [19]. However, the effectiveness of these interventions in promoting PA has yielded mixed results [20,21]. A systematic review focusing on digital interventions for PA among young people revealed positive changes in PA levels and attitudes toward PA [22]. These positive changes were attributed to numerous factors such as web-based education, goal setting, self-monitoring, parental involvement, and gamification and personalization [22]. In particular, personalization has emerged as a significant feature in engaging adolescents through digital health interventions [23]. Tailoring interventions to individual needs and preferences is crucial for promoting PA and overcoming barriers to participation. There is also some evidence of the positive engagement of young people in formal (eg, school) and informal (eg, home) settings to develop knowledge, skills, and behaviors related to PA [22]. This shows that locations, such as school and home, hold potential as promising venues for implementing such interventions.

Conversational agents (CAs) have emerged as promising tools for promoting PA, especially among adolescents, using popular digital platforms such as social media, web interfaces, and mobile apps [24-26]. These agents are accessible at any time of the day, are nonjudgmental, and can be accessed on an array of digital devices. CAs are the preferred choice for individuals seeking immediate web-based support and for those who are hesitant about seeking in-person assistance.

Systematic reviews have examined CA effectiveness in promoting PA, healthy eating, and weight loss [27,28]. Nevertheless, despite encouraging results, the efficacy of these interventions remains inconclusive owing to constraints in outcome measurement and reporting [28]. There is also a dearth of evidence regarding how such CAs have been used to help adolescents overcome barriers to PA, and there is a need for new conversational artificial intelligence (AI) approaches that draw insights from existing theories to ensure they are evidence based and effective [17,29].

To optimize CAs and maximize user engagement, previous studies have emphasized the importance of effective persona design and the integration of principles from user-centered design [30] and human-computer interaction [28,31]. However, previous research focusing on usability and feasibility has reported moderate results, highlighting challenges such as repetitive content, high attrition rates, technical difficulties, and concerns regarding safety and privacy [27]. Although rule-based approaches are commonly used, more successful outcomes have been achieved with unconstrained methods that allow for natural language input and personalized interaction. These methods offer opportunities for establishing relational and persuasive capacities [28] with adolescents, which are particularly important when delivering person-centered behavior change interventions.

Recent advancements in large language models (LLMs) as well as the advent of generative AI show promise in enhancing CAs by improving user engagement and satisfaction, potentially surpassing human performance [32]. Their ability to understand and generate natural language with complexity and accuracy allows for sophisticated conversations, including emotion detection, contextual understanding, and personalized responses [33,34]. LLMs offer automatic content generation, increasing scalability and cost-effectiveness [33,34]. All of these features
could potentially enhance CA quality and improve adherence in the future; however, concerns about bias, misinformation, privacy, and security need to be addressed before using them safely with adolescents [33,34]. In any health-related context, it is of paramount importance that the information delivered is not only accurate and trustworthy but also firmly rooted in evidence-based practices, curated in collaboration with domain experts. Consequently, as consideration focuses on the future applications of LLMs and generative AI in this sphere, it becomes imperative to place our faith in models that are not only trustworthy but also transparent, providing a clear and comprehensive audit trail for their decision-making processes. This ensures that the highest standards of quality and reliability are maintained, thereby safeguarding the integrity of health-related information and services.

Summary
This study introduces the co-design and evaluation of a pilot CA called “Phyllis” to evaluate its proof of concept. Its objective is to assist adolescents in overcoming 2 barriers to PA (ie, confidence and motivation) and offer an alternative digital solution to support students and promote PA. Building upon the findings of a previous study, which identified 52 barriers to adolescents’ PA participation, appropriate intervention functions and behavior change tools were identified to provide support for each barrier [17]. A theoretical framework designed for this study and the existing behavior change model also inform the CA [29] and both aim to aid the development of CAs in promoting PA.

The hypothesis for the study is that a CA can support adolescents to overcome barriers to PA and be perceived by adolescents as being a tool to help them increase their confidence and motivation to participate in PA. The objectives of the study are as follows:

- **Co-design a CA in collaboration with adolescents,** incorporating the model by Zhang et al [29] and a theoretical framework designed for this study to assess its proof of concept.
- **Demonstrate the CA’s ability to understand user input related to one of the 52 barriers to PA identified in the previous study [17].**
- **Evaluate the usability and acceptability of the CA among adolescents.**
- **Assess the perceived effectiveness of the solutions to barriers provided by the CA.**

Methods

Overview
In this section, we present a comprehensive and systematic methodology used for the co-design and evaluation of the CA. The methodology includes 3 key phases: phase 1 focuses on co-designing the CA with adolescents to ensure the agent’s relevance and user-centeredness. In phase 2, the development of the CA and its dialogue is presented, incorporating persuasive and relational capacity elements. To facilitate intelligent and contextual relevant interactions, a natural language understanding (NLU) model and knowledge model are integrated into the cognitive system. Finally, in phase 3, we detail the mixed methods evaluation used to comprehensively assess the CA’s effectiveness and user experience with adolescents.

Co-Design of the CA

Phase 1: Understanding User Background and Designing CA Characteristics and Persona
To participate in the co-design process, all students aged 11 to 13 years were required to apply through their school and meet the following selection criteria:

- Students perceived that they did not currently meet the UK government recommendations for participating in PA for 60 minutes per day over the course of a week.
- They were interested in participating in PA more often.
- In their application, they stated barriers to participation that had prevented them from being more physically active.

All interested students were given an information sheet and provided written consent to participate. The following is an example of an application from a student who participated in the co-design, highlighting the importance that students felt in participating in the research:

Sir, I think I would be great for this role because I have always wanted to do sports and be more fit, but I have always stopped myself because I thought I wouldn’t be good enough. I would embarrass myself, just fail altogether or I would be too scared and think that it was too hard. I think that this opportunity would bring out the best in me and give me another chance to build a better me. I also stop myself from the joy of joining in because I have always thought people would judge me and I would always get scared that I wouldn’t be perfect. Now you might be thinking why should choose this girl she has only listed things that she is bad at and why but one thing that is that I love improving myself and with this once in a lifetime opportunity I could make a fresh start.

The primary objective of phase 1 of the study was to gain insights into the user background of the co-design participants, including sociodemographic characteristics (eg, age and sex), behavior determinants (eg, attitude toward PA), and behavior habits (eg, PA and CA use) [29].

To accomplish this, a 2-hour workshop was conducted at Wickersley School and Sports College, located in Rotherham, South Yorkshire, where the students were based. During the workshop, the following co-design activities were conducted with the students, following the principles of user-centered design [30,35]:

- **Icebreaker activity:** this involved a demonstration of a robot and an introduction by the research team.
- **A 30-minute focus group discussion with the students, audio recorded, thematically analyzed [36], and covering the following topics:**
 - Participation in PA, barriers faced, and overall experiences related to PA

- **A 30-minute focus group discussion with the students, audio recorded, thematically analyzed [36], and covering the following topics:**
 - Participation in PA, barriers faced, and overall experiences related to PA
The theoretical framework played a pivotal role in informing how behaviors could be effectively delivered conversationally through a CA [17]. This process involved choosing behavior change tools that could be used to influence behaviors using the Behavior Change Technique Taxonomy [41]. The appropriate selection of evidence-based intervention factors influencing them. Furthermore, this approach ensured that the origins of adolescent behaviors and the factors influencing them. Furthermore, this approach ensured the appropriate selection of evidence-based intervention functions, policy factors, and behavior change tools for each behavior using the Behavior Change Technique Taxonomy [41]. This process involved choosing behavior change tools that could be effectively delivered conversationally through a CA [17]. The theoretical framework played a pivotal role in informing the cognitive system, including the knowledge model incorporating the study findings [17] and the conversational engine (ie, the NLU model) to accurately understand and respond to barriers input by adolescents.

The next step in the process was to evaluate the feasibility and usability of the approach and evaluate the changes resulting from the use of the CA. For this purpose, 2 CA modules were developed by the research team, specifically targeting the 2 primary barriers identified by the students: a lack of “confidence” and “motivation” to be physically active. The confidence module was designed based on the theory of planned behavior [42,43] and incorporated 3 evidence-based behavior change tools identified from a previous study [17], namely problem-solving, verbal persuasion about capability, and self-talk. These tools were developed based on 4 guiding principles:

- Setting goals: it is important to always have a goal and push oneself out of the comfort zone.
- Diverse goals: building confidence involves setting different types of goals to enhance overall confidence.
- Broad perspective: individuals with higher levels of self-efficacy can look at the bigger picture and go beyond short-term setbacks.
- Reframing setbacks: developing self-efficacy is a gradual process that may take years to reframe one’s mindset.

Failure is inevitable, but it should be viewed as unimportant. What matters is how one chooses to deal with failure and the lessons learned from it overall.

During the conversation, adolescents were prompted to answer the following questions. They were then given the opportunity to review their answers on the screen and receive a copy of their responses via email. This provided students with the opportunity to revisit and follow up on the actions they had stated.

- How confident are you when it comes to PA. Can you rate your answer from 1-10 with 1 being “very low,” 5 being “okay,” and 10 being “very confident.”
- When you feel confident where are you?
- Do you feel more confident being active with others or by yourself?
- And what motivates you more—being active with others or by yourself?
- When you feel most comfortable—what activity are you doing?
- If you think that activity is exercise related (eg, skipping) how could you do it more within your week? If that activity is not exercise related (eg, drawing) how could you add an element of exercise to it? (eg, standing whilst drawing, jumping on the spot every 10 min whilst drawing, etc).
- Based on what you know now, how can you bring activity into your weekly routine more?

The motivation module was developed using 2 behavior change tools: instructions on how to perform the desired behavior and behavior rehearsal or practice. Students were given a series of information on how to be more physically active and how to build small sessions (ie, 15 min) of PA into their day. These activities could be undertaken by any able-bodied person at no cost. Further information was given about how activity could be incorporated into your weekly routine more?

Phase 2: Developing Relational and Persuasive Conversational Capacity

Persuasive Capacity

To enhance the CA’s understanding of adolescents’ habits and behaviors and facilitate effective intervention design, it is crucial for all PA interventions to be grounded in existing evidence and theory. This phase of the study draws upon a theoretical framework that details a theory-based approach to designing CAs to support adolescents in overcoming barriers to PA. The framework used in this study is underpinned by the capability, opportunity, motivation, and behavior (COM-B) model and the Theoretical Domains Framework (TDF). Identified barriers were coded using the COM-B [39] model and TDF [40] to comprehend both the origins of adolescent behaviors and the factors influencing them. Furthermore, this approach ensured the appropriate selection of evidence-based intervention functions, policy factors, and behavior change tools for each behavior using the Behavior Change Technique Taxonomy [41]. This process involved choosing behavior change tools that could be effectively delivered conversationally through a CA [17].
be achieved despite educational pressure and time constraints and how PA can improve attainment. In addition, links to Sport England websites were provided to give young people further information on how to increase their PA levels in various environments, such as at home or outdoors. Useful information was provided on why PA is important and how often we should aim to engage in it.

Relational Capacity

To foster relational capacity, it is essential to design conversations that are evidence based, are expert led, and incorporate user feedback. However, there is a lack of empirical evidence regarding effective conversation design for CAs. To ensure that the CA is engaging and effective while adhering to the principles of conversation design, module design followed the happy and detailed conversation design process provided by the Conversation Design Institute [44]. This involved the inclusion of appropriate greetings, small talk, and module messaging that incorporated the elements of social dialogue, empathy, and humor. Sample dialogues were evaluated, and iterative refinements were performed using this process. Theoretical principles [17,29], along with the concepts of user-centered design [30] and human-computer interaction [31], were also considered.

To enable effective natural language interaction between humans and the CA, the researchers developed an NLU model [45]. They assigned at least one intent to each identified barrier from a previous study [17] to train the NLU model. For each intent, a minimum of 15 utterances were manually generated by the researchers and uploaded to Google Dialogflow’s NLU engine to train the data [46]. The training process involved providing the system with a diverse range of conversational data, allowing it to learn and comprehend various patterns, intents, and entities relevant to the specific domain. Through iterative training and refinement, the Dialogflow NLU model was optimized to accurately understand and interpret user input, forming a solid foundation for the subsequent phases of CA development and evaluation [47].

The NLU model represents a hybrid approach, falling between the spectrum of fully open-ended models, such as ChatGPT, and strictly closed branching–dialogue systems. Instead of strictly adhering to predetermined dialogue paths or being entirely unrestricted, the NLU model uses a nuanced methodology. It focuses on the interactions between the CA and students through several natural language processing techniques. Specifically, the NLU model is adept at comprehending and interpreting user inputs in natural language. It identifies the intent behind user queries and recognizes key entities mentioned in the text. Unlike rigid closed systems, the model does not follow a fixed script. Instead, it uses this understanding of user intent and entities to dynamically route the conversation. Although predefined dialogues are in place to guide the conversation, these paths are adaptable based on the context of the conversation and the user’s input. This flexibility ensures a more engaging and personalized interaction while still maintaining a degree of structure within the conversation flow.

Figure 1 provides an example of an interaction between a student and the CA.

Figure 1. An example of an interaction between a student and the conversational agent.
To assess the accuracy of the model, the researchers used MindBehind, a software program that enabled the research team to input statements pertaining to each barrier and evaluate and refine the utterances used during the NLU model training. The performance of the CA was evaluated using an F_1-score, yielding a score of 80% [48]. MindBehind was then used to create a knowledge model and use its conversational engine, leveraging the NLU model and logic functions to route conversations based on the input of barriers and corresponding solutions. Following this, the researchers visually represented the conversational dialogue of the CA (ie, barriers and solutions) on a canvas and tested its accuracy to ensure its readiness to be deployed for testing.

Phase 3: Evaluating Mechanisms and Outcomes

During the final phase of the study, the CA was distributed to the students for testing via a test link. The students interacted with the CA through text messaging. The platform hosting the CA enabled the students to engage with it through various internet-enabled devices such as laptops, tablets, and smartphones. In addition, the students had the option to select appropriate responses from a predefined list of choices, which included options such as requesting help, ending the conversation, or seeking more support. This setup provided a user-friendly and versatile interface, accommodating different communication preferences and ensuring a seamless interaction experience for the participants. Initially, the adolescents were asked to engage in a conversation with the CA as users and to identify any barriers they faced that led them to seek assistance from the CA. Subsequently, they were requested to test the CA by inputting various barriers and assessing how the conversation was routed. Following this, participants were invited by each organization using convenience sampling to evaluate the CA from Wickersley School and Sports College (7 participants) and a community enterprise called Zest (31 participants), totaling 46 adolescents.

To evaluate the CA’s acceptability, usability, and perceived outcomes of using the modules, the students were invited to participate in a web-based survey using Key Survey, a specialized web-based survey platform. The survey also sought to gauge their perception of the CA’s effectiveness and user experience, encompassing 7 recommended themes for evaluating CAs, as outlined in a previous study [29]. Users were specifically encouraged to share both positive and negative aspects of their experience, offer suggestions for improvement, and report any observed malfunctions during their engagement. In addition, the survey included an adapted version of the AttrakDiff questionnaire, tailored specifically for young individuals, to measure usability [49].

Analysis

During phases 1 and 2, an analysis was conducted on both quantitative and qualitative data gathered from the participants. For the quantitative analysis, basic frequencies were used to examine data related to students’ age, sex, and levels of PA in phase 1 and to evaluate the user experience and efficacy of the CA in phase 2. This analysis provided an overview of the demographic characteristics and the distribution of PA levels among the participants, as well as an objective assessment of their experience and the outcomes of using the CA.

The qualitative data were subjected to thematic analysis [36] to identify and analyze recurring themes and patterns across several key aspects. These aspects included the persona and key characteristics that the CA should possess in phase 1, as well as user feedback on how the CA could be improved in phase 2.

Ethical Considerations

This study adheres to the established human subject research ethics guidelines and was granted institutional ethics approval (ER37229351) by the Sheffield Hallam University Research Ethics Committee.

Informed consent was obtained from participants’ legal guardians following a comprehensive explanation of the study’s purpose, procedures, risks, benefits, and the voluntary nature of their participation. The participants were explicitly informed that they had the right to withdraw from the study at any time without repercussions.

The privacy and confidentiality of all human subjects were rigorously safeguarded throughout the study. All the data collected were either anonymized or deidentified to protect the identities of the participants. The data were stored securely, and the data used in this study were not linked to any external databases or sources that could compromise the privacy of the participants. The participants were not offered an incentive to participate in the study.

Results

Co-Design

The following section presents the results of the co-design with adolescents and the evaluation of the performance of the CA and its efficacy.

User Background

The co-design of the CA involved 9 students aged between 11 and 13 years, in school years 7 to 9. The sex distribution among the students was 56% (5/9) female and 44% (4/9) male. In terms of ethnic background, 6 (67%) of the 9 students identified as White, 2 (22%) identified as Asian or Asian British, and 1 (11%) identified as Black.

All 9 students met the inclusion criteria and expressed their interest in exploring the use of a CA to support themselves and their peers to help overcome barriers to PA. Initially, the students were provided with a list of 52 barriers to PA and were asked to identify the specific barriers that they experienced. They highlighted 37 barriers, which accounted for 66% of the total barriers listed in the previous study [17].

Among the barriers identified, the most commonly highlighted included a “lack of confidence” (mentioned by 8 students), “fear of failure” (mentioned by 7 students), and a “lack of motivation” (mentioned by 5 students). When the adolescents were asked to elaborate on the barriers in their own words, they provided more specific insights, particularly concerning psychological barriers. For instance, 2 adolescents reported experiencing “anxiety” both before and during PA, especially at competitive levels.
events. Other students mentioned feeling self-conscious when being judged by others, lacking confidence in their abilities, feeling unmotivated because of excessive phone use, and harboring fears of getting injured. Given that these barriers were already included in the previously identified 52 barriers, they were all integrated into the programming of the NLU model for the CA.

The students were asked via the workbook to identify and express their emotions related to their experiences with PA. This information played a vital role in shaping the design of the modules and the conversational language used to establish relational capacity with the users. On average, the students reported experiencing 6 positive emotions and 9 negative emotions in relation to PA. A total of 21 distinct positive emotions were identified, with the most frequently mentioned being pride (mentioned by 5 students), optimism, and confidence (mentioned by 4 students each). In contrast, negative emotions were highlighted significantly more often (84 times), with the most frequently mentioned being humiliation, stress, insecurity (mentioned by 5 students each), and embarrassment (mentioned by 4 students).

Most students expressed an ardent desire to engage in more PA and recognized the numerous benefits associated with it. However, they also identified negative thoughts and emotions as significant barriers to their participation in PA. Notably, students mentioned using PA to enhance self-esteem, productivity, confidence, and feelings of empowerment and strength, in addition to its health benefits. This apparent paradox of wanting to be more active in improving confidence while simultaneously lacking the confidence to do so presents a unique global challenge that the proposed CA aims to address.

The students who participated in the study acknowledged the importance of receiving support to overcome the barriers they faced in engaging in PA. Despite having diverse experiences with CAs in the past, they demonstrated an interest in exploring the potential of using a CA for this purpose. It was evident that the students lacked access to adequate support systems to address their barriers, which highlights the innovative nature of the proposed approach. Despite this, the students displayed receptiveness and optimism toward using the CA to overcome these barriers. They also demonstrated a willingness to share personal information with the CA. However, it is worth noting that some students expressed concerns regarding privacy and data protection; as such, these concerns should be carefully considered and addressed during the future development and implementation of the CA to ensure user trust and data security.

Relational and Persuasive Capacity

During the co-design process, the students were actively involved in expressing their preferences for the persona and characteristics of the CA. All co-design group members unanimously agreed that the CA should fall within the age range of 11 to 18 years, with the majority believing that a teenage persona would be most relevant and engaging for the target audience. When it came to gender, of the 9 students, 4 (44%) expressed a preference for a gender-neutral CA, whereas only 1 (11%) person advocated for a gender-specific CA. The remaining students (3/9, 33%) suggested that the CA’s gender should be customizable, allowing users to select their preferred option. In terms of appearance, most students felt that if the CA had an avatar, it should be customizable, with suggestions ranging from human-like features to animal-like or robot-like attributes.

Regarding the tone of the CA, approximately two-thirds of the group agreed that it should have a human-like and engaging tone, regardless of whether it was in the text or voice form. Of the 9 students, 2 (22%) students even proposed that the CA could mimic the tone of a coach or celebrity. Conversely, 1 (11%) person expressed a preference for the CA to have a robotic voice. However, 3 (33%) individuals indicated a preference for customizable voices, although it remained unclear whether these voices should be exclusively human-like.

During the design phase, the concept of customization and personalization emerged as a prominent theme, reflecting the students’ desire to have control over various aspects of the CA to meet their individual needs. This preference for customization poses several design challenges, as it necessitates the creation of multiple personas and the development of appropriate messages for each persona. However, it is a crucial consideration for the future development of CAs, as it allows for genuine personalization and enhances the overall user experience.

As part of the design process, students were also invited to suggest names for the CA. The name suggestions varied, highlighting different preferences and creative ideas. Some students proposed generic brand names with a playful twist related to PA, such as “Sporta” or “Phylo.” Others suggested human names such as Robert or Patricia, whereas some students preferred names that explicitly incorporated the terms “CA” or “robot,” such as “Charlie the CA” or “Sporty Bot.”

For the prototype, only 1 persona was created, and it was named “Phyllis.” This name remained unchanged throughout the final testing phase, as some students expressed a liking for the name, whereas others did not find the other suggested names suitable. The decision to choose Phyllis as the chosen name for the CA reflects the consideration of participant preferences and the desire for consistency during the testing phase.

During the co-design process, the students were asked to indicate their preferred personality characteristics for the CA using Leary’s Interpersonal Complex (Figure 2), which measures personality along 2 dimensions: dominance (horizontal) and agreeableness (vertical). As shown in Figure 2, the results revealed that students sought a balanced combination of dominance and agreeableness in the CA’s personality. They desired a friendly CA that exhibited both submissive and dominant behaviors and even opposing viewpoints at certain points in the conversation, potentially to challenge the user’s beliefs. These findings align with the broader characteristics that the students identified during the co-design process, emphasizing their need for personalization.
In total, the students selected 30 distinct characteristics that they believed the CA should possess, underscoring their desire for a personalized and tailored experience. Among the co-design participants, only 3 characteristics were mentioned more than once: understanding (mentioned 2 times), intelligence (mentioned 3 times), and kindness (mentioned 3 times). These repeated characteristics indicate the significance of empathy, intelligence, and kindness in the preferred personality traits of the CA.

Figure 2 illustrates students’ preferred personality characteristics using Leary’s Interpersonal Complex. The graph measures personality along 2 dimensions: dominance (horizontal) and agreeableness (vertical).

Social Dialogue and Self-Disclosure

Students were asked to provide dialogue examples that represented the personas they had chosen for the CA. All personas were of peer age for the students. The dialogue examples covered various scenarios, including greetings, providing assistance, encouraging positive actions, offering reassurance, giving praise, acknowledging mistakes, and saying goodbye.

The welcome messages displayed personalization, often addressing users by their first names and minimizing small talk. The style of the messages was similar across the personas. The “help” messages were typically direct and straightforward, presenting suggestions (eg, “I have a suggestion”). The “take positive action” messages were motivational, encouraging users to take specific actions (eg, “You can do it! How about you try this?”) Reassuring messages often began with an “okay” to acknowledge the user’s concerns before offering support. “Praise” messages consistently started with “well done” and then reiterated the user’s accomplishments. The “goodbye” messages usually included a supportive or hopeful closing message to conclude the conversation.

This approach to social dialogue and self-disclosure, characterized by personalization, motivational language, acknowledgment of concerns, and positive reinforcement, was preferred by the co-design participants. Their preferences were considered and integrated into the dialogue design of the CA persona.

Content

As part of the co-design process, students expressed their preferences regarding the content they wanted to be delivered through the CA, focusing on the barriers to PA they had previously identified. Most students preferred content that would help boost their confidence, overcome insecurities, address problems, and manage negative emotions related to PA. A student (1/9, 11%) suggested that the CA should provide advice on supporting others, whereas another (1/9, 11%) preferred a more proactive approach in which the CA would listen, understand their problems, and provide relevant answers.

Different preferences emerged regarding the approach the CA should adopt to engaging with adolescents and delivering content. A student (1/9, 11%) preferred a guiding approach, allowing the adolescents to find their own solutions while also offering assistance if they struggled with that approach. Practical solutions were also highlighted, such as suggestions for various sports activities, strategies to stay physically active, ways to improve performance in sports, and tips for eating healthier.

Furthermore, the students recommended including motivating quotes and information on accessing support through other organizations or websites.

Media

The students were provided with diverse options to choose from regarding the type of media they would like to use during the CA conversation. According to their preferences, the most favored options were pictures (7/9, 78%) and videos (7/9, 78%), followed by audio (6/9, 67%) and links to websites. Conversely, the least popular options were links to apps, social media (2/9, 22%) and documents (1/9, 11%). The CA being piloted incorporates pictures, animated pictures (GIFs), and links to websites and apps, whereas videos were not included owing to
the lack of appropriate content for adolescents, corresponding to the barriers identified. In the future, filming bespoke videos would be necessary to provide engaging content to adolescents via the CA.

Dialogue Infrastructure

Owing to the students’ age and unwillingness to disturb their schooling, the researchers were unable to spend extended periods with them and had to rely on the students’ prior experience with CAs. In the future, it is recommended that more time be spent with the students to fully understand all the key features of CA design and improve the co-design process.

Implementation of Co-Design Phase Recommendations

In this section, we summarize the implementation of the findings from the co-design process in the development of the prototype CA.

Textbox 1 presents the summarized findings from the co-design research with 8 adolescents to develop the prototype chatbot. It details the findings of user requirements and context, the content of the chatbot, and the chatbot’s persona.
Textbox 1. Summary of co-design findings.

Conversational agent (CA)
- Name: Phyllis
- Audience: Students aged 11-16
- Channel: A school website or social media

Use case
- Service and expertise
 - Identify barrier to physical activity (PA) from user input.
 - Provide solution to barriers including recommending activities they could participate in.
 - Prototype provides 2 modules on motivation and confidence.
 - Future version will have solutions to all 52 barriers as well as monitoring of PA.

- Purpose
 - Support for students in schools to overcome barriers to PA and to understand more about PA and gain information and guidance of how to be physically active.

- Media
 - CA mainly conversational but provides links to other website apps and resources.
 - Future iterations will include voice and video media.

User requirements and context
- User persona
 - Students aged 11-16 that want to be more active or support others to be active

- Motivations
 - Want to be more physically active but aware that there are barriers which prevent them from participating in PA and they want to overcome these

- Anxieties
 - That the CA can understand them
 - That the CA can help them

- Data protection

Content
- Behavioural modules
 - Improving confidence (5 min)
 - Improving fitness (4 min): General fitness
 - Balance with educational constraints
 - Links to Sport England content
 - Fitness tracking

- General content
 - Why it is important to be physically active
 - How long should adolescents be active for
 - Respond to input around 52 barriers to PA. Currently acknowledges and asks to confirm barrier before saying content is not yet available.

Bot persona
- Gender and age
• Age: 16
• Gender: Neutral
• Future designs may include a choice of personas

• Backstory
 • An understanding intelligent and kind young person with knowledge and experience of PA

• Role and style
 • Helpful peer who is supportive to other students of a similar age

• Personality
 • Humanoid
 • Helpful
 • Challenging
 • Understanding
 • Intelligent
 • Kind

• Can do
 • Have a conversation and identify barriers to PA
 • Suggest solutions to barrier and ways to be more active
 • Provide general information about PA

• Can’t do
 • Have a wider conversation than the stated use case
 • Advise on how to help others
 • Monitor PA

Standard vocabulary
• Typical things to say
 • Here are some ideas.
 • I have a suggestion.

• Introductions
 • Hi, my name is Phyllis how are you?
 • Hey, my name is Phyllis.
 • See you soon.

• Acknowledgement
 • Sure, I will do that.
 • Okay, I have a suggestion.

• Confirmations
 • Here you go ‘name’.
 • You can do it! How about you try this.

• Apologies
 • I am sorry I cannot help you with that.
 • Okay, I didn’t understand that. Can you try and tell me what stops you from being more physically active?
Following the co-design process, the CA was constructed based on the gathered findings and was internally evaluated with the research team. Subsequently, the CA was prepared for deployment to be tested with adolescents.

Evaluation
This section presents the findings of evaluating the prototype CA (referred to as “Phyllis”) with 46 students.

Use Patterns
During the evaluation phase, 62 conversations were conducted with the CA. Among these conversations, 15 students concluded one conversation and then initiated a new conversation with Phyllis. Overall, the users sent 1512 messages to Phyllis, resulting in an average of 33 messages per person. Phyllis responded by sending 2806 messages to the users, averaging 61 messages per conversation. Only a small portion (n=77, 5.09%) of the messages sent per person could not be successfully matched with a corresponding intent. This was because the students sent unintelligible messages or misspelled words while discussing barriers to PA participation. The most frequently matched intents included “lack of confidence,” “lack of time,” and “lack of motivation,” which aligns with the barriers identified during the co-design focus groups.

User Experiences
The users generally had positive experiences with the CA, rating its conversational capacity as good, clear, simple, and straightforward to use on a comparative scale (Figure 3). Qualitative feedback indicated that the users found the CA clear and easy to use, with good options for obtaining information and interesting websites to access from the CA.

Concerning acceptability, a sizable portion of the students (34/46, 73%) expressed their definite intention to use a fully functional CA in the future. The remaining students stated that they might consider using it in the future. When asked to rate Phyllis, 65% (30/46) of respondents considered it “good,” whereas 20% (9/46) rated it as “very good.” The remaining 15% (7/46) rated Phyllis as “average.” The CA received a positive net promoter score of 13, indicating a favorable likelihood of recommendation. This suggests that not only would most students use Phyllis themselves but also they would recommend it to their friends.

On the basis of user feedback, it was suggested that Phyllis should reduce the amount of text in each message to enhance readability and recommended slowing down the speed of message delivery to assist with user recognition and comprehension. Furthermore, 2 users specifically requested that the CA offer direct answers to various questions about fitness and exercise without necessitating the initial mention of barriers. They also suggested incorporating more videos, diagrams, and real-life scenarios depicting PA. As anticipated, users expressed an interest in customizing the CA further by having the option to choose a different avatar, name, and personality.

Relational Capacity
The students assessed the CA’s relational capacity and reported finding the bot to be “likable” and “motivating.” However, the scores for the persona of the CA being either “human” or “robotic” and “creative or unimaginative” were neutral, warranting further investigation. Qualitative feedback revealed that certain students appreciated the bot’s personality; humor; and use of emojis, icons, and GIFs. They found Phyllis to be helpful, informative, and reassuring, particularly highlighting Phyllis’s use of open-ended questions. A participant (1/46, 2%) even expressed gratitude for Phyllis being a peer, stating, “students like us” during the conversation. However, some students felt that Phyllis could offer more support and advice, particularly within the fitness module. Rather than receiving a list of websites, they expressed a preference for conversational and diverse guidance on engaging in PA.

Persuasive Capacity
A total of 2 modules, focusing on the behaviors of “confidence in user ability to engage in PA” and “motivation to be physically active,” were evaluated. Users were asked to rate their agreement...
level with 3 statements, both before (pre) and after (post) the use of Phyllis. A total of 80% (37/46) of students reported being “confident in their ability to engage in PA or play sports,” indicating a 50% increase from the initial preresponse rate of 53%. The findings for motivation were even more notable, with 73% (34/46) of users reporting an enhanced motivation to engage in PA following the intervention. This represents a significant 120% increase in agreement with the statement from 33% (15/46) pre-to 73% (34/46) postintervention. Furthermore, students were asked about their ability to overcome challenges related to PA or sports. Over half of the respondents (24/46, 52%) agreed that they could overcome these challenges, which increased to 67% (31/46) after engaging with Phyllis. However, it is worth noting that this outcome may have been less substantial owing to the current limitations of the CA, as it is unable to provide solutions or modules for all 52 identified barriers. Overall, 67% (31/46) of respondents felt more motivated to participate in PA or sports since using Phyllis, and an overwhelming 93% (43/46) of them expressed a desire to be more active throughout the day. In addition, 73% (34/46) of respondents indicated that Phyllis helped them contemplate ways to increase their PA levels during the day.

Overall, there was no significant difference reported between the adolescents who were part of the co-design and those who were not. This was the same for users when comparing users from Wickersley School and Sports College and Zest.

Discussion

Principal Findings

The study involved co-designing and evaluating a pilot CA named Phyllis to test its proof of concept. The primary objective was to support adolescents in overcoming barriers to PA [15-17], to realize the associated benefits [1,2,4,50], and to provide an alternative digital solution to combat global inactivity [6]. Furthermore, it aims to promote the development of healthy behaviors during adolescence [7,8,51], thereby fostering continued participation in adulthood. The hypothesis guiding the study was that a CA could assist adolescents and that they would perceive Phyllis as a valuable tool for boosting their confidence and motivation to engage in PA. The study’s objectives were to co-design the CA in collaboration with adolescents, demonstrating the CA’s capacity to understand user input related to the identified barriers. It also aimed to evaluate the CA’s usability and acceptability among adolescents and assess the perceived effectiveness of the solutions offered by the CA to address these barriers. Overall, adolescents reported high acceptability and positive user experiences when using Phyllis, whereas the modules and personas designed to increase motivation and confidence achieved positive outcomes. This evidence positions Phyllis as a promising digital tool to alleviate global inactivity and aligns with the goals of the World Health Organization’s Global Action Plan on PA [18].

The research builds upon prior studies of PA interventions [24,25,27,28,52,53] and adolescent barriers to PA [15,16,51] and is informed by a behavior change model and theoretical framework [29]. This approach is unique as it draws upon relevant research, engages in co-design with adolescents and applies relevant theories [30,35,38,54] to design a CA targeted at adolescents. It is a novel approach in this domain targeted at this population, as indicated by prior research [27,28], which has identified a lack of CAs tailored specifically for adolescents. This innovation in design, using the COM-B model and TDF for intervention development, promises to pave the way for more impactful interventions in the future.

The co-design process engaged 8 adolescents, which represented the broader population’s sex distribution and a higher representation of “Asian” and “Black” ethnic groups who are more likely to be inactive [17]. The process yielded significant findings that support the rationale for the study. First, it highlighted the inadequate access that adolescents have to support systems for addressing barriers to PA and provided further evidence of the array of barriers faced by adolescents [15-17]. Co-design participants were able to identify 37 barriers to engaging in PA, reporting an average of 9 barriers per person. This accounts for approximately 66% of the barriers that the CA will aim to support, based on a study that served as the foundation for the current research [17]. These findings highlight the significance of developing multicomponent interventions that can effectively address multiple barriers, as advocated in the existing literature [12]. Notably, a lack of confidence and motivation emerged as significant barriers to this cohort, which is consistent with previous studies [15,16,51]. Moreover, adolescents reported experiencing 4 times as many negative feelings as positive feelings when describing the emotional impact of PA, highlighting potential reasons for limited engagement in PA. An unintended outcome of the study was the revelation of a paradox, as some adolescents reported that PA may exacerbate psychological effects such as anxiety, while perceiving it as a means of improving these conditions. Subsequent iterations of Phyllis will consider these limiting beliefs, aiming to help individuals become more self-aware of such conflicting thoughts.

For the CA to effectively address barriers to PA, it must be perceived as an acceptable tool for support by adolescents. The co-design participants expressed high levels of acceptability toward the CA and demonstrated a willingness to share personal information with it. However, some students voiced concerns regarding privacy and data protection, aligning with the findings of other studies [27]. Previous studies have highlighted the significance of personalization [23], and this study further underscores adolescents’ specific requirements. Although a consensus favored a gender-neutral teenage persona with a human-like tone, the ideal scenario would involve fully customizable features such as persona, avatar, and tone of voice. The adolescents’ diverse preferences were also reflected in their choice of the CA’s personality and characteristics, representing a range of personalities. Although challenging for designers, this evidence is valuable for guiding the future design of CAs and for advancing research in this domain. Overall, the feedback emphasized the importance of empathy, intelligence, and kindness in the CA’s approach, characterized by motivational language, acknowledgment of concerns, and positive reinforcement through both submissive and dominant behaviors at specific points of interaction. For example, some adolescents appear willing and would even encourage the CA to challenge
their beliefs and offer alternative views and solutions. Similarly, there was variation in the preferred approach to delivering content using different media; yet, it was clear that adolescents desired more complex interactions with content delivered and explained conversationally rather than being signposted to external websites or apps. This perception strengthens the case for CAs to be used for this purpose, with interventions delivered conversationally. All this knowledge provides much-needed insight into the design of effective CAs targeted at this population.

The second objective was to build a CA that, although informed by the co-design, had a specific purpose of recognizing input from adolescents around the 52 barriers [17] and providing a relevant solution to overcome each barrier. This is a novel approach that has not been applied in the design of previous CAs. In terms of recognition, an F_1-score was used to assess the performance of the model, which scored 80%. All relevant and negligible utterances were matched accurately during the pilot, and adolescents who typed utterances related to “a lack of confidence” or “fitness” were accurately matched to the solution. Further testing will be required when all solutions are developed, including training data, to help improve recognition further. Importantly, the model can recognize a range of input from adolescents, thereby improving the potential viability of this approach to support adolescents.

Once the prototype CA was designed and developed, the objective was to validate it as a proof of concept by assessing its acceptability, usability, and effectiveness in supporting adolescents to overcome barriers to PA. Most adolescents expressed positive acceptability toward the CA, with 73% (34/46) of students indicating they would “definitely use” a fully operational Phyllis and 85% (39/46) rating the CA as either “good” or “very good.” In addition, Phyllis received a “good” net promoter score, indicating that adolescents would also recommend it to their friends [55]. Qualitative data analysis revealed positive scores in terms of user experience, whereas qualitative feedback highlighted students’ appreciation for the CA’s personality; humor; and the use of emojis, icons, and GIFs.

The evaluation also provided valuable feedback to enhance Phyllis in the short term (eg, delivering fitness activities conversationally) and long term (eg, enabling deeper personalization and reducing message text). Students found Phyllis helpful, informative, likable, and motivating and appreciated its ability to ask open-ended questions, demonstrating the importance of unconstrained conversation [28] and the ability to provide reassurance. These results indicate that adolescents had a positive user experience and would be willing to use a CA such as Phyllis in the future, further strengthening the evidence for these tools to be used to support adolescents. Such features developed from the co-design process will help alleviate concerns expressed in the literature around usability challenges [27] faced by users and further reinforce the importance of integrating the principles of user-centered design [30] and human–computer interaction [31] with the aim of establishing relational and persuasive capacity [28] with users. These findings could also be used to inform the development of other CAs in this and other domains, serving as useful insights for designers and developers of digital health interventions.

The primary goal of the CA is to augment PA behaviors, and the prototype included 2 modules developed for this purpose. Following an interaction with the CA, 80% (37/46) of the students reported improved confidence in their ability to participate in PA or sports. This represents a 50% increase compared with the initial response. In addition, there was a significant 120% increase in the proportion of students who agreed with the statement expressing their motivation to engage in PA after engaging with the CA. This serves as a positive indicator of the CA’s efficacy. Most students (34/46, 73%) also indicated that the CA would assist them in exploring ways to incorporate more PA into their daily routines. These findings demonstrate the potential of the CA as an effective tool in helping students overcome barriers to PA, further validating the CA’s potential. However, further research is necessary to determine if these improvements translate into increased levels of PA and to identify an appropriate measurement method so that PA can be monitored via the CA.

It is important to consider the implications of these findings in the context of recent developments in LLMs and generative AI, as they have the potential to enhance the effectiveness of the CA as they can comprehend and generate natural language with heightened complexity and accuracy [33,34]. These advancements can also expedite the development process, elevate the quality of interaction, and expand their knowledge base by providing a more comprehensive conversational experience that meets the specific needs of users. In health-related fields, it is imperative that CAs provide accurate, trustworthy, and evidence-based information and address concerns related to bias, misinformation, privacy, and security that may arise from the use of LLMs.

The approach advocated in this study has the potential to bridge the gap between sophisticated LLMs and trusted, evidence-based content. To illustrate this further, interventions should continue to be co-designed and expert led, grounded in evidence-based content. This content can then serve as the foundation for the development of domain-specific models, which in turn are used to provide data to inform intervention delivery. The critical aspect of intervention delivery depends on the use of prompt engineering or the application of a cognitive system that guides the model on how and when to deliver an intervention. The process of delivering interventions may necessitate extremely precise prompting to ensure the accuracy of behavior change tools, intervention content, language, and persona. This precision may require the use of an LLM working in combination with a traditional intent-based approach to allow for predefined responses to guarantee the accuracy and quality of the expert-designed intervention content. Adhering to these principles can effectively mitigate concerns and establish an audit trail for the content provided, ultimately promoting greater transparency. This transparent and comprehensive audit trail serves not only to foster trust but also to strengthen accountability and facilitate the identification of potential biases or inaccuracies.
The limitations of the study findings lie in their reliance on a single interaction with the CA, which does not provide insight into long-term adherence or sustained behavior change resulting from CA use. Nonetheless, the results show promise in terms of children’s willingness to engage and to self-report positive attitude changes after a brief period of interacting with the CA. The evidence also demonstrates why this population perceives CAs as a potentially valuable solution. Further research is necessary to address each of the 52 identified barriers, identify the commonalities among them, enhance the algorithm, and ensure greater efficacy.

Overall, the results demonstrate that Phyllis has the potential to be a cost-effective, resource-efficient solution that organizations can offer to support adolescents and address the multifaceted barriers to PA [15-17]. With further development, the tool could serve as a self-help resource for students, with teachers administering it to inactive students to enhance their levels of PA. Positive evidence of digital interventions being used in both formal and informal settings exists to support their potential use in this setting [22]. As this research highlights, schools lack the time, resources, and capacity to adequately support adolescents [14], making the CA an effective tool to augment existing support. Data from CA interactions could also be shared with schools to identify more serious barriers such as mental and physical health issues or to highlight prevalent barriers within the student population, thereby improving support within the CA and informing policy or intervention approaches within schools. Moreover, the data could offer greater insight into adolescent needs and barriers, informing policy in this field.

The implementation of digital technology in schools, which ensures transparency, safety, and trust, can be achieved with minimal demands on school staff and teachers while also being cost-effective. The findings reinforce the importance of evidence-based self-help tools, which can be accessed by adolescents in schools at a low cost. Moreover, these tools can be supervised by trusted adults, ensuring personalized support for adolescents without overwhelming the capacity of teachers or the school. The CA and its design also have the potential for broader deployment within health care systems as part of the PA referral pathway to enhance adherence to programs or social prescribing services that aim to enhance PA levels among adolescents with long-term conditions or hypokinetic diseases. The design could also be enhanced to provide multimodal support by using robotics and be adapted and used within other populations, such as with older adults.

Conclusions
The study aimed to co-design, develop, and evaluate a prototype CA as a proof of concept to assist adolescents in overcoming barriers to PA. It presents one of the first theory-driven approaches to designing a CA. Drawing from prior studies, theoretical approaches, and insights into adolescent barriers, the research focused on achieving relational and persuasive capacity with adolescents using the CA. Highlighting inadequate access to support systems, 37 barriers were identified, with 66% aligning with previous research. The emphasis was placed on the acceptability and personalization of the CA to address privacy and data protection concerns. The results demonstrated very high acceptability and positive user experiences, highlighting the potential of the CA. The modules designed for the CA showed promising outcomes, fostering increased confidence and motivation for PA. Phyllis also performed well, recognizing a range of different barriers to PA. However, further research is needed to develop other modules to overcome other barriers and explore long-term adherence and the effectiveness of interventions for sustaining behavior change. Adolescents also expect to have a personalized experience and be able to personalize all aspects of the chatbot. Phyllis holds potential as a cost-effective solution for schools to support adolescents and tackle barriers to PA. The integration of LLMs can significantly enhance the CA’s capabilities, facilitating sophisticated conversations and automated content generation with this study providing knowledge of how they can be designed to incorporate evidence-based approaches to ensure trust and transparency. The CA’s potential extends to health care systems, social prescribing services, and multimodal support, including robotics. This study provides valuable insights for designing and developing digital health interventions in other domains as well as contributing to the improvement of PA levels among adolescents and addressing global inactivity concerns.

Acknowledgments
For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any author-accepted manuscript version arising from this submission. Thank you to Richard Gill (teacher) and the students at Wickersley School and Sports College who took part in this study.

Data Availability
The data sets used and, or analyzed during this study are available from the corresponding author upon reasonable request.

Authors’ Contributions
RM contributed by conceptualizing and writing the original draft of the manuscript. AKA-T and EF contributed by reviewing and editing the manuscript.

Conflicts of Interest
None declared.
References

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>artificial intelligence</td>
</tr>
<tr>
<td>CA</td>
<td>conversational agent</td>
</tr>
<tr>
<td>COM-B</td>
<td>capability, opportunity, motivation, and behavior</td>
</tr>
<tr>
<td>LLM</td>
<td>large language model</td>
</tr>
<tr>
<td>NLU</td>
<td>natural language understanding</td>
</tr>
<tr>
<td>PA</td>
<td>physical activity</td>
</tr>
<tr>
<td>TDF</td>
<td>Theoretical Domains Framework</td>
</tr>
</tbody>
</table>

Edited by A Mavragani; submitted 03.08.23; peer-reviewed by A Carrillo, M Brown; comments to author 18.10.23; revised version received 08.11.23; accepted 22.11.23; published 31.01.24.

Please cite as:
Moore R, Al-Tamimi AK, Freeman E
Investigating the Potential of a Conversational Agent (Phyllis) to Support Adolescent Health and Overcome Barriers to Physical Activity: Co-Design Study
JMIR Form Res 2024;8:51571
URL: https://formative.jmir.org/2024/1/e51571
doi:10.2196/51571
PMID:38294857

©Richard Moore, Abdel-Karim Al-Tamimi, Elizabeth Freeman. Originally published in JMIR Formative Research (https://formative.jmir.org), 31.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete
Original Paper

Improvements in Adolescents’ Disordered Eating Behaviors in a Collaborative Care Digital Mental Health Intervention: Retrospective Observational Study

Landry Goodgame Huffman1*, PhD; Darian Lawrence-Sidebottom1*, PhD; Aislinn Brenna Beam1, PhD; Amit Parikh1, MD; Rachael Guerra1, PhD; Monika Roots1, MD; Jennifer Huberty1,2, PhD

1Bend Health Inc, Madison, WI, United States
2FitMinded Inc LLC, Phoenix, AZ, United States
*these authors contributed equally

Corresponding Author:
Darian Lawrence-Sidebottom, PhD
Bend Health Inc
2810 Marshall Ct
Madison, WI, 53705
United States
Phone: 1 8005160975
Email: darian.lawrence@bendhealth.com

Abstract

Background: Young people today are exhibiting increasing rates of disordered eating behaviors, as well as eating disorders (EDs), alongside other mental and behavioral problems such as anxiety and depression. However, limited access to mental health care means that EDs, disordered eating behaviors, and comorbid mental health problems are often underdiagnosed and undertreated. Digital mental health interventions (DMHIs) offer accessible and scalable alternatives to traditional treatment modalities, but their effectiveness has not been well established among adolescents with EDs and disordered eating behaviors.

Objective: This study uses data from a collaborative care pediatric DMHI to determine whether participation in a DMHI is associated with a reduction in adolescents’ disordered eating behaviors.

Methods: Adolescent members in care with Bend Health Inc completed the SCOFF questionnaire at baseline (before the start of care) and approximately every month during care to assess disordered eating behaviors. They also completed assessments of mental health symptoms at baseline. Member characteristics, mental health symptoms, and disordered eating behaviors of adolescents with elevated SCOFF scores at baseline (before the start of care) were compared to those of adolescents with nonelevated SCOFF scores at baseline. Members participated in web-based coaching or therapy sessions throughout the duration of mental health care.

Results: Compared to adolescents with nonelevated SCOFF scores (n=520), adolescents with elevated SCOFF scores (n=169) were predominantly female and exhibited higher rates of elevated anxiety and depressive symptoms. SCOFF scores decreased over time in care with the DMHI for 61.4% (n=70) of adolescents with elevated SCOFF scores, and each additional month of participation was associated with greater improvements in disordered eating behaviors ($F_{1,233}=72.82; P<.001$).

Conclusions: Our findings offer promising preliminary evidence that participation in mental health care with a collaborative care DMHI may be beneficial in the reduction of disordered eating symptoms in adolescents, including those who are experiencing comorbid anxiety and depressive symptoms.

(JMIR Form Res 2024;8:e54253) doi:10.2196/54253

KEYWORDS
behavioral care; mental health; web-based coaching; web-based therapy; eating disorders; eating; anorexia; coach; coaching; pediatric; pediatrics; adolescent; adolescents; teen; teens; teenager; teenagers; digital mental health intervention; DMHI; collaborative; digital health
Introduction

Eating disorders (EDs) and associated disordered eating behaviors impact approximately 10% of the US population [1]. The peak age of onset of EDs such as anorexia nervosa, bulimia nervosa, avoidant or restrictive food intake disorder, and binge ED is between 13 and 18 years, making them particularly relevant during adolescence. Estimates of EDs in adolescence range from 1.2% among males to 5.7% in females and 9% among sexual and gender nonconforming youths [2-5]. Disordered eating behaviors (eg, obsessing over food intake and excessive worry about weight) are even more common, impacting nearly 1 in 4 children and adolescents [6]. EDs and disordered eating behaviors disrupt critical periods of physical and socioemotional development that occur during childhood and adolescence [7]. Youths with EDs experience compromised physical functioning such as malnutrition, disrupted pubertal development, and delayed menarche, as well as worsened psychosocial functioning. EDs are highly comorbid with, and often preceded by, other mental health problems such as anxiety or anxiety disorders, depression, and obsessive-compulsive disorder [8].

During the COVID-19 pandemic, the prevalence of EDs more than doubled among adolescents, exacerbating an already pressing public health issue [9,10]. Indeed, EDs confer a significant economic burden for families and hospitals, with an estimated annual disease burden of US $70 billion [11,12]. However, more than 75% of those with EDs or risk for EDs do not receive the necessary treatment [13]. Several issues underlie this gap between ED diagnosis and treatment. ED treatments are often difficult to access, especially for young people, who often experience financial, geographic, and transportation constraints as well as increased stigma [14]. Additionally, in-person services, such as inpatient and outpatient care and face-to-face therapy, are severely limited in their accessibility, largely due to shortages of trained personnel and long waitlists [14].

In recent years, digital mental health interventions (DMHIs) such as self-guided applications and web-based therapy have emerged as accessible and scalable alternatives to traditional mental health treatments. Several systematic reviews and meta-analyses suggest the potential for DMHIs in ED treatment, although results remain heterogeneous and inconclusive [15]. Moreover, few studies of DMHIs for EDs have been conducted among adolescents, despite the pressing need for accessible child and adolescent ED treatments. As argued by Loucas et al [16], most pediatric DMHIs for EDs are more similar to web-based self-help programs than therapeutic interventions, given their lack of personalized and interactive components [17-19]. However, recent advances in pediatric DMHIs using family-based therapy for ED treatment have yielded promising results, suggesting that digital ED treatments for youths are most effective when administered in the context of a holistic care team [20-22].

The collaborative care model is a team-based framework for mental health care that has been used by DMHIs with promising results. In the collaborative care model, primary care providers collaborate with behavioral care managers (BCM) and other providers to implement measurement-based mental health care. Collaboration between providers reduces the burden on primary care providers while ensuring optimal, evidence-based care via regular symptom assessments. As a result, interventions that use collaborative care models are particularly effective for the treatment of mental health problems in both youths and adults [23-26]. However, no studies to date have evaluated whether participation in collaborative care DMHIs may improve disordered eating behaviors among adolescents. As such, the purpose of this study was to use retrospective analyses of data collected from adolescents participating in care with a collaborative care DMHI to determine whether participation in a pediatric collaborative care DMHI is associated with a reduction in disordered eating behaviors. Considering established demographic and clinical correlates of disordered eating behaviors we also explored associations between potential confounds (age, sex, and anxiety and depressive symptoms) and disordered eating behaviors among those receiving care with the DMHI.

Methods

Design and Participants

All adolescents (ages 13-17 years) who met the following inclusion criteria were eligible for inclusion in the study (N=689): (1) started mental health care (first synchronous event) with Bend Health Inc between January 1, 2023, and October 1, 2023 (9 months); (2) had at least 1 synchronous session with a Bend Health Inc coach or therapist during the study time frame; and (3) completed the assessment of eating behaviors before the start of care (baseline).

Treatment

Bend Health Inc is a DMHI that provides behavioral care for adolescents (aged 13-17 years), using a whole-family approach (ie, caregivers are closely involved in care), via a web-based platform. Bend Health Inc’s behavioral care has been described elsewhere [24,25]. Members enroll via referral from a health care provider, or they use insurance, employer benefits, or self-pay. Members are assigned a BCM, who conducts an initial evaluation of the member’s mental health concerns and circumstances, and they continue to monitor the member’s care while they are enrolled in the program. BCMs assign members a coach, and also a therapist in some cases, based on their mental health symptoms (eg, type and acuity), goals for treatment, and insurance coverage; therapists tend to be assigned only to members with more severe symptoms and conditions, whereas nearly all members are assigned a coach. Members with higher symptom acuity or a psychiatric referral may also be assigned a prescribing psychiatric practitioner (eg, a medical doctor or psychiatric nurse practitioner). In synchronous video-based coaching and therapy sessions, Bend Health Inc’s practitioners guide members and their caregivers through structured care programs. These care programs are designed to deliver evidence-based tools and techniques that target common mental and behavioral health issues such as anxiety, depression, and body image. Most care programs are designed to be completed in approximately 3 months, and some care programs (eg, the
body image program) are designed to be completed in a shorter amount of time. Once a month, caregivers and adolescent members are asked to complete validated web-based assessments of the adolescent’s mental health symptoms (see Measures section). Caregivers are required to be in the same general location for their adolescents’ synchronous sessions with a coach or therapist for safety purposes.

Measures
Demographic and health information of adolescent participants is gathered during enrollment with Bend Health Inc. Caregivers respond to basic demographic questions, providing their adolescent member’s date of birth, sex at birth (male, female, or others), gender identity (male, female, transgender, nonbinary, or others), and race or ethnicity. Details on the race or ethnicity response options are included in Multimedia Appendix 1.

In addition, at enrollment, caregivers and adolescent members complete a series of symptom screening questions and validated assessments to identify common mental and behavioral health concerns. To assess eating behaviors, all adolescent members complete the SCOFF (Cronbach α=.48) [27,28]. The SCOFF is a validated questionnaire, in which the member responds “yes” or “no” to 5 items about disordered eating behaviors that they might have. The 5 items, each correspond with a letter of the SCOFF name, are as follows: (1) Do you make yourself sick because you feel uncomfortably full? (2) Do you worry that you have lost control over how much you eat? (3) Have you recently lost more than one stone (14 lb) in a 3-month period? (4) Do you believe yourself to be fat when others say you are too thin? and (5) Would you say that food dominates your life?

To identify members with elevated anxiety and depressive symptoms, caregivers of adolescent members respond to 5 screening questions drawn from the Diagnostic and Statistical Manual of Mental Disorder, Fifth Edition, Text Revision (DSM-5-TR) Cross-Cutting Symptom Measure [29]. For anxiety, the caregivers and adolescents together respond to the following questions: Over the last 2 weeks, how often have you been bothered by any of the following problems? (1) Feeling nervous, anxious, or on edge? and (2) Not being able to stop or control worrying? For depressive symptoms, caregivers and teens responded to the items: Over the last 2 weeks, how often have you been bothered by any of the following problems? (1) Had less fun doing things than you used to? and (2) Felt sad or depressed for several hours? Best-fit responses are selected from a 4-item Likert-type scale, with responses ranging from “not at all” (item score=0) to “nearly every day” (item score=3). Screener scores are calculated by aggregating all item scores for each screener.

Members who have an anxiety screener score of 2 or more are prompted to complete the Generalized Anxiety Disorder-7 (GAD-7) assessment (Cronbach α=.91) [30,31], and members who have a depressive screener score of 2 or more are prompted to take the Patient Health Questionnaire-9 for Adolescents (PHQ-9A; Cronbach α=.85) [32,33]. The GAD-7 has 7 questions regarding symptoms of anxiety in the prior 2 weeks with the same Likert-type scale as used in the screener questions (“not at all” to “nearly every day”). The PHQ-9A is a modified version of the PHQ-9 for adolescents aged 11-17 years. The original measure has 9 questions, but we omit a question regarding suicide and self-harm (ie, the PHQ-9A here includes 8 questions). The PHQ-9A asks adolescents about depressive symptoms in the prior week using the same Likert-type scale as in the GAD-7 and screener questions. Adolescents are asked to report their own symptoms for both GAD-7 and PHQ-9A.

Statistical Analysis
Outcome Calculations
The last assessment before the start of care (baseline) and all assessments after the start of care were considered for analysis. SCOFF scores were calculated by aggregating the number of “yes” responses, with scores ranging from 0 to 5. As has been used previously [27], members with a SCOFF score of 2 or more on their baseline assessment (ie, the last assessment before the start of care) were included in the “elevated SCOFF score” group, and members with a score of less than 2 were included in the “non-elevated SCOFF score group.” GAD-7 scores were calculated by aggregating the individual item scores. PHQ-9A scores were calculated by aggregating the individual item scores, and then, dividing by 8 and multiplying by 9 (to account for the omitted item). Members with moderate or greater severity anxiety or depressive symptoms, as determined by established criteria for the GAD-7 and PHQ-9A [29,30], were flagged as having elevated anxiety or depressive symptoms, respectively.

Baseline Characteristics: Eating Behaviors and Member Characteristics
SCOFF scores at baseline were characterized for all members, including total score and responses to individual SCOFF items. Then, member characteristics, anxiety and depressive symptom severity (elevated or nonelevated), and care participation characteristics were reported for each group and compared between groups to identify any differences. Member characteristics included age at baseline, sex (female, male, and nonbinary), gender-sex conformity (conforming and nonconforming), race or ethnicity (Asian, Black or African American, Hispanic or Latino, White, and other or multiracial), mental health condition (anxiety disorder diagnosis and depressive disorder diagnosis), and elevated mental health symptoms (anxiety and depression). The care participation metrics included the number of months in care (time between first session and last session), rates of members in coaching and therapy, and rates of members participating in the anxiety, depression, and body image care programs. Member demographics were reported by caregivers (described earlier), mental health conditions were identified from electronic health records, mental health symptoms were characterized based on symptom severity at baseline, and care participation characteristics were assessed using data from electronic health records. Age in years and months in care were compared between groups using Wilcoxon signed rank tests. All other between-group comparisons for member characteristics were performed using chi-square tests.

Change in Eating Behaviors
The number of total SCOFF assessments (ie, with baseline as the first assessment) was quantified for members in both groups.
Only data from members with at least 2 assessments (baseline and at least 1 assessment after care) were included in the analyses of change in SCOFF scores (n=233 members excluded). For members in both groups, SCOFF scores at baseline and the last assessment, as well as the change in score from baseline to last assessment, were quantified. Change scores were compared to 0 using Wilcoxon signed rank test to determine whether SCOFF scores changed significantly over the course of care. The rates of members with a decrease and an increase in SCOFF score were reported for both groups to quantify rates of symptom improvement and symptom worsening, respectively. To identify which items contributed to a change in SCOFF score, “yes” responses to each item at the last assessment were reported for members who responded “yes” to the item at baseline.

Finally, a linear mixed effects model was used to test whether SCOFF scores decreased over months in care and to test whether mental health symptom severity (at baseline) and demographic factors predicted SCOFF scores. Only members with a baseline assessment within 1 month or less of the start of care were included in the linear mixed effects model (n=10 members excluded). The basic model included a fixed effect of months in care (at the time of SCOFF assessment) and a random effect of subject (member ID) on the intercept. Alternative models including one of the following predictors were tested for fit against the basic model using likelihood ratio tests: elevated anxiety symptoms at baseline (yes or no), elevated depressive symptoms at baseline (yes or no), sex at birth (female or nonfemale), age at baseline (in years), and participation in therapy (yes or no). When a likelihood ratio test was statistically significant, the predictor variable was included in the final model as a fixed effect.

Throughout, standard descriptive statistics (eg, percentages, mean and SD, and median and IQR) were used to describe the data, as appropriate. IQR values are reported as the range: 25th-75th percentile. An α level of .05 was used as the threshold of statistical significance for all analyses. Tests of normality (Kolmogorov-Smirnov and Jarque-Bera) were performed to determine appropriate statistical tests and descriptive statistics. P values were corrected for multiple tests using the Bonferroni Hoc correction statistical tests performed on baseline characteristics and change in SCOFF scores (2 sets of corrections).

Ethical Considerations
At enrollment with Bend Health Inc, all study participants provided informed consent for primary data collection (required for participation in care) and use of their data in further analyses.

Table 1. Distribution of SCOFF scores at baseline (N=689).

<table>
<thead>
<tr>
<th>SCOFF score</th>
<th>Members, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>368 (53.4)</td>
</tr>
<tr>
<td>1</td>
<td>152 (22.1)</td>
</tr>
<tr>
<td>2</td>
<td>100 (14.5)</td>
</tr>
<tr>
<td>3</td>
<td>50 (7.3)</td>
</tr>
<tr>
<td>4</td>
<td>13 (1.9)</td>
</tr>
<tr>
<td>5</td>
<td>6 (0.9)</td>
</tr>
</tbody>
</table>

Given the retrospective observational nature of the study, participants were not compensated for their participation in the study. Procedures for this study were approved by the Biomedical Research Alliance of New York (Study 23-12-034-1374; approved on June 5, 2023). To ensure the privacy and confidentiality of the human participants in this study, all data (eg, from electronic health records) were deidentified prior to analysis.

Results

Baseline Characteristics: Eating Behaviors and Member Characteristics
The distribution of baseline SCOFF scores is reported in Table 1. Ultimately, 75.5% (n=520) had nonelevated SCOFF scores, and 24.5% (n=169) had elevated SCOFF scores. For members with nonelevated SCOFF scores, 13.7% (n=71) of members responded “yes” to the item about control (item 2), and 9.2% (n=48) responded “yes” to the item about believing you are fat (item 4; Table 2). For members with elevated SCOFF scores, the most commonly reported items were loss of control (item 2: n=151, 89.3%), believing you are fat (item 4: n=113, 66.9%), and food dominating life (item 5: n=92, 54.4%).

Compared to the nonelevated SCOFF score group, the elevated SCOFF score group was more predominantly female (χ²=24.2; P<.001) and also had a higher rate of diagnoses with depressive disorders (χ²=9.5; P=.005; Table 3). Rates of elevated anxiety and depressive symptoms were higher for members with elevated SCOFF scores than members with nonelevated SCOFF scores (anxiety: χ²=31.9; P<.001 and depression: χ²=63.2; P<.001). Age, gender-sex conformity, race or ethnicity, and rates of anxiety disorder diagnoses did not differ between groups.

Members were in care for a median of 2.60 (IQR 1.27-4.23) months. In terms of participation in behavioral care, 98.8% (n=681) of all members were in coaching, and 39.8% (n=274) of all members were in therapy. Rates of participation in coaching and therapy, as well as months in care, did not differ between groups. Approximately 1 in 2 members participated in the anxiety care program, and this was similar between groups. However, participation in the depression and body image care programs was higher for members with elevated SCOFF scores versus members with nonelevated SCOFF scores (depression: χ²=15.0; P<.001).
Table 2. Responses to each SCOFF item at baseline by group.

<table>
<thead>
<tr>
<th>SCOFF item</th>
<th>Elevated SCOFF score (n=169, n (%))</th>
<th>Nonelevated SCOFF score (n=520, n (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you make yourself sick because you feel uncomfortably full?</td>
<td>43 (25.4)</td>
<td>13 (2.5)</td>
</tr>
<tr>
<td>Do you worry that you have lost control over how much you eat?</td>
<td>151 (89.3)</td>
<td>71 (13.7)</td>
</tr>
<tr>
<td>Have you recently lost more than one stone (14 lb) in a 3-month period?</td>
<td>113 (66.9)</td>
<td>11 (2.1)</td>
</tr>
<tr>
<td>Do you believe yourself to be fat when others say you are too thin?</td>
<td>113 (66.9)</td>
<td>48 (9.2)</td>
</tr>
<tr>
<td>Would you say that food dominates your life?</td>
<td>92 (54.4)</td>
<td>9 (1.7)</td>
</tr>
</tbody>
</table>

Table 3. Member characteristics for each group.

<table>
<thead>
<tr>
<th>Member characteristics</th>
<th>Nonelevated SCOFF score (n=520, 75.5%)</th>
<th>Elevated SCOFF score (n=169, 24.5%)</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median (IQR)(^a)</td>
<td>15 (14-16)</td>
<td>15 (14-16)</td>
<td>N/A(^b)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>301 (57.9)</td>
<td>134 (79.3)</td>
<td>24.2</td>
</tr>
<tr>
<td>Male</td>
<td>212 (40.8)</td>
<td>33 (19.5)</td>
<td>N/A</td>
</tr>
<tr>
<td>Nonbinary</td>
<td>7 (1.3)</td>
<td>2 (1.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>Gender-sex conformity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conforming</td>
<td>481 (92.5)</td>
<td>155 (91.7)</td>
<td>0.03</td>
</tr>
<tr>
<td>Nonconforming</td>
<td>39 (7.5)</td>
<td>14 (8.3)</td>
<td>N/A</td>
</tr>
<tr>
<td>Race or ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>30 (5.8)</td>
<td>4 (2.4)</td>
<td>N/A</td>
</tr>
<tr>
<td>Black or African American</td>
<td>35 (6.7)</td>
<td>15 (8.9)</td>
<td>N/A</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>25 (4.8)</td>
<td>17 (10.1)</td>
<td>N/A</td>
</tr>
<tr>
<td>White</td>
<td>252 (48.5)</td>
<td>87 (51.5)</td>
<td>0.4</td>
</tr>
<tr>
<td>Other or multiracial</td>
<td>178 (34.2)</td>
<td>46 (27.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>Mental health condition, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td>147 (28.3)</td>
<td>56 (33.1)</td>
<td>1.2</td>
</tr>
<tr>
<td>Depressive disorder</td>
<td>35 (6.7)</td>
<td>25 (14.8)</td>
<td>9.4</td>
</tr>
<tr>
<td>Elevated mental health symptoms, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>230 (44.2)</td>
<td>118 (69.8)</td>
<td>31.9</td>
</tr>
<tr>
<td>Depression</td>
<td>211 (40.6)</td>
<td>129 (76.3)</td>
<td>63.2</td>
</tr>
<tr>
<td>Duration in care (months), median (IQR)(^c)</td>
<td>2.51 (1.23-4.20)</td>
<td>2.80 (1.50-4.37)</td>
<td>N/A</td>
</tr>
<tr>
<td>Behavioral care participation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaching</td>
<td>513 (98.7)</td>
<td>168 (99.4)</td>
<td>N/A</td>
</tr>
<tr>
<td>Therapy</td>
<td>201 (38.7)</td>
<td>73 (43.2)</td>
<td>0.92</td>
</tr>
<tr>
<td>Care program, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>243 (46.7)</td>
<td>84 (49.7)</td>
<td>0.3</td>
</tr>
<tr>
<td>Depression</td>
<td>77 (14.8)</td>
<td>48 (28.4)</td>
<td>15.0</td>
</tr>
<tr>
<td>Body image</td>
<td>6 (1.2)</td>
<td>7 (4.1)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

\(^a\)Between-group comparison was performed using a Wilcoxon signed rank test (z=-0.23).

\(^b\)N/A: not applicable.

\(^c\)Between-group comparison was performed using a Wilcoxon signed rank test (z=-1.46).
Change in Eating Behaviors

SCOFF assessment counts during the study time frame are reported for each group in Table 4. For all members with a baseline and postcare assessment (ie, 2 or more total assessments), baseline assessments were completed at a median of 0.27 (IQR 0.5-0.13) months before the start of care, and the last assessments were completed at a median of 2.23 (IQR 1.1-3.6) months after the start of care. The timing of baseline and last assessments did not differ between groups (baseline: \(z=0.70; P=0.70\) and last assessment: \(z=-0.38; P=0.70\)).

For members in the nonelevated SCOFF score group, 16.4% (n=56) had a decrease in SCOFF score from baseline to their last assessment, 13.7% (n=47) had an increase in SCOFF score, and 69.9% (n=239) had no change (Table 5). For members in the elevated SCOFF score group, on the other hand, 61.4% (n=70) had a decrease in SCOFF score from baseline to their last assessment, 16.7% (n=19) had an increase, and 21.1% (n=25) had no change. While SCOFF scores remained stable for the nonelevated SCOFF score group (\(z=-0.47; P=0.70\)), median SCOFF scores decreased from 2 (IQR 2-3) at baseline to 1 (IQR 0-3) at the last assessment for the elevated SCOFF score group (\(z=-6.39; P<0.001\)). Individual item responses at the last assessment for members who responded “yes” to the item at baseline are reported in Table 6.

In the linear mixed effects model of SCOFF score over time in care for members with elevated SCOFF scores, the following predictors were included in the final model: elevated anxiety symptoms at baseline (\(\chi^2_1=7.6; P=0.006\)), elevated depressive symptoms at baseline (\(\chi^2_1=8.6; P=0.003\)), and participation in therapy (\(\chi^2_1=4.4; P=0.03\)). SCOFF score decreased by 0.26 points for each month in care (\(F_{1,233}=72.82; P<0.001\;\text{Figure 1}\)). Members with elevated anxiety symptoms at baseline had SCOFF scores 0.40 points higher than those with nonelevated anxiety symptoms (\(F_{1,101}=9.87; P=0.005\)). Similarly, members with elevated depressive symptoms at baseline had SCOFF scores 0.43 points higher than those with nonelevated depressive symptoms (\(F_{1,101}=5.40; P=0.044\)). Participation in therapy did not relate to SCOFF score (\(F_{1,101}=2.87; P=0.16\)).

Table 4. Total assessments completed for each group.

<table>
<thead>
<tr>
<th>Total assessments</th>
<th>Nonelevated SCOFF score (n=520), n (%)</th>
<th>Elevated SCOFF score (n=169), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>178 (34.2)</td>
<td>55 (32.5)</td>
</tr>
<tr>
<td>2</td>
<td>141 (27.1)</td>
<td>44 (26)</td>
</tr>
<tr>
<td>3</td>
<td>96 (18.5)</td>
<td>31 (18.3)</td>
</tr>
<tr>
<td>4</td>
<td>57 (11)</td>
<td>22 (13)</td>
</tr>
<tr>
<td>5</td>
<td>25 (4.8)</td>
<td>9 (5.3)</td>
</tr>
<tr>
<td>6</td>
<td>15 (2.9)</td>
<td>5 (3)</td>
</tr>
<tr>
<td>7+</td>
<td>8 (1.5)</td>
<td>3 (1.8)</td>
</tr>
</tbody>
</table>

Table 5. Change in SCOFF score from baseline to last assessment for each group.

<table>
<thead>
<tr>
<th>SCOFF score, median (IQR)</th>
<th>Nonelevated SCOFF score (n=342)</th>
<th>Elevated SCOFF score (n=114)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0 (0 to 1)</td>
<td>2 (2 to 3)</td>
</tr>
<tr>
<td>Last</td>
<td>0 (0 to 0)</td>
<td>1 (0 to 3)</td>
</tr>
<tr>
<td>Change</td>
<td>0 (0 to 0)</td>
<td>-1 (-2 to 0)</td>
</tr>
<tr>
<td>Change in score, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decrease</td>
<td>56 (16.4)</td>
<td>70 (61.4)</td>
</tr>
<tr>
<td>Increase</td>
<td>47 (13.7)</td>
<td>19 (16.7)</td>
</tr>
</tbody>
</table>
Table 6. Responses to each SCOFF item at the last assessment for members who answered “yes” to the item at baseline. Results are reported for each group.

<table>
<thead>
<tr>
<th>Item</th>
<th>Nonelevated SCOFF score (n=342), n/N (%)</th>
<th>Elevated SCOFF score (n=114), n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you make yourself sick because you feel uncomfortably full?</td>
<td>1/8 (12.5)</td>
<td>7/8 (87.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/23 (39.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14/23 (60.9)</td>
</tr>
<tr>
<td>Do you worry that you have lost control over how much you eat?</td>
<td>21/44 (47.7)</td>
<td>23/44 (52.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49/102 (48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53/102 (52)</td>
</tr>
<tr>
<td>Have you recently lost more than one stone (14 lb) in a 3-month period?</td>
<td>2/9 (22.2)</td>
<td>7/9 (77.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4/22 (18.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18/22 (81.8)</td>
</tr>
<tr>
<td>Do you believe yourself to be fat when others say you are too thin?</td>
<td>14/35 (40)</td>
<td>21/35 (60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/77 (64.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27/77 (35.1)</td>
</tr>
<tr>
<td>Would you say that food dominates your life?</td>
<td>1/6 (16.7)</td>
<td>5/6 (83.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34/60 (56.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26/34 (43.3)</td>
</tr>
</tbody>
</table>

Figure 1. SCOFF score over months in care for members with elevated SCOFF scores. Individual scores are indicated by dark blue markers, and the linear model fit is indicated by the purple line.

Discussion

Principal Results

Using retrospective analyses of data collected from adolescents participating in care with Bend Health Inc, the purpose of this study was to determine whether mental health care with a collaborative care DMHI is associated with a reduction in disordered eating behaviors while also accounting for demographic and mental health symptom covariates. Disordered eating scores decreased throughout care with the DMHI for 61.4% (n=70) of adolescents with elevated disordered eating scores at baseline, and longer participation was associated with greater reductions in scores. Elevated disordered eating behaviors at baseline were associated with female sex and elevated mental health symptoms. This study provides preliminary evidence that mental health care with a DMHI may positively affect disordered eating behaviors.

Over the course of care with the DMHI, 61.4% (n=70) of adolescents with disordered eating behaviors exhibited fewer problematic eating behaviors throughout participation. Further, each additional month in care was associated with larger improvements in disordered eating behaviors, even while controlling for elevated mental health symptoms. These findings, which suggest the effectiveness of a pediatric DMHI in mitigating symptoms of disordered eating, are especially timely, as many youths with EDs and disordered eating symptoms are unable to access adequate care via in-person modalities—a lingering effect of the COVID-19 pandemic and current mental health crisis in youths [34,35]. Moreover, these results suggest that collaborative care DMHIs may mitigate disordered eating.
behaviors in a relatively short time frame, with the change in disordered eating behaviors assessed within this study sample after just 2.23 (IQR 1.1-3.6) months in care. Given the complex and chronic nature of disordered eating behaviors and EDs, it is understandable that health care professionals prefer team-based, integrated behavioral care (eg, the collaborative care model used by the DMHI in this study) for the identification and treatment of EDs [36-39].

Compared to those without disordered eating behaviors, adolescent members with disordered eating behaviors were more likely to be female than male. Extant literature suggests a similar trend, namely, that females tend to report more disordered eating behaviors and higher rates of ED diagnosis than their male peers [40,41]. However, this does not mean that disordered eating is not a problem among males. In this study, 19.5% (n=33) of adolescents flagged with problematic eating behaviors were male. Disordered eating behaviors may go underreported and unrecognized in males due to stigma [42], and ED diagnostic criteria may not accurately capture disordered eating behaviors that are more prevalent in males than females, such as preoccupation with gaining muscle mass and fear of losing weight [43,44]. Mental health providers and practitioners in both traditional and web-based modalities should continue to screen for disordered eating behaviors among all clients, regardless of sex and gender, while paying particular attention to muscle dysmorphia and excessive exercise [41].

We also found that adolescents with disordered eating behaviors also had higher rates of elevated anxiety and depressive symptoms than their peers who were not flagged with disordered eating behaviors. Moreover, having elevated anxiety and depressive symptoms at baseline was a significant predictor of more severe disordered eating behaviors among youths flagged with disordered eating behaviors. In children, adolescents, and adults, internalizing disorders such as anxiety and depression frequently co-occur with disordered eating behaviors and EDs [45-47]. This study sample exhibited higher rates of anxiety and depressive symptom comorbidity than previously reported. This is to be expected, given that all children and adolescents in this study were treatment-seeking, whereas previous estimates have included both treatment- and nontreatment-seeking individuals [45,46]. Notably, 95.9% (n=162) of members flagged with disordered eating behaviors participated in care programs other than the body image care program (namely, the anxiety and depression programs), and this group exhibited improvements in disordered eating behaviors, nonetheless. This finding adds to the body of literature suggesting that the overlap between disordered eating behaviors and internalizing problems such as anxiety and depression may have similar underlying constructs and thus may warrant similar treatment [45,48]. Further research is necessary to study the effectiveness of DMHIs in directly addressing disordered eating behaviors as well as treating comorbid EDs and internalizing problems among young people.

Limitations and Future Directions

While our findings provide compelling evidence that participation in a collaborative care DMHI may be associated with improvements in disordered eating behaviors, there are several limitations. The SCOFF assessment has attracted criticism for lack of sensitivity and accuracy and other questionnaires. The Eating Attitudes Test [49], for instance, may indeed allow for more fine-grained assessment and diagnosis of eating behaviors. However, the SCOFF has been used and validated extensively as a screener and assessment of common EDs among adolescents [27,50,51]. Moreover, the SCOFF has a high correlation with other validated disordered eating surveys [52] and has also shown acceptable convergent validity when compared to clinical interviews [53].

It should be noted that the SCOFF questionnaire includes an item that may not be appropriate for adolescents. Adolescence is a time of puberty and rapid growth, and therefore, losing 14 pounds may indicate extreme weight loss and a significant health issue (more so than the other SCOFF items). Further, if an adolescent responds “yes” to this item at one time point, it is unlikely that they will respond “yes” in the next several months. Therefore, we investigated whether our findings were driven or altered by the inclusion of this potentially problematic item. We found that few participants in the study sample responded “yes” to this item (n=44, 7.3% at baseline), and follow-up analyses revealed that our longitudinal results did not substantively change when this item was removed from the calculation of SCOFF scores (Multimedia Appendix 2). Thus, the inclusion of this item did not confound the primary findings reported here.

Although we evaluated cross-sectional associations between improvements in disordered eating behaviors and internalizing problems at baseline, future research should explore longitudinal and bidirectional associations between disordered eating symptoms and changes in mental health symptoms among youths involved in collaborative care DMHIs. Extant research regarding causal associations between disordered eating behaviors and other psychiatric symptoms among those engaged in treatment has yielded heterogeneous results [54-56], but no relevant studies to date have been conducted among youths involved in a collaborative care DMHI.

Concluding Remarks

Young people today are exhibiting increasing rates of disordered eating behaviors and EDs alongside other mental and behavioral problems such as anxiety and depression. Collaborative care DMHIs have the capacity to mitigate the growing mental health crisis by providing holistic and evidence-based care that is more accessible and scalable than traditional modalities. The findings from this study suggest that participation with a collaborative care DMHI such as Bend Health Inc may be beneficial in the reduction of disordered eating symptoms in adolescents. Future studies, particularly those bolstered by improved measurement of eating behaviors over time and with a larger and more diverse cohort of youths, are paramount to establishing the effectiveness of collaborative care DMHIs as an evidence-based provider of care for those with problematic eating behaviors and EDs.
Data Availability
The data sets generated and analyzed during this study are not publicly available because this would violate Bend Health Inc’s privacy. However, aggregated and anonymized data are available from the corresponding author on reasonable request.

Authors’ Contributions
LGH wrote the first draft of the paper and led further editing and paper refinement. DL-S performed formal data analysis and generated tables and figures for the paper. ABB wrote the first draft of the paper. JH supervised all paper writing and data analysis. All authors were involved in study conceptualization, development of methodology, and reviewing and editing the paper.

Conflicts of Interest
All authors are employed by, contracted with, or volunteering for Bend Health Inc, which delivered the treatment used in this retrospective study. However, authors’ employment status, salary, and any associated compensation are not dependent upon the results of their research.

Multimedia Appendix 1
Information on the race and ethnicity demographic response options, and also how these data were analyzed.

[DOCX File, 13 KB - formative_v8i1e54253_app1.docx]

Multimedia Appendix 2
Additional analyses, and accompanying results, to determine SCOFF response patterns of participants. Follow-up analyses were performed with the response to item 3 excluded from calculations of total SCOFF score.

[DOCX File, 16 KB - formative_v8i1e54253_app2.docx]

References

Abbreviations

BCM: behavioral care manager
DMHI: digital mental health intervention
DSM-5-TR: Diagnostic and Statistical Manual of Mental Disorder, Fifth Edition, Text Revision
ED: eating disorder
GAD-7: Generalized Anxiety Disorder-7
PHQ-9A: Patient Health Questionnaire-9 for Adolescents
Original Paper

Data Representation Structure to Support Clinical Decision-Making in the Pediatric Intensive Care Unit: Interview Study and Preliminary Decision Support Interface Design

Najia Yakob¹, MSc; Sandrine Lalibert², MSc; Philippe Doyon-Poulin³, PhD; Philippe Jouvet³, PhD; Rita Noumeir¹, PhD
¹École de technologie supérieure, Montreal, QC, Canada
²Polytechnique, Montreal, QC, Canada
³Pediatric Intensive Care Unit, CHU Sainte-Justine, Montreal, QC, Canada

Corresponding Author:
Philippe Jouvet, PhD
Pediatric Intensive Care Unit, CHU Sainte-Justine
3175 Côte-Sainte-Catherine
Montreal, QC, H3T 1C5
Canada
Phone: 1 514 345 4927
Email: philippe.jouvet@umontreal.ca

Abstract

Background: Clinical decision-making is a complex cognitive process that relies on the interpretation of a large variety of data from different sources and involves the use of knowledge bases and scientific recommendations. The representation of clinical data plays a key role in the speed and efficiency of its interpretation. In addition, the increasing use of clinical decision support systems (CDSSs) provides assistance to clinicians in their practice, allowing them to improve patient outcomes. In the pediatric intensive care unit (PICU), clinicians must process high volumes of data and deal with ever-growing workloads. As they use multiple systems daily to assess patients’ status and to adjust the health care plan, including electronic health records (EHR), clinical systems (eg, laboratory, imaging and pharmacy), and connected devices (eg, bedside monitors, mechanical ventilators, intravenous pumps, and syringes), clinicians rely mostly on their judgment and ability to trace relevant data for decision-making. In these circumstances, the lack of optimal data structure and adapted visual representation hinder clinician’s cognitive processes and clinical decision-making skills.

Objective: In this study, we designed a prototype to optimize the representation of clinical data collected from existing sources (eg, EHR, clinical systems, and devices) via a structure that supports the integration of a home-developed CDSS in the PICU. This study was based on analyzing end user needs and their clinical workflow.

Methods: First, we observed clinical activities in a PICU to secure a better understanding of the workflow in terms of staff tasks and their use of EHR on a typical work shift. Second, we conducted interviews with 11 clinicians from different staff categories (eg, intensivists, fellows, nurses, and nurse practitioners) to compile their needs for decision support. Third, we structured the data to design a prototype that illustrates the proposed representation. We used a brain injury care scenario to validate the relevance of integrated data and the utility of main functionalities in a clinical context. Fourth, we held design meetings with 5 clinicians to present, revise, and adapt the prototype to meet their needs.

Results: We created a structure with 3 levels of abstraction—unit level, patient level, and system level—to optimize clinical data representation and display for efficient patient assessment and to provide a flexible platform to host the internally developed CDSS. Subsequently, we designed a preliminary prototype based on this structure.

Conclusions: The data representation structure allows prioritizing patients via criticality indicators, assessing their conditions using a personalized dashboard, and monitoring their courses based on the evolution of clinical values. Further research is required to define and model the concepts of criticality, problem recognition, and evolution. Furthermore, feasibility tests will be conducted to ensure user satisfaction.

(JMIR Form Res 2024;8:e49497) doi:10.2196/49497
KEYWORDS
data representation; decision support; critical care; clinical workflow; clinical decision-making; prototype; design; intensive care unit

Introduction

Background

In the pediatric intensive care unit (PICU), clinicians are required to make clinical decisions daily regarding inpatients’ health conditions. In critical care, data access accuracy and speed are crucial for optimizing the decision-making process. However, the following are some factors that can limit the effectiveness of this decision-making process: (1) clinicians must deal with a high volume of clinical data from several sources, such as physiological monitors, laboratory systems, and caregiver notes on the electronic health record (EHR) [1], which can lead to delays in processing data and reaching a decision; (2) decisions made in intensive care units rely on clinical judgment based on the clinician’s knowledge and experience, which are variable [2]; (3) clinical uncertainty in critical care and the variability of cases may lead to inconclusive decisions [3]; and (4) clinician’s stress, lack of sleep, and multiple stimuli can interfere with decision-making.

To gather relevant information, clinicians have to go through several systems, browsing through different sections of an EHR, laboratory systems, and imaging systems. They must sort and analyze all this information based on their personal expertise and available scientific evidence before making any decision regarding patient care.

For the last few decades, the emergence of clinical decision support systems (CDSSs) has assisted clinicians in their cognitive process by combining scientific knowledge bases with patient data for personalized and adapted management [4]. The design of the CDSS can take different forms depending on the clinical needs [5]. These systems focus on specific problems in the environment where they are to be implemented and often rely on existing systems and organizational contexts [6]. Therefore, understanding the workflow of existing systems is essential for supporting the adoption and optimal use of a new system. This understanding of the existing systems helps to determine when and how CDSS will be used [7].

To develop decision support mechanisms, participative approaches have been used to optimize the representation of clinical data. Faiola et al [8] adopted a human-centered approach to design a decision support tool, which has been shown to be effective in reducing the cognitive overload experienced by users [8]. More design and integration approaches have been developed based on domain-specific characteristics and matching users’ cognitive processes [9,10]. Clinical data display optimization, including EHRs focused on patient-centered care [11] and dedicated clinical decision support tools that depend on specialized knowledge bases [12], has attracted the interest of other researchers.

End user involvement is essential to ensure optimal data representation, which can be achieved through observation of clinical activities, individual interviews, and focus groups [13].

Data visualization must be validated by clinicians to ensure that it is understandable, relevant, useful, and readily available [14,15].

In this study, we aimed to adapt the data representation structure to the clinical processes in the PICU and allow its application in various clinical care scenarios. Although most decision support research in the literature focuses on specific clinical needs, the objective of our study is to facilitate the integration of multiple CDSSs developed for specific problems and the use of such systems for specific patients while ensuring harmonized monitoring and adequate evaluation for all hospitalized patients.

Our approach involved the end users throughout the data representation implementation process, including needs identification and prototype design, to illustrate the targeted structure.

Literature Review

Clinical Decision-Making

The clinical decision-making process is based on 2 main approaches: an intuitive heuristic approach, which is triggered in uncertain or critical situations requiring rapid intervention, and an analytical approach that involves gathering and processing information before reaching a conclusive decision. In clinical practice, the decision-making process varies with the clinician’s experience, their developed cognitive model, and processed information [16]. Furthermore, to refine clinical decisions and reduce the risk of errors, clinicians rely on knowledge bases and scientific evidence to process patient-specific data [17]. This adds complexity to the cognitive process in terms of time and effort invested.

In critical care, clinical teams typically discuss patients’ status and care during handoff meetings and medical rounds. Decision-making at these times depends on the relevance and accuracy of the data presented [18]. Decision support mechanisms are increasingly integrated into clinical processes to reduce the information gap by making relevant knowledge and data readily available through computerized systems.

Use of CDSSs

CDSSs are computer-based solutions that support clinicians and health care professionals in making clinical decisions [19] by providing them with person- or population-specific knowledge and information. This information is filtered and presented in a convenient timeframe to improve the health care of individuals and promote better population health [20].

Historically, CDSSs have been used for preventive, diagnostic, and therapeutic purposes, with the primary goal of improving the quality, safety, and efficiency of patient care [21]. Depending on the context of use, these systems may include best-practice guidelines for specific conditions or suggestions based on patient clinical data [22].
A CDSS is usually supported by an inference engine that incorporates clinical practice guidelines with patient-specific data to generate tailored suggestions [4]. However, other models are increasingly used, and artificial intelligence is used to predict condition changes or deterioration [23]. Computerized systems encompass 5 common types of decision support methods for knowledge sharing to reduce the risk of error among clinicians: order sets, information buttons, data documentation forms and templates, alerts and reminders, and relevant data representation [24].

The synthetic representation of patient data is a major challenge, mainly because of variability in data sources and format, along with the integration of medical knowledge in data processing. To implement such a representation, researchers have developed integration and structure design approaches that rely on the specificities of the work domain and adapt to users’ cognitive processes [9,10].

Improved visual representation facilitates timely information access, which has a positive impact on clinicians’ performance and cognitive processes [25,26]. Therefore, selecting adequate, reliable, and relevant content and using simple and understandable messages is highly recommended. Furthermore, clinicians’ time must be optimized by providing accurate and timely information and avoiding double entries by ensuring interoperability with EHR [27]. Finally, incorporating these systems into the users’ workflow is key to optimizing their implementation [28].

Wright et al [29] developed a taxonomy of clinical decision support tools to help categorize and compare their capabilities (eg, guidelines, notification, and order edition) in both commercially available and internally developed systems [28,29]. They found that a home-developed CDSS is more likely to achieve its goals as it focuses on local needs. Few studies have been conducted on implementing CDS components in commercial EHRs [30]. A review of 9 commercial systems found variability in decision support capabilities, which shows a significant gap between vendors [31]. Most EHRs focus on patient care and limit the scope of integrated CDS components to medication safety and managing lists of patients with common characteristics. However, standalone CDSSs are continuously evolving [32]. Recent work has demonstrated the feasibility of developing a flexible platform for hosting CDSS outside a specific EHR. The authors estimated that an EHR-agnostic approach facilitated the modification and development of new features because it implies fewer technical challenges [33].

The implementation of new technologies in the PICU settings should be performed carefully. This applies to CDSSs as their potential to improve clinical outcomes depends on how they are implemented in terms of integration into clinical workflow; process fluidity; interoperability and communication with the existing clinical systems; and data collection, analysis, and display. A previous study reported that commercial EHRs lacked features required in pediatric settings and that CDSSs were mostly integrated using home-developed tools in the unit [34].

At Sainte-Justine Hospital, several research initiatives have been undertaken in the PICU to develop CDSSs for specific needs, such as assistance in the automated diagnosis of acute respiratory distress syndrome in children based on various physiological and radiological criteria [35,36], assessment of the quality of head injury care in adherence to clinical practice guidelines [37], early detection of ventilator-associated pneumonia [38], and hypoxemia diagnosis and management [39]. Unlike the commercially available CDSSs, these tools developed at the Sainte-Justine Hospital were based on local clinical needs, adapted to patient characteristics in the PICU, and developed in harmony with the existing infrastructure, including devices, data availability, and access. Using additional tools to address individual problems can cause an excessive burden on clinicians. The integration of these initiatives into a unified structure will benefit both the clinical workflow through centralized information and the patient’s overall care, as each CDSS improves accuracy by targeting specific criteria.

Research Objective

The purpose of this study was to collect and analyze clinicians’ needs in an academic hospital PICU in support of clinical decision-making and establish a data representation structure for easy and quick access to relevant information required for clinical care, depending on patients’ care trajectory. Our goal was to provide a customizable visual tool allowing an overview of the patient’s data depending on their health condition (eg, diagnosis, current problem, and deterioration of the human body system) to reduce information processing time and mental overload for clinicians. This tool serves as a platform for integrating CDSSs in the PICU in response to patients’ specific needs while ensuring that the clinical flow is respected. This was the first step in implementing multimodal real-time CDSSs.

This study was not intended to replace existing clinical tools (eg, EHR, laboratory systems, bedside monitors, and ventilators) because these tools remain essential sources for acquired data and form integral parts of the intensive care unit environment. The EHR represents the core of this technological ecosystem, as it covers the patient’s trajectory from admission until being transferred or discharged. During this time, clinicians (eg, intensivists, nurses, external specialists, pharmacists, and health professionals) use the EHR’s functionalities for different purposes (eg, notes, prescriptions, reports, consultations, patient assessment, and monitoring) and have access to some decision support features, such as alerts for abnormal clinical values, task reminders, prescription aid, and events notification. Although these features help clinicians in their daily work, they do not provide further assistance in specific situations or for variable diagnoses.

In addition, we believe that an independent decision support tool allows for continuous improvement and adjustment while considering local needs. To this end, we encouraged the clinicians’ involvement throughout the study.

Methods

Overview

In our approach to implementing the new CDSS structure, we opted for the standard process of implementing computerized systems, which starts with identifying end users’ needs before beginning the modeling and prototyping phase and then
continues with performing tests to finally allow its integration into the clinical flow [40].

Our work focuses specifically on the first 2 phases of the process: identifying requirements through observation activities and interviews, followed by modeling and prototyping using design meetings. User testing will be covered in future work.

Needs Identification
To identify clinicians’ needs in terms of decision support, we first participated in a day of routine clinical activities at the Sainte-Justine Hospital PICU to understand the general workflow by observing interactions between team members and how they used clinical systems.

Following our observations, we planned interviews with PICU clinicians to understand their workflow and collect data on their needs. We approached the main categories of clinical staff in the unit, including intensivists, fellows, residents, nurses, and nurse practitioners. To achieve the target sample level (>10 participants), we used different communication channels for recruitment, namely email invitations, announcements in weekly journals, and direct contact in the unit.

We enrolled 11 clinicians, including 5 intensivists, 1 fellow, 4 nurses, and 1 nurse practitioner. Semistructured interviews lasting between 30 and 60 minutes were conducted face-to-face or remotely via a videoconferencing platform based on the participants’ preferences and availability. The interviews were recorded and transcribed by the research team. The interview guide was designed to provide an understanding of the use of existing work systems, evaluate participants’ knowledge and familiarity with decision support systems, and identify their needs and expectations regarding CDSS implementation.

Modeling and Prototyping
On the basis of data collected from the observation activities and interviews, we defined a 3-level data representation structure (ie, unit, patient, and system). This provided us with a basis for designing the first prototype. To validate the understanding of this first prototype and the relevance of the integrated functions, we held design meetings with the enrolled participants via videoconferencing. Before these meetings, the participants received a short video explanation with an evaluation survey and interviews, followed by modeling and prototyping using design meetings. User testing will be covered in future work.

needs. We approached the main categories of clinical staff in the unit, including intensivists, fellows, residents, nurses, and nurse practitioners. To achieve the target sample level (>10 participants), we used different communication channels for recruitment, namely email invitations, announcements in weekly journals, and direct contact in the unit.

We enrolled 11 clinicians, including 5 intensivists, 1 fellow, 4 nurses, and 1 nurse practitioner. Semistructured interviews lasting between 30 and 60 minutes were conducted face-to-face or remotely via a videoconferencing platform based on the participants’ preferences and availability. The interviews were recorded and transcribed by the research team. The interview guide was designed to provide an understanding of the use of existing work systems, evaluate participants’ knowledge and familiarity with decision support systems, and identify their needs and expectations regarding CDSS implementation.

Modeling and Prototyping
On the basis of data collected from the observation activities and interviews, we defined a 3-level data representation structure (ie, unit, patient, and system). This provided us with a basis for designing the first prototype. To validate the understanding of this first prototype and the relevance of the integrated functions, we held design meetings with the enrolled participants via videoconferencing. Before these meetings, the participants received a short video explanation with an evaluation survey to introduce the general functioning of the prototype and obtain their initial feedback. Our goal was to engage in interactive discussions with participants during the design meetings. To this end, we used a clinical scenario involving a patient with a severe head injury, and then we asked the participants to perform some tasks, such as sorting the patient list and assessing the patient’s health condition based on the presented data, to use the functionalities available on the prototype and to describe their understanding. Simultaneously, the participants were given the opportunity to suggest improvements for adding, removing, or correcting the represented data. A total of 5 intensivists participated in these design meetings. Depending on their availability, 3 physicians were met individually, and 2 were brought together in the same meeting.

Ethical Considerations
The Centre Hospitalier Universitaire Sainte-Justine Ethics Review Board approved this study (CER-2022-4083), and all participants signed an informed consent form before participating in the study. Consent was obtained in person, either on the first contact or the day of the interview, after receiving a positive response to the mail invitation. All original consent forms were archived at the Sainte-Justine Research Center.

Participants’ personal information (eg, name and email) was saved separately from the study data in a password-protected Excel (Microsoft Corp) file. Personal information was linked to study data using a code for each participant. The data will be kept in a secure directory in the hospital server for 7 years, after which it will be destroyed.

No personal information was used during interviews. Only the participant codes were mentioned at the beginning of the interviews. The recordings were immediately deposited in the secure directory at the end of each interview. Once listened to and transcribed, this file was saved in another folder in the same secure directory.

A CAD $10 (US $7.5) gift card was offered to participants as a gesture of appreciation for their participation.

Results
This section presents the findings from the data collection and analysis as well as the prototype designed to illustrate the proposed structure for clinical data representation.

Description of the Existing Process
The observation activities allowed us to understand the clinical workflow related to team members’ interactions and how they used the existing clinical systems.

Clinical Workflow
Overview
Figure 1 presents a typical day at the PICU. The day usually begins with a handoff meeting (1) between the last medical team and the team taking over during the day, followed by a bedside visit (2) to discuss and validate the patient’s treatment plan. Subsequently, team members performed clinical interventions (3) related to their specific roles and responsibilities before handing over patient information to the next team.
We took time to observe some clinical activities, such as patient information transfer meetings and morning medical rounds.

Handoff Meeting

This meeting brought together pediatric intensivists or patrons, and fellows from 3 specialties: general acute pediatrics, called Pediatrics A; chronic pediatrics, Pediatrics B; and cardiac surgery, Pediatrics C. The goal was to assess the medical conditions and illness evolution of inpatients and new admissions to establish a treatment plan for the next 24 hours. Generally, patients were presented, starting with discharged patients, followed by critical or extremely ill patients, and then stable patients. For each patient, a predefined plan covered the body’s systems, including respiratory, cardiovascular, neurological, gastrointestinal, hematologic, immunologic, renal, and metabolic systems, as well as the infectious process, tegument, and musculoskeletal system. Patients were also assessed psychosocially before the medical team concluded the global assessment by proposing a treatment plan.

Medical Round

After the handoff meeting, the team began a collaborative round at the patient’s bedside to discuss the patient’s current condition with the nurse in charge. Parents could participate in discussions to complete the information and ask about their children’s condition. Once the discussion was completed, a patient status summary was presented with a proposed treatment plan, including new laboratory or imaging orders, medication adjustments, outpatient referrals, and other diagnostic or therapeutic interventions as needed. Once the plan was approved, a medical team member recorded the assessment summary by creating a new medical progress note in the patient’s record. This note included important laboratory results, vital signs, ventilation, the patient’s global evolution in the unit, and their evolution within the human body systems. For example, the **neurological level** included sedation and comfort assessment data, whereas the **respiratory level** included ventilatory parameters assessment and likely respiratory distress signs.

Clinical Activities

After the medical round, clinicians were responsible for executing the patient treatment plan and completing the associated tasks according to their profile and skills. They frequently referred to patient records to review collected clinical data, including nurses’ observations, prescriptions, laboratory results, and notes provided by external consultants such as medical specialists and health professionals (eg, respiratory therapists, physiotherapists, nutritionists, and social workers). In addition, they could access the laboratory and medical imaging systems to analyze detailed examination results. Clinicians must document all interventions in their clinical notes on the EHR. Clinical notes were entered in free text, which meant that the information structure and volume and the terminologies and expressions used differed among clinicians. **Textbox 1** illustrates the variability in the medical progress notes taken while assessing patients with respiratory problems.
Examples of respiratory assessment in medical progress notes from electronic health records in the pediatric intensive care unit at Sainte-Justine Hospital illustrating the formatting variability among clinicians.

Note 1
- #Decadran BID (0.6 mg/kg/day) last dose for the day
- Extubation 28/04 AM
- AA
- Minimal desaturation, spontaneous resolution overnight
- Bilateral GAE, no added noise, eupneic
- Venous gas 7.37/47/25
- Last RPL 28/04 improvement

Note 2
- # HFNC 20 LPM FiO2 40%
- Sat 90-92% More obstruction than usual
- RR 25-30 no drawing
- Secretory + physio in progress during passage
- GAE bilaterally
- Noise transmitted bilaterally
- No labs

Note 3
- # Ventolin IV 3 mcg/kg/min * 7h45 this morning
- # Solumedrol 1 mg/kg q6h
- # Ketamine infusion 0.5
- BiPAP Ai 5 / Peep 8 / FiO2 21%
- Reduced EA, but improving, absence of wheezing
- Indrawing
- 7.4/34/20.8

Use of Existing Systems

While observing the clinical activities in the PICU, we learned about the main working tools in the unit. We mainly targeted the TVL (table de visualisation de lits [beds visualization table]) unit dashboard and EHR.

TVL Unit Dashboard

TVL is a digital display tool developed in the PICU to evaluate the unit’s capacity to receive patients and the nurses’ workloads. Besides allowing all professionals and families to easily locate a patient, as it is displayed on a large screen at the unit’s entrance, the TVL allows PICU staff to view the patient distribution, depending on the team in charge (Pediatrics A, B, and C), and identify discharged patients and new admissions [41,42]. The tool is based on an architectural representation of the units (Figure 2). It mostly contains unit management information, including (1) the patient room or bed, (2) bedside nurse allocation, (3) the team in charge, (4) room index, (5) waiting patients, (6) PICU patients summary, and (7) the legend indicating the meanings of icons (eg, room, workload, and equipment indications). The TVL contains limited information about the patient’s condition, such as ventilatory mode and circulatory support equipment, which limits its use in clinical care.
Figure 2. Tableau de visualisation de lits (beds visualization table; TVL) unit dashboard displayed at the pediatric intensive care unit (PICU) entry (names are hidden), which presents (1) patient room and information, (2) bedside nurse allocation, (3) the PICU team in charge, (4) room index, (5) waiting patients, (6) patients summary, (7) and the legends.

EHR Tool

Patient records in the PICU were managed using a dedicated critical care system known as IntelliSpace Critical Care and Anesthesia (Philips Healthcare). This system is connected to administrative modules to manage patient admissions, transfers, and discharges. It is also connected to physiological monitors for vital signs, mechanical ventilators for respiratory parameters, intravenous pumps and syringes for drug perfusion and feeding data, the pharmacy for medication prescription management, and laboratory modules for biological examination prescriptions [43]. System interoperability consolidates all clinical data from the connected systems (eg, physiological monitors, intravenous pumps, ventilator, laboratory, and pharmacy systems) into the EHR along with free text clinical notes typed by the clinicians. However, clinicians must search several sections, gather information, and analyze it to assess the patient’s condition and adjust the treatment plan. Therefore, a synthetic representation of patient data is required to guide clinicians, limit cognitive overload, and optimize the time spent collecting information relevant to decision-making.

The EHR is an integral tool and reference for clinicians in the PICU, which is used as a source of clinical data collected continuously from the patient’s environment (eg, bedside monitors and ventilators) and data collected from punctual or recurrent interventions (eg, laboratory examinations). The EHR is also used for data entry purposes to document the patient’s assessment and to add some measured values (eg, Glasgow Coma Scale and Comfort Scale scoring). Although the EHR played an essential role in the clinical workflow, the real challenge remained in the clinician’s ability to trace the required data and process it in due course [44]. Therefore, the development of a visual tool provided a targeted view of the EHR’s content without additional entry tasks for the clinicians.

The first observation phase raised our awareness of the importance of optimizing data representation to support clinicians in patient care. Considering that the EHR was the main clinical tool used in the PICU daily workflow for physicians and nurses and that it gathered data from different sources, we focused more on the information-seeking process in the EHR among clinicians and the potential use of decision support tools in their practice.

Data Analysis

Interviews with participants provided insights into the information-seeking process through existing systems and allowed discussions about decision support systems in terms of familiarity with and clinicians’ expectations of such systems.

Information-Seeking

Table 1 presents the use patterns of clinical systems among participants. To gather information for decision-making, clinicians browsed through different sections in the EHR.
Table 1. Data sources within the existing systems and their use by PICU\(^a\) clinicians.

<table>
<thead>
<tr>
<th>Data source</th>
<th>Use by participant category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physician</td>
</tr>
<tr>
<td>EHR(^b)</td>
<td></td>
</tr>
<tr>
<td>Clinical data</td>
<td>High(^c)</td>
</tr>
<tr>
<td>Vital signs trends</td>
<td>High</td>
</tr>
<tr>
<td>Prescriptions and medication</td>
<td>High</td>
</tr>
<tr>
<td>Scores</td>
<td>High</td>
</tr>
<tr>
<td>Admission notes</td>
<td>Low(^d)</td>
</tr>
<tr>
<td>Medical progress notes</td>
<td>Medium(^e)</td>
</tr>
<tr>
<td>Brief notes</td>
<td>High</td>
</tr>
<tr>
<td>Consultants' notes</td>
<td>High</td>
</tr>
<tr>
<td>Laboratory system</td>
<td>High</td>
</tr>
<tr>
<td>Imaging system</td>
<td>High</td>
</tr>
<tr>
<td>Clinical practice guideline</td>
<td>High</td>
</tr>
<tr>
<td>TVL(^f) unit dashboard</td>
<td>Medium</td>
</tr>
</tbody>
</table>

\(^a\)PICU: pediatric intensive care unit.

\(^b\)EHR: electronic health record.

\(^c\)High: >3 times per shift.

\(^d\)Low: 0 to 1 time per shift.

\(^e\)Medium: 2 to 3 times per shift.

\(^f\)TVL: tableau de visualisation de lits (beds visualization table).

The frequency becomes high when the nurse is assigned a team leader.

Clinical data from physiological monitors, laboratory systems, and intravenous pumps were categorized by body systems. Data were displayed in a set of detailed tables containing values for each category and the results of nursing observations. Clinicians must navigate all the tables to find relevant information for patient assessment. Data were collected in the same way regardless of the patient’s problem, which made it difficult to analyze and process. Considering a case of brain injury, the clinician examined the clinical indicators, including biological examinations obtained from the laboratory system and physiological parameters collected from connected devices such as ventilators and feeding pumps. These indicators were associated with the patient’s condition by going through data categories (eg, neurological, respiratory, and cardiovascular) and then refined information to obtain a synthesis to support their decision, which took time. The EHR also displayed vital signs trends for a certain period. The vital signs were fed directly from the bedside monitors which were connected to the patient. Notably, some clinicians believed that trends could be improved by facilitating access to the graphs when analyzing patient data and by ensuring that abnormal values were quickly detected.

Regarding prescriptions, a dedicated section allowed the display of detailed drug information, such as doses and administration modalities, and tracked current prescriptions or added new ones. Furthermore, the ongoing perfusion and the drug boluses could be tracked in the EHR. The nurses collected the scores and measurements important for patient assessment and entered them in the EHR (eg, the Comfort-Behavior Scale score for intubated patient assessment and delirium and Richmond Agitation Sedation Scale score for neurological assessment).

Regarding clinical notes, their use varied based on need. Admission notes describing a patient’s illness and past medical history were generally viewed when the patient was newly admitted but continued to be important as a reference point for patient outcomes during their stay. Medical progress notes were completed daily by the medical team in charge. Data were entered in free text to describe the patient’s evolution before concluding with a treatment plan. Information entry was redundant and unstructured, which complicated its processing. To monitor patient progress in these notes, clinicians often relied on the conclusion and might also rely on brief notes to learn about reassessments made during the day. External consultant notes entered by other medical specialists and health professionals were displayed in chronological order, allowing clinicians to track them by date. However, clinicians were not notified when notes were added or modified and could not use filters to facilitate searches. This meant that PICU clinicians must repeatedly check the external consultants’ sections for new updates. In addition, they must scroll through the chronological list and search through involved specialties to locate the required note.

Although the EHR gathered the necessary data for patient care, clinicians commonly used laboratory and imaging systems for a complete examination of the test results.
Regarding the TVL dashboard, clinicians used it mostly when starting their work shift to track patients and verify who was in charge (e.g., medical team and bedside nurse). Some physicians used a printed version to organize their daily schedule by taking notes directly on paper, whereas a nurse would use it, especially when assigned as a team leader, to manage the workload and resource allocation. Most of the information integrated into the TVL was not helpful in the clinical care context because it was dedicated to bed management. However, clinicians used it to help plan medical rounds.

Decision Support: Expectations and Needs

Overview

The interviews conducted enabled us to assess participants’ familiarity with the CDSS and determine their expectations with respect to these systems. In Table 2, which presents the main results, it is notable that most clinicians interviewed (8/11, 73%) reported being unfamiliar with the CDSS. Clinicians’ practice experience had no impact on their level of familiarity with the CDSS. An experienced clinician does not necessarily have specific knowledge about the CDSS or its potential use in clinical practice. Among physician intensivists, those with strong knowledge related it to their involvement in research to develop clinical decision support tools. However, we found that even clinicians with little knowledge about CDSS operations could express their expectations and needs, both for their professional development and for the benefit of their patients. For clinicians, using the CDSS would optimize their cognitive decision-making process, facilitate daily work planning and managing information flow during the busiest periods, improve clinical tools efficiency, and reduce the risk of errors and oversights by providing timely and easy access to relevant data. In addition, the CDSS could promote coaching for medical and nursing interns and support newly hired staff members. Regarding patients, the CDSS helped to improve clinical care by personalizing data processing based on the patient’s physiological and pathological characteristics while adhering to scientific recommendations and clinical practice guidelines.

Table 2. Participants’ experience and expectations from a decision support system to be used in PICUa (N=11).

<table>
<thead>
<tr>
<th>Category</th>
<th>Physician (n=5)</th>
<th>Fellow (n=1)</th>
<th>Nurse practitioner (n=1)</th>
<th>Nurse (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years of practice (years)</td>
<td>7-32</td>
<td>6</td>
<td>1.5</td>
<td>7-25</td>
</tr>
<tr>
<td>Familiarity with the CDSSb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40% strong knowledge</td>
<td>100% low</td>
<td>100% low</td>
<td>100% low</td>
</tr>
<tr>
<td></td>
<td>20% medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40% low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected outcomes</td>
<td>Guide cognitive process for decision-making</td>
<td>Reduce mental over-load during busy workdays and agitated nights</td>
<td>Reduce the risk of error and omission</td>
<td>Coach newly hired staff members</td>
</tr>
<tr>
<td></td>
<td>Optimize daily work planning</td>
<td>Harmonize access to knowledge and data</td>
<td>Optimize use of work tools and systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support students in their learning process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personalize patient care management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimize rare disease management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Considerations</td>
<td>Have a user-friendly design.</td>
<td>Avoid intrusive alerts</td>
<td>Opt for simplicity and ease of use</td>
<td>Avoid double data entry</td>
</tr>
<tr>
<td></td>
<td>Use for guided decisions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respect clinical workflow.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aPICU: pediatric intensive care unit.
bCDSS: clinical decision support system.

To ensure the efficient and successful implementation of a CDSS in their workflow, clinicians insisted on the usability and simplicity of design features while avoiding irritating factors, such as duplication of existing data entry and disruption with highly intrusive alerts. The CDSS must also fit into the users’ workflow and contribute to decisions guided and supported by clinical judgment. This meant that a clinician might find that the guidance or recommendations generated by the CDSS did not align with their conclusions based on prior knowledge and experience. In this case, if the clinician chooses to ignore the CDSS guidance, they must justify the final decision.

On the basis of the collected data, we identified 5 main themes related to clinical decision support needs (Table 3). Furthermore, we highlighted the main objectives and the means to respond to them.
Table 3. Clinician needs for decision support capabilities in the PICU[^a].

<table>
<thead>
<tr>
<th>Themes</th>
<th>Needs expressed by participant category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physicians</td>
</tr>
<tr>
<td>Patient prioritization</td>
<td>Provide stability indexes</td>
</tr>
<tr>
<td></td>
<td>Categorize patients according to their condition severity</td>
</tr>
<tr>
<td>Patient assessment and problem tracking</td>
<td>Provide a synthetic presentation of the patient</td>
</tr>
<tr>
<td></td>
<td>Provide guidance on the reasoning behind patient assessment</td>
</tr>
<tr>
<td></td>
<td>Assist in problem recognition</td>
</tr>
<tr>
<td></td>
<td>Select indicators based on the patient’s problem</td>
</tr>
<tr>
<td>Clinical indicator monitoring, and notification and alert optimization</td>
<td>Combine relevant data from different sources (eg, laboratory results, physiological parameters, and monitoring)</td>
</tr>
<tr>
<td></td>
<td>Provide reminders of target values for the clinical indicators, and alert when abnormal values are reached</td>
</tr>
<tr>
<td></td>
<td>Integrate measurements and data collected by nurses</td>
</tr>
<tr>
<td>Access and adherence to clinical practice guidelines</td>
<td>Monitor guideline adherence Alert when actions do not align with the best recommendations.</td>
</tr>
<tr>
<td>Integration of decision support algorithms</td>
<td>Diagnostic aid</td>
</tr>
<tr>
<td></td>
<td>Ventilatory weaning</td>
</tr>
<tr>
<td></td>
<td>Vasopressor weaning</td>
</tr>
</tbody>
</table>

[^a]PICU: pediatric intensive care unit.

[^b]Data not available.

Patient Prioritization

Clinicians expressed a need to prioritize patients according to the severity of their condition and to quickly detect any changes. A participant mentioned the value of rapid assessment of the patient status as follows:

> ...give me a quick view, actually, of whether a patient is stable vs. not stable, or critical, or an alert for a change in situation.

To help clinicians prioritize patients during handoff meetings or medical rounds, we aimed to optimize patients’ visualization with a user-friendly, interactive, and customizable display while adding stability indexes according to the patients’ conditions.

Patient Assessment and Problem Tracking

- **Patient portrait:** Clinicians were looking for a synthetic presentation of patient’s data to optimize clinical assessment, as expressed by 1 participant as follows:

> If we would be able to make a patient Dashboard with a synthetic presentation of the different elements. Passing some of the elements that the electronic record should do to us, but that doesn’t do too much and that considers the temporality, that considers these important clinical elements and that are in real time, or at least close.

- **Problem monitoring:** Clinicians must recognize patient problems to guide and facilitate data analysis and monitor patient outcomes. This was highlighted by a participant as follows:

> ...help me more finely, when I’m on rounds or when I’m assessing a patient, help me in my reasoning or in my diagnosis or in my assessment of the patient. At that time, to have a more accurate view of the patient’s condition, for conditions that are complex.

Participants highlighted the importance of monitoring patients according to their condition and early detection of problems, as follows:

> (...)Depending on the pathology of the patient, it would be nice if it was the thing that detects it on its own, if the patient has respiratory distress.
Our goal was to optimize the evaluation of the patient’s current state through a synthetic presentation by selecting relevant clinical information for the patient’s assessment and improving the patient’s progress monitoring in intensive care. The complete clinical data remained accessible in the EHRs for detailed analysis.

Clinical Indicators Monitoring and Notification or Alert Optimization

Although EHRs enable monitoring of clinical indicators across several sections, including medical and nursing progress notes, clinicians believed that notes could be optimized with automatic data extraction and updates. One participant stated as follows:

> Notes are worth what they are worth, there are people who write good notes, there are people who don’t write good notes. I think there’s a lot of copy-paste. So sometimes you go back into the notes and you’re going to see the exact same thing at 5 days online in different sections. It’s the conclusion that changes a little bit.

Alerts were also crucial for early detection of changes in the patient’s disease course. One participant said:

> It helps, the little logos come out quicker. It helps identify what’s more abnormal, more quickly.

The goal was to monitor indicators according to the body system or problems associated with the system, maintaining the same structure used in presenting and assessing patients during clinical activities and within the EHR. Customizing notifications facilitated data processing and intervention planning. This could be achieved by opting for simple color codes, avoiding intrusive alerts, and duplicating information.

Access to Evidence-Based Recommendations

Clinicians must incorporate evidence-based recommendations and guidelines into their decision-making processes. Easy and standardized access to scientific databases is essential. One participant explained the need for clinical practice guidance as follows:

> I think we could do better, to see the number of variations for a problem is that there’s not a lot of scientific rigor. Could this compensate for things that are done by repetition, by reflex without foundation, and that it would be more supervised or with a better scientific basis? Probably.

The aim was to optimize access to clinical practice guidelines either by integrating the recommendations directly into data analysis through reminders and suggestions or providing direct access to scientific databases.

Integration of Decision Support Algorithms

This involved development work to associate knowledge bases with patient data using inference engines or artificial intelligence algorithms. Prediction of patient condition deterioration, diagnosis support, prescription support, and sedation weaning were among the main expressed needs.

These algorithms aimed to guide clinical decision-making. Their integration could be performed at diagnostic, therapeutic, and preventive levels. This study aimed to provide a structure susceptible to accommodating new algorithms and decision support features. Therefore, according to the first reflections, we intended to associate these algorithms with body systems or the patient’s problems.

Data Structure

To structure emerging elements while adapting data representation to the clinical workflow, we opted for a 3-level system structure (Figure 3). These levels mainly reflect the first 3 identified themes, whereas the themes related to clinical practice guidelines (#4) and decision support algorithms (#5) can be attached to different levels, depending on the context of use and the problem being addressed.

Figure 3. The resulting structure for data representation in the pediatric intensive care unit (PICU) with 3 levels of abstraction. CDSS: clinical decision support system.
1. **Unit level (patient prioritization):** The first level provided a global view of patients in the PICU, with various display modes allowing efficient management of patient lists and easy identification of those who were unstable and helping to plan bedside activities. Adding stability indices helped to categorize and prioritize patients based on their condition severity.

2. **Patient level (patient assessment):** For each patient, clinicians could access this second level to obtain a quick overview of the patient’s condition and better understand the underlying cause of their instability. The patient’s synthetic presentation allowed clinicians to assess the patient’s status based on current problems and probable complications and to track important events. Eventually, incorporating guidance and evidence-based recommendations would be pertinent at the second and third levels.

3. **System level (indicator monitoring):** The third level was intended to align with the clinical flow by assessing patients according to their body systems (e.g., neurological, respiratory, cardiovascular, renal, gastrointestinal, hematological, immunologic, infectious, and musculoskeletal tissue systems). This allowed monitoring of the degree of alteration of the system based on associated clinical indicators. Moreover, this level aimed to integrate clinical decision support algorithms developed in response to specific problems (e.g., evaluation of head trauma management associated with the neurological system).

Prototype Design

Overview

Using the defined structure for clinical data representation, we designed interfaces corresponding to the 3 levels of the structure. Subsequently, design meetings allowed us to adapt the design and integrate, early in the process, the necessary adjustments to meet the end users’ needs. This section presents the design and adjustments of the prototype. Each interface included a targeted functionality in response to the objectives of the associated level.

We used a brain injury care scenario to illustrate the functioning model of the preliminary prototype, knowing that a patient with a severe traumatic brain injury requires attentive monitoring that involves clinical data from different devices (e.g., mean arterial pressure, oxygen saturation, temperature, end-tidal carbon dioxide, and brain tissue oxygenation), laboratory results, ongoing sedation, and medication treatment, along with the interpretation of imaging examinations. To assess the patient’s status and, therefore, adjust their care plan, clinicians should be able to categorize the patient according to a severity scale, identify whether there is a risk of deterioration (e.g., ischemia and hyperemia), define optimal mean arterial pressure in the context of brain injury, and quickly recognize abnormal values depending on the patient’s profile. We expected that this would help clinicians to focus on pertinent details and support the prediction of changes in the patient’s condition.

Unit Level

The objective of this level was to visualize all inpatients in 2 display modes and introduce the concepts of stability and system alteration.

The list-mode display (Figure 4) allowed clinicians to select patients by service (Pediatric A, B, or C) or to create their personalized list (My Patients) by adding patients under their responsibility. Every patient on the list was identified with a bed number, name, age, weight, length of stay, and diagnosis. It also included scheduled tests or procedures that required off-unit transportation to assist the clinician in scheduling bedside interventions. Stability indices were added to help clinicians prioritize patients and plan their interventions for the day. These indices included a list of altered body systems and the status to categorize patients according to their conditions: critical, watcher, stable, or discharged. We used red alerts to indicate a severe alteration or criticality level and orange alerts to indicate a moderate level.
Figure 4. Level 1 interface in the preliminary prototype: patients list. This figure includes lists management (1.1.1), patient identification (1.1.2), and stability indices (1.1.3).

Furthermore, level 1 provided an architectural view of the unit (Figure 5) inspired by the TVL, which was adapted to assist clinicians in planning medical rounds and bedside interventions. Clinicians could customize the display to view their patients or all inpatients.
Figure 5. Level 1 interface in the preliminary prototype: unit architectural view. This figure includes color-coded boxes for patients according to their stability (1.2.1), the team in charge (1.2.2), medical team location (1.2.3).

The stability indicators displayed observed the same color code for the boxes: red for the critically ill and orange for less acuity. This view allowed us to see the list of available caregivers with their contact numbers and the nurses responsible for the patient’s bedside. Notably, geolocation of the team’s location during medical rounds could help plan clinical interventions. For example, a clinician who needed to join the medical round for a specific patient could check this interface to plan his or her next tasks to match the team’s arrival at the patient’s bedside.

To assess a specific patient, clinicians could select the patient from the patient list or switch to the TVL view and access synthetic data presentation at the second level.

Patient Level

Continuous monitoring of inpatient progress was central to clinical activities in the PICU. Therefore, the patient level (Figure 6) was incorporated into the prototype design to facilitate the evaluation of the patient status and progress during their stay in the unit. The second level provided an overview of the patient’s active problems and likely risks based on monitoring relevant indicators.
Clinicians could easily return to their personalized lists and search for patients. Color-coded notifications indicated the number of critical patients (red) and watcher patients (orange). The patient identification zone included demographic data, initial diagnosis, and length of stay in the unit. The same zone displayed vital signs in real values, with possible access to trends observed in the last few hours. The left menu allowed quick navigation between levels 1 and 2 and through the body systems at level 3. This interface provided information about the patient’s primary diagnosis, with the last revision date, and allowed clinicians to access a direct link to the UpToDate (Wolters Kluwer) knowledge base [45], which was widely used for medical decision support. Secondary pathologies and patient history were also listed and allowed sorting by body systems. Furthermore, active problems were displayed and an interpretation of abnormal indicator values were provided, with reminders for target values, to facilitate the recognition of the patient’s problems. Finally, problems under surveillance were shown to guide clinicians in patient care by targeting probable complications. Decision support systems could be incorporated into this level and connected to a patient’s problem. For example, a patient with respiratory failure (a medical problem) could have a CDSS for the early diagnosis of acute respiratory distress syndrome [36] and another for the management of mechanical ventilation if diagnosed with acute respiratory distress syndrome [46]. This level allowed the tracking of significant events, such as procedures performed in the operating room, specific investigations, and consultant visits. When needed, clinicians could search for additional information by directly accessing clinical applications and systems, which could be related to prescription history, treatment plans, or recent imaging or laboratory tests.

Clinicians could visualize clinical indicators on the third level to closely monitor these indicators related to patient problems (refer to system level section).

System Level

The third level (Figure 7) was designed to display groups of indicators related to human body systems and to access decision support tools developed for specific problems involving these systems. Our goal was to prioritize indicators to be monitored based on body system alterations while retaining the ability to add indicators from other systems to refine clinical decisions. In Figure 7, we included indicators of the brain injury care scenario and added a visualization tool to assess clinician adherence to the clinical practice guidelines. The development of a visualization tool will be subject to further research.
The personalized patient list could also be accessed at this level. The patient identification zone included demographic data, initial diagnosis, length of stay in the unit, and data related to patient progress in the care trajectory. For a head injury, clinicians could assess the global adherence to clinical practice guidelines and follow, through trends, changes in the patient’s neurological status and Glasgow score. This zone also provided access to the last computerized tomography scan performed. As in the previous level, the navigation menu allowed users to browse between different levels and different systems at the third level. Altered systems were easily identified using simple color-coded signs (e.g., red for highly severe indicators and orange for less severe indicators). The first group contained specific indicators related to the neurological system; this area allowed clinicians to evaluate adherence to guidelines for brain injury indicator monitoring and management. Abnormal values were systematically displayed, with access provided to trends observed in the last few hours. Furthermore, clinicians could view trends in normal indicators or add other neurological indicators not directly related to head injury care. The interface also allowed users to view indicators belonging to other systems but related to the patient’s problem. For example, surveillance of a patient with a head injury is not limited to neurological indicators but covers variable indicators, such as cardiovascular and respiratory indicators. Other groups were included for bedside monitoring. In addition, the interface enabled data display by date or time range to optimize clinical indicator monitoring.

Discussion

Principal Findings

In this study, we took the first steps to develop a decision support structure that responds to clinician needs in the PICU. We analyzed the existing situation to evaluate current needs, which led us to develop a 3-level data representation structure, with the first level aimed at prioritizing inpatients based on the severity of their conditions, the second level providing an overview of the patient’s condition and evolution, and the third level allowing close monitoring of clinical indicators related to a specific problem or human body system. From this perspective, the third level was intended to support CDSS integration as developed in response to specific care management needs related to the patient’s condition. In subsequent steps, there will be a testing process involving end users to validate the usability and performance of the designed prototype.

Figure 7. Level 3 interface in the preliminary prototype. The model includes access to personal list (3.1), patient identification and system global indicators (3.2), navigation menu (3.3), system indicators (3.4), problem-related indicators from other systems (3.5), additional indicators (3.6), and indicators evolution (3.7).
Our goal was to create a system based on the proposed representation and eventual CDSS integration. It is important to note that this system is not intended to replace EHRs designed for documenting patient care or any other existing systems. However, its use should help clinicians prioritize their interventions according to patient’s needs, which could be applied to the handoff meetings while discussing inpatient conditions and planning next-shift interventions. Furthermore, the tool could optimize clinicians’ cognitive processes by readily accessing relevant information when needed, such as for patient presentation during medical rounds, for fast checks on patient status and detection of any changes. In addition, the display of the clinical indicators could be personalized to suit the user’s preference and optimize clinical monitoring by allowing an adequate and efficient classification of indicators either by the human body system or by patient problem, which helps to contextualize data evolution.

Limitations

Although the features presented in the Principal Findings Section are generally appreciated by the clinicians, they, nonetheless, remain prudent regarding the following concepts. The first concept is patient criticality assessment, knowing that criticality could be linked to variable factors, such as a combination of a patient physiological profile, care required, and intensity of that care [47], perception related to patient prognosis, illness progression and response to treatment [48], and severity scores used to measure deviations observed in certain groups of physiological variables [49]. The second concept is problem progression, which could be difficult to track because information at the start and end of a problem is not always accurate. Although a change is usually identified by a deviation from normal or expected values, it ultimately depends on the patient’s progress in their care trajectory [50]. The third concept is that some problems affect multiple body systems and certain specific indicators related to such problems [51]. This requires classifying the indicators by problem and defining abnormal variations for each indicator according to the patient’s physiological and pathological profiles. For example, the mean arterial pressure indicator is related to the cardiovascular system, but for a patient with a head injury, this indicator directly affects cerebral perfusion; therefore, its monitoring is also linked to the neurological system. Furthermore, the thresholds for this indicator may vary with the patient’s age and illness history.

Clinical judgment is crucial for patient assessment and decision-making in critical care. This judgment varies among clinicians and relies on each clinician’s ability to synthesize relevant clinical data, which is not easy to model.

Analyses of these factors will eventually help us to optimize our data representation model in terms of the connections between problems and human body systems. In addition, identifying the factors that influence the progression of problems will help in predicting the deterioration of a patient’s condition and preparing an appropriate intervention.

In our study, we initially envisaged a sample of 30 participants (6 physicians, 4 fellows, 3 residents, 2 specialized nurse practitioners, and 15 nurses) to have a better representation of the targeted population. However, the desired sample was not achieved owing to the limited availability of PICU staff and their high workload during the project period, which was during the Covid-19 pandemic. A total of 11 participants could participate in the interviews. Only 5 (45%) physicians participated in the design meetings during the second phase of the project.

Through the design meetings, we could improve the prototype design. However, we were unable to test the final version with the clinicians. Therefore, we intend to conduct usability tests afterward to identify potential issues and ensure that end users are satisfied with the resulting prototype. Future work should also investigate the integration of the prototype into the clinician’s workflow. Although the prototype intended to synthesize relevant clinical data from other sources into a consistent view, it could increase the clinician’s workload by adding another technological tool to consult the patient’s condition. This requires careful consideration of the tools’ interoperability to follow the clinician’s role.

Conclusions

This study provided a clinical data representation structure to support PICU clinicians in their decision-making process and to assist them in optimizing inpatient care management.

An observation of clinical activities and interviews with participants allowed us to identify the current needs for decision support. Through an analysis of collected data, we created a structure with 3 levels of abstraction to facilitate patient prioritization, assessment, and monitoring. A prototype was designed based on the main structure and then presented to the participants to obtain feedback for improvement.

Notably, the functionalities integrated into the prototype mainly met the clinicians’ expectations regarding information relevance and classification. Adjustments were made to the data representation following the design meetings with the participants. However, further tests will be conducted to ensure the tool’s usability.

To enable the deployment of the proposed decision support structure and its integration into the clinical workflow in the PICU, further analysis and development are needed to establish patient stability indices, automate problem recognition, and define the indicators associated with each body system and the respective alteration thresholds.

Acknowledgments

The authors would like to express their gratitude to the Centre Hospitalier Universitaire Sainte-Justine and the Centre Hospitalier Universitaire Sainte-Justine Research Center for their valuable support and to the caregivers for their participation. Furthermore, the authors would like to thank Cecilia Buratti and Nadia Roumeliotis for their assistance.
No generative artificial intelligence tool, including ChatGPT (OpenAI Inc), was used to draft questions for the interview guide or to write the manuscript.

This study was funded by a chair from Sainte-Justine Hospital and the Ministry of Health of Quebec (PJ) and a cochair from Fonds de Recherche du Québec Santé (RN and PJ). PJ earns a salary from Fonds de Recherche du Québec Santé.

Data Availability

Data sharing is not applicable to this study as no data sets were generated or analyzed during this study.

Authors’ Contributions

NY performed the data collection. SL and NY performed the prototype and design validation with participants. PJ, RN, and PDP supervised this project. NY drafted the manuscript. The paper was thoroughly reviewed by all authors, and they approved the final submitted research manuscript. They also assumed complete accountability for their contributions and ensured the academic integrity of their work.

Conflicts of Interest

PJ received salary from the ministry of Health of Quebec, Fonds de recherche en Santé du Québec and Ste-Justine Hospital to conduct the research and to finance the research.

References

Abbreviations
CDSS: clinical decision support system
EHR: electronic health record
PICU: pediatric intensive care unit
TVL: Tableau de visualisation de lits (beds visualization table)
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Comparison of Blended Learning With Traditional Dermatology Learning for Medical Students: Prospective Evaluation Study

Cristiana Silveira Silva¹, MD, PhD; Cidia Vasconcellos², PhD; Murilo Barreto Souza³, PhD; Juliana Dumet Fernandes¹, PhD; Vitoria Regina Pedreira de Almeida Rego¹, MD

¹Department of Dermatology, Federal University of Bahia, Salvador, BA, Brazil
²Department of Dermatology, University of São Paulo, São Paulo, Brazil
³Department of Ophthalmology, Federal University of Bahia, Salvador, Brazil

Corresponding Author:
Cristiana Silveira Silva, MD, PhD
Department of Dermatology, Federal University of Bahia
Av. Milton Santos, s/nº - Ondina
Salvador, BA, 40170-110
Brazil
Phone: 55 7133362850
Email: silveira.cristiana@gmail.com

Abstract

Background: Novel internet-based applications and associated technologies have influenced all aspects of society, ranging from commerce and business to entertainment and health care, and education is no exception. In this context, this study was designed to evaluate the impact of a dermatology e-learning program on the academic performance of medical students in dermatology.

Objective: The aim of this study is to develop a dermatology blended-learning course for undergraduate medical students, evaluate the knowledge gained by students exposed to this course, and compare the results to those of traditional teaching methods.

Methods: In this prospective study, we evaluated the performance of fourth-semester medical students at the Federal University of Bahia, Brazil. Students who had been in their second year of the medical course in 2019 were considered the control group, while students in their second year in 2020 were considered the blended or hybrid group. The first group attended traditional classes, using printed material (books and handouts), while the second group used our web-based course and e-book as a supplement in a hybrid web-plus-traditional fashion. Neither participants nor evaluators were blinded. The students in both groups were subjected to the same pre- and postcourse face-to-face, multiple-choice, paper-based evaluations, and we compared their performances. The content of the classes was the same for both groups. All didactic activities were developed by a team of certified dermatologists and professors from the university.

Results: A total of 129 students were selected and divided into 2 groups: the control group (n=57) and the hybrid group (n=72). The precourse tests did not indicate any difference between the control group (mean score 2.74, SD 1.25) and the hybrid group (mean score 3.2, SD 1.22 SD; P >.05). The hybrid group had better final-term grades (mean 8.18, SD 1.26) than the traditional group (mean 7.11, SD 1.04). This difference was statistically significant (P <.05).

Conclusions: This study explores pedagogical possibilities in the field of dermatology teaching for medical school students. The results suggest that the performance of undergraduate students who attended the course with additional e-learning material was superior when compared to the performance of those who participated in the traditional course alone.

(JMIR Form Res 2024;8:e49616) doi:10.2196/49616

KEYWORDS
dermatology; distance education; distance learning; e-learning; medical education; undergraduate medical education

Introduction

During medical school, dermatological teaching in various countries, including the United Kingdom, is usually restricted [1,2]. Students are exposed to the topic as part of short-term internships or as an optional discipline [1,2]. In some institutions, dermatology disciplines are not even offered [1,3]. Published surveys in different countries have demonstrated that
the amount of time devoted to dermatology in the medical student curriculum represents only 0.24%-0.3% of the 4 years of study [1]. In the last few years, even after curricular reformulation, the time devoted to teaching dermatology has decreased or remained the same [4-6]. McCleskey et al [4] found that only 10% of medical schools require a clinical dermatology rotation and that 93% of institutions offer dermatology as an elective rotation, usually a 4-week clerkship.

The current available time for dermatology training in medical schools worldwide is insufficient to learn about the various cutaneous diseases that students are likely to encounter in their future medical practice [5,7]. In view of this reality, the use of technologies that are able to optimize learning in dermatology has a great impact.

A meta-analysis evaluating the efficacy of educational interventions that improve diagnostic dermatological skills found that a blended curriculum that integrates multiple modalities of clinical dermatology teaching may be the most effective approach to meeting learning objectives [3]. The results observed by Lujan and DiCarlo [8] showed that first-year medical students learn through a variety of learning styles, with only 36.1% preferring a single way of acquiring new information. In recent years, we have noticed a growing interest among researchers in using new technologies to improve medical education [9-11]. The use of e-textbooks, podcasts, anatomical models, and virtual and interactive 3D computer models has positively impacted the educational experience of medical students [9]. Students exposed to interactive technology tools during their learning period demonstrate significant improvement on their performance tests [11].

Despite existing evidence that web-based teaching tools associated with interconnected content, when carefully selected, can assist the learning process, conventional teaching methods are still mainstream in medical teaching [12-14]. Teaching is mainly conducted in the form of hall lectures and laboratory sessions [1,12]. Despite large investments, there is a lack of sufficient evidence to support the effectiveness of digital interventions in the education of health professionals [15].

This study explores some pedagogical possibilities in the field of dermatology teaching for medical school students. It evaluates the use of web-based tools and an e-book developed specifically for this purpose, explores their impact on medical students’ learning, and compares this form of learning with traditional learning.

Methods

Overview

In this paper, we analyze the impact of web-based teaching tools on the performance of medical students at the Federal University of Bahia (UFBA), Brazil, and compare the results with those of traditional learning. Hence, we conducted a prospective study including medical students with computer literacy in the fourth semester at UFBA who were studying dermatology between June 2019 and June 2020. All the content was set in and developed in Brazil.

Students who had been in their second year of the medical course in 2019 were considered the control group, while students in their second year in 2020 were considered the blended group. The students were randomly allocated into the control or blended groups, and neither participants nor evaluators were blinded. All didactic activities were developed by a team of certified dermatologists and professors from UFBA.

All students participated in face-to-face activities. The classes included patient care in a general dermatology outpatient clinic. During the care, dermatological physical examination findings were emphasized, and the students were instructed to identify patients’ skin lesions and describe them according to the teaching material provided.

In the control group (traditional learning), after treating patients, students participated in an expository class structured into eight modules: (1) semiology, (2) leprosy, (3) syphilis, (4) atopic dermatitis, (5) skin virosis, (6) pyodermitis, (7) superficial mycosis, and (8) skin cancer. Doubts about the modules were clarified on this occasion.

The hybrid activities were composed of 5 distinct stages. In the first stage, we made a photographic record of patients who had dermatological lesions during a medical consultation held at the dermatology outpatient clinic at UFBA. In the second stage, we wrote a book (Manual of Dermatology [16]) using the cases cataloged in the first stage. During the third stage, we planned and prepared the web-based course according to predetermined modules. For each module, a video lesson was made available, lasting an average of 30 minutes, and the Camtasia (TechSmith) program was used for this activity. The video lessons were formatted and published on the Moodle (Moodle HQ) platform. The fourth stage comprised an e-learning module that included an 8-week course administered simultaneously with face-to-face classes.

The students in both groups were subjected to the same pre- and postcourse face-to-face evaluations, and their performances were compared. A total of 40 multiple-choice questions were written in accordance with the recommendations of the National Council of Medical Examiners to compose the pre- and postcourse exams [17]. To evaluate the validity of the content, 2 independent dermatologists examined all questions. The subject of the tests was chosen in accordance with the British Association of Dermatologists’ Undergraduate Curriculum [18].

Students in the control and hybrid groups received identical evidence-based content, and the courses had the same 8-week duration. The e-learning course was developed using the open-source Moodle learning management system.

Students logged in using individual usernames and passwords. A new text, video, and web-based discussion forum that addressed the same content as the face-to-face classes was available each week in an asynchronous mode. The students received weekly email notifications that a new class was available. In addition to face-to-face communication, students in the hybrid group could receive feedback on the discussion boards or by sending direct messages to the tutor. A 40-question multiple-choice test was given to all students in both groups before and after the courses, with scores ranging from 0 to 10.
In the fifth stage, we analyzed the results using Stata (version 13.1; StataCorp) and Microsoft Excel (version 2007; Microsoft Corporation). Initially, the studied variables were evaluated in a descriptive manner, with the data presented as mean (SD) or median (IQR). The Shapiro-Wilk test was used to test normality. Pre- and postcourse scores obtained for each group were compared (intragroup comparisons). The results obtained in the pre- and postcourse tests were also compared between the control and hybrid groups (intergroup comparisons). According to the normality test, a 2-tailed paired t test, or Wilcoxon signed rank test, was applied for intragroup comparisons and a 2-tailed t test, or Mann-Whitney U test, for intergroup comparisons. The internal consistency of the pre- and postcourse assessments was evaluated using Cronbach α coefficients.

Ethical Considerations

This study was approved by the Ethics Committee of the UFBA (1688.502) and conducted in accordance with the Declaration of Helsinki. Informed consent was obtained from all students. This work was not supported by any funding or external support, and no artificial intelligence resources were used.

Results

A total of 129 students were included in this study. The average age was 23 (SD 1.3) years, and 62 students were male. No significant differences were found between the 2 groups in relation to sex and age. The control group (n=57) used traditional classroom paper-based tool activities, while the hybrid group (n=72) used our e-learning course and e-book made specifically for this course in a hybrid web-plus-traditional fashion. Demographic data per group are presented in Table 1. All participants completed the study. The mean pretest score for the control group was 2.74 (SD 1.25) and for the hybrid group, the mean pretest score was 3.2 (SD 1.22; P>.05). The final posttest mean score was 7.11 (SD 1.04) for the control group and 8.18 (SD 1.26) for the hybrid group. The intragroup comparisons of pre- and postcourse scores obtained for each group were statistically significant (P<.05).

Table 1. Demographic data.

<table>
<thead>
<tr>
<th>Course</th>
<th>Male, n (%)</th>
<th>Female, n (%)</th>
<th>Age (years), mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid group (n=57)</td>
<td>27 (47)</td>
<td>30 (53)</td>
<td>24 (1.2)</td>
</tr>
<tr>
<td>Control group (n=72)</td>
<td>35 (49)</td>
<td>37 (51)</td>
<td>22 (1.3)</td>
</tr>
</tbody>
</table>

Intergroup comparisons of the pretest scores demonstrated that there was no significant difference between the control and hybrid groups (P>.05), indicating that the baseline knowledge for each group was comparable (Figure 1). The results indicated increased scores in the hybrid group, implying the hybrid delivery method outperformed the traditional approach. A statistically significant difference in the postcourse scores between the 2 groups was achieved.

Figure 1. Boxplot with median (IQR) and range (minimum-maximum) illustrating the pre- and postcourse scores in both the conventional and hybrid groups.
Discussion

Overview

The results of this study expand earlier findings on how hybrid learning can enhance learning outcomes in medical education. Moreover, this model was found to increase the effectiveness of teaching and learning methods in improving knowledge acquisition, which is consistent with the results of several other studies.

Although dermatology is essentially a visual specialty with great potential to benefit from today’s digital technologies, the conventional way of teaching still prevails [13,19]. At our university, medical education follows a traditional lecture-based curriculum, and this was the first time that digital technology was used. Nearly all aspects of web-based education were new and had to be understood [20]. We know that e-learning offers medical schools powerful and flexible learning resources [21] and presents several advantages, including (1) increased monitoring of student progress in a simpler and more accurate manner [8]; (2) the possibility of watching classes several times at more convenient times and places [8]; and (3) allowance for more than one way of student-teacher communication by means of emails, chats, and online discussion forums [22,23]. This last point is an advantage from the students’ point of view—although it may come at the expense of teachers’ time, as it has the potential to consume more of their time when compared with classroom teaching alone (where teachers are only available during class time or office hours) [13,23]. Web-based teaching also allows medical training to continue even in difficult situations (eg, the COVID-19 pandemic), and the greatest benefit is the flexibility offered by teaching platforms [24].

While e-teaching has real advantages, as discussed above, it also comes with some drawbacks. For example, this method does not support direct contact with the teacher or the patient, which may limit the observation of certain diseases and their diagnosis. Moreover, the method is dependent on the availability of electronic devices with adequate internet access [9] and needs a highly educated, motivated, and expert core team of teachers [18]. Silva et al [13] found the same challenges in web-based courses and described a significant technical difficulty in producing educational material for distance learning. The authors also highlighted great difficulty in facilitating students’ engagement with each other and in assessing the acquisition of practical skills in dermatology.

The provision of high-quality e-learning is highly labor-intensive. Like Fordis et al [25], we realized that the work spent on making web-based activities was more challenging than face-to-face teaching, especially when considering the design, organization, delivery, and engagement of participants in the discussion. A combination of both methods appears to be the best strategy [22,23,26]. In this study, these limitations were circumvented, as face-to-face activities were performed in both groups, and the students were given face-to-face contact time with both the teacher and patients seen at the clinic. Although some individuals report visual discomfort and others prefer reading a print book, both this study and the literature support the use of e-book technology in modern medical curriculum as an adjunct to traditional methods [9].

In this study, the full e-book content was available for download and could be accessed at any time, regardless of internet access. One of the main concerns about the switch to web-based lectures is the possible difficulty of lengthy readings on a screen and students’ ability to focus on reading. There is a great advantage to reading on the screen of an electronic device, as it allows for an increase in the font and size of the image, which facilitates assimilation of the content and helps individuals with reading difficulties [9]. Singer and Alexander’s [27] results indicated a clear preference of their participants for digital texts, as they generally achieved a better understanding when reading digitally [27]. However, the higher degree of satisfaction on the part of the student was not necessarily compatible with the results obtained in subsequent evaluations [24]. The vast majority approved the use of new technologies for dispensing the dermatological subject, and there were no complaints about this approach in this study.

It is currently believed that although reading on a computer screen may be more superficial and occasionally less accurate, it is the quality of the image presented to the reader that is crucial for the best use of the reading book [9]. Although there was a greater gain in knowledge in the group exposed to the distance e-learning associated with our e-book, some considerations must be made regarding the limitations and difficulties found in this study.

First, the evaluation was conducted in just one institution; ideally, more studies in multiple teaching centers with different realities from ours would be necessary for e-learning to consolidate itself as an effective form of education. Second, since the e-book was written especially for medical students, it is possible that its content made knowledge more accessible and didactic to the hybrid group, whereas the traditional group had to use renowned but conventional dermatology books. Third, we must mention the fact that the students in the traditional group spent 1 hour less per week on practical activities, totaling a reduction of 8 hours from their on-site internship due to the period spent in the in-person theoretical classes. Thus, students in the hybrid group received 8 hours more exposure to practical classes since the theoretical classes were attended at home. This difference may have favored the hybrid group in relation to obtaining better grades. In addition to better grades, increasing the time exposed to the discipline is one of the goals we strive to achieve in dermatological education.

The participants in the 2 groups had different admission years and were asked to maintain the contents and evaluations of the class confidential; however, we did not check for contamination between the 2 groups.

The field of education is destined to evolve. The professor is not the ultimate gatekeeper of definite knowledge; they also learn from students and need to incorporate feedback into the curriculum [28]. Despite this, the highest-quality clinical dermatology education will always require guided clinical exposure and feedback [18]. Innovative technologies cannot replace the need for enthusiastic and knowledgeable clinical teachers [1,28].
Conclusion
This study explores pedagogical possibilities in the field of dermatology teaching for medical school students. The results suggest that the performance of undergraduate students who attended the course with additional e-learning material was superior to the performance of those who participated in the traditional course alone.

Data Availability
The data sets generated during and/or analyzed during this study are not publicly available due to privacy or ethical restrictions but are available from the corresponding author on reasonable request.

Authors' Contributions
CSS developed the web-based course, including an e-book and web-based classes; compiled the bibliography; and wrote the manuscript. CV developed the project and reviewed the paper. MBS participated in the creation of the web-based course and performed the statistical analysis of the data. JDF and VRPDAR helped write the book chapters, develop the web-based classes, and review the manuscript.

Conflicts of Interest
None declared.

References

Abbreviations

UFBA: Federal University of Bahia
Support for Chronic Pain Management for Breast Cancer Survivors Through Novel Digital Health Ecosystems: Pilot Usability Study of the PainRELife Mobile App

Marianna Masiero1,2, PhD; Chiara Filipponi1,2, MSc; Elisa Fragale2, MSc; Silvia Francesca Maria Pizzoli1,2, PhD; Elisabetta Munzone3, MD; Alessandra Milani4, MSc; Luca Guido4, MD, PhD; Vittorio Guardamagna5, MD; Sara Marceglia6, PhD; Roberto Prandin6, PhD; Marco Prenassi6, MSc; Annamaria Caruso6,7, MSc; Vania Manzelli7, MSc; Chiara Savino7, MSc; Costanza Conti2, PhD; Federica Rizzi8, PhD; Alice Casalino8, MSc; Giulia Candiani9, MSc; Francesca Memini9, MSc; Luca Chiveri10, MD; Andrea Luigi Vitali10, MSc; Massimo Corbo10, MD; Roberto Grasso1,2, MSc; Florence Didier2, MSc; Roberta Ferrucci1, PhD; Gabriella Pravettoni1,2, PhD

1Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
2Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
3Division of Medical Senology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
4Nursing School, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
5Division of Palliative Care and Pain Therapy, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
6Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Milan, Italy
7Nuvyta, Società a Responsabilità Limitata, Cologno Monzese, Italy
8Istituto di Management Sanitario, Milano, Italy
9Agenzia di comunicazione scientifica Zadig, Società a Responsabilità Limitata, Società benefit, Milan, Italy
10Dipartimento di Scienze Neuoriabiilitative, Casa di Cura del Policlinico, Milan, Italy

Corresponding Author:
Marianna Masiero, PhD
Department of Oncology and Hemato-Oncology
University of Milan
Via Festa del Perdono 7
Milan, 20122
Italy
Phone: 39 0294372009
Email: marianna.masiero@unimi.it

Abstract

Background: Chronic pain is one of the most common and critical long-term effects of breast cancer. Digital health technologies enhance the management of chronic pain by monitoring physical and psychological health status and supporting pain self-management and patient treatment decisions throughout the clinical pathway.

Objective: This pilot study aims to evaluate patients’ experiences, including usability, with a novel digital integrated health ecosystem for chronic pain named PainRELife. The sample included patients with breast cancer during survivorship. The PainRELife ecosystem comprises a cloud technology platform interconnected with electronic health records and patients’ devices to gather integrated health care data.

Methods: We enrolled 25 patients with breast cancer (mean age 47.12 years) experiencing pain. They were instructed to use the PainRELife mobile app for 3 months consecutively. The Mobile Application Rating Scale (MARS) was used to evaluate usability. Furthermore, pain self-efficacy and participation in treatment decisions were evaluated. The study received ethical approval (R1597/21-IEO 1701) from the Ethical Committee of the European Institute of Oncology.

Results: The MARS subscale scores were medium to high (range: 3.31-4.18), and the total app quality score was 3.90. Patients with breast cancer reported reduced pain intensity at 3 months, from a mean of 5 at T0 to a mean of 3.72 at T2 (P=.04). The total number of times the app was accessed was positively correlated with pain intensity at 3 months (P=.03). The engagement (P=.03),
information ($P=.04$), and subjective quality ($P=.007$) subscales were positively correlated with shared decision-making. Furthermore, participants with a lower pain self-efficacy at T2 (mean 40.83) used the mobile app more than participants with a higher pain self-efficacy (mean 48.46; $P=.057$).

Conclusions: The data collected in this study highlight that digital health technologies, when developed using a patient-driven approach, might be valuable tools for increasing participation in clinical care by patients with breast cancer, permitting them to achieve a series of key clinical outcomes and improving quality of life. Digital integrated health ecosystems might be important tools for improving ongoing monitoring of physical status, psychological burden, and socioeconomic issues during the cancer survivorship trajectory.

International Registered Report Identifier (IRRID): RR2-10.2196/41216

KEYWORDS
chronic pain; eHealth; cancer; decision-making; survivorship; self-efficacy; pain; oncology; health ecosystem; health ecosystems; breast; survivor; survivors; mHealth; mobile health; app; apps; applications; MARS

Introduction

In 2040, it is expected there will be approximately 26 million new cancer survivors in the United States, underscoring the growing importance of survivorship [1,2]. Mullan [3] defined survivorship as a process characterized by 3 different stages: acute survival, from diagnosis to active treatments; extended survival, from treatments to active-surveillance; and permanent survival, in which the probability of recurrence is low. As suggested by Mullan’s definition, cancer survivorship is a complex, multistep, dynamic process characterized by evolving needs and challenges. Pain, fatigue, and psychological distress (eg, anxiety, depression, worry, and fear of cancer recurrence) are typical long-term effects that deleteriously affect survivors’ engagement in work, personal, and social activities [4-6]. In particular, one of the most common and critical long-term effects of cancer in survivors is chronic pain. It has been linked with several physical, psychological, and socioeconomic sequelae. A study by Jiang et al [1] stated that, of 4526 cancer survivors, around 34.6% reported chronic pain, and 16.1% conveyed that it limited daily life and work activities. Notwithstanding, chronic pain throughout the survivorship trajectory is undertreated and untreated [5,7,8]. Since chronic pain affects the quality of life (QoL) of patients with breast cancer [9], it is essential to design, test, and implement patient-driven interventions [10] that enable ongoing monitoring of physical and psychological health status, from the “hospital to the patient’s home,” and support pain self-management and patient treatment decisions throughout the entire clinical pathway. This might be particularly important in extended and permanent survivorship, reducing the risk of cancer survivors exiting the care system [5].

A growing body of evidence has shown that using digital health technologies integrated into dynamic ecosystems enhances the management of chronic pain by assessing patients’ physical health and psychological well-being and providing tailored interventions [11]. Digital health technologies aim to integrate various digital tools and technologies, including patient electronic health records, telemedicine, wearables, and mobile apps, into the health care system [12]. Overall, digital health technology encompasses both eHealth, which involves the use of the internet and related technologies to enhance health care systems through information and communication technology [13,14], and mobile health, which focuses on health practices supported by mobile devices [15]. The widespread use of digital health technologies has opened an innovative “window of opportunity” for managing chronic pain in a more personalized, accessible, and patient-centered way [8]. Evidence has highlighted that digital health technologies are valuable solutions for remotely collecting patient health data (eg, using patient-reported measures or wearable devices), improving symptom management, and decreasing patient appointments and hospitalizations [16]. Jongerius et al [17], in a systematic review, highlighted that digital health technologies are used in cancer clinical practice for the following different reasons: to stimulate the adoption of preventive behaviors, to increase early cancer identification, to manage cancer care, and to provide assistance to cancer survivors. Overall, digital health technology supports patients and the health care system to achieve several critical outcomes for better cancer clinical management [17-19]. For example, Zhu et al [19] reported that an app-based program named “Breast Cancer e-Support” was able to decrease symptomatology related to anticancer treatments and therefore improve self-efficacy and QoL... In addition, Maguire et al [20] designed and tested ASyMS (Advanced Symptom Management System) for the management of chemotherapy toxicity; it not only enables the evaluation and monitoring of patient symptomatology related to anticancer treatments but also provides tailored and evidence-based recommendations to manage symptoms [20].

Considering the specific case study of chronic pain in cancer survivorship, digital health technologies enhance access to nonpharmaceutical interventions; address pain-related mobility issues; improve patient networking and connections; foster self-management, self-efficacy, coping, and patient engagement; and facilitate communication among health care professionals of various specialties (eg, physicians, nurses, physiotherapists, psychologists) [18,21,22]. For example, Ranney et al [18] described that 89.5% of patients with chronic pain reported using digital health tools (eg, websites to search for health information, social media, and mobile apps), and such usage is associated with improved chronic pain coping mechanisms.

Different digital health technologies have been designed to manage cancer and pain in the clinical pathway [23]. For example, an educational digital intervention called the “Pain...
Education after Cancer Collaborative” (PECAN project) was developed for survivors of breast cancer; in the intervention, a decision tree system is used to provide tailored educational information to cancer survivors based on their answers to specific queries [24]. In addition, a Mobile Pain Coping Skills Training Protocol has been proposed to support patients’ understanding of the pain experience and strategies to cope with the pain [25]. More generally, Hauser-Ulrich et al [26] recently developed a text-based chatbot named “SELMA” (PainSELFManagement) aimed to booster self-management of chronic pain in different types of diseases, supporting health care professionals in the delivery of evidence-based interventions. Moreover, digital health technologies could encourage patients to be more involved in their treatment decisions, through the implementation of specific decision aids [16,27-29]. Studies have stressed that the implementation of tailored decision aids in mobile apps increases patients’ awareness about treatment preferences (eg, pharmacological vs nonpharmacological treatments), reduces decisional conflict, and enhances adherence to treatments [30-32].

Even with the key role of digital health technologies in the cancer clinical pathway, few studies on digital and integrated health ecosystems are currently available [33]. Consequently, in this pilot study, our primary endpoint was the usability of the novel digital integrated health ecosystem, PainRELife, for managing and monitoring chronic pain in patients with breast cancer throughout the survivorship trajectory. Further, we aimed to evaluate the PainRELife ecosystem’s effectiveness at enhancing pain self-efficacy, improving shared decision-making, and reducing pain perception as secondary endpoints. The PainRELife ecosystem stands out as the first to seamlessly integrate all the essential components required for comprehensive pain management within a single platform. This includes features such as pain monitoring, physical and psychological assessment, e-diaries, exercises, educational resources, and decision aids. Furthermore, it incorporates a dedicated platform for health care providers and a robust big data cloud infrastructure. This holistic integration sets our ecosystem apart in the realm of pain management solutions.

Methods

Study Design and Patient Recruitment

PainRELife Ecosystem

This pilot study is nested in a national project titled “PainRELife, Sustainable and integrated big data ecosystem for continuity of care and decision support for patients with pain” (ID: 1173269). This national project guided the development and testing of an integrated health ecosystem for the management of chronic pain. Specifically, the PainRELife ecosystem consists of a cloud technology platform interconnected with electronic health records, which is named the Nu Platform, connected to the Fast Healthcare Interoperability Resources (FHIR) server for data analysis related to the patient care pathway. Health care providers use the Nu Platform to collect and store patient clinical data, and it enables the ongoing monitoring of patient health status (eg, pain, psychological well-being, and decision preferences about treatments; see Figures 1A and 1B), from diagnosis and active treatments to follow-ups (see Figures 1C and 1D). In addition, a big data infrastructure linked to the FHIR server enables a series of dynamic dashboards aimed at providing a systematic, intuitive outline of patient population features that might be used by researchers, clinicians, and health care stakeholders. The Nu Platform is associated with a mobile app for patients named PainRELife, which collects health care data. This technological solution permits dual communication between patients and health care professionals. Information collected by the mobile app is saved in the Nu Platform and overseen by health care professionals [7].

The PainRELife mobile app enables patient education and the collection of patient-reported outcomes. The mobile app is composed of an “educational section” that includes educational resources to improve learning about chronic pain throughout the cancer pathway (throughout the different phases of survivorship: acute, extended, and permanent; see Figure 2D) [3] and a “pain and psychological well-being assessment section” that contains a set of validated questionnaires (eg, pain intensity and interference, anxiety, and depression; see Figures 2A and 2B). Furthermore, the mobile app includes an e-diary (see Figure 2C) and exercises for pain and emotion-body mapping (see Figures 2E and 2F), enabling a holistic evaluation of psychological well-being and the pain experience. In addition, the mobile app incorporates a decision aid section, which is structured in 2 modules: profiling patients’ preferences and a decision tree (see Figure 2G). These modules are designed to empower patients with breast cancer by increasing their awareness of treatment preferences and facilitating shared decision-making regarding their care. The “profiling patients’ preferences” module aims to assist patients with evaluating and comprehending essential aspects of both pharmacological and nonpharmacological treatments. This includes understanding how interventions and treatments work to reduce pain or aid in recovery, identifying their advantages, and recognizing potential disadvantages. The decision tree module enables patients with breast cancer to tailor their health care preferences using the subjective expected utility approach [7] (see Figure 2G). This empowers patients with breast cancer to actively participate in the decision-making process, aligning their treatment choices with their unique needs and goals.
Figure 1. Health care professional interface on the Nu Platform: (A) home page displaying all available activities for health care professionals, (B) patient questionnaire list providing the measures used to assess psychological and physical status administered via the PainRELife mobile app, (C) patient list providing a directory of all patients registered on the Nu Platform, (D) clinical evaluation page offering access to detailed information on clinical events and therapeutic suggestions.

Figure 2. Patient interface on the PainRELife mobile app: (A) home page showing an overview of the mobile app sections, (B) pain and psychological well-being assessment section displaying the questionnaires that patients are required to complete, (C) patient’s e-diary, (D) educational section showing some of the educational content within the mobile app, (E) and (F) pain and emotion-body mapping exercises, (G) decision aid section showing an example for preferences for pharmacological and nonpharmacological treatments.

Participants
Participants of this pilot usability study included 25 patients with diagnosed breast cancer and pain (mean age 47.12, SD 8.41 years) admitted to the Division of Medical Senology and the Division of Pain Therapy and Palliative Care of the European Institute of Oncology (IEO). Participants were introduced to the mobile app after their clinic visit and instructed to use it for 3 months consecutively. Participants were recruited according to the following established set of inclusion criteria: >18 years
old, affected by breast cancer, has undergone surgical intervention for breast carcinoma, experiencing post-surgical pain (≥3 on a numeric rating scale [NRS]), and in possession of internet access and a personal smartphone. We excluded patients with breast cancer who had a previous or ongoing psychiatric or neurological disorder or other disease requiring active analgesic treatments. The inclusion and exclusion criteria were established considering that chronic pain is a common side effect (related to both the surgery and anticancer treatments) for patients with breast cancer (~60% experience it), and persistent acute pain after surgery is considered a risk factor for developing chronic pain during survivorship [34]. A full and detailed description of the research protocol of this pilot study was published previously [7].

Instruments

Patient sociodemographic and medical data were gathered through electronic medical records and a set of ad hoc items during the enrollment consultation. For the perceived pain assessment, the NRS was used to evaluate pain using a numerical range from 0 (no pain) to 10 (severe pain) [35]. Further, a set of validated self-measures was used to evaluate the primary and secondary endpoints. In detail, the Mobile Application Rating Scale (MARS) was used to evaluate the eHealth platform usability. MARS is a self-administered questionnaire with 29 items evaluating the following dimensions: engagement; functionality; aesthetics; quality of the information received; subjective perception of the app quality; expected impact on knowledge, attitudes, and probability to change user behaviors) at 3 months; in addition, the total number of times the PainRELife mobile app was accessed by each participant was determined.

Further, a new variable named total app quality was created using the mean values of the engagement, functionality, aesthetics, and information quality MARS subscales. The final measurement of app quality was the average value of the 4 means [43]. Pearson correlational analysis was performed among all self-reports used (NRS, PSEQ, SDM-Q-9, MARS) and the total number of times the app was accessed during the 3 months of the study. A repeated measures ANOVA was performed to detect variation in pain intensity (NRS) from T0 (baseline) to T2 (3 months). Further, a new dichotomous variable named “frequency of use” was created considering the entire number of times the app was accessed (mean 22.92, SD 15.60; range 2-73) and the lowest number of times the PainRELife mobile app needed to be accessed (21 times) by participants to finalize the study’s tasks. The “frequency of use” variable permitted dividing the participants into groups based on higher and lower frequencies of access. Further, a Student t test was run to evaluate the difference between the “frequency of use” and PSEQ, SDM-Q-9, and MARS scores. Data were analyzed using SPSS version 26.0 (IBM Corp).

Ethical Considerations

This study received ethical approval in December 2021 (R1597/21-IEO 1701) from the Ethical Committee of the IEO and respects the Declaration of Helsinki and Good Clinical Practice Guidelines. All participants read and signed the informed consent form, which encompassed a comprehensive and exhaustive explanation of the primary and secondary endpoints, study procedures, and possible risks and benefits. Participants were not compensated and were able to withdraw their participation at any time during the study. Concerning privacy and confidentiality protection, all data collected were deidentified and anonymized, complied with national data protection legislation, and will be stored in the IEO databases for 10 years.

The authors affirm that human research participants provided informed consent for publication of their data.

Results

Participant Characteristics

The sociodemographic, cancer, and treatment characteristics are listed in Tables 1-3.
Table 1. Sociodemographic information of participating patients with breast cancer (n=25).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Results, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marital status</td>
<td></td>
</tr>
<tr>
<td>Cohabiting</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Widowed</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Single</td>
<td>5 (20)</td>
</tr>
<tr>
<td>Married</td>
<td>16 (64)</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>8 (32)</td>
</tr>
<tr>
<td>High school</td>
<td>12 (48)</td>
</tr>
<tr>
<td>Primary school</td>
<td>3 (12)</td>
</tr>
</tbody>
</table>

Table 2. Diagnosis, cancer type, familiarity, and genetic mutation of participating patients with breast cancer (n=25).

<table>
<thead>
<tr>
<th>Cancer characteristics</th>
<th>Results, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Lobular carcinoma</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Ductal carcinoma</td>
<td>17 (68)</td>
</tr>
<tr>
<td>Ductal carcinoma in situ</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Mucinous carcinoma</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Occult carcinoma</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Cancer type</td>
<td></td>
</tr>
<tr>
<td>Triple negative</td>
<td>2 (8)</td>
</tr>
<tr>
<td>HER2<sup>a</sup></td>
<td>5 (20)</td>
</tr>
<tr>
<td>Luminal</td>
<td>18 (72)</td>
</tr>
<tr>
<td>Familiarity</td>
<td></td>
</tr>
<tr>
<td>I° breast</td>
<td>8 (32)</td>
</tr>
<tr>
<td>II° breast</td>
<td>6 (24)</td>
</tr>
<tr>
<td>No familiarity</td>
<td>11 (44)</td>
</tr>
<tr>
<td>Mutation</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>2 (8)</td>
</tr>
<tr>
<td>BRCA1</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Negative</td>
<td>6 (24)</td>
</tr>
<tr>
<td>No testing</td>
<td>13 (52)</td>
</tr>
</tbody>
</table>

^aHER2: human epidermal growth factor receptor 2.
Table 3. Surgery, medical treatments, and radiotherapy undergone by participating patients with breast cancer (n=25).

<table>
<thead>
<tr>
<th>Treatment characteristics</th>
<th>Results, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery</td>
<td></td>
</tr>
<tr>
<td>Mastectomy</td>
<td>23 (92)</td>
</tr>
<tr>
<td>Axillary dissection</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Quadrantectomy</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Medical treatment</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy + endocrine therapy</td>
<td>8 (32)</td>
</tr>
<tr>
<td>Chemotherapy + immune therapy</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Endocrine therapy</td>
<td>12 (48)</td>
</tr>
<tr>
<td>Immune + endocrine therapy</td>
<td>1 (4)</td>
</tr>
<tr>
<td>No treatment</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (32)</td>
</tr>
<tr>
<td>No</td>
<td>17 (68)</td>
</tr>
</tbody>
</table>

Usability

The total MARS score (ranging from 1 to 5) provided overall medium-to-high mean values for each subscale (range 3.31-4.18; see Table 4) and a mean total app quality score of 3.90 (SD 0.506), suggesting generally good usability as evaluated by the participants. This was also confirmed by the total number of times the participants accessed the app during the entire study (mean 22.92, SD 15.60; range 2-73). In particular, 3 of 5 subscales had the highest scores: functionality (mean 4.14, SD 0.630), information (mean 4.18, SD 0.608), and behavioral change (mean 4.05, SD 0.666).

On the functionality subscale, 57% (15/23) of the participants judged that the mobile app is straightforward to use. Moreover, 91% (21/23) of the participants affirmed that the interactions are reliable and intuitive (ease of use: 8/23, 35% agree; 13/23, 57% strongly agree), positively evaluated the design (gestural design: 8/23, 35% agree; 12/23, 52% strongly agree), and evaluated the navigation properties as good (navigation: 12/23, 52% agree; 8/23, 35% strongly agree). However, some slight uncertainties were observed regarding the general performance of the mobile app, specifically moving between pages and sections (performance: 8/23, 35% undecided; see Table 5).

Concerning the distribution of responses in the information subscale, 78% (18/23) of the participants reported that the information in the mobile app is evidence-based (information: 9/23, 39% agree; 9/23, 39% strongly agree), relevant, focused on chronic pain in breast cancer and its management during the disease clinical pathway (quality of information: 9/23, 39% agree; 11/23, 48% strongly agree), and trustworthy (credibility: 22/23, 96% strongly agree). Further, the amount of information (quantity of information: 7/23, 30% agree; 9/23, 39% strongly agree) and how the information is reported using different setups (visual information: 11/23, 48% agree; 9/23, 39% strongly agree) were considered positive by the participants (see Table 6). Finally, most participants stated that the mobile app's goals are achievable (goals: 11/23, 48% agree; 3/23, 13% strongly agree), even if 30% (7/23) reported some concerns.

Last, the distribution of responses in the behavioral change subscale revealed that 83% (19/23) of the participants strongly agreed that the mobile app had improved awareness about the issue of chronic pain in the cancer disease pathway, and 70% (16/23) agreed that the app increased chronic pain–related knowledge. Likewise, 70% (16/23) of the participants reported that the mobile app might support attitudes toward chronic pain (attitudes: 9/23, 39% agree; 7/23, 30% strongly agree; see Table 7).

In addition, most of the participants reported that the mobile app would potentially be helpful to bolster help-seeking behaviors (help seeking: 5/23, 22% agree; 9/23, 39% strongly agree) as well as support an intention to change (intention to change: 5/23, 22% agree; 9/23, 39% strongly agree). Still, 39% (9/23) showed concerns about the capacity to transform intention into a fundamental behavioral change (see Table 7). Overall, participants judged the app to be well-targeted (engagement subscale: mean 3.31, SD 0.617) and the app’s layout to be adequate (aesthetics subscale: mean 3.98, SD 0.849); likewise, the overall subjective quality was adequate (subjective quality subscale: mean 3.50, SD 0.494).
Table 4. Mobile Application Rating Scale (MARS) subscale scores.

<table>
<thead>
<tr>
<th>MARS subscales</th>
<th>Results, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engagement</td>
<td>3.31 (0.617)</td>
</tr>
<tr>
<td>Functionality</td>
<td>4.14 (0.630)</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>3.98 (0.850)</td>
</tr>
<tr>
<td>Information</td>
<td>4.18 (0.608)</td>
</tr>
<tr>
<td>Subjective quality</td>
<td>3.50 (0.494)</td>
</tr>
<tr>
<td>Behavioral change</td>
<td>4.05 (0.666)</td>
</tr>
<tr>
<td>Total app quality</td>
<td>3.90 (0.506)</td>
</tr>
</tbody>
</table>

Table 5. Functionality assessment of the PainRELife mobile app using the Mobile Application Rating Scale (MARS) [37,38] (n=23).

<table>
<thead>
<tr>
<th>Functionality assessment</th>
<th>Response, n (%)</th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Undecided</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of use</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2 (9)</td>
<td>8 (35)</td>
<td>13 (57)</td>
</tr>
<tr>
<td>Gestural design</td>
<td></td>
<td>1 (4)</td>
<td>0</td>
<td>2 (9)</td>
<td>8 (35)</td>
<td>12 (52)</td>
</tr>
<tr>
<td>Navigation</td>
<td></td>
<td>0</td>
<td>1 (4)</td>
<td>2 (9)</td>
<td>12 (52)</td>
<td>8 (35)</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td>0</td>
<td>3 (13)</td>
<td>8 (35)</td>
<td>7 (30)</td>
<td>5 (22)</td>
</tr>
</tbody>
</table>

a“How easy is it to learn how to use the app?”; “How clear are the menu labels/icons and instructions?”
b“Are interactions (taps/swipes/pinches/scrolls) consistent and intuitive across all components/screens?”
c“Is moving between screens logical/accurate/appropriate/uninterrupted; are all necessary screen links present?”
d“How accurately/fast do the app features (functions) and components (buttons/menus) work?”

Table 6. Information assessment of the PainRELife mobile app using the Mobile Application Rating Scale (MARS) [37,38] (n=23).

<table>
<thead>
<tr>
<th>Information assessment</th>
<th>Response, n (%)</th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Undecided</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td></td>
<td>0</td>
<td>0</td>
<td>5 (22)</td>
<td>9 (39)</td>
<td>9 (39)</td>
</tr>
<tr>
<td>Credibility</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (4)</td>
<td>22 (96)</td>
</tr>
<tr>
<td>Quality of information</td>
<td></td>
<td>1 (4)</td>
<td>0</td>
<td>2 (9)</td>
<td>9 (39)</td>
<td>11 (48)</td>
</tr>
<tr>
<td>Quantity of information</td>
<td></td>
<td>1 (4)</td>
<td>0</td>
<td>6 (26)</td>
<td>7 (30)</td>
<td>9 (39)</td>
</tr>
<tr>
<td>Visual information</td>
<td></td>
<td>0</td>
<td>2 (9)</td>
<td>1 (4)</td>
<td>11 (48)</td>
<td>9 (39)</td>
</tr>
<tr>
<td>Goals</td>
<td></td>
<td>2 (9)</td>
<td>0</td>
<td>7 (30)</td>
<td>11 (48)</td>
<td>3 (13)</td>
</tr>
</tbody>
</table>

a“Contains high-quality information (eg, text, feedback, measures, references) from a credible source;”
b“Does the app come from a legitimate source (specified in app store description or within the app itself)?”
c“Is app content correct, well written, and relevant to the goal/topic of the app?”
d“Is the extent of coverage within the scope of the app and comprehensive but concise?”
e“Is the visual explanation of concepts—through charts/graphs/images/videos, etc—clear, logical, correct?”
f“Does app have specific, measurable, and achievable goals (specified in the app store description or within the app itself)?”
Table 7. Behavior change assessment of the PainRELife mobile app using the Mobile Application Rating Scale (MARS) [37,38] (n=23).

<table>
<thead>
<tr>
<th>Behavior change assessment</th>
<th>Response, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strongly disagree</td>
</tr>
<tr>
<td>Awarenessa</td>
<td>0</td>
</tr>
<tr>
<td>Knowledgeb</td>
<td>0</td>
</tr>
<tr>
<td>Attitudesc</td>
<td>0</td>
</tr>
<tr>
<td>Help seekingd</td>
<td>0</td>
</tr>
<tr>
<td>Intention to changee</td>
<td>0</td>
</tr>
<tr>
<td>Behavior changef</td>
<td>4 (17)</td>
</tr>
</tbody>
</table>

a."This app is likely to increase awareness of the importance of addressing chronic pain."
b."This app is likely to increase knowledge/understanding of chronic pain."
c."This app is likely to change attitudes toward improve chronic pain."
d."This app is likely to increase intentions/motivation to address chronic pain."
e."Use of this app is likely to encourage further help-seeking for chronic pain."
f."Use of this app is likely to decrease chronic pain."

Frequency of Use and Pain Self-Efficacy

According to the Student t test, younger participants used the mobile app less (mean 44.15, SD 7.11) than older participants (mean 50.33, SD 8.80; t23=-1.937, P=.03; d=0.77). A difference in pain self-efficacy was observed between participants with higher versus lower frequency use (t23=1.644, P=.057; d=0.65). The latter data indicate that, at T2, participants with a lower pain self-efficacy (mean 40.83, SD 14.58) used the mobile app more than participants with a higher pain self-efficacy (mean 48.46, SD 7.90).

Pain Intensity and Shared Decision-Making

The repeated measures ANOVA revealed that participants reported a reduction in pain intensity from T0 (mean 5, SD 1.68) to T2 (mean 3.72, SD 2.59; F2,48=3.407, P=.04). A positive correlation was found between the total number of times the mobile app was accessed and pain intensity at T2 (r=0.458, P=.03).

No correlations were detected between the MARS subscales and PSEQ or NRS. A negative correlation was observed between the subjective quality subscale and the number of times the mobile app was accessed (r=-0.498, P=.02). Further, the engagement (r=0.445, P=.03), information (r=0.427, P=.04), and subjective quality (r=0.548, P<.007) subscales were positively correlated with shared decision-making.

Discussion

Principal Findings

Considering the primary endpoint of this pilot study, patients with breast cancer provided a generally positive rating for the usability of the PainRELife mobile app. Patients with breast cancer appreciated both the quality and quantity of the health information provided on chronic pain and how chronic pain should be managed during the survivorship trajectory. Specifically, the information in the different sections and modules were perceived as informative and comprehensible (20/23, 87%) and from credible sources of information (18/23, 78%). Most of the patients with breast cancer reported that habitual use of the mobile app helped increase help-seeking behaviors for chronic pain (14/23, 61%), their general attitudes toward chronic pain, and their willingness to identify preeminent strategies for managing chronic pain. These results are particularly noteworthy considering that many studies have suggested that chronic pain syndrome in patients with breast cancer is commonly undiagnosed and not often considered by oncologists [8]. In addition, many cancer patients report poor knowledge about cancer-related chronic pain, available interventions, and possible health system resources [44]. Furthermore, the positive correlation between the total number of times the mobile app was accessed and pain intensity (P=.03) might indicate that patients with breast cancer who had a higher pain level might have utilized the mobile app to find evidence-based information and strategies to self-manage their pain. This possible interpretation might be linked to the difference in pain self-efficacy observed between the participants with higher versus lower frequency mobile app use. Specifically, participants with lower pain self-efficacy used the mobile app more than participants with higher pain self-efficacy. Perhaps the participants with lower pain self-efficacy used the mobile app to find a strategy or way to manage their pain. Self-efficacy has a crucial role for patients with cancer, and studies have reported that it improves psychological well-being, reduces fear of cancer recurrence, enhances self-care, and improves management of symptoms such as pain [45,46]. Vinnikova et al [47] observed that individuals might use mobile apps to learn more about their health problems and monitor their physical and psychological status. Furthermore, considering that self-efficacy is an attribute of cancer pain self-management, the prevalent use of the mobile app by participants with a lower self-efficacy could explain the percentage of participants who reported concerns about intention to change and the capacity to transform intention into a fundamental behavioral change [48].
A second series of results are linked to the secondary endpoints. Participants reported a reduction in pain intensity at 3 months ($P=.04$). We argue that the use of the mobile app might have relieved the pain experience, disease, and treatment-related symptomatology as observed in other previous studies [16,19]. One noteworthy finding is related to the association between specific features of the mobile app, evaluated with the MARS, and shared decision-making. Indeed, participants who provided higher positive evaluations about engagement ($P=.03$), information ($P=.04$), and subjective quality ($P=.007$) also reported higher perceptions of having shared decisions along their care pathway. We argue that patients with breast cancer who feel involved in their treatment decisions are more engaged with the mobile app. For this type of patient, information retrieved in the mobile app might be used to reinforce and reiterate the ability to achieve a shared decision throughout their care pathway.

Limitations

Despite the interesting and challenging results, this pilot usability study had some limitations that must be considered. The primary limitation is the relatively small sample size of patients with breast cancer and the decision to use a single group to test usability. This decision might have caused a loss of pertinent information about the patients’ perceptions of the usefulness of this digital health technology. However, our sampling strategy is consistent with the pilot study design and methodological guidelines [49-51]. Related to this point, we must also mention that the statistical significance reported for pain self-efficacy might be considered borderline ($P=.057$). However, the effect size is medium-to-large ($d=0.65$), which supports the statistical difference between the groups. We argue that the P value might be due to the small sample size [52]. We also argue that this could be a significant result that has to be further investigated in successive studies, considering the positive effect of cancer pain self-management on QoL, when compared with pharmacological treatments such as opioid consumption [48].

In addition, the “frequency of use” variable had a moderately high SD (15.60). However, the distribution of the participants between the low frequency (n=13) and high frequency (n=12) groups was homogeneous and balanced. Furthermore, we hypothesized the presence of selection bias resulting from the inclusion criteria, which required participants to have internet access and a personal smartphone. This criterion may have limited the inclusion of certain vulnerable groups among patients with breast cancer, such as older adults or individuals with lower health literacy and socioeconomic challenges who could be at higher risk of undiagnosed chronic pain. Most of our patients with breast cancer also reported medium-to-low pain during the entire study and were in the acute and extended stages of the survivorship trajectory, which might have affected the frequency of mobile app use. Indeed, even if the total number of times the mobile app was accessed was relatively high and satisfactory, in the last month of the study, some participants decreased their total usage; 2 of 25 participants used the mobile app only at enrollment. The last limitation is related to the previous one and concerns the lack of assessment of the timing of mobile app use. Indeed, only the total number of times the mobile app was accessed was collected and evaluated. These limitations have been intensely discussed in the full protocol published elsewhere, and we plan to address them in future studies [7].

Conclusions

The data retrieved from this pilot study evaluating patients’ experiences using a novel and integrated health ecosystem for the management of chronic pain for breast cancer survivors are consistent with other studies highlighting that digital health technologies, when developed using a patient-driven approach, might be considered valuable tools for increasing the participation of patients with breast cancer in clinical care. In addition, these tools permit the achievement of critical clinical outcomes and improvement in QoL [4,8,22]. Moreover, health-integrated ecosystems permit secondary key outcomes such as reducing the burden on health care professionals and optimizing health system resources. Finally, we argue that digital integrated health ecosystems might be important devices for improving the ongoing monitoring of physical status, psychological burden, and socioeconomic issues during the cancer survivorship trajectory.

Acknowledgments

This work is supported by a grant from Regione Lombardia: “PainRELife, Sustainable and integrated big data ecosystem for continuity of care and decision support for patients with pain” (ID: 1173269). The European Institute of Oncology (Istituto Europeo di Oncologia [IEO], Italy) monitors the study’s scientific, legal, and ethical aspects. Participants are recruited at IEO.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Authors’ Contributions

MM, SFMP, CF, and GP conceived and designed the study. GP and MM coordinated the study, GP and MM acquired legal authorizations, and CF and EF managed the participants. MM handled the drafting and writing of the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest

VM is a partner and chief technology officer of Nuvyta, the software house that developed and sells Nuplatform.

Abbreviations

ASyMS: Advanced Symptom Management System
FHIR: Fast Healthcare Interoperability Resources
IEO: European Institute of Oncology
MARS: Mobile Application Rating Scale
NRS: numeric rating scale
PECAN: Pain Education after Cancer Collaborative
PSEQ: Pain Self-Efficacy Questionnaire
QoL: quality of life
SDM-Q-9: 9-item Shared Decision-Making Questionnaire

©Marianna Masiero, Chiara Filipponi, Elisa Fragale, Silvia Francesca Maria Pizzoli, Elisabetta Munzone, Alessandra Milani, Luca Guido, Vittorio Guardamagna, Sara Marceglia, Roberto Prandin, Marco Prenassi, Annamaria Caruso, Vania Manzelli, Chiara Savino, Costanza Conti, Federica Rizzi, Alice Casalino, Giulia Candiani, Francesca Memini, Luca Chiveri, Andrea Luigi Vitali, Massimo Corbo, Roberto Grasso, Florence Didier, Roberta Ferrucci, Gabriella Pravettoni. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Mental Health and Well-Being in Racial or Ethnic Minority Individuals After Using a Faith and Prayer Mobile App (Pray.com): Feasibility and Preliminary Efficacy Trial

Breanne Laird¹, MS; Sabrina Zuniga², MS; Joshua N Hook², PhD; Daryl R Van Tongeren³, PhD; Lynda Joeman⁴, BS; Jennifer Huberty⁵, PhD

¹Pray, Inc, Westlack Village, CA, United States
²Department of Psychology, University of North Texas, Denton, TX, United States
³Department of Psychology, Hope College, Holland, MI, United States
⁴Tombridge, United Kingdom
⁵Fit Minded, Inc, Phoenix, AZ, United States

Corresponding Author:
Breanne Laird, MS
Pray, Inc
4607 Lakeview Canyon Rd #456
Westlack Village, CA, 91361
United States
Phone: 1 9095574002
Email: breanne.laird@pray.com

Abstract

Background: Research is needed on how faith and prayer apps fit within the values of racial and ethnic minority (REM) groups, as well as whether such apps are effective in promoting mental health and well-being.

Objective: This study aims to determine the feasibility and preliminary effectiveness of using the mobile app Pray.com on mental health and well-being among REM participants.

Methods: This study was a single-group (N=77), 4-week feasibility trial in REM groups (65/77, 84% Black or African American). Participants were asked to use the Pray.com app at no cost for at least 5 times per week for 5 minutes per day. Participants completed questionnaires at the baseline and postintervention time points. Feasibility questionnaires were only completed at the postintervention time point, including qualitative interviews (n=15). The feasibility questions included acceptability (ie, satisfaction, intent to continue use, perceived appropriateness, and fit within culture), demand (ie, self-reported app use, expressed interest, and perceived demand), and practicality (ie, ease or difficulty of use, ability to use the app, and cost-effectiveness). Frequency and descriptive statistics were used to analyze feasibility outcomes. Changes in dependent variables were analyzed using paired-sample 2-tailed t tests. Partial correlations were conducted to explore the association between app use and outcomes, controlling for baseline scores.

Results: Participants reported (54/72, 75% responded with “very likely” or “likely” to the feasibility questions) that they perceived the Pray.com app as acceptable. These findings were supported by qualitative interviews (n=15). Most participants (62/72, 86%) did not meet the app use prescription but expressed interest in using the app in the future and perceived demand for it in their communities. In addition, participants reported that the app was easy to use and perceived it to be inexpensive (US $7.99). Participants reported improved mental health (ie, stress and depressive and anxiety symptoms) and well-being (ie, satisfaction with life, spiritual well-being, religious commitment, and racial or ethnic identity development) at postintervention despite relatively low average levels and high variability of app use (average total of 45.83, SD 111.90 min over the course of the study). Greater app use was significantly associated with improvements in mental health and spiritual well-being. However, app use and study methodology limitations suggest that the study results may not accurately capture the full impact of Pray.com use.

Conclusions: This is the first study to assess the feasibility of a faith and prayer app for mental health and well-being in a sample of REM individuals. Our findings suggest that the use of a faith and prayer app (ie, Pray.com) could be feasible and significantly
impacting for the improvement of mental health symptoms and well-being in REM individuals and their communities, especially Black and African American individuals with a Christian affiliation. Further research is warranted.

KEYWORDS

religion; spirituality; mobile apps; mental health; well-being; app; ethnic; technology; engagement; stress; depression; anxiety; quality of life; spiritual well-being; racial; spiritual practices; spiritual practice; mobile phone; mobile health; mHealth

Introduction

Background

Religious and spiritual identity can extend across and within various cultures, even worldwide, although religious experiences are largely influenced by and intersect with cultural context. Some have conceptualized religion as a form of culture [1], and previous research has examined how religious expressions differ by culture [2]. Religion can serve as a primary social identity [3] that intersects with other salient features of identity, such as one’s racial or ethnic identity [4]. Put simply, one’s religious experience and expression notably intersect with one’s cultural identity and context.

Despite the heterogeneity of religious expressions, researchers have identified certain core dimensions of religion, including cognitive, emotional, behavioral, and social features [5]. A substantial body of research suggests that religion enhances individual well-being [6-16]. However, less is known about the role of culture in the connection between religion and individual health and well-being.

For racial and ethnic minority (REM) populations, the religious or spiritual aspect of one’s identity might be particularly important. For example, Constantine and Sue [17] outlined a theoretical model describing optimal human functioning for people of color in the United States. One of the key premises of their argument was that one’s cultural context affects what is considered optimal human functioning for various groups and it is necessary to consider the impact of cultural values on the well-being of people of color. In their model, cultural values, beliefs, and practices such as collectivism, racial and ethnic pride, spirituality and religion, interconnectedness of mind, body, or spirit, and family and community are viewed as important predictors of optimal human functioning for people of color.

In this study, we focused on religion or spirituality as an important factor contributing to the mental health and well-being of REM groups. Indeed, research has supported the importance of religion in the lives of such groups (eg, African American and Latinx groups), and these individuals tend to engage in religious or spiritual practices at a higher rate than the US population overall [18,19]. For example, studies have found high levels of religious participation in African American individuals (ie, 89% are religious; 78% attend services regularly; and 90% pray, meditate, or use religious materials) [20]. Furthermore, previous research has supported a strong connection between religiousness and well-being in African American individuals [21,22]. For example, in a sample of African American individuals, racial or ethnic identity was positively related to both satisfaction with and meaning in life, and these relationships were partially mediated by religious commitment [23].

Similarly, engaging in religious practices has been linked to increased social support and psychological well-being and decreased perceived stress and physical pain in Latinx populations [24,25]. Furthermore, types of religious coping (eg, positive vs negative) affected symptoms of both depression and obsessive-compulsive disorder [24,26]. As religiosity tends to be more emphasized by Latinx immigrants in comparison with US-born Latinx populations [27-29], some scholars have hypothesized that a decline in religiosity may partially explain the Latino health paradox, in which more recently immigrated Latinx individuals tend to display better health outcomes than more assimilated and US-born Latinx individuals [30,31].

Regarding Asian and Asian American populations, religious identity was positively associated with self-esteem, positive affect, and meaning in life in a sample of Asian American adolescents [32]. In a sample of Chinese American and Korean American older adults, religious support and beliefs were associated with increased life satisfaction and decreased depressive symptoms [33]. In a sample of Korean adult immigrants, religious support was associated with higher well-being in the midst of experiencing financial hardship and difficulties with English [34]. Interviews with Filipino American individuals regarding their faith revealed that their experiences with religion and spirituality had both positive and negative effects on their well-being [35], although recent research has proposed that the negative effects of religion may be explained by scrupulosity in communities in which religious participation plays a large role in culture [26].

This high degree of religious participation by REM individuals is observed not only in the United States but also worldwide. For example, high rates of religious identification are observed in territories with high numbers of REM individuals, such as Latin America or the Caribbean, Middle East or North Africa, and sub-Saharan Africa [36]. Overall, it is clear that, for various REM populations, religious and spiritual identity are important factors that affect one’s quality of life. Thus, it is imperative to identify how religious identity, practices, and engagement empower REMs and assess how current practices can be implemented, changed, or improved to enhance religious and spiritual experiences and increase well-being in these populations.

Different Pathways to Religious and Spiritual Well-Being

Technological advances have permitted various ways for individuals to facilitate well-being through engagement in
religious and spiritual practice [37-39]. Although various media have previously encouraged several methods toward transcendent connection, the global health pandemic of 2020 accelerated the development of digital tools that allow individuals to enhance their well-being via religious and spiritual practices [37,38]. Many of these behavior changes have persisted, and individuals are engaging in technologically mediated religious and spiritual practices more regularly.

For example, individuals may interact with religious and spiritual content through mobile apps. One such app is Pray.com, which is an app that allows participants to engage in Christian-based faith and prayer content, such as reading the Bible, listening to sermons, or hearing stories or other creative content to engage with their spiritual faith. This app can be downloaded to any smartphone or internet-enabled (mobile) device, and it includes the opportunity to receive notifications to remain engaged in one’s religious practices. The Pray.com app was chosen for this study because of its popularity and potential reach but was not specifically designed for REM individuals.

Such research on the role of technology in religious and spiritual practices is nascent, and most research has been conducted on the Christian faith as it is a prominent part of public and political life in the United States [40]. Among the largest religious groups in the United States, Black Protestant denominations tend to use technology in their religious practices to a greater degree [41], yet digitally based interventions struggle to be representative of REM groups [42]. Thus, there is a dearth of research including REM diverse samples, and less research has focused on how such apps align with the cultural values of such participants. There is a need for research that explores how such apps fit (or do not fit) with the cultural values of REM participants as well as whether such apps are effective in promoting mental health and well-being. To our knowledge, this is the first study to assess the feasibility and preliminary efficacy of a faith and prayer app for mental health and well-being in REM individuals. Accordingly, the goal of this research was to examine how individuals self-identifying as belonging to REM groups engage with technologically mediated religious and spiritual practices to enhance their mental health and well-being.

Study Overview and Hypothesis

The purpose of this study was to determine the feasibility (ie, acceptability, demand, and practicality) and preliminary effectiveness of using the mobile app Pray.com on mental health (ie, stress and depressive and anxiety symptoms) and well-being (ie, satisfaction with life, spiritual well-being, religious commitment, and racial or ethnic identity development) among REM participants. We predicted that Pray.com would be feasible in REM individuals and be associated with improved mental health and well-being outcomes at 4 weeks.

Methods

Ethical Considerations

This study was approved by the institutional review board of Biola University (F22-013) and registered at ClinicalTrials.gov (NCT05626673). All participants provided electronic consent before taking part.

Study Design or Recruitment

This study was a single-group, 4-week feasibility trial. This method was chosen as this was a preliminary study of the feasibility and effectiveness of the app in a sample of REM individuals. Participants were recruited using convenience sampling through faith-based organizations (eg, churches and religious psychology organizations), personal contacts of the researchers, and social media between January 2023 and April 2023 and were directed to a link to complete the web-based eligibility survey.

Participants and Procedure

Potential participants completed a web-based eligibility questionnaire via Qualtrics (Qualtrics International, Inc). Potential participants were eligible if they (1) self-identified as belonging to an REM group, (2) were aged ≥18 years, (3) owned a smartphone and were willing to download a mobile app, and (4) were willing to engage in Christian-based religious practice on a mobile app. Eligible participants were directed to a web-based informed consent form and informed of the potential risks of taking part in the study. After signing the consent form, participants were asked to complete a series of web-based baseline questionnaires (time 1) related to mental health and well-being. Once the questionnaires were completed, participants were provided with instructions on how to download the Pray.com mobile app.

Intervention

Participants were asked to use the Pray.com app at no cost for at least 5 times per week for 5 minutes per day. The Pray.com app was chosen because of its popularity and potential reach. The app was not specifically designed for REM individuals. This dose was chosen as frequent private prayer has been associated with significant mental health benefits [43], and frequency may be more important than the duration of time spent in prayerlike practices. We chose a brief minimum period to increase adherence and consistency. Participants were contacted at time 2 (approximately 30 days after completing time 1) and invited to complete the web-based questionnaires again as well as a feasibility questionnaire about their experience using the app. After completing the time 2 questionnaires, participants were compensated with a digital gift card, debriefed about the purpose of the study, and invited to contact the researchers if they had any questions about their participation. A subset of participants (n=15) was invited (using random selection) to participate in a qualitative interview with a member of the research team (making this a mixed methods study). These qualitative interviews were conducted on the web via Zoom (Zoom Video Communications) and transcribed (and subsequently coded by the qualitative data analyst). The participants who completed the qualitative interviews were compensated with an additional digital gift card.
Measures

Feasibility (Time 2)

All feasibility measures were assessed at the postintervention time point (4 weeks). We measured feasibility using the guidelines by Bowen et al [44], including acceptability, demand, practicality, and preliminary efficacy (ie, trends in changes in stress, depressive and anxiety symptoms, satisfaction with life, spiritual well-being, religious commitment, and racial or ethnic identity development). Benchmarks for feasibility included (1) acceptability (ie, satisfaction, intent to continue use, perceived appropriateness, and fit within culture; ≥75% of participants reporting satisfaction with the app and that the app was appropriate and fit within their cultural identity or worldview), (2) demand (ie, self-reported app use, expressed interest, and perceived demand; ≥75% of participants adhering to the Pray.com prescription, expressing interest in future use, and perceiving the app as demanded within their community), and (3) practicality (ie, ease or difficulty of use, ability to use the app, and cost-effectiveness; ≥75% of participants reporting ease of use and that they could pay for the app).

The feasibility measures were developed by psychology and behavioral health researchers. Textbox 1 presents a list of the feasibility questions.

A subset of participants (n=15) completed a semistructured qualitative interview that focused on exploring their experiences using the app in a deeper way. The qualitative interview focused on topics similar to those in the feasibility questionnaire (eg, acceptability, demand, and practicality), as well as including an open-ended question asking for general feedback about the app. Textbox 2 presents a list of the interview questions.
Textbox 1. Feasibility questions.

<table>
<thead>
<tr>
<th>Acceptability</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfaction</td>
<td>How satisfied were you with the Pray.com app?</td>
</tr>
<tr>
<td>Intent to continue use</td>
<td>How likely are you to continue to use Pray.com?</td>
</tr>
<tr>
<td>Perceived appropriateness</td>
<td>How relevant was the Pray.com app to improving your mental health?</td>
</tr>
<tr>
<td></td>
<td>My racial/ethnic identity is well represented on the Pray.com app?</td>
</tr>
<tr>
<td></td>
<td>The material on the Pray.com app was a good fit with my racial/ethnic identity?</td>
</tr>
<tr>
<td></td>
<td>The material on the Pray.com app was a good fit with my cultural worldview?</td>
</tr>
<tr>
<td>Fit within culture</td>
<td>How well did using the Pray.com app fit within your religious beliefs or worldview?</td>
</tr>
<tr>
<td></td>
<td>How well did using the Pray.com app fit within your cultural (ie, racial or ethnic) identity or worldview?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-reported use</td>
<td>How often did you use the Pray.com app?</td>
</tr>
<tr>
<td>Expressed interest</td>
<td>How interested are you in using the Pray.com app in the future?</td>
</tr>
<tr>
<td>Perceived demand</td>
<td>How much demand do you think there would be for the Pray.com app within your religious community?</td>
</tr>
<tr>
<td></td>
<td>How much demand do you think there would be for the Pray.com app within your culture?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practicality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease or difficulty of use</td>
<td>How easy or difficult was it to use the Pray.com app?</td>
</tr>
<tr>
<td>Ability to use the app</td>
<td>How would you rate your ability to use and navigate Pray.com?</td>
</tr>
<tr>
<td>Cost</td>
<td>How cheap or expensive does this price seem to you?</td>
</tr>
<tr>
<td></td>
<td>How easy or difficult would it be to pay the monthly fee for the Pray.com app?</td>
</tr>
<tr>
<td></td>
<td>How likely would you be willing to pay the monthly fee for the Pray.com app?</td>
</tr>
</tbody>
</table>
Textbox 2. Interview questions.

Acceptability
- Satisfaction
 - What did you like the most about using the Pray.com app?
 - What did you like least about using the Pray.com app?

- Intent to continue use
 - What factors would influence your decision to continue using the Pray.com app in the future?
 - What factors would keep you from using the Pray.com app after the study is over?

- Perceived appropriateness
 - What about the Pray.com app was most relevant to helping you with your mental health?
 - What about the Pray.com app was most relevant to helping your spiritual life?
 - How did Pray.com contribute to how you feel about meditation/mindfulness?

- Fit within culture
 - What aspects of using the Pray.com app were a good fit within your religious beliefs or worldview?
 - What aspects of using the Pray.com app did not seem to fit within your religious beliefs or worldview?
 - What aspects of using the Pray.com app did not seem to fit within your cultural (ie, racial/ethnic) identity or worldview?
 - How well represented was your racial/ethnic group on the Pray.com app?

Demand
- Expressed interest
 - What aspects of the Pray.com app are you most interested in?
 - What aspects of the Pray.com app are you least interested in?

- Perceived demand
 - What could be improved about the Pray.com app to make it a better fit for you?
 - What could be improved about the Pray.com app to make it a better fit for your religious community?

Practicality
- Ease or difficulty of use
 - What aspects of the Pray.com app were difficult to use?
 - What aspects of the Pray.com app were easy to use?

- Ability to use the app
 - What aspects of the Pray.com app did you feel like you had the ability to use?
 - Was there anything about the Pray.com app that you felt like you did not have the ability to use?

- Other
 - Do you have any other feedback about your use of the Pray.com app?

Perceived Stress Scale (Time 1 and 2)
The Perceived Stress Scale-10 (PSS-10) [45] was used to measure participants’ subjective levels of stress. The PSS-10 is a 10-item measure in which participants rate items related to stress (eg, “how often have you been angered because of things that happened that were outside of your control?”) on a scale from 0=never to 4=very often within the previous month. A mean perceived stress score was calculated, with higher scores indicating higher levels of perceived stress. Previous research has demonstrated high reliability and construct validity of the PSS-10 [45,46], including in a sample of REM participants [47].
In this sample, the Cronbach α for the PSS-10 ranged from .81 to .84 across time points.

Hospital Anxiety and Depression Scale (Time 1 and 2)
The Hospital Anxiety and Depression Scale (HADS) [48] was used to measure participants’ symptoms of anxiety and depression. The HADS is a 14-item measure in which participants rate 7 items related to anxiety (eg, “I feel tense or ‘wound up.’”) and 7 items related to depression (eg, “I still enjoy the things I used to enjoy”) on a scale from 0 to 3 (end points vary across items). Mean scores for anxiety and depression were calculated, with higher scores indicating more severe symptoms of anxiety and depression. Previous research has demonstrated evidence for the reliability and construct validity of the HADS [49], including cross-culturally [50]. In this study, the Cronbach α for the anxiety and depression subscales of the HADS ranged from .83 to .84 (anxiety) and from .79 to .84 (depression) across time points.

Spiritual Well-Being Scale (Time 1 and 2)
Participants’ spiritual well-being was assessed using the Spiritual Well-Being Scale (SWBS) [51,52]. The SWBS comprises 20 items divided into 2 subscales: religious well-being (10 items; eg, “I feel most fulfilled when I’m in close communion with God”) and existential well-being (10 items; eg, “I believe there is some real purpose for my life”). Participants rated each item on a scale from 1=strongly disagree to 6=strongly agree, with higher scores indicating higher levels of spiritual well-being. The SWBS has previously demonstrated high internal consistency and construct validity [51,52], including in samples with African American individuals [53]. In this study, the Cronbach α for the SWBS ranged from .91 to .92 across time points.

Satisfaction With Life Scale (Time 1 and 2)
Participants’ life satisfaction was measured using the Satisfaction With Life Scale (SWLS) [54]. Participants rated 5 items related to life satisfaction (eg, “In most ways my life is close to my ideal”) on a scale from 1=strongly disagree to 6=strongly agree, with higher scores suggesting higher life satisfaction. The SWLS has demonstrated high internal consistency and construct validity in previous research across various populations and contexts [54], including diverse populations [55]. In this study, the Cronbach α for the SWLS ranged from .73 to .83 across time points.

Religious Commitment Inventory–10 (Time 1 and 2)
Religious commitment was measured using the Religious Commitment Inventory–10 (RCI-10) [56]. Participants rated 10 items assessing religious commitment (eg, “I spend time trying to grow in understanding of my faith”) on a scale from 1=not true at all of me to 5=totally true of me. Scores were measured using the mean of all 10 items, with higher scores suggesting higher levels of religious commitment. The RCI-10 has shown evidence of internal consistency and construct validity [56], including in diverse samples [56,57]. In this study, the Cronbach α for the RCI-10 ranged from .84 to .88 across time points.

Multigroup Ethnic Identity Measure–Revised (Time 1 and 2)
Racial or ethnic identity development was measured using the Multigroup Ethnic Identity Measure–Revised (MEIM-R) [58]. Participants rated 6 items assessing racial or ethnic identity development across 2 subscales—commitment (eg, “I have a strong sense of belonging to my own ethnic group”) and exploration (eg, “I have spent time trying to find out more about my ethnic group, such as its history, traditions, and customs”)—on a scale from 1=strongly disagree to 5=strongly agree, with higher scores indicating higher levels of commitment and exploration, respectively. The MEIM-R has demonstrated evidence of internal consistency and construct validity [58]. In this study, the Cronbach α for the MEIM-R ranged from .79 to .84 across time points.

Statistical Analysis
The data were analyzed using SPSS (version 28.0; IBM Corp). Frequency and descriptive statistics were used to analyze the feasibility outcomes and demographic characteristics. As not all participants answered every question (ie, it was a free-response survey), the sample sizes differed across analyses. We reported all available completed data. Self-reported use frequency was categorized as ordinal, reflecting the use of the app as (1) less than once per week, (2) up to 2 times per week, (3) 3 to 5 times per week, or (4) ≥5 times per week. All other feasibility questions were categorized as ordinal. Changes in dependent variables between time 1 and time 2 were analyzed using paired-sample 2-tailed t tests. To assess the relationship between objective app use and changes in dependent variables, partial correlations were conducted to explore the association between app use and scores on time 2 variables controlling for scores on time 1 variables. P values of <.05 were considered significant.

With regard to the qualitative data, interview transcripts were imported into NVivo (QSR International) for coding and analysis. Thematic analysis methods were used based on the inductive or deductive approach proposed by Braun and Clarke [59]. In brief, this involved first identifying top-level themes based on the main issues and questions covered in the interviews (feasibility and mental health and well-being outcomes). Within these, emergent themes were identified inductively from the transcripts and labeled appropriately. An iterative process was used in which relevant extracts of interview data were allocated to these, with the coding being continually reviewed and revised until the analyst felt confident that it most accurately reflected the lived experiences of the research participants as reported in their interviews.

Results
Of the 77 final participants in our study, 72 (94%) completed time 2 measures. There were no significant differences in our main variables between completers and noncompleters.

Participants
We received 707 initial responses to the eligibility survey; however, the vast majority of these were found to be inauthentic responses (eg, bots and duplicate IP addresses). Accordingly,
we checked the data using elimination of duplicate IP addresses
and consistent responses to demographic information. Then,
we installed various data quality checks such as bot detection
and reCAPTCHA (Google) and accuracy on 3 quality-check
questions (eg. “Please select disagree”). This resulted in a final
sample of 77 participants. Table 1 shows the sample
demographic characteristics. Table 2 shows the religious or
spiritual engagement at the beginning of the study.

Table 1. Sample demographics (N=77).

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean (SD)</td>
<td>31 (5)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Cisgender women</td>
<td>23 (30)</td>
</tr>
<tr>
<td>Cisgender men</td>
<td>54 (70)</td>
</tr>
<tr>
<td>Race or ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Asian or Asian American</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>65 (84)</td>
</tr>
<tr>
<td>Latina, Latino, or Hispanic</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Sexual orientation, n (%)</td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>74 (96)</td>
</tr>
<tr>
<td>Gay</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Lesbian</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Bisexual</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Religious affiliation, n (%)</td>
<td></td>
</tr>
<tr>
<td>Christian (Catholic)</td>
<td>42 (55)</td>
</tr>
<tr>
<td>Christian (evangelical Protestant)</td>
<td>19 (25)</td>
</tr>
<tr>
<td>Christian (mainline Protestant)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Christian (Black Protestant)</td>
<td>5 (6)</td>
</tr>
<tr>
<td>Buddhist</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Hindu</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Jewish</td>
<td>1 (1)</td>
</tr>
<tr>
<td>None</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Religious identity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Stably religious</td>
<td>56 (73)</td>
</tr>
<tr>
<td>New identifier</td>
<td>8 (10)</td>
</tr>
<tr>
<td>Reidentifier</td>
<td>12 (16)</td>
</tr>
<tr>
<td>Never identified</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>
Table 2. Religious or spiritual engagement at the beginning of the study (N=77).

<table>
<thead>
<tr>
<th>Engagement characteristics</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Religious service attendance</td>
<td></td>
</tr>
<tr>
<td>At least once a week</td>
<td>57 (74)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>18 (23)</td>
</tr>
<tr>
<td>Seldom or never</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Prayer frequency</td>
<td></td>
</tr>
<tr>
<td>At least once a week</td>
<td>54 (70)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>19 (25)</td>
</tr>
<tr>
<td>Seldom or never</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Participation in prayer, scripture, or religious education groups</td>
<td></td>
</tr>
<tr>
<td>At least once a week</td>
<td>43 (56)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>29 (38)</td>
</tr>
<tr>
<td>Seldom or never</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Meditation frequency</td>
<td></td>
</tr>
<tr>
<td>At least once a week</td>
<td>43 (56)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>26 (34)</td>
</tr>
<tr>
<td>Seldom or never</td>
<td>8 (10)</td>
</tr>
<tr>
<td>Scripture reading</td>
<td></td>
</tr>
<tr>
<td>At least once a week</td>
<td>47 (61)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>21 (27)</td>
</tr>
<tr>
<td>Seldom or never</td>
<td>8 (10)</td>
</tr>
</tbody>
</table>

Feasibility

Acceptability

All the acceptability benchmarks were met. Most participants (64/72, 89%) reported being very satisfied or satisfied with the app and that they were very likely or likely to continue to use the app in the future (63/72, 88%). No significant differences between men and women were observed regarding app acceptability.

The app was perceived as appropriate. Most participants reported that using the app was very relevant or relevant to improving their mental health (57/72, 79%) and spiritual lives (62/72, 86%). Most participants (60/72, 83%) reported that they strongly agreed or agreed that their racial or ethnic identity was well represented on the app and that the content was a good fit with their racial or ethnic identity (53/72, 74%) and cultural worldview (59/72, 82%). Most participants reported that they strongly agreed or agreed that Pray.com was a good fit with their religious beliefs or worldview (58/72, 81%) and cultural identity or worldview (55/72, 76%). Participants reported that the app was more relevant to improving their spiritual life than their mental health ($P=.01$). There was no significant difference between fit with religious or cultural worldview ($P=.23$). Table 3 shows participant ratings of the acceptability of the app.
Table 3. Participant ratings of the acceptability of the app (N=72).

<table>
<thead>
<tr>
<th>Acceptability characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfaction, mean (SD)</td>
<td>4.50 (0.69)</td>
</tr>
<tr>
<td>Very satisfied, n (%)</td>
<td>44 (61)</td>
</tr>
<tr>
<td>Satisfied, n (%)</td>
<td>20 (28)</td>
</tr>
<tr>
<td>Somewhat satisfied, n (%)</td>
<td>8 (11)</td>
</tr>
<tr>
<td>Dissatisfied, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Intent to continue use, mean (SD)</td>
<td>4.47 (0.71)</td>
</tr>
<tr>
<td>Very likely, n (%)</td>
<td>43 (60)</td>
</tr>
<tr>
<td>Likely, n (%)</td>
<td>20 (28)</td>
</tr>
<tr>
<td>Somewhat likely, n (%)</td>
<td>9 (12)</td>
</tr>
<tr>
<td>Not likely, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Perceived appropriateness</td>
<td></td>
</tr>
<tr>
<td>Relevance in improving mental health, mean (SD)</td>
<td>4.14 (0.74)</td>
</tr>
<tr>
<td>Very relevant, n (%)</td>
<td>25 (35)</td>
</tr>
<tr>
<td>Relevant, n (%)</td>
<td>32 (44)</td>
</tr>
<tr>
<td>Somewhat relevant, n (%)</td>
<td>15 (21)</td>
</tr>
<tr>
<td>Irrelevant, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Very irrelevant, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Relevance in improving spiritual life, mean (SD)</td>
<td>4.42 (0.88)</td>
</tr>
<tr>
<td>Very relevant, n (%)</td>
<td>44 (61)</td>
</tr>
<tr>
<td>Relevant, n (%)</td>
<td>18 (25)</td>
</tr>
<tr>
<td>Somewhat relevant, n (%)</td>
<td>7 (10)</td>
</tr>
<tr>
<td>Irrelevant, n (%)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Very irrelevant, n (%)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Fit within culture</td>
<td></td>
</tr>
<tr>
<td>Racial or ethnic identity well represented, mean (SD)</td>
<td>4.29 (0.74)</td>
</tr>
<tr>
<td>Strongly agree, n (%)</td>
<td>33 (46)</td>
</tr>
<tr>
<td>Agree, n (%)</td>
<td>27 (38)</td>
</tr>
<tr>
<td>Somewhat agree, n (%)</td>
<td>12 (17)</td>
</tr>
<tr>
<td>Disagree, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Content good fit with racial or ethnic identity, mean (SD)</td>
<td>4.15 (0.85)</td>
</tr>
<tr>
<td>Strongly agree, n (%)</td>
<td>31 (43)</td>
</tr>
<tr>
<td>Agree, n (%)</td>
<td>22 (31)</td>
</tr>
<tr>
<td>Somewhat agree, n (%)</td>
<td>18 (25)</td>
</tr>
<tr>
<td>Disagree, n (%)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Content good fit with cultural worldview, mean (SD)</td>
<td>4.29 (0.76)</td>
</tr>
<tr>
<td>Strongly agree, n (%)</td>
<td>34 (47)</td>
</tr>
<tr>
<td>Agree, n (%)</td>
<td>25 (35)</td>
</tr>
<tr>
<td>Somewhat agree, n (%)</td>
<td>13 (18)</td>
</tr>
<tr>
<td>Disagree, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>**Content good fit with religious beliefs or worldview, mean (SD)</td>
<td>4.25 (0.87)</td>
</tr>
<tr>
<td>Very good fit, n (%)</td>
<td>35 (49)</td>
</tr>
<tr>
<td>Good fit, n (%)</td>
<td>23 (32)</td>
</tr>
</tbody>
</table>
Acceptability characteristics

<table>
<thead>
<tr>
<th>Somewhat good fit, n (%)</th>
<th>11 (15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor fit, n (%)</td>
<td>3 (4)</td>
</tr>
</tbody>
</table>

Fit with cultural identity or worldview, mean (SD)

<table>
<thead>
<tr>
<th>Very good fit, n (%)</th>
<th>28 (39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good fit, n (%)</td>
<td>27 (38)</td>
</tr>
<tr>
<td>Somewhat good fit, n (%)</td>
<td>14 (19)</td>
</tr>
<tr>
<td>Poor fit, n (%)</td>
<td>3 (4)</td>
</tr>
</tbody>
</table>

Demand

All demand benchmarks were met except for self-reported use (at least 75% of participants used the app at least 5 times per week for 5 min/d) as this could not be determined from the answer choices selected by the participants. Most participants (58/72, 81%) self-reported that they used the app between 3 and 5 times per week (35/72, 49%) or >5 times per week (23/72, 32%). However, objective use data showed that participants used the app for an average of 45.83 (SD 111.90) minutes and a total of 5.77 (SD 8.19) days throughout the entire study period, suggesting that app use may have been overreported. Regardless of app use, most participants (61/72, 85%) indicated that they were extremely interested or interested in continuing to use the app in the future and that they believed that there would be interest or a great deal of interest in the app in both their religious (59/72, 82%) and cultural communities (56/72, 78%). There was no significant difference between perceived demand in one’s religious community and in one’s cultural community (P=.13). No significant differences were observed between men and women regarding demand for the app. Table 4 shows participant ratings regarding demand for the app.

Table 4. Participant ratings regarding demand for the app (N=72).

<table>
<thead>
<tr>
<th>Demand characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of use, mean (SD)</td>
<td>3.11 (0.74)</td>
</tr>
<tr>
<td>>5 times/wk, n (%)</td>
<td>23 (32)</td>
</tr>
<tr>
<td>3-5 times/wk, n (%)</td>
<td>35 (49)</td>
</tr>
<tr>
<td>1-2 times/wk, n (%)</td>
<td>13 (18)</td>
</tr>
<tr>
<td>Less than once/wk, n (%)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Interest in future use, mean (SD)</td>
<td>4.31 (0.73)</td>
</tr>
<tr>
<td>Extremely interested, n (%)</td>
<td>33 (46)</td>
</tr>
<tr>
<td>Interested, n (%)</td>
<td>28 (39)</td>
</tr>
<tr>
<td>Somewhat interested, n (%)</td>
<td>11 (15)</td>
</tr>
<tr>
<td>Not interested, n (%)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Perceived demand

Within participants’ religious community, mean (SD) | 4.29 (0.83) |

A great deal, n (%) | 36 (50) |
Interested, n (%) | 23 (32) |
Somewhat interested, n (%) | 11 (15) |
Not really, n (%) | 2 (3) |

Within participants’ cultural community, mean (SD) | 4.11 (0.82) |

A great deal, n (%) | 26 (36) |
Interested, n (%) | 30 (42) |
Somewhat interested, n (%) | 14 (19) |
Not really, n (%) | 2 (3) |

Practicality

Almost all participants (58/72, 81%) reported that it was very easy or easy to use the app and that they were very able or able to use and navigate the app (63/72, 88%). The monthly price of the app was perceived to be very cheap or cheap by most participants (55/72, 76%). Although only half (39/72, 54%) reported that paying the monthly fee of the app would be very cheap or cheap.
easy or easy, most participants (56/72, 78%) reported that they would be very likely or likely to pay the monthly fee. No significant differences were observed between men and women regarding the practicality of the app. Table 5 shows participant ratings regarding the practicality of the app.

Table 5. Participant ratings regarding the practicality of the app (N=72).

<table>
<thead>
<tr>
<th>Practicality characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty of use, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Very easy, n (%)</td>
<td>1.76 (0.90)</td>
</tr>
<tr>
<td>Easy, n (%)</td>
<td>35 (49)</td>
</tr>
<tr>
<td>Somewhat easy, n (%)</td>
<td>23 (32)</td>
</tr>
<tr>
<td>Difficult, n (%)</td>
<td>10 (14)</td>
</tr>
<tr>
<td>Ability to use and navigate the app, mean (SD)</td>
<td>4.35 (0.70)</td>
</tr>
<tr>
<td>Very high ability, n (%)</td>
<td>34 (47)</td>
</tr>
<tr>
<td>Able, n (%)</td>
<td>29 (40)</td>
</tr>
<tr>
<td>Somewhat able, n (%)</td>
<td>9 (12)</td>
</tr>
<tr>
<td>Not able, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Perceived cost of the app, mean (SD)</td>
<td>2.46 (0.86)</td>
</tr>
<tr>
<td>Very cheap, n (%)</td>
<td>29 (40)</td>
</tr>
<tr>
<td>Cheap, n (%)</td>
<td>26 (36)</td>
</tr>
<tr>
<td>Somewhat cheap, n (%)</td>
<td>8 (11)</td>
</tr>
<tr>
<td>Expensive, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Ease of paying monthly fee, mean (SD)</td>
<td>2.35 (0.97)</td>
</tr>
<tr>
<td>Very easy, n (%)</td>
<td>16 (22)</td>
</tr>
<tr>
<td>Easy, n (%)</td>
<td>23 (32)</td>
</tr>
<tr>
<td>Somewhat easy, n (%)</td>
<td>26 (36)</td>
</tr>
<tr>
<td>Difficult, n (%)</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Very difficult, n (%)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Willingness to pay monthly fee, mean (SD)</td>
<td>4.14 (0.83)</td>
</tr>
<tr>
<td>Very likely, n (%)</td>
<td>28 (39)</td>
</tr>
<tr>
<td>Likely, n (%)</td>
<td>28 (39)</td>
</tr>
<tr>
<td>Somewhat likely, n (%)</td>
<td>14 (19)</td>
</tr>
<tr>
<td>Unlikely, n (%)</td>
<td>2 (3)</td>
</tr>
</tbody>
</table>

Mental Health and Well-Being Improvement Over Time

Regarding mental health symptoms, participants reported significant improvement in perceived stress ($P=.004; d=0.35$), depression ($P=.02; d=0.29$), and anxiety ($P=.01; d=0.32$). Effect sizes were in the small to medium range. Regarding well-being, participants reported significant improvement in satisfaction with life ($P<.001; d=0.52$), spiritual well-being ($P<.001; d=0.48$), religious commitment ($P=.02; d=0.28$), and racial or ethnic identity development ($P=.048; d=0.24$). Effect sizes were in the small to medium range. Table 6 shows the t test reporting of improvements.
Mental Health and Well-Being Improvement With Objective App Use

Participants used the app during the study period (approximately 4 weeks) for an average of 45.83 (SD 111.90) minutes and a total of 5.77 (SD 8.19) days. Partial correlations were conducted, controlling for baseline variable scores, between total minutes and total days of app use and outcome variables. When controlling for the outcome variable at baseline, greater app use was associated with decreased stress and depressive and anxiety symptoms and increased spiritual well-being at the postintervention time point (Table 7). These results suggest that greater app use is associated with decreased mental health symptoms and increased spiritual well-being over time.

Table 7. Partial correlations between app use and dependent variables at the postintervention time point (N=77).

<table>
<thead>
<tr>
<th></th>
<th>Total minutes</th>
<th>(P) value</th>
<th>Total days</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>-0.20</td>
<td>.10</td>
<td>-0.30</td>
<td>.01</td>
</tr>
<tr>
<td>Depression</td>
<td>-0.27</td>
<td>.02</td>
<td>-0.29</td>
<td>.01</td>
</tr>
<tr>
<td>Anxiety</td>
<td>-0.36</td>
<td>.002</td>
<td>-0.39</td>
<td>.001</td>
</tr>
<tr>
<td>Religious commitment</td>
<td>0.16</td>
<td>.20</td>
<td>0.22</td>
<td>.07</td>
</tr>
<tr>
<td>Spiritual well-being</td>
<td>0.26</td>
<td>.03</td>
<td>0.30</td>
<td>.01</td>
</tr>
<tr>
<td>Satisfaction with life</td>
<td>0.15</td>
<td>.22</td>
<td>0.20</td>
<td>.09</td>
</tr>
<tr>
<td>Racial or ethnic identity</td>
<td>0.12</td>
<td>.32</td>
<td>0.06</td>
<td>.67</td>
</tr>
</tbody>
</table>

Qualitative Analyses

Acceptability

When the interview participants (n=15) were asked what they liked most about the app, the types of responses fell into 2 main categories: general aspects and specific features.

General Aspects of the App

In total, 20% (3/15) of the participants reported that they mostly liked the wide range of topics and content available on the app, whereas 13% (2/15) referred to its relatability. Others (3/15, 20%) mentioned liking the most how convenient the app was to use via their phone, compared with hard-copy methods of accessing spiritual content, and how educational it was for them (2/15, 13%). Other participants mentioned liking the community aspect of the app (1/15, 7%) and the overall look of the app and its interface (1/15, 7%).

Specific Features of the App

A total of 27% (4/15) of the interviewees reported that they most liked the notifications that reminded them to pray regularly, and 13% (2/15) reported that they particularly liked the podcasts: “I’ve been getting addicted to the podcasts very early in the morning.”

In total, 27% (4/15) of the interview participants mentioned that they especially liked the daily scriptures or Bible passages. Other favorite features mentioned by individual participants included the daily motivational messages (1/15, 7%), daily prayer time (1/15, 7%), and streaks (1/15, 7%) enabling them to track their own progress. The participants were also asked which aspects of the app they were most interested in. In descending order of frequency in which they were mentioned, these were reported to be daily prayers (6/15, 40% of the participants), preaching and sermons (5/15, 33%), daily motivations (3/15, 20%), scriptures (3/15, 20%), podcasts (3/15, 20%), books (1/15, 7%), and storylines (1/15, 7%).

What Participants Liked the Least About the App

When asked what they liked the least about the Pray.com app, 60% (9/15) of participants reported that there was nothing they did not like about the app.

Among the 40% (6/15) who did report on features that they disliked or liked less, several of these were related to technical issues encountered when using the app (eg, delays in reminders, delays in content updates, and inability to save activity when exiting).

Individuals also commented on morning prayers being too long (1/6, 17%) and sermons being too short (1/6, 17%) and disliking the 21-Day Prayer Journeys (1/6, 17%). When asked which
aspects of Pray.com they were the least interested in, 40% (6/15) indicated that there were no aspects they were uninterested in. A total of 13% (2/15) said that they were the least interested in certain preachers or those they knew less about, and 7% (1/15) referred to content perceived as irrelevant to them, such as anxiety meditations. In addition, some participants said that they were least interested in movies (2/15, 13%), meditations (1/15, 7%), prayer journals (1/15, 7%), and prayers (1/15, 7%).

Intent to Continue Use

We asked the participants what factors would influence their decision to continue using the Pray.com app. In total, 60% (9/15) indicated that they would continue to use it because of the beneficial effect it had had on their spirituality, especially the notifications that reminded them to pray. Others stated that the convenience and ease of use of the Pray.com app were factors that influenced their intention to continue using it (7/15, 47%) and that range, quality of content, or continued access to content (3/15, 20%) would influence their continued use.

Perceived Appropriateness

Many participants mentioned that they had experienced positive impacts of the Pray.com app on their mental health. A total of 27% (4/15) reported that these benefits were due to a feeling of greater connectedness, either with God or with others who share their religious beliefs. In total, 20% (3/15) described how they had benefited from the ease of being able to locate mental health content on the app. A total of 20% (3/15) of the participants reported that their levels of stress or depression had decreased since they had started using the app. Some participants cited specific types of content that had helped their mental health: meditations (3/15, 20%), daily podcasts (2/15, 13%), scriptures (1/15, 7%), and songs (1/15, 7%).

The participants were also asked how the app had influenced their feelings about meditation and mindfulness. In response, 40% (6/15) indicated that they had an improved understanding or that using the app had changed their misconceptions about meditation and mindfulness. In total, 27% (4/15) of the participants described how the app had helped them enter a meditative state or how much they had enjoyed the meditations.

Impacts on Spirituality

When asked about the impact of the Pray.com app on their spirituality, 33% (5/15) of the participants indicated that it had helped them develop spiritual habits or increase their familiarity with the scriptures. A total of 27% (4/15) of the participants referred to having increased their frequency of praying since they had started using the app. Another 27% (4/15) of the participants explained how the app had given them a more spiritual focus or direction in their lives. In total, 13% (2/15) of the interviewees described ways in which the app had taught them how to pray more effectively. A total of 13% (2/15) highlighted ways in which they had gained new spiritual insights or understanding through using the Pray.com app.

Fit Within Culture

When asked whether the Pray.com app was a good fit with their religious beliefs or worldview, 20% (3/15) of the participants commented that all aspects were a good fit. In total, 67% (10/15) of the participants specified ways in which particular content or preachers on the app were a good fit with their religious beliefs or worldview. When asked which aspects were not a good fit with their religious beliefs or worldview, 20% (3/15) cited specific content not relevant to them, such as parenting content, or that they or others in their community might not agree with, such as meditation or options for gift buying on the app.

Fit Within Cultural and Ethnic Identity

A total of 60% (9/15) of the interviewees specifically said that the Black community was well represented among the preachers. Although one participant expressed a perception that Black preachers only accounted for approximately 20% of all those on the app, he did not see this as a problem. A further 40% (6/15) of the interviewees similarly commented on how inclusive and nondiscriminatory Pray.com was. One participant mentioned that the app was a good fit with their cultural identity because of the type of language used, which he could relate to and understand.

Demand

In total, 80% (12/15) of the interviewees made suggestions for ways of improving the app to make it a better fit for them personally. These fell broadly into the following categories: features, technical improvements, and cost.

Features

Interviewees suggested more or different types of notifications, the ability to interact with others on the app (eg, in a forum or groups), or being able to post questions or comments to the preachers.

Technical Improvements

A total of 27% (4/15) of the participants said that technical improvements would make the app a better fit for them personally. These generally referred to specific technical problems they had encountered (eg, allowing the app to continue running while using the phone and inability to save content).

Cost

In total, 13% (2/15) of the participants suggested improvements related to the cost of subscriptions, including continued free access to the full app, a payment plan to make subscriptions more affordable, and a free trial option.

Practicality (Ease of Use)

Interviewees mentioned specific aspects or features of the app that were easy for them to use. A total of 40% (6/15) of the participants stressed that navigating the app was particularly easy for them. Other individuals commented that the podcasts or live prayers (3/15, 20%), meditations (1/15, 7%), website (1/15, 7%), and registration process (1/15, 7%) were easy for them. A small number of participants did describe some difficulties they had encountered when using the app. In total, 13% (2/15) of the participants explained that they had not realized that there was a notification option that they needed to activate. Others mentioned difficulty in locating the streak data (1/15, 7%) and using the display on the side of the podcasts (1/15, 7%).
Discussion

Principal Findings

Overview

The purpose of this study was to determine the feasibility (ie, acceptability, demand, and practicality) and preliminary effectiveness of using the mobile app Pray.com on mental health (ie, stress and depressive and anxiety symptoms) and well-being (ie, satisfaction with life, spiritual well-being, religious commitment, and racial or ethnic identity development) among REM participants. We also explored the associations between objective app use (total minutes and days) and the outcomes measured. In addition, follow-up interviews were conducted to provide further insight into feasibility outcomes. This is one of the first studies to assess the feasibility and preliminary effectiveness of a faith- and prayer-based app in REM individuals for the purpose of improving mental health and well-being.

Overall, participants reported high levels of satisfaction with the app, intent to continue use, appropriateness of the app, and fit within their culture. Interestingly, most participants (62/72, 86%) did not meet the app use prescription provided by the researchers (ie, at least 5 min/d, 5 d/wk) but expressed interest in using the app in the future and perceived demand for it in their communities. In addition, participants reported that the app was easy to use and perceived it to be inexpensive. Only approximately half (39/72, 54%) of the participants reported that paying the monthly fee would be easy for them, but most (56/72, 78%) said that they would be willing to pay. Even though most participants did not use the app as often as prescribed, the results indicated that app use was associated with significant mental health improvements over time. Critically, with regard to preliminary effectiveness, participants reported improved mental health (ie, stress and depressive and anxiety symptoms) and well-being (ie, satisfaction with life, spiritual well-being, religious commitment, and racial or ethnic identity development) over the course of the study despite relatively low average levels and high variability of app use. Greater app use was significantly associated with improvements in mental health and spiritual well-being. These findings suggest that Pray.com is feasible for REM adults. Future research is warranted to determine the efficacy of Pray.com on mental health and well-being outcomes in REM populations using randomized controlled trials.

Feasibility

Using a faith and prayer mobile app for mental health and well-being was found to be feasible in REM individuals, particularly for Black and African American adults (who constituted most of our sample). Most of the participants (64/72, 89%) expressed high satisfaction with the app and that the app was a good fit with their cultural and religious beliefs or worldview. A number of interviewees (6/15, 40%) also indicated that they perceived a fair representation of different cultural backgrounds in the app content. The findings related to cultural fit are promising as, historically, REM groups have not been well represented in apps, especially in apps that claim to have health benefits [60]. Ramos et al [61] have suggested that apps with a focus on improving mental health may have the ability to reduce unmet mental health needs if users believe that the content is appropriate for them and fits within their culture. Others have suggested that apps should be adapted to various cultures for increased benefits [42,62]. However, Black and African American populations are still underrepresented in mobile health research, limiting our ability to inform the development and design of apps for REM groups [63]. Our qualitative findings show that a small subset of participants reported that cultural fit could be increased if content such as parenting was improved or potential culturally controversial content such as meditation or options for gift buying on the app were addressed. This is one of the first studies to explore a faith-based app for mental health and well-being among REM groups. These initially promising findings suggest that more research in this area is warranted.

The findings on feasibility and cultural fit in our study are also exciting in light of the sometimes mixed reception of mindfulness and meditation in certain cultural and religious groups [64,65]. The positive reception and perceived cultural fit of the Pray.com app in a sample of religious REM individuals provides evidence that these apps may be an important avenue to help introduce the benefits of prayer, mindfulness, and meditation in a context that is experienced as a good fit with one’s cultural and religious worldview.

Although most participants (>54/72, 75%) reported high levels of feasibility across the board, one area in which responses were mixed was cost-effectiveness. Namely, although approximately three-quarters (56/72, 78%) of the participants expressed willingness to pay the monthly fee for the app, only approximately half (39/72, 54%) expressed that it would be easy for them to do so. This was supported by the qualitative data, in which some participants suggested improvements related to the cost of subscriptions (eg, a payment plan and free trial option). Individuals considering subscribing to an app for the purpose of improving or maintaining mental health and well-being should weigh the costs and potential benefits of subscribing to the app. Thus, when developing or implementing apps to provide access to faith and prayer content to various cultural groups, it is critical to keep cost-effectiveness and affordability in mind.

Previous research has demonstrated that overall product satisfaction and perceived quality are directly linked to increased purchase intentions, whereas increased product involvement may indirectly increase purchase intentions through overall satisfaction and perceived product quality [66,67]. Although only half of the sample expressed that it would be easy to pay the monthly fee, participants did say that paying the monthly fee was feasible and were interested in continuing use. Hence, despite some perceived expensiveness of the app, participants reported intent to continue use, likely based on high satisfaction with the app and its high relevance to improving mental and spiritual well-being.
Preliminary Effectiveness on Mental Health and Well-Being

Participants reported improved mental health as a result of using the Pray.com app. Specifically, participants reported significant improvements in mental health symptoms, including decreased stress, depression, and anxiety symptoms, over the course of the study. This was confirmed in the qualitative interviews; interviewees noted that their stress and depression levels decreased because of their increased hope and enjoyment of the present moment as encouraged by app content (eg, daily podcasts, scripture, and songs). In addition, the qualitative interviews suggested that it was easy to search for and access religious content related to stress, depression, and anxiety on the app. Prior work has demonstrated that spirituality can help operate as a buffer against stress and adversity [68]. To the degree that increased involvement with spiritual content can facilitate coping and help individuals in periods of stress, future research should explore potential mediators responsible for such benefits (eg, spiritual meaning [68]) and the contextual factors in which such benefits are maximized.

Interestingly, participants reported an initial hesitancy toward meditation, but interviewees reported that engagement with the meditation content on the app helped them enter a meditative state, which reportedly helped them face problems directly and better absorb information. This is an important finding given that some conservative Christians may hold negative views toward meditation because of its relationship with Buddhism [65]. For example, some more theologically conservative religious individuals may mistrust practices founded on traditions outside their own religion or view them as taboo. Accordingly, there might be hesitation to engage with content that does not squarely align with one’s religiously endorsed practices or that may not be prescribed by one’s religious teachings. Future work should explore the boundary conditions of these hesitations and what predicts such attitudes toward these practices.

Furthermore, the sample reported significantly greater well-being over time over the course of the study (ie, spiritual well-being, religious commitment, life satisfaction, and racial or ethnic identity development). Along these lines, interviewees expressed that engagement with the app (eg, podcasts, scripture reading, and meditations) positively affected their faith, spiritual well-being, and daily spiritual practices. Such findings are consistent with those of previous research suggesting that religious and spiritual identity and engagement are positively associated with well-being across REM groups [22,24,32]. Our findings are also consistent with those of other app-based mental health interventions that suggest that apps may serve as a self-management tool or adjunctive treatment [69,70]. However, app-based interventions have typically lacked diversity in their samples, and therefore, considering the preliminary nature of this study, outcome consistency cannot yet be determined [61].

The finding that participants reported higher levels of racial or ethnic identity over the course of the study was interesting and warrants further exploration. Religion and spirituality have been theorized to be important cultural factors in promoting positive psychological well-being in people of color [17]. For example, in a sample of African American individuals, religious commitment was related to higher levels of racial or ethnic identity and satisfaction with life [23]. It may be that the religious content on the app can provide a way to help encourage positive messages about one’s racial or ethnic identity and help people of color cope with and counter negative messages or narratives related to one’s racial/ethnic identity that are experienced in the broader culture (eg, racism and microaggressions). To be sure, future research sampling from a broader range of REM groups is important.

Given that the literature consistently demonstrates a significant association between religion or spirituality and well-being among REM populations, this app may provide a supplemental digital avenue to increase mental and spiritual well-being among REM groups, with the potential for greater improvement with increased use. This is especially important given the historical lack of access to mental health resources among African American and other REM individuals [71]. Future research should use rigorous methodological designs that rely on random assignment to experimental and control conditions, such as randomized clinical trials, to establish the causal effect of using a faith and prayer app for the purpose of improving mental health and well-being in REM groups.

Mental Health and Well-Being Improvement Association With Objective App Use

There was considerable variability in the degree to which participants used the app. Not all participants adhered to the instructions to use the app 5 minutes a day, 5 days per week. Greater objective app use was associated with decreased stress as well as depressive and anxiety symptoms. On average, participants used the app for 45.83 (SD 111.90) minutes and a total of 5.77 (SD 8.19) days throughout the course of the study. This is not consistent with what participants self-reported, and average app use across the study period was not consistent with what we asked participants to do (use the app for 5 min/d, 5 times/wk). Adherence to web-based and digital interventions is typically lower than that to in-person interventions [72], and future research should implement strategies to promote and ensure participation.

Examining well-being outcomes, objective app use was only significantly associated with an increase in spiritual well-being. Interestingly, improvements in satisfaction with life, religious commitment, and racial or ethnic identity development were not associated with app use. Religious commitment was also high in our sample at baseline as 73% (56/77) always identified with a religion and 26% (20/77) reported that they were new identifiers or reidentifiers, and it may take longer than 4 weeks for a religiously committed sample to observe significant changes in religious commitment. Most participants (57/77, 74%) attended in-person services at least once a week, and almost 25% (18/77, 23%) attended at least once or twice a month, whereas 56% (43/77) participated in a religious group at least once a week and 38% (29/77) participated in a religious group once or twice a month. Religious and spiritual practices outside of an app may be one reason why well-being outcomes significantly improved at the postintervention time point but only spiritual well-being was associated with app use. Future
research should consider testing the use of a technology-mediated religious or spiritual practice against samples who attend and do not attend in-person religious services or activities.

In addition, behavior change is complex and may affect individuals in a variety of ways [73]. It is possible that the amount of behavior requested (5 times a week for 4 weeks) was not appropriate for each participant. Although satisfaction with life, religious commitment, and racial or ethnic identity development outcomes were not significantly associated with app use, merely having access to technology-mediated religious or spiritual practices may have contributed to the significant improvements observed. Others have reported that perceived access may be no less valid than actual access and may be a stronger predictor of use than actual access [67,74]. Future research should assess the amount of time spent in digitally mediated religious and spiritual practices that are feasible and elicit changes in well-being outcomes such as satisfaction with life, religious commitment, and racial or ethnic identity development.

Limitations and Future Research
The results of this study should be interpreted within the context of its limitations. First, this was a feasibility study, and we found initial evidence to our survey that the app was perceived as feasible by participants. Although small effect sizes were observed, clinical significance cannot be determined at this time. We encourage future research that uses a more rigorous methodology that relies on longer study periods and random assignment to experimental and control conditions, such as randomized clinical trials. A longer randomized controlled trial would be beneficial for establishing the causal effect of using a faith and prayer app for the purpose of improving mental health and well-being. Randomization and comparison with a control condition will also limit the potential of confounding factors such as possible COVID-19 impact as well as social and economic characteristics. In addition, all outcome measures were self-reported, and the findings should be interpreted based on the potential bias that self-reporting introduces, such as social desirability bias.

Second, a large percentage of participants who initially responded to our survey were determined to be inauthentic responses (eg, bots and duplicate IP addresses). This is a common problem when using the internet and social media to recruit participants. Once we realized the problem, we implemented additional strategies to ensure data quality, such as bot detection and reCAPTCHA and checking responses. Future research should implement these strategies from the beginning of data collection. In addition, it may be helpful to require a face-to-face meeting with potential participants before they enter the study.

Third, our sample predominantly comprised Black or African American individuals who were aged between 26 and 36 years and reported being affiliated with the Christian faith. Our findings may not be generalizable to other REM populations, age groups, or religious or spiritual faiths. For example, religion or spirituality may be experienced differently by older individuals [75], leading to different needs regarding interventions. In addition, as participants self-selected into the study, they may have had expectancy effects regarding the effectiveness of faith-based interventions and may have experienced confirmation bias regarding the effects of using the app. Future work including using purposeful sampling with greater racial or ethnic, denominational, and age range diversity would be desirable to test the generalizability of our findings. In addition, information from these studies could be used to help increase the cultural and religious inclusivity of the app.

Fourth, because of the web-based and autonomous nature of the study, we were not able to control how many minutes and days the participants actually engaged with the app. At the onset of their participation, participants were instructed to “engage in the app at least 5x/week and at least 5 minutes/day.” Although our results suggest that greater app use was associated with improved mental health symptoms and increased spiritual well-being, the study results may not have captured the full impact of app use as accurately as a study design in a more controlled setting would have. Future research should strive to establish causal mechanisms of a faith-based app that may elicit improved outcomes and use engagement strategies to ensure adequate and appropriate app use to better capture the relationship between technology-mediated religious and spiritual practice and mental health symptoms and well-being. Future research should also collect subscription rates after the study to increase the validity of the feasibility findings.

Conclusions
In conclusion, this is the first study to assess the feasibility of a faith and prayer app for mental health (ie, stress, depression, and anxiety) and well-being (ie, religious commitment, spiritual well-being, satisfaction with life, and racial or ethnic identity) in a sample of REM individuals. Our findings suggest that the use of a faith and prayer app (ie, Pray.com) is feasible and may be significantly impactful for the improvement of mental health symptoms and spiritual well-being in REM individuals and their communities, especially Black and African American individuals. Participants also reported some critical feedback about some of the content as well as about the technological interface of the app. These findings should be interpreted based on the preliminary nature of the study and the context of its limitations. This study lays the foundation for future work to be conducted in REM groups to assess the impact of technology-mediated religious or spiritual practice on health and well-being.

Acknowledgments
The authors would like to thank Todd Hall of Biola University for his contribution in assisting with the institutional review board process.
References

18. Laird et al. JMIR FORMATIVE RESEARCH

Data Availability

The deidentified data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

Authors JNH and DRVT serve on a consulting basis for Pray.com research but receive no incentives from the growth of Pray.com. Author BL is a paid scientist at Pray.com but is not paid for the results of the research, only to conduct the research. Authors SZ and LJ declare they have no financial interests or incentives from the growth of Pray.com. Author JH discloses they have equity stake in Pray.com but equity is not dependent upon the results of the research.

Abbreviations

HADS: Hospital Anxiety and Depression Scale
MEIM: Multigroup Ethnic Identity Measure–Revised
PSS-10: Perceived Stress Scale–10
RCI-10: Religious Commitment Inventory–10
REM: racial and ethnic minority
SWBS: Spiritual Well-Being Scale
SWLS: Satisfaction With Life Scale

Edited by A Mavragani; submitted 07.09.23; peer-reviewed by J Abbas, MA Rusandi, B Chaudhry; comments to author 06.12.23; revised version received 13.12.23; accepted 02.01.24; published 02.02.24.

Please cite as:
Laird B, Zuniga S, Hook JN, Van Tongeren DR, Joeman L, Huberty J
Mental Health and Well-Being in Racial or Ethnic Minority Individuals After Using a Faith and Prayer Mobile App (Pray.com): Feasibility and Preliminary Efficacy Trial
JMIR Form Res 2024;8:e52560
URL: https://formative.jmir.org/2024/1/e52560
doi:10.2196/52560
PMID:38306172

©Breanne Laird, Sabrina Zuniga, Joshua N Hook, Daryl R Van Tongeren, Lynda Joeman, Jennifer Huberty. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Attitudes Toward School-Based Surveillance of Adolescents’ Social Media Activity: Convergent Parallel Mixed Methods Survey

Colin Burke1,2*, PhD; Cynthia Triplett1,3*, MPH, MA; Caryn Kseniya Rubanovich3,4,5, MSc; Melissa M Karnaze3, PhD; Cinnamon S Bloss1,3, PhD

1Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, CA, United States
2Department of Sociology, University of California San Diego, La Jolla, CA, United States
3Center for Empathy and Technology, Institute of Empathy and Compassion, University of California San Diego, La Jolla, CA, United States
4Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, United States
5Joint Doctoral Program in Clinical Psychology, University of California San Diego, La Jolla, CA, United States
* these authors contributed equally

Corresponding Author:
Cinnamon S Bloss, PhD
Herbert Wertheim School of Public Health and Longevity Science
University of California San Diego
9500 Gilman Drive MC0811
La Jolla, CA, 92093-0811
United States
Phone: 1 (858) 534 2230
Email: cbloss@eng.ucsd.edu

Abstract

Background: US schools increasingly implement commercially available technology for social media monitoring (SMM) of students, purportedly to address youth mental health and school safety. However, little is known about how SMM is perceived by stakeholders, including the students who are the focus of these efforts.

Objective: We aimed to assess attitudes toward SMM in schools among 4 stakeholder groups and examine reasons for holding supportive, neutral, or unsupportive views toward the technology. We also sought to explore whether any differences in attitudes were associated with binary sex, race, ethnicity, sexual orientation, or gender identity.

Methods: In October 2019, we conducted a convergent parallel mixed methods web-based survey of young adults (aged 18-22 y; n=206), parents (n=205), teachers (n=77), and school administrators (n=41) via Qualtrics web-based panels. We included Likert-type survey items to assess perceived benefits, risks, and overall support of SMM in schools and test for differences based on stakeholder group or demographic characteristics. We also included open-ended questions, and the responses to these items were analyzed using thematic content analysis of reasons given for holding supportive, neutral, or unsupportive views.

Results: The tests of group differences showed that young adults perceived lower benefit (P<.001) as well as higher risk (P<.001) and expressed lower overall support (P<.001) of the use of SMM in schools than all other stakeholder groups. Individuals identifying as nonheterosexual also perceived lower benefit (P=.002) and higher risk (P=.02) and expressed lower overall support (P=.02) than their heterosexual counterparts; respondents who identified as people of racial and ethnic minorities also perceived higher risk (P=.04) than their White counterparts. Qualitative thematic content analysis revealed greater nuance in concerns about SMM. Specifically, the primary reasons given for not supporting SMM across all stakeholder groups were (1) skepticism about its utility, (2) perceived privacy violations, and (3) fears of inappropriate or discriminatory use of the data. Within the young adult group in particular, concerns were also raised about (4) unintended and adverse consequences, including the erosion of trust between students and school institutions and administrators, and the chronic adverse effects of constant or prolonged surveillance. Thematic analysis also showed that individuals in every stakeholder group who indicated overall support of SMM were likely to cite the potential for enhanced school safety as the reason. Young adults’ overall stances toward SMM were the most polarized, either strongly for or strongly against SMM, and responses from teachers indicated similar polarization but more often favored support of SMM in schools.
Conclusions: This study found differing perspectives among stakeholder groups regarding SMM in schools. More work is needed to assess the ways in which this type of surveillance is being implemented and the range and complexity of possible effects, particularly on students.

KEYWORDS

social media; surveillance; privacy; public health; students; schools; social media monitoring; SMM; school safety; mental health; adolescents

Introduction

Background

In recent years, the United States has witnessed a troubling increase in both youth suicide [1] and incidents of school gun violence [2]. To address these concerning trends, public K-12 schools have implemented security measures, including the increased use of security cameras in schools as well as lockdown drills and protocols, based on data from the National Center for Education Statistics [1]. In addition, according to a recent survey, nearly 90% of school teachers reported that their school used technology during the 2021-2022 school year to track student activity on school-issued and personal devices, such as by accessing the content of students’ internet searches or remotely viewing students’ computer screens in real time [2].

As part of the increased surveillance of students, a growing number of schools have turned to commercially available social media monitoring (SMM) technology, which some companies claim will prevent harms on school campuses by monitoring students’ activity on the web, including, in some cases, activity that occurs outside of school hours [3-5].

SMM technology works by scanning public content posted by students on social media platforms such as Twitter, Facebook, and Instagram for certain words and phrases that might signal a threat of harm to oneself or others, in most cases without the explicit knowledge of students. The next step in the use of this SMM technology is the flagging of posts containing potentially problematic references to harmful behavior, such as suicide or self-harm, bullying, violence, or hate speech. When such posts are detected, the monitoring software alerts school officials, who can then notify teachers and parents or intervene by taking disciplinary measures or contacting school authorities or law enforcement. There is limited transparency regarding the specific workings of SMM (eg, algorithms, training data, and quality control) and limited evidence of its efficacy; for example, general overflagging of lesbian, gay, bisexual, transgender, queer, and similar minority (LGBTQ+)–related words has been noted across some SMM technologies, which raises issues of negative and disproportionate impact on certain groups of students and discrimination more broadly [3].

It has been difficult to determine exactly how many schools in the United States currently use SMM services. One of the first publicized uses of SMM technology was in September 2013, when the Glendale Unified School District in California hired the firm Geo Listening to monitor the social media content of 13,000 middle and high school students residing in their district [4,5]. Since 2013, the number of schools implementing SMM technologies has grown significantly. According to SmartProcure, a database for government purchase orders, in 2018, SMM services were purchased by schools to directly monitor the social media activity of >3 million students across 63 public school districts in the United States. This represented a 10-fold increase from 2013 when just 6 school districts were found by SmartProcure to have purchased such services [6]. More recently, Social Sentinel, a leading provider of SMM services, has claimed that it serves “thousands of schools in more than 35 states” [7]. The increasing frequency of anecdotal reports of SMM use in the media, usually in response to episodes of gun violence in schools, is consistent with this trend; for example, after the tragic shooting at Robb Elementary School in Uvalde, Texas, in May 2022, The Dallas Morning News reported that Uvalde was among at least 52 school districts in Texas alone that hired the firm Social Sentinel to monitor the social media content of its tens of thousands of students with the purported goal of preventing harm to students [7,8]. This statistic for just 1 SMM company may be a conservative estimate of school-based SMM across the United States.

Contrary to what might be expected, studies of general school surveillance practices suggest associations with decreased student perceptions of safety [9-12]; for instance, 1 study found that the use of security cameras outside of school was associated with higher perceived safety, but the use of cameras inside was associated with lower perceived safety, support, and equity [13]. Another study of American middle and high school students found that visible security measures (cameras, guards, and metal detectors) were associated with higher odds of students’ fear of exposures to violence, bullying and other harms at school [14]. Furthermore, a meta-analysis of qualitative studies found that students thought that the presence of closed-circuit television cameras often resulted in risky behaviors shifting from monitored areas to less-monitored areas (eg, hallways and restrooms) [15]. A 2021 survey conducted by the Center for Democracy and Technology also reported the “chilling” effects of web-based surveillance [16]. Specifically, 6 out of 10 students reported feeling uncomfortable expressing their true thoughts and feelings on the web if they knew they were being monitored. The report argued that chilling effects that curb exploration and self-expression could be especially problematic for minors and might also make students less likely to seek web-based resources for mental health, to their detriment [16].

Youth and minoritized communities are also likely to disproportionately experience unintended adverse effects of surveillance; for instance, the Center for Democracy and Technology report also speculated that web-based monitoring might pose a risk that LGBTQ+ students may be outed as a result of surveillance [16]. In addition, some minoritized youth
have more fraught relationships with institutions such as law enforcement or disciplinary frameworks; for example, students of color are known to face higher rates and severity of punishment than their White peers, and thus, if surveillance leads to punishment, the effects of surveillance are more likely to fall on them. In fact, there is anecdotal evidence that school-based SMM has led to false positives [17], particularly with students of color. In addition, SMM algorithms may not accurately process content written in nonstandard English or languages other than English, and therefore SMM can disproportionately single out and label as dangerous students who are more likely to use nonstandard English or slang [6].

Objectives

Although schools are increasingly deploying SMM technology, there has been no systematic assessment of how it is perceived by school stakeholders or how it might affect the students whom it purportedly aims to help. To address this gap, we conducted an exploratory survey assessing attitudes toward SMM in schools among 4 key stakeholder groups: school administrators, teachers, parents, and young adults. This survey included both closed-ended quantitative and open-ended qualitative questions to assess stakeholders’ attitudes. As a secondary aim, we also sought to statistically test for any differences in attitudes as a function of stakeholders’ self-reported gender, race, ethnicity, and sexual orientation.

Methods

Ethical Considerations

This study was reviewed and approved by the University of California, San Diego Office of Institutional Review Board Administration (191060) and received a waiver of signed consent. Each participant provided informed consent via radio button selection at the bottom of the web-based landing page that included written information about the study. Survey participants were compensated by Qualtrics.

Recruitment

From October 7 to 15, 2019, we conducted an 8-minute web-based survey of young adults and parents via Qualtrics web-based consumer panels, as well as of teachers and administrators via Qualtrics web-based business-to-business panels. Participants on these panels are recruited from various sources, including website recruitment, member referrals, targeted email lists, gaming sites, customer loyalty web portals, permission-based networks, and social media. Qualtrics validates consumer panel members’ names, addresses, and dates of birth via third-party measures, and panel members are subject to additional quality control measures such as LinkedIn matching, telephone calls to the participant’s place of business, and other third-party verification methods (provided by companies such as TrueSample, RelevantID, and Verity). Although we originally desired to have an equal representation of teachers and administrators, this was not feasible owing to cost for the recruitment service. We also oversampled parents and young adults with the reasoning that, to date, these groups have been largely absent from dialogue and decision-making pertaining to SMM.

Eligibility and Screening

Young adults were eligible if they were aged between 18 and 22 years and either a high school graduate or current high school student. Parents were eligible if they had children aged between 14 and 22 years. Teachers and administrators were eligible if they were employed in the education industry and were middle or high school teachers or administrators. For teachers and administrators, Qualtrics used a combination of the profiled information they had on file to target these professionals and screening questions at the beginning of the survey to confirm information for the specific survey respondents who qualified for the survey.

Survey Design

The survey measure included (1) screening questions (4-7 items, dependent on skip logic), (2) basic demographic questions (8 items), and (3) questions soliciting views about SMM (9 items) that were modeled after another survey on public views of genome editing [18]. In the last category (Multimedia Appendix 1), there were 7 items that were measured on a 7-point Likert-type scale ranging from 1=strongly disagree to 7=strongly agree: 3 items asked about the perceived efficacy of SMM for addressing school-related violence, bullying, and mental health issues (ie, potential benefits of SMM); 3 items asked about the level of concern for SMM as it relates to privacy, data misuse, and discrimination (ie, potential risks of SMM); and 1 item asked about the overall level of support of the use of SMM in schools. There were also 2 open-ended questions: “Please describe how you feel about middle schools and high schools monitoring students’ social media activity.” “Is there anything else you would like to share about this issue?” This combination of closed- and open-ended questions reflects our use of a convergent parallel mixed methods design in which the quantitative and qualitative data collection occurred concurrently.

Data Collection

We defined sample size quotas for the survey that aimed to collect responses from 200 young adults, 200 parents, 60 teachers, and 40 administrators. Qualtrics distributed the survey via a dashboard service whereby the survey would appear on a panel member’s dashboard if their profile indicated that they potentially met the inclusion criteria. We estimate that the survey was made available to between 14,400 to 16,000 individuals via this method, and 1600 individuals clicked a link to view the study information and consent page for the study. Of these 1600 individuals, 690 (43.13%) provided consent to participate in the study. Study data were collected and managed using the Qualtrics web-based survey platform. A soft launch to pilot-test the survey and check for any administration problems collected 30 responses that were used to establish quality benchmarks. Once data collection closed, responses were reviewed for completeness and quality in 2 phases. First, Qualtrics research panel staff filtered out all respondents who did not complete the survey or who completed the survey in less than half the median response time. Second, study team members filtered out any respondents who left gibberish in response to the open-ended questions.
Data Analysis

Overview

We generated descriptive statistics to summarize and compare the sociodemographic characteristics of study participants. Quantitative data analyses were conducted using SPSS software (version 28.0; IBM Corp), and significance was set at \(P < .05 \) for all analyses. To enhance interpretability, an SMM benefits score was created by summing responses on the first 3 survey items pertaining to potential benefits from SMM (ie, to help address mental health, bullying, and threats of harm or violence; range: 3–21, with higher scores suggesting greater perceived benefits). Across this set of survey items, the Cronbach \(\alpha \) value was .853, indicating high internal consistency. An SMM risks score was created by summing responses on the next 3 survey items pertaining to the potential risks of SMM (ie, it potentially violates privacy, leads to abuse or misuse of information, and leads to potential discrimination; range: 3–21, with higher scores suggesting greater perceived risks), and the Cronbach \(\alpha \) value was .828. The final quantitative survey item assessed overall support of SMM in schools.

Quantitative Analyses

We used 1-way analysis of covariance and Bonferroni-adjusted post hoc pairwise comparisons to test for statistically significant differences among the 4 stakeholder groups on (1) SMM benefits, (2) SMM risks, and (3) overall support, controlling for sex (female vs male), race and ethnicity (non-Hispanic White vs all other groups), and sexual orientation (heterosexual vs all other groups). Partial eta–squared (\(\eta^2_p \)) was used as a measure of effect size, and the values of 0.01, 0.06, and 0.14 represent small, medium, and large effects, respectively [19]. To examine our second question regarding differences in the perceptions of SMM as a function of demographic characteristics, a series of independent samples 2-tailed \(t \) tests were conducted on the full sample to compare SMM benefits, SMM risks, and overall support of SMM by sex (female vs male), race and ethnicity (non-Hispanic White vs all other groups), and sexual orientation (heterosexual vs all other groups).

Qualitative Analyses

In analyzing the 2 open-ended questions, most participants answered such that their response to the second open-ended question was an extension of their answer to the first open-ended question. Thus, we considered responses to both items together and conducted thematic analysis with a contextualist lens [20]. Our inductive approach began by studying the short responses repeatedly to identify commonly discussed content, generating a list of 15 initial codes. A single coder then collated and refined the codes into a list of themes. As a final step, we integrated the data by merging the quantitative results with the qualitative results [21]. Specifically, the qualitative comments were sorted and read to identify similarities and differences within and among stakeholder groups, demographic groups, and levels of overall support of SMM in schools. In this way, we used triangulation to yield a more holistic understanding of the data and draw the conclusions set forth in the results presented.

Results

Sample Characteristics

A total of 690 individuals entered and consented to the survey. Of the 690 responses, 161 (23.3%) were identified as poor-quality completes and were removed from the data set. This yielded a final survey sample of 529 participants, which included young adults (n=206, 38.9%), parents (n=205, 38.8%), teachers (n=77, 14.6%), and school administrators (n=41, 7.8%). Table 1 provides descriptive statistics of the demographics of our sample.

Table 1. Descriptive statistics: Demographics of survey participants (n=529).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Administrators (n=41)</th>
<th>Teachers (n=77)</th>
<th>Parents (n=205)</th>
<th>Young adults (n=206)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean (SD)</td>
<td>46.9 (12.9)</td>
<td>41.1 (10.6)</td>
<td>48.8 (10.9)</td>
<td>21.0 (1.3)</td>
</tr>
<tr>
<td>Sex: female, n (%)</td>
<td>32 (78)</td>
<td>48 (62.3)</td>
<td>119 (58)</td>
<td>117 (56.8)</td>
</tr>
<tr>
<td>Race and ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
<td>8 (3.9)</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (2.4)</td>
<td>3 (3.9)</td>
<td>10 (4.9)</td>
<td>12 (5.8)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>5 (12.2)</td>
<td>9 (11.7)</td>
<td>14 (6.8)</td>
<td>30 (14.6)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4 (9.8)</td>
<td>4 (5.2)</td>
<td>20 (9.8)</td>
<td>49 (23.8)</td>
</tr>
<tr>
<td>Native Hawaiian or other Pacific Islander</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>30 (73.2)</td>
<td>62 (80.5)</td>
<td>170 (82.9)</td>
<td>132 (64.1)</td>
</tr>
<tr>
<td>>1 race</td>
<td>3 (7.3)</td>
<td>2 (2.6)</td>
<td>6 (2.9)</td>
<td>11 (5.3)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (4.9)</td>
<td>1 (1.3)</td>
<td>4 (2)</td>
<td>10 (4.9)</td>
</tr>
<tr>
<td>Sexual orientation: heterosexual, n (%)</td>
<td>40 (97.6)</td>
<td>73 (94.8)</td>
<td>192 (93.7)</td>
<td>157 (76.2)</td>
</tr>
</tbody>
</table>
Quantitative Results

Stakeholder Group Comparisons

There were significant differences by stakeholder group in perceived SMM benefits, SMM risks, and overall support of SMM after controlling for sex, race, ethnicity, and sexual orientation. Table 2 provides the results of the analysis of covariance analyses, and Figure 1 shows the proportions within each group who were supportive, neutral, or unsupportive of SMM. Follow-up pairwise comparisons (data not shown) found that young adults were significantly different from all other groups and by comparison perceived lower benefit, higher risk, and less overall support of use of SMM in schools than parents, teachers, and administrators.

Table 2. Stakeholder group perceptions of social media monitoring (SMM) benefits, SMM risks, and overall support of SMM.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Administrators, mean (SD)</th>
<th>Teachers, mean (SD)</th>
<th>Parents, mean (SD)</th>
<th>Young adults, mean (SD)</th>
<th>F test (df)</th>
<th>P value</th>
<th>η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMM benefits (range: 3-21)</td>
<td>16.93 (3.12)</td>
<td>16.92 (3.37)</td>
<td>16.39 (3.74)</td>
<td>14.05 (4.48)</td>
<td>12.68 (3,519)</td>
<td><.001</td>
<td>0.068</td>
</tr>
<tr>
<td>SMM risks (range: 3-21)</td>
<td>12.20 (4.51)</td>
<td>12.83 (4.75)</td>
<td>13.60 (4.77)</td>
<td>15.21 (3.95)</td>
<td>7.11 (3,519)</td>
<td><.001</td>
<td>0.039</td>
</tr>
<tr>
<td>Overall support of SMM (range: 1-7)</td>
<td>4.76 (1.58)</td>
<td>4.92 (1.71)</td>
<td>4.91 (1.64)</td>
<td>3.84 (1.81)</td>
<td>14.02 (3,519)</td>
<td><.001</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Figure 1. Overall opinion about the use of social media monitoring in schools by stakeholder group. Using data from question 7 of the survey, we collapsed all the agree categories (strongly agree, agree, and somewhat agree) into supportive and all the disagree categories (strongly disagree, disagree, and somewhat disagree) into not supportive; neutral refers to responses of neither agree nor disagree.

Demographic Group Comparisons

There were also significant differences by sexual orientation, race, and ethnicity. Specifically, nonheterosexual individuals perceived significantly lower benefit, higher risk, and less overall support of the use of SMM than their heterosexual counterparts. In addition, individuals identifying as people of racial and ethnic minorities perceived significantly lower benefit and higher risk than their non-Hispanic White counterparts. Tables 3, 4, and 5 provide the results of the 2-tailed t tests. There were no significant differences as a function of sex.

Table 3. Demographic group (sex) perceptions of social media monitoring (SMM) benefits, SMM risks, and overall support of SMM (n=526).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sex, mean (SD)</th>
<th>t test (df)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male (n=210)</td>
<td>Female (n=316)</td>
<td></td>
</tr>
<tr>
<td>SMM benefits (range: 3-21)</td>
<td>15.21 (4.17)</td>
<td>15.87 (4.40)</td>
<td>−1.8 (524)</td>
</tr>
<tr>
<td>SMM risks (range: 3-21)</td>
<td>14.10 (4.30)</td>
<td>13.93 (4.72)</td>
<td>0.41 (524)</td>
</tr>
<tr>
<td>Overall support of SMM (range: 1-7)</td>
<td>4.38 (1.79)</td>
<td>4.56 (1.78)</td>
<td>−1.18 (524)</td>
</tr>
</tbody>
</table>
Table 4. Demographic group (sexual orientation) perceptions of social media monitoring (SMM) benefits, SMM risks, and overall support of SMM (n=529).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sexuality, mean (SD)</th>
<th>t test (df)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heterosexual (n=462)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMM benefits (range: 3-21)</td>
<td>15.86 (3.95)</td>
<td>3.19 (77.67)</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>13.78 (5.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMM risks (range: 3-21)</td>
<td>13.84 (4.55)</td>
<td>−2.4 (527)</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>15.27 (4.53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall support of SMM (range: 1-7)</td>
<td>4.55 (1.76)</td>
<td>2.3 (527)</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>4.01 (1.90)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Demographic group (race and ethnicity) perceptions of social media monitoring (SMM) benefits, SMM risks, and overall support of SMM (n=529).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Race and ethnicity, mean (SD)</th>
<th>t test (df)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Hispanic White (n=349)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMM benefits (range: 3-21)</td>
<td>15.85 (3.96)</td>
<td>1.94 (527)</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>15.11 (4.53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMM risks (range: 3-21)</td>
<td>13.73 (4.68)</td>
<td>−2.08 (527)</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>14.59 (4.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall support of SMM (range: 1-7)</td>
<td>4.53 (1.82)</td>
<td>0.78 (527)</td>
<td>.44</td>
</tr>
<tr>
<td></td>
<td>4.40 (1.72)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualitative Results

Overall Stances Toward SMM and Stakeholder Group Differences

Generally, responses from the young adult cohort were the most polarized, with most respondents being either strongly in favor or strongly against the use of SMM in schools. Responses from teachers indicated similar polarization, but they were more commonly in favor of school-based SMM.

Reasons to Support SMM

Across all stakeholder groups, among those who indicated that they supported the use of SMM, the primary reason offered for this support was its potential utility to assist in identifying or preventing violence and bullying. One respondent noted as follows:

Kids are bullied every single day and are taking their lives. They won’t hardly talk to anyone and it mostly happens on Facebook or Instagram and things of that sort. I believe it would be a good idea to slightly monitor social media. [Young adult respondent 3MtgW]

Another respondent stated that SMM might be a valuable service “if watching children’s social post[s] could save a child from bullying, suicide or abuse” (Parent respondent 23gc8). Surveillance, according to respondents, could be a tool in a school or school district’s safety toolbox as “an extra layer of protection to make sure the school is safe” (Teacher respondent YQzyo) and “no different [than] installing metal detectors to screen for weapons” (Administrator respondent 3MGxE).

Justification for respondents’ support ranged from feeling that SMM was “a necessary evil” (Parent respondent 27JO1) to feeling that SMM was “absolutely necessary” (Teacher respondent 3fjYb) and “a good and wise thing to do” (Young adult respondent BKwWJ).

Reasons for Concern About SMM

Overview

Across the stakeholder groups, individuals who were unsupportive of SMM cited similar reasons for their stance. Specifically, our qualitative analysis showed that the primary reasons given for not supporting SMM that were cited across all stakeholder groups were (1) skepticism about its utility, (2) perceived privacy violations, and (3) fears of inappropriate or discriminatory use of the data captured in SMM reports. Importantly, the critics of SMM also felt that SMM in schools could lead to (4) unintended and adverse consequences, such as the erosion of trusted relationships among students, parents, and schools or the chronic adverse effects of constant or prolonged surveillance. We expand on each of these areas in the following subsections, and additional relevant quotes are provided in Textbox 1.
Skepticism About the Utility of SMM

- Administrators: “Sometimes the content posted can also be figurative speech so you can’t really determine if they mean it or not. Example: ‘I’m so going to kill you.’ 99% of the time that term is used jokingly.” (Administrator respondent 6JO0U)
- Teachers: “Well, I’m not sure how it would be done. It’s not easy to monitor...Hiring a social media monitoring staff seems just a bit too far for me. My school uses Twitter and Facebook to interact with students but there are so many app based forums which are far more popular with the youth. As is typical, us adults are ten years behind the kids in terms of tech.” (Teacher respondent 2YJac)
- Parents: “[I] post things on social media that I can understand but it may not exactly tell you who I am as a person. I’m not sure how true to light you can actually see a person as far as social media goes.” (Parent respondent 3Gv1Z)
- Young adults: “[S]tudents would feel very violated and would try not to post revealing content or get around this by making another account with fake information.” (Young adult respondent 2rMEm)

Perceived Privacy Violations

- Administrators: “Invasion of privacy and over reach of responsibility.” (Administrator respondent 2CVC0)
- Teachers: “The harms and benefits of surveillance aren’t mutually exclusive. It’s a question of which are more important. In my opinion privacy and misuse are a bigger concern than mental health and bullying. There are other ways to deal with those problems. On the other hand, there are fewer ways to protect the students privacy and prevent schools from abusing their power. Who is watching the watcher?” (Teacher respondent 25G66)
- Parents: “What happens to the data and how are concerns then addressed! Schools often seem to do a poor job of intervening when kids are being bullied even without access to online social media accounts!” (Parent respondent 2vktc)
- Young adults: “I feel like it can help see bullying in schools and some threats to the school, but it does violate privacy. When a student steps into their freedom are revoked, but once they are out of school they have a right to privacy and monitoring would take away from that right.” (Young adult respondent 22Gqu)

Fears of Inappropriate or Discriminatory Use of Data

- Administrators: “I have concerns that middle and high school staffs are not fully equipped to deal with bullying and school violence. I fear that certain students from certain backgrounds will be discriminated against based on what they write/say on social media platforms.” (Administrator respondent 3241I)
- Teachers: “I am concerned how the information would be used—who would be ‘singled’ out for further actions?” (Teacher respondent 1GPQI)
- Parents: “I’m afraid schools will abuse it and students will get in trouble for every little thing school administration disapproves of.” (Parent respondent 3CUT0)
- Young adults: “I think it’d be a good idea but I also think that a lot of teachers would mistreat some students. I’ve had it happen to me before over something I didn’t even post and I can tell you it made me more depressed than before. The idea is good but you can’t trust teachers to be fair, they are only human and it could really hurt a student’s mental health when the teachers act like children themselves.” (Young adult respondent 2dM7k)

Skepticism About the Utility of SMM

The main question raised by those who did not support the use of SMM in schools was whether any SMM company, presumably operated by adults, could accurately and reliably catch troubling posts. Some felt that once students were aware of the monitoring, they would simply make their posts private, rendering the monitoring efforts ineffective. Stakeholders were also doubtful that teachers and administrators could correctly interpret students’ social media posts, given the loss of context and the challenge of deciphering irony in web-based messages. Finally, stakeholders questioned the overall feasibility of SMM because “adults are ten years behind the kids in terms of tech” (Teacher respondent 2YJac). On this point, another respondent wrote that “the threats are made through apps 9 times out of 10 where the message disappears” (Parent respondent yNHHU), referring to apps that allow users to send text messages that are automatically deleted after a period of time or once read by the recipient.

Perceived Privacy Violations

A major concern expressed by those who were unsupportive of the use of SMM was that monitoring would violate student privacy because “kids have the right to a life outside of school” (Teacher respondent 2fkRi) and such monitoring “removes a space where students can feel totally free to be themselves” (Young adult respondent 1mjXY). Other comments expressing concern ranged from those who simply stated that SMM was an invasion of privacy to those who felt discomfort with schools taking such actions:

[I]It feels a bit weird. Like an over reaching of boundaries. It just feels not right for schools to be monitoring personal social media accounts usually meant for friends or family. [Young adult respondent 3QF2F]

The words “private” or “privacy” were explicitly mentioned in roughly a third of all young adult and administrator comments (72/206, 35.5% and 16/41, 39%, respectively), whereas parents and teachers mentioned these words less often (27/205, 13.2% and 15/77, 19%, respectively).
Fears of Inappropriate or Discriminatory Use of Data
The most frequently cited concern among those who were not supportive of SMM was the potential for SMM reports to be used in discriminatory ways (eg, discriminatory punishment). However, these concerns were raised primarily by young adults and parents, with teachers and administrators citing this concern in only 2 instances. Respondents worried that SMM might “become too far reaching and subjective” (Parent respondent 3iqKX). Young adults, in particular, feared that they would get in trouble for simply “posting what they feel like or how they feel” (Young adult respondent 1dnr8) “because staff at the school may not agree with posts or get offended by them and cause them to feel negatively toward that student and treat them unfairly” (Young adult respondent WjMZk). More broadly, respondents across all stakeholder groups recognized the possibility for SMM to exacerbate unconscious or conscious biases.

Unintended and Adverse Consequences
Finally, respondents wondered how the use of SMM might have some unforeseen and adverse impact:

* It is a slippery slope...It seems like a good idea as far as safety, but I worry about what the information could be used for and if it will cause more trouble than good. [Administrator respondent 2SIJs]*

Young adult stakeholders, in particular, raised specific concerns about the potential for SMM to have the opposite of its intended effect (bold emphasis added by the authors); for instance, a young adult respondent noted the potential psychological and behavioral impact of SMM:

* If I were to be monitored, I would simply not use social media at all. The idea of people overlooking my online presence is anxiety-inducing and should not be allowed. [Young adult respondent 3lXio]*

Similarly, another young adult respondent stated as follows:

* Monitoring students constantly can lead to a sense of paranoia as students are constantly being watched in real life, by their parents, teachers and if monitoring is enabled on social media. [Young adult respondent 1lirF]*

A different young adult respondent brought up the potential chilling effect of SMM on students:

* I feel like schools monitoring students’ social media activity is like being a helicopter parent which isn’t necessarily bad, but it may restrict the student’s freedom knowing they’re always watched, that if they say something someone doesn’t agree with, they may be punished. [Young adult respondent 2uy40]*

Another young adult respondent pointed out the potential strain on students’ relationship with educational institutions:

* That’s a big overstep, also considering developmental psychology of that age group that seems like it would not go over well at all with the students and would brew animosity towards the schools. [Young adult respondent 32JeH]*

All these examples indicate that young adults felt that SMM in schools, contrary to its stated purpose, might increase feelings of anxiety and paranoia, potentially leading to detrimental mental health outcomes and ultimately worsening student relationships with teachers, administrators, and the school system overall.

Discussion
Principal Findings
This study assessed attitudes toward SMM in schools and identified similarities and differences across groups of young adults, parents, teachers, and school administrators, as well as across demographic groups. We found that the young adults we surveyed perceived lower benefit as well as higher risk and expressed lower overall support of the use of SMM in schools than all other stakeholder groups. In addition, individuals identifying as nonheterosexual also perceived lower benefit as well as higher risk and expressed lower overall support than their heterosexual counterparts. Respondents identifying as people of racial and ethnic minorities also perceived higher risk than those identifying as White. Qualitative thematic analysis highlighted the nuances of stakeholder attitudes and found that individuals in every stakeholder group who indicated support of SMM were likely to cite enhanced school safety as the reason. Individuals who were unsupportive cited skepticism about the utility of SMM, perceived privacy violations, and fears of inappropriate or discriminatory use of data. Young adults, in particular, also raised concerns about unintended consequences, including the erosion of trust between students and school institutions and the chronic adverse effects of constant or prolonged surveillance. Taken together, this study provides some of the first empirical documentation of stakeholders’ attitudes toward the use of SMM technologies in schools and is a first step toward generating needed discourse around this emerging technology.

Although we anticipated a priori that young adults would express the most unfavorable views of SMM, the qualitative responses we received indicated that this group thoughtfully considered potential benefits as well as potential drawbacks of SMM in schools. Specifically, young adults across the board, including those who were neutral or generally supportive of SMM, raised concerns about privacy and discrimination. This suggests that even young adults who favor school-based SMM may be concerned about potential harms to students, including that it could lead to negative mental health outcomes, the opposite of its intent. These findings suggest that young people do see problems or concerning trends in their schools and see a need for intervention but are skeptical about whether SMM is an appropriate or effective solution to such problems. The young people in our survey also demonstrated a keen awareness of trends in social media and web-based communication that SMM service providers and clients need to be aware of when using SMM and interpreting social media content.

The diverging viewpoints between young adults and the other stakeholder groups is also an essential finding because students are the primary targets of SMM; yet, they have had very little decision-making power in the implementation of these
surveillance systems. The skepticism among young people toward these technologies further problematizes their general absence from the decision-making process, especially when schools that use SMM services often do so without students’ consent and, in some cases, without their knowledge [22]. Our results highlight how schools that consider or implement SMM should at a minimum engage in dialogue with students and recent graduates and consider how to make surveillance practices and policies more transparent. More research is also needed to better understand young adults’ concerns about currently evolving technologies and surveillance methods to minimize potential harm to students. This is particularly relevant for those who are not yet adults and may have fewer legal protections should school-based actions be taken against them based on social media data received from SMM companies. Similarly, constructing policies and ethical standards for SMM in schools would require bridging any gaps between the perceptions and knowledge of young adults and those of other stakeholder groups, perhaps by developing shared conceptual frameworks.

Expressed skepticism about SMM efficacy is also particularly salient, given that SMM continues to operate as a quickly moving target. The tragic school shooting in Uvalde, Texas, provides an unfortunate example of a case when SMM in schools did not function as claimed. The Dallas Morning News reported that according to records from GovSpend, an organization that tracks state and local government spending, the Uvalde Consolidated Independent School District was among at least 52 Texas school districts that hired Social Sentinel to monitor the social media activity of its tens of thousands of students [7,8]. However, like other SMM service providers, Social Sentinel only monitors public social media activity and, consequently, was unable to detect the shooter’s private communications related to the shooting [23]. The failure of SMM to prevent this tragedy has raised questions about the efficacy of such technologies and whether the potential harms of SMM might outweigh the potential good [24]. Our findings suggest that any cost-benefit analysis of SMM in schools must directly probe perceived costs and benefits from the members of all stakeholder groups and seek to recruit individuals across the spectrum of attitudes because, although there were commonalities in attitudes expressed across participants, the groups did diverge on issues. In particular, discrimination was more important to parents and young adults than to administrators, and the group approximating the population considered vulnerable of school-attending youth—young adults—provided richer descriptions of unintended consequences, of which other stakeholder groups and SMM companies need to be aware. It will also be important to gather insights from the public and individuals situated within the technology industry and predictive sciences who can provide expert opinion on what constitutes efficacy regarding purported SMM benefits.

We found that SMM perceptions also significantly differed by respondent sexual orientation such that nonheterosexual respondents saw fewer benefits (P=.002) and greater risks of SMM (P=.02), leading to less overall support of SMM (P=.02). LGBTQ+ individuals, as a group, have been reported to be frequent social media users [25], more so than heterosexual individuals [26] or the general public [27]. Previous literature has underscored the importance of social media for LGBTQ+ individuals. Specifically, social media is used as a space for identity exploration, social support, making platonic or romantic connections, and finding resources [28,29]. Moreover, social media has been described as a “safe space” [30] for LGBTQ+ youth. Given the levels of anonymity [31] or privacy settings [32] that social media can afford, LGBTQ+ individuals can manage how or whether to disclose their identities as well as express themselves more fully with less fear of stigma or marginalization than with in-person interactions. Through this lens, SMM might continue to disproportionately affect LGBTQ+ individuals and jeopardize the safety and anonymity they feel in using social media. We also found that the perceptions of SMM risks differed by race and ethnicity such that people racial and ethnic minority respondents perceived greater risks. This finding may be explained by the “racial discipline gap” [33] or the disproportionate rate of school disciplinary sanctions against students of color. Given the long history of differential disciplinary treatment (eg, suspensions and expulsions) of students belonging to racial and ethnic minority groups compared with their non-Hispanic White counterparts, respondents may have concerns about the potential inequitable disciplinary actions taken as a result of SMM surveillance.

More broadly, some of these concerns have also been underscored by a recent US Congressional investigation [34] of 4 educational technology companies, which found that their surveillance platforms may be misused for disciplinary purposes, that surveillance often occurs around the clock (with alerts sometimes bypassing school personnel and going straight to law enforcement), and that parents are not adequately informed. This investigation concluded that “these surveillance products may continue to put students’ civil rights, safety, and privacy at risk” [34] and called on “the federal government...to track the potential impacts of student surveillance technology on students in protected classes...and work to ensure that products used by schools maintain student safety and privacy.” Our study seeks to answer this call to action by generating new insights about stakeholder perceptions of SMM. Moreover, although this study takes 1 step in this direction, more discussion among key stakeholder groups is essential to enhancing awareness and understanding of these technologies and their potential consequences. Failure to do so could have significant consequences, including the erosion of trust among stakeholders, such as students, parents, and educational institutions. Youth mental health and school safety are both urgent and increasingly complex societal challenges, and SMM represents an effort to look to science and technology for a solution. However, per the “technologies of humility” espoused by Jasanoff [35], we must reflect carefully on the ethical dimensions of this landscape and seek to understand and alleviate vulnerability to harm and be mindful of the distribution of risks and benefits.

The need for greater discourse in this area has also been amplified by the COVID-19 pandemic because the blurring of educational and digital spaces has led, and likely will continue to lead, to greater adoption of digital monitoring technologies. The expansion of school administrators’ guardianship and jurisdiction over students beyond school grounds and into digital
spaces is likely to continue in this environment, meaning that critical scholarship and further investigation into these technologies are urgently needed. This urgency is further underscored by the lack of tangible and effective solutions to ongoing issues around youth violence, bullying, and suicidality. The immense pressure on schools to address such issues will likely lead to the further adoption of SMM without fully considering the potential consequences and harm that may result from such decisions.

This work has some limitations. First, we designed this as an exploratory survey, and thus the items were not validated for specific populations. Future surveys that use validated measures could more meaningfully probe associations between attitudes toward SMM and the characteristics of students. One future direction could be to use the insights from the qualitative data to inform the creation of more specific survey items assessing the perceived benefits and risks of SMM. Second, our findings reflect a sample of convenience, and future studies should seek to obtain nationally representative samples and samples with higher response rates. Third, although the data collected by our open-ended questions were valuable for our analysis, future studies might use in-depth interviews and focus groups to gain a deeper understanding of stakeholder attitudes and beliefs. Finally, this work did not survey current middle or high school students, which would be a fruitful approach in future work to gain more direct insight into young people’s perspectives and attitudes toward SMM.

Conclusions

The results of this study reveal commonalities as well as divergences across stakeholder groups, both in surveyed attitudes regarding SMM in schools and open-ended responses provided directly by participants. The results also highlight the need for greater inclusion of individuals identifying as members of marginalized groups. Future research could examine what steps can be taken to foster greater inclusion of these groups in dialogue and decisions regarding the use of SMM in schools and investigate the real and potential harms and consequences of the use of SMM technologies for those being surveilled.

Acknowledgments

This work was supported by the Center for Empathy and Technology and the National Human Genome Research Institute (R01 HG008753; principal investigator: C Bloss). The authors thank the participants of the study.

Conflicts of Interest

None declared.

Multimedia Appendix 1
Social media monitoring exploratory survey.

References

34. Warren, Marky investigation finds that EdTech student surveillance platforms need urgent federal action to protect students. Office of U.S. Senator. URL: https://www.warren.senate.gov/oversight/letters/warren-marky-investigation-finds-that-student

Abbreviations

LGBTQ+: lesbian, gay, bisexual, transgender, queer, and similar minority
SMM: social media monitoring

©Colin Burke, Cynthia Triplett, Caryn Kseniya Rubanovich, Melissa M Karnaze, Cinnamon S Bloss. Originally published in JMIR Formative Research (https://formative.jmir.org), 06.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Internet Use and Effects on Mental Well-being During the Lockdown Phase of the COVID-19 Pandemic in Younger Versus Older Adults: Observational Cross-Sectional Study

Chou Chuen Yu1*, BSc, MSc, PhD; Nien Xiang Tou1*, BSc, PhD; James Alvin Low1,2*, MBBS, MRCP (UK)

1Geriatric Education and Research Institute, Singapore, Singapore
2Khoo Teck Puat Hospital, Singapore, Singapore
*all authors contributed equally

Corresponding Author:
Chou Chuen Yu, BSc, MSc, PhD
Geriatric Education and Research Institute
2 Yishun Central 2
Singapore, 768024
Singapore
Phone: 65 68078024
Email: yu.chou.chuen@geri.com.sg

Abstract

Background: Majority of individuals, including both younger and older adults, had to adapt to digital means to cope with lockdown measures and pandemic-induced lifestyle changes during the COVID-19 pandemic. While internet accessibility was beneficial during the pandemic, existing literature suggests that excessive use could lead to the rise of problematic internet use in adolescents and younger adults. However, the effects on older adults remain unclear.

Objective: This study aimed to examine differences in internet use during the lockdown phase of the COVID-19 pandemic and explore how age differences in mental health could be explained by time spent on the internet.

Methods: A door-to-door survey of a nationally representative sample of 602 adults in Singapore was carried out using computer-assisted personal interviewing during the early phase of the COVID-19 pandemic (October to November 2020). Participants were categorized into younger (21-59 years old) and older (60 years or above) age groups. We assessed self-reported measures of depression, anxiety, and stress; psychosocial adaptability; ability to perform essential activities; social support; health status; digital media use patterns, and time spent on the internet. Procedures complied with existing safe distancing measures.

Results: Older adults reported being less able to use digital platforms to meet needs and acquire information updates compared with younger adults during the lockdown period of the pandemic. Older adults spent significantly less time on the internet for both work and personal uses per day (mean 146.00 min, SD 9.18 min) compared with younger adults (mean 433.27 min, SD 14.32 min). Significant age differences in depression, anxiety, and stress were found, with younger adults showing poorer mental health. Mediation analysis showed that age differences in depression, anxiety, and stress were partially explained by time spent on the internet. These variables together explained 43%, 40%, and 40% of the variances in depression, anxiety, and stress scores, respectively.

Conclusions: The findings showed that younger adults spent significantly more time on the internet compared with older adults during the lockdown phase of the pandemic. They were also ahead in their ability to use digital resources to meet needs and engage socially compared with older adults. Despite this, the mental health of younger adults was poor, and this was partially accounted for by the amount of time spent on the internet. Since past research suggests that excessive time spent on the internet could lead to disordered use, the benefits brought by digital technologies could have been attenuated during the lockdown phase of the pandemic. Considering this potential negative effect, it is imperative to educate both young and old adults in the appropriate use of information and communication technology.

(JMIR Form Res 2024;8:e46824) doi:10.2196/46824

https://formative.jmir.org/2024/1/e46824

JMIR Form Res 2024 | vol. 8 | e46824 | p.711
(page number not for citation purposes)
KEYWORDS
COVID-19; digital divide; well-being; older adults; information and communication technology; internet of things; online; mental health; lockdown; depression; stress; anxiety; digital technology; pandemic

Introduction

COVID-19 has brought about significant changes to the lives of people, with negative impacts on well-being. During the initial stages of the COVID-19 pandemic, “spatial distancing” was a promoted practice that entailed keeping a safe distance between individuals and reducing the number of close interactions. This put older adults at a disadvantage and may lead to feelings of social isolation and possibly exacerbate health disparity among older adults [15]. While the benefits of ICT during the pandemic seem apparent, this grey digital divide, has been an ongoing global issue during the digital exclusion of older adults, otherwise known as the growing number of older adults have been adopting ICT [11,12]. The use of information and communication technology (ICT) was critical during the COVID-19 crisis. ICT not only allowed for the dissemination of timely COVID-19–related information to the public to act upon, but also made it possible to work and study remotely. Arguably, the psychological impact of isolation was mitigated by ICT as friends and families were kept connected despite the physical restrictions imposed by lockdowns [8]. ICT provided access to various forms of entertainment and even materials guiding physical exercises [9]. Access to entertainment through ICT is important as it can help to alleviate the stress of daily living [8,10]. Although a growing number of older adults have been adopting ICT [11,12], the digital exclusion of older adults, otherwise known as the “grey digital divide,” has been an ongoing global issue during the pandemic [13,14]. Older adults face problems in a variety of basic tasks (eg, booking of tickets, claiming benefits online, and gaining access to health care services through appointments) and face exclusion because they cannot connect with their peers through online platforms owing to limited digital skills [14]. Because of the effects of restrictions in social gatherings and spatial distancing during the pandemic, this grey digital divide puts older adults at a disadvantage and may lead to feelings of social isolation and possibly exacerbate health disparity among older adults [15].

While the benefits of ICT during the pandemic seem apparent, especially if used for the purpose of communication, information, and task performance [7,16], excessive use of ICT can be problematic. For instance, the use of ICT without moderation for online gambling, viewing pornography, playing video games, viewing social media, and shopping may lead to higher risks of disordered use [2,17,18]. Research has shown that the disordered use of the internet, also known as problematic internet use, can cause emotional distress and significantly affect different domains in one’s life, including personal, family, and social relations. It can also lead to adverse effects on work or education and other areas of functioning [2,18]. In the current COVID-19 pandemic, an increase in problematic internet use has been reported and excessive internet use has been suggested as a means to cope with the enforced sedentary norms [19,20] in part due to lockdown measures and possibly pandemic-induced life changes [21,22]. The negative consequences of excessive internet use on mental health have been reported in studies during the current pandemic [23,24]. Research conducted around the same time as the inception of this study has shown that there was an increase in problematic internet use during the COVID-19 pandemic [25-32]. However, other than the studies conducted in Taiwan [28] and Japan [29], most of these studies adopted a convenience sampling approach in data collection, and the inferences made from these studies could be limited owing to the sampling bias and poor generalizability [33] associated with this sampling approach. Moreover, the populations of interest in most of these studies were younger adults and adolescents. A recent review on problematic internet use during the COVID-19 pandemic affirmed our aforementioned observation [34]. The authors of the review called for future studies comparing age influences. Only the study carried out in Japan by Oka et al [29] examined age differences. The study found that internet gaming–related problems in younger adults (<30 years) increased during the pandemic, and the numbers were much higher than those for more mature adults. Properly sampled studies comparing the effects of internet use on well-being between younger and older adults were largely missing during the lockdown period of the pandemic.

In view of the identified gaps, this study aimed to examine (1) differences in internet use between younger and older adults during the lockdown phase of the COVID-19 pandemic, and (2) the influence of internet use on the relationship between age and mental health. Given what we know about the internet use of younger adults during the pandemic, we hypothesized that younger adults would have greater use of the internet as compared with older adults, and such a difference in digital use would affect the relationship between age and mental health. This study was conducted in Singapore, an island country and city-state in maritime Southeast Asia. According to official statistics [35], internet use in Singapore has increased from 58% in 2019 to 81% in 2021 among residents aged 60 years or older. The findings from this study may contribute to our understanding of the role of internet use for mental health issues among older adults in countries with increasing internet adoption rates.

https://formative.jmir.org/2024/1/e46824

JMIR Form Res 2024 | vol. 8 | e46824 | p.712

(page number not for citation purposes)
Methods

Study Design, Setting, and Participants
This study employed an observational cross-sectional study design. Residents aged 21 years or above were recruited using stratified random sampling with stratification based on housing type, geographical region, gender, and age group. A door-to-door survey was conducted by experienced interviewers between October 17, 2020, and November 27, 2020, not long after partial lockdown restrictions were gradually lifted [20]. The in-person surveying approach ensured inclusion of study participants who might not have access to the internet to mitigate selection bias. The questionnaire administered by the interviewers was worded in the English language, which is the main language in Singapore. To be included in the study, participants were required to have resided in Singapore during the lockdown phase of the pandemic (known locally as the circuit breaker (CB) period between April 7, 2020, and June 1, 2020), in which spatial distancing measures were imposed (known locally as safe distancing). They were also required to be able to speak English and be aged 21 years or older. Interviewers were trained by a geriatrician to exclude older adults who exhibited possible signs of cognitive impairment (eg, drowsiness, agitation, and incongruent language) during the process of taking informed consent. Additionally, among those aged above 70 years, the Abbreviated Mental Test (AMT) [36] was used to screen for possible signs of dementia and other cognitive impairments, and participants were excluded if they failed 1 of the 3 items in the AMT. Safe distancing rules were adhered to during the data collection period.

Ethical Considerations
Ethics approval was obtained from the National Healthcare Group Domain Specific Review Board (2020/00973), and written informed consent was obtained from all participants. Participants were reimbursed with grocery vouchers worth SGD 10 (USD 7.50) for participation. All data collected were deidentified prior to analysis.

Survey Measures

Digital Platform Use
Digital platform use was a single item measure. Participants responded to the question “What did you use digital media for during the CB [circuit breaker] period?” Participants selected from a list of 7 common uses: (1) food delivery, (2) online banking, (3) grocery shopping, (4) online shopping (excluding groceries), (5) online entertainment, (6) social media, and (7) online telecommunication. Participants could also specify, in free-text format, other uses beyond the 7 listed if required. The option “did not use” was available if participants did not make use of any of the platforms.

Perform Essential Activities
The ability to perform essential activities was measured using a 6-item measure. The individual items have been reported in the Results section given the focus on the activities related to internet use (eg, “I was able to use online services to settle what I needed to do [eg, online banking and filling application forms].” “I was able to use telecommunication platforms for work or education purposes,” and “I was able to use online platforms to obtain my supplies [eg, groceries and buy take outs] whenever there was a need to”). Participants responded on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The scale has good internal consistency ($\alpha=.81$).

Use of the Internet Before and After the Pandemic
Use of the internet before and after the pandemic was determined by whether participants reported the use of any of the 9 online services commonly used in the local setting (eg, Redmart, Shopee, Taobao, FairPrice Online, Foodpanda, Grabfood, Cold Storage online, Deliveroo, and Lazada) before as well as after or during the pandemic. Participants could also report any other platforms that they used, which were not listed as options in the survey, in free-text format.

Time Spent on the Internet
Time spent on the internet was measured using the following question that was asked in the context of the pandemic: “On average, how much time do you spend on the internet per day (for both work and personal uses)?” Participants reported the number of hours and minutes.

Mental Health
Mental health status was measured using the shortened version of the Depression, Anxiety, and Stress Scale (DASS-21) [37]. The DASS-21 consists of three 7-item subscales designed to measure levels of depression ($\alpha=.87$), anxiety ($\alpha=.76$), and stress ($\alpha=.87$). A sample item for depression is as follows: “I felt that I had nothing to look forward to.” A sample item for anxiety is as follows: “I felt scared without any good reason.” A sample item for stress is as follows: “I found myself getting agitated.” Items were rated on a 4-point Likert scale ranging from 0 (did not apply to me at all) to 4 (applied to me very much or most of the time). Details of interpreting the scores and the use in this study have been described previously [38].

Psychosocial Adaptability
Psychosocial adaptability was an 8-item composite measure (eg, “I was able to adjust my regular social activities to my satisfaction,” “I was able to adjust the way I interact with those I lived with to my satisfaction,” and “I was able to adjust to how I spend my free time [eg, hobbies and entertainment] to my satisfaction”). Participants responded on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The internal consistency of the scale was good ($\alpha=.82$).

Social Support
Social support was measured using the Resilience Scale for Adults subscale [39]. Sample items in this 3-item measure included “I have some close friends/family members who really care about me” and “I always have someone who can help me when needed.” Participants responded on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The scale has good internal consistency ($\alpha=.86$).

https://formative.jmir.org/2024/1/e46824

 JMIR Form Res 2024 | vol. 8 | e46824 | p.713

(page number not for citation purposes)
Health Status

Health status was a single-item measure from the 36-Item Short Form Survey (SF-36) [40]. Participants responded to the question “In general, would you say your health is” using the following options: 1 (poor), 2 (fair), 3 (good), 4 (very good), and 5 (excellent).

Other Measures

Data on the background characteristics of the participants were collected, including (1) age, (2) gender, (3) marital status, (4) nationality, (5) ethnicity, (6) religion, (7) education level, and (8) occupation.

Power Analysis

Based on an a priori power analysis (G*Power 3.1.9.7) using a power of 0.80 and an error probability of 0.05, a sample size of 300 participants was required for each group to detect a between-group difference of a small to moderate effect size.

Results

Participant Characteristics

A total of 602 participants (Table 1) were recruited for the study (mean age 53.30 years, SD 16.26 years). Of these 602 participants, 302 were categorized as younger (21-59 years old; mean age 39.87 years, SD 11.46 years) and the other 300 were categorized as older (60 years or above; mean age 66.82 years, SD 5.84 years). The majority of the younger adults completed tertiary education (213/302, 70.5%) and were employed (234/302, 77.5%), while the majority of the older adults completed secondary education (145/300, 48.3%) and were largely retired (145/300, 48.3%) or were no longer in employment (44/300, 14.7%).
Table 1. Descriptive characteristics of the study sample stratified by age group (younger vs older).

<table>
<thead>
<tr>
<th>Variable</th>
<th>All adults (N=602)</th>
<th>Younger adults<sup>a</sup> (n=302)</th>
<th>Older adults<sup>b</sup> (n=300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>53.30 (16.26)</td>
<td>39.87 (11.46)</td>
<td>66.82 (5.84)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>302 (50.2)</td>
<td>133 (44.0)</td>
<td>169 (56.3)</td>
</tr>
<tr>
<td>Female</td>
<td>300 (49.8)</td>
<td>169 (56.0)</td>
<td>131 (43.7)</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>431 (71.6)</td>
<td>188 (62.3)</td>
<td>243 (81.0)</td>
</tr>
<tr>
<td>Single</td>
<td>124 (20.6)</td>
<td>103 (34.0)</td>
<td>21 (7.0)</td>
</tr>
<tr>
<td>Divorced</td>
<td>22 (3.7)</td>
<td>11 (3.6)</td>
<td>11 (3.7)</td>
</tr>
<tr>
<td>Widowed</td>
<td>25 (4.2)</td>
<td>0 (0.0)</td>
<td>25 (8.3)</td>
</tr>
<tr>
<td>Nationality, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singaporean</td>
<td>565 (93.9)</td>
<td>274 (90.7)</td>
<td>291 (97.0)</td>
</tr>
<tr>
<td>Permanent resident</td>
<td>37 (6.2)</td>
<td>28 (9.3)</td>
<td>9 (3.0)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>404 (67.1)</td>
<td>198 (65.6)</td>
<td>206 (68.7)</td>
</tr>
<tr>
<td>Malay</td>
<td>91 (15.1)</td>
<td>49 (16.2)</td>
<td>42 (14.0)</td>
</tr>
<tr>
<td>Indian</td>
<td>82 (13.6)</td>
<td>43 (14.2)</td>
<td>39 (13.0)</td>
</tr>
<tr>
<td>Other</td>
<td>25 (4.2)</td>
<td>12 (4.0)</td>
<td>13 (4.3)</td>
</tr>
<tr>
<td>Religion, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buddhism</td>
<td>181 (30.1)</td>
<td>95 (31.5)</td>
<td>86 (28.7)</td>
</tr>
<tr>
<td>Islam</td>
<td>106 (17.6)</td>
<td>58 (19.2)</td>
<td>48 (16.0)</td>
</tr>
<tr>
<td>Christianity (non-Roman Catholic)</td>
<td>81 (13.5)</td>
<td>34 (11.3)</td>
<td>47 (15.7)</td>
</tr>
<tr>
<td>Hinduism</td>
<td>60 (10.0)</td>
<td>28 (9.3)</td>
<td>32 (10.7)</td>
</tr>
<tr>
<td>Roman Catholic</td>
<td>48 (8.0)</td>
<td>15 (5.0)</td>
<td>33 (11.0)</td>
</tr>
<tr>
<td>Taoism</td>
<td>15 (2.5)</td>
<td>7 (2.3)</td>
<td>8 (2.7)</td>
</tr>
<tr>
<td>Sikhism</td>
<td>3 (0.5)</td>
<td>2 (0.7)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>No religion</td>
<td>108 (17.9)</td>
<td>63 (20.9)</td>
<td>45 (15.0)</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary or below</td>
<td>56 (9.3)</td>
<td>6 (2.0)</td>
<td>50 (16.7)</td>
</tr>
<tr>
<td>Secondary</td>
<td>200 (33.2)</td>
<td>55 (18.2)</td>
<td>145 (48.3)</td>
</tr>
<tr>
<td>Postsecondary (nontertiary)</td>
<td>54 (9.0)</td>
<td>28 (9.3)</td>
<td>26 (8.7)</td>
</tr>
<tr>
<td>Tertiary or above</td>
<td>292 (48.5)</td>
<td>213 (70.5)</td>
<td>79 (26.3)</td>
</tr>
<tr>
<td>Occupation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>345 (57.3)</td>
<td>234 (77.5)</td>
<td>111 (37.0)</td>
</tr>
<tr>
<td>Not in employment</td>
<td>109 (18.1)</td>
<td>65 (21.5)</td>
<td>44 (14.7)</td>
</tr>
<tr>
<td>Retired</td>
<td>148 (24.6)</td>
<td>3 (1.0)</td>
<td>145 (48.3)</td>
</tr>
</tbody>
</table>

^aYounger adults refer to participants aged 21-59 years.

^bOlder adults refer to participants aged 60 years or above.

Internet Use Patterns

Up to a third of older adults (102/300, 34.0%) in the study sample reported not using digital media to communicate or run errands during the CB measurement period compared with only 2.7% (8/302) of younger adults who did not do so. Among older adults who did not use the internet (102/300, 34.0%), an overwhelming majority did not have tertiary education (94/102, 92.2%). For older adults, the top 3 reasons for using the internet (Table 2) were social media (154/300, 51.3%), telecommunication (120/300, 40.0%), and online banking (111/300, 37.0%), whereas for younger adults, the top reasons...
were social media (253/302, 83.8%), online banking (234/302, 77.5%), food delivery (211/302, 69.9%), and telecommunication (210/302, 69.5%).

Table 2. Comparison of the frequency of internet use patterns between younger and older adults in the study sample during the COVID-19 pandemic.

<table>
<thead>
<tr>
<th>Internet use</th>
<th>All adults (N=602), n (%)</th>
<th>Younger adults(^a) (n=302), n (%)</th>
<th>Older adults(^b) (n=300), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social media</td>
<td>407 (67.6)</td>
<td>253 (83.8)</td>
<td>154 (51.3)</td>
</tr>
<tr>
<td>Online banking</td>
<td>345 (57.3)</td>
<td>234 (77.5)</td>
<td>111 (37.0)</td>
</tr>
<tr>
<td>Online telecommunication</td>
<td>330 (54.8)</td>
<td>210 (69.5)</td>
<td>120 (40.0)</td>
</tr>
<tr>
<td>Online entertainment</td>
<td>288 (47.8)</td>
<td>189 (62.6)</td>
<td>99 (33.0)</td>
</tr>
<tr>
<td>Online food delivery</td>
<td>288 (47.8)</td>
<td>211 (69.9)</td>
<td>77 (25.7)</td>
</tr>
<tr>
<td>Online shopping</td>
<td>254 (42.2)</td>
<td>195 (64.6)</td>
<td>59 (19.7)</td>
</tr>
<tr>
<td>Online grocery</td>
<td>203 (33.7)</td>
<td>149 (49.3)</td>
<td>54 (18.0)</td>
</tr>
<tr>
<td>Did not use</td>
<td>110 (18.3)</td>
<td>8 (2.7)</td>
<td>102 (34.0)</td>
</tr>
</tbody>
</table>

\(^a\)Younger adults refer to participants aged 21-59 years.

\(^b\)Older adults refer to participants aged 60 years or above.

Use of Resources to Meet Needs

Overall, agreement scores on the ability to use digital platforms to meet needs were lower for older adults (mean 3.37, SD 1.14) than for younger adults (mean 4.17, SD 0.78) \((t_{600}=10.04; P<.001; d=0.82)\), and the difference was large in magnitude. The ability to use digital resources for information updates related to the pandemic was lower for older adults (mean 3.28, SD 1.20) than for younger adults (mean 4.22, SD 0.75) \((t_{600}=10.50; P<.001; d=0.86)\), and the difference was large in effect size.

More specifically, for older adults who were able to use the internet (Table 3), the agreement scores in their ability to do so were lower compared with the scores for younger adults in the areas of using telecommunication \((t_{427}=7.55; P<.001; d=0.76)\), obtaining supplies \((t_{477}=8.97; P<.001; d=0.82)\), using online services \((t_{503}=8.17; P<.001; d=0.74)\), and changing appointments \((t_{498}=3.53; P<.001; d=0.31)\). The effect sizes of the differences were large on the whole, except for the last variable.

Table 3. Differences in study sample mean scores between younger and older adults for various essential activities that were conducted over the internet during the COVID-19 pandemic.

<table>
<thead>
<tr>
<th>Variable</th>
<th>All adults (N=602)</th>
<th>Younger adults(^a) (n=302)</th>
<th>Older adults(^b) (n=300)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observations, n</td>
<td>Score, mean (SD)</td>
<td>Observations, n</td>
</tr>
<tr>
<td>Buy takeaway</td>
<td>587</td>
<td>4.16 (0.58)</td>
<td>296</td>
</tr>
<tr>
<td>Run errands</td>
<td>590</td>
<td>4.07 (0.69)</td>
<td>298</td>
</tr>
<tr>
<td>Use telecommunication</td>
<td>429</td>
<td>3.98 (1.01)</td>
<td>272</td>
</tr>
<tr>
<td>Change appointments</td>
<td>500</td>
<td>3.86 (0.78)</td>
<td>250</td>
</tr>
<tr>
<td>Use online services</td>
<td>505</td>
<td>3.84 (1.05)</td>
<td>287</td>
</tr>
<tr>
<td>Obtain supplies</td>
<td>479</td>
<td>3.72 (1.09)</td>
<td>272</td>
</tr>
</tbody>
</table>

\(^a\)Younger adults refer to participants aged 21-59 years.

\(^b\)Older adults refer to participants aged 60 years or above.

Use of the Internet Before and After the Pandemic

Among older adults, there were minimal changes in the nonuse of the internet for online shopping for essential items (Table 4) before and during or after the pandemic (186/300, 62.0% and 183/300, 61.0%, respectively). This relationship was similar among younger adults, although a much smaller proportion of younger adults did not use the internet for online shopping for essential items before and during or after the pandemic (45/302, 14.9% and 39/302, 12.9%, respectively).
Time Spent on the Internet

There was a significant negative relationship between time spent on the internet and age \((r=-0.63; \ P<0.001)\), indicating that increasing age is associated with decreasing time spent on the internet. On average, older adults indeed spent significantly less time on the internet for both work and personal uses per day (mean 146.00 min, SD 9.18 min) compared with younger adults (mean 433.27 min, SD 14.32 min) \((t_{500}=16.84; \ P<0.001; \ d=1.38)\).

Age, Time Spent on the Internet, and Distress

Zero-ordered bivariate correlations revealed that there was a negative relationship between age and the well-being indicators of depression scores \((r=-0.36; \ P<0.001)\), anxiety scores \((r=-0.22; \ P<0.001)\), and stress scores \((r=-0.19; \ P<0.001)\).

There was also a significant positive association between time spent on the internet and depression scores \((r=0.31; \ P<0.001)\), anxiety scores \((r=0.23; \ P<0.001)\), and stress scores \((r=0.28; \ P<0.001)\). Time spent on the internet was also positively associated with stress concerns \((r=0.08; \ P=0.04)\).

Use of the Internet and Mental Health

Links between internet use patterns in this sample and mental health were explored. The findings showed that mental health was significantly better among those who did not use the internet for social media compared with those who did (Table 5). The effect sizes of the differences however were small \((d_{\text{depression}}=-0.27; \ d_{\text{anxiety}}=-0.17; \ d_{\text{stress}}=-0.31)\). This was similarly the case among those who did not use the internet for online shopping compared with those who did (Table 6), with the effect sizes being small \((d_{\text{depression}}=-0.44; \ d_{\text{anxiety}}=-0.17; \ d_{\text{stress}}=-0.31)\).

Main Effects of Time Spent on the Internet and Age on Distress

The main effects of time spent on the internet and age on distress were examined using regression modeling. The regression models were statistically significant for depression \((F_{5,501}=39.64; \ P<0.001)\), anxiety \((F_{5,501}=19.84; \ P<0.001)\), and stress \((F_{5,501}=31.40; \ P<0.001)\). The models explained 28\%, 17\%, and 24\% of the variances in depression, anxiety, and stress, respectively (see Table 7 for the adjusted and unadjusted models).

To facilitate comparison of the effect sizes, all variables were standardized. Examining the variables in the models, time spent on the internet and age were significant predictors of depression, anxiety, and stress. This was the case even after controlling for the effects of individual adaptability, social support, and health status. Standardized regression coefficients showed that the

<table>
<thead>
<tr>
<th>Variable</th>
<th>Did not use social media, mean (SD)</th>
<th>Used social media, mean (SD)</th>
<th>(t) (df)</th>
<th>(P) value</th>
<th>Cohen (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression score</td>
<td>8.09 (2.25)</td>
<td>8.82 (2.86)</td>
<td>-3.12 (600)</td>
<td><.001</td>
<td>-0.27</td>
</tr>
<tr>
<td>Anxiety score</td>
<td>7.69 (1.54)</td>
<td>7.99 (1.90)</td>
<td>-1.94 (600)</td>
<td><.03</td>
<td>-0.17</td>
</tr>
<tr>
<td>Stress score</td>
<td>8.28 (2.53)</td>
<td>9.18 (2.98)</td>
<td>-3.61 (600)</td>
<td><.001</td>
<td>-0.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Did not use online shopping, mean (SD)</th>
<th>Used online shopping, mean (SD)</th>
<th>(t) (df)</th>
<th>(P) value</th>
<th>Cohen (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression score</td>
<td>8.09 (2.21)</td>
<td>9.26 (3.13)</td>
<td>-5.37 (600)</td>
<td><.001</td>
<td>-0.44</td>
</tr>
<tr>
<td>Anxiety score</td>
<td>7.74 (1.73)</td>
<td>8.11 (1.87)</td>
<td>-2.51 (600)</td>
<td><.001</td>
<td>-0.21</td>
</tr>
<tr>
<td>Stress score</td>
<td>8.45 (2.52)</td>
<td>9.49 (3.20)</td>
<td>-4.49 (600)</td>
<td><.001</td>
<td>-0.37</td>
</tr>
</tbody>
</table>
magnitude of the effect of time spent on the internet was higher than that of age for anxiety ($\beta_{\text{age}}=-0.16; \beta_{\text{time spent on the internet}}=0.18$) and stress ($\beta_{\text{age}}=-0.17; \beta_{\text{time spent on the internet}}=0.21$), but this effect was lower for depression ($\beta_{\text{age}}=-0.24; \beta_{\text{time spent on the internet}}=0.20$). Overall, the findings suggested that distress was associated with decreasing age, and likewise, this was the case for those who spent more time on the internet.

To examine if the effect of age on mental health was influenced by time spent on the internet, mediation analysis was conducted using the approach advocated by Baron and Kenny [41]. The bootstrapping method with 1000 resamples to estimate the 95% CI was additionally conducted to investigate the significance of indirect effects [42]. A significance level of $P<.05$ was used for all analyses.

To facilitate interpretation of the effect sizes, all variables were standardized to reflect the strength of correlations. Results on the partial mediating role of time spent on the internet for the effect of age on mental health are shown in Figure 1.

In all models, mediation analyses showed that there was a significant indirect effect of age on mental health through time spent on the internet. For depression, the indirect effect of time spent on the internet was as follows: $ab=-0.08; z=-2.66; P=0.008$. The mediation effect accounted for 23% of the total effect ($\beta=-0.36$). For anxiety, the indirect effect of time spent on the internet was as follows: $ab=-0.09; z=-2.15; P=0.03$. The mediation effect was moderate and accounted for 39% of the total effect ($\beta=-0.24$). For stress, the indirect effect of time spent on the internet was as follows: $ab=-0.11; z=-3.20; P=0.001$. The mediation effect was moderate and accounted for 42% of the total effect ($\beta=-0.22$). Examining the r^2 of the models, all variables together explained 43% of the variance in depression, 40% of the variance in anxiety, and 40% of the variance in stress.

Overall, the effect of age on mental health was partially explained by time spent on the internet. On interpreting the r^2 of the models and effect sizes, a conclusion could be drawn that the mediating role of time spent on the internet for the effect of age on mental health was relatively substantial, especially for anxiety and stress. However, as full mediation did not occur, for time spent on the internet, which played a substantial role, the effect through age was not a major causal pathway.

Table 7. Main effects of time spent on the internet and age on distress using multivariate regression analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Depression scores</th>
<th>Anxiety scores</th>
<th>Stress scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted Model 1</td>
<td>Adjusted Model 1</td>
<td>Unadjusted Model 1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>t (df)</td>
<td>P value</td>
</tr>
<tr>
<td>Age</td>
<td>-0.28</td>
<td>-5.68</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>(602)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>0.13</td>
<td>2.76</td>
<td>0.006</td>
</tr>
<tr>
<td>spent on</td>
<td>(602)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the internet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aAdjusted for adaptability, social support, and health status.

Figure 1. Mediation models illustrating the partial mediating role of time spent on the internet for the effect of age on mental health (mental health was indexed by depression, anxiety, and stress individually). All presented effects are standardized. The a-path is the direct effect, b-path is the direct effect, c_1-path is the direct effect, and c-path is the total effect.
Discussion

Principal Findings

This study examined the relationship among age, internet use, and mental health during the lockdown phase of the COVID-19 pandemic. Specifically, we compared internet use between younger and older adults and examined the mediating role of internet use in the relationship between age and mental health. In support of our hypothesis, older adults were reported to spend less time on the internet as compared with their younger counterparts. In addition, internet use was found to partially mediate the effects of age on depression, anxiety, and stress.

Given that ICT is ubiquitous in today's world, digital exclusion of older adults is emerging as an imperative concern amid rapidly aging populations. Previous studies have reported poor adoption of ICT among older adults [43-46], but findings specific to older adults during the early phase of the COVID-19 pandemic were sparse. The findings of this study extend this empirical evidence by demonstrating that such an age-related digital divide was pervasive during the COVID-19 pandemic. In support of our hypothesis, internet use among older adults during the lockdown period was found to be less as compared with that among their younger counterparts. Specifically, the use of digital platforms for essential services and entertainment purposes was less prevalent among older adults than among younger adults. While age has been known to be a predictor of internet use [47,48], the large effect size ($d=1.38$) found in this study suggests that the magnitude of such a grey digital divide is substantial and warrants more attention. Given that higher education is also associated with greater internet use [47], our results may be confounded by lower education levels among older adults in the study sample. Such a difference may also be plausibly attributed to the negative relationship between age and technology acceptance [49] or fear of stereotype threats regarding technology use in older adults [50].

Imposed spatial distancing measures during the COVID-19 pandemic have proliferated the adoption of technology to help individuals meet essential needs and stay connected with one another. This has been claimed to amplify the digital divide between younger and older adults [15,51,52]. Indeed, our findings showed that older adults not only used less internet than their younger peers, but also reported to be less able to use online services to run essential activities during the lockdown phase of the pandemic. This suggests that older adults were less capable of adapting to digital means to meet their basic needs. Our findings corroborate the results of another study reporting that the inability of older adults to use digital devices limited their access to transportation, medical care, and food supplies during the pandemic [52]. Consequently, this has raised concerns that the negative impacts of the pandemic on mental health may be disproportionate in certain groups, such as older adults, who may risk being excluded from the society due to such a digital divide [53].

While lockdown measures were well intended to mitigate infections during the COVID-19 pandemic, they had detrimental effects on the psychological well-being of individuals [5]. The results of this study suggest that both age and internet use are significant predictors of mental health, and importantly, such associations persisted even after accounting for adaptability, social support, and health status. As purported by the socioemotional selectivity theory [54], we found that older age was associated with better mental health. Specifically, we previously reported that older adults had lower depression, anxiety, and stress levels as compared with younger adults [38]. Our results are consistent with those of other studies that reported better mental health in older adults during the pandemic as compared with younger adults [54-57]. In contrast, higher internet use during the lockdown period was found to be associated with poorer mental health. While digital technologies certainly could aid individuals in the continuation of their work and daily essential activities during the lockdown, they could also be used in a disordered manner [17,18]. Our results suggest that it could be the case of the latter since mental distress has been observed to be higher in those with higher internet use (ie, spent more time on the internet and used more social media and online shopping). Indeed, the risk of problematic internet use was reported to have increased during the pandemic [2].

Many studies conducted during the earlier phase of the COVID-19 pandemic focused on the effects of internet use on younger adults and adolescents who were often conveniently sampled [25,28,30-32]. In this study, a door-to-door survey using a stratified random sampling method ensured that potential sampling bias issues were circumvented. This study ensured that there were adequate responses sampled from participants in the older age group (ie, over 60 years of age) and therefore contributed to the literature by showing the effects of internet use in not only younger adults but also older adults. This study was therefore able to address calls [34] for research comparing the linkages among age, internet use, and mental well-being during the COVID-19 pandemic. Importantly, our statistical modeling suggests that internet use acts as a partial mediator for the effects of age on depression, anxiety, and stress levels. This suggests that the inverse relationship between age and mental distress could be partially explained by the amount of time spent on the internet by younger adults. As mentioned earlier, younger adults were found to spend more time on the internet as compared with older adults. Such increased use may be problematic and consequently have negative effects on mental health. Indeed, problematic internet use during the COVID-19 pandemic has been reported to be associated with poorer mental well-being [58,59]. Studies have reported that pandemic-related stress is associated with tendencies toward problematic digital use [59-61]. Given that younger adults were found to have greater stress concerns during the pandemic [38], it may be the case that younger adults experienced greater stress and thus engaged in greater problematic internet use, which resulted in poorer mental health. More research is recommended to investigate this. Our findings support the recommendations to mitigate the risk of problematic internet use during the pandemic [2].

Despite the negative relationship between internet use and mental health, it is important to note that not all types of digital use had detrimental consequences on mental health, and ICT use for the right purposes could be potentially beneficial. For example, a recent scoping review revealed that internet use for
communication purposes was associated with better mental health for older adults during the COVID-19 pandemic [62]. Indeed, older adults have reported the importance of ICT to help them maintain their social connections during the lockdown period [63-65]. This study showed that social media use was the highest among the various uses of the internet even for older adults, and a future study can consider investigating how older adults use social media and assessing the benefits they derive from it during the pandemic. Given that some older adults may experience loneliness due to lack of physical contact, especially under the exceptional circumstances imposed by the pandemic, the use of ICT can help to allay the negative effects of social isolation. Thus, in view of the large digital divide between younger and older adults found in this study, greater efforts are necessary to close such a divide, including advocating for age-sensitive design of technologies [49,52] and deterring stereotype threats associated with technology use [50]. Considering the potential negative relationship between internet use and mental health, it is also imperative to educate older adults in using ICT appropriately.

Limitations
Notwithstanding the contributions of this study to existing literature, it is important to acknowledge some limitations. First, the study sample consisted of community-dwelling adults, and thus, the findings may not be generalizable to specific subgroup populations who may be more vulnerable. The relationship between age and mental distress observed in this study may differ if other groups of older adults are included, such as those residing in nursing homes or experiencing diminished mental capacity.

Second, the interpretation of this study’s results is limited by its outcome measures. Although this study established the partial mediating role of internet use for the effects of age on depression, anxiety, and stress, the study did not collect measures that would be important indicators of disordered use of the internet in younger adults, including online gambling, viewing pornography, and playing video games. Nonetheless, there is evidence from various studies indicating that increased time spent on the internet during the earlier phase of the COVID-19 pandemic was the main contributory factor for a number of mental health problems, such as depression, anxiety, and stress [66-68]. The findings from this study are therefore aligned with the existing research and add to this field by presenting data from a developed country with high digital adoption rates. However, a future study can consider examining how the pandemic could have possibly exacerbated problematic internet use and whether time spent on the internet is indeed an adequate proxy. The digital divide and its relationship with mental health can be influenced by a myriad of factors going beyond problematic internet use. There is a possibility that increased internet use in younger adults during the lockdown period was attributed to having to work remotely from office, and the distress experienced could therefore be attributed to this new form of work arrangement rather than problematic internet use per se. Given that the study was making reference to the first lockdown period, younger adults may not have adapted to this form of working arrangement despite the known benefits of ICT, including continuation of their work and running of other essential activities.

Finally, all measures of this study were collected from participants’ retrospective recollection of their experiences during the lockdown period. Since time spent on the internet was not based on any objective indicator, we cannot rule out the possibility that this or other attitudinal responses are subject to recall bias.

Conclusion
This study showed that older adults lagged behind younger adults in the use of digital resources during the pandemic, which could have helped them in communication and socialization, and the findings support existing literature on the poor adoption of ICT among older adults. This study further contributes to the literature by showing how through mediation modeling, the negative relationship between increasing age and mental distress appears to be partially explained by the amount of time spent on the internet by younger adults. Without moderate use, the benefits brought by digital technologies could have been attenuated during the lockdown phase of the pandemic. It is imperative to educate both young and old adults in the appropriate use of ICT.

Acknowledgments
The authors gratefully acknowledge the support of Dr Siew Pei Ong, Vivienne Le, Emily Koh, Robin Choo, and Bernard Tang in this study. This work was supported by Geriatric Education and Research Institute Limited under its COVID-19 research grant (CG002).

Data Availability
The data sets used or analyzed during this study are available from the corresponding author on reasonable request. The data sets used cannot be shared openly as the participants have not consented to share their data openly, and this is therefore not allowed under the approved study protocol.

Authors’ Contributions
CCY and JAL contributed to the study concept and design. CCY and NXT contributed to the data analysis and interpretation of the results. All authors were involved in the writing of the manuscript, and have critically read, reviewed, and approved the final manuscript.
Conflicts of Interest
None declared.

References

Abbreviations

AMT: Abbreviated Mental Test
CB: circuit breaker
DASS-21: Depression, Anxiety, and Stress Scale
ICT: information and communication technology
Original Paper

Explainable Machine Learning Classification to Identify Vulnerable Groups Among Parenting Mothers: Web-Based Cross-Sectional Questionnaire Study

Akiko Hanai1,2,3, OTR, PhD; Tetsuo Ishikawa1,2,3,4, PhD; Shoko Sugao5, PsyD, PhD; Makoto Fujii6, RN, PHN, PhD; Kei Hirai5, PhD; Hiroko Watanabe6, RM, RN, PhD; Masayo Matsuzaki7, RM, RN, PHN, PhD; Goji Nakamoto6, PhD; Toshihiro Takeda8, MD, PhD; Yasuji Kitabatake9, MD, PhD; Yuichi Itoh10, PhD; Masayuki Endo11*, MD, PhD; Tadashi Kimura11, MD, PhD; Eiryo Kawakami1,2*, MD, PhD

1Medical Data Mathematical Reasoning Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama, Japan
2Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
3Institute for Datability Science, Osaka University, Suita, Japan
4Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
5Graduate School of Human Sciences, Osaka University, Suita, Japan
6Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
7Department of Reproductive Health Nursing, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
8Department of Medical Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
9Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
10Department of Integrated Information Technology, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
11Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan

*these authors contributed equally

Corresponding Author:
Tetsuo Ishikawa, PhD
Medical Data Mathematical Reasoning Team
Advanced Data Science Project
RIKEN Information R&D and Strategy Headquarters, RIKEN
W507/509 West Research Building,
1-7-22 Suehiro-cho, Tsurumi-ku
Yokohama, 230-0045
Japan
Phone: 81 455039455
Email: tetsuo.ishikawa@riken.jp

Abstract

Background: One life event that requires extensive resilience and adaptation is parenting. However, resilience and perceived support in child-rearing vary, making the real-world situation unclear, even with postpartum checkups.

Objective: This study aimed to explore the psychosocial status of mothers during the child-rearing period from newborn to toddler, with a classifier based on data on the resilience and adaptation characteristics of mothers with newborns.

Methods: A web-based cross-sectional survey was conducted. Mothers with newborns aged approximately 1 month (newborn cohort) were analyzed to construct an explainable machine learning classifier to stratify parenting-related resilience and adaptation characteristics and identify vulnerable populations. Explainable k-means clustering was used because of its high explanatory power and applicability. The classifier was applied to mothers with infants aged 2 months to 1 year (infant cohort) and mothers with toddlers aged >1 year to 2 years (toddler cohort). Psychosocial status, including depressed mood assessed by the Edinburgh Postnatal Depression Scale (EPDS), bonding assessed by the Postpartum Bonding Questionnaire (PBQ), and sleep quality assessed by the Pittsburgh Sleep Quality Index (PSQI) between the classified groups, was compared.

Results: A total of 1559 participants completed the survey. They were split into 3 cohorts, comprising populations of various characteristics, including parenting difficulties and psychosocial measures. The classifier, which stratified participants into 5
groups, was generated from the self-reported scores of resilience and adaptation in the newborn cohort (n=310). The classifier identified that the group with the greatest difficulties in resilience and adaptation to a child’s temperament and perceived support had higher incidences of problems with depressed mood (relative prevalence [RP] 5.87, 95% CI 2.77-12.45), bonding (RP 5.38, 95% CI 2.53-11.45), and sleep quality (RP 1.70, 95% CI 1.20-2.40) compared to the group with no difficulties in perceived support. In the infant cohort (n=619) and toddler cohort (n=461), the stratified group with the greatest difficulties had higher incidences of problems with depressed mood (RP 9.05, 95% CI 4.36–18.80 and RP 4.63, 95% CI 2.38-9.02, respectively), bonding (RP 1.63, 95% CI 1.29-2.06 and RP 3.19, 95% CI 2.03-5.01, respectively), and sleep quality (RP 8.09, 95% CI 4.62-16.37 and RP 1.72, 95% CI 1.23-2.42, respectively) compared to the group with no difficulties.

Conclusions: The classifier, based on a combination of resilience and adaptation to the child’s temperament and perceived support, was able to identify psychosocially vulnerable groups in the newborn cohort, the start-up stage of childcare. Psychosocially vulnerable groups were also identified in qualitatively different infant and toddler cohorts, depending on their classifier. The vulnerable group identified in the infant cohort showed particularly high RP for depressed mood and poor sleep quality.

(JMIR Form Res 2024;8:e47372) doi:10.2196/47372

KEYWORDS

explainable machine-learning; unsupervised clustering; perceived support; resilience; adaptation; mother’s health; mobile phone; machine learning; web-based; parenting; postpartum; antenatal; survey; mother; women; newborn; psychosocial; infant; parents; children; depression; digital health; maternal

Introduction

One life event that requires extensive resilience and adaptation is parenting. However, parenting difficulties have become highly varied and complex, especially for mothers, who are increasingly expected to balance their family and social roles [1,2]. The dynamics of parenting are further complicated by the rise of working parents, leading to evolving parenting environments and an amplified demand for social support [3]. The challenges of parenting have been compounded by the SARS-CoV-2 pandemic, which brought about blockades, physical distancing, and social isolation, adversely impacting mental health. These challenges are exacerbated by factors such as economic insecurity and the increased burden of childcare and housework [4].

A meta-analysis shows that 19.2% of women experience a major depressive episode during the first 3 months post partum, with most of these episodes occurring after delivery [5]. For this reason, most medical institutions in Japan evaluate the mother’s mental status during the 1-month health examination. Common risk factors of postpartum depression were high life stress, the increased burden of childcare and housework [4], insecurity and the increased burden of childcare and housework [4], and complex, and individual mother’s personalities and cognitive characteristics must be comprehensively considered to support safe child-rearing practices [7,8]. Hence, we developed the Comprehensive Scale for Parenting Resilience and Adaptation (CPRA) to assess parenting difficulties based on environmental factors, maternal personality traits, and a mother’s perception of her child [2]. Thus, the CPRA could be used to evaluate the complexities of parenting difficulties.

Timely access to face-to-face social support has proven to be psychologically and socially challenging for mothers who struggle with parenting [9]. Studies have indicated that prior parenting knowledge and experience lead to resilience, as primiparous women have significantly lower resilience to perinatal depressive mood than multiparous women [10,11]. A web-based platform could be easily accessible for busy and vulnerable mothers. Thus, a web-based assessment and timely intervention could provide parenting resources to such inexperienced mothers. Web-based screening and communication are expected to play a significant role not only for parenting under the “new normal” lifestyle due to the SARS-CoV-2 pandemic but also for parents who do not prefer face-to-face communication.

The Japanese government supports the Society 5.0 project, which aims to integrate cyber and physical spaces (also known as the cyber-physical space) where data science can contribute to task executions and coordination [12]. In this project, we created a web-based screening system linked to an app that calculates gestational age and provides parenting information services. This system enabled researchers to collect data from mothers in various parenting environments across Japan without requiring hospital visits. However, the real-world data obtained by this system were heterogeneous. Machine learning is considered more suitable than model-driven conventional statistical methods for classifying characteristics and developing interventions based on complex data, even with a small sample size [13]. Especially in mental health research, machine learning is used for diagnosis, treatment support, research and development, and clinical work management. The increase in the number of studies suggests that machine learning may be useful for the detection and diagnosis of mental health conditions such as depression, schizophrenia, and Alzheimer disease [14].

A systematic review screened 482 papers and evaluated 11 papers that used machine learning to predict postpartum depression; it found that although a solid conclusion was not achieved since the algorithms and data sets used were heterogeneous, all studies reached an area under the curve greater than 0.7, indicating that predicting postpartum depression by machine learning is feasible [15]. Machine learning methods also allow the use of blood test data from before the onset of perinatal depression to identify high-risk populations who are the most in need of preventive interventions [16].
The disadvantages of machine learning include its complex algorithms and reproducibility. For example, k-means clustering is a machine learning–based algorithm that groups similar data by analyzing its structures and patterns; each data point is assigned to a cluster to minimize variance within the cluster while maximizing it between clusters. However, reproducing these clusters in a different data set can be challenging. Therefore, we used explainable k-means clustering to overcome these limitations [17].

The purpose of this study is to create a vulnerability classifier based on cross-sectional survey data on maternal resilience and adaptation and to examine the identified psychosocially vulnerable groups. This study also attempts to determine the psychosocial status of mothers during other child-rearing periods, by confirming whether the classifier can be applied to infant and toddler populations to identify similarly vulnerable groups.

Methods

Study Design and Setting

This study included a cross-sectional survey and machine learning stratification. Recruitment, opt-in informed consent, and data collection were conducted through a web application that rewarded participants with the equivalent cost of the internet resources used to complete the survey. We used a Japanese web service company called Milcare to conduct the survey. For those who downloaded Milcare’s app, which is used to record the number of weeks of pregnancy, an advertisement for the survey was shown in the app for the duration of our survey setting. The system was designed to provide survey participants incentives such as gift cards and childcare goods through the app. The app was available to Japanese smartphones and had been downloaded approximately 5000 times at the time of the survey. All data reported by the participants in the web-based survey were included as outcomes. The response period was from January to June 2020. A maternal personality traits classifier was created from the newborn cohort using explainable k-means clustering. The classifier was then applied to the infant cohort and the toddler cohort, and the features of each group were analyzed.

Participants

The target population of this study was parenting mothers with newborns to 2-year-old toddlers. The eligibility criteria for the participants were (1) mothers with children aged <2 years; (2) web-based consent to participate in the survey through the Milcare web service; (3) ability to read, write, and understand Japanese while using the internet; and (4) ability to complete a questionnaire using a smartphone. The exclusion criteria were those who (1) completed the survey in less than 8 minutes (the minimum time required to read and answer all questions) and (2) abandoned the survey during the process.

Ethical Considerations

Ethical review approval was obtained because this study involves human subjects: Osaka University Hospital Observational Research Ethics Review Committee (19290-2) and Research Ethics Review Committee of RIKEN (2020-23(2)). Data for the study were analyzed anonymously and no individuals were identified. In addition, consent for primary data acquisition and secondary use was obtained.

Patient and Public Involvement

Although some of the researchers have parenting experience, neither patients with depressive moods nor the public were involved in the design, planning, conduct, or reporting of this study.

Assessment

The mothers’ resilience and adaptation were assessed using the CPRA. The CPRA consisted of 5 domains (child’s temperament and health, environmental resources, perceived support, mother’s cognitive and behavioral characteristics, and psychological adaptation to parenting) and 21 subscales (Table 1). Responses were collected on a 5-point Likert scale with higher scores indicating increased parenting difficulty [8].

Depressive mood was assessed using the Edinburgh Postnatal Depression Scale (EPDS). In Japan, an EPDS score of 9 or above is used as the cutoff for clinical screening, which has a sensitivity of 75% to 82% and a specificity of 93% to 95% for high-risk depression [18-20]. Therefore, we defined an EPDS score of 9 or above to indicate depressive mood in this study. The Sense of Coherence (SOC) scale was used to assess how one understands, manages, and feels emotional meaning when experiencing stress [21]. The Postpartum Bonding Questionnaire (PBQ) was used to assess mother-infant bonding, with a high score (≥13) indicating impaired bonding [22]. The Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep quality, where a high score (≥5.5) indicates poor sleep quality [23,24].
Table 1. Comprehensive Scale for Parenting Resilience and Adaptation domains and subscales.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Abbreviation</th>
<th>Subscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child’s temperament and health</td>
<td>Child</td>
<td>• Child’s temperament and health</td>
</tr>
<tr>
<td>Environmental resources</td>
<td>Environment</td>
<td>• Child-rearing or long-term care burden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parental autonomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Partner autonomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Partner temperament</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Relationship with the medical staff</td>
</tr>
<tr>
<td>Perceived support</td>
<td>Support</td>
<td>• Husband’s or partner’s support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of psychological support from husband or partner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parental support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sufficient social support</td>
</tr>
<tr>
<td>Mother’s cognitive and behavioral characteristics</td>
<td>Cognitive</td>
<td>• Attachment problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Emotional control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inattentiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Simultaneous or overall processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Social intolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Systemization urge</td>
</tr>
<tr>
<td>Psychological adaptation to parenting</td>
<td>Psychological</td>
<td>• Lack of self-confidence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Possibility of coping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Love for the child</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Self-esteem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Self-responsibility</td>
</tr>
</tbody>
</table>

Explainable Clustering With Decision Tree

To classify the characteristics of resilience and adaptation difficulties, a clustering algorithm, explainable k-means clustering, was used. Explainable k-means clustering is an unsupervised clustering algorithm, characterized by its use of decision trees with minimum leaf size for data set partitioning. These trees are meticulously designed to contain a constrained number of nodes and leaves, adhering to the principle of parsimony. Specifically, the number of leaves is deliberately set to correspond with the desired number of clusters (k) in the k-means algorithm. This strategic design enhances both the interpretability and comprehensibility of the clustering process. Consequently, this framework facilitates the application of classifiers to external populations, provided that these populations are quantified on analogous scales. Such an approach underscores the algorithm’s use in ensuring coherent and interpretable clustering outcomes, which are pivotal for the analysis of heterogeneous data sets [17]. For estimating the number of groups, gap statistics analysis was conducted using the CPRA data set from the newborn cohort. Gap statistics analysis compares the change in cluster dispersion with that expected under an acceptable, reference null distribution using the output of any clustering algorithm [25]. Using these results, participants in the newborn cohort were stratified into groups using an unsupervised explainable k-means algorithm with a decision tree, depending on the 5 CPRA domains. Last, the clustering-based anomaly detection algorithm, the so-called decision tree, was applied to the infant cohort and the toddler cohort.

Comparison of Mothers’ States in the Identified Groups

We described the characteristics of the CPRA domain scores and the psychological assessment scores (EPDS, PBQ, and PSQI) for each group. The stratification of groups in each cohort was plotted and the mean score of the 21 CPRA subscales for each of the 5 stratified groups was calculated and plotted as a radar chart.

Statistical Analysis

We analyzed the characteristics of the stratified groups in each cohort, using the group with no difficulties as a reference. The prevalence of depressive moods (EPDS score ≥ 9), bonding problems (PBQ score ≥ 13), and sleep problems (PSQI score ≥ 5.5) was used for logistic regression analysis with relative prevalence (RP), 95% CI, and P value. The distributions of the CPRA and psychosocial scores of the stratified groups in the cohorts were compared using the Kruskal-Wallis test. The results of the Kolmogorov-Smirnov test showed deviations from the normal distribution for many variables, and the Levene test may have violated the assumption of equal variability in the EPDS and PBQ (Multimedia Appendix 1). Therefore, the Kruskal-Wallis test was performed as a multiple-group comparison.

All data from participants who completed the survey within the specified time frame were included in the analysis. Participants’ characteristics were expressed using descriptive statistics, and P < .05 was considered statistically significant.

All statistical analyses were performed using R (version 3.6.2; R Foundation for Statistical Computing). We used the ExKMC package to produce explainable k-means clustering and the ggstatsplot and ggplot packages for data visualization, all of
which are available on GitHub (GitHub Inc) [17,26]. The ExKMC package automatically produces the shallowest tree depth.

Results

Participant Characteristics

From the web-based recruitment, 1559 participants completed the web survey. Data from those who took at least the minimum required time to read and answer the questions were analyzed. The participants were divided into the newborn cohort (n=310; mean age 31, SD 4.60 years), infant cohort (n=619; mean age 31.5, SD 4.15 years), and toddler cohort (n=461; mean age 32.1, SD 4.16 years). The newborn cohort was analyzed to generate a classifier, and the classifier was applied to the infant cohort and toddler cohort (Figure 1). The CPRA domain scores and the psychosocial assessments (EPDS, PBQ, and PSQI) in each cohort are represented in Table 2.

Overall, parenting difficulties as assessed by the CPRA tended to be more severe during the newborn period, which is up to 1 month post partum (Table 2). Statistically significant differences were observed in the environmental and psychological domains of the CPRA, as well as for the EPDS, PBQ, and PSQI (all \(P<.001\)).

Figure 1. Study flow. CPRA: Comprehensive Scale for Parenting Resilience and Adaptation.

Table 2. Comprehensive Scale for Parenting Resilience and Adaptation and psychosocial scores by cohort.

<table>
<thead>
<tr>
<th>Scores</th>
<th>Newborn (n=310), median (IQR)</th>
<th>Infant (n=619), median (IQR)</th>
<th>Toddler (n=461), median (IQR)</th>
<th>(P) value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child</td>
<td>2.20 (1.80-2.80)</td>
<td>2.20 (1.80-2.60)</td>
<td>2.20 (1.80-2.60)</td>
<td>.005</td>
</tr>
<tr>
<td>Cognitive</td>
<td>2.36 (2.00-2.71)</td>
<td>2.29 (1.93-2.64)</td>
<td>2.36 (2.00-2.71)</td>
<td>.01</td>
</tr>
<tr>
<td>Environment</td>
<td>2.35 (2.05-2.75)</td>
<td>2.25 (1.95-2.55)</td>
<td>2.25 (2.00-2.60)</td>
<td><.001</td>
</tr>
<tr>
<td>Psychological</td>
<td>2.47 (2.05-2.95)</td>
<td>2.26 (1.95-2.74)</td>
<td>2.42 (2.05-2.79)</td>
<td><.001</td>
</tr>
<tr>
<td>Support</td>
<td>2.47 (1.88-2.93)</td>
<td>2.27 (1.80-2.73)</td>
<td>2.40 (2.00-2.80)</td>
<td>.003</td>
</tr>
<tr>
<td>EPDSb</td>
<td>9 (5-13)</td>
<td>5 (2-9)</td>
<td>6 (3-10)</td>
<td><.001</td>
</tr>
<tr>
<td>PBQc</td>
<td>10 (6-18)</td>
<td>9 (6-14)</td>
<td>12 (7-17)</td>
<td><.001</td>
</tr>
<tr>
<td>PSQId</td>
<td>7 (5-9)</td>
<td>7 (5-9)</td>
<td>5 (4-8)</td>
<td><.001</td>
</tr>
</tbody>
</table>

*Kruskal-Wallis rank sum test.

EPDS: Edinburgh Postnatal Depression Scale.

PBQ: Postpartum Bonding Questionnaire.

PSQI: Pittsburgh Sleep Quality Index.
Explainable Clustering

Using gap analysis to decide the optimal number of the clustering revealed that 5 groups were suitable for k-means clustering (grouping) of the participants based on the similarities in CPRA scores. Using the explainable k-means method, the participants in the newborn cohort were stratified into 5 groups based on multivariate factors, and a decision tree explaining how to stratify these groups was generated using 2 evaluation axes: perceived support–related and child’s temperament–related difficulties (Figure 2). Using the classifier as a decision tree algorithm, 5 groups were stratified in each of the 3 cohorts. According to the classifier rules, Group 0 represented those with no perceived support–related difficulties, Group 1 represented those with moderate perceived support–related difficulties (Support+), Group 2 represented those with moderate perceived support–related difficulties and child’s temperament–related difficulties (Support+Child+), Group 3 represented those with severe perceived support–related and child’s temperament–related difficulties (Support++Child++), and Group 4 represented those with severe perceived support–related and child’s temperament–related difficulties (Support++Child+++; Figure 2). A split of similar proportions was achieved, with the maximum difference of 5% occurring in Group 4. To illustrate the distribution of the stratified groups in each cohort, we focused on the child and support scores, which were used as features for classifier generation; plotted them on the vertical and horizontal axes, respectively; and colored each group to visualize them (Figure 3). The CPRA scores for each cohort were concentrated at 2-3 points, but the distribution of outliers was different for each cohort (Figure 3). The 21 subscales of the CPRA for each stratified group in each cohort were plotted in a radar chart (Figure 4).

Figure 2. Decision tree explanation for k-means clustering. CPRA: Comprehensive Scale for Parenting Resilience and Adaptation.

Figure 3. Comprehensive Scale for Parenting Resilience and Adaptation domains scores (child’s temperament [C] and perceived support [S]) in the 3 cohorts (newborn, infant, and toddler), colored by the stratified groups.
Figure 4. Comprehensive Scale for Parenting Resilience and Adaptation scores for 21 factors in the groups. C: child’s temperament; S: perceived support.

Regression Analysis and Characteristics of the Detected Groups

Psychosocial conditions in each cohort were plotted as density plots for the EPDS, PBQ, SOC, and PQSI scores, colored according to the stratified groups (Figure 5). In the newborn cohort (n=310), Group 4 (Support++Child++) was the group with the greatest difficulties, having higher incidences of problems with depressed mood (RP 5.87, 95% CI 2.77-12.45), bonding (RP 5.38, 95% CI 2.53-11.45), and sleep quality (RP 1.70, 95% CI 1.20-2.40) compared to the group with no difficulties in perceived support (Group 1; Table 3). In the infant cohort (n=619), the stratified group with the greatest difficulties had higher incidences of problems compared to the group with no difficulties, with depressed mood (RP 9.05, 95% CI 4.36-18.80) and sleep quality (RP 8.69, 95% CI 4.62-16.37) having a greater RP than the newborn cohort, but a smaller RP for bonding (RP 1.63, 95% CI 1.29-2.06; Table 3). In the toddler cohort (n=461), the stratified group with the greatest difficulties had higher incidences of problems with depressed mood (RP 4.63, 95% CI 2.38-9.02), bonding (RP 3.19, 95% CI 2.03-5.01), and sleep quality (RP 1.72, 95% CI 1.23-2.42) compared to the group with no difficulties.

Figure 5. Mothers’ condition in the stratified groups. Postnatal depressive mood was assessed using the EPDS, postpartum bonding was assessed using the PBQ, sense of coherence was assessed using the SOC, and sleep quality was assessed using the PSQI. 1N: newborn cohort; 2I: infant cohort; 3T toddler cohort; C: child’s temperament; EPDS: Edinburgh Postnatal Depression Scale; PBQ: Postpartum Bonding Questionnaire; PSQI: Pittsburgh Sleep Quality Index; S: perceived support; SOC: Sense of Coherence.
Table 3. Comparison of the frequency of problems with depressive mood, postpartum bonding, and sleep quality.

<table>
<thead>
<tr>
<th>Cohort and group</th>
<th>Depressive mood (EPDS(\geq 9))</th>
<th>Postpartum bonding (PBQ(\geq 9))</th>
<th>Sleep quality (PSQI(\geq 5.5))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count, n (%)</td>
<td>RP(^d) (95% CI) P value</td>
<td>Count, n (%)</td>
</tr>
<tr>
<td>Newborn cohort (n=310)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (no difficulties; n=44)</td>
<td>6 (14)</td>
<td>N/A (^a)</td>
<td>N/A</td>
</tr>
<tr>
<td>1 (S(^f)+; n=47)</td>
<td>15 (32)</td>
<td>2.34 (1.00-5.49) .05</td>
<td>5 (11)</td>
</tr>
<tr>
<td>2 (S+C(^f)+; n=94)</td>
<td>43 (46)</td>
<td>3.35 (1.54-7.29) .002</td>
<td>35 (37)</td>
</tr>
<tr>
<td>3 (S+C++; n=50)</td>
<td>37 (74)</td>
<td>5.43 (2.53-1.62) <.001</td>
<td>26 (52)</td>
</tr>
<tr>
<td>4 (S++C++; n=75)</td>
<td>60 (80)</td>
<td>5.87 (2.77-12.45) <.001</td>
<td>55 (73)</td>
</tr>
<tr>
<td>Infant cohort (n=619)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (no difficulties; n=102)</td>
<td>7 (6.9)</td>
<td>N/A (^a)</td>
<td>N/A</td>
</tr>
<tr>
<td>1 (S++; n=101)</td>
<td>10 (9.9)</td>
<td>1.44 (0.57-3.64) .44</td>
<td>14 (13.8)</td>
</tr>
<tr>
<td>2 (S+C++; n=202)</td>
<td>50 (24.8)</td>
<td>3.61 (1.70-7.67) <.001</td>
<td>46 (22.7)</td>
</tr>
<tr>
<td>3 (S+C++; n=111)</td>
<td>50 (45.0)</td>
<td>6.56 (3.12-13.81) <.001</td>
<td>41 (36.9)</td>
</tr>
<tr>
<td>4 (S++C++; n=103)</td>
<td>64 (62.1)</td>
<td>9.05 (4.36-18.80) <.001</td>
<td>79 (76.7)</td>
</tr>
<tr>
<td>Toddler cohort (n=461)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (no difficulties; n=60)</td>
<td>8 (13)</td>
<td>N/A (^a)</td>
<td>N/A</td>
</tr>
<tr>
<td>1 (S++; n=76)</td>
<td>8 (11)</td>
<td>0.79 (0.31-1.98) .61</td>
<td>19 (25)</td>
</tr>
<tr>
<td>2 (S+C++; n=146)</td>
<td>50 (34.2)</td>
<td>2.57 (1.30-5.09) .007</td>
<td>62 (42.5)</td>
</tr>
<tr>
<td>3 (S+C++; n=90)</td>
<td>37 (41)</td>
<td>3.08 (1.55-6.15) <.001</td>
<td>54 (60)</td>
</tr>
<tr>
<td>4 (S++C++; n=89)</td>
<td>55 (62)</td>
<td>4.63 (2.38-9.02) <.001</td>
<td>71 (80)</td>
</tr>
</tbody>
</table>

\(^a\)EPDS: Edinburgh Postnatal Depression Scale.
\(^b\)PBQ: Postpartum Bonding Questionnaire.
\(^c\)PSQI: Pittsburgh Sleep Quality Index.
\(^d\)RP: relative prevalence (compared with Group 0).
\(^e\)N/A: not applicable.
\(^f\):S: perceived support.
\(^g\):C: child’s temperament.

Discussion

Principal Findings

The classifier based on the resilience and adaptation assessment (CPRA) stratified the mothers in the newborn cohort, the start-up stage of childcare, into 5 groups and identified vulnerable psychosocial groups. The score of resilience to the child’s temperament and perceived support was selected as an important feature for building an explainable classifier, instead of environmental resources, the mother’s cognitive-behavioral characteristics, and psychological adaptation to parenting. Depending on the decision tree–based explainable classifier, psychosocially vulnerable groups were also identified in the qualitatively different infant and toddler cohorts. The identified group with high sensitivity to the temperament of their children and difficulty in perceiving support showed high RP for depressed mood and poor sleep quality, especially in the infant.
cohort. This group was particularly vulnerable to severe psychosocial problems in the infant cohort.

Limitations
The study data were collected using a web-based self-reported survey to acquire large-scale nationwide data. Therefore, the degree of objectivity, the participants’ backgrounds, and family characteristics (i.e., the partner’s housework load and the child’s developmental disabilities) were not guaranteed. The possibility that false responses were treated as true values cannot be excluded. Nevertheless, a web-based survey method with limited psychological barriers was chosen because it increased the ease of participation, so that even mothers who are too busy to make time for a formal interview or have difficulties with interpersonal conversations could be represented. This study saw a greater prevalence of perinatal depressive mood (EPDS>9; 480/1390, 34.5%) than that reported by a previous face-to-face Japanese study (15,506/108,431, 14.3%). This disparity may be due to the anonymity of the survey environment, which allowed mothers to share grievances beyond supporting the image of a good, tolerant mother. We are conducting a face-to-face observational study and analyzing the target population gap caused by the data collection environment, as the question of whether web-based or in-person data accurately reflect the true state of a participant must be considered in the context of increasing web-based communication to minimize error.

The lack of background information also limits the analysis of individual factors in this study. Environmental variables could have a significant impact on the mother’s family environment, but the CPRA could not assess “home-town delivery,” a common practice in Japan where mothers return to their parent’s homes before and after childbirth. Future research using the CPRA with more detailed data on individual characteristics, such as the home environment or family structure, will be needed. In addition, those who had difficulty perceiving support and were sensitive to their child’s temperament are particularly prone to serious psychosocial problems in the infant cohort, but it is difficult to determine whether this is a bias in the cross-sectional survey population or whether those with resilience difficulties are more specific to the infant period. Therefore, we are conducting a longitudinal survey with the environmental information to examine the effects of the environmental setting or the time period.

The accuracy of the clustering algorithm will be limited because of the nature of this algorithm, with a trade-off between explainability and accuracy [17]. In addition, no general method of predetermining k is established [27]. Although the EPDS, PBQ, SOC, and PSQI scores were significantly different across the 5 groups, especially the groups with no versus greatest difficulties in resilience and adaptation, we believe that further investigation is needed to use the partition score as a clear cut-off point for detecting persons with psychosocial disabilities.

Comparison With Prior Work
Previous studies have reported that personality traits can influence perinatal depressive mood. For example, a study involving 15,012 mothers, including 13.1% with depressive moods (an EPDS score≥9 in 1 month was defined as “postpartum depressive symptoms” in that study), indicated that increased neuroticism and reduced extraversion were associated with postpartum depressive symptoms [28]. Regarding interventions for perceived support or parenting resources, a review showed that online peer support groups offered informational and emotional support and positively impacted maternal mental health [27]. A path analysis of web-based survey data collected from Japanese parents of children aged 3-5 years revealed that childcare support had no direct positive effect on children’s social development; however, the benefits of childcare support were mediated by its impact on parents’ psychological state and parenting style, which improved child social development [29]. This indicates that supporting mothers, according to their adaptive tendencies, may positively affect their children’s development. A study of 398 Australian women from the prenatal period to 1 year post partum suggested that the dual intervention of social support and the recognition of prenatal depressive symptoms is a promising strategy to prevent persistent depressive symptoms [30]. This is because digital technology supports the core values associated with psychosocial intervention and fulfills the “ancillary values” that constrain how coproduction operates [31]. To assess the effects of such web-based psychosocial intervention for mothers, we are conducting a randomized controlled trial of a web-based screening and feedback program using the same assessment instruments.

Our study was conducted before and after April 2020, and although the pandemic may have had an impact, we did not detect any significant differences when comparing the different survey periods (Multimedia Appendix 2). This may be because the study was completed in June 2020; however, the data set collected from 5 countries during the COVID-19 pandemic from July to December 2020 also showed that the symptoms of maternal depression and anxiety can be predicted using machine learning algorithms and that efficient tools can be used to predict maternal depression and anxiety [32].

Conclusions
The classifier, generated from the data from the most stressful and confusing period (newborn cohort) using an unsupervised clustering algorithm with enhanced explanatory and applicability, could be adapted to another parenting cohort (infant and toddler cohort), and psychosocially vulnerable groups were detected. Mothers with high sensitivity to the temperament of their children and difficulties in perceiving support would be prone to depressed mood and poor sleep quality, especially in the infant cohort. To overcome the study’s limitations, further research in other study designs is needed. Considering the additional research, the classifier will help support child-rearing in the Society 5.0 era according to the resilience and adaptation characteristics of individual mothers and is likely to contribute to the implementation of web-based child-rearing support.
Acknowledgments

This work was supported by MEXT “Innovation Platform for Society 5.0” Program grant (JPMXP0518071489). TI received grants from the Japan Society for the Promotion of Science KAKENHI grants (JP20K21837 and JP21K02356). We thank all the participants who provided research data and all those who were involved in managing the project. The project was conducted as part of the Ministry of Education, Culture, Sports, Science, and Technology, Society 5.0 Project PJ1-1 Watching Over the First 1000th Day of Life consortium.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions

EK, SS, and ME were responsible for the survey protocol. AH, EK, and TI were responsible for all the analyses. All authors were responsible for primary data collection. AH, EK, and TI were accountable for the initial draft of the study, and they revised the initial draft. All authors contributed to the critical revision of the study, approved the final version, and agreed to be accountable for the content. ME and EK are the guarantors of this study.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Results of Kolmogorov-Smirnov test and Levene test.
[DOCX File, 13 KB - formative_v8i1e47372_app1.docx]

Multimedia Appendix 2

Comparison of psychological measures before and during pandemic.
[DOCX File, 14 KB - formative_v8i1e47372_app2.docx]

References

Abbreviations

CPRA: Comprehensive Scale for Parenting Resilience and Adaptation
EPDS: Edinburgh Postnatal Depression Scale
PBQ: Postpartum Bonding Questionnaire
PSQI: Pittsburgh Sleep Quality Index
RP: relative prevalence
SOC: Sense of Coherence
Original Paper

Tumor Immunotherapy–Related Information on Internet-Based Videos Commonly Used by the Chinese Population: Content Quality Analysis

Chen-xu Ni¹, MM, MS; Yi-bo Fei¹, MD, PhD; Ran Wu¹, MM, MS; Wen-xiang Cao¹, MM, MS; Wenhao Liu¹, MM, MS; Fang Huang¹, MM, MS; Fu-ming Shen¹, MD, PhD; Dong-jie Li¹, MD, PhD

Shanghai Tenth People’s Hospital, Shanghai, China

Corresponding Author:
Dong-jie Li, MD, PhD
Shanghai Tenth People’s Hospital
301 Middle Yanchang Road
Shanghai, 200072
China
Phone: 86 021 66302570
Email: djli@tongji.edu.cn

Abstract

Background: Tumor immunotherapy is an innovative treatment today, but there are limited data on the quality of immunotherapy information on social networks. Dissemination of misinformation through the internet is a major social issue.

Objective: Our objective was to characterize the quality of information and presence of misinformation about tumor immunotherapy on internet-based videos commonly used by the Chinese population.

Methods: Using the keyword “tumor immunotherapy” in Chinese, we searched TikTok, Tencent, iQIYI, and BiliBili on March 5, 2022. We reviewed the 118 screened videos using the Patient Education Materials Assessment Tool—a validated instrument to collect consumer health information. DISCERN quality criteria and the JAMA (Journal of the American Medical Association) Benchmark Criteria were used for assessing the quality and reliability of the health information. The videos’ content was also evaluated.

Results: The 118 videos about tumor immunotherapy were mostly uploaded by channels dedicated to lectures, health-related animations, and interviews; their median length was 5 minutes, and 79% of them were published in and after 2018. The median understandability and actionability of the videos were 71% and 71%, respectively. However, the quality of information was moderate to poor on the validated DISCERN and JAMA assessments. Only 12 videos contained misinformation (score of >1 out of 5). Videos with a doctor (lectures and interviews) not only were significantly less likely to contain misinformation but also had better quality and a greater forwarding number. Moreover, the results showed that more than half of the videos contain little or no content on the risk factors and management of tumor immunotherapy. Overall, over half of the videos had some or more information on the definition, symptoms, evaluation, and outcomes of tumor immunotherapy.

Conclusions: Although the quality of immunotherapy information on internet-based videos commonly used by Chinese people is moderate, these videos have less misinformation and better content. Caution must be exercised when using these videos as a source of tumor immunotherapy–related information.

(JMIR Form Res 2024;8:e50561) doi:10.2196/50561

KEYWORDS
immunotherapy; internet videos; quality; misinformation; health informatics; Chinese

Introduction

Background

Tumor immunotherapy is an innovative treatment today. After the implementation of China's new medical insurance rates in 2022, the monthly treatment cost of immunotherapy has entered the “thousand era,” which greatly improves the accessibility of drugs. However, tumor immunotherapy has obvious uncertainty and complexity [1]. Accurate transmission of immunotherapy information to the population is important to the survival and quality of life of patients with cancer [2]. The study found that
patients were open to video education and found it helpful and worth watching [3].

The world’s population is increasingly referring to health-related internet-based information as it represents an easily accessible educational tool [4,5]. The Chinese population, overseas Chinese individuals, and people who master Chinese worldwide prefer web-based video applets or websites, such as videos on TikTok, Tencent, iQIYI, or BiliBili [6]. These sites, similar to YouTube, are popular for their rich content, convenient log-in methods, quick sharing, and 24-hour multiplatform seamless application experiences. Recently, the originality, interactivity, and sociable nature of TikTok and BiliBili have provided the younger generation a better user experience and sense of engagement while seeking health information [7]. The penetration and usage of TikTok and BiliBili are also on the rise among some older age groups [8]. However, the medical content available on the internet is controversial and has not been properly examined. Di Bello et al [9] reported that YouTube videos have contributed to the spread of misinformation by underestimating the role of information on immunotherapy for urological tumors in a multimodality approach and missing the findings of published clinical trials. Not only were audiences not availing of accurate therapy, but also they were opting for therapies that may be harmful, which could lead to other complications [10,11].

Objectives
This study aims to report an evaluation of the quality, reliability, and content of videos related to tumor immunotherapy on the internet among the Chinese population. Our findings could serve as a guide for health care providers and awareness campaigns.

Methods

Ethical Considerations
Ethics approval was not required as this descriptive study was conducted by examining publicly accessible videos on the internet. Also, no human participants or animals were included in this study. The study data are anonymous.

Search Strategy and Data Collection
Using the keyword “肿瘤免疫治疗” (“tumor immunotherapy” in Chinese), we searched TikTok, Tencent, iQIYI, and BiliBili on March 5, 2022, which yielded 1820, 395, 400, and 1000 results for each search, respectively. The videos were sorted in accordance with the video’s default “the most viewed” sorting parameter, and the first 50 videos per website were evaluated.

Inclusion and Exclusion Criteria
A total of 200 videos were considered from all the searches. Duplicate videos, paid videos, and videos not related to tumor immunotherapy were excluded. After the screening, we obtained 118 videos for further data extraction and analysis (Figure 1).

Figure 1. Search strategy and video screening procedure.

Variables Extracted
Basic information obtained included the URL, video duration, likes, forwarding number, subscription, comments, and upload date. Profiles of the uploaders were recorded and classified under 5 categories: lectures, interviews, health-related animations, academic institutions or universities, and news agencies. The extracted data were recorded in Excel (Microsoft Corp).

Scoring System
The videos were evaluated independently by 2 authors (CN and Y-BF). The raters were blinded to each other’s ratings (they could not consult each other). We reviewed the screened 118 of 3615 videos on TikTok, Tencent, iQIYI, and BiliBili on “tumor immunotherapy,” using the Patient Education Materials Assessment Tool (PEMAT)—a validated instrument for obtaining consumer health information (Multimedia Appendix 1) [12]. Moreover, we adopted 6 questions from Goobie et al [13] to evaluate the videos’ content. These 6 questions ask to what degree a video addresses the definition of a disease, its signs and symptoms, risk factors, evaluation, management, and outcomes. Each aspect was scored on a 3-item scale: 0=not addressed, 1=partially addressed, and 2=sufficiently addressed.

The DISCERN quality criteria [14] and the JAMA (Journal of the American Medical Association) Benchmark Criteria [15] were used for assessing the quality and reliability of the health information. The modified version of the original DISCERN questionnaire was used to assess the reliability and quality of the health information. It consists of five questions, each with a “yes/no” answer (yes=1 point; no=0 points; maximum score=5): (1) Is the video clear and complete? (2) Are reliable sources of information used? (3) Is the information presented balanced and unbiased? (4) Are additional sources of information listed for reference? (5) Are uncertain areas mentioned? The JAMA assessment is used to evaluate web-based videos and resources on the basis of 4 criteria: authorship, attribution, disclosure, and currency (1 point each).

- Authorship (1 point): the video should include authors, contributors, and contact information.
• Attribution (1 point): the references and sources should be listed properly.
• Disclosure (1 point): conflicts of interest, financing, sponsorship, advertising, support, and video ownership should be disclosed.
• Currency (1 point): the dates on which the videos were published and updated should be indicated.

After the scores are calculated, a score of 4 indicates that the source is of high quality.

We assessed the presence of misinformation using an analogous 5-point Likert scale [16,17]. Videos were independently coded by 2 authors with random coding checks to verify intercoder reliability. Each video was rated separately, and its mean score was calculated.

Statistical Analysis

The mean, median, IQR, and SD were used as descriptive statistics for continuous variables. To identify differences among the variables extracted, the Mann-Whitney U test was performed. The intraclass correlation coefficient was determined to ensure interrater reliability. A P value of less than .05 was considered significant. Statistical analysis was performed by using the GraphPad Prism 8 (GraphPad Software, Inc).

Results

The 118 videos about tumor immunotherapy mostly uploaded by channels dedicated to lectures, health-related animations, and interviews (Table 1; median length 5 minutes; 93, 79% uploaded in and after 2018). The median forwarding number and number of likes was 12 and 15, respectively. However, the median understandability and actionability of the videos were 71% and 71%, respectively. Overall, the quality of information was moderate to poor in 54% of videos (overall DISCERN scores of 1-3 out of 5) and 64% of videos (overall JAMA scores of 1-2 out of 4).

Only 12 videos contained misinformation (score >1 out of 5). Videos with a doctor (published by channels dedicated to lectures and interviews) not only were significantly less likely to contain misinformation but also had better quality and a greater forwarding number. Videos on Tencent and BiliBili had lesser misinformation than TikTok and iQIYI. Regarding DISCERN criteria and JAMA Benchmark Criteria, the quality of information on TikTok and iQIYI was higher than that on BiliBili and Tencent.

Moreover, our results show that more than half of the videos contain little or no content on the risk factors and management of tumor immunotherapy. Overall, over half of the videos had some or more information on the definition, symptoms, evaluation, and outcomes of tumor immunotherapy (Table 2).

The overall scores for all internet videos are presented in **Figure 2**.
Table 1. Characteristics of internet-based videos about immunotherapy.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the video (minutes), median (IQR)</td>
<td>5.0 (1.0-118.2)</td>
</tr>
<tr>
<td>Year of publication of the video, n (%)</td>
<td></td>
</tr>
<tr>
<td>Before 2018</td>
<td>25 (21)</td>
</tr>
<tr>
<td>2018 and after</td>
<td>93 (79)</td>
</tr>
<tr>
<td>Forwarding number, median (range)</td>
<td>12 (0-364)</td>
</tr>
<tr>
<td>Likes, median (range)</td>
<td>15 (0-1613)</td>
</tr>
<tr>
<td>Comments, median (range)</td>
<td>0 (0-215)</td>
</tr>
<tr>
<td>Subscription, median (range)</td>
<td>0 (0-1473)</td>
</tr>
<tr>
<td>Publisher type, n (%)</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>51 (43)</td>
</tr>
<tr>
<td>Interview</td>
<td>22 (19)</td>
</tr>
<tr>
<td>News agency</td>
<td>9 (8)</td>
</tr>
<tr>
<td>Health-related animation</td>
<td>33 (27)</td>
</tr>
<tr>
<td>Academic institution or university</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Overall DISCERN scores, n (%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 (2)</td>
</tr>
<tr>
<td>2</td>
<td>8 (7)</td>
</tr>
<tr>
<td>3</td>
<td>44 (37)</td>
</tr>
<tr>
<td>4</td>
<td>33 (28)</td>
</tr>
<tr>
<td>5</td>
<td>6 (5)</td>
</tr>
<tr>
<td>DISCERN scores, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>TikTok</td>
<td>3.0 (1.0)</td>
</tr>
<tr>
<td>Tencent</td>
<td>2.5 (1.8)</td>
</tr>
<tr>
<td>iQIYI</td>
<td>3.3 (0.6)</td>
</tr>
<tr>
<td>BiliBili</td>
<td>2.7 (1.6)</td>
</tr>
<tr>
<td>PEMATa scores (%), median (IQR)</td>
<td></td>
</tr>
<tr>
<td>Understandability</td>
<td>75 (22-100)</td>
</tr>
<tr>
<td>Actionability</td>
<td>71 (0-100)</td>
</tr>
<tr>
<td>Misinformation score, n (%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6 (5)</td>
</tr>
<tr>
<td>2</td>
<td>5 (4)</td>
</tr>
<tr>
<td>3</td>
<td>0 (0)</td>
</tr>
<tr>
<td>4</td>
<td>1 (1)</td>
</tr>
<tr>
<td>5</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Misinformation score, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>0.1 (0.6)</td>
</tr>
<tr>
<td>Interview</td>
<td>0.2 (0.5)</td>
</tr>
<tr>
<td>Health-related animation</td>
<td>0.3 (0.7)</td>
</tr>
<tr>
<td>Misinformation score, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>TikTok</td>
<td>0.4 (0.8)</td>
</tr>
<tr>
<td>Tencent</td>
<td>0.09 (0.3)</td>
</tr>
<tr>
<td>iQIYI</td>
<td>0.2 (0.8)</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Value</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>BiliBili</td>
<td>0.1 (0.4)</td>
</tr>
</tbody>
</table>

JAMA^b overall score, n (%)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17 (14)</td>
</tr>
<tr>
<td>2</td>
<td>47 (40)</td>
</tr>
<tr>
<td>3</td>
<td>16 (13)</td>
</tr>
<tr>
<td>4</td>
<td>4 (3)</td>
</tr>
</tbody>
</table>

JAMA score, mean (SD)

<table>
<thead>
<tr>
<th>Platform</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TikTok</td>
<td>1.8 (0.8)</td>
</tr>
<tr>
<td>Tencent</td>
<td>1.3 (1.4)</td>
</tr>
<tr>
<td>iQIYI</td>
<td>1.9 (0.7)</td>
</tr>
<tr>
<td>BiliBili</td>
<td>1.3 (1.1)</td>
</tr>
</tbody>
</table>

^aPEMAT: Patient Education Materials Assessment Tool.

^bJAMA: *Journal of the American Medical Association*.

Table 2. Completeness of the content of videos on the internet.

<table>
<thead>
<tr>
<th>Content</th>
<th>Definition, n (%)</th>
<th>Symptoms, n (%)</th>
<th>Risk factors, n (%)</th>
<th>Evaluation, n (%)</th>
<th>Management, n (%)</th>
<th>Outcomes, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No content (0 points)</td>
<td>17 (14)</td>
<td>15 (13)</td>
<td>53 (45)</td>
<td>7 (6)</td>
<td>46 (39)</td>
<td>30 (25)</td>
</tr>
<tr>
<td>Little content (0.5 points)</td>
<td>8 (7)</td>
<td>15 (13)</td>
<td>14 (12)</td>
<td>7 (6)</td>
<td>12 (10)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Some content (1 point)</td>
<td>12 (10)</td>
<td>19 (16)</td>
<td>20 (17)</td>
<td>40 (34)</td>
<td>35 (30)</td>
<td>50 (43)</td>
</tr>
<tr>
<td>Most content (1.5 points)</td>
<td>25 (21)</td>
<td>25 (21)</td>
<td>17 (14)</td>
<td>26 (22)</td>
<td>11 (9)</td>
<td>17 (14)</td>
</tr>
<tr>
<td>Extensive content (2 points)</td>
<td>60 (48)</td>
<td>44 (37)</td>
<td>14 (12)</td>
<td>38 (32)</td>
<td>14 (12)</td>
<td>13 (11)</td>
</tr>
</tbody>
</table>

Figure 2. Completeness of content in internet-based videos.

Discussion

We screened 118 videos on “tumor immunotherapy” from TikTok, Tencent, iQIYI, and BiliBili commonly used by the Chinese population. Chinese websites or applets uploaded videos related to tumor immunotherapy for the first time in 2011, and the number of videos has significantly increased since 2018. The median duration of the videos was 5 minutes, which is acceptable to the public.

Numerous studies have evaluated videos on YouTube only and not on other networks [¹⁸⁻²⁰]. Our study evaluated information about tumor immunotherapy on the most popular Chinese
websites or applets, using validated instruments to evaluate the quality of information. Videos on BiliBili and TikTok had a significantly greater forwarding number and likes than those on iQIYI and Tencent; a possible reason is that there is no advertisement played before videos on BiliBili and TikTok.

Health care providers should recommend trustworthy sources of information to patients and should actively participate in social media for dissemination of evidence-based medicine. There is a great need for accurate tumor immunotherapy–related content that is also understandable and actionable. Suggestions for content creators include discussing both the benefits and risks of management alternatives, refraining from the use of medical terminology, and presenting the viewer with clear action items. Meanwhile, patients should be wary of internet-based videos. Misinformation, albeit well-intentioned, may be disseminated when a poorly informed patient advises others. Patients should talk to their physicians not only about immunotherapy but also their need for more information.

In conclusion, although the quality of tumor immunotherapy–related information on internet-based videos commonly used by Chinese people is moderate, it has less misinformation and better content. Caution must be exercised when using these videos as a source of tumor immunotherapy–related information.

Acknowledgments
This work was supported by a research project designed by the Chinese Pharmaceutical Association Hospital Pharmacy department (CPA-Z05-2C-2023002), program for research-oriented physicians of Shanghai Tenth People’s Hospital (grant 2023LCYJFZRC002), and Chongming 2022 “Science and Technology Innovation Action Plan” (CKY2022-24).

Data Availability
The data sets generated during or analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Full scores for PEMAT measures of understandability and actionability. PEMAT: Patient Education Materials Assessment Tool. [DOCX File, 17 KB - formative_v8i1e50561_app1.docx]

References

Abbreviations

JAMA: Journal of the American Medical Association
PEMAT: Patient Education Materials Assessment Tool

©Chen-xu Ni, Yi-bo Fei, Ran Wu, Wen-xiang Cao, Wenhao Liu, Fang Huang, Fu-ming Shen, Dong-jie Li. Originally published in JMIR Formative Research (https://formative.jmir.org), 07.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Remote Self-Administration of Cognitive Screeners for Older Adults Prior to a Primary Care Visit: Pilot Cross-Sectional Study of the Reliability and Usability of the MyCog Mobile Screening App

Stephanie Ruth Young, PhD; Elizabeth McManus Dworak, PhD; Greg Joseph Byrne, MA; Callie Madison Jones, BA; Lihua Yao, PhD; Julia Noelani Yoshino Benavente, MPH; Maria Varela Diaz, MS; Laura Curtis, MS; Richard Gershon, PhD; Michael Wolf, MPH, PhD; Cindy J Nowinski, MD, PhD

Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
Center for Applied Health Research on Aging, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States

Corresponding Author:
Stephanie Ruth Young, PhD
Department of Medical Social Sciences
Feinberg School of Medicine
Northwestern University
625 North Michigan Avenue 21st Floor
Chicago, IL, 60611-3008
United States
Phone: 1 3125033303
Email: stephanieruth.young@northwestern.edu

Abstract

Background: Routine cognitive screening is essential in the early detection of dementia, but time constraints in primary care settings often limit clinicians’ ability to conduct screenings. MyCog Mobile is a newly developed cognitive screening system that patients can self-administer on their smartphones before a primary care visit, which can help save clinics’ time, encourage broader screening practices, and increase early detection of cognitive decline.

Objective: The goal of this pilot study was to examine the feasibility, acceptability, and initial psychometric properties of MyCog Mobile. Research questions included (1) Can older adults complete MyCog Mobile remotely without staff support? (2) Are the internal consistency and test-retest reliability of the measures acceptable? and (3) How do participants rate the user experience of MyCog Mobile?

Methods: A sample of adults aged 65 years and older (N=51) self-administered the MyCog Mobile measures remotely on their smartphones twice within a 2- to 3-week interval. The pilot version of MyCog Mobile includes 4 activities: MyFaces measures facial memory, MySorting measures executive functioning, MySequences measures working memory, and MyPictures measures episodic memory. After their first administration, participants also completed a modified version of the Simplified System Usability Scale (S-SUS) and 2 custom survey items.

Results: All participants in the sample passed the practice items and completed each measure. Findings indicate that the Mobile Toolbox assessments measure the constructs well (internal consistency 0.73 to 0.91) and are stable over an approximately 2-week delay (test-retest reliability 0.61 to 0.71). Participants’ rating of the user experience (mean S-SUS score 73.17, SD 19.27) indicated that older adults found the usability of MyCog Mobile to be above average. On free-response feedback items, most participants provided positive feedback or no feedback at all, but some indicated a need for clarity in certain task instructions, concerns about participants’ abilities, desire to be able to contact a support person or use in-app technical support, and desire for additional practice items.

Conclusions: Pilot evidence suggests that the MyCog Mobile cognitive screener can be reliably self-administered by older adults on their smartphones. Participants in our study generally provided positive feedback about the MyCog Mobile experience and rated the usability of the app highly. Based on participant feedback, we will conduct further usability research to improve support functionality, optimize task instructions and practice opportunities, and ensure that patients feel comfortable using MyCog.
Mobile. The next steps include a clinical validation study that compares MyCog Mobile to gold-standard assessments and tests the sensitivity and specificity of the measures for identifying dementia.

(JMIR Form Res 2024;8:e54299) doi: 10.2196/54299

KEYWORDS
cognitive screening; cognitive; cognition; psychometric; usability; feasibility; early detection; dementia; Alzheimer’s disease, Alzheimer’s disease and age-related dementia; mHealth, mobile health apps; detection; screening; mobile health; mobile phone; app; apps; applications; applications; user experience; smartphone; smartphones; gerontology; geriatric; geriatrics; older adult; older adults; elder; elderly; older person; older people; ageing; aging; aged

Introduction

Primary care visits provide an important opportunity to detect pathological cognitive decline in the early stages [1,2], yet less than half of all cases are detected in primary care [3]. Medicare covers cognitive screening as part of the Annual Wellness Visit for adults aged 65 years or older, however, primary care clinics face several barriers to conducting regular cognitive screenings with their patients, including constraints on time and clinic staff [4]. Completing a screening remotely before a primary care visit offers several benefits to both patients and clinicians [5]. Patients can complete the screening at their leisure in the privacy of their own homes, and providers can review the results before a visit. Critically, a complete screener before a visit benefits all stakeholders (eg, clinicians, patients, and support staff) by saving time to address other important issues in person [6].

Mobile apps offer an ideal mechanism for many older adults to complete at-home cognitive screeners. More than 60% of older adults in the United States own a smartphone [7], and over 30% regularly use mobile health apps [8]. Moreover, low-income and minority groups are more likely to access their personal health information on smartphones compared to other electronic devices [9]. A small body of emerging research supports the feasibility of self-administered cognitive screeners on personal smartphones in research contexts [10-12]. The cognitive assessments in these studies vary in administration frequency, length, and structure but tend to find high levels of adherence (70% or higher), receive positive feedback in exit surveys, and show convergent validity with established cognitive screening measures [11,13,14]. However, no screeners to date have been validated for clinical use before a primary care visit [15]. Further research is needed to determine if older adults will be able to access the app and complete cognitive screeners independently, if the data collected from these screeners are reliable, and how older adults will perceive the app from a usability and acceptability perspective.

To encourage broader cognitive screening practices within primary care, the National Institute on Aging funded MyCog Mobile (1R01AG074245-01), a cognitive screening app that participants can self-administer remotely on personal smartphones and sends results directly to their primary care provider’s electronic health record. MyCog Mobile is the smartphone-based counterpart to MyCog, a tablet-based app that was developed for in-person self-administration in clinical settings [16]. MyCog Mobile uses 2 measures from MyCog adapted for remote assessment on a smartphone: Picture Sequence Memory (called MyPictures in the mobile app), which measures episodic memory, and Dimensional Change Card Sorting (called MySorting in the mobile app), which measures executive functioning. When combined with self-report, these 2 measures have demonstrated good sensitivity and specificity to detect cognitive impairment [16]. To expand the breadth of cognitive domains assessed, the pilot version of MyCog Mobile also includes 2 additional measures that are not in the original MyCog tablet app: a measure of working memory (MySequences) and a measure of memory for faces (MyFaces). We modeled each of the MyCog Mobile measures on existing mobile measures in the Mobile Toolbox [17], a comprehensive research platform and assessment library that allows for remote cognitive measurement on a personal smartphone (see Measures section).

MyCog Mobile is unique for 2 important reasons. First, it is a clinical screener meant to be used to help primary care providers make appropriate referrals and care recommendations, as opposed to a pure research measure such as the Mobile Toolbox. Second, MyCog Mobile is intended to be self-administered in a completely unsupervised remote setting, as opposed to the MyCog tablet app which is used in clinics under staff supervision. As such, MyCog Mobile underwent an extensive human-centered design process in which the platform and measures were optimized to be used by older adults in this context [5]. To ensure that the MyCog Mobile measures can be reliably self-administered by older adults in a remote setting, we piloted the screener in a sample of 51 adults aged 65 years or older who completed the measures on their personal iOS (Apple) smartphones. This pilot study will inform a subsequent construct and clinical validations, in which the sensitivity and specificity of the screener will be tested against clinical gold standards in a sample of healthy adults and used to differentiate healthy adults from those with cognitive impairment. Primary research questions for this pilot study include (1) Can older adults complete MyCog Mobile remotely on their smartphones? (2) Are the internal consistency and test-retest reliability of the measures acceptable? and (3) How do participants rate the user experience of MyCog Mobile?

Methods

Ethical Considerations

The research procedures were reviewed and approved by Northwestern University’s institutional review board (STU00214921). All participants provided informed consent and were compensated with a US $50 Visa gift card for their participation in this study. The data presented in this paper are
anonymous and free of identifiers that could be linked to specific participants.

Sample

We collaborated with a third-party market research agency to recruit older adults (N=51; Table 1) to take the measures on their smartphones twice, about 2 to 3 weeks apart. The agency contacted potential participants in their large database of thousands of older adults who had previously indicated interest in participation in research studies. Sample recruitment was broadly stratified by age, gender, racial and ethnic identity, and highest level of education. Inclusion criteria included (1) aged 65 years or older; (2) ownership of an iOS smartphone version 14 or higher; (3) being English-speaking; and (4) willing to complete the measures twice within approximately 2 to 3 weeks.

Table 1. Descriptive samples and sample demographics of pilot study participants.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Total sample (N=51), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD; range)</td>
<td>74.20 (6.25; 65-90)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>29 (57)</td>
</tr>
<tr>
<td>Men</td>
<td>22 (43)</td>
</tr>
<tr>
<td>Racial identity</td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>9 (18)</td>
</tr>
<tr>
<td>White</td>
<td>42 (82)</td>
</tr>
<tr>
<td>Ethnic identity</td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino (any race)</td>
<td>5 (10)</td>
</tr>
<tr>
<td>Not Hispanic or Latino (any race)</td>
<td>46 (90)</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
</tr>
<tr>
<td>HS(^a) diploma or GED(^b)</td>
<td>17 (33)</td>
</tr>
<tr>
<td>Some college</td>
<td>10 (20)</td>
</tr>
<tr>
<td>4-year college degree</td>
<td>12 (23)</td>
</tr>
<tr>
<td>Graduate or professional degree</td>
<td>12 (23)</td>
</tr>
</tbody>
</table>

\(^a\)HS: high school.

\(^b\)GED: General Educational Development.

Procedure

Participants were asked to download the MyCog Mobile app onto their devices and complete the 4 activities in the battery and answer 2 demographic questions (age and education level). They received an email from this study’s staff with instructions to download the app and information on how to contact staff for support if needed. The app shows 2 brief intro screens (Figure 1) and then the cognitive screening begins with the learning trial of MyFaces. Participants then complete, in order, MySorting, MySequences, 2 demographics questions (age and education level), the recall subtests of MyFaces (see below), and, finally, MyPictures. After finishing their baseline MyCog Mobile assessment, participants completed a usability survey to provide feedback on their experiences. Participants were asked to self-administer MyCog Mobile a second time within 2 to 3 weeks of their baseline administration.
Measures

MyFaces

MyFaces is an associative memory test originally developed by Rentz and colleagues [18] to predict cerebral amyloid beta burden. The MyCog Mobile version of this task was adapted from the Mobile Toolbox Faces and Names test, which was also based on the original test [17]. Participants are first shown 12 pictures of people paired with their names. After an approximately 5- to 10-minute delay, participants’ memories are tested in 3 subtests: the first subtest (recognition) asks the participant to select the person they saw in the learning trial from 3 options. The second subtest (first letter) asks participants to indicate the first letter of the name of the person presented on the screen (Figure 2). The third subtest (name matching) asks participants to select the name of the person presented from among 3 possible response options. A raw accuracy score is given for each of the 3 subtests.

Figure 1. MyCog Mobile introduction screens.
MySorting

MySorting is a measure of executive function and cognitive flexibility adapted from the MyCog Dimensional Change Card Sorting [16] and the Mobile Toolbox Shape-Color Sorting test [17]. Respondents are asked to sort images across 2 dimensions—shape and color—as quickly as they can. The relevant dimension for sorting is indicated by a cue word ("shape" or "color") that appears on the screen (Figure 3). Scores are given for accuracy and response speed.

Figure 2. MyFaces first letter subtest example screen (face censored for publication).

Figure 3. MySorting example screen.
MySequences

MySequences is a measure of working memory adapted from the Mobile Toolbox sequences test [17]. MySequences requires participants to remember strings of letters and numbers and arrange them in order, with the letters in alphabetical order first and then the numbers in ascending numerical order (Figure 4). Trials begin with strings of 3 alphanumeric characters and increase in length, reaching a maximum difficulty of 10 characters. Scores reflect the number of correct trials.

Figure 4. MySequences response entry example screen.

MyPictures

MyPictures is a measure of episodic memory adapted from the MyCog Picture Sequence Memory [16] and the arranging pictures task in the Mobile Toolbox [17]. A series of images depicting independent, nonsequential activities is presented in a specific order and placed in specific, sequential locations on the screen. Following this presentation, the images are scrambled, and the participant is asked to recall the original position of the images accordingly (Figure 5). There are 2 trials. Scores are given for exact match (the number of pictures in the correct positions) as well as adjacent pairs (the number of correctly ordered pairs of pictures next to each other) on each trial.
Simplified System Usability Scale

The Simplified System Usability Scale (S-SUS) is a modified version of the original System Usability Scale designed for adults aged 65 years and older with or without cognitive impairments [19]. Participants rate their level of agreement with statements about their experience using MyCog Mobile on a 5-point Likert scale. The original System Usability Scale has demonstrated evidence of its internal consistency, sensitivity to change, and concurrent validity with other usability measures.

Custom Usability Items

We also asked participants to respond to 2 additional 5-point Likert-scale items regarding their experience using MyCog Mobile: “the time to complete the MyCog Mobile Cognitive Screening was” (1=shorter than I expected, 3=about as much time as I expected, and 5=longer than I expected); and “how would you rate the experience of completing MyCog Mobile overall?” (1=very bad, 3=neutral, and 5=very good). Participants also provided feedback on the experience in 3 free-response items: (“what would you do if the app wasn’t working or you weren’t sure what to do next?”; “is there anything you would change about using the MyCog Mobile App to improve the experience?”; and “is there anything else you would like us to know about your experience using the MyCog Mobile app?”).

Analysis

All analyses were conducted in R (R Core Team, 2023), and packages and codes are available on the Open Science Framework [20]. With 51 participants, we had 80% power to detect effect sizes of 0.38 or greater, which was adequate to evaluate our primary outcome of reliability metrics. Internal consistency was assessed using various methods that aligned with each task’s paradigm. For MySorting and MySequences, we calculated median Spearman-Brown correlations between bootstrapped random split-half coefficients for the accuracy scores. For MyPictures, we used the Pearson correlation between trial 1 and trial 2 adjacent pairs’ scores to calculate the Spearman-Brown split-half reliability ($2r/(1+r)$). For MyFaces, we used a look-up table to find expected a posteriori scores and SDs based on the sum of the accuracy scores across the 3 subtests [21,22] and then calculated the empirical and mean marginal reliabilities [23]. We considered internal consistency coefficients of 0.70 or greater to be acceptable [24]. We used intraclass correlations (ICCs) to evaluate test-retest reliability for each of the measures. ICCs and practice effects are reported for the MySorting total score, MySequences total score, MyPictures sum of adjacent pairs’ scores across trials 1 and 2, and the total score across all 3 subtests for MyFaces. We considered ICCs less than 0.50 to be poor, 0.50 to 0.75 acceptable, 0.75 to 0.90 good, and above 0.90 excellent [25]. Practice effects were evaluated through paired 2-tailed t tests of baseline and retest scores. CIs (95%) that contained 0 were considered to indicate nonsignificant practice effects.

We also conducted exploratory analyses of the relations between test performance, usability, and education, respectively, using Spearman ρ correlations. Spearman ρ correlations were used...

Figure 5. MyPictures practice example screen.
over Pearson r correlations because we were interested in monotonic relationships between variables rather than strictly linear ones. Correlations with age were not conducted due to the restriction of age range by study design. To assess the usability of the screener, we examined the score distributions on the S-SUS and custom Likert-scale items and qualitatively evaluated the results from custom usability survey items. A total score greater than 70 out of 100 possible points is considered above average and an acceptable level of usability [26,27]. Further, 2 authors independently reviewed and coded the free-response items. Codes were then reconciled, grouped, and categorized by representative themes. Although we counted each code’s frequency, the survey free-response items were an informal method of gathering feedback rather than a formal quantitative or qualitative study, and our analysis is exclusively descriptive.

Table 2. MyCog Mobile measures reliability, practice effects, and correlation with education.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Internal consistency* (95% CI)</th>
<th>Test-retest reliability (ICCb) (95% CI)</th>
<th>Practice effects (ΔM) (95% CI)</th>
<th>Education (ρ) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyFaces</td>
<td>0.73 (0.63 to 0.82)</td>
<td>0.61 (0.40 to 0.76)</td>
<td>4.70 (2.62 to 6.79)</td>
<td>0.33 (0.05 to 0.56)</td>
</tr>
<tr>
<td>MySorting</td>
<td>0.90 (0.83 to 0.94)</td>
<td>0.71 (0.54 to 0.82)</td>
<td>1.75 (–0.97 to 4.49)</td>
<td>0.45 (0.19 to 0.66)</td>
</tr>
<tr>
<td>MySequences</td>
<td>0.91 (0.85 to 0.95)</td>
<td>0.65 (0.46 to 0.78)</td>
<td>1.77 (–0.43 to 3.96)</td>
<td>0.36 (0.08 to 0.58)</td>
</tr>
<tr>
<td>MyPictures</td>
<td>0.81 (0.73 to 0.94)</td>
<td>0.70 (0.53 to 0.82)</td>
<td>0.44 (–0.94 to 1.82)</td>
<td>0.06 (–0.22 to 0.33)</td>
</tr>
</tbody>
</table>

*aSpearman-Brown corrected split-half correlations are reported for MySorting, MySequences, and MyPictures while empirical reliability is reported for MyFaces. Test-retest analyses are based on a sample of $n=49$.

bICC: intraclass correlation.

Usability

The mean overall usability rating on the S-SUS was acceptable (mean 73.17, SD 19.27). Ratings were not significantly correlated with education or performance on any of the measures. Analysis of the S-SUS items demonstrated Likert scale ratings in generally favorable directions (ie, positively worded items were greater than the neutral rating of 3, and negatively worded items were less than 3; Table 3). On additional custom Likert-scale items, participants indicated the time it took to complete the S-SUS was slightly less than expected on average, and the overall experience was positive.
Table 3. Usability ratings of MyCog Mobile.

<table>
<thead>
<tr>
<th>Measure and item</th>
<th>Descriptive range</th>
<th>Rating, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified System Usability Scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I would use the MyCog Mobile app before an appointment with my doctor</td>
<td>Neutral to agree</td>
<td>3.53 (1.25)</td>
</tr>
<tr>
<td>The MyCog mobile app is too complex for me</td>
<td>Disagree to strongly disagree</td>
<td>1.98 (1.16)</td>
</tr>
<tr>
<td>The MyCog mobile app was easy to use</td>
<td>Agree to strongly agree</td>
<td>4.05 (0.97)</td>
</tr>
<tr>
<td>I really need help from someone to use the MyCog mobile app</td>
<td>Disagree to strongly disagree</td>
<td>1.67 (0.105)</td>
</tr>
<tr>
<td>The various parts of the MyCog mobile app were well integrated</td>
<td>Neutral to agree</td>
<td>3.78 (0.97)</td>
</tr>
<tr>
<td>The MyCog Mobile app was confusing for me</td>
<td>Disagree to strongly disagree</td>
<td>1.98 (1.01)</td>
</tr>
<tr>
<td>Learning to use the MyCog Mobile app was quick for me</td>
<td>Neutral to agree</td>
<td>3.75 (1.15)</td>
</tr>
<tr>
<td>The MyCog mobile app was hard to use</td>
<td>Disagree to strongly disagree</td>
<td>1.90 (1.04)</td>
</tr>
<tr>
<td>I felt confident using the MyCog mobile app</td>
<td>Neutral to agree</td>
<td>3.98 (1.12)</td>
</tr>
<tr>
<td>I will need to learn a lot before using the MyCog mobile app</td>
<td>Neutral to disagree</td>
<td>2.04 (1.11)</td>
</tr>
<tr>
<td>Additional Likert-scale questions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time to complete MyCog Mobile was...</td>
<td>As much time as expected or less</td>
<td>2.84 (1.07)</td>
</tr>
<tr>
<td>How would you rate the experience of completing MyCog Mobile overall?</td>
<td>Good to very good</td>
<td>4.00 (0.94)</td>
</tr>
</tbody>
</table>

Free-Response Feedback

On the first free-response item, “what would you do if the app wasn’t working, or you weren’t sure what to do next?” participants’ responses indicated several strategies they would use for help (Table 4). Most expected to be able to directly contact someone for support through an email or phone call. Several participants indicated they would use an in-app help resource or search for help resources online. Although most participants indicated they would try to solve the problem, 3 participants stated they would not finish MyCog Mobile if they encountered a difficulty (eg, “[I would] disregard it and continue on as I had before the app”).

On the second free-response item, “is there anything you would change about using the MyCog Mobile App to improve the experience?” most participants did not offer any suggestions or gave positive feedback (Table 4). Several participants suggested the instructions for the cognitive tests needed clarification (eg, “some of the exercises were not well explained or confusing. Particularly the ones where random letters and numbers were given, and they had to be reorganized. Simplifying the instructions would be helpful”). Some participants expressed concerns about their memories in response to this question or commented on the difficulties of the test items (eg, “I just wish I was smarter [and] had a better memory”). Regarding visual accessibility of the app, 2 participants indicated difficulty with the print size, and 1 indicated difficulty with the visual contrast of the tasks. Of note, 1 participant remarked they would prefer to complete MyCog Mobile in the clinic (eg, “while the app itself was easy & straight forward to download and access the survey material, I would most likely defer its home use and prefer an ‘in doctor’s office’ cognitive testing experience”). However, another participant remarked on how easy it would be to complete MyCog Mobile before the appointment (eg, “I really don’t see that anything was difficult. The app would work very well prior to a doctor visit.”). Further, 3 participants offered feedback on the process of participating in this pilot study, which will be considered for future study administration but is not relevant to the MyCog Mobile user experience specifically.

On the final free-response item, “is there anything else you would like us to know about your experience using the MyCog Mobile app?” most participants did not provide any feedback. As with the previous free-response item, several participants expressed concerns about their abilities (eg, “I found it to be quite challenging, especially since my memory isn’t what it once was.”). Some commented the instructions were confusing (eg, “no at 1st it was sort of confusing once I got into it, it was easier”), and 2 wanted more opportunities to practice before starting the live items. (eg, “I would like to see more practice questions to help the user feel more relaxed and confident”). Further, 2 participants wanted more explanation around the purpose of the test (eg, “perhaps a brief description of what the test is designed for, for example: to test mental recall, to test cognitive ability, to test onset of dementia or Alzheimer’s”). Only 1 participant reported difficulties loading the app for this study. Conversely, many participants provided positive feedback (eg, “it was simple and easy to use”).

https://formative.jmir.org/2024/1/e54299

JMIR Form Res 2024 | vol. 8 | e54299 | p.752
(page number not for citation purposes)
Table 4. Free-response feedback on MyCog Mobile.

<table>
<thead>
<tr>
<th>Item and type of response</th>
<th>Frequency, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>“What would you do if the app wasn’t working, or you weren’t sure what to do next?”</td>
<td></td>
</tr>
<tr>
<td>Contact a support administrator</td>
<td>27</td>
</tr>
<tr>
<td>Self-troubleshoot or restart the app</td>
<td>13</td>
</tr>
<tr>
<td>Use in-app help or search online</td>
<td>7</td>
</tr>
<tr>
<td>Not finish or give up</td>
<td>3</td>
</tr>
<tr>
<td>“Is there anything you would change about using the MyCog mobile app to improve the experience?”</td>
<td></td>
</tr>
<tr>
<td>No changes suggested or positive feedback</td>
<td>32</td>
</tr>
<tr>
<td>Clarify task instructions</td>
<td>7</td>
</tr>
<tr>
<td>Concerns about own abilities or test difficulty</td>
<td>5</td>
</tr>
<tr>
<td>Visibility issues</td>
<td>3</td>
</tr>
<tr>
<td>Concerns related to study administration</td>
<td>3</td>
</tr>
<tr>
<td>Preference for in-person experience</td>
<td>1</td>
</tr>
<tr>
<td>“Is there anything else you would like us to know about your experience using the MyCog mobile app?”</td>
<td></td>
</tr>
<tr>
<td>No feedback</td>
<td>24</td>
</tr>
<tr>
<td>Positive feedback</td>
<td>14</td>
</tr>
<tr>
<td>Concerns about own abilities or test difficulty</td>
<td>5</td>
</tr>
<tr>
<td>Additional practice items</td>
<td>2</td>
</tr>
<tr>
<td>Purpose of test unclear</td>
<td>2</td>
</tr>
<tr>
<td>Difficulty loading app</td>
<td>1</td>
</tr>
</tbody>
</table>

aParticipant responses could be coded for multiple themes; therefore, the frequency should not sum to the total sample size.

Discussion

Principal Findings

The findings suggest most healthy older adults can reliably complete the MyCog Mobile screener remotely on their smartphones. The 4 performance measures that comprise the MyCog Mobile screener demonstrated acceptable internal consistency and test-retest reliability. The performance demonstrated positive correlations with education as expected, except for MyPictures, which did not correlate with education. Participants in our sample rated the usability of MyCog Mobile as above average and rated the experience “Good” to “Very Good” overall. They indicated the time to complete MyCog Mobile was about as long as they expected. These results provide evidence of the feasibility and acceptability of remote self-administration of the MyCog Mobile cognitive screener and support its further evaluation in larger clinical samples to understand its diagnostic accuracy and construct validity.

The feedback on free-response items indicated that most participants had a positive user experience and revealed several actionable insights for the next iteration of the MyCog Mobile app. First, participants expect a dedicated support representative to be available if they have difficulty using the app. Clinics that implement MyCog Mobile into their workflows will have to consider how to best respond to the needs of patients. For example, clinics may choose to dedicate resources for support or inform patients that the screener is optional, and they may defer the use of the app until their clinic visit if they encounter problems. Participants also indicated that they expect a help resource within the app. Currently, participants can use the “Pause” icon to stop the activities and review the instructions. However, an additional button labeled “Help” may be easier to navigate for older adults. Participants indicated that they would use several strategies to troubleshoot on their own if they encountered difficulties (eg, restarting the app); however, clinics should expect some participants not to finish MyCog Mobile if problems arise. For these patients, clinics will have to default to their previous screening workflows (eg, using in-person screeners like the MyCog tablet app or a traditional paper-and-pencil screener).

Concerning what could be improved with the app, some participants offered feedback on the instructions for the activities and asked for more opportunities to practice before completing live items. Although this feedback came from a minority of patients (7/51, 14%), we will conduct further cognitive interviewing to ensure instructions are optimized for all users. Currently, participants are only allowed to try practice items again if they respond incorrectly. However, adding the opportunity to try practice items again if the item is correct may be helpful for participants. Further, 2 participants also reported trouble reading the print on a smartphone screen. To address this, we increased the font size of the print to maximize the readability of the text which will be implemented in the subsequent MyCog Mobile validation studies.
Several participants provided feedback that reflected insecurities about their abilities or performance on the test. Some reported that the items were too difficult, however, the item difficulties cannot be changed to preserve the validity of the test. Instead of changing the items, steps could be taken to assure patients that it is normal for the items to be challenging. Based on feedback in a previous study, we designed the introduction screen (Figure 1) to alleviate potential concerns about the purpose of the test. For the next iteration of MyCog Mobile, we will collect participant feedback on how to optimize the introduction screen to make patients feel comfortable and assured when completing the screener at home.

Limitations

The generalizability of our findings is limited by the relative homogeneity of our small sample about racial and ethnic identities. Representation of racial identities other than White was low or nonexistent, and representation of Hispanic or Latino populations was relatively small. Findings will need to be replicated in these populations in future studies to ensure MyCog Mobile has equal validity evidence for these groups. Moreover, due to the constraints of the grant, we developed the first version of MyCog Mobile for iOS devices (iPhones) only. iPhones are among the most expensive smartphones, which may have biased our sample toward higher-income participants (though we did not collect income information). Future work will focus on developing and validating MyCog Mobile for Android.

In this small pilot study, we were not able to conduct qualitative interviews with patients but rather gave them opportunities to provide feedback via free-response survey items. While free-response items can capture a breadth of spontaneous viewpoints, they may not achieve the depth or nuanced understanding of participants’ experiences and perspectives that can be gleaned from qualitative interviews. Consequently, our findings might not encompass the subtleties or the full range of participant experiences with MyCog Mobile.

The recruitment of older adults with cognitive impairments was outside of the scope of our pilot study; however, it is important to note that MyCog Mobile has yet to be researched in these populations. We expect older adults who are currently struggling with cognitive decline will likely have difficulty using MyCog Mobile, and the app may be more appropriate for participants who are cognitively intact or in the early stages of cognitive decline. The forthcoming clinical validation of MyCog Mobile will provide valuable information about the sensitivity and specificity of the measures for detecting cognitive decline. The forthcoming clinical validation of MyCog Mobile will provide valuable information about the sensitivity and specificity of the measures for detecting cognitive decline as well as the feasibility of using the app with cognitively impaired populations.

Further, I potential limitation of the MyCog Mobile app is older adults’ familiarity with mobile health apps in general. Although smartphone ownership is increasingly more common across age groups, some older adults still do not own smartphones or feel confident using them. The participants in our sample rated the user experience highly; however, the acceptability of a remote cognitive screening app is likely to be lower in a general population sample that has not chosen to participate in a highly controlled research study. Based on the results of the clinical validation, we will conduct a field test of MyCog Mobile, in which we will collect feedback on the acceptance of the app in real-world contexts.

Comparisons With Prior Work

Our findings are consistent with the small body of research on the feasibility and acceptability of smartphone apps for cognitive screening but also offer some novel contributions. Several studies have examined repeated cognitive assessments on smartphones in research contexts for older adults, although these have primarily examined adherence [11,13,28]. Further, ecological momentary assessment study found that both cognitively normal and older adults with mild cognitive impairment were able to complete cognitive assessments on their smartphones with an adherence rate of 85% in the context of a research study [29]. We observed a 96% adherence rate in our pilot study (albeit with only 2 administration time points), but it is unclear if patients will respond the same way when MyCog Mobile is used in the context of a real-world primary care visit, even if they are asked to complete the activities once annually.

Research on attitudes toward cognitive screening in primary care suggests that most older adults are open to cognitive screening in primary care if they perceive there is a benefit [30]. In our sample, the average response to “I would use the MyCog Mobile app before an appointment with my doctor” skewed positive, but 10 (20%) out of 51 participants responded with "Disagree" or “Strongly Disagree.” Future iterations of the app will focus on communicating the benefits of cognitive screenings to older adults, especially in the absence of clinical staff to explain the assessments when they are taken at home. Moreover, clinics should expect there to be a portion of patients who do not complete MyCog Mobile before the visit and will need to complete usual-care cognitive screenings in the clinic. MyCog Mobile is not intended to replace all in-person screening practices, but rather supplement such practices. Likewise, MyCog Mobile is not intended to provide a clinical diagnosis, but rather to identify potential cognitive impairment, and lead to appropriate referrals for more comprehensive evaluation. For the portion of patients who are willing and able to complete MyCog Mobile on their smartphones before their appointment, clinics can use in-person time to focus on other important aspects of the visit.

Conclusions

Pilot evidence suggests the MyCog Mobile cognitive screener can be reliably self-administered by older adults on their smartphones. Participants in our study generally provided positive feedback about the MyCog Mobile experience and rated the usability of the app highly. Based on participant feedback, we will conduct further usability research to improve support functionality, optimize task instructions and practice opportunities, and make patients feel comfortable using MyCog Mobile. Additional next steps include a clinical validation study that compares MyCog Mobile to gold-standard assessments and tests the sensitivity and specificity of the measures for identifying cognitive impairment.
Acknowledgments
This study was supported by the National Institute on Aging (grant 1R01AG074245-01).

Data Availability
Given the small sample size, data are not publicly available to ensure participants’ privacy. For questions about the data set, please contact the corresponding author.

Conflicts of Interest
None declared.

References

Abbreviations

ICC: intraclass correlation
S-SUS: Simplified System Usability Scale
Vision-Language Model for Generating Textual Descriptions From Clinical Images: Model Development and Validation Study

Jia Ji¹, MSc; Yongshuai Hou², PhD; Xinyu Chen³, BSc; Youcheng Pan², PhD; Yang Xiang², PhD

¹Shenzhen Institute of Information Technology, Shenzhen, China
²Peng Cheng Laboratory, Shenzhen, China
³Harbin Institute of Technology, Shenzhen, China

Corresponding Author:
Youcheng Pan, PhD
Peng Cheng Laboratory
No. 2 Xingke 1st Street
Shenzhen, 518000
China
Phone: 86 18566668732
Email: panyoucheng4@gmail.com

Abstract

Background: The automatic generation of radiology reports, which seeks to create a free-text description from a clinical radiograph, is emerging as a pivotal intersection between clinical medicine and artificial intelligence. Leveraging natural language processing technologies can accelerate report creation, enhancing health care quality and standardization. However, most existing studies have not yet fully tapped into the combined potential of advanced language and vision models.

Objective: The purpose of this study was to explore the integration of pretrained vision-language models into radiology report generation. This would enable the vision-language model to automatically convert clinical images into high-quality textual reports.

Methods: In our research, we introduced a radiology report generation model named ClinicalBLIP, building upon the foundational InstructBLIP model and refining it using clinical image-to-text data sets. A multistage fine-tuning approach via low-rank adaptation was proposed to deepen the semantic comprehension of the visual encoder and the large language model for clinical imagery. Furthermore, prior knowledge was integrated through prompt learning to enhance the precision of the reports generated. Experiments were conducted on both the IU X-RAY and MIMIC-CXR data sets, with ClinicalBLIP compared to several leading methods.

Results: Experimental results revealed that ClinicalBLIP obtained superior scores of 0.570/0.365 and 0.534/0.313 on the IU X-RAY/MIMIC-CXR test sets for the Metric for Evaluation of Translation with Explicit Ordering (METEOR) and the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) evaluations, respectively. This performance notably surpasses that of existing state-of-the-art methods. Further evaluations confirmed the effectiveness of the multistage fine-tuning and the integration of prior information, leading to substantial improvements.

Conclusions: The proposed ClinicalBLIP model demonstrated robustness and effectiveness in enhancing clinical radiology report generation, suggesting significant promise for real-world clinical applications.

(Keywords: clinical image; radiology report generation; vision-language model; multistage fine-tuning; prior knowledge)

Introduction

Radiology reports offer essential textual descriptions of radiographs and play a pivotal role in the medical diagnosis and treatment process. Their precise interpretation can directly influence patient outcomes, underscoring the gravity of each assessment. However, even for seasoned radiologists, interpreting these images can be a meticulous task, often taking several minutes per image. In an era where timely medical intervention can be lifesaving, streamlining this process becomes imperative. Recognizing the immense potential to ease the workload of the health care sector and improve patient care, there has been a growing interest in the research for automatic radiology report generation.
As shown in Figure 1, several attempts have been made in the medical field to create medical reports from images. In the early stage, most researchers used traditional deep learning methods, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to produce radiology reports. IU X-RAY proposed by Demner-Fushman et al [1] was a significant step in this direction. In addition, Shin et al [2] innovatively applied a CNN-RNN model for structured report creation. Wang et al [3] used a nonhierarchical CNN-long-short term memory approach, emphasizing both semantic and visual cues. Vinyals et al [4] introduced visual attention mechanisms in the realm of image captioning with CNN-RNN structures. Subsequently, radiology report creation has evolved to adopt transformer-based models [5,6]. The Knowledge-Driven Encode, Retrieve, and Update model is designed to allow the LLM to draw upon its internal knowledge and understanding of medical images and texts to generate better reports. The proposed ClinicalBLIP achieved state-of-the-art performance with layer normalization [19] is proposed to enhance the understanding of clinical images by a general visual encoder. The training target is the text generation loss of the large language model (LLM) without introducing extra clinical knowledge with clinical images to generate better reports. However, it is important to address challenges related to data quality, integration, and rules when using VLMs in clinical settings. Thus, designing an effective fine-tuning method to boost VLM's knowledge and understanding of medical images and texts is a very interesting research direction.

Recently, vision-language models (VLMs) [12-15] have become leading approaches, which use pretrained transformer models to handle both visual and textual data at the same time. These models are very good at understanding and creating content based on images and texts. One key feature is cross-modal learning [16,17], where VLMs learn to match specific image patterns with their related descriptions or findings. This understanding helps in making reports that are more relevant and accurate. VLMs have the potential to greatly improve radiology report generation by increasing accuracy, making processes faster, and ensuring consistency. However, it is important to address challenges related to data quality, integration, and rules when using VLMs in clinical settings. Thus, designing an effective fine-tuning method to boost VLM's knowledge and understanding of medical images and texts is a very interesting research direction.

In this study, we fine-tune a medical VLM named ClinicalBLIP through a multitask fine-tuning strategy for the radiology report generation task. First, a joint optimization method that combines self-attention fine-tuning via low-rank adaptation (LoRA) [18] with layer normalization [19] is proposed to enhance the understanding of clinical images by a general visual encoder. The training target is the text generation loss of the large language model (LLM) without introducing extra clinical image-text pairs for further pretraining. Second, the joint fine-tuning process for both the image-text transformation layer and the multilayer perceptron (MLP) layer of the language model is designed to allow the LLM to draw upon its internal capability to generate the final report. In addition, we further incorporate the prior information to light the specialized clinical knowledge inherent in the LLM. Also, the clinical tag and brief description of the image as a text prompt are fed into the model for training and prediction. Experiments were conducted on the IU X-RAY [1] and MIMIC-CXR [20] data sets. We compared the proposed model with 11 competitor methods and analyzed the performance in several aspects. It is demonstrated that the proposed ClinicalBLIP achieved state-of-the-art performance and can effectively combine the introduced textual prior knowledge with clinical images to generate better reports.

Methods

Data Set

We evaluated our proposed method on the IU X-RAY [1] and MIMIC-CXR [20] data sets. Both data sets have been automatically deidentified.

The IU X-ray data set comprises 7470 images and 3955 reports. The images consist of chest x-rays originating from Indiana University. Each report in the data set primarily encompasses multiple attributes such as comparison, indications, findings, and impressions. Reports with empty findings were excluded, resulting in 3337 remaining reports. Subsequently, we divided the remaining reports into training and testing sets in a 4:1 ratio, yielding 2668 reports for training and 669 reports for testing.

The MIMIC-CXR data set was created by the Massachusetts Institute of Technology. The images are sourced from 65,379 patients who presented to the Beth Israel Deaconess Medical Center Emergency Department between 2011 and 2016. We used 152,173 medical reports for training and 1196 reports for testing. In this data set, each data entry comprises a specific report and 1 to 3 corresponding images.

Figure 1. Example of a radiology report generation task.
Overview of the Proposed Method

Our work aims to transform clinical radiographs, accompanied by additional information, into textual descriptions that convey the same semantic meaning as the images. To achieve this, we introduce the ClinicalBLIP model, as depicted in Figure 2. This model comprises three core modules: (1) a visual encoder for converting clinical images into semantic representations; (2) query transformer (Q-Former), a crucial component for bridging the image-text gap; and (3) a LLM for generating textual reports based on queries learned from Q-Former and textual prompts.

Figure 2. Overview of the proposed ClinicalBLIP model. LLM: large language model; Q-Former: query transformer.

Initially, we briefly introduce the structure and pretraining of the ClinicalBLIP, which draws inspiration from Li et al [21], especially how Q-Former as an intermediate module effectively connects visual and textual data. Subsequently, we delve into the details of how to effectively fine-tune the task of radiology report generation.

Q-Former to Bridge the Modality Gap

Q-Former is designed to link a fixed image encoder with a standard LLM. Notably, it can extract a consistent set of features from the visual encoder, regardless of the input image resolution. As shown in Figure 3, the model is composed of two primary transformer submodules: (1) an image transformer for direct interaction with the visual encoder and (2) a text transformer that serves as both encoder and decoder. The efficacy of the Q-Former is greatly influenced by learnable query embeddings, which facilitate self-attention and cross-attention layer interactions. These embeddings also enable communication with text through similar attention mechanisms. During its 2 pretraining phases, that is, vision-language representation learning and vision-to-language generative learning, Q-Former uses distinct attention masks for specific tasks, controlling the interaction between queries and text.

Figure 3. Model architecture of query transformer (Q-Former).

Vision-Language Representation Learning From Visual Encoder

In the representation learning phase, Q-Former, connected to a frozen visual encoder, undergoes pretraining with image-text pairs. The objective here is to train the model to enable queries to extract visual representations corresponding to the text. Inspired by Li et al [22], 3 pretraining tasks are jointly optimized, using the same input format and model parameters. As illustrated in Figure 3, these tasks include image-text contrastive learning, image-grounded text generation, and image-text matching. Image-text contrastive learning aligns
image and text representations by contrasting the similarity of a positive image-text pair against that of negative pairs. Image-grounded text generation encourages the Q-Former to compel the queries to extract visual features that contain the whole information of the text. Image-text matching seeks to capture fine-grained alignment between image and text representations through a binary classification task. Each task uses a specific attention-masking strategy to control the interaction between queries and text.

Vision-to-Language Generative Learning From LLM

During the generative pretraining phase, Q-Former, connected to a frozen LLM, leverages its language generation capabilities. A fully connected layer is used to linearly project the output query embeddings to match the dimension of the LLM’s text embedding. These embeddings then act as visual prompts, guiding the LLM based on the visual representation captured by Q-Former. Since Q-Former has been trained to extract visual representations that are informative for language, it effectively serves as an information filter, providing only the most relevant information to the LLM and excluding unnecessary visual details. This setup reduces the load on the LLM to learn vision-language alignment, mitigating the risk of the catastrophic forgetting problem.

General Vision-Language Instruction Tuning

Following the pretraining phases, as in Dai et al. [23], Q-Former undergoes a vision-language instruction tuning process. Here, the LLM integrates visual encodings from Q-Former with additional instruction text tokens. The instruction interacts with the query embeddings through the Q-Former’s self-attention layers. This interaction aids in extracting relevant image features, which are further provided to optimize the LLM for following instructions. Both quantitative and qualitative analyses confirm the effectiveness of the instruction tuning process in achieving vision-language zero-shot generalization.

Effective Fine-Tuning of Radiology Report Generation

To enhance the performance of a general visual encoder and an LLM for medical image understanding and report generation, various aspects need careful consideration. As shown in Figure 4, a multistage parameter fine-tuning approach is used to improve model performance, namely visual encoder enhancement and vision-language joint training.

In the first stage, the model’s weights are adjusted to focus more on relevant features within medical images. This refinement aids in understanding critical elements such as lesions, organs, and more. Concurrently, layer normalization is applied to maintain a consistent response across varying image scales and brightness levels. The primary objective here is the generation loss of the LLM, aiming to improve the quality of final reports by enhancing the visual encoder’s ability to use visual information more effectively during report generation, without the need for additional medical text data for further pretraining.

In the second stage, the joint training process encompasses the fusion of visual and textual inputs, and crucially, the incorporation of the attention layer and MLP layer of the LLM. The model simultaneously processes information from the visual encoder and textual sources. The attention layer enables dynamic focus on specific regions of medical images, aligning with features crucial for report generation. Meanwhile, the MLP layer transforms the combined visual-textual data, boosting the model’s ability to generate contextually accurate and coherent medical reports. The whole approach ensures full use of the model’s attention and transformation capabilities, yielding medically precise and linguistically sound reports, thus effectively bridging the gap between visual and textual data.

Moreover, general LLMs often struggle with the absence of specialized medical domain knowledge in the medical report generation task. To mitigate the issue, we incorporate the prior information into the model during the second stage. Specifically, medical tags related to the medical image and a brief image description are embedded as text prompts. In training, these prompts are linked to corresponding medical images, facilitating the model’s comprehension of the image content. This association enables the model to better learn medical
domain-specific terms and concepts. This embedding of text prompts guides the model with domain knowledge, addressing its limitations in the medical field. During prediction, these prompts provide additional contextual information, enabling the model to better comprehend medical images, identify features within them, and express the medical reports in a more professional manner.

In our research, we analyze 2 relevant data sets: IU X-RAY [1] and the MIMIC-CXR [20]. Each of them has unique prior information as input. The IU X-RAY data set enriches the model with essential prior information, including “problem,” “image,” and “indication.” The input template for the IU X-RAY data set is formatted as follows:

“Problems: {problem} \n Image: {image} \n Indication: {indication} \n”,

exemplified by “Problems: normal \n Image: Chest, 2 views, frontal and lateral \n Indication: Pruritic \n”.

In contrast, the MIMIC-CXR data set lacks direct access to similar prior information. To maintain consistency, we use the CheXBERT [24] model to extract medical observations from the reports within the MIMIC-CXR data set. The input template for this data set is formatted as follows:

“Symptoms of existence: {} \n Symptoms of non-existence: {} \n”,

illustrated by “Symptoms of existence: Cardiomegaly, Atelectasis \n Symptoms of non-existence: Edema, Consolidation \n”.

Experimental Settings

We adopt the InstructBLIP [23] as the base model, in which contrastive language-image pretraining [13] and Flan-T5-XL [25] are used as visual encoders and LLM structures, respectively. In the training phase, we integrated LoRA [18] into both the visual encoder and the language model. This integration of LoRA was strategically implemented within the query projection and value projection stages during self-attention operations, enhancing the model’s ability to capture and leverage relational information. For the training process, we configured our settings as follows: a batch size of 3 was used, and gradient accumulation was carried out over 4 steps to facilitate stable and efficient training. The initial learning rate for the Q-Former parameters was set to 1×10^{-4}, while the initial learning rate for the LoRA-related parameters was established at 5×10^{-4}. To dynamically adapt the learning rate during training, we used a cosine decay learning rate scheduler, optimizing the convergence and fine-tuning process. Furthermore, to enhance the training efficiency and minimize memory consumption, we used float16 precision, a half-precision training technique, which effectively balances training speed and model performance. This comprehensive approach allowed us to train our model effectively, incorporating LoRA’s enhancements for improved performance and robustness. All the experiments are conducted on a graphics processing unit (NVIDIA V100).

To evaluate the performance of the ClinicalBLIP model, we compared our method with the following 11 state-of-the-art methods. R2GEN [9] is a memory-driven radiology report generation model with a relational memory to record the information from the previous generation processes and a layer normalization mechanism to incorporate the memory. CA [26] is a contrastive attention model to capture and depict abnormalities by comparing the input image with known normal images. CMCL [27] is a novel competence-based multimodal curriculum learning framework to alleviate data bias by efficiently using limited medical data for medical report generation. Posterior-and-Prior Knowledge Exploring-and-distilling [28] is an effective approach to exploring and distilling posterior and prior knowledge for radiology report generation. R2GEN enhanced with cross-modal memory networks [29] is a radiology report generation model with cross-modal memory networks in which a memory matrix is used to record the alignment and interaction between images and texts, and another memory is used to perform querying and responding to obtain the shared information across modalities. ALIGNTRANSFORMER [30] is a radiology report generation model to alleviate the data bias problem and model the very long sequence. Knowledge Matters [31] is a novel radiology generation framework assisted by general and specific knowledge. Meshed-Memory Transformer [32] is a simple but effective progressive text generation model to produce the radiology report by incorporating high-level concepts into the generation progress. Reinforcement Learning Over a Cross-Modal Memory (CMM-RL) [33] is an enhanced radiology report generation model with reinforced cross-modal alignment to alleviate the requirement of annotated supervision while facilitating interactions across modalities. Cross-Modal Contrastive Attention (CMCA) [34] is a novel model to capture both visual and semantic information from similar cases. Observation-Guided Radiology Report Generation (ORGAN) [35] is a generation framework that can maintain the clinical consistency between radiographs and generated free-text reports.

We adopted natural language generation metrics to evaluate the methods. Specifically, we selected Bilingual Evaluation Understudy (BLEU) [36], Metric For Evaluation of Translation with Explicit Ordering (METEOR) [37], and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [38]. BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, and ROUGE-L are reported.

BLEU is primarily used to evaluate the quality of machine-generated translations by comparing them to 1 or more reference translations. It computes a precision-based metric by counting the number of n-grams (contiguous sequences of n items, usually words) in the generated translation that matches any reference translation. In this work, BLEU is used to evaluate the generated text report.

METEOR is based on the harmonic mean of unigram precision and recall, with recall weighted higher than precision. It incorporates features not found in other metrics, such as stemming and synonymy matching, along with standard exact word matching. The metric was designed to address some of the issues found in the more popular BLEU metric and to produce a good correlation with human judgment at the sentence or segment level.
ROUGE compares an automatically produced text against a reference or a set of reference text. It measures the overlap of n-grams and word sequences between the generated text and reference text. ROUGE captures both precision and recall, providing a more balanced evaluation, and can be adapted for different summary lengths.

Ethical Considerations

This study complied with all relevant ethical regulations. All the publicly available data sets have been deidentified and anonymized. With institutional review board approval (OHSRP#5357) by the National Institutes of Health Office of Human Research Protection Programs, the IU X-RAY data set was made publicly available by Indiana University, and no informed consent was necessary [1]. The MIMIC-CXR data set was originally approved by the institutional review board of the Beth Israel Deaconess Medical Center and the requirement for individual patient consent was waived [20].

Results

Quantitative Evaluation

Tables 1 and 2 provide the quantitative results of the IU X-RAY and MIMIC-CXR test sets, respectively. The detailed results show that the ClinicalBLIP model exhibited robust performance when compared with other methods across the IU X-RAY and MIMIC-CXR data sets. For the IU X-RAY data set, as shown in Table 1, although ClinicalBLIP was slightly inferior to the competitor methods on some individual metrics, it significantly surpassed the competitor methods on most metrics. With a BLEU-A score of 0.296, it boasted an improvement of roughly 6.9% over its nearest competitor, CMCA, which had a BLEU-A score of 0.277. This showcases ClinicalBLIP’s enhanced capability in producing reports that are more aligned with the reference. Moreover, when assessing the METEOR metric, which provides insights into the robustness of generation, ClinicalBLIP achieved a score of 0.570. This was approximately 1.7 times higher than CMCA’s 0.209, reflecting ClinicalBLIP’s superior relevance to the generated report. The ROUGE-L metric further solidified this observation; ClinicalBLIP’s score of 0.534 was about 33.8% higher than ORGAN’s score of 0.399, suggesting that ClinicalBLIP consistently maintained a high level of linguistic quality and relevance in its results.

For the MIMIC-CXR data set, as shown in Table 2, there were areas where ClinicalBLIP did not have the highest score, but its comprehensive performance remains commendable. The BLEU-A score for ClinicalBLIP stood at 0.162, which, while marginally behind ORGAN’s score of 0.184, indicates a competitive translation quality. However, ClinicalBLIP made a strong comeback in the METEOR metric, recording a score of 0.365, which is approximately 1.25 times higher than ORGAN’s score of 0.162. This underlines ClinicalBLIP’s proficiency in generating semantically relevant reports. Furthermore, with a ROUGE-L score of 0.313, ClinicalBLIP managed to surpass ORGAN by roughly 6.8%, emphasizing its consistent linguistic excellence.

In summary, while individual metrics might have seen close competition, the overall trend clearly indicates the comprehensive strength of the ClinicalBLIP model. Its consistently high scores across various data sets and metrics demonstrate its versatility and reliability in the realm of clinical report generation.
Table 1. The BLEU, METEOR, and ROUGE-L scores of the generated reports by various methods on the IU X-RAY data set.

<table>
<thead>
<tr>
<th>Methods</th>
<th>IU X-RAY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU-1</td>
</tr>
<tr>
<td>R2GEN</td>
<td>0.470</td>
</tr>
<tr>
<td>CA</td>
<td>0.492</td>
</tr>
<tr>
<td>CMCL</td>
<td>0.730</td>
</tr>
<tr>
<td>PPKED</td>
<td>0.483</td>
</tr>
<tr>
<td>M2TR</td>
<td>0.475</td>
</tr>
<tr>
<td>R2GENCMN</td>
<td>0.486</td>
</tr>
<tr>
<td>ALIGNTRANSFORMER</td>
<td>0.484</td>
</tr>
<tr>
<td>KNOWMAT</td>
<td>0.496</td>
</tr>
<tr>
<td>CMM-RL</td>
<td>0.494</td>
</tr>
<tr>
<td>CMCA</td>
<td>0.496</td>
</tr>
<tr>
<td>ORGAN</td>
<td>0.510</td>
</tr>
<tr>
<td>ClinicalBLIP</td>
<td>0.433</td>
</tr>
</tbody>
</table>

aBLEU: Bilingual Evaluation Understudy.
bMETEOR: Metric for Evaluation of Translation With Explicit Ordering.
cROUGE-L: Recall-Oriented Understudy for Gisting Evaluation-L.
eN/A: not available.
fCA: contrastive attention.
gCMCL: competence-based multimodal curriculum learning.
iM2TR: Meshed-Memory Transformer.
jR2GENCMN: R2GEN enhanced with cross-modal memory networks.
kKNOWMAT: Knowledge Matters.
lCMCA: Cross-Modal Contrastive Attention Model.
Table 2. The BLEUa, METEORb, and ROUGE-Lc scores of the generated reports by various methods on the MIMIC-CXR data set.

<table>
<thead>
<tr>
<th>Methods</th>
<th>MIMIC-CXR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU-1</td>
</tr>
<tr>
<td>R2GEN</td>
<td>0.353</td>
</tr>
<tr>
<td>CAe</td>
<td>0.350</td>
</tr>
<tr>
<td>CMCLf</td>
<td>0.344</td>
</tr>
<tr>
<td>PPKEDg</td>
<td>0.360</td>
</tr>
<tr>
<td>M2TRh</td>
<td>0.353</td>
</tr>
<tr>
<td>R2GENCMNi</td>
<td>0.378</td>
</tr>
<tr>
<td>ALIGNTRANSFORMER</td>
<td>0.378</td>
</tr>
<tr>
<td>KNOWMATk</td>
<td>0.363</td>
</tr>
<tr>
<td>CMM-RL</td>
<td>0.381</td>
</tr>
<tr>
<td>CMCAl</td>
<td>0.360</td>
</tr>
<tr>
<td>ORGANm</td>
<td>0.407</td>
</tr>
<tr>
<td>ClinicalBLIP</td>
<td>0.332</td>
</tr>
</tbody>
</table>

aBLEU: Bilingual Evaluation Understudy.
bMETEOR: Metric for Evaluation of Translation With Explicit Ordering.
cROUGE-L: Recall-Oriented Understudy for Gisting Evaluation-L.
dBLEU-A: average of the BLEU-2/3/4 scores.
eCA: contrastive attention.
fCMCL: Competence-Based Multimodal Curriculum Learning.
gPPKED: Posterior-and-Prior Knowledge Exploring-and-distilling.
hM2TR: Meshed-Memory Transformer.
iR2GENCMN: R2GEN enhanced with cross-modal memory networks.
jN/A: not available.
kKNOWMAT: Knowledge Matters.
lCMCA: Cross-Modal Contrastive Attention Model.
mORGAN: Observation-Guided Radiology Report Generation Framework.

Ablation Study

We also conducted an ablation study to analyze the impact of fine-tuning on different modules, such as the original InstructBLIP (without any fine-tuning on this task), LLM, visual encoder, and prior information, and show the results in Table 2. Based on the ablation study results presented in Table 3, several observations can be made regarding the performance of different methods on the IU X-RAY data set. The ClinicalBLIP method achieved a BLEU score of 0.296, a METEOR score of 0.570, and a ROUGE-L score of 0.534, indicating its robust performance across the metrics. When the effective tuning was removed, namely InstructBLIP, there was a significant drop in all metrics, especially in the BLEU score, which dropped to a mere 0.011. This highlights the importance of effective tuning for the model’s performance. Similarly, removing prior information also led to a decline in performance, with the METEOR metric showing a noticeable drop, to 0.339. The removal of LLM tuning and visual encoder tuning resulted in reduced scores, but this was not as drastic as in the former cases. The BLEU score dropped to 0.149 and 0.245, respectively, while the METEOR score was 0.458 and 0.513 for the same conditions.

In summary, effective fine-tuning and prior information played a vital role in achieving optimal performance, and LLM tuning and visual encoder tuning were also important components for enhancing the model’s results. All the components together contributed to the best results.
Table 3. Experimental results of ablation study on the IU X-RAY test set.

<table>
<thead>
<tr>
<th>Methods</th>
<th>BLEU-A<sup>a</sup> score</th>
<th>METEOR<sup>b</sup> score</th>
<th>ROUGE-L<sup>c</sup> score</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClinicalBLIP with all fine-tuning</td>
<td>0.296</td>
<td>0.570</td>
<td>0.534</td>
</tr>
<tr>
<td>ClinicalBLIP without effective tuning</td>
<td>0.011</td>
<td>0.096</td>
<td>0.057</td>
</tr>
<tr>
<td>ClinicalBLIP without prior information</td>
<td>0.091</td>
<td>0.339</td>
<td>0.283</td>
</tr>
<tr>
<td>ClinicalBLIP without LLM<sup>d</sup> tuning</td>
<td>0.149</td>
<td>0.458</td>
<td>0.412</td>
</tr>
<tr>
<td>ClinicalBLIP without visual encoder tuning</td>
<td>0.245</td>
<td>0.513</td>
<td>0.474</td>
</tr>
</tbody>
</table>

^aBLEU-A: the average of the BLEU-2/3/4 scores.
^bMETEOR: Metric for Evaluation of Translation With Explicit Ordering.
^cROUGE-L: Recall-Oriented Understudy for Gisting Evaluation–L.
^dLLM: large language model.

Discussion

Principal Results

Our proposed model, ClinicalBLIP, achieved the best METEOR and ROUGE-L scores and competitive BLEU scores on the test sets of both IU X-RAY and MIMIC-CXR. The primary outcomes of this study are to (1) propose a multistage fine-tuning strategy that separately enhances the visual encoder and the LLM’s understanding of medical image and text, allowing the LLM to harness the knowledge acquired during the pretraining process and (2) incorporate the medical tags of medical images and brief introductions of these images in the form of prompts into the model’s training and prediction processes, the large model can effectively combine the introduced text-based prior knowledge with medical images to generate a more accurate report. Experimental results demonstrate that ClinicalBLIP has great potential to help medical experts facilitate radiology report generation and improve the efficiency of decision-making for clinical diagnosis and treatment.

Case Study

In addition to quantitative evaluations, we conducted an extensive set of qualitative case studies to analyze the generated report. Figure 5 shows 4 cases selected from the generated reports on the MIMIC-CXR test set.

By comparing the prediction and the gold standard, it can be found that case 1 and case 2 are good cases. For case 1, although the prediction and the gold standard are not exactly the same, there are differences in the order of symptom descriptions and word choices; the deep semantic meanings expressed by the two are basically consistent. However, the gold standard provides more details than the prediction, which also explains why the BLEU score is not ideal in certain situations. For case 2, both the prediction and the gold standard reports are closely aligned and convey the same overall findings. The patient’s chest x-ray does not reveal any significant abnormalities. This is a good case as it highlights the consistency and accuracy of radiological interpretation.

Besides the first 2 good cases, there are also areas that need improvement and enhancement. Cases 3 and 4 in Figure 5 show 2 bad cases. For case 3, both the prediction and the gold standard state that the heart is within the normal size, and the lungs appear clear with no signs of pleural effusion or pneumothorax. However, the prediction mentions mild anterior wedging of a midthoracic vertebral body with slight degenerative changes along the midthorax. In contrast, the the gold standard report mentions degenerative changes in the thoracic spine but does not specify the location or type of degeneration. The discrepancies in the description of the bony structures between the prediction and the gold standard report could also be of concern. Different types and locations of degenerative changes can have different clinical implications. For case 4, while the prediction and the gold standard largely align on most observations, there are subtle differences in phrasing. For instance, the prediction mentions the cardiomesediastinal silhouette is normal in size, whereas the the gold standard emphasizes the normal contours of the heart and mediastinum. Such subtle linguistic variations can potentially lead to misunderstandings in diagnosis or interpretation, especially in critical medical decisions. Therefore, even though the general assessments align, precision in wording remains essential.

In summary, it is crucial to ensure that automatic or artificial intelligence–based predictions in radiology are meticulously validated and cross-referenced with expert opinions to ensure patient safety and accurate diagnosis.
Figure 5. Cases generated by ClinicalBLIP on the MIMIC-CXR test set.

Comparison With Prior Work
In the medical or clinical field, there has been a surging interest in developing artificial intelligence applications for image captioning, that is, radiology report generation. Most studies have focused on improving the quality of the generated report by using cross-modal memory to facilitate the generation process [28], reinforcing learning to align the cross-modal information [32], and planning and iterative refinement for long text generation [25]. However, these methods have not explored the capabilities of large VLMs for this task. In this study, we successfully applied large VLMs to the radiology report generation task by designing effective multistage fine-tuning strategies and incorporating prior knowledge mechanisms. We validated our approach on multiple task data sets and achieved state-of-the-art performance.

Limitations and Future Work
Although ClinicalBLIP has made significant strides and shown promising outcomes, there are still some unresolved issues. As mentioned above, ClinicalBLIP has discrepancies in terminological expressions in some cases compared to the gold standard and sometimes lacks or misinterprets comprehensive details in certain descriptions. Therefore, in future work, we will continue to optimize ClinicalBLIP, considering the integration of reasoning techniques like chain of thoughts into the fine-tuning process. This aims to enhance the model’s semantic consistency in professional expressions and provide more detailed descriptions while also verifying the model’s generalization capabilities on more data sets. Moreover, we will seek collaboration from professional practitioners, including both directions for model improvement and methods for model evaluation.

Conclusions
In this study, the ClinicalBLIP model was introduced, leveraging large VLMs for radiology report generation. Tested on the IU X-RAY/MIMIC-CXR data sets, ClinicalBLIP significantly outperformed several competitor methods in METEOR and ROUGE scores, showcasing its potential to enhance automatic report generation in clinical radiology and streamline patient care processes.
Acknowledgments

This work was jointly supported by grants from the Research Project of Shenzhen Institute of Information Technology (grant SZHTZ2022KJ050), and the project was funded by the China Postdoctoral Science Foundation (grant 2023M741843), and the Natural Science Foundation of China (grant 62106115).

Authors’ Contributions

JJ and XC proposed the methods, designed and carried out the experiments, and drafted the manuscript. YH supervised the research and participated in the study design. YP critically revised the manuscript and made substantial contributions to interpreting the results. YX provided guidance and reviewed the manuscript. All authors provided feedback and approved the final version of the manuscript.

Conflicts of Interest

None declared.

References

Abbreviations

BERT: bidirectional encoding representation of transformer
BLEU: Bilingual Evaluation Understudy
CMCA: Cross-Modal Contrastive Attention
CMM-RL: Reinforcement Learning Over a Cross-Modal Memory
CNN: convolutional neural network
LLM: large language model
LoRA: low-rank adaptation
METEOR: Metric for Evaluation of Translation With Explicit Ordering
MLP: multilayer perceptron
ORGAN: Observation-Guided Radiology Report Generation
Q-Former: query transformer
RNN: recurrent neural network
ROUGE: Recall-Oriented Understudy for Gisting Evaluation
VLM: vision-language model

©Jia Ji, Yongshuai Hou, Xinyu Chen, Youcheng Pan, Yang Xiang. Originally published in JMIR Formative Research (https://formative.jmir.org), 08.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
A Digitally Enabled Combined Lifestyle Intervention for Weight Loss: Pilot Study in a Dutch General Population Cohort

Rahul Gannamani¹,²*, MD; José Castela Forte¹,³*, MD; Pytrik Folkertsma¹,⁴, MSc; Sven Hermans¹, MSBA; Sridhar Kumaraswamy¹, BTech, MSc, MBA; Sipko van Dam¹,⁴, PhD; Niels Chavannes⁵,⁶, Prof Dr; Hendrikus van Os⁵,⁶, MD, PhD; Hanno Pijl⁷, Prof Dr; Bruce H R Wolffenbuttel⁴, Prof Dr

¹Ancora Health BV, Groningen, Netherlands
²Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
³Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
⁴Department of Endocrinology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
⁵Department of Public Health and Primary Care, Leiden University Medical Centre, Leiden University, Leiden, Netherlands
⁶National eHealth Living Lab, Leiden, Netherlands
⁷Department of Endocrinology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
*these authors contributed equally

Corresponding Author:
José Castela Forte, MD
Ancora Health BV
Hereplein 34
Groningen, 9711LM
Netherlands
Phone: 31 628218360
Email: jose@ancora.health

Abstract

Background: Overweight and obesity rates among the general population of the Netherlands keep increasing. Combined lifestyle interventions (CLIs) focused on physical activity, nutrition, sleep, and stress management can be effective in reducing weight and improving health behaviors. Currently available CLIs for weight loss (CLI-WLs) in the Netherlands consist of face-to-face and community-based sessions, which face scalability challenges. A digitally enabled CLI-WL with digital and human components may provide a solution for this challenge; however, the feasibility of such an intervention has not yet been assessed in the Netherlands.

Objective: The aim of this study was two-fold: (1) to determine how weight and other secondary cardiometabolic outcomes (lipids and blood pressure) change over time in a Dutch population with overweight or obesity and cardiometabolic risk participating in a pilot digitally enabled CLI-WL and (2) to collect feedback from participants to guide the further development of future iterations of the intervention.

Methods: Participants followed a 16-week digitally enabled lifestyle coaching program rooted in the Fogg Behavior Model, focused on nutrition, physical activity, and other health behaviors, from January 2020 to December 2021. Participants could access the digital app to register and track health behaviors, weight, and anthropometrics data at any time. We retrospectively analyzed changes in weight, blood pressure, and lipids for remeasured users. Surveys and semistructured interviews were conducted to assess critical positive and improvement points reported by participants and health care professionals.

Results: Of the 420 participants evaluated at baseline, 53 participated in the pilot. Of these, 37 (70%) were classified as overweight and 16 (30%) had obesity. Mean weight loss of 4.2% occurred at a median of 10 months postintervention. The subpopulation with obesity (n=16) showed a 5.6% weight loss on average. Total cholesterol decreased by 10.2% and low-density lipoprotein cholesterol decreased by 12.9% on average. Systolic and diastolic blood pressure decreased by 3.5% and 7.5%, respectively. Participants identified the possibility of setting clear action plans to work toward and the multiple weekly touch points with coaches as two of the most positive and distinctive components of the digitally enabled intervention. Surveys and interviews demonstrated that the digital implementation of a CLI-WL is feasible and well-received by both participants and health care professionals.
Conclusions: Albeit preliminary, these findings suggest that a behavioral lifestyle program with a digital component can achieve greater weight loss than reported for currently available offline CLI-WLs. Thus, a digitally enabled CLI-WL is feasible and may be a scalable alternative to offline CLI-WL programs. Evidence from future studies in a Dutch population may help elucidate the mechanisms behind the effectiveness of a digitally enabled CLI-WL.

(JMIR Form Res 2024;8:e38891) doi: 10.2196/38891

KEYWORDS
lifestyle intervention; prevention; obesity; overweight; weight loss; digital health; intervention; weight; pilot; digital; data; Fogg Behavior Model

Introduction

Background
The morbidity and mortality burden associated with obesity, diabetes, and cardiovascular disease (CVD) continues to increase globally [1]. The prevalence of diabetes and CVD has nearly doubled since 1990 to over 536 and 520 million cases worldwide, respectively [1,2]. Obesity, as a major risk factor for CVD and diabetes, is also associated with a decrease in life expectancy between 5 and 20 years, depending on the severity of the condition and comorbid disorders [3]. In addition, overweight-related diseases are expected to give rise to treatment costs equivalent to 8.4% of health spending in Organization for Economic Cooperation and Development countries [4].

A substantial portion of the risk of diabetes, CVD, and obesity is attributable to modifiable lifestyle factors such as an unhealthy diet, lack of physical activity, and smoking, which subsequently lead to metabolic imbalances and overweight or obesity [1-3]. Overweight and obesity are often the direct result of a disturbed energy balance, generated through a combination of the above-mentioned factors as well as excessive dietary energy consumption [5,6]. Despite being common knowledge, the principles of living a healthy lifestyle are insufficiently followed by the general population. Indeed, recent data show that over 50% of the Dutch population do not meet daily activity guidelines and that many elements of an individual’s environment are often obesogenic [7,8]. In addition, other health behavioral aspects such as deficient sleep and poor stress management also increase the risk of developing excess weight [9-11]. It is therefore unsurprising that overweight and obesity rates among the general population of the Netherlands keep increasing: in 2021, almost 50% of Dutch adults were living with overweight and 13% were living with obesity [12].

Therefore, successful approaches to preventing and treating overweight/obesity, CVD, and associated risk factors ought to tackle at least the four essential lifestyle components of nutrition, activity, sleep, and stress management, along with smoking and alcohol consumption when possible [13-15]. Preferably, this is done in a personalized way, since different individuals will be exposed to different triggers and face different challenges that lead to excess weight or failure to lose weight [16,17]. Combined lifestyle interventions (CLIs), especially those targeting weight loss (CLI-WLs), provide a potential solution for people who are overweight or obese to initiate and maintain healthier lifestyle behaviors [18]. Since 2019, some CLI-WL programs have been covered by basic insurance in the Netherlands for individuals meeting prespecified criteria such as obesity in case of a BMI≥30 or overweight and increased risk of comorbidities, including diabetes and CVD [19]. Dutch CLI-WL programs are 2-year programs delivered at varying intensities throughout this period, which consist of guidance mostly on physical activity and nutrition [18]. These programs consist of both individual and group sessions to educate participants, allowing them to share experiences and provide support [18]. The program is typically carried out completely offline by lifestyle coaches, physiotherapists, and dietitians accredited to deliver CLI-WL to patients referred by general practitioners [18]. Internationally, interventions similar to the Dutch CLI-WL have been shown to be effective in terms of weight reduction and health improvements, even when compared with standard care or pharmacological treatment [20]. However, reports on the effectiveness of Dutch CLI-WL programs since their inclusion in the basic insurance package have been inconsistent, with the effects of the interventions either falling short of expectations or not structurally translating to sustained weight loss in the medium to long term [21-23]. Previous studies have shown that the biggest barrier experienced by participants is the challenge of implementing and following lifestyle changes in a sustainable way [23,24].

A growing number of digital programs that can support individuals and providers in addressing health risks and conditions are being developed and made available to the public [25]. These so-called digital therapeutic solutions stem from an emerging field at the cross-section between health care and technology. Similar to pharmaceutical therapies or hardware medical devices, these therapeutics are evidence-based software products for the prevention, management, and treatment of health conditions. Several studies suggest that interventions including digital elements such as remote data monitoring and the possibility to digitally communicate with providers are associated with higher engagement from participants and subsequently with better health outcomes [26,27]. The incorporation of these digital elements—which are considered critical components of successful behavior change programs—can therefore help overcome the cited barriers to engagement in face-to-face programs such as accessibility, transportation, and scheduling [24,25,28]. In fact, digital therapeutic solutions, ranging from digital weight loss programs based on intensive dietary coaching to tracking and gamification apps, have been shown to induce weight loss to varying degrees, surpassing what offline interventions achieve [29,30]. Therefore, deploying a digitally enabled CLI-WL could broaden access to prevention and care, while delivering superior or at least comparable outcomes to those reported for currently available, completely offline CLI-WL programs in the Netherlands.
to the novelty of digitally enabled CLI-WL programs in the Netherlands, there is a research gap that we seek to bridge with this research.

Objectives

The objective of this pilot study was to provide a real-world contribution to the discussion surrounding the feasibility of digitally enabled CLI-WL programs in the Netherlands. In this study, we assessed the changes in weight and concomitant cardiometabolic risk factors of a cohort of Dutch adults with overweight or obesity and cardiometabolic risk who participated in the pilot of a digitally enabled CLI-WL. In addition, we also conducted surveys and semistructured interviews to assess the critical positive and improvement points reported by participants and health coaches to further guide the development of future iterations of the intervention.

Methods

Study Sample

As of December 2021, 420 users were enrolled in the Ancora Health Lifestyle program through employer health programs or as a direct-to-consumer option. A study on a subset of this cohort was published previously in JMIR Cardio [31]. Body weight, blood pressure, and lipids (total and low-density lipoprotein (LDL) cholesterol) were measured at baseline. Participants who were classified as obese (BMI≥30) or overweight (BMI≥25) with one or more cardiometabolic risk factors were asked to participate in a 16-week digitally enabled CLI consisting of digital and human components. The cardiometabolic risk factors considered were a diastolic blood pressure≥80 mmHg or systolic blood pressure≥130 mmHg, dyslipidemia (LDL cholesterol≥3.0 mmol/L, total cholesterol≥5.1 mmol/L, high-density lipoprotein cholesterol<1 mmol/L, or triglycerides≥1.8 mmol/L), or prediabetes (hemoglobin A1c≥5.7% or fasting glucose≥5.6 mmol/L). An overview of the study flow is given in Figure 1.

Combined Lifestyle Intervention

After baseline measurements, users were provided access to a web-based digital app where they could register and track health behaviors, weight, and anthropometrics data at any time. This app is a certified Class I medical device that generates evidence-based lifestyle recommendations spanning across nutrition, physical activity, sleep improvement, stress reduction, and tracking behaviors (such as logging weight) that are tailored to the individual’s prevailing risk profile. Other preliminary evidence of the health benefits of lifestyle interventions delivered to a subset of this cohort with the Ancora Health platform for health goals other than weight loss (eg, lipids, blood pressure, and nutrient imbalances) has been published previously [32-34].

The intervention was initiated with a 30-minute intake consultation conducted by video call. The intake consultation provided counseling on health risks, recommendation of targeted lifestyle medicine actions, and a “handshake” to undertake these actions for the following period. During the intervention, coaching was delivered digitally through one-on-one chat-based contact with optional audio/video calls alongside this format. Coaching was delivered by a health care professional with a background in either lifestyle coaching, nutrition, physiotherapy, or psychology, depending on the prevailing behavioral coaching required. This coaching was complemented by weekly progress reports. This approach builds on the Fogg Behavioral Model.
was acceptability and accessibility, two critical process evaluations [36] and the Conceptual Framework for guidelines published by the Medical Research Council for The user research framework reported in this study was based in the interview process than completely unstructured interviews. interviewing, while simultaneously providing greater direction and 6 of the coaches delivering the intervention, either author conducted semistructured interviews with 17 participants After the entire cohort completed their intervention, the first

Measurements at Intake, During the Program, and After the Program

Upon enrollment to the program, participants underwent a baseline assessment where a comprehensive lifestyle questionnaire, a blood biochemistry panel, and physical measurements were collected using the InBody model 570 for body composition and the InBody BIOBP750 cuff for blood pressure. After the baseline assessment, users could access the digital web app to register and track their health behaviors and modify weight data at any time during the intervention. At follow-up after the intervention, which participants could voluntarily enroll for, the subset of blood biochemistry parameters found to be abnormal at baseline and the lifestyle questionnaire and physical measurements were reassessed. Weight and other cardiometabolic risk factors were remeasured at the health center for participants who were able to return for a remeasurement. Participants not able to return were asked to self-report their weight after receiving instructions from their lifestyle coaches (namely to measure it in the morning, before eating) (Figure 1). For self-reporting participants, other markers were not remeasured. According to the definition used in the criteria for participation in a CLI-WL in the Netherlands, we classified BMI values between 25 and 30 as “overweight” and values greater than or equal to 30 as “obese.” Changes from baseline in weight, blood pressure, and lipid markers were calculated by subtracting the end values from the first reported values, and the percent change was calculated by dividing the observed change by the baseline value. After the entire cohort completed their intervention, the first author conducted semistructured interviews with 17 participants and 6 of the coaches delivering the intervention, either physically or via audio/video in Dutch or English. Semistructured interviews allow for greater flexibility for both the interviewer and participant than traditional, structured interviewing, while simultaneously providing greater direction in the interview process than completely unstructured interviews. The user research framework reported in this study was based on guidelines published by the Medical Research Council for process evaluations [36] and the Conceptual Framework for Implementation Research [37,38]. The focus of the interviews was acceptability and accessibility, two critical process indicators in the adoption of digital interventions. While there is no consensus definition of acceptability, it can be broadly defined as “people’s affective attitudes toward a new digital health intervention,” “usage intentions or actual usage,” and “satisfaction after having engaged with the intervention” [39]. Since most available acceptability measures in pilot or feasibility studies of digital health interventions lack a theoretically or empirically established cutoff, it has been suggested that 1 to 5 ratings and accompanying free-text responses may provide a sufficiently precise measure of acceptability [40].

The interview guide had questions for the coaches and participants focused on their experience coaching or partaking in the intervention, and on what they thought were the most important positive and improvement points for the quality of the intervention.

Statistical Analysis

Descriptive statistics were calculated to characterize the population at baseline in terms of demographics and clinical parameters. Paired remeasurement versus baseline changes in weight, blood pressure, and cholesterol in participants who were remeasured after a median of 10 months were assessed with the Student t test or Wilcoxon signed-rank test depending whether or not the data were normally distributed. All categorical variables are reported as percentages and continuous variables are reported as mean and SD. The \(\chi^2 \) test and analysis of variance were used to evaluate differences in categorical and continuous variables, respectively, at the cohort level. We considered \(P < .05 \) to indicate a statistically significant difference between cohorts and in pre- and postintervention measurements. All data analyses were performed using R software v4.0.3. Themes and coach/participant opinions were registered following an inductive process after the main findings of the interviews conducted by the first author were discussed in a multidisciplinary setting with the coaches, with no preexisting framework or theoretical constructs used to classify data [41,42].

Ethics Approval

The study was declared exempt from institutional review board approval through a waiver issued by the Medical Ethical Committee of the University Medical Centre Groningen (waiver number METC#2021/488).

Results

Baseline Characteristics

Baseline characteristics of the total study sample are shown in Table 1. We found that 208 of the 420 participants (49.5%) were classified as either obese or overweight with one or more cardiometabolic risk factors. Of these, 53 participants enrolled in the pilot study. These individuals were older, had higher lipid levels and blood pressure, as well as higher weight and BMI compared to the rest of the cohort (Table 1).
Table 1. Baseline characteristics of the total study sample and the participants who enrolled in the pilot study.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Entire cohort (N=420)</th>
<th>Participants of the pilot study (n=53)</th>
<th>P value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>44.6 (11.1)</td>
<td>48.2 (9.0)</td>
<td>.007</td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>227 (54.0)</td>
<td>29 (54.7)</td>
<td>.99</td>
</tr>
<tr>
<td>Anthropometrics, mean (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>77.5 (14.4)</td>
<td>87.2 (11.2)</td>
<td><.001</td>
</tr>
<tr>
<td>BMI (kg/m<sup>2</sup>)</td>
<td>25.0 (4.6)</td>
<td>29.1 (3.4)</td>
<td><.001</td>
</tr>
<tr>
<td>Blood pressure (mmHg), mean (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>131 (17)</td>
<td>146 (15)</td>
<td><.001</td>
</tr>
<tr>
<td>Diastolic</td>
<td>81 (12)</td>
<td>93 (11)</td>
<td><.001</td>
</tr>
<tr>
<td>Lipids (mmol/L), mean (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>5.1 (1.1)</td>
<td>6.4 (1.0)</td>
<td><.001</td>
</tr>
<tr>
<td>Low-density lipoprotein cholesterol</td>
<td>3.1 (0.9)</td>
<td>4.3 (0.9)</td>
<td><.001</td>
</tr>
</tbody>
</table>

^aUnpaired t test between the entire cohort and the pilot group.

Baseline Values and Changes in Weight and Cardiometabolic Risk Factors

We analyzed weight data for the entire group of 53 participants in the pilot and for the two subsets of participants with overweight and obesity separately (Table 2). In the entire group, the average weight loss achieved was 3.7 kilograms, which equates to an average of 4.2% body weight loss (<.001). In total, 25 individuals (47%) achieved a reduction of at least 5% body weight. In the 37 participants with overweight, the mean weight loss was 2.9 kilograms (3.5% change). For the 16 participants with obesity, weight loss was higher at –5.4 kilograms and –5.6% body weight with a mean baseline weight of 97.3 kilograms (<.001; Table 2).

We also analyzed the changes in cardiometabolic risk factors in participants whose weight was remeasured on location and had abnormal lipid or blood pressure levels at baseline (Table 3). In these participants, total cholesterol, LDL cholesterol, systolic blood pressure, and diastolic blood pressure significantly decreased. In participants with obesity, changes in total and LDL cholesterol as well as in systolic and diastolic blood pressure were not significant, which was attributed to the very small sample size. In participants with overweight, total cholesterol, LDL cholesterol, and diastolic blood pressure were significantly decreased, whereas there was no significant decrease in systolic blood pressure.

None of the participants who were remeasured on location, based on information provided in the medical and lifestyle questionnaire at baseline and follow-up, had initiated blood pressure– or cholesterol-lowering medication during the lifestyle intervention.

Table 2. Changes in weight after the combined lifestyle intervention for weight loss.

<table>
<thead>
<tr>
<th>Group</th>
<th>Preintervention weight (kg), mean (SD)</th>
<th>Postintervention weight, mean (SD)</th>
<th>Absolute (relative) weight change, kg (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire cohort (N=53)</td>
<td>87.2 (11.2)</td>
<td>83.5 (12.0)</td>
<td>–3.7 (–4.2)</td>
<td><.001</td>
</tr>
<tr>
<td>Participants classified as overweight (n=37)</td>
<td>82.8 (8.3)</td>
<td>79.9 (10.4)</td>
<td>–2.9 (–3.5)</td>
<td><.001</td>
</tr>
<tr>
<td>Participants classified as obese (n=16)</td>
<td>97.3 (10.5)</td>
<td>91.9 (11.3)</td>
<td>–5.4 (–5.6)</td>
<td><.001</td>
</tr>
</tbody>
</table>
Table 3. Changes in lipid profile and blood pressure after the combined lifestyle intervention in individuals with abnormal baseline values.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Preintervention, mean (SD)</th>
<th>Postintervention, mean (SD)</th>
<th>Absolute (relative) change, kg (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entire remeasured group (N=20)</td>
<td>6.38 (1.00)</td>
<td>5.73 (0.92)</td>
<td>-0.65 (-10.2)</td>
<td>.02a</td>
</tr>
<tr>
<td>Participants with overweight (n=18)</td>
<td>6.46 (1.01)</td>
<td>5.71 (0.97)</td>
<td>-0.75 (-11.6)</td>
<td>.01a</td>
</tr>
<tr>
<td>Participants with obesity (n=2)</td>
<td>5.75 (0.74)</td>
<td>5.88 (0)</td>
<td>0.13 (2.3)</td>
<td>> .99a</td>
</tr>
<tr>
<td>LDL b cholesterol (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entire remeasured group (N=24)</td>
<td>4.34 (0.86)</td>
<td>3.78 (0.88)</td>
<td>-0.56 (-12.9)</td>
<td>.007</td>
</tr>
<tr>
<td>Participants with overweight (n=20)</td>
<td>4.46 (0.86)</td>
<td>3.89 (0.85)</td>
<td>-0.57 (-12.8)</td>
<td>.02</td>
</tr>
<tr>
<td>Participants with obesity (n=4)</td>
<td>3.71 (0.56)</td>
<td>3.18 (0.88)</td>
<td>-0.53 (-14.3)</td>
<td>.17</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entire remeasured group (N=22)</td>
<td>146 (15)</td>
<td>141 (16)</td>
<td>-5 (-3.5)</td>
<td>.04a</td>
</tr>
<tr>
<td>Participants with overweight (n=18)</td>
<td>148 (16)</td>
<td>143 (16)</td>
<td>-5 (-3.4)</td>
<td>.12a</td>
</tr>
<tr>
<td>Participants with obesity (n=4)</td>
<td>139 (6)</td>
<td>131 (14)</td>
<td>-9 (-6.5)</td>
<td>.14</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entire remeasured group (N=26)</td>
<td>93 (11)</td>
<td>86 (12)</td>
<td>-7 (-7.5)</td>
<td>.003a</td>
</tr>
<tr>
<td>Participants with overweight (n=19)</td>
<td>94 (11)</td>
<td>86 (12)</td>
<td>-8 (-8.5%)</td>
<td>.003</td>
</tr>
<tr>
<td>Participants with obesity (n=7)</td>
<td>90 (10)</td>
<td>85 (12)</td>
<td>-5 (-5.6%)</td>
<td>.18a</td>
</tr>
</tbody>
</table>

*aBased on the Wilcoxon signed-rank test owing to baseline data not following the normal distribution.

bLDL: low-density lipoprotein.

Quantitative and Qualitative Participant Feedback

The subjective, qualitative feedback collected through surveys (n=37) and semistructured interviews (n=17) from pilot participants is presented in Textbox 1.

The quantitative results of the participant survey that was filled out at the end of the intervention period are presented in Table 4. The highest scoring items were linked to the feeling of involvement in the program (item 1, score 4.5/5), the interaction with the coaches (item 9, 4.6/5), and the knowledge displayed by the coaches (item 10, 4.4/5). Importantly, participants also overwhelmingly expressed the wish to continue working toward their health goals after the intervention (item 4, 4.7/5). The items that scored the lowest were linked to the need for one-on-one coaching and the importance of coaching in achieving the proposed health goals (items 7 and 8, 3.7/5 and 3.8/5, respectively).

The subjective feedback provided during semistructured interviews by the coaches (N=6) is presented in Textbox 2. In general, interviewees valued several aspects as the most positive and differentiating factors of the digitally enabled CLI-WL. These included the possibility of setting clear action plans (goals) for participants to work toward; the promotion of healthy eating, exercise, and other lifestyle habits as opposed to enforcing strict diets; and the speedy, problem solving–oriented interactions across the multiple weekly touch points. Both improvement points were related to the intervention curriculum, with health care professionals suggesting improvements in the food-tracking capabilities of the app as well as an expansion of the coaching resources.
Textbox 1. Summarized feedback collected from pilot participants through surveys and semistructured interviews regarding the acceptability and accessibility of the program.

Positive points
- Coaches were friendly, engaged, and approachable for guidance
- Proactive check-ins
- Good, personal advice; coaches helped find solutions to overcome barriers
- Program was (positively) challenging
- Effectively motivated for behavioral change
- Provided support in making effective lifestyle changes

Improvement points
- Expand the features in the app (tracking, connectivity, reminders, personalized content)
- More coaching conversations instead of chat messages

Table 4. Quantitative results of the participant survey (N=37).

<table>
<thead>
<tr>
<th>Item</th>
<th>Scorea</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt involved in the program right from the start</td>
<td>4.5</td>
</tr>
<tr>
<td>I found the stepwise approach to behavioral change in the program easy to follow</td>
<td>4.1</td>
</tr>
<tr>
<td>I was motivated to work toward my health goals</td>
<td>4.4</td>
</tr>
<tr>
<td>I would like to continue working toward my health goals</td>
<td>4.7</td>
</tr>
<tr>
<td>I feel my health and well-being have improved since I participated in the Ancora program</td>
<td>3.9</td>
</tr>
<tr>
<td>I found the content of the program relevant and engaging</td>
<td>4.0</td>
</tr>
<tr>
<td>Human coaching was important for me to overcome my health challenges</td>
<td>3.7</td>
</tr>
<tr>
<td>Human coaching was important for me to achieve my health missions</td>
<td>3.8</td>
</tr>
<tr>
<td>I found my coach(es) friendly and empathic</td>
<td>4.6</td>
</tr>
<tr>
<td>I found my coach(es) knowledgeable</td>
<td>4.4</td>
</tr>
</tbody>
</table>

a Scoring runs from 1 ("disagree completely") to 5 ("agree completely"), with 3 being "neutral."

Textbox 2. Summary of the feedback regarding subjective intervention parameters “acceptability and accessibility” provided by coaches (N=6).

Positive points
- Possibility to set clear goals for the intervention period based on a holistic assessment of the participant’s health
- Integrative approach that promotes healthy eating and exercise as opposed to strict diets, including specific elements such as strength-training advice, stress management, and good sleep habits
- Multiple touch points weekly between the Health Engagement team to enable rapid problem resolution and positive experience sharing
- Multidisciplinary expertise for knowledge transfer
- Protocolized digital coaching
- One-on-one coaching with real-life examples

Improvement points
- More insight into the participants’ daily lifestyle patterns during the intervention period
- Expand the database of coaching resources (ie, materials coaches have available to support participants)
Discussion

Principal Results

In this study of 53 participants using the pilot version of a digitally enabled CLI-WL, we observed a mean weight loss of 3.7 kilograms (or 4.2% body weight reduction), with weight loss of more than 5 kilograms (or 5.6% body weight reduction) in individuals with obesity compared to baseline values at a median of 10 months after 16 weeks of online coaching. Both total cholesterol as well as LDL cholesterol decreased by over 10%, and systolic and diastolic blood pressure decreased by 5 and 7 mmHg, respectively. Our process evaluation analysis through surveys and interviews showed that digital implementation of a CLI-WL in the Netherlands is feasible and well-received by both participants and coaches.

Comparison With Prior Work

Evidence for the efficacy and safety of digital (or digitally enabled) and blended CLI-WL and the reduction of cardiometabolic and cardiovascular risk has been building up over the last 5 to 10 years [43,44]. As stated previously, some of the world’s most widely adopted commercial digital therapeutic programs for weight loss have reported achieving reductions in weight varying from 2.0% to 6.8% [30,31,45]. In addition, recent reviews showed that primarily mobile digital interventions targeting overweight and obese populations with high cardiovascular risk can be at least as effective as offline programs in terms of meaningful change of lifestyle and weight loss [22]. Several offline CLI-WL programs were shown to be effective to varying degrees in the Netherlands. Across three of the four interventions available in Dutch health care, weight loss achieved at 1 year varied between 2.9 kilograms and 2.2 kilograms [22,23,46]. Only one of these interventions reported follow-up data at 2 years, where participants lost an average of only 1.5 kilograms [47]. Another study reported an average weight loss of 2.5 kilograms at 18 months [23]. While we currently do not have such long-term data, a digitally enabled intervention that was similar to this CLI-WL (with a total duration of 12 months, including a maintenance phase), delivered in a real-world context, achieved long-term weight reductions of 7.2% and 7.6% in participants with overweight and obesity, respectively [48].

While none of the currently available CLI-WLs provided data on improvement in concomitant cardiometabolic risk factors, it is worthwhile to contextualize the changes achieved in blood pressure and lipids in this pilot study. Evidence for beneficial effects of healthful lifestyle modifications on blood pressure is solid, with several studies suggesting that lifestyle adaptation is preferable to pharmacological treatment in early stages of the disease [49]. Keeping in mind the observational nature of the results reported in this study, these do surpass the results of other recently evaluated digital therapeutic tools, which yielded reductions between 2.4 and 4.3 mmHg in mean blood pressure in randomized trials [50,51]. Similarly, the effect of lifestyle programs on cholesterol levels is well-established, with reductions varying from 7% to 9% to 20% for interventions of different intensity and complexity [52]. Interestingly, for web-based interventions, meta-analyses have shown total and LDL cholesterol improvements of approximately 0.15 mmol/L [53]. When compared to the results achieved previously in another cohort of individuals who participated in an Ancora Health digital lifestyle intervention, this group of individuals with overweight and obesity showed higher baseline lipid and blood pressure values and equal or greater reductions after the program [32,33].

In light of this evidence, it is worth discussing potential reasons why this blended CLI-WL achieved better results compared to those of previous studies. In a study evaluating the features of digitally enabled weight management programs, success was linked to the ability to promote behavioral change [54]. This finding is unsurprising, but what is interesting is that the study further broke down this ability to drive behavioral change to 20 features that were essential to the program. This set of features included specific goal-setting for weight, diet, caloric balance, and physical activity, as well as educational focus on various skills such as regulating eating patterns, time management, and nutritional label reading. In addition, this program also included the development of more general skills such as learning to exercise at certain target heart rates, problem solving, stress reduction, and psychological advice on how to cope with negative thinking and social cues [54]. Interestingly, these features include some of the most positive feedback points gathered during our participant survey, such as the appreciation for the stepwise approach to behavioral change in the program, the program content being relevant and engaging, and the digital support provided by the human coaching for overcoming challenges. In the qualitative assessment, participants further mentioned highly valuing the possibility to set clear goals for the intervention and that the coaching included elements that go beyond those of regular weight loss programs, such as advice on strength training, stress management, and sleep habits.

Other studies have focused on the potential advantages of digitally enabled interventions, such as the ability for participants to access educational information more easily and at their own discretion [44,55]. Unlike offline interventions driven primarily by one health care provider with a specific focus, digitally enabled programs can easily provide information covering a range of topics required to lead a balanced lifestyle across all relevant lifestyle domains. This seems to be especially powerful when apps also provide users with tools to help them track changes in weight and BMI. For instance, in-app actions such as self-monitoring of weight and the consistency of such health behavior tracking, as well as app engagement as measured by log-ins, predicted weight loss even in older populations [44,55]. These elements again come back in the qualitative feedback from participants highlighted in Textbox 2, who highly valued the multidisciplinary nature of the content and of the coaching, and suggested that even more attention should be paid to data collected about participants’ daily lifestyle patterns. In another study comparing a mobile app–based weight loss program with a traditional offline weight loss program, success in the weight loss intervention was linked to the digitalization of components common to the traditional program [56], including providing online food diaries rather than paper diaries or when the same curriculum delivered by the dietitian in person was delivered digitally. One such app-based program featured
Future Perspectives for Digital CLIs in The Netherlands

In the face of increasing rates of obesity, CVD, and (pre)diabetes, it is clear that there is a need for CLI-WLs to be deployed at scale in the Netherlands. However, current market penetration of these insurance-reimbursed programs is extremely low [58]. As the pathogenesis of obesity and (pre)diabetes is multifactorial, the etiology and environmental triggers vary among individuals; moreover, socioeconomic circumstances and barriers to lifestyle change also vary at an individual level. Yet, insurance-reimbursed CLI-WL programs currently offered in the Dutch market lack a data-driven approach to translating user profiles to personalized care pathways, with coaches bearing the burden of translating one-size-fits-all guidelines to a user’s context through their consultations. As suggested by the health care professionals interviewed in this study, supporting the delivery of CLI-WL programs with eHealth solutions such as those described in this research could help tailor the intervention to individual characteristics and needs, as well as tackle the practical issues of lack of time and capacity faced by care providers.

In fact, the Dutch National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu [RIVM]) defines several important, evidence-based factors for the successful deployment of a (combined) lifestyle intervention program [59]. Interestingly, although these recommendations have been designed for offline programs, some of them are much more easily achievable with digitally enabled interventions. For instance, the RIVM recommends that participants of a CLI-WL who fail to achieve significant weight loss in the first month should receive increased support, since early weight loss is an important predictor of long-term success. Through its digital capabilities, the CLI-WL described herein allows for weekly monitoring of progress and enables coaches to review data and progress remotely. In addition, coaches are also able to contact the participant proactively to understand and address barriers in the absence of progress. Importantly, one full-time coach can effectively coach more than 100 participants across multiple regions while upholding the recommendation of 15 to 20 minutes of coaching time weekly. This allows for greater reach than possible with offline lifestyle interventions, which are often episodic, delivered at low frequency, and limited to participants within close proximity to the health coach. Importantly, a recent Dutch study showed that the Dutch population is generally sufficiently technology-literate, even across socioeconomic strata, and welcoming of digital technologies, which encourages the deployment of these interventions [60]. Lastly, the RIVM underscores the need for participants to develop self-efficacy skills to sustain behavioral change over the long term. This is in line with previous studies demonstrating that interventions applying theoretical frameworks or models for behavioral change—some of which were technology-based—were more effective at increasing adherence to healthy lifestyle habits than standard advice [61,62]. This program represents the first instance in which the FBM was used as part of a CLI-WL. The positive health outcomes and subjective feedback from users and health care professionals suggest that this approach holds promise and ought to be further explored for future iterations.

Strengths and Limitations

This study has several limitations. The first is the observational nature of the study. The second limitation is the small sample size of the remeasured population. Third, participants were not followed up for the duration of a standard CLI-WL (2 years); rather, these preliminary outcomes were reported after a median of 10 months after the 16-week intervention. As such, the results of the 16-week program should be compared with caution to those of other CLI-WLs that maintained participants engaged for the entirety of the 2-year period. Fourth, participants who could not return to the health center for a remeasurement were asked to self-report their weight after 10 months. As for all self-reported outcome measures, and despite careful instructions provided by the coach, measurement errors cannot be excluded. We are currently evaluating several possibilities to overcome this, such as the delivery of a personalized program box with a connected scale and wearable device. Lastly, the goal of CLI-WLs is to provide sustained positive health outcomes after 2 years (which is also the duration of the insured intervention in public health programs). Therefore, our 10-month results show that the weight loss can be sustained for a medium-long period of time, but we do not yet have data of 2-year follow-up for these participants. More research will also be conducted to evaluate the impact of interventional elements on engagement and health outcomes, such as to identify which elements are most effective for a digitally enabled CLI-WL.

Conversely, one strength of the study is that medication information was gathered at baseline and follow-up. This allows us to verify that weight loss and the improvements reported in lipids and blood pressure did not come from cholesterol- or blood pressure–lowering medications. In addition, by gathering detailed feedback from a majority of participants, we were able to identify critical points for improvement, which contributed to the further maturing of the intervention and informed the development of the mobile app designed to support it. Lastly, this is the first study to report on a real-world application of a digitally enabled intervention targeting health behavior change to promote weight loss in a cohort of Dutch adults with overweight and cardiometabolic risk factors.

Conclusions

In conclusion, a digitally enabled CLI showed sustained weight loss in individuals with overweight and obesity at the 10-month follow-up. Albeit preliminary, these findings suggest that a behavioral lifestyle program with a digital component deployed for this intervention can achieve greater weight loss than previously reported for currently available offline CLI-WLs in the Netherlands. Whereas larger-scale observational studies and randomized trials of other digital interventions have been conducted and shown evidence of effectiveness for digitally enabled CLI-WL in other countries, this study is a demonstration that such an approach can also be effective in the Netherlands. This is an important first step, as the feasibility of these
programs remains a hot topic in public health discussions. Based on the qualitative feedback collected from pilot participants and health care professionals, this first version of the program is being further developed and evaluated. Evidence from future studies in a Dutch population may help elucidate the mechanisms behind the effectiveness of a digitally enabled CLI-WL.

Data Availability
The data sets generated during and/or analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions
RG had the original ideation of the manuscript, and made significant contributions to data collection and the drafting of the manuscript. JCF was the main contributor to the first draft of the manuscript. PF was the main contributor to the data analysis. SH contributed to ideation and discussion. SK was involved in the original study ideation. SvD contributed to the Methods, Results, and Discussion sections of the manuscript. NC, HvO, and HP contributed to the Introduction and Discussion sections of the manuscript. BHRW contributed to the Methods and Discussion sections of the manuscript. All authors gave input toward and approved the final manuscript.

Conflicts of Interest
RG, JCF, PF, SH, SK, and SvD are employed by Ancora Health BV. Additionally, JCF, PF, RG, SK, SH, and SvD own shares of Ancora Health BV. As the funder, Ancora Health BV provided support in the form of salaries for all employees. The other authors have no conflicts of interest to declare.

References

60. Agachi E, Bijmolt THA, Mierau JO, van Ittersum K. Adoption of the website and mobile app of a preventive health program across neighborhoods with different socioeconomic conditions in the Netherlands: longitudinal study. JMIR Hum Factors 2022 Feb 02;9(1):e32112 [FREE Full text] [doi: 10.2196/32112] [Medline: 35107433]

Abbreviations

CLI: combined lifestyle intervention
CLI-WL: combined lifestyle intervention for weight loss
CVD: cardiovascular disease
FBM: Fogg Behavioral Model
LDL: low-density lipoprotein
RIVM: Rijksinstituut voor Volksgezondheid en Milieu (Dutch National Institute for Public Health and the Environment)

©Rahul Gannamani, José Castela Forte, Pytrik Folkertsma, Sven Hermans, Sridhar Kamaraswamy, Sipko van Dam, Niels Chavannes, Hendrikus van Os, Hanno Pijl, Bruce H R Wolfenbuttel. Originally published in JMIR Formative Research (https://formative.jmir.org), 08.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Predictors of Mental Health Literacy in a Sample of Health Care Major Students: Pilot Evaluation Study

Pia Tohme¹, PhD; Nour Abi Fadel¹, MSc; Nour Yaktine²,³, MA; Rudy Abi-Habib¹, PhD

¹Department of Social and Education Sciences, Lebanese American University, Beirut, Lebanon
²Department of Psychology, Saint Joseph University of Beirut, Beirut, Lebanon
³American University of Beirut, Beirut, Lebanon

Corresponding Author:
Rudy Abi-Habib, PhD
Department of Social and Education Sciences
Lebanese American University
Beirut Campus
Chouran
Beirut, 5056
Lebanon
Phone: 961 01786456 ext 2733
Email: rudy.abihabib@lau.edu.lb

Abstract

Background: The numerous mental health awareness campaigns during the COVID-19 pandemic have shifted our understanding and perception of mental health.

Objective: The purpose of this study is to evaluate predictors of mental health literacy (MHL), that is, one’s knowledge and beliefs about mental disorders. We evaluate whether digital health literacy, empathy, and mentalizing contribute to MHL.

Methods: Our sample consisted of 89 health care major students, aged between 17 and 32 years, studying at a university in Lebanon. The Mental Health Literacy Scale for Healthcare Students (MHLS-HS), the eHealth Literacy Questionnaire (eHLQ), the Basic Empathy Scale (BES), and the Reflective Functioning Questionnaire-8 (RFQ-8) were used.

Results: Multiple regression analyses revealed that the Engagement in Own Health subscale of digital health literacy constituted a predictor of MHL. While empathy and mentalizing did not directly predict MHL, they were found to predict components of MHL.

Conclusions: This is the first study to evaluate digital health literacy, empathy, and mentalizing as predictors of MHL in Lebanon, a country where mental health is still considered taboo. Moreover, this pilot study is the first to provide some support for the predictive role of some digital health literacy subscales on MHL in light of the rise of the digital era following the COVID-19 pandemic.

(JMIR Form Res 2024;8:e43770) doi:10.2196/43770

KEYWORDS
awareness; COVID-19; digital health literacy; digital health; disorder; empathy; health literacy; literacy; mental health literacy; mental health; mentalizing; questionnaire; students

Introduction

Overview

Despite the negative impact of the COVID-19 pandemic on both physical and mental health, the global health crisis has reshaped our perception and understanding of mental health, reducing mental health stigma and normalizing mental health-related discussions [1]. In a way, the COVID-19 era has promoted mental health literacy (MHL), a concept defined as our “knowledge and beliefs about mental disorders that aid their recognition, management, or prevention” [2]. MHL has been found to enhance self-efficacy for help-seeking, diminish stigma surrounding mental disorders, and, most importantly, increase the ability to maintain psychological well-being [3]. Therefore, it could be argued that promoting MHL could play a central role in preventing and treating mental disorders. Most studies evaluating MHL focus on the general public’s understanding of mental health rather than factors that can contribute to MHL.
Addressing this gap, this study aims to explore predictors of MHL in a sample of health care major students. More specifically, we evaluate whether the availability of practical tools such as digital health technologies or psychological characteristics such as empathy or mentalizing can contribute to MHL in health care major students.

The Role of Digital Health in Promoting MHL

In today’s digital age, health care providers have been increasingly making use of technology in their professional practice [4]. The use of digital health has increased at an even higher rate during the COVID-19 pandemic, as it has become a necessity at the individual, institutional, and social levels [5,6]. Beyond being a highly effective solution to working through health problems during the pandemic, digital health—in other words, accessing health-related information on the web—has the potential to shift the health care paradigm from mere treatment to prevention [7,8]. In Lebanon, Tohme et al [9] found that mental health professionals already had experience delivering web-based consultations before the COVID-19 pandemic, and, despite preferring face-to-face sessions, mental health practitioners reported numerous benefits of using digital health tools.

Initially adopted as a short-term solution to overcome obstacles imposed during the COVID-19 pandemic (eg, lockdown), the use of digital technologies for health has enhanced digital health literacy [10], meaning the ability to seek, find, understand, and assess health-related information from electronic sources in order to address and solve a health problem [11]. Digital health literacy allows individuals to communicate health information and make informed decisions that promote well-being. In a systematic review evaluating the association between health literacy, digital health literacy, and physical health outcomes [12], digital health literacy was found to be associated with perceived and reported better communication with health care providers, health-promoting behaviors, and self-management of health needs [13,14]. As for mental health, Lincoln et al [15] found that low health literacy was associated with negative mental health outcomes such as depressive symptoms. Whether these results apply to digital health literacy is still unknown. Research has yet to establish an association between digital health literacy and mental health outcomes, an association that could be mediated by MHL.

As an extension of health literacy, MHL is a relatively new construct, focusing specifically on accessing web-based information about mental health, namely emotional and psychological difficulties [2]. Hence, most studies on digital health literacy focus on its association with physical health outcomes only. To our knowledge, no study has yet evaluated whether this association applies to mental health. It can be argued, however, that digital health literacy can be a crucial component in promoting MHL. Understanding the potential benefits of digital health literacy in promoting MHL would be useful for policymakers, as it would allow them to devise policies and interventions focusing on promoting the use of digital health in the health care sector. This would equip health care providers with the tools needed to work in a digitized health sector [16,17], contributing to MHL in the general public and potentially leading to better psychological outcomes.

Empathy and Mentalizing as Predictors of MHL

Another line of research focused on pinpointing the psychological factors that could predict MHL, such as empathy. Empathy, or putting oneself in others’ shoes, is understood as one’s ability to understand what the other is feeling and to match that emotion [18]. As a concept, empathy entails both cognitive and affective elements that lead to a sense of emotional understanding [19]. The emotional component of empathy relates to one’s emotional response to the other’s experience, while cognitive empathy involves imagining the other person’s mental state, feelings, and perspective. Both components have been shown to generate a more positive attitude toward mental disorders [20] and are important components of MHL [21]. Indeed, evaluating the association between empathy and MHL, Furnham and Sjokvist [22] established a positive correlation between the 2 constructs, showing that individuals who experience empathy are more likely to be knowledgeable about mental disorders, as they tend to be more interested in reading and learning about mental disorders. Mendenhall and Frauenholtz [23] have also shown that having children diagnosed with mood disorders such as bipolar disorder could promote MHL. More recently, Piper et al [24] confirmed this association by showing that in older people, being in close proximity to someone with a mental disorder predicted MHL. These findings show that familiarity with mental disorders and the ability to recognize mental disorder symptoms could be influenced by one’s personal experience with one’s children and loved ones, their curiosity to know more about mental disorders, and possibly other factors, such as being emotionally present for others. It can be argued that, in turn, this familiarity could decrease stigma toward mental disorders and increase the level of knowledge of symptoms and their appropriate treatments. Hence, exposure to mental disorders (eg, knowing someone with a mental disorder) could relate to greater knowledge and appreciation of mental illness [21], hence being significantly correlated to MHL.

Although empathy and mentalizing are similar constructs, mentalizing refers to one’s ability to envision one’s own mental state as well as others’. These include feelings, thoughts, intentions, and beliefs focusing on a more interpersonal level, thinking about how others’ feelings are affecting us, and how, in turn, this can modify our response to them [25]. Mentalizing does not necessarily entail empathy, as research shows that people diagnosed with psychosis are often unable to empathize with others but are capable of mentalizing [26]. Moreover, although empathy contains a cognitive component, cognitive empathy relates to one’s ability to attribute emotions rather than cognitions, such as in the case of mentalizing. Although the 2 constructs are dissociable in nature, both have common underlying features. As such, it could be argued that mentalizing, just like empathy, could also predict MHL. Indeed, the ability to understand others’ minds and mental states can be central to promoting MHL, since understanding others’ mental states could also mean understanding their mental health status and experiences. Given the fact that displaying empathy has been shown to be associated with increased MHL [21] and that
empathy and mentalization are similar constructs in nature, an association between mentalization and MHL has thus been hypothesized. However, this association has yet to be established in the literature.

MHL is a relatively new concept, hence the gap in the literature as to what contributes to its development. Indeed, the few studies evaluating the predictors of MHL have mainly focused on demographic factors such as age, gender, and level of education [23]. For instance, in Lebanon, the only study evaluating predictors of MHL in a sample of university students revealed that education in psychology was a strong predictor of MHL [27]. However, given the importance of digital health literacy in promoting well-being, this pilot study aims to understand whether digital health literacy contributes to MHL in health care major students. Moreover, we aim to explore psychological factors such as empathy and mentalizing as predictors of MHL. Evaluating these predictors in a population of health care major students would help set the stepping stone for future research, aiming to understand whether interventions and trainings are needed to promote the use of digital health in the health care system. Finally, our results could provide initial support in identifying psychological features that promote MHL in order for health care professionals to not only self-cultivate these features but also target these elements when working with patients in order to increase MHL and promote psychological well-being.

Methods

Participants

In this study, purposive sampling was used, and the study sample consisted of 89 university students. Participants consisted of both undergraduate and graduate health care major students (ie, psychology, premed tracks, nutrition, pharmacy, and medicine), recruited from the Lebanese American University, a private university in Beirut, Lebanon. Students were aged between 17 and 32 (mean 19.64, SD 2.01) years, and most of the sample (66/89, 75%) identified as women. Inclusion criteria included being a Lebanese university student, being aged 18 years or older, and being fluent in English.

Measures

In order to evaluate whether digital health literacy, empathy, and mentalizing predicted our outcome variable (ie, MHL), 4 questionnaires were used. Demographic variables that were collected included age, gender, and academic major.

The Mental Health Literacy Scale for Healthcare Students (MHLS-HS) [3] is a self-report questionnaire used to measure MHL in health care major students. Rated on a 5-point Likert scale (1=strongly disagree and 5=strongly agree), the MHLS-HS comprises 26 items and the following 5 subscales: maintenance of positive mental health (10 items), recognition of mental illness (4 items), attitude to mental illness stigma (6 items), help-seeking efficacy (3 items), and help-seeking attitude (3 items). The MHLS-HS is scored by summing the item scores, with higher scores indicating a better MHL. The MHLS-HS has shown good internal consistency, with α values ranging between .70 and .90 across subscales [3].

The eHealth Literacy Questionnaire (eHLQ) [27] is a self-report questionnaire that measures digital health literacy. The 35-item scale is rated on a 4-point Likert scale (1=strongly disagree and 4=strongly agree) and consists of seven subscales measuring the following components of digital health literacy: (1) using technology to process health information, (2) engagement in own health, (3) ability to actively engage with digital services, (4) the ability to feel safe and in control, (5) motivation to engage with digital services, (6) access to digital services that work, and (7) digital services that suit individual needs. Each subscale contains 5 items, except for subscale 6 containing 6 items and subscale 7 containing 4 items. The average score is calculated for each subscale, with higher scores indicating better digital health literacy. The eHLQ has been found to have good psychometric properties with composite reliability above 0.7 for all 7 subscales [27].

The Basic Empathy Scale (BES) [28] is a 20-item self-report scale that is used to measure empathy in its cognitive and affective elements. The first factor relates to cognitive empathy and is comprised of 9 items, while the second factor relates to affective empathy and is comprised of 11 items. Items are rated on a 5-point Likert scale (1=strongly disagree and 5=strongly agree). Scores are calculated by computing the average for each subscale, with higher scores indicating higher self-reported empathy. Overall empathy is calculated by summing the averages of the 2 subscales. The BES has demonstrated good internal consistency, with α=.79 for the cognitive empathy subscale and α=.85 for the affective empathy subscale [28].

The Reflective Functioning Questionnaire-8 (RFQ-8) [29] originally consisted of a 54-item self-report scale measuring mentalizing capacities. It is rated on a 7-point Likert scale (1=strongly disagree and 7=strongly agree) and is comprised of 2 subscales: uncertainty about mental states (RFQu) and certainty about mental states (RFQc). High scores on RFQc and low scores on RFQu reflect genuine mentalizing, while low scores on RFQc reflect hypermentalizing and high scores on RFQu reflect hypomentalizing, both indicating failure to mentalize. The RFQ-54 has demonstrated good internal consistency, with α=.67 for RFQc and α=.63 for RFQu. A shorter version of the RFQ-54, consisting of 8 items, was created by Fonagy et al [29] for research purposes and was used in this study.

Procedure

Data collection took place between October 2020 and December 2020, at a time when Lebanon was under lockdown due to the COVID-19 pandemic. Hence, data collection took place on the web, using Google Forms. Participation took between 15 and 20 minutes to complete.

Data Analysis

The aim of this exploratory pilot study was to investigate predictors of MHL. For this purpose, we ran a hierarchical multiple regression with MHL as the dependent variable and digital health literacy (eHLQ, Model 1), empathy (eHLQ and BES, Model 2), and mentalizing (eHLQ, BES, and RFQ, Model 3) as the independent variables. SPSS (SPSS Inc) was used for all analyses.
Moreover, since the literature shows that MHL entails recognition of mental illness, leading to lower stigma toward mental health, as well as help-seeking behaviors [2,3], we ran 3 additional hierarchical multiple regressions with the “Recognition of Mental Illness,” “Attitude Toward Mental Illness Stigma,” and “Help-Seeking Attitude” subscales as the dependent variables, and digital health literacy (eHLQ, Model 1), empathy (eHLQ and BES, Model 2), and mentalizing (eHLQ, BES, and RFQ, Model 3) as the independent variables.

Ethical Considerations

This study received ethical approval from the university institutional review board (LAU.SAS.PT5.27/Oct/2020). The survey was circulated on social media, including an information sheet. Participants interested in taking part e-signed the consent form before accessing the questionnaires. All data were anonymous, with no identifiers linking responses to the participant’s identity. Participants were informed that participation is voluntary and that they could drop out at any time. There was no compensation for participation.

Results

The hierarchical regression analysis predicting MHL revealed that in the first model, “Engagement in Own Health” was a significant predictor of MHL, with $F_{7,81}=2.19; P=0.04$ and accounted for 16% of the variation in MHL. Introducing empathy (Model 2) explained an additional 4% of variation, though the model was not statistically significant ($F_{9,79}=1.75; P=0.18$). Finally, introducing mentalizing (Model 3) did not explain any additional variation in the model, $F_{2,77}=0.23; P=0.80$ (Table 1).

The hierarchical regression looking for predictors of the “Recognition of Mental Illness” subscale of MHL revealed that the first model, digital health literacy, was not significant ($F_{7,81}=9.60; P=0.47$). Introducing the 2 empathy subscales explained an additional 8% of variation, and this change in R^2 was significant ($F_{2,79}=3.48; P=0.04$), with affective empathy found to be a significant predictor. Adding the 2 mentalizing subscales to the regression model explained an additional 7% of variation, and this change in R^2 was significant ($F_{2,77}=3.58; P=0.03$), with affective empathy and RFQc found to be significant predictors. Together, all factors explained 22% of the variation in the “Recognition of Mental Illness” subscale (Table 2).

The hierarchical regression looking for predictors of the “Attitude to Mental Illness Stigma” subscale revealed that the first model, including the digital health literacy subscales, was not significant ($F_{7,81}=1.83; P=0.09$). Introducing the 2 empathy subscales also led to a nonsignificant model (Model 2) with $F_{9,79}=2.09; P=0.05$. When all factors were included (Model 3), they were found to significantly predict 27% of the variation in the “Attitude to Mental Illness Stigma” subscale ($F_{11,77}=2.54; P=0.009$), with the “Being Motivated to Engage with Digital Services” subscale of digital health literacy and RFQu found to be significant predictors (Table 3).

The hierarchical regression looking for predictors of the “Help-Seeking Attitude” subscale of MHL revealed that in the first model, the “Ability to Process Information,” “Engagement in Own Health,” “Feeling Safe and in Control,” and “Being Motivated to Engage with Digital Services” subscales of digital health literacy were significant predictors in the regression model ($F_{7,81}=4.28; P<0.001$) and accounted for 27% of the variation in the model. Introducing the 2 empathy subscales (Model 2) and the 2 mentalizing subscales (Model 3) did not lead to significant changes in R^2 with $F_{2,79}=0.1; P=0.89$ and $F_{2,77}=1.12; P=0.31$, respectively (Table 4).
<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE</th>
<th>β</th>
<th>t</th>
<th>(R^2)</th>
<th>ΔR^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to process information</td>
<td>−3.72</td>
<td>3.31</td>
<td>−.20</td>
<td>−1.12</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>7.56</td>
<td>2.82</td>
<td>.36</td>
<td>2.68</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>.92</td>
<td>2.79</td>
<td>.05</td>
<td>0.33</td>
<td>.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>2.67</td>
<td>2.09</td>
<td>.15</td>
<td>1.28</td>
<td>.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>1.39</td>
<td>3.06</td>
<td>.08</td>
<td>0.46</td>
<td>.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>−2.99</td>
<td>2.69</td>
<td>−.16</td>
<td>−1.11</td>
<td>.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>2.08</td>
<td>3.09</td>
<td>.12</td>
<td>0.68</td>
<td>.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to process information</td>
<td>−3.01</td>
<td>3.31</td>
<td>−.16</td>
<td>−0.91</td>
<td>.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>6.64</td>
<td>2.84</td>
<td>.31</td>
<td>2.33</td>
<td>.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>−0.03</td>
<td>2.82</td>
<td>−.00</td>
<td>−0.01</td>
<td>.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>2.47</td>
<td>2.08</td>
<td>.14</td>
<td>1.19</td>
<td>.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>1.31</td>
<td>3.04</td>
<td>.08</td>
<td>0.43</td>
<td>.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>−1.26</td>
<td>2.83</td>
<td>−.07</td>
<td>−0.45</td>
<td>.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>0.31</td>
<td>3.23</td>
<td>.02</td>
<td>0.09</td>
<td>.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective empathy</td>
<td>−3.23</td>
<td>1.73</td>
<td>−.24</td>
<td>−1.87</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive empathy</td>
<td>1.58</td>
<td>1.53</td>
<td>.13</td>
<td>1.03</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to process information</td>
<td>−2.55</td>
<td>3.42</td>
<td>−.14</td>
<td>−0.75</td>
<td>.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>6.86</td>
<td>2.89</td>
<td>.32</td>
<td>2.37</td>
<td>.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>0.01</td>
<td>2.91</td>
<td>.00</td>
<td>0.00</td>
<td>.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>2.46</td>
<td>2.15</td>
<td>.14</td>
<td>1.14</td>
<td>.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>1.37</td>
<td>3.07</td>
<td>.08</td>
<td>0.45</td>
<td>.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>−1.19</td>
<td>2.94</td>
<td>−.06</td>
<td>−0.41</td>
<td>.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>−0.21</td>
<td>3.36</td>
<td>−.01</td>
<td>−0.06</td>
<td>.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective empathy</td>
<td>−2.73</td>
<td>1.90</td>
<td>−.20</td>
<td>−1.43</td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive empathy</td>
<td>1.05</td>
<td>1.78</td>
<td>.08</td>
<td>0.59</td>
<td>.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflective functioning: certainty subscale</td>
<td>0.35</td>
<td>2.82</td>
<td>.02</td>
<td>0.12</td>
<td>.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflective functioning: uncertainty subscale</td>
<td>−1.31</td>
<td>2.20</td>
<td>−.08</td>
<td>−0.59</td>
<td>.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of hierarchical regression analysis for variables predicting the Recognition of Mental Illness Subscale Score.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE</th>
<th>β</th>
<th>t</th>
<th>R²</th>
<th>ΔR²</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to process information</td>
<td>-0.11</td>
<td>0.21</td>
<td>-.09</td>
<td>-0.53</td>
<td>.28</td>
<td>.08</td>
<td>.47</td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>-0.18</td>
<td>0.18</td>
<td>-.14</td>
<td>-1.02</td>
<td>.31</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>0.18</td>
<td>0.18</td>
<td>.16</td>
<td>1.03</td>
<td>.30</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>0.04</td>
<td>0.13</td>
<td>.03</td>
<td>0.27</td>
<td>.79</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>0.06</td>
<td>0.19</td>
<td>.06</td>
<td>0.31</td>
<td>.76</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>-0.32</td>
<td>0.17</td>
<td>-.29</td>
<td>-1.89</td>
<td>.06</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>0.13</td>
<td>0.19</td>
<td>.12</td>
<td>0.65</td>
<td>.52</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to process information</td>
<td>-0.05</td>
<td>0.21</td>
<td>-.05</td>
<td>-0.26</td>
<td>.79</td>
<td>.15</td>
<td>.04</td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>-0.27</td>
<td>0.18</td>
<td>-.21</td>
<td>-1.50</td>
<td>.14</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>0.10</td>
<td>0.18</td>
<td>.09</td>
<td>0.59</td>
<td>.56</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>0.02</td>
<td>0.13</td>
<td>.01</td>
<td>0.12</td>
<td>.91</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>0.06</td>
<td>0.19</td>
<td>.06</td>
<td>0.29</td>
<td>.77</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>-0.18</td>
<td>0.18</td>
<td>-.16</td>
<td>-1.00</td>
<td>.32</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>-0.02</td>
<td>0.20</td>
<td>-.02</td>
<td>-0.09</td>
<td>.92</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Affective empathy</td>
<td>-0.28</td>
<td>0.11</td>
<td>-.35</td>
<td>-2.63</td>
<td>.01</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Cognitive empathy</td>
<td>0.11</td>
<td>0.09</td>
<td>.15</td>
<td>1.19</td>
<td>.23</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to process information</td>
<td>-0.04</td>
<td>0.20</td>
<td>-.04</td>
<td>-0.22</td>
<td>.83</td>
<td>.22</td>
<td>.03</td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>-0.31</td>
<td>0.17</td>
<td>-.24</td>
<td>-1.78</td>
<td>.08</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>0.01</td>
<td>0.17</td>
<td>.01</td>
<td>0.04</td>
<td>.97</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>-0.05</td>
<td>0.13</td>
<td>-.05</td>
<td>-0.40</td>
<td>.69</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>0.05</td>
<td>0.18</td>
<td>.05</td>
<td>0.27</td>
<td>.79</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>-0.08</td>
<td>0.18</td>
<td>-.07</td>
<td>-0.44</td>
<td>.66</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>-0.02</td>
<td>0.20</td>
<td>-.02</td>
<td>-0.11</td>
<td>.91</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Affective empathy</td>
<td>-0.32</td>
<td>0.11</td>
<td>-.39</td>
<td>-2.79</td>
<td>.007</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Cognitive empathy</td>
<td>0.09</td>
<td>0.11</td>
<td>.12</td>
<td>0.86</td>
<td>.39</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Reflective functioning: certainty subscale</td>
<td>0.39</td>
<td>0.17</td>
<td>.31</td>
<td>2.38</td>
<td>.02</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Reflective functioning: uncertainty subscale</td>
<td>0.24</td>
<td>0.13</td>
<td>.24</td>
<td>1.85</td>
<td>.07</td>
<td>.17</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Summary of hierarchical regression analysis for variables predicting the Attitude to Mental Illness Stigma Subscale Score.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE</th>
<th>β</th>
<th>t</th>
<th>R²</th>
<th>ΔR²</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to process information</td>
<td>-0.00</td>
<td>0.27</td>
<td>.00</td>
<td>-0.00</td>
<td>0.37</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>0.12</td>
<td>0.23</td>
<td>.07</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>0.19</td>
<td>0.23</td>
<td>.13</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>-0.18</td>
<td>0.17</td>
<td>-.12</td>
<td>-1.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>-0.65</td>
<td>0.25</td>
<td>-.48</td>
<td>-2.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>-0.15</td>
<td>0.22</td>
<td>-.09</td>
<td>-0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>0.35</td>
<td>0.26</td>
<td>.24</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
<td>0.19</td>
<td>0.06</td>
</tr>
<tr>
<td>Ability to process information</td>
<td>-0.01</td>
<td>0.27</td>
<td>-.01</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>0.19</td>
<td>0.23</td>
<td>.11</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>0.23</td>
<td>0.23</td>
<td>.15</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>-0.13</td>
<td>0.17</td>
<td>-.09</td>
<td>-0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>-0.68</td>
<td>0.25</td>
<td>-.49</td>
<td>-2.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>-0.24</td>
<td>0.23</td>
<td>-.16</td>
<td>-1.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>0.39</td>
<td>0.27</td>
<td>.27</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective empathy</td>
<td>0.20</td>
<td>0.14</td>
<td>.18</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive empathy</td>
<td>0.11</td>
<td>0.13</td>
<td>.10</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
<td>0.27</td>
<td>0.07</td>
</tr>
<tr>
<td>Ability to process information</td>
<td>0.12</td>
<td>0.27</td>
<td>.08</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>0.28</td>
<td>0.23</td>
<td>.16</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>0.27</td>
<td>0.23</td>
<td>.18</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>-0.11</td>
<td>0.17</td>
<td>-.08</td>
<td>-0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>-0.66</td>
<td>0.24</td>
<td>-.48</td>
<td>-2.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>-0.25</td>
<td>0.23</td>
<td>-.16</td>
<td>-1.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>0.24</td>
<td>0.26</td>
<td>.17</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective empathy</td>
<td>0.36</td>
<td>0.15</td>
<td>.33</td>
<td>2.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive empathy</td>
<td>-0.04</td>
<td>0.14</td>
<td>-.04</td>
<td>-0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflective functioning: certainty subscale</td>
<td>-0.03</td>
<td>0.22</td>
<td>-.02</td>
<td>-0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflective functioning: uncertainty subscale</td>
<td>-0.47</td>
<td>0.17</td>
<td>-.34</td>
<td>-2.71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Summary of hierarchical regression analysis for variables predicting the Help-Seeking Attitude Subscale Score.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
<th>t</th>
<th>R</th>
<th>R²</th>
<th>ΔR²</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
<td>0.27</td>
<td>0.27</td>
<td><.001</td>
</tr>
<tr>
<td>Ability to process information</td>
<td>-0.63</td>
<td>0.29</td>
<td>-.35</td>
<td>-2.13</td>
<td>0.04</td>
<td>.27</td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>0.53</td>
<td>0.25</td>
<td>.26</td>
<td>2.09</td>
<td>.04</td>
<td></td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>-0.26</td>
<td>0.25</td>
<td>-.14</td>
<td>-1.05</td>
<td>.29</td>
<td></td>
<td></td>
<td>.29</td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>0.59</td>
<td>0.19</td>
<td>.36</td>
<td>3.21</td>
<td>.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>0.66</td>
<td>0.27</td>
<td>.41</td>
<td>2.41</td>
<td>.02</td>
<td></td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>0.39</td>
<td>0.24</td>
<td>.22</td>
<td>1.61</td>
<td>.11</td>
<td></td>
<td></td>
<td>.11</td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>-0.30</td>
<td>0.27</td>
<td>-.18</td>
<td>-1.09</td>
<td>.27</td>
<td></td>
<td></td>
<td>.27</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
<td>0.27</td>
<td>0.00</td>
<td>.89</td>
</tr>
<tr>
<td>Ability to process information</td>
<td>-0.63</td>
<td>0.29</td>
<td>-.36</td>
<td>-2.10</td>
<td>.04</td>
<td></td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>0.54</td>
<td>0.26</td>
<td>.27</td>
<td>2.11</td>
<td>.04</td>
<td></td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>-0.25</td>
<td>0.26</td>
<td>-.14</td>
<td>-0.99</td>
<td>.32</td>
<td></td>
<td></td>
<td>.32</td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>0.61</td>
<td>0.19</td>
<td>.36</td>
<td>3.21</td>
<td>.002</td>
<td></td>
<td></td>
<td>.002</td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>0.65</td>
<td>0.28</td>
<td>.41</td>
<td>2.36</td>
<td>.02</td>
<td></td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>0.37</td>
<td>0.26</td>
<td>.21</td>
<td>1.43</td>
<td>.15</td>
<td></td>
<td></td>
<td>.15</td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>-0.29</td>
<td>0.29</td>
<td>-.18</td>
<td>-0.99</td>
<td>.32</td>
<td></td>
<td></td>
<td>.32</td>
</tr>
<tr>
<td>Affective empathy</td>
<td>0.05</td>
<td>0.16</td>
<td>.04</td>
<td>0.29</td>
<td>.77</td>
<td></td>
<td></td>
<td>.77</td>
</tr>
<tr>
<td>Cognitive empathy</td>
<td>0.02</td>
<td>0.14</td>
<td>.02</td>
<td>0.17</td>
<td>.86</td>
<td></td>
<td></td>
<td>.86</td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.54</td>
<td>0.29</td>
<td>0.02</td>
<td>.31</td>
</tr>
<tr>
<td>Ability to process information</td>
<td>-0.72</td>
<td>0.31</td>
<td>-.41</td>
<td>-2.35</td>
<td>.02</td>
<td></td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>Engagement in own Health</td>
<td>0.53</td>
<td>0.26</td>
<td>.26</td>
<td>2.04</td>
<td>.04</td>
<td></td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>Ability to actively engage with digital services</td>
<td>-0.19</td>
<td>0.26</td>
<td>-.11</td>
<td>-0.76</td>
<td>.45</td>
<td></td>
<td></td>
<td>.45</td>
</tr>
<tr>
<td>Feel safe and in control</td>
<td>0.65</td>
<td>0.19</td>
<td>.39</td>
<td>3.38</td>
<td>.001</td>
<td></td>
<td></td>
<td>.001</td>
</tr>
<tr>
<td>Motivated to engage with digital services</td>
<td>0.64</td>
<td>0.28</td>
<td>.40</td>
<td>2.34</td>
<td>.02</td>
<td></td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>Access to digital services that work</td>
<td>0.29</td>
<td>0.26</td>
<td>.16</td>
<td>1.10</td>
<td>.27</td>
<td></td>
<td></td>
<td>.27</td>
</tr>
<tr>
<td>Digital services that suit individual needs</td>
<td>-0.19</td>
<td>0.30</td>
<td>-.12</td>
<td>-0.64</td>
<td>.52</td>
<td></td>
<td></td>
<td>.52</td>
</tr>
<tr>
<td>Affective empathy</td>
<td>-0.03</td>
<td>0.17</td>
<td>-.02</td>
<td>-0.15</td>
<td>.88</td>
<td></td>
<td></td>
<td>.88</td>
</tr>
<tr>
<td>Cognitive empathy</td>
<td>0.14</td>
<td>0.16</td>
<td>.12</td>
<td>0.87</td>
<td>.39</td>
<td></td>
<td></td>
<td>.39</td>
</tr>
<tr>
<td>Reflective functioning: certainty subscale</td>
<td>-0.33</td>
<td>0.25</td>
<td>-.16</td>
<td>-1.29</td>
<td>.20</td>
<td></td>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>Reflective functioning: uncertainty subscale</td>
<td>0.08</td>
<td>0.19</td>
<td>.05</td>
<td>0.44</td>
<td>.66</td>
<td></td>
<td></td>
<td>.66</td>
</tr>
</tbody>
</table>

Discussion

With the global health crisis of the COVID-19 pandemic and the numerous lockdowns across the globe, health care providers have recently switched to web-based health care. Moreover, with the increase in mental health awareness campaigns, the COVID-19 era has drastically shifted our perception of mental health, reducing the stigma surrounding mental disorders. In this digital age of mental health awareness, this pilot study aimed to explore predictors of MHL in health care major students, specifically evaluating whether digital health literacy contributes to MHL. Moreover, we explored psychological factors such as empathy and mentalizing in an attempt to pinpoint predictors of MHL.

Our results suggest that “Engagement in Own Health,” a digital health literacy component, is a predictor of overall MHL. This confirms previous findings showing that health engagement improves patient activation, meaning patients’ ability to manage their health [30]. This ability goes hand in hand with MHL, as it entails recognizing, managing, and seeking treatment for mental disorders [2]. Moreover, the “Ability to Process Information,” “Engagement in Own Health,” “Feeling Safe and in Control,” and “Being Motivated to Engage with Digital Services” subscales of digital health literacy were found to predict MHL components. This partially confirms our hypothesis on the role of digital health literacy in promoting MHL, indicating that some constructs of digital health play a vital role in promoting MHL. In that sense, digital health could be hypothesized to play a role in decreasing stigma surrounding mental health.
mental disorders, allowing individuals to become more open to seeking help. This is especially important in a country such as Lebanon, where mental health remains taboo, thus preventing individuals from seeking help in an attempt to avoid criticism [31]. Our results hint at the importance of digital health practices and services in the health care system and call for future research to further explore whether specialized digital health trainings for health care major students as well as the general public could increase MHL. This is of special importance given the cost-effectiveness of digital services, making them more easily implemented, particularly given the current socioeconomic crisis in Lebanon.

While empathy has been shown to contribute to MHL [21,22], our results did not fully support this hypothesis. It is worth noting, however, that both empathy and mentalizing predicted components of MHL, namely “Recognition of Mental Illness” and “Attitude to Mental Illness Stigma.” This partially confirms findings on the role of empathy in promoting MHL [22-24]. Moreover, these findings support our hypothesis on the role of mentalizing in promoting MHL, a relationship that, to our knowledge, was never explored in the literature. Indeed, mentalizing refers to one’s capacity to think in terms of mental states underlying behaviors [25]; it can therefore be argued that this capacity facilitates people’s awareness of difficulties with emotion regulation, thus pinpointing signs of distress or mental health problems. Given that mentalizing was found to play a protective factor against stigma as it promotes thinking about the potential negative effects of being subjected to prejudice and stigma in general [32], and more specifically in relation to mental illness, we argue for the need for further research exploring this correlation in a larger, more representative sample.

While a recent study has evaluated demographic factors as predictors of MHL in Lebanon [33], to our knowledge, this study is the first to evaluate digital health literacy, empathy, and mentalizing as predictors of MHL in Lebanon. It is also globally the first to hint that mentalizing could constitute a predictor of MHL, making mentalizing a new variable of interest. Moreover, it is the first to examine the positive impact of digital health literacy during the COVID-19 pandemic, an era that has considerably shifted health care practices from face-to-face to web-based. However, it is important to interpret the results in light of some limitations. First of all, since data collection took place in the midst of the COVID-19 pandemic, the sample size was small. Indeed, not many students participated in the study, possibly due to a lack of motivation and a multitude of web-based demands. Second, since the survey was disseminated on the web, only students comfortable with technology took part in the study. This may have biased our results, especially since we evaluate digital health literacy as a predictor of MHL. Indeed, Tohme et al [9] have shown that those who are familiar with social media platforms are more likely to seek help on the web through digital health channels. Finally, the MHLS-HS [3] is new, and its psychometric properties are not fully evaluated. For that, the results of this study would need to be replicated on a larger sample after having validated the scale.

In summary, our findings provide initial support for arguing the role of digital health literacy in fostering and promoting MHL. These findings should be replicated using different measures of digital literacy and MHL in a larger, more representative sample. If findings were to be supported, they could impact recommendations at the institutional, social, and personal levels. At the institutional level, it could hint that digital health literacy practices will become part of university curricula. As for the social level, it could give policymakers support to raise awareness about the importance of digital health and to offer digital health trainings to the general population, including people from different backgrounds, age groups, and socioeconomic status. Finally, at the personal level, health care providers could make a case for the use of digital health, such as telepsychotherapy, mobile health, and telehealth. Since this was a pilot study, in order to gain further insight and be able to generalize our results, it is recommended to replicate this study while collecting data from a larger sample, a sample that is not limited to students or people who have access to and are familiar with technology. Finally, given the significant correlations between health literacy and mental health outcomes [15], as well as our results highlighting the predictive role of some digital health literacy subscales on MHL, future research should evaluate whether digital health literacy can contribute to better mental health outcomes, an association that could be mediated by MHL.

Acknowledgments

All authors declared that they had insufficient or no funding to support open access publication of this manuscript, including from affiliated organizations or institutions, funding agencies, or other organizations. JMIR Publications provided article processing fee (APF) support for the publication of this article. All authors have participated in the research design and manuscript preparation. All authors have approved the final version of the manuscript.

Data Availability

The data sets generated during and/or analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

None declared.
References

Abbreviations

BES: Basic Empathy Scale

eHLQ: eHealth Literacy Questionnaire

MHL: mental health literacy

MHLS-HS: Mental Health Literacy Scale for Healthcare Students

RFQ-8: Reflective Functioning Questionnaire-8

RFQu: Reflective Functioning Questionnaire-8–uncertainty about mental states

RFQc: Reflective Functioning Questionnaire-8–certainty about mental states

©Pia Tohme, Nour Abi Fadel, Nour Yaktine, Rudy Abi-Habib. Originally published in JMIR Formative Research (https://formative.jmir.org), 08.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete
Exploring User Perspectives on Brief Reflective Questioning Activities for Stress Management: Mixed Methods Study

Ananya Bhattacharjee1, BSc; Pan Chen1, BSc; Abhijoy Mandal1; Anne Hsu2, PhD; Katie O’Leary3, PhD; Alex Mariakakis1, PhD; Joseph Jay Williams1, PhD

1Department of Computer Science, University of Toronto, Toronto, ON, Canada
2School of Electronic Engineering and Computer Science, Queen Mary University, London, United Kingdom
3Google, Seattle, WA, United States

Corresponding Author:
Ananya Bhattacharjee, BSc
Department of Computer Science
University of Toronto
40 St George St
Toronto, ON, M5S 2E4
Canada
Phone: 1 647 619 6982
Email: ananya@cs.toronto.edu

Abstract

Background: Current online interventions dedicated to assisting individuals in managing stress and negative emotions often necessitate substantial time commitments. This can be burdensome for users, leading to high dropout rates and reducing the effectiveness of these interventions. This highlights an urgent need for concise digital activities that individuals can swiftly access during instances of negative emotions or stress in their daily lives.

Objective: The primary aim of this study was to investigate the viability of using a brief digital exercise, specifically a reflective questioning activity (RQA), to help people reflect on their thoughts and emotions about a troubling situation. The RQA is designed to be quick, applicable to the general public, and scalable without requiring a significant support structure.

Methods: We conducted 3 simultaneous studies. In the first study, we recruited 48 participants who completed the RQA and provided qualitative feedback on its design through surveys and semistructured interviews. In the second study, which involved 215 participants from Amazon Mechanical Turk, we used a between-participants design to compare the RQA with a single-question activity. Our hypotheses posited that the RQA would yield greater immediate stress relief and higher perceived utility, while not significantly altering the perception of time commitment. To assess these, we measured survey completion times and gathered multiple self-reported scores. In the third study, we assessed the RQA’s real-world impact as a periodic intervention, exploring engagement via platforms such as email and SMS text messaging, complemented by follow-up interviews with participants.

Results: In our first study, participants appreciated the RQA for facilitating structured reflection, enabling expression through writing, and promoting problem-solving. However, some of the participants experienced confusion and frustration, particularly when they were unable to find solutions or alternative perspectives on their thoughts. In the second study, the RQA condition resulted in significantly higher ratings ($P = .003$) for the utility of the activity and a statistically significant decrease ($P < .001$) in perceived stress rating compared with the single-question activity. Although the RQA required significantly more time to be completed ($P < .001$), there was no statistically significant difference in participants’ subjective perceived time commitment ($P = .37$). Deploying the RQA over 2 weeks in the third study identified some potential challenges to consider for such activities, such as the monotony of doing the same activity several times, the limited affordances of mobile phones, and the importance of having the prompts align with the occurrence of new troubling situations.

Conclusions: This paper describes the design and evaluation of a brief online self-reflection activity based on cognitive behavioral therapy principles. Our findings can inform practitioners and researchers in the design and exploration of formats for brief interventions to help people with everyday struggles.

(JMIR Form Res 2024;8:e47360) doi:10.2196/47360
KEYWORDS
reflection; mental health; stress; reflective questioning activity; RQA; brief intervention; computer-mediated communication; email; SMS text messaging; mobile phone

Introduction

Background

Computer-mediated communication (CMC) platforms offer accessible resources to assist people in managing their stress and negative emotions [1,2]. Nevertheless, current online interventions can be time-consuming and inconvenient [3], necessitating users to commit to a series of hour-long sessions to achieve optimal results. Social media groups and SMS text messaging programs also require a substantial time commitment from users to deliver maximum benefit [3,4]. Although research demonstrates that these programs can be as effective as in-person therapy [5,6], the considerable time investment required may lead to high dropout rates. Consequently, the convenience of online resources is paramount in enhancing their efficacy and user engagement [7].

Therefore, we investigate whether it might be possible to construct a brief digital activity (as simple as answering questions in a web form) that people can easily reference or practice when they experience negative thoughts and emotions in their daily lives. Through a simple interface with a series of questions, we explore whether a brief reflective questioning activity (RQA) could prompt people to reflect on a stressful situation. This process of articulating thoughts and emotions has the potential to enhance an individual’s understanding of their personal challenges and foster a sense of self-agency [8,9], eventually strengthening their belief in their own ability to manage stress and negative emotions [10].

Brief activities such as RQAs, which require minimal effort and may provide tangible benefits, can also serve as a stepping stone to more extensive treatments [11,12]. This approach has tremendous potential in terms of convenience as well because such RQAs can be delivered to anyone anytime via email, app, and SMS text message. We posit that activities such as this can be made generalizable enough so that they can be adapted to fit the unique needs and preferences of individuals from diverse backgrounds and situations; for example, an individual experiencing stress at work may use reflective questioning to reflect on their thoughts and emotions related to a difficult conversation with a coworker, and another individual may adapt the same activity to reflect on their feelings after a breakup or a family conflict.

In our work, we draw on insights from clinical psychology and human-computer interaction literature on how to design brief RQAs that are helpful for people to manage psychological well-being and adopt healthy behaviors [13-15]. Murgraff et al [15] demonstrated that a persuasive 2-page pamphlet distributed at the beginning of an 8-week study period and informing female university students about recommended drinking limits could effectively reduce unhealthy drinking behaviors. Carney et al [16] used a similar intervention to support adolescent users of substances and their caregivers. These studies suggest that extensive interventions are not always necessary to foster healthy behavior; providing a brief guideline with crucial information and actionable practices for self-directed application can be beneficial too.

Our work is focused on the goal of promoting self-reflection, a crucial component of cognitive behavioral therapy (CBT) [17] and psychology in general. One can understand self-reflection as a person’s conscious effort to understand and reevaluate their own thoughts regarding any situations, thoughts, or feelings [18,19]. Self-reflection is often the driving force that converts one’s intentions into action [20]. Furthermore, it allows an individual to view situations from a different perspective, enabling them to understand the opinions of others [20,21]. In recent years, researchers have incorporated many reflective activities into mental health and behavior change interventions, particularly through mobile phone apps that show users summaries of their mood or physical activity [22-24].

Other digital tools have attempted to promote self-reflection through conversational agents [25,26]. As evident with the recent emergence of chatbots such as ChatGPT [27,28], conversational agents continue to become more sophisticated in parallel with advances in natural language processing, but they are still limited in their ability to have nuanced and empathetic conversations [27]. Furthermore, the literature suggests that back-and-forth conversations are not always necessary to elicit self-reflection because asking probing questions with the words why or how can be enough to increase one’s own understanding of a problem [29,30].

However, there are several reasons to speculate that brief RQAs may not effectively help individuals manage their stress. First, prompts for self-reflection may not provide people with something concrete or tangible (eg, new information or social validation) and might require repeated exposure to yield benefits that people can see [31,32]. Moreover, it is unclear whether people would see value in answering reflective questions and whether an extended series of questions would add much value. Answering a static set of questions could not only be perceived as a waste of people’s time but also surface more negative emotions without a conversational partner to give input. Furthermore, people might prefer knowing that their thoughts and emotions are being shared with another person rather than relying on themselves to gain benefits.

Drawing upon these potential opportunities and challenges, we set the following guiding principles for our exploration:

- Minimal time commitment: the activity should be simple enough so that people can complete it in 15 minutes—the equivalent of a midday coffee break at work or a fraction of a person’s morning routine.
- Applicability to the general public: the activity should not be targeted toward a particular domain, culture, or population. In other words, the activity should be generalizable to the point where people can adapt it to their own context and situation.
Scalability: the activity should be implemented and deployed in a way that does not need a significant support structure. This means that the activity should not require a live conversational partner or intensive scaffolding (eg, tutorial videos).

To investigate the feasibility, challenges, and opportunities in the design of digital RQAs, we created a design probe that asks people to answer a series of 9 questions to reflect on a troubling situation. The questions in our RQA are intended to help people articulate their thoughts and emotions about the situation using principles from CBT [33]. We leveraged thought records [34] and behavioral chaining analysis [10], which are techniques that encourage people to connect their thoughts, experiences, and emotions to identify triggers that generate negative patterns and come up with alternative ways of thinking.

We provide insights into the design of our RQA and how it was experienced by users, which we hope will inform the design of future interventions with similar goals. We gathered these observations through 3 studies. For our first study, we used a convenience sample of crowdlancers and university students to administer the RQA and obtain qualitative feedback on the design of the activity. In our second study, we investigated whether the perceived benefits of going through an RQA outweighed the additional time commitment required to answer a series of probing questions. In our third and final study, we investigated the potential impact of the RQA when delivered repeatedly over a 2-week period in a real-world context; we also explored the implications of distributing the RQA over email versus SMS text message. The design of our RQA was kept constant across all 3 studies so that we could maintain consistency across evaluations and determine which observations held true across the different scenarios.

We found that the structured analysis supported by our RQA helped people reduce their stress and identify solutions for improvement. Although our RQA consisted of 9 questions, people did not complain about the time commitment required to complete it and generally wrote thoughtful responses to the prompts. However, deploying the RQA over the course of 2 weeks raised some potential challenges, including the monotony of doing the same activity several times, the limited affordances of mobile phones, and the importance of having the prompts align with the occurrence of new troubling situations. These highlight design considerations and opportunities for researchers and practitioners to consider as they develop their own digital RQAs, such as giving users control over the frequency of prompts and automated question personalization.

Main Contribution

In summary, our main contribution is an investigation into whether people see value in a brief digital RQA without a conversational partner for interaction or advice. We deliver this contribution in four parts: (1) the creation of an RQA probe that people can complete on their computer or mobile phone to reflect upon a stressful situation; (2) insights into the value and pitfalls of RQAs gathered via surveys completed by, and interviews with, 42 Amazon Mechanical Turk (AMT) participants and 6 university students; (3) evidence that people see value in an RQA compared with a baseline activity via a comparison study run on AMT with 215 participants; and (4) observations and design considerations from a 2-week deployment of our RQA using different CMC platforms.

Methods

Overview

In this section, we first discuss the design of our RQA and then describe the logistics of the 3 studies we conducted. The studies were conducted simultaneously with the same RQA design to explore different aspects of the intervention. Study 1 involved gathering feedback on the qualities of the RQA from a broad demographic using surveys and semistructured interviews. In study 2, the perceived benefits of the RQA were compared with those of a shorter baseline activity with the goal of determining whether the additional time commitment required to complete the RQA was justified by the benefits of the intervention. Study 3 aimed to explore how people would perceive the RQA during their everyday lives and how best to prompt engagement using email and SMS text messaging.

The Design of Our RQA

Our research team, which consists of graduate students and faculty members with experience in psychology and human-computer interaction, was guided by existing CBT resources to create an RQA that helps people reflect on a troubling situation in their lives. We first reviewed popular CBT apps and websites intended for personally guided use (eg, Youper [35], Depression CBT Self-Help Guide [36], KokoBot [37], and Woebot [38]) to identify the techniques they used to provide benefits to users. In particular, we found that these resources leverage several components of a CBT exercise called a thought record [10]. A thought record is a worksheet with a grid that includes 5 columns: situation, thoughts, emotions, behaviors, and alternative thoughts. The exercise aims to encourage behavioral chaining—a process through which people draw connections between their thoughts and emotions to identify triggers and irrational thoughts—revealing potential opportunities to reframe their way of thinking [10,39].

Researchers have identified several benefits to thought records and behavioral chaining. Thought records can help people recall memories of prior events that were initially assumed to be unimportant [40]. Identifying the full timeline of an event can help people recognize their own faulty behavior patterns, thus preparing them for similar events in the future [41]. Moreover, informal exposure to negative experiences can increase one’s ability to tolerate troubling situations [42] or recover from problematic behaviors (eg, binge drinking and self-harming) [10]. Thought records are typically introduced as CBT homework assignments that patients can complete between visits with a trained professional, providing them with the scaffolding to complete the activity on their own.

Our RQA attempts to distill this exercise into a brief guided activity that can be completed on a person’s computer or mobile phone without the need for external support. After writing a collection of brief questions to encapsulate these concepts, we iteratively added, removed, revised, and reordered the questions until we reached the RQA structure shown in Table 1.
primary design goal was to give people a structured activity they could use independently to organize their thoughts. Inspired by thought records and behavioral chaining, our activity guides users through the following line of thinking: trigger → thought → feeling → behavior [9,10].

We first start by asking the user to think about a stressful situation and write about it in as much detail as they like. Prior work suggests that this sort of open-ended question allows users to open up about their problems and be comfortable with the activity [9]. The next 5 questions (Q2-Q6) become more specific, asking users to identify the most important stressor, the most troubling thoughts and feelings, and the behaviors that come from these thoughts and feelings. The seventh question then asks users to retype the details of the situation in a structured format. Beyond leading people through the process of behavioral chaining, these questions allow users to iterate upon their initial thoughts regarding their stressful situation. The structured format in the seventh question is also designed to help users draw connections between several components of their situation. This leads to the eighth question, which challenges the user’s mental process by asking them whether they believe that the trigger justifies their thoughts. Doing so can help people identify flaws in their logic or possible cognitive distortions [10]. The final question asks the user to explore alternative ways of thinking that would enable them to see the problem from a different perspective and induce a different emotion [43].

We presented our RQA to 4 clinical psychologists with expertise in CBT to validate its construction and help us consider the best ways of evaluating it. The psychologists verified that our RQA is aligned with activities that would be used in psychotherapy, but they also remarked that the questions focused on advanced techniques that were usually introduced only after several sessions of evaluation and psychoeducation. They suspected too that people might find the activity too lengthy or that people might not know how to respond to some of the questions; 1 psychologist even posited that >2 questions might be excessive for an online format without a conversational partner. The study that follows in this paper demonstrates that although these concerns were warranted, participants found value in the additional line of questioning.

Table 1. The questions that compose our reflective question activity. The design of these questions is influenced by thought records and behavioral chaining. Before seeing these questions, participants were provided with the following prompt: “Think of a particular situation where you felt stressed or had a negative emotion, which you can try to reflect on as you go through this activity. It could be a current situation, one in the past, or one you anticipate in the future.”

<table>
<thead>
<tr>
<th>Questions</th>
<th>Example response</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Q1. What’s the situation? Feel free to explain it in as much detail as you’d like.”</td>
<td>“My son has moved away and left no way for me to get in contact with him.”</td>
<td>Provides context for the activity</td>
</tr>
<tr>
<td>“Q2. What part of the situation is the most troubling?”</td>
<td>“The fact that he does not care enough to reach out to me and let me know he is safe.”</td>
<td>Sets an agenda for the rest of the activity</td>
</tr>
<tr>
<td>“Q3. What are you thinking to yourself?”</td>
<td>“I hope he is okay and safe. I wonder why he would do this. I thought we had a good relationship.”</td>
<td>Identifies troubling thoughts</td>
</tr>
<tr>
<td>“Q4. What thought is the most troubling?”</td>
<td>“I don’t know if he is safe.”</td>
<td>Focuses attention on the most troubling thought</td>
</tr>
<tr>
<td>“Q5. What do you feel when you think this?”</td>
<td>“Panicked and worried.”</td>
<td>Reinforces the core CBT principle that thoughts trigger feelings</td>
</tr>
<tr>
<td>“Q6. When you have these feelings, what actions do you take? What actions do you avoid?”</td>
<td>“I try to refocus my thoughts on something else. I try to avoid thinking about what bad things could be happening to him.”</td>
<td>Identifies behaviors that are caused by the cascading effect of thoughts and feelings</td>
</tr>
<tr>
<td>“Q7. Retype the summary of the situation in the following format:</td>
<td>“I am triggered by thoughts of my son taking off and not staying in contact. I think about all the bad things that could happen and why he would do this. I feel panicked and worried. When feeling this way I try to think about other things and not focus on the negative of the situation.”</td>
<td>Synthesizes past reflection by highlighting the connection between the trigger and its manifestations</td>
</tr>
<tr>
<td>“Trigger:”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Thought:”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Feeling:”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Behavior:”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Q8. Consider whether the trigger truly justifies this type of thinking. Explain below.”</td>
<td>“The trigger does justify it. This is my child that I raised. I no longer know where he is, I cannot get in touch with him and I don’t know if he is okay.”</td>
<td>Challenges potentially negative thought patterns</td>
</tr>
<tr>
<td>“Q9. If you were to explore an alternative line of thinking, how would you do it?”</td>
<td>“I raised my child to be independent and he is trying to exercise that independence for the first time in his life. He needs me to take a step back for a while so that he can do this on his own.”</td>
<td>Encourages alternative thoughts that can provoke different feelings and behaviors</td>
</tr>
</tbody>
</table>

aCBT: cognitive behavioral therapy.
Study 1: User Perspectives After Onetime Use of Our RQA

Overview

Our first study gathered qualitative feedback on the qualities that people saw in the proposed RQA irrespective of other factors (eg, when it was being used and how it compared with other interventions). We used surveys to collect diverse feedback from a broad demographic. Subsequently, we used semistructured interviews to gather deeper insights into some of the salient topics.

Participants

We initially recruited 50 participants from AMT. Participants were required to have a minimum approval rating of 95%. We did not incorporate explicit attention check questions in our surveys but implemented a thorough manual review process to ensure data quality. Two independent members of our research team examined each response, discarding any that were incomplete or contained nonsensical or irrelevant content.

Because of data quality issues, we discarded data from 8 (16%) of the 50 participants, leaving us with a final sample of 42 (84%). This cohort of 42 AMT crowdworkers included 35 (83%) men and 7 (17%) women, with an average age of 34.6 (SD 9.99) years. We identified these participants as M1 to M42, and they were compensated CAD $4 (US $2.97) for their time. We also recruited 6 additional people via email and word of mouth from a university campus community to serve as interview participants. This cohort of 6 people included 1 (17%) man and 5 (83%) women with an average age of 19.7 years. We identified these participants as L1 to L6, and they were compensated CAD $15 (US $11.15) for their time. There were no inclusion criteria because we were interested in observing how our RQA would be perceived by the general population.

Study Procedure

All participants were asked to complete the RQA online on the Qualtrics survey platform (Qualtrics International Inc), with all questions being presented on a single page. The data from this survey were saved and made accessible to the research team. After participants finished the RQA, they were requested to provide feedback on the activity through a separate survey. The questions included, although they participated in semistructured interviews immediately after completing our RQA. The interviews took 45 to 60 minutes and were held either in person or through different videoconferencing platforms.

Data Analysis

The survey responses were analyzed using a thematic analysis approach [44]. After the interviews were transcribed, 2 researchers examined the data together to familiarize themselves with the general sentiments of the participants. The researchers then individually applied the open coding process [45] to a subset of the data to develop their own preliminary codebooks. After sharing their codebooks with one another, the researchers held multiple discussions to consolidate the codes into a shared codebook. Next, they applied this codebook to a different subset of the data and again refined the codebook. Finally, the researchers reached a consensus and applied the final codebook to separate halves of the data.

The interview transcripts were also analyzed using open coding. However, because the interviews aimed to gain deeper insights into what people had to say in the surveys, we used the same codebook generated from the survey responses.

Study 2: Comparing the RQA With a Baseline

Overview

The observed benefits of reflective questioning may be attributed to the act of discussing a troubling situation rather than the structured questions themselves. Furthermore, clinical psychologists raised concerns that asking participants to answer >2 questions may be overwhelming. To investigate these possibilities, we compared the effects of the RQA with those of simply asking participants to discuss their troubling situation without structured questions. In this baseline activity, participants were required to write about a stressful situation in as much detail as possible in response to a single question. If the structured questions in the RQA provided additional benefits over the baseline activity despite the added time commitment, we posited that the RQA would warrant further exploration as a tool for promoting self-reflection.

Participants

For study 2, we again used AMT and adhered to the same participant recruitment and data quality assurance procedures from study 1. We initially recruited 255 participants for this study. Of the 255 participants, after the data screening process, we excluded 40 (15.7%; n=17, 43% from the baseline group and n=23, 58% from the RQA group) owing to issues related to data quality. This led to a final participant count of 215, with 111 (51.6%) individuals randomly assigned to the baseline group and 104 (48.4%) to the RQA group. Our study included participants of different genders, with 61.9% (133/215) identifying as men, 35.8% (77/215) identifying as women, and 2.3% (5/215) preferring not to disclose their gender. The mean age of the participants was 33.8 (SD 9.51) years. As with study 1, all participants were compensated CAD $4 (US $2.97) for their participation, and there were no inclusion criteria.

Study Procedure

The study had a between-participants design in which participants were randomized into 1 of 2 conditions. The first condition, which we consider the RQA condition, entailed participants completing our 9-question RQA. The second condition, which we call the baseline condition, asked participants to reflect on a troubling situation they were experiencing in as much detail as they wished, answering only a single question.

We expected the RQA to take longer to complete than the baseline condition, given that it involved answering more questions. However, we were also interested in participants’ perceptions of the activity’s length and the value they placed
on the additional time spent. By using a between-participants design, the study aimed to assess whether completing the RQA would lead to differences in outcomes compared with the baseline condition.

Data Analysis
We collected data before and after participants completed their respective activities to evaluate the hypotheses outlined in the following subsections.

Hypothesis 1 (Perceived Benefits)
We hypothesized that participants in the RQA condition would experience more instantaneous stress relief from completing the activity than those in the baseline condition.

To evaluate this hypothesis, we asked participants to rate how useful they felt the activity was. We call this measure perceived utility, and it was measured using a 7-point scale (ranging from −3 for strongly disagree to +3 for strongly agree). We also asked participants to rate the degree to which they were feeling troubled about their selected situation before and after the activity. These ratings were provided using an 11-point scale (ranging from −5 to +5) to increase the resolution with which people could express their stress. We call the difference between the ratings before and after the activity the perceived stress change, with positive values indicating a decrease in stress. Both perceived utility and perceived stress change were compared across conditions using independent samples 1-tailed Welch t tests. For each measure, the null hypothesis (H$_0$) was that the mean for the RQA condition would be less than, or equal to, the mean for the baseline condition. By contrast, the alternative hypothesis (H$_a$) that the mean for the RQA condition would be greater than the mean for the baseline condition.

Hypothesis 2 (Elapsed Time)
We hypothesized that participants in the RQA condition would take more time to complete the activity than those in the baseline condition; yet the perceived time commitment would not be significantly different.

To evaluate this hypothesis, we recorded the time it took for participants to complete the activity, the number of words they typed across all questions, and a self-reported rating using a 7-point scale (ranging from −3 to +3) of whether they felt the activity was worth their time. We call these measures completion time, response length, and perceived time commitment, respectively. All 3 measures were compared across conditions using independent samples 1-tailed Welch t tests. For each measure, the null and alternative hypotheses were set in a similar manner as detailed for hypothesis 1.

Study 3: Observing Repeated Engagement With the RQA
In our third and final study, we aimed to assess the effectiveness of the RQA in a real-world setting as a periodic intervention and explore the most effective ways to prompt engagement through low-cost asynchronous CMC platforms such as email and SMS text messaging.

Participants
We recruited 11 participants (n=8, 73% men and n=3, 27% women) with an average age of 20.6 years. Participants were recruited via email invitations and word of mouth from the same university campus community as study 1 without any inclusion criteria. We refer to these participants as D1 to D11. Participants were not compensated for completing our RQA to avoid undue influence on their level of engagement; however, they were compensated CAD $10 (US $7.43) for completing surveys and CAD $15 (US $11.15) for the interviews.

Study Procedure
Participants were recruited to take part in our study for 2 weeks. During the enrollment phase, participants were asked to specify the hours during each day when they would prefer to receive a notification to complete the RQA. They were asked to provide separate preferences for email and SMS text message, and they were allowed to select multiple times during a given day. Participants were then randomized into 1 of 2 groups. One group received emails during the first week and SMS text messages during the second week, whereas the other group experienced the reverse. The notifications prompted participants to complete the RQA and provided them with a link that took them to a web page containing the RQA. We used the same link each time, and participants were aware of this fact.

Participants were prompted to complete the activity once per day for up to 3 days within a given week, similar to what has been done in previous work [46]. Of the 11 participants, 8 (73%) were available for >3 days, and the days on which they received prompts were randomly selected, whereas 3 (27%) were available for <3 days (D2, D8, and D9), and they received a message on every day of their availability.

At the end of the study, participants were asked to complete an exit survey containing questions about their overall experience and their CMC preferences in the context of the RQA. They were then invited to a semistructured interview session to elaborate on their experience. The interviews lasted 15 to 30 minutes, with frequent topics including the barriers people faced while completing the RQA, the applicability of the RQA to their lives, and the trade-offs of being prompted to complete the RQA repeatedly. Of the 11 participants, 7 (64%) took part in the interviews. The interviews were conducted over the Zoom teleconferencing platform (Zoom Video Communications, Inc).

Data Analysis
We recorded a variety of data to assess how people engaged with our RQA. We measured how often participants responded to our prompts without a limit on how long they took to respond. In other words, if a participant received a prompt in the morning but waited until the next day to complete our RQA, we still counted this as a response. We calculated the response rate in this way because it is well documented that people respond to emails and SMS text messages at their convenience rather than at the moment of reception [47]. As in study 2, we asked participants to rate their stress using an 11-point scale before and after the activity, and we report the change in this rating. We also report the time it took for participants to complete the RQA and the word count of their responses as proxies for...
engagement. We analyzed the interview responses using the same procedure that was applied to study 1; however, we did so with a new blank codebook.

Ethical Considerations

We recognize that conducting research on mental health can raise several ethical issues; for example, our particular set of questions can induce stress or symptoms of depression and anxiety, particularly when participants are asked to recall a troubling situation. To mitigate these negative outcomes, we clearly explained the potential risks in the consent materials and reminded participants that the RQA was part of a research study. We also provided survey participants with the contact information of several mental health helplines. The interviewers were trained to clearly explain the goal of the project and maintain an appropriate level of empathy and support. Interviewers were also trained to run the Columbia-Suicide Severity Rating Scale protocol [48] if interviewees showed any indication of self-harm or suicidal ideation. Furthermore, interviewees had the option to skip any question they did not want to answer or to leave the interview session at any point. All our research activities were approved by the University of Toronto Research Ethics Board (36582).

Results

Study 1: User Perspectives After Onetime Use of Our RQA

During our first study, we elicited 4 major themes related to the benefits and pitfalls of our RQA for first-time users. We provide evidence for each theme in the following subsections.

Appreciation for Structured Reflection

Participants were appreciative of the fact that our RQA helped them break down the components of their stressful situation. By deconstructing the situation, participants felt that they were able to become more aware of the causes of their negative emotions, putting their thoughts “in the right order” (L2). Some of the participants also noted that the activity helped them recognize faulty thought patterns:

> The activity helped me pinpoint my maladaptive coping strategy...[it] led me to think more with my brain and less with my immediate emotional reaction. [M17]

Venting Negative Thoughts Through Writing

Participants enjoyed expressing their thoughts and feelings through writing because it allowed them to “get out all thoughts and feelings and take that weight off of my shoulders” (L5). Moreover, some of the participants appreciated seeing their thoughts typed out in front of them, commenting that the act of writing helped solidify previously nebulous or disjointed thoughts; for example, L4 thought that the RQA forced them to dissect their feelings that would have otherwise been unorganized.

M11 suggested that writing about their thoughts allowed them to examine their situation “from an outside perspective,” almost as if they were analyzing someone else’s situation instead of their own. This affordance made it easier for them to ignore personal tendencies and instead think more objectively about their thought process.

Helping Identify Solutions

Participants also stated that the activity prompted them to adopt a problem-solving approach to improve their situation. They could better identify the root cause of their stress because they were prompted to describe their troubling situation in a structured order, which made it easier for them to find a solution to their problem. As the final question of our RQA prompted users to consider alternative ways of thinking, participants such as L3 felt empowered because they were often able to emerge from the activity with at least 1 prototype solution.

Incidental Negative Side Effects

Our RQA did not unilaterally help people become less worried about their troubling situation. L5 noted that as they were considering an alternative line of thinking, they found it confusing to keep track of both their original thought process and the reframed one. L6 felt that this confusion led directly to frustration, whereas others were frustrated because they could not identify a solution by the end of the activity:

> The questions just made me think about how much pain I was in and really didn’t offer any solution whatsoever to the stress. [M19]

Some of the participants also felt at a loss when asked to think of alternative perspectives on their thoughts.

Study 2: Comparing the RQA With a Baseline

Overview

Of the 215 participants, 111 (51.6%) were randomly assigned to the baseline condition and 104 (48.4%) to the RQA condition. The summary statistics for the measures that were collected during study 2 are shown in Table 2.
Table 2. Summary measures and statistics from study 2. Statistical significance between measures in the reflective questioning activity (RQA) and baseline conditions is indicated in the first column according to independent samples 1-tailed Welch t tests. Means are given with the SE within each condition. For each measure, we set our hypotheses as follows: the null hypothesis (H0) was that the mean for the RQA condition would be less than, or equal to, the mean for the baseline condition; by contrast, the alternative hypothesis (Ha) was that the mean for the RQA condition would be greater than the mean for the baseline condition.

<table>
<thead>
<tr>
<th>Measure</th>
<th>RQA condition, mean (SD; SE)</th>
<th>Baseline condition, mean (SD; SE)</th>
<th>t test (df)</th>
<th>P value</th>
<th>Cohen d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived utility[a]</td>
<td>1.2 (2.04; 0.2)</td>
<td>0.5 (2.11; 0.2)</td>
<td>2.82 (213)</td>
<td>.003</td>
<td>0.38</td>
</tr>
<tr>
<td>Perceived stress change[b]</td>
<td>0.7 (2.04; 0.2)</td>
<td>−0.4 (1.05; 0.1)</td>
<td>4.46 (213)</td>
<td><.001</td>
<td>0.61</td>
</tr>
<tr>
<td>Completion time[b] (min)</td>
<td>8.9 (8.16; 0.8)</td>
<td>1.6 (3.16; 0.3)</td>
<td>9.09 (213)</td>
<td><.001</td>
<td>1.27</td>
</tr>
<tr>
<td>Response length[b] (words)</td>
<td>87 (118.297; 11.6)</td>
<td>29 (57.95; 5.5)</td>
<td>4.52 (213)</td>
<td><.001</td>
<td>0.63</td>
</tr>
<tr>
<td>Perceived time commitment</td>
<td>−0.2 (2.04; 0.2)</td>
<td>−0.3 (2.11; 0.2)</td>
<td>0.33 (213)</td>
<td>.37</td>
<td>0.05</td>
</tr>
</tbody>
</table>

\[a\]P<.05.
\[b\]P<.001.

Hypothesis 1 (Perceived Benefits)

Participants in the RQA condition saw significantly more utility in completing the activity than those in the baseline condition (t\[213\]=2.82; P=.003; Cohen d=0.38). The average rating for our RQA was 1.2 (SE 0.2), whereas the average rating for the baseline activity was 0.5 (SE 0.2). Although both these averages were near the neutral score of 0, there were many more positive ratings for our RQA. Of the 215 participants who used our RQA, n (79%) gave a nonneutral positive score, whereas only n (57%) did the same for the single-question activity. Participants also reported a statistically significant change in stress rating in the RQA condition compared with the baseline condition (t\[213\]=4.46; P<.001; Cohen d=0.61). Whereas people who used our RQA experienced a mean decrease of 0.7 (SE 0.2) point in their perceived stress rating, people who used the single-question activity actually experienced a mean increase of 0.4 point. A paired 1-tailed t test analyzing scores before and after engaging with the RQA condition indicated a statistically significant decrease in stress scores post-RQA, relative to their levels before starting it (t\[103\]=3.59; P<.001; Cohen d=0.36).

These results suggest that the additional questions from our RQA may not only help in potentially mitigating stress but also possibly counteract an initial increase in stress from revisiting the troubling situation.

Hypothesis 2 (Elapsed Time)

Participants in the RQA condition took 8.9 (SE 0.8) minutes on average to complete the activity, whereas those in the baseline condition took only 1.6 (SE 0.3) minutes on average; the difference between the 2 conditions according to this measure was statistically significant (t\[213\]=9.09; P<.001; Cohen d=1.27). We also found that participants wrote significantly longer responses while going through our RQA. Participants in the RQA condition wrote 87 (SE 11.6) words on average, whereas those in the baseline condition wrote 29 (SE 5.5) words on average; this difference was also statistically significant (t\[213\]=4.52; P<.001; Cohen d=0.63). Although the RQA required significantly more effort, there was no statistically significant difference in people’s subjective perceived time commitment (t\[213\]=0.33; P=.37; Cohen d=0.05). We conclude from these results that people found value in the additional time they spent completing the series of questions.

Study 3: Observing Repeated Engagement With Our RQA

Overview

Figure 1 illustrates participants’ response rate to our RQA sent via email and SMS text message over the course of the study period. The figure not only shows the aggregated data across all interactions with our RQA but also splits the results according to the CMC platform through which the prompts were sent. We do not rely on quantitative data to claim that one way of delivering an RQA is better than the other; instead, we look into qualitative data to understand the role that technology plays in supporting long-term engagement with RQA.
Figure 1. Participants’ response rate to our reflective questioning activity over the study period. The sample size for each data point is also shown below the respective trial number.

Overall Engagement

We observed moderate engagement throughout the 2-week period of our study. We sent participants 54 prompts via email (n=27, 50%) and SMS text message (n=27, 50%), and participants completed the RQA in 27 (50%) of these cases. On 3 (11%) of these 27 occasions, participants completed the RQA twice in response to the same prompt; therefore, our RQA was actually completed 30 times during the study.

On average, people spent 18.5 (SE 1.2) minutes, wrote a total of 212 (SE 24.2) words, and experienced a stress level reduction of 1.2 (SE 0.3) points after completing the RQA.

Participants were much more engaged with our RQAs in this study compared with the AMT crowdworkers in study 2 (ie, they spent more time and typed longer responses), even as they completed it multiple times. One explanation for this discrepancy could be the amount of time participants were willing to commit to the study. Participants in study 2 likely completed our RQA in the midst of other crowdsourcing tasks or during their busy workdays. By contrast, participants from study 3 were able to pick a suitable time at their convenience, which in turn gave room for a longer time investment. A participant validated this hypothesis from their experiences:

Although I initially said that I would be available in the morning, I found the best time to do it in the time between 9 and 11 PM. I used to see the emails and text messages shortly after they came, but I used to only do them at my convenient times in the night. [D3]

Our quantitative and qualitative data show that people could spend as little or as much time as they wanted with the activity without the need for significant scaffolding. In the interviews, participants expressed similar opinions about the benefits of our RQA as they did in our previous studies. Most notably, participants saw benefits to having a structured way of organizing thoughts because it helped them identify triggers and devise an alternate way of thinking.

Repeated Engagement With the RQA

A major goal of this study was to observe how participants engaged with the RQA over time. Unsurprisingly, we observed that the response rate decreased over time. Figure 1 shows that the response rate was 64% (7/11) when participants received their first prompt and then 55% (6/11) for the second prompt. By the time they had seen 6 prompts, the response rate went all the way down to 38% (3/8). When we asked participants to explain this trend during our interviews, the main complaint was that doing the same activity in such a short interval was boring and tedious. D3 mentioned that the length of the activity was acceptable for a onetime event, but when they had to do the activity thrice in the same week, it “came across as a chore.” Another participant expressed similar sentiments:

When it started coming every other day, I felt like I had to do a school homework. So I felt a little bit of pressure to do the activity. [D10]

Participants expressed that they would have preferred to have larger intervals (eg, once a week) between the times they were requested to go through the RQA. This was not only because of the monotony of the task but also because participants struggled to think of new troubling situations to reflect upon:

By the time I got the last prompt, I could not find a stressful situation in my life. Maybe the frequency should vary depending on the amount of stress a person is going through. [D6]

Participants acknowledged that regularly prompting them to do our activity had value. A few of them noted that they would have forgotten to revisit the RQA had they not been given periodic reminders. D1 also believed that they “got more
comfortable with the activity [over time] and started setting aside a time to do the activity.”

Repeated engagement with our RQA also helped people form habits that yielded benefits outside of the activity itself; for example, D10 informed us that they did the activity multiple times in their mind either to think about how their previous responses could be improved or how they could apply these questions in a new situation. D4 found that doing the activity multiple times was a good mental exercise to prepare themselves for less stressful situations that they may encounter during the day.

CMC Platforms

Another goal of this study was to gain insights into the role of technology in deploying RQAs. Figure 1 shows that there was a noticeable difference between the response rates for email versus SMS text message. Even in our exit survey, 8 (73%) of the 11 participants said that they would prefer email over SMS text message for doing this activity, whereas the rest of the participants (3/11, 27%) had no preference. One of the main reasons for the preference was the affordances of desktop and laptop computers when it came to completing the RQA. Most notably, participants commented on how computers are better suited for reading and writing longer passages of text:

> Typing is very difficult in mobile phones. The screen size is small and editing stuff is a nightmare. On the other hand, if you want to write a long answer, you would probably do that on the computer because the process is just much easier. [D1]

Participants also felt that doing the RQA on a computer minimizes the chance for distractions; for example, D7 commented that sitting in front of their computer gave them the “right mindset to do the activity.” With a computer, they felt that they had control over their workspace because they could easily close other tabs and applications. By contrast, when they tried to do the activity on their mobile phone, there were cases when a call or a push notification disrupted their train of thought.

Although email was generally preferred for completing the RQA, many people agreed that mobile phones are a great mechanism for sending notifications and reminders. Some of the participants (eg, D4 and D6) expressed the concern that people may not check their emails as frequently as they check SMS text messages:

> Most of the time, I have my phone in my hand, whereas I check my emails at most once or twice a day. So if you need me to do something immediately, you would probably need me to reach via text messages. I can respond to an email even 2 days later. [D4]

Participants also informed us of instances when they switched between the 2 CMC platforms. When D6 was prompted to do the RQA over SMS text message, they sent the link to themselves over social media and then accessed it on their desktop computer to complete the RQA. Some of the participants posited that the 2 CMC platforms could be integrated into the same system:

> What you can do is you can ask me to answer the questions in the text message, but at the same time you will also send me an email that has the links to the actual page. [D6]

Alternatively, others suggested that the RQA could be advertised over social media platforms such as Facebook or Instagram because people normally access their accounts across multiple devices. In doing so, people could have the option to choose whichever platform they see fit.

Discussion

Principal Findings

In this work, we aimed to understand the benefits of a brief digital intervention that people could complete on their mobile phone or computer to lessen their concerns about a troubling situation. Our second study showed that doing the RQA could be more effective in reducing instantaneous stress compared with simply reflecting on a troubling situation without structured questions, whereas our first and third studies elicited qualitative findings that we hope will inform the design of future interventions in this space. Most notably, we found that participants appreciated the RQA for its ability to help them undergo a structured analysis of their troubling situation, identify solutions to improve their situation, and vent their negative feelings. Although participants felt that the series of questions was worth the additional time commitment, we also saw some obstacles toward long-term engagement with the RQA: the monotony of doing the same activity several times, the limited affordances of mobile phones, and the importance of having the prompts align with the occurrence of new troubling situations.

Our findings indicate that people from the general population saw value in engaging with a simple lightweight reflection activity without an active conversational partner. Although there has been significant research effort toward making mental health platforms more sophisticated and humanlike [37,49], our work shows that simpler interfaces can also yield benefits. Across all our studies, participants expressed that the structured nature of the RQA played a pivotal role in making them more aware of their troubling emotions. By deconstructing past events, participants were able to view their feelings in an organized manner and from a third-person perspective, enabling them to reevaluate whether their feelings were justified. The writing activity acted as a medium through which they could externalize repressed emotions, a helpful practice that has been noted by past psychology research [50]. People often falsely assume that their problems are a reflection of their own identity or their relationship with others. Failing to separate problems from persons can cause people to identify themselves as different from what society considers normal, eventually leading them to fixate on their negative traits [51]. Our RQA provided people with the opportunity to explore the relationship between their problem and their own self but from a different perspective.

The RQA also offered a general structure that people could adapt to their own life situations. We saw that a few of the participants applied the same line of questioning outside of the activity itself, hinting at longer-lasting benefits. We foresee that
RQAs could serve as a gateway for people struggling with stress and depression to engage with more complex activities and therapeutic tools. Validating this potential would require a longer study, but our research already demonstrates the hurdles that RQA interventions must overcome to support long-term engagement.

Improving the Design of RQAs

The success of the RQA in our work does not mean that future RQAs could not be even better. Although we observed an average decrease in participants’ stress levels after completing the RQA, some of the participants from study 1 remarked that the activity left them confused and without a concrete solution. We hypothesize that such concerns could be remedied by providing users with sample responses to each question as a source of inspiration. These examples could be curated by researchers, or they could be collected from previous users who voluntarily contributed their responses to a database [52]. Topic modeling could be used to tag the examples with keywords related to their subject matter, and an information retrieval system could rank the relevance of these examples [53]. Collaborative filtering could even be used to gradually collect ratings for each example and then tailor examples to individuals’ preferences [54].

Another way that RQAs could be made better is by personalizing the questions. The activity could ask users to rate the perceived benefit of each question, or we could use the average response length as a proxy for estimating the utility of each question. Using this information, we could extend or emphasize questions that individuals find most beneficial. We could also use this information to remove questions that induce stress. However, thought records and behavioral chaining are intentionally designed processes with many critical steps; therefore, removing questions may detract from the activity’s benefits.

Our 9-question RQA took inspiration from CBT principles, but future work could investigate RQA designs based on other psychological principles; for example, encouraging expressions of gratitude or social connections with others can play a key role in stress and depression management [55,56], and RQAs built around these practices can similarly help people manage their well-being. Future work could also explore different activity structures. Many of the participants (8/11, 73%) in study 3 complained about the inconvenience of typing on their smartphones; therefore, an alternative activity could ask people to record and listen to their own voices for reflection. Another activity could encourage peer support by starting conversations among online peers. Finally, researchers could create brief activities centered around other psychological frameworks beyond CBT, with past examples being centered around mindfulness [57], motivational interviews [58], and acceptance and commitment therapy [59].

Considerations for Long-Term Engagement

Our 2-week deployment in study 3 enabled us to gain insights into how people would engage with RQAs over a period of time. Although participants were pleased with the fact that they could specify their hours of availability, receiving prompts for the RQA 3 times within the same week was overwhelming for most of them (3/8, 38%). The biggest criticism was that people received multiple prompts without experiencing a new troubling event; therefore, they either had to go through our RQA while analyzing the same event as before or recalling a troubling event from the distant past. Ideally, the frequency of prompts would adapt dynamically according to a person’s needs. A participant suggested that users should have control over how often they receive reminders to complete our RQA, explaining that individuals who experience more stress than others might benefit more from doing these activities in short intervals. Going a step further, future work could integrate physical activity trackers, smartphone sensors, and Internet of Things devices to automatically detect periods of heightened stress [60,61], turning our RQA into a just-in-time adaptive intervention.

Another issue with completing our RQA too often was that answering the same set of questions became boring and tedious; yet, adjusting the prompt frequency alone may not be enough to resolve these concerns. One way to add variety would be to mix an RQA with other microinterventions, as was done by Paredes et al [13] in their PopTherapy work. Brief interventions such as our RQA could also serve as a gateway to more time-consuming exercises or professional therapy. By giving people a preview of the potential improvement in the mood that they can receive from articulating their thoughts and emotions, habits can be formed, and users may become more motivated to build on this momentum [62].

Limitations

Rather than developing a mental health intervention for people experiencing clinical depression or other psychological disorders, our intention was to design our RQA for as broad a population as possible. It would be imperative for researchers to conduct further studies specifically with individuals with mental health disorders to understand the benefits and potential risks of digitally delivered RQAs. We suspect that self-reflection could not only serve as a convenient mechanism for people to practice what they learn in psychotherapy but also perpetuate negative thought patterns. We also recognize that our participant cohorts—AMT crowdworkers and university students—do not represent all aspects of the general public. Most of our qualitative findings were not tied to participants’ specific contexts, and we did not find any obvious evidence of substantial differences among the cohorts. Nevertheless, future work could deploy RQAs to more diverse populations.

Conclusions

In this work, we used CBT principles to design a brief RQA that helps people articulate, reflect on, and change their thoughts and emotions about a troubling situation. The 3 studies we presented in our paper provide evidence that people are willing to engage with, and find value in, brief self-reflection activities delivered through CMC platforms, even without scaffolding such as training or real-time feedback. We found that providing people with a brief online activity not only helped them reduce their perceived stress levels related to a self-selected situation but also helped them challenge their potentially negative thought patterns and identify alternative ways of thinking. We also found that people were willing to use the RQA more than once, although future work is needed to strike a balance between
utility and monotony. We hope that our work inspires other researchers to explore new formats for brief interventions that help people with their everyday struggles.

Acknowledgments
The authors extend their gratitude to Dr Norman Farb (University of Toronto) for his valuable input. This work was supported by grants from the Office of Naval Research (N00014-18-1-2755 and N00014-21-1-2576), the Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-06968), and the National Science Foundation (2209819), as well as a gift from the Microsoft AI for Accessibility program. We would also like to thank Linjia Zhou (University of Toronto) and Jai Aggarwal (University of Toronto).

Data Availability
Anonymized data sets will be made available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

References

27. Mhlanga D. Open AI in education, the responsible and ethical use of ChatGPT towards lifelong learning. SSRN Preprint posted online February 13, 2023. [FREE Full text] [Medline: 4354422]

35. Youper homepage. Youper. URL: https://www.youper.ai/ [accessed 2023-02-22]

Abbreviations

AMT: Amazon Mechanical Turk
CBT: cognitive behavioral therapy
CMC: computer-mediated communication
RQA: reflective questioning activity

doi: 10.2196/jmir.4167 [Medline: 25835472]

doi: 10.2196/jmir.4167 [Medline: 25835472]

doi: 10.1109/tkde.2022.3145690

Please cite as:
Bhattacharjee A, Chen P, Mandal A, Hsu A, O’Leary K, Mariakakis A, Williams JJ
Exploring User Perspectives on Brief Reflective Questioning Activities for Stress Management: Mixed Methods Study
JMIR Form Res 2024;8:e47360
URL: https://formative.jmir.org/2024/1/e47360
doi:10.2196/47360
PMID:38329800

©Ananya Bhattacharjee, Pan Chen, Abhijoy Mandal, Anne Hsu, Katie O’Leary, Alex Mariakakis, Joseph Jay Williams. Originally published in JMIR Formative Research (https://formative.jmir.org), 08.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Investigation of the Impact of Wellinks on the Quality of Life and Clinical Outcomes in Patients With Chronic Obstructive Pulmonary Disease: Interventional Research Study

Kerri A Pierz¹, PhD; Nicholas Locantore², PhD; Gretchen McCreary², MA; Robert J Calvey¹, MBA; Nickole Hackney¹, BS, RRT; Pooja Doshi¹, MPH, MBA; John Linnell², BA; Abirammy Sundaramoorthy¹, MD; Carol R Reed¹, MD; Julie Yates², BS

¹Wellinks (Convexity Scientific, Inc), New Haven, CT, United States
²COPD Foundation, Miami, FL, United States

Abstract

Background: Wellinks is a remote disease management solution that provides novel chronic obstructive pulmonary disease (COPD) care delivery.

Objective: This study evaluated the satisfaction, engagement, and clinical outcomes of Wellinks participants. This study also investigated the cadence of health coaching for patients with COPD.

Methods: A 24-week interventional study was conducted by Wellinks and the COPD Foundation in 2022. Adults with COPD were recruited by the COPD Foundation in the United States and determined to be eligible if they had phone and internet access, owned a smartphone, and were not currently participating in pulmonary rehabilitation. All study participants provided written informed consent. The Wellinks solution included remote health coaching, pulmonary rehabilitation, and group education; participants were provided the Wellinks app and smart spirometry and pulse oximetry devices. Participants were offered 6 coaching sessions in the first 12 weeks. For the second 12-week period, participants either reduced frequency or discontinued coaching; all other components of the Wellinks solution remained unchanged. The COPD Self-Efficacy Scale, Modified Medical Research Council dyspnea scale, pulmonary function, pulse oximetry, and patient-reported healthcare resource utilization were the clinical outcome measures. Nonclinical outcomes included engagement and satisfaction with Wellinks and net promoter score.

Results: In total, 141 adults consented and completed Wellinks onboarding; 84.4% (n=119) of whom remained engaged throughout the 24-week study. Participants had a mean age of 70 (SD 7.8; range 48-88) years, and 55.7% (n=78) were female. Most participants (n=119, 84.4%) completed all 6 coaching sessions during the first 12-week period. Compliance with spirometer and pulse oximeter use was 82.3% and 89.4%, respectively, at week 1 but waned over the study period to 8.5% and 9.2%, respectively, at the end of the study. Participants indicated a high degree of satisfaction with Wellinks, with 95.5% (n=85) and 91% (n=81) of participants indicating that they agreed or strongly agreed that the educational content and health coaching, respectively, were valuable. At the end of the study, the net promoter score was +64 and +55 in the coaching continuation and discontinuation arms, respectively. A significant improvement from baseline to end of the study was observed in the COPD Self-Efficacy Scale total score (P<.001) and domain scores (P<.001 for each domain). In total, 35.1% (n=27) of participants improved by at least 1 category of change on the 5-point Modified Medical Research Council dyspnea scale from baseline to week 24.

Conclusions: This study confirmed the feasibility of using a remote model of care delivery to support people living with COPD. The insights gained in this study have allowed for further refinement and personalization of the Wellinks care model. Findings related to the combined use of technology and personal care delivery should be considered by others developing remote disease management tools.
Introduction

Chronic medical conditions are highly prevalent among US adults and require long-term management strategies that invoke the need for participatory medicine. Strategies and services that support patient self-management are capable of reducing the impact of chronic disease on the individual and on the health care system [1]. Self-management strategies should optimize and preserve health, reduce symptoms and the impact of disease on daily life, improve quality of life, and build patient and provider relationships [1].

Chronic disease management programs have evolved over time to deliver remote health care and are generally inclusive of both technological (eg, wearables and mobile apps) and personal components, such as coaching or counseling [2]. While society is immersed in the Internet of Things, remote health care delivery needs to be more than biometric monitoring alone and to be effectively integrated with the delivery of care [3]. Although available devices can track mobility, heart rate, oxygen levels, blood pressure, cardiac activity, and body temperature and detect posture and falls (and more), the use of the data is limited if it is not integrated, shared, and applied to the delivery of care. Peyroteo et al [3] cite more than 100,000 apps that have been created to use data from various biometric sensors but also note the lack of integration with care systems as a key limitation to maximizing health outcomes.

Chronic obstructive pulmonary disease (COPD) is a chronic medical condition of the lungs affecting more than 16 million adults in the United States [4]. It is among the top causes of disability worldwide and is projected to become the leading cause of death by disease by 2030 [5]. Annual US health care expenditures on COPD exceed US $49 billion, with employer, federal, and state spending on health care services reaching unsustainable levels [6]. Costs aside, the toll on those struggling with respiratory diseases has been widely reported to lead to the significant presence of comorbidities such as cardiac diseases, diabetes, hypertension, osteoporosis, and mental health disorders [7].

Wellinks goes beyond remote patient monitoring. Wellinks is a COPD disease management solution that pairs technology with personalized health coaching and respiratory therapy services to offer a novel approach to COPD remote disease management. Wellinks is a care partner delivering remotely accessible pulmonary rehabilitation, clinical coaching, a mobile app, and connected devices for home monitoring of pulmonary function.

In a previously published 8-week pilot study of Wellinks, it was demonstrated that patients with COPD with an average age of 79.6 years were able to successfully use the devices provided (ie, Flyp nebulizer [Convexity Scientific, Inc], Smart One spirometer [Medical International Research], and NoninConnect smart pulse oximeter 3230 [Nonin Medical, Inc]) as well as enter data into the Wellinks mobile app [8]. Study participants reported the app to be valuable (13/16, 81%) and easy to use (15/16, 94%). This feasibility study provided preliminary evidence for the willingness and capability of this patient population to successfully use the digital tools provided by Wellinks [8].

Since the original pilot study, the Wellinks solution has expanded to include respiratory therapy and health coaching services, in addition to some modifications of the technological components described earlier. With such iteration, not only was it important to replicate the previously reported feasibility results but also to explore clinical outcome measures and refine the duration and frequency of health coaching. Described herein is the ASPIRE study conducted in partnership with the COPD Foundation that was designed to explore clinical and nonclinical outcomes associated with the use of the updated Wellinks solution inclusive of both personal (health coaching and respiratory therapy) and technological components. The objectives of this study were to determine to what degree study participants would engage with the various components of the Wellinks solution over time and whether any clinical outcomes could be identified to correlate with engagement. This study also sought to collect qualitative feedback on the components of the Wellinks solution and observe any impact of decreased frequency of engagement with the Wellinks team, in service of refining the care delivery model offered by Wellinks.

Methods

Study Design

This 24-week, prospective, interventional research study of the Wellinks COPD solution including the use of Bluetooth-connected devices, patient mobile app, COPD-related education, and health coaching services was conducted from December 2021 through September 2022. This study was designed to gather data on the quality of life and clinical impact of the use of the Wellinks COPD solution, in addition to collecting feedback from patients and investigators to inform further optimization of this intervention. The study was posted to ClinicalTrials.gov (NCT05259280).

Ethical Considerations

The conduct and performance of this study were in accordance with applicable sponsor and investigator responsibilities as described in Title 21 Code of Federal Regulations 812 and other Good Clinical Practice guidance. Institutional review board (IRB) or ethics committee oversight was required as human participants or data from humans were used. IRB approval of
the study protocol and study-related materials was obtained from Western IRB prior to beginning any study-related procedures (IRB protocol 20141136).

Recruitment

Eligible participants were recruited through the COPD Foundation Patient-Powered Research Network, COPD360Social, and various newsletters. Eligible patients were invited to participate in the study. Participants were required to provide informed consent before study-specific procedures could proceed. Eligible study participants included adults (≥18 years of age) with a diagnosis of COPD. Participants had to have access to a home telephone (landline or mobile) and the internet and must have had a smartphone (ie, iPhone 6S or later model, running iOS 14.0 or later model, and Android 6 or later model). Individuals must have been proficient in the English language, living or staying in the United States throughout the study duration, willing and able to comply with study requirements, and able to provide written informed consent. Exclusion criteria included current participation in other interventional clinical trials and current participation in a pulmonary rehabilitation program.

Intervention

The Wellinks COPD solution combined personal and technological elements to remotely support enrolled participants living with COPD. The personal elements of the program included one-on-one access to health and wellness coaches or nurse practitioners trained in health coaching methodologies. Health coaches provided support to participants via phone, video, and text interactions throughout the study period. The role of the coach was to support the participant by providing disease-state and treatment-related education, establishing and supporting the attainment of individual health goals, and encouraging adherence to treatment and attendance at clinic visits. Remote pulmonary rehabilitation programs were provided by the health coach, personalized for each participant, and included individual home-based exercise guides or videos and group educational sessions led by Wellinks respiratory therapists that were held remotely.

The technological elements of the program included a mobile app and Bluetooth-enabled medical devices. The Wellinks mobile app downloaded to an iOS (iPhone) or Android device allowed participants to connect with their coach; track goals, medications, and symptoms; and review data from the connected devices provided. The Smart One personal spirometer was used by participants at home to collect peak expiratory flow (PEF) and forced expiratory volume in 1 second (FEV₁). The NoninConnect 3230 pulse oximeter was used at home to measure blood oxygenation (saturation of peripheral oxygen [SpO₂]) and pulse rate. Data from both devices were transmitted via Bluetooth to the participant’s smartphone. Technical support was available to all study participants throughout the duration of the study to answer questions about the technological components or to troubleshoot any issues.

Study Procedures

All baseline assessments were collected via a survey of all consenting participants followed by an onboarding call between a Wellinks coach and the participant to ensure the technical set-up of the app and devices and introduce the coaching process. Participants were instructed to use the connected devices (pulse oximeter and spirometer) at least once a week throughout the duration of the study, use the app to track symptoms and medications, and monitor their own spirometry and pulse oximetry data throughout the study. The frequency of use of each component of Wellinks was recommended to each participant, but in order to best emulate real-world use, the health coaches encouraged but did not mandate the use of all available components.

Participants were sequentially assigned at the time of enrollment in an alternating fashion to arm 1 or arm 2 by the Wellinks head health coach. Participants were not informed of this assignment until the completion of the first 12-week period. In the first 12-week study period, health coaching was offered to all participants in the form of one-on-one 30-minute remote sessions scheduled every other week for a total of 6 sessions over the 12-week period. In addition, participants were instructed to individually perform the remote pulmonary rehabilitation program as directed by their health coach, and they were invited to attend group educational sessions held weekly throughout the study period. In the second 12-week study period, all components of the program remained the same except for the level of personal contact with health coaches. Participants assigned to arm 1 continued with a lower level of engagement with their coach in the form of SMS text messaging or up to 3 brief check-in meetings (15-minute sessions) for an additional 12 weeks. Participants who were assigned to arm 2 discontinued access to the Wellinks health coaches for the second 12 weeks of the study.

Outcomes

The nonclinical objectives of this study were to describe the experience of patients using the Wellinks solution through the assessment of patient engagement as well as by patient-reported satisfaction. Outcome measures included compliance with protocol-recommended device use, compliance with attendance at scheduled coaching sessions, ratings of the degree to which participants valued individual components of the Wellinks COPD solution, and net promoter score (NPS; ie, “How likely is it that you would recommend Wellinks to a friend or colleague?” 0=not at all likely to 10=extremely likely).

Spirometer and pulse oximeter data could be synced with the Wellinks app; as such, the use of data from the app provided the necessary data to determine whether participants used these at-home devices. However, the spirometer results could only be viewed by the participants via the app, while the pulse oximeter could be viewed independently of the app. Therefore, the compliance with the pulse oximeter uniquely may be underestimated.

The clinical objectives of this study were to determine whether the use of the Wellinks COPD solution could improve the quality of life for patients with COPD, reduce healthcare resource utilization (HRU) over time, and improve pulmonary function as measured by connected devices. Quality of life was indirectly ascertained by the interpretation of results from the COPD Self-Efficacy Scale (CSES) and Modified Medical
Research Council (mMRC) dyspnea scale, based on known correlations reported in the published literature [9]. Pulmonary function was measured using at-home devices to collect FEV$_1$, PEF, and SpO$_2$. Patient-reported HRU was collected via survey.

The CSES is used to assess the confidence of a patient related to their ability to avoid breathing difficulty based on responses to 34 questions within 5 domains; each question is scored from 1 (not at all confident) to 5 (very confident) [10]. A higher score thus reflects a greater degree of confidence on the part of the respondent. Total scores can range from 34 to 170. The CSES is divided into 5 domains: negative affect, intense emotional arousal, physical exertion, weather or environmental factors, and behavioral risk factors [10].

The mMRC dyspnea scale provides an assessment of a patient’s shortness of breath and its impact on daily activities. At onboarding, data from the mMRC dyspnea scale were combined with patient-reported exercise habits to individualize the remote pulmonary rehabilitation program to be suitable to each study participant’s level of functioning. Participants were assigned to 1 of 6 different exercise programs based on mMRC score (low=0, 1, or 2 or high=3 or 4) and self-reported level of exercise (low, medium, or high) at baseline. mMRC was also assessed at week 12 and week 24 to explore changes over time.

Pulmonary function was measured as a change from baseline to week 12 and week 24 in FEV$_1$, PEF, and SpO$_2$ based on patient use of the Bluetooth-connected spirometer and pulse oximeter provided. When used and connected, these data were captured in the Wellinks app. At the start of the study, participants were asked to use the pulse oximeter and spirometer at least weekly throughout the duration of the study.

Patient-reported HRU was collected through a web-based survey and relied upon individual recall. HRU is a reflection of the patient’s desire or need to seek care and is a measure that can be used to inform the economic impact of an intervention. At baseline, participants were asked to report certain HRU (ie, COPD-related physician visits, emergency department visits, and hospital admissions) in the 3-month and 1-year periods prior to enrollment. Participants were asked the same HRU questions at week 12 and week 24 of the study, each with a 3-month recall period. Outcome measures were assessed at baseline, week 12, and week 24 of the study. Any adverse events or serious adverse events were collected via spontaneous reporting from the study participants.

Statistical Analyses

The planned sample size for this study (n=150) was based on the expected feasibility for recruitment. No formal statistical power calculations were performed to size this study.

Study data were summarized for arm 1, arm 2, and full study cohort. Unless otherwise specified, data were summarized as number and percentage for categorical variables and as mean and SD for continuous variables. All statistical analyses were exploratory in nature. P values for statistical tests are 2-sided tests and not adjusted for multiplicity. Analyses of change from baseline values at week 12 and week 24 were performed for each arm and the full study cohort using 2-tailed t tests. Least squares (LS) mean and LS mean change from baseline at each time point with corresponding SEs for change and P values were produced.

For mMRC, a responder was defined as a participant with an improvement from baseline of 1 category or more. For example, a participant who changes from “3: I have to stop for breath after walking for ~100 yards” at baseline to a postbaseline value of “2: I walk slower than others of my age because I am out of breath, or I have to stop often to catch my breath’” would be classified as a responder at that time point. Participants who either remain in the same category or worsen were classified as nonresponders.

Results

Demographics and Baseline Characteristics

A total of 153 individuals were consented in this study, of whom 141 were fully enrolled (ie, consented and completed onboarding of devices and app). Disposition of participants in the study is described in Figure 1.

The demographics of the study population are presented in Table 1. Study participants had a mean age of 70 (SD 7.8; range 48-88) years, 78% (n=110) were 65 years of age or older, and 55.3% (n=78) were female. The population was 90.8% (n=128) White and 97.9% (n=138) non-Hispanic or Latino. There were no statistically significant differences between the 2 treatment arms for any of the demographic variables.

In the study population, 83.7% (n=118) of participants were former smokers (with 77.1% [n=91] of these having quit more than 5 years ago), and 9.2% (n=13) were current smokers with a mean use of 12 (SD 6.1) cigarettes per day at the time of the study.

It was self-reported that 82.3% (n=116) of the population was under the care of a pulmonologist for their COPD, and 39.7% (n=56) reported a primary care physician participating in the management of their COPD alone or together with the pulmonologist. A majority (74.5%, n=105) of participants had been living with COPD for at least 5 years at the time they were enrolled in this study. The severity of disease was self-reported to be moderate (51.1%, n=72) or severe (39.7%, n=56), and 58.2% (n=82) lacked an exercise plan at the study start. Some degree of home oxygen use was reported by 61% (n=86) of study participants (45.4% [n=64] daily use and 15.6% [n=22] as-needed use).

More than half of the study population self-reported emphysema (71.6%, n=101) or bronchitis (53.9%, n=76). High blood pressure (56.7%, n=80) and anxiety (46.1%, n=65) were among the most common nonrespiratory medical conditions reported by the study population.
Study flow diagram. Flow of participants through the study protocol is described as inclusive of the number of individuals consented to participate (N=153) and enrolled (n=141), followed by completion of certain milestones throughout the 24-week study period. Reasons for withdrawals from the study are reported.

Table 1. Summary of participant demographics. Descriptive information about the study cohort at baseline is presented for the combined cohort and for individuals assigned to arm 1 and arm 2 separately.

<table>
<thead>
<tr>
<th>Parameter and statistic or variable</th>
<th>Combined (n=141)</th>
<th>Arm 1 (n=73)</th>
<th>Arm 2 (n=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>70 (7.6)</td>
<td>70 (7.8)</td>
<td>70 (7.5)</td>
</tr>
<tr>
<td>Range</td>
<td>48-88</td>
<td>48-87</td>
<td>49-88</td>
</tr>
<tr>
<td>65 years or older, n (%)</td>
<td>110 (78)</td>
<td>60 (82.2)</td>
<td>50 (73.5)</td>
</tr>
<tr>
<td>Sex (female), n (%)</td>
<td>78 (55.3)</td>
<td>38 (52.1)</td>
<td>40 (58.8)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>5 (3.5)</td>
<td>3 (4.1)</td>
<td>2 (2.9)</td>
</tr>
<tr>
<td>White</td>
<td>128 (90.8)</td>
<td>65 (89)</td>
<td>63 (92.6)</td>
</tr>
<tr>
<td>Others</td>
<td>3 (2.1)</td>
<td>1 (1.4)</td>
<td>2 (2.9)</td>
</tr>
<tr>
<td>Unknown or declined</td>
<td>5 (3.5)</td>
<td>4 (5.5)</td>
<td>1 (1.5)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>1 (0.7)</td>
<td>0 (0)</td>
<td>1 (1.5)</td>
</tr>
<tr>
<td>Non-Hispanic or Latino</td>
<td>138 (97.9)</td>
<td>73 (100)</td>
<td>65 (95.6)</td>
</tr>
<tr>
<td>Unknown or declined</td>
<td>2 (1.4)</td>
<td>0 (0)</td>
<td>2 (2.9)</td>
</tr>
<tr>
<td>Height (inches), mean (SD)</td>
<td>67 (4.1)</td>
<td>67 (4.0)</td>
<td>66 (4.2)</td>
</tr>
<tr>
<td>Weight (lb), mean (SD)</td>
<td>180 (46.9)</td>
<td>184 (46.5)</td>
<td>175 (47.1)</td>
</tr>
<tr>
<td>Smoking status at baseline, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>13 (9.2)</td>
<td>8 (10.6)</td>
<td>5 (7.4)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>118 (83.7)</td>
<td>58 (79.5)</td>
<td>60 (88.2)</td>
</tr>
<tr>
<td>Never smoked</td>
<td>10 (7.1)</td>
<td>7 (9.6)</td>
<td>3 (4.4)</td>
</tr>
</tbody>
</table>

Nonclinical Outcomes

Engagement Metrics

In total, 84.4% (n=119) of all participants completed all 6 coaching sessions in the first 12-week period of the study. Among participants assigned to arm 1 (continued coaching), attendance diminished session-to-session in the second 12-week period of the study, with only 52.1% (n=38) of those assigned to arm 1 completing the third (final) 15-minute coaching session in the second study period.
Participants were advised to use the Bluetooth-connected spirometer and pulse oximeter at least weekly throughout the 24-week duration of the study. Spirometer compliance peaked at the start of the study with 82.3% (n=116) of participants compliant during week 1, but compliance decreased to a smaller proportion of participants at week 12 (n=59, 41.8%) and week 24 (n=12, 8.5%). Similarly, pulse oximeter compliance also peaked at week 1 with 89.4% (n=126) of participants using the pulse oximeter as recommended, and this rate of compliance decreased to 42.6% (n=60) and 9.2% (n=13) at week 12 and week 24, respectively. Compliance with the spirometer or the pulse oximeter use did not differ by treatment arm. For the entire study period, 21.3% (n=30) and 22.6% (n=32) of participants were compliant with spirometer and pulse oximeter use, respectively, for more than 75% of the study period (18 or more of 24 weeks), while 30.5% (n=43) and 29.1% (n=41) were compliant with spirometer and pulse oximeter use, respectively, for 25% or less of the study period (6 or less weeks).

Similar rates of compliance were observed with the use of the Wellinks app; compliance with mobile app use peaked at the start of the study with 94.3% (n=133) compliance in week 1, which declined to 50.4% (n=71) and 22.7% (n=32) at week 12 and week 24, respectively. For the entire study period, 23.4% (n=33) were compliant with app usage for 25% or less of the study period, and 28.4% (n=40) of participants were compliant with app usage for 75% or more of the study period.

One-quarter of study participants attended multiple educational webinar group sessions (3 or more sessions attended). One-half of study participants did not attend any of the educational webinar group sessions.

The web-based week 12 survey was sent electronically to participants after completion of coaching session 6 and was returned by 78.7% (n=111) of participants. The web-based week 24 survey was sent electronically to participants after 24 weeks had elapsed since the start of the study; 73.9% (n=54) of participants in arm 1 and 51.5% (n=35) of participants in arm 2 completed the week 24 survey. The differences in survey completion rates between the 2 treatment arms may be attributable to the difference in level of engagement with Wellinks; specifically, it is possible that arm 2 participants who had less engagement with the Wellinks team between week 12 and week 24 had less interest or motivation in returning the survey.

Satisfaction Metrics

Participants were asked via survey at week 12 and week 24 to indicate their level of agreement with various statements aimed to understand whether they valued individual components of the Wellinks solution. Options included strongly agree, agree, neither agree nor disagree, disagree, and strongly disagree. Table 2 presents the proportion of participants who indicated they strongly agreed or agreed with each statement at the end of the study (week 24). Data are shown for the combined cohort not separated by treatment arm due to similar findings across the arms. Only 1 statement appeared to reflect a difference by treatment arm at the end of the study: 92.6% (n=50) of respondents in arm 1 and 68.6% (n=24) of respondents in arm 2 strongly agreed or agreed that “using the Wellinks solution has helped me to learn more about my COPD.” This difference may reflect the higher engagement with health coaches in arm 1 throughout the second half of the study period. There was a low level of disagreement with any of these statements indicating that most study participants find value in the components of the Wellinks solution and the entirety of the offering, regardless of group assignment.

Table 2. Participant agreement with statements about intervention components

<table>
<thead>
<tr>
<th>Statement</th>
<th>Participants who agreed or strongly agreed, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I think having access to educational content is valuable.</td>
<td>85 (95)</td>
</tr>
<tr>
<td>Overall, I found the Wellinks solution to be valuable.</td>
<td>84 (94)</td>
</tr>
<tr>
<td>I think having meetings with my health coach is valuable.</td>
<td>81 (91)</td>
</tr>
<tr>
<td>I think being able to message my health coach is valuable.</td>
<td>81 (91)</td>
</tr>
<tr>
<td>I think being able to take and log pulse oximeter measurements at home is</td>
<td>80 (90)</td>
</tr>
<tr>
<td>valuable.</td>
<td></td>
</tr>
<tr>
<td>I found the Wellinks app easy to use.</td>
<td>79 (89)</td>
</tr>
<tr>
<td>I think being able to take and log spirometry measurements at home is</td>
<td>75 (84)</td>
</tr>
<tr>
<td>valuable.</td>
<td></td>
</tr>
<tr>
<td>Using the Wellinks solution has helped me to learn more about my COPD b.</td>
<td>74 (83)</td>
</tr>
<tr>
<td>Using the Wellinks solution has helped me to manage my COPD better.</td>
<td>72 (81)</td>
</tr>
<tr>
<td>I think being able to track and log my symptoms in the app is valuable.</td>
<td>66 (74)</td>
</tr>
<tr>
<td>I think having my medication schedule in the app is valuable.</td>
<td>55 (62)</td>
</tr>
<tr>
<td>Using the Wellinks solution has helped me to take my COPD medication as</td>
<td>39 (44)</td>
</tr>
<tr>
<td>needed.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- aSurvey responses are from 89 participants who completed these questions in the end-of-study survey at week 24 (n=54 from arm 1 and n=35 from arm 2). The proportion of participants who selected that they “agreed” or “strongly agreed” with each statement is shown. Statements are listed in rank order from the statement with the highest degree of agreement to the lowest.
- bCOPD: chronic obstructive pulmonary disease.
Net Promoter Score
Participants were asked after week 12 and week 24 whether they would recommend Wellinks to friends, family members, or associates who also live with COPD to determine the NPS. Overall, the week 12 NPS was +57, and the week 24 NPS was +60. NPS differed by assigned treatment arm; NPS for arm 1 and arm 2 was +64 and +55, respectively, at week 24.

Clinical Outcomes

COPD Self-Efficacy Scale
CSES scores were collected at baseline, week 12, and week 24 through a web-based survey. At baseline, the mean total score was 103.9 (SD 28.71), with the lowest domain scores on average observed for physical exertion and weather or environmental factors.

The CSES total score significantly improved from baseline to the end of the first 12-week study period during which all participants received the same level of coaching (LS mean change from baseline 11.1, SE 3.10; \(P < .001; n=96 \)). These improvements were sustained across the entire study cohort at week 24 (LS mean change from baseline 23.6, SE 4.81; \(P < .001; n=77 \)).

After week 12, participants were split by assignment to arm 1 or arm 2. Significant improvements in total CSES score from week 12 to week 24 were also observed in arm 1 (LS mean change 8.6, SE 4.04; \(P = .04; n=38 \)) and arm 2 (LS mean change 10.6, SE 4.33; \(P = .02; n=34 \)). In total, 5 participants did not complete CSES at week 12 but did complete the CSES at week 24.

Scores in all domains were significantly improved from baseline to end of the study in both arms (\(P < .001 \) for all domain comparisons except arm 2 for negative affect \(P = .006 \) and intense emotional arousal \(P = .002 \)). The minimally clinically important difference for CSES has not been found in the literature. The greatest differences were observed in the physical exertion and behavioral risk factors domain as shown in Table 3.

Table 3. COPD\(^a\) Self-Efficacy Scale domain scores.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Week 12 (n=96)</th>
<th>Week 24 (n=77)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score(^b)</td>
<td>LS(^c) mean change (SE)</td>
</tr>
<tr>
<td>Negative affect</td>
<td>3.6</td>
<td>0.3 (0.10)</td>
</tr>
<tr>
<td>Intense emotional arousal</td>
<td>3.6</td>
<td>0.2 (0.09)</td>
</tr>
<tr>
<td>Physical exertion</td>
<td>3.1</td>
<td>0.5 (0.11)</td>
</tr>
<tr>
<td>Weather or environmental factors</td>
<td>3.2</td>
<td>0.4 (0.10)</td>
</tr>
<tr>
<td>Behavioral risk factors</td>
<td>3.4</td>
<td>0.4 (0.11)</td>
</tr>
</tbody>
</table>

\(^a\)COPD: chronic obstructive pulmonary disease.

\(^b\)Domain scores have a scale of 1-5, calculated as the mean rating of each domain question.

\(^c\)LS: least squares.

mMRC Dyspnea Scale

The baseline mMRC scores reflect variability in the study population regarding dyspnea. mMRC scores range from 0 (“I get out of breath only when I engage in strenuous exercise”) to 4 (“I am often too out of breath to leave the house, or I get out of breath even when dressing”). The population mean score was 2.0 (SD 1.26) at baseline. The distribution of baseline scores and the mMRC response rates at week 12 and week 24 can be observed in Table 4. In total, 31.6% (n=30) of participants improved by at least 1 category on mMRC from baseline to week 12, and 35.1% (n=27) improved from baseline to week 24. No differences between treatment arms were observed from week 12 to week 24 (\(P = .77 \), chi-square test).
Table 4. mMRC responder analysis. Baseline mMRC scores are shown for the study population (n=141).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mMRC score at baseline (n=141)</td>
<td></td>
</tr>
<tr>
<td>0: I get out of breath only when I engage in strenuous exercise.</td>
<td>13 (9.2)</td>
</tr>
<tr>
<td>1: I get out of breath when I am hurrying or walking up a slight hill.</td>
<td>47 (33.3)</td>
</tr>
<tr>
<td>2: I walk slower than others of my age because I am out of breath, or I have to stop often to catch my breath.</td>
<td>38 (26.9)</td>
</tr>
<tr>
<td>3: I have to stop for breath after walking for ~100 yards.</td>
<td>16 (11.3)</td>
</tr>
<tr>
<td>4: I am often too out of breath to leave the house, or I get out of breath even when I am getting dressed.</td>
<td>27 (19.1)</td>
</tr>
<tr>
<td>Week 12 responder status(^b) (n=95)</td>
<td></td>
</tr>
<tr>
<td>Improved(^c)</td>
<td>30 (31.6)</td>
</tr>
<tr>
<td>No change</td>
<td>53 (55.8)</td>
</tr>
<tr>
<td>Worsened(^d)</td>
<td>12 (12.6)</td>
</tr>
<tr>
<td>Week 24 (end of study) responder status(^e) (n=77)</td>
<td></td>
</tr>
<tr>
<td>Improved(^c)</td>
<td>27 (35.1)</td>
</tr>
<tr>
<td>No change</td>
<td>36 (46.8)</td>
</tr>
<tr>
<td>Worsened(^d)</td>
<td>14 (18.2)</td>
</tr>
</tbody>
</table>

\(^a\)mMRC: Modified Medical Research Council.

\(^b\)Week 12 responder status is reported for 95 participants for whom mMRC data were available at baseline and week 12.

\(^c\)Participants were indicated to have “improved” if their score decreased by one or more points from baseline.

\(^d\)Participants were indicated to have “worsened” if their score increased by one or more points from baseline.

\(^e\)Week 24 responder status is reported for 77 participants for whom mMRC data were available at baseline and week 24.

Pulmonary Function and Pulse Oximetry

Interpretation of the FEV\(_1\), PEF, and SpO\(_2\) data collected in this study was limited by the small sample size and the declining use of the connected devices throughout the study period. Use of the pulse oximeter waned over the study period: 126 (89.4%) were compliant with pulse oximeter use in study week 1, which fell to 60 (42.6%) in study week 12, and further to 13 (9.2%) in study week 24. Use of the spirometer also waned over the study period: 116 (82.3%) were compliant with spirometer use in study week 1, which fell to 59 (41.8%) at study week 12, and further to 12 (8.5%) at study week 24. Based on the limited data set, these data cannot be reliably analyzed to make any conclusions about changes in pulmonary function or pulse oximetry throughout the study.

Patient-Reported HRU

Interpretation of the patient-reported HRU data is limited by the infrequency of events reported. In total, 90% (n=127) and 93.6% (n=132) of study participants reported no COPD-related emergency room visits or hospitalizations, respectively, in the 3 months prior to baseline. Similarly, 89.6% (n=95) and 93.4% (n=99) of study participants reported no COPD-related emergency room visits or hospitalizations, respectively, during the study period. As expected, physician visits were more common than emergency room visits or hospitalizations. However, at all time points, participants most commonly reported none or only 1 COPD-related physician visit for the prior 3-month period. The event rate for physician visits is thus also inadequate for detection of any impact of Wellinks; furthermore, there is inadequate data to analyze any effect by treatment group.

Safety

No adverse events were reported by the participants during the study period.

Discussion

Principal Results

Since the Wellinks clinical model has evolved over time to include the availability of respiratory therapy and health coaching services, questions emerged as to whether the target population—people living with COPD—would engage as they had done in a previously reported pilot study of a more basic program offering [8] and whether data may be collected to better optimize the frequency and duration of the personal health coaching component. Thus, the purpose of this 2-arm study design was to collect clinical and nonclinical data to optimize the appropriate duration and frequency of health coaching with Wellinks.

Study participants displayed a high degree of engagement with the health coaching component of Wellinks. By contrast, the study population had substantial attrition in the use of the mobile app and connected devices throughout the entire study duration despite rating all of them as highly valuable.

Importantly, this study provided evidence for the first time of the clinical value of patient participation in Wellinks. Significant improvements in COPD self-efficacy and breathlessness...
(mMRC) were observed for study participants regardless of assignment to arm 1 or arm 2. The improvement in the CSES observed after engaging in the Wellinks program may reflect the increased belief among study participants in their own ability to do certain activities, despite any potential perceived limitations due to their COPD diagnosis. Improved confidence in physical activities would be predicted to perpetuate a greater level of physical activity, and associated health outcome improvements may result.

Approximately one-third of participants demonstrated an improvement in breathlessness over the course of the study; improvements in shortness of breath as measured by mMRC are also reflected in the improvements in CSES, wherein the greatest degree of improvement was observed in the physical exertion domain. Although this study design does not allow for clear causal relationships to be determined, one hypothesis is that the remote pulmonary rehabilitation and education provided by the Wellinks health coaches may have improved breathlessness, which then also resulted in greater confidence (self-efficacy) on the physical exertion domain of the CSES [9]. Taken together, we can infer that the use of Wellinks improved self-efficacy and breathlessness, which may predict an improvement in the quality of life for these patients.

One difference between the treatment arms was observed in the NPS values. It is hypothesized that the higher NPS value observed for arm 1 compared to arm 2 may be attributable to the higher degree of interaction between health coaches and the study participants assigned to that arm. It has been frequently reported that digital interventions have the greatest value when combined with personal coaching or counseling [2,11,12], and this greater value may be reflected in the NPS.

Limitations

The key limitation of this study is missing data for certain outcomes of interest, such as pulmonary function and HRU. Pulmonary function was assessed by way of home use of a Bluetooth-connected spirometer and pulse oximeter. Interpretation of these results is significantly limited by the lack of consistent use of these devices throughout the study period. Very low compliance with the study-directed use of once per week for each device resulted in a very small sample size, from which clear conclusions cannot be drawn. Although data interpretation is thus limited, this design was intentional to best reflect the real-world use of Wellinks; specifically, health coaches did not mandate the use of the devices but did remind participants to use them as appropriate.

Low long-term compliance with the connected devices is not an entirely surprising finding. It has been previously reported that remote monitoring alone with various biometric devices is subject to failure if it is not effectively integrated into the existing health care delivery model [3]. These results suggest that more needs to be done within the Wellinks clinical model to integrate the device data with the remote pulmonary rehabilitation and health coaching components of the program. It would be important to better understand whether the limited use of the devices was due to technical challenges, due to a lack of perceived value, or some other reason. If participants do not recognize the value of the data collected by these devices, it is possible that more can be done to educate patients about the information, provide context for interpreting the results that are recorded, and integrate health care providers into the process. Furthermore, the Wellinks model includes various components that allow for flexibility to meet patient needs; therefore, compliance with certain components may be expected to vary from individual to individual, in part as a reflection of different needs and preferences of each participating person.

HRU was assessed in this study based on participant self-report using a 3-month look-back period. The main limitations to interpreting these data are the low frequency of events reported and the recall bias that can result from this approach. Future studies of Wellinks will rely on verifiable information from electronic medical records or claims databases to inquire about HRU. Missing data were also the result of failure of some participants to complete all surveys per the study protocol. Notably, based on a meta-analysis of 1071 web-based surveys, completion rates average 44% [13], making this survey response rate better than average, although still an important limitation.

Additionally, the enrolled population may reflect a highly motivated subset of people living with COPD, given their existing engagement with the COPD Foundation prior to the study start; those who were recruited from the COPD Foundation Patient-Powered Research Network, by definition, have self-selected to contribute to research activities, which reflects a high degree of motivation. The same attributes may not be present in the general COPD population. Furthermore, the demographics of this study cohort may not fully reflect the demographics of the COPD population in the community. There was slightly more representation of females compared to males, which is consistent with observed trends of increased prevalence of COPD among women, while a decrease in prevalence has been observed in males over recent decades [14]. However, race and ethnicity are known to impact COPD risk but yet are not well represented in this study cohort [15].

Comparison With Prior Work

It has been recognized in prior research that engagement with technology among older adults is dependent upon personal support from professionals or peers [16]. The high receptivity of this study population to personal health coaching sessions as compared to the low receptivity to the use of connected devices may also reflect this need for personal connection and support. In designing digital solutions for this population, it will be important to consider the value of the personal connection between the individual and their coach as a means to achieving greater adoption of associated technologies, such as the app and connected devices included in this study.

There are limitations to comparing the previously published pilot study of Wellinks to the study reported here; the populations differ in important ways (ie, in the pilot study, participants were recruited from a single provider’s practice, whereas in the ASPIRE study reported here, participants were recruited nonpersonally through the COPD Foundation), and the intervention differs as well (eg, the pilot study included most of the same technological components but lacked the health coaching component included here).

https://formative.jmir.org/2024/1/e47555

 JMIR Form Res 2024 | vol. 8 | e47555 | p.818
 (page number not for citation purposes)
Conclusions
This study demonstrates the interest and satisfaction of an ambulatory COPD population with the additional support and services provided by Wellinks. Health coaching appeared to be the most valuable component of Wellinks in this study. Signals of clinical outcome improvements in this study are encouraging and would best be further explored in larger cohorts to assess meaningful impact on a population level in terms of clinical improvement and impact on HRU.

Strategies and services to improve chronic disease self-management, such as with what Wellinks offers to patients with COPD, have been shown to reduce the burden of chronic diseases on individuals and the health care system at large. The data reported here are valuable not only to further optimize Wellinks but also to inform novel program design by others.

Future Directions
Future studies will explore the ability of newer and modified versions of Wellinks to reduce hospital readmissions following an acute exacerbation as well as to explore the integration of Wellinks into a large accountable care organization. There remains a significant opportunity to bring remote disease management tools to people living with COPD, and these studies will further build the evidence base and support the long-term scalability of the program.

Acknowledgments
This study was sponsored and funded by Wellinks (Convexity Scientific, Inc) of New Haven, Connecticut, and was executed in partnership with the COPD Foundation. The authors wish to acknowledge and sincerely express gratitude to the people living with COPD who have participated in this study. Without the willingness of research participants, it would not be possible to validate and iterate on the tools and services designed to meet their needs.

Data Availability
The data sets generated during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
KAP receives consulting compensation from Wellinks. NL is an independent contractor for the COPD Foundation and a former employee of GSK plc. CRR is a consultant to and shareholder of Wellinks. RJC, NH, PD, and AS are employees of Wellinks.

References

Abbreviations

COPD: chronic obstructive pulmonary disease
CSES: COPD Self-Efficacy Scale
FEV₁: forced expiratory volume in 1 second
HRU: healthcare resource utilization
IRB: institutional review board
LS: least squares
mMRC: Modified Medical Research Council
NPS: net promoter score
PEF: peak expiratory flow
SpO₂: saturation of peripheral oxygen
The Impact of Intervention Design on User Engagement in Digital Therapeutics Research: Factorial Experiment With a Mixed Methods Study

Hyerim Lee1, BA; Eung Ho Choi2, PhD; Jung U Shin3, PhD; Tae-Gyun Kim4, PhD; Jooyoung Oh5,6, PhD; Bokyoung Shin7, MA; Jung Yeon Sim8, MA; Jaeyong Shin9*, PhD; Meelim Kim9,10,11,12*, PhD

1Department of Psychology, College of Liberal Arts, Yonsei University, Seoul, Republic of Korea
2Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
3Department of Dermatology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
4Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
5Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
6Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
7Department of Integrative Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
8Department of Medical Device Engineering and Management, Yonsei University Graduate School, Seoul, Republic of Korea
9Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
10Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA, United States
11The Design Lab, University of California San Diego, San Diego, CA, United States
12Center for Wireless & Population Health Systems, Calit2’s Qualcomm Institute, University of California San Diego, San Diego, CA, United States
*these authors contributed equally

Corresponding Author:
Meelim Kim, PhD
Herbert Wertheim School of Public Health and Human Longevity Science
University of California San Diego
Atkinson Hall, 9500 Gilman Dr, La Jolla
San Diego, CA, 92121
United States
Phone: 1 323 776 5171
Email: mek007@health.ucsd.edu

Abstract

Background: User engagement is crucial for digital therapeutics (DTx) effectiveness; due to variations in the conceptualization of engagement and intervention design, assessment and retention of engagement remain challenging.

Objective: We investigated the influence of the perceived acceptability of experimental intervention components and satisfaction with core intervention components in DTx on user engagement, while also identifying potential barriers and facilitators to user engagement.

Methods: We conducted a mixed methods study with a 2 × 2 factorial design, involving 12 outpatients with atopic dermatitis. Participants were randomized into 4 experimental groups based on push notification (“basic” or “advanced”) and human coach (“on” or “off”) experimental intervention components. All participants engaged in self-monitoring and learning courses as core intervention components within an app-based intervention over 8 weeks. Data were collected through in-app behavioral data, physician- and self-reported questionnaires, and semistructured interviews assessed at baseline, 4 weeks, and 8 weeks. Descriptive statistics and thematic analysis were used to evaluate user engagement, perceived acceptability of experimental intervention components (ie, push notification and human coach), satisfaction with core intervention components (ie, self-monitoring and learning courses), and intervention effectiveness through clinical outcomes.

Results: The primary outcome indicated that group 4, provided with “advanced-level push notifications” and a “human coach,” showed higher completion rates for self-monitoring forms and learning courses compared to the predetermined threshold of clinical significance. Qualitative data analysis revealed three key themes: (1) perceived acceptability of the experimental intervention...
components, (2) satisfaction with the core intervention components, and (3) suggestions for improvement in the overall intervention program. Regarding clinical outcomes, the Perceived Stress Scale and Dermatology Life Quality Index scores presented the highest improvement in group 4.

Conclusions: These findings will help refine the intervention and inform the design of a subsequent randomized trial to test its effectiveness. Furthermore, this design may serve as a model for broadly examining and optimizing overall engagement in DTx and for future investigation into the complex relationship between engagement and clinical outcomes.

Trial Registration: Clinical Research Information Service KCT0007675; http://tinyurl.com/2m8rjmv

(KEYWORDS atopic; dermatitis; experimental design; mobile health; patient engagement; research methodology)

Introduction

Digital Therapeutics in General

With the rapid advancement of digital technology, digital therapeutics (DTxs) have emerged as a promising approach to either enhance the value of conventional health care delivery systems or have the potential to substantially substitute the existing system [1]. DTx refers to “an evidence-based intervention that is driven by high-quality software programs to prevent, manage, or treat a disease or disorder” [2]. Using technology and data analytics, DTx holds numerous benefits in health care: (1) it can encompass a wide range of physical and mental health conditions (mostly chronic) like diabetes, oncology treatment management, insomnia, attention-deficit/hyperactivity disorder (ADHD), and substance use disorder [3]; (2) it can provide personalized care with data-driven treatment options [4]; and (3) it can reduce health care costs [5]. Given these significant potential benefits, it is crucial to understand how the efficacy of DTx in therapy can be improved. To achieve such improvement, diverse and comprehensive research regarding the DTx development process should be conducted to successfully implement and optimize these promising interventions.

User Engagement Issues in DTx

It is widely acknowledged that user engagement is important for improving the effectiveness of DTx [6]. Engagement in DTx can be defined as “the extent (eg, amount, frequency, duration, and depth) of use and subjective experience characterized by attention, interest, and affect” [7,8]. Although user engagement significantly impacts the effectiveness of DTx, assessing and retaining it is challenging. The possible reasons for this may include (1) a lack of shared awareness regarding the useful perception of engagement, (2) engagement in DTx is not a stationary but a dynamic process, and (3) it is a multifaceted construct, capturing the user’s behavior, cognitive, and emotional states. Several systematic reviews have investigated DTx intervention components (eg, self-monitoring, reminders, and rewards) that are linked with higher engagement [9,10]. However, the findings of these studies do not provide conclusive evidence about the intervention components that help patients become more engaged with the DTx. This occurs due to substantial variation in the definition of engagement and intervention design in DTx. Thus, an in-depth analysis of the intervention components and a concrete definition of user engagement should be established, particularly during the design phase of DTx.

Methods for Evaluating Intervention Components in Digital Intervention

For systematically evaluating how intervention design influences user engagement, the optimization methods from the multiphase optimization strategy (MOST) can be used with a couple of representative intervention components from a wide range of possible options. MOST allows for efficient testing through a randomized experiment, including a factorial experiment, which allows for the simultaneous examination of different intervention design factors [11]. Many recent studies, however, used only traditional randomized controlled trials (RCTs) as the primary study design to test the efficacy of the intervention as a package [12-15] and to examine the relationships between engagement level and clinical outcomes through post hoc analysis [6,16,17]. Using only RCTs as an evaluation design may pose some challenges to the effective evaluation of DTx, as they are considered complex, context-dependent, and individually tailored interventions that purport to maximize its effectiveness [18,19]. Thus, additional evaluation methods for DTx, such as adaptive study designs (eg, sequential multiple assignment randomized trial and factorial trial from MOST), must be considered to provide robust evidence during its design and development phases.

Aims of This Study

Here, we aimed to examine the impact of the perceived acceptability of the experimental intervention components (ie, push notification and human coach) and satisfaction with the core intervention components (ie, self-monitoring and learning courses) in DTx on user engagement (Figure 1). We used “Atomind,” a DTx for patients with atopic dermatitis (AD), developed for clinical trial purposes, with a primary focus on optimization as a refinement process before validating its effectiveness through larger RCTs. This was a proof-of-concept study with an experimental 2 × 2 factorial design, using both quantitative (eg, in-app behavioral data) and qualitative (eg, semistructured interviews) assessment methods. We hypothesized that those who received the advanced level of each experimental intervention component would pass the threshold of clinical significance of user engagement metrics in DTx. Moreover, the qualitative analysis of satisfaction with the core intervention component would identify the potential barriers and facilitators to user engagement. This study could...
also inform how to optimize and evaluate other DTx in this field.

Figure 1. Overview of the impact of intervention designs on user engagement in “Atomind”.

Methods

Study Design

This full factorial experiment had 2 experimental intervention components (Figure 2), each of which was implemented at 2 different levels: push notification (“basic” or “advanced”) and human coach (“on” or “off”). Participants were randomly allocated to 1 of the 4 experimental groups in the 2×2 factorial design. All participants engaged in self-monitoring and learning courses as core intervention components during the 8-week intervention period. We applied a mixed methods approach by collecting quantitative (eg, surveys) and qualitative (eg, semistructured interviews) data to examine the perceived acceptability of experimental intervention components, satisfaction with the core intervention components, and suggestions for improvement in the overall intervention program. We conducted the interviews after 8 weeks of treatment.

Figure 2. A 2×2 factorial design exploring the perceived acceptability of experimental intervention components in this digital therapeutics (DTx) study, featuring different combinations of basic- versus advanced-level push notification and “on” versus “off” human coach.
Experimental Intervention Components

Push Notification
Participants randomized to “basic-level push notification” received basic push notifications that encouraged users to log in and complete tasks at time points chosen by users. Participants randomized to “advanced-level push notification” received not only basic push notifications but also additional push notifications when they did not complete in-app self-monitoring forms, weekly classes, or missions after receiving the basic push notifications. Additional push notifications contained emotionally supportive phrases (eg, “It’s a bit annoying, right? But don’t forget that sustained use of the app can help reduce your symptoms.” And, “Malang is waiting for <username>! Haven’t you finished the class yet? Don’t give up and let’s start!”). Push notifications are classified into 4 different categories: self-monitoring, learning course, mission, and personalized feedback report. An overview of the 2 groups’ push notifications is presented in Multimedia Appendix 1.

Human Coach
Participants with this experimental intervention component turned “on” received tailored guidance and assistance from a human coach. The coach sent weekly motivational messages to maintain participants’ engagement through a different digital application called KakaoTalk, which is the most popular instant messaging app in South Korea, with 94% of the entire Korean population as users. The coach spent a total of 6 hours a week—2 hours a day over 3 days—to manage the participants. The coach kept the participants motivated, held them responsible, provided feedback, and monitored their progress to keep them on track. Participants could address difficulties or questions they encountered with the app through 2-way communication. Besides the app’s information, participants could also ask questions about skin health and mental well-being and receive answers from the coach. Conversely, participants with this experimental intervention component turned “off,” received nothing, and conducted self-care.

Participants
All participants were outpatients who met the eligibility criteria, including individuals who (1) were aged 19 years or older and had mild to severe AD, (2) were able to understand verbal and written Korean, and (3) had their own smartphone. Participants who met the eligible criteria were assigned randomly to 4 experimental groups in a 1:1:1:1 ratio using program IDs generated within the Atomind app.

Intervention
Atomind is an app-based intervention program that helps individuals manage skin conditions and AD symptoms. It was developed by Huray Inc, South Korea (Multimedia Appendix 2). The app’s content is based on cognitive behavioral therapy (CBT) and a mindfulness approach to support healthy behavioral habits and regulate negative emotions. The app prompts users to complete in-app self-monitoring forms on a daily, weekly, and monthly basis, focusing on motivation, skin condition, behavioral change, and mental health. Weekly videos demonstrate educational information that can help relieve AD symptoms and CBT strategies for regulating negative thoughts and emotions. After watching the video, users were asked to demonstrate their understanding by passing a postquiz. The overall topic of the weekly video is listed in Multimedia Appendix 3. Moreover, missions are provided to help users apply their newly acquired skills in real life. Users can access personalized graphic feedback based on their self-monitoring.

Outcomes
Outcome measures were collected by using (1) in-app behavioral data, (2) physician- or self-reported questionnaires, and (3) semistructured interviews. At baseline, participants were asked to complete a demographic questionnaire pertaining to their age, gender, educational level, and health-related measures (medical and family health history, health literacy, etc).

The primary outcome was the user engagement of the intervention, measured by in-app behavioral data on core intervention components, including percentages of self-monitoring forms and learning courses completed. We collected qualitative data on the perceived acceptability of experimental intervention components (ie, push notification and human coach), satisfaction with the core intervention components (ie, self-monitoring and learning courses), and suggestions on any improvement for the overall intervention program through semistructured interviews. The interviews were conducted over the telephone by 2 research team members after 8 weeks of intervention. A semistructured interview guide (Multimedia Appendix 4) was used to guide the interviews, lasting 15-20 minutes for each.

Furthermore, other clinical outcome measures were assessed at baseline, 4 weeks, and 8 weeks of intervention. Designated dermatologists assessed the severity of AD using the eczema area and severity index (EASI), including the severity of 4 signs (erythema, edema or papulation, excoriuation, and lichenification; range 0-72) [20]. Atopic eczema severity reported by patients was measured with the patient-oriented eczema measure (POEM; range 0-28), a 7-item questionnaire for monitoring the care of patients with atopic eczema [21]. Insomnia severity was measured with the insomnia severity index (ISI; range 0-28), a 7-item questionnaire assessing perceived insomnia severity using a Likert-type scale [22]. Perceived stress level was measured with the perceived stress scale (PSS; range 0-40), a 10-item questionnaire assessing psychological stress [23]. Quality of life was measured by the dermatology life quality index (DLQI; range 0-30), a 10-item questionnaire assessing how much the patients’ skin problems have affected their lives over the past week [24], and fear of negative evaluation was measured using the brief fear of negative evaluation (BFNE; range 12-60) scale, which is a 12-item questionnaire assessing the degree of anxiety about perceived negative evaluation [25]. The assessment methods and assessment period for each measurement are shown in Multimedia Appendix 5.

Statistical Analysis
Descriptive statistics were used to analyze quantitative data, including in-app behavioral data and clinical outcomes. We initially recruited and enrolled 12 participants, with 3 individuals for each group; however, of the initial 12 individuals, 3 participants (1 in group 2, 1 in group 3, and 1 in group 4) were...
excluded from the analysis due to medication changes during the intervention period.

We set the threshold of clinical significance (TCS) for user engagement, considering the period of each assessment. Previous research with larger sample sizes has shown that individuals with high efficacy typically maintain an engagement rate between 50% and 80% [26,27]. However, given the smaller sample size in this proof-of-concept study, a more stringent approach has been applied in setting the TCS for user engagement. For self-monitoring, the TCS is determined if the average completion rate of self-monitoring forms is ≥90%. For learning courses, the TCS is set if the average completion rate of learning courses is ≥80% throughout the intervention period.

The perceived acceptability of each experimental intervention component and the satisfaction of each core intervention component were also examined by semistructured interviews. Qualitative data were analyzed using thematic analysis. The verbatim transcriptions of the interviews were used to extract the responses, which were categorized into items focusing on the perceived acceptability of the experimental intervention components, satisfaction of the core intervention components, and suggestions on any improvement for the overall intervention program.

To measure the interventions’ effectiveness, we assessed the changes in the average of clinical outcomes (eg, EASI, POEM, ISI, PSS, DLQI, and BFNE) before and after the intervention in the 4 groups and the 2 different levels of each experimental intervention component.

Ethical Considerations
All study activities were conducted in adherence to ethical standards and received approval from the institutional review boards of the organizing sites, including Severance Hospital (4-2022-0922), Wonju Severance Christian Hospital (CR322035), and Bundang Cha Hospital (CHAMC 2022-05-005-001). The trial was registered on the Clinical Research Information Service (KCT0007675). Participants provided voluntary, written, and informed consent after a thorough explanation of the clinical trial. Privacy measures included data anonymization and secure storage. Participants received US $80 in compensation for their contribution, a detail communicated during the informed consent process.

Results
Sample Characteristics
A total of 12 adults (mean age 31.1 years; range 20-43 years) were recruited between August and November 2022 (Figure 3). Of the 12 participants, 2 (17%) had mild AD, 7 (58%) had moderate AD, and 3 (25%) had severe AD. More details regarding the sample characteristics are presented in Table 1.

Figure 3. Trial profile. AD: atopic dermatitis.
Table 1. Sample characteristics of the participants (N=12).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>5 (42)</td>
</tr>
<tr>
<td>Male</td>
<td>7 (58)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>5 (42)</td>
</tr>
<tr>
<td>30-39</td>
<td>5 (42)</td>
</tr>
<tr>
<td>40-49</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
</tr>
<tr>
<td>High school graduate or less</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Currently enrolled in or graduated from college</td>
<td>7 (58)</td>
</tr>
<tr>
<td>Currently enrolled in or graduated from graduate school</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Severity of atopic dermatitis</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Moderate</td>
<td>7 (58)</td>
</tr>
<tr>
<td>Severe</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Duration of disease (years)</td>
<td></td>
</tr>
<tr>
<td>≤10</td>
<td>1 (8)</td>
</tr>
<tr>
<td>11-20</td>
<td>4 (33)</td>
</tr>
<tr>
<td>21-30</td>
<td>6 (50)</td>
</tr>
<tr>
<td>>30</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Comorbidity of other allergic diseases</td>
<td></td>
</tr>
<tr>
<td>Atopic dermatitis only</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Comorbid with other allergic diseases</td>
<td>9 (75)</td>
</tr>
<tr>
<td>Family history of allergic diseases</td>
<td></td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Food allergy</td>
<td>1 (8)</td>
</tr>
<tr>
<td>None</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Alcohol consumption frequency over the past year</td>
<td></td>
</tr>
<tr>
<td>Not at all in the past year</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Less than once a month</td>
<td>1 (8)</td>
</tr>
<tr>
<td>About once a month</td>
<td>1 (8)</td>
</tr>
<tr>
<td>2-4 times a month</td>
<td>2 (17)</td>
</tr>
<tr>
<td>2-3 times a week</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Health literacy</td>
<td></td>
</tr>
<tr>
<td>Health literacy (score 15 out of 15)</td>
<td>9 (75)</td>
</tr>
</tbody>
</table>

Primary Outcome

Regarding the user engagement rates among different groups (Figures 4A and 4B), groups 2 (90.9%), 3 (95.5%), and 4 (97%) showed higher completion rates for self-monitoring compared to the predetermined TCS (90%). Additionally, groups 2 (83.3%) and 4 (91.7%) had higher completion rates for learning courses than the TCS (80%). These results indicate that group 4, provided with advanced-level push notifications and a human coach, had the highest user engagement during the intervention.
As shown in Figures 4C and 4D, “advanced-level push notification” (93.9%) and “human coach on” (96.2%) were the experimental intervention components that exceeded the predetermined TCS for self-monitoring (90%). The experimental intervention components that exceeded the TCS for learning courses (80%) were also “advanced-level push notification” (87.5%) and “human coach on” (85.4%). Overall, “advanced-level push notification” and “human coach on” demonstrated the highest user engagement among the experimental intervention components.

Secondary Outcome

Qualitative data were organized into three key themes: (1) perceived acceptability of the experimental intervention components, (2) satisfaction of the core intervention components, and (3) suggestions for improvement in the overall intervention program. Table 2 presents all themes and subthemes with corresponding quotes.
Table 2. Key themes, subthemes, and quotes from semistructured interviews.

<table>
<thead>
<tr>
<th>Themes, subthemes, and components</th>
<th>Verbatim examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key theme 1: perceived acceptability of the experimental intervention components</td>
<td></td>
</tr>
<tr>
<td>Push notification component</td>
<td></td>
</tr>
<tr>
<td>Technical aspect</td>
<td></td>
</tr>
<tr>
<td>Basic push notification</td>
<td>• It would be better if we could choose the time to receive notifications, and it would be better if we could receive the notification functioned similarly to a wake-up alarm that rings again if not checked...</td>
</tr>
<tr>
<td>Advanced push notification</td>
<td>• I lead a busy life, so receiving notifications was helpful. In fact, I think it was better for me to receive notifications frequently.</td>
</tr>
<tr>
<td>Content aspect</td>
<td></td>
</tr>
<tr>
<td>Basic push notification</td>
<td>• The (content) of the notifications was all good.</td>
</tr>
<tr>
<td></td>
<td>• It would be nice to have additional features like setting reminders for taking medication. Or maybe some information on whether I've applied moisturizer or taken my medicine today. Something like that would be useful.</td>
</tr>
<tr>
<td>Advanced push notification</td>
<td>• The notification content was good enough as it was, with just simple and neat notifications.</td>
</tr>
<tr>
<td>Human coach component</td>
<td></td>
</tr>
<tr>
<td>Technical aspect</td>
<td></td>
</tr>
<tr>
<td>Human coach off</td>
<td>• It would be better if there was a feature that allowed patients to send messages to report any technical errors or issues...It might be better to communicate using this feature.</td>
</tr>
<tr>
<td>Human coach on</td>
<td>• I wish there was a channel where atopic patients could communicate with each other.</td>
</tr>
<tr>
<td>Content aspect</td>
<td></td>
</tr>
<tr>
<td>Human coach off</td>
<td>• It would be great if we could receive feedback for emergency situations.</td>
</tr>
<tr>
<td>Human coach on</td>
<td>• For example, it would be more effective to ask direct questions like 'have you reduced your medication dosage?' rather than asking about difficulties or inconveniences...</td>
</tr>
<tr>
<td>Key theme 2: satisfaction with the core intervention components</td>
<td></td>
</tr>
<tr>
<td>Self-monitoring</td>
<td></td>
</tr>
<tr>
<td>Building health habits</td>
<td>• I used to forget to take my medicine, but ever since I started using the app to check it, I've been taking it every morning and before bed, and I've been doing it consistently.</td>
</tr>
<tr>
<td></td>
<td>• I've established a routine of recording it separately from the app.</td>
</tr>
<tr>
<td></td>
<td>• By recording the questionnaire every day, I can now monitor the daily improvement or worsening of my condition, which was the best part of the app.</td>
</tr>
<tr>
<td>Learning course</td>
<td></td>
</tr>
<tr>
<td>Acquiring reliable information</td>
<td>• It was great to learn about the parts that I used to miss with reliable information.</td>
</tr>
<tr>
<td>Key theme 3: suggestions for improvement on the overall intervention program</td>
<td></td>
</tr>
<tr>
<td>Diversity of daily self-monitoring form questions</td>
<td>• I wish, that depending on the symptoms, different questions would be asked to determine whether the symptoms improved or worsened from the previous day.</td>
</tr>
<tr>
<td>Burdensomeness of self-monitoring feature</td>
<td>• Taking pictures of my body to check the skin lesion was burdensome. The questionnaire was too lengthy.</td>
</tr>
<tr>
<td>Not tailored contents</td>
<td>• There was information that would have been useful, if symptoms hadn't been so severe. It would be better to recommend it to patients with mild symptoms.</td>
</tr>
<tr>
<td></td>
<td>• The quiz following the video was so simple that I didn't even need to watch it and could simply answer the questions correctly. This is why I stopped watching the weekly videos.</td>
</tr>
<tr>
<td>Motivating factors</td>
<td>• It would be great to include elements that can boost motivation, such as fun factors or any benefits.</td>
</tr>
<tr>
<td>Technical issues</td>
<td>• There were times when I couldn't continue with the survey for a few days because some questionnaire items wouldn't move forward at all. So, it would be great if those issues could be improved.</td>
</tr>
</tbody>
</table>
Key Theme 1: Perceived Acceptability of the Experimental Intervention Components

Perceived acceptability was measured using the components’ technical and content aspects. Regarding the technical aspect of the push notification component, 60% (3/5) participants receiving “basic-level push notifications” responded that they would like the push notification frequency to increase. Moreover, 20% (1/5) responded that it would be better to select the time and frequency of the push notifications and be reminded if they did not complete the task. And 50% (2/4) receiving “advanced-level push notifications” were overall satisfied with the current push notification frequency. Regarding the content aspect of this component, both groups responded that they were satisfied with the provided notification contents. However, 20% (1/5) of participants in the group receiving “basic-level push notifications” suggested that it would be helpful to receive a push notification reminding them to take medication or apply some moisturizer.

Regarding the technical aspect of the human coach component, 40% (2/5) participants assigned to the “human coach off” component requested a 1:1 communication channel within the app, as they could not receive assistance from a human coach. A total of 75% (3/4) of participants assigned to the “human coach on” component preferred to have an in-app communication channel rather than using a different instant messaging app (ie, KakaoTalk) for communication with a human coach. And 25% (1/4) of participants also suggested integrating a community feature for patients to communicate with each other. Regarding the content aspect of the human coach component, 20% (1/5) of participants assigned to the “human coach off” suggested adding a telehealth feature for emergencies. And, 25% (1/4) participants assigned to the “human coach on” preferred the coach asking specific questions related to symptom management, such as “Have you taken your medicine today?” or “Have you visited the hospital?” rather than the questions relevant to the app use, like “Is there anything difficult or uncomfortable while using the app?”

Key Theme 2: Satisfaction With the Core Intervention Components

Satisfaction was measured for each core intervention component, self-monitoring, and learning courses. Regarding the self-monitoring component, 78% (7/9) of participants reported that self-monitoring helped build health habits, including better medication adherence, reduced scratching behavior, and consistent use of moisturizers. Moreover, they could easily track their symptoms through weekly reports, which helped them monitor their symptoms over time. Regarding the learning course component, 56% (5/9) of participants indicated that they acquired reliable information through weekly videos.

Key Theme 3: Suggestions for Improvement on Overall Intervention Program

Suggestions for improvement in the overall intervention program were divided into 5 subthemes. First of all, 33% (3/9) of participants recommended diversifying the questions of the daily self-monitoring form, as they found them to be repetitive and lacking in variation. Second, 22% (2/9) of participants found the self-monitoring burdensome as they had to upload lesion pictures daily. Third, 44% (4/9) of participants felt the learning course was not sufficiently tailored to their needs. They found the video content insufficiently helpful for patients with severe disease; the postquiz questions were unchallenging; and the video was too long. Fourth, 11% (1/9) of participants suggested adding motivating factors to the intervention program to make them more engaged with the app. Lastly, technical issues within the app were mentioned. A total of 33% (3/9) of participants recommended improving its performance, such as fixing bugs in the self-monitoring feature, reducing duplicate push notifications, and improving video sound quality.

Clinical Outcomes

Descriptive statistics, for example, mean (SD), were used to analyze clinical outcomes by group and experimental intervention component. The ISI score showed the greatest improvement in group 2 (mean change –4.50, SD 6.36). The EASI, POEM, and BFNE scores showed the highest improvement in group 3 (mean change –10.20, SD 9.90, mean change –3.00 score, SD 15.56, and mean change –4.50, SD 6.36, respectively). The PSS and DLQI scores presented the greatest improvement in group 4 (mean change –3.50, SD 3.54, and mean change –6.00, SD 11.32, respectively).

Regarding the push notification component, the ISI, PSS, DLQI, and BFNE scores showed the highest improvement in the “advanced-level push notification” component (mean change –0.25, SD 6.34, mean change –1.75, SD 2.99, mean change –4.75, SD 8.06, and mean change –3.00, SD 3.46, respectively). Regarding the human coach component, the EASI, POEM, PSS, and BFNE scores presented the highest improvement in the “human coach on” component (mean change –6.73, SD 7.41, mean change –1.50, SD 11.73, mean change –3.00, SD 2.94, and mean change –4.25, SD 3.69, respectively). More detailed results can be found in Figure 5.
Discussion

Principal Findings

Our primary objective was to investigate how the perceived acceptability of experimental intervention components and satisfaction with core intervention components affect user engagement in DTx. We examined in-app behavioral data on core intervention components (ie, percentages of self-monitoring forms and learning courses completed) as a user engagement metric. As hypothesized, the TCS of user engagement was achieved in group 4, where all 2 experimental factors were advanced simultaneously. Furthermore, clinical outcomes related to the mental health of patients with AD improved in group 4. This study identified potential barriers and facilitators of user engagement through semistructured interviews on the patients’ satisfaction with core intervention components. Overall, our analysis of Atomind data suggests that incorporating advanced-level push notifications with a human coach, tailoring contents with various self-monitoring tools, and implementing some motivational factors (eg, rewards) may improve user engagement.

Comparison With Previous Work

To the best of our knowledge, this is the first study to examine the impact of different levels of push notification, human coach,
and satisfaction with core intervention components on user engagement in DTx using mixed methods. Although there is a proliferation of clinical research on user engagement with mobile health apps, the majority only conducted traditional RCTs [28-39] or optimization trials with a single type of assessment method [40-44]. The findings from these earlier studies with traditional RCTs only explained how the intervention as a package affected user engagement; they could not identify the specific intervention elements that impacted it [29]. Additionally, only assessing quantitative data from optimization trials (e.g., factorial experiments) limits the understanding of barriers and facilitators affecting user engagement [45,46]. In contrast, this study clearly showed that advanced-level push notifications and communication with a human coach are the main factors enhancing user engagement. Furthermore, our qualitative analysis showed that advanced-level push notifications were sufficient in frequency to serve as a reminder in busy daily lives, and their content was concise enough to be acceptable. Although communication with a human coach improved user engagement, our qualitative findings suggest that the human coach platform should have been implemented in the internal system of the Atomind app with more diverse questions and detailed responses. Using a mixed methods approach to assess various factors contributing to user engagement in Atomind enabled us to gain insights into the “what, how, and why” of this phenomenon, which is critical to figuring out what steps must be taken to improve an intervention.

Establishing a TCS for user engagement has been applied, as this study is a proof-of-concept study with a small sample size. This approach allows for resource-efficient research with clear go-or-no-go decision-making, lowering the risk of confirmatory bias [19]. Concerning TCS determination, each previous study had its own logic established and multiple metrics to account for user engagement [33,47]. This is because user engagement is a multifaceted concept with no universal consensus on how to perceive it [6,7,34]. Among the various metrics of user engagement from previous research, the completion of specific activities or modules of the intervention was the most commonly used metric for user engagement [29-34,36,39,43,48]. Similarly, we measured user engagement in the app by assessing the completion rate of the core intervention components. In this study, self-monitoring is for daily activity, while learning courses are for weekly activity. Thus, we set up different levels of TCS for each activity to assess user engagement; the completion rate was 90% for self-monitoring forms and 80% for learning courses.

Regarding the clinical outcomes from this study, people who received the advanced level of experimental intervention components saw improvement in the majority of psychological symptoms (e.g., stress, quality of life, and fear of negative evaluation), which was more than the physical symptoms related to AD. These findings correspond with previous research that suggests digital interventions should focus mainly on improving mental health conditions to support better physical health conditions [49,50]. This trend is caused by several inherent factors of mental health interventions, including the stigma associated with mental problems and diagnosis-specific barriers to accessing mental health services [51]. Likewise, Atomind is a digital intervention for patients with AD that encourages healthy behaviors and mental health conditions for effective symptom management. Thus, improving psychological measures by engaging with Atomind indicates that it achieved the intended proximal outcome.

Limitations and Future Directions
First, the statistical power of this study is insufficient to determine significant effects before and after the intervention. However, setting reasonable TCS for quantitative data and collecting qualitative data will support our findings on DTx optimization for use in well-powered RCTs. Second, the Atomind app is only available for use on the Android operating system. To overcome this limitation, we provided Android smartphones during the intervention period to those (n=5) who had other operating systems on their smartphones. Despite this effort, the user experience with Atomind, which is closely related to user engagement, may be affected. Lastly, technical issues with the app occurred frequently during the intervention period, which may affect user engagement. As Atomind was in the development phase, these problems could have taken place; however, its technical system should be improved in a later version and used for future clinical research.

Conclusions
This proof-of-concept, mixed methods study with an experimental 2 × 2 factorial design demonstrates the impact that perceived acceptability of experimental intervention components and satisfaction with core intervention components in DTx have on user engagement. The findings will be used to refine the intervention and inform the design of the next RCT to test its effectiveness. Furthermore, this research design may serve as a model for how to examine and optimize overall engagement in DTx in broad terms; it will help future research investigate the complex relationship between engagement and clinical outcomes.

Acknowledgments
This research was supported by the Seoul R&BD Program (grant BT210048; project name: Development and Demonstration of a Digital Therapeutics Platform Service for Atopic Dermatitis Treatment) through the Seoul Business Agency, funded by the Seoul Metropolitan Government.
Data Availability
The data sets generated and/or analyzed during this study are not publicly available due to the need to maintain privacy and confidentiality, but are available from the corresponding author on reasonable request. Requests for access to specific data points or additional information will be considered on a case-by-case basis.

Authors' Contributions
MK and JS conceptualized and developed the study’s design. MK provided the intellectual framework for this research. EHC, JUS, and TGK were in charge of the recruitment and data collection of participants. JO and BS served as human coaches, providing guidance and assistance to the participants. HL and JYS conducted interviews and handled the analysis of qualitative data. HL and MK contributed significantly to the data analysis and interpretation. HL and MK wrote the manuscript and edited its contents. MK and JS conducted a thorough review of the manuscript. All authors approved the final version of the manuscript for submission.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Overview of push notifications between two groups.
[DOCX File, 17 KB - formative_v8i1e51225_app1.docx]

Multimedia Appendix 2
Atomind app sample screen.
[DOCX File, 758 KB - formative_v8i1e51225_app2.docx]

Multimedia Appendix 3
Overall topics of weekly videos.
[DOCX File, 15 KB - formative_v8i1e51225_app3.docx]

Multimedia Appendix 4
Semi-structured interview guideline.
[DOCX File, 17 KB - formative_v8i1e51225_app4.docx]

Multimedia Appendix 5
Assessment methods and assessment period for each measurement.
[DOCX File, 15 KB - formative_v8i1e51225_app5.docx]

References

42. Materia FT, Smyth JM. Acceptability of intervention design factors in MHeath intervention research: experimental factorial study. JMIR Mhealth Uhealth 2021;9(7):e23303 [FREE Full text] [doi: 10.2196/23303] [Medline: 34309563]

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>atopic dermatitis</td>
</tr>
<tr>
<td>ADHD</td>
<td>attention-deficit/hyperactivity disorder</td>
</tr>
<tr>
<td>BFNE</td>
<td>brief fear of negative evaluation</td>
</tr>
<tr>
<td>CBT</td>
<td>cognitive behavioral theory</td>
</tr>
<tr>
<td>DLQI</td>
<td>Dermatology Life Quality Index</td>
</tr>
<tr>
<td>DTx</td>
<td>digital therapeutics</td>
</tr>
<tr>
<td>EASI</td>
<td>eczema area and severity index</td>
</tr>
<tr>
<td>ISI</td>
<td>insomnia severity index</td>
</tr>
<tr>
<td>MOST</td>
<td>multiphase optimization strategy</td>
</tr>
<tr>
<td>POEM</td>
<td>patient-oriented eczema measure</td>
</tr>
<tr>
<td>PSS</td>
<td>perceived stress scale</td>
</tr>
<tr>
<td>RCT</td>
<td>randomized controlled trial</td>
</tr>
<tr>
<td>TCS</td>
<td>threshold of clinical significance</td>
</tr>
</tbody>
</table>

©Hyerim Lee, Eung Ho Choi, Jung U Shin, Tae-Gyun Kim, Jooyoung Oh, Bokyoung Shin, Jung Yeon Sim, Jaeyong Shin, Meelim Kim. Originally published in JMIR Formative Research (https://formative.jmir.org), 09.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

Zahra Zandesh, PhD
Information Technology and Statistics Department, Tehran University of Medical Sciences, Tehran, Iran

Corresponding Author:
Zahra Zandesh, PhD
Information Technology and Statistics Department
Tehran University of Medical Sciences
Keshavarz Blvd, next to the intersection of Qods St.
Tehran, 1417653761
Iran
Phone: 98 2181633102
Email: Zandesh.z@gmail.com

Abstract

Background: Privacy in our digital world is a very complicated topic, especially when meeting cloud computing technological achievements with its multidimensional context. Here, privacy is an extended concept that is sometimes referred to as legal, philosophical, or even technical. Consequently, there is a need to harmonize it with other aspects in health care in order to provide a new ecosystem. This new ecosystem can lead to a paradigm shift involving the reconstruction and redesign of some of the most important and essential requirements like privacy concepts, legal issues, and security services. Cloud computing in the health domain has markedly contributed to other technologies, such as mobile health, health Internet of Things, and wireless body area networks, with their increasing numbers of embedded applications. Other dependent applications, which are usually used in health businesses like social networks, or some newly introduced applications have issues regarding privacy transparency boundaries and privacy-preserving principles, which have made policy making difficult in the field.

Objective: One way to overcome this challenge is to develop a taxonomy to identify all relevant factors. A taxonomy serves to bring conceptual clarity to the set of alternatives in in-person health care delivery. This study aimed to construct a comprehensive taxonomy for privacy in the health cloud, which also provides a prospective landscape for privacy in related technologies.

Methods: A search was performed for relevant published English papers in databases, including Web of Science, IEEE Digital Library, Google Scholar, Scopus, and PubMed. A total of 2042 papers were related to the health cloud privacy concept according to predefined keywords and search strings. Taxonomy designing was performed using the deductive methodology.

Results: This taxonomy has 3 layers. The first layer has 4 main dimensions, including cloud, data, device, and legal. The second layer has 15 components, and the final layer has related subcategories (n=57). This taxonomy covers some related concepts, such as privacy, security, confidentiality, and legal issues, which are categorized here and defined by their expansion and distinctive boundaries. The main merits of this taxonomy are its ability to clarify privacy terms for different scenarios and signalize the privacy multidisciplinary objectification in eHealth.

Conclusions: This taxonomy can cover health industry requirements with its specifications like health data and scenarios, which are considered as the most complicated among businesses and industries. Therefore, the use of this taxonomy could be generalized and customized to other domains and businesses that have less complications. Moreover, this taxonomy has different stockholders, including people, organizations, and systems. If the antecedent effort in the taxonomy is proven, subject matter experts could enhance the extent of privacy in the health cloud by verifying, evaluating, and revising this taxonomy.

(JMIR Form Res 2024;8:e38372) doi: 10.2196/38372

KEYWORDS
taxonomy; privacy; security; legal; cloud computing
Introduction

Background

Cloud computing is among the hottest core technical topics in the digital world. It has broad-ranging effects across IT, business, software engineering, and data storage. One of the main effects is an increase in capability. According to the National Institute of Standards and Technology (NIST) definition, “cloud computing is a model for enabling convenient, resource pooling, ubiquitous, on-demand access which can be easily delivered with different types of service provider interactions” [1,2]. Cloud technology can meet the requirements of the health care industry. It has some benefits like helping health organizations to reduce their costs by replacing and migrating all IT infrastructure, platforms, and software to the cloud, and providing integrated services across multiple organizations with delivery of better access to IT knowledge, resources, and services in a more technical and economical way.

The cloud in the health care context can increase medical record accessibility and make medical history available for individuals. Moreover, it can enhance cooperation among various stakeholders in the health industry through the integration of electronic medical information from dispersed locations and can reduce medical error complications to achieve patients’ lifesaving goals [3-9]. A health record includes a chronological account of an individual’s tests and treatments, and is a critical part of any health care lawsuit about health care procedures [10-14]. These documents can play an important role in guarding individuals based on medical ethics concerns, patients’ rights, and the bill of rights in each country [15-18]. Therefore, acceptance of any kind of computing technology with the combination of medical informatic applications can change the boundaries of health care organizations [1].

Despite all these benefits, the sharing and storing of sensitive electronic health data and personal health information through the cloud raise various privacy and security concerns [2,3]. An important concern is the probable release of health information to third parties who are not authorized to access the information. The distributed architecture of the cloud causes many difficulties like service accessibility, data reliability, data management, scalability, interoperability, privacy, security, data ownership, regulation and standards, organizational change, business process reengineering, etc [3-8].

The tradeoffs between the pros and cons of this technology depend on the approaches that governments introduce to address the privacy, security, and legal challenges in such a complicated domain like health care.

The challenges are magnified several times when there are no definite implications for some essential and technical concepts. For example, privacy in the digital world is a term with different meanings, which can clearly include a wide range of concepts and can completely differ from its traditional comprehension [3]. Moreover, some interpreters have explained this word as “vague and evanescent” [4]. Therefore, a lack of transparency in the privacy concept has made policy making difficult [19-21].

In these occasions, judges and legislators cannot obviously speak about privacy harms, especially at intersections with other fields like free speech, effective consumer transactions, and security, which are quite controversial. It is completely understandable that privacy and the related implications are complex and multidimensional, and are thus considered legal, philosophical, or even technical.

Furthermore, the involute definitions of privacy and cloud technological risks have stopped governments from adopting cloud technology in the health industry, and if cloud technologies are introduced in the health industry, issues like security, privacy, and legal obstacles play preventive roles. In other words, using cloud capabilities in the health industry without proper setups can lead to disastrous outcomes, such as blackmail and threats. As the relationship between the growth of eHealth and privacy value is quite obvious, it is necessary to create a balance between the pros and cons of these technologies in this new era. Health care stakeholders in different countries have taken many efforts to identify political and legal challenges in this domain and have developed appropriate supplements and technological infrastructure for the health cloud [22-24]. Moreover, the obstacles have led them to revise and redesign required concepts to make them compatible for the new paradigm [13,14,16,17].

A review of previous taxonomies appears necessary to obtain a better overall view. The most popular and famous taxonomies in this domain were analyzed by their features and attributes. The goals, use, and dimensions of each taxonomy in the privacy era are presented in Table 1.

Almost all reports in Table 1 declared that privacy is a multilateral concept that needs analysis from different sides. In addition, the reports indicated that the data value has grown incredibly, which could be the most valuable asset for organizations and individuals, but privacy-preserving concerns were illustrated as nonignorable challenges. Some reports only dealt with security services and presented those as privacy matters, while others only paid attention to legal issues or data features. Obviously, most of them were not specifically designed based on cloud technology features or health care scenarios.
Table 1. Previous taxonomies.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Goals</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barker et al [25]</td>
<td>Data privacy taxonomy</td>
<td>This taxonomy was designed for privacy features and had 4 dimensions, each of which had their own subcategories and demonstrated their relationships in data repositories, such as database management systems, which are used for data mining.</td>
<td>Purpose, Visibility, Granularity, and Retention</td>
</tr>
<tr>
<td>Antón et al [26]</td>
<td>Taxonomy of privacy requirements for websites</td>
<td>The authors analyzed websites to design an internet privacy policy taxonomy for goal mining and extraction of prerequisite goals from postrequirement text artifacts. The goals of privacy in this work are classified as privacy protection and privacy vulnerabilities.</td>
<td>Privacy protection goals: Notice and awareness, Choice and consent, Access and participation, Integrity and security, and Enforcement and redress; Privacy vulnerabilities: Monitoring, Aggregation, Storage, and Transfer of information phases</td>
</tr>
<tr>
<td>Asaddok et al [27]</td>
<td>Usability, security, and privacy taxonomy for mobile health applications</td>
<td>This taxonomy provided a model for mobile health applications, which were identified based on a study on products on the market. It had 3 dimensions, and each of them had their own subcategories (overall 10).</td>
<td>Usability, Security, and Privacy</td>
</tr>
<tr>
<td>Heurix et al [28]</td>
<td>Taxonomy for privacy-enhancing technologies</td>
<td>This taxonomy was designed to provide a classification method owing to the various features of privacy-enhancing technologies. The purpose was to cover various techniques, such as anonymization or encryption, with different application scenarios. Each of its dimensions had its own subsets.</td>
<td>Scenario, Aspect, Aim, Foundation, Data, Trusted third party, and Reversibility</td>
</tr>
<tr>
<td>Kotz [29]</td>
<td>Threat taxonomy for mobile health privacy</td>
<td>This work presented a taxonomy for mobile health privacy and emphasized mobility and networking with many risks. There was a focus on the effects that threats could have, and threats were organized based on their type.</td>
<td>Misuse of patient identities, Unauthorized access or modification of PHI, and Disclosure of PHI</td>
</tr>
<tr>
<td>Skinner et al [30]</td>
<td>Information privacy taxonomy for collaborative environments</td>
<td>This taxonomy had 3 dimensions, and each dimension was interrelated and had different influences over information privacy. These dimensions translated into 3 corresponding views of information privacy within a collaborative environment, like computation view, content view, and structural view.</td>
<td>Time, Matter, and Space</td>
</tr>
<tr>
<td>Stein [31]</td>
<td>Taxonomy of privacy</td>
<td>This work organized all kinds of harms and is one of the most well-known taxonomies in the field. Four different types of harmful activities covered by privacy were identified. Each activity type had its subactivities (n=16).</td>
<td>Information collection, Information processing, Information dissemination, and Invasion</td>
</tr>
<tr>
<td>Vatsalan et al [32]</td>
<td>Taxonomy of privacy-preserving record linkage techniques</td>
<td>Privacy-Preserving Record Linkage taxonomy is another study that provides an overview of techniques that allow linking of databases among organizations. These techniques provide privacy preservation at the same time.</td>
<td>Privacy aspects, Linkage techniques, Theoretical analysis, Evaluation, and Practical aspects</td>
</tr>
<tr>
<td>Zandesh et al [3]</td>
<td>Legal framework for a health cloud</td>
<td>This work was a systematic review that introduced a legal framework for the health cloud with 5 main pillars and 17 subcomponents, and defined the role of legal aspects in the reliability of eHealth.</td>
<td>Compliance, Data protection, Identity credential access management, Ownership, and Quality of service</td>
</tr>
<tr>
<td>Olla et al [33]</td>
<td>Mobile health taxonomy</td>
<td>This taxonomy had 8 categories under 3 main pillars owing to the application’s intended purpose.</td>
<td>Medical use cases, Technical modalities, and Consideration</td>
</tr>
<tr>
<td>Association for Computing Machinery [34]</td>
<td>Computing classification system from the ACM</td>
<td>This taxonomy was developed to organize papers received in the ACM Digital Library or events hosted by the ACM.</td>
<td>Cryptography, Formal methods and theory of security, Security services, Intrusion/anomaly detection and malware mitigation, Security in hardware, System security, Network security, Database and storage security, Human and societal aspects of security and privacy, and Software and application security</td>
</tr>
<tr>
<td>Computer Security Division/NIST [35]</td>
<td>Computer security resource center classification from the NIST</td>
<td>This classification was a significant reference for cybersecurity considerations that provided a comprehensive model for cybersecurity knowledge.</td>
<td>Security and privacy-specific research domains, Technologies, Applications, Laws and regulations, Types of activities, and Business sectors</td>
</tr>
<tr>
<td>IEEE [36]</td>
<td>IEEE taxonomy</td>
<td>IEEE developed a taxonomy to organize papers received in IEEE Xplore Digital Library or events hosted by IEEE.</td>
<td>Access control, Computer security, Cryptography, Data security, Information security, and Terrorism</td>
</tr>
</tbody>
</table>
This institute organized a technical committee to improve the level of privacy and security for European organizations and citizens in Europe and across the world by standard development. In general, ETSI provided an overview of the global cyber security ecosystem.

This independent organization covered working groups or committees on information processing. Among the committees, one of its technical committees has worked on security and privacy protection in information processing systems. The product of this committee provided the most extensive collection of concepts and topics. However, generally, this report could not be considered as a taxonomy.

This methodology has developed a catalog to support information security and the development of cybersecurity evaluation in organizations.

The main goal of this taxonomy was aligning cybersecurity terminologies, definitions, and domains to facilitate EU cybersecurity competency categorization. It included 3 completely intertwined dimensions to provide evidence-based scientific support to the European policy-making process.

This study has several implications. It redefines privacy with concept about privacy.

Despite all previous studies, it appears that more efforts are needed to redefine the privacy concept in the health domain, especially in the cloud context. The nomenclature and classification confusion in privacy terminology prevent businesses from finding a comprehensive solution for the domain requirements [22-24]. It is worthwhile to note that taxonomy use is an effective approach. Regarding the research question, our attempts focus on reaching a comprehensive concept about privacy.

The main challenges are related to what we already know and what we need to know. Therefore, a clear and precise taxonomy would be helpful to identify the specifications of privacy in a dynamic environment and would help in conducting future research projects for evaluating its impacts. A taxonomy was developed in this study, and the study contributions are presented below.

This taxonomy clarifies the privacy concept in eHealth, which is a multidisciplinary context, and tries to eliminate the ambiguity of this subject in cloud environments with regard to the different requirements in health care scenarios and situations.

The proposed taxonomy provides a true and complete perspective regarding the intervention, management, and handling of other variables, as well as the itemization of the expected outcomes and the determination of how best to assess them, thus clarifying the units of analysis in health cloud privacy research.

The findings of this study regarding the privacy taxonomy led to the distinction and clarification of the overlapping and vague structure of related concepts, and privacy was defined by identifying the discrete sets of variables representing specific privacy configurations and definitive boundaries for “security,” “privacy,” and “legal” terms, which are crucial for future research, policy making, and the actual management of privacy. This capability of the taxonomy was considered as the main outcome or contribution of this study, and it conceptually provides quite clear boundaries of these terms in the digital health world.

The proposed taxonomy has 3 layers, of which the first layer has 4 main dimensions, including cloud, data, device, and

Problem Statement

Despite all previous studies, it appears that more efforts are needed to redefine the privacy concept in the health domain, especially in the cloud context. The nomenclature and classification confusion in privacy terminology prevent businesses from finding a comprehensive solution for the domain requirements [22-24]. It is worthwhile to note that taxonomy use is an effective approach. Regarding the research question, our attempts focus on reaching a comprehensive concept about privacy.

The main challenges are related to what we already know and what we need to know. Therefore, a clear and precise taxonomy would be helpful to identify the specifications of privacy in a dynamic environment and would help in conducting future research projects for evaluating its impacts. A taxonomy was developed in this study, and the study contributions are presented below.

Study Contributions and Objectives

This study has several implications. It redefines privacy with regard to the health cloud and focuses on identifying the main approaches to deal with the contributed factors and dimensions that rely on taxonomy designing.
legal, and the second layer has 15 components, with each of them having subcomponents (n=57). This taxonomy has some advantages like presenting the hierarchical root of concepts and the inherited features of taxonomies. The specific implementation was performed by selecting published English papers related to the concept of health cloud privacy from several databases and relying on predefined keywords and search strings, followed by a classification design through a qualitative content analysis approach.

Hence, this taxonomy could cover health industry requirements with its specifications like health data and scenarios, which are considered to be the most complicated among businesses and industries. Therefore, this taxonomy could be generalized to other domains and businesses with less complications.

Previous taxonomies in the privacy domain have also been covered in this article, and the designing steps of the new taxonomy are presented in the Methods section.

Methods

Methodology Analysis

One of the main concerns in various disciplines is how to group disciplines based on taxonomies. Such a classification has given taxonomies a pivotal role for researchers and practitioners in investigations and businesses as it has enabled them to comprehend and analyze complex domains [42,43].

Covering both descriptive knowledge and prescriptive knowledge, design science also consists of taxonomies as a type of conceptual knowledge in its epistemology. The research goal at the conceptual level is essentialist; concepts and conceptual frameworks at this level aim at identifying essences in the research territory and their relationships [44].

The term taxonomy is different from other similar words. Compared with classification, in some literature, it refers to groupings that are derived based on empirical studies with involvement of cluster analysis and statistical techniques. This definition is also referred to as numerical taxonomy [45].

Taxonomy is also considered as a classification scheme [46], and it is possible to use the terms of classification scheme, taxonomy, and typology as substitutes of each other. A previous report mentioned 3 approach categories for taxonomy: inductive, deductive, and intuitive [43].

With respect to the inductive approach, empirical cases are taken into account. In the following step, they are analyzed so as to realize dimensions and characteristics in the taxonomy. In this type of analysis, a variety of statistical techniques, such as cluster analysis, or other less rigorous techniques are employed [47].

In the deductive approach, the taxonomy involves theory or conceptualization rather than empirical cases. The method uses a logical process that results from a sound conceptual or theoretical foundation in order to clarify dimensions and characteristics in the taxonomy. It is considered to be similar to the cladistics approach in biology [47]. The method may involve an analysis of empirical cases so that even modification of the taxonomy can be performed.

The intuitive approach is considered in the case of necessity. The objects are categorized based on what a researcher comprehends. In this approach, the taxonomy is offered on the basis of the perceptions of a researcher. This technique is not explicitly used [47].

Our proposed privacy taxonomy is derived by the deductive approach. Thematic analysis, which is often called qualitative content analysis, is considered as the methodology for the implementation of the deductive approach and as one of the most favorable methodologies in taxonomy creation [19]. Content analysis, as a research method, is a systematic and objective means of describing and quantifying phenomena. It is also known as a method for analyzing documents. This research method is used for making replicable and valid inferences from the data to their context, with the purpose of providing knowledge, new insights, a representation of facts, and a practical guide to action. In most cases, those concepts or categories are applied to construct models, conceptual systems, conceptual maps, or categories [20].

This type of taxonomy development needs a complete literature review like a systematic or structured review because a systematic review relies on the following: definite time, definite inclusion criteria, definite information sources, and structured study selection according to predefined PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. This method has been described in the Taxonomy Development Characteristics subsection.

Ethics Approval

This study did not include human participants or animals, and thus, ethics approval was not required.

Eligibility Criteria

Published English papers (inclusion criterion 1) related to privacy aspects in the health cloud (inclusion criterion 2) were used to create a privacy taxonomy for the health cloud.

Information Sources

Designated databases, including Web of Science, IEEE Digital Library, Scopus, Google Scholar, and PubMed, were searched from April to June 2020 to identify relevant articles.

Study Selection

Study selection involved the following 5 different phases:

1. Health and computer science databases were chosen to cover all related publications. This step was applied to papers after 2010.
2. “Health cloud,” “privacy,” “medical ethics,” “data management,” “compliance management,” and “medical devices” were the keywords considered with divergent MeSH (Medical Subject Headings) terms.
3. Different search strategies on keywords were adopted for each electronic database to obtain more relevant papers.
4. The identified papers were screened based on the eligibility criteria using their titles, abstracts, and keywords.
5. Papers not eliminated in the previous phase were read completely.

Taxonomy Development Characteristics

The new taxonomy was developed on the basis of the deductive approach in 6 phases. The initial phase involved reading data intensively and assessing the papers. The second phase involved configuring the main dimensions to align with the research goals. This phase analyzed the results through Excel files. The third phase included data coding in main classes where the results were categorized. In the fourth phase, the main classes were structured and then arranged into components and subcomponents in an inductive manner, and subcomponents were designated to components. In the fifth phase, the results were categorically analyzed and then presented. The final phase involved reporting and documentation.

A total of 2042 papers were identified, of which 585 were discarded because of repetition in different databases (first layer of filtering according to inclusion criterion 1). The remaining 1457 papers were analyzed on the basis of their titles, abstracts, and keywords. Ultimately, the outcome was divided into 3 categories (second layer of filtering according to inclusion criterion 2).

In the second layer of filtering, initially, 150 papers were chosen according to the privacy, security, and legal domains in the health cloud, which were related to the first category of this work (Figure 1). By reading the full texts in this category, it can be judged that different headlines like compliance management, data management, data governance, information security services, medical ethics, patients’ rights, privacy issues, and technology considerations play important roles in privacy management discipline and influence privacy preservation in the health cloud environment. The identified domains provided a new map and road for the construction of the taxonomy of privacy. These domains led to the identification of probable dimensions, components, and subcategories in related contexts.

Subsequently, with the above-mentioned domains and according to the second layer of filtering (inclusion criterion 2), the rest of this work was conducted, which helped to group the 1307 remaining papers. The full texts of the papers were analyzed according to their details. The findings of the analysis phases showed that many related factors can influence privacy-preserving topics in the health cloud. Consequently, the identified factors were coded and grouped into direct and indirect groups for taxonomy creation, and they formed the second and third categories of the PRISMA guidelines. These factors influence privacy preservation in the health cloud. The findings of study selection are shown in a PRISMA flow diagram (Figure 1).

In this study, according to a previous report [43], attempts were made to cover all qualitative attributes, such as conciseness, robustness, comprehensiveness, extendibility, and explanatory ability. The aim was to develop a taxonomy based on a set of dimensions, with each including characteristics describing the objects comprehensively in a specific domain of interest.

Table 2 presents the 6 phases involving the formation and adoption of our taxonomy. The subsequent sections present a detailed introduction with respect to each dimension’s components and subcomponents. The privacy taxonomy can be provided in several different approaches, and hierarchical taxonomy is the most notable method.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. IC: inclusion criterion.
According to the proposed taxonomy, each circle has its subdomains. In the Discussion section, each dimension’s components and subcomponents are introduced in detail.

Results

After analyzing the identified papers and considering taxonomy development, with respect to studies related to the first category of the method in the digital world, it was found that only documented rules and regulations did not comply with the privacy, security, and legal requirements in the health cloud. To be more precise, compliance alone cannot consider and resolve all the privacy, security, and legal requirements in such a dynamic environment like the cloud, and as mentioned before, some other headings like compliance management, data management, data governance, information security services, medical ethics, patients’ rights, privacy issues, and technology considerations play important roles. To cover all these domains and overcome previous deficiencies, a taxonomy of privacy, security, and legal issues in the health cloud was designed.

As illustrated in Figure 2, this taxonomy has 3 layers. Different features in this context were initially grouped into 4 dimensions, namely the cloud specification, legal aspect, data specification, and device specification in the context of privacy. This classification provided the first or most comprehensive level of generality in the taxonomy of privacy. Other factor identification was related to the next level of taxonomy, and the second and third levels of taxonomy creation and identification led to the introduction of direct and indirect factors for privacy preservation. Then, the basic building blocks or dimensions, components, and subcategories were realized with a qualitative content analysis. The second layer identified 15 components, with each of them having subcomponents (n=57). This well-organized taxonomy has some advantages like presenting the hierarchical root of concepts and the inherited features of taxonomies.

The findings of this paper helped to process and define privacy by identifying a composite set of variables that represent to the extent possible the true nature of interventions and by incorporating the major dimensions of privacy and their constituent parts. Moreover, the findings led to the creation of a new conceptual diagram, which has been presented in Figure 3. The main outcomes or results of this taxonomy appear in this figure, which provides a definite boundary for each of the ambiguous terms like privacy, legal, and security. This figure displays conceptual coverage and overlapping boundaries of these terms in the digital health world, which are crucial for future research, policy making, and the actual management of privacy.

According to the proposed taxonomy, each circle has its subdomains. In the Discussion section, each dimension’s components and subcomponents are introduced in detail.

Table 2. Taxonomy development phases.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Thematic analysis method/qualitative content analysis method</th>
<th>Adoption in our work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reading data intensively and assessing papers</td>
<td>A total of 1457 papers were identified from among 2042 papers. The papers were analyzed on the basis of their titles, abstracts, and keywords, and their security, privacy, and legal features were chosen.</td>
</tr>
<tr>
<td>2</td>
<td>Configuring the main dimensions to correspond to the goals of this paper</td>
<td>The full texts of selected results in the previous phase were analyzed and processed by their details in an Excel spreadsheet. The outcome was divided into 3 categories: The first category involves the identification of privacy, security, and legal domains in the health cloud, and 150 related papers were identified. The second and third categories involve the identification of direct and indirect factors that impact privacy preservation in the health cloud. A total of 1307 remaining papers were examined by their contents.</td>
</tr>
<tr>
<td>3</td>
<td>Data coding in main classes</td>
<td>The most frequent and important features were categorized into 76 analytical categories.</td>
</tr>
<tr>
<td>4</td>
<td>Structuring the main classes and configuring components and subcomponents inductively on the material, and assigning subcomponents to components</td>
<td>The analytical categories were then synthesized into the taxonomy. The taxonomy requires a multidimensional and hierarchical structure, and each tier in the hierarchy inherits all attributes of the tier immediately above it. The highest level in the hierarchy has the greatest generality and vice versa. The subcomponents may be used to improve the domain concept under consideration and the relationships between the nodes and leaves in the hierarchy. Iterative processes can lead to taxonomy constructors. The privacy taxonomy provides a heuristic representation of hierarchies with 4 dimensions of privacy and branches in each dimension. This model allows for more specification of independent variables in the model development and with regard to the research objectives.</td>
</tr>
<tr>
<td>5</td>
<td>Performing category-based analyses and presenting the results</td>
<td>The taxonomy has 3 layers, of which the first layer has 4 main dimensions, including cloud, data, device, and legal. The second layer has 15 components, and each of them has subcomponents (n=57). This well-organized taxonomy has some advantages like presenting the hierarchical root of concepts and the inherited features of taxonomies.</td>
</tr>
<tr>
<td>6</td>
<td>Reporting and documentation</td>
<td>Finally, the taxonomy was derived and proposed from the abstraction of each of the dimensions.</td>
</tr>
</tbody>
</table>
Discussion

Principal Findings

The details of each dimension’s components and subcomponents (Figure 2) are provided. The main characteristics included in the taxonomy are described and discussed to answer the research question, and an attempt was made to focus on reaching a comprehensive concept regarding privacy.

The question is as follows: Which dimensions and factors affect privacy taxonomy and should be considered in current health cloud projects or systems for privacy preservation?

As mentioned in the Results section, to provide a clear and precise taxonomy according to the method steps, selected papers were studied and analyzed deeply, which led to 4 new dimensions, namely cloud, legal, data, and device. All these dimensions were related to privacy specifications.

In the below sections, each dimension of the proposed taxonomy, and its components and subcomponents are described extensively to provide better understanding for audiences.

Implications

Dimension 1: Cloud

The first dimension of this taxonomy is the cloud, which incorporates all aspects of cloud computing technology. It is an evolving paradigm that is useful in the health care context and has an indirect impact on privacy. The cloud dimension has 3 main characteristics, each of which has its specialty: architecture, deployment, and communication. According to the NIST definition, the cloud can be defined based on its characteristics as follows: an architecture or service model, which is defined based on its limited taxonomy, and it can also be defined based on its deployment model with service delivery or business operation, which can affect its features [48]. It is worthwhile to mention that each state of these components will

![Image of proposed taxonomy of privacy in the health cloud]

![Image of definitive boundaries between "security," "legal," and "privacy" in digital health]

[Figure 2. Proposed taxonomy of privacy in the health cloud. IaaS: infrastructure as a service; ICAM: identity credential access management; PaaS: platform as a service; PDA: personal digital assistant; SaaS: software as a service.]

[Figure 3. Definitive boundaries between “security,” “legal,” and “privacy” in digital health.]
affect the privacy of information in the cloud, which cannot be ignored.

Furthermore, several methods of communication can be defined between the cloud providers and the cloud customers in the cloud. Each of them contains characteristics having an indirect effect on privacy. These aspects are grouped into 3 parts in Figure 4, with each containing subcomponents.

Figure 4. Components of the cloud dimension. IaaS: infrastructure as a service; PaaS: platform as a service; SaaS: software as a service.

Architecture or Service Model
There are several service models defined for the cloud, and their subcomponents constitute the first component of the cloud dimension [48-51].

Software as a service (SaaS) enables the client to receive services from applications where providers use cloud services to provide the services. It is important to note that the client cannot manage and control the cloud infrastructure, including networks, servers, operating systems, and storage, or even individual application capabilities.

Platform as a service (PaaS) enables the client to provide services on the cloud through consumer-created or acquired applications created using some programming languages, libraries, services, and tools in the cloud. The difference is that the client no longer manages and controls the cloud infrastructure, including networks, servers, operating systems, and storage, or even individual application capabilities. Hence, the client only controls the executed application and the configuration settings for the application-hosting environment.

Infrastructure as a service (IaaS) enables the client to provide processing, storage, network, and other fundamental computing resources, where the client can deploy and run arbitrary software including operating systems and applications. The client does not manage or control the underlying cloud infrastructure and has control over operating systems, storage, and deployed applications and possibly limited control of select networking components.

Deployment Model
The second subcategory of this component is the cloud deployment model [48,49].

Private cloud is used by a single organization that has different consumers and stakeholders. This infrastructure may be administered or handled by that organization, a third party, or their combination and may exist on or off the premises.

Community cloud is used by a specific community of consumers from organizations with shared concerns. This infrastructure may be administered or handled by one or more organizations in the community, a third party, or their combination and may exist on or off the premises.

Public cloud is provided for open use by the general public. This infrastructure may be administered or handled by a business, academic, or government organization or their combination. It exists on the premises of the cloud provider.

Hybrid cloud is composed of two or more distinct cloud infrastructure (private, community, or public), which remain unique entities. They are bound together by standardized or proprietary technology that enables data and application portability.
Communication

Regarding eHealth, providing health care services depends on several communication technologies. This is because each choice contains its characteristics, for which providing security requirements is very important. This section can be divided into the 3 subcategories of synchronicity, network design, and connectivity in terms of its details [22].

Synchronicity is employed to coordinate scheduling and technology. Depending on the schedule, telemedicine services can be provided in 2 modes. The first mode is “real-time,” and it refers to a situation in which the people involved in the care and the care providers are related at the same time with each other but in different location situations. The second mode is “store and forward,” and it refers to a donating situation in which the people involved in the care and the care providers are not connected at the same time. Both modes include different technological infrastructure, including video conferencing, telemetry, and remote sensing, as well as other modes of interactive health communication.

Network design/configuration contains the 3 modes of virtual private networks, open internet, and social networks, and in all of these, the information is posted and then shared. To effectively protect the confidentiality of the information of these states, different security settings are required.

Connectivity may be divided into wired and wireless, with different levels of bandwidth and the attendant speed and resolution or quality of service.

Dimension 2: Legal

According to the assessed studies, the second dimension of this taxonomy is the legal dimension, which can independently provide a framework of legal issues raised in the health cloud. The identified elements of the legal framework have a direct impact on information privacy, which include the 5 main scopes of compliance, data protection, identity credential access management (ICAM), ownership, and quality of service [3]. It should be mentioned that these scopes have a series of subcategories that have been explained in the below text. According to the research findings, privacy and legal issues are completely related and intertwined issues in terms of eHealth. The legal framework scopes are considered as the main components of this dimension (Figure 5).

![Figure 5. Components of the legal dimension. ICAM: identity credential access management.](https://formative.jmir.org/2024/1/e38372/figure5.png)

Compliance

The scope of compliance contains the 3 subscopes of standard, law/act/regulation, and policy/guideline [3].

Standard is a document confirmed through consensus by a recognized body that is provided for repeated and common use, and involves rules, guidelines, or characteristics for products or related processes and production methods in which compliance is not mandatory.

Legislation is comparable with statutory law. Legislation restricts the legal requirements as well as the cost or punishment for breaking the law. Most regulations are issued by governments [52].

Policy or guideline is a formal, brief, high-level report or proposal that indicates an organization’s principles, goals, objectives, and acceptable procedures for a topic [3]. Guideline is related to general instructions in order to achieve policy principles. It provides a framework to implement the required procedures.

Data Protection

The second scope of this dimension encompasses the details of data protection to provide the technical mechanisms of the requirements introduced in the first scope. Data protection is distributed into the 3 main classes of technical, administrative, and physical issues according to the NIST, Health Insurance
Portability and Accountability Act (HIPAA), and Certified Information Systems Security Professional (CISSP) [53].

Technical aims to define supply-related techniques, such as confidentiality, integrity, and nonrepudiation of cloud-based patient data. **Confidentiality** is the guaranteeing process that makes data property or information available or accessible only for authorized people or processes [54]. **Integrity** is the property to ensure the prevention of data or information tampering in an unauthorized manner. **Nonrepudiation** involves service guarantees to make an action taken undeniable.

Administrative involves security infrastructure with a management and development approach, and the implementation and support of systems are discussed [38].

Physical measures policies and procedures to protect the electronic information systems of an entity and the related buildings and equipment from natural and environmental hazards as well as unauthorized intrusion [53].

Identity Credential Access Management

The third scope of the second dimension includes data access management, which is a key factor in patients’ rights and medical ethics. Some pertinent fields like identification and authentication, authorization and access control, auditing and monitoring, and user training issues are also placed in this scope. This is a process in which a unique identity is defined for the person or system [53]. It is known as the first step in the access control process, such that it controls any activity based on the identity or entity of the user.

The process of identification and authentication identifies and authenticates the user, which is possible based on the elements and private data created by the user [53].

Authorization is the process of defining the resources and the level of access for the user [53].

System monitoring or auditing is the last loop of this cycle that plays an important role in recording the log of all the activities, events, and performances of the users who have access. Moreover, it is considered a security check [55], which is very important to identify problems and violations with accounts, access, information disclosure, and system operation.

Data Ownership

The fourth scope of this dimension is related to data ownership, which is responsible for concepts such as information ownership and responsibility. Information control not only speaks about the creation, modification, and other convolutional procedures of data, but also deals with the rights of individuals to grant or revoke their access to others [12].

The ownership of data in the cloud may rely on the nature of the stored data [12]. Data owners must be able to assess, control, and restrict their data during storage, use, and disclosure [56,57]. Nevertheless, the existing shortcomings in the implementation of these statements in the cloud are considered as some of the essential problems for implementing the cloud in the health sector [57]. This scope encompasses some subsopes like data location issues, third party issues, and patient consent.

Data location involves the storage of data. One of the points in the cloud is that data storage can be carried out in any places, even unknown ones.

Patient consent is derived from the ethical and basic principles of human and citizenship rights in terms of the patient’s discretion [58,59]. In this regard, the patient has the freedom to decide whether the tests and surgeries on the organs can be performed before any action [59-61].

Third party is considered as a cloud provider that does not have any role in the patient’s treatment process as a beneficiary. Nevertheless, it has access to all patient information that can cause several legal dilemmas.

Quality of Service

In the fifth scope of this dimension, some issues, such as contract, service availability, and interoperability, are stated, and this has been referred to as quality of service (QoS). It defines guaranteed levels of performance, availability, reliability, interoperability, throughput, performance, response time, etc, all of which are regarded as major factors influencing the quality of service in cloud computing [62].

Contract issues involve a service level agreement (SLA). This is a mutual agreement between cloud service providers (CSPs) and end users. Quality of service management systems monitor resources, storage, networks, virtual machines, service migration, and fault tolerance [63-65].

Availability involves principles ensuring that authorized users at a proper time have access to the data [53].

Interoperability involves the ability of the system to render services using multiple service providers while preserving the integrity of the data. This feature can be used for all kinds of clouds so that if migration to a different system is required, it can be seamlessly carried out [63,64].

Figure 6 illustrates the coverage of information security services by legal dimension elements in privacy taxonomy. It is impossible to preserve privacy without considering information security services in dynamic environments, such as the cloud, as these services can ensure benefits in terms of outsourcing the health records [3].
Dimension 3: Data

Data structures are critical in various cloud environments, such as data storage features, data processing methods, and data preserving solutions, designed for this dynamic ecosystem. The third major dimension of our proposed privacy taxonomy is related to data characteristics, which have been divided into the 5 subcategories of data type, data life cycle, data usability, data sensitivity, and data acquisition methods. Figure 7 depicts the structure of the data dimension, although the components of this dimension have an indirect effect on privacy.

Data Type

Any data related to health conditions, reproductive outcomes, causes of death, and quality of life are health data [66]. It is worthwhile to mention that health data can measure several criteria, such as clinical, environmental, and socioeconomic factors, both at the individual and population levels, including information about a person’s behavior related to his or her wellness. The accumulation of collected and utilized health data occurs when interacting with health care organizations. The collected data typically contain the received service types, the
results of those services, and the clinical outputs or information included in those services.

Health data can be classified into 2 structured or unstructured types. The structured type is a standard that can be simply exchanged between health information systems [66]. For example, a patient’s name, date of birth, or blood test result can be recorded in a structured data format. However, unstructured health data are not standard, unlike the structured type. Emails, audio recordings, or physician notes about a patient are examples of unstructured health data.

Advances in the digital world have improved the collection and use of health data and the databases in the health care industry, which have certain complexities. Overall, in terms of health and care, the data can be classified based on the data type as follows [21]: alphabetical data/textual data/narrative data, numerical data/measurements/coded data, signal data, images/graphic data/pictures, voice, and videos/film.

Data Life Cycle

The second scope of the third dimension in the designed privacy taxonomy is data life cycle, which contains 7 phases [67], each including its requirements for privacy. This cycle encompasses the following phases: data generation, data transmission, data storage, data access, data reuse, data archiving, and data disposal. Data life cycle is comparable with the cloud requirements [68-70].

Data generation involves CSPs receiving requests from their users to generate the related data so that they can assign their access control policies.

Data transmission involves CSPs generating a secure transmission channel to verify user data reliability. Besides, they use encryption methods and the digital certificate mechanism between servers.

Data storage involves the role of CSPs to ensure the conformity of the data in the right place according to the agreements and rules.

Data access involves the CSPs ensuring the validity of users’ identity to protect them from spoofing and verifying the proper execution of the data access policy.

Data reuse can lead to leakage of sensitive or personal data, which is a reason for not providing services in the cloud. In the big data era, data sharing has made this phase quite primitive.

Data archiving involves 3 main operations, including band encryption, long-range storage, and data retrieval.

Data disposal is mainly aimed at placing the data completely and effectively in the cloud and removing unnecessary parts.

Medical Data Usability

Medical data have very diverse functions, including personal interests, public health, medical research, and development [21]. The use of the data in applications is categorized into 2 modes of primary and secondary. Primary is a state where the collected medical data are employed to provide medical care. Secondary is a state where the collected medical data are employed for purposes except care.

Here, it is worth noting that digitization and updating based on medical information technology have increased the use of medical data at both primary and secondary levels [21,71]. The data in the patient’s medical file appear in 1 of the following 3 formats based on their origin and applications: demographic data (identification data/date of birth, admission, discharge, biometric identifiers, phone number, and health record number); clinical data (clinical results/images/summaries, medical data, case management, public health data, performance data, and referral management); and administrative data (insurance documents/financial information and nonclinical data focused on record keeping surrounding a service, such as hospital discharge information; it can be part of an electronic health record as well; claims data, which include information regarding insurance claims).

Data Sensitivity

One of the important points in privacy preservation is the grading of data regarding their degree of importance. It is performed according to data sensitivity to classify the data based on their sensitivity and the extent of their impact on the patient and the health organization. Accordingly, these importance-based data cannot be disclosed, changed, or destroyed without permission. Classification of the database helps to specify the level of security required by the data. The data are categorized based on their importance level as presented below [72].

Restricted sensitivity of data involves a situation where the data have high sensitivity (restricted sensitivity), and unauthorized access and disclosure of the data may result in significant risks, leading to severe or disastrous adverse effects on the operations and assets of an organization or individual, particularly a patient or health care institution. This level of sensitivity needs the highest level of security controls that must be applied to restricted data.

High sensitivity of data involves a situation where the data have high sensitivity, and unauthorized access and disclosure of the data may alter or destroy the data, leading to serious adverse effects on the operations and assets of an organization or individual, particularly a patient or health care provider. This level of sensitivity needs a reasonable level of security controls that should be applied to private data.

Moderate sensitivity of data involves a situation where the data have moderate sensitivity, such that unauthorized access and disclosure, alteration, or destruction of the data would result in moderate risks for the operations and assets of an organization or individual, especially a patient or health care institution.

Low sensitivity of data involves a situation where the data have less sensitivity, and unauthorized access and disclosure, including alteration or destruction of the data, would lead to a limited risk to the operations and assets of an organization or individual, especially a patient or health care institution, or there will not be any risks.

Data Acquisition Methods

When emerging health services arise from the context of modern technologies, such as the cloud, mobiles, wireless multimedia sensor networks (WMSNs), and Internet of Things (IoT), some
new scenarios are raised for health care services. These scenarios consist of patient care in hospitals, patient care at home, and self-care scenarios, with each representing a special type. Hence, the protection of data privacy in each scenario requires its characteristics. The important point in terms of privacy preservation in any of these scenarios is to know how to collect the data. Overall, there are 2 collection methods in all these scenarios [21].

In the manual method, data are described subjectively or objectively by the patient and then inferred by health care providers. Then, these data are entered into health information systems manually through personal portals. In the device base method, several medical devices (either wired or wireless) collect data. Subsequently, the collected data are sent to applications for processing to be used by health care providers. Evidently, different types of devices will be fully described in the next section since they play substantial roles in ensuring privacy.

Dimension 4: Device

The last dimension identified for the taxonomy of privacy is concerned with devices and their features because, with the advancement of technology, data collection is practically entrusted to devices. Thus, ensuring data privacy is the most important concern of stakeholders in terms of diversity of use.

A medical device is an outfit used to evaluate or diagnose a medical condition [61], for example, electrocardiography machines, ultrasound machines, x-ray machines, different sensors, wireless sensors, and mobile health apps that run on smartphones. Ensuring data privacy on these devices has been an issue in many studies, which makes it challenging in terms of the cloud. As a result, regarding privacy in the cloud, it is essential to consider the features of medical devices. Certainly, the elements defined in this section will have an indirect impact on information privacy in the health cloud. As shown in Figure 8, the device dimension is divided into 2 subcategories: device types and application types.

![Figure 8. Components of the device dimension. PDA: personal digital assistant.](https://formative.jmir.org/2024/1/e38372)

Device Types

WMSNs involve wireless sensors, which are some of the most common devices in the medical world. It is considered as the smallest network and has unique features such as large-scale implementation, portability, and reliability [73]. It should be mentioned that the sensor network encompasses a set of independent nodes with low cost, energy, and memory, and limited computing power [73]. The health care industry has experienced a dramatic transformation with the use of WMSNs [74]. The main aim of WMSNs is to collect and transfer environmental data to central databases or remote locations. IoT is another popular tool in recent years [65,75], which has created a new technological paradigm in the health care industry. In eHealth, IoT has provided the possibility of interaction and communication between “things” via the internet. In future health care circumstances, IoT will connect subjects and health care professionals seamlessly [76,77].
These technologies can be used for eHealth applications, such as computer-assisted rehabilitation, early detection of medical issues, and emergency notifications. However, there is an issue because several factors limit the use of these technologies. The most important factor is legal issues related to the privacy and security of the data transmitted [78-81].

Smartphones have become an integral part of life. Thus, they can act as a gateway between the wireless body area network (WBAN) and IoT [82-84]. Essentially, the smartphone’s sensor data or high-resolution camera images are sampled, processed into medical information, and displayed [84]. Using smartphones for medical purposes can be very useful because millions of people have their own smartphones today and can access medical applications designed for health care [61].

Tablets/personal digital assistants have the same applications as smartphones, acting as a gateway to collect medical data beyond providing accessibility to reference textbooks [85].

Personal computers play a pivotal role in information management. Computers potentially alter the traditional approach that physicians use to communicate with patients [86] and have an essential role in information management. In other words, they can change the traditional ways of providing health services to patients and replace them with novel innovative methods [86].

All of the above-mentioned tools with increasing use in medicine must comply with certain features to ensure the privacy of data since ignoring these features can cause some irreparable damage.

Application Types

Care processes across virtually all basic medical specialties and subspecializations associated with disease entities, sites of care, and treatment modalities are included. The vast array of these applications and the complexity of the medical practice and medical specialization are listed separately [22]. The second device subcategory is related to application types.

Basic specialties include content areas around specific diseases, including diabetes, stroke, and posttraumatic stress disorder, and such applications have been developed. Moreover, programs may differ by the site of care, including the intensive care unit, outpatient psychiatry unit, emergency department, and home. Some programs were organized around specific treatment modalities such as rehabilitation and pharmacy. Over 40,000 health applications have been used on smartphones [61]. The World Health Organization has classified mobile health applications as follows [70]: toll-free emergency, health call centers, public health emergencies, mobile telemedicine, information initiatives, appointment reminders, community mobilization, treatment compliance, patient records, surveillance, health surveys, patient monitoring, decision support systems, and awareness raising [20]. Depending on the site of care, these applications have several privacy requirements that must be identified and met. In other words, the privacy of a user’s data in the devices depends on the security of the designed computer programs.

Comparisons to Existing Literature

From these dimensions, it is understandable that the legal dimension and its subcomponents have direct influence on privacy and other dimensions like data, device, and cloud along with their subcomponents, as well as an impact on privacy preservation concerns in the cloud environment.

In contrast with other taxonomies, this taxonomy sides with health data specification and cloud considerations, which appear critical. Therefore, this article first tries to adopt the privacy taxonomy in the cloud context, especially in the health cloud, and the remainder is dedicated to redefining privacy terms with new details.

The health care domain has the most complicated scenarios and most varied data among businesses. Thus, when a taxonomy fits with its requirements, the taxonomy might be appropriate for other domains, businesses, and scenarios that are complex. In fact, the user of the model should exercise judgment as to the appropriate level of detail necessary to test the target hypothesis.

Usability and Experimental Use of This Taxonomy

This well-organized taxonomy has some advantages like presenting the hierarchical root of concepts and inherited features of taxonomies. It provides a heuristic representation of hierarchies with 4 dimensions of privacy and the branches of each dimension. This model allows for more specification of independent variables in model development and with regard to research objectives. Experimental use of this taxonomy depends on the following stages: scenario clarification stage, device and system specification stage, data specification stage, and privacy mapping stage.

In the first stage, the specification of cloud-based scenarios should be clarified. For example, which service model and cloud deployment have been chosen for health care delivery and which communication method has been chosen to connect the stakeholders individually or with each other (synchronized or unsynchronized; wired or wireless).

In the second stage, the use of medical devices and application types for data collection should be prominent and transparent to users because each device has its specific privacy requirements.

In the third stage, data specifications collected in each scenario should be explicited because the veracity in data specifications can lead to variations in privacy strategies. For instance, in one scenario, electrocardiography data detected by the WMSN and transferred via a designated mobile health app to the cloud for storage, processing, and use will have special privacy requirements. In another self-care scenario, subjective data that are just entered through a cloud-based personalized portal need a different set of privacy requirements.

In the fourth stage, to ensure privacy preservation in all means, the identified features in other stages should match with legal components from the proposed taxonomy. For example, proper corresponding security services like authentication, authorization, auditing, confidentiality methods, integrity, and nonrepudiation methods should be chosen for each type of health
care scenario in the digital world. Through these approaches, stakeholders can trust eHealth.

This taxonomy generally has 2 layers of stakeholders (people and organizations, and applications and systems).

The first layer involves people and organizations, including patients; health cloud and general cloud providers; health care providers (eg, physicians and nurses); health care organizations (eg, hospitals, laboratories, drug stores, and physicians’ offices); cloud app developers and vendors; health domain stakeholders (eg, insurance companies and financial organizations); researchers and practitioners working in areas like health, cloud, data management, security, and privacy; medical ethics authorities; organizations planning to design and deploy cloud services and migrate to cloud platforms and services; governments and legislation bodies; and national or international standardization bodies. These groups, according to the scenario clarification stage, device and system specification stage, and data specification stage, map their privacy preferences with respect to the proposed privacy taxonomy.

The second layer involves applications and systems that are affected by this taxonomy, including patient assessment systems; teledmedicine systems; medical imaging systems; public health systems; hospital information systems; clinical information systems; health data secondary use systems; teleconsultation systems; self-care systems; and medical device and wireless system producers (WMSN, IoT, etc). These systems by their provisions can meet privacy requirements according to the proposed privacy taxonomy.

Considering the above-mentioned stakeholders, among the main approaches to deal with privacy challenges, identifying the contributing factors and dimensions can be helpful to manage this domain.

Limitations of the Study and Future Work

This study has some limitations. The interchangeable use of some related terms like “security,” “privacy,” and “legal” made the close assessment of articles difficult, and it was challenging to obtain findings from related comprehensive articles with regard to health industry scenarios.

An attempt was made to include English papers; therefore, the results must be considered within the scope of the English literature and studies in a specific interval. Any papers published before or after the search interval were not included; however, there is always the possibility of missing some relevant information or bias.

Future studies can be conducted to identify or propose definite standards and requirements for privacy preservation in each subcategory of known dimensions. It is hoped that the proposed taxonomy will not only clarify nomenclature proliferation in privacy for the health cloud or eHealth, but also provide a useful guide for research and policy making.

This taxonomy is not a finished product and needs more attention with regard to development and improvement. The process has been initiated with the hope that others in the field will be interested in it and complement the privacy taxonomy in the health cloud. Furthermore, this taxonomy can be considered as the subject matter for experts in various domains of privacy for assessment, testing, revision, and verification.

Conclusion

This research was conducted to identify the factors affecting privacy in the health cloud and classify them to provide a unique and comprehensive taxonomy through the investigation of related papers. It redefines the health cloud privacy term by using a deductive approach.

The proposed taxonomy tries to provide the true and full perspectives of the intervention, management, and handling of other variables, as well as itemize the expected outcomes and determine how best to assess them, thus clarifying the units of analysis in health cloud privacy research.

The subscribed elements have been classified into the 4 main dimensions of cloud, legal, data, and device. Moreover, since taxonomy designing is an iterative process, 15 components and 57 elements were added to these 4 main dimensions in 3 layers. Among all these elements, those classified in the legal dimension had a direct impact on data privacy in the cloud. However, other elements will have an indirect impact on ensuring data privacy in the cloud.

In the second step, this taxonomy tried to clarify the privacy concept in eHealth, which is a multidisciplinary context, and tried to remove the ambiguities between existing definitions in the field of security and define a clear boundary for the words. This led to the distinction and clarification of the overlapping and vague structure of related concepts, and privacy was defined by identifying the discrete sets of variables representing specific privacy configurations and definitive boundaries for “security,” “privacy,” and “legal” terms, which are crucial for future research, policy making, and the actual management of privacy. Therefore, users can have a more accurate definition of the concepts in this field in the future.

This taxonomy is designed to satisfy the needs of emerging technologies, such as mobile health, health IoT, telemedicine, etc, which use cloud devices in their infrastructure. Moreover, it can be considered as supplementary classification and a reference for current privacy, security, or technological taxonomies.

Hence, this taxonomy can cover health industry requirements with its specifications like health data and scenarios, which are considered as the most complicated among businesses and industries. Therefore, the use of this taxonomy could be generalized and customized to other domains and businesses that have less complications.

This paper has also reviewed the most popular previous taxonomies in the privacy domain.
Acknowledgments

I thank the Health Information Department of Allied Medical Sciences for providing very close support, and useful feedback and advice.

Conflicts of Interest

None declared.

References

27. Asaddok N, Ghazali M. Exploring the usability, security and privacy taxonomy for mobile health applications. 2017 Presented at: International Conference on Research and Innovation in Information Systems (ICRIIS); July 16-17, 2017; Langkawi, Malaysia. [doi: 10.1109/ICRIIS.2017.8002472]

29. Kotz D. A threat taxonomy for mHealth privacy. 2011 Presented at: Third International Conference on Communication Systems and Networks; January 04-08, 2011; Bangalore, India. [doi: 10.1109/COMSNETS.2011.5716518]

34. ACM Computing Classification System. Association for Computing Machinery. URL: https://dl.acm.org/ccs [accessed 2024-01-04]

38. International Federation for Information Processing. URL: https://ifip.org/ [accessed 2024-01-04]

44. Iivari J. A paradigmatic analysis of information systems as a design science. Scand J Inf Syst 2007;19(2):Article 5 [FREE Full text]

57. Bernsmed K, Cuzdes D, Jaatun M, Haugset B, Gjere E. Healthcare services in the cloud – obstacles to adoption, and a way forward. 2014 Presented at: Ninth International Conference on Availability, Reliability and Security; September 8-12, 2014; Fribourg, Switzerland. [doi: 10.1109/ares.2014.28]

70. mHealth: new horizons for health through mobile technologies: second global survey on eHealth. World Health Organization. URL: https://iris.who.int/handle/10665/44607 [accessed 2024-01-04]

71. Data types and sources for health information exchange (HIE). HITEQ Center. URL: https://hiteqcenter

Abbreviations

- CSP: cloud service provider
- IoT: Internet of Things
- NIST: National Institute of Standards and Technology
- PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- WMSN: wireless multimedia sensor network

©Zahra Zandesh. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Evaluating the Intensity of Exposure to MTV Shuga, an Edutainment Program for HIV Prevention: Cross-Sectional Study in Eastern Cape, South Africa

Sarah Mulwa1, MSc; Venetia Baker1, MSc; Cherie Cawood2, PGDip; David Khanyile2, BA; Dominique O'Donnell2, BSocSci; Sophie Sarrassat1, PhD; Simon Cousens1, DipMathStat; Isolde Birdthistle1, PhD

1Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
2Epicentre Health Research, Durban, South Africa

Corresponding Author:
Sarah Mulwa, MSc
Faculty of Epidemiology & Population Health
London School of Hygiene & Tropical Medicine
Keppel Street
London, WC1E 7HT
United Kingdom
Phone: 44 20 7636 863
Email: sarah.mulwa@lshtm.ac.uk

Abstract

Background: MTV Shuga is an edutainment campaign designed to equip young people with knowledge, motivation, and informed choices to protect themselves from HIV infection. From 2019 to 2020, a total of 10 episodes of a new dramatic series, MTV Shuga “Down South 2” (DS2), were broadcast via television and the internet, alongside complementary media activities.

Objective: This study aims to investigate whether the intensity of DS2 exposure was linked with positive HIV prevention outcomes in a setting with high HIV prevalence and relatively low levels of HIV testing.

Methods: We analyzed data from a web-based survey of participants aged 15 to 24 years in South Africa in 2020. The survey was promoted via social media platforms of schools, universities, and communities in Eastern Cape, South Africa. The primary exposure of interest was the intensity of exposure to DS2, measured by the number of episodes of DS2 watched on the television or the internet or listened to on the radio (out of 10 episodes). Individuals who had not watched or listened to any DS2 episode were classified according to other MTV Shuga content that they had accessed. We estimated associations between the intensity of DS2 exposure and HIV-related outcomes, including knowledge of HIV status, awareness of HIV self-testing (HIVST) and pre-exposure prophylaxis (PrEP), uptake of HIVST, and demand for HIVST and PrEP, adjusting for potential confounders using multivariable logistic regression.

Results: Among the 3431 survey participants, 827 (24.1%) were exposed to DS2. Specifically, 18.1% (622/3431) watched or listened to only 1 DS2 episode, and 2.4% (82/3431), 1.7% (58/3431), and 1.8% (62/3431) watched or listened to 2 to 4, 5 to 7, and 8 to 10 DS2 episodes, respectively. Increasing the exposure to DS2 was associated with improvements in most outcomes. Exposure to multiple episodes (eg, 2-4, 5-7, and 8-10) was associated with successively higher odds of knowing one’s HIV status, awareness of PrEP and HIVST, and uptake of HIVST compared with no MTV Shuga exposure, albeit with statistical uncertainty around some estimates. The interest in using HIVST or PrEP was high overall (>80%), with no measurable differences by DS2 intensity.

Conclusions: We found evidence consistent with a dose-response relationship between MTV Shuga DS2 exposure and outcomes, including knowledge of HIV status, awareness and uptake of HIVST, and awareness of PrEP among young people in Eastern Cape. This indicates that greater engagement with a youth-focused edutainment campaign can improve HIV testing and prevention options in a setting and population with high need. However, only a few participants accessed multiple DS2 episodes despite its availability on multiple media platforms. We conclude that there is potential to benefit more young people by increasing access to and interest in the show.

(JMIR Form Res 2024;8:e44111) doi:10.2196/44111
Introduction

Background

Over the course of the HIV/AIDS epidemic, edutainment and mass media campaigns have played an important role in health promotion, with some successfully raising awareness of HIV transmission, prevention, and treatment as well as contributing to increases in condom use [1-10]. To reach their target audiences, campaigns have used different modes of delivery such as print (eg, comic books), audio (eg, radio), video campaigns (eg, television), celebrity influencers, the use of peers or community workers, or a combination of different strategies [1,10]. As technology and the internet have become more accessible, edutainment campaigns have expanded to incorporate digital solutions, such as social media, mobile phone apps, websites, and on-demand streaming channels, to achieve broader reach [3,11].

Progress in reducing new HIV infections has been reported in many countries [12]. However, gaps within the HIV prevention cascade persist among young people [13,14], a key target population for HIV prevention in many African countries. In South Africa, for instance, the analysis of survey data indicates that knowledge of HIV status among individuals aged 15 to 24 years has steadily increased from 19% in 2005 to 59% in 2017, but this proportion is still low compared with older age groups [15]. HIV testing is a crucial step in HIV prevention and treatment programming [12]. As a complement to provider- or client-initiated HIV testing and counseling, HIV self-testing (HIVST) can help reduce the testing gap among younger individuals who may prefer convenience and privacy and who may forego or be unable to access health care facilities [12,16]. In addition, awareness and uptake of pre-exposure prophylaxis (PrEP), which is now recommended as part of combination prevention for individuals at increased risk of HIV acquisition, remains low among young people [17]. As new HIV prevention options become available, edutainment campaigns can be adopted to enhance awareness through messaging that resonates with young people. This can, in turn, create demand for, facilitate uptake, and support the effective use of such options among young people.

Evidence of the impacts of edutainment campaigns that rely on dramatized series among young people has grown in recent years but remains limited [1,6,8,9]. MTV Shuga is an edutainment campaign designed to equip young people with knowledge and motivation to protect themselves from HIV infection while navigating healthy relationships. Shuga uses compelling characters and storylines to disseminate messages on HIV prevention through a series of parallel but interlinked storylines, which are offered over multiple episodes and media channels. From 2019 to 2020, a new series of MTV Shuga called Down South 2 (DS2), comprising 10 episodes, was produced in South Africa. DS2 episodes were broadcast via television and the internet alongside complementary media and offline activities, which included a documentary, peer-led discussions, DS2 graphic novels, and community-based viewing events [6,18]. The producers of DS2 conducted formative research through focus group discussions with young people to develop and validate the content, storylines, character development, and scripts, as they did for all previous MTV Shuga series [6,19,20]. Briefly, DS2 storylines largely revolve around characters who have recently left high school and are navigating life and the challenges that many young people face, including financial hardship, family conflict, and sexual relationships. Detailed descriptions of example storylines for DS2 have been documented previously [19]. In a recent evaluation of the DS2 series among young people aged 15 to 24 years in South Africa, we found that young people who engaged with the DS2 campaign (any component) were more likely to know their HIV status, use HIVST, and be aware of PrEP compared with those who did not engage with DS2 [6]. However, this analysis did not explore the intensity of DS2 exposure and whether greater exposure is linked with greater impacts.

In the absence of randomization, exploring whether the impact of an intervention differs across different intensities of exposure can support the plausibility of a causal association between the intervention and the outcomes [21,22]. Although little information exists regarding associations between the amount of exposure to edutainment campaigns and HIV-related outcomes among young people [1,8], published evidence from mass media campaigns in general populations suggests that high exposure intensity is associated with better health outcomes. In an evaluation of a weekly television soap opera on HIV/AIDS in Côte d’Ivoire by Shapiro et al [23], women who had watched ≥10 episodes (out of 20) were more likely to use condoms compared with nonviewers, whereas no effect was seen among women who watched <10 episodes. The authors concluded that repeated exposure to relevant content through continuous engagement partly contributed to the observed effects [23]. In an evaluation of an intervention to address domestic violence in South Africa (Soul City campaign, “SC4”), participants in rural residences with high exposure to SC4 television media (accessed ≥9 out of 13 episodes) were more likely to “do something to stop domestic violence” compared with those with no or low (<5 episodes) exposure, with little effect seen among those with moderate exposure (5-8 episodes) [24].

Objectives

In this study, we investigated whether the intensity of DS2 exposure was linked with differential impacts on HIV prevention outcomes. Understanding and documenting such effects can offer insights to implementers and program designers on ways to maximize engagement and benefits for adolescents and young adults.

Methods

Study Setting, Sample, and Data Collection

The analysis for this paper was based on quantitative data from a mixed methods evaluation study conducted in 2020. This
study aimed to evaluate the impacts of engagement with DS2 on HIV-related outcomes among young people in Eastern Cape, South Africa. The quantitative component used a self-administered web-based survey hosted on a website free of internet data charge for users and captured sociodemographic characteristics; exposure to MTV Shuga content (e.g., how young people engage with DS2 and how many episodes they watched or listened to); and outcomes including knowledge of HIV status, awareness and uptake of HIVST, and awareness of PrEP. The survey was promoted via social media platforms; through targeted advertisements; and via social media accounts of schools, universities, and communities in the Eastern Cape. To avoid the risk of SARS-CoV-2 transmission, all study activities were conducted remotely. Additional details of the mixed methods evaluation are documented elsewhere [6].

Measures

Exposure Variables

In this study, the primary exposure of interest was the intensity of exposure to DS2 dramatic series, measured by the number of episodes of DS2 watched on television or the internet or listened to on the radio (out of 10 episodes). Some individuals had not watched or listened to any DS2 episodes but accessed other formats of Shuga, including Down South 1 (DS1, the first series of Down South), which preceded DS2. Rather than grouping these individuals with those not exposed to any Shuga content, we classified them based on the specific MTV Shuga content they had accessed. These additional categories captured exposure to other MTV Shuga content, for which the intensity could not be inferred. On the basis of this definition, seven exposure categories are analyzed in this paper: (1) no exposure to MTV Shuga content, (2) exposure to any MTV Shuga format other than the DS2 dramatic series, (3) exposure to DS1 series, (4) exposure to only 1 DS2 episode, (5) exposure to 2 to 4 DS2 episodes, (6) exposure to 5 to 7 DS2 episodes, and (7) exposure to 8 to 10 DS2 episodes.

To understand with whom young people watched or listened to DS2 and whether this influenced the intensity of DS2 exposure and the impacts of exposure, we generated a secondary exposure variable with four categories as follows: watched or listened to DS2 (1) alone, (2) with peers only (e.g., friends or partners), (3) with parents (e.g., mother, father, grandparents and siblings or peers), and (4) with siblings (e.g., siblings only or siblings and peers).

Outcome Variables

Outcomes included knowledge of HIV status, awareness and willingness to use HIVST and PrEP, and the uptake of HIVST. Furthermore, we analyzed 3 sexual behavior outcomes (ever had sex, had sex in the past 12 months, and condom use during last sex with current or last partner [in the past 12 months]). The definition of each of the outcomes is summarized in Multimedia Appendix 1. All measures were self-reported.

Analysis

We summarized the frequencies and proportions of respondents reporting each of the above-mentioned outcome measures based on the intensity of DS2 exposure. We estimated the associations between the intensity of DS2 exposure and each outcome using multivariable logistic regression models, adjusting for potential confounding variables. To limit the number of confounding variables adjusted for in the regression models, the selection of covariates in this study was informed by an earlier analysis that assessed the effects of binary exposure to DS2 (yes or no) on the abovementioned outcomes [6]. The initial set of confounding variables was identified using a directed acyclic graph to represent the hypothesized causal relationship between exposure to DS2, study outcomes, and other sociodemographic characteristics [6]. Only variables associated with each outcome at $P \leq 0.10$ in the previous analysis were included in this analysis. From these regression models, we present the unadjusted and fully adjusted odds ratios (aORs) with their respective 95% CIs. To assess evidence of a dose-response relationship between DS2 intensity and the odds of each outcome, we compared 2 multivariable models: in the main model, the intensity of DS2 exposure was included as a categorical variable (model 1), whereas the other model assumed a linear relationship (model 0). The results from model 0 indicated whether the data were consistent with a linear trend, whereas a likelihood ratio test comparing model 0 with model 1 provided additional information regarding whether the relationship was more complex than linear [25]. All multivariable logistic regression models were restricted to individuals with nonmissing responses for each outcome. This decision was informed by the earlier analysis, which showed similar findings between complete case analysis and imputation methods [6]. In a secondary analysis, we assessed (1) whether the distribution of intensity of DS2 exposure varied by who young people watched or listened to DS2 with using χ^2 tests and (2) whether these variations had differential effects on outcomes of interest following the regression approach described previously. This secondary analysis was conducted only among individuals who said they had watched or listened to DS2.

Ethical Considerations

Ethics approvals were obtained from the Biomedical Research Ethics Committee at the University of KwaZulu-Natal (Ref: BREC/00000477/2019), the London School of Hygiene and Tropical Medicine (Ref: 17996), and the World Health Organization (Ref: ERC.0003283). All participants aged ≥18 years provided web-based consent, and participants aged <18 years provided their informed assent, with their parents or guardians providing informed consent [6]. To ensure participants’ confidentiality, we did not collect any identifying information other than mobile phone numbers for those who completed the survey to facilitate transfer of mobile data credit of ZAR50 (approximately US$5). We de-identified the data prior to conducting the analysis.

Results

Characteristics of the Study Sample

A total of 4145 records from the web-based survey were created by the users. In total, 82.8% (3431/4145) of the records were taken forward for analysis after removing records without full consent (407/4145, 9.8%) or sex information (144/4145, 3.5%) and likely duplicates (163/4145, 3.9%). We identified potential
duplicates using a combination of date of birth and mobile phone numbers. Respondents were predominantly female (2020/3431, 58.9%), aged 20 to 24 years (2352/3431, 68.6% vs 1079/3431, 31.5% aged 15 to 19 years), enrolled in education (2857/3431, 83.3%), and resided in urban settings (2923/3431, 85.2%; Table 1). Household ownership of media assets was high, with proportions ranging from 56.8% (1949/3431) for computers or other digital devices to 82.5% (2832/3431) for televisions. Most respondents had their own smartphones (2922/3431, 85.2%), and 50.8% (1744/3431) had their own computer. Digital media engagement was high in the study population: 86.1% (2953/3431) reported using the internet and social media platforms at least once a week, and 74.1% (2542/3431) and 62.4% (2141/3431) watched television or listened to the radio at least weekly, respectively. A detailed summary of the study population has been described elsewhere [6].
Table 1. Sociodemographic characteristics of the survey participants overall and by intensity of DS2 exposure (N=3431).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Exposure categories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No MTV Shuga exposure</td>
</tr>
<tr>
<td></td>
<td>Exposure to other MTV Shuga formats</td>
</tr>
<tr>
<td></td>
<td>Exposure to DS1</td>
</tr>
<tr>
<td></td>
<td>Exposure to DS2 episode</td>
</tr>
<tr>
<td></td>
<td>Exposure to 2-7 DS2 episodes</td>
</tr>
<tr>
<td></td>
<td>Exposure to 8-10 DS2 episodes</td>
</tr>
<tr>
<td></td>
<td>Total (N=3431), n (%)</td>
</tr>
<tr>
<td>Age group (y), n (%)</td>
<td></td>
</tr>
<tr>
<td>15-19 (n=1079)</td>
<td></td>
</tr>
<tr>
<td>20-24 (n=2352)</td>
<td></td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male (1317)</td>
<td></td>
</tr>
<tr>
<td>Female (n=2020)</td>
<td></td>
</tr>
<tr>
<td>Other (n=94)</td>
<td></td>
</tr>
<tr>
<td>Schooling and employment, n (%)</td>
<td></td>
</tr>
<tr>
<td>In school (n=726)</td>
<td></td>
</tr>
<tr>
<td>TVET (n=967)</td>
<td></td>
</tr>
<tr>
<td>University (n=1164)</td>
<td></td>
</tr>
<tr>
<td>Employed (n=106)</td>
<td></td>
</tr>
<tr>
<td>Unemployed (n=357)</td>
<td></td>
</tr>
<tr>
<td>Unknown (n=111)</td>
<td></td>
</tr>
<tr>
<td>Language spoken at home, n (%)</td>
<td></td>
</tr>
<tr>
<td>English (n=259)</td>
<td></td>
</tr>
<tr>
<td>IsiXhosa (n=2745)</td>
<td></td>
</tr>
<tr>
<td>Zulu (n=224)</td>
<td></td>
</tr>
<tr>
<td>Other (n=203)</td>
<td></td>
</tr>
<tr>
<td>Province, n (%)</td>
<td></td>
</tr>
<tr>
<td>Eastern Cape-Mthatha (n=2462)</td>
<td></td>
</tr>
<tr>
<td>Eastern Cape-O.R. Tambo or other parts of Eastern Cape (n=364)</td>
<td></td>
</tr>
<tr>
<td>Other provinces (n=536)</td>
<td></td>
</tr>
<tr>
<td>Unknown (n=69)</td>
<td></td>
</tr>
<tr>
<td>Residence, n (%)</td>
<td></td>
</tr>
<tr>
<td>Urban setting (n=2923)</td>
<td></td>
</tr>
<tr>
<td>Rural setting (n=287)</td>
<td></td>
</tr>
<tr>
<td>Unknown (n=221)</td>
<td></td>
</tr>
<tr>
<td>Food insecurity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Never or rarely (n=1878)</td>
<td></td>
</tr>
<tr>
<td>Sometimes (n=1139)</td>
<td></td>
</tr>
<tr>
<td>Often or always (n=218)</td>
<td></td>
</tr>
<tr>
<td>Unknown (n=196)</td>
<td></td>
</tr>
<tr>
<td>Relationship status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Not in a relationship (n=1453)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Exposure to 8-10 DS2 episodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No MTV Shuga exposure</td>
</tr>
<tr>
<td></td>
<td>Exposure to other MTV Shuga formats</td>
</tr>
<tr>
<td></td>
<td>Exposure to DS1</td>
</tr>
<tr>
<td></td>
<td>Exposure to DS2 episode</td>
</tr>
<tr>
<td></td>
<td>Exposure to 2-7 DS2 episodes</td>
</tr>
<tr>
<td></td>
<td>Total (N=3431), n (%)</td>
</tr>
</tbody>
</table>

Data:
- Table 1 presents sociodemographic characteristics of survey participants, including age, sex, schooling, employment, language spoken at home, province, residence, food insecurity, and relationship status.

Notes:
- Table entries include counts and percentages for different exposure categories.
- Some categories show higher numbers due to varying sample sizes.
- The data reflects a comprehensive overview of participant characteristics.
Intensity of Exposure to MTV Shuga DS2

The components and proportions comprising each exposure category are summarized in Table 2. Of 3431 respondents, 1487 (43.3%) had been exposed to some form of MTV Shuga content. This comprised 9.9% (n=338) of the respondents exposed to MTV Shuga formats other than the DS2 dramatic series, 9.4% (n=322) of the respondents exposed to DS1 but not DS2, and 18.1% (n=622) of the respondents exposed to 1 DS2 episode. The proportion of respondents exposed to multiple DS2 episodes was low at approximately 2% within each category of 2 to 4 episodes (84/3431, 2.4%), 5 to 7 episodes (59/3431, 1.7%), or 8 to 10 episodes (62/3431, 1.8%). Repeated exposure to DS2 episodes was mainly through television or the internet (Table 2).
Table 2. Components used to define exposure categories and proportions of young people accessing each component (N=3431).

<table>
<thead>
<tr>
<th>Exposure category and components</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No MTV Shuga exposure</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1944 (56.7)</td>
</tr>
<tr>
<td>Exposure to other MTV Shuga formats</td>
<td></td>
</tr>
<tr>
<td>Watched the MTV preview of the show called 16 and Pregnant</td>
<td>856 (24.9)</td>
</tr>
<tr>
<td>Watched MTV public service announcements with short MTV videos with health messages</td>
<td>596 (17.4)</td>
</tr>
<tr>
<td>Watched any MTV Shuga Alone Together episodes on YouTube (Google LLC) or the MTV Shuga website</td>
<td>280 (8.2)</td>
</tr>
<tr>
<td>Searched for information on HIV on the MTV Shuga website</td>
<td>210 (6.1)</td>
</tr>
<tr>
<td>Answered a polling question about an MTV Shuga DSb episode</td>
<td>267 (7.8)</td>
</tr>
<tr>
<td>Ever posted any comments about an episode of MTV Shuga DSe</td>
<td>294 (8.6)</td>
</tr>
<tr>
<td>Exposed to other Shuga formats only: said yes to at least one of the above (but not exposed to DS1 or DS2)</td>
<td>338 (9.9)</td>
</tr>
<tr>
<td>Exposure to DS1 episodes</td>
<td></td>
</tr>
<tr>
<td>Ever watched MTV Shuga DS1 on television, MTV Shuga website, or YouTube</td>
<td>763 (22.2)</td>
</tr>
<tr>
<td>Ever listened to MTV Shuga DS1 on the radio</td>
<td>245 (7.1)</td>
</tr>
<tr>
<td>Exposed to DS1: said yes to at least one of the above (but not exposed to DS2)</td>
<td>322 (9.4)</td>
</tr>
<tr>
<td>Exposure to 1 DS2 episode</td>
<td></td>
</tr>
<tr>
<td>Ever watched 1 MTV Shuga DS2 episode on television, MTV Shuga website, or YouTube</td>
<td>238 (6.9)</td>
</tr>
<tr>
<td>Ever listened to 1 MTV Shuga DS2 episode on the radio</td>
<td>71 (2.1)</td>
</tr>
<tr>
<td>Read the MTV Shuga DS2 graphic novelg</td>
<td>344 (10)</td>
</tr>
<tr>
<td>Watched the documentary called MTV Shuga in real life that was broadcast at the end of DS2</td>
<td>386 (11.3)</td>
</tr>
<tr>
<td>Attended small group discussion facilitated by a peer educator on DS2 (at a clinic, school, university, TVETh, or somewhere else)g</td>
<td>513 (14.9)</td>
</tr>
<tr>
<td>Attended a community event on DS2 anywhereg</td>
<td>292 (8.5)</td>
</tr>
<tr>
<td>Exposed to 1 DS2 episode (exposure to any of the listed components)</td>
<td>622 (18.1)</td>
</tr>
<tr>
<td>Exposure to 2-4 DS2 episodes</td>
<td></td>
</tr>
<tr>
<td>Ever watched 2-4 MTV Shuga DS2 episodes on television, MTV Shuga website, or YouTube</td>
<td>75 (2.2)</td>
</tr>
<tr>
<td>Ever listened to 2-4 MTV Shuga DS2 episodes on the radio</td>
<td>30 (0.9)</td>
</tr>
<tr>
<td>Exposed to 2-4 DS2 episodes either on television, MTV Shuga website, YouTube, or radio</td>
<td>84 (2.5)</td>
</tr>
<tr>
<td>Exposure to 5-7 DS2 episodes</td>
<td></td>
</tr>
<tr>
<td>Ever watched 5-7 MTV Shuga DS2 episodes on television, MTV Shuga website, or YouTube</td>
<td>53 (1.5)</td>
</tr>
<tr>
<td>Ever listened to 5-7 MTV Shuga DS2 episodes on the radio</td>
<td>17 (0.5)</td>
</tr>
<tr>
<td>Exposed to 5-7 DS2 episodes either on television, MTV Shuga website, YouTube, or radio</td>
<td>59 (1.7)</td>
</tr>
<tr>
<td>Exposure to 8-10 DS2 episodes</td>
<td></td>
</tr>
<tr>
<td>Ever watched 8-10 MTV Shuga DS2 episodes on television, MTV Shuga website, or YouTube</td>
<td>59 (1.7)</td>
</tr>
<tr>
<td>Ever listened to 8-10 MTV Shuga DS2 episodes on the radio</td>
<td>7 (0.2)</td>
</tr>
<tr>
<td>Exposed to 8-10 DS2 episodes either on television, MTV Shuga website, YouTube, or radio</td>
<td>62 (1.8)</td>
</tr>
</tbody>
</table>

aPeople exposed to other MTV Shuga formats only were not exposed to Down South 1 or Down South 2.

bDS: Down South series.

cDS2: Down South 2.

dDS1: Down South 1.

eParticipants exposed to DS1 may have been exposed to other MTV Shuga formats (but not DS2).

fParticipants exposed to DS2 may also have been exposed to DS1 or other MTV Shuga formats.
Participants were classified as having watched 1 episode of DS2. hTVET: technical and vocational education and training.

Of the 238 participants who had watched DS2 on television, MTV Shuga website, or YouTube, 162 (68.1%) had started watching DS2 the year before our evaluation. The intensity of exposure to DS2 was similar across most categories of participant characteristics, although there were some relatively small differences of approximately 5% to 8% in absolute terms for schooling or employment status, sexual history, and food insecurity; 9.7% (129/1330) of those who had ever had sex accessed ≥2 DS2 episodes compared with 3.2% (41/1291) of those who had never had sex, the corresponding proportions were 11.9% (26/218) among those who reported experiencing food insecurity often versus 6.2% (70/1139) among those who experienced moderate food insecurity, and approximately 9.5% (69/726) among those in school or university versus 2% (19/967) among those in technical and vocational education and training institutions (Table 1).

Regression Results for DS2 Intensity

The proportion of respondents who knew their HIV status, were aware of PrEP and HIVST, and had used HIVST (ever and in the past year) increased with increasing DS2 exposure intensity. There was evidence of a nonlinear association between the intensity of DS2 exposure and knowledge of HIV status (nonlinear \(P = .06\)), awareness of PrEP \((P < .001)\), and awareness of HIVST \((P = .003)\). For uptake of HIVST and willingness to use HIVST or PrEP, the data were consistent with a linear trend \((P = .38\) for lifetime use of HIVST; \(P = .33\) for use of HIVST in the past 12 months; \(P = .36\) for willingness to test self with HIVST kit; \(P = .76\) for willingness to give kit to partner; and \(P = .46\) for willingness to take PrEP every day). The proportion of respondents reporting each of these outcomes was always the lowest among those not exposed to any MTV Shuga content (Multimedia Appendix 2).

Knowledge of HIV status was 28.1% (431/1535) among those not exposed to any MTV Shuga content and highest among those who had watched or listened to 8 to 10 DS2 episodes (45/53, 84.9%; Multimedia Appendix 2). In the adjusted analysis, increasing DS2 exposure was associated with increasing knowledge of HIV status. Compared with individuals not exposed to any MTV Shuga content, the aORs for those who had watched or listened to 1 DS2 episode, 2 to 4 DS2 episodes, 5 to 7 DS2 episodes, and 8 to 10 DS2 episodes were 2.65 (95% CI 2.01-3.49), 3.92 (95% CI 2.05-7.48), 3.82 (95% CI 1.84-7.91), and 5.72 (95% CI 2.46-13.32), respectively (Figure 1; Multimedia Appendix 2).

Figure 1. Forest plots summarizing the associations between different MTV Shuga Down South 2 (DS2) exposure intensities and HIV testing and pre-exposure prophylaxis (PrEP) outcomes. HIVST: HIV self-testing.
Similarly, increasing DS2 exposure was associated with increased awareness of PrEP in the adjusted analysis: for example, 47.2% (215/456) of those who had watched or listened to only 1 DS2 episode versus 17.1% (251/1469) of those not exposed to any MTV Shuga content (aOR 2.38, 95% CI 1.83-3.09) and 76% (38/50) of those who had watched or listened to 8 to 10 episodes versus 17.1% (251/1469) of those who were not exposed to any MTV Shuga content (aOR 2.38, 95% CI 1.83-3.09; Figure 1; Multimedia Appendix 2). Exposure to DS2 was not associated with willingness to take PrEP (which was high overall at 1851/2284, 81%; Figure 1; Multimedia Appendix 2).

Regarding lifetime awareness of HIVST (ever heard of HIVST), proportions ranged from 18.8% (284/1509) among those who were not exposed to any MTV Shuga content to 56.4% (270/479) among those who had watched or listened to only 1 DS2 episode and to 75% (39/52) among those who had watched or listened to 8 to 10 episodes. In the adjusted analysis, those exposed to 2 to 4, 5 to 7, or 8 to 10 episodes of DS2 had >5 times higher odds of being aware of HIVST compared with those not exposed to any MTV Shuga content (Figure 1; Multimedia Appendix 2). Lifetime use of HIVST was 26.4% (125/474) among those who had watched or listened to only 1 DS2 episode versus 7.8% (115/1483) among those not exposed to any MTV Shuga content (aOR 2.49, 95% CI 1.83-3.38), 32.8% (21/64) among those who had watched or listened to 2 to 4 DS2 episodes (aOR 3.93, 95% CI 2.16-7.15), 35.2% (19/54) among those who had watched or listened to 5 to 7 episodes (aOR 4.74, 95% CI 2.50-9.02), and 40% (21/53) among those who watched or listened to 8 to 10 episodes (aOR 4.57, 95% CI 2.46-8.50).

Likewise, in the adjusted analysis, watching or listening to an increasing number of DS2 episodes was associated with increased odds of using HIVST in the past year (Figure 1; Multimedia Appendix 2). Among those who had never used an HIVST before, interest in using HIVST on oneself or interest in giving an HIVST kit to a partner was high overall (83% for both), with no differences in the number of DS2 episodes accessed (Figure 1; Multimedia Appendix 2).

Compared with respondents who were not exposed to any MTV Shuga content, DS2 audiences who had watched or listened to multiple episodes of DS2 were more likely to ever have sex in their lifetime and had sex in the past 12 months (Figure 2; Multimedia Appendix 3). Among those who reported having sex within the past 12 months, there was no evidence of a departure from a linear trend between DS2 exposure intensity and condom use (P=.23; Figure 2; Multimedia Appendix 3). There was evidence of a nonlinear association between DS2 exposure intensity and sexual history (ever or in the past 12 months; nonlinear P<.001).

Figure 2. Forest plots summarizing the associations between different MTV Shuga Down South 2 (DS2) exposure intensities and sexual behavior outcomes.
Effects of Other MTV Shuga Content or Formats

Regarding knowledge of HIV status, awareness of PrEP and HIVST, and lifetime uptake of HIVST, there was evidence that exposure to other forms of MTV Shuga content (other than the DS2 dramatic series) was beneficial, compared with no exposure to MTV Shuga content. For instance, knowledge of HIV status was 74.4% (215/289; aOR 2.52, 95% CI 1.78-3.56) among those who had watched DS1 and 63% (182/289; aOR 1.84, 95% CI 1.33-2.54) among those who had accessed other MTV formats compared with 28.1% (431/1535) among those with no exposure to MTV Shuga content (Figure 1; Multimedia Appendix 2). Furthermore, those exposed to these other forms of MTV Shuga content were more likely to have had sex (ever or within the past 12 months) compared with those with no MTV Shuga exposure (Figure 2; Multimedia Appendix 3).

How Young People Watched or Listened to DS2

Among those who had been exposed to at least 1 DS2 episode and provided information on how they accessed the series, 50.6% (119/235) had watched or listened to DS2 with someone, 33.6% (79/235) accessed alone, and 15.7% (37/235) reported a combination of the 2 (Table 3). Among those who had watched or listened to DS2 with someone, 45.5% (71/156) did so with peers only, 25% (39/156) with parents, and 29.5% (46/156) with siblings. The findings were similar by age group (P=.45; Table 3). The intensity of DS2 exposure did not differ significantly by how young people accessed DS2 (P=.46), although higher proportions of repeat viewers watched or listened to DS2 with a parent than those who watched or listened to 1 DS2 episode. For example, 19.3% (16/83) of the participants who accessed 2 to 4 DS2 episodes did so with a parent compared with 2.9% (1/35) among those who accessed 1 DS2 episode (Figure 3). We were unable to establish whether our outcomes of interest differed by the intensity of DS2 exposure, given how young people accessed DS2, because of insufficient data to conduct the regression analyses.

Table 3. Descriptive summaries of how young people watched or listened to Down South 2.

<table>
<thead>
<tr>
<th>Question and response</th>
<th>Age group (y), n (%)</th>
<th>Total (n=235), n (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15-19 (n=104)<sup>a</sup></td>
<td>20-24 (n=131)<sup>a</sup></td>
</tr>
<tr>
<td>Did you usually watch or listen to MTV Shuga Down South season 2 on your own or with someone?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On my own</td>
<td>31 (29.8)</td>
<td>48 (36.6)</td>
</tr>
<tr>
<td>With someone</td>
<td>54 (51.9)</td>
<td>65 (49.6)</td>
</tr>
<tr>
<td>Both</td>
<td>19 (18.3)</td>
<td>18 (13.7)</td>
</tr>
<tr>
<td>With whom did you usually watch or listen to MTV Shuga Down South season 2?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alone</td>
<td>31 (29.8)</td>
<td>48 (36.6)</td>
</tr>
<tr>
<td>With peers only</td>
<td>27 (26)</td>
<td>44 (33.6)</td>
</tr>
<tr>
<td>Friends</td>
<td>24 (32.9)</td>
<td>30 (36.1)</td>
</tr>
<tr>
<td>Friends and partners</td>
<td>1 (1.4)</td>
<td>9 (10.8)</td>
</tr>
<tr>
<td>Partners</td>
<td>2 (2.7)</td>
<td>5 (6)</td>
</tr>
<tr>
<td>With parents plus</td>
<td>22 (21.2)</td>
<td>17 (13)</td>
</tr>
<tr>
<td>Parents</td>
<td>6 (8.2)</td>
<td>3 (3.6)</td>
</tr>
<tr>
<td>Parents and friends</td>
<td>4 (5.5)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Parents, friends, and partners</td>
<td>1 (1.4)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Parents and siblings</td>
<td>5 (6.8)</td>
<td>3 (3.6)</td>
</tr>
<tr>
<td>Parents, friends, and siblings</td>
<td>4 (5.5)</td>
<td>2 (2.4)</td>
</tr>
<tr>
<td>Parents, friends, partners, and siblings</td>
<td>2 (2.7)</td>
<td>6 (7.2)</td>
</tr>
<tr>
<td>Parents, partners, and siblings</td>
<td>0 (0)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>With siblings plus</td>
<td>24 (23.1)</td>
<td>22 (16.8)</td>
</tr>
<tr>
<td>Siblings</td>
<td>15 (20.5)</td>
<td>11 (13.3)</td>
</tr>
<tr>
<td>Siblings and friends</td>
<td>7 (9.6)</td>
<td>6 (7.2)</td>
</tr>
<tr>
<td>Siblings, friends, and partners</td>
<td>2 (2.7)</td>
<td>2 (2.4)</td>
</tr>
<tr>
<td>Siblings and partners</td>
<td>0 (0)</td>
<td>3 (3.6)</td>
</tr>
</tbody>
</table>

^aAmong those who had watched or listened to at least 1 Down South 2 episode and provided information on how they accessed the episodes.
Figure 3. Intensity of Down South 2 (DS2) exposure by how young people watched or listened to DS2 episodes.

Discussion

Key Findings

This study aimed to understand whether the intensity of exposure to the MTV Shuga DS2 series had differential impacts on the outcomes of interest. We found evidence that the levels of knowledge of HIV status, awareness of PrEP, and use of HIVST (ever or in the past year) increased with increased exposure to DS2, consistent with a dose-response effect. We found no evidence of an effect of DS2 exposure intensity on the interest in using HIVST or PrEP (a proxy for demand), which was already high in the study population. In our study sample, repeated exposure to DS2 episodes was mainly through television or the internet.

Regarding how young people access DS2, findings indicate a mix of preferences, with the majority watching or listening to DS2 alone or with peers (eg, friends or partners) and less so with siblings and parents. Although there was little influence of these preferences on the intensity of DS2 exposure, we found higher proportions of repeat viewers watched or listened to DS2 with a parent, compared with those who accessed only 1 episode. This suggests that accessing DS2 with parents may have helped some young people to watch more episodes. However, it is worth noting that some of our study participants avoided watching with parents because they feared that it would be awkward or that the parents would judge or lecture them on sex and relationship matters, as documented in our related qualitative research [19]. Others may have preferred watching or listening to DS2 alone for privacy reasons, as documented in another study [11]. These findings point toward the need to ensure privacy and nonjudgmental spaces in the delivery of campaigns targeted to young populations. Our related qualitative research showed that watching or listening to DS2 spurred interpersonal conversations and discussions with peers and sometimes with parents, as reported elsewhere [3,19]. Discussions where peers engaged in debates about DS2 characters and storylines led to shared learning and support systems where people felt safe to discuss sexual health topics and disclose personal information [19]. This could deepen the influence of the show for the viewer (beyond just watching), for example, through greater internalization, and future research could consider these events as mediators along a pathway between exposure (eg, to MTV Shuga content) and HIV and health outcomes.

The observed dose-response effects on knowledge of HIV status, awareness of PrEP, and use of HIVST (ever or in the past year) might reflect that more exposure facilitates increased levels of narrative engagement and, in turn, helps the viewers or listeners to retain a greater amount of relevant content compared with someone with little or no exposure. This might particularly be true when the audience is interested in finding out what eventually happens to the characters, often facilitated by the immersive nature of the DS2 series. As documented in our qualitative research, the emotional and dramatic storylines kept participants engaged as they wanted to know what would happen next [19]. In addition, the re-emphasis of content across multiple storylines allows participants to access content that they may have missed previously. Previous research has documented that participants in dramatized series tend to actively reflect on the plotlines and often compare the characters’ ways of confronting dilemmas across storylines, which presents a learning opportunity for the audience [3,5]. In a cluster randomized trial of MTV Shuga in Nigeria, the effects of MTV Shuga were stronger for viewers who were more immersed or highly identified with the characters while watching the show [9]. Although we did not measure identification with characters in this analysis, we drew on other evidence from the larger mixed methods study, which indicates that young people found the show relatable. In a miniseries called MTV Shuga: Alone Together (which aimed to disseminate timely and accurate information on COVID-19), developed in the same manner as
DS2, ≥90% of young people (in the same study sample as this paper) who had watched the miniseries indicated that they found it entertaining, informative, memorable, and realistic (I Birdthistle, PhD, unpublished data, February 2021). One of the key findings from the nested qualitative study conducted as part of our research to understand why young people engaged with DS2 was that young people found the show relatable as the storylines reflected real-life issues that they or people they knew experienced [19]. Younger participants appreciated how the show embraced the uncertainty that often surrounds such decision-making (as opposed to simplistic or moralistic messaging). In addition, some viewers reported being introduced to HIVST and PrEP for the first time through the show, and less experienced viewers felt more prepared for future sexual relationships and decision-making based on the scenarios explored in DS2 [19]. The high identification with the DS2 characters and storylines likely enhanced the effect of watching DS2. The larger effects among those who watched or listened to multiple DS2 episodes suggest the potential benefits of viewing dramas as a whole rather than as a series of parallel storylines, as documented elsewhere [5]. However, it is worth noting that a viewer or listener may miss relevant content completely when scenes are relatively few and short [6]. Although there is uncertainty around our effect estimates, given the low proportion of participants who accessed multiple episodes of DS2, there remains a clear overall pattern for these outcomes (except those on demand) that more DS2 exposure is better.

We did not find evidence of a dose-response relationship between DS2 exposure intensity and demand outcomes (ie, interest in using HIVST and PrEP), which were already high in the study population. Similarly, higher DS2 exposure intensity did not result in greater condom use. Although DS2 influenced awareness and motivation to use HIV prevention products and services, including HIV testing and PrEP, the actual provision of these products was not part of the DS2 campaign [6]. Qualitative research findings indicate that many participants were unsure of the availability of these services and products in their own setting, which could partly explain the limited effect on demand for these products [6]. This finding highlights the crucial role that actual provision and access to these HIV prevention tools play in influencing behavior, in addition to awareness and motivation to use these methods [26]. It is possible that our analysis is underpowered to detect smaller differences when assessing the dose-response effect for demand measures, given the high absolute proportions of these outcomes in our study sample and the fact that very few study participants accessed multiple DS2 episodes. MTV Shuga audiences who had watched or listened to multiple episodes were more likely to have had sex in their lifetime or in the past 12 months compared with those who had never engaged with the campaign, suggesting that DS2 may be reaching those most in need of HIV prevention methods. In addition, given the social desirability associated with reporting of sexual behaviors, it is possible that those who watched MTV Shuga episodes felt less judged or stigmatized and so were more likely to be open about sexual history.

Only 6% (205/3431) of the study respondents had accessed ≥2 DS2 episodes despite their availability on multiple media platforms (eg, YouTube [Google LLC], South African Broadcasting Corporation, local radio stations, and MTV Shuga website) and our sample’s high engagement with media (3101/3431, 90.4% watching television, listening to the radio, or watching YouTube at least once a week). The low repeated exposure in our study is consistent with results from an evaluation of MTV Shuga DS1 in KwaZulu-Natal, where only 8% of 1853 adolescent girls and young women aged 13 to 23 years had watched ≥1 episode (out of 24 episodes) [27]. In an evaluation of a 24-episode drama series on sexual and reproductive health among Latinx adolescents and young women in the United States in which participants were randomized to either a control group or 1 of the 4 experimental arms (based on different storytelling formats), only 6% of those assigned to experimental arms went on to watch the full episodes after exposure to different formats [3]. These estimates are much lower than those from multimedia studies targeting general populations, where exposure to multiple episodes (≥5) is as high as 30% [4,23]. The low exposure to multiple episodes in our study may reflect various issues inherent in engaging a relatively young population (aged <25 years). First, young viewers or listeners often have no control over when episodes are aired on television or radio channels and given that they might actively avoid watching or listening to MTV Shuga episodes with parents or older siblings for reasons summarized previously, this can limit their ability to access complete or multiple episodes. Limited affordability and availability of the internet and data plans may prohibit access to content offered via streaming platforms such as YouTube or the MTV Shuga website [28]. Even with extensive efforts to create relatable storylines, we acknowledge that it can be challenging to capture the wide range of complexities in the lives of adolescents and young adults in 1 show, and there may be a proportion of participants who are not interested in the show entirely. In addition, it is possible that some young people may have decided to stop watching or listening after 1 episode because they did not find the episode interesting enough. Future research can aim to understand the complete range of reasons for “disengagement” in different contexts and age groups.

Given our study findings that more DS2 exposure is better for many of the outcomes and the fact that a high proportion of our study sample engaged with “offline” DS2 content, it might be worth finding ways to facilitate and increase offline viewing of DS2 episodes. In particular, peer education and school education programs are good complementary options because they (1) do not require constant internet connectivity (which may prohibit access via YouTube or MTV Shuga website) and (2) can create a safe space for young people (who prefer to watch alone or with peers) to watch without having to worry about the reactions and judgment of older adults. In addition, short clips or extensions can be used to deliver and highlight critical components (eg, HIV testing and PrEP) so that people do not miss them. These could be offered through social media platforms, which are popular among young people. We note here that the specific combinations of activities that program designers and implementers use will depend on the scope and
goals of the campaign. For instance, if promoting high intensity of exposure (ie, access to multiple episodes) is the goal, then complementary activities may need to incorporate and deliver full episodes rather than sharing shorter formats (eg, on social media), with the latter more suited for raising awareness and enhancing interest in general. Many web-based platforms also allow viewers to download episodes and watch or listen later, and sensitizing young people about this option can potentially facilitate more access. The recent inclusion of MTV Shuga on Netflix is likely to widen its reach, although it may reach those who are already connected and able to pay for the service. Furthermore, for some young people, getting their parents interested in watching Shuga might improve their exposure intensity. As we learn from the COVID-19 pandemic, public health players need to be innovative and adaptive, and using a combination of strategies to reach the target populations is worthwhile [29].

Strengths and Limitations

One of the study limitations is that we relied on self-reported measures that are subject to recall bias. Some of the behavioral questions (eg, on sexual history) may also be subject to social desirability bias. To ensure participants’ confidentiality and to help minimize social desirability bias, we did not collect any identifying information (although mobile phone numbers for those who completed the survey were obtained to facilitate the transfer of mobile data credit). Furthermore, the survey was self-administered, and we anticipated that participants would complete the interviews in private, which could increase the accuracy of the self-reported information. Regarding recall bias, we feel that most of our behavioral outcome measures are related to events that people are likely to remember (eg, testing for HIV in the last year and taking PrEP). Many of our questions included options such as “don’t know” and “prefer not to answer” to accommodate participants who may not have an opinion regarding the question at hand. Approximately 6 (68%) out of 10 participants had started watching DS2 the year before we conducted our evaluation, and this may have influenced their ability to accurately recall the exact number of DS2 episodes accessed. Participants who were exposed to DS2 but did not know how many episodes they had watched or listened to were assumed to have been exposed to only 1 DS2 episode. Furthermore, we did not collect information on how frequently offline components such as graphic novels were accessed, and thus, individuals exposed to DS2 content not offered through radio, television, or the internet were also assumed to have been exposed to only 1 DS2 episode. We may have misclassified these individuals if they had indeed been exposed to multiple episodes. Although we adjusted for various potential confounders in all our analyses, we cannot rule out residual confounding and other possible explanations for the observed associations. Moreover, it is possible that those with a higher awareness of HIV in general might be more likely interested in accessing DS2, resulting in reverse causality. The strengths of the study include the assessment of multiple outcomes, the rich data on exposure to multiple MTV Shuga content, and information on how young people accessed DS2. Among those not exposed to DS2, we were able to capture exposure to other MTV Shuga content. Although this resulted in “nonnatural” categories of DS2 exposure intensity, it allowed us to identify whether individuals exposed to other MTV Shuga content had better outcomes than those not exposed to any MTV Shuga content at all.

Conclusions

Several studies have examined the effects of edutainment campaigns on sexual and HIV-related health outcomes among young people; however, few have examined the intensity of exposure and whether increased engagement resulted in greater benefits. In this study, we found that increasing DS2 exposure was associated with increasing knowledge of HIV status, awareness of PrEP, and use of HIVST. This is consistent with a dose-response effect and supports the plausibility of a causal association between DS2 and HIV prevention outcomes among young audiences. Overall, relatively few participants viewed multiple episodes of DS2, and supporting young people to view or listen to more episodes of the DS2 campaign can yield benefits for more young people. If promoting high intensity of DS2 exposure (ie, access to multiple episodes) is the goal for a given campaign, incorporating complementary activities that support the delivery of full episodes rather than sharing shorter formats may be useful. A more complete and immersive experience can be offered through better and more equal digital access and through school programs and peer education programs, taking into account young people’s preferences when designing and delivering these campaigns.

Acknowledgments

The authors would like to thank all the young people who contributed their time to this study during the COVID-19 restrictions in 2020. The authors are grateful to Antonio Duran-Aparicio for the support in making this project possible. The authors acknowledge the dedication of MTV Shuga peer educators and coordinators (Yvonne Diogo and Lesedi Thwala) in South Africa; the resilience of the team at Epicentre Health Research; and the commitment of the MTV Staying Alive Foundation, especially Georgia Arnold and Sara Piot.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

None declared.
Multimedia Appendix 1
Definitions of outcome measures included in the analysis.
[XLSX File (Microsoft Excel File), 11 KB - formative_v81e44111_app1.xlsx]

Multimedia Appendix 2
Associations between different MTV Shuga Down South 2 exposure intensities and HIV testing and pre-exposure prophylaxis outcomes.
[XLSX File (Microsoft Excel File), 16 KB - formative_v81e44111_app2.xlsx]

Multimedia Appendix 3
Associations between different MTV Shuga Down South 2 exposure intensities and sexual behavior outcomes.
[XLSX File (Microsoft Excel File), 14 KB - formative_v81e44111_app3.xlsx]

References

18. MTV staying alive foundation. MTV Shuga Down South. URL: https://www.mtvshugadownsouth.com/episodes/ [accessed 2022-10-17]

Abbreviations

aOR: adjusted odds ratio
DS1: Down South 1
DS2: Down South 2
HIVST: HIV self-testing
PrEP: pre-exposure prophylaxis
Nonuse of Blended Web-Based and Face-To-Face Cognitive Behavioral Therapy for Alcohol Use Disorder: Qualitative Study

Kristine Tarp¹²³, MA, PhD; Regina Christiansen⁴⁵, MA, PhD; Randi Bilberg⁴⁵⁶, MSc, PhD; Simone Borkner¹, BSc; Caroline Dalsgaard¹, BSc; Marie Paldam Folker¹, MA; Anette Søgaard Nielsen⁴⁵⁷⁸, MA, PhD

¹Research Unit of Digital Psychiatry, Centre for Digital Psychiatry, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
²Research Unit of Digital Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
³The National Research Centre for the Working Environment, Copenhagen, Denmark
⁴Unit of Clinical Alcohol Research, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
⁵Psychiatric University Hospital – University Function, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
⁶Department for Finance and Planning, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
⁷Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
⁸Open Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark

Corresponding Author:
Kristine Tarp, MA, PhD
The National Research Centre for the Working Environment
Lersø Parkallé 105
Copenhagen, 2100
Denmark
Phone: 45 21292332
Email: kett@nfaf.dk

Abstract

Background: The use of digital technologies for health care has been the focus of social studies, which have concentrated on the digital divide between individuals who use technology and those who do not—with the latter often being considered as individuals with shortcomings. In Denmark, 91% of the population have computers and 97 out of 100 families have internet access, indicating that lack of access to technology is not the primary reason for nonuse. Although previous studies have primarily focused on participants’ perspectives of using internet-based treatment for alcohol use disorder (AUD), no study has investigated individuals’ reasons to prefer face-to-face treatment over blended face-to-face and internet-based cognitive behavioral therapy (bCBT) for AUD among treatment-seeking populations.

Objective: The aim of this qualitative study was to investigate the nonuse of bCBT among patients with AUD. Specifically, this study aims to explore patients’ reasons for choosing not to receive treatment via this format.

Methods: This study was conducted among Danish patients with AUD who were enrolled in the study “Blending internet treatment into conventional face-to-face treatment for alcohol use disorder (Blend-A)” but had not used bCBT. The participant group consisted of 11 patients with AUD: 3 women and 8 men. The age range of the participants was 29-78 years (mean 59 years). Individual semistructured interviews were conducted using cell phones to gather participants’ reasons for not choosing bCBT. The interviews were recorded, transcribed, and analyzed using thematic analysis. Five authors performed the analysis in 3 steps: (1) two authors read the transcripts and coded themes from their immediate impression of the material, (2) one author provided feedback, which was used to group overlapping themes together or create new themes that better reflected the content, and (3) the remaining two authors provided feedback on the analysis to improve its structure, readability, and relevance to the research aim.

Results: We found that the participants had various reasons for choosing face-to-face treatment over bCBT; these reasons were more related to personal matters and lesser to digital health literacy. We identified 4 themes related to personal matters for choosing face-to-face treatment over bCBT: (1) patients’ need for attending sessions in person, (2) preference for verbal communication, (3) desire for immediate feedback, and (4) feeling more empowered and motivated with face-to-face sessions.

Conclusions: This study provides valuable insight into participants’ perspectives on blended therapy for AUD and highlights the importance of considering personal factors when designing digital health interventions. Our study indicates that most of the...
participants choose not to use bCBT for AUD because they perceive such treatment formats as impersonal. Instead, they prefer direct communication with the therapist, including the ability to express and comprehend facial expressions and body language.

International Registered Report Identifier (IRRID): RR2-10.1186/s12888-021-03122-4

KEYWORDS

alcohol use disorder; blended internet-based and face-to-face cognitive behavioral therapy; nonuse; patient perceptions; qualitative

Introduction

Background

Social studies of the use of digital technologies for health care have focused on the digital divide—the division between individuals using technology and those who do not—the latter viewed as merely individuals with deficits [1,2]. These deficits may cover a range of difficulties and barriers, which can occur when engaging with technology [3]. In general, social groups with higher education and higher income seem to have more knowledge, motivation, and competency in initiating steps toward a healthy lifestyle [4], in addition to having fewer barriers toward digital solutions [5]. For example, Heponiemi et al [6] described how individuals who do not use computers have lesser education, higher unemployment, lower income, and poorer health, and found a risk of digital exclusion among those who have lower socioeconomic status, poorer health, or are more socially isolated. Nonetheless, in Denmark in 2020, 97 of 100 families had internet access, 96% had a mobile phone, and 91% had a computer [7], which indicates that people in Denmark are regular users of digital technologies. Therefore, it may be anticipated that digital treatment interventions targeting individuals with alcohol use disorder (AUD), like guided internet-based cognitive behavioral therapy (iCBT), may be an appreciated intervention among the Danish population, although there may be barriers toward seeking treatments for AUD in general and specifically toward digital solutions.

A review [8] has shown the general barriers toward seeking traditional AUD treatments. For example, Wallhed Finn et al [9] conducted a study among nontreatment seekers with alcohol dependence on their perceptions of alcohol consumption, dependence, and barriers toward seeking face-to-face (FtF) treatment for AUD. They found participants to be generally negative toward FtF treatment, for example, due to stigma and shame. For this group of nontreatment seekers, an internet-based intervention like iCBT can be perceived as a potential first step toward entering treatment—both to assess one’s alcohol use and to receive guidance for suitable treatment.

Barriers toward engaging in iCBT for AUD have not been investigated much. In a study on attrition during a web-based treatment for problem drinkers, Postel et al [10] found the second most common reason for noncompletion of an internet-based intervention to be dissatisfaction with the intervention itself, for example, that it was too time consuming or demanding and did not meet personal needs. In another study of user experiences of internet-based treatment for problematic alcohol use, Ekström and Johansson [11] identified the following barriers toward engaging in internet-based AUD treatment: lack of recognition in the content of the intervention, too much text and repetition, too little (meaningful) support or feedback, lack of contact with a therapist, and lack of guidance.

Combining iCBT with FtF CBT is referred to as blended CBT (bCBT). bCBT for AUD may propose a treatment solution that combines a high level of discretion and flexibility in addition to being guided and person-centered [12]. It might, so to speak, offer the best from both the aforementioned treatment modes. Participants in that study [12] were offered bCBT, but they opted out of using bCBT as they preferred solely FtF CBT. We found this intriguing and important since we anticipated that bCBT, in particular, would be perceived as an attractive offer due to the high familiarity of the Danish population with digital technology. Thus, in this study, we wished to explore participants’ reasons for deciding against and opting out of using bCBT. To our knowledge, no study has previously investigated patients’ reasons to prefer FtF over bCBT or iCBT for AUD among treatment-seeking populations.

Aim

In this study, we sought to understand individuals’ perceptions of bCBT and iCBT for AUD when they are introduced to this type of treatment format by the therapists. In particular, we aimed to explore participants’ reasons for choosing a treatment strategy that solely consists of FtF treatment and not digital solutions, when offered the possibility of a flexible combination of FtF and iCBT.

Methods

Settings

This study is a substudy under the study “Blending internet treatment into conventional face-to-face treatment for AUD (Blend-A)” [12]. At the beginning of the overall study, 18 Danish municipal treatment institutions participated, but only 14 clinics remained throughout the whole study period. The clinics are quite similar in structure and treatment content offers. In Denmark, the municipalities offer AUD treatment free of charge to the individual patient. The treatment is based on treatment manuals stemming from evidence-based treatment methods such as CBT and motivational interviewing (MI) [13]. A typical treatment course entails acute treatment for withdrawal symptoms, followed by a series of either individual or group-based sessions. The duration of the treatment courses depends on the patients’ needs.

A treatment layout for AUD that consists of a combination of FtF treatment and internet-based modules, which was developed in The Netherlands [14], was translated and adjusted to fit Danish language and culture [15]. During the Blend-A study,
all participants entered AUD treatment in the participating clinics were offered to receive all or part of their treatment course in Blend-A. Blend-A is operated as bCBT, where patients can use iCBT on a web-based platform, hosted by the Dutch company Minddistrict, in combination with attending FtF CBT sessions at the clinic. The degree of blending is agreed upon among specific clinics, therapists, and patients. One example is that, when blending, the patient would attend FtF CBT every sixth instead of fourth week. The platform entails 21 sessions with written material, visual resources, and assignments following CBT and MI. The therapist can offer a short paragraph of written feedback on some of the solved assignments for further elaboration during the FtF CBT. The format is flexible and the patients can access the web-based platform when it suits them. The platform can be accessed anonymously, if needed. The patient can go back and look at the earlier solved assignments, if needed. The implementation of the study commenced in June 2020 and ran until ultimo December 2022.

Participant Recruitment

Participants in this study were recruited among the participants in the Blend-A study who did not engage in bCBT. In total, 1033 participants were enrolled in the Blend-A study; of these, 606 (58.6%) did not register for an iCBT profile on the web-based platform, and thus, did not make use of the CBT offer. All Blend-A participants filled out a baseline survey and were invited to fill out a 6-month follow-up survey, no matter to which degree they had made use of bCBT for AUD, if at all. The 6-month follow-up survey was collected electronically or on the telephone by researchers, not knowing until the last questionnaire, whether the Blend-A participants had actually used bCBT for AUD. A random sample of 60 participants participating in the Blend-A study without bCBT were telephoned by author SB and invited to participate in telephone-based individual interviews for this study about their reasons for not wanting to use bCBT for AUD. Some did not answer the telephone, some did not feel that they could contribute as they could not remember having been offered bCBT, and some did not wish to participate and gave no reason for this. Twelve participants agreed to participate and scheduled an appointment for an interview; in 1 case, however, we failed to reach the participant.

Data Collection

Data were collected using semistructured individual interviews with an interview guide, available in Multimedia Appendix 1. The interview guide was not pilot tested, and no repeat interviews were performed. The questions were inspired by relevant subjects found in the literature, asking about the participants’ background, experiences with using digital technology in their everyday lives, and their reasons for not choosing the offered bCBT for AUD. Furthermore, the questions were open-ended, leaving room for pursuing any given direction set by the participant. The interviews were conducted by a psychology student intern, Jakob Godsk Nielsen, and the first author KT. Neither were involved in the clinical treatment in this study. No relationship between the interviewer and interviewee was established prior to study commencement. The interviewees had no prior knowledge about the researchers, and no characteristics about the interviewees were reported to the interviewees other than that the interviewers were researchers. The interviews were conducted over telephone, lasted between 30 minutes and 45 minutes, and were audiotaped and transcribed in NVivo (QSR International) in full length by authors SB and CD. The transcribed interviews were not returned to the interviewees for commenting and corrections, and no field notes were made during the interviews. We used COREQ (Consolidated Criteria for Reporting Qualitative Studies) [16] as a checklist for reporting on the interviews. Data were anonymized and securely stored.

Data Analysis

The transcribed interviews were analyzed in the qualitative software support system NVivo by using thematic analysis [17]. First, all transcripts were read to obtain an overall immediate impression of the material. Along reading, the material was coded by themes that came to the mind of the authors (KT and RC, both female postdocs, who holds MA degrees in anthropology and philosophy, PhD degrees within health sciences, and approximately 10 years of experience within the field). Second, another author (ASN) commented on the transcripts with the coded themes. Based on these comments, the authors (KT and RC) recoded the material with focus on overlapping themes grouped together or recoded with new themes that more accurately specified the content. Lastly, the 2 remaining authors (RB and MPF) gave their feedback on the themes, structure, and readability of the analysis, leading to the final themes as expressed by the participants who had chosen not to use bCBT. The participants did not provide feedback on the findings. The collected themes are further described in the forthcoming results section.

Ethics Approval

This study was conducted according to the current ethical standards. The protocol for the Blend-A study was approved by the scientific research ethics committee of the Region of Southern Denmark (project identification S-20190166G). The Danish Data Protection Agency gave the permission to collect and store data (record 20/12692). After receiving both oral and written information about the study, the participants signed a consent form. Further, participants were informed about their rights to withdraw their consent at any time, without any consequences on their treatment course.

Results

Participant Sample Description

Ultimately, 11 participants participated in this nonuse study. The baseline characteristics of the participants are shown in Table 1. The participant group consisted of 3 women and 8 men, with a mean age of 59 (SD 16) years. The youngest participant was 29 years, and the oldest participant was 78 years. Five of the participants were married or in a relationship, 5 were single, and 1 was widowed. The participants were all educated—either within craftsmanship or had a short, intermediate, or long higher education. Five were currently employed, 3 were unemployed, and 3 had retired. They all described having an everyday schedule, wherein they got up and went about their daily activities. Five had an education—either within education or had a short, intermediate, or long higher education. Five were currently employed, 3 were unemployed, and 3 had retired. They all described having an everyday schedule, wherein they got up and went about their daily activities. Five had an education—either within education or had a short, intermediate, or long higher education. Five were currently employed, 3 were unemployed, and 3 had retired. They all described having an everyday schedule, wherein they got up and went about their daily activities. Five had an education—either within education or had a short, intermediate, or long higher education. Five were currently employed, 3 were unemployed, and 3 had retired.
activities. Besides, 2 of them had additional mental illness, and 4 had somatic illness. The participants had used alcohol problematically for 3-30 years (mean 11 years). Their reasons for seeking treatment were to find someone to talk to and to receive help, support, and advice. They expressed that they needed tools to reduce their alcohol use. During the interviews, the participants self-assessed themselves to be super users of technology (n=2), intermediate users (n=7), and having limited digital competencies (n=2). Compared to the profile of 44,516 patients, who had a total of 88,057 treatment courses in Danish alcohol treatment institutions between 2006 and 2014 [18], our study sample was somewhat older.

Table 1. Baseline characteristics of our study participants compared to those of patients seeking treatment in Danish alcohol treatment institutions in 2006-2014.

<table>
<thead>
<tr>
<th></th>
<th>Nonuse sample in this study (N=11)</th>
<th>National Danish profile [18]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD), range</td>
<td>59 (16), 29-78</td>
<td>46-49<sup>a</sup></td>
</tr>
<tr>
<td>Excessive alcohol use (years), mean (SD), range</td>
<td>11.19 (7.41), 3-30</td>
<td>12-13<sup>a</sup></td>
</tr>
<tr>
<td>Sex (female), n (%)</td>
<td>3 (27)</td>
<td>41<sup>b</sup></td>
</tr>
<tr>
<td>Married/in a relationship (yes), n (%)</td>
<td>5 (45)</td>
<td>30-31<sup>a</sup></td>
</tr>
<tr>
<td>Education (low), n (%)</td>
<td>6 (55)</td>
<td>49<sup>b</sup></td>
</tr>
<tr>
<td>Education (intermediate), n (%)</td>
<td>2 (18)</td>
<td>16<sup>b</sup></td>
</tr>
<tr>
<td>Education (high), n (%)</td>
<td>3 (27)</td>
<td>8<sup>b</sup></td>
</tr>
<tr>
<td>Employment (yes), n (%)</td>
<td>5 (45)</td>
<td>38<sup>b</sup></td>
</tr>
<tr>
<td>Additional mental illness (yes), n (%)</td>
<td>2 (18)</td>
<td>4<sup>b</sup></td>
</tr>
<tr>
<td>Somatic illness (yes), n (%)</td>
<td>4 (36)</td>
<td>N/A<sup>c</sup></td>
</tr>
<tr>
<td>Technology user (low level), n (%)</td>
<td>2 (18)</td>
<td>N/A</td>
</tr>
<tr>
<td>Technology user (intermediate level), n (%)</td>
<td>7 (63)</td>
<td>N/A</td>
</tr>
<tr>
<td>Technology user (high level), n (%)</td>
<td>2 (18)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

^aThese data represent ranges in percentages as mentioned in [18].

^bValues are presented in percentage, as the exact n values are not provided in [18] and cannot be calculated.

^cN/A: not applicable.

Description of Themes

Two participants considered themselves to be technology super users, 7 felt that they were intermediate users, and 2 felt that they were inadequate digital users. The 2 latter participants felt that they had insufficient digital competencies for receiving treatment via the internet, as they did not understand it and felt unacquainted and terrible at it. One participant elaborated as follows:

...I am really bad at internet and all such technical stuff. I am also old. I did not grow up with it. But during that time where I had to be able to use it at work, I learned the basics to manage. Besides that, I have never done more about it. And when I stopped working, I also got rid of the internet. I simply don’t use it. [Participant ID 1002]

It was unclear if the participant was reluctant about bCBT because of insufficient digital competencies or if the participant merely did not find technology use engrossing. The participant did not believe that he or she had the digital competencies to make use of bCBT, even though the participant had been a former internet user and had used technologies at work. However, in general, neither this nor the other participants reported feeling insecure or unsafe about using the internet as such. Nine out of 11 participants who chose to receive FtF CBT instead of bCBT for AUD explained that their choice had rather to do with them feeling a need for attending the sessions in person. This need consisted of multiple facets. The participants seemingly felt being exposed by having to enter a treatment center, thereby accepting that someone might recognize them. They described that when having reached this far in surrendering to the fact that they had an alcohol problem, they could not risk that treatment could fail. The participants had a wish to gain as much as possible from the treatment course, considering FtF CBT to be the safe route to success. The participants considered that when feelings were involved, there was a risk that they would become emotionally upset during the process. When being upset, they anticipated that there might be a difference between being at the computer alone and being in a room with a person who might tell if you were, for example, anxious. One participant described how being in a vulnerable position demands a level of maintenance, which may succeed through verbal communication upheld by the therapist, as this could offer dialogue, nuance, and reflection, asking more deeply into and seeing behind difficult issues. The participants seemed to link physical appearance with the ability to move the therapy forward. Some of the participants explained that videoconferencing and telephone calls would also be okay.
if it was a synchronous conversation but not as a substitute for physical attendance during treatment.

Accordingly, an often mentioned factor that influenced the participants’ choice was that they considered internet-based treatment to be impersonal and that they preferred to be physically present in the same room as the therapist. The perceived benefit of FiF CBT was, according to the participants, the possibility of instantaneous communication. The participants believed being physically near to the therapist would enable a more trustful relationship, as described below:

...here people in question need help, and they need a pat on the back when things go well and help when things go bad. I do not think you can do that over mail (… with an email, you just become a number in a line, instead of a person who needs a shoulder to cry on and an ear that minds to listen…..) When the matter is alcohol, then I do not think it is something that can take place over an email. Because then I think that I would feel pissed on. [Participant ID 957]

The above quote shows how participants perceive internet-delivered therapy to be impersonal—a concept often used in digital technologies although not specified. The quote above shows that what constitutes not perceiving the FiF treatment as impersonal is the ability to feel the presence of the therapist and having the feeling of being understood and respected—something that the participant considered was difficult to be accomplished over an email from the therapist. A participant considered that to receive an email, even if it is a part of the internet-delivered treatment program, was equal to being as a number in a line.

Another factor that had an impact on the participants preferring attending sessions in person was the ability to see the therapists’ body language and look at them into their eyes during the sessions. This ability led the participants to believe that they could better comprehend the therapists and their responses. Being able to have questions elaborated on and clarified immediately was of importance to 5 of the participants. One example concerned personally sensitive subjects, where the participants found it easier to receive a response if they articulated the matters in a conversation compared to an email exchange, wherein the therapist might not have the time to answer right away. The participants’ wish was to have such issues settled instantly. One participant elaborated on the importance of receiving a quick clarification on outstanding matters:

...If I am in front of the therapist I am talking to, I would be able to get a response right here and right now. Then I can park it and it does not have to live inside my body anymore. Then it is out of the body. Away, fine, it is gone, finished (…) then I can move on. Then it doesn’t live inside my brain, fill up space, or spend resources anymore. [Participant ID 1091]

The immediate feedback was of importance to the participants in situations where they felt alone and in doubt about how to understand a question. The physical presence of the therapist enabled them to receive a quick clarification and thus be able to move on. The verbal communication made sense to the participants as they felt safer and assessed it to be more giving. They felt that they could gain more from verbal communication because they could tell, explain, and inform, which enabled them to instantly see reactions or signals from the therapist, which they needed to act on, or give the therapist the possibility to ask questions allowing the participant to elaborate. It was their experience that a message is better understood when you look into each other’s eyes while communicating, as it is easier to reflect on what has been said and let it sink in before one answers and then give a more precise answer based on the discussions and the reflections based on the discussion. Below, is the transcript of one participant as a voice for all:

...It is because there is some communication that you cannot always see, and something happens when you talk to people that does not happen when you write. What happens is that you reflect differently when you have a conversation and a dialogue. It is also easy to write that “all is well.” In a person, you can see if it is and maybe say “well, are you sure about that?” (Laughs). [Participant ID 1128]

Another advantage of FiF mentioned by the participants was that sitting in front of the therapist made them feel more obliged to adhere to the treatment or more compliant in relation to not drinking. The participants expressed how they felt dutiful and believed that if they had agreed upon attending an FiF CBT session, they would not cancel it. They imagined that it would be easier to cancel an internet-based session, thereby giving them an opportunity to choose the easy way out.

The participants also believed that it was beneficial that FiF therapy enabled synchronous sessions with the therapist, while on the web-based platform, the correspondence is asynchronous and the participants can use it when they want, which they believed to be risky for them and thereby the treatment. Sessions held in person make it more difficult to cheat the therapist with regard to drinking compared to web-based sessions, where they considered that it would be easier to continue their drinking. One participant unfolded this drawback as follows:

...When you make an agreement, I think it is nice that you can look each other into the eyes. Especially when it is about alcohol, then I cannot just say “I promise.” There is just something about the human contact. [Participant ID 957]

In other words, the participant considered that the commitment is stronger if expressed FiF to the therapist compared to in writing during a web-based session. Thus, choosing solely FiF CBT rather than also making use of internet-based solutions meant deciding on taking responsibility for and committing strongly to their own treatment. Finally, the participants reported that FiF CBT sessions enable them to concentrate on their situation and focus on the treatment—a dimension that is perceived as necessary to maintain the consistency in their rehabilitation. Thus, we suggest that participants gauge their need for treatment and choose the treatment that best suits them and would be beneficial for them. Participants in this study are aware that they will not continue their treatment if it fails in their life and find that FiF CBT is a better option than just “keeping up appearances” through internet-delivered therapies.
Discussion

This study aims to investigate the perceptions that are prevalent among participants who decide to opt out of the possibility of using bCBT for AUD and instead continue with FtF CBT without merging it with internet-based modules. We found that the participants had various reasons for preferring FtF CBT over bCBT, and these reasons were mainly related to personal choices.

Participants’ Assumed Need for Attending Sessions In Person

Being physically in front of the therapist was considered to strengthen a more personal connection between the participant and the therapist and thus the central reason for preferring a synchronous FtF verbal dialogue. Participants considered that FtF allows for all aspects of communication with the therapist to come into play, including nonverbal communication, eye contact, and body language. In a systematic review on women’s expectations and experiences regarding eHealth treatment, Verhoeks et al [19] found 3 studies that showed women’s negative expectations with regard to receiving eHealth treatment. Those studies showed that the eHealth treatment was perceived as rather impersonal treatment and that the participants valued immediate and empathic responses in their dialogues with the therapist and stressed the importance of nonverbal communication through eye contact and bodily expressions. In the study by Verhoeks et al [19], the women expressed an intuitive preference for FtF CBT. They feared that the absence of personal contact would make their treatment course more impersonal and impact negatively on their alignment with the therapist, their motivation, and consequently on their treatment outcome.

In this study, we found that the participants had similar feelings as they took their rehabilitation process seriously. They chose the treatment form that they believed they could gain the most from—to them, it was FtF CBT. In general, we found that participants choose FtF CBT rather than bCBT because they had been in a vulnerable position in their rehabilitation process. In particular, it was of importance to them to have a sense of privacy and having a person in front of them when the subject is a personal and vulnerable matter. Since some of the participants had recently stopped drinking, they felt vulnerable in the situation because they realized how alcohol had got hold of them and now were dependent on a therapist’s assistance and guidance to help reduce their alcohol use.

Participants Preferring Verbal Communication

In particular, the participants in our study considered verbal communication to be better than digital written communication to express dialogue, nuances, and reflections and to allow clinicians to ask deeper questions and grasp difficult issues. Further, the participants considered that they would gain more from verbal communication than from digital communication, as they assumed that it enabled clinicians to immediately react to participant’s signals and ask questions about their understanding of the said. The review of Verhoeks et al [19] also reported difficulties in explaining complex situations and feelings in written text compared to communicating through verbal FtF sessions. In their study [19], participants commented that they were afraid that the therapist would misunderstand their issues given in writing. In this study, the participants stressed the importance of a conversation, in which they would be able to ask questions and discuss problems with the therapist because they needed a more in-depth dialogue about their problems. These findings are corroborated by Runz-Jørgensen et al [20]. In their study, the participants perceived web-based treatment as undesirable because the therapist would just be waiting for the next person in line and they felt neglected. It should, however, be noted that not all participants agreed with the above interpretation. Other studies report that participants have used text-based interventions for AUD and have found them to be a positive experience in their treatment course [21,22].

The Meaning of Receiving Immediate Feedback on Outstanding Matters

We found that the participants emphasized a need for immediate feedback from their therapist on outstanding matters—a need that they felt that asynchronous digital communication could not fulfill. In situations where they felt alone and in doubt about how to understand a question, it was of importance for them to receive instant elaboration on the matter. Here, the physical presence of the therapist enabled them to receive a quick clarification and thus be able to move on in their rehabilitation. This finding is congruent with findings from the review by Verhoeks et al [19], where the women wished to be able to ask questions and receive feedback from their therapist during their treatment course. The women stressed the importance of physical presence as they otherwise doubted the quality of the feedback. In continuation of this, participants in the study by Runz-Jørgensen et al [20] had a wish for even longer FtF consultations with the therapist as they felt that there was not enough time to ask questions or address concerns that were of importance to them.

It can be hypothesized that integrating videoconference-based conversations with therapists in digital treatment solutions for AUD might acknowledge and apprehend participants’ preferences in terms of being able to communicate at a distance without the loss of sensorial stimulation. Further research is thus needed in order to secure that digital solutions become attractive and preferred by participants. We anticipate that our findings may be used for developing information material addressed to therapists regarding participants’ concerns toward bCBT for the therapist to accommodate the potential participant barriers beforehand. Moreover, our findings may be used to inform participants prior to treatment about their possibilities of combining treatment forms in accordance with their specific needs at specific times.

Strengths and Limitations

This study has limitations. The relatively small sample size (N=11) may be a limitation in this study. However, in an experiment with data saturation and variability, Guest et al [23] found the first 6 interviews to be crucial for the emerging of meta themes. Based on this finding, they recommended a minimum of 6 interviews for developing meaningful themes.
during an inductive analysis. Further, Crouch and McKenzie [24] found that a small number of participants is usable for facilitating the interviewer-interviewee alliance, thereby increasing the validity of semistructured interviews. This study is strengthened by the use of independent parallel coding and code check, which increase internal validity and reliability [25] and thus enhance the credibility of the analysis [26,27]. However, it may be a limitation that we have not used stakeholder check [27]. We saw that, compared to the profiles of the patients in Danish alcohol treatment institutions, our participant population was older. This difference in sample population characteristics may have had an influence on our study results. The relatively higher mean age in our sample may have had an impact, as participants may have less experience with and thereby less interest in using digital interventions [28]. It is also a possibility that the subjects covered in the interview guide and the way of asking by the interviewers may have affected the answers given by the interviewees, but it does not change the fact that they initially did not make use of the bCBT offer.

Conclusion
We found multiple reasons for participants choosing FtF CBT over bCBT. Participants expressed a preference for FtF, in particular, due to positive expectations in the various dimensions of FtF, which they felt were important. The participants were worried that they would not feel as motivated, empowered, and obliged to complete treatment if it partly consisted of iCBT, as they would if it purely consisted of FtF sessions with a therapist.

Acknowledgments
This study was financially supported by TrygFonden (grant 127727). The authors thank the patients and staff at the municipal alcohol use disorder treatment institutions participating in the "Blending internet treatment into conventional face-to-face treatment for alcohol use disorder (Blend-A)" study. The authors also thank all the colleagues working with Blend-A at the Center for Digital Psychiatry and the Research Unit for Clinical Alcohol Research, especially Ramlo Abdulkadir Mohamed and Jeppe Tryggedsson for retrieving data and Jakob Godsk Nielsen for conducting interviews.

Data Availability
The data sets on which this study is based will be made available by the authors on request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Interview guide for patients who opted out of using blended internet-based and face-to-face treatment for alcohol use disorder. [DOCX File, 17 KB - formative_v8i1e45471_app1.docx]

References

Abbreviations

AUD: alcohol use disorder
bCBT: blended cognitive behavioral therapy
Blend-A: Blending internet treatment into conventional face-to-face treatment for alcohol use disorder
COREQ: Consolidated Criteria for Reporting Qualitative Studies
CBT: cognitive behavioral therapy
The Effect of Web-Based Culinary Medicine to Enhance Protein Intake on Muscle Quality in Older Adults: Randomized Controlled Trial

Emily Salas-Groves¹, PhD; Michelle Alcorn², PhD; Allison Childress¹, PhD; Shannon Galyean¹, PhD

¹Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
²Hospitality and Retail Management, Texas Tech University, Lubbock, TX, United States

Corresponding Author:
Shannon Galyean, PhD
Nutritional Sciences
Texas Tech University
1301 Akron Avenue
Lubbock, TX, 79409
United States
Phone: 1 806 834 2286
Email: shannon.galyean@ttu.edu

Abstract

Background: The most common age-related musculoskeletal disorder is sarcopenia. Sarcopenia is the progressive and generalized loss of muscle mass, strength, and function. The causes of sarcopenia can include insufficient nutritional status, which may be due to protein-energy malnutrition, anorexia, limited food access and eating ability, or malabsorption. In the United States, 15.51% of older adults have been diagnosed with sarcopenia. Culinary medicine (CM) is a novel evidence-based medical field that combines the science of medicine with food and cooking to prevent and treat potential chronic diseases. CM helps individuals learn and practice culinary skills while tasting new recipes. Therefore, this program could successfully reduce barriers to protein intake, enabling older adults to enhance their diet and muscle quality.

Objective: This study aimed to examine how a web-based CM intervention, emphasizing convenient ways to increase lean red meat intake, could improve protein intake with the promotion of physical activity to see how this intervention could affect older adults’ muscle strength and mass.

Methods: A 16-week, single-center, parallel-group, randomized controlled trial was conducted to compare a web-based CM intervention group (CMG) with a control group (CG) while monitoring each group’s muscle strength, muscle mass, and physical activity for muscle quality. The CMG received weekly web-based cooking demonstrations and biweekly nutrition education videos about enhancing protein intake, whereas the CG just received the recipe handout. Anthropometrics, muscle mass, muscle strength, dietary habits, physical activity, and cooking effectiveness were established at baseline and measured after the intervention. The final number of participants for the data analysis was 24 in the CMG and 23 in the CG.

Results: No between-group difference in muscle mass ($P=0.88$) and strength (dominant $P=0.92$ and nondominant $P=0.72$) change from the prestudy visit was detected. No statistically significant difference in protein intake was seen between the groups ($P=0.50$). A nonsignificant time-by-intervention interaction was observed for daily protein intake ($P=0.08$). However, a statistically significant time effect was observed ($P≤0.001$). Post hoc testing showed that daily protein intake was significantly higher at weeks 1 to 16 versus week 0 ($P<0.05$). At week 16, the intake was 16.9 (95% CI 5.77-27.97) g higher than that at the prestudy visit.

Conclusions: This study did not affect protein intake and muscle quality. Insufficient consistent protein intake, low physical activity, intervention adherence, and questionnaire accuracy could explain the results. These studies could include an interdisciplinary staff, different recruitment strategies, and different muscle mass measurements. Future research is needed to determine if this intervention is sustainable in the long term and should incorporate a follow-up to determine program efficacy on several long-term behavioral and health outcomes, including if the participants can sustain their heightened protein intake and how their cooking skills have changed.

Trial Registration: ClinicalTrials.gov NCT05593978; https://clinicaltrials.gov/ct2/show/NCT05593978

(JMIR Form Res 2024;8:e49322) doi:10.2196/49322
KEYWORDS
older adults; culinary medicine; protein; muscle mass; muscle strength; physical activity; nutrition intervention; online

Introduction

The guidance of the National Institute on Aging classifies older adults as those aged 65 years and older [1]. As adults age, several age-related diseases can occur, the most common being cardiovascular disease, cancer, Alzheimer disease, Parkinson disease, osteoporosis, and sarcopenia [2]. A Global Burden of Disease study in 2017 [3] revealed that 31.4% of all diseases were age related. These age-related diseases, combined with the body and life changes that occur with aging, could contribute to compromised nutritional status. These body and life changes can be physiological, psychosocial, and economic [4]. All these factors play a significant role in nutrition and food choices, which are barriers to appetite and diet quality. Therefore, current research strategies aim to acquire healthy aging and prevent age-related diseases.

Aging can lead to age-related musculoskeletal disorders [5] caused by an imbalance between muscle protein’s anabolic and catabolic pathways, leading to overall skeletal muscle mass (SMM) loss [6]. The most common age-related musculoskeletal disorder is sarcopenia. Sarcopenia is the progressive and generalized loss of muscle mass, strength, and function [2,7,8]. Muscles affected include skeletal [9], smooth [10], and cardiac [11]. Consequently, sarcopenia increases fall and fracture risk [12], impairs daily living activities performance [13], increases cognitive impairment [14], decreases the quality of life [15], and leads to death [16].

In research, the general sarcopenia prevalence ranges from 0.2% to 86.5%, with prevalence in women ranging from 0.3% to 91.2% and prevalence in men ranging from 0.4% to 87.7% [17]. In the United States, 15.51% of older adults have been diagnosed with sarcopenia, demonstrating its magnitude of being a public health burden [18]. Therefore, early identification and intervention are the key factors for achieving improved sarcopenia outcomes. According to the European Working Group on Sarcopenia in Older People (EWGSOP), a sarcopenia diagnosis requires the measurements of muscle mass, strength, and function [6].

Although many factors lead to sarcopenia, the 2 crucial factors that can be controlled in older adults are inadequate nutritional intake and physical inactivity [19,20]. Older adults tend to have anabolic resistance, defined as “a blunted stimulation of muscle protein synthesis (MPS) to common anabolic stimuli in SMM” [21]. Therefore, increasing protein-dense food ingestion and habitual physical activity are frontline strategies to support muscle mass, performance, and health [21]. The Society for Sarcopenia, Cachexia, and Wasting Disease provided protein recommendations for treating and preventing sarcopenia at a minimum of 1.0 to 1.5 g/kg body weight per day with exercise [22]. The protein quality is also critical in age-related SMM anabolism. Research on how protein-rich whole foods (eg, lean red meat) can enhance MPS over supplementation in older adults is rising [23]. Recent data suggest that a moderate 113 g (30 g of protein) serving of animal protein (eg, lean beef) can increase MPS by approximately 50% [24]. Therefore, the per-meal anabolic threshold recommendation is 25 to 30 g of protein [23-25]. Unfortunately, older adults’ protein needs are usually not met. Independent older adults answered the 2005-2014 National Health and Nutrition Examination Survey (NHANES) [26], revealing that up to 46% are not meeting the protein intake recommendation.

Physical activity directly impacts muscle quality and quantity [27]. Inactivity in older adults can promote sarcopenia development [28,29], whereas physical activity increases muscle strength [30,31] and mass [32,33]. Therefore, physical activity is vital to lower sarcopenia prevalence [34-36]. Specifically, resistance training and balance exercises are considered the best for sarcopenia prevention [27,37-41]. Steps through activity trackers can help determine one’s physical activity [42]. Accomplishing 10,000 daily steps is suggested to positively influence body composition (eg, weight and body fat) and improve health parameters (eg, quality of life) [43]. Therefore, nutrition and physical activity have been seen to be essential in countering sarcopenia [44].

More interventions focusing on nutrition and lifestyle changes are essential in decreasing chronic disease and health care costs [45]. Educating and empowering individuals to change their lifestyles can be less costly than medications and invasive procedures [45]. Culinary medicine (CM) is a novel evidence-based medical field defined by combining the science of medicine with food and cooking [46]. CM differs from traditional lifestyle and nutrition interventions by attempting to empower the patient to care for themselves safely, effectively, and happily with food and beverages as a primary care technique [47]. It helps people access and eat nutrient-dense meals to prevent and treat potential chronic diseases [46]. Individuals learn and practice culinary skills while tasting new recipes [45]. Also, they can incorporate their favorite foods into their eating plan while learning how to enhance diet quality through new foods (eg, different types of vegetables) and meal preparation tips (eg, defrosting techniques) [47,48]. If executed appropriately, CM can be taught to all populations regardless of culinary skill, educational level, or socioeconomic background [45]. A CM curriculum typically includes practical applications in supermarkets and home kitchens [49]. These practical applications include basic nutrition knowledge and instruction on how to apply that knowledge to diet therapies [49]. However, limited studies report whether a web-based CM curriculum could be as effective as in-person.

Multiple randomized controlled trials report that CM significantly improved individuals’ culinary knowledge, healthy dietary patterns, and self-efficacy for healthier cooking [50-54]. Thus, highlighting CM’s potential as a nutrition intervention could lower the risk of diet-related chronic disease among older adults. However, few studies in this area include older adult participants; none exclusively focused on an older adult population, and only 6% of CM programs were taught by a qualified health professional [55]. Additionally, CM
interventions have been very heterogeneous, indicating a lack of variety in how the intervention is conducted compared with others [55]. Therefore, this study could advance our knowledge of CM and sarcopenia prevention in older adults. A web-based CM program might be an innovative strategy to improve protein intake in independent older adults at home. In addition, this program could successfully reduce barriers to protein intake, enabling older adults to enhance their diet and muscle quality. This factor could be vital because research surrounding CM within older adults is in its infancy. Therefore, our study aimed to examine how a web-based CM intervention, emphasizing convenient ways to increase lean red meat intake, could improve protein intake with the promotion of physical activity to see how this intervention could affect older adults’ muscle strength and mass.

Methods

Study Design

A 16-week, single-center, parallel-group, randomized controlled trial compared a web-based CM intervention group (CMG) with a control group (CG) on their protein intake, cooking effectiveness, muscle strength, muscle mass, and physical activity. The study was conducted at Texas Tech University Nutrition and Metabolic Health Initiative (NMHI), Lubbock, Texas. Participants were permitted to remove themselves from the trial at any time.

Ethical Considerations

A human study compliance review was submitted to the institutional review board at Texas Tech University, Lubbock, Texas. The study was expedited for review and received approval (IRB2021-693). Once participants were recruited and eligibility was determined, an initial appointment was set up at Texas Tech University NMHI. A research team member described the study in detail, and participants were asked to sign a consent form stating willingness to participate. The participants’ information collected for the study was deidentified, given a code number, and kept on the researchers’ computer at Texas Tech University NMHI. The research team offered the participants the vofit 4 watch (Garmin) as compensation, which they used to complete the study.

Recruitment, Screening, and Participants

Flyers, newsletters, and word of mouth were essential for recruitment. When participants agreed to enroll in the study, they filled out an initial screening questionnaire to help determine whether they met the eligibility criteria. The inclusion criteria involved individuals who are aged 65 years or older, able to cook for themselves, physically active (eg, need for equipment for assistance), and able to use a computer and mobile device. The exclusion criteria included individuals aged <65 years; those with limited mobility (eg, need for equipment for assistance), cognitive dysfunction (eg, dementia), a heart pacemaker, or type 1 or type 2 diabetes with insulin use; current smokers; those with some form of amputation; those who unable to use a computer and mobile device or unable or unwilling to wear the vofit 4 watch (Garmin) for the duration of the study; and those undergoing or had recently undergone a severe medical procedure or diagnosis.

Participants were recruited and enrolled from June 2022 to August 2022, with data collection completed in December 2022. If a participant dropped out of the study, a new participant would replace and be allotted to the same group as the participant they replaced. A total of 52 older adults, including both men and women, met the study’s eligibility criteria. Assessments were conducted at the prestudy, weekly, and poststudy time points.

Intervention Design and Study Procedures

Prestudy Visit

Before their visit, participants were told to refrain from exercising for 48 hours, taking alcohol for 12 hours, and wearing clothes with any metals. Informed consent was obtained before starting the assessments. The assessments included completing 4 questionnaires: Community Healthy Activities Model Program for Seniors (CHAMPS), Dietary Screener Questionnaire (DSQ), protein questionnaire, and cooking effectiveness questionnaire. Afterward, grip strength, height, and weight were measured. Then, the participants were scanned by dual-energy x-ray absorptiometry (DXA). After completing their scan, they were given a vofit 4 watch (Garmin). Lastly, the participants were randomized to either CMG or CG and provided their study’s subject code (eg, Beef Study 01), grip strength and DXA results, and exercise handouts. Both groups were advised to consume 25 to 30 g of protein during every meal, and all questions were answered. A follow-up email was sent providing a sample of a 2-week workout plan based on the exercise recommendation handouts and reminders of the study protocol.

Weekly Interventions

The CMG received weekly web-based cooking demonstrations with a recipe handout and biweekly nutrition education video on general nutrition information based on the Nutrition Care Manual content from the Academy of Nutrition and Dietetics [56], all provided by email at the beginning of each week. Meanwhile, the CG just received the recipe handout by email. Therefore, this intervention was developed to show how effective the hands-on and visual intervention provided to the CMG is compared with just general reading of a recipe with no further education provided to the CG. In addition, at the end of each week, both groups received their weekly protein and cooking effectiveness questionnaires.

A total of 20 recipes focusing on lean ground beef were provided for this study. Before starting the study, the research team tested each recipe and adjusted it as needed based on visual, flavor, and dish size. Then, the cooking demonstration was recorded once the recipe was approved for the study. For weeks 1 and 2, three recipes were sent to the participants. For the remainder of the study, 1 recipe was sent weekly. In addition, educational videos on a specific nutrition topic were sent every 2 weeks. These topics provided the participants with further nutrition education, which is essential regarding their diet outside of protein.
Poststudy Visit
After their 16th week, the participants had their final data collected. At the end of the visit, the primary researcher shared the pre- and poststudy DXA and grip strength results with the participant and answered any questions.

Outcome Measurements

Questionnaires
The following outcomes were measured: weekly activity level through CHAMPS, the diet through the DSQ, protein intake through a protein questionnaire, cooking confidence and attitude using a pre- and poststudy cooking effectiveness questionnaire, and intervention compliance through weekly cooking effectiveness.

CHAMPS is a 41-item questionnaire [57] that assesses the weekly frequency and duration of various lifestyle physical activities that are appropriate for older adults. The DSQ was developed for the 2009-2010 NHANES [58]. It is a 30-item questionnaire that assesses the frequency of consumption of selected foods and drinks in the past month, such as intakes of fruits and vegetables, red and processed meat, dairy or calcium products, added sugars, and whole grains or fiber. The protein questionnaire is a modified version of the rapid self-administered dietary protein food frequency questionnaire, which contains 37 items evaluating the weekly intake of different types of meat, dairy products, eggs, and beans [59].

Lastly, the pre- and poststudy cooking effectiveness questionnaires measured participants’ cooking confidence, attitudes, and challenges or barriers. In addition, the weekly cooking effectiveness reported each group’s compliance toward their intervention. The prestudy cooking effectiveness questionnaire includes 14 items, the weekly cooking effectiveness questionnaire includes 5 items, and the poststudy cooking effectiveness questionnaire includes 33 items.

Anthropometrics
Height was measured using a Charder HM: 200P stadiometer (Charder Electronic Co Ltd) to the nearest half inch. Body weight was measured by a Brecknell MS-1000 wheelchair scale (Brecknell) to the nearest 0.5 lbs.

Muscle Quality
Lean body and fat mass were measured using a Norland XR-800 DXA (Swissray International, Inc) to the nearest gram. Muscle strength was measured by a Camry Digital Hand Dynamometer (Camry Scale) to the nearest kilogram for dominant and nondominant hands. Steps were measured by the vívofit 4 watch (Garmin).

Statistical Analysis
The study was powered to identify pre- to poststudy changes between the groups. A similar study [60] was used to develop the necessary sample and effect size using the G*power software (version 3.1.9.6; Heinrich Heine University Düsseldorf). Calculations were made for a total sample of 52 participants (26 participants per group) to obtain a statistical difference in muscle strength and mass between the groups, assuming an α of 5%, effect size of 0.72, power of 80%, and 10% inflation for dropouts. Data were imported to SPSS (version 29; IBM Corp) for analysis. DXA measuring muscle and fat mass was the study’s primary outcome measure. Secondary outcomes included protein intake in grams, muscle strength in kilograms, average daily steps, frequency of physical activity in minutes per week, height in inches, and weight in kilograms.

Participants were randomized to the CMG or the CG by block randomization using 2 blocks with 26 codes. On the basis of the assigned participant’s study code, the primary researcher enrolled the participants into their group at the end of their initial visit. Therefore, the allocation was not concealed. The analysis assessed the effect of the intervention with the completers. Any missing data were replaced with the last observation carried forward before analyses of all measurements via single imputation. Participants were excluded from data analysis if they did not complete over 50% of their weekly questionnaires or, after enrollment, met an exclusion criterion.

Results are presented as mean (SD), mean (95% CI), ranges, or frequencies. P<.05 was considered statistically significant. Linear mixed models were used to assess the differences in protein intake between the groups at the end of the intervention. The model included the fixed effects of time, intervention, and time-by-intervention interaction. Participants were modeled as a random effect to account for the repeated measures design. When a significant main effect was observed, post hoc analyses were conducted and the Tukey-Kramer method was used to adjust for multiple comparisons. Within-group muscle mass and strength differences, as well as physical activity and diet quality differences, were estimated using an independent samples (1-tailed) t test for variables measured before and after the study.

Study Population
In total, 64 participants expressed interest in the study. Of these, 8 (13%) were excluded during web-based or telephone screening due to failing to meet the inclusion criteria or losing contact. A total of 56 participants were eligible for inclusion and were randomized: 29 to the CMG and 27 to the CG. A total of 25 participants in the CMG, compared with 24 in the CG, completed the 16-week weekly questionnaires and both study visits. Of the eligible 56 participants, 7 (13%) withdrew or dropped out before the completion of the study. Of the 7 participants, 6 (86%) dropped out due to medical reasons unrelated to the study, and 1 participant (14%) dropped out due to family reasons. Of the 56 participants, 2 (4%) participants had to be excluded from the data analysis because 1 participant had bariatric surgery during the study and the other completed less than 50% of their weekly questionnaires. Therefore, a total of 49 participants were included for the data analysis (CMG: 24/29, 83%; CG: 23/27, 85%). See the CONSORT (Consolidated Standards of Reporting Trials) study flow diagram (Figure 1) for the study details.
Figure 1. Participants’ CONSORT (Consolidated Standards of Reporting Trials) flow diagram.

The prestudy characteristics of the groups are presented in Table 1. The study included a greater proportion of female (38/47, 81%) and White (44/47, 94%) participants. The mean age, weight, and BMI of the participants in the CMG were 71.4 (SD 5.2) years, 76.6 (SD 17.4) kg, and 28.0 (SD 6.0) kg/m2, respectively. In the CG, they were slightly older (mean 73.2, SD 5.8 years) but had lower weight (mean 69.4, SD 15.0 kg) and BMI (mean 26.1, SD 5.0 kg/m2). The CG was found to be more physically active than the CMG. Regarding diet, the CG consumed more fiber, calcium, dairy, vegetables, and fruit than the CMG. Meanwhile, the CMG consumed more daily added sugar than the CG. However, both groups consumed the same amount of daily whole grains.
Table 1. Prestudy participant characteristics in body composition, physical activity, and diet components (n=47).

<table>
<thead>
<tr>
<th>Variable</th>
<th>CMG<sup>b</sup> (n=24)</th>
<th>CG<sup>c</sup> (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4 (17)</td>
<td>5 (22)</td>
</tr>
<tr>
<td>Female</td>
<td>20 (83)</td>
<td>18 (78)</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>71.4 (5.2)</td>
<td>73.2 (5.8)</td>
</tr>
<tr>
<td>Age group (years) n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td>18 (75)</td>
<td>15 (65)</td>
</tr>
<tr>
<td>75-84</td>
<td>6 (25)</td>
<td>7 (30)</td>
</tr>
<tr>
<td>≥85</td>
<td>N/A<sup>d</sup></td>
<td>1 (4)</td>
</tr>
<tr>
<td>Race and ethnicity, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>1 (4)</td>
<td>N/A</td>
</tr>
<tr>
<td>Hispanic or Mexican American</td>
<td>2 (8)</td>
<td>N/A</td>
</tr>
<tr>
<td>White</td>
<td>21 (88)</td>
<td>23 (100)</td>
</tr>
<tr>
<td>Body composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg), mean (SD)</td>
<td>76.6 (17.4)</td>
<td>69.4 (15.0)</td>
</tr>
<tr>
<td>Height (inches), mean (SD)</td>
<td>65 (3.6)</td>
<td>64.1 (3.7)</td>
</tr>
<tr>
<td>BMI (kg/m<sup>2</sup>), mean (SD)</td>
<td>28.0 (6.0)</td>
<td>26.1 (5.0)</td>
</tr>
<tr>
<td>BMI (kg/m<sup>2</sup>) n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤18.5, underweight</td>
<td>N/A</td>
<td>2 (9)</td>
</tr>
<tr>
<td>18.6-24.9, normal</td>
<td>8 (33)</td>
<td>8 (35)</td>
</tr>
<tr>
<td>25-29.9, overweight</td>
<td>9 (38)</td>
<td>8 (35)</td>
</tr>
<tr>
<td>30-34.9, class I obesity</td>
<td>4 (17)</td>
<td>5 (22)</td>
</tr>
<tr>
<td>35-39.9, class II obesity</td>
<td>2 (8)</td>
<td>N/A</td>
</tr>
<tr>
<td>≥40, class III obesity</td>
<td>1 (4)</td>
<td>N/A</td>
</tr>
<tr>
<td>Physical activity (min/wk), mean (SD)</td>
<td>838.8 (545.9)</td>
<td>930.0 (649.1)</td>
</tr>
<tr>
<td>Diet components, mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber (g)</td>
<td>15.9 (2.8)</td>
<td>16.7 (2.9)</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>905.2 (180.6)</td>
<td>932.1 (167.3)</td>
</tr>
<tr>
<td>Whole grain (ounce)</td>
<td>0.8 (0.3)</td>
<td>0.8 (0.3)</td>
</tr>
<tr>
<td>Total added sugar (teaspoons)</td>
<td>15.3 (4.9)</td>
<td>13.8 (2.9)</td>
</tr>
<tr>
<td>Dairy (cup)</td>
<td>1.4 (0.4)</td>
<td>1.6 (0.5)</td>
</tr>
<tr>
<td>Vegetables (cup)</td>
<td>1.5 (0.3)</td>
<td>1.6 (0.4)</td>
</tr>
<tr>
<td>Fruit (cup)</td>
<td>0.8 (0.3)</td>
<td>1.0 (0.4)</td>
</tr>
</tbody>
</table>

^aRandomized controlled trial (June 2022 to August 2022; Texas Tech University Nutrition and Metabolic Health Initiative) evaluating the effect of a web-based culinary medicine intervention on protein intake, cooking effectiveness, muscle strength, muscle mass, and physical activity in an older adult population aged 65 years and older.

^bCMG: culinary medicine intervention group.

^cCG: control group.

^dN/A: not applicable.

Muscle Mass and Strength Outcomes

There was no between-group difference in the muscle mass change from the prestudy visit (P=.88; Table 2). Using the EWGSOP sarcopenia diagnosis [61], 21% (5/24) of the CMG and 26% (6/23) of the CG had low muscle mass at the prestudy visit. At the poststudy visit, 21% (5/24) of the CMG and 22% (5/23) of the CG had low muscle mass.
Table 2. Mean muscle mass and strength of participants at the pre- and poststudy visits (n=47).

<table>
<thead>
<tr>
<th>Variable</th>
<th>CMG<sup>b</sup> (n=24), mean (SD)</th>
<th>CG<sup>c</sup> (n=23), mean (SD)</th>
<th>Poststudy between-group differences, mean (95% CI)</th>
<th>P value<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Body composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle mass (g)</td>
<td>40,424.3 (9891.6)</td>
<td>41,042.4 (9857.0)</td>
<td>39,816.9 (7496.0)</td>
<td>39,974.3 (7581.4)</td>
</tr>
<tr>
<td>Fat mass (g)</td>
<td>33,043.5 (12,416.6)</td>
<td>33,324.4 (12,654.0)</td>
<td>26,942.5 (9499.2)</td>
<td>26,124.9 (1744.3)</td>
</tr>
<tr>
<td>Muscle mass dominant (kg)</td>
<td>20.1 (6.4)</td>
<td>22.0 (6.5)</td>
<td>21.1 (7.5)</td>
<td>22.7 (6.9)</td>
</tr>
<tr>
<td>Muscle mass nondominant (kg)</td>
<td>18.5 (6.4)</td>
<td>20.3 (6.3)</td>
<td>19.2 (7.5)</td>
<td>20.8 (7.9)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>76.6 (17.4)</td>
<td>76.9 (17.5)</td>
<td>69.4 (15.0)</td>
<td>68.6 (14.3)</td>
</tr>
<tr>
<td>BMI (kg/m<sup>2</sup>)</td>
<td>28.0 (6.0)</td>
<td>28.0 (6.0)</td>
<td>26.1 (5.0)</td>
<td>25.8 (4.7)</td>
</tr>
<tr>
<td>Physical activity (min/wk)</td>
<td>838.8 (545.9)</td>
<td>968.75 (619.9)</td>
<td>930.0 (649.1)</td>
<td>948.3 (602.7)</td>
</tr>
<tr>
<td>Steps<sup>e</sup></td>
<td>5921.5 (2887.8)</td>
<td>—</td>
<td>6049.9 (3597.5)</td>
<td>—</td>
</tr>
</tbody>
</table>

^aThe independent samples t test was used to compare between-group differences at the poststudy visit.
^bCMG: culinary medicine intervention group.
^cCG: control group.
^dP value refers to between-group differences by the independent samples t test.
^eNot available.

Similar results were seen for muscle strength. There was no between-group difference in the muscle strength change from the prestudy visit (dominant: P=.92 and nondominant: P=.72). When comparing the classification of muscle strength for the dominant hand, the CMG was considered 29% (7/24) weak, 67% (16/24) normal, and 4% (1/24) strong at the prestudy visit. At the poststudy visit, the CMG was considered 33% (8/24) weak, 46% (11/24) normal, and 21% (5/24) strong. The CG was considered 13% (3/24) weak, 83% (19/24) normal, and 4% (1/24) strong at the prestudy visit. At the poststudy visit, the CG was considered 13% (3/24) weak, 74% (17/24) normal, and 13% (3/24) strong.

When comparing the classification of muscle strength for the nondominant hand, the CMG was considered 42% (10/24) weak, 54% (13/24) normal, and 4% (1/24) strong at the prestudy visit. At the poststudy visit, the CMG was considered 38% (9/24) weak, 50% (12/24) normal, and 13% (3/24) strong. On the other hand, the CG was considered 30% (7/23) weak, 65% (15/23) normal, and 4% (1/23) strong at the prestudy visit. At the poststudy visit, the CG was considered 30% (7/23) weak, 57% (13/23) normal, and 13% (3/23) strong.

Per the EWGSOP sarcopenia diagnosis [61], 38% (9/24) of the CMG and 30% (7/23) of the CG could be diagnosed with probable sarcopenia. In comparison, 8% (2/24) of the CMG and 9% (2/23) of the CG could be diagnosed with sarcopenia at the prestudy visit. At the poststudy visit, 33% (8/24) of the CMG and 17% (4/23) of the CG could be diagnosed with probable sarcopenia, whereas 8% (2/24) of the CMG and 9% (2/23) of the CG could be diagnosed with sarcopenia at the poststudy visit.

Protein Intake and Diet Quality

Figure 2 reveals the mean (SD) daily protein intake in grams for each week of the study for each group. A nonsignificant time-by-intervention interaction was observed for daily protein intake (Figure 2 and Table 3; P=.08). There was also no statistically significant difference in protein intake between the interventions (P=.50). However, a statistically significant time effect was observed (P≤.001). Post hoc testing showed that daily protein intake was significantly higher at weeks 1 to 16 versus week 0 (P<.05) in the cohort. At week 16, protein intake was 16.9 (95% CI 5.77-27.97) g higher than that at the prestudy visit.
Figure 2. Mean (SD) daily protein intake in grams for each week of the study for each group. CM: culinary medicine; CN: control.

Table 3. Dietary intake of participants at the pre- and poststudy visits (N=47).

<table>
<thead>
<tr>
<th>Variable</th>
<th>CMG<sup>b</sup> (n=24), mean (SD)</th>
<th>CG<sup>c</sup> (n=23), mean (SD)</th>
<th>Poststudy between-group differences, mean (95% CI)</th>
<th>P value<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prestudy</td>
<td>Poststudy</td>
<td>Prestudy</td>
<td>Poststudy</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>60.6 (5.1)</td>
<td>73.3 (5.4)</td>
<td>50.5 (5.2)</td>
<td>71.7 (5.4)</td>
</tr>
<tr>
<td>Fiber (g)</td>
<td>15.9 (2.8)</td>
<td>16.3 (2.5)</td>
<td>16.7 (2.9)</td>
<td>16.1 (2.8)</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>905.2 (180.6)</td>
<td>904.4 (164.6)</td>
<td>932.1 (167.3)</td>
<td>930.5 (251.3)</td>
</tr>
<tr>
<td>Whole grain (ounce)</td>
<td>0.8 (0.3)</td>
<td>0.7 (0.3)</td>
<td>0.8 (0.3)</td>
<td>0.7 (0.3)</td>
</tr>
<tr>
<td>Total added sugar (teaspoons)</td>
<td>15.3 (4.9)</td>
<td>12.5 (2.7)</td>
<td>13.8 (2.9)</td>
<td>13.2 (2.3)</td>
</tr>
<tr>
<td>Dairy (cup)</td>
<td>1.4 (0.4)</td>
<td>1.4 (0.4)</td>
<td>1.6 (0.5)</td>
<td>1.6 (0.7)</td>
</tr>
<tr>
<td>Vegetables (cup)</td>
<td>1.5 (0.3)</td>
<td>1.6 (0.4)</td>
<td>1.6 (0.4)</td>
<td>1.6 (0.4)</td>
</tr>
<tr>
<td>Fruit (cup)</td>
<td>0.8 (0.3)</td>
<td>0.8 (0.3)</td>
<td>1.0 (0.4)</td>
<td>0.8 (0.2)</td>
</tr>
</tbody>
</table>

^aLinear mixed-effects model analysis was used to compare between-group differences after the study for protein, whereas an independent samples t test was used for the remaining variables.

^bCMG: culinary medicine intervention group.

^cCG: control group.

^dP value refers to linear mixed-effects model analysis of between-group differences over time (timetreatment interaction).

Each group was evaluated to see how many participants met their protein needs (1.0-1.2 g/kg body mass per day). In the CG, 39% (9/23) participants did not meet their needs, 26% (6/23) did meet their needs, and 35% (8/23) exceeded their needs during the study. In the CMG, 58% (14/24) participants did not meet their needs, 8% (2/24) did meet their needs, and 33% (8/24) exceeded their needs during the study. Additionally, in all the completed protein questionnaires, the CMG and the CG had blank answers for 15.4% (63/408) and 12.5% (49/391) of their questions, respectively. When evaluating the daily intake for each dietary component from the DSQ (Table 3), the components stayed close to the same when comparing pre- with poststudy results.

Cooking Effectiveness

For the CMG, participants reported watching 82.8% (318/384) of the intervention videos. The primary reason reported on why they did not watch the videos was “not interested in watching” (21/56, 38%). Additional reasons included personal reasons, traveling or vacation, or they did not receive the video. For the CG, participants reported that they read 94.8% (349/368) of the recipes sent to them. The primary reason why the participants did not read the recipe was “busy” (5/13, 39%). Additional reasons included personal and medical reasons, laziness, uninterest, not receiving the video, and having their spouse read it.
When examining whether both groups cooked the recipe learned through web-based videos or just by reading the recipe, the CMG cooked more recipes than the CG (64.8%, 249/384, vs 62.5%, 230/368). Based on the questionnaires with responses outside of “N/A,” the CMG and CG did not cook primarily because of “holiday, traveling, or vacation” (CMG: 20%, 25/125, and CG: 26.5%, 35/132). See Table 4 for the remaining reasons. Barriers or complications that were reported from both groups when either watching the videos or preparing the recipe included borrowing ingredients from a neighbor; recipe serving size being too big; confusion toward either the ingredients or methods; changing or not including ingredients to meet taste or diet preference; finding certain ingredients at the store; too much spice or ingredient in the recipe for their palette; standing for an extended period was challenging; difficulties in scheduling time and energy to shop, prepare, or cook; or taking more initiative to prepare recipe themselves.

Table 4. Reasons for not cooking during the study.

<table>
<thead>
<tr>
<th>Reasons</th>
<th>CMG<sup>a</sup> (n=125), n (%)</th>
<th>CG<sup>b</sup> (n=132), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holiday, traveling, or vacation</td>
<td>25 (20)</td>
<td>35 (26.5)</td>
</tr>
<tr>
<td>Busy</td>
<td>16 (12.8)</td>
<td>26 (19.7)</td>
</tr>
<tr>
<td>Spouse prepared it</td>
<td>1 (0.8)</td>
<td>17 (12.9)</td>
</tr>
<tr>
<td>Not interested in cooking</td>
<td>18 (14.4)</td>
<td>14 (10.6)</td>
</tr>
<tr>
<td>Ate leftovers</td>
<td>1 (0.8)</td>
<td>11 (8.3)</td>
</tr>
<tr>
<td>Medical reason</td>
<td>9 (7.2)</td>
<td>7 (5.3)</td>
</tr>
<tr>
<td>Fixed other recipe</td>
<td>17 (13.6)</td>
<td>6 (4.5)</td>
</tr>
<tr>
<td>Did not go to the store</td>
<td>5 (4)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Recipe too large</td>
<td>3 (2.4)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Food preference</td>
<td>19 (15.2)</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Ate out</td>
<td>1 (0.8)</td>
<td>2 (1.5)</td>
</tr>
<tr>
<td>Did not have the recipe</td>
<td>0 (0)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Financial reason</td>
<td>0 (0)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>No reason provided</td>
<td>2 (1.6)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Personal reason</td>
<td>6 (4.6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Confusion toward ingredients</td>
<td>2 (1.6)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

^aCMG: culinary medicine intervention group.
^bCG: control group.

At the end of the study, both groups were asked about the main challenges or barriers to maintaining their protein intake (Tables 5 and 6). Meanwhile, the CMG participants were asked how the CM videos specifically helped clarify managing their protein intake (Table 7) and what the most memorable thing they recalled after watching the video or what their favorite part of the CM videos was. All CMG participants were reported having no technical difficulties accessing and watching the videos.

Table 5. Culinary medicine intervention group’s main challenges or barriers to maintaining their protein intake.

<table>
<thead>
<tr>
<th>Challenge or barrier</th>
<th>Value (n=24), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding low-fat protein options</td>
<td>1 (4)</td>
</tr>
<tr>
<td>I was eating all the time</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Keeping track of protein intake</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Knowing which protein is healthiest or easiest</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Limiting protein intake</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Not consuming enough daily</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Price of protein</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Deciding the correct protein amount to eat</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Protein variety</td>
<td>3 (13)</td>
</tr>
<tr>
<td>No answer provided</td>
<td>3 (13)</td>
</tr>
<tr>
<td>No issues</td>
<td>9 (38)</td>
</tr>
</tbody>
</table>
Table 6. Control group’s main challenges or barriers to maintaining their protein intake.

<table>
<thead>
<tr>
<th>Challenge or barrier</th>
<th>Value (n=23), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High calories in cheese or red meat</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Paying attention when shopping</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Time to prepare</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Eating 25-30 g of protein was too much for me</td>
<td>1 (4)</td>
</tr>
<tr>
<td>No answer provided</td>
<td>3 (13)</td>
</tr>
<tr>
<td>No issue</td>
<td>16 (70)</td>
</tr>
</tbody>
</table>

Table 7. How the culinary medicine videos specifically helped clarify managing their protein intake.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Value (n=24), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding serving or portion size</td>
<td>7 (29)</td>
</tr>
<tr>
<td>New cooking ideas</td>
<td>2 (8)</td>
</tr>
<tr>
<td>How important protein is to our health</td>
<td>2 (8)</td>
</tr>
<tr>
<td>I am visual learner, so helped my confidence</td>
<td>2 (8)</td>
</tr>
<tr>
<td>I realized that I do not eat enough protein</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Introduce more protein into my own recipes</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Learning new skills in cooking</td>
<td>1 (4)</td>
</tr>
<tr>
<td>How easy it is to manage protein intake by cooking myself</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Hard to tell how much protein I got from eating a serving size</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Helped but I get busy and forget to eat during the day</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Waste of time</td>
<td>1 (4)</td>
</tr>
<tr>
<td>No answers provided</td>
<td>3 (13)</td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

To the authors’ knowledge, a study has yet to be performed with CM explicitly targeting the older adult population to enhance their protein intake. However, a statistically significant time effect was observed ($P \leq 0.001$). Furthermore, post hoc testing showed that daily protein intake was significantly higher at weeks 1 to 16 versus week 0 ($P < 0.05$). At week 16, protein intake was 16.9 (95% CI 5.77-27.97) g higher than that at the prestudy visit. This result indicates that protein intake increased in the cohort with the information provided to both groups. Nevertheless, there was no additive effect of the CMG over what the CG received because no between-group differences were observed for any primary or secondary outcomes. Insufficient consistent protein intake, low physical activity, adherence to the intervention, and accuracy of the questionnaires could explain the results. Also, participants’ ethnicity, average age, gender, and BMI were similar in both groups and affected the diversity of the study’s population; therefore, the outcomes were not tested against them because there was no vast difference to indicate a relationship. Given the limited representation of men in the cohort, the results cannot be generalized to men, Hispanic participants, and African American participants.

The accuracy of each group’s protein questionnaire could play a factor because they were self-administered. Self-administered questionnaires are more susceptible to item nonresponse [62]. The CMG and the CG had blank answers for 15.4% (63/408) and 12.5% (49/391) of their questions, respectively, suggesting that their intake could have been higher and explained how their muscle mass was overall maintained. Additionally, the participants were not asked to change their diet outside their protein intake. The DSQ reported that participants’ diets did remain the same.

Comparison With Prior Work

Before the study started, both groups were recommended to consume 25 to 30 g of protein per meal in addition to daily physical activity. These recommendations are similar to Paddon-Jones and Rasmussen’s [63] findings, reporting that approximately 25 to 30 g of protein per meal is a valuable strategy for maintaining muscle mass in older adults. This strategy would mean that the participants would have to eat approximately 75 to 90 g of protein daily. The CMG met this range from weeks 6 to 15, but the CG met this range during weeks 4, 11, and 12. Specifically, 39% (9/23) of the CG and 58% (14/24) of the CMG did not meet their needs (1.0-1.2 g/kg body weight per day). The 2005-2014 NHANES [26] reported that 31% to 50% of older adults did not meet their protein recommendations. Our population was in this range. Therefore, these results could also explain why muscle mass did not
significantly increase between the groups. However, the estimated average requirement for 51 to 70 years is 0.66 g/kg/d, and the recommended dietary intake is 0.8 g/kg/d for all adults over 18 years old, including older adults [64]. Therefore, in the context of adequate energy intake, muscle mass was maintained in this cohort if their protein intake was consistent with these levels.

Grip strength has been used in research to determine overall body strength [65,66]. However, there were no between-group differences in muscle strength change from the pretest visit. Kim et al [67] found no association between the amount and change (increase or decrease) in daily total protein intake with the incidence or prevention of low muscle strength, which was similar to our results. Additionally, a longitudinal study [68] indicated that 25 to 30 g of protein per meal is associated with greater muscle strength in older adults. However, this recommended intake did not consistently happen in our study, and participants did not meet their calculated needs, which could affect their muscle strength. Physical activity also did not impact muscle strength. Similar results were seen with Ramsey et al [69], who also saw no association between the number of steps and handgrip strength.

When looking at their steps, current evidence suggests that healthy older adults should meet approximately 7000 to 10,000 steps per day [70]. However, our study showed that 67% (16/24) of the CMG and 57% (13/23) of the CG did not meet this range. Also, Park et al [34] reported that individuals who walked at least 7000 to 8000 steps daily likely have muscle mass above the sarcopenia threshold. Because only 33% of the CMG and 44% of the CG met this threshold, it is unsurprising that their lack of steps may have impacted our results.

Lastly, the dropout rates were similar, 14% (4/29) in the CMG and 11% (3/27) in the CG. This rate is lower than the reported average of 20% to 49%, which is commonly seen in dietary clinical trials [71]. In the CMG, 10% (3/29) of participants dropped out due to medical reasons, whereas 3% (1/29) dropped out due to family reasons. In the CG, all the participants dropped out due to medical reasons. These are all common reasons for dropouts in clinical trials [72]. The dropouts were not related to the study, and no adverse effects were reported throughout the study.

Strengths and Limitations

Strength

This study is the first to evaluate CM’s effect on enhancing protein intake and muscle quality in older adults, which brings a new aspect to existing CM research. Furthermore, this study allowed us to see if the intervention program improved their knowledge, awareness, and attitude toward protein intake within 4 months. In addition, the feedback from the participants can be applied to future studies.

A registered dietitian (RD), fully trained and qualified with years of experience, developed the whole program with assistance from those with expertise in food service and kinesiology. In addition, an RD implemented the intervention and provided advice if participants needed clarification about their intervention.

Our study had an overall dropout rate and data exclusion of 16% (9/56), limiting attrition bias. Additionally, there was a high response rate to the weekly questionnaires, with 84.6% (345/408) for the CMG versus 87.5% (342/391) for the CG, and the response rate goal for most research was approximately 60% [73]. This high response rate was credited to weekly adherence checks and effective accountability in recording their weekly questionnaires. Lastly, this intervention was low-cost and could be easily replicated and enhanced for future research.

Limitations

Although exercise recommendation handouts were given in this study, the main intervention has limitations with a focus on diet and nutrition education. A more comprehensive approach including digital CM education, exercise training sessions, and dietary supplementation would have allowed for a more adequate comparison and expectation of significant differences in muscle quality outcomes. Additionally, the result of this study may not be representative of the general population because the majority were female (38/47, 81%) and White (44/47, 94%), and their ages were similar. Therefore, this study would benefit from seeing its effect on those who lack cooking confidence and skills in addition to a more diverse population setting. In addition, there may be recall and social desirability biases as the questionnaires were self-reported, and the participants knew that the research team was reading the responses. This factor could be lessened through the interview-administered questionnaires. Finally, the protein questionnaire results may not be accurate because of the blank questions.

Some participants reported that they could not cook a recipe because they were on Weight Watchers or had self-proclaimed dietary restrictions (eg, no bread or pasta). This situation was seen in 15.2% (19/125) of the CMG and 2.3% (3/132) of the CG. Also, participants reported that some recipes could have been better for a different season (eg, chili in the winter instead of during the summer). They also voiced concern about some recipes needing smaller portions because they live alone. Additionally, because this intervention was performed in summer, fall, and the beginning of winter, the seasonal changes can explain why participants did not partake in some weeks of the study. For example, the participants did not cook their recipes because of holidays, traveling, or vacations (CMG: 20%, 25/125, and CG 26.5%, 35/132). Another example is that the colder weather and traveling could have impacted the results of the steps because most of the questions asked were about outdoor and in-house activities.

Conclusions and Future Direction

To the authors’ knowledge, this study is the first to examine the outcomes of CM in the form of web-based cooking demonstrations and nutrition education to enhance protein intake and muscle quality in older adults. The results reveal insufficient evidence because no between-group differences were observed for primary or secondary outcomes. However, most of the intervention group reported that the cooking demonstrations helped them prepare and cook recipes at home, providing more confidence in the kitchen, and its learning was feasible for them.
In the future, it would be valuable to further investigate the factors that could have affected this study. In developing and implementing this study, exercise training sessions and a dietary supplement could be included. Additionally, the research study design could include RDs, chefs, exercise physiologists, health coaches, or psychologists. The staff would be essential in creating the study protocol, kitchen equipment checklist, consent forms, scripts, and questions. During recruitment, it would be ideal to obtain a broad age range with an equal gender and ethnicity ratio to help reciprocate the general population. The recipes should consider the season, 1-person portion size, time, cost, and mild flavors. A protein food diary could help keep track of protein intake during the week and help answer the protein questionnaire accurately.

It could be interesting to incorporate muscle biopsy and biomarkers, such as vitamin B_{12}, folate, and creatinine, to evaluate muscle mass further and see if this intervention impacts or could explain why muscle mass outcomes were nonsignificant due to predispositions. However, there are challenges in successfully performing a muscle biopsy in older men and women who are frail or have low body mass [74], so that would be a concern to consider. For biomarkers, no specific recommendations, references, or cutoff values are available to assess muscle mass or quality. Therefore, the biomarkers could be used to notice any significant change within a short time duration. Overall, given the current concern of sarcopenia, these concepts could enhance this intervention further with the information gathered in this study to impact public health.

Acknowledgments
The authors want to acknowledge Texas Tech University and Nutrition and Metabolic Health Initiative (NMHI) for the support of their facilities.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
CONSORT eHEALTH Checklist (V 1.6.2).
[PDF File (Adobe PDF File), 113 KB - formative_v8i1e49322_app1.pdf]

References

Abbreviations

CG: control group

CHAMPS: Community Healthy Activities Model Program for Seniors

CM: culinary medicine

CMG: culinary medicine intervention group

CONSORT: Consolidated Standards of Reporting Trials

DSQ: Dietary Screener Questionnaire

DXA: dual-energy x-ray absorptiometry

EWGSOP: European Working Group on Sarcopenia in Older People

MPS: muscle protein synthesis

NHANES: National Health and Nutrition Examination Survey

NMHI: Nutrition and Metabolic Health Initiative

RD: registered dietitian

SMM: skeletal muscle mass
Using #ActuallyAutistic on Twitter for Precision Diagnosis of Autism Spectrum Disorder: Machine Learning Study

Aditi Jaiswal, MS; Peter Washington, PhD

Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI, United States

Corresponding Author:
Aditi Jaiswal, MS
Department of Information and Computer Sciences
University of Hawaii at Manoa
Room 312C, Pacific Ocean Science and Technology
1680 East-West Road
Honolulu, HI, 96822
United States
Phone: 1 8088296359
Email: ajaiswal@hawaii.edu

Abstract

Background: The increasing use of social media platforms has given rise to an unprecedented surge in user-generated content, with millions of individuals publicly sharing their thoughts, experiences, and health-related information. Social media can serve as a useful means to study and understand public health. Twitter (subsequently rebranded as “X”) is one such social media platform that has proven to be a valuable source of rich information for both the general public and health officials. We conducted the first study applying Twitter data mining to autism screening.

Objective: This study used Twitter as the primary source of data to study the behavioral characteristics and real-time emotional projections of individuals identifying with autism spectrum disorder (ASD). We aimed to improve the rigor of ASD analytics research by using the digital footprint of an individual to study the linguistic patterns of individuals with ASD.

Methods: We developed a machine learning model to distinguish individuals with autism from their neurotypical peers based on the textual patterns from their public communications on Twitter. We collected 6,515,470 tweets from users’ self-identification with autism using “#ActuallyAutistic” and a separate control group to identify linguistic markers associated with ASD traits. To construct the data set, we targeted English-language tweets using the search query “#ActuallyAutistic” posted from January 1, 2014, to December 31, 2022. From these tweets, we identified unique users who used keywords such as “autism” OR “autistic” OR “neurodiverse” in their profile description and collected all the tweets from their timeline. To build the control group data set, we formulated a search query excluding the hashtag, “-#ActuallyAutistic,” and collected 1000 tweets per day during the same time period. We trained a word2vec model and an attention-based, bidirectional long short-term memory model to validate the performance of per-tweet and per-profile classification models. We also illustrate the utility of the data set through common natural language processing tasks such as sentiment analysis and topic modeling.

Results: Our tweet classifier reached a 73% accuracy, a 0.728 area under the receiver operating characteristic curve score, and an 0.71 F_1-score using word2vec representations fed into a logistic regression model, while the user profile classifier achieved an 0.78 area under the receiver operating characteristic curve score and an F_1-score of 0.805 using an attention-based, bidirectional long short-term memory model. This is a promising start, demonstrating the potential for effective digital phenotyping studies and large-scale intervention using text data mined from social media.

Conclusions: Textual differences in social media communications can help researchers and clinicians conduct symptomatology studies in natural settings.

(JMIR Form Res 2024;8:e52660) doi:10.2196/52660

KEYWORDS
ASD; autism spectrum disorder; machine learning; natural language processing; public health; sentiment analysis; social media analysis; Twitter
Introduction

Autism spectrum disorder (ASD) is a developmental disability causing physical, cognitive, and behavioral changes and affecting millions of individuals. A core complexity of ASD lies in its dynamic symptom profile that changes with age, often leading to the misattribution of behavioral characteristics to other conditions such as anxiety, obsessive-compulsive disorder, and attention-deficit/hyperactivity disorder [1,2]. Yet there are limitations on the availability of standard tests [3], leading to misdiagnosis or delayed treatments [4], putting patients at risk of developing depression or suicidal tendencies [5]. Social media has become a useful means for real-time public health monitoring, offering insights into individuals’ thoughts, emotions, behaviors, and daily struggles and symptomatology related to health issues. Such nonclinical data hold considerable potential for clinicians and researchers to extract meaningful insights through a less intrusive approach. This digital footprint can be analyzed to study the behavioral symptoms of ASD and other mental health disorders [6].

In recent years, social media has emerged as a promising tool for mining behavioral and observational data. The collection of digital data from social media, wearable devices, and smartphones holds potential for improving health care. Research in mental health, such as identifying depression and mood changes [7-13] and real-time mapping of natural disasters [14,15] or infectious disease spread and its effect on emotional health [16-23] has greatly benefited from such “digital phenotyping” studies. Among social media platforms, Twitter (subsequently rebranded as “X”), known for its concise microblogging nature with tweets limited to 280 characters, has emerged as a valuable source of personalized data, boasting an active monthly user base of around 450 million individuals [24].

ASD has been the subject of multiple clinical trials, reviews, and epidemiological studies conducted using behavioral features such as eye gaze [25], prosody [26], asynchronous body movement [27], facial expressions [28,29], mobile phone data [30-33], or even electroencephalograms [34]. However, only a handful of studies have used social analytical tools [35-38], especially Twitter [39-41], for investigating ASD. In addition, other social networking sites such as Reddit [42-45], Facebook [46], Instagram [47,48], Flickr [49], and Sina Weibo [50] have also provided a valuable source of data for detecting and studying mental health conditions, substance abuse, and risky behaviors. Using these previous works as inspiration, we curated a novel, extensive Twitter data set to study various aspects of social communication that differentiate people with autism from their neurotypical peers on a larger scale than previous work.

Our goal was to examine communication patterns and social cues indicative of emotional states to identify distinctive textual features associated with ASD. The methods outlined in this study could potentially aid researchers and clinicians to understand and analyze linguistic features associated with ASD, enabling the research community to build precision health tools for identifying and monitoring early symptoms, understanding specific behavioral traits, uncovering hidden patterns, proposing a tailored clinical treatment plan or personalized interventions, and offering support within communities. However, it should be noted that this research serves as a supplementary resource for clinicians, aiming to showcase how social media can aid in developing risk assessments, custom treatment plans, and targeted interventions based on the patient’s individual traits, communication style, and lifestyle. Additionally, the methods that we explore in this feasibility study could assist in designing more accessible and user-friendly technologies tailored to the sensory needs of individuals with ASD.

Methods

Overview

Here, we describe the data set curation process (Figure 1), preprocessing steps, and a series of analyses on the curated data. We started by analyzing the sentiments and topics within the data set to discover some qualitative insights. We then performed per-tweet and per-user classifications of ASD to understand the linguistic differences between the users in the ASD and control groups.
Figure 1. Pipeline for the creation of the novel Twitter (subsequently rebranded as “X”) autism data set. API: application programming interface; VADER: Valence Aware Dictionary for Sentiment Reasoning.

Data Collection

In recent years, hashtags such as #MeToo, #BlackLivesMatter, and #StopAsianHate have played significant roles in promoting social movements and campaigns, including those aimed at raising awareness about specific societal issues. Within the ASD community, popular hashtags such as #AutismMom and #AutismParent have represented the perspectives of neurotypical parents, significantly influencing research and policies in this domain. However, these advocacy groups often overshadow adults with autism, creating a gap in their representation within decision-making processes. To address this issue, a paradigm shift occurred in the autism rights movement through the hashtag “#ActuallyAutistic” [51,52]. This movement has emphasized understanding the experiences, challenges, and perspectives of individuals on the autism spectrum, redirecting attention toward them rather than solely focusing on caregivers.

Using the hashtag as the criteria for our corpus selection, we extracted Twitter conversations of users self-identifying with ASD to study the differences in their linguistic patterns. Our data extraction involved using snscreape (JustAnotherArchivist) [53], a Python-based library allowing social media scraping without requiring personal Twitter application programming interface keys and providing powerful search functionality to help filter tweets based on various conditions, such as date-time, language, or location. We targeted English-language tweets using “#ActuallyAutistic” posted from January 1, 2014, to December 31, 2022. To identify users self-identifying with ASD, we searched for keywords such as “autism,” “autistic,”
or “neurodiverse” within their profile descriptions (bios). Additionally, we considered usernames and tweet contents for users who used these keywords solely in their usernames.

Finally, we extracted all the tweets from the timelines of these users to construct the autism data set, which consists of 3,137,952 tweets from 17,323 individuals. Associated metadata such as username, account created, friend count, and date of tweets posted were also extracted and could be used for statistical or network analysis.

To build a tweet classifier for individuals with ASD and their neurotypical peers, we collected a sample of random tweets as part of the control group. To achieve this, we formulated a search query excluding the hashtag “#ActuallyAutistic,” using the advanced query searching operators and methods provided by Dr Igor Brigadir [54]. However, this approach carries the risk of data leakage, whereby users who have not posted any autism-related content may possess autism-related keywords in their profile description or username. To avoid this, we screened users who had any such keywords in their profile description or usernames, or who were also present in the autism data set, and subsequently removed them from the sample. We collected 1000 control tweets per day during the same time period to obtain a total of 3,377,518 tweets across 171,273 individual users.

Data Labeling

To train a supervised machine learning model effectively, labeled data that associate each data point with a respective class are crucial. We automatically labeled the tweets from the autism data set as belonging to the class “autism,” assigned label 1. All other tweets from the control data set were labeled as belonging to the class “control group,” assigned label 0. However, it is important to clarify that these tweet labels were used temporarily for classification purposes and were not permanently stored in the data set. It is important to note that obtaining ground-truth labels can be a costly and time-consuming process, and the performance of machine learning models is often found to decrease with a decrease in labeled data set size. Weak supervision approaches leverage partially accurate or noisy sources for annotations, which can be more efficient than manual labeling.

Data Preprocessing

Working with raw, unstructured Twitter data is challenging because the conversational text contains too many noisy elements, such as punctuation, abbreviations, emojis, and other stray characters. Thus, before using such data for model training, it is necessary to clean and preprocess the data, which is an essential step for any natural language processing task. We started by removing the usage of any profane language in the tweets, such as cursing or swear words, using a Python library called better-profanity [55], which is designed to flag inappropriate words using string comparison and mask them using special characters (the default setting uses “*”). While profane language can sometimes be highly emotive and help in understanding the sentiments of a text, we chose to censor any such words while classifying the tweets, as such words can be used by any individual and might not help in classification tasks. However, we considered the contribution of profane language through sentiment analysis and observed that the polarity of the sentiments was almost similar when using clean and uncensored tweets.

We then tokenized the text into words; removed any nonalphanumeric characters, hyperlinks, user mentions, and HTML tags; and converted the word tokens into lowercase to avoid any confusion and data redundancy. We removed stop words to avoid adding noise and complexity to the features with no meaningful information. To further simplify the input space and normalize the vocabulary, we applied stemming and lemmatization. We also removed any hashtags or a list of keywords related to ASD such as “actuallyautistic,” “autism,” “autistic,” “autismacceptance,” “autismawareness,” “askingautistics,” “askingautistic,” “neurodiversity,” “neurodivergent,” “allautistics,” “adhd,” “mentalhealth,” “asd,” “diagnosis,” “autistics,” “autismpride,” and “autismspeaks,” which could introduce bias and lead to model overfitting.

Sentiment Labeling

We compared the sentiments of tweets posted by individuals with ASD against those from the control group in order to understand the subjective characteristics and emotional polarity around the topic. Initially, we conducted sentiment analysis on the original raw data set, which contained profanity. Additionally, we wanted to explore how profane language can affect the sentiments of the tweets, and thus we also conducted sentiment analysis on a pseudoclean data set after removing any profane words. Sentiment analysis commonly involves 2 approaches: machine learning and lexical. We used the Valence Aware Dictionary for Sentiment Reasoning (VADER) [56], a lexical approach specifically attuned to sentiments expressed in social media or microblogs like Twitter, to analyze the sentiments of the curated data set. VADER has been explicitly trained on social media data sets (such as social media posts or New York Times editorials) and requires no training data. VADER applies a set of rules and heuristics to the sentiment scores of the individual words to determine the overall sentiment of the sentence and returns a dictionary of negative, neutral, positive, and overall (normalized) sentiment scores for the sentence.

Topic Modeling

The objective of our topic modeling analysis was to investigate whether there exist specific themes and semantic patterns that are frequently discussed in relation to ASD and can offer insights beneficial for clinicians and policymakers. Topic modeling is an unsupervised learning technique used to uncover concealed topics and coherent themes within textual data. We used the Top2Vec [57] algorithm, which offers a dynamic approach to discovering topics within a corpus of text data by making use of the spatial proximity of the words.

Tweet-Level Classification

Our initial focus involved training a model specifically designed to predict ASD based on the content within individual tweets. To build this tweet classifier, we identified unique users from both the ASD and control data sets, allocating an 85:15 split for training and testing purposes. Data splitting by user rather than by tweet avoids data leakage, where a user’s tweets might scatter across both training and testing sets, potentially leading
to overfitting by the model due to learning user-specific patterns. The tweets, with no profanity, were preprocessed as defined in the previous section and formed the training and test sets. The categorical labels, representing whether a tweet belonged to a user in the ASD or control group, were used as the basis for model training and evaluation. Additionally, the training data set underwent an 85:15 split, separating it into training and validation subsets, which was used to fine-tune the model and adjust hyperparameters.

For text-to-numeric vectorization, we used 2 approaches: a bag-of-words term frequency–inverse document frequency (TF-IDF) method and word2vec embeddings. We started by training TF-IDF feature representation using various classical machine learning algorithms: support vector machines, naive Bayes, logistic regression, and XGBoost (extreme gradient boosting), using 5-fold cross-validation and accuracy as the primary evaluation metric to identify the best classification method. We then trained the word2vec model using the best-identified algorithm for better feature representation. This approach captures both semantic and syntactic similarities among words, and we assessed its efficacy using a more comprehensive array of evaluation metrics.

User Profile Classification

Our subsequent task involved training a model to predict ASD by considering all tweets from an individual user’s timeline. To ensure a more representative data set and prevent potential model overfitting, we isolated unique users who had shared a minimum of 5 tweets and split them into an 80:20 ratio for training and testing. The preprocessed tweets from each user were then grouped together to form an individual document. For model training, we used an attention-based, bidirectional long short-term memory (Bi-LSTM) model vectorized with a randomly initialized, self-trained embedding layer. As the tweets vary in their lengths and raw text cannot be directly represented as dense vectors in the way that images can, we used padding and an extra “unknown” token during tokenization to achieve the fixed length input and represent any unseen tokens.

Ethical Considerations

While social media data can help with public health analysis by offering a less intrusive and real-time monitoring approach for disease symptomatology and public sentiments, it also poses ethical challenges by exposing the users to harm or the potential leaking of personally identifiable information. First, this study was approved by all ethics-related regulatory bodies at the University of Hawaii. The study has been approved by the University of Hawaii Institutional Review Board (2023-00248) under an expedited review procedure, and the user information was deidentified. We also ran the request through University of Hawaii institutional data governance review to approve this study, where it was determined that the study is exempt from further data governance review due to the inherently public nature of the study data. We also took additional measures not required by the Institutional Review Board. Specifically, we encrypted user IDs, reducing the chances of user reidentification. We also anonymized any user mentions or personal information, such as email addresses, contained within the tweets. These steps were aligned with the ethical considerations outlined in various research studies on social media analysis [58-60].

The public nature of such data can often overshadow the participants’ consent, leaving them unaware or unsure of the inclusion of their data in the research. Williams et al [61] observed that 84% of respondents were not at all or only slightly concerned when using the Twitter posts for university research. However, this leaves a considerable portion of the population who remains concerned. In most cases, it is impractical to obtain consent for large-scale social media analytics research, leaving the responsibility to researchers to safeguard participant data.

The purpose of analyzing social media data is not to provide an immediate intervention but rather to uncover patterns to refine accuracy and help clinicians comprehend the needs of the specific population being studied. With these considerations in mind and to promote interdisciplinary research, the fully anonymized data set can be made available to researchers upon request following a set of protocols to ensure ethicality: we require researchers who request the data set to sign a data use agreement that forbids the researchers from sharing our data set with others and to attest that the data will remain confidential. The Data Use Agreement also forbids attempting to reidentify users represented in the data set.

Results

Data Records

The autism subset, collected from 17,323 self-reported individuals with autism, contains 3,137,952 tweets. The control subset, collected from 171,273 users, consists of 3,377,518 tweets. The combined data set contains the following columns: user ID (a unique value assigned to each Twitter account), profile description (a short summary of the account posted by the user), account created (date-time when the account was created), friends count (number of accounts the user follows), followers count (number of accounts the user is being followed by), tweet date (date-time when the tweet was posted), tweet ID (a unique ID assigned to each tweet), tweet text (original tweet), a list of hashtags present in each tweet, number of replies (number of times the tweet has been replied to), number of retweets (number of times the tweet was retweeted), number of likes the tweet got, and source from where the tweet was posted (web, mobile device, or app). While we focused on using tweet text as the primary source of data, other supporting metadata could be used in the future for network analysis or statistical studies.

Exploratory Data Analysis

The data set’s columns for hashtags and locations were found to contain the highest number of missing values during our analysis. While not all tweets are accompanied by hashtags or location details, users possess the liberty to input any desired location on their profiles. Our analysis revealed that a large portion of users either did not provide their actual location or had inconsistencies in their location entries. Among the top 20 location values identified, most were variations of “United Kingdom,” such as “UK,” “London, England,” “England, United Kingdom,” and “South East, England.” However, other entries...
were less informative and included phrases such as “Picnic party” and “My parent’s basement.” Due to the majority of the missing data and to safeguard users’ personal information, we opted to exclude the location column from the data set before using it to train any machine learning algorithms.

Further analysis of the yearly distribution of tweets revealed a rising trend in discussions related to ASD across the years. This trend suggests that individuals on the autism spectrum are increasingly embracing social media platforms, potentially opening up numerous employment prospects and serving as an effective channel to educate the public about developmental delays. Additionally, sharing behavioral symptoms through social engagement could be beneficial to others to build better community support. This increased social involvement may hold significance not only in social science [62] but also in human-computer interaction research [63], offering insights to design more inclusive and efficient digital environments.

Sentiment Analysis

The VADER sentiments of most of the ASD and control group tweets were found to be positive and neutral, respectively, as shown in Table 1.

This was supported by another interesting observation: tweets from individuals with ASD comprised a higher character count compared to those from the control group (Figure 2). The histograms depicting the word counts in tweets from both groups follow similar distributions but with a substantial difference in their means. This disparity strongly suggests varying linguistic patterns between these 2 groups.

Table 1. Distribution of sentiments in the autism spectrum disorder (ASD) and control group data sets.

<table>
<thead>
<tr>
<th>Data set and VADER sentiments</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In original autism tweets (n=3,137,952)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1,528,183 (48.7)</td>
</tr>
<tr>
<td>Negative</td>
<td>812,730 (25.9)</td>
</tr>
<tr>
<td>Neutral</td>
<td>797,039 (25.4)</td>
</tr>
<tr>
<td>In clean autism tweets (n=3,137,952)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1,562,700 (49.8)</td>
</tr>
<tr>
<td>Negative</td>
<td>756,247 (24.1)</td>
</tr>
<tr>
<td>Neutral</td>
<td>819,005 (26.1)</td>
</tr>
<tr>
<td>In original control group tweets (n=3,377,518)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1,280,080 (37.9)</td>
</tr>
<tr>
<td>Negative</td>
<td>938,950 (27.8)</td>
</tr>
<tr>
<td>Neutral</td>
<td>1,158,488 (34.3)</td>
</tr>
<tr>
<td>In clean control group tweets (n=3,377,518)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1,323,987 (39.2)</td>
</tr>
<tr>
<td>Negative</td>
<td>719,411 (21.3)</td>
</tr>
<tr>
<td>Neutral</td>
<td>1,334,120 (39.5)</td>
</tr>
</tbody>
</table>

aVADER: Valence Aware Dictionary for Sentiment Reasoning.
Figure 2. Histograms of number of characters in the tweets for the 2 groups. ASD: autism spectrum disorder.

Topic Modeling

Using just the ASD data set, multiple topics were discovered, and the word clouds of a few topics are shown in Multimedia Appendix 1.

As it can be seen, the majority of topics were related to behavioral and emotional symptoms such as “hyperactivity,” “fidgeting,” “depressed,” “anxiety,” “trembling,” and “overwhelmed.” Interestingly, a considerable number of documents also focused on terms such as “vaccine,” “therapy,” “misdiagnosis,” and “cats.” These findings may be attributed to the frequent misdiagnosis or delayed diagnosis of ASD, prompting individuals to seek therapy, support, and guidance. The presence of vaccine-related discussions likely stems from misinformation and its negative impact on individuals affected by ASD. However, given the time frame in which the data set was collected, it is also possible that these tweets are related to COVID-19 vaccines. Last, multiple studies [64,65] have found that children with autism are more at ease with cats due to their nonintrusive nature, lack of prolonged eye contact, and their ability to alleviate stress and interpret emotional cues.

Deriving specific topics from the control group’s Twitter conversations was challenging given their scattered and diverse nature. Most of these discussions centered around internet personalities, random conversations, specific days of the week, or special occasions such as birthdays and anniversaries. Interestingly, some broader topics related to animals surfaced in these conversations, but not as specifically focused as observed in autistic user conversations—specifically mentioning cats. Some of these posts also displayed the use of emotional words, suggesting that pets or animals may provide therapeutic benefits.

Technical Validation

The performance metrics for tweet classification are shown in Tables 2 and 3. Table 2 displays the results from TF-IDF feature representations across several classical machine learning models, while Table 3 displays the results using word2vec feature vectors trained with logistic regression. While the TF-IDF vectorization yielded similar accuracy using different machine learning algorithms for tweet classification, logistic regression was chosen as the best predictor due to its superior performance and shorter training time. The results of the word2vec model were found to be consistent with the semantic similarities of the words. For instance, “autism” exhibited higher cosine similarity to terms such as “Aspergers,” “neurotypical,” and “autism spectrum condition,” indicating the model’s proficiency in capturing semantic relationships between words.

Table 4 displays the results for user classification. Although there is a class imbalance in the number of users with ASD versus controls, the attention-based LSTM model still seems to yield better measures, with F_1-scores of 0.7 and 0.9 on the “autism” and “control group” classes, respectively, and an AUC score of 0.78.
Table 2. Summary of results obtained for tweet classification from term frequency–inverse document frequency vectorization to identify the best algorithm based on accuracy.

<table>
<thead>
<tr>
<th>Model</th>
<th>Validation set accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support vector machine</td>
<td>0.615</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>0.598</td>
</tr>
<tr>
<td>Logistic regression</td>
<td>0.63</td>
</tr>
<tr>
<td>XGBoost<sup>a</sup></td>
<td>0.624</td>
</tr>
</tbody>
</table>

^aXGBoost: extreme gradient boosting.

Table 3. Summary of results obtained for tweet classification from the word2vec model using the highest performing model, logistic regression.

<table>
<thead>
<tr>
<th>Metric performance on test set</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.73</td>
</tr>
<tr>
<td>F<sub>1</sub>-score</td>
<td>0.71</td>
</tr>
<tr>
<td>AUC<sup>a</sup> score</td>
<td>0.728</td>
</tr>
</tbody>
</table>

^aAUC: area under the receiver operating characteristic curve.

Table 4. Summary of results obtained for user classification from Keras embedding using the attention+Bi-LSTM^b model.

<table>
<thead>
<tr>
<th>Metric performance on test set</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F<sub>1</sub>-score</td>
<td>0.805</td>
</tr>
<tr>
<td>AUC<sup>b</sup> score</td>
<td>0.78</td>
</tr>
</tbody>
</table>

^aBi-LSTM: bidirectional long-short-term memory.
^bAUC: area under the receiver operating characteristic curve.

Discussion

Overview

The profound shift in society’s reliance on social media for information, in contrast to traditional news sources, along with the immense volume of generated data, has resulted in an increased focus on the use of natural language processing for text analytics. While research tools using facial expressions [6,66-75] and eye gazing for phenotyping ASD [76,77] are consistently reliable, there exists a current deficiency in standardizing precise methods for assessing deficits in social interaction. Therefore, linguistic and behavioral markers extracted from Twitter conversations can serve as valuable resources to investigate textual variations and social dynamics in naturalistic settings. In this study, we demonstrated the potential of leveraging data mining techniques to learn about ASD and related topics from social media platforms such as Twitter. The F₁-scores of 0.71 in tweet classification and 0.80 in user classification signify substantial semantic distinctions in messages posted by individuals with and without ASD. Tweets by individuals with autism showed a higher frequency of emotional language, corroborated by the word2vec model’s stronger semantic associations among such words, reinforcing the model’s predictive capability. This finding, coupled with previous studies using computer vision models [76,78], suggests that social phenotypical behavior could be used to support effective ASD screening strategies and facilitate early detection. We also want to emphasize that the National Institutes of Health is actively funding research works [79,80] using data from electronic health records, social media, and mobile devices with novel artificial intelligence–based tools to improve public health surveillance and precision diagnostics, keeping in mind ethical and other societal considerations. We would also like to highlight that any social media analytics research should always be supported by ethical considerations and user privacy.

Limitations

There are certain limitations to consider in this study. While we focused on individuals who self-identified as autistic, there is no clinical validation for their diagnosis. Annotations from clinical experts or crowdsourcing can help. Furthermore, there is a possibility of data leakage, where the identified users may not be autistic but instead could be family members, parents, caregivers, or advocacy organizations belonging to a different study population and still using the hashtags. However, the frequency of this type of leakage is predicted to be rare due to the negative social connotations of using #ActuallyAutistic without a diagnosis. There might also be a possibility of some data leakage of an individual with autism falling into the control group, but with ASD having a prevalence rate of <3%, the model performance should not degrade by more than 3% if an individual who chose not to self-identify themselves with ASD falls into the control group cohort. The predictive power of social media is not to be used at an individual level but at a broader cross-sectional level, possibly combined with self-reported questionnaires for enhanced accuracy in neurological studies.
In addition, the sentiment polarity obtained through VADER may lack accuracy compared to human-labeled sentiments, as human sentiments are influenced by various factors such as surroundings and politics, making reliable labeling challenging. Moreover, this study only considered the English language, potentially missing out on information from other countries or languages that could aid the model in making better predictions. This also raises concerns about the lack of diversity in the data [81], where only English-speaking users from higher socioeconomic groups or younger adults are represented in the dataset, as they comprise a larger portion of Twitter users.

Future Work

This study presents several opportunities for future research, including using pretrained large language models such as Bidirectional Encoder Representations from Transformers and Generative Pre-trained Transformers for text classification, topic modeling, and feature extraction. Another interesting avenue is the integration of text data with additional data modalities such as audio and video, which could also be mined from social media. In addition, incorporating auxiliary information into textual features may further improve the effectiveness of machine learning models. Lastly, as the Centers for Disease Control and Prevention have reported that boys are 4 times more likely to receive an ASD diagnosis than girls [82], gender-stratified analysis using crowdsourcing or other metadata analysis techniques may also hold promise for more precise screening practices.

Acknowledgments

The technical support and advanced computing resources from University of Hawaii Information Technology Services—Cyberinfrastructure, funded in part by the National Science Foundation Campus Cyberinfrastructure awards #2201428 and #2232862, are gratefully acknowledged. We used the generative artificial intelligence tool ChatGPT by OpenAI [83] only to edit the grammar of the manuscript.

Authors’ Contributions

AJ was responsible for data collection, data analysis, and manuscript writing—the original draft. PW conceptualization, supervision, and manuscript reviewing and editing.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Topics observed in autism spectrum disorder data set using the Top2Vec algorithm.

[DOCX File, 221 KB - formative_v8i1e52660_app1.docx]

References

https://formative.jmir.org/2024/1/e52660

JMIR Form Res 2024 | vol. 8 | e52660 | p.905

(page number not for citation purposes)

10. Mowery D, Bryan C, Conway M. Feature studies to inform the classification of depressive symptoms from Twitter data for population health. arXiv Preprint posted online on January 28 2017. [FREE Full text]

47. Reece AG, Danforth CM. Instagram photos reveal predictive markers of depression. EPJ Data Sci 2017;6(1):15 [FREE Full text] [doi: 10.1104/epids.13688-017-0110-x]

83. Creating safe AGI that benefits all of humanity. OpenAI. URL: https://openai.com/ [accessed 2024-01-12]

Abbreviations

ASD: autism spectrum disorder
AUC: area under the receiver operating characteristic curve
Bi-LSTM: bidirectional long short-term memory
TF-IDF: term frequency–inverse document frequency
VADER: Valence Aware Dictionary for Sentiment Reasoning
XGBoost: extreme gradient boosting

©Aditi Jaiswal, Peter Washington. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Determining the Right Levels of Health Coaching and Heart Rate Variability Biofeedback in a Workplace Behavior Change Intervention: Multiphase Optimization Strategy Preparation Study

Sean Locke*, MA, PhD; Jenna Osborne*, MSc
Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St Catharines, ON, Canada

*all authors contributed equally

Corresponding Author:
Sean Locke, MA, PhD
Department of Kinesiology
Faculty of Applied Health Sciences
Brock University
1812 Sir Isaac Brock Way
St Catharines, ON, L2S 3A1
Canada
Phone: 1 905 668 5550 ext 4958
Email: slocke@brocku.ca

Abstract

Background: Work-related stress is associated with poor job performance and negative health outcomes. Changing health behaviors through corporate wellness programs can improve physical and mental health and help employees manage stress. This project sought to pilot the potential addition of brief coaching and biofeedback to an 8-week web-based self-help program to improve employee stress using the multiphase optimization strategy.

Objective: This study aims to determine which candidate components will be tested in a later optimization phase and at what dose they will be tested, examine the feasibility and acceptability of delivering the different components, investigate whether the outcomes can be feasibly measured, and review evidence to build a conceptual model before the optimization phase.

Methods: The study was positioned within the preparation phase of the multiphase optimization strategy. It is a 2×2×2×2 design with 4 components: 2 types of health coaching and 2 types of biofeedback. All components were tested by turning them on or off. A total of 16 adult office workers (mean age 40, SD 14.3 years; n=15 women) completed an 8-week self-paced web-based stress management and health behavior change program and were randomly assigned to 1 of the 16 conditions, created from a combination of the 4 candidate components. Assessments included web analytics, surveys, and interviews regarding program recommendations, likes, and dislikes.

Results: Findings from the interviews provided suggestions to improve the intervention (eg, separating wellness from stress content) and trial conduct (eg, streamlining the onboarding process). On average, participants logged into the wellness program 83 times (range 36-291), with 75% (12/16) participant retention and 67% (8/12) survey completion. There were no reported problems with coaching or obtaining data from interviews or apps. The interview findings suggested potential mediators to include and assess in a future conceptual model.

Conclusions: The results provided areas to improve the intervention content and trial methods. Instead of progressing to the next scheduled large-scale optimization phase, our plan to iterate through a second preparation phase after making changes to the protocol, apps, and corporate coaching partner.

(JMIR Form Res 2024;8:e47181) doi:10.2196/47181

KEYWORDS
mobile health; mHealth; behavior change; stress management; intervention; pilot study; heart rate variability; health coaching; coach; coaching; coaches; work-related stress; stress; wellness; burnout; behavioral intervention; work; worker; workers; employee; employees; occupational health; job; satisfaction; web-based; remote; corporate; web analytics; biofeedback; survey; surveys; interview; interviews; experience; experiences; attitude; attitudes; opinion; opinion; perception; perceptions; perspective; perspectives; acceptance
Introduction

Background
Work is one of the major contributors to chronic stress. Work-related stress is experienced by most employees and is related to poor job performance and lower job satisfaction [1,2]. Chronic stress, a common outcome of workplace stress, is a critical risk factor for a variety of negative health outcomes [1,3] and is linked to the development of cardiovascular disease and depression [4-6]. Meta-analytic findings from a study conducted among >80,000 employees demonstrated an increase in coronary heart disease risk for those experiencing work stress (risk ratio 1.16) [7]. There are considerable costs to the employer from unmanaged high stress, resulting in performance decreases and absenteeism [8]. These costs can be ameliorated through employer-funded health and wellness programs [9,10], which can also serve as feasible strategies for chronic disease prevention [11].

There are numerous psychological, social, and physiological benefits of engaging in positive behaviors such as physical activity and healthy eating [12-14]. It is well established that regular engagement in positive health behaviors (eg, exercise and diet) is associated with lower stress [15-17]. Despite the potential benefits, only a few individuals meet recommendations, missing out on these benefits [18,19]. Individuals spend as much as half of their waking hours working, and the workplace offers an opportunity to promote health, including stress management. Behavior change interventions target exercise and diet in the workplace can improve health behaviors [20-24]. Evidence from a review of 23 studies indicates that workplace interventions can improve physical and mental health outcomes [25].

Internet-based interventions represent a scalable approach to health promotion. High rates of internet use and the convenience of accessing content 24 hours a day allow intervention to reach participants, whether they are at work or home [26]. Web-based self-help interventions are structured such that the participants can complete these at their own pace and do not require direct contact with an interventionist. A review of 23 web-based self-help interventions reported significant weight loss across studies [27]. Workplace health and wellness programs are often multifaceted [28]; web-based self-help approaches may be particularly useful for delivering program components such as health information or behavior change strategies designed to help individuals learn about new behaviors and plan their behavior change efforts.

Behavior change techniques (BCTs) represent the active ingredients of an intervention [29]. BCTs are used to target the hypothesized mechanism of action to help individuals change their behaviors. For example, goal setting and self-monitoring are among the most common BCTs in physical activity and diet interventions [30]. These BCTs target and seek to improve individuals’ confidence and ability to self-regulate their behavior. These types of BCTs are suitable for internet-based delivery, given the ease of use and accessibility of websites and apps.

Individual health and wellness coaching can be an effective way to promote behavior change for a variety of health behaviors [31-33]. Motivational interviewing is a person-centered coaching approach to enhance clients’ intrinsic motivation for change [34]. Motivational interviewing is a heart- and mindset approach to coaching that aims to embody compassion, acceptance, partnership, and evocation with the client [34]. There are 4 processes and 4 communication skills to support the spirit of motivational interviewing. The 4 processes (ie, engaging, focusing, evoking, and planning) are designed to guide clients from a state of ambivalence toward a state of willingness to make a healthy change. The 4 communication skills (ie, open-ended questions, affirmations, reflections, and summaries) are fundamental to reflective listening and are ways to demonstrate that spirit. Motivational interviewing–based interventions have consistently been shown to be effective across numerous health behaviors (eg, diet, exercise, and oral health) [35]. Even brief motivational interviewing–based interventions can be effective in improving diet and exercise [36]. Brief motivational interviewing coaching may be a scalable approach for providing health coaching in workplace interventions. Furthermore, individual-level coaching represents a common strategy that multifaceted health promotion programs use in the workplace [28]. A recent meta-analysis revealed that physical activity interventions highlighted biofeedback as 1 of the 4 BCTs related to the effective initiation of physical activity [37]. Heart rate variability (HRV) is a reliable means of acutely and indirectly measuring stress through the autonomic nervous system [38,39]. It has also been used as an index of physical and emotional health [40-42]. HRV biofeedback (HRV-BF) is a noninvasive method for delivering HRV data in real time to the desired user [43,44]. HRV-BF has been shown to be effective across different settings for improving HRV and other psychological and physiological outcomes [45,46]. HRV-BF has been shown to be effective in the workplace [47,48] and may help promote self-awareness and allow individuals to better regulate their psychological and physiological states [49]. HRV-BF may be a beneficial tool alongside behavioral intervention components to promote awareness and self-regulation.

We partnered with CoreHealth, a company that supplies corporate health and wellness coaches with an web platform to deliver a variety of wellness tools and interventions, including coaching, to their clients. This project sought to pilot the potential addition of brief coaching and HRV-BF to an 8-week web-based self-help program using the multiphase optimization strategy (MOST [50]).

MOST: Preparation Phase
MOST will be used to pilot this study, to optimize, and evaluate the efficacy of the stress management and health behavior change intervention to improve workers’ stress and well-being. MOST is a 3-phase framework that aims to develop interventions that are effective, efficient, economical, and scalable [50]. The 3 phases include preparation (ie, selecting which intervention and at what level components are feasible to examine), optimization (ie, determining the optimized package of components via an optimization randomized controlled trial), and evaluation (ie, evaluating the efficacy of the optimized...
package through an evaluation randomized controlled trial). The factorial design of MOST in the optimization phase will allow us to examine the effect of adding intervention components to a standard 8-week behavior change program. This paper reports the first phase of MOST, the preparation phase, using the reporting recommendations by Landoll et al [51], with the following four study objectives:

1. Determine which candidate components will be tested in a later optimization phase and at what dose they will be tested
2. Examine the feasibility and acceptability of delivering the different components
3. Investigate whether the outcomes can be feasibly measured
4. Review evidence to build a conceptual model before the optimization phase.

Methods

Design Overview

This study is registered with ClinicalTrials.gov (NCT05150574). In this phase, the components are first tested with a few participants to identify implementation problems and refine them to ensure acceptability and feasibility. The proposed future optimization phase will use a 2^4 ($2 \times 2 \times 2 \times 2$) factorial experiment to test all combinations of the 4 candidate components by turning them “on” or “off,” resulting in 16 different conditions in total (Table 1).

Table 1. Combination of intervention components comprising the 16 intervention conditions.

<table>
<thead>
<tr>
<th>Number</th>
<th>Components(^a)</th>
<th>8-week program</th>
<th>Daily resting HRV(^b) feedback</th>
<th>Momentary HRV feedback</th>
<th>Behavioral initiation coaching</th>
<th>Practice with feedback coaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>3</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>4</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>5</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>6</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>7</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>8</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>9</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>10</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>11</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>12</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>13</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>14</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>15</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>16</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

\(^a\)All participants will have access to the content on CoreHealth, and they will be randomized to receive 1 of the 16 conditions.
\(^b\)HRV: heart rate variability.

For this study, we recruited 16 participants, 1 per condition. There are four candidate coaching components being delivered, with a fifth untested component that all participants will receive the following:

1. **Daily resting HRV biofeedback:** the participants will be asked to record regular HRV measurements in the morning before eating or drinking.
2. **Momentary HRV biofeedback:** throughout the workday, the participants will be asked to take in-the-moment HRV measurements, with the option of performing a mindfulness activity to manage elevated stress.
3. **Health coaching and behavior change initiation:** the participants will receive one 15-minute wellness coaching session at the start of week 1 of their program.

4. **Health coaching and practice with feedback coaching:** the participants will receive one 15-minute wellness coaching follow-up session in either week 2 or week 4.
5. **Web-based behavior change program (all participants receive):** this is an 8-week web-based program that provides the participants with access to 8 weekly behavior change and stress management modules. The platform also contains information on a variety of health behaviors.

Ethical Considerations

This study received ethics approval from the Brock University Research Ethics Board (REB #20-367) before recruitment. Prospective participants were emailed information about the study, and those interested were directed to a link to complete the eligibility questionnaire via Qualtrics (Qualtrics International...
Inc). Eligible participants provided informed consent on Qualtrics before scheduling an onboarding meeting with study staff. The health coach also provided informed consent to be interviewed. All data were electronic, deidentified, and stored on the institutional servers of the corresponding authors. There was no compensation for participating in this study. Generative artificial intelligence was not used in any part of the manuscript writing.

Participants and Procedure

A total of 16 participants were recruited for the study. The eligibility criteria included being an adult aged ≥18 years, being able to read and comprehend English, having an Apple iPhone 8 or newer version (iOS 14 or newer) or an Android (operating 7.0 or newer), having a self-reported BMI <40 kg/m², and reporting at least a moderate amount of daily job stress. We recruited potential participants through email blasts and word of mouth from companies primarily comprising office workers. Interested participants were directed to a web link to determine their eligibility and to provide informed consent. The participants were contacted to schedule a 30-minute onboarding phone call to discuss study procedures and help them set up and learn about the study apps. Following the onboarding call, the participants were asked to complete the baseline survey and record baseline HRV for 7 days before starting the 8-week study. For the first 3 days, HRV was measured when the participants woke up in the morning, to be averaged as before and after the program to assess change, whereas for the following 4 days, they were to get accustomed to taking different HRV readings. If requested, the participants were sent reminders to record their baseline HRV readings.

At the end of 8 weeks, the participants were interviewed to discuss likes and dislikes and suggested improvements to the study. At the end of the interview, they were asked to complete a poststudy survey and record 3 more poststudy HRV readings. Furthermore, the wellness coach was interviewed at the end of the study. All interviews were conducted via Microsoft Teams (Microsoft Corp). Interviews were recorded, and written transcripts of the interviews were created. In response to ongoing participant feedback, we made a deviation to the study protocol, in which we received research ethics approval, and conducted a 15-minute interview approximately halfway through the 8-week program. This was sparked by a few participant emails regarding the onboarding process and the early technical issues. We chose to interview the participants about these challenges while the issues were fresh in their mind rather than waiting for another 4 weeks to ask questions at the poststudy interview.

Candidate Intervention Components

There are 5 components being delivered. Four of the components will be tested and examined as part of a future factorial experiment: (1) daily resting HRV biofeedback, (2) momentary HRV biofeedback, (3) behavioral initiation coaching, and (4) practice with feedback coaching. The fifth is a constant component with all the participants receiving an 8-week behavior change and stress management program.

HRV Biofeedback

Light Heart is a mobile phone app (CoreHealth) that was recently designed and developed by CoreHealth to be used as a supplementary tool in their web-based platform to provide HRV biofeedback (BCT 2.6 biofeedback). Research assessing the concurrent validity of the app in assessing pulse intervals against a gold-standard electrocardiogram (BioAmp FE132, ADInstruments) is currently being reviewed. The results demonstrated a strong positive linear correlation (r=0.99, P<0.001) between the Light Heart app and the electrocardiogram. The app was designed to measure and provide HRV biofeedback through photoplethysmography to detect changes in blood flow through the skin. All the participants were asked to download the app to measure their HRV. The participants were then asked to connect to this app via a mobile access code created through the CoreHealth platform. The participants could obtain an HRV reading by opening the app, selecting “take reading,” placing their finger over their rear phone camera, and flashing for 60 seconds. The participants were given a visual prompt if they were moving their fingers too much to obtain a clear reading.

Because HRV metrics are complex to understand (eg, SD of the normal sinus beats [sdNN; ms]), the participants view a user friendly HRV index. The proprietary index uses a 0 to 100 scale to graphically represent an individual’s HRV, with higher scores indicating poorer HRV. To assess their baseline HRV, the participants were instructed to find a quiet, distraction-free place to sit and measure their HRV when they first wake up in the morning and before they eat or drink. There are two forms of HRV biofeedback being tested: (1) momentary and (2) daily resting.

Those receiving **momentary HRV biofeedback** were instructed to use the app to record in-the-moment HRV measurements throughout the day when they experienced elevated stress. Higher HRV scores indicated elevated stress. In these instances, the participants were recommended to take a few minutes to perform a mindfulness or meditation activity, following 1 of the videos provided on the CoreHealth platform. Following the activity, the participants were prompted to take another HRV measurement to determine whether their HRV improved after performing the stress management activities.

Those receiving **daily resting HRV biofeedback** were asked to regularly obtain HRV measurements each morning, similar to recording their baseline HRV. In this way, a regular morning measurement may be an indicator of improved HRV over time as a result of making healthy changes known to impact HRV (eg, improved cardiorespiratory fitness, sleep quality, and mindfulness).

Health Coaching: Behavioral Initiation and Practice With Feedback (BCT 3.1, Social Support-Unspecified)

All coaching for this study was conducted through CoreHealth’s videoconferencing tool or via telephone. The wellness coach was trained in a communication style called motivational interviewing. Motivational interviewing is a person-centered collaborative counseling style that helps clients strengthen their autonomous motivation and commitment to change [34].
Coaching at 2 different points in the intervention was tested: behavioral initiation coaching and practice with feedback coaching. In this study, those who received coaching components received motivational interviewing–based health and wellness coaching. Consistent with the spirit of motivational interviewing and standard practice for many of CoreHealth’s clients, the participants were given the autonomy to choose the behavior they wished to change. Those receiving behavioral initiation coaching received one 15-minute behavioral coaching session to start week 1 of their program. In this session, the participants established their commitment to change, decided on a health behavior change goal, and were asked to create an action plan and schedule and track their progress using CoreHealth. Those receiving practice with feedback coaching received a follow-up 15-minute session. In this session, clients discussed their level of success in achieving their goals, revised their goals as necessary, and discussed potential barriers to achieving their goals. For this preparation phase, we investigated the 2 different time points to deliver the follow-up coaching at either 2 or 4 weeks after the initiation of counseling to determine which was more acceptable to the coaches to facilitate behavior change.

Web-Based Behavior Change Program
The CoreHealth wellness platform was used to deliver the 8-week web-based behavior change program. In consultation with CoreHealth, BCTs used in the current 8-week period consisted of prompts (eg, email reminders to check-in; BCT 7.1 [29]); goal setting, action planning, and self-monitoring tasks (eg, prompting to create a goal and then providing a calendar to schedule and track participants’ behavior; BCT 1.1, 1.3, 1.4, and 2.3); instruction on how to perform a behavior (eg, videos on how to meditate and examples of different types of exercise; BCT 4.1 and 6.1); reframing (eg, suggesting new perspectives to view barriers; BCT 13.2); providing health-related information (eg, text, video, infographics, or others such as recipes and guidelines; BCT 5.1, 5.3, and 5.6); and confidence ruler (motivational interviewing technique 11 [52]). Refer to Table 2 for a breakdown of the intervention content by week. Furthermore, the participants had access to modular health information and videos on the platform. Health information covered a variety of health and wellness behaviors. A total of 5 wellness areas were included on the study platform in consultation with CoreHealth, chosen based on their association to HRV (physical activity, sleep, meditation and mindfulness, diet, and stress management [53]). The intervention content was based on existing CoreHealth behavioral and stress management programming. The participants were asked to download the CoreHealth app, which provided the same features as the web platform but in an app form.
Table 2. Outline of the weekly content of the 8-week CoreHealth program that all the study participants received.

<table>
<thead>
<tr>
<th>Week</th>
<th>Behavior change content</th>
<th>Stress management content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Set SMART® long-term goal</td>
<td>• None</td>
</tr>
<tr>
<td></td>
<td>• Prompt reflection of values underlying the behavior change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Set a 1-week action plan for health and wellness behavior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Confidence ruler</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>• Review previous action plan and adjust or set a new 1-week plan</td>
<td>• None</td>
</tr>
<tr>
<td></td>
<td>• Overcoming barriers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Confidence ruler</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>• Review previous action plan and adjust or set a new 1-week plan</td>
<td>• Providing information for defining stress</td>
</tr>
<tr>
<td></td>
<td>• Set a stress management goal</td>
<td>• Introduction to platform stress resources</td>
</tr>
<tr>
<td></td>
<td>• Confidence ruler</td>
<td>• Introduction to mindfulness meditation</td>
</tr>
<tr>
<td>4</td>
<td>• Review previous action plan and adjust or set a new 1-week plan</td>
<td>• Reframing your stress response</td>
</tr>
<tr>
<td></td>
<td>• Confidence ruler</td>
<td>• Being kind to yourself in stressful situations</td>
</tr>
<tr>
<td>5</td>
<td>• Review previous action plan and adjust or set a new 1-week plan</td>
<td>• Cognitive defenses</td>
</tr>
<tr>
<td></td>
<td>• Confidence ruler</td>
<td>• Disputing negative self-talk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Keeping stress in perspective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shifting focus forward</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avoiding blame game</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Being grateful</td>
</tr>
<tr>
<td>6</td>
<td>• Review previous action plan and adjust or set a new 1-week plan</td>
<td>• Ways to prevent stress</td>
</tr>
<tr>
<td></td>
<td>• Confidence ruler</td>
<td>• Identifying and eliminating sources of stress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replacing negative coping mechanisms with positive ones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Placing stress-relieving habits into easily accessible forms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Boosting stress immunity with regular physical and mental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· Making a little plan (1-week plan)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· Making a big plan (long-term goal)</td>
</tr>
<tr>
<td>7</td>
<td>• Review previous action plan and adjust or set a new 1-week plan</td>
<td>• Steps to avoid unnecessary stress</td>
</tr>
<tr>
<td></td>
<td>• Confidence ruler</td>
<td>• Planning the day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Organizing the surrounding and tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Building time management skill</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Problem-solving and strategizing to manage daily life stress</td>
</tr>
<tr>
<td>8</td>
<td>• Reflect on the past content and set a plan to maintain positive health habits</td>
<td>• Reflect on the past content and set a plan to maintain positive stress management habits</td>
</tr>
<tr>
<td></td>
<td>• Review the previous action plan and adjust or set a new 1-week plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Confidence ruler</td>
<td></td>
</tr>
</tbody>
</table>

*SMART: specific, measurable, attainable, realistic, and timeframe.

Measures

Refer to Tables 3 and 4 for a list of the study measures and participant interview outline.
Table 3. List of the study measures and time of assessment.

<table>
<thead>
<tr>
<th>Measure name</th>
<th>Study measures</th>
<th>Concept being measured</th>
<th>Number of items</th>
<th>Example item</th>
<th>Time points (before and after program or after program only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital Anxiety and Depression Scale [54]</td>
<td>Self-measured instances of anxiety and depression</td>
<td>14 items and scale range of 1 (not at all) to 4 (yes, all the time)</td>
<td>“I feel tense or wound.”</td>
<td>Before and after</td>
<td></td>
</tr>
<tr>
<td>Job Stress Scale [55]</td>
<td>Describes possible feelings and emotions felt during time spent at work or because of time spent at work</td>
<td>5 items and scale range of 1 (strongly disagree) to 5 (strongly agree)</td>
<td>“A lot of time my job makes me very frustrated or angry.”</td>
<td>Before and after</td>
<td></td>
</tr>
<tr>
<td>Psychological Well-Being Scale [56]</td>
<td>Assesses participant’s current level of well-being</td>
<td>9 items and scale range of 1 (strongly disagree) to 7 (strongly agree)</td>
<td>“I judge myself by what I think is important, not by the values of what others think is important.”</td>
<td>Before and after</td>
<td></td>
</tr>
<tr>
<td>Self-rated health scale [57,58]</td>
<td>Self-reported health scale</td>
<td>1 item and scale range of 1 (excellent) to 5 (poor)</td>
<td>“In general, over the past four weeks would you say your overall health is”</td>
<td>Before and after</td>
<td></td>
</tr>
<tr>
<td>Self-regulatory efficacy for health behavior goals [59,60]</td>
<td>Rating confidence levels to make health behavior change</td>
<td>8 items and scale range of 0% (not confident at all) to 100% (completely confident)</td>
<td>“How confident are you that you will develop solutions to cope with unexpected barriers that can interfere with achieving your health goals?”</td>
<td>Before and after</td>
<td></td>
</tr>
<tr>
<td>Wellness Behaviors Inventory [61]</td>
<td>Self-reported questions on how regularly participants engage in different health and wellness behaviors</td>
<td>17 items and scale range of 1 (<1 time a week or none) to 5 (every day of the week)</td>
<td>“I walk as much as possible, ie, taking stairs instead of elevator etc.”</td>
<td>Before and after</td>
<td></td>
</tr>
<tr>
<td>Motivation Scale</td>
<td>The extent to which the participant believes the program received motivated change to their stressor health behaviors</td>
<td>5 items and scale range of 1 (not at all motivating) to 5 (extremely motivating)</td>
<td>“To what extent did receiving biofeedback help motivate your healthy changes? (if applicable)”</td>
<td>After only</td>
<td></td>
</tr>
<tr>
<td>Acceptability measures [62]</td>
<td>Acceptability and feasibility of intervention measures</td>
<td>8 items, including 4 for acceptability and 4 for feasibility, and scale range of 1 (completely disagree) to 5 (completely agree)</td>
<td>“This program seems easy to use.”</td>
<td>After only</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Semistructured interview outline.

<table>
<thead>
<tr>
<th>Interviewee</th>
<th>Interview questions</th>
<th>Time points (before and after program or after program only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>• Onboarding process</td>
<td>After only</td>
</tr>
<tr>
<td></td>
<td>• How did you find the process of getting enrolled and starting the study?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What was helpful about getting started in the study?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What was challenging about getting started?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What do you think would improve the process of starting the study?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• How did you find the process of downloading the apps and logging in?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What do you think would improve the process of downloading and logging into the apps?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CoreHealth platform and content</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What did you like about the platform?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What did you not like about the platform?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Which modules did you use on the CoreHealth platform?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What did you think of the information that you were given?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To what extent did the content help you make changes to your health or stress management?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Was there anything you would change about the platform? How can we improve it?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Light Heart Content (if applicable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What did you like about Light Heart?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What did you dislike about Light Heart?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Did you encounter any barriers to measuring your HRV(^a)? Please describe them.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Was there anything you would change about the app? How can we improve it?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Health coaching (if applicable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tell me about your experience working with your coach? What did you like and dislike about it?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Did the coaching help you make healthy changes? If so, how?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What could be improved?</td>
<td></td>
</tr>
<tr>
<td>Health coach</td>
<td>• Tell us about your experience delivering health coaching to our study participants?</td>
<td>After only</td>
</tr>
<tr>
<td></td>
<td>• What did you like about the format of the study’s health coaching?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What did you dislike about the format of the study’s health coaching?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What did you think about the different conditions of the research study?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tell us what do you think needs to change about the study format to help participants elicit more health positive change?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Do you have any general feedback about coaching and study format?</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)HRV: heart rate variability.

Analysis

Descriptive statistics were computed using SPSS software (IBM Corp). The 6-phase method proposed by Braun and Clarke [63] was used to inductively analyze the interview data. Interview data were transcribed verbatim. A total of 2 raters read through the responses to become familiar with the data; main codes and subcodes were identified, using reflexive thematic analysis and then exemplar quotations for each code were selected.

Results

Sample Characteristics

A total of 16 adults consented to participate and were randomized to each of the 16 study conditions. The sample consisted of 15 women and 1 man (mean age 40.9, SD 14.3 years). All the participants worked full-time and had a mean BMI of 24.03 (SD 4.75) and mean job stress of 2.66 (SD 0.5). Regarding race, of the 16 participants, 15 (94%) identified as being White and 1 (6%) as being Southeast Asian. Of the 16 participants, 15 (94%) were married or living as married and 1 (6%) did not respond. Of the 16 participants, 11 (69%) reported having a bachelor degree or college diploma, 3 (19%) reported having postgraduate degrees, and 2 (12%) did not respond.

Participant Retention

A total of 4 (25%) of the 16 participants dropped out of the study before completing the 8-week program. Reasons for study dropout included pregnancy (1/16, 6%), life stress unrelated to the study (2/16, 12%), and no stated reason (1/16, 6%). Of the 12 participants who completed the program, 8 (75%) completed the poststudy follow-up assessment. Regarding item-level missing data from complete surveys, there was 8.3% missing survey data in the prestudy measures and 15.6% missing survey data in the poststudy measures.

Participant Engagement and Treatment Fidelity

A total of 12 (75%) out of the 16 participants completed the entire 8-week program, 1 (6%) completed 7 weeks, and 3 (19%) completed ≤3 weeks. Participants logged into the web-based CoreHealth platform an average of 83 times during the study (SD 63.8; range 36-291 log-ins). The CoreHealth program log-ins by group were as follows: daily resting HRV (mean 110.1), momentary HRV feedback (mean 70.7), initiation...
coaching (mean 64.4), and feedback coaching (mean 90.6). Among the 12 participants initially randomized to a condition that required the use of Light Heart throughout the program, the average number of HRV readings during the 8-week program was 12.55 (range 0-39), suggesting that the participants recorded an HRV reading with an average of 1.80 readings per week. Of the 4 (25%) participants not randomized to use the Light Heart app during their 8-week program duration, 3 (75%) did not use Light Heart and 1 (25%) used it once during the program. All the participants received the coaching they were randomized to. The average acceptability score was 3.9 (SD 0.66), and the average feasibility score was 3.78 (SD 0.91).

Trial Conduct Interview Findings

Although more participants found the trial onboarding process helpful, there were few suggestions for improving the trial methods (Table 5). The most frequently reported code within the trial conduct was the usefulness of the onboarding process (9/16, 56%). However, 4 of the participants reported that the onboarding process could be improved. For example, providing videos in addition to showing how to use the apps in the onboarding call would help participants proceed with the trial when they went on their own. In total, 2 of the participants found that the program length of 8 weeks was sufficient, whereas 4 of the participants mentioned that a shorter program would better fit their behavior change efforts. Informal feedback from CoreHealth staff suggested that it might be difficult to manage the backend for 16 conditions and suggested fewer conditions moving forward.

Table 5. Participant interview findings related to trial conduct.

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
<th>Illustrative quote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likes, 2 codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onboarding process, 9</td>
<td>Perceived like or dislike of the study’s enrollment process</td>
<td>“Using the Light Heart app was challenging but it was helpful to have the onboarding call and having someone to reach out to.” [HRT101]a</td>
</tr>
<tr>
<td>Program length, 2</td>
<td>Perceived like or dislike of the 8-week program duration</td>
<td>“But I think 8 weeks, that’s a good time to actually make changes and then assess those changes.” [HRT101]</td>
</tr>
<tr>
<td>Dislikes, 2 codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onboarding process, 4</td>
<td>Perceived like or dislike of the study’s enrollment process</td>
<td>“I found it a little bit difficult is that some of the instruction were in a PDF and others were in that email. So you know flip flipping from different pieces of information. And I was like if it was like you know all into the same document so that I know one was for my code.” [HRT108]</td>
</tr>
<tr>
<td>Program length, 4</td>
<td>Perceived like or dislike of the 8-week program duration</td>
<td>“Personally, I think a four to six weeks. I understand 8 weeks kind of helps you get in the habit of doing it, but after six weeks I’ve almost kind of forgot about it.” [HRT111]</td>
</tr>
</tbody>
</table>

aHRT denotes participant number.

CoreHealth Interview Findings

There were 8 positive and 4 negative codes associated with the use of the CoreHealth platform (Table 6). A total of 6 different BCTs were coded 17 times as being positive for the program, which included prompts, self-monitoring and planning, instruction on how to perform a behavior, reframing, health-related information, and a confidence ruler. Participants noted that they enjoyed the platform features such as a weekly outlook of the self-paced modules. They also liked the health-related information on mindfulness and stress management, particularly the 10-minute videos (although 3 suggested having shorter video options available). However, the action planning feature of the weekly program drew critical feedback (n=10). Although some did not find any benefit in setting an action plan, others found that it required too much writing and that completing the action plan became repetitious as there was no function to copy the plan details from the previous week. The overall usability of the platform interface received both positive n=5 and negative reactions n=11. Most usability issues surrounded updating the user interface, including streamlining the action planning function. Additional instructions for navigating the platform were suggested 3 times for improving the user experience (eg, how-to-use videos).
Table 6. Participant interview findings related to the 8-week program and the Core Health platform.

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
<th>Illustrative quote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likes, 8 codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• BCTs (^a): 17</td>
<td>Confidence ruler: rating scale used to help quantify patient readiness to improve their condition</td>
<td>“I really liked the scale. Like how confident you feel about doing it? Love that. And it wasn’t too, you know, one to 10. I think it was like one to five... So it was really easy to... you don’t get too many choices you don’t know.” [HRT101]</td>
</tr>
<tr>
<td>• Subcodes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Confidence ruler: 1</td>
<td>Prompt: introducing or defining environmental or social stimulus with the purpose of prompting or cueing the behavior</td>
<td>Prompt: “Having like push notifications or like something else that reminds you that you’re in this program.” [HRT113]</td>
</tr>
<tr>
<td>• Prompts: 2</td>
<td>Self-monitoring and planning: establishing a method for the person to monitor and record their behaviors as part of a behavior change strategy</td>
<td>Self-monitoring and planning: “I liked that I got kind of the weekly outlook and that you could see what the week was.” [HRT107]</td>
</tr>
<tr>
<td>• Self-monitoring: 7</td>
<td>Instruction on how to perform the behavior: advising or agreeing on how to perform the behavior</td>
<td>Instruction on how to perform the behavior: “I liked the breathing exercises...even guided meditations, I like much better than the one that you just. You know you kept yourself.” [HRT106]</td>
</tr>
<tr>
<td>• Instructions: 1</td>
<td>Reframing: suggesting deliberate adoption of a perspective or new perspective on behavior (eg, its purpose) to change cognitions or emotions about performing the behavior</td>
<td>Reframing: “Like the like reframing, negative responses, and stuff. And like I definitely see the value.” [HRT113]</td>
</tr>
<tr>
<td>• Reframing: 1</td>
<td>Health-related information: useful content linked to health positive behaviors, such as stress management, mindfulness, and sleep quality</td>
<td>“I liked the breathing exercises...even guided meditations, I like much better than the one that you just. You know you kept yourself.” [HRT106]</td>
</tr>
<tr>
<td>• Health-related information: 5</td>
<td>Perceived like or dislike of the amount of time to complete the action plan</td>
<td>“I thought it was good. I thought it was concise and you know I don’t like things that go on too long and that are too wordy.” [HRT111]</td>
</tr>
<tr>
<td></td>
<td>Module length: 2</td>
<td>“I thought it was good. I thought it was concise and you know I don’t like things that go on too long and that are too wordy.” [HRT111]</td>
</tr>
<tr>
<td></td>
<td>Usability: 5</td>
<td>Perceptions of the capacity of the system to perform the tasks safely, effectively, or efficiently while enjoying the experience</td>
</tr>
</tbody>
</table>

Dislikes, 4 codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
<th>Illustrative quote</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Length of stress management videos: 3</td>
<td>Perceived like or dislike of the video duration</td>
<td>“The only issue I had with them. I think there were a little too long so if you could just do like a you know instead of doing the full 10 minutes let me just do it for three or four minutes.” [HRT106]</td>
</tr>
<tr>
<td>• BCT Action Planning: 10</td>
<td>Action planning: participants found that weekly action planning required too much writing and commitment</td>
<td>“I found sometimes I end up saying a lot of the same things or like it was something that was out of my control and I couldn’t change...” [HRT107]</td>
</tr>
<tr>
<td>• Usability: 11</td>
<td>Perceptions of the capacity of the system to perform tasks safely, effectively, or efficiently while enjoying the experience</td>
<td>“The I guess it’s not the cleanest looking app, but it was functional...” [HRT106]</td>
</tr>
<tr>
<td>• Quality of instructions: 3</td>
<td>Perceived quality or clarity of the instructions</td>
<td>“Step by step document or personalized calendar would be nice so that participants can see what I have to do on each day would be helpful” [HRT129]</td>
</tr>
</tbody>
</table>

\(^a\)BCT: behavior change technique.

Light Heart Interview Findings

There were 8 possible codes regarding Light Heart from the interviews (2 likes and 6 dislikes; Table 7). There were both positive n=6 and negative n=8 feedback about the usability of the app. Participants across both the daily resting and momentary HRV components generally liked the look and feel of the app. Feedback about technical issues did not differ across participants receiving either HRV component as the issues were not component specific. Technical issues of poor signal quality, failed access codes early in the program, and elevated light temperature on some Android phones muted enthusiasm for the app in a few participants. Some participants noted that additional instructions about using and troubleshooting the app would enhance app usability. Suggestions included providing more detailed in-app explanations for failed readings owing to poor

https://formative.jmir.org/2024/1/e47181

JMIR Form Res 2024 | vol. 8 | e47181 | p.919

(page number not for citation purposes)
signal quality and providing more demo videos on how to use the app (eg, finger placement based on the phone and number of phone cameras).

The participants generally enjoyed recording their HRV readings to obtain biofeedback (11/16, 69%), which primed them to think about managing their stress or health and wellness goals. One participant remarked about obtaining their HRV as follows:

There was a day I felt pretty stressed out so I tested using the HRV and then I did a breathing exercise. I tested again and it had improved. It’s validating to see those numbers. It makes you feel better to measure again and see that it worked. [HRT104]

One participant who was randomized to using both types of HRV-BF remarked, “the best usage for HRV is really [pre-post] biofeedback,” suggesting a preference for momentary HRV (HRT108). All participants had access to both types of readings: pre- and postfeedback readings used in the momentary HRV condition and daily resting readings. This confused participants, regardless of the condition, who were uncertain about which type of reading they should record and when.

Table 7. Participant interview findings related to obtaining heart rate variability (HRV) biofeedback.

<table>
<thead>
<tr>
<th>Interview findings and code</th>
<th>Definition</th>
<th>Example quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likes, 2 codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usability: 6</td>
<td>Perceptions of the capacity of the system to perform tasks safely, effectively, or efficiently while enjoying the experience</td>
<td>“It’s nice not having to keep up with different Instruments.” [HRT101]</td>
</tr>
<tr>
<td>Biofeedback: 11</td>
<td>Biofeedback: provide beneficial feedback about the body (eg, physiological or biochemical state) using an external monitoring device as part of a behavior change strategy</td>
<td>“The best usage for HRV is really biofeedback; part of managing stress and finding ways to calm down.” [HRT108]</td>
</tr>
<tr>
<td>Dislikes, 6 codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading length: 2</td>
<td>Perceived like or dislike of the amount of time required to take an HRV reading</td>
<td>“If the readings didn’t take a whole minute” in response to how they would use Light Heart differently [HRT104]</td>
</tr>
<tr>
<td>Quality of instructions: 5</td>
<td>Perceived quality or clarity of the instructions</td>
<td>“I don’t think there was enough instructions in the app to use it properly. Wasn’t sure how to stop the readings from quitting so maybe a demo video and a little trigger.” [HRT113]</td>
</tr>
<tr>
<td>Technical problem: 21</td>
<td>Signal quality: capability of the HRV measure to obtain a successful reading</td>
<td>Signal quality: “It was it was difficult to get a reading, and many mornings I would have to try multiple times” [HRT104]</td>
</tr>
<tr>
<td>Subcodes:</td>
<td>Access codes: numeric code used to link the study’s mobile apps to the CoreHealth platform</td>
<td>Access codes: “It was difficult to connect the apps” [HRT101]</td>
</tr>
<tr>
<td>Signal quality: 10</td>
<td>Phone temperature: perceived temperature of the flash while taking an HRV reading</td>
<td>Phone temperature: “Phone gets really hot and they find it difficult to get a reading- kind of frustrating using the HRV” [HRT104]</td>
</tr>
<tr>
<td>Access code: 8</td>
<td>Usability: 8</td>
<td>Perceptions of the capacity of the system to perform tasks safely, effectively, or efficiently while enjoying the experience</td>
</tr>
<tr>
<td>Temperature: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaching Interview Findings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Participant feedback on both the initiation and feedback coaching components were similar. The participants overwhelmingly liked the coaching style n=11 and reported benefiting from the coach using different behavior change strategies (ie, n=17: goal setting, social support, and providing information; Table 8). One participant felt that the supportive coach helped with their ability to cope with stress, whereas another felt that the added accountability helped keep them on track with their goals. There were no negative responses regarding the BCTs used by the counselors. However, 1 participant did not like the motivational interviewing–based counseling style, suggesting that they wanted the coach to be more directive in providing exercise during the session. A total of 4 respondents suggested that 15-minute sessions were not long enough for coaching to facilitate health behavior changes. Coaching was conducted web-based through the CoreHealth platform, and there were 4 mentions of difficulty in knowing where and how to access videoconferencing.
Table 8. Participant interview findings related to coaching conditions.

<table>
<thead>
<tr>
<th>Interview findings and code</th>
<th>Definition</th>
<th>Illustrative quote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interview findings and code</td>
<td>Definition</td>
<td>Illustrative quote</td>
</tr>
<tr>
<td>Likes, 5 codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• BCTa**: 17</td>
<td>Goal setting: setting or agreeing on a goal defined in terms of the behavior to be achieved</td>
<td>Goal setting: “Setting up, setting up the objective, making sure you’re on the right track, accountability.” [HRT108]</td>
</tr>
<tr>
<td>• Subcodes:</td>
<td>Unspecified social support: providing resources (eg, psychological) intended to benefit an individual’s ability to cope with stress [64]</td>
<td>Social support: “She applied all the great practices right, the not, no judgment, supporting... Uh, so look, you know a potential solutions and make you know, just raising ideas, bringing motivation” [HRT108]</td>
</tr>
<tr>
<td>• Goal setting: 5</td>
<td>Health-related information: providing health-related information to the participant</td>
<td>Health-related information: “She understood activity and exercise and all of these things that we talked about it. I mean it was just being familiar with the content on her part was really good.” [HRT110]</td>
</tr>
<tr>
<td>• Social support: 11</td>
<td></td>
<td>“The thing I liked was it was really kind of nice to talk to a live friendly voice. She was very friendly, very positive, very upbeat.” [HRT111]</td>
</tr>
<tr>
<td>• Health-related information: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaching style: 13</td>
<td>Perceived like or dislike of the coaching style</td>
<td>“The thing I liked was it was really kind of nice to talk to a live friendly voice. She was very friendly, very positive, very upbeat.” [HRT111]</td>
</tr>
<tr>
<td>Dislikes, 3 codes</td>
<td>Perceived like or dislike of the counseling session duration</td>
<td>“[I] dislike the length of it. If you’re going to put the effort in, probably to have someone help you, I think 15 minutes is personally too short.” [HRT115]</td>
</tr>
<tr>
<td>• Counseling length: 4</td>
<td>Perceived challenges associated with using the CoreHealth platform for the web-based coaching session</td>
<td>“When I was trying to log in the second time, I’m like how did I do it the first time and I just like totally forgot... Uh, so we got my gosh I’m going to be late.” [HRT107]</td>
</tr>
<tr>
<td>• Technical problems: 4</td>
<td>Perceived like or dislike of the coaching style</td>
<td>“So it was just her agreeing with me which I don’t know if you like or do not like I think I was expecting it to act like her don’t like a strategy that I had heard over like something that I didn’t think of...” [HRT115]</td>
</tr>
<tr>
<td>• Coaching style: 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aBCT: behavior change technique.

Interview With the Wellness Coach

Overall, the coach was satisfied with the coaching and found that using the spirit of motivational interviewing was beneficial to bridge the gap and allowed the participants to connect to them as a coach. The coach stated that “Motivational interviewing is definitely one that I use a lot.” Although 15 minutes is the standard length of counseling for most low-risk clients, they mentioned that “15 minutes is a tight time frame to be able to really utilize a lot of motivational interviewing tools.” They also suggested that stress and health behavior change content should be separated and introduced at different time points. The coach mentioned that the study’s setup and participants receiving different conditions was a bit confusing. They mentioned the following:

The communication was probably the hardest part is being able to get in touch with the participants and make sure that they’re on track...I’m used to being that person that goes and holds their hand and helps them along the entire way.

This seemed particularly the case for those receiving feedback counseling but not initiation counseling, where the first communication between the coach and participant occurred part-way through the program. The coach also echoed the challenges that were heard from participants in connecting Light Heart to CoreHealth to view their HRV-BF in CoreHealth as follows:

I think that’s the main thing is making sure people are utilizing it [Light Heart] properly. And then because, I mean, when people did use it, I received the information in CoreHealth. So, if the information is there, it’s really easy to be able to coach on. It’s just making sure that they see their end.

Discussion

Principal Findings

We conducted this study to assess participants’ perceptions of different levels of the intervention components to be tested in a future optimization stage. There were many positive perceptions about the intervention components; however, interviews with participants and the coach revealed areas of strength and improvement.

In general, participants expressed more positive than negative reactions toward the onboarding process, consistent with the quantitative acceptability scores. Although some participants found it easy to learn the CoreHealth site and study apps, others suggested that additional resources were needed to help individuals engage with the technology as they started the program (eg, instructional videos). There were also mixed
responses regarding the length of the 8-week program. Although some felt that it was right, others found it too long. Previous literature has suggested that sequentially initiating changes to multiple behaviors (ie, 4 weeks of health behavior change followed by 4 weeks of stress management) may be more effective than having participants concurrently initiate changes in multiple behaviors at the same time [63]. This, combined with the feedback from participants and the coach to separate the stress management content from the health behavior change content, will result in a disaggregation of the content into 2 separate 4-week modules. Notably, there were no differences between delivering feedback coaching at either 2 or 4 weeks. Moving forward, coaching will be delivered at the 4-week time point to align with the updated structure of delivering two 4-week modules.

In reporting what they found helpful about the 8-week program, participants frequently mentioned 6 different BCTs. These responses are an indication of treatment receipt fidelity—that participants received the BCTs on the CoreHealth platform as intended [66]. One exception was the action planning content, which participants found cumbersome to use. The quality of how interventions were implemented using technology could impact the amount of time it took to complete a task [67]. Asking participants to set weekly action plans that were time-consuming may have negatively affected their experience. We plan to work with developers to simplify the action planning script to improve the user experience because health information technology systems that are easy to navigate are more likely to be used [68,69]. We also plan to work with developers to improve the process of connecting the Light Heart and CoreHealth apps to the CoreHealth Web platform through their mobile access codes.

Participants enjoyed the look and feel of the Light Heart app and reported important benefits in obtaining HRV. There were 3 noted areas for improvement related to our integration of the app within this study. First, incorporating the HRV function from Light Heart into the broader CoreHealth app would enhance usability and ease the burden of having to switch between using 2 different apps. Combining the 2 apps would also alleviate the second challenge, which is the difficulty of connecting the apps through mobile phone codes. Third, providing additional instructional resources may help alleviate other challenges that participants experienced when first learning to use the app (eg, finger placement). We believe that making these adjustments will improve the usability and acceptability of the study’s apps.

Despite these challenges, participants reported the benefits of using Light Heart to obtain HRV-BF. Biofeedback has been shown to reduce stress and improve well-being [70]. Consistent with these findings, 1 participant in the momentary HRV-BF group explicitly noted that the biofeedback improved their mindfulness and physical feeling. Biofeedback is a form of self-monitoring. Regular self-monitoring can prime individuals to think about their behavior change goals, particularly for those who do not regularly self-monitor [71]. One participant in the daily resting HRV-BF group suggested that taking regular readings served as a regular reminder of their behavior change goals. These self-reported benefits from the 2 HRV-BF conditions provide an anecdotal indication that the participants received their HRV-BF condition and obtained the hypothesized effects as intended.

One of the key activities of the preparation phase is to pilot the candidate components and gather evidence to build a conceptual model before the optimization phase [50,51]. The initial intervention components and levels were determined in consultation with CoreHealth staff based on their affordability and scalability because they align with their current standard practices. Participants’ feedback on the candidate components provided insight into potential mediators to include and assess in a future conceptual model. For example, feedback about HRV-BF did not substantially differ between the daily resting and momentary components, and the findings pointed to increased awareness of current HRV as a potential mediator. The participants suggested that using different BCTs during coaching helped them track and achieve their wellness goals. This may suggest self-regulatory efficacy in managing one’s health behaviors as a potential mediator of coaching components. We plan to review the candidate components and mediators to develop a conceptual model before the next phase of this project.

Strengths
A notable strengths of the study was using a multimethod approach used in this preparation phase and adhering to the MOST framework. For example, obtaining user feedback answers calls to include participants in developing and refining health technology [68]. MOST is a progressive framework for the development and optimization of behavioral treatments. Framing this study using MOST provided clear benchmarks for this study’s objectives and a clear path to progress to the next stage of research. Research can be more impactful and have better patient outcomes when key stakeholders are meaningfully engaged [72,73]. One final strength was the partnered approach used to execute this study. Throughout this project, we had a close working relationship with the CoreHealth staff, which allowed for the quick resolution of technological challenges as they arose. For example, we were able to find a quick solution to the challenge of mobile phone codes not working properly at the beginning of the study. Partnered research also increases the likelihood that the findings will be put into practice [74]. The findings from this study will result in changes that are implemented by our research partner. Two such examples include adjusting the action plan widget and adjusting how users navigate between the 2 types of HRV-BF readings in the Light Heart app.

Limitations
One possible limitation of conducting research with multiple partners was the continued reliance on all partners to perform their roles to ensure the ongoing success of a project. We had exceptional buy-ins from both CoreHealth and our corporate coaching partner throughout this study. However, owing to the economic impact of the COVID-19 pandemic, our coaching partner is no longer able to deliver health coaching. This possibility was anticipated at the onset of our research with CoreHealth, which indicated that they work with other health coaching companies that can be approached to run the next...
phase of the study. Another limitation was that the interview questions may not have been sensitive enough to distinguish between similar HRV-BFs or coaching components. One aim of preparation studies is to gain insight into the delivery of candidate components and different conditions. Future preparation phase research should seek more nuanced feedback about the receptivity of the different component combinations in the individual conditions. Another limitation of this study was the dropout rate, which was higher than anticipated, yielding fewer participant responses to our poststudy assessments. These adherence rates are consistent with other lifestyle intervention trials reporting up to 70% attrition, depending on the length of the follow-up [75-77]. Multiple participants received each of the 4 candidate components; however, 4 (25%) of the 16 conditions did not receive participant feedback and went unpiloted because of dropout.

MOST is a structured framework for developing efficient behavior change interventions. This preparation study will result in improved onboarding and app usability. Given that there were unpiloted conditions, proposed changes based on user feedback, and changes in corporate wellness providers, we plan to reiterate through the preparation phase before proceeding to the optimization phase. Strong partnerships with a commitment to make user-centered adjustments will allow us to keep progressing through the different phases of MOST.

Data Availability
Deidentified data may be made available by reasonable request to the corresponding author.

Conflicts of Interest
None declared.

References

https://formative.jmir.org/2024/1/e47181

JMIR Form Res 2024 | vol. 8 | e47181 | p.923
(page number not for citation purposes)

37. Howlett N, Trivedi D, Troop NA, Chater AM. Are physical activity interventions for healthy inactive adults effective in promoting behavior change and maintenance, and which behavior change techniques are effective? A systematic review

Abbreviations

BCT: behavior change technique
HRV: heart rate variability
HRV-BF: heart rate variability biofeedback
MOST: multiphase optimization strategy
sdNN: SD of the normal sinus beats

https://formative.jmir.org/2024/1/e47181

Jmir Form Res 2024 | vol. 8 | e47181 | p.926
(page number not for citation purposes)
Determining the Right Levels of Health Coaching and Heart Rate Variability Biofeedback in a Workplace Behavior Change Intervention: Multiphase Optimization Strategy Preparation Study

Locke S, Osborne J

JMIR Form Res 2024;8:e47181

URL: https://formative.jmir.org/2024/1/e47181
doi:10.2196/47181
PMID:38354036

©Sean Locke, Jenna Osborne. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Measurement of Head Circumference Using a Smartphone: Feasibility Cohort Study

Stefan Yordanov1*, MD, MRCS; Kalsoom Akhter1, CPsychol; Jye Quan Teh1*, BCHIR, MA; Jawad Naushahi1, LLM, PhD; Ibrahim Jalloh1*, MA, PhD

Academic Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom

*these authors contributed equally

Corresponding Author:
Stefan Yordanov, MD, MRCS
Academic Division of Neurosurgery
Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust
University of Cambridge
Hills Rd
Cambridge, CB2 0QQ
United Kingdom
Phone: 44 01223 805000 ext 348134
Email: yordanov.stefan@yahoo.com

Abstract

Background: Accurate head circumference (HC) measurement is essential when assessing neonates and infants. Tape measure HC measurements are prone to errors, particularly when performed by parents/guardians, due to individual differences in head shape, hair style and texture, subject cooperation, and examiner techniques, including tape measure placement and tautness. There is, therefore, the need for a more reliable method.

Objective: The primary objective of this study was to evaluate the validity, reliability, and consistency of HC app measurement compared to the current standard of practice, serving as a proof-of-concept for use by health care professionals.

Methods: We recruited infants attending the neurosurgery clinic, and parents/guardians were approached and consented to participate in the study. Along with the standard head circumference measurement, measurements were taken with the head circumference app (HC app) developed in-house, and we also collected baseline medical history and characteristics. For the statistical analysis, we used RStudio (version 4.1.1). In summary, we analyzed covariance and intraclass correlation coefficient (ICC) to compare the measurement’s within-rater and interrater reliability. The F test was used to analyze the variance between measurements and the Bland-Altman agreement, t test, and correlation coefficients were used to compare the tape measurement to the measures taken by the HC app. We also used nonvalidated questionnaires to explore parental or guardians’ experiences, assess their views on app utility, and collect feedback.

Results: The total number of recruited patients was 37. Comparison between the app measurements and the measurements with a tape measure showed poor reliability (ICC=0.177) and wide within-app variations (ICC=0.341). The agreement between the measurements done by parents/guardians and the tape measurements done by the researcher was good (ICC=0.901). Parental/guardian feedback was overall very positive, with most of the parents/guardians reporting that the app was easy to use (n=31, 84%) and that they are happy to use the app in an unsupervised setting, provided that they are assured of the measurement quality.

Conclusions: We developed this project as a proof-of-concept study, and as such, the app has shown great potential to be used both in a clinical setting and by parents/guardians in their own homes.

(JMIR Form Res 2024;8:e54194) doi:10.2196/54194

KEYWORDS

head circumference; HC; hydrocephalus; neurosurgery; pediatric neurosurgery; paediatric neurosurgery; neurology; neuro; neurosurgeon; neurologist; mobile health; mHealth; app; apps; application; applications; digital health; smartphone; smartphones;
pediatric; pediatrics; paediatric; paediatrics; infant; infants; infancy; baby; babies; neonate; neonates; neonatal; toddler; toddlers; child; children

Introduction

Accurate head circumference (HC) measurement is essential when assessing neonates and infants. HC outside the normal range may indicate a brain development disorder, hydrocephalus, or an intracranial mass lesion. The growth pattern of HC, determined from serial measurements, provides valuable clinical information; for example, changes in HC are used to help determine whether hydrocephalus needs treatment and is predictive of neurodevelopmental outcomes [1].

The importance of HC measurement is recognized worldwide. The World Health Organization advises HC measurements just after birth (although measurements taken within the first 24 hours can be unreliable due to moulding), at the 8-week check, and any time thereafter if there are concerns about the child’s head growth, weight gain, development, or general health. It is also advisable for HC measurement to be performed at any pediatric review in the first 2 years of life. An accurate HC measurement is essential when clinically evaluating a neonate or infant. It monitors slow or excessive growth, assesses the impact of illness and treatment, and identifies those at higher risk of neurodevelopmental disorders [2]. HC should be measured at extremes of body weight (either below the 0.4th centile or above the 99.6th centile) or if there is rapid weight gain [3].

HC is the widest circumference of the head measured using a tape measure. Typically, this is performed by health care workers. With the increasing use of telephone and remote review clinics as a substitute for face-to-face appointments, community measurement of HC is more frequently used to help guide clinical management in various clinical specialties, such as neurosurgery, neonatology, and pediatrics. Parents and caregivers can be taught to measure the HC using tape, but its accuracy and reliability are sometimes insufficient for making clinical decisions. Many caregivers need more confidence to perform HC measurements themselves because of the technical challenges in performing the measurement and the potentially severe implications of erroneous measurements. Often, HC measurements must be checked by a health care professional, necessitating additional health visitor home visits or trips to the general practitioner.

HC measured with a tape measure is also prone to errors due to individual differences in head shape, hairstyles and texture, patient cooperation, and examiner techniques, including tape measure placement and tautness [4,5]. Measuring HC with a tape measure is often challenging due to poor cooperation in infants, particularly in a health care setting. Neonates in the neonatal intensive care unit pose significant challenges for HC measurements due to the risks associated with handling or removing them from the incubator. Many neonates require daily measurement placement and tautness [4,5]. Measuring HC with a tape measure is also prone to errors due to individual differences in head shape, hairstyles and texture, patient cooperation, and examiner techniques, including tape measure placement and tautness [4,5]. Measuring HC with a tape measure is often challenging due to poor cooperation in infants, particularly in a health care setting. Neonates in the neonatal intensive care unit pose significant challenges for HC measurements due to the risks associated with handling or removing them from the incubator. Many neonates require daily HC measurements.

The challenges of performing HC measurement with a tape measure, both in the hospital and the community, mean many missed opportunities to capture HC. Only 3% of infants presenting to Accident and Emergency had their head circumference measured within 1 year in an Australian hospital [6]. A study from a UK hospital found that HC measurement was performed sporadically in only 1 of 7 infants [7]. In summary, HC assessment is frequently missed due to difficulties measuring with a tape measure and the errors associated with this method. There is, therefore, an urgent need to improve our ability to monitor HC easily, accurately, and reliably, which would facilitate greater dependence on caregivers to perform this assessment independently.

We developed a smartphone app that measures HC using the smartphone camera and automated measurement to improve the accuracy and reliability of HC measurement. Our study’s main objective was to validate the accuracy of the HC app and prove its utility and feasibility when used by both health care workers and parents/guardians.

Methods

Patient Recruitment

Treating clinicians identified patients eligible for this study (infants <18 months of age) in a tertiary neurosurgical referral center and notified research team members with the consent of parents/guardians. Once identified, research team members approached patients’ parents/guardians to seek informed consent before their clinic appointment or at the bedside on the ward. An information sheet was used. If they chose to participate, we measured the HC during the clinic appointment or on the ward. Sample size estimation was calculated with 90% statistical power to detect a change of means by 1 and an SD of 1. This, along with 10% iteration, equaled 33 participants.

App Development

To successfully develop the app, we built the back end and front end of the app separately. Languages used were Python and JavaScript, and the app was built in Expo [8] using React Native [9]. The app’s back end used an algorithm to recognize a reference object and provide a measurement according to the object. Technically, the algorithm consists of a couple of parts. One part includes the foreground and contour recognition code, which recognizes the oval object and then measures the pixel points around its contour. Another part of the algorithm detects the reference object and recognizes the scale in comparison. They both fuse using Python to measure according to the identified contour points of both objects and the introduced scale of the known object sizes, providing a measurement within the scale. Points were manually inputted to clarify the top, bottom, and outermost lateral edges of the baby’s head. This was introduced as an additional measure to align with the already recognized contour and provide a more accurate measurement.

The algorithm was tested to match an SD of 0.5 cm between measurements. This SD target was selected to mirror the accepted variation in tape measurements, aiming for consistency...
and reliability while minimizing bias and variability associated with traditional methods [10].

We used a phantom baby model to test the accuracy of our measurement model (Figure 1). Instructions for parents/guardians are shown in Figure 2.

Figure 1. Head circumference app measurement sequence.
Ethical Considerations

Our regional research ethics committee (East of England-Cambridge East Research Ethics Committee) reviewed our study, and Health Regulatory Authority approval was obtained on June 6, 2022 (22/EE/0109). All parents/guardians of patients eligible to participate were approached with information about the study and given sufficient time for consideration of their participation. Informed consent in English was signed before any study-related procedures were undertaken. The data collected as part of the study were anonymized and deidentified. No patient identifiable data were collected as part of this study. Study participants and parents/guardians did not receive any compensation for their participation.

Study Objectives

After the successful trial on a life-size baby model (3B Scientific W17001 Baby Care Model), we developed a trial protocol and a study. The rationale of our study was to validate the HC app in a clinical setting and to review its usability by parents/guardians in the community.

The primary objective was to assess the technical validity (ie, accuracy and precision) and user reliability (ie, consistency of measurements across different raters) of the HC app compared to standard tape measure methods. We also set multiple secondary objectives; these include evaluating user satisfaction with the HC app and comparing the reliability of HC measurements between health care professionals and parents/guardians using both tape and the app.

Baseline and Study Data Collection

All participants had a medical history, clinical examination, and routine investigation details taken from their medical notes. The study phone did not retain any patient information. A nonvalidated questionnaire was used to capture parental or guardian feedback. Public and patient involvement feedback was sought in the design of the questionnaires for parental or guardian feedback. A complete list of questions can be found in Multimedia Appendix 1. HC measurements, as part of the study, were performed using a tape measure along the widest circumference of the baby’s head. Parents/guardians were instructed by a health care professional competent in HC measurement before the measurements were taken. They were also supervised during the procedure by a health care professional who was part of the study team. A specific set of instructions for using the app was prepared to be shown to the parents before they attempted to use the application. The instructions were developed with the help of a patient and a public representative group during the study development phase.
Statistical Analysis

In this study, we introduce a novel measurement method, which requires comprehensive evaluation to ascertain its properties. Reliability, validity, and reproducibility are key criteria in measurement science. We adopt the COSMIN (COncensus-based Standards for the selection of health Measurement INstruments) initiative standards, a widely recognized authority in clinical measurement quality [11] (Figure 2), to guide our assessment. In recent years, COSMIN has become a well-recognized organization [12], and consensus definitions can convey a unified message. COSMIN has also been dedicated to improving clinical measurement, including creating guidance and resources for measurement quality. That is why we decided to be guided by their definitions in exploring our novel measurement method’s reliability, consistency, and validity.

Guided by the COSMIN initiative, reliability is defined as the degree to which the measurement is free from measurement errors and includes a subsection of internal consistency (the degree of interrelatedness), reliability (the proportion of total variance due to true variance), and measurement error (systemic random error) [11,13]. To address this domain, we analyzed covariance, intraclass correlation coefficient (ICC), and Cohen Kappa and generated the interrater and within-rater reliability and variance. The ICC is between 0 and 1, where values below 0.5 indicate poor reliability, those between 0.5 and 0.75 indicate moderate reliability, those between 0.75 and 0.9 indicate good reliability, and any value above 0.9 indicates excellent reliability [14].

The COSMIN initiative also defines validity as the degree to which a measurement instrument measures the construct and its purpose to measure. The main subsections of this include content validity, criterion validity, and construct validity. Content validity ensures that the content of a measuring tool adequately reflects the given facts. Construct validity is defined as the degree to which the scores of a measurement instrument are consistent and includes structural validity, which is the degree of reflection of dimensionality, and hypotheses testing, which is synonymous with construct validity. Criterion validity shows how adequate the measurement is based on a “gold standard” [11,13]. For comparisons of agreements between the measures in this study, we used the correlation coefficients and the Bland-Altman method. The Bland-Altman plot analysis is a simple way to evaluate a bias between the mean differences and estimate an agreement interval. This interval encompasses 95% of the differences of the second method compared to the first one [15].

For the statistical analysis, we used RStudio (version 4.1.1). In summary, we analyzed covariance and ICC to compare the measurement’s within-rater and interrater reliability. The F test was used to analyze the variance between measurements and the Bland-Altman agreement, t test, and correlation coefficients were used to compare the tape measurement to the measures taken by the HC app.

Results

Demographics

We recruited 37 patients (23 male and 14 female), with a median age of 9 (IQR 4-16) months.

Normal means distribution was indicated visually with a histogram (Figure 3); however, the Shapiro-Wilk normality test with a $W=0.777$ and $P<.001$ showed a deviation from the normal distribution of means.
Comparison of HC App Measurements Versus Tape Measurements

A 2-sample t test was used to compare the mean values of all the tape measurements with HC app–based measurements. There was a statistically significant difference between the measurements ($P < .001$). The variance in the population means was found to be equal ($F_{5,30} = 0.92134; P = .81$).

We then calculated the limits of agreement between the 2 measures using the Bland-Altman plot. The upper limits of agreement were determined to be within a range of 0.706 to 21.472, revealing significant variability in the data points (Figure 4). These were scattered across the field away from the 0 lines, indicating a weak agreement between the 2 methods. We then assessed the ICC for the measurements, which showed a value of 0.177, which is less than 0.5, indicating inferior reliability of the HC app measurements in comparison to the measurements taken by a tape measure.
Comparison of Measurements Within the App (Interrater Reliability)

We compared the HC app’s performance between different raters (researchers and parents/guardians) by calculating the ICC, which yielded a value of 0.341. The limits of agreement, determined using Bland-Altman plots, were also high (lower limit –16.696 and upper limit 20.252), with a mean difference of 11.089 and with a significant scatter of the values. These results show poor agreement between the rater evaluations. (Figure 5). We then performed an F test to assess whether the variance between the 2 groups was equal. This resulted in $F_{35,71}=0.302$ and $P<.001$, indicating a difference in the variance of the measurements between the groups. The same analysis was also performed comparing the consequential researcher measurements, showing similar results ($F_{3,33}=1.994; P=.04$). The standard error of the mean (SEM) between the measurements done by parents/guardians and the researcher measurements was 0.979 and 0.921, respectively. Cohen Kappa was calculated at 0.435, showing a fair agreement between the measures.

Figure 4. Bland-Altman plot; limits of agreement and variability assessment between app measurements and tape measurements.

Figure 5. Bland-Altman plot; limits of agreement and variability assessment between different app measurements.
Comparison Between Parent/Guardian and Health Care Professional Tape Measurement

We also compared the interrater reliability between the measurements taken with a tape measure. The parents/guardians measured the HC under direct supervision and guidance. The ICC was 0.901, indicating good method reliability with very few lines above the 0 line in the plot and a mean difference of 0.5, comparable to other evidence in the literature [16]. The SEM for the medical professional measurements was 0.88, while the SEM for the parent/guardian measurements was 0.97. Cohen Kappa was set at 0.93, showing near-perfect agreement (Figure 6).

Figure 6. Bland-Altman plot; limits of agreement and variability assessment between parent/guardian and health care professional app measurements.

User Feedback

The survey results showed favorable opinions from parents/guardians, with the majority of them being happy to use the HC app in a nonsupervised setting. Most parents/guardians (n=31, 84%) answered that the HC app was easy or extremely easy to use, and 33 (89%) responded that they were very confident in using the HC app after reviewing the instructions (Figures S1 and S2 in Multimedia Appendix 1). The app instructions, created using public and patient involvement feedback, were also valued by the parents (Figure S4 in Multimedia Appendix 1). Once again, the vast majority (n=32, 87%) were either satisfied (n=14) or very satisfied (n=18) with the HC app (Figure S3 in Multimedia Appendix 1). Free-text comments from several parents/guardians described that they found the concept of using the HC app appealing and were happy to be presented with the opportunity to use it. Most parents were also happy to use the app even at home if available (Figure S5 in Multimedia Appendix 1). Furthermore, they indicated that they would be very likely to use the HC app provided that the app’s measurements and reliability improve.

Discussion

Principal Findings

We developed a smartphone app that measures HC using the smartphone camera and automated measurement. Our HC app is less accurate in its current iteration than the standard tape measure. Interrater reliability using the app was poor, but there was no significant difference in the variability between the operators. Parents/guardians also valued the convenience of using the app and the ease of performing the measurements, highlighting the potential of this technology once modified to improve accuracy.

The idea for our HC app was conceived during the COVID-19 pandemic lockdown in 2020, when disruption to health care services significantly reduced face-to-face appointments between patients and health care providers. Parents/guardians can measure HC using tape, but this requires some teaching and is prone to errors. Many parents/guardians express anxiety about assessments typically carried out by health care professionals being delegated to them and used in making clinical decisions. We, therefore, recognized the opportunity to create an automated method for HC measurement that is simple and easy to use and eliminates the errors associated with tape measure placement and patient cooperation.

Smartphone (and wearable) technology plays an ever-increasing role in public health and health care delivery, increasing the ability of health care workers to monitor patients remotely and empowering patients to track their health care metrics. The potential of technology to benefit health care is recognized by the World Health Organization, which introduced the term “mHealth” [16] to denote “medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants (PDAs), and other wireless devices” [16]. Mobile communication allows remote assessments with results that can be transferred distantly via mobile devices. In this landscape, we feel that replacing the tape measure with a smartphone equivalent is inevitable.

The current version of our HC app requires a reference object and manually placed input points to indicate the top, bottom,
and lateral edges of the baby’s head. The high reproducibility of measurements taken by the same person indicates the ease and reliability of this method. The relatively poor accuracy of our HC app is likely due to confounders such as the photo’s angle and distance and the type of reference object used. Using a bright-colored reference object (eg, a bottle cap) gave us a more accurate reading. However, we recognize that this choice of reference object may also relate to some inaccuracies, making the app less user-friendly and contributing to the difficulties in obtaining the perfect conditions for the photo. Thus, we intend to continue to develop the HC app using newer smartphone technology, such as light detection and ranging (LIDAR), which will improve the accuracy of the measurements, eliminate the need for a reference object, and make the app more user-friendly.

This technology is highly advanced, and mobile LIDAR is already incorporated into most modern phones. Since 2020, Apple Inc has introduced a LIDAR sensor in some iPhone and iPad models, namely iPhone 12 Pro, iPhone 12 Pro Max, iPhone 13 Pro, iPhone 13 Pro Max, iPad Pro 2020, and iPad Pro 2021 (as of March 2022) [17]. Dimension can easily be measured between 2 points in the LIDAR 3D point cloud, providing accurate measurements of various objects. This technology is already used in other fields [18,19]. Thus, we are confident that this technology can be reliably used to improve the measurement accuracy and usability of the app.

Feedback from parents/guardians about the HC app revealed that they are confident in using the HC app and value the ability to track HC themselves in the convenience of their homes. They appreciated the ease of performing the measurements and performing them without fear of waking a sleeping infant. Overall, we received positive feedback from both the public and patient panel groups we consulted in preparation for our proof-of-concept study as well as during the trial itself. Many parents gave both written and verbal feedback with ideas and suggestions for how to improve the app’s utility. Most parents suggested features they would like to see, which shows good community engagement, reassuring that the concept can easily reach the target auditorium. Most of the parents were very welcoming to the technological solution we proposed. They expressed their interest in using it in the privacy of their homes after improvements to the app. However, reassurance is needed that the measurements are accurate and reproducible, which is something to be aware of when the final version of the app is distributed. We will keep that in mind in the development of future studies following the development of the final app to increase the adoption in the community.

Importantly, our study confirms that parent/guardian measurements using a tape measure are reliable with an excellent correlation (ICC=0.901) and agreement (kappa=0.93) between health care professionals and parents/guardians. Although our findings are similar to those previously reported by Sullivan et al [4] and support empowering parents/guardians to perform these measurements, these measurements were done under the direct supervision of a health care professional with an additional helping hand during the measurements. Having this in mind, translating these results may provide false reassurance regarding the reliability of parental measurements done at home without supervision. The only thing we can do to manage erroneous measures is to provide sufficient training and guidance to parents/guardians. This does not eliminate errors, but it offers a certain degree of reassurance. The gold standard measure, nevertheless, will remain the one measured by a health care professional. In contrast, the HC app, once improved, has the potential to introduce a sustainable, uniform, and reproducible means of measurement, which can be applied consistently across settings, providing equal reliability.

Limitations
To facilitate recruitment and combined measurements by both health care professionals and parents/guardians within a reasonable time frame, measurements were performed in the clinic rather than at home. A researcher supervised measurements; however, once instructions were given, no further help was provided, as our intention was for the HC app to be reliably used by parents/guardians independently at home. Our study design, therefore, only partially validates the HC app use in the home environment independent of health care professionals. We plan to explore this with future iterations of our HC app. Another important limitation to report is associated with the Shapiro-Wilk normality test. As the data set increases in size, the test can pick up very small variations, which can result in a higher likelihood of rejecting the null hypothesis [20].

Conclusions
Our HC app has demonstrated proof-of-concept for parent/guardian HC measurement using smartphone technology. The feedback collected from parents/guardians confirmed that the technology is easy to use, giving them the confidence to perform the measurement independently. Overall, parents/guardians were interested in this technological solution and were eager to give both written and verbal feedback during the study. This, along with the clinical proof-of-concept, reassured us that the technology is feasible, prompting us to initiate plans to improve the versions of our HC app.

Acknowledgments
Funding was received from Health Enterprise East via the innovation voucher awards in 2021.

Data Availability
The data sets generated during this study are available from the corresponding author upon reasonable request and after approval from the sponsor.
Conflicts of Interest

None declared.

Multimedia Appendix 1
Questionnaire and additional statistics.
[DOCX File, 36 KB - formative_v8i1e54194_app1.docx]

References

3. Plotting and assessing infants and toddlers up to age 4 years. RCPCH. URL: https://www.rcpch.ac.uk/sites/default/files/Plotting_toddlers.pdf [accessed 2023-06-26]

12. COSMIN. URL: https://www.cosmin.nl/ [accessed 2024-01-30]

20. Assessing the assumption of normality. UC Business Analytics R Programming Guide. URL: https://uc-r.github.io/assumptions_normality#:~:text=Shapiro%2DWilk%20Test%20for%20Normality&text=II%20the%20test%20is%20non,different%20from%20a%20normal%20distribution [accessed 2024-01-28]

Abbreviations

COSMIN: COSensus-based Standards for the selection of health Measurement INstruments
HC: head circumference
ICC: intraclass correlation coefficient
LIDAR: light detection and ranging
PDA: personal digital assistant

SEM: standard error of the mean

Edited by A Mavragani; submitted 01.11.23; peer-reviewed by B Davies, I Sangeorzan; comments to author 12.12.23; revised version received 23.12.23; accepted 14.01.24; published 14.02.24.

Please cite as:
Yordanov S, Akhter K, Quan Teh J, Naushahi J, Jalloh I
Measurement of Head Circumference Using a Smartphone: Feasibility Cohort Study
JMIR Form Res 2024;8:e54194
URL: https://formative.jmir.org/2024/1/e54194
doi: 10.2196/54194
PMID: 38354022

© Stefan Yordanov, Kalsoom Akhter, Jye Quan Teh, Jawad Naushahi, Ibrahim Jalloh. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

Use Intention and User Expectations of Human-Supported and Self-Help eHealth Interventions: Internet-Based Randomized Controlled Trial

Talia R Cohen Rodrigues¹, MSc; Thomas Reijnders¹, PhD; Linda D Breeman¹, PhD; Veronica R Janssen¹,², PhD; Roderik A Kraaijenhagen³,⁴, PhD; Douwe E Atsma², Prof Dr; Andrea WM Evers¹,⁵,⁶, Prof Dr

¹Health, Medical, and Neuropsychology Unit, Leiden University, Leiden, Netherlands
²Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
³NDDO Institute for Prevention and Early Diagnostics (NIPED), Amsterdam, Netherlands
⁴Vital10, Amsterdam, Netherlands
⁵Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands
⁶Medical Delta, Leiden University, Technical University of Delft, Erasmus University Rotterdam, Leiden, Delft, Rotterdam, Netherlands

‡the BENEFIT consortium

Corresponding Author:
Talia R Cohen Rodrigues, MSc
Health, Medical, and Neuropsychology Unit
Leiden University
Wassenaarseweg 52
Leiden, 2333 AK
Netherlands
Phone: 31 71 527 3627
Email: t.r.cohen.rodrigues@fsw.leidenuni.nl

Abstract

Background: Self-help eHealth interventions provide automated support to change health behaviors without any further human assistance. The main advantage of self-help eHealth interventions is that they have the potential to lower the workload of health care professionals. However, one disadvantage is that they generally have a lower uptake. Possibly, the absence of a relationship with a health care professional (referred to as the working alliance) could lead to negative expectations that hinder the uptake of self-help interventions. The Unified Theory of Acceptance and Use of Technology (UTAUT) identifies which expectations predict use intention. As there has been no previous research exploring how expectations affect the adoption of both self-help and human-supported eHealth interventions, this study is the first to investigate the impact of expectations on the uptake of both kinds of eHealth interventions.

Objective: This study investigated the intention to use a self-help eHealth intervention compared to a human-supported eHealth intervention and the expectations that moderate this relationship.

Methods: A total of 146 participants were randomly assigned to 1 of 2 conditions (human-supported or self-help eHealth interventions). Participants evaluated screenshots of a human-supported or self-help app–based stress intervention. We measured intention to use the intervention-expected working alliance and the UTAUT constructs: performance expectancy, effort expectancy, and social influence.

Results: Use intention did not differ significantly between the 2 conditions (t₁₄₂=−1.133; P=.26). Performance expectancy (F₁,₁₄₀=69.269; P<.001), effort expectancy (F₁,₁₄₀=3.961; P=.049), social influence (F₁,₁₄₀=90.025; P<.001), and expected working alliance (F₁,₁₄₀=26.435; P<.001) were positively related to use intention regardless of condition. The interaction analysis showed that performance expectancy (F₁,₁₄₀=4.363; P=.04) and effort expectancy (F₁,₁₄₀=4.102; P=.045) more strongly influenced use intention in the self-help condition compared to the human-supported condition.

Conclusions: As we found no difference in use intention, our results suggest that we could expect an equal uptake of self-help eHealth interventions and human-supported ones. However, attention should be paid to people who have doubts about the intervention’s helpfulness or ease of use. For those people, providing additional human support would be beneficial to ensure uptake. Screening user expectations could help health care professionals optimize self-help eHealth intervention uptake in practice.
eHealth provides the opportunity to provide remote or automated health care support through digital tools [1]. eHealth is becoming increasingly relevant, for example, because of the physical restrictions during the recent COVID-19 outbreak [2]. During this pandemic, the demand for health care support increased too. Especially vulnerable groups experienced increased mental health difficulties [3,4], which require professional support. However, health care professionals already have a high workload and pressure [5] and, in some cases, even experience an additional workload from using eHealth [6]. Self-help eHealth interventions might provide a potential solution to these problems. Self-help eHealth interventions are defined as interventions in which automated support instead of human assistance is provided [1]. As this means that no human professionals are involved, self-help eHealth interventions are easier and cheaper to widely implement [1].

Despite these advantages, self-help interventions generally deal with low levels of adherence [7-10] and low uptake [11,12]. People generally show a higher intention to start with lifestyle changes using an intervention with additional human assistance compared to a self-help intervention [13]. While there has been extensive research on the factors contributing to nonadherence, there is a notable gap in our understanding when it comes to expectations that influence whether individuals will choose to use an intervention before starting. This information is important, as a growing number of eHealth tools are being developed and proven to be effective but hardly used [14,15]. Therefore, the aim of this study is to investigate whether there is a difference in use intentions between self-help and human-supported eHealth interventions and if user expectations influence the intention to use the intervention. If we know what expectations drive people’s intention to either use self-help or human-supported eHealth interventions, we could predict and even influence their actual uptake [16].

A possible explanation for the low use intention of self-help interventions could be the lack of a relationship with a health care professional [17]. This so-called working alliance, the degree to which a health care professional and patient is involved in a useful and collaborative working relationship [18], is an important predictor of intervention adherence and effectiveness [19,20]. People are more engaged with the intervention and motivated to work on their goals when they feel supported. This effect is not exclusive to face-to-face settings; it is also evident when internet-based human assistance is involved in the use of eHealth interventions [21,22]. It is even shown to be present in self-help eHealth interventions with automated support, using, for example, a human avatar [23-25]. Thus, people can form relationships not only with other people but also with technology [26]. Therefore, we predict that people’s expectations toward a potential future working alliance when using an eHealth intervention will influence their intention to use that intervention.

Other important expectations that may influence the use intention of human-supported and self-help eHealth interventions can be found within the Unified Theory of Acceptance and Use of Technology (UTAUT) [16]. According to this model, 3 different types of expectations explain people’s intention to start with an eHealth intervention. These UTAUT expectations are (1) performance expectancy: the extent to which someone expects that the eHealth intervention will be helpful in reaching their goals; (2) effort expectancy: the extent to which someone expects that the eHealth intervention will be easy to use; and (3) social influence: the extent to which someone expects that important others believe one should use the eHealth intervention [16]. Although the UTAUT model has been used to explain people’s intention to use eHealth in general [27,28], to our knowledge, no studies have used this model to investigate differences in people’s intention to use either human-supported or self-help eHealth interventions.

In this study, we aim to investigate (1) whether there is a difference in use intention between human-supported and self-help eHealth interventions, (2) whether the expected working alliance predicts the use intention of human-supported and self-help eHealth interventions, and (3) what UTAUT constructs predict the use intention of human-supported and self-help eHealth interventions.

Methods

Design and Sample

In an experiment, people were presented with a sham stress management app. In this app, people would either be supported by a human coach or by an automated coach. We decided to use a student sample, as they experience high levels of stress and could therefore benefit from an eHealth stress intervention [29], especially given their increased need for support during the COVID-19 pandemic [3,4]. They were asked to evaluate the screenshots of the app and measure their use intention, the 3 UTAUT constructs (performance expectancy, effort expectancy, and social influence), and their expected working alliance. We used a randomized between-participants design with 2 experimental conditions (human-supported or self-help eHealth interventions). Healthy participants aged 18 years or older, who had a sufficient level of grasp in English, were recruited on the campus of Leiden University with internet-based and offline flyers. Power calculations [30] identified a minimum sample size of 119 to detect a medium effect ($\beta^2=0.15$) with an α of .05, based on a linear multiple regression with 3 predictors.
Procedure and Manipulation
Interested participants could open the internet-based questionnaire and would be offered the internet-based consent form. After reading and agreeing to the informed consent, participants were automatically randomized into 1 of 2 experimental conditions (human-supported or self-help eHealth interventions). In both conditions, participants were instructed to evaluate a nonexistent stress management app for students called “Bye Bye Stress.” They were asked to carefully assess the screenshots of the app and give feedback to help the researchers make the app fit the needs of students. Although the design of the app and the content of the intervention were identical in both conditions, the conditions differed in the type of support that would be offered in the app. In the human-supported condition, the description of the app explained how a human coach would support the participants and provide them feedback. The screenshots of the app showed a picture of a human coach and messages with a human tone of voice (Figure 1). In the self-help condition, the description of the app explained how participants would receive automated feedback. In the screenshots, there was no picture of a human being, and the messages had a neutral tone of voice (Figure 1). All screenshots used in both conditions can be found in Multimedia Appendix 1. After this, participants were asked to complete the questionnaire.

Figure 1. Example screenshot of the app for human-supported (left) and self-help conditions (right).

Measures
Use Intention
The behavioral intention subscale of the UTAUT questionnaire [16] was used to assess use intention. The subscale consists of 3 items (eg, “I would intend to use ‘Bye Bye Stress’ in the next 6 months.”) measured on a Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). A higher score indicates a higher intention to use the app. The scale showed a high internal consistency (Cronbach α=.953).
Expected Working Alliance

The expected working alliance was measured with an adjusted version of the Working Alliance Inventory–Short Revised form (WAI-SR) [31], which consists of 12 items measured on a 5-point Likert-type scale ranging from 1 (seldom) to 5 (always). Questions were adjusted to fit the context of the study by using the words “coach,” “lifestyle,” and “intervention” and being written in the future tense (eg, “The coach and I will collaborate on setting lifestyle goals.”). A higher score indicates a stronger working alliance. The adjusted version had a high internal consistency (Cronbach $\alpha=.917$).

Performance Expectancy, Effort Expectancy, and Social Influence

The constructs predicting behavioral intention according to the UTAUT model—performance expectancy, effort expectancy, and social influence—were measured with the corresponding UTAUT subscales [16]. Each subscale consisted of 4 items (eg, “I find 'Bye Bye Stress' useful.”), measured with a Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). A higher score indicates a higher expectation of the app’s efficacy in helping the participant, a higher expectation toward the ease of use of the app, and a higher expectation that important others will approve the use of the app. The performance expectancy, effort expectancy, and social influence subscales all had sufficient internal consistency (Cronbach α of .764, .730, .792, respectively).

Manipulation Check

To assess whether participants carefully read the information and whether the manipulation had worked, they were asked to complete a manipulation check question (“During the intervention, I would be supported by...” followed by several options, such as “doctor” or “chatbot”).

Analyses

To test whether there was a difference in use intention between conditions, we ran a 2-tailed independent-sample t test with use intention as the dependent variable and condition (human-supported vs self-help eHealth interventions) as the independent variable. To test whether the association between condition and use intention differed for different levels of the UTAUT constructs (performance expectancy, effort expectancy, or social influence) as a covariate in 3 separate analyses. We added use intention as dependent variable, condition as fixed factor, and each of the UTAUT constructs (performance expectancy, effort expectancy, or social influence) as a covariate in 3 separate analyses. We analyzed both the main effects of condition and the UTAUT construct, as well as their interaction effect on use intention. To further investigate the interaction patterns found in the data, we conducted 3 simple slopes analyses: the intercept and the slope were obtained for both conditions from the parameter estimates of the GLM analyses testing the association between expected working alliance and use intention.

To test whether the association between condition and use intention differed for different levels of the UTAUT constructs of performance expectancy, effort expectancy, and social influence, we conducted 3 univariate GLM analyses with interactions. We added use intention as dependent variable, condition as fixed factor, and each of the UTAUT constructs (performance expectancy, effort expectancy, or social influence) as a covariate in 3 separate analyses. We analyzed both the main effects of condition and the UTAUT construct, as well as their interaction effect on use intention. To further investigate the interaction patterns found in the data, we again conducted 3 simple slopes analyses: the intercept and the slope were obtained for both conditions from the parameter estimates of the GLM analyses testing the association between the UTAUT construct and use intention.

Statistical analyses were conducted with SPSS (version 26; IBM Corp) with a significance level set at $P \leq .05$.

Ethical Considerations

The study was approved by the Psychology Research Ethics Committee of Leiden University (CEP19-1125/557). Furthermore, the study was preregistered through the Center for Open Science [32]. Before the start of the study, participants were asked to sign an informed consent form. After completing all the questionnaires, they were debriefed and provided with a few examples of real internet-based stress management interventions in case they needed one. As compensation, participants received course credits.

Results

Demographic Characteristics

A total of 146 students participated in our study and completed the questionnaire. Their mean age was 21.8 (SD 4.51) years, 103 (70.5%) were female, and 104 (71.2%) were of Dutch nationality (Table 1). There were no significant differences in demographic characteristics between the 2 groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total sample (n=146)</th>
<th>Human-supported condition (n=73)</th>
<th>Self-help condition (n=73)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>21.8 (4.5)</td>
<td>22.0 (4.6)</td>
<td>21.6 (4.4)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>103 (70.5)</td>
<td>47 (66.2)</td>
<td>56 (76.7)</td>
</tr>
<tr>
<td>Nationality, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>104 (71.2)</td>
<td>49 (67.1)</td>
<td>55 (75.3)</td>
</tr>
<tr>
<td>European (non-Dutch)</td>
<td>37 (25.3)</td>
<td>20 (27.4)</td>
<td>17 (23.3)</td>
</tr>
<tr>
<td>Other</td>
<td>5 (3.4)</td>
<td>4 (5.5)</td>
<td>1 (1.4)</td>
</tr>
</tbody>
</table>

Table 1. Baseline demographic characteristics.
Use Intention Per Condition

We found no significant difference in use intention between the human-supported condition and self-help condition ($t_{142}=-1.133; P=.26$; Table 2). Furthermore, we found no differences between the 2 conditions in any of the other constructs (Table 2).

<table>
<thead>
<tr>
<th>Variable (scoring range)</th>
<th>Human-supported condition (n=73), mean (SD)</th>
<th>Self-help condition (n=73), mean (SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use intention (3-15)</td>
<td>7.5 (3.6)</td>
<td>8.2 (3.6)</td>
<td>.26</td>
</tr>
<tr>
<td>Expected working alliance (12-60)</td>
<td>42.3 (8.2)</td>
<td>40.3 (8.7)</td>
<td>.16</td>
</tr>
<tr>
<td>Performance expectancy (4-20)</td>
<td>13.8 (2.9)</td>
<td>14.0 (2.5)</td>
<td>.69</td>
</tr>
<tr>
<td>Effort expectancy (4-20)</td>
<td>16.9 (2.4)</td>
<td>16.8 (2.3)</td>
<td>.94</td>
</tr>
<tr>
<td>Social influence (4-20)</td>
<td>12.5 (2.9)</td>
<td>12.9 (3.1)</td>
<td>.66</td>
</tr>
</tbody>
</table>

Working Alliance and Use Intention

The GLM showed no significant association between condition and expected working alliance ($F_{1,140}=0.051; P=.82; \eta^2=0)$. However, we did find a significant positive association between expected working alliance and use intention ($F_{1,140}=26.435; P<.001; \eta^2=0.159$). We found no significant interaction effect of condition and expected working alliance on use intention ($F_{1,140}=0.367; P=.55; \eta^2=0.003$; Figure 2).

UTAUT Constructs and Use Intention

The GLM showed no significant association between condition and performance expectancy ($F_{1,140}=3.34; P=.07; \eta^2=0.024$). We did, however, find a significant positive association between performance expectancy and use intention ($F_{1,140}=69.269; P<.001; \eta^2=0.331$) and a significant interaction effect of condition and performance expectancy on use intention ($F_{1,140}=4.363; P=.04; \eta^2=0.030$). An increase in performance expectancy was related to a greater increase in use intention in the self-help condition compared to the human-supported condition (Figure 2).

We also found no significant association between condition and effort expectancy ($F_{1,140}=3.408; P=.07; \eta^2=0.024$). However, again, we did find a significant positive association between effort expectancy and use intention ($F_{1,140}=3.961; P=.049; \eta^2=0.028$) and a significant interaction effect of condition and effort expectancy on use intention ($F_{1,140}=4.102; P=.045; \eta^2=0.028$). An increase in effort expectancy was related to a greater increase in use intention in the self-help condition but not in the human-supported condition (Figure 2).

Again, we found no significant association between condition and social influence ($F_{1,140}=0.003; P=.96; \eta^2=0$). We did find a significant positive association between social influence and use intention ($F_{1,140}=90.025; P<.001; \eta^2=0.391$) but this time...
we found no significant interaction effect of condition and social influence on use intention ($F_{1,140}=0.020; P=.89; \eta^2=0$; Figure 2).

Discussion

Overview

In our study, we asked university students to evaluate a sham stress management app. We aimed to investigate whether there is a difference in use intention for self-help eHealth interventions compared to human-supported ones and what user expectations may influence this. We found that people were as likely to start using a self-help eHealth intervention as an eHealth intervention with human support. More than with human-supported interventions, the perception that the intervention might be ineffective or difficult to use limits the intention to start using self-help interventions. See Figure 3 for an overview of the findings.

![Overview of study findings.](image)

Although previous studies show a relatively low uptake and use intention of self-help eHealth interventions [11-13], we did not find differences in use intentions between the self-help and human-supported interventions. Possibly, the health beliefs, perceptions, and skills of our student sample might have played a role in this [33]. Not only do perceptions about the effectiveness or ease of use of an eHealth tool affect the start of an intervention but also perceptions about the risks of getting health-related problems and actually performing the health-promoting behavior [34]. Furthermore, a younger age and higher educational level are related to a higher intention to start eHealth interventions in general [13]. Our sample might therefore have been more open to using eHealth interventions and were less influenced by the presence, or lack thereof, of human support. Future research could focus on investigating the role of age and educational level on use intentions of self-help and human-supported eHealth interventions. Another explanation for the differences in findings between our and previous studies [11,12] could be the use of different outcome measures. Although the UTAUT model predicts that use intention can predict actual use, studies do show that people have difficulties translating their intentions into actual behavior [35]. The objective measure of uptake might therefore have led to different results compared to the more subjective measure of use intention we used, which would be interesting to additionally take into account. Finally, the study that did find a difference in use intention between self-help and human-supported interventions focused on interventions for mental health, such as depression [13]. It would be interesting to test if the need for social support during eHealth interventions depends on the goal of the intervention (e.g., psychological vs lifestyle improvements).

Interestingly, we found that an expected working alliance has an equally strong effect on the intention to use either a human-supported or self-help intervention. This result is in line with previous studies showing a positive effect of working alliance on intervention effectiveness and adherence, both within human-supported [21,22] and self-help eHealth interventions with automated support [23-25]. Our findings show that working alliance is not important only during an intervention but even before the intervention has started in the form of expectations. The similar effect of the expected working alliance in both conditions suggests that people not only are able to actually have relationships with technology [26] but also seem to expect building one with the technology they are about to interact with. These results would also mean that improving the expected working alliance before the start of an intervention (e.g., by designing a digital character that would welcome the user) would be a way to possibly increase the uptake of self-help eHealth interventions.
Finally, we found that performance and effort expectancy had a stronger effect on the use intention of self-help interventions compared to human-supported interventions. Not only the UTAUT model but also models such as the Health Belief model show that perceived benefits and perceived barriers affect whether people start with a health-promoting behavior, such as stress management [33]. What is new, though, is that the perceived effectiveness and ease of use of the intervention have a more pronounced impact on intention to use an intervention for interventions with an absence of human support compared to interventions where human support is available. This suggests that the perception that the intervention might be ineffective or difficult to use diminishes the intention to start using a self-help intervention but not the intention to start using a human-supported intervention. Meta-analyses show that the mere presence of a human being (even a nonprofessional) is a key ingredient in intervention effectiveness and the prevention of dropout [36-38]. Just the option of having someone available to provide procedural support (related to performance expectancy) or technical support (related to effort expectancy) seems to be enough for people to be motivated to start something new. The presence of a human coach could act as a buffer against negative expectations, which would make it easier for these people to adhere to the intervention [39]. Possibly, the mere presence of social support in the human-supported intervention could compensate for a lack of self-efficacy (the extent to which one believes in his or her own capabilities [40]) that people may feel when using a new intervention [41,42]. This could lower the perceived barriers and increase willingness to start using the intervention [33]. Exploring this further is crucial in a clinical context because individuals with limited social support tend to experience reduced adherence to health interventions and demonstrate less favorable intervention outcomes [39,43]. Even despite the relatively high use intention of self-help eHealth interventions, these results indicate that it is important to take the user’s needs and wishes into account when deciding on the level of human support to provide during an intervention.

Self-help eHealth interventions will become more and more important in health care practice. To ensure uptake of new eHealth interventions, professionals could screen the user’s expectations toward the intervention’s helpfulness and ease of use beforehand (Table 3). If the user’s expectations turn out to be low, it would be useful to incorporate some level of human support into the eHealth intervention to prevent people from dropping out even before the start of the intervention. Additionally, designers of self-help eHealth interventions could pay extra attention toward its perceived helpfulness and ease of use. Preventing negative user expectations toward the intervention’s performance or effort expectancy could help increase the uptake of self-help eHealth interventions.

Strengths and Limitations

Our study was not without limitations. For example, although the screenshots of the app were adjusted to the experiences and interests of our sample, it is plausible that the topic of stress management was not equally relevant for all students, which could also have affected use intentions. For future studies, it would be better to tailor the goal of the eHealth intervention (eg, decreasing stress or improving physical activity) to the actual interests of the individual participants to investigate if and how this affects a participant’s use intention. Second, we used a university student population to test our hypotheses. People with a younger age and higher educational level have a more favorable attitude toward eHealth interventions in general [13]. To be able to generalize our findings, future research should investigate whether the same effects are found in other populations. It would be interesting to replicate this study with a target population who would benefit the most from eHealth interventions, for example, older patients with a chronic disease, to see if their expectations toward either human or automated support have similar effects on their intention to start with such interventions.

Conclusions

In our study, we investigated what expectations drive the intention to start using self-help and human-supported eHealth interventions. The results suggest that expectations toward the intervention’s helpfulness and ease of use are especially relevant regarding the use of self-help interventions. This means that people who have doubts about the intervention’s usefulness or usability would benefit the most from additional human support. The question, however, remains whether such expectations are also relevant for actual uptake. Our study provides a basis to further investigate user expectations within a clinical sample, which will provide health care practitioners with the tools to influence the uptake of eHealth interventions.
Acknowledgments
This work was supported by the Netherlands Cardiovascular Research Initiative, an initiative with the support of the Dutch Heart Foundation, CVON2016-12 BENEFIT, ZonMw (the Netherlands Organization for Health Research and Development), and the members of the BENEFIT consortium. Furthermore, we would like to thank Yalou Schoot (master student of psychology, Leiden University) for her assistance in the practical implementation of the study procedure and for data acquisition.

Authors' Contributions
TRCR and TR contributed to study design. TRCR was responsible for data acquisition. TRCR, TR, and AWME were involved in data analysis and interpretation and drafting the manuscript. TRCR, TR, LDB, VRJ, RAK, DEA, and AWME contributed to manuscript revision. All authors gave final approval and agreed to be accountable for all aspects of the work ensuring integrity and accuracy.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Screenshots shown in human-supported and self-help conditions.

Multimedia Appendix 2
CONSORT-eHEALTH checklist (V 1.6.1).

References

Abbreviations

- **GLM:** general linear model
- **UTAUT:** Unified Theory of Acceptance and Use of Technology
- **WAI-SR:** Working Alliance Inventory–Short Revised form
Effects of Embodiment in Virtual Reality for Treatment of Chronic Pain: Pilot Open-Label Study

Adam Saby¹, MD; Anthony Alvarez², BSc; David Smolins³, MD; James Petros⁴, MBA, MD; Lincoln Nguyen², BSc; Michael Trujillo², PhD; Oytun Aygün⁵, PhD

¹Department of Emergency Medicine, Occupational Health Division, University of California Los Angeles, Los Angeles, CA, United States
²Karuna Labs, San Francisco, CA, United States
³Remedy Medical Group, San Mateo, CA, United States
⁴Allied Pain and Spine, San Jose, CA, United States
⁵Karuna Labs, New York, NY, United States

Corresponding Author:
Oytun Aygün, PhD
Karuna Labs
185 Wythe Avenue Brooklyn
New York, NY, 11249
United States
Phone: 1 6418245141
Email: oytunsultanaygun@gmail.com

Abstract

Background: Chronic pain has long been a major health burden that has been addressed through numerous forms of pharmacological and nonpharmacological treatment. One of the tenets of modern medicine is to minimize risk while providing efficacy. Further, because of its noninvasive nature, virtual reality (VR) provides an attractive platform for potentially developing novel therapeutic modalities.

Objective: The purpose of this study was to determine the feasibility of a novel VR-based digital therapy for the treatment of chronic pain.

Methods: An open-label study assessed the feasibility of using virtual embodiment in VR to treat chronic pain. In total, 24 patients with chronic pain were recruited from local pain clinics and completed 8 sessions of a novel digital therapeutic that combines virtual embodiment with graded motor imagery to deliver functional rehabilitation exercises over the course of 4 weeks. Pain intensity as measured by a visual analog scale before and after each virtual embodiment training session was used as the primary outcome measure. Additionally, a battery of patient-reported pain questionnaires (Fear-Avoidance Beliefs Questionnaire, Oswestry Low Back Pain Disability Questionnaire, Pain Catastrophizing Scale, and Patient Health Questionnaire) were administered before and after 8 sessions of virtual embodiment training as exploratory outcome measures to assess if the measures are appropriate and warrant a larger randomized controlled trial.

Results: A 2-way ANOVA on session × pre- versus postvirtual embodiment training revealed that individual virtual embodiment training sessions significantly reduced the intensity of pain as measured by the visual analog scale (P<.001). Perceived disability due to lower back pain as measured by the Oswestry Low Back Pain Disability Questionnaire significantly improved (P=.003) over the 4-week course of virtual embodiment regimen. Improvement was also observed on the helplessness subscale of the Pain Catastrophizing Scale (P=.02).

Conclusions: This study provides evidence that functional rehabilitation exercises delivered in VR are safe and may have positive effects on alleviating the symptoms of chronic pain. Additionally, the virtual embodiment intervention may improve perceived disability and helplessness of patients with chronic pain after 8 sessions. The results support the justification for a larger randomized controlled trial to assess the extent to which virtual embodiment training can exert an effect on symptoms associated with chronic pain.

Trial Registration: ClinicalTrials.gov NCT04060875; https://clinicaltrials.gov/ct2/show/NCT04060875

(JMIR Form Res 2024;8:e34162) doi:10.2196/34162
KEYWORDS
centralized pain; dicentralized pain; digital therapeutics; visual analog scale; Fear-Avoidance Beliefs Questionnaire; Oswestry; Oswestry Low Back Pain Disability Questionnaire; Pain Catastrophizing Scale; Patient Health Questionnaire; sensorimotor; virtual reality; chronic pain; pain; rehabilitation

Introduction

Chronic pain is a major health care problem worldwide. About 20% of the US [1-3] and European [4-6] populations have been reported to experience chronic pain. Chronic pain is associated with anxiety, depression, and other psychological disorders [7-13], as well as impairment in executive functions [14] and decision-making [15]. Opioids are one of the most common treatment strategies for chronic pain despite the potential for abuse, dependence, misuse, and accidental overdose [16,17]. Chronic pain is a consequential burden on society due to impairment of personal well-being, loss of productivity, and opioid use and dependence. Opioid addiction has been declared a public health emergency by the US Health and Human Services due to the potential misuse by more than 2 million people and more than 47,000 deaths annually [18].

While the specific neural mechanisms of chronic pain are variable and elusive, it has been proposed that a maladaptive neuroplasticity in the anterior cingulate cortex (ACC) occurs, leading to the long-term potentiation in neural circuits associated with the ACC [19]. The ACC has been shown to elicit rate, spatial, and temporal coding that is specific to the anticipation of pain [20]. The ACC shares connections with the periaqueductal gray (PAG), which is the primary control center for descending pain neuromodulation. The disruption of ACC and PAG circuit activation may impair the ability of the descending pain suppression pathway to modulate pain in patients with chronic pain [21]. Long-term potentiation in the ACC may alter nociceptive processing, resulting in hyperalgesia and hyperpathic anticipation of painful events. The ACC and PAG also interact with the amygdala of the limbic system, which has been suggested to modulate pain pathways [22-27]. Through the involvement of the amygdala in pain pathways, the emotions such as stress and fear modulate pain [24,27-29].

Fear-avoidance models of pain suggest that attitudes and beliefs about pain are predictors of pain-related disability, as pain catastrophizing beliefs cause behavioral avoidance [30-37]. Pain catastrophizing has been defined as an exaggerated negative attitude toward pain experience [38]. Pain catastrophizing has been linked to the transition of acute pain into chronic pain [30,39], as well as a negative attitude toward medical procedures in patients with chronic pain [40,41]. Interventions aiming to develop adaptive psychological attitudes and strategies are suggested to reduce the level of pain catastrophizing and thus having a positive impact on patient outcomes [32,42].

Virtual reality (VR) has emerged as a novel technology for the treatment of pain, showing promise as a treatment strategy for chronic pain, burn pain, acute pain, and reducing the intensity of experimentally induced pain [43-50]. There are 2 strategies of VR that may promote analgesic effects: distraction therapy and immersiveness [47,48,51]. Distraction therapy temporarily diverts the attention of a user, which leads to reduced intensity of pain. Immersiveness, also known as embodiment, is the phenomenon by which a person identifies with and develops a sense of ownership over a body part that is not their own. Embodiment allows a user to interact with an artificial environment and receive altered visual feedback associated with the movement of a virtual avatar, which is controlled by the user's manipulation of the VR hardware. Immersiveness in VR may activate premotor and somatosensory circuitry associated with the body parts that are embodied [52]. Thus, there may be a reorganization of the sensorimotor representations within the central nervous system in a way that the perception of a painful limb is modified, resulting in people perceiving the limb as less painful [48,53-55]. Furthermore, virtual embodiment has been shown to influence pain-free range of motion in patients with unilateral chronic shoulder pain [49].

Digital rehabilitation interventions could have multidimensional, biopsychosocial effects for managing pain [56,57]. In patients with chronic neck pain using digital rehabilitation therapy, disability and range of motion was improved [58,59], suggesting that VR interventions are promising for treatment of chronic pain. Multiple sessions of Fear Avoidance Beliefs Training through a rehabilitation medical device have shown improvements in the Pain Catastrophizing Scale (PCS), along with reductions in pain intensity and mobility impairment and disability [49]. Active coping strategies, such as exercise in chronic pain, were shown to have better outcomes in pain-related disabilities compared to passive strategies such as taking medication or resting [60]. Immersiveness in VR could potentially provide the patients with a more active participation in their treatment for chronic pain.

Chronic pain is a health care problem worldwide. There is a compulsory need for alternative, noninvasive, and nonaddictive therapeutics for treating chronic pain [61]. The purpose of this study was to determine the feasibility of a novel VR-based digital therapy for the treatment of chronic pain. The safety and feasibility of an intervention through embodiment in VR to treat chronic pain was assessed. In this study, 24 patients with chronic pain received a novel VR-based functional rehabilitation program (Karuna Virtual Embodiment Training [KVET]; Karuna Labs, Inc) over the course of 4 weeks, with 2 sessions per week. Self-perceived pain intensity rating, pain catastrophizing, and self-perceived disability were measured. The measurements were anonymized for analysis. We hypothesized that gradual exposure of patients to functional rehabilitation in immersive therapy in VR can be used to help patients overcome pain-related fears and catastrophizing beliefs. We hypothesized that an immersive VR therapy would have a positive impact on patient outcomes.
Methods

Ethical Considerations
This study’s protocol was approved by Advarra’s institutional review board (reference number: Pro00026459) and conducted in accordance with the ethical standards of the Declaration of Helsinki.

Study Procedure
This trial was registered at ClinicalTrials.gov (NCT04060875). In total, 24 adult participants that were diagnosed with chronic (for 3 months or longer) lower back or chronic upper extremity pain were recruited from local pain clinics over the normal course of business. Individuals with a history of severe mental illness, including schizophrenia, bipolar disorder I or II, and posttraumatic stress disorder; a history of susceptibility to seizures per the participant’s reporting; and pregnant women were not included in this study. Interested participants received information regarding virtual embodiment training and were scheduled for an intake visit. During the intake visit, participants completed a written informed consent and then were administered initial outcome measures (patient-reported pain questionnaires). To assess potential adverse events associated with VR, the Simulator Sickness Questionnaire (SSQ) was administered to all potential participants. The SSQ helps identify the risk of nausea and dizziness in VR [62]. In this study, no patients exceeded the exclusion threshold on the SSQ, and none were excluded from participation on this basis. Qualified participants received information regarding VR therapy and were scheduled for an intake visit. During the intake visit, all recruited candidates completed a written informed consent, and baseline instruments for outcome measures were administered. All recruited participants completed this study.

Intervention
Virtual embodiment sessions were administered on an HTC Vive (HTC Corporation) VR head-mounted display (110° field of view, 1080 x 1200 pixels/eye, and 90 Hz refresh). The HTC Vive hand controllers and Vive trackers were used to provide an immersive VR experience. The HTC Vive accurately tracks limb and trunk position and movement and delivers an immersive experience where a virtual avatar is controlled by manipulating the position of the hand controllers, Vive tracker, and head-mounted display.

Patients received biweekly sessions of virtual embodiment training over the course of 4 weeks. Visual analog scale (VAS) was administered before each session to obtain an indication of baseline pain intensity levels. Patients were then administered virtual embodiment training. Virtual embodiment training sessions progressed from 20 minutes in the initial session to 45 minutes in later sessions. Following each virtual embodiment training session, the VAS was readministered to determine whether individual sessions provide reductions in self-perceived pain intensity. KVET consists of exercises in an embodied VR experience that are designed based on the principles of graded motor imagery (GMI). In this study, patients with upper-extremity chronic pain engaged in the 4 virtual embodiment training modules: laterality, motor imagery, “mirroring,” and predictive coding. Laterality training consisted of movements mirrored from one side to the other by an avatar in VR. In the motor imagery module, the participant experienced a first-person perspective view of virtual avatar limbs moving while being instructed to imagine the movement is happening in his or her own body. In the mirroring module, a participant’s healthy limb is used to produce movements that appear to be occurring in the painful limb. In the predictive coding module, participants were surrounded by floating orbs in a virtual environment (Figure 1). The orbs were placed at random locations within arm’s reach of the participant. Participants were instructed to reach and grab the orbs promoting upper-extremity movement. A description of rehabilitation exercises administered in KVET for patients with chronic low back pain has been previously published [49].
Measures

Self-perceived pain intensity served as the primary outcome measure and was evaluated before and after each virtual embodiment training session using a VAS for pain. Participants were asked to denote pain using a 10-cm line with the left end representing no pain and the right indicating the worst possible pain. Participants would then check off the region of the line they believed accurately represented their current pain. The distance between the left most part of the 10-cm line and the participants check mark was then measured using a standard ruler. This instrument is standard for tracking pain [63]. A 2-way ANOVA on session (1-8) was used to assess differences in VAS score as a function of session and clinical intervention.

To assess the appropriateness of outcome measures on a larger scale, exploratory outcome measures were administered for pain, physical functioning, mental functioning, and disability. Patient-reported pain questionnaires were administered before the first session of virtual embodiment training and after the last session. The validated instruments included the Fear-Avoidance Beliefs Questionnaire (FABQ), Oswestry Low Back Pain Disability Questionnaire (ODI), PCS, and the Patient Health Questionnaire. The FABQ is a questionnaire measuring the effect that pain has on daily life activities [64]. The ODI, frequently used in research of physical therapy efficacy for treatment of lower back pain [65,66], was applied to the subset of participants whose diagnoses included low back pain. The PCS includes 3 subset scales: rumination, magnification, and helplessness [67]. Due to the ordinal nature of subjective pain questionnaires and the likeliness of nonnormal distribution, a Wilcoxon signed rank test was used to assess the difference in the subjective pain questionnaire score before and after clinical intervention.

Results

Self-Perceived Pain Intensity

Self-perceived pain intensity as measured by the VAS improved as a function of individual virtual embodiment training sessions. A 2-way ANOVA on session (1-8) x pre- versus posttraining on the VAS revealed a significant main effect of KVET therapy sessions ($F_{1,8}=14.246; P<.001; \text{Cohen } d=0.504$). There was no significant main effect of the number of sessions ($P=.85$).

Patient-Reported Pain Questionnaires

Pre- and posttraining FABQ work and physical activity scores were recorded for 14 participants. A Wilcoxon signed rank test revealed no significant difference between pre- and post-KVET scores for FABQ-work ($Z=-0.629; P=.57$; mean pretest score 26.14, SD 13.04; mean posttest score 24.86, SD 13.07) nor FABQ-physical activity ($Z=-1.480; P=.15$; mean pretest score 15.07, SD 7.08; mean posttest score 13.21, SD 7.16).

Pre- and posttraining Patient Health Questionnaire scores of the 4-week course were recorded for 10 participants. A Wilcoxon signed rank test revealed no significant difference between pre- and post-KVET scores ($Z=1.262; P=.23$).

Pre- and posttraining ODI scores for the 4-week course were recorded for the population of participants experiencing low back pain. A Wilcoxon signed rank test revealed a significant improvement on how patients rated their disability associated with low back pain after KVET ($Z=-2.819; P=.003$; mean pretest score 23.07, SD 9.42; mean posttest score 19.73, SD 6.99). A post hoc measurement of effect size revealed a medium treatment effect of KVET (Cohen $d=0.401$).
Pre- and posttraining PCS scores for the 4-week course were recorded for 15 participants. A Wilcoxon signed rank test revealed a significant improvement of pain catastrophizing in the helplessness category (Z=-2.254; P=.02; mean pretest score 11.60, SD 6.62; mean posttest score 9.13, SD 5.10). A post hoc measurement of effect size revealed a medium treatment effect of KVET (Cohen d=0.418). No significant difference was observed for PCS rumination (Z=0.605; P=.59; mean pretest score 8.80, SD 4.75; mean posttest score 9.33, SD 3.83), magnification (Z=-0.247; P=.84; mean pretest score 5.27, SD 2.02; mean posttest score 5.13, SD 3.09), or total (Z=-1.224; P=.24; mean pretest score 25.60, SD 11.48; mean posttest score 23.60, SD 11.02). These results suggest that 8 sessions of KVET are an effective treatment for improving the feeling of helplessness associated with chronic pain and allows a person to experience that they can influence pain and movement.

We analyzed the magnitude of change in scores before and after training to assess the degree to which patients with chronic pain improved on pain intensity before and after each session, low back pain disability rating before and after 8 KVET sessions, and the sense of helplessness in dealing with pain before and after 8 KVET sessions. The magnitude was defined as the amount of reduction between pre- and posttraining scores. Figure 2 displays scatter plots of the magnitude of change of the pre-(x-axis) and posttraining (y-axis) scores. A Pearson product correlation analysis revealed a significant correlation for VAS (r=-0.41; P<.001), PCS helplessness (r=-0.64; P=0.01), and ODI (r=-0.69; P=.003).

Discussion

Principal Findings

This study aimed to assess the feasibility and safety of a novel digital therapy that delivers functional rehabilitation through virtual embodiment in VR. Patient-reported exploratory measures were administered to assess the effectiveness of virtual embodiment training as a viable nonpharmacological, noninvasive treatment of pain. Pain intensity, as measured by the VAS, showed statistically significant reductions after each individual KVET session but no improvement session over session. Disability, as measured by the ODI, and pain catastrophizing all improved as a function of a 4-week virtual embodiment training.

In this experiment, pain intensity was reduced after the intervention using embodiment in VR. The effect size was similar to that reported in magnetic neural stimulation for chronic pain in spinal cord injury [68] and acceptance and commitment therapy to treat chronic pain [69], suggesting that this protocol is a promising intervention for patients with chronic pain. The use of VR in interventions has been previously proposed to be an interesting nonpharmacological alternative for treating chronic pain [70]. VR technology is rapidly advancing due to the introduction of headsets such as Oculus Rift (Meta) and HTC Vive. The recent advances in handheld controllers, cameras, and body trackers have enabled first-person body experience in VR. Embodiment (sometimes referred to as immersiveness) is the process by which a person identifies with and develops a sense of ownership over a body part that is not their own. In this experiment, virtual embodiment, the first-person perception of sensory feedback of the actions of an avatar, was used. Using VR, it is possible to display movements that are not possible for the patient in physical reality and modify the movement to appear more understated or exaggerated. When a person experiences embodiment, sensorimotor representation in the central nervous system of the painful limb is suggested to go through a reorganization. This modification in the representation and thus the perception of a painful limb allows people to perceive the limb less painful [48,53-55]. Although the sense of embodiment was not measured in this feasibility study, the reduction in the pain intensity observed in this study before and after each intervention session could be due to the embodiment protocol used, as embodiment has the potential to shift the perception of pain to less intense and less threatening.

The reduction of pain in this experiment could also be partially due to the specific exercises used. Exercises used in this study’s intervention through KVET were designed based on the principles of GMI. GMI is a biopsychosocial approach to physical therapy aiming for a gradual reintroduction of motor actions and was developed as a systematic approach to ready
subjects with severe chronic pain to engage their sensorimotor pathways related to their painful bodily regions. In a meta-analysis of 6 randomized control trials, GMI was found to produce substantial pain reduction in chronic pain conditions of the upper limbs, more efficiently than usual physiotherapy [71]. GMI consists of 3 stages: (1)
lateral *testing*, in which the participant identifies whether a limb is the right or left limb; (2) *motor imagery*, in which the participant imagines the movement of his or her affected limb while engaging motor pathways to “feel” as though they are actually moving; and (3) *mirror therapy*, or the mirror visual feedback (MVF) [72]. In this experiment, MVF was incorporated into the VR experience for treating chronic pain. Initially developed to treat phantom limb pain, MVF is a dynamic therapy that uses a mirror image of an unaffected contralateral limb to visually represent the function and motion of an affected or impaired limb. MVF has been shown effective in treating complex regional pain syndrome in randomized control trials, which found clinically significant reduction in pain above conventional physical therapy techniques [73]. The application of MVF through the virtual embodiment could have reinforced its effectiveness in this study. However, although pain intensity was reduced after each session, there was no change in pain intensity over the course of 4 weeks.

Previously, GMI and similar interventions that aim for cortical remapping for neuroadaptive changes in chronic lower back pain have found short-term benefits on pain intensity and disability while long-term effects are yet to be confirmed [74]. The VR intervention in this experiment was designed based on GMI, suggesting that GMI through VR shows similar short-term benefits. Alternatively, the lack of reduction in the pain intensity over the course of 4 weeks could also be due to the number of sessions. Perhaps more durable improvements in pain intensity requires more sessions for attaining adaptive neuroplasticity in chronic pain. Future studies with more frequent sessions or longer interventions using VR could clarify the lack of long-term effects in this study.

In this study, the disability component of the ODI and the helplessness subscale of the PCS were reduced over the course of 4-week intervention, suggesting that the virtual embodiment protocol used was effective in improving psychological measures. Moreover, the observed effect size of reduction in disability was similar in magnitude to that reported for other nonsurgical treatments for chronic pain such as acupuncture, behavioral therapy, and exercise [75], suggesting that 8 sessions of KVET is an effective treatment for chronic low back pain disability. Similarly, the helplessness was also reduced over the course of the 4-week immersiveness intervention, suggesting that 8 sessions of KVET are an effective treatment for improving the feeling of helplessness associated with chronic pain. Previously, digital rehabilitation therapy has been shown to reduce disability while increasing the range of motion in patients with chronic cervical neck pain [58]. Digital rehabilitation therapy was suggested to alter the activation of pain pathways in the central nervous system [76] with 2 approaches of distraction and immersiveness [48,51]. In this experiment, through the embodiment, the gradual exposure of patients could have helped the patients overcome learned behaviors and fear avoidance due to chronic pain. The immersiveness in a VR setting could be especially pertinent for individuals with chronic pain who experience reduced motivation for volitional movement. Previously, similar rehabilitation sessions of Fear Avoidance Beliefs Training have shown improvements in pain catastrophizing, pain-related mobility impairment, and pain intensity and disability [49]. Moreover, in this experiment, there was a negative correlation between the change over the course of 4 weeks in pain intensity and helplessness as well as pain intensity and disability, suggesting that the patients with the most severe pain may benefit the most from KVET therapy on psychological measures related to chronic pain. The immersive VR experience could have allowed the person to gain a sense of control and belief that they can influence the pain and improve movement. With improved movement, in turn, the brain could have dampened the threat response to movement. Thus, over time, adaptive neural pathways are established, allowing the patients to be desensitized to pain associated with movement.

Although this study provides evidence for safety and the benefits of a 4-week virtual embodiment training for chronic pain, there were also limits. Notably, the lack of a control group is an important limitation of this study. Further studies are to be carried with a control group who is following the standard of care for chronic pain. Additionally, this study did not have a follow-up measure, hence the long-term efficiency and effects of the treatment are not known.

Finally, in this experiment, all 24 patients completed all planned sessions during the 4-week virtual embodiment training without adverse events, suggesting that when designed correctly, VR therapies that combine pain relief and movement may provide nonpharmacological, noninvasive, and nonaddiction modalities for treating chronic pain. This study’s results support the justification for a larger randomized controlled trial to assess the extent to which virtual embodiment training can exert an effect on symptoms associated with chronic pain. VR may be ubiquitous in homes within the near future, this could introduce the possibility of engaging in neurorehabilitation from the convenience of the home, with data from sessions accessible by prescribing clinicians. Further research is needed to explore the potential use and effects of VR for managing chronic pain.

Conclusion

This experiment showed that the gradual exposure of patients to functional rehabilitation through a rehabilitation medical device provided cognitive retraining, improving pain intensity after each session as well as pain-related disability and helplessness over the course of 4 weeks. When designed correctly, VR therapies that combine pain relief and movement may provide nonpharmacological, noninvasive, and nonaddiction modalities for treating chronic pain.
Acknowledgments

This research was funded by Karuna Labs, Inc.

Conflicts of Interest

LN and OA are employed by Karuna Labs, Inc. MT and AA were employed by Karuna Labs, Inc. JP has stock options in Karuna Labs, Inc.

Multimedia Appendix 1
CONSORT eHEALTH Checklist (V 1.6.1).
[PDF (Adobe PDF File), 439 KB - formative_v8i1e34162_app1.pdf]

References

Abbreviations

ACC: anterior cingulate cortex
FABQ: Fear-Avoidance Beliefs Questionnaire
GMI: graded motor imagery
KVET: Karuna Virtual Embodiment Training
MVF: mirror visual feedback
ODI: Oswestry Disability Index
PAG: periaqueductal gray
PCS: Pain Catastrophizing Scale
SSQ: Simulator Sickness Questionnaire
VAS: visual analog scale
VR: virtual reality

©Adam Saby, Anthony Alvarez, David Smolins, James Petros, Lincoln Nguyen, Michael Trujillo, Oytun Aygün. Originally published in JMIR Formative Research (https://formative.jmir.org), 16.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Contactless Monitoring System Versus Gold Standard for Respiratory Rate Monitoring in Emergency Department Patients: Pilot Comparison Study

Abstract

Background: Respiratory rate is a crucial indicator of disease severity yet is the most neglected vital sign. Subtle changes in respiratory rate may be the first sign of clinical deterioration in a variety of disease states. Current methods of respiratory rate monitoring are labor-intensive and sensitive to motion artifacts, which often leads to inaccurate readings or underreporting; therefore, new methods of respiratory monitoring are needed. The PulsON 440 (P440; TSDR Ultra Wideband Radios and Radars) radar module is a contactless sensor that uses an ultrawideband impulse radar to detect respiratory rate. It has previously demonstrated accuracy in a laboratory setting and may be a useful alternative for contactless respiratory monitoring in clinical settings; however, it has not yet been validated in a clinical setting.

Objective: The goal of this study was to (1) compare the P440 radar module to gold standard manual respiratory rate monitoring and standard of care telemetry respiratory monitoring through transthoracic impedance plethysmography and (2) compare the P440 radar to gold standard measurements of respiratory rate in subgroups based on sex and disease state.

Methods: This was a pilot study of adults aged 18 years or older being monitored in the emergency department. Participants were monitored with the P440 radar module for 2 hours and had gold standard (manual respiratory counting) and standard of care (telemetry) respiratory rates recorded at 15-minute intervals during that time. Respiratory rates between the P440, gold standard, and standard telemetry were compared using Bland-Altman plots and intraclass correlation coefficients.

Results: A total of 14 participants were enrolled in the study. The P440 and gold standard Bland-Altman analysis showed a bias of −0.76 (−11.16 to 9.65) and an intraclass correlation coefficient of 0.38 (95% CI 0.06-0.60). The P440 and gold standard had the best agreement at normal physiologic respiratory rates. There was no change in agreement between the P440 and the gold standard when grouped by admitting diagnosis or sex.

Conclusions: Although the P440 did not have statistically significant agreement with gold standard respiratory rate monitoring, it did show a trend of increased agreement in the normal physiologic range, overestimating at low respiratory rates, and underestimating at high respiratory rates. This trend is important for adjusting future models to be able to accurately detect respiratory rates. Once validated, the contactless respiratory monitor provides a unique solution for monitoring patients in a variety of settings.

(JMIR Form Res 2024;8:e44717) doi: 10.2196/44717
KEYWORDS
cardiopulmonary monitoring; contactless monitor; radar; respiratory rate; vital signs

Introduction

Respiratory rate is a fundamental vital sign that serves as an indicator of physiologic function [1]. Changes in respiratory rate are often one of the first indicators of severe illness and clinical deterioration in a variety of disease states, such as sepsis, metabolic acidosis, respiratory distress, and drug toxicities [2,3]. Early identification of clinical decline by recognition of changes in respiratory rate is associated with improved outcomes, such as decreased intensive care unit admissions, decreased length of stay, and improved functional outcomes in patients [4]. However, respiratory rate is often considered a “neglected vital sign” due to inconsistent documentation [5]. There are 2 techniques currently used to measure respiratory rate. The gold standard for determining respiratory rate is manual counting. The current standard of care in hospital facilities and emergency departments (EDs) is transthoracic impedance plethysmography, which measures chest wall movement through cardiac telemetry electrodes. However, both techniques have several limitations. Manual counting is labor-intensive, needs to be done by visually examining the patient, and cannot practically be continuous for long periods of time [6,7]. Transthoracic impedance plethysmography is susceptible to inaccurate readings, as any aberrant movement of the patient makes the monitoring ineffective [8,9].

The development of technologies that accurately and effectively monitor respiratory rates is important to improve the care of patients. Additionally, with the widespread use of telemedicine, digital health interventions that can be used in outpatient settings or settings where a patient cannot be closely monitored are increasingly needed. One such technology is a contactless sensor system that uses an ultrawideband impulse radar–based contactless respiratory monitor PulseON 440 (P440) capable of detecting subtle movements in participants (eg, as the chest wall rises). The P440 works by sending an electromagnetic wave with a transmitter antenna, the reflections of which are caught by the receiver antenna. The device uses 2-way time of flight ranging to measure the distance between the radar and a target. In addition, this radar is a coherent radio transceiver that allows the energy in each transmitted pulse to be summed, improving the signal-to-noise ratio of received transmissions. This monitor has demonstrated high accuracy in laboratory testing, is less than 2 cm in size, and can perform scanning at rates up to 125 Hz at distances up to 30 meters [10]. The monitor operates at approximately 50 μW, which is considered a very low power transmission. For comparison, a standard incandescent lightbulb operates at 60 W. Its capability to detect small movements with extreme accuracy makes this device optimally suited to measuring respiratory rate.

As new technologies are being developed, it is important to compare them to current gold standards to assess whether these technologies are both accurate and practical for clinical use. This study aimed to pilot-test the P440 radar in a cohort of ED patients to (1) compare the performance of the P440 radar to the gold standard (manual counting) and to the standard of care (transthoracic impedance plethysmography) in a clinical setting and (2) compare performance in subgroups of interest (patients with cardiopulmonary diagnoses and by sex).

Methods

Recruitment

This pilot study was performed at a large, academic, tertiary-care, level-one trauma center in central Massachusetts that treats approximately 135,000 patients per year. A convenience sample was enrolled during the study period (June 2019-February 2020). Eligible participants were aged 18 years or older, were being monitored by cardiac telemetry for respiratory rate in the ED, and were able to provide informed consent. Individuals were excluded if they were pregnant or were prisoners, as these populations are routinely excluded in this phase of research. Participants were screened for eligibility through the ED electronic medical record and approached for consent after discussion with the treating ED clinical providers.

Study Design

Once the participant consented to participate, basic demographic and relevant clinical information were obtained from the electronic health record. A total of 3 P440 radar units were placed in a triangulated formation in the participant room for a 2-hour period (Figure 1). During the 2-hour period, the gold standard respiratory rate (manual counting) and the standard of care respiratory rate (transthoracic impedance plethysmography) were recorded at 15-minute intervals. Relevant clinical data (including medications given during the study period and significant events) were recorded.
Hardware

The main study device was the P440, which used radar technology to calculate respiratory rate. Data were collected using application programming interfaces. The Raspberry Pi3 (Raspberry Pi Foundation) interfaced with the P440 (programed in C language) and stored all collected data on a microSD card. Each radar unit consisted of the P440 module, an absorber, a Raspberry Pi unit, and a hard disk (Figure 2). All components were assembled in a 3D-printed box. Details of the radar have already been published elsewhere [10].

Figure 1. Schematic of patient room set-up. Blue Ts represent the PulsON 440 radar units.

Figure 2. (A) PulsON 440 radar monitor with LF75 absorber behind the antenna. (B) Top view of the radar with absorber. (C) Radar box with Raspberry Pi and a hard disk drive. (D) Enclosed radar box.
PulsON 440 Data Cleaning, Processing, and Fusion

The radar data were collected from all 3 devices in raw radargram format. The files were marked with Uniplexed Information Computing System (UNIX) timestamps and were synchronized in order to have the same event observed by all 3 radars for the same time windows. Raw radargrams contained information about participant movement as well as reflections from all the static clutter present in the environment (eg, walls, stretchers, and medical furniture). The first step in cleaning the raw data involved removing the static clutter [11]. A background subtraction technique was used to get rid of the clutter. The mean of the first 100 scans where there were no participants was subtracted from each window of 30 seconds. A bandpass filter was applied to remove direct current and high-frequency noise from the radargrams.

The system leveraged the different vantage points of the radars in 3 different positions in the room to observe the respiratory motion of the participant. As the orientation of the participant was not known and in a dynamic environment, we applied an independent component analysis (ICA) to find out which radar had the best respiratory signal [12].

Each radar signal and radargram were then filtered by an equiripple finite impulse response filter at cutoffs analogous to the normal breathing range from 6 to 30 breaths per minute. The location of the participant being monitored was extracted using a localization algorithm along with trilateration and Kalman filtering [13,14]. From each radar, the system focused on 50 range bins (45 cm) centered at the participants’ location bin. The focused range bin forms 50 individual time series of 30 seconds for a particular window. The 2D signal with 50 timeseries was then collapsed to a 1D signal using a sum-aligned function. The function found the timeseries that had the highest root-mean-square energy in that window and used it as a reference to align the remaining 49 timeseries with itself. After alignment, the function was summed to generate the global sum-aligned 1D signal, which preserved the breathing motion.

The ICA was applied to all 3 radars in 1D time series. The ICA output 3 independent components, which underwent a fast Fourier transform (FFT). The component with the strongest FFT peak was selected as the most dominant radar signal. We applied 2 different frequency detection methods to further identify the respiration rate from the selected radar—FFT and zero-crossing rate [10].

Statistical Analysis

Descriptive statistics were calculated for basic demographic and clinical information. We compared the respiratory rate measured by the P440 with the gold standard (manual) respiratory rate by the Bland-Altman plot method using GraphPad Prism (version 9; GraphPad Software). This approach used the means and differences between the pairs of readings to calculate the mean difference (bias) and the upper and lower limits of agreement [15,16]. We considered an acceptable upper and lower limit of agreement to be –2 to 2 breaths per minute. We subsequently calculated the intraclass correlation coefficient (ICC) for the 2 methods of measurement. We then repeated this procedure for the gold standard (manual) and standard of care (transthoracic impedance plethysmography) respiratory rates. The Bland-Altman plot method was also used to compare respiratory rate differences found between the P440 and gold standard in participants based on sex and the presence of a cardiopulmonary diagnosis.

Ethical Considerations

The study was approved by the University of Massachusetts Chan Medical School Institutional Review Board (protocol number H00016885). All participants provided informed consent. Study data were deidentified. Participants were not remunerated.

Results

Participant Data

A total of 14 participants were enrolled in the study. The demographics of the study participants are detailed in Table 1. The study population was comprised of 57% (8/14) male candidates with an average age of 58 years.
Table 1. Participant characteristics.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (range)</td>
<td>58.64 (23-86)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>8 (57)</td>
</tr>
<tr>
<td>Female</td>
<td>6 (43)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1 (7)</td>
</tr>
<tr>
<td>White</td>
<td>8 (57)</td>
</tr>
<tr>
<td>Declined to answer</td>
<td>4 (27)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Hispanic or Latino, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Home medications, n (%)</td>
<td></td>
</tr>
<tr>
<td>Opioid</td>
<td>2 (14)</td>
</tr>
<tr>
<td>Benzodiazepine</td>
<td>3 (21)</td>
</tr>
<tr>
<td>Admitting diagnosis, n (%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal bleed</td>
<td>2 (14)</td>
</tr>
<tr>
<td>Diverticulitis</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Cardiac diagnoses(^a)</td>
<td>6 (43)</td>
</tr>
<tr>
<td>Pulmonary diagnoses(^b)</td>
<td>2 (14)</td>
</tr>
</tbody>
</table>

\(^a\)Cardiac diagnoses included chest pain, non-ST elevation myocardial infarction, and atrial fibrillation with rapid ventricular response.

\(^b\)Pulmonary diagnoses include pneumonia and pulmonary edema.

Comparison of Respiratory Rate Measurements

The P440 and gold standard Bland-Altman analyses showed a bias of –0.76. The upper limit of agreement was 9.65, and the lower limit of agreement was –11.16 (Figure 3A). At lower respiratory rates, the bias was more positive, indicating a higher measured respiratory rate by the P440 than the gold standard. At higher respiratory rates, the bias was more negative, indicating a lower measured respiratory rate by the P440 than the gold standard. About 34% (30/88) of the differences in measurements were within the prespecified clinically significant limits of agreement of –2 to 2. The P440 and gold standard respiratory rates did not have a statistically significant correlation. The ICC was 0.38 (95% CI 0.06-0.60). The mean absolute error between the P440 and gold standard respiratory rates was an average of 3.89 (range 1.55-8.51).

The standard of care and the gold standard Bland-Altman analysis showed a bias of 0.69. The upper limit of agreement was 8.18, and the lower limit of agreement was –6.81 (Figure 3B). Around 59% (52/88) of the differences in measurements were within the prespecified clinically significant limits of agreement of –2 to 2. The gold standard and standard of care respiratory measurements did have a statistically significant correlation. The ICC was 0.82 (95% CI 0.72-0.88).
Subgroup Analyses

Participants grouped by cardiopulmonary chief concern plotted on a Bland-Altman analysis showed a bias of -2.39 (Figure 4). The upper limit of agreement was 7.89, and the lower limit of agreement was -12.67. Participants without a cardiopulmonary chief concern showed a Bland-Altman bias of 1.21 with an upper limit of agreement of 10.49 and a lower limit of agreement of -8.08. While there was no clear trend for the cardiopulmonary chief concerns, the noncardiopulmonary chief concern measurements followed a similar trend to the overall Bland-Altman, with the bias being more positive at lower respiratory rates and more negative at higher respiratory rates.

There was not a statistically significant correlation for either the cardiopulmonary or noncardiopulmonary chief concerns. The ICC was 0.21 (-0.41 to 0.56) and 0.42 (-0.09 to 0.69) respectively.

When grouped by sex, the Bland-Altman analysis had a bias of -0.41 (-11.56 to 10.70) for male candidates and a bias of -1.52 (-10.05 to 6.881) for female candidates (Figure 5). The overall trend for male candidates was also positive at lower respiratory rates and negative at higher respiratory rate; however, there was no clear trend for the female candidates. There was no statistically significant correlation for either the male or female candidates. The ICC for male candidates was 0.45 (0.08-0.67) and for female candidates was -0.40 (-2.13-0.47).
Figure 4. Bland-Altman plot of (A) cardiopulmonary and (B) noncardiopulmonary chief complaint.
Discussion

Overview

Although overall there was no statistically significant correlation, the P440 agreed best within the physiologically normal respiratory range. There was less agreement at both increased and decreased respiratory rates as the P440 was underestimated at higher respiratory rates and overestimated at lower respiratory rates. One possible reason for not achieving statistical agreement is that fewer participants had episodes of bradypnea (slow respiratory rate) or tachypnea (high respiratory rate) during the study period and therefore the measurements were more prone to error. Additionally, the ED is a busy environment, and there were many events that could have affected the accurate measurement of respiratory rate, including patient movement, patient clothing or obstruction by blankets, people entering and exiting the room, and the need for bedside procedures. Understanding this trend is important to adjust future respiratory models to be more accurate in the abnormal ranges. However, further validation will be needed before it is able to be used in clinical settings.

There have been other recent studies using an ultrawideband to detect respiratory rates [17,18]. He et al [17] used a combination of a 3D depth camera and ultrawideband radar to use localization with the radar technology to detect respiratory rate in an experimental lab setting. However, the results were limited when movement (such as a person walking) interfered with the respiratory signal. Lauteslager et al [18] also used a ultrawideband radar to detect respiratory rates in a variety of controlled clinical settings. The radar was able to accurately detect respiratory rate; however, the study excluded time periods of irregular respiratory patterns, apnea, and high-motion artifacts. While lab and controlled patient scenarios are important for the initial testing of a monitor, it is also necessary...
to understand how the device performs in real-world settings where there is unplanned motion and noise. Additionally, studying the device in a variety of clinical scenarios, such as patients with invasive mechanical ventilation, may help overcome some of the real-world barriers and understand the setting in which the device best performs. By piloting the P440 in the ED, we were able to gather a better understanding of how the device will perform in an uncontrolled setting.

There are several limitations to this study. First, this was a small study. This was designed to be a pilot study, and therefore a convenience sample was obtained during the enrollment period. Future studies will aim to recruit additional participants in order to validate the P440. Additionally, there are difficulties inherent in measuring respiratory rates that may have affected the accuracy of the P440. Gold standard respiratory rate monitoring requires direct observation that may not only affect a participant’s breathing pattern but also necessitate close proximity, which can cause interference with the monitor. Motion artifacts are also known to cause inaccuracies in respiratory monitoring, which is similarly seen in the standard of care telemetry monitoring that is currently used in practice.

Future iterations of the contactless monitoring system will focus on improving the respiratory rate algorithm. To achieve this, we plan to investigate the Eulerian phase magnification of the radargram signal in order to extract meaningful features [19]. The Eulerian phase magnification approach was first introduced for video magnification; however, its use for human motion estimation was limited by privacy concerns. Using the ultrawideband radar with this approach may provide a convenient, nonrestrictive, and unobtrusive means to detect motion, especially in noisy conditions like the ED. Our next step is to build a 1D radar signal magnification pipeline using the Eulerian phase-based magnification algorithm’s complex Gabor wavelet pyramid [20,21]. Different spatial wavelengths of the Gabor pyramid will give us different 1D signals from which we will get FFT peaks and zero-crossing rates as features. Using these informative features, we plan to fit a regression model to better estimate the respiratory rate. The motivation behind using a motion magnification-based algorithm is to leverage the amplification of subtle motions in a dynamic environment that might be difficult to observe by conventional temporal models. Additionally, by using machine learning models, we can get a better respiratory rate estimate by generalizing across different settings as well as diverse demographics.

Overall, the contactless radar respiratory monitor provides a unique solution to monitor patients in places that previously presented challenges, such as low-acuity outpatient settings, waiting rooms, and the home. The ability to monitor changes in respiratory rate accurately and continuously in these settings can help detect clinical deterioration without having direct contact with the person. This has become increasingly important, especially during the COVID-19 pandemic and with the increase in hospital crowding and long ED wait times.

Conclusions
This pilot study has provided important preliminary data that will be used to inform the development of future iterations of the P440 respiratory rate model. Once validated, the device can be miniaturized and used in a variety of settings to provide continuous respiratory monitoring that can be remotely accessed to detect clinical changes in a variety of disease states and improve the care of patients.

Acknowledgments
This work is in part supported by the National Science Foundation (grants SBE 1839999 and grant SCH 2124282) and start-up grant support from the Manning College of Information and Computer Sciences and the Institute for Applied Life Sciences at the University of Massachusetts Amherst. SPC is funded by the National Institutes of Health and the National Institute on Drug Abuse (K23DA045242). We would like to thank Dr Lindsay Walsh for assisting with data collection.

Data Availability
The data sets generated during and analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

References

Abbreviations
- **ED**: emergency department
- **FFT**: fast Fourier transform
- **ICA**: independent component analysis
- **ICC**: intraclass correlation coefficient
- **P440**: PulsOn 440
- **UNIX**: Uniplexed Information Computing System
An Intelligent Customer-Driven Digital Solution to Improve Perioperative Health Outcomes Among Children Undergoing Circumcision and Their Parents: Development and Evaluation

Zhi Yin Kwa¹,², BSc; Jinqiu Li³,⁴, BSc, MSc; Dale Lincoln Loh²,⁵, BA, MB, ChB; Yang Yang Lee²,⁵, MBBS; Guangyu Liu⁶, BSc; Lixia Zhu⁷, BS, MSc, PhD; Minna Pikkarainen⁸,⁹, PhD; Honggu He²,⁴, MD, PhD; Vidyadhar Padmakan Mali²,⁵, MBBS, MS

¹Department of Nursing, National University Hospital, Singapore, Singapore
²National University Health System, Singapore, Singapore
³Nursing Department, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
⁴Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
⁵Department of Paediatric Surgery, National University Hospital, Singapore, Singapore
⁶Integrated Health Promotion, Ministry of Health Office for Healthcare Transformation, Singapore, Singapore
⁷Hôpital Chinois de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC, Canada
⁸Department of Health Technology and Rehabilitation and Department of Product Design, Oslo Metropolitan University, Oslo, Norway
⁹Martti Ahtisaari Institute, Oulu Business School, University of Oulu, Oulu, Finland

Corresponding Author:
Honggu He, MD, PhD
Alice Lee Centre for Nursing Studies
Yong Loo Lin School of Medicine
National University of Singapore
Level 2, Clinical Research Centre
MD 11, 10 Medical Drive
Singapore, 117597
Singapore
Phone: 65 65167448
Fax: 65 67767135
Email: nurhhg@nus.edu.sg

Abstract

Background: Circumcision as a common elective pediatric surgery worldwide is a stressful and anxiety-inducing experience for parents and children. Although current perioperative interventions proved effective, such as reducing preoperative anxiety, there are limited holistic solutions using mobile apps.

Objective: This paper aims to describe the development and primary evaluation of an intelligent customer-driven smartphone-based app program (ICory-Circumcision) to enhance health outcomes among children undergoing circumcision and their family caregivers.

Methods: Based on the review of the literature and previous studies, Bandura’s self-efficacy theory was adopted as the conceptual framework. A multidisciplinary team was built to identify the content and develop the apps. Semistructured interviews were conducted to evaluate the ICory-Circumcision.

Results: The ICory-Circumcision study was carried out from March 2019 to January 2020 and comprised 2 mobile apps, BuddyCare app and Triumf Health mobile game app. The former provides a day-by-day perioperative guide for parents whose children are undergoing circumcision, while the latter provides emotional support and distraction to children. In total, 6 participants were recruited to use the apps and interviewed to evaluate the program. In total, 4 main categories and 10 subcategories were generated from content analysis.

Conclusions: ICory-Circumcision seemed to lean toward being useful. Revisions to ICory-Circumcision are necessary to enhance its contents and features before advancing to the randomized controlled trial.

Trial Registration: ClinicalTrials.gov NCT04174404; https://clinicaltrials.gov/ct2/show/NCT04174404

https://formative.jmir.org/2024/1/e52337
Introduction

Background

Male circumcision is a surgery to remove the foreskin of the penis [1]. It is one of the most common day pediatric surgeries worldwide, with an estimated 30% incidence of circumcised males, of which two-thirds were Muslim [2,3]. Singapore’s male circumcision prevalence is about 15% [4]. Male circumcision is commonly performed in Singapore between ages 8 and 11 years often for religious reasons [3]. With Muslims comprising 14.7% of Singapore’s population [5], circumcision is likely common in Singapore.

While global and local trends can be ascribed to mainly religious or cultural reasons [6], it is also expected to rise due to growing evidence of health benefits such as up to 73% protection against acquiring HIV [7,8] and reduced risks of urinary tract infections [4]. Voluntary medical male circumcision may save US $16.5 billion by 2025 from averted HIV treatment and associated costs [8].

Rising preferences for elective male circumcision may also be explained by low complication rates of 0% to 30% in male circumcision [9] and benefits of elective day surgeries such as reduced hospital-acquired infection risks, financial burdens, and disruptions to daily commitments like school [10]. With shifts in male circumcision being done as elective surgeries, parents have to assume heavier parenting roles as their involvement in perioperative care increases [11]. These tasks include managing their child’s preoperative fasting and postoperative wound. Despite the advantages of elective male circumcision, surgeries, even minor ones, are still stressful and anxiety-inducing periods for both parents and children [12,13]. The unfamiliarity of settings and perioperative care and fear of their child’s death are reasons for parental preoperative anxiety [11,14]. In fact, parents of children who undergo day surgery have been found to experience higher parental preoperative anxiety than parents of hospitalized children [15]. This could be due to increased responsibilities and inadequate time to adjust to unfamiliar settings [11]. High parental preoperative anxiety often results in unfavorable somatic symptoms such as insomnia that can hinder parents’ everyday functions and impact work productivity [16]. Parental preoperative anxiety and lack of knowledge can incur unnecessary costs for families and hospitals through unnecessary visits to the emergency department after male circumcision [13,17]. Furthermore, parental preoperative anxiety affects children’s emotional responses and increases children’s preoperative anxiety, as children heavily depend on their parents, especially during foreign events like surgery [11,18,19]. Up to 84% of children undergoing male circumcision had experienced fear or worry, suggesting children’s preoperative anxiety is prevalent in pediatric male circumcision [20]. Children’s preoperative anxiety has been correlated with consequences such as increased postoperative pain, sleep-related problems, and hindered recovery [21-23]. Children’s preoperative anxiety also causes prolonged induction and further use of sedatives and requires additional nursing staff, incurring more costs for families and hospitals [13,24-26].

These combined findings suggested the need for a more comprehensive and effective solution to decrease children’s preoperative anxiety. This study aimed to develop an intelligent customer-driven solution for pediatric surgery care on the improvement of outcomes of parents and their primary school-aged children undergoing circumcision (ICory-Circumcision) and examine the feasibility of the program.

Review of Current Circumcision Clinical Practice in Singapore

Figure 1 shows the current pediatric circumcision routine care in the Singapore health system. At one of Singapore’s tertiary hospitals, about 12% of children who underwent male circumcision reverted to the emergency department before scheduled follow-up appointments [27]. However, only 2% of these children had postoperative problems that warranted medical intervention, while the remaining 10% did not require specialist care and, therefore, were avoidable [27]. As seen, parents’ lack of postoperative knowledge and communication with health care professionals (HCPs) led to what could have been affordable costs. Additionally, parents in Singapore have expressed the desire for information provision through mobile apps [14]. Current practices of providing surgery-related information for male circumcision are through verbal or written mediums. Technological-based solutions have yet to be incorporated. Therefore, incorporating ICory-Circumcision into pediatric male circumcision settings in Singapore could potentially save resources for families and hospitals.
Review of Literature and Findings From Previous Studies

Parents and children undergoing elective surgeries experience stress and negative emotions [28]. As a result, studies have been conducted to explore their needs. Parents desire emotional support and perioperative information, involvement in their child’s perioperative care, and building good collaboration with HCPs [29-33]. Studies have shown that providing information helped decrease parental preoperative anxiety and encouraged parents’ participation in their children’s care [28,32,34]. Parents wished to know surgery indications, medications and fasting instructions, involvement in the operating theater, and pain and wound management [35-37]. Their strong desire for such information could be attributable to their major roles in assimilating information to their children [38]. Parents also hoped for such information to be individualized and disseminated to them via web-based mobile apps or literature [14,29,36]. They also preferred if postoperative information was given before surgery instead of just before discharge [39].

Children desire preparational information and tend to seek help from parents when they experience pain [40,41]. The majority of the children experience moderate to severe pain during the postoperative period despite their parents’ involvement in care [40]. This could suggest that pain was undertreated [33]. This further highlights the need to provide education on pain management to parents. Children desired parental presence and more distraction techniques to be used by their parents for pain management [41]. Parents also wished to monitor their children’s pain in addition to the strategies [31]. Finally, children hoped for more communication between parents and nurses to assist with postoperative pain [42].

Various technological-based interventions have been developed and aimed at parents of children undergoing elective surgeries. Videos aimed at educating parents about their children’s surgery have been used in several studies. However, the contents of the studies varied rather widely. Chow et al [43] conducted a systematic review and found that videos that included both preoperative and postoperative information were more effective. Two such studies focused on perioperative education; however, only one study showed a decrease in parental preoperative anxiety, while the other showed no significant changes [17,44]. The video contents of 2 studies were about the surgery day [45,46]. Chartrand et al [45] aimed to educate parents about the experience in the recovery room, and it improved parents’ knowledge but not anxiety. Berghmans et al [46] aimed at modeling a hospital tour for parents and children, but no significant changes in parental anxiety. Other studies focused on different surgery periods such as informed consent and postoperative pain management [47,48]. Two studies examined the effects of web-based preparation programs for parents and children undergoing elective surgeries, and both were effective in reducing parental preoperative anxiety [49,50]. Both interventions had elements of surgery-related educational modules for both parents and children. Two studies examined the effects of web-based preparation programs for parents and children undergoing elective surgeries, and both were effective in reducing parental preoperative anxiety [49,50]. Both interventions had elements of surgery-related educational modules for both parents and children. Two studies examined the effects of web-based preparation programs for parents and children undergoing elective surgeries, and both were effective in reducing parental preoperative anxiety [49,50]. Both interventions had elements of surgery-related educational modules for both parents and children. Two studies examined the effects of web-based preparation programs for parents and children undergoing elective surgeries, and both were effective in reducing parental preoperative anxiety [49,50].

Children’s preoperative anxiety decreased in Fortier and Kain’s study [49] but did not in Wright et al’s study [50]. SMS text messages and mobile apps were also used in several recent studies in pediatric surgery settings [51-55]. Four studies used SMS text messages to convey perioperative education to parents of children undergoing elective surgeries [51-53,56]. These studies allowed real-time communication with HCPs via SMS text message or phone call. The programs were able to decrease parental preoperative anxiety, increase parental knowledge, reduce children’s preoperative anxiety, and improve parent satisfaction, which resulted in neither operation cancellations nor visits to the emergency department. While those 4 studies had no intraoperative texts, Kwan et al [57] examined the effectiveness of sending intraoperative texts, and it was effective in reducing parental anxiety. Ji et al [54], on the other hand, developed an app that uses drawings to explain procedures to parents, which resulted in reduced parental preoperative anxiety and improvement in parental satisfaction. Bailey et al [55] tested the effects of an educational video app on perioperative information and parents’ role in the operating theater.
Several studies have examined the effectiveness of mobile game apps on children’s preoperative anxiety [58-61]. These 4 studies used game apps that were available in app stores and were selected based on age appropriateness. There was a significant reduction in children’s preoperative anxiety after the children played the games in 3 studies. In addition, Cumino et al [58] also showed that a combination of strategies (parental leaflet+mobile game) was more effective in lowering the prevalence of anxiety in the operating room. Marechal et al [61] showed no significant difference in children and parental anxiety. A few studies also used mobile apps to prepare children for surgery [62-64]. All 3 studies aimed to simulate the operating room but through different presentations in the apps: medical clowning video, multimedia app presenting hospital procedures in stages and accompanying videos, and photographs and cartoons. All 3 studies led to a significant decrease in children’s preoperative anxiety. Fernandes et al [63] also showed decreased parental state anxiety.

Our review of the literature showed that perioperative needs of parents and children undergoing elective surgeries have been extensively researched, and as a result, many interventions have been developed to address their needs. However, there is a lack of technological-based interventions targeted at parent’s self-efficacy in children’s perioperative care. There is also a dearth of studies using mobile app–based education for parents, and none were conducted in Singapore.

Methods

Content Development and Theoretical Framework

Taking all the gathered information into consideration, Bandura’s self-efficacy theory and interrelationships between self-efficacy, anxiety, knowledge, and satisfaction were adopted as the theoretical and conceptual framework to guide the development of ICory-Circumcision and methodology of this study (Figure 2).

Figure 2. Theoretical framework used for the study.

<table>
<thead>
<tr>
<th>Sources of self-efficacy</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enactive mastery experience</td>
<td>ICory-Circumcision</td>
<td>Parents’ self-efficacy (primary)</td>
</tr>
<tr>
<td>Vicarious experience</td>
<td>1. BuddyCare app for parents to use as a perioperative guide</td>
<td>Parents’ preoperative anxiety</td>
</tr>
<tr>
<td>Verbal persuasion</td>
<td>2. Triumph Health game app which parents can give to their children</td>
<td>Parents’ need for information</td>
</tr>
<tr>
<td>Physiological and affective states</td>
<td></td>
<td>Parents’ peroperative knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parents’ satisfaction with perioperative care</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Children’s preoperative anxiety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Children’s postoperative pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No shows or delayed shows, health care service use</td>
</tr>
</tbody>
</table>

Bandura posited that self-efficacy is derived from the integration of information from 4 sources of self-efficacy, namely, enactive mastery experience, vicarious experience, verbal persuasion, and emotional and physiological states [65]. Enactive mastery experience refers to parents’ prior experiences in taking care of children throughout the perioperative period, and it is the most influential source of self-efficacy. Vicarious experience was gained by observation and modeling, as it offers parents chances to judge their abilities against a reference point to master tasks [65]. Verbal persuasion refers to persuasive information parents receive from others to enhance parental self-efficacy. Emotional and physiological states influence self-efficacy as a person’s functions are affected [65].

Parental self-efficacy has been shown to negatively correlate with anxiety and child distress and positively correlate to child cooperation [66,67]. High parental preoperative anxiety has been positively correlated with children’s preoperative anxiety, while children’s preoperative anxiety has been positively correlated with higher postoperative pain [68-70]. Additionally, parental preoperative anxiety has been reported to increase the likelihood of surgical cancellations due to lower compliance with fasting instructions [70]. Based on Bandura’s theory, anxious parents could lower parental self-efficacy and subsequently affect children’s perioperative outcomes such as children’s preoperative anxiety and postoperative pain [71]. Parental preoperative anxiety has been shown to be positively correlated to the need for information, thus further reinforcing the need to develop interventions to provide the information parents require [72].

ICory-Circumcision Components in Relation to Self-Efficacy Theory

The Template for Intervention Description and Replication (TIDierR) checklist and guide was also recommended to be
used in the process of intervention development [73]. The components of ICory-Circumcision in relation to the self-efficacy theory are depicted in Figure 3.

Figure 3. ICory-Circumcision components in relation to self-efficacy theory.

Qualitative Evaluation of the ICory-Circumcision Program

A self-developed interview guide for field test of BuddyCare and TriumfHealth apps (Multimedia Appendix 1) was used to guide the semistructured interviews to explore the perceptions of the strengths, weaknesses, and the use of ICory-Circumcision from parents, children, and HCPs who used ICory-Circumcision. The qualitative data obtained from process evaluation were analyzed using inductive content analysis [74,75]. The analysis was done in 3 phases: preparation, organizing, and reporting [74], while steps were taken to achieve trustworthiness [76].

Ethical Considerations

Ethics approval (2019/00582) and amendment approval were obtained from the National Health Group Domain Specific Review Board before the commencement of the study. All research team investigators obtained the Collaborative Institutional Training Initiative certificate. Informed consent was obtained from the children’s parents, while assent was taken from the children. All potential participants were given information about the study using the participant information sheet to inform them about the study’s aim, potential benefits, risks, and responsibilities. Voluntary participation, the right to withdraw, and confidentiality were highlighted. Informed consent was not obtained from the HCPs who were interviewed as they were part of the study team. All data from questionnaires were entered electronically into the study hospital’s REDCap (Research Electronic Data Capture; National University Hospital) database, and the data were exported as nonidentifiable data into SPSS (IBM Corp) for data analysis. Only identified study team members with intranet access were able to enter, monitor, and export data. The audio recordings of the interview will be deleted from the audio recorder and stored in the principal investigator’s password-protected computer in the office of Alice Lee Centre for Nursing Studies. All physical records such as consent forms and questionnaires were stored in a locked cupboard at the Department of Pediatric Surgery in National University Hospital. The documents and electronic data will be destroyed after 6 years upon closure of the study by the Domain Specific Review Board. A brand-new SIM card was purchased for the study phone, and it will be disabled and destroyed at the end of the study as well. In addition, no identifiable information was entered in ICory-Circumcision’s apps; instead, pseudonyms and precreated emails were used. This ensured that no participant identifiers were captured by the apps’ companies to protect the participants’ privacy and data confidentiality. No compensation in terms of material or financial benefits was provided to the research participants who participated in this program.

Results

This study was carried out from March 2019 to January 2020 and comprised 2 mobile apps.

BuddyCare Mobile App for Parents

One of the eventual products was the BuddyCare mobile app that provides a comprehensive day-by-day perioperative guide for parents regarding their children’s surgery with an interface to communicate with HCPs. Parents were able to select the surgery date and time on the app, and then, the contents were arranged according to each participant’s timeline. The timeline of BuddyCare contents can be found in Multimedia Appendix 2. Two educational topics on the app were selected in accordance with the parental and children’s needs in the literature review and surgery pathway, one is circumcision-related information, including an overview of...
circumcision, tips on how to explain the surgery to their children, and what to expect about anesthesia; another one is caring for children, including pain management techniques (eg, emotional support, breathing techniques, positive reinforcement, and distraction), preoperative instructions (eg, fasting instructions), and wound management (eg, how to clean and when to bring their child to the emergency department; Figures 4 and 5). Positive quotes are refreshed periodically as emotional support to motivate the parents throughout the perioperative process (Multimedia Appendix 3). With the messaging function, participants are able to communicate with HCPs by sending SMS text messages through the messaging tab (Multimedia Appendix 4). The HCPs in the study team will be able to access the SMS text messages via a BuddyCare dashboard, and they can reply to the participant through this dashboard.

Figure 4. Screenshot of BuddyCare overview.
Another product was the Triumf Health mobile game app that provides emotional support and distraction to children. The game allowed the children to customize their own characters and save Triumfland city from a diseased monster by finding one’s inner superpowers. The child was able to control their character to venture around Triumfland and gain points through completing quests in order to help the town doctor to eradicate the disease monster. One important aspect of the game was providing general surgery information to the child (Figure 6). The child could access the topics at any time on their own volition, and the information about each topic was displayed in levels to cater to the child’s reading and comprehension ability. To illustrate, once the child accessed the information in level 1, the information would be presented, and the app would prompt the child to ask if he understood the information. If the child says no, a short summary of the information from level 1 will be presented in short simple sentences. The app also rendered various psychological support to the children such as pain and mood. If the child responded with unfavorable answers such as severe pain or a negative emotion, the game provided appropriate words of encouragement to the child (Multimedia Appendix 5). The abovementioned features of the app made Triumf Health game user experience personalized and dynamic. Further gameplay, that is, accessing the educational module, entertainment games, and other elements of the intervention, was determined by the in-game choices made by the player. Furthermore, the provision of psychological support is dynamically dependent on the patient’s individual progress and in-game progress.
The Qualitative Evaluation on ICory-Circumcision

In total, 6 participants (2 boys who were going to take male circumcision, 2 of their parents, and 2 HCPs) were recruited to use the apps and were required to share their perceptions about the apps. An interview guide was developed and followed (Multimedia Appendix 1). In total, 4 main categories and 10 subcategories were generated from content analysis and presented in Textbox 1.
Textbox 1. Categories and subcategories.

Strengths of ICory-Circumcision
- BuddyCare content is useful
 - Comprehensive (n=3) and easy to understand (n=1)
 - Learning experience for parents (n=3)
 - Useful especially for parents with no experience (n=2)
- Mobile apps as useful platform
 - Convenient (n=2) and appropriate for the modern era (n=2)
 - BuddyCare supports routine care (n=4)
- Reasons for liking the Triumf Health game app
 - Follow-up on child’s postoperative status (n=1)
 - Enjoyed the game and its features (n=1)

Factors for dissatisfaction in ICory-Circumcision
- Reasons for disliking the Triumf Health game app
 - Boring (n=3) and frustrating (n=1)
 - Children preferred other means of distraction (n=4)
- Communication issues
 - Delayed and unsatisfied response in BuddyCare (n=1)
 - Inconvenience of BuddyCare dashboard (n=1) and difficulty in using (n=1)

Outcomes of using ICory-Circumcision
- Opinions of BuddyCare on perioperative outcomes
 - Reduction in parental and child anxiety (n=2)
 - Improved parental confidence in taking care of the child (n=1)
- Opinions of Triumf Health on perioperative outcomes
 - Minimal help in managing preoperative anxiety (n=3)
 - No help with coping with postoperative pain (n=1) versus little help (n=1)

Suggestions for improvement
- BuddyCare content suggestions
 - Less words (n=1)
 - Different languages for important information (n=1)
 - More visuals (n=2) versus sufficient visuals (n=1)
- BuddyCare technical aspects
 - Reduce reminders (n=1) versus adequate reminders (n=1)
 - Making a dashboard app (n=1)
- Fidelity of ICory-Circumcision
 - Training for health care professionals (n=2)
 - Intervention delivery suggestions (n=2)
Discussion

Main Findings

The principal aim of the program was to develop an intelligence solution to increase parental self-efficacy and decrease parental and children’s preoperative anxiety. Parents generally expressed positive reactions toward the BuddyCare app. They found BuddyCare to be comprehensive, convenient, and useful, and they would highly recommend it to other parents. Triumph Health app was useful in follow-up postoperative pain and emotional care for children. These findings align with the aims of ICory-Circumcision and the HCPs’ views. Participants also found ICory-Circumcision to be a good resource that complements routine care, which is similar to another study [49].

Feedback on Triumph Health and BuddyCare should be taken and revise ICory-Circumcision as an intervention. Based on the mixed reactions from the qualitative interview, it may suggest that ICory-Circumcision may not be individualized enough for participants. For example, more visuals such as videos could be added into BuddyCare, but they could be placed in a different tab, which allows parents the liberty to access that section or not. This is to cater to the different levels of comfort each parent has with seeing pictures of open wounds. For Triumph Health, the number of words could be reduced, and the mechanics of the game could be reviewed with the team in Finland to see if it could be better improved to suit the needs of the children in Singapore.

Lack knowledge of pain management strategies and wound management techniques could affect the development of parental self-efficacy and increase negative emotions [29,72]. Studies showed that providing information about their children’s surgery to parents could reduce parental preoperative anxiety and showed an increase in parental self-efficacy [28,55,77]. Past experiences could have contributed to the high parental self-efficacy. Bandura [65] suggested that mastery experiences have the strongest influence on self-efficacy out of the 4 sources, and if caregivers had previous caregiving experience, they had high parental self-efficacy. On the contrary, parents would have higher anxiety when they have the first surgical experience due to medical reasons, which could impede the self-efficacy gained from physiological and affective states [65]. Therefore, providing adequate knowledge to parents is an efficient way to improve health-related outcomes.

Mobile apps are ubiquitous among parents and children, possibly due to the convenience brought by their easy accessibility [78-80]. The infiltration of mobile apps into pediatric settings is clear with the advent of mobile apps aimed at helping children with different health conditions [81,82]. Therefore, the number of mobile resources HCPs have access to has greatly expanded, improving efficiency and productivity [83]. Evidently, mobile apps have tremendous potential as a platform for information delivery.

As there are limited interventional studies presenting the development process, this study will contribute to the body of literature about intervention development [84]. This informs readers about the possible challenges that one can encounter should they decide to embark on similar intervention development [73]. This study also provided insights into the feasibility of ICory-Circumcision and the study’s methodology, which could improve the main trial’s processes and prove the effects of ICory-Circumcision. If the effects are then proved, it could potentially save nurses’ time, as nurses are heavily involved in providing education to parents and children about surgery [17,34]. Although our qualitative evaluation of ICory-Circumcision involved various users, including children, parents, and HCPs, the sample size was small due to the limited time for an honors student’s project and the COVID-19 pandemic occurrence in November 2019.

Conclusions

This paper detailed the development of a holistic technology–based intervention for parents and their children undergoing elective circumcision and examined its preliminary feasibility and evaluation. The qualitative evaluation identified strengths, weaknesses, and suggestions for improvement concerning ICory-Circumcision, suggesting its potential usefulness for parents and children in perioperative outcomes. Prior to proceeding with the randomized controlled trial, revisions to ICory-Circumcision to enhance its contents and features are recommended.

Acknowledgments

The authors wish to thank the clinicians, administrators, and those who have directly and indirectly contributed their expertise or public opinion to the development of this program. This study would not have been possible without the support of the National University of Singapore, Singapore General Hospital, National University Hospital, and Buddy Healthcare. This research work was funded by the Business Finland (grant 203/31/2018).

Conflicts of Interest

None declared.

Multimedia Appendix 1

Interview guide.

[DOCX File, 17 KB - formative_v8i1e52337_app1.docx]
Multimedia Appendix 2
Timeline of BuddyCare contents.
[DOCX File, 23 KB - formative_v8i1e52337_app2.docx]

Multimedia Appendix 3
Screenshot of BuddyCare positive quotes.
[PDF File (Adobe PDF File), 48 KB - formative_v8i1e52337_app3.pdf]

Multimedia Appendix 4
Screenshot of BuddyCare message function.
[PDF File (Adobe PDF File), 24 KB - formative_v8i1e52337_app4.pdf]

Multimedia Appendix 5
Screenshot of Triumph Health mood evaluation.
[PDF File (Adobe PDF File), 18 KB - formative_v8i1e52337_app5.pdf]

References

Abbreviations

- HCP: health care professional
- REDCap: Research Electronic Data Capture
- TIDierR: Template for Intervention Description and Replication
An Intelligent Customer-Driven Digital Solution to Improve Perioperative Health Outcomes Among Children Undergoing Circumcision and Their Parents: Development and Evaluation

Please cite as:

An Intelligent Customer-Driven Digital Solution to Improve Perioperative Health Outcomes Among Children Undergoing Circumcision and Their Parents: Development and Evaluation

JMIR Form Res 2024;8:e52337
URL: https://formative.jmir.org/2024/1/e52337
doi:10.2196/52337
PMID:38363589

©Zhi Yin Kwa, Jinqiu Li, Dale Lincoln Loh, Yang Yang Lee, Guangyu Liu, Lixia Zhu, Minna Pikkarainen, Honggu He, Vidyadhar Padmakar Mali. Originally published in JMIR Formative Research (https://formative.jmir.org), 16.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

Liang Zhang¹, MBBS; Yueqing Huang¹, PhD; Min Huang¹, PhD; Chun-Hua Zhao¹, MSc; Yan-Jun Zhang², MSc; Yi Wang³, MBBS

¹Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
²School of Information Science and Engineering, Southeast University, Nanjing, China
³The First Clinical Medical College, Nanjing Medical University, Nanjing, China

Corresponding Author:
Yueqing Huang, PhD
Department of General Practice
The Affiliated Suzhou Hospital of Nanjing Medical University
16 Baitaxi Road
Gusu District
Suzhou, 215000
China
Phone: 86 13812757566
Email: huangyq_sz@163.com

Abstract

Background: The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in China presents a significant public health concern. Traditional ultrasound, commonly used for fatty liver screening, often lacks the ability to accurately quantify steatosis, leading to insufficient follow-up for patients with moderate-to-severe steatosis. Transient elastography (TE) provides a more quantitative diagnosis of steatosis and fibrosis, closely aligning with biopsy results. Moreover, machine learning (ML) technology holds promise for developing more precise diagnostic models for NAFLD using a variety of laboratory indicators.

Objective: This study aims to develop a novel ML-based diagnostic model leveraging TE results for staging hepatic steatosis. The objective was to streamline the model’s input features, creating a cost-effective and user-friendly tool to distinguish patients with NAFLD requiring follow-up. This innovative approach merges TE and ML to enhance diagnostic accuracy and efficiency in NAFLD assessment.

Methods: The study involved a comprehensive analysis of health examination records from Suzhou Municipal Hospital, spanning from March to May 2023. Patient data and questionnaire responses were meticulously inputted into Microsoft Excel 2019, followed by thorough data cleaning and model development using Python 3.7, with libraries scikit-learn and numpy to ensure data accuracy. A cohort comprising 978 residents with complete medical records and TE results was included for analysis. Various classification models, including logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost), were constructed and evaluated based on the area under the receiver operating characteristic curve (AUROC).

Results: Among the 916 patients included in the study, 273 were diagnosed with moderate-to-severe NAFLD. The concordance rate between traditional ultrasound and TE for detecting moderate-to-severe NAFLD was 84.6% (231/273). The AUROC values for the RF, LightGBM, XGBoost, SVM, KNN, and LR models were 0.91, 0.86, 0.83, 0.88, 0.77, and 0.81, respectively. These models achieved accuracy rates of 84%, 81%, 78%, 81%, 76%, and 77%, respectively. Notably, the RF model exhibited the best performance. A simplified RF model was developed with an AUROC of 0.88, featuring 62% sensitivity and 90% specificity. This simplified model used 6 key features: waist circumference, BMI, fasting plasma glucose, uric acid, total bilirubin, and high-sensitivity C-reactive protein. This approach offers a cost-effective and user-friendly tool while streamlining feature acquisition for training purposes.

Conclusions: The study introduces a groundbreaking, cost-effective ML algorithm that leverages health examination data for identifying moderate-to-severe NAFLD. This model has the potential to significantly impact public health by enabling targeted...
investigations and interventions for NAFLD. By integrating TE and ML technologies, the study showcases innovative approaches to advancing NAFLD diagnostics.

KEYWORDS
NAFLD; artificial intelligence; public health; transient elastography; diagnosis

Introduction

Nonalcoholic fatty liver disease (NAFLD) stands as the foremost chronic liver condition, impacting approximately 1.7 billion individuals worldwide. NAFLD manifests as a multifaceted chronic liver disorder marked by an excessive buildup of fat within liver tissue. As hepatic steatosis advances, it exacerbates the onset and progression of hepatitis and fibrosis, while heightening the likelihood of liver cancer. Furthermore, numerous studies provide compelling evidence linking NAFLD closely with metabolic disorders such as obesity, diabetes, and hypertension, significantly elevating the risk of cardiovascular disease [1]. A recent meta-analysis revealed that the prevalence of NAFLD in Asian countries mirrors that of Western nations. Notably, China exhibits the highest prevalence, incidence, and yearly mortality associated with NAFLD in Asia. If this trend persists, projections suggest that by 2030, the total NAFLD population in China will soar to 314.58 million. Consequently, China will emerge as the global leader in both patients with NAFLD and liver-related fatalities [2]. Given that the majority of NAFLD cases are asymptomatic, early diagnosis holds significant clinical importance. Furthermore, precise quantification of liver fat content and clarification of hepatic steatosis severity are crucial for determining appropriate clinical interventions, assessing disease progression, and evaluating treatment efficacy. Hepatic steatosis is typically categorized into minimal (<5%), mild (5%-33%), moderate (33%-66%), and severe (≥66%) levels [3]. Patients exhibiting moderate-to-severe steatosis necessitate more intensive intervention and follow-up. Enhanced detection of individuals at high risk and early diagnosis can substantially aid in the diagnosis, treatment, and prevention of NAFLD.

Ultrasound is widely acknowledged as the preferred method for screening hepatic steatosis due to its cost-effectiveness, safety, convenience, and efficacy [4]. The characteristic ultrasound findings of fatty liver are either homogeneous or heterogeneous enhancement of liver echogenicity, along with liver enlargement and diminished visualization of intrahepatic ductal structures. However, the accuracy of ultrasound in diagnosing the disease is heavily reliant on the skill and expertise of the operator [5]. Studies have consistently found that ultrasound is highly operator dependent and lacks the capability to precisely determine the extent of hepatic steatosis or distinguish between steatosis and fibrosis, as both conditions lead to heightened liver echogenicity. Consequently, ultrasound is predominantly used for screening fatty liver disease (FLD) [6]. However, it is not recommended for tasks requiring accurate diagnosis and severity grading of early-stage fatty liver, liver transplantation assessments, or evaluation of short-term drug therapies.

At present, liver biopsy stands as the gold standard for diagnosing FLD and evaluating the severity of hepatic steatosis. However, its utility for dynamic monitoring of disease progression and efficacy assessment is limited by factors such as poor patient acceptance and high cost. Additionally, liver biopsy entails inherent risks of complications including invasiveness, bleeding, and infection. Moreover, it is prone to subjective evaluation bias and sampling errors, further impeding its effectiveness as a monitoring tool [7]. Currently, the noninvasive preliminary assessment of hepatic steatosis and the quantitative dynamic evaluation of hepatic fat content represent focal points in current research efforts. Techniques such as transient elastography (TE), computed tomography, and magnetic resonance imaging (MRI) have all been validated for the quantitative diagnosis of steatosis, with MRI demonstrating superior accuracy [6]. However, the high cost, poor patient acceptance, and lengthy examination times associated with biopsy, MRI, and computed tomography render them impractical for large-scale population screening. Consequently, obtaining sufficient sample data in outpatient services worldwide remains challenging. Controlled attenuation parameters in TE represent a quantitative diagnostic approach tailored for detecting steatosis graded as S1, S2, and S3, as well as fibrosis graded as F1, F2, F3, and F4. A meta-analysis has determined that controlled attenuation parameters exhibit good sensitivity and specificity for grading steatosis [7]. Additionally, a prospective study that used TE to assess disease progression in patients with NAFLD indicated that liver stiffness measurements (LSMs) can effectively monitor the degree of liver fibrosis in this patient population [8]. The study indicated that TE can serve as a comprehensive diagnostic tool for both hepatic steatosis and liver fibrosis. It also offers a rapid and noninvasive method to assess liver fibrosis in patients with diverse chronic liver diseases, encompassing chronic hepatitis C, chronic hepatitis B, and NAFLD. Moreover, TE shows promise in predicting complications associated with advanced compensated chronic liver disease [4,9]. However, the widespread adoption of TE in population-based health screenings faces obstacles, particularly in China, where TE is primarily used for evaluating patients with FLD in general hospital settings. There are persistent challenges concerning inadequate ultrasound equipment and insufficient specialized training for physicians in primary health services that require attention. Consequently, there is a pressing need for the development of more cost-effective and efficient methods to identify individuals in the population with FLD who warrant intervention and follow-up, particularly those reaching the threshold of needing medical attention (S≥S2).

Machine learning (ML) offers a promising avenue to tackle these challenges. ML, a branch of computer science, uses algorithms to discern patterns within extensive data sets and predict diverse outcomes [10]. Evolving from pattern recognition
and computational learning, ML uses computers to analyze interactions between variables, encompassing both nonlinear and complex relationships, while minimizing errors between predicted and actual outcomes. ML not only enhances predictive accuracy but also has the capacity to identify latent variables that might not be directly observable but can be inferred from other variables. Currently, various ML techniques, including logistic regression (LR), random forest (RF), artificial neural networks (ANNs), k-nearest neighbors (KNNs), support vector machine (SVM), and extreme gradient boosting (XGBoost), are being used in disease prediction with significantly higher accuracy compared with classical methods [11]. Previous studies have used clinical data to diagnose patients with NAFLD, often relying on traditional ultrasound results for FLD diagnosis [12,13]. Given the challenges posed by the unsatisfactory diagnostic accuracy of traditional ultrasound in FLD screening and its inability to provide early warnings for patients requiring follow-up and more stringent interventions, there is an opportunity to leverage data from TE in population-based health examinations. These data can be used to develop a new ML model with enhanced accuracy and the capability to classify patients based on severity thresholds.

Methods

Recruitment
All clinical data for our study were sourced from health examinations conducted at 7 health examination centers across Suzhou, encompassing 3 districts of Suzhou Municipal Hospital and its 4 affiliated community hospitals. The study included individuals who underwent health examinations from March to May 2023, with exclusion criteria applied to those lacking TE test results. Among the 1753 patients who underwent TE screening, 1344 were selected during their health examination. Ultimately, a total of 978 health examination records with complete medical files were included, accessible for querying in the case system.

Ethical Considerations
All participants who agreed to partake in the annual health examination were required to complete an informed consent form. Physical examination data were collected for the Suzhou Municipal Government and Suzhou Municipal Hospital. The authors take full accountability for all aspects of the work, ensuring that any questions regarding the accuracy or integrity of the study are thoroughly investigated and resolved. All procedures adhered to the ethical standards outlined in the Helsinki Declaration and received approval from the Ethical Committee of Suzhou Municipal Hospital. The study was approved by the Ethics Committee of Suzhou Municipal Hospital (ethical approval number K-2022-034-K01).

Machine and Operational Standard
The machine used in the health examination was the FibroTouch, specifically the Transient Elastography FibroTouch (FibroTouch-FT5000; Wuxi HISKY Medical Technologies). This device assesses the degree of hepatic fibrosis by measuring LSM through vibration-controlled instantaneous elastography. Hepatic steatosis is quantitatively evaluated by measuring the attenuation of ultrasound signals in the liver, known as the ultrasound attenuation parameter (UAP). To address detection errors in patients with obesity, the FibroTouch automatically adjusts the probe based on the thickness of subcutaneous fat following precise positioning and depth measurement. This adjustment ensures comparable diagnostic accuracy to FibroScan [14].

FibroTouch measurements were conducted by experienced and certified physicians, each having performed over 500 examinations. Following the manufacturer’s instructions, patients assumed a supine position with the right hand placed behind the head to facilitate the expansion of the intercostal space. An image-guided probe was carefully chosen to scan the region between the seventh and ninth intercostal spaces, avoiding cysts and blood vessels in the liver. The probe was maintained in a vertical position relative to the skin surface, with pressure applied within the appropriate range (Figure 1). Detection commenced once the M waveform intensity was uniformly distributed and the A waveform appeared linear. In this study, the representative measurement of FibroTouch was determined by calculating the median value of the 10 acceptable LSMs in kilopascals (kPa) and UAPs in decibels per meter (dB/m), along with their respective IQRs. LSM and UAP measurements were deemed reliable only if 10 successful measurements were obtained, with an IQR-to-median ratio of 30% and a success rate of at least 60% [15].
Figure 1. A simplified schematic diagram of TE testing showing an image-guided probe selected to detect the region through the intercostal space. ROI: region of interest; TE: transient elastography.

Statistical Analysis

When collecting data, we initially searched for the patient’s medical number to ensure that the accessed data did not contain any identifiable patient information. To enhance data quality and mitigate the impact of erroneous data on the model, we developed a comprehensive set of logic algorithms to systematically check for logical errors within the health examination data records. These checks included identifying unit errors, magnitude errors, format errors, and so forth. Any identified errors were then manually corrected following prompts from the algorithm. Additionally, to detect potential hidden errors arising from data entry issues, we generated scatterplots (Figure 2) to identify outliers, which were subsequently monitored and reviewed manually on a case-by-case basis. A professional medical doctor, with over 15 years of experience in the field, assessed the reasonableness of outliers. It is notable that some outliers exhibited values that were theoretically unlikely, such as low-density lipoprotein-cholesterol (LDL-C) levels exceeding 300 mmol/L. We conducted thorough verification of these unreasonable values and subsequently corrected or excluded data entries found to be erroneous due to researchers’ data entry mistakes or other factors.

Figure 2. Scatterplots for outlier detection. HDL-C: high-density lipoprotein-cholesterol; LDL-C: low-density lipoprotein-cholesterol; TC: total cholesterol.

In the lifestyle characteristics section, dietary information was omitted from the model. This decision was based on the understanding that many older individuals were unable to accurately report their daily food intake, while younger individuals often experienced irregular eating habits. Additionally, in terms of prevalence, conditions with low case numbers such as chronic obstructive pulmonary disease (n=5), myocardial infarction (n=28), and stroke (n=23) were excluded from the model. Osteoporosis was also excluded because bone mineral density assessments were not included in the health examination protocol, making it difficult to ascertain the presence of osteoporosis in the majority of patients undergoing
health examinations. Furthermore, 56 patients were excluded due to data disorder errors. Specifically, variables such as red blood cell count, neutrophil count, white blood cell count, and lymphocyte count were mistakenly entered as percentages of red blood cells, neutrophils, white blood cells, and lymphocytes, respectively.

Characteristic Processing

Exercise

The PARs-3 (Physical Activity Rating Scale-3) is a commonly used exercise measurement scale in China [16]. In previous studies, the scale’s internal consistency and reliability were 0.86 and 0.82, respectively. The scale contains 3 dimensions, namely, time, intensity, and frequency of exercise. A score of 20 or higher on this scale is indicative of moderate physical activity, which equates to engaging in at least 150 minutes of moderate exercise per week. To simplify the analysis, moderate physical activity was categorized into 2 groups: individuals who participate in at least 150 minutes of moderate exercise per week versus those who engage in less than 150 minutes weekly.

Smoking and Drinking

The health examination records included information on the variety of wine, volume of drinking, and alcohol percentage consumed per day. We calculated alcohol intake using the following equation: alcohol intake (g) = volume of drinking (mL) × alcohol percentage (% vol/vol) × 0.8 (g/mL). Patients with alcohol intake above the recommended limits (male ≥ 30 g/day; female ≥ 20 g/day) were excluded. However, individuals with an alcohol intake of 0 were included in the analysis. We categorized alcohol intake into 2 groups: those with an alcohol intake of 0 and those with an intake greater than 0, treating them as 2-categorical variables. Similarly, we classified patients into 2 groups based on smoking history: those who had never smoked and those with a history of smoking, also treated as 2-categorical variables.

Metabolic Disease

In contrast to previous studies where diastolic and systolic blood pressures were often analyzed as features, we chose not to include them. We believed that the blood pressure measurements of patients undergoing health examinations could be biased due to various factors such as changes in peak blood pressure, medication usage, and clinical hypertension. Similarly, random blood glucose levels are strongly influenced by diet. Instead, we opted to use fasting plasma glucose (FPG), postprandial plasma glucose (PPG), and hemoglobin A1c (HbA1c) as variables. Additionally, we included hypertension, hyperuricemia, diabetes, and hyperlipemia as 2-categorical variables. All remaining data were normalized for analysis.

Educational Attainment and Financial Situation

Individuals who have never received formal education are classified as “uneducated.” Those with less than a high school education are categorized as “low,” whereas individuals with a high school diploma or specialized education are labeled as “mid.” Education at the college level or higher is defined as “high.” Regarding income, the medical report divides income into categories including below the social minimum wage, slightly below the average social wage, slightly above the average social wage, and significantly above the average wage. Individuals earning below the social minimum wage were categorized as “poor,” whereas those earning significantly above the average wage were classified as “rich.” Those with incomes falling between these extremes were categorized as “average.”

Enrollment of Participants

We screened individuals who ultimately met the diagnostic criteria for NAFLD based on the American Association for the Study of Liver Diseases (AASLD) Practice Guidance [17]. Cases with conditions known to substantially impact TE results, such as liver cancer and ascites, were excluded from the study. Similarly, individuals with conditions known to affect blood biochemistry analysis, such as infections and long-term glucocorticoid use, were excluded. Figure 3 presents a flowchart illustrating the enrollment process of patients.
Figure 3. Flowchart of patient enrollment and diagnostic standards of NAFLD from the AASLD Practice Guidance. AASLD: American Association for the Study of Liver Diseases; NAFLD: nonalcoholic fatty liver disease; TE: transient elastography.

![Flowchart](image)

All the collated data of the 916 people screened are summarized in Tables 1 and 2. Table 1 summarizes the descriptive characteristics of the study population, including gender, age, educational attainment, financial situation, residence, smoking and drinking state, exercise, and metabolic disease (hypertension, hyperuricemia, diabetes, and hyperlipemia). Table 2 presents a summary of blood biochemistry analysis of the study population.
Table 1. Summary of descriptive characteristics of the study population (N=978).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>503 (51.4)</td>
</tr>
<tr>
<td>Female</td>
<td>475 (48.6)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>20-60</td>
<td>498 (50.9)</td>
</tr>
<tr>
<td>≥60</td>
<td>480 (49.1)</td>
</tr>
<tr>
<td>Finance</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>268 (27.4)</td>
</tr>
<tr>
<td>Average</td>
<td>666 (68.1)</td>
</tr>
<tr>
<td>Rich</td>
<td>44 (4.5)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Uneducated</td>
<td>42 (4.3)</td>
</tr>
<tr>
<td>Low</td>
<td>262 (26.8)</td>
</tr>
<tr>
<td>Mid</td>
<td>478 (48.9)</td>
</tr>
<tr>
<td>High</td>
<td>196 (20.0)</td>
</tr>
<tr>
<td>Residence</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>911 (93.1)</td>
</tr>
<tr>
<td>Village</td>
<td>67 (6.9)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
</tr>
<tr>
<td><18.5</td>
<td>19 (1.9)</td>
</tr>
<tr>
<td>18.5-23.9</td>
<td>370 (37.8)</td>
</tr>
<tr>
<td>24-27.9</td>
<td>430 (44.0)</td>
</tr>
<tr>
<td>≥28</td>
<td>159 (16.3)</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td></td>
</tr>
<tr>
<td>Male (n=503)</td>
<td></td>
</tr>
<tr>
<td>≥85</td>
<td>338 (67.2)</td>
</tr>
<tr>
<td><85</td>
<td>165 (32.8)</td>
</tr>
<tr>
<td>Female (n=475)</td>
<td></td>
</tr>
<tr>
<td>≥80</td>
<td>299 (62.9)</td>
</tr>
<tr>
<td><80</td>
<td>176 (37.1)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
</tr>
<tr>
<td>Ever</td>
<td>151 (15.4)</td>
</tr>
<tr>
<td>Never</td>
<td>827 (84.6)</td>
</tr>
<tr>
<td>Alcohol (g/day)</td>
<td></td>
</tr>
<tr>
<td>Male (n=503)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>343 (68.2)</td>
</tr>
<tr>
<td>0-30</td>
<td>120 (23.9)</td>
</tr>
<tr>
<td>≥30</td>
<td>40 (8.0)</td>
</tr>
<tr>
<td>Female (n=475)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>453 (95.4)</td>
</tr>
<tr>
<td>0-20</td>
<td>20 (4.2)</td>
</tr>
<tr>
<td>≥20</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Values, n (%)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Sleeping (hours)</td>
<td></td>
</tr>
<tr>
<td><6</td>
<td>154 (15.7)</td>
</tr>
<tr>
<td>≥6</td>
<td>824 (84.2)</td>
</tr>
<tr>
<td>Moderate physical activity</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>837 (85.6)</td>
</tr>
<tr>
<td>Yes</td>
<td>141 (14.4)</td>
</tr>
<tr>
<td>Metabolic disease</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>432 (44.2)</td>
</tr>
<tr>
<td>Hyperuricemia</td>
<td>56 (5.7)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>258 (26.4)</td>
</tr>
<tr>
<td>Hyperlipemia</td>
<td>145 (14.8)</td>
</tr>
</tbody>
</table>

Table 2. Summary of blood biochemistry analysis of the study population (N=978).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Values, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting plasma glucose (mmol/L)</td>
<td>6.1 (1.6)</td>
</tr>
<tr>
<td>Postprandial plasma glucose (mmol/L)</td>
<td>8.9 (3.2)</td>
</tr>
<tr>
<td>Hemoglobin A1c (%)</td>
<td>5.9 (1.2)</td>
</tr>
<tr>
<td>Total bilirubin (μmol/L)</td>
<td>13.2 (7.4)</td>
</tr>
<tr>
<td>Uric acid (μmol/L)</td>
<td>330.8 (79.1)</td>
</tr>
<tr>
<td>Triglyceride (mmol/L)</td>
<td>1.8 (1.4)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>4.8 (1.2)</td>
</tr>
<tr>
<td>High-density lipoprotein-cholesterol (mmol/L)</td>
<td>1.3 (0.5)</td>
</tr>
<tr>
<td>Low-density lipoprotein-cholesterol (mmol/L)</td>
<td>2.9 (0.9)</td>
</tr>
<tr>
<td>Alanine transaminase (U/L)</td>
<td>27.9 (16.0)</td>
</tr>
<tr>
<td>Aspartate transaminase (U/L)</td>
<td>26.4 (14.5)</td>
</tr>
<tr>
<td>γ-Glutamyl transpeptidase (U/L)</td>
<td>36.2 (23.7)</td>
</tr>
<tr>
<td>High-sensitivity C-reactive protein (mg/L)</td>
<td>2.2 (3.6)</td>
</tr>
<tr>
<td>Platelets (x10^9/L)</td>
<td>211.8 (54.8)</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>136.9 (26.5)</td>
</tr>
<tr>
<td>Urea (mmol/L)</td>
<td>8.5 (31.4)</td>
</tr>
<tr>
<td>Creatinine (μmol/L)</td>
<td>70.5 (18.5)</td>
</tr>
</tbody>
</table>

Model Building

To predict NAFLD with different severities, we used several classification models, including LR, KNN, SVM, RF, light gradient boosting machine (LightGBM), and XGBoost.

RF is an ensemble classification algorithm developed by Leo Breiman and Adele Cutler in 1999. It operates by constructing a multitude of decision trees during the training phase and outputs the mode of the classes (classification) or the mean prediction (regression) of the individual trees. RF is widely used for classification, regression, and other tasks. Each decision tree in the RF is built independently by applying the general technique of bootstrap aggregating (bagging), where random samples are selected for the training set. RF determines the final result by aggregating the predictions of all individual trees through a simple majority vote. It has demonstrated high accuracy across various fields, including medical diagnosis. Additionally, RF is frequently used for feature selection in data science workflows. One of the reasons for its popularity in feature selection is due to the tree-based strategies used by RF. These strategies naturally rank features based on how effectively they improve the purity of the nodes in the decision trees. Features that result in the greatest decrease in impurity are typically encountered at the beginning of the trees, while those with the least decrease in impurity are found toward the end of the trees [11]. By selectively pruning trees below a certain node, a subset of the most important features can be derived.
LR is a type of discrete choice model that falls under multivariate analysis. It is extensively used in various fields such as sociology, biostatistics, clinical medicine, quantitative psychology, econometrics, and marketing. LR is often used for empirical analysis and is commonly used for comparison with ML studies [18]. This method offers several advantages, including high power and accuracy, making it a popular choice for modeling binary or categorical outcomes.

ANNs, a family of statistical learning algorithms, draw inspiration from biological neural networks. ANNs have demonstrated remarkable power in nonlinear modeling and have been proven for accurate predictions in many fields, including clinical decision support [19]. The operation of an ANN is akin to a biological neuron, where signals are received through dendrites. In ANNs, this process is replicated with an input layer that feeds into several hidden layers, ultimately leading to an output layer. Each layer consists of numerous perceptrons interconnected by adjustable weights. During training, the ANN iteratively adjusts these weights using a data set, aligning inputs with their desired outputs. This iterative learning process allows the ANN to refine its predictive capabilities over time.

The KNN classification algorithm is among the simplest methods in data mining classification techniques. KNN operates by searching the pattern space for k-training tuples that are nearest to the unknown tuple being classified. These tuples collectively form the KNN classifier for the unknown tuple. The concept of “nearest” is determined by a distance metric, such as the Euclidean distance, which measures the proximity between data points. One potential limitation of KNN classifiers is that they assign equal weight to all attributes based on distance, regardless of their relevance. Consequently, KNN classifiers may suffer from poor accuracy when confronted with noise or irrelevant attributes in the data.

XGBoost is a significantly enhanced implementation of the gradient-boosting supervised ML technique, known for its speed and performance. It shares similarities with RFs but uses a more regularized model formulation to control overfitting. XGBoost operates as a tree ensemble model, which involves the summation of predictions derived from a specific set of classification and regression trees. This regularization technique helps improve the overall performance of the model by mitigating overfitting issues. XGBoost is versatile and can be applied to both classification and regression tasks.

LightGBM is a gradient-boosting framework that uses decision trees as the base learner, similar to XGBoost. However, LightGBM is optimized for efficiency and performance, offering several advantages, including faster training speed and lower memory usage. Additionally, LightGBM supports single-computer multithreading, multicomputer parallel computing, and graphics processing unit training, and has the ability to handle large-scale data.

After cleaning the data, we constructed models (RF and LightGBM) to eliminate irrelevant features such as gender, urea, creatinine, and total cholesterol. The final model incorporated the following features: age, education, finance, alcohol intake, smoking, hypertension, hyperuricemia, diabetes, hyperlipemia, BMI, waist circumference, HbA1c, FPG, PPG, total bilirubin (TBil), uric acid (UA), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C), LDL-C, alanine transaminase (ALT), aspartate transaminase (AST), γ-glutamyl transpeptidase (γ-GT), high-sensitivity C-reactive protein (hs-CRP), platelets, and hemoglobin (HGB).

Analysis Tools
The basic patient information and paper questionnaire responses were manually entered by a researcher using Microsoft Excel 2019 as the information entry software. Data cleaning, model construction, and area under the curve chart output were performed using Python 3.7 (Python Foundation), with the packages scikit-learn and numpy. The editor used for this purpose was PyCharm (JetBrains). The flowchart was drawn using MyDraw (Nevron Software).

Results
Overview of Data Comparison
First, we compared the diagnostic rates of traditional ultrasound with TE and found that traditional ultrasound achieved a high diagnostic rate of 84.6% (231/273) in patients with TE-rated moderate-to-severe steatosis (S2≥S2), which is consistent with previous reports on the accuracy of ultrasound diagnosis [20]. The comparison of hepatic steatosis stages produced by TE and traditional ultrasound results is shown in Table 3.
Table 3. Comparison of TEa and traditional ultrasound results.

<table>
<thead>
<tr>
<th>TE</th>
<th>Ultrasound Diagnosed, n (n=502)</th>
<th>Ultrasound Undiagnosed, n (n=414)</th>
<th>Total, n (n=916)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S^b\leq S^c)</td>
<td>81</td>
<td>305</td>
<td>386</td>
</tr>
<tr>
<td>(S^1\leq S^d\leq S^{2})</td>
<td>190</td>
<td>67</td>
<td>257</td>
</tr>
<tr>
<td>(S^{2}\leq S^e)</td>
<td>133</td>
<td>33</td>
<td>166</td>
</tr>
<tr>
<td>(S\geq S^3)</td>
<td>98</td>
<td>9</td>
<td>107</td>
</tr>
</tbody>
</table>

aTE: transient elastography.
bS: hepatic steatosis stage.
cS1: mild steatosis.
dS2: moderate steatosis.
eS3: severe steatosis.

Model Performance Comparison

Finally, the model incorporated the following features: age, education, finance, alcohol intake, smoking, hypertension, hyperuricemia, diabetes, hyperlipemia, BMI, waist circumference, HbA\textsubscript{1c}, FPG, PPG, TBil, UA, TG, HDL-C, LDL-C, ALT, AST, \(\gamma\)-GT, hs-CRP, platelets, and HGB. The features incorporated into the final model are presented in Table 4. We compared the study population with moderate-to-severe steatosis with those without it.
Table 4. Features that were incorporated into the final model and significantly contribute to moderate-to-severe steatosis.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>S^a≥S^b</th>
<th>S<S2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (≥60 years), n (%)</td>
<td>165/273 (60.4)</td>
<td>291/643 (45.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Education (high), n (%)</td>
<td>25/273 (9.2)</td>
<td>163/643 (25.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Physical activity (moderate), n(%)</td>
<td>45/273 (16.5)</td>
<td>87/643 (13.5)</td>
<td>.25</td>
</tr>
<tr>
<td>Alcohol (male; 0), n (%)</td>
<td>117/137 (85.4)</td>
<td>224/306 (73.2)</td>
<td>.007</td>
</tr>
<tr>
<td>Smoking (male; ever), n (%)</td>
<td>42/137 (30.7)</td>
<td>71/306 (23.2)</td>
<td>.12</td>
</tr>
<tr>
<td>Finance (rich), n (%)</td>
<td>7/273 (2.6)</td>
<td>31/643 (4.8)</td>
<td>.12</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>138/273 (50.5)</td>
<td>259/643 (40.3)</td>
<td>.004</td>
</tr>
<tr>
<td>Hyperuricemia, n (%)</td>
<td>20/273 (7.3)</td>
<td>29/643 (4.5)</td>
<td>.08</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>88/273 (32.2)</td>
<td>154/643 (24.0)</td>
<td>.009</td>
</tr>
<tr>
<td>Hyperlipemia, n (%)</td>
<td>53/273 (19.4)</td>
<td>83/643 (12.9)</td>
<td>.01</td>
</tr>
<tr>
<td>BMI (kg/m2), mean (SD)</td>
<td>26.0 (2.8)</td>
<td>24.1 (3.2)</td>
<td><.001</td>
</tr>
<tr>
<td>Waist circumference (cm), mean (SD)</td>
<td>90.5 (6.6)</td>
<td>82.6 (7.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/L), mean (SD)</td>
<td>6.6 (1.8)</td>
<td>5.8 (1.5)</td>
<td><.001</td>
</tr>
<tr>
<td>Postprandial plasma glucose (mmol/L), mean (SD)</td>
<td>10.1 (4.0)</td>
<td>8.4 (2.5)</td>
<td><.001</td>
</tr>
<tr>
<td>Hemoglobin A1c (%), mean (SD)</td>
<td>6.2 (1.4)</td>
<td>5.9 (1.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Total bilirubin (μmol/L), mean (SD)</td>
<td>14.4 (10.0)</td>
<td>12.4 (5.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Uric acid (μmol/L), mean (SD)</td>
<td>351 (87.0)</td>
<td>317 (71.7)</td>
<td><.001</td>
</tr>
<tr>
<td>Triglyceride (mmol/L), mean (SD)</td>
<td>2.0 (1.6)</td>
<td>1.7 (1.3)</td>
<td>.01</td>
</tr>
<tr>
<td>High-density lipoprotein-cholesterol (mmol/L), mean (SD)</td>
<td>1.2 (0.3)</td>
<td>1.3 (0.6)</td>
<td>.03</td>
</tr>
<tr>
<td>Low-density lipoprotein-cholesterol (mmol/L), mean (SD)</td>
<td>3.0 (0.9)</td>
<td>2.8 (0.9)</td>
<td>.03</td>
</tr>
<tr>
<td>Alanine transaminase (U/L), mean (SD)</td>
<td>29.8 (17.4)</td>
<td>26 (13.6)</td>
<td>.005</td>
</tr>
<tr>
<td>Aspartate transaminase (U/L), mean (SD)</td>
<td>27.7 (22.1)</td>
<td>25.4 (9.5)</td>
<td>.02</td>
</tr>
<tr>
<td>γ-Glutamyl transpeptidase (U/L), mean (SD)</td>
<td>39.1 (32.8)</td>
<td>33 (16.8)</td>
<td>.001</td>
</tr>
<tr>
<td>High-sensitivity C-reactive protein (mg/L), mean (SD)</td>
<td>2.7 (2.9)</td>
<td>1.8 (2.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Platelets (\times 109/L), mean (SD)</td>
<td>217 (56.5)</td>
<td>209 (53.9)</td>
<td>.03</td>
</tr>
<tr>
<td>Hemoglobin (g/L), mean (SD)</td>
<td>139 (28.6)</td>
<td>134 (26.2)</td>
<td>.02</td>
</tr>
</tbody>
</table>

aS: hepatic steatosis stage.
bS2: moderate steatosis.

Table 5 presents the performance of the classification models. The area under the receiver operating characteristic curve (AUROC) for RF, LightGBM, XGBoost, SVM, KNN, and LR was 0.91, 0.86, 0.83, 0.88, 0.77, and 0.81, respectively. Additionally, the accuracy for RF, LightGBM, XGBoost, SVM, KNN, and LR was 84%, 81%, 78%, 81%, 76%, and 77%, respectively. Figure 4 displays the AUROC obtained on the test set of the moderate-to-severe fatty liver cohort using the final features.
Table 5. The AUROC^a, accuracy, sensitivity, and specificity of the 6 classification models.

<table>
<thead>
<tr>
<th>Model</th>
<th>AUROC</th>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF<sup>b</sup></td>
<td>0.91</td>
<td>0.84</td>
<td>0.63</td>
<td>0.92</td>
</tr>
<tr>
<td>LightGBM<sup>c</sup></td>
<td>0.86</td>
<td>0.81</td>
<td>0.63</td>
<td>0.89</td>
</tr>
<tr>
<td>XGBoost<sup>d</sup></td>
<td>0.83</td>
<td>0.78</td>
<td>0.55</td>
<td>0.89</td>
</tr>
<tr>
<td>KNN<sup>e</sup></td>
<td>0.77</td>
<td>0.76</td>
<td>0.60</td>
<td>0.84</td>
</tr>
<tr>
<td>SVM<sup>f</sup></td>
<td>0.88</td>
<td>0.81</td>
<td>0.47</td>
<td>0.95</td>
</tr>
<tr>
<td>LR<sup>g</sup></td>
<td>0.81</td>
<td>0.77</td>
<td>0.52</td>
<td>0.85</td>
</tr>
</tbody>
</table>

^aAUROC: area under the receiver operating characteristic curve.

^bRF: random forest.

^cLightGBM: light gradient boosting machine.

^dXGBoost: extreme gradient boosting.

^eKNN: k-nearest neighbor.

^fSVM: support vertical machine.

^gLR: logistic regression.

Figure 4. Receiver operating characteristics curve obtained on the test set of the moderate-to-severe fatty liver cohort using the final features. AUC: area under the curve; KNN: k-nearest neighbor; LGBM: light gradient boosting machine; LR: logistic regression; RF: random forest; SVM: support vertical machine; XGBoost: extreme gradient boosting.

Model Simplification and Visualization

Furthermore, we attempted to build a more concise model. We repeated the process randomly 5 times, each time selecting the top 15 scored features to create a Venn diagram (Figure 5), resulting in a total of 11 filtered features. We ranked the importance of these 11 features and plotted them on a scree plot (Figure 6). The plot demonstrated a substantial change between FPG and ALT, leading us to choose the first 6 features as inputs, excluding PPG. We made this decision based on the fact that the PPG test takes 2 hours and is not typically performed in most population health examinations.
To our surprise, the 6-feature RF model maintained accuracy while simplifying the feature acquisition for training. Table 6 displays the performance of the 11-feature RF model and the 6-feature RF model. The AUROC of the RF (11 features) model is 0.90, with a sensitivity of 0.61 and specificity of 0.94, maintaining the same accuracy as the RF model before simplification. Meanwhile, the performance of the RF (6 features) model showed an acceptable decrease compared with the others, with an AUROC of 0.88, accuracy of 0.82, sensitivity of 0.62, and specificity of 0.90. Figure 7 provides a summary of the ROC curves for the 2 simplified RF models.
Table 6. Display of the performance of the 11-feature RF model and the 6-feature RF model.

<table>
<thead>
<tr>
<th>Model</th>
<th>AUROC<sup>b</sup></th>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>0.91</td>
<td>0.84</td>
<td>0.63</td>
<td>0.92</td>
</tr>
<tr>
<td>RF (11 features)</td>
<td>0.90</td>
<td>0.84</td>
<td>0.61</td>
<td>0.94</td>
</tr>
<tr>
<td>RF (6 features)</td>
<td>0.88</td>
<td>0.82</td>
<td>0.62</td>
<td>0.90</td>
</tr>
</tbody>
</table>

^aRF: random forest.
^bAUROC: area under the receiver operating characteristic curve.

Figure 7. Receiver-operating characteristic curve of simplified RF models. AUC: area under the curve; RF: random forest.

Figure 8. Box diagrams of 6 features in the simplified RF model. FPG: fasting plasma glucose; hs-CRP: high-sensitivity C-reactive protein; RF: random forest; Tbil: total bilirubin; UA: uric acid.

Figure 8 presents box plots depicting the distribution of the 6 features. We can clearly see that there is a significant difference (Table 4) in the features between the 2 groups, which again demonstrates the high importance of the 6 features. To present our models more intuitively, Figure 9 showcases an example tree from the dense RF tree used for classification in the analysis.

Figure 9. Example tree from the dense RF tree used for classification in the analysis.
User-Friendliness and Cost-Effectiveness

In Suzhou, FPG, UA, and TBil can be tested through blood biochemistry analysis, hs-CRP can be tested through CRP analysis, and BMI and waist circumference are easy to obtain. Our decision tree clearly shows the eigenvalues and prediction accuracy of each node, which is convenient to use in clinical practice. Therefore, we aimed for a simplified decision tree model that can be widely applicable and generalized.

Waist circumference and BMI can be measured during routine physical examinations at a negligible cost. Blood biochemistry analysis costs approximately 168 yuan (US $23.6) per person, while CRP analysis costs around 35 yuan (US $5) per person. The total cost is approximately 203 yuan (US $28.5) per person. As blood biochemistry analysis and CRP analysis are routine checkup items in health examinations, our algorithm does not require additional testing items. Additionally, residents of Suzhou over the age of 40 years have free access to all of these tests once a year, making our model cost-effective.

TE screening, as a noninvasive quantitative assessment of liver fat deposition, poses challenges in determining its feasibility for widespread implementation in densely populated cities such as Suzhou (with >15 million residents), primarily due to the additional expense involved.

Discussion

Principal Findings

We used ML to differentiate the severity of NAFLD by incorporating body circumference, lifestyle, and blood indicators. The optimal results demonstrated that a 6-feature RF model could achieve an area under the curve of 88% (with 62% sensitivity and 90% specificity). The 6 features of the RF model were waist circumference, BMI, FPG, UA, TBil, and hs-CRP. The total cost of the indicator tests involved in the RF model was approximately 203 yuan (US $28.5) per person. By contrast, TE, as a noninvasive quantitative assessment of liver fat deposition, currently costs 260 yuan (US $36.5) per person. Compared with the cost of the indicator tests, TE incurs an additional expense of approximately 57 yuan (US $8) per person. Moreover, the Suzhou government offers free annual health examinations to residents over 40 years old within their jurisdiction. Consequently, people in Suzhou, with the assistance of our model, can obtain an almost free evaluation of NAFLD.

Therefore, we ultimately decided to use the RF model composed of these 6 features, as it not only serves as a routine component of health examinations but also has the advantages of being inexpensive and easily obtainable. In addition, we considered that some variables such as systolic blood pressure, diastolic blood pressure, and random blood glucose, which are included in similar studies, may be variable and unreliable. Therefore, we excluded these features to ensure that our model remains stringent and stable.

Metabolic associated FLD is a newer diagnosis; however, NAFLD was still used in this study. This decision was made because in the 43 patients we excluded who met the criteria for alcohol intake (30 g/day for men and 20 g/day for women), the diagnosis of FLD was significantly higher than in the rest of the cohort. Additionally, we considered that the grading data referenced by TE were generated from biopsies of patients with NAFLD, and the inclusion of patients with FLD who exceeded the alcohol intake limit would have led to less rigorous results. In the model, we included 4 metabolic diseases (hypertension, diabetes, hyperuricemia, and dyslipidemia) as 2-categorical variables. Although all 4 diseases showed a correlation with FLD, their importance was deemed lesser compared with features such as waist circumference and BMI.

Models presented in previous studies are typically stratified by age, with age demonstrating a high correlation in the final constructed model. It has been observed that from 2010 to 2018, the annual incidence of NAFLD was higher among those under 60 years of age (4.7%; 95% CI 4.0%-5.5%) than among those
over 60 years of age (2.4%; 95% CI 2.1%-2.8%). Additionally, the prevalence of NAFLD is parallel with the rising trend of obesity in China, increasing from approximately 2% in 2000 to 7% in 2014 [21]. Therefore, we believe that the high prevalence across all age groups is highly correlated with changes in lifestyle habits of the population. Consequently, BMI and waist circumference were heavily weighted in our model across all age groups. However, despite their potential significance, lifestyle variables such as smoking, alcohol intake, and physical activity showed low importance compared with the ones we ultimately used, and did not significantly improve the final accuracy. Additionally, a portion of the patients who participated in the TE examination had already been diagnosed with FLD and had undergone lifestyle adjustments.

In economically developed regions such as eastern China, the prevalence of FLD is higher. For example, the prevalence of NAFLD in Shanghai is 38.17% [22]. Ultrasound screening used in population-based health examinations does not allow for a clear diagnosis of FLD grading, and therefore, does not identify patients who need stricter lifestyle control and follow-up. Additionally, there is still a lack of awareness and perception of NAFLD as a chronic disease with serious consequences among the public. Surveys conducted in the 2000s reported that only 31% of the general population in China was aware of NAFLD [23]. If our results are appended to the health examination reports, it may catch people’s attention. Our next plan is to perform TE testing on patients with a model diagnosis of moderate-to-severe NAFLD, and we hope to screen out more patients who need follow-up through the combination of ML and TE examinations. At the same time, TE has the advantage of being less costly and more readily available compared with MRI and biopsy, allowing us to obtain more data to refine our model. We welcome the use of our model for validation. We hope that the use of ML to construct easy-to-use classification models for targeted population screening can be generalized.

Limitations
Our study has some limitations that should be addressed. First, while our model demonstrated a high specificity, the sensitivity was comparatively lower. This could be attributed to the complexity of our input data, indicating a potential need for higher-dimensional inputs. Second, although we used TE results to classify moderate-to-severe NAFLD along with other categories, it is important to acknowledge that TE itself may not be 100% accurate, necessitating liver biopsy as the gold standard. Incorrect classification could diminish the accuracy of our predictions. It is essential to test the model in real health examinations.

In addition, the clinical data in this study encompassed all age groups above 20 years old. Residents aged 40 years and above can avail themselves of free health examinations provided by the government, wherein related indicators can be included in the examinations to facilitate and reduce the cost of data acquisition. The population composition and dietary habits exhibit good representativeness in the East China region. The relevant research findings also show no obvious preference. However, residents aged 40 years and above generally have more chronic diseases and may be taking medications such as lipid-lowering drugs, which can influence the importance of lipid and other indicators in different age groups. These characteristics may play a significant role in the development of fatty liver, but they have not shown sufficient importance in the application of our model across a broader age range. The accuracy of using these indicators may vary across different age groups. Therefore, if the relevant conclusions of this study are widely promoted, they will require more representative data support to ensure applicability across diverse age demographics.

Finally, it is important to note that while TE offers improved precision and accuracy, studies suggest that obesity increases the risk of TE examination failure [24,25]. Additionally, research indicates that the presence of ascites can lead to failures in ultrasound examinations [25]. These potential failures underscore the need to consider alternative testing strategies when dealing with patients with obesity or ascites, ensuring comprehensive assessment and accurate diagnosis.

Conclusions
NAFLD has indeed emerged as a significant health burden in China. Unfortunately, many Chinese individuals pay little attention to the disease and are hesitant to undergo expensive tests such as MRI or TE. The proposed cost-effective algorithm using ML to identify moderate-to-severe NAFLD by screening health examination data is promising. This approach has the potential to address the limitations of ultrasound in staging hepatic steatosis and overcome the high cost and low accessibility of TE through the use of artificial intelligence.

Acknowledgments
The authors thank all the participants who contributed to this study.

Data Availability
The data sets generated and analyzed in this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

References

Abbreviations

AASLD: American Association for the Study of Liver Diseases
ALT: alanine transaminase
ANN: artificial neural network
AST: aspartate transaminase
AUROC: area under the receiver operating characteristic curve
FLD: fatty liver disease
FPG: fasting plasma glucose
HbA1c: hemoglobin A1c
HDL-C: high-density lipoprotein-cholesterol
HGB: hemoglobin
hs-CRP: high-sensitivity C-reactive protein
KNN: k-nearest neighbor
LDL-C: low-density lipoprotein-cholesterol
LightGBM: light gradient boosting machine
LR: logistic regression
LSM: liver stiffness measurement
ML: machine learning
MRI: magnetic resonance imaging
NAFLD: nonalcoholic fatty liver disease
PARs-3: Physical Activity Rating Scale-3
PPG: postprandial plasma glucose
RF: random forest
SVM: support vertical machine
TBil: total bilirubin
TE: transient elastography
TG: triglyceride
UA: uric acid
UAP: ultrasound attenuation parameter
XGBoost: extreme gradient boosting
γ-GT: γ-glutamyl transpeptidase

Edited by A Mavragani; submitted 14.10.23; peer-reviewed by D Lee; comments to author 28.12.23; revised version received 23.01.24; accepted 29.01.24; published 16.02.24.

Please cite as:
Zhang L, Huang Y, Huang M, Zhao CH, Zhang YJ, Wang Y
JMIR Form Res 2024;8:e53654
URL: https://formative.jmir.org/2024/1/e53654
doi: 10.2196/53654
PMID: 38363597

©Liang Zhang, Yueqing Huang, Min Huang, Chun-Hua Zhao, Yan-Jun Zhang, Yi Wang. Originally published in JMIR Formative Research (https://formative.jmir.org), 16.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Patient and Therapist Perceptions of a Publicly Funded Internet-Based Cognitive Behavioral Therapy (iCBT) Program for Ontario Adults During the COVID-19 Pandemic: Qualitative Study

Serena Thapar1,2, HBSc; Megan Nguyen1, RN, PhD; Bilal Noreen Khan1,3, MPH, MSc; Roz Fanaieyan1, MPH; Vanessa Kishimoto1, MPH; Rebecca Liu1, PhD; Blanca Bolea-Alamañac1,4, MD, PhD; Marisa Leon-Carlyle1, MD, MSc; Anne O’Riordan1,5, BSc; Maggie Keresteci1,5, MA, CHE; Onil Bhattacharyya1,6, MD, PhD

1Institute for Health System Solutions and Virtual Care, Women’s College Hospital, Toronto, ON, Canada
2Department of Psychology, McGill University, Montreal, QC, Canada
3Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
4Department of Psychiatry, University of Toronto, Toronto, ON, Canada
5Patient Advisors Network, Toronto, ON, Canada
6Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada

Corresponding Author:
Serena Thapar, HBSc
Institute for Health System Solutions and Virtual Care
Women’s College Hospital
76 Grenville St
Toronto, ON, M5S 1B2
Canada
Phone: 1 6474580101
Email: serena.thapar@mail.mcgill.ca

Abstract

Background: To address the anticipated rise in mental health symptoms experienced at the population level during the COVID-19 pandemic, the Ontario government provided 2 therapist-assisted internet-delivered cognitive behavioral therapy (iCBT) programs to adults free of charge at the point of service.

Objective: The study aims to explore the facilitators of and barriers to implementing iCBT at the population level in Ontario, Canada, from the perspective of patients and therapists to better understand how therapist-assisted iCBT programs can be effectively implemented at the population level and inform strategies for enhancing service delivery and integration into the health care system.

Methods: Using a convenience sampling methodology, semistructured interviews were conducted with 10 therapists who delivered iCBT and 20 patients who received iCBT through either of the publicly funded programs to explore their perspectives of the program. Interview data were analyzed using inductive thematic analysis to generate themes.

Results: Six salient themes were identified. Facilitators included the therapist-assisted nature of the program; the ease of registration and the lack of cost; and the feasibility of completing the psychoeducational modules given the online and self-paced nature of the program. Barriers included challenges with the online remote modality for developing the therapeutic alliance; the program’s generalized nature, which limited customization to individual needs; and a lack of formal integration between the iCBT program and the health care system.

Conclusions: Although the program was generally well-received by patients and therapists due to its accessibility and feasibility, the digital format of the program presented both benefits and unique challenges. Strategies for improving the quality of service delivery include opportunities for synchronous communication between therapists and patients, options for increased customization, and the formal integration of iCBT into a broader stepped-care model that centralizes patient referrals between care providers and promotes continuity of care.

(JMIR Form Res 2024;8:e50113) doi:10.2196/50113
KEYWORDS
depression; anxiety; cognitive behavioral therapy; digital health; internet-delivered cognitive behavioral therapy; iCBT; CBT; implementation; facilitators; barriers; interviews; qualitative

Introduction
The COVID-19 pandemic presented a significant challenge to the mental health of Canadians [1]. Studies have drawn attention to the negative impact of the pandemic on population-level mental health, highlighting increased levels of self-reported symptoms of depression and anxiety among Canadian adults [2-4]. Research conducted throughout the pandemic demonstrated barriers to accessing in-person mental health care in Canada, which occurred in the context of existing challenges, including lengthy wait times, limited availability of services in rural areas, high cost of services, a shortage of mental health professionals, stigma, and a lack of integration of mental health care services [5]. Due to the shortage of trained mental health professionals in Canada, the current workforce is unable to adequately meet the demands of one-on-one in-person psychotherapy [6]. Therefore, other solutions are required.

Digital mental health interventions, such as internet-delivered cognitive behavioral therapy (iCBT), are promising because they may address many of these barriers to care by providing increased reach at a lower cost than other modalities, subsequently improving access to evidence-based mental health treatment for depression and anxiety [7]. iCBT involves structured and predefined psychotherapeutic content organized in online modules. Patients are assigned homework to consolidate their learning, and brief therapist support is typically provided via secure in-app messaging and calls [8]. Randomized controlled trials have provided evidence in support of the effectiveness of iCBT across psychiatric disorders [9,10]. For example, a meta-analysis of transdiagnostic iCBT found medium to large controlled effect sizes for depression and anxiety outcomes (g=0.79 to 0.82) [11]. The treatment has also been successfully implemented in routine care settings in countries such as Australia, Sweden, Denmark, and Norway [12]. Despite its apparent efficacy and efforts to reduce barriers, iCBT programs face difficulties in maintaining user engagement, which is evident by limited uptake and high dropout rates [13]. Dropout in digital mental health therapies has been a long-standing issue, with dropout rates being typically lower in study trials compared with real-world implementations and routine care [14]. For example, some studies report that just more than half of patients complete a full course of iCBT [15]. A meta-analysis of 7313 participants across 40 studies found a dropout rate of 57%, with higher rates of dropout for iCBT programs for depression without support (74%) and lower rates for those with therapeutic support (28%) [16]. Real-world iCBT implementations in Australia and the United Kingdom (eg, This Way Up, MindSpot, and Improving Access to Psychological Therapies) show dropout rates ranging from 29% to 64% [17-19]. Future work should focus on identifying participants who will most likely benefit from iCBT and adhere to treatment protocols.

In addition, studies have shown that iCBT is a cost-effective way to improve accessibility to care, particularly for patients who face geographic and mobility limitations, such as those who live in remote or rural areas [20]. Moreover, Health Quality Ontario has suggested that the few publicly funded psychotherapy services in Ontario are not equitably distributed across the province, such as in rural areas in Northern Ontario where there are fewer psychiatrists [21], and cannot meet the needs of patients with mental health concerns [9]. Indeed, there is strong evidence that there is income-based inequity in access to mental health services, especially for psychologists who tend to be concentrated in private practice under the existing 2-tiered mental health care system in Canada [22,23]. Mental health services provided by general practitioners and psychiatrists can be billed through provincial and territorial health insurance plans; however, services offered by allied health professionals, such as psychologists, cannot. Estimates suggest that while two-thirds of Canadians can access mental health services through private employer benefits, the remaining one-third must access services through limited publicly funded services, pay out-of-pocket, or forgo seeking care [24]. Therefore, leveraging digital health technology can increase patient access to evidence-based psychotherapy, regardless of whether or not there is a pandemic.

To address the anticipated rise in mental health symptoms experienced at the population level, the Ontario government rapidly expanded digital mental health service offerings in May 2020 [25]. This included therapist-assisted iCBT, a form of guided iCBT where licensed mental health professionals provide regular support for patients by monitoring their symptoms, offering regular check-ins, and giving feedback on their homework assignments. This form of iCBT can be contrasted to coach-assisted iCBT, where nonregulated mental health workers are trained to provide support to patients throughout the program, or self-guided iCBT, where patients access a series of modules independently.

While publicly funded iCBT has been successfully implemented in Ontario during the pandemic by 2 service providers (ie, privately owned Canadian companies in the mental health and wellness sector), patient and therapist perceptions around its implementation have yet to be explored. Research on the experience of patients and therapists with publicly funded iCBT in other jurisdictions highlights accessibility, convenience, and the role of therapist support [26,27]. While these findings provide valuable insights, it is important to acknowledge potential differences that cultural factors, health care systems, and program variations may influence. Furthermore, few studies have examined the uptake and experience of publicly funded iCBT programs in Canada [28]. Therefore, the study objectives were to explore, from the perspectives of patients who accessed the iCBT program in Ontario and the therapists who provided the service, the facilitators and barriers related to iCBT delivery during the pandemic, and the proposed recommendations to address such barriers. The findings can inform future policy and funding decisions by providing insight into whether and
how the service should be expanded and better integrated into the mental health care system.

Methods

Study Setting

This study aimed to investigate the therapist-assisted iCBT program funded by the Ontario government during the COVID-19 pandemic to residents and offered in both English and French [25]. The 10- to 12-week program was promoted to individuals experiencing mild to moderate depressive or anxiety symptoms. The program could be accessed through self-referral or clinician referral to 1 of 2 service providers. Both service providers offered programs that adhered to the general principles of iCBT programs, which include a comprehensive intake assessment to identify primary mental health concerns, cognitive behavioral therapy techniques, and ongoing access to communication with a regulated mental health professional [29]. Both programs were based on the same principles but differed in their intake assessment process and method of communication between the therapist and patient. Program A (LifeWorks AbilitiCBT) offered a 5- to 7-minute online intake questionnaire, followed by a mandatory remote synchronous intake assessment with a therapist to identify the patient’s mental health needs and to develop a protocol tailored for the patient’s primary mental health concern [30]. Program B (Mind Beacon TAI CB T) used a 30-minute online intake questionnaire to achieve the same aims [31]. Both programs had a secure in-app messaging system for communication between patients and therapists, through which therapists could send messages to clients derived from a bank of predetermined messages. However, only program A offered optional synchronous phone or video calls that could be scheduled if needed throughout the program. Program A provided most patients with 10 content modules, irrespective of their specific mental health needs. One exception was for patients with posttraumatic stress disorder or trauma, who were provided with 2 additional modules for a total of 12 modules and an estimated completion time of 10 weeks. Program B provided patients with an average of 7 to 16 playlists (synonymous with modules), with additional playlists of content provided depending on the individual- or condition-specific needs, for an overall average completion time of 12 weeks. Despite the slight programmatic differences, it is reasonable to argue that the barriers to and facilitators of uptake and engagement in iCBT are unlikely to differ significantly between the 2 programs, both of which were implemented in the same context and aim to provide accessible and convenient iCBT interventions using online platforms and secure messaging system for patient-therapist communication. By conducting a combined analysis, a larger data set can be obtained, enabling a broader perspective on barriers and facilitators to iCBT implementation at the population level and the identification of overarching themes that go beyond program-specific differences. By focusing on common factors among programs, the study findings can provide valuable insights for the development and improvement of implementing iCBT programs across contexts.

Study Design

In this qualitative study, the research coordinator (MN) and 2 research assistants (BNK and ST) conducted semistructured, emergent interviews [32] with patients and therapists to gain a thorough understanding of their perspectives and experiences using or delivering iCBT. All interviewers had prior experience conducting semistructured interviews and received training prior to data collection. The study design and interview guides were developed based on input from multiple stakeholders, including patient advisors, psychiatrists, and experts in qualitative research. Furthermore, the interview guides were pilot-tested among the research team. The initial interview questions aimed to elicit contextual information, understand acceptance and satisfaction with the program, identify barriers and facilitators in using or delivering iCBT, and gather feedback on refining the service for future offerings. The interviews also focused on gaining insight into program completion and communication between therapists and patients. Follow-up questions were then tailored to participants’ responses to the initial questions in keeping with the emergent interview design. Finally, to ensure the relevance of the questions, separate interview guides were developed for patients and therapists (see Multimedia Appendix 1).

Recruitment and Data Collection

The 2 service providers assisted with recruitment by sending emails and in-app messages on behalf of the research team to the therapists and patients enrolled in the program. Both service providers sent recruitment emails to all therapists on an internal listserv and in-app message prompts through the platform to reach all users with access to the program on a weekly basis between September and November 2021. During the recruitment period, 39 patients (20 in program A and 19 in program B) and 29 therapists (17 in program A and 12 in program B) contacted the research team via email expressing interest in the study. Between October and December of 2021, 30 interviews were conducted with 20 patients (10 in program A, 9 in program B, and 1 in both program A and program B) and 10 therapists (5 in program A and 5 in program B). Interviews were conducted until data saturation was reached. The interviews were conducted between the interviewer and interviewee who had no relationship established prior to study commencement via audio call using Microsoft Teams and lasted approximately 45 minutes. Inclusion criteria for patients included being 18 years or older, having mild to moderate depression- or anxiety-related symptoms at the time of registration with the iCBT program, and having accessed the publicly funded program during the COVID-19 pandemic (between May 2020 and December 2021). The inclusion criteria for therapists included being a health care professional who delivered the iCBT program from either provider during the COVID-19 pandemic.

Data Analysis

The interviews were audio recorded, transcribed verbatim, and analyzed using inductive thematic content analysis, allowing for the emergence of themes and patterns directly from the data [33]. Transcripts were not returned to participants for comment.
or correction, nor did participants provide feedback on the findings. MN, RF, ST, and VK all contributed to the data coding and analysis process, which involved iteratively reading and rereading the transcripts to identify meaningful patterns and themes. This data-driven approach ensured that the analysis was grounded in the participants’ experiences and perspectives. To ensure rigorous methodology, the research team engaged in multiple meetings to develop consensus and refine the emergent themes.

To analyze the data, the researchers first independently reviewed the transcripts and created initial codes. Together, they then confirmed the structure of the codes and looked for potential themes. Once themes were identified, they were named and defined, using exemplar quotes to illustrate key points. All research team members reviewed and provided input on the themes and their interpretations. The themes and codes were related back to the study objectives during paper preparation. To ensure rigor and trustworthiness, the researchers engaged in reflexivity and debriefing with peers throughout the analysis.

Ethical Considerations

The study received ethical approval from the Women’s College Hospital Ethics Assessment Process for Quality Improvement Projects (REB # 2021-0057-E). All participants provided written and verbal consent before participating in the semistructured interview, during which the research objectives were described. Participants were made aware that the interviewers were unbiased third-party evaluators of the program. All participants were compensated via a $25 CAD electronic gift card to their choice of one of several major retailers. The data has been de-identified.

Results

Demographics

Table 1 displays the demographic characteristics of the patient interviewees. Of the 20 patients, most (n=13, 65%) were between the ages of 20 to 50 years; 55% (n=11) of patients were female and 40% (n=8) of patients were male. Regarding ethnicity, 70% (n=14) of the patients identified as White, while 30% (n=6) of patients identified as belonging to a racialized minority group. Notably, 80% (n=16) of patients completed 10 or more modules or playlists, meaning that they completed most of the program content without dropping out prematurely. A total of 25% (n=5) of patients had an average comfort with technology, while 30% (n=6) and 45% (n=9) of patients reported advanced and expert comfort with technology, respectively. Furthermore, all patients were self-referred to the program. Many patients heard about the program through a self-directed web-based search (n=9, 45%) or via their social network (n=9, 45%), while only 10% (n=2) of patients heard about the program via advertisements.

Table 2 displays the demographic characteristics of the therapist interviewees. Of the 10 therapist interviewees, most were (n=6, 60%) between the ages of 20 to 35 years, with a higher proportion of female therapists (n=9, 90%). Most therapists were licensed social workers (n=8, 80%), while the remaining 20% (n=2) were registered psychotherapists. Half (n=5, 50%) of all therapists had been delivering iCBT for less than 6 months. Most therapists (n=6, 60%) had 5 years or less of experience in their current profession.

Facilitators of iCBT included the therapist-assisted nature of the program, the ease at which the service could be registered for and accessed on an ongoing basis due to a lack of cost, and the feasibility of completing the psychotherapeutic content given the online and self-paced nature of the program. However, the study identified 3 barriers to the program’s implementation: challenges with the online delivery of the program for the therapeutic alliance; the program’s generalized nature, which limited customization to individual needs; and a lack of formal integration between the iCBT program and the health care system.
Table 1. Patient interviewee demographics.

<table>
<thead>
<tr>
<th>Demographic variables and categories</th>
<th>Number of interviewees (n=20), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group (years)</td>
<td></td>
</tr>
<tr>
<td>20-35</td>
<td>4 (20)</td>
</tr>
<tr>
<td>36-50</td>
<td>9 (45)</td>
</tr>
<tr>
<td>≥51</td>
<td>7 (35)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>8 (40)</td>
</tr>
<tr>
<td>Female</td>
<td>11 (55)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Race or ethnicity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>14 (70)</td>
</tr>
<tr>
<td>Racialized minority</td>
<td>6 (30)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>2 (10)</td>
</tr>
<tr>
<td>College degree or diploma certificate</td>
<td>9 (45)</td>
</tr>
<tr>
<td>Undergraduate degree or above</td>
<td>8 (40)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Number of modules or playlists completed</td>
<td></td>
</tr>
<tr>
<td>6-10</td>
<td>4 (20)</td>
</tr>
<tr>
<td>>10</td>
<td>16 (80)</td>
</tr>
<tr>
<td>Comfort with technology</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Advanced</td>
<td>6 (30)</td>
</tr>
<tr>
<td>Expert</td>
<td>9 (45)</td>
</tr>
<tr>
<td>How patients heard about the program</td>
<td></td>
</tr>
<tr>
<td>Self-directed web-based search</td>
<td>9 (45)</td>
</tr>
<tr>
<td>Social network or care provider</td>
<td>9 (45)</td>
</tr>
<tr>
<td>Advertisement</td>
<td>2 (10)</td>
</tr>
</tbody>
</table>
Table 2. Therapist interviewee demographics.

<table>
<thead>
<tr>
<th>Demographic variables and categories</th>
<th>Number of interviewees (n=10), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group (years)</td>
<td></td>
</tr>
<tr>
<td>20-35</td>
<td>6 (60)</td>
</tr>
<tr>
<td>36-65</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Female</td>
<td>9 (90)</td>
</tr>
<tr>
<td>Professional designation</td>
<td></td>
</tr>
<tr>
<td>Social worker</td>
<td>8 (80)</td>
</tr>
<tr>
<td>Registered psychotherapist</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Years in current profession</td>
<td></td>
</tr>
<tr>
<td>5 years or less</td>
<td>6 (60)</td>
</tr>
<tr>
<td>>6 years</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Length of time delivering iCBT</td>
<td></td>
</tr>
<tr>
<td>6 months or less</td>
<td>5 (50)</td>
</tr>
<tr>
<td>More than 6 months</td>
<td>5 (50)</td>
</tr>
</tbody>
</table>

iCBT: internet-delivered cognitive behavioral therapy.

Facilitators of iCBT

The Therapist-Assisted Nature of the Program

Patients valued the therapist-assisted nature of the iCBT program, with many reporting satisfaction with being able to connect with a mental health professional. Personal communication with and feedback from therapists were essential in supporting patients’ engagement with the program and creating accountability for completing the program content, as they regularly checked in on patient progress.

I was really busy and I kind of left it unattended, and then [my therapist] just told me...don’t give up, find the time even though it might be busy, just take time aside and keep going, you’re almost done. I think if she wouldn’t be there or she wouldn’t send me that message, I would probably [have] just dropped it. [Patient 24, program A]

I will get occasional emails, “Your therapist has checked in”...it’s almost like a cue that, “Are you on track with your lessons?” Because I think if you leave people to their own devices, sometimes they’ll just fall off...the only accountability is to yourself. [Patient 7, program B]

In addition, the presence of a therapist allowed patients to feel connected to another human despite the online nature of the program. Patients felt supported knowing that an individual cared about their progress, read their messages, and reviewed their work.

I think I also don’t want to just feel so clinically cold about it either...that I just do my thing, and hopefully something will come of it. It’s nice for me to know that there’s somebody checking in...you feel like somebody cares. I kind of like the messaging, I think that without it, it’s a little sterile. [Patient 7, program B]

I felt like somebody was actually listening to me. I wasn’t just going through a computer program. [Patient 24, program A]

As several patients noted, the presence of a therapist was perceived as the most valuable component of the program.

I felt the material that I was working on was helpful, but the therapist was most helpful for what was there...I don’t think it would have been of any value to me personally without a therapist involved...For me that was one of the biggest things, was just to have someone to lean on a little bit. [Patient 13, program B]

That’s the best part...the conversation with the therapist. [Patient 2, program A]

However, as 1 therapist noted, not all patients take advantage of the ability to engage with a therapist.

Several patients appreciated the asynchronous communication modality, which allowed for a more accessible introduction to mental health treatment for those reluctant to engage in traditional therapy formats.

It makes you not quite so vulnerable as one-on-one counselling either on the phone or face-to-face, for somebody who is new to it or may have been reluctant in the past, I think that was the initial appeal for me, was that there was that kind of buffer...having that initial message from your e-therapist...was a very gentle introduction to therapy. [Patient 11, program B]
Other patients similarly noted that they felt more comfortable openly expressing personal topics through messaging as opposed to face-to-face or over the phone (patient 7, program B).

The Accessibility of Registering for the Program

The iCBT program was found to be accessible for patients due to its free and immediate availability. Many patients interviewed were willing to enroll in the iCBT program because it was available almost immediately with no waiting period.

As soon as I finished my [intake assessment], I got the email almost immediately...within a week, I had a therapist send me an email to set up our initial interview. [Patient 28, program A]

The lack of cost enabled individuals experiencing financial difficulties to participate, as well as those who were on waitlists or could not afford mental health services. As 1 therapist noted, the low barrier to entry is especially important because “so many people are looking for support...on waitlists...having to pay out of pocket, [and] are feeling they can’t find anyone to talk to...This is a great base for them to get that step in the door to build that confidence to be able to get more support” (therapist 4, program A). For example, 1 patient noted that they were interested in pursuing traditional CBT but did not have the resources to do so. The program being offered free of charge reduced the barrier to engagement.

Doctors thought that CBT was the appropriate therapy for me, and so...I would go through an evaluation, and then it was a horrendous cost which I couldn’t afford...The cost is prohibitive. [Patient 26, program A]

For many patients, money is a factor in their ability to access mental health services. As 1 patient stated, “I would have had to look at my benefits to see if something else was covered, but when I read that [it was free], I knew that it was not going to be a financial burden on me.” (patient 13, program B). However, some therapists expressed concern that the free service made it noncommittal and may contribute to patient withdrawal or inactivity.

The Feasibility of Completing the Psychotherapeutic Content of the Program

Furthermore, the online nature of the program also allowed for easy access from home or mobile devices, making it more feasible.

It was the most practical thing ever. Everybody sits on their phone and scrolls through Instagram and Facebook and stuff, so having the module accessible on my phone was amazing because I was able to do that at any point in time throughout my day. [Patient 28, program A]

One patient noted that they had to travel outside the home to receive the services, they would not have been able to participate (patient 26, program A). Indeed, the accessibility of the program was appealing to many patients who were not generally available during business hours. For example, 1 patient noted that the online delivery “makes the service much more accessible because people who are busy or working...it makes it more feasible to access the program compared with having to go into a doctor’s office” (patient 6, program A). This was especially important for patients who did not feel comfortable leaving their homes during the pandemic or lacked access to transportation. As 1 therapist noted, the program makes it easier for patients to access mental health support because it reduces the effort required to attend in-person therapy, a step which may compound the existing difficulties for patients experiencing challenges with their mental health.

Patients also appreciated the ability to work at their own pace and revisit their worksheets following the completion of the program. Patients similarly were satisfied with always having the program available.

I really enjoyed the immediate accessibility of it...just having the reassurance that it is immediately at hand is oftentimes, sometimes all you need. [Patient 11, program B]

Other patients noted the unique ability to spread out their therapy over time and work at their own pace.

I would just get up and walk away or maybe go for a walk and come back and you can’t do that in traditional therapies. [Patient 26, program A]

As 1 therapist noted, “I feel like one of the strengths is that it’s there when people need it, I think we are not telling people, ‘You have to be here on this particular day for your session’. We are saying, ‘It’s open. When you need it, it’s right there’” (therapist 19, program B). Furthermore, patients appreciated the absence of time pressure associated with traditional therapy sessions.

I can take time to read the modules. I would never have that luxury to take time and reflect on modules in [a] therapy session...This relaxation of time and availability of resources makes the mental health service delivery much more effective. [Patient 5, program A and program B]

Barriers to iCBT

Challenges With the Online Modality

Although therapists recognized the importance of developing a therapeutic alliance with their patients, some noted challenges in establishing rapport and communicating with patients online. Some therapists found it difficult to connect with patients due to the primarily asynchronous nature of communication and the limitations of the messaging platform. For example, 1 therapist noted that “it’s not the same as talking over the phone or in person...you have to wait for them to respond so that can be kind of difficult if they don’t respond...[Also]...it’s not a chat service so it can be hard to maintain a streamlined conversation that you would in person or on the phone because we are supposed to limit our interaction to one to two business days” (therapist 4, program A).

It can be difficult sometimes to build that connection and build that therapeutic relationship when you’re just a voice, or you’re just words on a screen talking to somebody, and you’re not in person getting to build more of that physical or that non-verbal connection.
as well. So, being online and virtual is definitely very
different in terms of how you have to build that
relationship as opposed to how you could do it if you
were sitting right in front of the person...it just
requires a little bit of extra thought into how to
develop that relationship when you’re not in person
with a patient. [Therapist 8, program A]

Therapists were required to refine their skills in connecting with
patients through a digital modality.

Despite the reported challenges, some patients said that they
were able to develop a strong therapeutic alliance with their
therapist online. One patient provided evidence for the ability
to develop the therapeutic alliance online, as they stated that
“my therapist and I have such a great relationship” (patient 28,
program A), while another shared that “I felt understood [and]
heard...[the therapist] listened to me...” (patient 26, program
A). However, a few patients would have preferred to speak to
their therapist over the phone after completing each module.
For example, 1 patient stated that they would have preferred to
verbally speak to their therapist about their feelings after
completing each module, as is their preferred mode of
communication: “I would like to express it verbally rather than
writing it.” (patient 2, program A)

Limited Opportunities for Customization

According to the feedback gathered, patients and providers of
the iCBT program felt that it needed more opportunities for
customization. They suggested that tailored protocols, feedback,
and guidance would enhance the program. While some degree
of customization was available through the chat functionality
and the ability to add worksheets, tools, or readings, some
therapists noted that more needs to be done to make the program
more customized to patient needs.

I think the chat functionality, and the ability to add
in worksheets or tools or readings at a whim...gives
a lot of flexibility, and I think CBT requires more
flexibility than is given...we offer reflections, and we
ask questions, and sometimes go a little deeper than
just what the material presents. [Therapist 20,
program B]

However, therapists also noted limited options for them to
customize the program for their patients, such as the inability
to change the patient’s protocol after treatment has started in
program B.

I don’t like the fact that when I have assigned a
patient a protocol, let’s say, depression, and then we
have worked together; and then, maybe, depression
is not really the thing I should have assigned this
person...but I cannot really change the heading of the
treatment. [Therapist 19, program B]

Patients also expressed that the lack of tailoring made the
program feel “superficial” and not customized to their needs
(patient 1, program A). For some patients, the lack of tailoring
made them feel “a little boxed into the format” and that the
content was “not...necessarily customized for what I [they]
needed” (patient 7, program B). Others suggested that given
the broad nature of the content, it was not necessarily relatable.

They suggested the option for “patient-specific” content based
on the patient’s needs (patient 28, program A). One therapist
noted that patients have expressed challenges due to the lack of
personalization, recognizing that the content has been created
in bulk and is not personalized, termed “bulk-therapy” (therapist
10, program B). As 1 therapist stated, many of the messages
they sent to their patients were obtained from a bank of
prewritten messages, which they would send to their patients
after changing the name in the message.

You’re sending messages, but the messages are really
short or they’re kind of formulaic...you also need to
have the ability to connect with an individual.
[Therapist 9, program A]

Lack of Formal Integration With the Health Care System

The iCBT program was noted to lack formal integration with
the health care system by patients and therapists, who expressed
a desire for the program to be integrated with other mental health
programs and resources. The program currently does not allow
therapists to make formal referrals for patients; instead, they
can only suggest additional resources, which places the onus
on patients to seek other services. Therapists emphasized the
need for integration of services, especially given the siloed
nature of different services.

We don’t really refer. We make suggestions. We say
oh, call this program, or I hear this hospital has an
outpatient so-and-so, or you can try so-and-so...I
know what referrals are. You fill it in, you phone and
you fax it, you confirm, you do handover, and you
send case notes. That’s a referral. That’s a solid
connection with an appointment usually by the time
you’re done for the patient. We don’t do any of that,
and we say to the patient it’s all on you. [Therapist,
program A]

The therapists also suggested that iCBT could be used as a triage
process to ensure that patients are matched to the right level of
care.

If we’re connected to other mental health agencies,
then we can all be able to communicate in a way
that’s easy...If this isn’t what would be the best
program...we can continue to help you...it’s easy and
there’s a feeling that people are really being taken
care of. [Therapist 9, program A]

They suggested that social workers were in an ideal position to
refer patients to other services, but the existing infrastructure
does not allow for this.

I would encourage them to reach out to their family
doctor [and] provide some resources...and then, I
just hope that that’s what’s going to happen...It would
be great to have a partnership where the person will
have continuity of work, if we could refer them rather
than just give them resources for them to self-refer.
[Therapist 8, program A]

Patients and therapists both felt that patients might still require
additional support after completing the iCBT program and
desired the ability to stay connected with their therapist on an
Discussion

The study of patient and therapist perceptions of 2 free publicly funded iCBT programs implemented in Ontario during the COVID-19 pandemic revealed that while several aspects of the program were well-received and facilitated access to care, there were several barriers and missed opportunities. Patients and therapists reported that the following facilitators: (1) the therapist-assisted nature of the program, which enhanced participation, (2) the ease of registration and access, and (3) the online self-paced nature of the program, which increased the feasibility of completing the psychotherapeutic content. However, the study identified three barriers: (1) challenges with the online delivery of the program for developing a therapeutic alliance; (2) the program’s generalized nature, which limited customization to individual needs; and (3) a lack of formal integration between the iCBT program and the health care system.

The findings regarding the facilitators to implementation are largely consistent with what has been reported in the literature. Many patients who were highly engaged with the program felt supported by their therapist and had adequate contact with them, which aligns with previous studies [35]. Furthermore, meta-analyses have found that guided iCBT is more effective than unguided iCBT [36], suggesting that communication with a therapist is one of the active components contributing to the effectiveness of iCBT. Another strength of the program implementation was removing many of the financial, logistical, and emotional barriers for patients. For several clients, the asynchronous communication modality was appreciated as it reduced the barriers associated with stigma for those who were reluctant to engage in traditional therapy formats, many for the first time. These findings are consistent with the literature that posits a key advantage of iCBT is in reducing stigma and, thereby, improving service access [37,38]. Moreover, the absence of a waitlist in both iCBT programs ensured that clients could receive timely access to care, which is crucial given that waitlists are a large barrier to mental health care in Ontario. Across Canada, the average wait time for first-time community mental health services from 2019 to 2020 was nearly 1 month [39]. Last, many patients expressed that the self-paced format of the program allowed them to work through the program at a preferred pace that worked well for their schedule, allowing them to integrate the program into their lives feasibly. These findings are consistent with previous studies of the attitudes of therapists and patients regarding online treatment, for which they positively perceived the ability to perform assignments at the patient’s own time and pace [40,41].

When asked about barriers, some therapists acknowledged challenges in developing the therapeutic alliance with patients; findings that are consistent with other studies in Ontario during the pandemic, where mental health care providers expressed concerns that digital care impeded the therapeutic relationship [42]. However, these findings are contrary to previous studies that found a positive alliance that is similar to face-to-face psychotherapy [43] and with a similar relationship between therapeutic alliance and patient outcomes [44]. Indeed, previous qualitative studies have suggested that the treatment format may act as both a facilitator and barrier to engagement for different individuals [45-49]. While therapists noted that some degree of customization was possible, patients desired more tailored protocols, feedback, and guidance, and some patients expressed that the program felt superficial and not relatable. These findings are aligned with previous qualitative studies on iCBT, where patients desired more flexibility for the therapist to adjust the therapeutic content to their individual difficulties or life situations [50]. While greater customization and therapist involvement may increase effectiveness, there may be a tradeoff of increased costs and, thereby, reduced reach. The most significant finding was that there was a missed opportunity in formally integrating iCBT into the health care system during its implementation, hindering the continuity of care for patients. Furthermore, participants emphasized the need for therapists to provide direct referrals for patients to other services. Understanding for whom specific interventions are most beneficial remains a challenge, particularly for low-intensity interventions such as iCBT [36,51-53]. Last, patients desire continuous support post-iCBT; including necessary follow-up mechanisms and resources for relapse prevention. The frustration experienced by patients who lose access to their therapist has also been reported in qualitative experiences of patients engaging in iCBT [50]. Overall, integrating iCBT with existing services may ensure that adequate treatment options are provided to those for whom iCBT is inappropriate, as well as facilitate the provision of additional support when necessary.

While many iCBT programs have high rates of dropouts or noncompleters [54], the findings provide insight into what works for the minority of patients who are highly engaged with the program. Knowledge and understanding about the patient experience are limited for those with low engagement or who prematurely dropped out of the program. Additionally, despite efforts to reach nonusers, defined as individuals who discontinued treatment after completing the intake assessment but prior to any treatment or were deemed ineligible for the program, no one volunteered to participate in qualitative interviews. Furthermore, the results are not generalizable to all patients and therapists, given the limited variation of sample characteristics and that only those who were interested in sharing their experiences with iCBT chose to participate in the evaluation. Moreover, while the intent of the study was to assess implementation, the interview guide did not include questions to assess users’ perspectives on the perceived impact of the program on their mental health. However, a key strength of this study is that, unlike other real-world implementations of iCBT programs that have been evaluated by those involved in the program development and implementation, the present evaluation was conducted by a neutral third-party evaluation team contracted by the program funder.

The study’s findings have implications for policy, practice, and research. Participants proposed a stepped-care model, wherein...
the iCBT program could serve as a triage mechanism to ensure that patients are matched with the appropriate level of care. Given the low barriers to access, the program can reach a large segment of the population and provide an entry point into other clinical services that may be more appropriate or act as an introduction to more intensive therapy for patients on waitlists for more specialized services. In clinical practice, iCBT may be used as an introduction to psychotherapy for those who are unsure about traditional CBT, to help prepare clients for more intensive psychotherapy, or when used as a companion to traditional CBT as a booster program following discharge. At the outset of the program implementation, the primary objective was to ensure timely and scalable implementation of iCBT with low barriers to care and broad reach. Understandably, initial decisions regarding the scope and design did not consider how the program could be better integrated into the mental health care system for continuity of care. Policy decisions have since been made based on preliminary findings from a pragmatic evaluation of this program to shift from a low-access model to a prescriptive service offering that requires a referral and is integrated into the Ontario Structured Psychotherapy program, coordinated by 10 partner hospitals across the province [55].

The findings also suggest that iCBT programs could benefit from more personalized approaches to treatment. For example, therapists may benefit from training to be more specific and tailored in their patient feedback rather than using generic responses that may be perceived as disingenuous. To ensure effective support and authenticity in iCBT therapy, further research is needed to determine how therapists can convey these qualities despite the limited communication opportunities in primarily asynchronous care, given the varied patient perceptions of support. In addition, as proposed by Cavanagh et al [56], it may be necessary to reconceptualize the therapeutic alliance in the context of iCBT, given the unique treatment modality, which may guide how therapists are trained to support patients within the context of the program. Furthermore, identifying individuals for whom less therapist interaction is necessary for therapeutic benefit can help allocate more resources for those who may need more frequent interaction and possible modifications to the program structure. However, the discrepancy between the quantitative studies with larger samples and patient experiences reported in qualitative studies suggests that while many patients who do not complete the program report missing face-to-face meetings and synchronous support [46], this may not make a clinical difference. Regardless, future large-scale investigations should examine how iCBT programs can be adjusted to reduce dropout rates for those less satisfied with the treatment format. To enable reaching out to individuals who have dropped out and are no longer actively using the platform, funders should require that vendors provide clients with the option to be contacted outside of the iCBT platform for research purposes by including an additional consent clause during the enrollment process and maintain additional contact details. This is necessary for future research that aims to examine the perspectives of clients who dropped out or disengaged from the program, as they are difficult to reach. Last, the study aims to support an emerging research culture evaluating mobile apps beyond traditional market research done by vendors, wherein therapeutic apps are held to the same standards as other therapeutic interventions, such as drugs, medical devices, or psychotherapy.

In conclusion, our study provides valuable insights into the benefits and limitations of iCBT programs. While the convenience and accessibility of iCBT programs have the potential to be transformative for the treatment of mental health disorders, there is still work to be done to address the concerns of patients and therapists regarding limitations to digital care, customization, and integration with the health care system. Future research should focus on developing more personalized approaches to iCBT treatment, as well as finding ways to better integrate iCBT programs into the existing mental health system.

Acknowledgments

The authors would like to express their gratitude to the research participants who took the time to share their perspectives and experiences, without whom this research would not be possible. The authors also greatly appreciate the funding provided by the Ontario Ministry of Health to carry out this research. The study funder was not involved in the design of the study and the collection, analysis, or interpretation of data.

Authors’ Contributions

ST participated in the coordination of the study; collected, analyzed, and interpreted the data; and drafted the manuscript. OB, RL, MN, ST, and BNK led in the conception of the study design. BNK, OB, and MN revised the manuscript. BNK and MN oversaw the coordination of the study and contributed to data collection. MN, RF, and VK also analyzed the data. AO, MK, BBA, and MLC supported the conception of the study design. All authors read and approved the final manuscript submitted for publication.

Conflicts of Interest

None declared.

Multimedia Appendix 1
Interview guide.

[DOCX File , 19 KB - formative_v81e50113_app1.docx]
References

Abbreviations

iCBT: internet-delivered cognitive behavioral therapy
Assessment of a Daily Diary Study Including Biospecimen Collections in a Sample of Sexual and Gender Minority Young Adults: Feasibility and Acceptability Study

Stephanie H Cook, DrPH; Erica P Wood, MPH; Mariana Rodrigues, MA; Janice Jachero Caldas; Maxline Delorme

Department of Social and Behavioral Sciences, School of Global Public Health, New York University, New York, NY, United States

Corresponding Author:
Stephanie H Cook, DrPH
Department of Social and Behavioral Sciences
School of Global Public Health
New York University
708 Broadway
Room 757
New York, NY, 10003
United States
Phone: 1 212 992 5635
Email: sc5810@nyu.edu

Abstract

Background: Young sexual minority men (YSMM) engage in cardiometabolic risk behaviors (eg, substance use) at higher rates than their heterosexual counterparts. Theory and previous research suggest that these risk behaviors may stem, in part, from exposure to minority stress (ie, discrimination based on sexual identity and other identities such as race).

Objective: This pilot study examined the feasibility and acceptability of a virtual 2-day daily diary study that examined daily experiences with discrimination, cardiometabolic risk behaviors (ie, sleep, physical activity, and substance use behaviors), and patterns of physiological stress and inflammation among YSMM aged 18 to 35 years.

Methods: Participants (n=20) were recruited from the greater New York metropolitan area and engaged in a 2-day daily diary protocol wherein they provided web-based consent, took a web-based baseline survey, and then, starting the next day, provided 3 saliva samples a day for 2 consecutive days to measure salivary cortisol, engaged in 3 daily diaries per day, and provided 1 blood spot sample via the finger prick method to measure high-sensitivity C-reactive protein. At follow-up, participants were interviewed via videoconferencing to ascertain their experiences and feelings related to the study protocol. Qualitative analyses explored the feasibility and acceptability of the study protocol, and exploratory quantitative analyses explored the descriptive statistics and Pearson correlations among the main study variables of interest.

Results: The retention rate was high (19/20, 95%) in our study sample. Qualitative analyses demonstrated that participants were willing to engage in similar, longer-term studies (eg, studies that include both week and weekend days) in the future and suggested the feasibility and acceptability of our study protocol among YSMM. However, participants noted several areas for improvement (eg, redundancy of survey items and difficulty pricking one’s finger) that should be considered in future research. Preliminary quantitative analyses revealed a moderate negative correlation between everyday discrimination and mean cortisol levels ($r = -0.51; P = .03$). Furthermore, descriptive analyses suggest that that daily cortisol curves differ across races or ethnicities among YSMM. White and other-identified YSMM experiences the highest cortisol awakening response (mean 0.39, SD 0.21 µg/dL for White participants; mean 0.34, SD 0.34 µg/dL for others) with the steepest decline around bedtime (mean 0.05, SD 0.04 µg/dL for White participants; mean 0.09, SD 0.13 µg/dL for others) followed by a lower cortisol awakening response (mean 0.31, SD 0.11 µg/dL for Hispanic participants; mean 0.23, SD 0.15 µg/dL for Black participants) and a slower decline around bedtime (mean 0.10, SD 0.09 µg/dL for Hispanic participants; mean 0.03, SD 0.02 µg/dL for Black participants) among Hispanic and Black YSMM.

Conclusions: Overall, the results suggest that similar study protocols are feasible and acceptable among YSMM. Future research should highlight the pathways through which cardiovascular disease risk may arise among YSMM using longer-term study designs and more diverse study samples.
Introduction

Background
Cardiovascular disease (CVD) is the leading cause of death and disability in the United States [1], and young sexual minority men (YSMM) have disproportionately high rates of CVD compared with their heterosexual counterparts [2]. Emerging evidence implicates stress from racial and sexual orientation discrimination as a significant social determinant of cardiovascular risk among young sexual minorities (aged 18-35 years) [3-5]. Moreover, research shows that CVD risk accumulates early in life, and as such, prevention interventions should focus on addressing risk factors in young adulthood [6]. However, evidence suggests that disparities exist in early CVD risk, such that sexual minorities are more likely to experience CVD at an earlier age than heterosexual individuals, in part because of exposure to minority stress (eg, sexual orientation-related discrimination) [7]. Although research has demonstrated that sexual minority men are more likely to experience excess CVD risk related to factors such as tobacco use, illicit drug use, and poor mental health [8], there is a critical lack of research aimed at understanding the mechanistic links between minority stress and CVD risk, particularly for YSMM. Thus, this study aimed to examine the feasibility and acceptability of an internet-based daily diary protocol aimed at measuring the mechanistic links between minority stress, CVD risk behaviors, and health among YSMM between the ages of 18 and 35 years.

Theoretical Model
This study was guided by sexual minority stress theory, which posits that sexual minority individuals are exposed to a number of distal stressors related to the negative social valuation of minority identities, resulting in stress exposure beyond the level that people generally experience [9]. Distal minority stressors refer to external discrimination or prejudice events that are targeted toward an individual owing to their minority identity (eg, sexual orientation discrimination) [9]. However, over time, individuals may internalize minority stress, which may, in turn, increase the likelihood of dysregulated physiological stress and poorer health behaviors (eg, substance use) [10-13], which are linked to an increased risk of subclinical CVD [14-17]. Evidence suggests that exposure to sexual minority stressors can lead to physiological changes that over time can lead to an increased risk of CVD [3,18-20]. For instance, Lewis et al [3] posit a causal pathway between discrimination and CVD risk such that exposure to discrimination leads to emotional or affective dysregulation, which, in turn, can lead to physiological dysregulation (eg, inflammation) and poor health coping behaviors (eg, substance use). Over time, this may overburden the physiological stress system and lead to cardiovascular risks. Indeed, these authors found evidence to suggest that expectations of racism are associated with increased carotid intima-media thickening measurements, a measure of increased risk of subclinical CVD, among Black women [3].

Experiences of sexual minority stress among racial or ethnic minorities are not equal and are framed by individual cultural realities and contexts. Intersectionality theory posits that the possession of multiple marginalized identities intertwines at the individual level and is reflective of structural-level power inequities and inequality, influencing health behavior and outcomes across the life course [21]. In particular, the intersection of race- and sexual orientation–based discrimination may be detrimental to health. Indeed, many studies have documented the deleterious effects of discrimination among racial or ethnic minorities, including dysregulated cortisol rhythms, elevated C-reactive protein (CRP), and heightened ambulatory blood pressure [19,22]. These important biological outcomes influence vascular inflammation, atherosclerosis, stroke, and other cardiovascular risk factors [23-25]. In addition, there are health behaviors along the posited causal pathway between discrimination and CVD risk including substance use, diet, and physical activity, which are important mechanisms to study and understand [3,26]. Nevertheless, the mechanisms linking discrimination and cardiovascular factors in racially diverse populations remain underexplored [4]. Conducting this research is vitally important, considering the heightened rates of both stress from discrimination and subclinical CVD among these potentially vulnerable populations [3,8].

The COVID-19 pandemic has provided us with a unique opportunity to conduct our study on the web. Thus, the current investigation reports on the feasibility and acceptability of conducting a study to understand 2 key pathways linking sexual minority and racial or ethnic discrimination to CVD risk, health behaviors (ie, substance use and physical activity), and physiological dysregulation (stress reactivity) completely virtually.

Study Objectives
The aims of this study were as follows: (1) to assess the feasibility and acceptability of a virtual daily diary study protocol (measured via qualitative debrief interviews), including the collection of biologics and ActiGraph technology; and (2) to explore preliminary associations between discrimination, substance use, sleep, physical activity, physiological stress, and inflammation among YSMM (measured via surveys, ActiGraph technology, and biologics, respectively).

Methods
Setting and Participants
This single-site pilot study recruited YSMM between the ages of 18 and 35 years from the New York tristate area. Eligibility criteria included (1) identification as cisgender male; (2) between the ages of 18 and 35 years, inclusive, at the time of screening; (3) identification as a sexual minority; (4) having no
known heart conditions, diabetes, or high blood pressure; and (5) willingness to provide informed consent. Participants were identified via online and offline techniques, including posts to listservs and flyers posted on campuses around the New York metropolitan area (eg, New York University). The recruitment materials included information about the study, contact information for the principal investigator’s laboratory, and a link to a web-based screening survey via Qualtrics.

Ethical Considerations

Interested participants filled out a web-based screening survey, which ascertained relevant sociodemographic information, such as age, biological sex, gender identity, sexual orientation, race, and ethnicity. Eligible participants were contacted by trained research assistants (RAs) to schedule a baseline meeting via Zoom to confirm eligibility, provide more information about the study (eg, study protocol and duration of study), and provide electronic informed consent. The participants were renumerated with up to US $95 for completion of the study protocol. The full details of the full study protocol are detailed below. This study was approved by the Institutional Review Board of New York University (FY2021-5355).

Procedure

Baseline

Participants who were screened eligible through the web-based screening survey were emailed by trained RAs to schedule a baseline meeting via Zoom. During this baseline visit, participants were given detailed information about the full study design, which included a baseline survey to be taken on the web via Qualtrics, a 2-day daily diary period that included biological specimen collection (see 2-Day Diary Period section), and a 30- to 45-minute follow-up and debrief interview via Zoom after completion of the baseline survey and the 2-day protocol. Participants who agreed to participate and who provided electronic informed consent were then sent a link to a Qualtrics survey to be taken within the proceeding 24-hour period as well as electronic copies of step-by-step instructions for saliva collection, HemaSpot collection, and Actigraphy use. Actigraphy was chosen for the purposes of this study because research demonstrates that it provides reliable estimates of sleep patterns in relation to polysomnography [27]. The baseline Zoom meeting took an average of 30-45 minutes, and the baseline survey took approximately 45 minutes to complete. Furthermore, participants who provided informed consent were mailed a study kit with materials needed to complete the 2-day diary period via the United Parcel Service (UPS). The study kit contained saliva collection aids for the 2-day period, a HemaSpot collection device, an Actigraphy watch, and printed copies of instructions for each section of the protocol.

Two-Day Diary Period

Within 48 hours of completing the baseline, RAs mailed study kits to participants’ homes via UPS overnight shipping. These study kits contained (1) a charged Actigraphy GT9X Link watch ready to start data collection immediately; (2) 2 Ziploc bags with 3 saliva collection tubes and 3 saliva collection aids per bag; (3) a HemaSpot blood spot collection device with an absorbent sheet, 2 gauze packs, 2 alcohol swabs, 2 safety lancets, and 2 bandages; (4) printed out instructions for the saliva collection procedure, HemaSpot blood spot collection procedure, and wearing the Actigraphy, as well as a sheet to record when the Actigraph was placed on one’s wrist and when it was taken off, if applicable; (5) supplies for returning the study kit including a small plastic bag with a humidity indicator card and 2 desiccant packets for the HemaSpot device, a cold pack (which they were instructed to freeze immediately upon receiving the kit), a silver insulated bubble mailer, and a brown paper shipping envelope; and (6) a prepaid shipping label to return the Actigraphy, saliva samples, and HemaSpot kits back to the laboratory. Participants were instructed to start the 2-day protocol the day after receiving their study kit.

Over the 2-day study period, participants were instructed to wear the Actigraphy watch on their nondominant wrist consecutively, even when showering and sleeping, over the 2-day period. Furthermore, participants provided 3 saliva samples per day, a blood spot sample, and took 3 surveys each day via Qualtrics. The first 2 of these surveys, termed “momentary diaries” took 2-3 minutes to complete and asked participants to fill out relevant information related to saliva samples, mood, and experiences. The last survey of the day, termed the “nightly diary,” took about 10 to 15 minutes to complete and asked the same “momentary diary” questions as well as more detailed questions about their experiences throughout the day. Surveys were sent via email to participants at 6:00 AM, 6:30 AM, and 8 PM each day over a 2-day period, and they were instructed to take the surveys immediately after providing their saliva samples upon wakeup, 30 to 45 minutes after waking up, and around bedtime.

For the 2-day saliva collection period, participants were asked to provide 3 saliva samples per day via the passive drool method. The first saliva sample was taken immediately upon waking, the second saliva sample was taken 30-45 minutes after waking, and the third saliva sample was taken before bedtime. This procedure was repeated for 2 consecutive days. Participants were instructed to avoid brushing their teeth, eating, and drinking liquids high in sugar or acidity (eg, coffee) 30 minutes before taking their saliva samples. Participants were instructed to allow saliva to pool in their mouth and then use a saliva collection aid to collect 1 mL of saliva in the collection vial. The participants were also instructed to freeze their samples immediately after collection.

For the HemaSpot blood spot collection procedure, participants were instructed to provide a blood spot sample on the afternoon of the second day of the 2-day study period. Participants were instructed to wash their hands before beginning the finger prick procedure. Then, participants spread the absorbent sheet provided in the study kit on a table or countertop and placed gauze, alcohol swabs, safety lancets, and bandages on the sheet in close reach. When the participants were ready to start the procedure, they were instructed to open the pouch containing the HemaSpot device (which must be used within a few minutes of opening). They were then instructed to prepare a safety lancet for use by twisting the cap until it popped out. Participants then selected their ring or middle finger from their nondominant hand and selected a place to the side of the finger pad (avoiding their fingernail). Participants then wiped their finger with an
During this interview, the RAs described the purpose of the to schedule their 15 to 20 minute debrief interviews via Zoom.

Downloaded. Then, the RAs contacted the participants via email or too little blood). Furthermore, ActiGraph data were present) and blood spot samples (eg, if there was too much blood). RAs processed the saliva and blood spot samples by examining the features of the saliva (eg, denoting whether phlegm or blood was present) and blood spot samples (eg, if there was too much or too little blood). Furthermore, ActiGraph data were downloaded. Then, the RAs contacted the participants via email to schedule their 15 to 20 minute debrief interviews via Zoom.

During this interview, the RAs described the purpose of the study and followed a semistructured interview guide to ascertain participants’ experiences with the study design, collecting saliva and blood spot samples, wearing an ActiGraph, and filling out diary surveys each day. After the completion of this interview, participants were compensated according to their compliance with the study protocol (see the Financial Incentive Structure section above) through an electronic Visa gift card via GiftBit.

The RAs took notes on participants’ responses to the follow-up interview questions (see Figure 1). The interview guide was structured to gather information pertaining to the feasibility and acceptability of the study protocol among the YSMM. In particular, we asked participants about their experiences with the RAs, saliva samples, ActiGraph watch, and HemaSpot collection device. We also asked participants to describe whether the study caused any stress or confusion, and if they had any areas of improvement to increase their willingness to engage in future research with similar designs.

Financial Incentive Structure

In this study, a financial incentive structure was used to promote retention. Participants were compensated with US $10 for completion of the baseline survey. For wearing the ActiGraph and returning the ActiGraph, participants were compensated with US $15. To provide and return saliva samples, the participants were compensated with US $15. For providing and returning the blood spot sample, participants were compensated with US $15. Furthermore, the participants were provided with US $10 for completing the follow-up interview. Finally, if participants completed each component of the study, they received a US $30 bonus. Thus, the participants could earn up to US $95 for the completion of this study.

Qualitative Data

Procedure

Participants were instructed to mail their study kits to the laboratory the day after completing the 2-day study protocol by placing the frozen HemaSpot device in a small plastic bag with a humidity indicator card and the 2 desiccant packets. They were instructed to place the 6 saliva collection tubes and ActiGraph along with the sealed HemaSpot device in a silver-insulated bubble mailer with a frozen cold pack. Afterward, participants placed the silver-insulated bubble mailer into the brown paper silver envelope and were instructed to affix the prepaid return label to the envelope and drop it off at UPS to be sent back to the laboratory via overnight shipping.

After receiving the returned study kit back to the laboratory, RAs processed the saliva and blood spot samples by examining the features of the saliva (eg, denoting whether phlegm or blood was present) and blood spot samples (eg, if there was too much or too little blood). Furthermore, ActiGraph data were downloaded. Then, the RAs contacted the participants via email to schedule their 15 to 20 minute debrief interviews via Zoom. During this interview, the RAs described the purpose of the study and followed a semistructured interview guide to ascertain participants’ experiences with the study design, collecting saliva and blood spot samples, wearing an ActiGraph, and filling out diary surveys each day. After the completion of this interview, participants were compensated according to their compliance with the study protocol (see the Financial Incentive Structure section above) through an electronic Visa gift card via GiftBit.

The RAs took notes on participants’ responses to the follow-up interview questions (see Figure 1). The interview guide was structured to gather information pertaining to the feasibility and acceptability of the study protocol among the YSMM. In particular, we asked participants about their experiences with the RAs, saliva samples, ActiGraph watch, and HemaSpot collection device. We also asked participants to describe whether the study caused any stress or confusion, and if they had any areas of improvement to increase their willingness to engage in future research with similar designs.

Qualitative Analysis Plan to Assess Feasibility and Acceptability

A deductive directed content analysis approach was used to code the interview notes [28]. This approach uses prior theory and research to create an initial coding scheme consisting of overarching themes—in this case, our initial predetermined themes were feasibility and acceptability as well as potential areas of improvement. Three coders met to discuss the predetermined themes and then one coder applied the themes to the transcripts. The 3 coders met throughout the duration of the qualitative analysis to discuss themes and resolve any discrepancies in coding. After reading the transcripts, subthemes for each overarching theme were deduced from the interview notes to determine a finalized coding scheme organized by the themes of feasibility, acceptability, and areas for improvement. Debrief notes were analyzed using Atlas.ti qualitative software [29].
Quantitative Data to Explore Preliminary Associations

Baseline Survey
The baseline survey was conducted on the web using Qualtrics. Participants were assigned a unique participant ID and required to enter the ID to access each survey. The baseline survey asked questions pertaining to sociodemographics (eg, date of birth, race and ethnicity, education level, yearly income), family history of cardiovascular-related illness or disease, and general weekly exercise patterns (ie, the Global Physical Activity Questionnaire [30]). We then administered a series of scales related to experiences with stress (eg, Adverse Childhood Experiences Scale [31], Perceived Stress Scale [32]), discrimination (Everyday Discrimination Scale [EDS] [33], Major Experiences of Discrimination Scale [33]), substance use (Alcohol, Smoking, and Substance Use Involvement Screening [34]), and mental health (eg, Center for Epidemiologic Studies Depression Scale [35]). The baseline survey took an average of 45 minutes to an hour to complete.

Momentary Diaries
Momentary diaries were taken by participants twice per day over a 2-day period (once upon waking and once 30-45 min after waking) via Qualtrics. Participants were asked several questions related to their saliva samples (eg, what time they provided the sample and caffeine consumption) and questions pertaining to their current mood, stress, recent experiences of racial and sexual orientation discrimination, and substance use. Each momentary survey was sent to the participants via a secure Qualtrics link. The survey took an average of 2-3 minutes to complete.

Nightly Diaries
Nightly diaries were taken by participants once per day over a 2-day period (before bedtime) using Qualtrics. Nightly diaries contained the same questions as the momentary diary and included modified scales to assess experiences of mood (Positive and Negative Affect Schedule [36]), depressive symptoms (Center for Epidemiologic Studies Depression Scale), and discrimination (EDS). Nightly diaries were sent to the participants via Qualtrics via email.

Salivary Cortisol
Participants provided 3 saliva samples per day over the course of 2 consecutive days to assess diurnal cortisol [37]. They were instructed to provide samples upon awakening, 30 minutes after awakening, around lunchtime, and around bedtime. The participants were also instructed to take a brief diary survey after providing each saliva sample. After participants collected their first 3 saliva samples, they received a link to an additional “momentary” diary survey via text message or email, which took about 2 minutes to complete. This momentary survey assessed variables associated with cortisol (eg, caffeine consumption) as well as other psychosocial variables (eg, current mood). Finally, after each bedtime saliva sample, participants received a link via text message or email, depending on their preference, to a longer “nightly” diary survey. To increase adherence to sample collection and surveys, participants received text message reminders to provide their samples, which also contained the appropriate survey link.

High-Sensitivity CRP
The Center for Studies in Demography and Ecology Biodemography Lab analyzed serum high-sensitivity CRP (hsCRP) values using an enzyme-linked immunosorbent assay as described in detail elsewhere [38]. Microliter plates were coated with anti-CRP antibodies to measure CRP concentrations within serum samples and stored at −20 °C. This method has been validated for population health research as a robust method for detecting low concentrations of CRP [38-40]. hsCRP values were arranged into 3 categories according to clinical risk for CVD assigned by the American Heart Association and Centers for Disease Control and Prevention to create a nominal outcome variable for calculation: low (<1.00 mg/L), average (1.00-3.00 mg/L), and high (>3.00 mg/L) [41,42]. The categories described the results in terms of clinical significance, as CVD risk increases with higher CRP concentrations. Previous studies using CRP in heart disease have demonstrated this clinical significance using categorical CVD risk [43-45].

Other Covariates

Overview
BMI was calculated using a standard formula based on the participants’ height and weight (kg/m²), each of which was self-reported. Values were sorted into 2 categories: underweight or normal weight (<25.00) and overweight or obese (≥25.00). Furthermore, we also ascertained information pertaining to smoking status (never, former, and current), substance use (measured at baseline via Alcohol, Smoking, and Substance Use Involvement Screening and nightly diaries), and family history of CVD (yes or no).

Quantitative Analysis
First, sociodemographic and clinical characteristics were explored in our study sample (eg, means with SDs and frequencies). We then explored retention and feasibility through an examination of study dropout, loss to follow-up, and completion rates of each of the study components (ie, salivary samples, HemaSpot blood spot samples, momentary diaries, and nightly diaries). Finally, Pearson correlation coefficients were used to explore associations among our main independent variables (discrimination as measured by EDS), the dependent variable (hsCRP), and our mediators (sleep, physical activity, and physiological stress as measured by salivary cortisol). Time-varying variables (ie, sleep, physical activity, and cortisol) were averaged across the study period for each participant. Baseline discrimination (as measured by EDS) was used for the purpose of the correlations. Average daily cortisol curves were also examined and stratified by race and ethnicity using the profile plot command in Stata (version 18; StataCorp) [46].

Results

Sample Characteristics
Figure 2 displays an overview of the number of participants who were screened, ineligible, enrolled, and analyzed. Sociodemographic and clinical characteristics of the 19 YSMM who participated in the study are presented in Table 1. On
average, the participants were aged 24.37 (SD 5.46) years. With respect to racial or ethnic identity, 39% (7/19) identified as non-Hispanic white, whereas the remaining identified as Hispanic (3/19, 16%), Black (3/19, 16%), or another racial or ethnic identity. Most participants identified as gay or bisexual (8/19, 42%), and the remaining identified as having another sexual identity. Concerning health characteristics, most participants reported an average BMI (10/19, 53%) and no family history of CVD (16/19, 84%). The average hsCRP among participants was 0.20 (SD 0.17), and participants slept an average of 313.18 (SD 90.25) minutes per night and expended an average of 1.52 (SD 0.36) metabolic equivalent of tasks (METs) per day.

Table 2 presents the retention and feasibility measures. Overall, 20 YSMM enrolled in this study. Of these 20 YSMM, 1 participant was lost to follow-up after the informed consent meeting, and 2 participants were lost to follow-up after completion of the study protocol (ie, they did not participate in the follow-up interviews but completed all other parts of the study protocol). Of the 19 YSMM who engaged in the study protocol, 100% (n=19) sent back their HemaSpot samples (ie, blood spots) and all 6 of their saliva samples (3 saliva samples per day for 2 consecutive days). With respect to the momentary diaries, 89% (17/19) completed 4 out of the 4 momentary diaries (2 momentary diaries/d for 2 days). The remaining participants completed either 2 (5%; n=1) or 1 (5%; n=1) of the momentary diaries over the 2-day period. In contrast, 1 participant did not complete any nightly diaries over the 2-day period. However, of the remaining 18 participants, 94% (n=16) completed 2 out of the 2 nightly diaries over the study period, and the remaining 6% (n=2) completed 1.

Figure 2. Participants screened, excluded, enrolled, and analyzed.
Table 1. Sociodemographic and clinical characteristics of the study sample (n=19).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean (SD; range)</td>
<td>24.37 (5.46; 18-35)</td>
</tr>
<tr>
<td>Race or ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>7 (39)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3 (17)</td>
</tr>
<tr>
<td>Black, including Hispanic</td>
<td>3 (17)</td>
</tr>
<tr>
<td>Other</td>
<td>5 (28)</td>
</tr>
<tr>
<td>Sexual orientation, n (%)</td>
<td></td>
</tr>
<tr>
<td>Gay</td>
<td>8 (42)</td>
</tr>
<tr>
<td>Bisexual</td>
<td>8 (42)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (16)</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
</tr>
<tr>
<td>High-school diploma or GED</td>
<td>4 (21)</td>
</tr>
<tr>
<td>Some college</td>
<td>8 (42)</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>7 (37)</td>
</tr>
<tr>
<td>BMI category, n (%)</td>
<td></td>
</tr>
<tr>
<td>Normal (<25)</td>
<td>10 (53)</td>
</tr>
<tr>
<td>Overweight or obesity (³25)</td>
<td>9 (47)</td>
</tr>
<tr>
<td>Family history of CVD</td>
<td></td>
</tr>
<tr>
<td>Yes, n (%)</td>
<td>3 (16)</td>
</tr>
<tr>
<td>No, n (%)</td>
<td>16 (84)</td>
</tr>
<tr>
<td>hsCRP, mean (SD; range)</td>
<td>0.20 (0.17; 0.03-0.63)</td>
</tr>
<tr>
<td>Number of min of sleep/night, mean (SD; range)</td>
<td>313.18 (90.25; 181-487)</td>
</tr>
<tr>
<td>*METs/d, mean (SD; range)</td>
<td>1.52 (0.36; 1.09-2.73)</td>
</tr>
<tr>
<td>Cortisol measures (µg/dL), mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Upon waking</td>
<td>0.33 (0.15)</td>
</tr>
<tr>
<td>30-45 min after waking (CAR)</td>
<td>0.33 (0.22)</td>
</tr>
<tr>
<td>Around bedtime</td>
<td>0.06 (0.08)</td>
</tr>
</tbody>
</table>

*aOne respondent had missing data regarding race.

*bGED: General Educational Development.

*cCVD: cardiovascular disease.

*dhsCRP: high-sensitivity C-reactive protein.

*eTwo participants had missing actigraphy data on sleep.

*fMET: metabolic equivalent of task.

*gCAR: cortisol awakening response.
Table 2. Retention and feasibility of the study protocol (n=19\(^a\)).

<table>
<thead>
<tr>
<th>Value</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>HemaSpot samples returned, n (%)</td>
<td>19 (100)</td>
</tr>
<tr>
<td>Saliva samples returned, n (%)</td>
<td>114 (100)</td>
</tr>
<tr>
<td>Momentary diaries completed, mean (SD; range)</td>
<td>2.45 (1.13; 1-4)</td>
</tr>
<tr>
<td>Nightly diaries completed, mean (SD; range)</td>
<td>1.47 (0.51; 1-2)</td>
</tr>
<tr>
<td>Momentary diary completion by day, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Average diaries completed; day 1 (n=19), mean (SD; range)</td>
<td>1.49 (0.51; 1-2)</td>
</tr>
<tr>
<td>Average diaries completed; day 2 (n=17), mean (SD; range)</td>
<td>1.50 (0.51; 1-2)</td>
</tr>
<tr>
<td>Nightly diary completion by day, n (%)</td>
<td></td>
</tr>
<tr>
<td>Sample completed, day 1</td>
<td>18 (95)</td>
</tr>
<tr>
<td>Sample completed, day 2</td>
<td>16 (84)</td>
</tr>
</tbody>
</table>

\(^a\)20 participants enrolled in the study; however, only 19 (95\%) completed the protocol.

Feasibility and Acceptability

Overall, 17 (89\%) participants completed the follow-up qualitative interviews. Within each overarching prespecified theme of “feasibility,” “acceptability,” and “areas for improvement,” we found several subthemes. The overarching themes and subthemes, as well as their definitions and excerpts, are presented in Table 3. For feasibility, we found two subthemes: (1) informative onboarding experience and easy communication with RAs, and (2) easy protocol to follow. Most participants (14/17, 82\%) reported that their onboarding experience (including informed consent and a detailed step-by-step protocol) was informative and that they were able to answer all of their questions. Several participants noted that the documents that were emailed (and hard copies mailed) to them during the onboarding call were clear and laid out the study protocol in a helpful and step-by-step manner. Furthermore, participants noted that the RAs were easy to communicate with and were available to answer any questions they may have had over the study protocol period, thus reducing any confusion or hesitancy when it came to completing the study’s steps. Furthermore, 76\% (13/17) reported that the study protocol was easy to follow with little to no issues arising, especially with the instruction documents that were sent to the participant (eg, for the ActiGraph, HemaSpot, and saliva samples).

With respect to acceptability, we found three subthemes: (1) appropriate financial incentive structure, (2) desire to participate beyond financial incentives, (3) changed perceptions of mood or discrimination, and (4) willingness to participate in long-term studies with a similar protocol. First, 53\% (9/17) reported that the financial incentive payment structure increased their willingness to complete the study and all steps in the protocol. These participants noted the importance of being compensated fairly for their time, especially because this protocol required the collection of biological samples (ie, saliva and blood). Furthermore, these participants also noted that they appreciated the breakdown of the payments—in other words, they appreciated being compensated for each component of the study separately rather than a lump contingent on completion of the entire protocol at the end of the study period. However, 41\% (7/17) of the participants described internal and altruistic motivations for participation, which motivated them to complete the study regardless of the financial incentives attached to it. These participants described an interest in the scientific process, as well as wanting to contribute to their community’s health by getting involved in health-related research. Moreover, 47\% (8/17) reported positive experiences directly because of participation, including a better sense of mood and becoming more aware of experiences of discrimination. These participants noted reflecting on their experiences over the course of the day (eg, nightly diaries) required them to become more mindful of their feelings and moods throughout the day and to become more aware of their surroundings. Furthermore, these individuals were able to better capture experiences with discrimination and microaggressions and reflect on their subsequent moods. Finally, 100\% (n=17) of the participants reported willingness to participate in long-term studies (eg, 30 days of data collection) using a similar protocol. In particular, participants felt that a long-term study would be more reflective of their day-to-day stressors and experiences. However, 2 of these participants noted that while they would be willing to participate in a longer-term study, they preferred that the study surveys (eg, baseline and nightly) be shorter in duration.
<table>
<thead>
<tr>
<th>Theme and description</th>
<th>Example quotes</th>
<th>Endorsed, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility of intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informative onboarding experience and easy communication process with RAs</td>
<td>Descriptions related to the ease of understanding the onboarding instructions and documents and being able to communicate in a timely manner with the RAs as well as get their answers answered promptly</td>
<td>• “Yes, [the onboarding experience] answered all the questions at that point and I had a few more questions [later] but I was able to get my questions answered.” (Hispanic, bisexual, 28 y) • “Everything was fine, [it was] very pleasant to talk with research assistants. Instructions were clear granted how much information there was.” (White, gay, 35 y)</td>
</tr>
<tr>
<td>Protocol easy to follow</td>
<td>Participant was able to comprehend and follow the study instructions with little to no problems</td>
<td>• “[The protocol was a] good experience, not very invasive. Labeled tubes and collection aid were helpful. Instructions were clear and helped.” (Asian, bisexual, 21 y) • “Everything was very clear. Explanation of the blood spot sample was especially helpful.” (Asian, gay, 28 y)</td>
</tr>
<tr>
<td>Acceptability of intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate financial incentive structure</td>
<td>Descriptions of being motivated to engage in the study due to the financial incentive structure and feeling that the financial incentive structure was appropriate for the time given</td>
<td>• “The incentive did help my willingness [to participate] and the breakup of the payments helped.” (Hispanic, bisexual, 25) • “[The financial incentive structure] made me want to ensure I completed all the steps, but it was not very hard so I would have done it either way. But the payments definitely helped.” (White, bisexual, 30 y)</td>
</tr>
<tr>
<td>Desire to participate beyond financial incentives</td>
<td>Feelings and motivations of external reasons for participating in the study (eg, wanting to progress science)</td>
<td>• “From an academic perspective, I was interested in the study regardless. Realistically, I would be taking opportunity to be doing the study anyway.” (Black Hispanic, gay, 31 y) • “[The financial incentive structure] did not really affect my participation, would have still done without compensation.” (Black, gay, 31 y)</td>
</tr>
<tr>
<td>Changed perceptions of mood and discrimination</td>
<td>Increased awareness of one’s experiences with discrimination and mood throughout the day</td>
<td>• “It made me a bit more aware of my surroundings and did notice more [discriminatory] experiences once I was asked.” (Hispanic, gay, 18 y) • “[I became] more sensitive to attuning to [discrimination]. Many of these things I encounter on a regular basis, but it became more salient when calling my attention to it.” (Black Hispanic, gay, 31 y)</td>
</tr>
<tr>
<td>Willingness to participate in longer-terms studies</td>
<td>Expressing interest and desire to participate in studies similar to this on a longer-term basis (eg, 30 d)</td>
<td>• “Yeah, it would be good to participate [in a longer term study] because I felt like study duration was very short. A longer study would be more insightful.” (Black Hispanic, gay, 24 y) • “Absolutely [I would participate in a longer-term study]. I have participated in longitudinal studies before and recognize the challenge that goes into them.” (Black Hispanic, gay, 31 y)</td>
</tr>
</tbody>
</table>

Areas for improvement
Although participants overall had positive feedback with respect to the study design and their experiences with participation, there were several areas that they noted for improvement: (1) experiences with day-to-day stress unrelated to the study, (2) protocol-related criticisms related to the study procedures, and (3) stress directly resulting from the study protocol.

To be honest, it was a stressful experience. It was also hard to write the time on the tube. (Black Hispanic, gay, 24 y)

Certain parts of the study caused me stress, such as the blood spot sample. (Asian, bisexual, 19 y)

No stress related to the study. Logistical planning was needed to make sure I was waking up and going to bed at a relatively set time. But it was not stressful, just extra planning in terms of how I would navigate my time. (Black Hispanic, gay, 31 y)

I stressed during the 2-day study due to personal relationships. The study didn’t cause any anxiety, and I thought the structure was helpful and allowed me to plan things out. (Asian, bisexual, 21)

The surveys were long and felt frustrating. I felt the wording was ambiguous and that the questions assumed participants were affected by other people’s feelings. (White, bisexual, 21 y)

It was a good experience during the day, but at night after doing the blood sample it was a little bit exhausting and it was a lot of questions, etc. (Hispanic, gay, 18 y)

Certain parts of the study caused me stress, such as the blood spot sample. (Asian, bisexual, 19 y)

To be honest, it was a stressful experience, it was simple to give saliva, etc. but I was uncomfortable with storing the saliva in the freezer. It was hard to use the saliva tube and straw, but at the end of the day it was a good experience. It was also hard to write the time on the tube. (Black Hispanic, gay, 24 y)

Endorsed, n (%) 9 (53)

Endorsed, n (%) 13 (76)

Endorsed, n (%) 4 (24)

Preliminary Exploration of Hypothesized Pathway

Correlations between main independent variable (discrimination), dependent variable (hsCRP), and the mediators (salivary cortisol, sleep, and physical activity) are presented in Table 4. Furthermore, Table 5 displays the average cortisol parameters by race, and Figure 3 displays the average cortisol curves over the 2-day period stratified by race or ethnicity. It is important to note that out of the 19 YSMM included in these analyses, 2 participants did not wear their ActiGraph watch over the 2-day period and thus were not included in the actigraphy measures. There was a moderate negative association between everyday discrimination and mean cortisol such that greater experiences of discrimination were associated with lower daily cortisol, on average. Moreover, we also observed a moderate, positive association between daily physical activity, on average (as measured by METs) and hsCRP such that greater levels of average physical activity were associated with higher hsCRP, on average. No other correlations were significant in our study sample. With respect to the average cortisol curves over the 2-day period (Figure 3), White YSMM experienced the strongest...
cortisol awakening response (CAR; ie, the spike in cortisol that occurs in healthy individuals 30-45 min after waking), which steeply declined throughout the day, whereas Black YSMM’s cortisol started out lower and exhibited a weaker CAR and declined throughout the day.

Table 4. Correlation matrix (n=19a).

<table>
<thead>
<tr>
<th></th>
<th>Everyday discrimination</th>
<th>Mean cortisol (µg/dL)</th>
<th>Mean sleep (min)</th>
<th>Mean METs</th>
<th>hsCRP (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everyday discrimination</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean cortisol (µg/dL)</td>
<td>–0.51e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean sleep (min)</td>
<td>–0.07</td>
<td>–0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean METs</td>
<td>–0.32</td>
<td>0.31</td>
<td>–0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsCRP (mg/L)</td>
<td>0.04</td>
<td>0.29</td>
<td>–0.18</td>
<td>0.59f</td>
<td></td>
</tr>
</tbody>
</table>

aTwo participants did not complete follow-up interviews.
bMET: metabolic equivalent of task.
chsCRP: high-sensitivity C-reactive protein.
dNot applicable.
eP=0.03.
fMET: metabolic equivalent of task.
gP=0.008.

Table 5. Cortisol by race (n=19a).

<table>
<thead>
<tr>
<th></th>
<th>White (n=3), mean (SD)</th>
<th>Hispanic (n=3), mean (SD)</th>
<th>Black (n=7), mean (SD)</th>
<th>Other (n=5), mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waking cortisol (µg/dL), mean (SD)</td>
<td>0.35 (0.18)</td>
<td>0.28 (0.05)</td>
<td>0.24 (0.04)</td>
<td>0.36 (0.19)</td>
</tr>
<tr>
<td>Cortisol awakening response (µg/dL), mean (SD)</td>
<td>0.39 (0.21)</td>
<td>0.31 (0.11)</td>
<td>0.23 (0.15)</td>
<td>0.34 (0.34)</td>
</tr>
<tr>
<td>Bedtime cortisol (µg/dL), mean (SD)</td>
<td>0.05 (0.04)</td>
<td>0.10 (0.09)</td>
<td>0.03 (0.02)</td>
<td>0.09 (0.13)</td>
</tr>
</tbody>
</table>

aCorrelations for sleep include 17 out of 19 participants.
Discussion

Principal Findings

This pilot study found evidence for the feasibility and acceptability of a virtual daily diary protocol and explored preliminary associations between discrimination, cardiometabolic health behaviors, and inflammation among YSMM. Of the 19 participants who completed more than just the baseline survey, 100% (n=19) returned their HemaSpot and saliva samples, and 89% (n=17) completed all momentary measures.

Although some participants mentioned some areas for improvement, such as having to take extra time to plan ahead to ensure that they were able to complete the required steps and experiencing stress directly related to the study (e.g., needle anxiety, having to produce saliva samples 3 times a day), 100% of the participants reported a willingness to participate in longer-term studies using a similar protocol. Such valuable findings greatly contribute to the literature by demonstrating the feasibility and acceptability of a fully virtual protocol with a component of collecting biological specimens. Our findings expand on current research that highlights the specific challenges of conducting a fully virtual protocol [47,48].

For instance, Feigelson et al [47] examined the feasibility of an at-home study involving cross-sectional survey data and stool collection and found that there is a need for significant personal contact and carefully timed follow-up to ensure participant willingness. In our study, only 2 individuals did not participate in follow-up interviews. However, they completed all the other parts of the study protocol. In addition, the subthemes found in the qualitative analysis regarded the informative nature of the onboarding experience, easy communication process with the RAs, and the fact that the protocol was easy to follow. Furthermore, some of the challenges encountered by the participants were concurrent with previous research that has described remote protocols. For instance, in-home sample collection and the inconvenience of fitting the protocol timeframe with participant schedules have been highlighted in previous studies [47,48]. In the current protocol, some of the participants mentioned that due to various forms of daily stress unrelated to the study, they had to dedicate time to ensure they would be able to complete the steps in the specified time frame. In addition, although 76% (13/17) of the participants reported that the study protocol was easy to follow, 24% (4/17) reported experiencing stress when collecting biospecimens. It was not clear if the experiences of stress outside the study protocol would still be a barrier if participants were to come to the laboratory to complete the study.

Furthermore, a notable finding of our protocol was that 47% (8/17) of participants reported better perceived mood and awareness of discriminatory experiences as a direct result of their participation in the study. The participants highlighted that the momentary diary prompts led them to reflect on their experiences throughout the day. As previously described in the study’s theoretical model, there is a pressing need for studies to take an intersectional approach and consider the unique experiences of stress among sexual minority individuals by racial/ethnic and sexual/gender status and by culture and context.
Although not a direct aim of our protocol, such results and reports greatly contribute to and expand on the current literature by highlighting the need for protocols and intervention development to take an intersectional approach, especially ones using ecologic momentary data collection. In addition, as mentioned above, 100% of the participants reported a willingness to participate in a longer-duray protocol with components similar to the current one. This was because participants believed that a longer-term study would better reflect their everyday stressors and experiences. Future research aimed at understanding key minority stressors and their effects on health behaviors should consider expanding the study duration to best capture individuals’ overall experiences. Similar study designs with longer durations have shown acceptance among sexual minority populations [49]. For example, one ecologic momentary assessment study examining tobacco, alcohol, and drug use in relation to daily discrimination experiences among 50 sexual and gender minorities found that participants completed an average of 68% of the 6 prompts sent to them daily over a period of 14 days [49]. Furthermore, in a daily diary study examining minority stress and daily mood among racially diverse sexual minority youth (n=94) over a 21-day period, participants responded to 83% of the daily diary prompts sent to them per day [50]. By capturing day-to-day experiences over a longer duration (eg, a 14- or 30-day period), researchers could not only improve generalizability and power but also capture variation in experiences of minority stress and cardiovascular risk behaviors across both week and weekend days. Our preliminary descriptive findings also shed light on potential differences across racial or ethnic groups in the YSMM, which necessitates further exploration. For instance, we examined average daily cortisol curves across race or ethnicity and found evidence suggesting that Black YSMM may experience a more dysregulated cortisol curve compared with White YSMM. In particular, we found that Black YSMM experienced a less pronounced CAR and a slower decline throughout the day compared with White YSMM. CAR represents a brief period, typically 30 to 45 minutes after waking, where an individual experiences increased cortisol activity and is recognized as an important marker of the hypothalamic-pituitary-adrenal axis as it aids an individual in their transition from sleep to wake [51]. Typically, however, individuals experience a steady decline in cortisol activity throughout the day, with the lowest levels recorded around bedtime (ie, daily cortisol curves) [52]. Research has generally found that individuals with steeper cortisol curves (ie, cortisol that declines at a faster rate) are associated with better overall health outcomes compared with individuals with more blunted cortisol curves (ie, cortisol that declines at a slower rate) [52]. Although we were underpowered to detect significant differences within daily cortisol curves among our study sample (n=19), our descriptive findings shed light on potential differences across race or ethnicity among YSMM that warrant further exploration with larger, more diverse study samples.

Although our preliminary study highlights the feasibility and acceptability of a fully remote protocol examining momentary, daily, and biological measures, there are several limitations that should be considered. First, our sample consisted of YSMM who resided in the New York tristate area, and thus may not be generalizable to the wider population of YSMM in the United States. Second, our study sample was small, which also affected our ability to detect significant differences in our key measures of interest (eg, daily cortisol curves and CRP). To the best of our knowledge, this is the first study to integrate momentary assessment data and biologics using a fully remote protocol. Third, our study was, in part, disrupted by the COVID-19 lockdown, which may have impacted participants’ ability to fully engage with the protocol and may also have impacted participants’ daily cardiovascular health behavior patterns (eg, participants may not be walking or traveling as much as they used to pre-pandemic). Fourth, we may have missed important information within our surveys that could affect cardiovascular health, such as dietary patterns. Fifth, although the overarching literature supports the use of wearables, such as the ActiGraph, to measure sleep, it may not have wholly captured sleep patterns over the course of 2 days in comparison with gold standards, such as polysomnography [27,53]. Thus, it is important to carefully examine the updated literature when determining the best wearable device for capturing sleep patterns. Sixth, given that our pilot study only spanned a period of 2 days, our actigraphy measures (ie, sleep and physical activity) may not have reliably captured daily sleep and physical activity patterns among our sample of YSMM and we did not include data on napping in these analyses. Thus, future research should use longer collection periods to capture sleep and physical activity patterns more comprehensively among diverse samples of YSMM. For instance, research has found that a period of at least 3-5 days is necessary to capture accurate information pertaining to sleep [27]. Despite these limitations, the strengths of this study lie in its diverse sample of YSMM and its rigorous design that integrates surveys and biological metrics. By demonstrating the feasibility and acceptability of a fully remote protocol combining ecological momentary assessment and biological measures, our results pave the way for future work aimed at developing culturally tailored just-in-time interventions that might be delivered virtually. Such interventions should consider minority stressors and their influence on health behaviors and adverse outcomes throughout their lifespan. Doing so could lessen the mental and physical burden at the intersection of multiple minoritized identities as well as reduce inequities in the health care system.

Conclusions

Overall, the fully virtual protocol for assessing CVD among emerging adult sexual minorities was acceptable, indicating that it can be used in the future for similar work and with a larger time period and sample size. Furthermore, preliminary descriptive results suggest that there may be key racial or ethnic differences among YSMM in key cardiovascular health features (ie, daily cortisol curves) that warrant further research.
Acknowledgments
This work was supported by the National Heart, Lung, and Blood Institute (5R25HL105446-11; principal investigator, Mohamed Boutjdir).

Conflicts of Interest
None declared.

References

29. ATLAS.ti homepage. ATLAS.ti. URL: https://atlasti.com [accessed 2024-02-03]

Abbreviations

CAR: cortisol awakening response
CRP: C-reactive protein
CVD: cardiovascular disease
EDS: Everyday Discrimination Scale
hsCRP: high-sensitivity C-reactive protein
MET: metabolic equivalent of task
RA: research assistant
UPS: United Parcel Service
YSMM: young sexual minority men

Edited by A Mavragani; submitted 25.08.23; peer-reviewed by K Heinrich, H Aghayan Golkashani; comments to author 13.12.23; revised version received 21.12.23; accepted 09.01.24; published 19.02.24.

Please cite as:
Cook SH, Wood EP, Rodrigues M, Jachero Caldas J, Delorme M
Assessment of a Daily Diary Study Including Biospecimen Collections in a Sample of Sexual and Gender Minority Young Adults: Feasibility and Acceptability Study
JMIR Form Res 2024;8:e52195
URL: https://formative.jmir.org/2024/1/e52195
doi:10.2196/52195
PMID:38373036
Acceptance of Telemedicine by Specialists and General Practitioners in Cardiology Care: Cross-Sectional Survey Study

Felix Muehlensiepen, BA, MPH, Dr rer med; Marie Josephine Hoffmann, MD; Jonathan Nübel, MD; Yury Ignatyev, PhD; Martin Heinze, Prof Dr; Christian Butter, Prof Dr; Anja Haase-Fielitz, PharmD

1 Brandenburg Medical School (MHB) and Faculty of Health Sciences (FGW) Brandenburg, Neuruppin, Germany
2 Autonomie, Gérontologie, E-santé, Imagierie et Société (AGEIS), Université Grenoble Alpes, Grenoble, France
3 Department of Cardiology, Heart Center Brandenburg Bernau & Faculty of Health Sciences (FGW) Brandenburg, Brandenburg Medical School (MHB), Neuruppin, Germany
4 Department for Psychiatry and Psychotherapy, University Hospital Immanuel Klinik Rüdersdorf, Brandenburg Medical School (MHB), Rüdersdorf, Germany
5 Institute of Social Medicine and Health System Research, Otto von Guericke University, Magdeburg, Germany

* these authors contributed equally

Corresponding Author:
Anja Haase-Fielitz, PharmD
Department of Cardiology, Heart Center Brandenburg Bernau & Faculty of Health Sciences (FGW) Brandenburg, Brandenburg Medical School (MHB)
Fehrbelliner Str 38
Neuruppin, 16816
Germany
Phone: 49 49333869 ext 4649
Email: anja.haase-fielitz@mhb-fontane.de

Abstract

Background: In the coming years, telemedicine will play a key role in health care. Especially in rural areas with weak infrastructure, telemedicine could be crucial to providing adequate and personalized medical care.

Objective: We investigated the acceptance and preferences of telemedicine among cardiologists, internists, and general practitioners. In addition, we aimed to identify knowledge, explore factors that influence the decision to adopt or reject this technology, and create starting points for demand-oriented further research.

Methods: We conducted a web-based survey between May 2021 and February 2022. The 34-item questionnaire covered a wide range of questions regarding knowledge, acceptance, and use of telemedicine in cardiology care. Participants (cardiologists, internists, and general practitioners) were contacted through their professional email addresses, through a QR code published in a regional health journal, and through X (formerly known as Twitter). After exclusion of questionnaires with missed values, multidimensional scaling and k-means clustering were performed. Participants were divided into 3 clusters (C1, C2, and C3) based on their attitudes toward telecardiology. C1 uses telemedicine for personal health and clinical practice; C2 shows reluctance; C3 uses telemedicine mainly clinically.

Results: We contacted 929 physicians. Of those 12.1% (112/929) completed the questionnaires. Participants were 56% male (54/97), 29% female (28/97), and 2% (2/97) diverse (median age 50 years). About 16% (18/112) of the respondents currently use telemedicine daily, 14.3% (16/112) 3-4 times a week, and 43% (48/112) did not use telemedicine at all. Overall, 35.1% (34/97) rated their knowledge of telemedicine as very good or good. Most of the respondents replied that telemedicine could support cardiology care in monitoring of blood pressure and electrocardiograms (57/97, 58.8%, both), consultation (57/97, 58.8%), and extending follow-up time (59/97, 60.8%). Reported barriers to implementation were mostly administration (26/97, 26.8%), inadequate reimbursement (25/97, 25.8%), and the purchase of technology equipment (23/97, 23.7%). Attitudes toward telemedicine in clinical practice were closely related to the number of patients being treated per annual quarter: C3 (median 1350, IQR 1000-1500) versus C1 (median 750, IQR 300-1200) and C2 (median 500, IQR 105-825). The differences between clinical caseloads of C1-C3 members were significant: C1 versus C2 (P=.03), C1 versus C3 (P=.02), and C2 versus C3 (P<.001). Most participants (87/112, 77.7%) would like to expand telemedicine approaches in the future. In the field of cardiology, the participants reported a high suitability of telemedicine. The willingness to train in telemedicine is high to very high for > 50% of the participants.
Conclusions: Our results indicate generally moderate use but positive attitudes toward telemedicine among participating physicians with a higher clinical caseload. The lack of a structural framework seems to be a barrier to the effective implementation of telecardiology.

(JMIR Form Res 2024;8:e49526) doi: 10.2196/49526

KEYWORDS
acceptance; adoption; cardiac; cardiology; cross sectional; health services research; heart; preference; survey; telecardiology; telehealth; telemedicine

Introduction
As the burden of patients with cardiovascular diseases (CVDs) is increasing [1], regions with an aging population, such as the German federal state of Brandenburg, are particularly affected. Demographic changes concern not only the patient population but also health care professionals (HCPs). The average age of physicians in the state of Brandenburg is 54.4 years. In the next 5-10 years, the number of physicians will decrease by one third, crucially impacting medical care in the sparsely populated states of Germany. There are already 683 inhabitants per contract physician in the state of Brandenburg [2]. At the same time, the digital transformation is radically changing health care delivery [3]. In rural areas, telemedicine could help to initiate treatment faster and might have a positive impact on quality of life [4]. In cardiology, telemedicine can be used in various ways, including remote patient monitoring, remote visits, and telecardiology consultations [5]. In patients with chronic heart failure, telemedical interventions were associated with optimized medical therapy, a significant reduction in hospital readmissions, and an improvement in quality of life [4,6,7]. As reported in other medical domains, telemedicine not only potentially extends the reach to underserved populations but also enhances opportunities to provide care within usual inpatient and outpatient settings [8]. Not to be underestimated for a future-proof and sustainable health care system, there are also first indications that telemedicine could make a significant contribution to reducing the carbon footprint of health care [9]. Yet, current data on the acceptance of telemedicine by HCPs in cardiology are lacking. Furthermore, the investigation of differences in telemedicine acceptance between urban and rural areas is a research priority. Thus, we aimed to assess the acceptance of telemedicine among cardiologists, internists, and general practitioners in Berlin and Brandenburg. In addition, we aimed to identify knowledge and explore factors that influence the decision to adopt or reject this technology. To create starting points for demand-oriented further research, we wanted to identify user types in the use of telemedicine.

Methods

Ethical Considerations
The study was approved by the local ethics committee of the Brandenburg Medical School (E-01-20210304). Data processing was based on the informed consent of the participants in the study. Participation in the study was not remunerated. Personal data were only collected from the participants to be able to process any requests in accordance with current law. These data were deleted after the end of the study. No other personal data were collected.

Questionnaire and Procedure
The authors developed a web-based survey that was pretested and validated among cardiologists (n=5) and general practitioners (n=5). The final 34-item questionnaire covered a wide range of questions regarding knowledge, acceptance, and use of telemedicine in cardiology care. Physicians were asked to participate in the survey if they met the following inclusion criteria: (1) working in inpatient or outpatient cardiology care, (2) working in the states of Brandenburg or Berlin, and (3) providing informed consent. Consequently, physicians who did not meet these criteria were excluded. Furthermore, questionnaires were excluded if less than half of the questions were answered. Participants were contacted through their professional email addresses, through a QR code published in a regional health journal, and through X (formerly known as Twitter). Data were collected between May 28, 2021, and February 28, 2022, using the web-based survey application “LimeSurvey” [10], embedded in the domain [11].

Data Analysis and Statistics
The statistical analysis was conducted in several steps. First, questionnaire data were analyzed using descriptive statistics, including quantities, percentages, median scores, and ranges for ordinal variables. An exploratory quantitative analysis was performed to identify factors determining telecardiology use. To create a data matrix for the analysis, qualitatively recorded participants’ attitudes toward telecardiology as reported in the survey were recoded from left to right according to the direction of the hypothesis of positive attitudes, for example, the response options in relation to the a priori hypothesis that “Would you like to use telemedicine more often?” which ranged from the positive to the negative scale. The answers “yes, totally,” “yes,” “no,” and “no at all” were coded as “5,” “4,” “2,” and “1,” respectively. The undefined “I don’t know” response option was coded with an intermediate value of “3.” Recoding was undertaken for the characteristics indicated by the age groups, the clinical location, gender, medical specialty, and type of practice. The interval-scaled variable “number of patients” (quarterly) was recoded. To ensure sample homogeneity, participants who did not use telemedicine were not included in the analysis.

To classify survey participants based on their attitudes toward telecardiology, multidimensional scaling (MDS) and subsequent k-means clustering were used. MDS aims to represent input proximities (typically dissimilarities) between objects by means of fitted distances in a low-dimensional space [12]. It therefore
visualizes the level of dissimilarity among cases in a data set. Since we were interested in scaling the participants and not attitudes, the dissimilarity measure was applied across columns of the data matrix. Then, nonmetric MDS was applied to the dissimilarity matrix to obtain the coordinates of the sample in a representative low-dimensional space. The algorithm used for the MDS calculation was “Scaling by Majorizing a Convex Function” (SMACOF [13]). Starting with any initial configuration, the algorithm iteratively transforms proximities to estimated proximities (disparities) for calculating the configuration of the items in the context of the coordinates. This continues until the squared differences between the disparities and distances are minimized. These differences reflect a model’s (mis)fit, expressed by the Stress-1 index, which ideally has a value of 0; a value higher than 0.2 indicates a bad representation [14]. However, the larger the number of points (ie, participants in this study), the more difficult it is to map these into a low-dimensional space. This means that the Stress-1 index may become unacceptably high. For this reason, the Stress-1 index was criticized by Borg et al [15], who developed permutation tests for MDS solutions [16], whereas a significant test result ($P<.05$) allows to reject the H0, hypothesizing that the stress and, subsequently, the configuration are obtained from a random permutation of dissimilarities. As with other dimension-reducing methods, however, the final decision for an MDS solution should not be made based on these indices but on their interpretability [17].

To create a classification of participants based on their attitudes toward telecardiology, k-means clustering was applied to the mapped sample [18]. Clustering consists of grouping objects that are, in some sense, similar to each other. The k-means is a nonhierarchical clustering method commonly used in data mining [19]. The algorithm starts with a collection of s objects, where each object is a point in a q-dimensional space, and a given number of clusters, K, that is subjective and specified in advance by the user. However, to determine K, we also relied on the total Within Sum of Squares (WSS) index. The k-means groups the “s” objects into Ks clusters to minimize the objective function given by the sum of distances between the points and the centers of their clusters. The k-means arrives at a solution in which objects within each cluster are as close to each other as possible and as far from objects in other clusters as possible. Finally, the chi-square test and the Kruskal-Wallis nonparametric test [20] (due to nonnormal data distribution), followed by the posthoc analysis using the Conover-Iman test with Holm’s correction [21], were applied to examine the difference in selected variables between each cluster. A value of $P<.05$ was considered statistically significant.

All data analyses and graphics were done within the R environment (R Core Team). To run MDS, SMACOF [13], ggpubr [22], magrittr [23], and dplyr [24] packages were used. The k-means clustering was done based on stats (version 3.6.2 [25]) and factoextra [26] packages. To run Conover Test with Holm’s correction, the package connover.test [27] was used.

Results

Overview
A total of 929 physicians were contacted, of whom 112 (12.1%) responded to the questionnaires. Of which, 15 (13.4%) participants were excluded from the analysis because less than half of the questions were answered.

Sample Characteristics
The data for this survey were obtained from 97 physicians. Most participants—48.5% (47/97) were cardiologists, 15.5% (15/97) were internists, 12.4% (12/97) were general practitioners, and 23.7% (23/97) were not yet specialists at the time of the survey or their status was not reported at the time of the survey (Table 1). Most respondents, 56.7% (55/97), were aged between 40 and 59 years and worked in the state of Brandenburg (69/97 71%) in medium-sized cities (40/97, 41%) (Table 1). Additionally, more than half of the participants were men (54/97, 55.7%). The ratio of respondents from the participants practicing inpatient and outpatient care was 48% versus 42% (10% with no response), with most participants in outpatient care working in a single practice. Position types, hospital characteristics according to the number of beds, and patients treated per physician per quarter are shown in Table 1.
Table 1. Demographic data and characteristics of the participants.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Cardiologists (n=47), n (%)</th>
<th>Other disciplines (n=50), n (%)</th>
<th>Total (n=97), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>0 (0)</td>
<td>5 (10)</td>
<td>5 (5)</td>
</tr>
<tr>
<td>30-39</td>
<td>6 (13)</td>
<td>10 (20)</td>
<td>16 (16)</td>
</tr>
<tr>
<td>40-49</td>
<td>15 (32)</td>
<td>8 (16)</td>
<td>23 (24)</td>
</tr>
<tr>
<td>50-59</td>
<td>21 (45)</td>
<td>11 (22)</td>
<td>32 (33)</td>
</tr>
<tr>
<td>60-69</td>
<td>5 (10)</td>
<td>5 (10)</td>
<td>10 (10)</td>
</tr>
<tr>
<td>70-79</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>>80</td>
<td>2 (4)</td>
<td>9 (18)</td>
<td>11 (11)</td>
</tr>
<tr>
<td>Not stated</td>
<td>0 (0)</td>
<td>9 (18)</td>
<td>9 (9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Cardiologists (n=47), n (%)</th>
<th>Other disciplines (n=50), n (%)</th>
<th>Total (n=97), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diverse</td>
<td>2 (4)</td>
<td>0 (0)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Female</td>
<td>14 (30)</td>
<td>14 (28)</td>
<td>28 (29)</td>
</tr>
<tr>
<td>Male</td>
<td>29 (62)</td>
<td>25 (50)</td>
<td>54 (56)</td>
</tr>
<tr>
<td>Not stated</td>
<td>2 (4)</td>
<td>11 (22)</td>
<td>13 (13)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Working area</th>
<th>Cardiologists (n=47), n (%)</th>
<th>Other disciplines (n=50), n (%)</th>
<th>Total (n=97), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient sector</td>
<td>17(36)</td>
<td>24 (48)</td>
<td>41 (42)</td>
</tr>
<tr>
<td>Hospital</td>
<td>30(64)</td>
<td>17 (34)</td>
<td>47 (48)</td>
</tr>
<tr>
<td>Not stated</td>
<td>0 (0)</td>
<td>9 (18)</td>
<td>9 (9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical practice types</th>
<th>Cardiologists (n=47), n (%)</th>
<th>Other disciplines (n=50), n (%)</th>
<th>Total (n=97), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo practice</td>
<td>6 (35)</td>
<td>12 (50)</td>
<td>18 (44)</td>
</tr>
<tr>
<td>Group practice</td>
<td>5 (29)</td>
<td>6 (25)</td>
<td>11 (27)</td>
</tr>
<tr>
<td>Employed physician practices</td>
<td>2 (12)</td>
<td>5 (21)</td>
<td>7 (17)</td>
</tr>
<tr>
<td>Outpatient clinic</td>
<td>2 (12)</td>
<td>0 (0)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (12)</td>
<td>1 (4)</td>
<td>3 (7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position types</th>
<th>Cardiologists (n=47), n (%)</th>
<th>Other disciplines (n=50), n (%)</th>
<th>Total (n=97), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident</td>
<td>0 (0)</td>
<td>10 (58)</td>
<td>10 (21)</td>
</tr>
<tr>
<td>Medical specialist</td>
<td>5 (17)</td>
<td>1 (6)</td>
<td>6 (13)</td>
</tr>
<tr>
<td>Senior physician</td>
<td>15 (50)</td>
<td>3 (18)</td>
<td>18 (38)</td>
</tr>
<tr>
<td>Consultant</td>
<td>10 (33)</td>
<td>3 (18)</td>
<td>13 (28)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospital characteristics (number of beds)</th>
<th>Cardiologists (n=47), n (%)</th>
<th>Other disciplines (n=50), n (%)</th>
<th>Total (n=97), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>51-100</td>
<td>1 (3)</td>
<td>1 (6)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>101-150</td>
<td>1 (3)</td>
<td>1 (6)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>151-200</td>
<td>1 (3)</td>
<td>0 (0)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>201-250</td>
<td>2 (7)</td>
<td>1 (6)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>251-300</td>
<td>6 (20)</td>
<td>2 (12)</td>
<td>8 (17)</td>
</tr>
<tr>
<td>301-350</td>
<td>1 (3)</td>
<td>1 (6)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>351-400</td>
<td>4 (14)</td>
<td>2 (12)</td>
<td>6 (13)</td>
</tr>
<tr>
<td>401-450</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>451-500</td>
<td>4 (14)</td>
<td>2 (12)</td>
<td>6 (13)</td>
</tr>
<tr>
<td>>500</td>
<td>10 (33)</td>
<td>7 (40)</td>
<td>17 (37)</td>
</tr>
</tbody>
</table>

| Number of patients (per quarter) |
|----------------------------------|-----------------------------|---------------------------------|---------------------|
| | Cardiologists (n=47), n (%) | Other disciplines (n=50), n (%) | Total (n=97), n (%) |
Telemedicine: Knowledge and Use

Overall, 64.9% (63/97) of respondents rated their knowledge of telemedicine as satisfactory, poor, or very poor, whereas 35.1% (34/97) rated their knowledge as very good or good (Table 2). The frequency of current telemedicine use is shown in Table 2, with 16% (18/112) of the respondents currently using telemedicine daily, 14.3% (16/112) using it 3-4 times a week, and 43% (48/112) reporting no use at all. However, 45.4% (44/97) answered that they would like to use telemedicine more often in the future. Overall, 52.6% (51/97) of the physicians surveyed indicated that there were barriers to the use of telemedicine. The top 3 barriers to the implementation of telemedicine, according to respondents, were administration (26/97, 26.8%), inadequate reimbursement (25/97, 25.8%), and the purchase of technology equipment (23/97, 23.7%).
Table 2. Knowledge and use of telemedicine.

<table>
<thead>
<tr>
<th>Question and responses</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How do you rate your own knowledge of telemedicine?</td>
<td></td>
</tr>
<tr>
<td>Very good</td>
<td>9 (9)</td>
</tr>
<tr>
<td>Good</td>
<td>25 (26)</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>41 (42)</td>
</tr>
<tr>
<td>Poor</td>
<td>18 (19)</td>
</tr>
<tr>
<td>Very poor</td>
<td>4 (4)</td>
</tr>
<tr>
<td>How often do you use telemedicine?</td>
<td></td>
</tr>
<tr>
<td>Daily</td>
<td>16 (16)</td>
</tr>
<tr>
<td>3-4 times a week</td>
<td>14 (14)</td>
</tr>
<tr>
<td>3-4 times a month</td>
<td>14 (14)</td>
</tr>
<tr>
<td>3-4 times a quarter</td>
<td>13 (13)</td>
</tr>
<tr>
<td>Not at all</td>
<td>40 (43)</td>
</tr>
<tr>
<td>Would you like to use telemedicine more often?</td>
<td></td>
</tr>
<tr>
<td>Yes, totally</td>
<td>25 (26)</td>
</tr>
<tr>
<td>Yes</td>
<td>19 (20)</td>
</tr>
<tr>
<td>I don’t know</td>
<td>8 (8)</td>
</tr>
<tr>
<td>No</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Not at all</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Not answered</td>
<td>40 (41)</td>
</tr>
<tr>
<td>Does anything prevent you from using telemedicine?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>20 (21)</td>
</tr>
<tr>
<td>Rather yes</td>
<td>31 (32)</td>
</tr>
<tr>
<td>I don’t know</td>
<td>15 (15)</td>
</tr>
<tr>
<td>Rather no</td>
<td>21 (22)</td>
</tr>
<tr>
<td>No</td>
<td>10 (10)</td>
</tr>
<tr>
<td>What prevents you from using telemedicine? (Multiple selections were possible.)</td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>26 (27)</td>
</tr>
<tr>
<td>Present insufficient reimbursement</td>
<td>25 (26)</td>
</tr>
<tr>
<td>Purchase of technology equipment</td>
<td>23 (24)</td>
</tr>
<tr>
<td>No reimbursement</td>
<td>17 (18)</td>
</tr>
<tr>
<td>Data security</td>
<td>13 (14)</td>
</tr>
<tr>
<td>Poor internet connection</td>
<td>12 (13)</td>
</tr>
<tr>
<td>Lack of data for patients benefits</td>
<td>10 (11)</td>
</tr>
</tbody>
</table>

Implementation of Telecardiology

Most of the respondents replied that telemedicine could support cardiology care in the monitoring of blood pressure and electrocardiograms (57/97, 58.8%, both), consultation (57/97, 58.8%), and extending follow-up time (59/97, 60.8%) (Table 3). When asked which communication partners they should exchange through telemedicine, 80.4% (78/97) responded “physician-to-patient,” 72.2% (70/97) responded “physician-to-physician,” and 51.5% (50/97) responded “physician-to-assistant or other participants” (multiple replies were possible). According to the respondents, the diseases or conditions that are particularly suitable for telemedicine care include “cardiac arrhythmias” (78/97, 80.4%), “monitoring of various diseases and conditions” (75/97, 77.3%), and “therapy” (74/97, 76.3%) (Table 3).
Table 3. Implementation of telemedicine in cardiology care.

<table>
<thead>
<tr>
<th>Question and responses</th>
<th>Yes, n (%)</th>
<th>No, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which partners should establish communication through telemedicine? (Multiple selections were possible.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physician-patient</td>
<td>78 (80)</td>
<td>19 (20)</td>
</tr>
<tr>
<td>Physician-physician</td>
<td>70 (72)</td>
<td>27 (28)</td>
</tr>
<tr>
<td>Physician-assistant</td>
<td>34 (35)</td>
<td>63 (65)</td>
</tr>
<tr>
<td>Other participants and combinations</td>
<td>16 (17)</td>
<td>81 (83)</td>
</tr>
<tr>
<td>No communication</td>
<td>4 (5)</td>
<td>93 (95)</td>
</tr>
<tr>
<td>At which stages can telemedicine support cardiological care? (Multiple selections were possible.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widen the time of follow-ups</td>
<td>59 (61)</td>
<td>38 (39)</td>
</tr>
<tr>
<td>Consultation</td>
<td>57 (59)</td>
<td>40 (41)</td>
</tr>
<tr>
<td>Blood pressure monitoring</td>
<td>57 (59)</td>
<td>40 (41)</td>
</tr>
<tr>
<td>ECG(^a) monitoring</td>
<td>57 (59)</td>
<td>40 (41)</td>
</tr>
<tr>
<td>Acute situations (e.g., sending ECG to the hospital)</td>
<td>53 (55)</td>
<td>44 (45)</td>
</tr>
<tr>
<td>Weight monitoring</td>
<td>49 (51)</td>
<td>48 (49)</td>
</tr>
<tr>
<td>Complications</td>
<td>30 (31)</td>
<td>67 (69)</td>
</tr>
<tr>
<td>At no stage</td>
<td>2 (2)</td>
<td>95 (98)</td>
</tr>
<tr>
<td>Which cardiologic diseases could be monitored by telemedicine?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac arrhythmias</td>
<td>78 (80)</td>
<td>19 (20)</td>
</tr>
<tr>
<td>Monitoring of various diseases and conditions</td>
<td>75 (77)</td>
<td>22 (23)</td>
</tr>
<tr>
<td>Therapy</td>
<td>74 (76)</td>
<td>23 (24)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>73 (75)</td>
<td>24 (25)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>56 (58)</td>
<td>41 (42)</td>
</tr>
<tr>
<td>No disease</td>
<td>2 (2)</td>
<td>95 (98)</td>
</tr>
</tbody>
</table>

\(^a\)ECG: electrocardiogram.

Telecardiology User Groups

The exclusion of the cases with missed values yielded a data matrix of 53 cases. Figure 1 shows a 2D MDS solution for the distribution of survey participants. The Stress-1 index was borderline (stress 0.20). However, the permutation test indicated a well-fitting model \((P<.001)\). Considering the fact that the next step of the analysis involved more detailed clustering using k-means, the 2D solution was sufficient and more complex solutions were not examined. Determining the cluster numbers with the WSS index resulted in a 3-cluster solution. The application of this solution for the segmentation of the study participants using k-means showed that all 3 clusters were localized and ordered according to the axes of the MDS diagram. Cluster 1 (C1, n=19) and cluster 2 (C2, n=21) were in the lower left and right quadrants, and cluster 3 (C3, n=13) was in the upper right quadrant of the diagram. Table 4 shows that physicians assigned to group C1 used telemedicine privately to improve their personal health, yet not only in their clinical practice. Physicians in group C2 showed reluctant attitudes toward telemedicine. Members of group C3 use telemedicine for clinical activities and not for their personal health. Attitudes toward telemedicine in clinical activities were closely related to the number of patients being treated. This could be confirmed by a higher patients’ number per annual quarter (median 1350, IQR 1000-1500) treated by C3 members compared with the corresponding numbers indicated by members of C1 (median 750, IQR 300-1200) and C2 (median 500, IQR 105-825). These differences were statistically significant with C1 versus C2 \((P=.03)\), C1 versus C3 \((P=.02)\), and C2 versus C3 \((P<.001)\). The comparison of other characteristics did not have any statistical significance.
Figure 1. Segmentation of survey participants in a 2D group space. Numbers are identification numbers of participants. Cluster 1 (C1, n=19) and cluster 2 (C2, n=21) are in the lower left and right quadrants, and cluster 3 (C3, n=13) is in the upper right quadrant of the diagram. Telecardiology user groups were identified through cluster analysis of a web-based survey conducted between May 2021 and February 2022 to assess telemedicine knowledge, acceptance, and use. Analysis of 53 cases reveals 3 distinct clusters (C1, C2, and C3) based on use behavior: C1 uses telemedicine for personal health and clinical practice; C2 shows reluctance; and C3 uses telemedicine mainly clinically. Statistically significant differences were observed: C1 versus C2 (P=.03), C1 versus C3 (P=.02), and C2 versus C3 (P<.001).
<table>
<thead>
<tr>
<th>Item</th>
<th>Cluster</th>
<th>K-W test<sup>a</sup>, P value</th>
<th>C-I test<sup>b</sup>, P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>How do you rate your own knowledge of telemedicine?</td>
<td>C1 (n=19) Mean (SD)</td>
<td>3.53 (0.96)</td>
<td>4 (3-4)</td>
</tr>
<tr>
<td>How often do you use telemedicine?</td>
<td>C2 (n=21) Median (IQR)</td>
<td>4 (3-4)</td>
<td>4 (3-4)</td>
</tr>
<tr>
<td>Would you like to use telemedicine more often?</td>
<td>C3 (n=13) Mean (SD)</td>
<td>4.47 (0.77)</td>
<td>5 (4-5)</td>
</tr>
<tr>
<td>Does anything prevent you from using telemedicine? (reverse coding)</td>
<td></td>
<td>2.74 (1.41)</td>
<td>2 (2-3)</td>
</tr>
<tr>
<td>How do you assess the need for relevant training on telemedicine among colleagues?</td>
<td></td>
<td>4.37 (0.60)</td>
<td>4 (4-5)</td>
</tr>
<tr>
<td>How do you assess the willingness of colleagues to undergo further training on the subject of telemedicine?</td>
<td></td>
<td>3.32 (1.06)</td>
<td>4 (2.5-4)</td>
</tr>
<tr>
<td>How high is your own willingness to participate in training courses on telemedicine?</td>
<td></td>
<td>4.26 (0.93)</td>
<td>5 (4-5)</td>
</tr>
<tr>
<td>Would you be willing to (financially) invest in the application of telemedicine in your everyday care routine</td>
<td></td>
<td>3.79 (0.63)</td>
<td>4 (3-4)</td>
</tr>
<tr>
<td>Do you use telemedicine applications (privately) for your own health?</td>
<td></td>
<td>4.32 (0.75)</td>
<td>4 (4-5)</td>
</tr>
</tbody>
</table>

^aK-W test: Kruskal-Wallis-test; ^b P values displayed.
^bC-I test: Conover-Iman test with Holm correction; ^c Not significant.

Discussion

Cardiologists, internists, and general practitioners consider the overall use of telecardiology to be acceptable; two-thirds of respondents would like to use telemedicine in their daily practice. However, most physicians rate their knowledge as “satisfactory” or worse, and less than a third were using telemedicine at the time of the survey. Barriers to telemedicine adoption, such as “limited knowledge,” “administrative burden,” “purchase of technology,” and “inadequate reimbursement,” were clearly identified by both specialists and generalists. Direct communication with patients is preferred to information exchange with colleagues. In the exploratory analysis, we found 3 potential telecardiology user groups, which differ regarding the number of patients treated per quarter: The more patients treated, the higher the telemedicine acceptance rate. The results provide information on how telemedicine can support cardiology care from the physicians’ perspective.

In 2021, a number of changes were introduced for telemedicine in Germany, such as the mandatory electronic patient record, an increasing number of prescribable digital health applications,
and video consultations for nonphysician therapists. The study TIM-HF II [7] has shown the world that telemedical interventional management can reduce mortality. Since January 2022, remote patient monitoring of patients with heart failure has been reimbursed by the statutory health insurance funds in Germany [28]. In addition to the reimbursement of costs, however, the expansion of telemedicine in the real world is the central topic of the implementation process that is now beginning. Yet, it is surprising that despite the successful study and the establishment of telemedicine infrastructure for cardiology care in the federal states of Brandenburg and Berlin, telemedicine acceptance among physicians in routine cardiology care is still heterogeneous. Considering further large-scale research activity on telehealth for prevention in hypertension care in this region [29], there seems to be a wide evidence-based practice gap for telemedicine in cardiology care [30]. Our results support this conclusion, as knowledge of telemedicine has been reported as low by the participants in this survey. Based on the design of our questionnaire as a web-based survey, we recommend high-quality training programs that reflect the multidimensionality of knowledge barriers by addressing the economic, organizational, and behavioral framework conditions of digital health implementation [31]. Furthermore, our results indicate that bureaucratic and infrastructural barriers hamper telemedicine implementation. These barriers were also identified in a similar study on telemedicine in rheumatology care, conducted before the COVID-19 outbreak [32]. This suggests the reported barriers to effective use of telemedicine have remained in Germany despite the pandemic and a massive digital health uptake globally.

COVID-19 has demonstrated the importance and acceptance of contactless approaches to medical care and, particularly, cardiology care [33-35]. Also, gold standard adherence measures in telemedical interventions need to be established so that study outcomes are more comparable [35]. As the survey was published in May 2021, it is not derivable from our data whether the willingness to use telecardiology has changed. Only a minority of the surveyed physicians currently use telemedicine, although two-thirds would like to implement telemedicine into their clinical routine.

It seems that the participants foreshadow and recognize a benefit that has already been described in the literature [7,36] but which does not yet seem measurable in its daily representatives due to poor global implementation of telemedicine. Due to that lack of everyday application, it seems understandable that most physicians regard their knowledge of telemedicine as poor.

As physicians reported barriers to the use of telemedicine, the structural framework for effective implementation of telecardiology is not yet in place. Significant administrative burdens and inadequate reimbursement structures prevented the physicians surveyed from using telemedicine. The greatest barrier seems to be physicians’ limited knowledge about “how to use telemedicine.” This underlines the need for clearly defined use cases for telemedicine in cardiology as well as the timely introduction of low-threshold training offers. Overall, this seems to reflect that the potential of telemedicine is not being fully reached. Further research should define use cases as well as specific interventions and evaluate the effects on patients’ outcomes and health and economic implications. Those seem particularly important because our data suggest that in the current health care system, only what is paid for is done. An increasingly aging society with an increasingly scarce resource of highly specialized doctors is catalyzing the need for enrollment in telecardiology under the aspects that PerplexityAI has already summarized: “telecardiology has the potential (…) to improve patient engagement and save time and money for patients and health care providers” [1]. Further research may therefore provide individualized patient- and clinician-adapted telemedicine options and triage mechanisms to select patients for either digital or analog consultations as appropriate. Based on our data, participants accept telemedicine and support its expansion if framework conditions such as reimbursement, the removal of existing usability barriers, and specialized training are optimized. The authors see this as a call to the health care system to create a framework for the use of telecardiology to optimize the use of an increasingly scarce resource with increasing demands and workloads. The provision of high-quality cardiology care using telemedicine will require urgent research, as well as the removal of existing barriers and training for specialists and generalists.

Due to the design of our questionnaire as a web-based survey, we assume a positive selection bias for physicians who are already interested in digitalization, telemedicine, or telecardiology. In addition to digital invitations to participate, participants were also recruited by an analog magazine report about the research project in the “KV-intern,” which was delivered to every physician registered with the Medical Association Brandenburg (Kassenärztliche Vereinigung Brandenburg). Either way, internet access and at least a certain level of digital expertise were required for participation. As the average age of the participants is comparable to the average age of physicians in Brandenburg [2], the group of participants surveyed nevertheless appears to be representative.

At this point, we have only explored the perspectives of physicians on telemedicine in cardiology. There is an urgent need to investigate the patients’ perspective on telemedicine implementation in cardiology care.

In summary, our results indicate low use but high acceptance among participating physicians. Although potential users report general willingness and the potential benefits of telemedicine, self-reported knowledge is limited. The lack of a structural framework seems to be a barrier to the effective implementation of telecardiology.

Acknowledgments
The authors would like to thank Prof Heiner Gembris for reviewing and advising on the web-based questionnaire. Funded by the Brandenburg Medical School (MHB) publication fund, supported by the Ministry of Science, Research and Cultural Affairs of the state of Brandenburg. Generative artificial intelligence was not used in any proportion of the manuscript.

https://formative.jmir.org/2024/1/e49526

Muehlensiepen et al

XSL-FO RenderX
Data Availability
The data sets generated during this study are available from the corresponding author on reasonable request.

Authors' Contributions
FM and AHF conceptualized the study. The methodology was developed by FM, AHF, JN, and MJH. Formal analysis and investigation were carried out by YI, FM, and AHF. The original draft of the manuscript was prepared by MJH, JN, FM, and AHF. YI, MH, and CB reviewed and edited the manuscript. AHF provided supervision for the entire project. All authors have read and approved the final manuscript. FM and JH contributed equally to this work.

Conflicts of Interest
None declared.

References
11. Telemedizinbrandenburg. URL: https://www.telemedizinbrandenburg.de/ [accessed 2024-02-01]
25. R Core Team and contributors worldwide. The R Stats Package. URL: https://rdrr.io/r/stats/stats-package.html [accessed 2024-02-06]

Abbreviations

- CVD: cardiovascular disease
- HCP: health care professional
- MDS: multidimensional scaling
- SMACOF: Scaling by Majorizing a Convex Function
- WSS: Within Sum of Squares
Enhancing Health Care Accessibility and Equity Through a Geoprocessing Toolbox for Spatial Accessibility Analysis: Development and Case Study

Soheil Hashtarkhani¹, PhD; David L Schwartz², MD; Arash Shaban-Nejad¹, MPH, MSc, PhD

¹Center for Biomedical Informatics, Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
²Department of Radiation Oncology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States

Corresponding Author:
Arash Shaban-Nejad, MPH, MSc, PhD
Center for Biomedical Informatics, Department of Pediatrics, College of Medicine
The University of Tennessee Health Science Center
50 N Dunlap Street, R492
Memphis, TN, 38103
United States
Phone: 1 9012875863
Email: ashabann@uthsc.edu

Abstract

Background: Access to health care services is a critical determinant of population health and well-being. Measuring spatial accessibility to health services is essential for understanding health care distribution and addressing potential inequities.

Objective: In this study, we developed a geoprocessing toolbox including Python script tools for the ArcGIS Pro environment to measure the spatial accessibility of health services using both classic and enhanced versions of the 2-step floating catchment area method.

Methods: Each of our tools incorporated both distance buffers and travel time catchments to calculate accessibility scores based on users’ choices. Additionally, we developed a separate tool to create travel time catchments that is compatible with both locally available network data sets and ArcGIS Online data sources. We conducted a case study focusing on the accessibility of hemodialysis services in the state of Tennessee using the 4 versions of the accessibility tools. Notably, the calculation of the target population considered age as a significant nonspatial factor influencing hemodialysis service accessibility. Weighted populations were calculated using end-stage renal disease incidence rates in different age groups.

Results: The implemented tools are made accessible through ArcGIS Online for free use by the research community. The case study revealed disparities in the accessibility of hemodialysis services, with urban areas demonstrating higher scores compared to rural and suburban regions.

Conclusions: These geoprocessing tools can serve as valuable decision-support resources for health care providers, organizations, and policy makers to improve equitable access to health care services. This comprehensive approach to measuring spatial accessibility can empower health care stakeholders to address health care distribution challenges effectively.

(JMIR Form Res 2024;8:e51727) doi:10.2196/51727

KEYWORDS
geographical information system; geoprocessing tool; health disparities; health equity; health services management; hemodialysis services; spatial accessibility

Introduction

The role of geography in understanding and addressing population health and health inequities is hardly deniable [1-3]. Access to health care is a critical indicator of health care system performance and directly impacts population health and disease burden [4,5]. Improving access to primary care, for instance, has been proven to lead to improved health outcomes and decreased potentially avoidable hospitalizations [6,7]. The concept of access plays a significant role in health services and policy research, including both spatial and nonspatial

https://formative.jmir.org/2024/1/e51727
dimensions. Nonspatial access refers to the factors unrelated to geography that influence access, such as affordability, timeliness, accommodation, acceptability, and awareness [8]. Spatial access, on the other hand, involves the geographic elements that influence the availability and accessibility of health care providers and services [9]. The calculation of spatial accessibility involves considering three key factors: (1) supply, (2) demand, and (3) mobility. Supply relates to the infrastructure’s locations (eg, health care providers); demand refers to the locations of individuals who are expected to use the infrastructure (eg, patients); and mobility considers the travel costs between demand and supply locations (eg, driving time) [10]. Identifying areas with limited spatial accessibility enables planners and policy makers to understand the distribution of health service locations and reveal and address spatial inequities [11].

Various methods have been used to evaluate spatial accessibility, including gravity models [12], regional availability models [13], and kernel density models [14]. Among the gravity models, the 2-step floating catchment area (2SFCA) method, initially introduced by Radke and Mu [15] and modified by Luo and Wang [16], has been widely used in the literature for measuring spatial accessibility. The 2SFCA approach measures spatial accessibility through a 2-step procedure based on the interaction between supply and demand within a certain catchment as a ratio of provider-to-population [16]. However, the 2SFCA technique has certain limitations. Locations outside the catchment area are entirely out of access, while population locations within the catchment area are assumed to have equal access to health care providers [17]. To overcome these limitations, Luo and Qi [18] proposed an enhanced version of the 2SFCA method known as the enhanced 2SFCA (E2SFCA) method. This enhanced approach differentiates accessibility within a catchment (usually 3 catchments) by incorporating multiple travel time zones and assigning weights based on a decay function within each catchment [18].

Although the advancements in geographic information system (GIS) technology have made the implementation of the 2SFCA-based models more feasible, researchers with limited GIS expertise still face challenges in gathering, preprocessing, analyzing required data sets, and implementing the model. However, GIS software like ArcGIS provides powerful tools, including model builders and Python programming tools, that enable developers to automate data processing by creating custom geoprocessing toolboxes. In this study, our objective is to develop and share Python script tools for implementing 2SFCA and E2SFCA methods in ArcGIS Pro (Esri). Each toolbox was developed in 2 ways: using a distance buffer and travel time (driving time or walking time) in catchment areas. Additionally, we will present a case study assessing the accessibility of hemodialysis services in the state of Tennessee to include an important nonspatial factor in the accessibility score.

Methods

Theoretical Framework and Conceptual Explanations

A total of 4 geoprocessing tools were developed to work in ArcGIS Pro software based on 2SFCA [16] and E2SFCA [18] approaches with the following names:

1. 2SFCA01: 2SFCA with buffer distance catchments
2. E2SFCA01: E2SFCA with buffer distance catchments
3. 2SFCA02: 2SFCA with travel time catchments
4. E2SFCA02: E2SFCA with travel time catchments

After presenting the theoretical background of the 2SFCA and E2SFCA approaches, the development framework for each tool will be presented.

Models’ Theory

Theoretical Background of 2SFCA

The 2SFCA method assesses the relationship between resource availability and demand population distribution in 2 steps, resulting in an access score for each demand area.

Step 1: For each facility location (j), identify all demand locations (k) that fall within a specified catchment area (d_j) from the facility. The provider-to-demand ratio (R_j) within the catchment area is calculated using equation 1:

\[
R_j = \frac{P_k}{\sum_{j} S_{kj}}
\]

where P_k represents the population at demand location k within catchment area j (d_j ≤ d_i), S_{ij} is the capacity or number of providers at location j, and d_{ij} is the distance (or travel time) between k and j.

Step 2: For each demand location i, search for all facility locations (j) within the specified catchment area (d_i) from location i, and calculate the summed provider-to-demand ratios (R_i) obtained in step 1 using equation 2:

\[
R_i = \sum_{j} \frac{P_k}{\sum_{j} S_{kj}}
\]

In equation 2, \(\bullet\) represents the accessibility at demand location i based on the 2SFCA method. R_j denotes the provider-to-demand ratio at facility location j that falls within the catchment area of the demand location i (ie, d_{ij} ≤ d_i), and d_{ij} is the distance (or travel time) between i and j.

Theoretical Background of E2SFCA

The classic 2SFCA relies on a dichotomous distance decay function, assuming that individuals within catchment areas have equal access to services, while those outside catchment areas have no access at all. To overcome the distance decay limitation of the classic 2SFCA, we also used the E2SFCA procedure introduced by Luo and Qi [18] as follows:

Step 1: For each facility location (j), 3 distance or travel time catchment areas are created, including zone 1: 0-5 miles (0-8 km); zone 2: 5-10 miles (8-16 km); and zone 3: 10-15 miles (16-24 km) or minutes. Search all demand locations (k) that have no access at all.
were within the zones \(D_r\) for location \(j\) and compute the weighted provider-to-demand ratio \(R_j\) using equation 3:

\[
R_j = \frac{P_k}{S_j} \cdot \frac{1}{d_{kj}} \cdot W_r
\]

where \(P_k\) is part of the demand \(k\) falling within the catchment \(j\) \((d_{kj} D_r)\), \(S_j\) is the capacity or number of providers at facility \(j\), \(d_{kj}\) the distance (or travel time) between \(k\) and \(j\), and \(D_r\) is the \(r^{th}\) catchment zone \((r \in \{1,2,3\})\) within the catchment. \(W_r\) is the distance weight for the \(r^{th}\) zone calculated from the Gaussian function capturing the distance decay of access to the facility \(j\).

Step 2: For each demand location \(i\), search all facility locations \((j)\) within the distance (or travel time) threshold of the location \(i\), and summed up the provider-to-population ratios \(R_j\) (calculated in step 1) as follows:

\[
\text{Accessibility at } i = \sum_{j} R_j \cdot \frac{1}{d_{ij}}
\]

where \(\bullet\) represents the accessibility at the demand location \(i\), \(R_j\) is the provider-to-demand ratio at facility location \(j\) that falls within the catchment of demand location \(i\) \((i.e., d_{ij} D_r)\), and \(d_{ij}\) is the distance (or travel time) between \(i\) and \(j\). The same distance weights derived from the Gaussian function used in step 1 are applied to each zone to account for the distance decay.

Tool Frameworks

Overview

The accessibility tools in this study use 2 spatial data sets as input, provider and population data, and 1 output data set, as described in the following paragraphs. The framework for developing each tool is described in their respective subsections.

Provider Data

These are point data showing the location of health service providers (eg, hospitals) and contain an ID field and a capacity field. The capacity field is a numeric field including the number of providers (eg, number of physicians) or the number of resources (eg, number of hospital beds).

Population Data

These are polygon data that contain the geographical areas where the accessibility score is supposed to be calculated (eg, census tracts) and contain an ID and population field. The population field is a numerical field that represents the demand for service. It could be the total population of a census tract or the number of women, children, or older adults.

Output Feature Class

This polygon feature class is exactly similar to the population input feature class, with 1 added field named “final index.” This field demonstrates the accessibility score of service providers in the input regions.

Framework for Developing 2SFCA01

Figure 1A shows the simplified procedure used to develop the 2SFCA01 tool. Some preprocessing steps, including duplicating the input data file and creating temporary fields, have been done for each input. Then, in step 1, using the input parameters from the user, the output is created, named “Step 1 output.” This feature class is similar to input provider data, with a new field named provider to demand representing the ratio of providers to the demand population in the catchment of each provider facility. Step 2 is relatively straightforward and uses the same buffer size as step 1 to sum up the provider-to-demand values calculated in step 1 for each population area.

Figure 2A shows the screenshot of the 2SFCA01 tool. Users can easily select the input data and fields using combo boxes. As the value of the accessibility score is usually very small, the “per capita” parameter multiplies the score with a user-defined value.
Figure 1. Flowchart diagram for creating (A) 2-step floating catchment area (2SFCA) and (B) enhanced 2-step floating catchment area (E2SFCA01) spatial accessibility tools.

Figure 2. Screenshots of the accessibility tools with distance buffer catchments: (A) 2-step floating catchment areas with buffer distance catchments (2SFCA01) and (B) enhanced 2-step floating catchment areas with buffer distance catchments (E2SFCA01).

Framework for Developing E2SFCA01

The procedure to create the E2SFCA01 tool is similar to the 2SFCA01 tool (Figure 1B). As in this model, 3 catchments are necessary for each step, and more parameters from users are required to be defined (circle shapes). The calculated values for each catchment size are combined using user-defined weights. In this tool, the output file not only includes the final index...
value but also includes the accessibility values for each of the 3 catchment sizes.

Figure 2B shows a screenshot of the toolbox. The default values for distance values are 5, 10, and 15 miles (8, 16, and 24 km) and weights: 1, 0.68, and 0.22, respectively. These default weight sets for distance decay were derived from the original study that developed the model [18], but users should choose the proper weights regarding the purpose and context of the study.

(a)

Framework for Developing 2SFCA02

The accessibility tools developed with travel time catchments need 2 separate tools to conduct the analysis. The first user should create travel time catchment data for input data using a tool that we developed named “create travel time catchment areas” and then calculate the accessibility index using the 2SFCA02 tool. In order to run the “create travel time catchment areas” tool, users have 2 options. First, if they have a network data set for their study area, they can use it in this tool to create the necessary catchments. If not, they can select ArcGIS Online resources to capture the driving or walking time catchment areas. In this way, the user should have a Network Analysis license with enough credits to use this tool. As shown in Figure 3A, in addition to provider and population data, the ID fields should be defined by the user in this tool. It is necessary to include the output of this tool in the 2SFCA02 and E2SFCA02 tools as input. A value of 10 minutes of driving time is used as the default value, but users can change it to walking distance. Also, the time, date, and direction of the travel can be customized to consider the traffic, as the catchment sizes will be smaller during rush hour than at other times of the day. Two output files, 1 for the provider and 1 for the population data, will be exported. The main 2SFCA02 tool is shown in Figure 3B. This tool has 4 input files: 2 for the provider and population data, and 2 for the travel time catchments derived from the previous step. The ID fields that are specified in the “create travel time catchment area” tool should be specified. Other features of the toolbox and the process are similar to 2SFCA01.

![Screenshot of the toolbox](image)

Figure 3. Screenshots of the proposed tools: (A) Create Travel Time Catchments tool, (B) the 2-step floating catchment areas with travel time catchments (2SFCA02) tool, and (C) the enhanced 2-step floating catchment areas with travel time catchments (E2SFCA02) tool.

Framework for Developing E2SFCA02

To use this tool, the user should use the create travel time catchment areas tool similar to adding 3 travel time values, for example, 10 minutes, 15 minutes, and 20 minutes of driving time. This will create 3 travel time rings around each provider facility and demand population point. Figure 3C demonstrates the E2SFCA02 toolbox to create accessibility.

Python scripts for all of the tools are available in Multimedia Appendix 1, and our implemented executable tools are available for download elsewhere [19].

Ethical Considerations

This study and the development of the presented tool did not involve data that requires ethical oversight. The case study in this manuscript used publicly available data focusing on dialysis center locations and population age distribution at the census tract level. This secondary analysis of aggregated, open-source data is exempt from institutional review board review, in accordance with the Federal Policy for the Protection of Human Subjects (45 CFR 46).
Results

Case Study: Access to Hemodialysis Services in the State of Tennessee

To demonstrate the practicality of the proposed tools in real-world scenarios, we aimed to assess the accessibility of hemodialysis services in different areas of the state of Tennessee.

Hemodialysis is a crucial treatment for individuals with end-stage kidney disease (ESKD), as it eliminates waste products and extra fluid from the blood when the kidneys can no longer do this on their own. Without this treatment, people with ESKD would quickly develop life-threatening complications. This is why the geographical accessibility of hemodialysis services is a critical issue. A study showed that patients living 60 minutes away from a hemodialysis center not only run an increased risk of mortality but also have a significantly lower quality of life compared with patients living 15 minutes or less away [20].

Input Data Sets

Provider Data

The address and location of hemodialysis centers and the number of machines in each center have been extracted from the Centers for Medicare and Medicaid Services [21]. The address data for the 192 hemodialysis centers have been geocoded into coordinates using the ArcGIS world geocoding service. The resulting shapefile includes ID and capacity (number of machines) fields imported to ArcGIS Pro software.

Population Data

The shapefile of census tracts in the state of Tennessee and their total population has been downloaded from the US Census Bureau website [22]. The state of Tennessee includes 1701 census tracts with an average population of 3981 (SD 1646) people. To have a better proxy of target demand, we adjusted the total population with the age distribution of each census tract. Researchers can adjust the target population based on demand and health care needs [23]. We derived the incidence rates of ESKD for various age groups from the 2020 report by the US Department of Health and Human Services [24]. According to the report, the incidence rate of ESKD among individuals aged between 0 and 12 years is 11 cases per million, whereas it is 2080 cases per million for those aged 75 years or older. Table 1 details the age-adjusted demand for ESKD health care services for each census tract, calculated using the following formula: Age-adjusted demand = (N\(_{0-12}\) × 1) + (N\(_{18-44}\) × 7) + (N\(_{45-64}\) × 51) + (N\(_{65-74}\) × 106) + (N\(_{≥75}\) × 189) where N\(_{a-b}\) represents the number of individuals in the census tract aged a to b years.

The shapefile of census tracts in Tennessee, including GeoID as an ID field and age-adjusted demand as a population field, was imported into ArcGIS Pro software. Figure 4 demonstrates the location of hemodialysis centers and the population density of census tracts in Tennessee.

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>ESKD incidence rate per million, n</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12</td>
<td>11</td>
<td>1 (baseline)</td>
</tr>
<tr>
<td>18-44</td>
<td>77</td>
<td>7</td>
</tr>
<tr>
<td>45-64</td>
<td>561</td>
<td>51</td>
</tr>
<tr>
<td>65-74</td>
<td>1171</td>
<td>106</td>
</tr>
<tr>
<td>≥75</td>
<td>2080</td>
<td>189</td>
</tr>
</tbody>
</table>

Table 1. End-stage kidney disease (ESKD) incidence rate in different age groups of the US population and calculated weighted demand values.
Figure 4. The locations and distribution of hemodialysis centers in Tennessee; 1 mile=1.6 km.

Mobility

To measure the accessibility indexes, we used a distance buffer size of 15 miles (24 km) for the 2SFCA01 tool and 5, 10, and 15 miles (8, 16, and 24 km) for E2SFCA01. Also, for the 2SFCA02 tool, we used 30 minutes’ drive-time catchments and 10, 20, and 30 minutes for the E2SFCA tool. The distance decay sets of 1, 0.68, and 0.22 have been used for weighting each catchment in enhanced versions. The resulting accessibility index for each tool was symbolized in a geographical map using natural break classification (Figure 5).

As depicted in Figure 5, each tool generates distinct accessibility scores in the state of Tennessee, although the overall trends remain largely consistent. Rural and suburban areas generally exhibit lower access scores compared to urban areas, where a concentration of hemodialysis centers is observed. The 2SFCA tool’s findings reveal that in areas with high access for every 100,000 people, there are between 12.9 and 27.7 dialysis machines available within a 15-mile (24-km) radius or from 15.7 to 21.2 machines accessible within a 30-minute travel time. Conversely, in regions with low access, the availability of these resources is nearly nonexistent. Interpreting the results from the E2SFCA tool is not straightforward due to its weighted measurement approach. Notably, it is evident that areas represented by white, indicating a lack of health care resources within the distance thresholds, should be prioritized for informed resource allocation efforts [25].

Figure 5. Access to hemodialysis centers in Tennessee using the following tools: (A) 2-step floating catchment areas with buffer distance catchments (2SFCA01), (B) enhanced 2-step floating catchment areas with buffer distance catchments (E2SFCA01), (C) 2-step floating catchment areas with travel time catchments (2SFCA02), and (D) enhanced 2-step floating catchment areas with travel time catchments (E2SFCA2); 1 mile=1.6 km.
We could not identify any peer-reviewed studies presenting a comprehensive spatial accessibility toolbox in ArcGIS. However, there have been a few attempts documented in the gray literature. One such effort was made by Langford et al [28], who shared a tool named USW-FCA2 on ResearchGate using an E2SFCA model. Their tool requires a network data set for the study area and a Network Analysis license in ArcMap. In comparison, our toolbox offers significantly more functionalities and options that cater to the specific needs of the target users. Additionally, some studies have used spatial accessibility tools on alternative platforms. Saxon et al [29] developed an open software environment based on the Python-based PySaL package for measuring spatial accessibility. They calculated travel costs by incorporating precomputed origin-destination distance matrices for all US census tracts and census blocks in the 20 major cities.

In the case study, we demonstrated the integration of a nonspatial factor, age, with spatial accessibility. Age is an important determinant of health care demand, and regions with older populations tend to have a higher demand for health services [10]. The procedure used in the case study to adjust the age of the demand population can be extended to consider other factors such as ethnic groups or disease distributions. The resulting geographical maps revealed disparities in access to hemodialysis services across the state of Tennessee. Urban areas, where hemodialysis centers are concentrated, generally exhibited higher accessibility scores. However, areas in the southern parts of the state displayed lower accessibility scores, indicating a need for attention and prioritization in resource allocation.

This study does have limitations to consider. The developed tools are designed specifically for ArcGIS Pro, which may limit their usability for researchers using other software platforms like QGIS. However, future studies could explore the adaptation of these tools to different GIS software to ensure broader accessibility and usability for researchers across various platforms.

Conclusion

In conclusion, the developed tools for measuring the accessibility of health care resources offer valuable benefits to researchers across various domains. For large-scale analyses, such as country-level assessments, the 2SFCA01 and E2SFCA01 tools provide fast analysis with basic software requirements, making them accessible and efficient options. Additionally, the 2SFCA02 and E2SFCA02 tools offer a more realistic measure of accessibility by incorporating travel time catchments that consider traffic and transportation modes. Among these tools, the E2SFCA02 tool stands out as a powerful option as it considers both distance decay and uses travel time catchments, providing a comprehensive approach to measuring health care accessibility. Overall, these tools empower policy makers and researchers to gain valuable insights into identifying underserved areas and formulating effective resource allocation strategies. By assessing spatial disparities in health care access, these tools contribute to improving equity and enhancing health care service delivery. In the future, we will use and evaluate the outputs of this study for various health resource allocation projects.
including primary care providers and cancer care services (eg, radiotherapy). Furthermore, we will explore the impact of nonspatial factors such as ethnicity, income levels, and different social determinants of health to better understand their contributions to health care accessibility.

Acknowledgments
This study did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Data Availability
The data sets generated during and/or analyzed during this study are available through Arcgis’ website [19].

Authors’ Contributions
SH authored the manuscript and conducted the data analysis. DLS conceptualized, reviewed, and edited the content. AS-N conceptualized and supervised the study, participated in writing, and managed fund acquisition.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Python scripts for the tools used in the study.
[ZIP File (Zip Archive), 11 KB - formative_v8i1e51727_app1.zip]

References

15. Radke J, Mu L. Spatial decompositions, modeling and mapping service regions to predict access to social programs. Geogr Inf Sci 2000;6(2):105-112 [FREE Full text] [doi: 10.1080/1082400009480538]

22. United States Census Bureau. URL: https://www.census.gov/ [accessed 2024-01-23]

Abbreviations

- **2SFCA**: 2-step floating catchment area
- **2SFCA01**: 2-step floating catchment areas with buffer distance Catchments
- **2SFCA02**: 2-step floating catchment areas with travel time Catchments
- **E2SFCA**: enhanced 2-step floating catchment area
- **E2SFCA01**: enhanced 2-step floating catchment areas with buffer distance Catchments
- **E2SFCA02**: enhanced 2-step floating catchment areas with travel time Catchments
- **ESKD**: end-stage kidney disease
- **GIS**: geographic information system
Group, Blended and Individual, Unguided Online Delivery of Mindfulness-Based Cognitive Therapy for People With Cancer: Feasibility Uncontrolled Trial

Nasim Badaghi1; Mette van Kruijsbergen1; Anne Speckens1; Joëlle Vilé1; Judith Prins2; Saskia Kelders3,4; Linda Kwakkenbos1,5,6

1Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
2Department of Medical Psychology, Radboud University Medical Center, Nijmegen, Netherlands
3Department of Psychology, Health, and Technology, University of Twente, Enschede, Netherlands
4Optentia Research Unit, North West University, Vanderbijlpark, South Africa
5Department of IQ Healthcare, Radboud University Medical Center, Nijmegen, Netherlands
6Department of Clinical Psychology, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands

Corresponding Author:
Nasim Badaghi
Department of Psychiatry
Radboud University Medical Center
Geert Grooteplein Zuid 10
Nijmegen, 6525 GA
Netherlands
Phone: 31 0624835397
Email: nasim.badaghimoreno@radboudumc.nl

Abstract

Background: Online mindfulness based cognitive therapy (eMBCT) has been shown to reduce psychological distress in people with cancer. However, this population has reported lack of support and asynchronous communication as barriers to eMBCT, resulting in higher nonadherence rates than with face-to-face MBCT. Using a co-creation process, we developed 2 formats of eMBCT: group, blended (combination of therapist-guided group and individual online sessions) and individual, unguided (individual, unguided online sessions only). Group, blended eMBCT offers peer support and guidance, whereas individual, unguided eMBCT offers flexibility and the possibility of large-scale implementation.

Objective: The objective of this nonrandomized feasibility study was to assess aspects of feasibility of the group, blended and individual, unguided eMBCT interventions.

Methods: Participants were people with cancer who chose between group, blended and individual, unguided eMBCT. Both intervention conditions followed the same 8-week eMBCT program, including an introductory session and a silent day (10 sessions total). All sessions for individual, unguided eMBCT occurred via the platform Minddistrict, whereas group, blended eMBCT consisted of 3 online videoconference sessions guided by a mindfulness teacher and 5 sessions via Minddistrict. We assessed the feasibility of the intervention quantitatively and qualitatively by evaluating its acceptability among participants. Additionally, we assessed limited efficacy by looking at the number of questionnaires participants completed pre- and postintervention.

Results: We included 12 participants for each eMBCT condition. Participants in group, blended eMBCT completed, on average, 9.7 of 10 sessions, compared with an average 8.3 sessions for individual, unguided eMBCT (excluding dropouts). Of the 24 participants, 13 (54%) agreed to be interviewed (5 unguided and 8 blended). Participants in both conditions reported positive experiences, including the convenience of not having to travel and the flexibility to choose when and where to participate. However, among the barriers for participation, participants in the group, blended condition reported a preference for more group sessions, and participants in the individual, unguided condition reported a lack of guidance. Additionally, for the group, blended condition, the effect sizes were small for all outcome measures (Hedges g range=0.01-0.36), except for fatigue, which had a moderate effect size (Hedges g=0.57). For the individual, unguided condition, the effect sizes were small for all outcome measures (Hedges g range=0.24-0.46), except for mindfulness skills (Hedges g=0.52) and engagement with the intervention (Hedges g=1.53).
Conclusions: Participants in this study had a positive experience with group, blended and individual, unguided eMBCT. Based on the results from this study, we will adjust the intervention prior to conducting a full-scale randomized controlled trial to evaluate effectiveness; we will add 1 group session to the group, blended eMBCT using Zoom as the platform for the group sessions; and we will send reminders to participants to complete questionnaires.

Trial Registration: ClinicalTrials.gov NCT05336916; https://clinicaltrials.gov/ct2/show/NCT05336916

(JMIR Form Res 2024;8:e52338) doi: 10.2196/52338

KEYWORDS

cancer; eHealth; online interventions; mindfulness; psycho-oncology; qualitative research; oncology; CBT; blended; eMBCT; iCBT; cognitive therapy; unguided; psychotherapy; MBCT; co-creation; therapist; self-guided; peer-support; co-design; participatory

Introduction

The number of people with cancer is increasing at alarming rates. It has been estimated that, by 2040, the number of people with cancer will be almost double that of 2020 [1]. Additionally, approximately 1 in 3 individuals with cancer experience severe psychological distress [2]. As a result, there is an increasing number of distressed people with cancer who could benefit from effective psycho-oncological interventions [3].

One kind of evidence-based psychological treatment for people with cancer is a mindfulness-based intervention (MBI). Mindfulness can be defined as moment-to-moment awareness, which is cultivated by purposely paying attention to the present experience without judgment [4]. Although mindfulness practices were originally developed centuries ago in the Buddhist traditions of Asia, it was not until the past couple of decades that they were implemented in health care. Different forms of MBIs (eg, mindfulness-based cognitive therapy [MBCT]) have been used across conditions [5], including cancer [6-8], and have been shown to have beneficial effects on psychological distress, quality of life, and well-being [5]. MBCT includes mindfulness components (eg, meditations, visualization exercises, movement exercises) and cognitive components from cognitive behavioral therapy (eg, identifying and reframing automatic thoughts, recognition that thoughts are not facts, habitual thoughts and behavioral patterns).

MBIs have been successfully adapted to online formats [9]. Although eHealth interventions are complex and relatively new [10], online MBIs offer multiple advantages over face-to-face interventions. For instance, online interventions are more easily accessible, more flexible in when and how participants can follow the program, and less costly [9]. A recent systematic review evaluated 9 randomized controlled trials (RCTs) and found that, although online MBIs generally have smaller effect sizes than face-to-face MBIs, they were still effective in reducing depression symptoms, anxiety, and stress, as well as improving mindfulness skills among people across different physical conditions [11]. In addition, a meta-analysis evaluated the effectiveness of different forms of online MBIs (delivered on a website or by an application) for people with cancer and found that online MBIs were effective in reducing distress, depression, and sleep disturbance and that they improved quality of life [12]. Plus, the authors of this meta-analysis concluded that online MBIs may provide unique advantage of increased accessibility and scalability. Online MBIs can offer a valuable alternative to face-to-face interventions, in particular for people with cancer who often already have to deal with frequent hospital visits, physical symptoms from the disease, and its treatment (such as intensive medical treatments and treatment-related fatigue and pain) [13].

Our research group previously conducted an RCT comparing the effectiveness and cost-effectiveness of online mindfulness-based cognitive therapy (eMBCT) and face-to-face MBCT with treatment as usual in reducing psychological distress in people with cancer (BeMind trial) [13]. The online condition in the BeMind trial consisted of an individual, 8-week, online mindfulness intervention supported by a qualified mindfulness teacher who provided feedback via email. The face-to-face condition was a prototypical 8-week group MBCT taught by a qualified mindfulness teacher.

Results from the BeMind trial showed that, in a heterogeneous sample of distressed people with cancer, both interventions were more effective at reducing psychological distress and were less costly than treatment as usual [13]. Nevertheless, nonadherence rates were higher in the individual eMBCT condition than in the group, face-to-face MBCT condition. Furthermore, qualitative analyses showed important barriers to participating in eMBCT, including insufficient peer support and asynchronous communication [14]. Additionally, mindfulness teachers had to invest more time for the individual, online condition than for the group condition, which may hamper large-scale implementation. Thus, the BeMind study showed that, although eMBCT is effective at reducing distress in people with cancer, there is room to improve the eMBCT intervention prior to implementation.

Considering the results from the BeMind trial and the social restrictions from the COVID-19 pandemic at the start of our project, we developed 2 new eHealth formats using a co-creation process. With experts in eHealth interventions, MBCT teachers, representatives from cancer patient organizations, and people with cancer, we explored how to give proper counseling, personalize the intervention, and make it more engaging. In addition, as adherence to online interventions without the guidance of a teacher (individual, unguided interventions) is often lower than intended, persuasive technology known to improve adherence, such as reminders and virtual coaches, was included [15]. By considering the different perspectives of the stakeholders, we aimed to develop a more appealing, persuasive, and participant-focused online intervention.

We developed the following 2 interventions using a co-creation process: group, blended and individual, unguided eMBCT.
Group, blended eMBCT consisted of 3 online, group sessions with a mindfulness teacher and 5 individual, teacher-assisted online sessions; this combination provided peer support and partly synchronous communication. Individual, unguided eMBCT consisted of 8 eMBCT sessions in which participants followed the intervention by themselves without teacher guidance; an unguided intervention could increase access and improve scalability at a lower cost for both participants and therapists. Both intervention conditions also included an introductory session and a silent day. We developed group, blended and individual, unguided interventions to optimize eMBCT delivery and efficacy by addressing the barriers we found in our previous study, by considering the target group needs and by constructing an online intervention that is engaging and attractive.

Although the 2 MBIs were carefully designed using a cocreation process with relevant stakeholders, aspects of their feasibility such as acceptability and preliminary efficacy needed to be established prior to conducting a full-scale RCT. In fact, pilot studies can support researchers with identifying possible challenges, weighing resources, and evaluating the feasibility of an intervention [16,17]. Moreover, pilot studies can assess preliminary efficacy of an intervention before moving on to a full-scale RCT, which involves more resources [16,17]. The objective of this pilot study was to assess the feasibility and preliminary efficacy of the group, blended and individual, unguided eMBCT interventions among people with cancer. The results from this pilot will help us improve the intervention conditions prior to testing their effectiveness in a full-scale, 3-arm RCT that will compare group, blended and individual, unguided eMBCT with care as usual [18].

Methods

Study Design and Setting

This was a mixed methods, nonrandomized feasibility study. Participants could choose to participate in either group, blended or individual, unguided eMBCT. All participants were invited to a semistructured interview postintervention. Participants were also asked to complete questionnaires before and after the intervention.

The study was conducted at the Radboudumc Center for Mindfulness in Nijmegen, The Netherlands. Although our study was not randomized, results are reported in accordance with the Consolidated Standards of Reporting Trials (CONSORT) extension for randomized pilot and feasibility trials [19], as many of the principles described apply.

Participants

Participants were eligible if they (1) were adults and had been diagnosed with cancer at any point in their life (irrespective of type or stage of cancer and time since diagnosis); (2) had internet access and were able to use a computer; and (3) had good command of the Dutch language. Participants were excluded if they (1) had participated in a mindfulness intervention before (>4 sessions); (2) had a severe psychiatric comorbidity that warranted acute treatment (ie, psychosis, mania, severe personality disorders, suicidal thoughts); (3) had dependence on drugs or alcohol; or (4) had severe cognitive impairments.

Procedure

Participants were recruited online via posts placed on websites of cancer-related organizations or patient group forums (online sites where people with cancer can hold conversations and find information), flyers and posters placed at Radboud University medical center, and social media platforms.

Interested participants contacted us via email, via phone, or by completing the contact form on the study website. After this, they received a phone call from one of the researchers to verify inclusion criteria and provide information about the study. Participants were allowed to choose their preferred intervention condition. For each eMBCT condition, a maximum of 12 participants were allowed, so once one eMBCT condition was full, participants were informed that they could only participate in the other one if they wished to be included in this study. Eligible participants were sent the written information about the study and the informed consent form by post and email. After participants signed and returned the informed consent form, they were enrolled in the study and asked to complete pre-intervention questionnaires via the secure Castor EDC system.

Within 1 week after the 8 weeks of the intervention, participants were invited to complete postintervention questionnaires and share their experiences in a semistructured interview. Participants in both conditions were allowed to have any form of medical, psychological (except for MBIs), or paramedical care they required during the study period.

See Figure 1 for the participant inclusion flow chart.
Intervention

eMBCT

The content of both eMBCT interventions was based on the MBCT program developed by Segal et al [20]. For both conditions, the intervention consisted of 8 online sessions with mindfulness meditation exercises, psychoeducation, and reflections, plus a silent day. We included psychoeducation about mindfulness for cancer and grief and adapted the moving exercises for people with cancer. Participants were asked to do home practice for 30 minutes to 45 minutes a day. Although the content of the sessions did not differ between the 2 conditions, the delivery format did; in the group, blended eMBCT, sessions 1, 5, and 8 took place as online group sessions via the videoconferencing platform Zaurus. In both conditions, participants were allowed to join with a significant other. The specific content for each session has been published elsewhere [18].

Group, Blended eMBCT

Group, blended eMBCT consisted of 3 videoconference group sessions lasting 2.5 hours and guided by a mindfulness teacher (sessions 1, 5, and 8). The other sessions (sessions 2, 3, 4, 6, and 7 and the silent day) were followed individually via Minddistrict. Participants were provided with written online ...
feedback on the individual sessions from their mindfulness teacher within Minddistrict. The mindfulness teachers involved in the project were health care professionals experienced in psycho-oncology who met the qualification criteria of the Association of Mindfulness Teachers based in The Netherlands and Flanders, which are in line with the 2015 UK Network for Mindfulness-Based Teachers criteria. In addition, teachers had regular peer supervision sessions led by a senior mindfulness teacher (AS).

Individual, Unguided eMBCT

Participants in the unguided eMBCT condition were provided the entire training through Minddistrict. They received weekly access to one of the online mindfulness sessions, which involved the same themes, exercises, and homework as those in the group, blended eMBCT condition. However, there was no mindfulness teacher involved. Participants received automated feedback instead. Participants could contact the research team for technical support.

Feasibility Outcomes

Aspects of feasibility were assessed based on the areas of focus suggested by Bowen et al [21], including acceptability and limited efficacy. Acceptability focuses on how the participants react to the intervention (to what extent the intervention is suitable, satisfying, and attractive) [21]. Limited efficacy intends to test the intervention in a limited way [21]. For this pilot study, limited efficacy was evaluated with the pre-intervention and post-intervention questionnaire scores (the same questionnaires will be used in the full-scale RCT).

Acceptability of the intervention was evaluated by how many participants chose each eMBCT condition, how many participants started the intervention, the participants’ clinical characteristics at baseline, the average number of sessions completed per condition—adherence—(through attendance lists for groups and login data in Minddistrict), and dropout rate (participants who discontinued the intervention).

In addition, acceptability was evaluated by conducting semistructured interviews postintervention. Participants from group, blended and individual, unguided eMBCT were asked program-specific questions to assess their experiences with the respective intervention condition; in addition, they were asked to express if they experienced barriers to or facilitators for group, blended and individual, unguided eMBCT (eg. Were there specific parts that were helpful/not helpful?). Questions were asked in an open way to permit participants to freely speak. Participants were interviewed via telephone within 3 months after the end of the intervention. Participant interviews were conducted by 2 researchers with previous experience in qualitative research who had not been involved in the delivery of the training (see Multimedia Appendix 1 for the complete interview guide).

Limited efficacy includes planned outcome measures for full-scale RCT. Consistent with the feasibility trial design [19,22], limited efficacy of the following measures of distress and secondary outcomes that will be used to evaluate the program in the full-scale trial are reported: Hospital Anxiety and Depression Scale [23], severity scale of the Fear of Cancer Recurrence Inventory-Short Form [24,25], fatigue severity subscale of the Checklist Individual Strength [26], rumination subscale of the Ruminations and Reflection Questionnaire [27], Five Facet Mindfulness Questionnaire-Short Form [28], Self-Compassion Scale-Short Form [29], Mental Health Continuum-Short Form [30], Twente Engagement with E-health Technologies Scale [31]. Detailed information about each questionnaire has been published previously [18].

Sample Size

There is no consensus about the optimal sample size for pilot and feasibility studies [32]. Guidance varies between 12 and 30 participants or more per trial arm [33,34]. To reach the study objectives, including sufficient feedback on the acceptability of both conditions, we aimed to include 12 participants in the individual, unguided condition and 12 participants in the group, blended condition.

Data Analyses

Descriptive statistics were used to characterize participant demographics, recruitment numbers, and login data. Baseline and postintervention mean scores, standard deviations, and effect sizes from all the questionnaires were calculated for both conditions using SPSS (version 27; IBM Corp). The number of sessions completed was calculated by summing the number of sessions that each participant completed. In this count, we included the introductory session and the silent day, which made a total of 10 sessions. The proportion of sessions completed in Minddistrict was represented as percentages based on each participant’s usage login data. We transformed the percentages into units to aggregate the number of sessions completed by each participant.

Interviews were transcribed verbatim and analyzed by means of an iterative process of thematic analysis in which coding categories were derived directly from the text data (inductive coding) [35]. We followed a form of data-driven thematic analysis and followed the different phases of thematic analysis as suggested by Braun and Clark [35]. First, we familiarized ourselves with the data. Second, 2 researchers independently did a first round of coding 2 interviews (1 from a participant in the group, blended intervention and 1 from a participant in the individual, unguided intervention), during which initial codes were generated. Third, codes between the 2 researchers were compared and reviewed. Fourth, the 2 researchers created a common coding map for analysis and coded the rest of the interviews. All remaining interviews were coded by one researcher and reviewed by a second. Discrepancies were discussed and resolved by consensus. Fifth, the codes from step 4 were reviewed and categorized into broader themes with a larger group. The group consisted of 3 senior researchers (AS, JP, and LK) who have extensive experience in the fields of mindfulness, cancer, and research methodology, a mindfulness teacher with more than 20 years of experience teaching different mindfulness courses (including mindfulness for people with cancer), and a PhD candidate with a background in mindfulness and clinical experience (NB). Definitions and labels for each theme and subthemes were generated. Finally, we selected vivid and compelling examples from the interviews that clearly portrayed the themes and subthemes identified.
Ethical Considerations

The Buddy feasibility trial was approved by the ethical review board, CMO Arnhem-Nijmegen (number: NL73117.091.20), prior to data collection. The study was conducted according to the principles of the Declaration of Helsinki (6th edition, 2008) and in accordance with the Medical Research Involving Human Subjects Act (WMO). All participants who joined the study signed an informed consent form prior to enrollment. Participation was free of charge and voluntary. Participants were informed that they could withdraw at any time without consequences, that their anonymity was ensured, and that there was no monetary compensation for participation.

Results

Acceptability

Enrollment took place between August 2020 and January 2021. A total of 29 participants were assessed for eligibility, of which 2 were excluded; 1 participant had previously followed an MBI, and the other participant was never diagnosed with cancer. Of the 27 eligible participants, 1 participant did not want to participate, 1 participant preferred to join a group, face-to-face MBI program, and we could not contact the other person. In total, 24 participants started the program. The first 12 eligible participants who contacted us preferred to join the group, blended condition. Therefore, subsequent eligible applicants were only offered individual, unguided eMBCT. See Figure 1 for the complete flow of participant selection procedures.

All participants were Dutch and had at least a secondary education; their mean age was 51 (SD 11.5) years, and most (21/24, 87%) were female. Participants had the following types of cancer: breast (9/21, 42%), ovarian (5/21, 24%), colon (3/21, 14%), leukemia (2/21, 10%), lymphoma (1/21, 5%), and bowel (1/21, 5%). Most participants (15/20, 75%) received treatment with curative intent. In addition, overall, it appeared that participants in the blended group had more working hours than participants in the unguided group (21 hours vs 13 hours) and were more often treated with curative intent (10/11, 90% vs 5/9, 56%), and a larger proportion was diagnosed with ovarian cancer (5/11, 46% vs 0/10, 0%). Demographic and disease characteristics of the participants for each condition are shown in Table 1.

For the group, blended condition, the mean number of sessions completed was 9.7 of 10; all participants completed at least 9 of the 10 sessions (minimum 9 sessions and maximum 10 sessions); adherence was high; and there were no dropouts.

In total, 5 of the 12 (42%) participants in the unguided, online condition dropped out. These participants completed fewer than 4 sessions: 3 participants completed 3 sessions, and 2 participants completed 1 session only. We could not contact 2 participants after they dropped out, and the other 3 reported that the program was too hard to follow because of personal circumstances. Participants in the unguided, individual condition who dropped out and completed baseline assessments (n=4) had metastatic cancer and were receiving palliative anticancer treatment. The mean number of sessions completed for the individual, unguided condition, excluding dropouts, was 8.3 of 10 (minimum 1.5 sessions and maximum 10 sessions). The mean number of sessions completed for the individual, unguided condition, including dropouts, was 6.1 of 10.
Table 1. Demographic and clinical characteristics of the included participants at baseline.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Blended (n=12)</th>
<th>Unguided (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>51 (2.3)</td>
<td>51 (4.4)<sup>a</sup></td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>11 (92)</td>
<td>10 (83)</td>
</tr>
<tr>
<td>Married or living as married, n (%)</td>
<td>9 (82)<sup>a</sup></td>
<td>9 (90)</td>
</tr>
<tr>
<td>Dutch nationality, n (%)</td>
<td>12 (100)</td>
<td>12 (100)</td>
</tr>
<tr>
<td>Work per week (hours), mean (SD)</td>
<td>21 (11)<sup>b</sup></td>
<td>13 (14)<sup>c</sup></td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>6 (54)<sup>a</sup></td>
<td>4 (40)<sup>d</sup></td>
</tr>
<tr>
<td>Tertiary</td>
<td>5 (45)<sup>a</sup></td>
<td>6 (60)<sup>d</sup></td>
</tr>
<tr>
<td>Anticancer treatment, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curative</td>
<td>10 (90)<sup>a</sup></td>
<td>5 (56)<sup>d</sup></td>
</tr>
<tr>
<td>Palliative</td>
<td>1 (10)<sup>a</sup></td>
<td>4 (44)<sup>d</sup></td>
</tr>
<tr>
<td>Duration since first cancer diagnosis (months), mean (SD)</td>
<td>14 (14)<sup>a</sup></td>
<td>18 (24)<sup>b</sup></td>
</tr>
<tr>
<td>Type of cancer, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>3 (27)<sup>a</sup></td>
<td>6 (60)<sup>b</sup></td>
</tr>
<tr>
<td>Ovarian</td>
<td>5 (46)<sup>a</sup></td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>Colon</td>
<td>1 (9)<sup>a</sup></td>
<td>2 (20)<sup>b</sup></td>
</tr>
<tr>
<td>Acute myeloid leukemia</td>
<td>0<sup>a</sup></td>
<td>2 (20)<sup>b</sup></td>
</tr>
<tr>
<td>Lymphoma</td>
<td>1 (9)<sup>a</sup></td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>Bowel</td>
<td>1 (9)<sup>a</sup></td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>Previous experience with meditation (yes), n (%)</td>
<td>6 (55)<sup>a</sup></td>
<td>4 (40)<sup>b</sup></td>
</tr>
</tbody>
</table>

^an=11.
^bn=10.
^cn=8.
^dn=9.

Results From the Interviews

Participation and Themes

All 24 participants were invited for semistructured interviews, and 13 (54%) agreed to participate (5 from the individual, unguided condition and 8 from the group, blended eMBCT condition). Interviews lasted between 35 minutes and 90 minutes. Responses from the semistructured interviews showed that there were overlapping as well as different barriers and facilitators for group, blended and individual, unguided eMBCT. The barriers and facilitators were organized into the following 4 emergent themes (each one with multiple subthemes): program content; program format; group, blended condition; and individual, unguided condition.

Program Content

Factors categorized as program content were the specific online program components (eg, exercises, videos, diaries) in Minddistrict that were used in both intervention conditions. Program content facilitators that participants reported included the possibility to choose different exercises that were suitable to personal needs. For instance, one participant reported:

What I also like is that you could choose which exercises yourself (...) that’s just really nice, that bit of freedom you had. [group, blended condition; completed 10 sessions]

In addition, participants reported that the identification with other peer participants in the videos and the normalization of their experiences through video stories were useful and made them feel less alone:

I really liked those videos, to experience what other people thought about it—how they thought about it or how they experienced it (...) I often recognized myself in it, so that was helpful. [individual, unguided condition; completed 7 sessions]

Reported program content barriers included too many exercises with no clear explanation about their rationale, too many forms to fill out, and reflection on emotions in diaries that were
It was sometimes quite intense to fill in your diary every day, and every week there was also another diary that you had to keep. [group, blended condition; completed 10 sessions]

Program Format

Factors categorized as program format were the arrangement of the online program that facilitated participants’ participation (e.g., structure, time, place) to both intervention conditions. Not having to travel and being able to follow the program at one’s own pace were the most reported program format facilitators. One participant reported:

I liked doing it at home so I could do it in my own time and place, and also with no travelling times. [individual, unguided condition; completed 10 sessions]

Additionally, the presentation of visual information that complemented the written and spoken exercises and having the choice of a physical booklet as an additional source and future reference were positively valued, as participants indicated:

I always really liked the information pieces with those drawings, because then I could make it visual instead of everything being spoken, then I really had an image and I really liked that. [individual, unguided condition; completed 7 sessions]

...a book you can easily pick up in addition to your exercise. I personally prefer it. [individual, unguided condition; completed 10 sessions]

However, some other participants said that they found the program structure unclear and that it was difficult to navigate. In addition, they reported that it required too much time investment and that it was difficult to follow it at home with constant interruptions of family members. For instance, one participant from the individual, unguided condition said:

I just don’t know when to schedule it. Then, I had just found a moment, and another child came downstairs and asked loudly: ‘Can I have an apple?’ Yes. Or then, the partner comes and gets some tea, and he would say... ‘Oh, sorry. I see you are doing mindfulness.’ [individual, unguided condition; completed 7 sessions]

Group, Blended Condition and Individual, Unguided Condition

There were also barriers and facilitators that were specific to the intervention conditions. Participants in the group, blended condition liked the group sessions because they had connection with others, peer support, the possibility to ask questions, and synchronicity in communication. A participant in the group, blended condition who completed 10 sessions reported that “it’s also nice to hear that other people are struggling with the same things and yes, you know, you’re suddenly not crazy anymore.”

Another participant reported that:

I was really looking forward to it when it was finally time for another group session of, oh yes, nice, just talking to people. [group, blended condition; completed 10 sessions]

Moreover, one participant emphasized that:

You know, if you have any questions, at least you can ask questions. Then, you will get an answer right away. [group, blended condition; completed 9 sessions]

Barriers that were specific to the group, blended sessions included having to be sitting for a long time during the group sessions, the intensity and length of the sessions, the infrequent number of group sessions, and the fact that they were online rather than in person. A participant commented that “and with the 3 times you only have together, that was quite short” [group, blended condition; completed 9 sessions]. Another participant, also from the group, blended condition, reported that “it’s quite a long time to sit behind a screen like that. And I wasn’t that far into my recovery yet, so I especially thought the first session was really exhausting” [completed 10 sessions]. An outstanding result was that almost all participants from the group, blended condition indicated the need to have more group sessions. They mentioned that the group sessions were not enough to get to know each other properly. One participant reported:

I was really looking forward to when it was finally time again for a group session (...) I think for me, if it had been a group session 8 times, then that would also just be very nice. [group, blended condition; completed 10 sessions]

Participants in the individual, unguided condition reported lack of peer support and lack of feedback from a therapist as barriers for participation. One participant from the individual, unguided condition reported that “the fact that there is no contact with a person or with a group and that there is also no concrete agreement that we will meet each other—even if it is only online...that made it very difficult for me to keep it up” [completed 6 sessions].

For all the barriers and facilitators for both conditions across themes and subthemes, see Table 2.
Table 2. Barriers and facilitators experienced by participants during group, blended and individual, unguided online mindfulness-based cognitive therapy (eMBCT).

<table>
<thead>
<tr>
<th>Themes and subthemes</th>
<th>Facilitators</th>
<th>Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Program: contenta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>• Multiple options: different exercises and different voices for the meditations</td>
<td>• Too many exercises.</td>
</tr>
<tr>
<td></td>
<td>• Pleasant and clear voices that become familiar with time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Good and short exercises</td>
<td></td>
</tr>
<tr>
<td>Silent day</td>
<td>• Pleasant silent day</td>
<td>• Not feasible to do it independently at home without distractions</td>
</tr>
<tr>
<td></td>
<td>• Difficult to separate from daily disturbances and quotidian environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lack of peer support and guidance from a therapist</td>
<td></td>
</tr>
<tr>
<td>Diaries</td>
<td>• Promotion of personal reflection</td>
<td>• Too many different forms to fill out every week</td>
</tr>
<tr>
<td></td>
<td>• Support personal processes</td>
<td></td>
</tr>
<tr>
<td>Automatic feedback</td>
<td>• Recognition with peer participants and normalization</td>
<td>• Too impersonal</td>
</tr>
<tr>
<td>Videos</td>
<td>• Encouraging to see that the program is helpful for other people with cancer</td>
<td>• Set too high standards</td>
</tr>
<tr>
<td></td>
<td>• Explanations that clarify what is meant by the elements of the program</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Relate to other people with cancer experiences</td>
<td></td>
</tr>
<tr>
<td>Reminders</td>
<td>• Helpful reminders</td>
<td>• Too many reminders</td>
</tr>
<tr>
<td>Themes and subthemes</td>
<td>Facilitators</td>
<td>Barriers</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| **Place** | • Pleasant to do it at home
| | • No traveling, does not cost energy | • Interruptions for family members |
| | • Possibility to choose the coach and answers | • Difficult to find a room in the house where you will not be disturbed |
| **Infographics and avatar** | • Having the choice of a physical booklet
| | • Being able to look back in the physical booklet to previous sessions, besides the online program
| | • Having an additional source for reading
| | • Future reference | • The avatar was not of any added value for some participants. |
| | • Getting stuck if an avatar was not selected | • Too many different things: online program, booklet; unsure where to go |
| | • For some people, the app was very clear, and they used the app only. There was no added value from the booklet. | • For some people, the app was very clear, and they used the app only. There was no added value from the booklet. |
| **Physical booklet** | • Connection with others
| | • Peer support
| | • Possibility to ask questions
| | • Synchronicity in communication
| | • Recognition that others struggle with the same things | • Being stressed about not being able to log in in time |
| | • Good quality, elaborated, and personalized feedback
| | • Trustworthy, accessible, and supportive | • Not being able to see people properly in the screen (Zaurus), no speaker perspective |
| | • Need for self-discipline
| | • Difficult to maintain engagement without appointments
| | • Lack of support from a community | • Prefer to meet people in person rather than on a screen |
| | • Very tiring to sit behind a screen for a long time
| | • Intense, long, and tiring group sessions
| | • Too infrequent
| | • Confrontation with other participants’ cancer | • Asynchronous written feedback, this was less stimulating to some. |
| | • Even though people got written feedback, this was less stimulating to some. | • Asynchronous written feedback, this was less stimulating to some. |
| **Group, blended condition** | • Feels unsafe to share personal information with unknown recipient | • Asynchronous written feedback, this was less stimulating to some. |

Planned Trial Outcomes

Overall, 21 of the 24 (88%) participants completed baseline questionnaires, and 19 of the 24 (79%) participants completed posttreatment questionnaires. More specifically, most participants (11/12, 92%) in the group, blended condition completed both baseline and posttreatment questionnaires, while in the individual, unguided condition, only 7 (7/12, 58%) completed both baseline and posttreatment questionnaires. Although this study had a small sample size and tests of significance were not included, effect sizes were calculated to evaluate changes between pre- and postassessments. For the group, blended condition, the effect sizes for change before and after treatment were small for all outcome measures (Hedges g range=0.01-0.36), except for fatigue, which had a moderate effect size (Hedges g=0.57). For the individual, unguided condition, the effect sizes for change before and after treatment were small for all outcome measures (Hedges g range=0.24-0.46), except for mindfulness skills (Hedges g=0.52) and engagement with the intervention (Hedges g=1.53). Table 3 shows the baseline and postintervention scores for the planned trial outcome measures for both groups. No adverse events were reported.
participants' feedback has been mentioned as relevant in the condition in the full-scale RCT. It should be noted that, although fourth group session will be added to the group, blended and that they would have liked more. Based on these results, a condition even indicated that there were too few group sessions others, experienced good peer support, and appreciated the group component of the sessions; they felt connected with cancer need flexible psycho-oncological interventions.

We found that participants in both intervention conditions valued and individual, unguided eMBCT will be assessed.

Principal Findings

This nonrandomized study evaluated aspects of feasibility of group, blended and individual, unguided eMBCT for people with cancer. Overall, participants were positive about their experiences in both conditions. This supports the progression to a full-scale RCT in which the effectiveness of group, blended and individual, unguided eMBCT will be assessed.

We found that participants in both intervention conditions valued practicing at their own time, at any place. This flexibility of eMBCTs among people with cancer has been previously reported as a facilitator [14,36,37]. It is evident that many people with cancer need flexible psycho-oncological interventions.

Participants in the group, blended condition particularly valued the group component of the sessions; they felt connected with others, experienced good peer support, and appreciated the synchronicity in communication. People in the group, blended condition even indicated that there were too few group sessions and that they would have liked more. Based on these results, a fourth group session will be added to the group, blended condition in the full-scale RCT. It should be noted that, although participants' feedback has been mentioned as relevant in the cocreation process [10] and we obviously considered it important, it should be critically evaluated and weighed. Participants in this study reported that they preferred the group sessions, but if we were not able to offer the group, blended condition, they still accepted the individual, unguided condition. It is clear that participants saw the group as an important component, yet this does not necessarily mean that the group sessions are indeed crucial for the intervention to be effective. In fact, it was reported that human feedback was the most requested feature in a participatory design for an online intervention; however, this did not increase effectiveness, and the feedback messages were not even read all the time [38]. Hence, there might be a difference in what people say they want prior to participation, what they will actually do or use, and what is effective. Therefore, it is crucial to carefully think about how to use different kinds of input in a cocreation process [10] and we obviously considered it important, it should be critically evaluated and weighed. Participants in this study reported that they preferred the group sessions, but if we were not able to offer the group, blended condition, they still accepted the individual, unguided condition. It is clear that participants saw the group as an important component, yet this does not necessarily mean that the group sessions are indeed crucial for the intervention to be effective. In fact, it was reported that human feedback was the most requested feature in a participatory design for an online intervention; however, this did not increase effectiveness, and the feedback messages were not even read all the time [38]. Hence, there might be a difference in what people say they want prior to participation, what they will actually do or use, and what is effective. Therefore, it is crucial to carefully think about how to use different kinds of input in a cocreation process when developing online interventions.

In terms of preferences and dropouts, the first 12 participants who enrolled in this study preferred the group, blended condition, and there were no dropouts in this condition, compared with 5 participants who discontinued the intervention in the individual, unguided eMBCT. Acceptability and adherence seemed to be higher in the group, blended condition than in the individual, unguided condition. It is important to...
note that all participants who discontinued the intervention were in palliative treatment. Although we could not determine the exact reason, these preliminary insights suggest a proclivity for group, blended eMBCT and questions the acceptability of the individual, unguided eMBCT for people receiving palliative treatment. In addition, it should be considered that, although the individual, unguided condition may be easier to implement and cheaper, people with cancer may still prefer a group, blended intervention format.

Another finding is that the completion rates for the postintervention questionnaires and interviews were low, in particular for the individual, unguided group. Participants were not reminded to complete questionnaires, and no incentive to participate in the interviews was provided. In addition, people in the individual, unguided condition had no contact with a mindfulness teacher or peers throughout the intervention. It might be that these participants did not feel as engaged in the study as the people in the group, blended condition. It has been shown that the use of electronic reminders and real-time monitoring among people with cancer can contribute to a very high completion rate [39]. In the full-scale RCT, we therefore plan to include prompts, such as emails, calls, and WhatsApp messages, so participants are reminded to complete questionnaires.

Strengths and Limitations

In this pilot study, we included representatives from the target group as well as experts in the field of cancer, mindfulness, and eHealth to develop an effective intervention. This study highlights the importance of assessing relevant stakeholders’ opinions before developing an intervention and prior to going through the efforts of conducting a full-scale RCT. Based on the results of the cocreation process, we developed an app that is visually attractive; user friendly; low cost; and flexible in how, when, and where to participate. We developed an intervention that is in line with the participants’ needs and wishes and that considered expert opinions. It has increasingly been mentioned in the emerging field of eHealth interventions [10] that it is crucial to carefully consider and understand the target group when developing an effective online intervention. In this pilot study, we not only carefully addressed the target group’s desires and needs before the intervention but also evaluated their experiences after, to develop an optimal intervention that is acceptable to the end user.

This study also has limitations that should also be considered when interpreting its results. First, because of the nature of pilot studies, this study had a small sample size; in addition, it was nonrandomized, limiting our ability to assess limited efficacy. Second, our sample was rather homogeneous (eg, all Dutch, mostly highly educated women), and these participants were self-selected. The participants who had a choice between both conditions all chose the group, blended format. Consequently, findings cannot be generalized to all people with cancer. It may require more research to be able to apply online MBIs across people with cancer with different characteristics (eg, type of cancer, age, sex, language). Moreover, some participants who were invited for the interviews did not reply, and some declined participation, which further limits the generalizability of our results and calls for further research: More attention needs to be paid to people who are not reached or who do not choose to participate. In addition, in our study, we only assessed barriers and facilitators for the interventions among those who had already agreed to participate. Gaining more in-depth knowledge about those who declined participation in the program could have provided additional information about the acceptance of the program.

Research Implications

MBCTs have proven to be effective for people with cancer [7,11], and here, we showed that participants felt positively about the 2 formats of eMBCT. Although all interviewed participants considered the intervention conditions acceptable, there were differences in their experiences both between and within intervention conditions. Participants experienced the same components of an online intervention in different ways, which is in line with the findings of similar studies [14,37]. For instance, a study about an online MBI among people with cancer found that some participants found the meditations too long, whereas others liked how they enabled them to have time for themselves [37]. In our previous study, we also found that many aspects of the eMBCT (such as the treatment setting and format) were mentioned both as a facilitator and a barrier [13]. In this pilot study, we did not assess specific participants’ characteristics that might explain these differences. Exploring which type of program delivery works for whom can help to establish the best fit for individual patients, balancing effectiveness and the resources required. The subsequent full-scale RCT with a larger and more varied sample will enable us to conduct mediation and moderation analyses to help clarify some of these uncertainties.

It should be noted that participants valued the possibility of following the program at their own time and place. Being able to decide when and where to participate in online interventions among people with cancer has been reported as a positive characteristic among other pilot studies too [14,37,38]. In addition, to our knowledge, there are no studies comparing preferences of people with cancer between online, group, blended eMBCT and individual, unguided eMBCT. This highlights the importance of research on effectiveness among online MBIs for people with cancer.

Conclusions

The main goal of this study was to assess aspects of feasibility of group, blended and individual, unguided eMBCT for people with cancer. This study showed that both intervention conditions were positively received and could potentially be effective. The results of this investigation inform adjustments to the intervention and study process prior to conducting a full-scale RCT to evaluate its effectiveness [18].
Acknowledgments
This project received funding from the Dutch Cancer Society (KWF) under the project number 12125.

Data Availability
The data sets generated and/or analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions
NB analyzed the data, interpreted the results, and wrote the first draft of the manuscript. MvK set up the cocreation process and pilot study, developed and adjusted the intervention, and collected data. AS contributed to the design of the study and the application for funding. She was involved in the cocreation process, supervision of the mindfulness teachers supporting the program, and analysis and reporting of the paper. JV analyzed the qualitative part of this study. JP contributed to the study plan and research design and was involved in coding the interview themes and subthemes. SK contributed to the study plan and research design and coconducted the cocreation sessions. LK analyzed the qualitative part of this study, supported the analysis for the quantitative part, and edited all versions of the manuscript. All authors critically reviewed and approved the final manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Description of the intervention components and interview guide.

References

Abbreviations

CONSORT: Consolidated Standards of Reporting Trials
eMBCT: online mindfulness-based cognitive therapy
MBCT: mindfulness-based cognitive therapy
MBI: mindfulness-based intervention
RCT: randomized controlled trial
Comprehensive Assessment and Early Prediction of Gross Motor Performance in Toddlers With Graph Convolutional Networks–Based Deep Learning: Development and Validation Study

Sulim Chun1*, BA; Sooyoung Jang1*, MD; Jin Yong Kim1, MS; Chanyoung Ko1, MD; JooHyun Lee1, BSN; JaeSeong Hong1, BBA; Yu Rang Park1, PhD

*these authors contributed equally

Abstract

Background: Accurate and timely assessment of children’s developmental status is crucial for early diagnosis and intervention. More accurate and automated developmental assessments are essential due to the lack of trained health care providers and imprecise parental reporting. In various areas of development, gross motor development in toddlers is known to be predictive of subsequent childhood developments.

Objective: The purpose of this study was to develop a model to assess gross motor behavior and integrate the results to determine the overall gross motor status of toddlers. This study also aimed to identify behaviors that are important in the assessment of overall gross motor skills and detect critical moments and important body parts for the assessment of each behavior.

Methods: We used behavioral videos of toddlers aged 18-35 months. To assess gross motor development, we selected 4 behaviors (climb up the stairs, go down the stairs, throw the ball, and stand on 1 foot) that have been validated with the Korean Developmental Screening Test for Infants and Children. In the child behavior videos, we estimated each child’s position as a bounding box and extracted human keypoints within the box. In the first stage, the videos with the extracted human keypoints of each behavior were evaluated separately using a graph convolutional networks (GCN)–based algorithm. The probability values obtained for each label in the first-stage model were used as input for the second-stage model, the extreme gradient boosting (XGBoost) algorithm, to predict the overall gross motor status. For interpretability, we used gradient-weighted class activation mapping (Grad-CAM) to identify important moments and relevant body parts during the movements. The Shapley additive explanations method was used for the assessment of variable importance, to determine the movements that contributed the most to the overall developmental assessment.

Results: Behavioral videos of 4 gross motor skills were collected from 147 children, resulting in a total of 2395 videos. The stage-1 GCN model to evaluate each behavior had an area under the receiver operating characteristic curve (AUROC) of 0.79 to 0.90. Keypoint-mapping Grad-CAM visualization identified important moments in each behavior and differences in important body parts. The stage-2 XGBoost model to assess the overall gross motor status had an AUROC of 0.90. Among the 4 behaviors, “go down the stairs” contributed the most to the overall developmental assessment.

Conclusions: Using movement videos of toddlers aged 18-35 months, we developed objective and automated models to evaluate each behavior and assess each child’s overall gross motor performance. We identified the important behaviors for assessing gross motor performance and developed methods to recognize important moments and body parts while evaluating gross motor performance.
Introduction

For the continuous and proper development of children, an accurate and timely assessment of their developmental levels is essential [1]. Early diagnosis during the toddler stage allows for early intervention, which can significantly impact children’s later life outcomes [2,3]. Previous research has shown that early intervention in vulnerable populations, such as those with low birth weight and prematurity, leads to significant improvements in later childhood developments compared to those who do not receive early intervention and that these differences persist into adolescence [4,5]. Numerous studies have shown that the influence of early intervention extends beyond adolescence to adulthood, with significant socioeconomic benefits [6-8]. A recent study about the development of children exposed to lead showed that early intervention before the age of 3 years benefited their future academic performance [9].

As a result, many countries recommend the need for regular developmental screening of infants and young children, and South Korea has implemented the National Health Screening Program for Infants and Children for children under 6 years of age since 2007 [10-14]. The National Health Screening Program for Infants and Children in South Korea developed the Korean Developmental Screening Test for Infants and Children (K-DST) in 2014, which assesses gross motor, fine motor, cognitive, language, social, and self-help skills in children aged 4-71 months [15].

In various areas of development, gross motor development begins earlier than other areas of development, such as fine motor and language development, and therefore, it is possible to assess the risk of developmental delay at a younger age by monitoring gross motor development. Studies have shown that gross motor development at an early age is predictive of subsequent developments [16] and is also associated with future academic achievement [17,18].

However, a global shortage of pediatric health care providers hinders the proper developmental assessment of children. In a report published in 2016, one-third of pediatricians in the United States did not use standardized screening tools in their pediatric practice because of issues such as limited clinic hours and a shortage of medical staff to perform developmental screenings [19]. As an alternative to pediatric health care professionals, many countries, including South Korea, rely on parental reports to determine developmental milestones. However, parental reports are based on subjective opinions, and parents may respond positively even when they have observed their child’s activities only once, leading to false positives [20]. Based on these factors, there is a need for an objective, labor-free, and automated tool to assess the development of children.

Recently, there have been several studies using deep learning to assess gross motor development in children. A study reported that a deep learning model can predict cerebral palsy progression from videos of spontaneous movements taken in infancy [21]. However, this study did not use a previously validated metric such as the K-DST, which may limit the explainability and generalizability of the model. Liu et al [22] evaluated the gross motor skills of children with autism with an average age of 5 years, and Suzuki et al [23,24] assessed gross motor skills on a video-by-video basis using a deep learning model with behavioral videos of 4- to 5-year-old children. However, since these studies were conducted on children aged ≥4 years, there is a limitation in that they could not validate the model effectiveness in the <3 years age group, where early intervention is expected to be more effective.

Considering these factors, we developed an automated and accurate pediatric developmental assessment model using videos of toddlers aged 18-35 months performing gross motor movements that have been validated with the K-DST. Our 2-step model assesses each behavior and evaluates each child’s overall gross motor performance based on the performance level of each behavior. In addition, we identified behaviors that contribute to the overall gross motor skills assessment and detected critical moments and important body parts for the assessment of each behavior.

Methods

Study Design and Participants

In this study, we used behavioral videos of toddlers aged 18-35 months, when most of them could walk, perform a wide range of gross motor actions, and minimally understand the examiner’s instructions to perform the task [16,25]. We selected 4 behaviors frequently used by the K-DST to assess gross motor development in this age group: climb up the stairs, go down the stairs, throw the ball, and stand on 1 foot [15]. These 4 movements were chosen as core tasks based on existing child development guidelines and in consultation with 3 pediatricians and 15 child development experts, considering the physical and cognitive abilities of this age group [26,27]. The participant performed multiple trials for each behavior. For each of these trials, the raters watched the video and rated the performance as “bad,” “good,” or “perfect.”

We also categorized participants into “relatively slow” and “relatively fast” groups based on their overall performance: if their performance was rated as “bad” on 2 or more behaviors, we categorized them as “relatively slow”; the remaining cases were categorized as “relatively fast.”
Ethical Considerations

The data set used in this study is from our previous study and it was constructed while adhering to the ethical principles of the Declaration of Helsinki [28]. The construction of the data set was approved by the Institutional Review Board of Severance Hospital, Yonsei University College of Medicine (4-2021-0845), and the requirement for informed consent was waived due to the retrospective nature of the study. Participants of the data set were recruited from daycare centers, kindergartens, primary pediatric hospitals, and internet communities. Written informed consent for data collection and subsequent analysis was obtained from all caregivers of the participants. Participants received ₩50,000 (approximately US $38) and were provided with an intelligence scale test valued at around ₩300,000 (US $232) as compensation. To ensure the confidentiality and privacy of the participants, each study participant was deidentified via an alphanumeric code.

Experimental Setting

The videos were recorded in the presence of caregivers, examiners, and children. Depending on the behavior, a staircase or a ball was used as the apparatus. The video recordings for each child were conducted for approximately 1 hour. A camera was positioned to capture the entire body of each child. Using a frontal angle camera, the child’s behavior was recorded as an RGB (red-green-blue) video. All videos were collected using a Sony DSC-RX100 with 1920x1080 resolution and at 30 frames per second. The collected videos were rated by human raters based on the K-DST criteria, and these values were used as true labels in the stage-1 model.

Data Preprocessing

To assess the behavior of the children in the RGB videos, we estimated the position of each child as a bounding box and then extracted 17 human keypoints within the box [29]. To detect the participants, we estimated the bounding boxes using Faster-RCNN [30] with the ResNet 50 backbone in the RGB videos. HRNet was then used to detect human keypoints in the detected bounding boxes [31]. Skeleton data were generated at a rate of 30 frames per second.

Model Construction

We divided the data into training, validation, and test sets in a 6:2:2 ratio for each behavior, ensuring that data from the same individual were not allocated across multiple sets. To predict the overall gross motor performance of the children, we designed a 2-stage model. The overview of our model is shown in Figure 1. The first stage is the action evaluation stage, in which each behavior is evaluated separately using a graph convolutional networks (GCN)–based deep learning algorithm. To improve the performance of the stage-1 model, we performed transfer learning with pretrained weights. These pretrained weights are released by PYSKL and are trained with the channel-wise topology refinement graph convolution networks (CTR-GCN) model on the NTU RGB+D dataset by detecting 17 skeleton nodes with HRNet [32-34]. The CTR-GCN model is a stacked structure of 10 basic blocks, 8 of which were frozen during the training on our data. Augmentation using random flipping and scaling was applied to our training data. The training task was repeated 5 times for the same data, and 80 frames were randomly selected each time. The model training strategy of this study and the architecture of the CTR-GCN is shown in Figure 2. A total of 4 CTR-GCN models were trained to generate the predicted probabilities for the 4 gross motor skills, 1 for each behavior [35]. Although these 4 models can assess the performance of each behavior, it was necessary to integrate all 4 models to have a comprehensive assessment of the child’s gross motor development. Accordingly, to assess overall gross motor performance, the stage-2 model aggregated the outcome probability values of each label per behavior. The extreme gradient boosting (XGBoost) algorithm was used for the stage-2 model [36]. The validation process was performed using a 10-fold cross-validation strategy. The parameters used to train our models are shown in Multimedia Appendix 1.
Figure 1. An overview of the suggested 2-stage model for predicting and evaluating comprehensive gross motor performance of children. Faster-RCNN and HRNet were used to extract the skeletal joints from the 4 behavioral videos. The evaluation of each behavior in the stage-1 was performed by graph convolutional networks model separately, and Grad-CAM was used for analyzing the influence of each joint and time segment of the video. In stage-2, the XGBoost algorithm was used for overall performance evaluation, and the SHAP method was used to recognize the contribution of each behavior to the evaluation. B: behavior; C: class; CTR-GCN: channel-wise topology refinement graph convolution networks; Grad-CAM: gradient weighted class activation mapping; GMS: gross motor skills; SHAP: Shapley additive explanations; XGBoost: extreme gradient boosting.
Figure 2. A detailed architecture of the suggested model and CTR-GCN. We applied augmentation methods and frame sampling strategies. The pretrained weights for the CTR-GCN model were applied, and 8 basic blocks of the model were frozen during training. The Grad-CAM was generated from the gradients and feature map from the last block. The Grad-CAM was then interpolated to align with the input frames. A basic block of CTR-GCN consists of 3 CTR-GCs, which use temporal pooling to aggregate temporal features of skeleton graph sequences and pairwise subtraction and concatenation for correlation modeling between skeletal joints. C: channel dimension of the data; CTR-GCN: channel-wise topology refinement graph convolution networks; GMS: gross motor skills; Grad-CAM: gradient-weighted class activation mapping; MLP: multilayer perceptron; N: number of skeletal joints; T: temporal dimension of the data; Tanh: hyperbolic tangent function; XGBoost: extreme gradient boosting.

Evaluation of Model Performance and Verification of Explainability

The stage-2 model–assessed performance was compared with human panel–assessed performance on a fixed-test data set. A panel consisting of 1 pediatrician and 2 nonexperts assessed the participants’ overall gross motor status. Sensitivity and specificity for each panel were calculated.

For the interpretability of the stage-1 action evaluation model, gradient-weighted class activation mapping (Grad-CAM) was used to identify critical time points and body parts in behavioral videos [37]. To create a Grad-CAM heatmap, we obtained weights for each label through gradient calculation and extracted feature maps from the final graph convolutional layer of the CTR-GCN model. The heatmap was then generated by linearly combining the derived weights and feature maps and applying the ReLU function [38]. We then visualized the heatmap along with the original input, which is a sequence of positions of skeletal joints. To understand the influence of each body part on model decision, we determined the top-1 activated joints that had the highest Grad-CAM values per frame and grouped their frequency by body part [39]. The 17 joints were grouped as belonging to the head, left arm, right arm, left leg, and right leg [39].

In the second stage of overall performance prediction, we used the Shapley additive explanations (SHAP) method to identify the actions that contribute more to the total developmental assessment [40]. The mean absolute SHAP value was obtained to estimate the contribution of each feature to the model output.

Statistical Analysis

The performance of the models was evaluated using the area under the receiver operating characteristic curve (AUROC) score, which was calculated as the average of all folds and presented with SD. The optimal cutoff value for the overall gross motor skill assessment was determined based on receiver operating characteristic analysis using the Youden index. The receiver operating characteristic curve was also plotted with the average of the folds within the threshold intervals and the area between the SDs. All statistical analyses were performed in Python (version 3.6.8; Python Software Foundation) using sci-kit-learn (0.24.2 version).

Results

Characteristics of Cohort Participants

Behavioral videos of the 4 gross motor skills were collected from 141 children, of which 71 (50.4%) were boys, and 70 (49.6%) were girls. The average age of the children in this study was 29.6 (SD 4.3) months. The characteristics of the behavioral data for each gross motor skills are listed in Table 1. A total of 2502 behavioral videos were collected, with 698 (23.9%) rated as “bad,” 581 (23.2%) rated as “good,” and 1321 (52.8%) rated as “perfect.”
Table 1. Characteristics of cohort participants. The 141 participants consisted of 71 (50.4%) boys and 70 (49.6%) girls, and the average age was 29.6 (SD 4.3) months. A total of 2502 behavioral videos were collected, with 698 (23.9%) rated as “bad,” 581 (23.2%) rated as “good,” and 1321 (52.8%) rated as “perfect.” The distribution of the demographics of the population and the number of videos by label for each behavior are represented as the total number and its percentage.

<table>
<thead>
<tr>
<th>Parameter and variable</th>
<th>Type of gross motor skill</th>
<th>Total (N=141)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Climb up the stairs</td>
<td>(N=141)</td>
</tr>
<tr>
<td></td>
<td>Go down the stairs</td>
<td>(N=141)</td>
</tr>
<tr>
<td></td>
<td>Throw the ball</td>
<td>(n=140)</td>
</tr>
<tr>
<td></td>
<td>Stand on 1 foot</td>
<td>(N=141)</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (months), mean (SD)</td>
<td>29.5 (4.3)</td>
<td>29.5 (4.3)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td>Girls</td>
<td>70 (49.6)</td>
</tr>
<tr>
<td></td>
<td>Boys</td>
<td>71 (50.4)</td>
</tr>
<tr>
<td>Number of videos by label, n (%)</td>
<td>Bad</td>
<td>137 (21.9)</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>106 (16.9)</td>
</tr>
<tr>
<td></td>
<td>Perfect</td>
<td>384 (61.2)</td>
</tr>
</tbody>
</table>

Performance of the Evaluation of Each of the 4 Gross Motor Skills

Table 2 shows the results of the first-stage model. The AUROC values with each behavioral evaluation were from 0.79 to 0.90. We found that the model for the “climb up the stairs” behavior performed the best, with an AUROC score of 0.90, followed by “go down the stairs” with an AUROC score of 0.86; subsequently, the models for “throw the ball” and “stand on 1 foot” performed similarly, with AUROC scores of 0.79 and 0.80, respectively (Figure 3).

Table 2. Results of the evaluation of the 4 gross motor skills.

<table>
<thead>
<tr>
<th>Performance metric</th>
<th>Gross motor skill, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Climb up the stairs</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.78 (0.02)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.71 (0.03)</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.86 (0.02)</td>
</tr>
<tr>
<td>F_1-score</td>
<td>0.72 (0.04)</td>
</tr>
<tr>
<td>AUROCa</td>
<td>0.90 (0.01)</td>
</tr>
</tbody>
</table>

aAUROC: area under the receiver operating characteristic curve.
Figure 3. Performance scores and confusion matrices of the stage-1 gross motor skill evaluation model for 4 behaviors. The bar chart of scores is shown with error bars indicating the range between minimum and maximum scores observed in the cross-validation. The AUC scores range from 0.79 for “throw the ball” to 0.90 for “climb up the stairs.” The confusion matrices show the model’s ability to distinguish between “bad” and “good” labels. AUC: area under the curve.

Grad-CAM on the Visualization of Human Keypoint

Our keypoint-mapping Grad-CAM visualization showed the differences in the activated joints for each behavior and label (Figure 4). By observing the highlighted areas in the heatmap, we could identify the contribution of the joints to the evaluation of each behavior. The horizontal axis, labeled as “time,” indicates the moments of the behavioral video that contributed to the classification across the selected 80 frames of the videos. The vertical axis, labeled as “skeletal joint,” shows the critical joints related with behavior evaluation. For the “climb up the stairs” behavior, the Grad-CAM results of the behavior evaluated as “bad” showed that the Grad-CAM scores of the arms and head increased as the child falls and grabs the stairs with their hands. On the other hand, for behavior evaluated as “perfect,” the child’s legs scored consistently high as they walked up.

It was also observed that the Grad-CAM score was higher when a given task was being performed. In the Grad-CAM results for the child who was rated “bad” for “climb up the stairs,” we could observe that the moment when the child wandered and looked back to the assistant has a lower Grad-CAM value than the moment when they climbed the stairs. To compare the importance of each body part, we determined the top-1 activated joint, which is the joints with the highest Grad-CAM value per frame, and grouped the frequencies by body part. (Multimedia Appendix 2) [39].
Figure 4. Grad-CAM heatmap with frame-by-frame mapped keypoints for each behavior. The change of Grad-CAM values over time for 17 human keypoints was displayed as a heatmap. For each behavior, the Grad-CAM heatmap for a given participant was compared between a “perfect” and “bad” performance. The actions of the participant over time were visualized as human keypoints and shown above the heatmap. The age and gender of each child were displayed together. Grad-CAM: gradient-weighted class activation mapping.

Overall Performance Status Prediction

The results of the stage-2 overall performance prediction model and the human panels on a fixed-test data set are shown in Figure 5. The model had an AUC score of 0.90, and the specificity and sensitivity of the optimal cutoff points were 0.83 and 0.82, respectively. For the human panels, sensitivities of 0.90 and 0.91 and specificities of 0.59 and 0.81 were recorded by nonexperts and an expert, respectively. Comparing each of these showed that the model performed better than the nonexpert panel and was similar to the expert panel. Table 3 shows the overall results of the model.

According to the grouped SHAP value obtained from variables for each action, the action “go down the stairs” contributed the most to the prediction, with a SHAP value of 1.28 (Figure 5). The next highest values were “climb up the stairs,” “throw the ball,” and “stand on 1 foot,” with values of 0.73, 0.65, and 0.36, respectively.
Discussion

Principal Findings

In this study, we evaluated each gross motor behavior and assessed each child’s overall gross motor performance status using movement videos of toddlers aged 18-35 months. To the best of our knowledge, this study is the first to predict the overall gross motor behavior status using pediatric gross motor movement videos at ages younger than 3 years.

Several previous studies have attempted to predict pediatric development using digital phenotype data, such as detecting developmental disabilities using drag-and-drop data in games [41], identifying visual impairments using gaze patterns and facial feature data in response to visual stimuli on a smartphone, and measuring fine motor skills in children using sensor-augmented toys [42]. Suzuki et al [23,24] conducted studies that collected the behavioral videos of 4- to 5-year-old children and extracted skeletal data through OpenPose to evaluate behavioral performance on a per-video basis using a convolutional neural network and autoencoder model. Liu et al [22] proposed a method to evaluate the initial gross motor skills of children with autism with an average age of 5 years using velocities, trajectories, and angles of upper and lower limb joints based on skeleton data extracted through OpenPose. However, unlike these previous studies of gross motor skill assessments, our study focused on gross motor function in toddlers younger than the age of 3 years, which may allow us to quickly identify developmental delays in children younger than the age of 3 years for early intervention. Additionally, this study not only assessed each behavior but also built a model to evaluate the overall performance of each individual by aggregating the assessments of each behavior.

In this work, we performed action recognition using CTR-GCN on skeleton data extracted through human pose estimation with Faster-RCNN and HRNet [30,31,35]. Recently, many studies have been published on action recognition, which is broadly categorized into RGB-based methods and skeleton-based methods [43]. In this study, instead of RGB-based methods, which directly use RGB video, we used a skeleton-based method using Faster-RCNN and HRNet to estimate the location of human presence as a bounding box and extract human keypoints [30,31]. These skeleton-based methods are not only computationally efficient but also have the advantage of focusing on the child’s behavior and deidentifying the study participants by removing background information [43,44].

For human pose estimation, we used HRNet and Faster-RCNN compared to the studies by Suzuki et al [23,24] and Liu et al [22], which used OpenPose [30,31,45]. In human pose estimation, there are 2 types of methods: the bottom-up method (eg, OpenPose), where each body part is detected first and subsequently the body parts are combined, and the top-down method (eg, HRNet + Faster-RCNN), where the person is detected and then each body part is searched within the detected bounding box [29-31,45]. The HRNet method is known to be more accurate than OpenPose, and the top-down method is expected to be more accurate in detecting body parts, especially...
when there are multiple people in the video [31,32]. Since children are often filmed with their caregivers in the developmental test, the HRNet was more suitable for our study.

The types of behaviors assessed in this study have been used in the K-DST for the corresponding age group, and previous research has shown that these types of gross motor behaviors are good predictors of childhood developmental disorders, such as intellectual disability, autism spectrum disorder, and cerebral palsy [15]. Furthermore, the model we developed in this study provides more objective assessments of gross motor skills than the K-DST, which relies on parental reports and enables the assessment of gross motor skills to be automated without requiring trained pediatric health care providers.

Of the 4 behaviors evaluated, “go up the stairs” was the most accurately classified; however, in the actual model, “go down the stairs” had a higher contribution in SHAP values (Figures 2 and 4). When viewing videos of actual children’s behaviors, we found that while performing the “go down the stairs” behavior, the examiner placed the child on the stairs, and the child subsequently performed the action of going down the stairs to return to the caregiver at the bottom of the stairs without the examiner’s intervention. Other behaviors required frequent intervention by the investigator to encourage the child to perform the behavior successfully, because the children sometimes did not understand the investigator’s instructions (eg, holding up 1 leg for more than 1 second) or had a variety of alternative actions at the onset of the behavior (eg, returning to the caregiver instead of climbing the stairs).

We also aimed to validate the explainability of the model by calculating the Grad-CAM values of each joint for each behavior, frame by frame (Figure 4). This allowed us to identify specific joints that had high importance values at critical points in the child’s behavior. For example, in a video of a child performing the “stand on 1 foot” behavior, when we analyzed the Grad-CAM of each joint on a frame-by-frame basis, we could observe that the importance of the leg joints increased as the child stood on 1 leg. The importance of each joint across the videos was determined by counting the number of times each joint was the most important in a particular frame (Multimedia Appendix 2) [39]. This allowed us to identify the vital body parts for evaluating each behavior. In the case of “climb up the stairs,” for example, it was found that the values in the arm area increased when the child was performing the behavior poorly. This finding can be attributed to the child’s tendency to resort to crawling instead of standing when the child had difficulty climbing, thereby increasing the values in the arm. The analysis of Grad-CAM values per joint in the children’s behavioral videos allowed us to identify which joints were important for certain behaviors and which body parts were more deficient in each child during specific behaviors.

One limitation of this study was that we could not validate the model’s performance in different patient populations. The study used data from participants aged 18-35 months, as this is the developmental stage when children can perform a wide range of gross motor movements, such as walking and running, and can understand simple verbal instructions from the examiner. Therefore, further research is needed to determine which gross motor activities in different age groups can be used to assess gross motor development in children. In addition, because this study was limited to Korean children, we suggest that its applicability should be studied in various settings, including other ethnicities and cultural settings.

Additionally, this study did not collect long-term follow-up prognostic data on the participants, such as the subsequent occurrence of developmental delays. If prospective data had been collected on the occurrence of future developmental disabilities (eg, cerebral palsy and autism spectrum disorders), more thorough studies could have been conducted using our model. Therefore, it is necessary to consider the long-term prognosis follow-up of participants in future studies.

Conclusions
We developed a model to assess 4 behaviors using behavioral video in children aged 18-35 months and to assess each child’s overall gross motor performance. This is the first study to assess the overall gross motor behavioral status of children younger than 3 years of age using gross motor video for automated and objective prediction of child development. We also identified important behaviors during the model’s assessment of overall gross motor performance. Furthermore, we developed a method to identify important moments and key body parts during behavioral assessment using Grad-CAM. We anticipate that a more accurate and automated assessment of gross motor development will be possible with this model if more data are available in a variety of settings.

Acknowledgments
This research was supported by a grant from the R&D project funded by the National Center for Mental Health (grant MHER22A01). Funding was used toward labor costs for data collection and analysis. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Data Availability
We used publicly available data from our previous research [28]. These data are available on GitHub [46].

Authors’ Contributions
SC, SJ, YRP, JYK, and CK contributed to conceptualization. SC, SJ, YRP, JYK, CK, and JSH contributed to methodology. SC, SJ, JHL, and YRP contributed to data curation. SC and JY contributed to data curation. SC, JYK, and JSH contributed to...
artificial intelligence modeling and validation. SC and SJ contributed to statistical analysis. SC, SJ, and YRP contributed to manuscript writing. YRP contributed to supervision. All authors have read and agreed to the published version of the manuscript. All authors had full access to all the data in the study and accepted the responsibility for the decision to submit it for publication.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Parameters used to train the model.
[PDF File (Adobe PDF File), 73 KB - formative_v8i1e51996_app1.pdf]

Multimedia Appendix 2
Distribution of top-1 activated joints per frame grouped by body parts.
[PDF File (Adobe PDF File), 211 KB - formative_v8i1e51996_app2.pdf]

References
15. Chun et alJMIR FORMATIVE RESEARCH

https://formative.jmir.org/2024/1/e51996 JMIR Form Res 2024 | vol. 8 | e51996 | p.1083 (page number not for citation purposes)

Abbreviations

AUROC: area under the receiver operating characteristic curve
CTR-GCN: channel-wise topology refinement graph convolution networks
GCN: graph convolutional networks
Grad-CAM: gradient-weighted class activation mapping
K-DST: Korean Developmental Screening Test for Infants and Children
RGB: red-green-blue
SHAP: Shapley additive explanations
XGBoost: extreme gradient boosting

©Sulim Chun, Sooyoung Jang, Jin Yong Kim, Chanyoung Ko, JooHyun Lee, JaeSeong Hong, Yu Rang Park. Originally published in JMIR Formative Research (https://formative.jmir.org), 21.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Background: Mental health care provision in the United Kingdom is overwhelmed by a high demand for services. There are high rates of under-, over-, and misdiagnosis of common mental health disorders in primary care and delays in accessing secondary care. This negatively affects patient functioning and outcomes. Digital tools may offer a time-efficient avenue for the remote assessment and triage of mental health disorders that can be integrated directly into existing care pathways to support clinicians. However, despite the potential of digital tools in the field of mental health, there remain gaps in our understanding of how the intended user base, people with lived experiences of mental health concerns, perceive these technologies.

Objective: This study explores the perspectives and attitudes of individuals with lived experiences of mental health concerns on mental health apps that are designed to support self-assessment and triage.

Methods: A semistructured interview approach was used to explore the perspectives of the interviewees using 5 open-ended questions. Interviews were transcribed verbatim from audio data recordings. The average interview lasted 46 minutes (rounded to the nearest min; SD 12.93 min). A thematic analysis was conducted.

Results: Overall, 16 individuals were interviewed in this study. The average age was 42.25 (SD 15.18) years, half of the interviewees identified as women (8/16, 50%), and all were White (16/16, 100%). The thematic analysis revealed six major themes: (1) availability and accessibility, (2) quality, (3) attitudes, (4) safety, (5) impact, and (6) functionality.

Conclusions: Engaging in clear communication regarding data security and privacy policies, adopting a consent-driven approach to data sharing, and identifying gaps in the app marketplace to foster the inclusion of a range of mental health conditions and avoid oversaturation of apps for common mental health disorders (eg, depression and anxiety) were identified as priorities from interviewees’ comments. Furthermore, reputation was identified as a driver of uptake and engagement, with endorsement from a respected source (ie, health care provider, academic institution) or direct recommendation from a trusted health care professional associated with increased interest and trust. Furthermore, there was an interest in the role that co-designed digital self-assessments could play in existing care pathways, particularly in terms of facilitating informed discussions with health care professionals during appointments and by signposting individuals to the most appropriate services. In addition, interviewees discussed the potential of mental health apps to provide waiting list support to individuals awaiting treatment by providing personalized psychoeducation, self-help tips, and sources of help. However, concerns regarding the quality of care being affected because of digital delivery have been reported; therefore, frequent monitoring of patient acceptability and care outcomes is warranted.
addition, communicating the rationale and benefits of digitizing services will likely be important for securing interest and uptake from health care service users.

KEYWORDS

app design; digital health; eHealth; interviews; mental health; mHealth; mobile phone

Introduction

The demand for mental health care is steadily rising [1], with mental health disorders being among the leading causes of global disease [2] and disability burden [3]. Despite the documented consequences of delays in providing support [4,5], there is inadequate service coverage and poor quality of care within most health care systems globally [6], with documented disparities between the quality of physical and mental health care [7].

In this regard, mobile and internet technologies, such as web and smartphone apps, have been identified as potential tools to improve access to care by mitigating some of the economic, geographic, and human resource constraints posed by in-person care [8]. Evidence gathered from numerous studies supports the view that the internet and mobile apps have become a source of health information, support, screening, and disease management, as well as being the entry point for referral processes with various degrees of success in implementation.

In the United Kingdom, there is an urgent need for innovative mental health technologies, as despite a lifetime prevalence of 1 in 4 adults experiencing a mental health disorder [9], many individuals who seek help face considerable barriers to effective support. First, an estimated 1 in 35 people are waiting for specialist mental health care in the United Kingdom [10], with the reported wait for specialist care often exceeding a month [4]. Patients who spend more time on waiting lists report worsening mental health symptoms [4,5]. In addition, there are reports of impairments in social or relationship domains, with some individuals reporting that their mental health deteriorated to the extent that they needed emergency care [4].

Second, there is well-documented evidence of mental health misdiagnosis. It is estimated that 90% of mental health concerns are managed entirely in primary care settings [11]. Despite this, there is frequent misidentification of common mental health disorders, such as major depressive disorder [12,13], bipolar disorder [14], and anxiety disorders [15]. There is also evidence that some general practitioners (GPs) feel their surgeries are underprepared to provide adequate mental health care [16]. A plethora of interconnected reasons may explain the misdiagnosis of mental health conditions, such as the overlapping symptom profiles of different psychiatric disorders [17], short consultations [18], and a lack of appropriate training [19]. These assessment difficulties are compounded by person-level barriers, such as difficulties in accurately communicating symptoms to health care professionals [20]. Additional barriers to diagnosis include geographic variability in resources and the availability of trained mental health care professionals.

In contrast, smartphone ownership is becoming widespread, all-time high, and the increasing number of mobile device users has created an unprecedented opportunity to develop evidence-based mobile apps for remote delivery of mental health care. There is evidence of interest from individuals with mental health concerns in digital tools designed for mental health assessments, particularly when they are integrated into care pathways, with results delivered directly to a health care professional before their appointment [5]. Individuals appear to feel more comfortable disclosing sensitive information digitally [21] than health care professionals. In addition, digital self-assessment and triage support tools may be useful in augmenting existing services by ensuring timely response and intervention to urgent cases [22,23] and signposting appropriate services outside formal health care.

However, despite the interest in and promise of mental health apps, prolonged engagement and use remains an issue [24]. This poses the question of how to design tools that are usable and useful for individuals experiencing mental health concerns. Iterative user-centric research and design are key to addressing this challenge. Indeed, work has been done to explore the opinions of apps designed for mental health concerns and disorders [25-29]. However, given the interest in digital tools intended for mental health self-assessment and triage, more work is required to understand the perspectives and acceptability of such tools designed and implemented to augment existing care pathways.

Therefore, in this study, we conducted semistructured interviews with individuals who represented potential app users: those with lived experiences of mental health concerns. The key objective of this study is to advance the understanding of potential users’ views and perspectives on mental health apps, with a specific focus on apps designed for self-assessment and triage. To this end, the semistructured interview included eight questions broadly focused on the following topics: (1) previous use and perception of mental health apps; (2) perspectives of mental health assessment apps; (3) perspectives of opportunities for integration of mental health apps, including mental health assessment apps, into traditional care; (4) perspectives of the safety and privacy aspects of mental health apps; and (5) desired app features for an ideal mental health app.
professor of neurotechnology (SB). All authors had previous experience in qualitative data analysis. JB is identified as male, and all other authors are identified as female. This study was a follow-up to a previous web-based survey study [5].

Participants and Recruitment

Participants from a previous web-based survey study [5] who expressed interest in participating in follow-up studies were contacted via email between April and June 2022 and invited to participate in this interview study. The email addresses collected in the prior survey study [5] used to contact potential participants for this study were stored in a locked (password-protected) Excel file, only accessible to members of the research team who were named after ethical approval. The inclusion criteria were as follows: (1) aged ≥18 years, (2) living in the United Kingdom, and (3) having to visit a health care professional after 2016 to discuss their mental health symptoms. The first 2 rounds of recruitment were blinded to the demographic characteristics. In the second and third rounds of recruitment, only participants who had identified as men or nonbinary in the survey study were contacted to increase the representation of these groups in this study sample.

Study Procedures and Materials

Participants were first provided with written details of the aims, methods, and requirements of this interview study via email. They were then asked to express their interests and provide consent to participate via email. Upon the expression of interest and receipt of consent, the date and time for the interview agreed with the researchers (ELF and BS). The interviews were conducted by an interviewer (ELF or BS) in the presence of an observer (ELF or BS).

All study materials, including the participant information sheet, consent form, interview guide, and debriefing, were developed in consultation with the senior author (SB) of a practicing psychiatrist. In addition, some questions in the interview guide were adapted from previous relevant literature investigating attitudes toward digital interventions for mental health [31,32]. All study materials were then further amended and finalized in consultation with members of the Cambridge University Hospitals Patient and Public Involvement panel, who have lived experiences of mental health concerns. This strategy was used to ensure the suitability and relevance of the study materials to the target population.

A semistructured interview guide was used to facilitate the conversation, which included open-ended questions to encourage participants to discuss their perceptions of digital tools (eg, applications) for mental health. The guide included eight questions (with further prompts) focusing on (1) previous use of mental health apps, (2) perceptions of mental health apps, (3) perspectives of apps for mental health assessment, (3) perspectives of receiving an indication of a mental health diagnosis from an app, (4) perspectives of information collected by a mental health assessment app being sent to a health care professional, (5) perspectives on whether apps can improve access to mental health services, (6) views on safety and privacy related to mental health apps, and (7) desired features for future mental health apps. In addition, the participants were asked (8) if they had any additional thoughts relevant to mental health and digital technologies (eg, apps). A copy of the semistructured interview script is available in Multimedia Appendix 2. The interviews were adaptive, such that only relevant questions were asked based on previous responses. The interviewer could reformulate or clarify questions during the interviews to gain a deeper understanding of the participants’ thoughts and opinions, or delve into relevant details that were mentioned in relation to the questions asked. The audio of the interview was recorded for subsequent transcription. After completion of the interview, all participants were provided with debrief via email and offered a £15 (~US $18) Highstreet voucher for their time.

Data Collection

Interviews were conducted between May 5, 2022, and June 22, 2022. Overall, 14 (88%) of the interviews were conducted using Zoom (Zoom Video Communications Inc) videoconferencing, 1 (6%) using Microsoft Teams videoconferencing, and 1 (6%) via telephone call. Participants were informed that they did not need to have their cameras on during the interview. Audio data were recorded for all the interviews. In total, 12 hours and 25 minutes (rounded to the nearest min) of interview audio were recorded, with the average length of the interview being 46 minutes (rounded to the nearest min; SD 12.93 min). The interviews were transcribed verbatim from audio data recordings using cloud-based AI-powered software Otter [33]. The researchers (ELF and BS) then reviewed the transcripts by listening to the audio recordings and amending the transcripts where necessary. Any unclear audio segments were labeled “unintelligible.” Interview transcripts were numbered and not connected to any identifiable information (ie, email address for recruitment and participation reimbursement). Any names or identifying information (eg, city of residence) disclosed during the interviews were removed from the transcripts. The transcripts were downloaded as PDFs and analyzed as described below.

Data Analysis

The data were analyzed using a bottom-up (data-driven) thematic analysis approach based on the Braun and Clarke framework [34]. A total of 2 authors (ELF and JB) analyzed all the transcripts under blinded conditions using the following process: the first interview transcription was analyzed, and initial codes were identified. The second interview was analyzed by checking for the presence of codes identified from the analysis of the first interview and adding any new codes identified. This process was continued for each interview transcript, each time adding or refining existing codes. Upon completion of the analysis, the authors were unblinded and compared their lists of identified codes. Any inconsistencies were discussed with a third author (BS or NAM-K) until consensus was reached. Once the codes were agreed upon by all authors, they were organized into themes under blinded conditions by 2 authors (ELF and JB). The resulting themes were discussed with a third author (BS and NAM-K) until a consensus was reached. Data analysis (ie, code creation and assignment, theme creation, and assignment) was performed using Google Sheets spreadsheets. A copy of the codebook organized into their respective themes is available in Multimedia Appendix 3.
Ethical Considerations
This study was approved by the University of Cambridge Human Biology Research Ethics Committee (approval number: PRE.2021.053). The participants provided informed consent electronically via email to participate in the study. In one case, a participant provided consent at the start of the interview because they had experienced difficulties in sending a complete consent form via email. On the day of the interview, the interviewer (ELF or BS) verified that participants understood the information that had been provided to them and gained verbal consent that they were happy to continue with the interview.

Results

Sociodemographic Characteristics
A total of 16 individuals were included in this study. The average age was 42.25 (SD 15.80), with 50% (n=8) of the participants identifying as women and all White (16/16, 100%). English was the native language of 87% (14/16) of the interviewees. More than 69% (n=11) had at least one undergraduate degree. A total of 43% (7/16) were single and 43% (7/16) were cohabiting. Regarding accommodation characteristics, living alone or with a partner was the most common arrangement, with 38% (n=6) living alone, 25% (n=4) living with a partner, and 19% (n=3) living with a partner or children. A total of 37% (6/16) were employed, and 62% (10/16) had a household income of less than £35,001 (approximately US $43,608) before tax.

Mental Health Characteristics
The majority (15/16, 94%) of respondents had discussed their mental health with a GP in the last 5 years, with 88% (n=14) having also seen a therapist or counselor. More than half (9/16, 56%) of the participants had also seen a psychiatrist. Mental health care visits were typically provided free of charge via the National Health Service (15/16, 94%). A total of 81% (13/16) of the interviewees were diagnosed with a mental health disorder (see Table 1 for a breakdown of the frequency of diagnoses). The most common diagnosis in the sample was major depressive disorder (13/16, 81%), followed by generalized anxiety disorder (5/16, 31%), and posttraumatic stress disorder (5/16, 31%).

<table>
<thead>
<tr>
<th>Mental health condition</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major depressive disorder</td>
<td>13 (81.25)</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>2 (12.50)</td>
</tr>
<tr>
<td>Generalized anxiety disorder</td>
<td>5 (31.25)</td>
</tr>
<tr>
<td>Social anxiety disorder</td>
<td>3 (18.75)</td>
</tr>
<tr>
<td>Panic disorder</td>
<td>1 (6.25)</td>
</tr>
<tr>
<td>Obsessive-compulsive disorder</td>
<td>1 (6.25)</td>
</tr>
<tr>
<td>Sleep disorder</td>
<td>2 (12.50)</td>
</tr>
<tr>
<td>Posttraumatic stress disorder</td>
<td>5 (31.25)</td>
</tr>
<tr>
<td>Personality disorder</td>
<td>2 (12.50)</td>
</tr>
<tr>
<td>Eating disorder</td>
<td>2 (12.50)</td>
</tr>
<tr>
<td>Attention-deficit/hyperactivity disorder</td>
<td>3 (18.75)</td>
</tr>
<tr>
<td>Autism spectrum disorder</td>
<td>1 (6.25)</td>
</tr>
<tr>
<td>Learning disability</td>
<td>1 (6.25)</td>
</tr>
</tbody>
</table>

Thematic Analysis
Thematic analysis revealed 6 major themes comprising 25 minor themes (Figure 1).
Availability and Accessibility

Availability and accessibility emerged as key themes in this study, with issues surrounding (1) app stores, (2) exclusion, (3) environment, (4) convenience, and (5) employee benefits emerging as important minor themes.

Regarding the first minor theme, app stores, interviewees reported that there is too much variability in what app store searches return, which could make app stores difficult to navigate and, in turn, be overwhelming for users:

> It’s overwhelming and it can be just really difficult to find what you’re looking for as well. You know, if you just put in a search term, and then you just get kind of a load of random stuff. That’s not necessarily categorized very well, I don’t think. [Transcript 5]

In addition, concerns were raised about groups of individuals with specific conditions being excluded from the adoption of a digital approach to mental health, with gaps in the market for apps for certain mental health conditions, such as neurodevelopmental disorders:

> [...] specialized things like ASD specifically, I’ve not really seen anything in terms of like apps to help with anything like that sort of helping with meltdowns and things like that. [Transcript 4]

Interviewees also noted a lack of diversification in-app offerings, expressing concerns that available apps are basic and essentially all offer the same thing:

> I think the ones that the NHS or the GP or the CPN have recommended they seem to be quite basic. I suppose cause the NHS makes them, they make it for everybody, so you can’t really fine tune it, I don’t think. [Transcript 15]

But in terms of my perception, I think, I don’t think they have a lot of options out there. I mean, there’s a broad range. I mean, you’ve got apps, that you know, under different names, but they all, they all work the same. [Transcript 13]

In terms of the second minor theme, exclusion, interviewees raised concerns related to severe or complex mental health symptoms impeding users’ ability to actively engage with a mental health app:

> I don’t think I’d have the mental abilities to read a question, understand it, put in an answer, look at my
answers, look for any pattern there might be or anything like that. I think I wouldn’t be able to do it. [Transcript 6]

In addition, with regard to exclusion, not being able to afford a potential one-off or subscription payment was raised as a concern:

I know some of them have like paid options, which sometimes can be a bit of a barrier. I’m in a position now where I can like pay for subscriptions, but in the past like when I was a university student I think that was one thing that sometimes put me off was having to pay for them. I used to use one calm, I found it was actually quite expensive and there’s like other apps that are completely free, that do the same thing. [Transcript 7]

Moreover, exclusion due to digital delivery, particularly in the elderly, those with limited digital literacy, or individuals with physical health conditions such as visual impairments or dyslexia, was raised as an important barrier:

[...] it would exclude some people who haven’t got the internet. And it would exclude a lot of older people who might have it and haven’t got a clue how to do it. So, so that would be one of the disadvantages of excluding some people [...]. [Transcript 6]

The environment was also identified as a minor theme within the availability and accessibility theme, with interviewees raising the issue of not having the right environment to complete a digital mental health assessment:

[...] when you’re in a house when everybody else is stuck at home as well you don’t get peace and quiet. You actually need to concentrate on it. [...] When you’re trying to sit down at home in a busy house doing it, you’re never guaranteed to have the time you need to actually finish the section in one go, having to start things three sometimes four times just to actually work through it. [Transcript 8]

In contrast, interviewees also reported that digital technologies are convenient and improve accessibility to mental health services:

[...] a lot of people can’t, can’t get to places. I don’t just mean COVID I mean, they haven’t got the money or it takes longer or whatever.” “But then the same things that are advantages are disadvantages. Because like people who are physically disabled, it must, it’ll be a lot easier for them to use to do things online. [Transcript 6]

as well as fitting well into modern daily routines:

I find that the good thing of them, is that you can use them, do them anytime. Can do it at your own pace and at home so you don’t have to depend on anyone to do it or, or have a scheduled time to. [Transcript 14]

Finally, regarding the role of the workplace, it was noted that engagement with mental health apps could improve if provided as an employee benefit:

Yeah, I mean, I got it free from my work. They had an agreement with them, so I feel I’ll try it anyway. [Transcript 11]

Quality
The quality theme was identified in this study, encompassing the minor themes of (1) subjectivity, (2) scientific rigor, (3) background and development, and (4) perceived value.

Interviewees mentioned the subjective nature of mental health symptoms. Because of their reported subjective nature, symptoms were deemed difficult to consolidate with the formal diagnostic labels and descriptions of mental health disorders, causing distrust regarding the validity of diagnoses:

I must say it’s all very subjective, isn’t it? Your own feelings are all what you feel and then you think just that is really what they mean? Am I feeling what they, what they mean? [Transcript 3]

Related to this aspect of subjectivity, interviewees mentioned concerns related to self-reporting of mental health symptoms in self-assessments. Some interviewees expressed that the subjective and hard-to-define nature of mental health symptoms can create a risk that users of mental health apps may unintentionally report their symptoms inaccurately:

So[...] you know the thing is people are expressing their symptoms, but they might be inaccurate symptoms. It might only be that person’s interpretation of what they’ve got. [Transcript 3]

Others have stated that app users may intentionally incorrectly report or exaggerate their symptoms to support self-diagnosis of a specific mental health disorder:

I guess there’s always the risk of people not being honest. And maybe people exaggerating symptoms or something like that. I know there’s a lot of talk at the minute, isn’t it about social media and people like self-diagnosing from social media, and I know it’s only a small percentage of people, but I guess that would be a concern. [Transcript 7]

The subjective nature of mental health symptoms and concerns related to self-reporting are both associated with potential difficulties in using digital tools for accurate mental health assessment, with interviewees reporting concerns that mental health symptoms may be difficult to capture in assessments that rely on predefined multiple-choice questions:

[...]it’s difficult if you’re, what you’re experiencing doesn’t fit in with the responses that have been configured. [Transcript 1]

I’d be concerned about using the app on its own to do a mental health assessment just because I think it can lack nuance sometimes. [Transcript 16]

One potential method, offered by an interviewee, to address the challenges of subjectivity outlined here was to allow for clinician-facilitated symptom reporting, wherein the app user and clinician could collaboratively complete the mental health assessment. This collaboration would allow the user to provide...
details of their symptoms or experiences, which the clinician can use as a basis to answer the questions within the assessment:

"[...] the GP, for example, could go up to [...] his or her clients and say, ‘Oh, what do you want me to put to this question’ and that, they’ll just give you, the client will just give you a tidbit and then they’ll just put that down. I think that would help." [Transcript 13]

In terms of scientific rigor, interviewees expressed concerns about a mental health assessment app’s diagnostic accuracy, stating that apps may be able to suggest a condition that is a probable explanation for a user’s mental health symptoms but that it would likely not be completely accurate:

“I don’t think an app will ever truly get a diagnosis correct. It’ll probably get a rough estimate." [Transcript 13]

Interviewees also raised concerns that due to the overlapping symptom profiles of many mental health disorders, there is a potential risk of misclassification of symptoms:

“I think not too sure about the apps for online diagnoses in general as well. I suppose with a lot of the conditions, the elements of different mental health issues, it might not be that you’ve got say bipolar […] you might have a different mental health condition and you seem to fit the criteria for bipolar." [Transcript 15]

With these concerns about diagnostic accuracy, interviewees reported a preference for apps that provide mental health screening to indicate probable present conditions, which can then be confirmed by a mental health care professional, over formal mental health diagnosis:

“I don’t think a doctor ought to diagnose someone on the basis of an app. I think they both have to go together." [Transcript 6]

In addition, a preference for an indication of where their symptoms lay on a severity scale was also mentioned by several respondents as part of the reported desire for screening, as opposed to a binary “present” or “not present” assessment outcome more akin to a diagnosis:

“I think I’d be more comfortable with saying like, you’re showing depressive symptoms of moderate severity. Here’s a list of the conditions that typically show these symptoms." [Transcript 16]

Interviewees also expressed the importance of evidence-based assessment in encouraging trust in both the assessment itself and the results:

“So yeah, I think it’s helpful if it would, if it was like a regulated test and things like that." [Transcript 4]

The importance of an evidence-based assessment was also highlighted by interviewees if the results of the assessment were intended to be shared with the user’s health care provider (eg, GP, psychiatrist):

“That’s [sending results directly to a health care professional after a digital MH assessment] a really good idea. If the app had been developed by professionals and it had been approved as being scientific, meeting all the criteria." [Transcript 15]

One source of apprehension disclosed by interviewees regarding engaging with mental health apps is the potential for nefarious digital tools (eg, apps, websites). This included tools that were either making recommendations not based on clinical evidence or tools that were perceived to have been designed with the sole intention of making a profit for the developer, rather than to help app users:

“There’s got to be something like that out there, you know, like dodgy websites, which are not quite breaking the law, but they’re not following the proper recommended guidance. Some of them can look really professional but the real interest is money really." [Transcript 15]

“I don’t like the idea of people profiting off of people’s data about mental health." [Transcript 2]

A concern shared by interviewees was the lack of regulation and quality assurance:

“I don’t know who would monitor or approve or disapprove of these apps, because there’s so many thousands, tens of thousands of apps for everything and there’s no sort of overseeing body which could say ‘you can’t say that.’” [Transcript 15]

Some interviewees expressed concerns about the appropriateness of the self-help tips offered in mental health apps. This concern focused on self-help advice offered in mental health apps often being designed for general well-being, and thus, typically not being beneficial for individuals experiencing symptoms of a mental health disorder:

[Mental health apps] try to provide solutions, and they say that “oh, just do a breathing exercise.” And you know, I used to be a yoga instructor. So I know a lot about breathing and breathing exercises, and they’re really good, but if you’re if you’re struggling, if you know if you’re having a panic attack, breathing is not going to help." [Transcript 2]

Concerning the minor theme of background and development, there was interest in ensuring that key stakeholders were included in the development and design of mental health assessment apps. In terms of including clinicians in the design, it was reported as important to verify that mental health assessment apps are designed to best support existing care pathways and address the waiting lists to access mental health services:

“I guess I’d [be] keen to, yeah, to want mental health professionals to have sort of contributed to the app to make sure it is going to reduce waiting lists, rather than just do nothing." [Transcript 16]

Beyond designing an app that can offer benefits within the clinical pathway, there was a mention of the importance of engaging with the intended population during development to establish which features and designs are required for accessibility:
So I guess in the design phases, checking with those individuals with those conditions and sort of saying, is this accessible to you? What would make it accessible to you? [Transcript 16]

Perceived value is a potential facilitator of app uptake. That is, the benefits conferred by demonstrating the efficacy of the mental health app, especially when the app offers therapeutic or self-help functionalities:

I think it always helps to know that it’s been effective for people like [...] especially for doing like therapy skills and therapy techniques. [Transcript 7]

However, the caliber of the evidence required to demonstrate the app’s efficacy was not disclosed, so it is unclear whether positive reviews or word-of-mouth recommendations are sufficient or if a more formal evidence base is necessary to promote engagement with mental health apps.

The perceived value of the app as determined by the user was deemed to impact app use and linked to drop out. Interviewees stated that they had forgotten to use or lost motivation to use apps if they did not find them valuable:

But yeah, I didn’t really find much value in it and I, I forgot to use it [...]. So I just kind of in the end, I just didn’t, didn’t bother. [Transcript 11]

With interviewees additionally stating that if the novelty of the app wears off over time there is a risk of dropout:

I only really used that for a few days. It’s one of those things, you know, download something and it looks really cool and then the novelty wears on really fast. [Transcript 5]

In contrast, interviewees discussed how apps perceived as fun encouraged continued use by incentivizing users to return through gamification:

there’s sort of incentive to play every day and you can buy him [habit tracker app mascot] outfits and stuff like that, and it’s just a bit more fun. [Transcript 4]

Attitudes

Attitudes toward using digital technologies for mental health were revealed to be an important theme, with issues surrounding (1) openness to digitalization, (2) interest in using a digital mental health assessment, (3) apprehension, (4) the value of reputability, and (5) stigma emerging as key minor themes.

In this study, attitudes regarding being open to digitalization were overwhelmingly positive:

Yeah, I’m more than happy with that don’t have an issue at all. I think we use apps all the time, don’t we for pretty much everything. [Transcript 11]

In contrast, the importance of being interested in using a mental health app in the first place was highlighted:

[...] don’t want to [use a mental health app]. I’m not interested. I’ve never thought about any of them, and not being interested in using a mental health app when symptoms are not present. [Transcript 6]

I’m not exactly sure why but have a huge desire not to monitor anything when, when I’m feeling fine. [Transcript 6]

Apprehension was revealed to be an important factor in determining mental health app use, particularly regarding the lack of face-to-face contact:

I find the lack of human contact, I find it, I find it the downside of it. [Transcript 14]

and distrust for apps that appear in advertisements:

I’m suspicious of some of the things that I see pushed in ads and things like that. [Transcript 4]

In contrast, regarding the minor theme of the value of reputability, interviewees stated that app endorsement from a source that the individual perceives as reputable, such as a trusted institution (ie, a university, health care service, such as the National Health Service, a mental health charity) or a direct recommendation (ie, from a health care provider, or a trusted friend or family member) could drive their intention to use the app:

I suppose anything reputable. [...] any institution that I feel comfortable with, be it a service or a, or research department, that would influence me? Yeah. [Transcript 6]

If it was given under an accredited body like NHS Wales, and Mind, then that will put a slightly different complexion on it for me. [Transcript 3]

But also friends and family. If they’ve used it, that’s important. [Transcript 11]

Finally, stigma was seen as an important driver of app use, with interviewees expressing that a mental health app could reduce feelings of judgment and isolation:

I don’t know if that maybe helps with the stigma a little bit. If you know that all of your friends have got that app downloaded, then you know that you’re not the only one that’s really struggling. [Transcript 7]

Safety

A major theme identified in this study was safety, comprising four minor themes: (1) data security; (2) disclaimers; (3) concerns about the potentially triggering nature of digitally delivered mental health assessment results; and (4) data sharing, consent, and safeguarding.

Interviewees expressed the importance of data security of mental health apps:

Well, all I can say is obviously privacy, confidentiality is extremely important. [Transcript 6]

I can see that the GDPR and privacy concerns would be high. [Transcript 1]

The level of trust interviewees expressed regarding apps’ data security policies varied, with some stating that mental health apps are unable to provide basic data security:

At the moment, don’t quite think we’re here. Not quite there. Purely and simply, from my perspective, in and around the areas of control and security. That’s my...
own perspective. I don’t think we’re ever going to be 100% secure. [Transcript 12]

Interviewees who expressed this sentiment also mentioned concerns about their data being easily available to those with nefarious intentions, such as hackers.

 [...] it seems self-evident that if you’re talking about your own mental health, you don’t want the whole world to be able to hack into it in any way. [Transcript 6]

Other interviewees instead assumed the relevant steps had been taken to protect their data:

I guess I’d be sort of confident if this app came into being with the people behind kind of gone through the process of making sure information is kept confidential. I wouldn’t necessarily have particular worries about kind of privacy or safety. I don’t think. [Transcript 16]

Some interviewees expressed that their use of technology and previous interactions with nonmental health apps (eg, banking or social media apps) influenced their level of trust in data security on mental health apps. They stated that they were already comfortable providing sensitive data to nonmental health apps, and thus, did not understand why providing data to mental health apps would be any different:

I wouldn’t say that I have any major concerns with regards to privacy or safety, I think because so much of my life is on my phone and it’s kind of you know, there’s so many companies that know so much about you know, if you sign up to things on your phone or apps or whatever. [Transcript 5]

In terms of actions, app developers could ease data security concerns, and interviewees mentioned a preference to remain anonymous while using the app. This reduces the potential data security risks related to data leaks:

But in terms of that being traceable, or anything that doesn’t really concern me, I’d just rather not have to put in things like my full name, date of birth card details, that sort of thing. [Transcript 4]

Interviewees expressed that the inclusion of a diagnostic disclaimer was important to ensure that app users were aware that the mental health assessment results were intended solely for screening rather than for diagnostic purposes. Interviewees additionally stated the importance of a mental health assessment app disclaimer communicating to users that any results should be shared with a relevant clinician for further confirmatory evaluations:

I think the app was using it gave you different score [...] 21 to 30 it seems like you’re likely to have ADHD, but you need to go to speak to a professional bringing [screen] shots of this app or take a print out and say perhaps the fourth one was you’ve definitely got ADHD from what you’ve told us, but you still need to be assessed by a professional. So it was like a really gentle thing. [Transcript 15]

Interviewees verbalized concerns over the potential triggering nature of receiving mental health assessment results digitally, using the words “frightened,” “worried,” and “overwhelmed.” There were 2 dimensions related to this issue, namely, concerns about the assessment’s diagnostic accuracy:

 [...] if an app tried to do diagnosis, and it completely got everything wrong, then it could lead to the person getting a bit too overwhelmed. [Transcript 13]

and a potential lack of timely access to clinicians with whom one could discuss and validate the results:

And I can’t see why anybody else would not find it frightening because if somebody was going to use this method, then let’s just you know, you can’t get a doctor’s appointment, a physical appointment about three weeks down here. So I would have to sit on that and then get a doctor’s appointment. So I, I would find it, and also seeing it in black and white what was wrong with me. No, I think that would send me into a spiral. [Transcript 3]

In contrast, another interviewee expressed that receiving the results of a mental health assessment app may be reassuring rather than triggering based on their own previous experience using digital mental health self-assessment tools:

Yes, it [receiving mental health results from a digital tool] wasn’t intimidating if you like. When I got the high score, I thought “Yeah, this is good,” I didn’t see it as a negative thing at all. [Transcript 15]

Interviewees praised the benefits of having an app that is integrated into the existing health care pathway where the results of an assessment would be directly sent to a health care professional:

I’d prefer that [mental health assessment results being sent directly to a clinician] rather than letters really. It’s much quicker, instant information. [Transcript 11]

However, related to the minor theme of data sharing and consent, interviewees indicated that the integration of app data into the existing care pathway must be authorized by the app user through a consent-driven approach to result sharing:

 [...] you shouldn’t be forced into presenting this information [results from a digital mental health assessment to a health care professional]. [Transcript 13]

with a preference for multiple opportunities to provide consent (eg, at the point of download of the app and at the point of sending the data to a clinician) to share their mental health data with a relevant health care professional:

I would just like to consent at the moment of sending. So I think there’ll [have to] be two ways of consent. There is a general consent when I joined the app, right? But there is also a consent before it’s actually actually shared. Yeah, if there are these two layers of consent. [Transcript 13]

A preference for risk safeguarding was expressed with the suggestion that mental health apps should be built with
functionality to override the consent requirement if the user discloses a substantial level of risk:

I also think it should be a bit of a disclaimer like if you disclose a level of risk, we will send it on automatically to a mental health care professional just so people who are disclosing levels, like levels of risk aren’t [just left to it]. [Transcript 16]

as well as including crisis signposting in app:

...when you are logging your mood, if you log you know, really bad, it might prompt you to say, you know, I noticed that you’re not feeling so good, would you like to call this number or would you like to look at this website. [Transcript 4]

In addition, there was a suggestion to pair requesting consent to share mental health data with health care clinicians to facilitate informed decision-making, wherein the app user has the agency to decide which care pathway they prefer to receive help from:

[...] you could have [an option saying “okay, we’ve identified this, where would you, we recommend that you should go to a GP, you know, but we also have these, these options. Where do you consent for us to send your information? [Transcript 11]

Impact

The impact of a mental health assessment app on mental health care provision was deemed an important theme in this study, with interviewees discussing issues about (1) the effects on the existing care pathway and (2) support and signposting outside formal health care. Regarding the former, interviewees positively viewed the impact that mental health assessment apps could have on existing care pathways:

So to actually have that [results of a mental health assessment completed in an app] sort of sent to someone [a clinician] and have that resource available, I think that’d be really, really valuable, actually. [Transcript 5]

I have [had] GPs in the past that haven’t really had much training or like knowledge in mental health. So I think maybe if I could then go to my GP and say, “Well, I’ve done this and it’s said that it indicates this diagnosis” I think it could maybe like make that easier. [Transcript 7]

However, the importance of the role of the health care professional in reviewing any output from a mental health assessment app:

I think it’s really important to pass on this information for the counselor of GP or whatever to look over and then they’ll decide whether that information is accurate [Transcript 13]

It means the human being can just kind of clarify answers and make sure that whatever decision the app has come to is actually accurate [unintelligible] just checking up with the actual person. [Transcript 16]

It should be emphasized that any app integrated into existing care pathways should support clinicians and not replace them:

It’s about accelerating my access to a person or a group of people that can help me and not replacing that with a digital application because I don’t believe in that. [Transcript 2]

Interviewees expressed that completing a digital mental health assessment could facilitate discussions with their health care providers:

One of my big worries is booking doctor’s appointments and struggling to word what I am trying to put across. I think a report sent across with an opinion or something, yeah, to my GP so that I do not have to do it myself and it sounds more reliable, I suppose, would be really, really helpful actually personally. [Transcript 4]

and could help triage patients to appropriate health care professionals or services:

I think on the whole, the app could make an accurate assessment of yeah, which pathway was best. [Transcript 16]

[...] for lower risk perhaps you can still defer, defer them to somewhere else to see if you can offload the pressure load of the GPs and leave it for for higher needs patients, I guess. [Transcript 14]

as well as offering tracking of mental health symptoms during treatment, which can be shared with clinicians to inform:

I can show that [data from mental health tracking app] to her [community psychiatric nurse], and she can take a screenshot for my records, and then we can just discuss if there’s any external triggers or you know how I feel about noticing the slow change in my mood by going back to the app seeing the graphs and the change. [Transcript 15]

In contrast, interviewees expressed concerns regarding the potential of a mental health assessment app to further overwhelm existing services, creating a bottleneck where clinical needs are revealed, which cannot be met by existing mental health services:

[...] is this going to open the floodgates and then there aren’t the services to meet all the huge need that you uncover. [Transcript 6]

There are additional concerns that the quality of mental health care may worsen because of digitization, with face-to-face care being replaced with digital care:

Like if it’s [an app] an option that is there as well as, but I would, I would be, my worry will be if that one, one day that [...] would be the substitute to be seen a person [Transcript 14]

Even when it is potentially inappropriate for higher-severity or complex mental health symptoms:

I guess my like, that my concern is that sometimes would it just become like, they just start signposting
you to the app instead of... even when it is not appropriate. [Transcript 7]

With this in mind, interviewees stated that there was a need for clinicians to refer patients to mental health apps to justify digitization:

I think I would ask why the doctor is presenting me with an app. When it’s something we couldn’t do with ourselves [Transcript 3]

In terms of the impact a mental health assessment app could have on support and signposting outside of formal health care, interviewees discussed the opportunities that mental health assessment apps can offer in terms of encouraging help-seeking:

I think that would be the sort of ideal outcome that I would look for if I was completing some sort of assessment. Obviously, you’re completing it because you think that there might be an issue. And then, at the end of the day, that’s the kind of first port of call that you know, you would go and see a health professional [Transcript 5]

I think it can be difficult sometimes to actually go and ask for it. Even if you know you’re really struggling, it can be hard to actually go and have a conversation. So I think you could maybe help people who are quite anxious about going to see their GP if they know that they’ll get some information first. [Transcript 7]

In addition, interviewees expressed the potential for support to be provided to users while they were on a waiting list for further assessment or appropriate treatment:

 [...] if you’re on a waiting list being told that there are these apps that might be able to help you while you’re on that waiting list to manage, you know, managing emotions or whatever it is, then that would be good. [Transcript 1]

In addition to improving access to faster help by signposting support outside of traditional care services:

it might make it [wait times] shorter because if they are then being directed to other quicker options. That might be better for the traditional services. [Transcript 11]

as well as the app having the potential to provide users with sources of help and self-help tips, rather than solely focusing on an indication of a diagnosis:

 [...] as long as it had additional information and useful links and things like that, that go alongside it, and indicators of where they can go to maybe get help, or you know, to help themselves while they’re waiting to get an appointment, for example, then that would be that would be more useful than just an indication of a diagnosis and nothing else. [Transcript 1]

Potentially, like, self-help type resources as well. So like information, and I guess there are sometimes like courses you can do on like anxiety management, or whatever. [Transcript 16]

Functionality

This major theme included the following minor themes: (1) usability, (2) features, (3) customization, (4) personalization, and (5) interoperability.

In terms of usability, interviewees commented on the importance of app design, with a focus on a preference for a professional interface that may foster a degree of trust in the reputation of the mental health app:

I guess, just the, you know, the app, if the app looked professional, and it looked well done, and you know, it doesn’t look like someone had coded it together in their bedroom or something like that. [Transcript 5]

In addition to the importance of app design, interviewees expressed that ease of use facilitates app uptake and continued app use:

I think there should be an app that’s quite basic and as well as functional but easy to understand. [Transcript 13]

with perceived difficulties in using the app constituting a potential barrier to disengagement with the mental health app:

I think being user friendly is to the real... is the real key and anything that was too wordy to read on a screen I was just Oh well I can’t deal with that. [Transcript 5]

As part of usability, interviewees commented on the importance of in-app guidance to support users in their interactions with the app:

I think it would have been better if it was more guided. You know, so perhaps, set a set schedule of tasks to do or something. I am sure there was a lot of information in it, but it just was the format that[...] I didn’t like really. [Transcript 11]

Therefore, this could be a feature included in the app to promote ease of use, particularly in self-help apps that often reportedly rely on self-motivation:

I think a lot of them are more like self-help geared so I suppose if you struggle to do sort of stuff on your own, then you might struggle to use the apps, because they are very self-guided. [Transcript 7]

Finally, in terms of usability, during the first use of the app after downloading, there was a preference for the ability to explore the app before any sort of commitment was asked (eg, creating an account or having to enter payment information). Part of this preference was related to being able to ensuring that the features included in the app were relevant to the needs of the user and suited their preferences:

I open one and it’s immediately like, sign in, well I might just delete that one because I don’t want to sign in and I’ll go for the next one. Whereas if it’s open up, and I could take a look around the features and then decide, oh, actually, there’s something that I’d like to use, then I’d be happy enough to sign up. Yeah. [Transcript 5]
A common feature mentioned by interviewees was tracking functionality, including monitoring of the user’s mood and mental health symptoms:

"[...] it would be best if you could sort of track your mood over weeks or months or days. Maybe have graphs or a little bit of information available on [...] what’s average for you." [Transcript 4]

In addition, interviewees expressed that an app with functionality to monitor both physical and mental health data would be useful for identifying triggers for changes in mood or mental health symptoms:

"It’s all in one which is quite useful because then you can see like... hmm... I think it helps identify triggers sometimes like, yeah, if I had a really bad night’s sleep, then that might explain why the next day, I wasn’t feeling very good. It’s quite helpful having it all in one place." [Transcript 7]

The final type of tracking that interviewees regarded as helpful was habit tracking, that is, a functionality where a user can set tasks to complete throughout the day with the help of reminders:

"[...] you can set tasks every morning like brush your teeth, get out of bed, go outside, then like by ticking all of those off your little bird buddy goes off on an adventure." [Transcript 4]

Interviewees expressed that in-app reminders are a helpful feature and, in some cases, are the most useful features:

"I think the most useful things for me are setting reminders to take my medication on, on an app." [Transcript 4]

Interviewees also highlighted the importance of social connectedness and the value of a mental health app that offers peer support:

"And so from my perspective, my personal opinion, is that an app would be a value if it helps me connect with other people." [Transcript 2]

In terms of features specific to mental health assessment, interviewees emphasized the importance of comprehensiveness:

"definitely more comprehensive assessments that kind of go through different types of diagnosis and criteria, like sounds like would be a lot more very valuable than just putting everyone in like either depression or anxiety buckets" [Transcript 10]

And having multiple answering modalities beyond only offering predefined answer options:

"It depends on how am I answering these questions? I mean, is it a free text? is it voice? is it video? is it typing? Is it selecting? Because if it’s yeah, if the questions are open and I can be very subjective about it, then I would like that, probably. If it’s just selecting, like PHQ and GAD, that’s kind of, I don’t find value in those." [Transcript 2]

With free-text options being important to add nuance:

"if you had a multiple choice for you to be for there to be an option at the bottom of it to say, you know, why did you answer this way or is there any additional information that you want to give because often there is" [Transcript 10]

However, despite the positive remarks provided about the possible features offered within mental health apps, interviewees reported that some features included within apps previously used by interviewees were counterproductive. Interviewees commented that some app features interfered with the usability of the app:

"[The app] helps you plan your day and to get less distractions and feel more organized throughout the day. It was beeping and it was saying ‘Have you completed the task you set this morning? How do you feel about the task? Did it go well?’ It was all these bully questions. [...] It’s too intrusive. [...] I just found it really annoying. Sometimes I didn’t want to answer any questions. But if you didn’t, you’d get a prompt an hour later or something." [Transcript 15]

Therefore, customization of app features to users’ requirements and preferences (eg, changing reminder frequency, personalizing a crisis plan, changing the design) was also highlighted as an important aspect of functionality to avoid the features becoming irritating or counterproductive, leading to potential discontinuation of use:

"I control the level of notifications. You know, some people might like lots, some might not want any. You know, times of notifications, hints, tips, that sort of thing." [Transcript 11]

"I think having the ability to set notifications at a specific time or just once a day, is really helpful to remind me to actually log what I’ve done and things like that." [Transcript 4]

In addition, customization can offer users the freedom to choose their preferred method of engagement with a mental health app. Interviewees expressed interest in various modalities of information delivery within apps, beyond written text. Specifically, there was an interest in apps offering videos that provide information about mental health disorders:

"I think having a whole library of videos [for mental health information] would help." [Transcript 13]

In addition, interviewees expressed that they would find personalization of a mental health app output (eg, self-help recommendations, psychoeducation) valuable:

"Yeah, I think as I mentioned, sort of programmed approach or maybe personalized in some way, depending on maybe an initial assessment so it’s you know more individualized." [Transcript 11]

Interviewees reported an interest in apps that are interoperable, providing the ability to link mental health apps with other health data collection devices, specifically physical monitoring devices such as Fitbit:

"[...] it could link with, you know, Google Fit, you know, because obviously exercise and you know, ..."
Discussion

Principal Findings

This study aimed to explore the perspectives of individuals with lived experiences of mental health concerns on mental health apps designed for self-assessment and triage. A semistructured interview approach was used, and the findings revealed 6 key themes: availability, accessibility, quality, attitude, safety, impact, and functionality. These themes provide insight into how potential users experiencing mental health symptoms may perceive and use mental health self-assessments and triage apps. These findings can help app developers design and improve these technologies to better support the mental health needs of current and potential future users.

Availability and Accessibility

Concerns pertaining to the theme of “availability and accessibility” were raised by interviewees in this study. They noted that mental health symptoms can make it difficult for individuals to engage with digital mental health assessments and triage tools. Indeed, mental health symptoms and cognitive deficits associated with conditions such as depression and psychosis may make it challenging for people to use such technologies [36]. This highlights the importance of designing accessible and user-friendly digital mental health tools. To achieve this, app developers should consider involving real-life patient populations in the design and evaluation of new technologies [37] to ensure that the tools are appropriate and effective for intended users.

In addition, the risk of digital exclusion was raised by the interviewees, particularly in relation to older individuals who may not be digitally literate. Previous research has shown that older adults are less likely to use technology and the internet compared with younger individuals [38]. To address this, training in digital tools for mental health may prove effective in supporting older adults to engage with these technologies and avoiding exclusion from accessing important support and resources [39]. Interviewees also mentioned that it was important to ensure that digital tools were not the only “front door” to care services, guaranteeing that those who may be excluded from engaging with such tools are still able to access help through existing pathways.

Moreover, interviewees raised concerns about the lack of diversification within the app landscape, in terms of which mental health disorder apps were available. Specifically, many interviewees referred to the perceived lack of available apps designed for neurodevelopmental disorders. To address this, app developers should avoid contributing to the perceived oversaturation of apps for general common mental health conditions (ie, depression and anxiety disorders) and instead identify opportunities to design apps for a more diverse range of conditions, especially as this study demonstrates a clear interest in accessing such apps if they are available. In addition, investigating gaps in the app market and investing in co-designing approaches with users could help improve uptake among typically excluded populations [40,41].

Finally, interviewees suggested that offering mental health apps as an employee benefit can improve accessibility. Previous research has shown that digital interventions for employees experiencing psychological distress can be highly scalable and cost-effective [42-44] conferring positive impacts on well-being and productivity outcomes such as sleep, stress, and presenteeism [44].

Quality

Interviewees identified the “quality” of available digital mental health assessments as an important consideration. They mentioned that the subjective nature of mental health symptoms could make it difficult to accurately assess and diagnose mental health conditions. However, it is worth noting that this has also been mentioned in traditional face-to-face mental health assessments. The risks of inaccurate self-reporting due to recall and perceptual biases are widely recognized [45]. For example, previous work has demonstrated only a moderate correlation between self-reported length of sleep and actigraphy measurements, with individuals overestimating sleep duration [46]. In addition, prior research on bipolar disorder shows that individuals have trouble remembering the details of earlier manic or hypomanic episodes [47,48]. This subjectivity and difficulty in accurate reporting can lead to the misclassification of symptoms and, in turn, misdiagnosis.

Furthermore, interviewees commented on their concerns that the available digital tools designed for mental health self-assessment could provide inaccurate diagnostic results. Indeed, many of the currently available apps designed for mental health do not provide evidence of their efficacy, accuracy, or effectiveness [49,50]. There is limited high-quality evidence on the diagnostic accuracy of available digital mental health assessments, which vary in their performance when compared with a gold standard clinical interview, with some showing poor discriminatory and differential diagnostic performance and others demonstrating excellent accuracy [51]. To address this, interviewees emphasized the importance of ensuring that digital mental health assessments are clinically validated and evidence-based, particularly if the results are intended to be shared with health care professionals. A further way to address this concern is for app developers to create apps that offer screening and an indication of where a user’s symptoms fall on a severity scale rather than a diagnosis, particularly given that interviewees in this study expressed a preference for screening overdiagnosis. To increase engagement and build trust in the app and its assessment results, there should be functionality to easily share results with a health care professional for evaluation and confirmation.

Another concern raised by the interviewees was the potential for nefarious digital tools and inappropriate information or self-help advice targeting vulnerable individuals. Previous work has demonstrated that these concerns may be well founded, as some available mental health apps inappropriately promote the medicalization of normal mental states [52]. These concerns also reflect the current lack of regulation and quality assurance in the digital mental health field [53].
Attitudes

The theme of “attitudes” toward digital mental health technologies was also identified in the study as an important factor influencing the use of mental health assessment and triage apps. Similar to previous research, openness to digital technologies was identified as a key driver of engagement in digital mental health technologies [54]. In addition, and perhaps unsurprisingly, this study demonstrated the importance of interest in using these technologies, with a lack of interest constituting a significant barrier to the initial uptake. In fact, some interviewees described lack of interest as the fundamental reason for not currently engaging or not intending to engage with mental health apps. Previous research has shown that providing relevant and customizable content can increase interest, and in turn, the uptake of digital mental health technologies [55]. Therefore, engaging with stakeholders in the design phase of such technologies is critical to ensure that the content is relevant to the intended user population, driving interest, and engagement. However, it is important to note that in some groups, their lack of overall interest in such digital tools will always remain a barrier, and, as previously stated, nondigital access to services must be maintained so as not to inadvertently exclude individuals.

In addition, the value of reputation was identified in this study, supporting previous studies [55]. Interviewees emphasized the importance of the app being endorsed by a reputable source, such as a research institution, health care provider, trusted friend, or family member. This can help increase trust in the app and reduce stigma. Interviewees also expressed distrust of mental health apps that are advertised in paid advertisements, as advertising may indicate that the app was designed primarily for commercial gain rather than therapeutic benefits. Therefore, the initial engagement and use of an app can potentially be increased by improving the prospective user’s perception of the app’s reputation through endorsements from trusted individuals or organizations and by ensuring that any paid advertisements are not perceived negatively.

Furthermore, beyond just passive reputation, this study additionally determined that an active recommendation of a specific app by one’s health care provider is an excellent strategy to encourage uptake, as this fosters a sense that the app will be both highly relevant and effective in managing the patient’s conditions and needs. This reflects previous qualitative findings regarding the potential importance of a health care professional’s recommendation to encourage interest in and uptake of mobile apps, specifically for managing depressive symptoms in primary care [56]. Given this evidence demonstrating the potential influence of health care professionals on the uptake of digital mental health tools, ranging from assessment and triage to management (ie, symptom tracking and self-care as an adjunct to formal pharmacological or psychological treatment), primary care clinicians should be aware of their capacity to signpost patients and identify appropriate opportunities to do so. There are resources available to support clinicians in identifying high-quality apps to recommend to patients, such as the Orcha app library [57] and the American Psychiatric Association’s app evaluation model screener [58], which could be valuable assets in encouraging digital tool uptake in patients.

Safety

With respect to the “safety” theme, some interviewees raised concerns regarding trust in digital mental health technologies, particularly in terms of data sharing and anonymity. Some individuals may be wary of sharing their sensitive, personal information or seeking support through digital mental health technologies because of doubts regarding the confidentiality or anonymity provided by these apps. Unfortunately, these concerns may be well founded, as despite mental health apps collecting some of the most sensitive personal information, their data security provisions often do not differ from those of nonmental health apps [59]. Interviewees expressed that to address these concerns, digital mental health apps must provide clear and transparent information on how they handle user data. Lamentably, despite interviewees conveying a desire for this information, many mental health apps do not offer a privacy policy to users [60]. Of those that do provide a privacy policy, many demonstrate low readability scores [61], potentially fostering a sense of mistrust in how collected data are being analyzed and used. Conversely, some interviewees expressed a more nonchalant attitude regarding data security.

Interestingly, this study identified how one’s interaction with nonmental health apps can influence one’s perception of the data security of mental health apps, with interviewees claiming that they have minimal concerns about sharing sensitive data as nonmental health apps, specifically social media and banking apps, already collect data of a perceived similar sensitivity. Despite this apparent lack of concern on the part of app users, app developers are still responsible for upholding the required levels of data security.

In addition, interviewees communicated the importance of providing users with the option to opt out of data sharing. Interviewees recommended that, ideally, this opting-in would include asking for explicit consent at multiple time points during the use of the app, before any data were inputted, and then again before sharing any calculated results with a care professional. Currently, many publicly available apps treat continued use as a proxy for the user’s consent [61] to collect and analyze mental health data rather than asking explicitly for consent periodically, despite potential changes to the app’s data collection and analytic strategy, data sharing, or privacy policy. In addition, even if mental health apps were to adopt a consent-driven approach (ie, where consent is obtained at multiple time points), problems related to consent would persist because of the low readability scores of app privacy policies. As discussed above, users may not truly understand what they are consenting to [61]. However, interviewees expressed that, in some cases, it may be necessary to override the user’s consent to share results with a health care professional if they disclose a substantial level of self-harm or suicide risk.

Another requirement raised by the interviewees was the need for a diagnostic disclaimer. This means that nondiagnostic mental health apps should clearly state that their assessments are intended for screening purposes only and should not be used as a substitute for a professional diagnosis. Many available mental health apps lack such disclaimers [62]. Providing such a disclaimer clearly in an app store description can help prevent
users from overreliance on the results of these assessments and may encourage them to seek confirmatory assessments or support from qualified professionals.

Impact
The theme of “impact” was also identified in the study, with interviewees commenting on the effects that digital mental health assessments can have on current care pathways. They suggested that digital mental health assessments can facilitate informed discussions with health care professionals, echoing a sentiment identified previously in the user feedback of a novel digital mental health assessment [63].

However, some interviewees also expressed concerns that mental health apps could further overwhelm existing mental health services, particularly if they led to an influx of new users seeking support. One method proposed by interviewees to proactively avoid overwhelming services was to co-design apps intended to be implemented in existing clinical pathways with relevant care professionals. This would ensure that they are a valuable tool and not a hindrance to the established delivery of care [64]. Although digital mental health technologies will not immediately solve issues of long waiting lists and a lack of trained mental health care professionals, they can allow cost-effective and time-efficient collection of patient and symptom data. In addition, interviewees expressed concerns that the digitization of existing mental health services may result in poorer care, particularly for those with more severe or complex mental health symptoms. This view supports the notion that digital tools should be used for augmentation, rather than replacement, of existing services to support clinicians in the delivery of care.

A concept that was discussed positively by interviewees in this study was the potential of apps to support the waitlist management of mental health services. Mental health triage apps have the potential to direct patients to the most appropriate formal care pathway or other services (ie, local charity, self-help resources, psychoeducation) based on their symptom profile, potentially alleviating the burden on the health care system by providing individuals with mild or subthreshold symptoms with self-help tips and psychoeducation, reserving GPs, or specialized services for more severe or complex cases. Moreover, interviewees overwhelmingly expressed an interest in mental health apps that can support users while they are on the waiting list before receiving formal treatment by offering not only an assessment and triage, but also self-help tips, psychoeducation, and sources of help. Psychoeducation has been demonstrated to increase mental health literacy, decrease feelings of stigma, and increase intention to seek help [65]. In addition, psychoeducation has been shown to improve outcomes in bipolar disorder, as measured by hospital admissions [66]. Considering the wait time between assessment and psychological treatment in the United Kingdom and the associated potential for the deterioration of symptoms and well-being [4,5], any opportunity to arm individuals with resources to support their own mental health should be explored. However, beyond the potential to improve patient experience while on the waitlist, more work should be done to investigate the therapeutic benefits of providing self-help information to patients awaiting formal treatment.

Functionality
Finally, in terms of “functionality,” similarly to previous work, interviewees mentioned that ease of use and in-app guidance would increase app use [55], especially for apps that require a high level of motivation, such as mental health apps. In terms of assessment specific features, interviewees mentioned the importance of comprehensive assessments to ensure that the complete picture of mental health symptoms and contributing factors is captured. In addition, interviewees highlighted the importance of including varied answering modalities to capture the nuances of experience associated with specific symptoms. This reflects the sentiment from user feedback of a digital mental health assessment, which found that questions with predefined answer options cannot always correctly capture symptoms with requests for the ability to add free-text data [63]. This study demonstrated that users are keen to engage with apps that offer a wide range of complementary functions beyond self-assessment to support mental well-being. The desirable app functions mentioned by the interviewees included mental health symptoms and habit tracking. Mental health symptoms and mood tracking are popular features of mental health apps [29] and can be valuable to users who wish to increase their awareness of their mental health concerns [67]. Beyond only mental health symptom tracking, interviewees expressed a preference for apps with the ability to track physical health alongside mental health in a single app, thereby providing more comprehensive insights (ie, menstrual cycle, exercise). Further demonstrating the importance of ease of use from the perspective of interviewees in this study, apps that offered interoperability and facilitated the ability to link mental health apps to other health data collection devices (eg, Fitbit) were preferred. This data sharing between devices could combine physical health data (ie, heart rate, sleep amount, and quality) with manually entered mental health symptom data to help individuals identify mood triggers and patterns as well as self-management of their mental health symptoms.

In addition, the opportunity to gain peer support through mental health apps was considered important by interviewees as it has the potential to address the missing “human” aspect of digital mental health technologies. In addition, some interviewees mentioned that in the past, using social media for peer support enabled them to learn more about their illness from other individuals who had similar symptoms, which is why they thought it would be beneficial to have a mental health app. Peer support has been shown to improve feelings of hope, empowerment, and social functioning [68], with the consolidation of early stage evidence investigating digital peer support demonstrating acceptability and positive effects on functioning and outcomes [69].

Although reminders were viewed as an important and useful feature of mental health apps, interviewees stated that too many reminders and notifications were also considered intrusive and could lead to app discontinuation. However, facilitating the customization of these features could promote engagement, further corroborating previous findings [63]. In addition, offering
different modalities (eg, text, audio, and video) is seen as an important factor in engagement and app usage. Therefore, app developers should ensure that such features are easily customizable to optimize usefulness from the user’s perspective (ie, by ensuring that reminders to use the app are delivered when the user can do so) and are not overwhelming.

As discussed above, there was interest from interviewees in resources to support self-management of mental health symptoms while on a waiting list (ie, self-help tips and psychoeducation). However, it is important to note that personalization was expressed as important to interviewees, with a preference for personalized rather than generic self-help tips and psychoeducational information. Therefore, although there may be temptation from app developers to create apps using generic self-help, this may impede interest and eventual engagement with their app. Therefore, offering self-help tailored to specific conditions or populations is preferable. Doing so may also go some way toward alleviating some of the concerns expressed by interviewees in the quality theme concerning the appropriateness of self-help offered in apps, providing app users an opportunity to more confidently choose apps based on what is most relevant to them, as well as ensuring that the information is suitable for their mental health symptoms beyond general mental well-being.

Creating an account by entering personal or payment information could be a barrier to app use identified in this study due to a sense of suspicion in users about data mining, reflecting previous work [29]. Interviewees expressed an interest in being able to access the app initially without creating an account, wherein they could ascertain the relevance of the app to their individual needs and preferences before choosing to provide personal details and payment information where applicable.

Implications for Practice

Apps adopted for mental health assessment and monitoring present an interesting use case of mobile health technology, and our understanding of their acceptability and perception of benefits and barriers to adoption continues to evolve. Findings from these interviews generated valuable insights into putative users’ perspectives, concerns, and preferences regarding the use and design of apps for mental health assessment. Taken together, these results demonstrate that there is real interest in tools designed for mental health self-assessment and triage, particularly when:

1. The self-assessment and triage tool is offered with additional complementary app features that are personalized or can be customized to the individual user.
2. Self-assessment is comprehensive and includes answering modalities beyond selecting predefined answer options to capture the nuances of symptoms and experiences.
3. The tool is easily accessible, as it does not require the entry of sensitive or financial information for use or is offered via a workplace well-being scheme.
4. The tool is recommended by or associated with a reputable source, either passively (ie, developed with expert academics) or actively (ie, a direct recommendation from a friend or trusted health care professional).

However, despite this interest, individuals have real concerns that may impede their uptake and prolong engagement. This study also elucidates some simple ways in which these concerns can be addressed:

1. It appears that by engaging in clear, transparent, and accessible communication about the app’s evidence base and privacy policy in the app description, some of the concerns related to “quality” and “safety” can be addressed before the user even downloads the app.
2. Apps that collect sensitive mental health data and have the functionality to share such data with an individual’s care provider should ask for consent multiple times to establish permission to collect, analyze, and then share.
3. Engaging in co-design activities with both users and clinicians can ensure that the app is (1) widely accessible to many users regardless of the severity or complexity of their mental health symptoms, their level of digital literacy, or the specific condition, and (2) can be effectively integrated into care pathways to support care professionals in the delivery of care. Ensuring access to publicly available digital mental health assessment and triage tools can be achieved through a diverse app marketplace offering that includes typically overlooked conditions such as neurodevelopmental disorders.

Technology integration into mental health care presents opportunities and challenges rooted in the intersection of technical and human factors. Building trust with key stakeholders, such as clinicians, patients, and commissioners, on whom the success of digital integration into existing services will depend, is crucial [70]. Careful design, evaluation of tool performance, and establishing relevance to the population of interest [71] are essential to harness a technology’s potential for improving mental health care delivery and minimizing the possible integration challenges arising from the interaction between technical and human factors. In this study, interviewees seemed to positively view the role that digital tools designed for mental health self-assessment and triage could play in established care pathways if responsibly co-designed with health care professionals for successful integration to not overwhelm services. Indeed, technology can sometimes create a barrier to forming a strong therapeutic alliance between patients and health care professionals. In this regard, efforts should be made to ensure that technology augments rather than replaces human interactions. A crucial aspect of this will be interdisciplinary collaboration and co-design of tools and integration strategies. In addition, although the potential for service digitization is certainly attractive, it should be approached cautiously. Interviewees in this study reported concerns regarding lower quality of care resulting from the integration of digital delivery, and continuous monitoring and appraisal of care quality are vital following the deployment of digital tools. In addition, engaging in conversations to explain the rationale and benefits of using digital tools in the delivery of digital care will likely build trust and drive uptake in its use.

Strengths and Limitations

This study has several strengths. For instance, the use of a qualitative approach allows a nuanced and in-depth exploration...
of a range of potential users’ perspectives on mental health apps specifically designed for self-assessment and triage. Qualitative research is a powerful tool for generating insights and informing practical solutions and real-world actions. By emphasizing participant perspectives, qualitative research can capture thoughts, feelings, and context, pinpointing subtleties that quantitative methods may miss. In addition, the use of PPI in this study allowed for optimization of the study design and materials, including the suitability and relevance of the interview questions to the population of interest.

Despite these strengths, the results of this study should be viewed through the lens of the questions asked in the semistructured interview as they may have shaped the findings. For example, as we specifically asked interviewees about their views regarding the privacy and security of digital tools, it may have overrepresented the importance of this theme when some individuals would not have mentioned it if not prompted.

Furthermore, insights from this study were drawn from a small cohort of participants and therefore cannot be generalized more broadly, particularly as the entirety of the sample was White. In addition, these exploratory interviews provide insights from a population recruited through web-based social media, mainly through Facebook advertisements. Thus, the resulting cohort may be biased toward individuals who are familiar with digital technologies; thus, the findings may indicate a more positive perspective than that observed in a formal health care setting. However, the cohort in this study offered a wide range of perspectives, including individuals without previous experience interacting with mental health apps and services.

Conclusions
The adoption of mental health assessment and triage apps presents a significant use case for mobile health technologies. Insights from this study indicate user preferences for mental health apps with personalized features, easy accessibility, and that are recommended by or associated with institutions or individuals perceived as reputable. Concerns about quality, safety, and data privacy can be addressed through clear communication, consent-driven data collection and sharing processes, and co-design with users and clinicians. The positive perception of digital tools in established care pathways highlights potential opportunities for commissioning mental health care services and waiting-list management. However, further research is needed to assess the suitability of digital assessment and triage tools for different psychiatric populations, and to determine their impact on clinical outcomes. In addition, steps must be taken to ensure that concerns regarding the potentially detrimental impact of digitization on care quality are addressed when referring or signposting to digital mental health tools.

Acknowledgments
This study was funded by Stanley Medical Research Institute (grant 07R-1888). The authors are most grateful to all participants for their time and for openly sharing their views and opinions with them. The authors also thank Dr Amanda Stranks and Bethany Vincent at Cambridge University Hospitals Patient and Public Involvement (CUH PPI) for connecting us with the members of the CUH PPI panel. The authors thank the CUH PPI panel members for their time and valuable input in designing the study material.

Data Availability
The data sets generated during and analyzed during this study are available from the corresponding author upon reasonable request.

Authors’ Contributions
ELF, BS, NAM-K, and SB conceived of the study’s focus and materials. The recruitment was conducted by BS with the aid of ELF. The interviews were conducted by ELF and BS. Thematic analysis was performed by ELF and JB as the first reviewer and BS and NAM-K as the second reviewer. ELF, BS, and NAM-K prepared the manuscript, with revisions from JB and SB. All authors have contributed to the manuscript and approved the submitted version.

Conflicts of Interest
Funding for this study was provided by the Stanley Medical Research Institute (grant 07R-1888). SB is a cofounder and chief medical officer of Psynomics, Ltd. SB holds shares at Psynova Neurotech Ltd. and Psynomics Ltd. ELF is a paid consultant for Psynomics, Ltd.

Multimedia Appendix 1
COREQ (Consolidated Criteria for Reporting Qualitative Studies) checklist. [DOCX File, 22 KB - formative_v8i1e48881_app1.docx]

Multimedia Appendix 2
Semistructured interview guide. [DOCX File, 23 KB - formative_v8i1e48881_app2.docx]
Multimedia Appendix 3
Codebook organized by associated themes.
[XLSX File (Microsoft Excel File), 14 KB - formative_v81e48881_app3.xlsx]

References
4. Two-fifths of patients waiting for mental health treatment forced to resort to emergency or crisis services. Royal College of Psychiatrists. URL: https://www.rcpsych.ac.uk/news-and-features/latest-news/detail/2020/10/06/two-fifths-of-patients-waiting-for-mental-health-treatment-forced-to-resort-to-emergency-or-crisis-services [accessed 2023-02-25]
5. Spadaro B, Martin-Key NA, Funnell E, Benáček J, Bahn S. Opportunities for the implementation of a digital mental health assessment tool in the United Kingdom: exploratory survey study. JMIR Form Res 2023 Aug 07;e43271 [FREE Full text] [doi: 10.2196/43271] [Medline: 37549003]

33. Regain your schedule with Otter. Otter. URL: https://otter.ai/ accessed 2024-01-29

Abbreviations

COREQ: Consolidated Criteria for Reporting Qualitative Studies

GP: general practitioner
Co-Production of a Flexibly Delivered Relapse Prevention Tool to Support the Self-Management of Long-Term Mental Health Conditions: Co-Design and User Testing Study

Alyssa Milton1,2,3, PhD; Ingrid Ozols A M4,5, MMHS, MSuicidology; Tayla Cassidy6,7; Dana Jordan1, MPH; Ellie Brown8,9, Grad Cert, DCounsPsy; Urska Arnautovska10, PhD; Jim Cook11, MSc; Darren Phung11, BDesComp; Brynnor Lloyd-Evans12, MSc, PhD; Sonia Johnson12, MBChB, MSc, MD; Ian Hickie2, AM, MD; Nick Glozier1,3, MA, MSc, MBBS, PhD

1Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
2Brain and Mind Centre, University of Sydney, Camperdown, Australia
3ARC Centre of Excellence for Children and Families over the Life Course, Sydney, Australia
4mentalhealth@work (mh@work), Melbourne, Australia
5Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
6One Door Mental Health, Sydney, Australia
7School of Social Work and Arts, Charles Sturt University, Canberra, Australia
8Orygen, Parkville, Australia
9Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
10Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
11TechLab ICT, University of Sydney, Sydney, Australia
12Division of Psychiatry, University College London, London, United Kingdom

Corresponding Author:
Alyssa Milton, PhD
Faculty of Medicine and Health
The University of Sydney
Level 5 Professor Marie Bashir Centre, 67-73 Missenden Rd
Camperdown, 2050
Australia
Phone: 61 02 9515 1461
Email: alyssa.milton@sydney.edu.au

Abstract

Background: Supported self-management interventions, which assist individuals in actively understanding and managing their own health conditions, have a robust evidence base for chronic physical illnesses, such as diabetes, but have been underused for long-term mental health conditions.

Objective: This study aims to co-design and user test a mental health supported self-management intervention, My Personal Recovery Plan (MyPREP), that could be flexibly delivered via digital and traditional paper-based mediums.

Methods: This study adopted a participatory design, user testing, and rapid prototyping methodologies, guided by 2 frameworks: the 2021 Medical Research Council framework for complex interventions and an Australian co-production framework. Participants were aged ≥18 years, self-identified as having a lived experience of using mental health services or working in a peer support role, and possessed English proficiency. The co-design and user testing processes involved a first round with 6 participants, focusing on adapting a self-management resource used in a large-scale randomized controlled trial in the United Kingdom, followed by a second round with 4 new participants for user testing the co-designed digital version. A final round for gathering qualitative feedback from 6 peer support workers was conducted. Data analysis involved transcription, coding, and thematic interpretation as well as the calculation of usability scores using the System Usability Scale.

Results: The key themes identified during the co-design and user testing sessions were related to (1) the need for self-management tools to be flexible and well-integrated into mental health services, (2) the importance of language and how language preferences vary among individuals, (3) the need for self-management interventions to have the option of being supported when delivered in
services, and (4) the potential of digitization to allow for a greater customization of self-management tools and the development of features based on individuals’ unique preferences and needs. The MyPREP paper version received a total usability score of 71, indicating C+ or good usability, whereas the digital version received a total usability score of 85.63, indicating A or excellent usability.

Conclusions: There are international calls for mental health services to promote a culture of self-management, with supported self-management interventions being routinely offered. The resulting co-designed prototype of the Australian version of the self-management intervention MyPREP provides an avenue for supporting self-management in practice in a flexible manner. Involving end users, such as consumers and peer workers, from the beginning is vital to address their need for personalized and customized interventions and their choice in how interventions are delivered. Further implementation-effectiveness piloting of MyPREP in real-world mental health service settings is a critical next step.

(KEYWORDS

self-management; serious mental illness; self-care; digital health tools; blended interventions; peer support; mobile phone

Introduction

Background

Serious mental health conditions, including schizophrenia, bipolar disorder, and major unipolar depression, are associated with longer term use of mental health services [1]. Despite this substantial need, service provision is limited by funding and workforce constraints, and additional ways of supporting individuals with serious mental ill-health are required. Self-management programs have been developed to assist individuals with serious mental health conditions to actively understand and manage their own health [2]. Core components of self-management include psychoeducation, relapse prevention; the identification and avoidance of stressors; the development of effective coping strategies; and, often, a recovery element [3,4]. There is now substantial meta-analytic evidence that the provision of supported self-management programs (ie programs with guidance from a health professional or another helper) alongside standard care improves outcomes for people experiencing serious mental health conditions, including significant reductions in symptom severity, shorter length of admission, improved functioning, and better quality of life [4].

As a result of this robust evidence base [4], global health policies increasingly emphasize the importance of self-management interventions to support individuals with severe mental illness in managing their own health [5,6], and they are now included as a best practice recommendation in clinical guidelines (eg, the United Kingdom’s 2014 National Institute for Health and Care Excellence (NICE) Guidelines for Schizophrenia [7]). Despite this recommendation, self-management interventions are not always offered as a standard in services for people experiencing serious mental ill-health [4,8]. This is in contrast to services for people experiencing chronic physical illnesses, such as diabetes [9], where self-management programs are a core component of routine practice. Overall, self-management programs have the potential to benefit individuals experiencing serious mental ill-health and reduce strain on health services and have an economic rationale for reducing treatment costs [10], but implementation challenges remain.

Self-management programs typically involve the use of a collaborative learning process that encourages people experiencing serious mental ill-health to become experts in their own recovery [2,11]. Evidence suggests that supported self-management programs, with guidance from a health professional or another helper, are preferable to independent self-management for people with serious mental health conditions [2,12]. Self-management programs in which support is provided by a peer support worker (PSW) who has experienced a mental illness themselves have demonstrated promising evidence of effectiveness [12-15].

An example of a program that showed effectiveness was the Crisis Resolution Team Optimisation and Relapse Prevention (CORE) peer-supported self-management program [2,12,16], which was implemented in a large-scale (N=441), UK-based, randomized controlled superiority trial. This trial found that peer support using a structured workbook aimed at helping consumers develop self-management strategies to support their recovery beyond the immediate crisis led to a significantly lower rate of readmission to acute care within 1 year compared with self-management alone (29% for peer-facilitated self-management vs 38% for self-management control) [12]. Replication of the CORE study findings in routine settings across the UK National Health Service services and internationally has the potential to substantially reduce the burden on the acute care system. However, it is recognized that different countries may have specific nuances based on their cultures and systems [17,18]. As such, optimizing the delivery of the intervention in these different settings would benefit from consumer-driven consultation and co-production to translate the consumers’ needs into intervention components and refine the intervention accordingly before any research and implementation occur.

The peer-supported self-management intervention used in the CORE trial was systematically adapted in a stepwise co-production and piloting process in partnership with PSWs [2] from an existing recovery resource developed by Julie Repper, Miles Rinaldi, and their colleagues in South West London [19]. This existing paper-based resource “Taking Back Control” was itself co-produced with people with lived experience expertise; has a strong recovery focus; and incorporates self-management tools, including relapse...
prevention planning, goal setting, wellness planning, and a component for recovery from a mental health crisis [2].

Since the original resource was developed in 2007, the proliferation and advancement of technology, particularly smartphones, have provided an opportunity for digital interventions to become more accessible and acceptable to people experiencing serious mental ill-health [20]. People experiencing psychosis have adopted digital technology comparably to the general population [21], and mental health interventions delivered via smartphones are acceptable and feasible for people with psychosis and have the potential to support recovery [22-24]. However, access to technology has been found to vary among people experiencing schizophrenia by age, and a proportion do not use technology to manage their condition [25]. Therefore, it is imperative to allow people to choose between paper-based and digital self-management resource mediums depending on their preferences and circumstances. Further, as the delivery of self-management interventions does not have a typical medium (digital, paper-based, verbal, or flexible delivery), delivery mode (face to face, digital, telephone, or hybrid), or support (self-directed, clinician, peer supported, or blended) [4], offering a suit of flexibly delivered personalized programs may help maximize the reach, acceptability, and appropriateness of self-management interventions when delivered in real-world services.

This study reports the translation of the CORE study self-management resources from the United Kingdom context to the Australian context, including the adaptation of paper-based resources used in the original CORE trial and the development of a digitally based resource guided by the original paper-based tools to provide flexible delivery options for consumers. Following the strong tradition of co-production [2,19], participatory design methodologies were selected for this study to adapt both the paper-based resources and develop the digital self-management resource. Integrating user feedback into the design of digital mental health interventions is the gold standard [26-30] and improves engagement with digital tools for serious mental ill-health [31]. Best practice recommendations emphasize that researchers should publish descriptions of development work, including a description of how design features are influenced by user feedback [32].

Goals of This Study

The overarching aims of this research study were to (1) translate the CORE paper-based and peer-facilitated self-management resources to the Australian context for successful implementation and (2) co-design and user test a digital prototype of the CORE peer-facilitated self-management resources.

Methods

Study Design

This study adopted a participatory design, user testing, and rapid prototyping methodologies. Two frameworks (Figure 1) provided an evidence-based structure for the co-design process: (1) the 2021 Medical Research Council framework for developing complex interventions [18], including developing, testing the feasibility, evaluating, and implementing the intervention (note that this study focuses on the development and feasibility stages of this framework) and (2) the co-production framework [33], which seeks consumer leadership and input from the outset, including co-planning, co-design, co-delivery, and co-evaluation. In this study, co-planning involved collaborators and researchers with lived experience informing the protocol and study design, ethics application, and recruitment; co-design involved the recruited people with lived experience defining, conceptualizing, evaluating, and designing the prototype; co-delivery involved lived experience researchers facilitating the aforementioned co-design research; and co-evaluation involved the knowledge transition team having representation from people and researchers with lived experience for analyzing and writing up the results.
Participants

The inclusion criteria for study participation required participants to be aged ≥18 years; self-identify as having a lived experience of using a mental health service, experiencing a mental health condition, or working in a mental health peer support role; have English proficiency; and be able to complete the informed consent processes.

Co-Design and User Testing Stage 1

The first round of co-design and user testing of the original co-designed UK version of the CORE paper-based self-management resource (which had five sections: (1) moving on again after a crisis, which focused on resuming routines and community support; (2) keeping well, which focused on activity scheduling and health-promoting behaviors; (3) managing ups and downs, which focused on relapse prevention; (4) goals and dreams, which provided goal-planning tools; and (5) making a personal recovery plan, which provided psychoeducation in a recovery-focused manner) [2,19] was conducted with 6 participants through audio-recorded, one-on-one, and 90-minute user experience sessions, which were held face to face or via a digital video chat depending on participant needs. Interviews were conducted by either a lived experience facilitator or a mental health clinician. During the sessions, facilitators engaged the participants in 3 phases of participatory design processes, namely discovery, evaluation, and prototyping. In the discovery phase, the facilitators used open and prompted discussions to explore participants’ practices, goals, values, and needs in relation to the self-management of serious mental health conditions. In the evaluation phase, participants tested and evaluated the self-management resource, focusing on its strengths and weaknesses. In this phase, the think-aloud methodology [34] was used to gauge the usability and desirability of the design of the paper-based self-management workbook. After this, the facilitator focused on early prototyping with participants, discussing what a digital version might look like to inform the development of a potential digital prototype. Before the end of the first round of co-design and user testing, participants were asked about their basic demographics and their views on the usability of the CORE paper-based resource through an adapted version of the System Usability Scale (SUS) [35].

Knowledge Translation Stage 1

A knowledge translation team (which included representative stakeholders with lived experience, peer support, clinical, research, and technology backgrounds) was formed and regularly met with the lead researcher (first author) via digital meeting platforms. The knowledge translation team updated the UK version of the CORE paper-based self-management resource to an Australian version based on the stage 1 feedback. Further, the knowledge translation team engaged in an interactive process of synthesizing, exchanging, and applying knowledge [36]. The ultimate goal was to translate user testing feedback into practice,
organizational management, technology development, and policy reform [36]. During stage 2, the tool was renamed My Personal Recovery Plan (MyPREP, which will be used henceforth) by the knowledge translation team.

User Testing Stage 2
A subsequent round of user testing of the high-fidelity digital prototype took place with 4 new participants using the think-aloud methodology to gauge the usability and desirability of the design of the Australian paper-based self-management workbook. After the tool was adapted based on the identified problems and suggestions, a group of 6 PSWs who would be piloting the tool in their community mental health service were provided with access to the digital and paper-based tools for a final round of qualitative feedback.

Data Analysis
The audio-recorded sessions were transcribed and anonymized. The qualitative data were subsequently interpreted using a previously established knowledge translation process for participatory design studies [37]. Specifically, the knowledge translation team developed a coding framework outlining all key concepts. Data were coded in the NVivo software (version 12; QSR International) using this framework. Data interpretation followed established thematic techniques [38], which involved an iterative and reflexive process of reading, coding, exploring the pattern and content of coded data; reflection; and discussion. Similarities and differences in opinions were examined, and differences were dealt with through discussion to reach a consensus. The knowledge translation team also identified themes and key learnings to inform the customization and configuration of the paper-based MyPREP program and the digital high-fidelity prototype. Acceptability scores were calculated using the standard SUS process [35]. Frequency and descriptive analyses of the quantitative data generated in user acceptance–testing sessions were conducted in SPSS (IBM Corp).

Ethical Considerations
Ethical approval for this study was obtained from the University of Sydney’s Human Research Ethics Committee (HREC reference number 2019/571). Informed written consent was obtained in advance from all the participants in the qualitative sessions of this study. We assert that all the procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Results

Participant Demographics
All 10 participants in the first 2 rounds of user testing identified as having lived experiences of a mental health condition and mental health service use, with 3 (30%) of the 10 participants identifying as male, 3 (30%) residing in regional areas of Australia, and 6 (60%) having a job as a PSW. The final prototype was then appraised by 6 (male: n=3, 50%; female: n=3, 50%) additional PSWs, all working in urban and suburban areas of Sydney, New South Wales, Australia.

Main Themes
The key themes identified throughout the co-design and user testing sessions were related to (1) the need for self-management tools to be flexible and well-integrated into the mental health services used by participants, (2) the importance of language and how language preferences vary among individuals, (3) the need for self-management interventions to have the option of being supported when delivered in services, and (4) the potential of digitization to allow for a greater customization of self-management tools and the development of features based on individuals’ unique preferences and needs. Further, summaries of the full recommendations of adaptations to the MyPREP paper-based and digital prototypes are presented in Multimedia Appendix 1.

The Need for Integrated and Flexible Self-Management Tools
Most participants confirmed that there was a lack of routine provision of self-management tools supporting recovery in community mental services, and these tools should be offered as a standard as early as possible:

- Honestly, I think it might have been really beneficial to start [using self-management tools] while I was inside [the hospital]. You know that that way I’m not sort of just being discharged into sudden loss of support. I’m being discharged with a plan I have got a set of actions and a structure to go back to. [P3, user testing round 1]

These participants expressed that there was a strong need for the flexible delivery of self-management tools in mental health services. That is, services should not provide just one type of medium to deliver interventions, as the needs of individuals are not uniform:

- Individuals may experience barriers [to using self-management tools] due to their lack of use in technology. Or finding it challenging to adapt to technology this resulting in becoming fearful of using technology. [P4, user testing round 2]

From what I’ve observed, especially if it’s like 60 and above, they love paper versions, even though like, I mean, some are tech savvy. Yeah, they do feel that comfort in what they know as well. But I guess it’s just about educating them a little bit more about the technology and allowing them to adapt as well. So having both options is always, always better than not having an option. [P4, user testing round 2]

Self-management tools also need to be well integrated with other plans and documentation offered in services, and digital platforms could enable this integration:

- We get given a lot of stuff when we’re coming out of the crisis, particularly for going to hospital discharge. You’ve got a discharge plan, you’ve got all your appointments, you got your medication sheets. You may even have a safety plan depending on which
Language
A major theme identified in the co-design and user testing sessions was language. Some words need to be changed to reflect the common language in Australia compared with the United Kingdom. People preferred less formal and less clinical language. Participants also liked that the language used generally did not make assumptions about the person’s situation:

I like that it’s like everyday language ‘the things I need to sort out.’ Yeah, I like that. [P1, user testing round 1]

[When speaking about the ‘people and places I can turn to’ page] I really like it. And what I like about it is it’s not assuming that those people are family members. You you’re not making people feel worse by, you know, having to put down friends or colleagues or neighbors or whatever; because family is not in your life. So ‘what support would I like?’ Yeah, that’s great. Nice basic phrasing there. [P4, user testing round 1]

The participants also discussed the importance of not having too much text on each page, as it can become overwhelming and distracting for users, especially as impaired cognition and concentration can be symptoms of mental health conditions. Decreasing the number of words on the screen should be a priority for increasing usability. This could be done by incorporating images, especially infographics, and additional features, such as read-out-loud audio and avatars:

Language, is really, really important. The less that’s on a screen or on a paper or on a document is better. Yeah, because you can’t take it in. It’s too much noise. It’s too busy. And if my concentration is already impaired, it’s not going to help me stay engaged. I’m just, I just won’t get engaged. [P2, user testing round 2]

One of the participants said the following about the name of the tool:

I don’t like the words. Actually, at first I don’t like the word recovery, I don’t like the personal, and I certainly don’t like plan... [the workbook needs] something more casual...it’s the balance between not being too positive that can be invalidating too. [P1, user testing round 1]

Further, participants emphasized that the language used in self-management tools needs to be empowering, promote self-agency, and be sensitive to the mental health situations of people, as mental health can fluctuate. Although it was generally agreed the language was used in MyPREP met this need, there were few words identified by some participants as having the potential to be disliked by some users of the tool, such as “recovery,” “triggers,” “moving on after a crisis,” “plans,” and “goals”:

And now going back to the word recovery, if we’re going to be changing it in certain instances, personal recovery. And it’s interesting because now we are having this challenge around the word recovery. Yeah, some of us are now saying, hang on, many of us are not recovering from anything. If we want to look after health and wellbeing proactively, yeah...where are you on your journey? Exploring your health journey? Or your life journey, whatever it is that you want to use. [P2, user testing round 2]

Views on language were mixed, with some reporting that they liked the language that others did not: “oh I like the words ‘moving on’” (P1, user testing round 1). Moreover, some participants reported that some terms should remain in the tool. For example, some felt that the term recovery should remain, as it promoted autonomy:

You know, I think recovery is like very self-empowering. And that puts a lot of independence on people. ...And so just thinking about perhaps placing the autonomy a little bit more on the individual as well. So that is self-directed, that is more self-directed yeah. [P1, user testing round 1]

Working on the tool with support (particularly from a peer worker) would enable these conversations about language to occur.

Supported Facilitation
Self-management tools need to be customized and personalized to the individual, and many participants felt that this needs to be carried out through conversations with facilitators and supporters, such as PSWs:

Yeah, I think, um, this [using MyPREP] would be excellent to do again, through a conversation. Yes like where, if the person accessing the service would be talking with a peer worker and then, so, yeah, ‘I believe this is what recovery is,’ ‘what you think recovery is about,’ ‘what is recovery for you,’ that sort of thing. [P2, user testing round 1]

These conversations “made it [the paper-based self-management workbook] so much more human” (P1, user testing round 1), especially because facilitators such as peer workers can tailor conversations based on individual needs while using the tool as a guide:

Yeah, I would tailor it. So it’s. Yeah, that is more for a conversation. Yeah, where the peer worker could be like, ‘So what are some signs that I could look for in you that might make me think you’re not going so well?’ [P2, user testing round 1]

Further, the accompanying psychoeducation component that helped contextualize the workbook was located at the end of the booklet in the original UK resource. Participants highlighted that this needed to be integrated with the MyPREP module activities (note that this was actioned for both the digital and paper-based Australian versions of MyPREP). Moreover, it was
emphasized that the content of this psychoeducation component could be discussed with someone such as a peer worker, clinician, or supportive other:

I think that [psychoeducation] needs to be at the front [of the MyPREP tool]. Yeah, the way I would work with it is in that context, I’d be looking through it and go, oh okay, I’ll go to the next page and then I’ve probably filled in a lot of that stuff before I’ve got to the end. It is where all the guidance around this...It might not be read, so just all of this content could be put in within the chapters. Yeah, that or a statement at the front of the elements that you feel from the information on how to help you fill it in was confined to the back of the book. A plain guide just say, Look, don’t just launch into it. But there’s some further guidance and support there on the back of the book that you can work with a friend or someone through it all with your worker. You know, because that is a lot of text there, and we are assuming the people have the ability to read and comprehend all that information. [P4, user testing round 1]

Additional Desirable Features and Functions When Digitized

Additional features and functions beyond those of the paper-based MyPREP workbook were highlighted by participants during the co-design process. Exemplar additional features and functions are displayed in Figure 2 and described in detail below (refer to Multimedia Appendix 2 for enhanced visibility of features on each page).

Figure 2. Exemplar additional features and functions. MyPREP: My Personal Recovery Plan.

On the basis of the feedback gathered during the user testing sessions, **customization** by the users themselves was enabled in the digital version so that they could adapt the content to their preferences. End users could make changes by configuring the color pallet and the voice and image of their avatar and were able to alter and flexibly select the MyPREP modules. The ability of end users to customize MyPREP was seen as very important, as it enabled a feeling of ownership over the tool. For example, the color pallet could be changed to reflect not only the preference but also the mood of the participant, which was seen as important in mental health:

I think it’s like there’s dark colors and light colors pastel. Yeah, I like that. I think that’s really nice because it’s like I said, you’re going towards personal, like being personal. And this gives choice of being personal as well. It’s cool. [P4, user testing round 2]

When you are unwell, you only see fog, color can break through. [P1, user testing round 2]

The customization of the image and voice of the avatars in the program was seen as trauma informed (as it had the potential to decrease inadvertent traumatization if someone had a previous traumatic experience with a person of a particular sex) and gender inclusive (as voice and image could be changed) and helped tailor the avatar according to the individuals’ backgrounds, such as their age. This was seen as an important feature, and additional languages could be easily integrated into the MyPREP package in the future:

You just have to think of the LGBTQ plus community as well... I think that’s because if you do like a said male or female, it’s just like ‘why only two?’ Yeah, you know, but then if it’s like I said a plant [an alternative avatar on MyPREP], it’s very cute and it has a smiley face. And I really like that because I think especially in the new generation, if you think
about it, a lot of like animations are popping up as well. So, if you want to adapt to the younger generation, they might really enjoy this thoroughly. [P4, user testing round 2]

A new feature, which was not possible in the paper version but enabled through digitization, was a “need help now” button, which was suggested by participants and provides the contact details of crisis support and additional mental health support services. This feature was developed after participants in the user testing sessions recognized and acknowledged that creating a MyPREP plan could potentially be confronting, and the individual may want additional support from others to process the information or additional mental health crisis support:

If I’m not in a good space and I’m trying to read it, I want to know I’ve got a safety button. I can go to hey, look, I’m feeling like shit, OK, and I might be reading this and you know what? I actually want to talk to someone, or I want to write to someone or chat to someone. Yeah, and I get blocked. Yes. I think, you need to have a safety, safety spot, do you need help now? Something. The hope is you read it, but it’s also a risk thing that, yeah, I think you need this. [P2, user testing round 2]

Two other new features were “my emergency contacts” and “supporter circle.” The emergency contacts feature allows users to enter the contact details of people and services they can contact during a mental health crisis. In addition, the supporter circle function was designed to allow users to share their recovery plan entries with people in their support circle (such as carers, health professionals, and peer workers) so that they could view their MyPREP entries. One of the participants expressed that it was important that the user be prompted to input contacts for both features when signing in for the first time to provide a safety net if the user became distressed in the process of completing the plan and suggested displaying these important contacts on the dashboard at all times to provide a sense of support to users:

OK, I would want them to have their emergency contacts sorted and their support circle sorted because they can’t move on after a crisis. If they don’t, if they’re unaware of their support circle, then we can’t help them to do that either if we don’t know. Especially and then managing up and ups and downs like they’re going to need their support circle and their emergency contacts. [P3, user testing round 2]

All participants acknowledged the usefulness of the supporter circle feature in providing access to the user’s professional support network, including psychologists and support workers, if the user wanted their MyPREP entries to be shared:

People that are supporting you that you want to know what’s going on? Mm-Hmm. Yeah. So, I mean, you can have them invited by, or you can share a copy, so I mean, that would be really useful for clinicians and obviously peer workers and mental health workers... [P3, user testing round 2]

It was emphasized that some may not use this feature because of privacy concerns, particularly with family or carers: “some people really don’t like family seeing this stuff” (P3, user testing round 2). Importantly, permission for viewing access could also be withdrawn by the end user at any stage:

The major function of the digital self-management tool is to assist users in systematically mapping and recording personalized self-management strategies in response to prompts to assist in their recovery from a mental health crisis. A feature that facilitated this was the avatar for read-out-loud functionality, which was viewed as especially important for those who held a preference for this or who had lower literacy skills. Further, each activity could be completed in a variety of ways based on the individual’s needs. Specifically, end users could engage in MyPREP activities by uploading voice recordings, images, emojis, and text. This was seen as a highly inclusive feature:

Oh, we got little icons. I would probably put a smiley face. Awesome, and then you can upload stuff. That’s cool, that’s like really personalized. Awesome! ...I think people get really anxious when they feel like they’re being recorded or they don’t like hearing their voice playing back, I know I don’t. So I would always go for the text. ...I think some people might like it. Some people might not want to type. [P3, user testing round 2]

These features were also seen as important motivating factors that promote better end user engagement with MyPREP:

I don’t know if people are going to struggle with doing these entries, because if they might think, OK, what is the purpose of it? But if it’s more fun and personal, it’s more fun. So, it’s like okay, I’m going to do this one. I might even put a photo of me in it and get that done. But if it’s always just bland, I don’t know. People might be like, well, especially, you know, you want that motivation. But I think this is really cool. [P4, user testing round 2]

The MyPREP module activity entries made by the end user were also editable, and there was a function in which entries could be saved so that the end user could keep a record of the changes:

This is really awesome. And it will keep the track as well. You can kind of say you can kind of go back, it can be like okay I was feeling not great on this day, what happened that day as well? ...Yes. So, you can kind of see that progress, especially for consumers who do enjoy that progress. [P4, user testing round 2]

The SUS

At the end of each user testing session, participants completed the SUS. The mean and range are listed in Table 1. The MyPREP paper version received a total SUS score of 71, indicating C+ or “good” usability. The digital version received a total SUS score of 85.63, indicating A or “excellent” usability.

https://formative.jmir.org/2024/1/e49110
Table 1. System Usability Scale (SUS) usability scores for the paper-based and digital versions of My Personal Recovery Plan (MyPREP).

<table>
<thead>
<tr>
<th>SUS items</th>
<th>MyPREP paper-based version, mean (SD; range)</th>
<th>MyPREP digital version, mean (SD; range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I think that I would use the Personal Recovery Plan frequently.</td>
<td>2.4 (1.3; 0-3)</td>
<td>3.25 (0.5; 3-4)</td>
</tr>
<tr>
<td>2. I found the Personal Recovery Plan unnecessarily complex.</td>
<td>2.4 (1.3; 0-3)</td>
<td>3.75 (0.5; 3-4)</td>
</tr>
<tr>
<td>3. I think the Personal Recovery Plan would be easy to use.</td>
<td>3.0 (2.1; 0-5)</td>
<td>3.5 (0.6; 3-4)</td>
</tr>
<tr>
<td>4. I think I would need the support of a support person (e.g., a peer support worker) to use the Personal Recovery Plan.</td>
<td>2.2 (1.5; 0-4)</td>
<td>2.75 (1.0; 2-4)</td>
</tr>
<tr>
<td>5. I felt the various sections in the Personal Recovery Plan were well integrated.</td>
<td>3.6 (0.5; 3-4)</td>
<td>3.5 (0.6; 3-4)</td>
</tr>
<tr>
<td>6. I thought there was too much inconsistency in the Personal Recovery Plan.</td>
<td>3.2 (1.3; 1-4)</td>
<td>3.5 (1.0; 2-4)</td>
</tr>
<tr>
<td>7. I would imagine that most people would be able to use the Personal Recovery Plan easily.</td>
<td>2.2 (1.3; 0-3)</td>
<td>3.0 (0.8; 2-4)</td>
</tr>
<tr>
<td>8. I found the Personal Recovery Plan very cumbersome.</td>
<td>2.8 (1.1; 1-4)</td>
<td>3.5 (1.0; 2-4)</td>
</tr>
<tr>
<td>9. I would need to learn a lot of things before I could start using the Personal Recovery Plan.</td>
<td>3.2 (1.3; 1-4)</td>
<td>3.25 (1.0; 2-4)</td>
</tr>
<tr>
<td>10. I would feel very confident using the Personal Recovery Plan myself.</td>
<td>3.6 (0.8; 2-4)</td>
<td>3.75 (0.5; 3-4)</td>
</tr>
</tbody>
</table>

aThe total SUS scores for the paper-based and digital versions were 71.5 and 84.4, respectively.

bOf the 6 participants in the first round of user testing, 5 (83%) completed the SUS for the paper-based version.

cOf the 4 participants in the second round of user testing, all 4 (100%) completed the SUS for the digital version.

dReverse scored item.

In a final meeting before endorsing MyPREP for piloting, the researchers met with 6 PSWs, and the tool was presented and discussed; these peer workers were then given access to the MyPREP intervention to gather their feedback. At this meeting and at follow-up, only positive additional feedback was relayed, and the peer workers emphasized that they were excited to use the tool in their service:

I have reviewed the Workbook and honestly couldn’t find much wrong with it at all!! It’s great and I am very excited to put it into practice. My team had no feedback to give on the digital version other then it looks great and can’t wait to see it used with clients in practice!! [Peer worker 1]

Discussion

Principal Findings

In this study, we present the user testing of an Australian version of the paper-based MyPREP and the co-design and user testing of a digital version of MyPREP. The key themes identified throughout the co-design and user testing sessions were related to (1) the need for self-management tools to be flexible and well-integrated into mental health services, (2) the importance of language and how language preferences vary among individuals, (3) the need for self-management interventions to have the option of being supported when delivered in services, and (4) the potential of digitization to allow for a greater customization of self-management tools and the development of features based on individuals’ unique preferences and needs. The resulting tool was subsequently rated using the SUS, which indicated that the end users involved in this study rated the paper-based tool as “good” and the digital version as “excellent.” Taken together, these results suggest that the digital prototype has valuable potential for use in mental health services and support the progression to piloting MyPREP in mental health services to inform a future large-scale randomized controlled trial (RCT). Early studies providing detailed descriptions of intervention development, such as this study, are now called for as best practice [32]. Specifically, it is important to include details such as important decision-making steps across all stages of development, explanations of how the information gathered from intended end users was carried out, and how intended end user input influenced how design features were incorporated into the design.

The Need for Implementation Research

The participants in our research also highlighted the need for the integration and coordination of self-management interventions and tools within services, as there can be a multitude of staff, documents, and plans (such as suicide prevention plans, discharge plans, wellness plans, and medication adherence plans) involved at various points throughout a consumer’s or a service user’s journey in a mental health service. Further, although the digital version of MyPREP was seen as being able to be used independently by end users at their home or within health settings, participants emphasized the need for such tools to be delivered with support from others, particularly PSWs. Although this may be explained by the fact that many of the participants were peer workers or consumer advocates themselves, this finding mirrors the current movement within mental health services toward the holistic inclusion of lived experience expertise [39]. Further, integrated staffing...
models may also be associated with better recovery, including better social functioning [40]. Taken together, implementation-focused research is needed to determine how MyPREP is actually delivered and how it can be optimized once it is introduced in real-world settings.

A recent systematic review of supported self-management interventions for people with serious mental health conditions found that there is a current lack of studies focused on implementation and that even fewer studies are based on implementation science theories [8], which are summarized in the taxonomy of implementation outcomes [41]. Although RCTs remain the gold standard approach to informing clinical decision-making and drawing causal inferences [42,43], there remain unacceptable research-to-practice gaps and a disconnect in generalizability and performance between an extremely controlled clinical trial environment and highly complex real-world mental health environments [44]. Implementation science, which is the formal study of methods to promote the systematic uptake of research findings and other evidence-based practices into routine practice, can bridge the clinical evidence-to-practice gaps by improving the quality and effectiveness of health services [44]. The hybrid implementation-effectiveness design is an innovative and rapid solution to provide high-quality evidence on effectiveness and implementation simultaneously [44,45], making it the ideal next stage of the research pipeline for the MyPREP project to determine effectiveness and implementation. This step is particularly important in our case, as the basic content of MyPREP has already been tested successfully in the CORE trial in the United Kingdom [16].

Accessibility of MyPREP

The digitization of MyPREP may have allowed it to become more accessible to end users when compared with the paper-based version, and this may partly explain the increase in usability scores, as measured using the SUS. For example, the use of the read-out-loud feature via avatars was viewed very positively by participants, as was the provision of options for writing, recording audio, and uploading images when completing MyPREP module activities. A recent systematic review suggested that developers of self-management interventions should adapt interventions to ensure greater inclusivity for participants with less formal education, as it was found that educational level was associated with engagement [8]. This is particularly critical for individuals with severe mental health conditions, given the increased rate of lower education in this cohort [46]. Indeed, the participants in our study repeatedly emphasized that plain and informal language was preferred. Further, we used Design for Dignity Principles, Web Content Accessibility Guidelines, and International Organization for Standardization standards for process improvement, safety, and quality (eg, 9241-11 ISO standard) to promote digital accessibility and ensure that the features are usable and acceptable for people with accessibility issues.

Customization of MyPREP

Customization embedded within MyPREP, such as the ability to change the color pallet and choose an avatar, was a clear theme throughout the co-design process and was rated very positively in the user testing sessions of the digital tool. Customization was important, as MyPREP is a self-management tool; the participants emphasized that these self-directed changes to MyPREP fostered a sense of autonomy, control, choice, and ownership, and this should be embedded as a standard in all features. Reviews in this area recommend that the content of self-management interventions should be tailored to the service users and have the flexibility to be personalized and customized, especially as interventions were found to not always fit end users’ needs [8].

In the future, there are plans for MyPREP to be customized further. A major example is enabling control over language. Specifically, feedback concerning the language used for the names of modules (eg, “my recovery plan,” “moving on after a crisis,” and “goals and dreams”) was liked by some participants in the user testing sessions, but not by others. This was despite MyPREP being co-produced and going through iterative co-design cycles with people with lived experience of serious mental ill-health [2,19]. The solution to this lies in customization, through which end users can adapt the names of the modules to suit their own set of beliefs and even remove modules that are not relevant to them from their MyPREP dashboard.

Limitations

This is a preliminary iterative co-design and user testing study and should be viewed as such. Similar to most user testing studies, our sample of service users was small (eg, the study by van der Krieke et al [47]). Further, we used not only advertisements across networks and services but also snowball sampling, which is a type of convenience sampling. A major disadvantage of such convenience sampling is that it risks a nonrepresentative study sample. In our case, the study sample was quite diverse in terms of age and sex. However, a large proportion of participants were consumer advocates and peer workers with considerable mental health knowledge and expertise. Further, those recruited for this study might have had a particular interest in working with digital health tools, which may have introduced avidity bias and may explain the very high SUS acceptability scores for the digital version of MyPREP. The next stage is piloting MyPREP in services to increase the representativeness of our sample and make iterative adaptations to MyPREP based on user feedback. However, overall, as the original MyPREP was trialed in the United Kingdom with at least 275 crisis care service users in a large-scale RCT (with 441 service users enrolled in the trial), this may suggest that the representativeness of our sample at this point does not pose a concern for the next stage of piloting of the Australian version in real-world mental health services.

Another limitation that is common in user testing (eg, the study by van der Krieke et al [47]) is that the presence of the facilitators over a digital meeting platform during the testing sessions may have affected the views of the participants, as they might have felt reluctant to be critical. We do not expect this to be a major limitation; however, throughout user testing, the facilitators continuously emphasized that this was an opportunity to improve the paper-based and digital prototypes and
encouraged discussion around problems and areas for improvement.

Conclusions
The co-production of the MyPREP self-management intervention and associated research in Australia are currently in their early stages. However, this co-design and user testing phase is a crucial step in adapting MyPREP to the Australian mental health setting and digital context. However, the current findings may remain relevant to implementation in any setting. Overall, the co-production process is vital, as service-wide implementations that fail to consider end user needs and organizational structures often encounter problems. Indeed, Killikelly and colleagues [31] suggest that both co-design and support from mental health staff or researchers when using the tool are 2 features that are associated with successful implementation and improve engagement with digital tools for people experiencing serious mental health conditions. To avoid implementation issues, it is essential to involve consumers and peer workers, who may support the delivery of MyPREP from the outset. In this study, feedback from these end users highlighted a strong desire for the personalized delivery of self-management interventions that offer choices and options, considering individual end users’ different needs and circumstances. MyPREP has worked toward addressing this need by offering digital and paper-based mediums, providing options for how delivery is supported (ie individuals can choose their supporters), increasing accessibility (eg, avatars and voice-recording options), and allowing customization (eg, customization of the color pallet and choice of avatars) based on users’ preferences and needs. To strengthen MyPREP's implementation in real-world Australian mental health service settings, implementation-effectiveness piloting and robust trialing are required to test and refine the tool.

Lived Experience Commentary
In our view, co-production is an umbrella term for co-family, co-creation, co-planning, co-implementation, and co-evaluation. This is a concept and philosophy in which collaboration with lived experiences is paramount. It is a way to cocreate new interventions, improve systems, and solve problems and is now being adopted in many public health policy arenas, including research.

This has moved far beyond “consumer participation,” which was enshrined in 1992 in the Australian mental health policy (1992 National Mental Health Policy endorsed by Australian Health Ministers). Back then, this was ad hoc and tokenistic. Now, as “co” is becoming more widespread, there are more genuine attempts to learn to integrate co-production as a way of doing research across the board.

In research, with co-production, we are witnessing a move from consumers and carers (or those with lived and living experience) voices from being “subjects of” to being equal collaborators, who work with researchers to influence change that benefits the service and system user. This research project has done just that. By having lived experience experts lead, participate in, and contribute to the design and facilitation of the research, we actively used lived experience knowledge and expertise in recovery planning through various stages. The recruitment of participants, data collection, workshops, one-on-one interview formats, and questions were developed and led by lived experience.

In this project, a trusting respectful alliance between research and lived experience evolved organically and naturally, providing a solid foundation to “do” this project with passion and enthusiasm, creating a safe and supportive atmosphere emulated in dealings with others. The interviewees felt more than comfortable to offer their time generously, sharing their insights into and thoughts on what would work well and what should be improved to increase engagement with and the use of this recovery-based intervention.

During different phases of this project, reciprocal positives emerged for the research team. Empowering and enabling each member to consider different perspectives and interpretations. Embracing new ways of thinking created a richer understanding of issues not considered previously. This was articulated in the ways in which the research was focused and conducted. On reflection, lessons on how this research approach will inform similar ongoing collaborations should be considered, where research projects embrace and welcome different skill sets, experiences, and knowledge.

Acknowledgments
The copyright for the Personal Recovery Plan workbook is held by South West London and St George’s National Health Service (NHS) Foundation Trust. Written permission to adapt and use the plan and distribute the adapted plan was obtained from the copyright holders by the first author at the University of Sydney.

The authors are grateful for the time and help of peer support workers (PSWs) and people with lived experience of mental health service use and mental health conditions who participated in the study. They are grateful to One Door Mental Health and Flourish Australia for supporting the recruitment for this study. They would also like to thank the Australian PSWs at One Door Mental Health, who contributed to the intervention development in Australia and will deliver the upcoming pilot. They also remain grateful to all the original PSWs, Crisis Resolution Team Optimisation and Relapse Prevention (CORE) service user and carer working groups, and the University College London (UCL) research team in the United Kingdom who originated this work (note that further information about the original study intervention, the PSWs’ training program, and the intervention’s operating procedures is available from the UCL CORE study website). The CORE study was led by professor Sonia Johnson from the Division of Psychiatry, UCL. The authors would also like to thank Aaron Schokman, Viji Venkataramani, Lei Gu, and Yang Wu for their contributions to this project.
This study was funded by an Early and Mid-Career Researcher Grant from the Brain and Mind Centre and the Moriya Elizabeth Vine Fund for Research into Schizophrenia. The preparation of this manuscript was supported partially by the Australian Government through the Australian Research Council’s Centre of Excellence for Children and Families Over the Life Course (project ID CE200100025). The original CORE study was funded by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research program (reference number RP-PG-0109-10078). The views expressed in this paper are those of the authors and not necessarily those of the NHS, NIHR, or Department of Health.

Data Availability
The qualitative data sets generated and analyzed during this study are not publicly available, as they are lengthy interview transcripts from which quotations used in this publication were selected, to ensure that individual services or participants cannot be identified. The data sets are available from the corresponding author upon reasonable request.

Authors' Contributions
AM and NG conceived this phase of the research and its design, with support from BL-E and SJ, based on the original UK Crisis Resolution Team Optimisation and Relapse Prevention (CORE) study. AM, IOAM and DP collected the data. AM, DJ, DP, and IOAM synthesized and analyzed the data. AM drafted the manuscript with support from IOAM, TC, EB, and UA. DP, JC, and AM oversaw the development of the digital resource for user testing. All the authors read and approved the final manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
User-testing reports.
[PDF File (Adobe PDF File), 397 KB - formative_v8i1e49110_app1.pdf]

Multimedia Appendix 2
Example additional features and functions.
[PDF File (Adobe PDF File), 352 KB - formative_v8i1e49110_app2.pdf]

References

Abbreviations

- **CORE**: Crisis Resolution Team Optimisation and Relapse Prevention
- **HREC**: Human Research Ethics Committee
- **MyPREP**: My Personal Recovery Plan
- **NICE**: National Institute for Health and Care Excellence
- **PSW**: Peer Support Worker
- **RCT**: randomized controlled trial
- **SUS**: System Usability Scale
Co-Production of a Flexibly Delivered Relapse Prevention Tool to Support the Self-Management of Long-Term Mental Health Conditions: Co-Design and User Testing Study

Please cite as:

Co-Production of a Flexibly Delivered Relapse Prevention Tool to Support the Self-Management of Long-Term Mental Health Conditions: Co-Design and User Testing Study
JMIR Form Res 2024;8:e49110
URL: https://formative.jmir.org/2024/1/e49110
doi: 10.2196/49110
PMID: 38393768

©Alyssa Milton, Ingrid Ozols A M, Tayla Cassidy, Dana Jordan, Ellie Brown, Urska Arnautovska, Jim Cook, Darren Phung, Brynmor Lloyd-Evans, Sonia Johnson, Ian Hickie, Nick Glozier. Originally published in JMIR Formative Research (https://formative.jmir.org), 23.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Help-Seeking, Support, and Engagement in Gestational Diabetes Mellitus Online Communities on Facebook: Content Analysis

Sheila Pham¹, MPH, MA; Kate Churruca¹, PhD; Louise A Ellis¹, PhD; Jeffrey Braithwaite¹, PhD

Australian Institute of Health Innovation, Macquarie University, North Ryde, Sydney, Australia

Corresponding Author:
Sheila Pham, MPH, MA
Australian Institute of Health Innovation
Macquarie University
75 Talavera Road
North Ryde, Sydney, 2113
Australia
Phone: 61 423078104
Email: sheila.pham@mq.edu.au

Abstract

Background: The prevalence of gestational diabetes mellitus (GDM) has drastically risen in recent years. For some, self-management includes the use of GDM online communities on Facebook. Such communities can fill gaps in information and support that participants are not able to access elsewhere to address unmet needs. Given the popularity of sharing information about pregnancy on Facebook and the documented benefits of diabetes online communities, the same may be true of GDM online communities.

Objective: This study aimed to categorize and quantify what is being discussed in GDM Facebook groups, including informational and emotional help-seeking behavior, and how this support and engagement may be demonstrated by peers through comments and reactions.

Methods: We sourced the data from the 2 largest Facebook groups focused on GDM in Australia. A summative content analysis was conducted on original posts across the 2 groups and coded for topics as well as help-seeking types. The coding scheme was based on the previous work of Liang and Scammon. Visible indicators of engagement, including the number of comments and “reactions,” were tabled and manually evaluated.

Results: There were 388 original posts, and the analysis produced 6 topics: GDM self-management (199/388, 51.3%), GDM clinical management (120/388, 30.9%), preparing for birth (40/388, 10.3%), mental distress (35/388, 9%), birth announcement (29/388, 7.5%), and GDM journey reflections (21/388, 5.4%). Secondary coding of help-seeking type revealed more than half of the posts were informational help-seeking (224/388, 57.7%), while a small proportion were both informational and emotional help-seeking (44/388, 11.3%), and some (12/388, 3.1%) were emotional help-seeking only. Self-disclosure was identified as a fourth category, comprising almost a quarter of all posts (90/388, 23.2%). A total of 6022 comments were posted in response to the original posts, and there were 4452 reactions across all posts. Emotional help-seeking attracted the most comments per thread (mean 21.5, SD 19.8), followed by informational and emotional help-seeking (mean 20.2, SD 14.7), informational help-seeking (mean 15.6, SD 14.6), and self-disclosure (mean 14.3, SD 21.8). Across all help-seeking categories, few reactions occurred compared to comments; in contrast, self-disclosure attracted a large number of reactions (mean 9.4, SD 45.3).

Conclusions: This is one of the first studies to examine peer support in a GDM online community on Facebook. Our findings suggest that active participants’ needs around information and support in relation to GDM are being somewhat met by peer-led online communities. Given the practical limitations of formal health care, including the provision of ongoing social support, it is important to recognize how GDM online communities can complement formal health care and help address unmet needs.

(JMIR Form Res 2024;8:e49494) doi:10.2196/49494

KEYWORDS
clinical management; communication; content analysis; engagement; Facebook; gestational diabetes; health communication; help-seeking behavior; mental distress; online communities; peer-support; self-disclosure; self-management; support
Introduction

Accessing health information on the web nowadays includes social media such as Facebook and, increasingly, its “group” function. Globally, the number of people engaging with Facebook groups equates to around 1.8 billion people per month [1]. The group function of Facebook is described as “a place to connect, learn, and share with people who have similar interests” [2]. Among the many “similar interests” people have are health concerns as well as life experiences such as pregnancy.

Research on pregnancy and the internet suggests that Facebook is used by some for supportive and informational purposes [3]. Given this, it is not surprising that many pregnancy Facebook groups now exist, as well as those focused on complications of pregnancy such as gestational diabetes mellitus (GDM). GDM is defined as any degree of hyperglycemia recognized for the first time during pregnancy [4]. As a condition, it affects a significant and growing proportion of pregnant women around the world each year [5]. Although GDM prevalence has drastically risen, there has been limited examination of the attendant growth of GDM online communities, including Facebook groups [6].

People may join online health communities because their family and community support networks do not include relatable others undergoing similar experiences [7], and thus they do not receive the benefit of “peer-to-peer health care” [8]. Research on diabetes online communities has found they fill gaps in information and support that participants are not able to access elsewhere [9]. Online health communities can provide both informational and emotional support, which helps people actively cope with health-related problems [10]. A study about breast cancer for women suggested that patients specifically seek out discussion groups on the web due to “unmet needs” [11], while another study suggested online health communities are where a range of desires and needs can be met by peers [12]. A scoping review of 47 studies focused on the use of diabetes online communities found a variety of psychosocial benefits, and although reports of negative consequences were low, it was also noted that diabetes online communities may not be beneficial for all [13].

In online health communities, users often demonstrate support-seeking behavior through explicitly stated requests, with posting itself a signal that the person is a potential support provider to others [10]. It is also common for users to “share” or self-disclose as a coping mechanism [14]. On Facebook, in addition to initiating posts, active engagement occurs through comments and reactions such as “likes.” The meaning of these reactions is not necessarily explicit beyond face value but can be broadly interpreted as support [15], though arguably a comment is a stronger indicator of support given the greater time and effort required to produce it.

Given the popularity of sharing information about pregnancy on Facebook and the documented benefits of diabetes online communities, the same may also be true of GDM online communities. Furthermore, health information-seeking online can also improve the patient-physician relationship if the patient discusses the information with the physician and they have a positive prior relationship [16]. This may be worthwhile considering the context of GDM, which generally requires additional health care compared to pregnancies without complications.

The aims of this study about Facebook posts and interactions within GDM Facebook groups were to examine: (1) the issues being discussed, (2) evidence for informational and emotional help-seeking behavior, and (3) how this support and engagement is demonstrated through comments and reactions.

Methods

Study Design and Data Collection

This study sourced data from 2 peer-led closed Facebook groups focused on GDM, founded, and run independently by private individuals. All original posts (ie, the first post in a thread) during a 1-week period were included, as well as replies published during the collection week. A limited period was chosen because the large volume of posts was considered sufficiently robust for the purposes of this study. These particular Facebook groups were chosen as they were the 2 largest groups focused on GDM in Australia; at the time of data collection, the combined membership of the 2 groups was over 6500 members. For this study, a “snapshot” approach was taken, with the data set copied verbatim by the first author, then fully deidentified and recollated for analysis to protect the privacy of participants. The data were then analyzed using content analysis and descriptive statistics.

Analysis

First, summative content analysis [17] was used to identify key topic areas from all “original posts” in a thread (ie, the first posts). This inductive approach to analyzing qualitative data started with reading through the data and identifying and quantifying certain words and content to understand contextual use before applying latent content analysis. To this end, the first author independently read and reread each post and identified keywords (eg, blood sugar and insulin) as the basis of topics. Multiple topics were allowed within a single post (ie, categories were not mutually exclusive). All authors then compared and confirmed the identified categories and interpretations.

Second, the original post in every thread was coded in terms of help-seeking type (Table 1). Here, a deductive coding scheme was used, following Liang and Scammon [10]. Visible indicators of engagement, including the number of comments, “likes,” and “reactions,” were coded and manually evaluated by the first author (SP). A total of 2 secondary authors (KC and LAE) coded a sample (n=10) of the first author’s coding to ensure consistency. The depth of analysis was further consolidated by the research team, which compared and discussed codes to provide additional perspectives.
Table 1. Help-seeking coding scheme for original posts.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Description</th>
<th>Examplea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational help-seeking</td>
<td>Asking for information (e.g., suggestions or comments)</td>
<td></td>
</tr>
<tr>
<td>Emotional help-seeking</td>
<td>Expressing negative emotions (e.g., embarrassment) to seek help</td>
<td></td>
</tr>
<tr>
<td>Informational and emotional</td>
<td>Asking for information and expressing negative emotions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>help-seeking</td>
<td></td>
</tr>
</tbody>
</table>

aExemplary but not direct quotes.

Finally, as the data from the 2 Facebook groups were combined to enlarge the sample size and potentially increase heterogeneity, it was important to determine whether there were statistically significant differences in proportions between the help-seeking categories of the 2 groups. A Fisher exact test was deemed an appropriate test given the likelihood of small category sample sizes.

Ethical Considerations

Research based on Facebook posts raises important ethical questions, given the implications for privacy. Before the commencement of data collection, approval was sought and gained from Macquarie University’s Human Research Ethics Committee (5201827734364). When the first author (SP) requested permission from the administrators of both groups to join in order to conduct research, she disclosed her positionality as someone who had experienced GDM. As stipulated by the terms of the ethics approval, no identifying data would be published, including verbatim quotes.

Results

Topic Areas

A total of 388 original posts were extracted across the 2 groups, with 63 posts from one group and 325 posts from the other. From the content analysis, 6 topic areas were identified (Table 2). These were not mutually exclusive, as some longer posts were coded for more than 1 topic.

Table 2. Topics and descriptions.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Nonverbatim exemplars</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDM self-management</td>
<td>Questions and discussion relating to the day-to-day management of GDM, including blood sugar levels, diet, and equipment.</td>
<td>"Any advice on what to eat for supper to reduce your fasting levels?"</td>
<td>199 (51.3)</td>
</tr>
<tr>
<td>GDM clinical management</td>
<td>Questions and discussions relating to any aspect of formal GDM health care, including testing, diagnosis, scans, treatment, and patient-provider interactions.</td>
<td>"Had my 28-week scan today. Has anyone else had a baby measuring on the 95th percentile?"</td>
<td>120 (30.9)</td>
</tr>
<tr>
<td>Preparing for birth</td>
<td>Questions and discussion relating to birth including being induced (or fear thereof). Also discussion about baby’s sugar levels and expressing colostrum antenatally.</td>
<td>"When did everyone get an induction date?"</td>
<td>40 (10.3)</td>
</tr>
<tr>
<td>Mental distress</td>
<td>Overtly expressed distress relating to GDM.</td>
<td>"Feeling disheartened right now."</td>
<td>35 (9)</td>
</tr>
<tr>
<td>Birth announcement</td>
<td>Announcing birth, typically with name, birth weight and other details. Often includes a photo and encouraging words.</td>
<td>"Introducing my sugar baby..."</td>
<td>29 (7.5)</td>
</tr>
<tr>
<td>GDM journey reflections</td>
<td>Sharing of overall GDM journey, including gratitude for the group and unexpected benefits.</td>
<td>"I wanted to share my GD journey with you all. Diagnosed at 28 weeks..."</td>
<td>21 (5.4)</td>
</tr>
</tbody>
</table>

aGDM: gestational diabetes mellitus.

A number of residual topics were excluded from the main analysis given the relatively small number of posts: “other pregnancy experiences” (n=18), “humor and memes” (n=9), “postpartum concerns” (n=7), “food and diet” (n=11), and “group management” (n=3).

Help-Seeking and Engagement

Secondary coding of help-seeking type is captured in Table 3. The process identified mutually exclusive categories, where more than half of the posts were classifiable as informational help-seeking (224/388, 57.7%). A small proportion were classifiable as both informational and emotional help-seeking (44/388, 11.3%), while a minority (12/388, 3.1%) were emotional help-seeking only.
Table 3. Categories of original posts.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Frequency, n (%)</th>
<th>Comments, n</th>
<th>Comments per post, mean (SD)</th>
<th>Reactions, n</th>
<th>Reactions per post, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational help-seeking</td>
<td>224 (57.7)</td>
<td>3528</td>
<td>15.6 (14.6)</td>
<td>537</td>
<td>2.4 (20.1)</td>
</tr>
<tr>
<td>Informational and emotional help-seeking</td>
<td>44 (11.3)</td>
<td>887</td>
<td>20.2 (14.7)</td>
<td>60</td>
<td>1.4 (3.9)</td>
</tr>
<tr>
<td>Emotional help-seeking</td>
<td>12 (3.1)</td>
<td>258</td>
<td>21.5 (19.8)</td>
<td>32</td>
<td>2.7 (4.4)</td>
</tr>
<tr>
<td>Self-disclosure</td>
<td>90 (23.2)</td>
<td>1284</td>
<td>14.3 (21.8)</td>
<td>3550</td>
<td>39.4 (45.3)</td>
</tr>
</tbody>
</table>

Through the process of secondary coding we identified a distinct fourth category: self-disclosure. The intention behind such posts was not overt in terms of help-seeking (eg, “Just wanted to tell you all I gave birth to a healthy baby boy last week”). Almost a quarter of posts (90/388, 23.3%) were classifiable as self-disclosure.

A small number of posts (n=18) did not fit into any of the above 4 categories, such as posts sharing a recipe without comment or other practical matters such as offering to pass on medical supplies.

Visible indicators of engagement, namely the number of comments and reactions (including “likes”), were also tabled across all threads. A total of 6022 comments were posted in response to the original posts. The length of threads ranged from 1 to 179, with the median number of comments being 11. There were 4452 reactions across all posts. Emotional help-seeking posts were less prevalent but attracted the most comments per thread (mean 21.5, SD 19.8), followed by informational and emotional help-seeking (mean 20.2, SD 14.7), informational help-seeking (mean 15.6, SD 14.6), and self-disclosure (mean 14.3, SD 21.8).

Overall, across the 3 help-seeking categories, relatively few reactions occurred compared to comments, regardless of whether it was informational (mean 2.4, SD 20.1), informational and emotional help-seeking (mean 1.4, SD 3.9), or emotional help-seeking (mean 2.7, SD 4.4). In comparison, self-disclosure attracted a very large number of reactions (mean 39.4, SD 45.3).

Significant Differences Between the Groups

A Fisher exact test was applied to determine if there were any statistically significant differences in the proportions of help-seeking categories between the 2 Facebook groups. There were no significant differences found between the groups except for “emotional help-seeking,” with 6 posts identified for both groups, which represented a statistically significant (P=0.006) difference in the proportions of 9.5% (group 1) and 1.8% (group 2).

Upon closer examination of how emotional help-seeking posts were responded to in each group, there were other notable differences that further qualified this significant difference. In the smaller group (group 1), emotional help-seeking posts attracted far more comments in response (mean 26.8, SD 27) compared to the larger group (group 2), which had fewer comments in response to emotional help-seeking posts (mean 16.2, SD 7.9). Conversely, there were fewer reactions in group 1 (mean 1.8, SD 2.6) compared to group 2 (mean 3.5, SD 5.8).

Discussion

Overview

GDM self-management was the prevalent topic in over half the posts (199/388, 51.3%), which likely reflects a key motivation for both joining a GDM online community as well as an important reason for sustaining membership and engaging. The second most prevalent topic, GDM clinical management (120/388, 30.9%), is suggestive of the inadequacy of care provided in formal health care settings, including information provision, hence the need for additional discussion on the web with peers. This accords with how online health communities have been described as “communities of practice” due to the way learning occurs through a combination of experiential knowledge and other expert sources [18]. The topic “preparing for birth” alludes to a desire for information from peers (and expert sources), whereas “GDM journey reflections” points to expressly stated individual learning coupled with a desire to share and pass on knowledge to peers.

Informational was by far the most popular type of help-seeking, and this categorization largely overlapped with the most popular topics, demonstrating how critical information is in a peer-support context outside of formal health care. There were fewer posts where emotional help-seeking was the sole focus or in combination with informational help-seeking, but it is not surprising that these attracted the most comments per thread as empathic peers made a concerted effort to engage and offer reassuring words and engagement.

The statistically significant difference between the 2 Facebook groups in terms of the proportion of emotional help seekers warrants discussion. A possible explanation is the difference in size of the Facebook groups. Smaller-sized groups, in general, are friendlier and promote more contributions from members, with greater opportunities to speak [19], and emotional help-seeking posting also encourages supportive peers to show reciprocity by being more supportive. Examining the data from the 2 groups, there is a clear difference in terms of the volume of comments. This suggests greater intimacy and engagement in the smaller group, with comments being a better indicator of support than reactions, which are more impersonal and require less time and effort.

When we look at the posts categorized under “self-disclosure,” there are fewer comments but a much larger number of reactions. In such cases, engaging seems to be primarily enacted through a “reaction,” as peers do not necessarily see a need to comment. The general popularity of self-disclosure in GDM online...
communities is evident from this data and supports a more general observation that self-disclosing in an unprompted manner is intrinsic to the parlance of social media; that this is true of GDM online communities as many others. It has been found that self-disclosure in itself can be valuable, and with supportive conversation partners, there are positive psychological benefits, including reducing stress and improving self-affirmation [20]. In addition, previous research has found that even when someone only reads a poster’s self-disclosure without interaction, they can still develop a sense of personal connection [14]. It is useful to consider that self-disclosure can be further classified as per Malloch and Zhang [14], with factual self-disclosure revealing factual information, cognitive disclosure revealing thoughts and reasoning, and emotional disclosure revealing the poster’s feelings. This deeper categorization of self-disclosure was not undertaken in this study as it was beyond its scope, but merits further exploration in future research.

A final but nonetheless important consideration is the role of “lurkers,” who comprise the majority of participants in online communities; it is difficult to measure the true impact of interactions on all users of the groups because lurkers are not obvious [14]. For the most part, the visible support and engagement through comments and reactions is what users of a group are able to see. Given the large number of lurkers, however, we can only assume that the true engagement and utility of posts and comments are greater than what has been captured here. Furthermore, comment threads in groups can spark private messages between users, with discussions not visible to anyone else.

Strengths and Limitations

There were a number of strengths in this study. Given the dearth of literature about GDM online communities, this research illuminates an emergent phenomenon and activity experienced by many thousands around the world. The findings suggest important avenues for further inquiry in relation to GDM, in both online and offline settings.

A key limitation is that the data were only analyzed based on visible comments and reactions. Another limitation is that emoticons and photos were not systematically coded, even though they were part of the data set, as the semiotics of both were beyond the scope of this analysis. Finally, only 1 week worth of data were analyzed, and the results may vary depending on the collection period.

Conclusion

This study affirms the value of peer support that can be found in an online community. The large volume of posts and comments as well as high levels of positive engagement suggest that active participants’ needs around information and support in relation to GDM are being somewhat met by a peer-led online community. Given the practical limitations of formal health care, including the provision of ongoing social support, it is important to recognize how GDM online communities can complement health care and help address unmet needs. Furthermore, examining what information is being sought and shared by participants in GDM online communities is suggestive of gaps in information delivered through formal health care.

Acknowledgments

SP led and executed the study with design support, input, and advice from KC, LAE, and JB. KC and LAE provided statistical and methodological expertise alongside the other authors, and JB provided strategic advice. All authors reviewed and provided editorial suggestions on SP’s draft and agreed with the final submitted version.

Conflicts of Interest

None declared.

References

Abbreviations

GDM: gestational diabetes mellitus.
How to Identify e-Cigarette Brands Available in the United States During 2020-2022: Development and Usability Study

Shaoying Ma¹*, PhD; Aadeeba Kaareen¹*, BSocSci; Hojin Park¹, PhD; Yanyun He¹, PhD; Shuning Jiang², BS; Zefeng Qiu², MS; Zidian Xie³, PhD; Dongmei Li³, PhD; Jian Chen³, PhD; Richard J O’Connor¹, PhD; Geoffrey T Fong⁴,⁵,⁶,⁷, PhD; Zefeng Qiu³, MS; Zidian Xie³, PhD; Dongmei Li³, PhD; Jian Chen³, PhD; Richard J O’Connor¹, PhD; Geoffrey T Fong⁴,⁵,⁶,⁷, PhD; Ce Shang¹,²,⁵, PhD

¹Center for Tobacco Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
²Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, United States
³Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
⁴Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
⁵Department of Psychology, University of Waterloo, Waterloo, ON, Canada
⁶School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
⁷Ontario Institute for Cancer Research, Toronto, ON, Canada
⁸Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
*these authors contributed equally

Corresponding Author:
Shaoying Ma, PhD
Center for Tobacco Research
The Ohio State University Wexner Medical Center
3650 Olentangy River Road, 1st Floor, Suite 110
Columbus, OH, 43214
United States
Phone: 1 6148976063
Email: shaoying.ma@osumc.edu

Abstract

Background: Prior studies have demonstrated that the e-cigarette market contains a large number of brands. Identifying these existing e-cigarette brands is a key element of market surveillance, which will further assist in policy making and compliance checks.

Objective: To facilitate the surveillance of the diverse product landscape in the e-cigarette market, we constructed a semantic database of e-cigarette brands that have appeared in the US market as of 2020-2022.

Methods: In order to build the brand database, we searched and compiled e-cigarette brands from a comprehensive list of retail channels and sources, including (1) e-liquid and disposable brands sold in web-based stores, (2) e-cigarette brands sold in brick-and-mortar stores and collected by the Nielsen Retail Scanner Data, (3) e-cigarette brands compiled by Wikipedia, (4) self-reported e-cigarette brands from the 2020 International Tobacco Control Four-Country Smoking and Vaping (ITC 4CV) US survey, and (5) e-cigarette brands on Twitter. We also estimated the top 5 e-cigarette brands by sales volume in brick-and-mortar stores, by the frequency and variety of offerings in web-based shops, and by the frequency of self-reported brands from the 2020 ITC 4CV US survey.

Results: As of 2020-2022, a total of 912 e-cigarette brands have been sold by various retail channels. During 2020-2022, the top 5 brands are JUUL, vuse, njoy, blu, and logic in brick-and-mortar stores; blu, king, monster, twist, and air factory for e-liquids in web-based stores; hyde, pod mesh, suorin, vaporlax, and xtra for disposables sold in web-based stores; and smok, aspire, vaporespo, innokin, and eleaf based on self-reported survey data.

Conclusions: As the US Food and Drug Administration enforces the premarket tobacco market authorization, many e-cigarette brands may become illegal in the US market. In this context, how e-cigarette brands evolve and consolidate in different retail channels will be critical for understanding the regulatory impacts on product availability. Our semantic database of e-cigarette brands can serve as a useful tool to monitor product and marketplace development, conduct compliance checks, assess manufacturers’ marketing behaviors, and identify regulatory impacts.

https://formative.jmir.org/2024/1/e47570
Introduction

Electronic cigarettes or e-cigarettes, were introduced in the US market in 2007 [1]. As of 2022, a total of 2.55 million US high school (14.1%) and middle school (3.3%) students reported using e-cigarettes in the past 30 days [2]. Unlike cigarettes, the e-cigarette market is highly diverse, with a wide range of product configurations (eg, rechargeables vs disposables) and features (eg, flavors and nicotine concentrations). E-Cigarette market has also been characterized as highly dynamic, with leading brands constantly changing [3-7]. As of 2018, the e-cigarette market was valued at US $3.5 billion, with a large number of brands (>460) and flavors (>7700) [8,9].

The number of e-cigarette brands is an important indicator of market concentration and competitiveness, which measures the ability of a single firm, or a small group of firms, to exert monopoly power [10,11]. For example, the cigarette market is characterized as a highly concentrated oligopolistic cigarette market, with a few large cigarette companies accounting for the majority of market shares [10,12]. In contrast, before JUUL uptake, the US e-cigarette market was very competitive and comprised hundreds, if not thousands, of small manufacturers selling products to consumers and retailers [13]. However, in recent years, cigarette companies have increasingly owned or invested in e-cigarette products, taking over a significant share of the e-cigarette market [14]. As a result, the e-cigarette market may have become less competitive over time and the cigarette and e-cigarette markets are growing integrated [15].

Constructing a database of e-cigarette brands is crucial to monitor market concentration, competitiveness, and development, especially for the US e-cigarette marketplace. However, such a database has not been established yet. As prior studies demonstrated, e-cigarette retailers are dispersed in various retail channels, including brick-and-mortar stores, web-based stores, and vape shops or specialty stores [16,17]. However, only products and brands sold in brick-and-mortar stores are well-tracked by the Nielsen Retail Scanner Data. Little is known about e-cigarette brands and products sold in vape shops and web-based stores. Moreover, the few studies that examine products sold in these alternative channels suggest that products found in vape shops and web-based stores are significantly different from those in brick-and-mortar stores in terms of prices and product characteristics [18,19]. Therefore, a comprehensive database of brands is needed to identify brand differences by retail channels and assess accurately the e-cigarette market concentration and competitiveness.

A database of e-cigarette brands can also be used to identify regulatory impact by tracking the life cycle of a product and conducting compliance checks by identifying illegally sold products. In response to the substantial rise in e-cigarette use among US youth, the regulatory environment has evolved with many policy changes or proposals in recent years [20,21]. The available brands and types of e-cigarette products in the US market have been affected by the federal-level regulatory actions taken by the Food and Drug Administration (FDA) as well as state- and local-level policies that aim to curb e-cigarette use [3,21,22]. It is therefore highly warranted to have a live database of brands sold in the marketplace, which can demonstrate whether products with prohibited attributes are dropped from the market and how brands are evolving to comply with regulations.

Another function of a brand database is to assist in compliance checks. As the US FDA enforces the premarket tobacco market authorization (PMTA), many e-cigarette brands may become illegal in the US market [23]. A database of e-cigarette brands will allow the FDA and state and local agencies to identify if a certain brand is illegal or has been approved by the FDA. The brand database can also inform how e-cigarette brands evolve and consolidate with the enforcement of PMTA and answer the question of whether the PMTA makes the e-cigarette market less competitive in terms of limiting the availability of products [24,25].

The US marketplace of e-cigarette products is dynamic and rapidly changing. Therefore, a database of e-cigarette brands is also critical to tracking social media brand mentions and identifying emerging brands [26-29]. There have been attempts to identify mentions of e-cigarettes’ brand names and flavors on social media, such as Twitter (Twitter, Inc) [5,30], Reddit (Reddit Inc) [30], YouTube (Google) [29], and Instagram (Meta Platforms) [31], and to identify and classify emerging flavors in the web-based market [32], using machine learning algorithms. However, the lack of a comprehensive semantic database of e-cigarette brands that capture different purchasing channels has hindered the efforts of using these language-based algorithms to efficiently identify brands.

Given the importance of an e-cigarette brand database, this study aims to construct such a database and further assess popular and common brands reported from different sources. The database also provides a snapshot of the products that have appeared in the market as of 2022, allowing for future studies that analyze marketplace development and policy impacts.

Methods

Data Sources

We searched comprehensively and identified 6 sources that we used to create the semantic database of e-cigarette brands. These include (1) existing brand websites surveillance [8] that reported on a pre-determined list of e-cigarette brands; (2) e-cigarette brands sold in the brick-and-mortar stores reported by the Nielsen Retail Scanner Data, accessed through the Kilts Center for Marketing at the University of Chicago Booth School of Business [33]; (3) Wikipedia’s “list of electronic cigarette and...
e-cigarette liquid brands,” which was established by a community of volunteers who add brand names from data sources including peer-reviewed journal articles, news articles, reports from antitobacco organizations, and other sources, and we accessed it on November 29, 2022 [34]; (4) a list of e-cigarette brands mentioned on Twitter from May 2021 to December 2021 [5]; (5) self-reported brands from the 2020 International Tobacco Control Policy Evaluation Project’s Four-Country Smoking and Vaping (ITC 4CV) US survey; and (6) e-cigarette brands collected using web scraping of 5 popular web-based stores. The scraping data captured a wide range of e-liquid and disposable e-cigarette products and brands sold on the web, which were traditionally not well captured by other sources. The scraping data contained information of over 16,000 unique e-liquid or disposable products collected during 2021-2022. Additional details are available in Multimedia Appendix 1.

Brand Identification

For web-based store brands, the same brand could be written in slightly different ways across stores, and we observed variations caused by (1) spaces or hyphens (such as “sad boy” vs “sadboy”); (2) pluralization (such as “bad drip” vs “bad drips”); (3) suffixes (such as “barista brew” vs “barista brew co.”, and “mr. good” vs “mr. good vape”); (4) abbreviations or aliases (such as “naked 100” vs “NKD 100”); and (5) misspelling (such as “coastal clouds” vs “costal clouds”). Using algorithms, we identified 237 unique e-liquid brand 97 unique disposable e-cigarettes in 2021-2022.

We used STATA/SE (version 17.1; StataCorp) software to convert all brand names to lowercase and remove duplicates. For brands with more than 1 product line, a research specialist from our team looked up relevant information on the web and identified them so that we extracted each brand name with multiple product lines and collections and further cleaned up the brand database. A total of 4 members from our research team reviewed the brand list to ensure accuracy. We then used this list of e-cigarette brands (based on Nielsen, Wikipedia, and data collected from web-based stores), to identify and match with the self-reported e-cigarette brands in ITC 4CV Wave 3 (2020) survey data.

Among 1696 observations from the self-reported brand variables in the ITC survey, 181 (10.7%) of them contained irrelevant or insufficient information, such as “don’t know,” and “its unbranded from the market.” For the remaining 1515 observations, 720 (47.5%) were successfully identified and matched using our initial brand list from 3 sources (Nielsen, Wikipedia, and our unique e-liquid data scraped from web-based stores). Aided by algorithms, we checked the rest of the self-reported brands that were unmatched or unidentified both by humans and by machines and extracted brand information from those observations. Since the same brand can be reported in different ways such as with or without space, we consolidated the brand names by removing the spaces and documented possible variations of a unique brand, such as “geekvape” and “geek vape” in Multimedia Appendix 2. Consequently, 167 new brand names from the ITC 4CV survey were added to our brand database.

Based on our disposable e-cigarette brand data collected from web-based stores in 2022 and the list of e-cigarette brands on Twitter from May 2021 to December 2021 collected by Tang et al [5], we then updated our brand database and in total 138 new e-cigarette brands were added from those 2 data sources.

Identifying Top Brands

For products sold in brick-and-mortar stores, we used the Nielsen Retail Scanner data to identify the top 5 brands with the greatest sales in 2020. For self-reported brands, we used the frequency counts in the 2020 ITC 4CV US survey to identify the top brands. For products sold in web-based stores, we use the frequencies of offering (number of unique products of a brand multiplied by the number of stores that offer the brand) to identify the top 5 brands for e-liquid and disposable products, respectively.

Ethical Considerations

In this study, we compiled data on e-cigarette brands using sources including peer-reviewed publications about brand surveillance and brand mentions [5,8], the Nielsen Retail Scanner Data [33], Wikipedia [34], a tobacco use survey, and our unique data scraped from e-cigarette web-based stores. Thus, no human subjects were involved, and the determination of no human subjects was approved by the Ohio State University institutional review board. The survey protocols and all materials including the survey questionnaire for the 2020 (Wave 3) ITC 4CV US survey were cleared for ethics by the Research Ethics Board, University of Waterloo, Canada (REB#20803/30570) and the Medical University of South Carolina (waived due to minimal risk).

Results

In total, we identified 912 e-cigarette brands available in the United States during 2020-2021 and presented this database in Multimedia Appendix 2. As we compiled the brand database from multiple sources, we observed that e-cigarette manufacturers are creative when naming their product brands; in some cases, generic terms such as “z,” “e s,” “pods,” “something,” “mix,” and “e-hookah” are used as brand names. There are also brand names like “zoom” that could lead to ambiguous search terms and false results. We suggest that for those brands, researchers could use the brand names along with search terms such as “vape” as search terms to conduct market surveillance (eg, social media monitoring) and avoid false results.

The top 5 brands from different retail channels and resources are presented in Textbox 1, which presents the top 5 brands (by sales volume in counts) in the Nielsen Retail Scanner Data during 2020, the top 5 e-liquid brands (by frequency counts) in the scraped data during 2021, the top 5 disposable e-cigarette brands (by frequency counts) in the scraped data during 2022, and the top 5 self-reported brands (by frequency counts) in the ITC 4CV US survey during 2020.
Focused on the sales of e-cigarette products from brick-and-mortar stores, Nielsen Retail Scanner Data captured 82 brand or model names (567 product Universal Product Codes [UPCs]) in the “ELECTRONIC CIGARETTES–SMOKING” product module in 2020. Of the 82 brands or models, 59 sold at least two unique e-cigarette products. The top 5 high-level e-cigarette brand names by the number of products (ie, UPCs) in Nielsen Retail Scanner Data were njoy (70 product UPCs), vuse (64 product UPCs), blu (63 product UPCs), logic (31 product UPCs), and JUUL (30 product UPCs), which together accounted for about 45.5% (n=258) of total e-cigarette products observed in the Nielsen data. Product types varied, such as e-liquids, replacement pods, nonreplacement pods, prefilled cartridges or tanks, disposables, devices (eg, pod and mod), and starter kits (both device and pods or cartridges). Furthermore, during 2020 in brick-and-mortar stores, the top 5 brands (in descending order) by sales volume in counts were JUUL, vuse, njoy, blu, and logic, which represented about 137 million (97.9%) out of 140 million total e-cigarette sales volume in Nielsen Retail Scanner Data.

Based on the web-based store data, the top 5 e-liquid brands by frequency counts (reported in parentheses) were blu (780), king (553), monster (531), twist (488), and air factory (480). Here the frequency count for each top e-liquid brand was calculated as the number of different products from this brand offered by 5 stores, that is, a number of stores offering multiplied by brand variations. The top 5 disposable e-cigarette brands by frequency counts (reported in parentheses) sold by 5 web-based vape shops were hyde (214), pod mesh (126), suorin air bar (125), vaporlax (124), and xtra (115), which were different from the top brands in Nielsen data. Interestingly, self-reported data suggested top brands that differ from both web-based stores and Nielsen data. Based on the ITC 4CV Wave 3 US survey data, during 2020, the top 5 brands by frequency counts (ie, how often were they mentioned by participants, reported in parentheses) were smok (201), aspire (104), vapouroresso (76), innokin (65), and eleaf (64).

Discussion

Prior research used keyword searches and identified over 460 e-cigarette brands through January 2014, but the market has grown exponentially since then [35]. Although existing evidence shows that the number of e-cigarette brands has not increased much since 2014, this conclusion relied on limited resources or retail channels [8]. In this study, we used 6 different data sources to consolidate brands identified from multiple retail channels (brick-and-mortar stores, web-based stores, social media mentions, and self-reported data) and identified 912 unique e-cigarette brands as of 2020-2022. This suggests that a large number of e-cigarette brands existed in the market before the enforcement of PMTA, which is in line with the existing assessment that the e-cigarette market is more competitive than cigarettes with many e-cigarette manufacturers [10,13]. However, as tobacco companies increase their shares in the e-cigarette market by producing their own e-cigarette brands or purchasing existing e-cigarette brands, future research could use our database to map brands with tobacco company ownerships to better understand tobacco companies’ interest in e-cigarettes and the changes in the competitiveness and concentration of the e-cigarette market [15].

Regulation on e-cigarettes such as the FDA’s PMTA action might reduce competition in the marketplace, as e-cigarette brands owned by big tobacco companies may have a greater capacity to properly respond to regulatory actions (eg, file a PMTA) and remain in the market [24]. In addition, recent evidence suggests that in response to the FDA regulations that ban flavors other than menthol and tobacco in prefilled cartridges, the marketplace and consumers switch to disposables that provide a spectrum of flavors [3]. Therefore, it is important to track market development, product availability, manufacturers’ market power (ie, market concentration or competitiveness), and market responses to regulations, which this brand database can help.

Since 2021, the FDA has issued marketing denial orders (MDOs) to a number of e-cigarette companies, including prohibiting sales and distribution of all products from JUUL including devices and pods [21,36]. The FDA maintains an updated list of companies (instead of brand names) that have products currently marketed in the United States and have been issued MDOs [36]. It also announces the latest marketing decisions about e-cigarette companies and specific e-cigarette brands and models that have received MDOs [36]. After comparing the brands in the FDA’s marketing decisions from October 12, 2021, to January 24, 2023 [36], with our brand database, we found that all brands in those decisions were included in our database, which supports the validity and completeness of our database, which goes beyond the FDA list with additional brands that are not included in the decision list. This comparison also supports the potential of using this brand database to conduct compliance checks and monitor market product availability that could aid policy making.

Existing evidence from other studies shows that e-cigarette brands owned by tobacco companies typically offer a limited range of e-cigarette products, while brands owned by vape shops are much more likely to have a diverse range of flavor and nicotine options [8]; e-cigarette brands and product types are among the most important factors that influence consumers’
purchasing choices [8,37]. We also show that the most frequently mentioned e-cigarette brands by participants in a tobacco survey, the top brands by sales volume in brick-and-mortar stores based on Nielsen Retail Scanner data, and the top brands by product availability in web-based vape shops are very different, which demonstrates the importance of obtaining information from multiple data sources and purchasing channels when calculating the market share of various e-cigarette brands and the market concentration and power of each brand in the quickly changing e-cigarette marketplace.

We report the top 5 disposable e-cigarette brands (by frequency counts) from our 2022 scraped data as well as the top 5 e-liquid brands (by frequency counts) from our 2021 scraped data. Our database includes e-cigarette brands that are predominately sold in web-based stores; in particular, e-liquid brands are typically not well captured in existing data sources (eg, Nielsen Retail Scanner Data) and our database makes a contribution to the literature by providing those brands. For e-cigarette brands sold on the web, we have also observed that web-based vape shops sell a variety of products with different flavors, nicotine levels, and forms, suggesting the appeals of these brands sold in web-based stores [18,19,32,38,39].

Furthermore, to the best of our knowledge, our database containing brand names from 6 different data sources is the most comprehensive and up-to-date, and could contribute to tobacco regulatory science in multiple ways. In addition to compliance checks, product availability assessments, and market power estimations, the brand database can be used to conduct social media market surveillance using natural language processing and other machine learning techniques [40,41]. Specifically, brand search terms are key to identifying whether e-cigarettes are being mentioned in social media posts or on a website [5,31,42,43]. Therefore, our database not only provides a comprehensive list of e-cigarette brand search terms but also allows for the identification of emerging brands through techniques such as name entity recognition. Future research may also expand this database by linking e-cigarette brands with product characteristics such as flavors, nicotine levels and forms, and device types (disposables vs cartridges vs e-liquid; open vs closed systems) to facilitate rapid market surveillance.

Another potential function of this database is to assist in future tobacco survey development by allowing for a dropdown list that reflects the complexity of the e-cigarette marketplace and brands [2,44-48]. Our experience with the ITC 4CV survey suggests that respondents may have difficulties in self-reporting e-cigarette brands in an open-ended question. A drop-down list could enhance the ability of surveys to capture brands accurately.

Our study has some caveats. The brand names from our web-based vape shop data reflect a snapshot of e-liquid brands sold in popular web-based stores in 2021. As we continue our web scraping efforts, we will be able to extract brand information for a wide range of e-cigarette products sold in the web-based market, such as disposables, devices, and starter kits. Nonetheless, the e-liquid and disposable e-cigarette brand data from web-based vape shops and the list of e-cigarette brands on Twitter complements the brand information in brick-and-mortar stores from the Nielsen data, the existing list of brand names from Wikipedia (accessed on November 29, 2022), and self-reported brands from survey participants during 2020, together making our brand database the most comprehensive and up-to-date to the best of our knowledge. Another limitation is that brands in specialty vape shops are not necessarily captured in our semantic database. Future research is warranted to assess the brand information from specialty vape shops by paying visits to the stores and conducting qualitative interviews with store owners and staff members.

In conclusion, the development of a comprehensive semantic database that contains e-cigarette brands in the US during 2020-2022 demonstrates the competition of the existing e-cigarette market, as well as the use of novel techniques such as name entity recognition to identify emerging brands. It also has broader public health implications on the need to continuously monitor market concentration and manufacturers’ responses to regulations. Our database can be used to facilitate compliance checks and rapid surveillance of product availability to inform policy making.

Acknowledgments

We used data from the Nielsen Company (United States), LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen data are those of the researchers and do not reflect the views of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing and preparing the results reported herein. During the preparation of this work, the authors used ChatGPT (version 3.5; OpenAI) to check grammar errors and improve language flow. After using this tool or service, the authors reviewed and edited the content as needed and took full responsibility for the content of the publication. We thank Sooa Ahn, a doctoral student at The Ohio State University (OSU) Economics department, for her assistance with the formatting of this paper. This study was supported by The Ohio State University Comprehensive Cancer Center (OSUCCC) Center for Tobacco Research Pilot Grant and by the National Cancer Institute (NCI) of the National Institutes of Health (NIH) and Food and Drug Administration (FDA) Center for Tobacco Products under award (U01CA278695, U54CA228810, and U54CA287392) OSU Tobacco Center of Regulatory Science (TCORS) Marketing Monitoring Core. CS is funded by the NCI under award (R21CA249757). SM and HP are both supported by the Pelotonia Fellowship program at the OSUCCC. The 2020 International Tobacco Control Four-Country Smoking and Vaping US survey was supported by grants from the National Cancer Institute of the United States (P01CA200512) and the Canadian Institutes of Health Research (FDN-148477). Additional support to GTF is...
provided by a Senior Investigator Grant from the Ontario Institute for Cancer Research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the FDA.

Data Availability
All data generated or analyzed during this study are included in this published article and Multimedia Appendices 1 and 2.

Authors’ Contributions
CS and SM contributed to the conceptualization. CS and SM contributed to the methodology. SJ, ZQ, SM, HP, CS, and YH contributed to the software. CS and JC contributed to the validation. SM and CS contributed to the formal analysis. SM, AK, SJ, ZQ, ZX, DL, and HP contributed to the investigation. CS and JC contributed to the resources. SJ, ZQ, SM, AK, ZX, and DL contributed to the data curation. AK and SM contributed to the writing—original draft preparation. SM, AK, RJO, GTF, HP, ZX, DL, and YH contributed to editing. CS, JC, RJO, and GTF performed the supervision. SM, SJ, and ZQ contributed to the project administration. CS, JC, RJO, and GTF contributed to funding acquisition. All authors have read and agreed to the published version of the study.

Conflicts of Interest
GTF has served as an expert witness or a consultant for governments defending their country’s policies or regulations in litigation. All other authors declare no conflicts of interest.

Multimedia Appendix 1
Additional details of the methodology used to create the brand database.
[PDF File (Adobe PDF File), 134 KB - formative_v8i1e47570_app1.pdf]

Multimedia Appendix 2
E-cigarette brand names available in the United States during 2020-2022.
[PDF File (Adobe PDF File), 112 KB - formative_v8i1e47570_app2.pdf]

References

12. He Y, Ma S, Yang Q, Shang C. How cigarette excise tax pass-through to prices responds to the uptake and evolution of e-cigarettes (ECs). Tob Control 2023 [FREE Full text] [doi: 10.1136/tc-2023-058078] [Medline: 37640531]

Abbreviations

FDA: Food and Drug Administration
ITC 4CV: International Tobacco Control Four-Country Smoking and Vaping
MDO: marketing denial order
PMTA: premarket tobacco market authorization
UPC: Universal Product Code

https://formative.jmir.org/2024/1/e47570
Ma et al

©Shaoying Ma, Aadeeba Kaareen, Hojin Park, Yanyun He, Shuning Jiang, Zefeng Qiu, Zidian Xie, Dongmei Li, Jian Chen, Richard J O’Connor, Geoffrey T Fong, Ce Shang. Originally published in JMIR Formative Research (https://formative.jmir.org), 28.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Using a Novel Gameplay Intervention to Target Intrusive Memories After Work-Related Trauma: Iterative Qualitative Analysis of Intensive Care Unit Staff Experiences

Priya Patel¹, MSc; Susan Brown²,³, PhD; Boliang Guo¹, PhD; Emily A Holmes⁴, PhD; Lalitha Iyadurai⁵, PhD; Jonathan Kingslake⁵, BSc; Julie Highfield⁶, DClinPsy; Richard Morriss¹,²,³,⁷, MD

¹NIHR ARC East Midlands, University of Nottingham, Nottingham, United Kingdom
²NIHR MindTech MedTech Co-operative, University of Nottingham, Nottingham, United Kingdom
³Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
⁴Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
⁵P1Vital Products Ltd, Wallingford, Oxfordshire, United Kingdom
⁶Intensive Care Society, London, United Kingdom
⁷NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom

Corresponding Author:
Priya Patel, MSc
NIHR ARC East Midlands
University of Nottingham
Innovation Park Jubilee Campus
University of Nottingham Innovation Park, Triumph Road
Nottingham, NG7 2TU
United Kingdom
Phone: 44 7790988203
Email: Priya.Patel1@nottingham.ac.uk

Abstract

Background: Many intensive care unit (ICU) staff experience intrusive memories following work-related traumatic events, which can lead to long-term mental health outcomes and impact work functioning. There is a need for interventions that target intrusive memories in this population; however, factors such as mental health stigma and difficulty in fitting interventions into busy schedules can pose barriers. The Brief Gameplay Intervention For National Health Service Intensive Care Unit Staff Affected By COVID-19 Trauma (GAINS) study tested a brief, digital imagery-competing task intervention (including computer gameplay) with the aim of reducing the recurrence of intrusive memories, which holds promise for overcoming some of these barriers.

Objective: This substudy aims to explore barriers and facilitators to the uptake and practical use of the intervention by ICU staff, along with its acceptability, and iteratively explore the impact of intervention optimizations to further refine the intervention.

Methods: The GAINS study is a randomized controlled trial comparing access to a brief digital imagery-competing task intervention for 4 weeks with usual care followed by delayed access to the intervention. The participants were ICU staff who worked during the COVID-19 pandemic and experienced intrusive memories. All participants were sent a questionnaire at 4 weeks to gather data about intervention acceptability. Nested within the randomized controlled trial, a subset of 16 participants was interviewed, and data were analyzed using thematic analysis drawing from a framework approach.

Results: Both quantitative and qualitative data indicated high acceptability of the intervention. Intervention use data show that, on average, staff were able to target approximately 73% (3.64/4.88) of their intrusive memories and engaged with the Tetris component for the full 20 minutes per session. Overall, on the acceptability questionnaire, staff found the intervention easy to use, helpful, and highly acceptable. The interviews generated four themes: approach to the intervention, positives of the intervention, negatives of the intervention, and improvements and optimizations. Findings highlighted barriers that ICU staff experienced: stigma, feeling weak for seeking help, not wanting colleagues to know they were struggling, and skepticism. However, they provided suggestions on how barriers could be overcome and discussed the advantages of the intervention when compared with other treatments. Although participants described many positive aspects of the intervention, such as being easy to use, enjoyable, and leading to a reduction in the frequency or intensity of intrusive memories, they also raised practical issues for implementation.
Conclusions: The intervention has the potential to overcome stigma and reduce the frequency of intrusive memories after traumatic events among ICU staff. Further refinement is needed to improve the adoption and reach of this intervention. A limitation is that we could not interview the National Health Service staff who were unable or unwilling to take part in the trial.

KEYWORDS
intensive care; posttraumatic stress disorder; PTSD; qualitative research; intervention study; health care professionals; digital intervention; staff well-being; pandemic; intrusive memories; work-related trauma; mobile phone

Introduction

Background

Following exposure to a psychologically traumatic event (eg, witnessing a severe injury or death) [1], intrusive memories are common, particularly in the first few days and weeks. Intrusive memories are emotional, intrusive, and primarily visual memories of the traumatic event that pop unbidden into the mind [1], that is, it takes the form of mental imagery. When they intrude repeatedly into mind, they comprise a “core clinical feature” of posttraumatic stress disorder (PTSD) [1]. Frontline health care staff are particularly at risk, with 65% of emergency nurses reporting having intrusive memories of work-related traumatic events prepandemic, such as the death of a patient [2]. For some individuals, intrusive memories persist for more than a month and thus become a core symptom of PTSD [3]. It has been known for some time that frontline health care staff experience repeated exposure to potentially traumatic events [4-7], even before the pandemic. This exposure was even worse during the COVID-19 pandemic, with 5 times more UK health care staff reporting PTSD symptoms, such as bothersome intrusive memories, in 2020 than in 2015 [8,9]. In this study, we will focus on intensive care unit (ICU) staff working during the pandemic, although it is assumed that this has wider relevance as trauma exposure and intrusive memories also affect other staff groups, and experiencing trauma was also prevalent prepandemic. A key difference with the pandemic was the increased frequency of trauma exposure for this group.

PTSD symptoms, such as intrusive memories, are associated with poorer long-term physical and mental health outcomes [10]. There is a great cost for patients and society when frontline staff are affected, with 27% of health care staff who reported PTSD symptoms believing that their work functioning was negatively impacted [6]. Furthermore, there are problems with staff shortages and dropouts, with PTSD symptoms causing 20% of staff to consider a job change [6]. Mental health problems remain the leading cause of sickness absence in the National Health Service (NHS) [11]. Owing to these factors, the mental health of frontline health care staff exposed to traumatic events is a major priority internationally [12].

Prior Work

A novel approach in this area is the development of a brief mechanism-driven behavioral intervention to reduce intrusive memories [13-15]. This brief imagery-competing task intervention for established intrusive memories after trauma consists of a reminder cue to the traumatic event, followed by playing the computer game Tetris for 20 minutes with instructions to use mental rotation during gameplay [16]. The principles of the intervention are informed by the neuroscience of memory storage and updating (so-called consolidation and reconsolidation) [17,18] and cognitive task interference [19]. The hypothesis is that the memory consolidation or reconsolidation process of a traumatic event can be disrupted by engaging in visuospatial demanding tasks, for example, Tetris, and reduce the frequency of the intrusive memories. Randomized controlled trials (RCTs) have shown that this type of intervention approach can reduce the frequency of intrusive memories soon after trauma exposure in women after traumatic childbirth [20] and after a traumatic motor vehicle accident [21,22]. In addition, the intervention has recently been found to reduce established and older intrusive memories in case series studies with patients with chronic PTSD [23], refugees [24], and most recently NHS staff exposed to work-related trauma [16,25]. In particular, ICU staff (those working in intensive care, intensive therapy, and high-dependency units) face repeated exposure to trauma as an inevitable and intrinsic part of the work setting [2]. Now that the adverse effects on staff health and well-being are becoming better recognized [12], it is imperative to find ways to address these needs.

This study is part of a Brief Gameplay Intervention For National Health Service Intensive Care Unit Staff Affected By COVID-19 Trauma (GAINS) study (ClinicalTrials.gov: NCT04992390) for health care staff in the United Kingdom who faced trauma exposure as part of their work during the COVID-19 pandemic. The intervention used a brief imagery-competing task intervention with the aim of reducing and preventing the recurrence of intrusive memories from work-related trauma exposure.

There are many barriers to the implementation of both digital and face-to-face mental well-being interventions in health care staff, specifically owing to the complexity of the role and organization of health care [26]. Personal barriers to uptake by health care staff include a perceived lack of ownership when they feel an intervention is not driven by them; feeling as though they are obliged to participate; and practical barriers to participation, such as cost, time commitments, and age [26,27]. In setting up the GAINS study in collaboration with the Intensive Care Society (ICS) in the United Kingdom, it became clear that time commitment is of particular importance, as the nature of their role as health care staff means they are working in busy and pressurized environments, even more so given staff shortage problems. Staff have indicated that financial barriers have created a perception that spending priorities prioritize patients’ needs over the well-being of the staff [26,27]. The situation is made more complex by organizational barriers,
including changes in senior management, managers being perceived as inaccessible, ongoing organizational changes and restructuring, and the influence of target-driven cultures [26]. A lack of suitable infrastructure to support digital health interventions has also been found to be a barrier to use [28], such as a lack of available computers or internet connection, which could be a potential barrier for staff working in hospital settings.

There are also huge barriers owing to stigma and inclusivity, with many health care professionals experiencing shame for struggling with their mental health [29]. A literature review found that, within the nursing population specifically, many nurses felt that they needed to keep their mental health a secret owing to fear of being judged by their colleagues [30]. This was not only because of fear of what others may think but also because of self-directed stigma, with 21% of nurses struggling with their mental health believing that this was because of a personality weakness or character defect [30]. Therefore, digital health interventions may pose a key strength because they can be accessed independently and from any location, thereby providing users with privacy and anonymity [28]. This is in contrast to, for example, attending mental health services for psychological therapy or medication. In addition, it is vital to ensure that study samples are representative, as intersectionality plays a role in this, with health care professionals from ethnic minority backgrounds experiencing increased workplace discrimination and harassment [31]. Barriers and facilitators to the implementation of mental health interventions for NHS staff will occur at the organizational and individual levels. Therefore, it is necessary to consider the barriers and facilitators that may exist at multiple levels.

This Intervention

The GAINS intervention used a secure web-based mental health and well-being platform (i-spero, P1vital Products Ltd) to allow participants to access the intervention on a smartphone, tablet, or computer. Participants had an initial guided session with a researcher over Microsoft Teams, in which they were provided with step-by-step instructions on how to use the intervention as well as explanatory videos and multiple-choice questions. Participants were assisted in briefly listing their intrusive memories during the initial session (hotspots). Subsequently, they were prompted to recall the image associated with 1 specific intrusive memory. They played the Tetris game for 20 minutes using mental rotation, in which they had to imagine how to rotate the next Tetris piece so that it could fit in the existing structure. The intervention took a total of approximately 25 minutes each time, and they could target different memories on different days. Finally, they were trained in using the i-spero (P1vital Products Ltd) platform to monitor intrusive memories in daily life [25].

The underlying principle of the intervention is its imagery-based nature and that it can be used regardless of the content of the intrusive memory (a motor vehicle accident or witnessing a patient’s death when working in the ICU). The intervention is used once per different intrusive memory, so it can also be used by someone who has experienced a single traumatic event or multiple ongoing traumatic events. It can also be used for new intrusive memories that develop during the trial. Owing to the nature of their roles, participants work in an environment where trauma can be a frequent occurrence. Therefore, choosing an intervention that can address the specific challenge of recurring and frequent trauma is crucial.

This intervention holds particular promise for overcoming some of the mentioned barriers to the implementation of mental well-being interventions after trauma in ICU settings [25]. For example, rather than focusing on a mental health diagnosis such as PTSD, the entry to accessing the intervention is a simpler index problem, namely, having intrusive memories of the traumatic event. It is brief (1 guided intervention session of 1 hour, followed by self-guided use of approximately 25 minutes per session, whereby the aim is 1 session per different intrusive memory). It is digital and can be used flexibly in different locations (eg, on a smartphone during a commute) and may have lower stigma than attending mental health services (as the intervention involves a digital task including a computer game rather than, for example, talking to a trained therapist). As the intervention can be used for new intrusive memories as they arise, it is well suited for health care staff facing repeated or ongoing trauma in their jobs. Finally, as the intervention requires minimal therapist resources, it has the potential to be more cost-effective and scalable than current evidence-based interventions that require more contact.

Aims

This qualitative substudy as part of the GAINS study had the following aims:

• To explore barriers and facilitators to the uptake and use of the imagery-based competing task intervention to reduce intrusive memories of work-related trauma in ICU staff, along with its acceptability.

• To iteratively explore the impact of optimizations made to the intervention to address some of the barriers (and enhance facilitators), allowing us to then further refine the intervention for future use by ICU staff.

Methods

Design

The GAINS study is an RCT comparing immediate access to a brief digital imagery-competing task intervention for 4 weeks (the immediate intervention arm) versus receiving usual care for 4 weeks, followed by delayed access to the intervention for an additional 4 weeks (the delayed intervention arm). This manuscript contains quantitative descriptive data from an acceptability survey completed 4 weeks after the first intervention session as well as data from the intervention itself on uptake and completion of the intervention. This descriptive data are provided as contextual information for the qualitative findings, which explore in more detail barriers and facilitators to the uptake, completion, and overall acceptability of the study. The qualitative analysis draws on 2 sources of data collection: interviews from a maximum variance sampling method in a subset of participants and free-text feedback that was sought from all participants completing the acceptability survey. The narrative feedback was used to triangulate the qualitative
Individuals who met the inclusion criteria were given the participant information sheet again, along with the opportunity to ask questions to the investigator, their general practitioner, or other independent parties to make an informed decision about whether to participate. If they were still interested in participating in the study, a researcher arranged a time to contact them by phone or video call to obtain informed consent. The participant and researcher completed, signed, and dated the consent form using a simple electronic signature via email, which included providing permission to be contacted for the qualitative interview component of the study. The consent form was retained electronically in a secure format, and participants were emailed a copy for their records.

Study Procedures of the GAINS Study RCT

After providing informed consent, participants were asked to complete a daily web-based intrusive memory diary for a run-in period of 1 week. Each day, the participants were asked to indicate if they had any intrusive memories and, if so, how many. Participants who met the eligibility criterion of having ≥3 intrusive memories in the run-in week were randomly allocated to either the immediate intervention arm or the delayed intervention arm in a 1:1 overall ratio. Participants were randomized through the P1vital electronic Participant Reported Outcome system (P1vital Products Ltd), and the outcome assessment was completed remotely by the participants (independently of the research team) on this platform. The qualitative team was independent of randomization, delivery of the intervention, and assessment of the quantitative outcomes. The immediate intervention group received the intervention immediately for 4 weeks, whereas the delayed group received usual care for 4 weeks, followed by the 4-week-long intervention.

Intervention Being Trialed

The brief digital intervention was delivered through a secure web platform that participants accessed on their smartphone or other internet-enabled device (refer to the studies by Iyadurai et al [25] and Ramineni et al [16] for complete details). Participants were provided with an initial session guided by a clinical psychologist or delegated researcher to run through the intervention as well as follow-ups and support available throughout the intervention. During the initial session (approximately 1 hour), participants were asked to briefly list the different intrusive memories they have and choose the one they wish to target first. They were then asked to complete the intervention, which included several key components: (1) the participant was asked to briefly bring to mind the intrusive image as a reminder to the specific memory, (2) they received instructions on how to play the computer game Tetris using “mental rotation,” and (3) they were asked to play Tetris using mental rotation for at least 20 minutes. During the intervention, participants were asked to rate how distressed they are feeling on 3 occasions, to rate the vividness of the image that is brought to mind, and to rate how much they were able to follow mental rotation instructions, to assess adherence to the instructions. After this first session, participants were able to use the intervention as many times as they liked over the next 4 weeks (eg, to target any other intrusive memories on their list or those

Potential participants met the inclusion criteria if they were aged ≥18 years; able to read, write, and speak in English; worked in a clinical role in an NHS ICU or equivalent during the COVID-19 pandemic; experienced at least 1 traumatic event related to their work during the COVID-19 pandemic; meeting criterion A of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria for PTSD: “exposure to actual or threatened death, serious injury, or sexual violence” by “directly experiencing the traumatic event(s)” or “witnessing, in person, the event(s) as it occurred to others”; experience intrusive memories of the traumatic event or events; experienced at least 3 intrusive memories in the week before screening; have internet access; were willing and able to provide informed consent and complete study procedures (including briefly listing their intrusive memories [without going into any detail] and playing the computer game Tetris with particular mental rotation instructions and completing a web-based intrusive memory diary); and were willing and able to be contacted by the research team during the study period. Potential participants were excluded if they had <3 intrusive memories during the run-in week.
that recur—approximately 20 min/session). The system logged intervention use data, including the number of intrusive memories on the participant’s memory list, number of intrusive memories targeted with the intervention, number of times the intervention was started and used by the participant, and the total time spent playing Tetris.

Data Collection

Intervention Feedback Questionnaire Procedures and Analysis

All participants were sent the Intervention Feedback Questionnaire (IFQ; Multimedia Appendix 2) 4 weeks after the first intervention session to gather information about intervention acceptability. The quantitative data from this questionnaire were analyzed descriptively by an independent and blinded statistician (BG), and the uptake and use data were analyzed by the P1Vital data management team. The qualitative research team only received the questionnaire free-text data after completing the qualitative interview analysis. PP categorized any free-text responses that fitted our qualitative themes and subthemes. SB and RM then reviewed these categorizations, and the very few instances of discrepancies were discussed to create the final structure. These data were analyzed descriptively in terms of frequency of response as a proportion of all participants and also of those who made any response at all. We then examined any data that did not fit any of our themes and considered whether there was enough detail to identify the data as a new theme or subtheme within the overall analysis. If a comment was too vague or general to determine whether it fitted the current thematic or subthematic structure or not, we did not include it in the analysis. As there is a separate trial outcome manuscript that explores the effectiveness of the intervention on a variety of outcomes [16,25], we excluded comments related specifically to the outcomes measured in the trial protocol.

Nested Qualitative Study

Recruitment

Upon completing the 4-week intervention, participants who had previously consented to be contacted for the interview component of the study were asked if they would like to take part in a qualitative interview with a researcher via an audio or a video call. Details of interested participants were stored on a password-protected file, and a researcher used selective sampling to contact participants from diverse backgrounds (age, gender, ethnicity, job role, and location) to schedule an interview.

Interview Schedule

This semistructured interview consisted of several questions designed to gain an in-depth understanding of participants’ experience of using the intervention, including acceptability, improvement suggestions, training or psychoeducation materials, potential barriers or facilitators to recruitment and uptake, and support needed for remote intervention delivery (Multimedia Appendix 3).

Procedures

Before commencing the interview, the researcher confirmed consent to audio record the interviews using a digital voice recorder, and the participants were reminded of the option to withdraw at any point. The interviews lasted approximately 30 minutes, and the audio recordings were immediately transferred to a password-protected laptop and deleted from the voice recorder. The password-protected files were then sent for transcription and anonymized.

Data Analysis

The interview data were analyzed using thematic analysis [32] and drawing from the framework approach by Ritchie et al [33] and Spencer et al [34]. A hybrid approach was used, where themes were generated inductively (from the data) and deductively (based on core areas of interest). This analysis approach was used as the study was exploratory at this stage, so it was important to understand the feasibility and acceptability of the intervention alongside core experiential elements that were not anticipated.

Steps of the analysis included the following:

- Familiarization with data (noting arising concepts and patterns)
- Generating an initial coding framework (iteratively and through team discussion)
- Coding of all transcripts
- Reviewing the content of codes in depth; identifying themes and subthemes; and exploring coherence, variation, consistency, and prevalence
- Creation of mind maps, showing how themes and subthemes fit together and interact, and identifying linkages

In relation to the coding processes, 1 researcher (PP) received interview transcripts, anonymized these transcripts, entered them into NVivo12 (Lumivero), and coded them. A second researcher (SB) coded a sample of transcripts, followed by discussions regarding any discrepancies. Once coding was completed, codes were explored in-depth by PP, who created summaries of coded content to allow the exploration of themes and subthemes. SB repeated the same process on a sample of codes to check for consistency and any discrepancies. PP and SB then worked together to develop and prioritize themes and categorize subthemes according to prevalence.

The analysis initially focused on the barriers and facilitators to using the intervention and how helpful the intervention was for participants, before going on to look at how it could be optimized for future participants and circulated wider.

Results

Overview

In total, 86 participants took part in the GAINS study RCT, 43 (50%) of whom were randomized to the delayed arm and 43 (50%) to the immediate arm [16,25]. Of the 73 participants approached to participate in an interview, 61 (83%) consented to being contacted, 1 (1%) declined, and 11 (15%) did not respond. The mean number of different intrusive memories listed by each participant was 4.88 (SD 2.17), and the mean number of different intrusive memories targeted per participant was 3.64 (SD 2.04). Further intervention use data are presented in Table 1. This shows that participants used the intervention
an average of 7 times over the 4-week period and spent approximately 20 minutes and 54 seconds playing Tetris per session. They were able to target an average of 73% (3.64 targeted / 4.88 total) of the intrusive memories on their list using the intervention.

Table 1. Data on intervention use.

<table>
<thead>
<tr>
<th></th>
<th>Values, median (IQR; range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of intrusive memories targeted from list (%)</td>
<td>73 (50-100; 8.33-100)</td>
</tr>
<tr>
<td>Number of times intervention used</td>
<td>7 (5-12.75; 1-44)</td>
</tr>
<tr>
<td>Total time spent playing Tetris per use</td>
<td>20 min 54 s (20 min 22 s-22 min 8 s; 11 min 48 s-31 min 20 s)</td>
</tr>
</tbody>
</table>

The median number of intrusive memories dropped from 14.50 (IQR 10.0-21.50) preintervention to 1.00 (IQR 0.0-3.0) postintervention in the immediate arm group. The median number of intrusive memories dropped from 10.00 (IQR 6.0-17.0) preintervention to 1.00 (IQR 0.0-2.50) postintervention in the delayed arm group. Furthermore, following intervention use, there was a significant reduction in PTSD symptoms ($P<.001$), insomnia ($P<.001$), and anxiety ($P=.02$) and an increase in work functioning ($P<.001$) and well-being ($P<.001$) [16,25].

Of the 86 participants, 84 (98%) completed the IFQ, which contained a mixture of quantitative (scale) and qualitative (free text) response options. The quantitative data will be provided initially, and the qualitative data will be discussed alongside the interview findings. The IFQ respondent demographics are shown in Table 2. Participants’ responses to each quantitative item of the IFQ are presented in Table 3.
<table>
<thead>
<tr>
<th>Demographic factors</th>
<th>Respondents, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>69 (82)</td>
</tr>
<tr>
<td>Male</td>
<td>15 (18)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Highest educational qualification</td>
<td></td>
</tr>
<tr>
<td>Bachelor’s degree or equivalent</td>
<td>47 (56)</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>24 (29)</td>
</tr>
<tr>
<td>Doctoral degree</td>
<td>6 (7)</td>
</tr>
<tr>
<td>Sixth form or equivalent (to age 18 y)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Secondary school (up to age 16 y)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
</tr>
<tr>
<td>Married or cohabiting</td>
<td>53 (63)</td>
</tr>
<tr>
<td>Single</td>
<td>26 (31)</td>
</tr>
<tr>
<td>Divorced or separated</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Living apart from partner</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Asian (Indian)</td>
<td>5 (6)</td>
</tr>
<tr>
<td>Asian (any other Asian background)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Black (African)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>White (British)</td>
<td>36 (43)</td>
</tr>
<tr>
<td>White (Irish)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>White (any other White background)</td>
<td>23 (27)</td>
</tr>
<tr>
<td>Mixed (any other mixed background)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Other (any other ethnic group)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Unknown (not stated)</td>
<td>12 (14)</td>
</tr>
<tr>
<td>Occupational status</td>
<td></td>
</tr>
<tr>
<td>Working full time</td>
<td>66 (79)</td>
</tr>
<tr>
<td>Working part-time</td>
<td>16 (19)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Sick leave</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>
Table 3. Mean score for each Intervention Feedback Questionnaire (IFQ) item.

<table>
<thead>
<tr>
<th>IFQ item</th>
<th>Score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFQ0101: How easy did you find it to use the intervention? (0=not at all and 10=very)</td>
<td>8.59 (1.93)</td>
</tr>
<tr>
<td>IFQ0102: How helpful did you find the intervention? (0=not at all and 10=very)</td>
<td>8.23 (2.32)</td>
</tr>
<tr>
<td>IFQ0103: How burdensome did you find the intervention? (0=very and 10=not at all)</td>
<td>6.48 (2.70)</td>
</tr>
<tr>
<td>IFQ0104: How distressing did you find the intervention? (0=very and 10=not at all)</td>
<td>7.07 (2.63)</td>
</tr>
<tr>
<td>IFQ0105: Overall, how acceptable did you find the intervention? (0=not at all and 10=very)</td>
<td>8.50 (1.88)</td>
</tr>
<tr>
<td>IFQ0108: If you were having intrusive memories in the future, how willing would you be to use the intervention if it was offered to you as something that would help? (0=not at all and 10=very)</td>
<td>8.79 (2.11)</td>
</tr>
<tr>
<td>IFQ0109: If a colleague or friend was having intrusive memories, how confident would you be in recommending the intervention to them? (0=not at all and 10=very)</td>
<td>8.43 (2.22)</td>
</tr>
<tr>
<td>IFQ0110: How much do you feel that this intervention could be used within NHS(^a) Trusts or health care organizations to support staff who have experienced work-related traumatic events? (0=not at all and 10=very)</td>
<td>8.38 (2.24)</td>
</tr>
<tr>
<td>IFQ0113: Total score (0-80)</td>
<td>64.46 (12.51)</td>
</tr>
</tbody>
</table>

\(^a\)NHS: National Health Service.

Table 2 with IQR results shows that the vast majority of participants who took part in the trial were female, working full time, educated to degree level, married or cohabiting, and from a White British or White non-British background. The sample included male, part-time, less educated, single or separated, and ethnic minority staff (from Asian, African, and mixed ethnicity backgrounds). After 4 weeks, most staff reported that the intervention was easy to use, helpful, burdensome, distressing only to a mild degree, and highly acceptable. In the future, they were highly willing to use the intervention again if it was offered to them, highly confident in recommending it to colleagues, and believed strongly that it would help other staff in health care settings who experience trauma.

In the nested qualitative interview study, 16 participants were interviewed. Table 4 shows the demographics of the interview sample. The mean age of the interviewees was 39.4 (SD 8.4) years. Following the first 8 interviews, maximum variance sampling was used to select interviewees from a range of backgrounds. This included a range of ages, genders (predominantly female), ethnicities, job roles (predominantly nurses and consultants), geographical locations, and number of intrusive memories at baseline (range 5-44).
Table 4. Demographics of the interview sample (N=16).

<table>
<thead>
<tr>
<th>Demographic factors</th>
<th>Interview sample, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td></td>
</tr>
<tr>
<td>18-25</td>
<td>0 (0)</td>
</tr>
<tr>
<td>26-35</td>
<td>3 (19)</td>
</tr>
<tr>
<td>36-45</td>
<td>7 (44)</td>
</tr>
<tr>
<td>46-55</td>
<td>4 (25)</td>
</tr>
<tr>
<td>>56</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Not known</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Number of intrusive memories at baseline</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>1 (6)</td>
</tr>
<tr>
<td>6-10</td>
<td>2 (13)</td>
</tr>
<tr>
<td>11-15</td>
<td>3 (19)</td>
</tr>
<tr>
<td>16-20</td>
<td>4 (25)</td>
</tr>
<tr>
<td>21-25</td>
<td>4 (25)</td>
</tr>
<tr>
<td>26-30</td>
<td>1 (6)</td>
</tr>
<tr>
<td>31-35</td>
<td>0 (0)</td>
</tr>
<tr>
<td>36-40</td>
<td>0 (0)</td>
</tr>
<tr>
<td>41-45</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>11 (69)</td>
</tr>
<tr>
<td>Male</td>
<td>4 (25)</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>African</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Filipino</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Indian</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Spanish Colombian</td>
<td>1 (6)</td>
</tr>
<tr>
<td>White</td>
<td>8 (50)</td>
</tr>
<tr>
<td>Mixed race</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Job roles</td>
<td></td>
</tr>
<tr>
<td>Nursing</td>
<td>9 (56)</td>
</tr>
<tr>
<td>Consultant</td>
<td>3 (19)</td>
</tr>
<tr>
<td>Pharmacist</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Anesthetist</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Physician</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Dietitian</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

The final 4 (25%) of the 16 interview participants who participated in the study received an optimized intervention, as this was a Bayesian adaptive RCT. The intervention was optimized as the study progressed over time [16,25] following feedback from previous participants. These optimizations included adding graphs to allow participants to see their own data for each intrusive memory, adding a video at the end of the first guided session to reinforce how to use the intervention independently, and adding an additional reminder cue in the first guided session to ensure that the memory was in their mind just before they played Tetris [16]. The topic guide (Multimedia Appendix 3) was, therefore, amended to include questions about participants’ thoughts on what was required to access the
intervention independently as well as their thoughts on the added graphs and reminders.

The themes and subthemes are outlined in Textbox 1, and example quotes illustrating each theme are provided in the text below.

Textbox 1. Thematic structure.

<table>
<thead>
<tr>
<th>Themes and subthemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Attitudinal and emotional responses</td>
</tr>
<tr>
<td>• Experiencing mental health symptoms as a health care professional</td>
</tr>
<tr>
<td>• Stigma and imposterhood</td>
</tr>
<tr>
<td>• Value of anonymity</td>
</tr>
<tr>
<td>• Using a novel intervention</td>
</tr>
<tr>
<td>• Skepticism</td>
</tr>
<tr>
<td>• Understanding how it works is helpful</td>
</tr>
<tr>
<td>• Positives of the intervention</td>
</tr>
<tr>
<td>• Tracking and intervening to reduce intrusive memory frequency and intensity</td>
</tr>
<tr>
<td>• Intervention is easy to use and enjoyable</td>
</tr>
<tr>
<td>• Intervention is more convenient than psychological therapies</td>
</tr>
<tr>
<td>• No need to discuss intrusive memories</td>
</tr>
<tr>
<td>• No side effects of the intervention</td>
</tr>
<tr>
<td>• Cognitive and emotional coping</td>
</tr>
<tr>
<td>• Negatives of the intervention</td>
</tr>
<tr>
<td>• No opportunity to discuss intrusive memories in detail</td>
</tr>
<tr>
<td>• Unclear whether memories are spontaneous</td>
</tr>
<tr>
<td>• Technological issues</td>
</tr>
<tr>
<td>• Difficult to find time to use the intervention</td>
</tr>
<tr>
<td>• Improvements and optimizations</td>
</tr>
<tr>
<td>• Difficult to focus on mental rotation</td>
</tr>
<tr>
<td>• How to increase focus on mental rotation</td>
</tr>
<tr>
<td>• Researcher support is important</td>
</tr>
<tr>
<td>• How to access the intervention independently</td>
</tr>
<tr>
<td>• How to aid incorporation of the intervention into participant lifestyle</td>
</tr>
<tr>
<td>• Other intervention improvement suggestions</td>
</tr>
</tbody>
</table>

Attitudinal and Emotional Responses

Experiencing Mental Health Symptoms as a Health Care Professional

Stigma and Imposterhood

Choosing whether to participate in the intervention was compounded by barriers, such as stigma surrounding mental health in ICU staff. Many participants described feeling weak for seeking help and not wanting colleagues to know that they were struggling:

I’m a healthcare professional and I do see these things all the time, but then in one way you think these are the things that will never affect you. You help the others, because I’ve always been caring and empathetic with them, but at the same time you don’t think you can be the patient. [001]

But critical care nursing has this kind of almost elitism kind of approach. And the moment you have a little bit of a weakness that’s then seen negatively and your almost- you kind of feel that someone’s going to think that you can’t do your job. [008]
sense of imposter-hood with these. Do I really- Or do I- Are my intrusive memories bad enough? Surely other people have worse ones, therefore- It was helpful getting rid of that feeling. [003]

Value of Anonymity

Overview

In addition, participants stressed how emphasizing the anonymity of this intervention could help reduce the impact of mental health stigma on taking part in the study:

Yes I think highlighting it being anonymous and it doesn’t get reported back to work would probably make people more likely to use it. And the fact that they can – you know if they can access it on their personal emails and not work emails and things like that that would probably make people more likely to use it. [013]

IFQ Data

Despite this, when asked how the intervention could be improved in the feedback questionnaire, 3 participants provided suggestions that required workplace involvement in the intervention:

Involve managers to support the staff. [IFQ004]
Time out of work to do it. [IFQ049]
For it to [be an] option within occupational health because it has impacted on NHS workers that went through the pandemic. [IFQ040]

Using a Novel Intervention

Skepticism

Overview

Participants discussed their initial skepticism when approached with information about this intervention, as its novelty, simplicity, and game design caused them to doubt its effectiveness:

Well when I first heard about it I was very, very sceptical, because yes I know that games focus your mind on something else. But I just wasn’t convinced that it was going to do anything. [005]

IFQ Data

Skepticism toward the intervention was also mentioned by a couple of participants in the feedback questionnaire when asked what they found useful about the intervention:

Amazing. I genuinely did not expect it to work. [IFQ012]
The intervention definitely targeted some of those intrusive memories popping up, working much faster than I had expected it to. [IFQ009]

Understanding How It Works Is Helpful

Overview

Therefore, participants described how increasing their understanding about how the intervention works during initial communication is important to reduce the initial skepticism about intervention efficacy:

[Once] you get over people being aware of what it’s trying to do. You know, it’s not, for example, it’s not just a distraction, it’s not trying to distract you from memories and thoughts, but this is- Try this because there is evidence as to how this will work. [010]

People might be a little bit sceptical that it would work. Well especially with nursing… as part of your training you do modules on research so I think if people are shown the research and shown that it works they’re more likely to use it. [013]

Participants suggested providing previous research and testimonials from other ICU staff during initial communication to help normalize intrusive memories and thereby encourage more professionals to seek help:

[Should] have said, look, I also have the same problems, have a personal story like that, and see somebody’s journey. Saying like, you stick with a little work and I think it reassures a little bit and I think it relates a little bit nicer to you mentally than just a- you know a scientific paper which is very objective and impartial. [011]

IFQ Data

This was further highlighted by a couple of participants in the feedback questionnaires, when asked how the intervention could be improved as something that could be offered to health care staff to help reduce intrusive memories after a work-related traumatic event:

Provide evidence and testimonies from the research participants. [IFQ018]
To make people aware of it and show success results. [IFQ006]

Positives of the Intervention

Participants discussed various positive effects of the intervention, including its effect on them, and also when compared with other treatments (which was a line of questioning).

Tracking and Intervening to Reduce Intrusive Memory Frequency and Intensity

Overview

Participants described how the intervention was helpful in reducing the frequency or intensity of intrusive memories. Moreover, they found it helpful to track their intrusive memories, as it allowed them to notice reductions and patterns and reinforced intervention use:

It was like being back inside the situation again. I could hear the voices…I was surrounded by the scenario again. And then it became just images of like trying to foreseeing those things again. And now it is just a cloud. There is nothing there. [015]

Because then you can see the trend and then you think oh, actually I haven’t had any memories for three days
or whatever. So, that kind of like spurs you on a bit and then you’re like oh, it’s working, yes that was useful. [006]

Recording the frequency of the intrusive memories and realising that they’re actually going down, it just reinforces that it is a good tool to use for that purpose. [002]

IFQ Data

In total, 30% (25/84) of the feedback questionnaire respondents also described how the intervention helped to reduce the frequency and intensity of intrusive memories as well as how some of these memories did not return:

That it actually helped reduce the frequency of the memories. [IFQ011]

The intervention definitely targeted some of those intrusive memories popping up...causing the memories to become less frequent as well as less distressing and vivid when they did appear. [IFQ009]

It helped to reduce my intrusive memories. It gave me something active and engaging to do if I felt distressed by my memories. [IFQ035]

Intervention Is Easy to Use and Enjoyable

Overview

Participants found the intervention easy to use, in part because of the clear instructions provided, and enjoyable:

I think it was all really straightforward. And for someone of my age, that’s- It must be easy, because I’m of the non-tech generation. [016]

You know, it is a psychological intervention and it is helping you psychologically [laughs]. But it’s also, it is a game and it, there are some enjoyable aspects to it and it’s a good way to help yourself mentally. [006]

IFQ Data

These positives were further emphasized in the feedback questionnaire responses, with a couple of respondents mentioning that the intervention was enjoyable and many more saying it was simple, easy to use, and intuitive:

It was enjoyable and very intuitive. [IFQ004]

It’s such a simple tool to use to target these frustrating and upsetting thoughts. [IFQ001]

It was straightforward and easy to use. [IFQ002]

However, 1 participant also explained in the feedback questionnaire that their lack of experience with Tetris made it difficult to use the intervention:

Learning to play the game as I had not used before. [IFQ034]

Intervention Is More Convenient Than Psychological Therapies

Participants also discussed the benefits of this treatment compared with existing treatment options for intrusive memories, such as psychological therapies. For example, unlike psychological treatment, this treatment is flexible as it does not require an appointment:

You can choose when to target those specific kind of memories rather than being reliant on, well I’ve got an appointment at 2 o’clock on this day. And there were days when I couldn’t- I didn’t have the mental capacity to just focus on kind of day to day let alone do the intervention. So I could pick and choose when I targeted those memories. (008)

It doesn’t take too much time out of the day and the emotional commitment involved is not exhausting, like some other forms of counselling I’ve had before. In fact, I feel better for it, rather than worn out. So, 20 minutes and then you can get on with things really. [003]

It’s because it is more available whenever time you want. That’s the most important thing. [007]

No Need to Discuss Intrusive Memories

Overview

Some participants also appreciated that this intervention did not require them to relive distressing memories in-depth, unlike in talking therapies:

The fact that you’re actually having a therapy session, but you don’t realise it. So, it can be less distressing as well, especially when you’ve got trauma, some people don’t really want to talk about trauma, they just want trauma to go away. [001]

Because sometimes if you have counselling, you leave the room even worse than when you came in, because you are not thinking about something and then you have to go back to the situation and seeing and then you spend the whole day crying- I’ve had counselling before and after so much crying, you are so exhausted the rest of the day after all that. [015]

IFQ Data

There were mixed views on this in the feedback questionnaire responses, with 1 respondent stating that the intervention was nondistressing and 3 respondents explaining that it was difficult to recall the memories as part of the intervention:

Pretty well non-distressing. [IFQ021]

Didn’t want to bring some of the more difficult intrusive memories to mind. [IFQ044]

Re living those memories was really difficult sometimes. [IFQ028]

The only difficult thing was facing the intrusive thoughts. [IFQ025]

No Side Effects of the Intervention

When compared with medication, the key advantages discussed were the lack of side effects, for example, on sleep or weight, and being able to directly target intrusive memories:

If you’ve got a problem, you still have the problem. Maybe the medication helps you to stay more relaxed,
but it doesn’t really have an impact on intrusive memories, and things like that. [001]
I have my own reservations when it comes to medication...I don’t want to take much of a time, you know in terms of (the drug affecting) sleep or waking or weight loss, things like that. Compared to medication, I was happy to undergo an intervention like this. [009]

In addition to discussing some of the positive effects of the intervention compared with other treatments, I participant also mentioned simply appreciating the availability of an alternative option:

Personally because I’ve had talk therapy and medication and things so, I was looking for something else to try. [006]

Cognitive and Emotional Coping

Overview

The participants described the positive effects of the intervention on their cognition, such as improved concentration and rational thinking at work. They also experienced positive changes in their emotions and other aspects of life, including feeling happier, more in control of their emotions, reduced anxiety, and sleep improvements:

That allowed your brain to then focus more on the important things. And my rational thinking at work seemed to improve as a consequence. [008]

My attention and focusing time came back. Usually, you need focal attention. I can pay attention for extended hours, but I was not able to do that. [009]

My productivity increased to the extent that people started noticing it and I became happier. I think I became my old self. [009]

I was so tearful but now, if I’m tired, I feel more comfortable, more happy, more emotionally controlled. [007]

Obviously, the sleep improvements come with not having the intrusive memory and being troubled by them. [002]

IFQ Data

The feedback questionnaires offered insights into additional positive effects of the intervention, including how it enhanced focus, served as a helpful distraction, aided in relaxation, and allowed individuals to take time out of their day.

Facilitated focus and clarification of thoughts. Organised my mind. [IFQ015]

The game was a great distraction. [IFQ022]

Intervention itself was relaxing, forcing 20 minutes of exclusive concentration on a task providing a break from a busy day. [IFQ032]

Negatives of the Intervention

Participants mentioned some negative effects related to the use of the intervention, some of which were grounded in comparison with other treatments (which was a line of questioning) and some of which were given spontaneously. There is heterogeneity of experience, and these were not discussed by everyone, and these negative effects were grouped as follows.

No Opportunity to Discuss Intrusive Memories in Detail

Overview

Participants discussed some negative effects of this intervention compared with existing treatments. For example, some participants preferred to talk to a clinician about their intrusive memories, which this intervention did not allow:

[If you are really troubled by one of the memories, I can imagine having direct psychological support to kind of work your way through that thought process, it is just a thought, calming you down, there’s none of that. [002]

IFQ Data

One participant also highlighted in the feedback questionnaire that the inability to discuss intrusive memories in detail meant that the intervention should be accompanied by another support system:

Great as a distraction technique but needs to be accompanied by another support mechanism, being given a safe space to be able to talk through experiences etc. [IFQ017]

Unclear Whether Memories Are Spontaneous

Overview

In addition, participants expressed difficulty in knowing whether memories of the traumatic event were actually spontaneous or simply because of being part of the study:

I think it’s really hard to try and differentiate between, am I putting this thought in my head? Because I know I am doing the GAINS Study, or- So I think like, after the first couple of days, I just had to just try and, like, ignore the research side of it. (004)

IFQ Data

Feedback questionnaire respondents concurred with this; with respondents explaining how processes inherent to the study, such as repeat contacts and reminder texts, could in fact remind them more about the distressing incidents:

Repeat contacts became a bit burdensome. [IFQ003]
The phone calls, texts were far more frequent than I anticipated. The reminder to do the intervention at 7 am and at night reminded me of the distressing incidents and made me more distressed. [IFQ019]

Technological Issues

Overview

Once participants had overcome the barriers to participating in the study (described previously), there were some environmental factors that affected their experience with the intervention. As this is a digital intervention, technological difficulties such as a lack of technological knowledge, reduced access to a device, and device differences were mentioned as issues:
The one thing I did find though, which I didn’t know, is when I occasionally had, I usually used my laptop if I was able, and you know, it was much easier to rotate the blocks. But I found on my mobile phone it was, it was very sensitive. [005]

Some of us are lucky to have laptops, but like, I remember at the initial start, we were told to make sure you have your laptop, because it might not work, like, on your phone or your iPad. [012]

There might be some groups that have potentially worked in different areas in part of the pandemic and they’ll be left with some of these intrusive memories that wouldn’t be so technologically fluent. [002]

IFQ Data
This was echoed by the feedback questionnaire responses, with 1 participant explaining how there were problems owing to the multiple platforms and the inability to access the intervention offline. However, there were mixed views on how well the intervention worked on mobile phones:

Multiple platforms, not an intuitive website...and it would time out if you were on a train/went offline. [IFQ002]

Didn’t work too well on my phone. [IFQ016]

I would not improve the intervention itself as it is very accessible and able to play on phone and computer. [IFQ037]

Difficult to Find Time to Use the Intervention
Overview
In addition to technological difficulties, participants described how it could be difficult to find time to use the intervention because of their busy schedules, shift patterns, and other responsibilities outside of work:

[Found] it a bit difficult to find the time with this- I’ve got a small child, I’m working almost close to full-time. My husband is a [profession name], so he does a lot of out of hours work, so a lot of the childcare and toing and froing, that comes to me. [002]

[Occasionally] I had to do it just before I went to bed after a busy day. And I didn’t like doing that because I try and reduce my mobile phone usage or computer usage late at night. [005]

Particularly about doing it during the day at work, made you think, well that’s fine, I’ve managed to push things, cleared everything up, I’ll be fine for half an hour while I do this, and then inevitably you get a phone call 10 minutes into it. [010]

I suppose compared to medication or whatever, I suppose it’s investing the time, finding the time. Taking a pill is very quick, isn’t it. [002]

IFQ Data
This was also a very common theme in the feedback questionnaire responses, with participants explaining how and why they found it difficult to find time to use the intervention (both inside and outside the workplace):

Finding the best time to do the intervention without interruption from my preschooler Vs being too tired to pay it proper attention to get the most out of it. [IFQ001]

Surprisingly difficult to find 20 mins in busy clinical day or family time daily to do game. [IFQ003]

My concern is that staff wouldn’t find the time during the working day to work on the interventions and with shift patterns may struggle to include it in their free time. [IFQ036]

Three of the feedback questionnaire respondents also highlighted how they found it difficult to remember to record and use the intervention, in part because of the lack of time:

Remembering to do the intervention regularly and record the relevant information. During the day, I don’t have time to work on the intervention so I’ve had to work time into my evening to complete the tasks. [IFQ036]

Improvements and Optimizations
Participants were asked about potential improvements or optimizations to the intervention as well as any challenges experienced while using it. The responses were grouped into the following themes, which were found to be relatively frequent and consistent.

Difficult to Focus on Mental Rotation
Overview
Participants emphasized the importance of recognizing that the mental rotation aspect was the focus rather than the Tetris score:

I had to concentrate quite a bit because when I first started using it I just was having fun playing the game [laughs]. [006]

I think we should highlight that when you do the intervention you shouldn’t really- You should focus more on the arrangement rather than aiming for a score or you should stay away from how you usually play Tetris and focus on the future blocks and the arrangement. [014]

Despite recognizing this, participants often found it difficult to concentrate or focus on mental rotation:

I was thinking about myself, my thoughts were just running away, and I wasn’t really concentrating on the Tetris game. [001]

I remember thinking first few times it [speed] increased I started to panic a bit because- And then you do stop focusing on the mental rotation because you just think, oh they’re all coming so quickly. [005]

I think it was the pre-empting the rotation that’s coming, to rotate it in your head before it actually comes onto the screen, that’s the hard bit. [012]
IFQ Data
This difficulty in concentrating was echoed by participants in the feedback questionnaires:

I think 15 mins is enough—my concentration starts to flag after this. [IFQ005]
I found I was bored quickly. [IFQ038]

How to Increase Focus on Mental Rotation
Overview
Participants provided suggestions on how to improve the intervention for future participants. One of the main suggestions was a pop-up message during gameplay to remind participants to focus on mental rotation, as participants had previously mentioned that their focus drifted from mental rotation. Participants also mentioned that the speed at which the blocks fell made it difficult to focus on mental rotation, and they suggested that capping the speed may be helpful:

I don’t know if during the Tetris game some kind of pop up could be coming up, like a reminder. Yes? A kind of- I don’t know what you say on the reminder, but something like- I don’t know, remember to focus on the next pieces. [001]
And maybe cap the speed. When it gets ridiculously fast I think you’re very aware that you’re not doing mental rotations very well. [002]

IFQ Data
Another participant mentioned capping the speed as an improvement suggestion in the feedback questionnaire:

Cap the speed of the blocks to enable proper rotation planning. [IFQ001]

Researcher Support Is Important
Overview
Researchers provided participants with support during the initial session, in which they showed the participants how to identify intrusive memory images and how to use the intervention with demonstrations showing how to autonomously identify their intrusive memory images and playing the intervention while focusing on mental rotation:

Yes, I think so. I think I had a couple of teething issues, but one of the ladies phoned me up, went through it, face-to-face, got me to play it whilst on the phone with me, so it was fine. [004]

IFQ Data
The importance of the initial session with a researcher was also highlighted by a participant in the feedback questionnaire:

Needs 1-1 at beginning when 1st doing intervention so person using it knows exactly what to do. [IFQ045]

How to Access the Intervention Independently
All participants who received the optimized intervention provided suggestions on how to make it more easily accessible independently. For example, they proposed incorporating video demonstrations showing how to autonomously identify their intrusive memory images and playing the intervention while focusing on mental rotation:

Yes, so see someone playing. And what obviously, because you cannot read their mind, but if you put like a bubble say what is doing in their mind. They are turning, they are not focusing on this, they are doing this, this. [015]
Maybe- I guess, maybe giving some examples of how to break those things [intrusive memory images] down, if that makes sense. And the different ones that are just like an image, or something that’s like a little video that plays, that sort of explanation and how to write that, maybe just some sort of video of how to break that down into something. [016]

How to Aid Incorporation of the Intervention Into Participant Lifestyle: IFQ Data
In the feedback questionnaires, a few participants explained how shorter Tetris sessions could help them incorporate the intervention into their daily lives more easily:

Perhaps if the timing the intervention had to be carried out for was shorter - I’m not sure if it would still be effective but feel 10 minutes twice a day rather than one block of 20 minutes would be easier to fit in. [IFQ009]

Is the 20 minutes a specific time or could it be reduced? Sometimes difficult in a busy working day to get full 20 minutes to spend on it. What effect with say 10 minutes? Or 5...? [IFQ021]
I was sometimes deterred from starting the intervention knowing that it would take up 20mins of time. It may seem more accessible if it only required 10 mins for example. It would be possible to do whilst on break at work etc. [IFQ023]
Other Intervention Improvement Suggestions

Overview
In addition, participants expressed a desire for the intervention to be available as an app rather than solely on the web-based platform:

I think it would have been really good if you could have had an app. And then every time you have a memory, you just tap the app, or something, and then it. Yes, and otherwise you have to, like- By the time you get home, and log it, you're like, how many did I have? [004]

I think it will help if it's an App that you can download, like Calm or what’s the other one. Then you can just go and open and do for 15, 20 minutes. [014]

There were mixed views on the use of graphs to display intrusive memory changes, with some participants not liking graphs, whereas others appreciated the ability to track progress in this way:

I'm not a great fan of graphs to be honest. [013]

And not only to see progress but to see- I guess because I could match as well, like they definitely got worse when I was on nights and I could see that, with my shift pattern and also stuff I was doing at work, just certain things that were going on and then I'd be like, I can see how that happened and where that connection is. So, it kind of makes sense to me. [016]

In general, participants appreciated receiving brief daily reminders to log their intrusive memories and engage with the intervention, as long as the reminders were not excessive and did not prompt participants who had already completed the task. However, as mentioned in a previous subtheme, some participants did find the reminders distressing as they brought the memories of traumatic incidents to mind:

A quick reminder with may be just a shortcut to the logon is fine for me. [013]

[At] least I had that reminder. And I think if I forgot one day, let's say today, tomorrow in the morning I could go back and do it...Especially when you have so many things on your mind. [015]

IFQ Data
In addition to requesting that the intervention be available in an app format, a couple of participants in the feedback questionnaire suggested that the intervention use only 1 platform instead of 2 (1 for the intervention and 1 for logging outcome measures):

I found it difficult to navigate the website, perhaps an app would have been better. [IFQ022]

It might be easier to make it all on one platform. Rather than 2 different places. [IFQ028]

Although some participants mentioned how they appreciated the text message reminders, 1 participant explained in the feedback questionnaires how reminder messages could be confusing:

I would suggest keeping up the automatic reminders to record and use the intervention. [IFQ025]

Infrequent but relevant text message feedback was useful and not overly intrusive. [IFQ032]

I get multiple reminders about completing tasks which sometimes confuses me whether I have completed it or not. [IFQ053]

Discussion

Principal Findings
This qualitative study explored barriers and facilitators to the adoption of a brief digital imagery-competing task intervention (1 guided intervention session of 1 hour, followed by self-guided use of approximately 20 min/session) to reduce intrusive memories of traumatic events from working in an NHS ICU during the COVID-19 pandemic. Overall, on the acceptability questionnaire, the health care staff found the intervention easy to use, helpful, and highly acceptable. They were highly willing to use the intervention and were confident in recommending it to colleagues and their health care organizations for staff exposed to repeated trauma. In the qualitative data collection, participants described many additional positives of the intervention, such as it being easy to use, enjoyable, and encouraging, as participants were able to track intrusive memories and notice reductions in frequency. They could modify the use of the intervention based on the intrusiveness and frequency of the traumatic memories. Compared with sessions of psychological treatment, it was considered less time consuming, more flexible when it could be used, did not require discussing unpleasant memories, and required less effort. Compared with medication, it was more specific in its effect on intrusive memories of traumatic events and did not have adverse effects on weight, sleep, or alertness. It was seen as complementary to psychological and medication treatments in those who needed them.

Although it has its advantages, participants described how the intervention may not entirely replace the need for psychological therapy to talk about the nature of intrusive memories in those who wish to or the need for medication in some instances. A key finding was that some participants preferred not to access the intervention through their workplace or for colleagues to know that they were using the intervention owing to mental health stigma, a factor that is known to affect mental health help seeking among health care professionals [35], including after witnessing trauma in the workplace [36]. An advantage of the GAINS intervention is that although it could be provided through the workplace and introduced as a normal working practice for staff in the ICU, it could also be accessed independently outside of work.

The intervention use data showed that, on average, staff engaged with the Tetris component for the full 20 minutes per session, approximately 7 times over the 4-week period. They were able to target approximately 73% (3.64/4.88) of their intrusive memories through the intervention, that is, on average, participants were able to target 3.64 intrusive memories and had 4.88 intrusive memories listed. This emphasizes that the intervention was extensively used, indicating its significant
value. When combined with qualitative findings, it appears feasible and acceptable for staff, particularly in the short term. However, there is a need to further investigate how participants use the intervention for a longer term, particularly whether it can easily fit into their daily lives.

Comparison With Prior Work

The findings highlighted barriers that ICU staff experience when accessing support for their mental health, such as stigma, feeling weak for seeking help [37], questioning if they were bad enough to warrant such help, and not wanting colleagues to know that they were struggling. This is consistent with previous findings investigating mental health in health care professionals [35,36] and a culture of not showing weakness in health care work settings [29]. Participants suggested that these barriers could be partially overcome by normalizing intrusive memories after trauma through testimonials from other ICU staff who participated in the GAINS study. In addition, as discussed in the existing literature [35,38], the anonymity of the intervention was important, as it was completely separated from the health care professionals’ workplace or colleagues. This suggests that staff should have the option to access the intervention through routes other than only the workplace. However, participants in the IFQ suggested that health organizations would benefit from the intervention being endorsed by senior staff members. This endorsement could occur during induction and appraisal meetings involving junior colleagues, especially in environments where staff are repeatedly exposed to trauma. If staff did find it acceptable for the intervention to be used in their work environment, it could even be incorporated into staff induction and colleagues could support one another through a “buddy system.”

In a previous meta-synthesis of digital health interventions for mental health [39], one of the key barriers to the initial approach was skepticism about how helpful a remote treatment could really be. This was also the case with the GAINS intervention. The initial skepticism was compounded by it being a simple and novel gameplay intervention, with some participants expecting the intervention to be at best a short-term distraction while they played the game. In fact, many participants went on to report long-lasting effects on the frequency and intrusiveness of their traumatic memories. Publicizing research evidence, discussing the mechanism of action of the intervention, and testimonials from ICU staff were suggested as possible avenues to counter this possible skepticism. This is consistent with the literature, which highlights the importance of users being on board with digital health interventions’ aims and understanding their purpose [40]. The suggestion to publicize research evidence and provide testimonials from ICU staff is of particular importance, as prior findings emphasize that endorsement from health care professionals is valuable and helps digital health interventions to be trusted and viewed as worthwhile [40].

There were also some factors that negatively affected participants’ experiences. In our specific population of ICU staff, it was difficult for some to find time at work to use the intervention because of their busy schedules, shift patterns, and other responsibilities, particularly while working long shifts during the pandemic. Most staff were married and had caring responsibilities, so they were trying to fit the intervention in their busy schedules, for example, on public transport commutes to work. Some struggled because they were tired, often distracted, or had technological or interoperability issues across the devices and connection points. Nevertheless, reminders to use the intervention were appreciated by the participants, as suggested by Patel et al [39]. Many also preferred not to use the intervention at work and did not have access to a personal device. Therefore, it is evident that although the intervention is currently available for use on other devices (such as mobile phones), it needs to be easier to use on these devices and not too time consuming. Borghouts et al [38] also found that engagement improves if users are able to integrate the intervention into their daily life.

Similar to prior findings [41] that integrating a human component into treatment helps retain engagement and reduce dropout, participants reported that researcher support, both before using the intervention (eg, the initial guided session) and throughout intervention use (eg, booster session), was found to be extremely helpful and important. They valued the continuous support provided to ensure they correctly used the intervention and received guidance on making adjustments when necessary. However, providing this level of support can be difficult when scaling up an intervention [41]. Participants provided suggestions on how the intervention could be more easily accessed independently, which would require fewer therapist and researcher resources and enable the intervention to spread more widely and reach a greater number of ICU staff, for example, by providing video demonstrations of someone identifying the intrusive memory images independently and playing the intervention while focusing on mental rotation. Participants’ suggestions around helping to retain a focus on mental rotation while playing Tetris are helpful to identify, as this may be one of the core aspects to the working of the intervention. They also discussed changing aspects of the game itself and whether more frequent but shorter use of the game might be effective and more feasible for staff to continue using it for a longer term.

Limitations

Limitations of the study include the method of recruitment and sample representativeness and the short duration of use of a novel intervention. The trial was a first trial that is being followed by further trial work to test the robustness of the findings of the first trial. Recruitment of participants through advertising in the ICS, a professional organization, may have recruited participants who would be the most receptive and enthusiastic for such interventions. The sample was geographically drawn from many parts of the United Kingdom and was representative of the NHS at large but appears to have been overrepresentative of ethnic minority staff. There were 44% (7/16) staff from ethnic minority backgrounds in our interview sample compared with 20.7% (248,400/1,200,000) in the NHS workforce [42]. However, selective sampling was used for interview recruitment to capture a broad range of experiences of using the intervention from as diverse a sample as possible, rather than to match the sample to demographic characteristics of the NHS population. Any novel intervention, both in format and purpose, may have a large halo effect in...
relation to enthusiasm to take it up and use that may not be sustained over time. There is a need to recruit larger representative samples that use this intervention. The aim of this intervention is for most individuals to only need to use it a few times (once for each distinct intrusive memory of trauma). It is designed to be brief each time it is used, and requiring only a few sessions, rather than for prolonged use like a mindfulness app. However, for people with a very large number of intrusive memories and repeated ongoing traumatic events, it would be useful to consider use over a number of months to obtain more robust data on its likely uptake, use, and acceptability, which could be generalized to the staff experiencing repeated trauma in routine health care settings. Furthermore, we were unable to interview any ICU staff who were not able or chose not to participate in the study. Therefore, it is difficult for us to know how typical our sample and findings are of the wider ICU staff population. We also could not obtain important information about any barriers to participating in these individuals and how these barriers could be overcome, as it is likely that our participants were more open to mental health support in general. Furthermore, participants who took part in the trial but did not consent to participating in an interview may have had a different (more negative) experience of the intervention, and we could not obtain information about their experiences.

Nonetheless, our participants described potential barriers to wider participation, and it appears that the intervention was able to overcome some of these to an extent, such as the anonymity of the intervention helping to reduce the impact of stigma. In addition, we used selective sampling to ensure that our sample was as diverse as possible on factors such as profession, background, ethnicity, age, NHS Trust, and baseline intrusive memory frequencies. Therefore, our sample aimed to be as inclusive as possible of our target population. Saturation of themes was reached through the interview and analysis process, suggesting that further barriers would be unlikely to be present if we had recruited more participants.

We attempted to triangulate our data by comparing feedback from the sample that completed the acceptability questionnaire (IFQ) with our qualitative interview data. Certain topics did not lend themselves to completion on the feedback questionnaire, such as discussion of stigma. However, this was often reported in the qualitative interviews with ICU staff, and the themes resonate with previous literature. The feedback questionnaire, which had a very high rate of completion, confirmed most other barriers and facilitators, identifying a new subtheme around highlighting a number of ways staff improved cognitive and emotional coping with trauma through the intervention. A limitation of our analysis is the inability to delve deeper into certain findings. For example, we could not explore how the intervention might induce relaxation nor whether the distraction and improved focus persisted beyond the gameplay or were solely experienced during the game sessions. Bringing awareness to the intrusive memories could be both a positive and a negative experience, as it might help identify a source of stress; however, some people cope with intrusive memories by suppressing them, whereas others believe it adds to distress. The feedback questionnaire provided many additional suggestions to improve the uptake, feasibility, and acceptability of the intervention that the research team and developers of the intervention could explore and consider. A key strength of the qualitative interviews was the chance to iterate findings to adapt the intervention accordingly while it was still being used in the RCT. We also interviewed some participants who received the optimized intervention to gain feedback about their experience with the optimizations so that we could further improve the intervention.

Data gathered from the use of a survey in addition to interviews demonstrate that even when interviews are repeatedly producing the same subthemes and themes, and despite maximum variance sampling on the basis of characteristics available to us, there might still be important themes that might be missed because of the limits on maximum variance sampling imposed by data protection and trial procedures. We could only be made aware of a limited amount of information without fully consenting individuals for the interview. However, the qualitative interview method delves deeper into extracting information that participants might not readily provide in a feedback survey. In addition, it is an iterative process that builds upon multiple interviews. Therefore, if a theme or subtheme is not supported in the survey feedback, it does not mean that it is unimportant or even uncommon, simply not as immediately obvious to the participants.

Future Research

Other potential issues for us to consider in the next phase are related to the practicalities of the intervention, as participants mentioned that the intervention could be difficult to fit into their extremely busy working lives during the pandemic. Health care demands have remained high; therefore, this ability to fit in may be a continued factor to consider. There was also the issue of lack of privacy when accessing the intervention at work and not having access to a personal device in this setting. As highlighted in a previous literature review [43], most intervention frameworks recognize the importance of understanding how well an intervention fits with existing organizational routines to predict its adoption and implementation on a larger scale. As the intervention can be accessed by ICU staff either at work or outside of work, we must also understand how well the intervention fits into their personal lives. Although this aspect was discussed in our findings, it is crucial to further explore the feasibility of long-term intervention use, especially considering that ICU staff regularly encounter work-related trauma. For the intervention to be beneficial, it must integrate as seamlessly as possible into their lives. An advantage of this intervention is that it can be used at any convenient time (eg, at home or on a commute). A further key issue going forward within work, and especially outside work, is data protection of sensitive information that may require training or other safeguards, for example, if staff members are overlooked while examining graphical outputs (eg, a line graph) of the frequency of traumatic memories. We may need to provide alternative ways of presenting the data to ensure that they are more widely accessible, such as through color chart indicators rather than numerical graphs.
Conclusions
Overall, the data suggest that the intervention to reduce intrusive memories after trauma is highly acceptable to ICU staff and has some unique value compared with other current approaches to staff mental well-being. Through additional refinement and gathering evidence regarding outcomes and implementation, this intervention could potentially present a much-needed approach to address the widespread issue of repeated exposure to trauma, which manifesting as intrusive memories significantly impacts on the mental health and emotional well-being of health care staff.

Acknowledgments
Tetris has been licensed for use within i-spero from The Tetris Company at no cost. The authors would like to thank the Intensive Care Society, in particular Dr Sandy Mather and Alex Day; our Data Monitoring Committee members including professor Andreas Reif, professor Steve Hollon, and professor Ian Penton-Voak; our Trial Steering Committee including Guy Goodwin, Pooyan Bebahani and Rebecca Dias; expert advisors including professor Charlotte Summers, professor Thomas Jaki, Dr Nick Grey, professor Sir Simon Wessely, and professor Jonathon Bisson; statistician Varsha Ramineni and statistical adviser professor Michael Bonsall; members of the study team including Veronika Kubičková, Katie Hurman, Marie Kanstrup, Alfred Markham, and Zunaid Islam for support; and our IT team and data management team at P1vital Products Ltd. This study was funded by The Wellcome Trust (223016/Z/21/Z). The funder of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the manuscript. P1vital Products Ltd was the trial sponsor. EAH also received funding from the Swedish Research Council (2020–00873), OAK foundation (OCAY-18-442), AFA Försäkring (200342), The Lupina Foundation, and Rannís—The Icelandic Research Fund. The qualitative study was supported by staff from the National Institute for Health and Care Research (NIHR) Applied Research Collaboration East Midlands, the NIHR Nottingham Biomedical Research Centre Mental Health and Technology Theme, and the NIHR MindTech Medtech Co-operative.

Authors' Contributions
PP carried out the interviews, collected and formally analyzed the data, and drafted, reviewed and edited the paper as first author. SB and RM contributed to methodology, formal analysis, writing, review, and editing. BG contributed to methodology and formal analysis. EAH contributed to conceptualization, funding acquisition, project administration, methodology, review, and editing. LI and JK contributed to conceptualization, project administration, methodology, review, and editing. JH contributed to review and editing.

Conflicts of Interest
JK is a shareholder and director of P1vital Products Ltd, which is the study sponsor and manufacturer of i-spero and the P1vital electronic Participant Reported Outcome system. LI is employed by P1vital Products Ltd. EAH receives funding from The Wellcome Trust (223016/Z/21/Z), the Swedish Research Council (2020–00873), AFA Försäkring (200342), and Rannís—The Icelandic Research Fund. EAH’s salary is partly funded by Wellcome Trust (223016/Z/21/Z) via consultancy to P1vital Products Ltd. EAH is on the Board of Trustees of the MQ Foundation. EAH developed the imagery-competing task intervention for intrusive memories, and know-how in using it over the last 20 years (ANEMONE). EAH receives book royalties from Guildford Press and Oxford University Press and receives occasional honoraria for conference keynotes and clinical workshops. All other authors declare no other conflicts of interest. The views expressed are those of the authors and not necessarily those of the National Health Service, the National Institute for Health and Care Research, or the Department of Health.

Multimedia Appendix 1
Participant information sheet.
[DOCX File. , 29 KB - formative_v8i1e47458_app1.docx]

Multimedia Appendix 2
Intervention feedback questionnaire.
[DOCX File. , 14 KB - formative_v8i1e47458_app2.docx]

Multimedia Appendix 3
Interview topic guide.
[DOCX File. , 15 KB - formative_v8i1e47458_app3.docx]

References

Abbreviations

GAINS: Brief Gameplay Intervention For National Health Service Intensive Care Unit Staff Affected By COVID-19

Trauma

ICS: Intensive Care Society

https://formative.jmir.org/2024/1/e47458

JMIR Form Res 2024 | vol. 8 | e47458 | p.1157

(page number not for citation purposes)
Using a Novel Gameplay Intervention to Target Intrusive Memories After Work-Related Trauma: Iterative Qualitative Analysis of Intensive Care Unit Staff Experiences

Please cite as:
Using a Novel Gameplay Intervention to Target Intrusive Memories After Work-Related Trauma: Iterative Qualitative Analysis of Intensive Care Unit Staff Experiences
JMIR Form Res 2024;8:e47458
URL: https://formative.jmir.org/2024/1/e47458
doi:10.2196/47458
PMID:38421698

©Priya Patel, Susan Brown, Boliang Guo, Emily A Holmes, Lalitha Iyadurai, Jonathan Kingslake, Julie Highfield, Richard Morriss. Originally published in JMIR Formative Research (https://formative.jmir.org), 29.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

A Mobile Applet for Assessing Medication Adherence and Managing Adverse Drug Reactions Among Patients With Cancer: Usability and Utility Study

Chenxu Ni¹, MM, MS; Yi-fu Wang¹, MM, MS; Yun-ting Zhang¹, MM, MS; Min Yuan¹, MD, PhD; Qing Xu¹, MD, PhD; Fu-ming Shen¹, MD, PhD; Dong-Jie Li¹, MD, PhD; Fang Huang¹, MM, MS
Shanghai Tenth People's Hospital, Shanghai, China

Corresponding Author:
Fang Huang, MM, MS
Shanghai Tenth People's Hospital
301 Middle Yanchang Road
Shanghai, 200072
China
Phone: 86 66302570
Email: hazel_huang@126.com

Abstract

Background: Medication adherence and the management of adverse drug reactions (ADRs) are crucial to the efficacy of antitumor drugs. A WeChat applet, also known as a “Mini Program,” is similar to the app but has marked advantages. The development and use of a WeChat applet makes follow-up convenient for patients with cancer.

Objective: This study aimed to assess the usability and utility of a newly developed WeChat applet, “DolphinCare,” among patients with cancer in Shanghai.

Methods: A qualitative methodology was used to obtain an in-depth understanding of the experiences of patients with cancer when using DolphinCare from the usability and utility aspects. The development phase consisted of 2 parts: alpha and beta testing. Alpha testing combined the theory of the Fogg Behavior Model and the usability model. Alpha testing also involved testing the design of DolphinCare using a conceptual framework, which included factors that could affect medication adherence and ADRs. Beta testing was conducted using in-depth interviews. In-depth interviews allowed us to assist the patients in using DolphinCare and understand whether they liked or disliked DolphinCare and found it useful.

Results: We included participants who had an eHealth Literacy Scale (eHEALS) score of ≥50%, and a total of 20 participants were interviewed consecutively. The key positive motivators described by interviewers were to be reminded to take their medications and to alleviate their ADRs. The majority of the patients were able to activate and use DolphinCare by themselves. Most patients indicated that their trigger to follow-up DolphinCare was the recommendation of their known and trusted health care professionals. All participants found that labels containing the generic names of their medication and the medication reminders were useful, including timed pop-up push notifications and text alerts. The applet presented the corresponding information collection forms of ADRs to the patient to fill out. The web-based consultation system enables patients to consult pharmacists or physicians in time when they have doubts about medications or have ADRs. The applet had usabilities and utilities that could improve medication adherence and the management of ADRs among patients with cancer.

Conclusions: This study provides preliminary evidence regarding the usability and utility of this type of WeChat applet among patients with cancer, which is expected to be promoted for managing follow-up among other patients with other chronic disease.

(JMIR Form Res 2024;8:e50528) doi: 10.2196/50528

KEYWORDS
WeChat applet; usability testing; utility testing; cancer patients; patients; cancer; qualitative study
Introduction

Medication adherence is defined by the World Health Organization as the extent to which a person’s medication-taking behavior corresponds with agreed recommendations from health care providers [1]. Medication adherence is crucial to the efficacy of antitumor drugs. Patients with cancer have disproportionately higher burdens of comorbid chronic conditions compared to individuals without a cancer history [2]. For individuals with preexisting chronic conditions, a new cancer diagnosis can lead to tremendous challenges, including the coordination of carers and dependents as well as the management of multiple medications for comorbid conditions alongside cancer treatment [3]. Antitumor drugs are known for their numerous adverse drug reactions (ADR), which can diminish adherence to treatment and cause medical complications. Several interventions have been developed to improve medication adherence and manage ADRs in patients with cancer [4-6]. However, the effectiveness of these interventions is controversial.

WeChat is a type of social networking software that provides flash messaging services on smart terminals. In 2020, the number of monthly active WeChat users exceeded 1.1 billion, rendering it the most common smartphone app in China. It is no longer a simple social platform but has penetrated into all aspects of people’s lives, including their health [7]. With the constant development of WeChat tools, a new development environment and platform was built for the WeChat applet used by 400 million Chinese users every day [8].

The WeChat applet, also known as the “Mini Program,” is similar to the app but has marked advantages. The steps for using the WeChat applet have been simplified, and the applet can be opened directly without downloading the app package. Interestingly, there is an independent storage space among different WeChat applets. If one no longer uses the applet, one need only close the page without uninstalling the program or clearing the cache, which is convenient for users. In addition, the IT infrastructure of WeChat applets can bring about a rapid transfer of digital data between patients with cancer and doctors or pharmacists, and reduce their burden related to oncotherapy information through real-time communication. All of these make follow-up convenient for patients with cancer by using the WeChat applet.

Norman and Skinner [9] reported that participants who had a high eHealth Literacy Scale (eHEALS) score indicated that they had higher literacy skills in using the internet as a resource to obtain health information. This study selected and interviewed dozens of patients with cancer with high eHEALS scores from a tertiary hospital in Shanghai, who are willing to use an eHealth tool—the WeChat applet. If the WeChat applet can be successfully promoted in Shanghai, it will be spread sequentially in various cities throughout China. At present, the vast majority of WeChat applets are free to use, which can reduce the economic burden of follow-up among patients with cancer. However, the existing WeChat applets were developed without involving relevant stakeholders (such as health care professionals or patients) and were not subjected to mobile health app guidelines [10,11].

Usability is described as the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of use [12]. Utility is defined as the functionality of the app and how useful it is to users [12]. The development phase consisted of 2 parts: alpha and beta testing. Beta testing was conducted using in-depth interviews. Alpha testing combined the theory of the Fogg Behavior Model and the usability model. The Fogg Behavior Model [13] suggests that 3 core elements—motivation, ability, and trigger—must converge at the same time for a desired behavior to take effect. Motivation and ability can be balanced against each other; for example, patients may be willing to perform a difficult task if they are highly motivated by the promise of better health outcomes. Ability refers to the patients’ skill or dexterity with respect to the simplicity (or otherwise) of using the app. A trigger is a stimulus that prompts patients to adopt and use the app (eg, an acute attack or clinician’s suggestion).

To our knowledge, no study has assessed the usability and utility of a WeChat applet for patients with cancer once it has been developed. This study aimed to assess the usability and utility of a newly developed WeChat applet—DolphinCare—among patients with cancer in Shanghai.

Methods

Study Design

A qualitative methodology was used to obtain an in-depth understanding of the experiences of patients with cancer when using DolphinCare from the usability and utility aspects.

Ethical Considerations

Ethics approval was obtained from the ethics committee of Shanghai Tenth People’s Hospital prior to the study (SHSY-IEC-5.0/22K99/PO1). The study was registered in Chinese Clinical Trial Registry (ChiCTR2200058189). Written informed consent was obtained from all study participants.

eHEALS

The modified eHEALS was used to assess participants’ literacy skills in using their smart devices to find health-related information on the internet (Multimedia Appendix 1).

Participants

We included participants who had an eHEALS score of ≥50% and were taking 2 or more prescribed medications for their tumor treatment and chronic conditions. We excluded participants aged <18 years or those who had mental disabilities. Purposive sampling was used to recruit older (≥65 years of age) and younger (<65 years of age) participants, as we required the experiences of older participants who may have more comorbidities but may not be comfortable using mobile apps, as well as younger participants who may have fewer comorbidities (than older patients) but may be more comfortable using mobile apps. The purpose of recruiting participants based...
on age was to obtain wider perspectives when using DolphinCare.

Alpha and Beta Testing in the Development Phase

The development phase consisted of 2 parts: alpha and beta testing. Alpha testing involved testing the design of DolphinCare using a conceptual framework (Figure 1), which combined the theory of the Fogg Behavior Model of Motivation-Ability-Triggers and the usability model. Our framework also included factors that could affect medication adherence and ADRs (Table 1).

DolphinCare was then used for beta testing (Figure 2). Beta testing was conducted using in-depth interviews from July to September 2022. The first and second rounds of in-depth interviews were both conducted at the resting area of the ward. In-depth interviews were conducted to explore the views of patients with cancer regarding the usability and utility of DolphinCare when using it for the first time. We supplemented this interview process by observing the participants and documenting these observations as field notes. This allowed us to determine whether they encountered any difficulties and whether they liked or disliked the utility of DolphinCare. In-depth interviews allowed us to focus on the individual, assist the individual in using DolphinCare, and create an environment where the individual would be able to express his or her views without being influenced by others.

Figure 1. The conceptual framework for the design and development of DolphinCare based on the Fogg Behavior Model's theory of Motivation-Ability-Triggers and the usability model. AI: artificial intelligence.
Table 1. Summary of the preferred features and utilities of DolphinCare.

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individualized monitoring plan</td>
<td>The patients can obtain professional evaluation and guidance by implementing the established process and providing feedback to the medical team. Monitoring plan includes objectives, key indicators, medication list, follow-up plan, and precautions.</td>
</tr>
<tr>
<td>Cultivate patients’ habits through small tasks</td>
<td>After each task is completed, the page assigns the patient a “star” as a reward.</td>
</tr>
<tr>
<td>A pop-up push notification and weekly text alerts</td>
<td>A pop-up push notification, with a “single-click” return to the app, was preset every other day. Apart from a pop-up push notification, there are weekly text alerts as well. Most patients will use the applet after receiving the notification.</td>
</tr>
<tr>
<td>Complex medication regime</td>
<td>Ability to aid patients in managing complex medication regimens, such as a drug combination or changing a medical prescription.</td>
</tr>
<tr>
<td>Timely WeChat web-based communication</td>
<td>In case of emergencies or questions during the treatment, patients can consult the medical team at the WeChat consultation window to solve the problems quickly and effectively.</td>
</tr>
<tr>
<td>The Medical team intelligently manages the patients with cancer</td>
<td>The medical team can see the number of existing patients, their medication situation, adverse drug reactions, examination information, etc. They consider patients at the center for full-dimensional data monitoring and comparison. Adverse drug reactions and inspections are monitored.</td>
</tr>
<tr>
<td>AI²-enabled automatic recognition of characters in pictures in inspection reports</td>
<td>AI automatically recognizes the words and data in the examination documents and inputs them into the patient database.</td>
</tr>
<tr>
<td>Web-based questionnaire on adherence</td>
<td>Users are able to assess their adherence to medications.</td>
</tr>
<tr>
<td>Rehabilitation guidance</td>
<td>Based on the patient's condition and medication situation, the medical team gives knowledge guidance such as rational medication and nutritional rehabilitation.</td>
</tr>
</tbody>
</table>

AI²: artificial intelligence.

Figure 2. The landing page, registration page, home page, and pharmaceutical care page of DolphinCare. ADR: adverse drug reaction.
The Interview Questions

The following questions were asked to the participants during the interviews:

- What is your initial impression of using DolphinCare?
- What is your feeling about using DolphinCare after a period of use?
- What motivates you to use DolphinCare?
- Can you operate DolphinCare yourself, or do you need help from others?
- Will you continue to use DolphinCare?
- What’s the operation interface of DolphinCare that left a deep impression on you?
- What’s function do you expect DolphinCare to further improve on?
- What do you think are the inconveniences of using DolphinCare?

Data Collection Process

Participants used their mobile WeChat app to acquire the official account of DolphinCare free of charge and then filled in the demographic form. Each participant was interviewed twice. During the interview, the “first impression” of participants in using DolphinCare would be captured. The researcher took detailed notes and observed for nonverbal cues during each interview. Facial expressions and body language subconsciously portrayed by the participants were noted down by the researchers. All interviews were audio recorded. The 8-item Morisky Medication Adherence Scale (MMAS-8) [14-16] is a questionnaire designed to facilitate the identification of barriers and behaviors associated with adherence to medication. The possible answers to questions 1 to 7 are “yes” (0 points) or “no” (1 point). Five of the questions are scored in reverse (ie, yes=1 and no=0). The possible answers to question 8 are “Never” (1 point), “Occasionally” (0.75 points), “Sometimes” (0.50 points), “Often” (0.25 points), and “All the time” (0 points) [17].

Data Analysis

All interviews were transcribed verbatim. An interpretive-descriptive approach was used to identify the themes that emerged from the data. This approach was used to obtain a deeper understanding of the usability and utility of the perspectives and experiences of patients with cancer in using the WeChat applet. The researchers reflected on the data and began constructing an interpretive account of what the codes signified from the participants’ perspectives, and its application in clinical practice [14]. The researchers also referred to the field notes for reflections, facial cues, and body languages observed during the interviews. The research team then met to discuss the coding of the transcripts. Any coding discrepancies were resolved through discussion until a consensus was reached.

Results

Participants

A total of 22 participants were recruited (Table 2) for the first interview. Only 20 participants (12 men and 8 women; 16, 80% of them being patients and 4, 20% being carers) were interviewed consecutively, as 2 (P13 and P14) declined to participate. The mean age of the patients and their carers was 62.4 (SD 10.25) years. The average of the number of medications among patients was 2.7.
Table 2. Demographic characteristics of the recruited participants.

<table>
<thead>
<tr>
<th>ID</th>
<th>Gender</th>
<th>Age (years)</th>
<th>Medications, n</th>
<th>Patient or carer</th>
<th>iPhone or Android user</th>
<th>eHEALS² score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Male</td>
<td>64</td>
<td>3</td>
<td>Carer</td>
<td>Android</td>
<td>75</td>
</tr>
<tr>
<td>P2</td>
<td>Female</td>
<td>67</td>
<td>1</td>
<td>Patient</td>
<td>Android</td>
<td>56</td>
</tr>
<tr>
<td>P3</td>
<td>Female</td>
<td>73</td>
<td>2</td>
<td>Patient</td>
<td>iPhone</td>
<td>80</td>
</tr>
<tr>
<td>P4</td>
<td>Female</td>
<td>73</td>
<td>2</td>
<td>Carer</td>
<td>Android</td>
<td>78</td>
</tr>
<tr>
<td>P5</td>
<td>Female</td>
<td>35</td>
<td>4</td>
<td>Patient</td>
<td>Android</td>
<td>57</td>
</tr>
<tr>
<td>P6</td>
<td>Male</td>
<td>72</td>
<td>6</td>
<td>Patient</td>
<td>Android</td>
<td>75</td>
</tr>
<tr>
<td>P7</td>
<td>Male</td>
<td>55</td>
<td>3</td>
<td>Patient</td>
<td>Android</td>
<td>69</td>
</tr>
<tr>
<td>P8</td>
<td>Male</td>
<td>62</td>
<td>4</td>
<td>Patient</td>
<td>Android</td>
<td>69</td>
</tr>
<tr>
<td>P9</td>
<td>Male</td>
<td>47</td>
<td>2</td>
<td>Patient</td>
<td>iPhone</td>
<td>75</td>
</tr>
<tr>
<td>P10</td>
<td>Male</td>
<td>68</td>
<td>2</td>
<td>Carer</td>
<td>iPhone</td>
<td>75</td>
</tr>
<tr>
<td>P11</td>
<td>Male</td>
<td>67</td>
<td>3</td>
<td>Patient</td>
<td>Android</td>
<td>59</td>
</tr>
<tr>
<td>P12</td>
<td>Female</td>
<td>75</td>
<td>4</td>
<td>Patient</td>
<td>Android</td>
<td>57</td>
</tr>
<tr>
<td>P13</td>
<td>Male</td>
<td>65</td>
<td>5</td>
<td>Patient</td>
<td>Android</td>
<td>84</td>
</tr>
<tr>
<td>P14</td>
<td>Male</td>
<td>71</td>
<td>1</td>
<td>Patient</td>
<td>Android</td>
<td>50</td>
</tr>
<tr>
<td>P15</td>
<td>Male</td>
<td>59</td>
<td>1</td>
<td>Patient</td>
<td>Android</td>
<td>62</td>
</tr>
<tr>
<td>P16</td>
<td>Female</td>
<td>64</td>
<td>2</td>
<td>Patient</td>
<td>Android</td>
<td>71</td>
</tr>
<tr>
<td>P17</td>
<td>Male</td>
<td>50</td>
<td>3</td>
<td>Patient</td>
<td>Android</td>
<td>88</td>
</tr>
<tr>
<td>P18</td>
<td>Female</td>
<td>62</td>
<td>3</td>
<td>Patient</td>
<td>Android</td>
<td>85</td>
</tr>
<tr>
<td>P19</td>
<td>Male</td>
<td>73</td>
<td>4</td>
<td>Patient</td>
<td>iPhone</td>
<td>65</td>
</tr>
<tr>
<td>P20</td>
<td>Male</td>
<td>61</td>
<td>2</td>
<td>Carer</td>
<td>Android</td>
<td>80</td>
</tr>
<tr>
<td>P21</td>
<td>Female</td>
<td>53</td>
<td>2</td>
<td>Patient</td>
<td>iPhone</td>
<td>82</td>
</tr>
<tr>
<td>P22</td>
<td>Male</td>
<td>68</td>
<td>1</td>
<td>Patient</td>
<td>Android</td>
<td>73</td>
</tr>
</tbody>
</table>

²eHEALS: eHealth Literacy Scale.

Adoption

We used the motivation, ability, and trigger categories of the Fogg Behavior Model to explore why patients adopted the WeChat applet using data from the qualitative interviews and usage data.

Adoption: Motivation

The key positive motivators described by the interviewees were to be reminded to take their medications, to alleviate their ADRs through monitoring, and to aid in medical research. Some patients had more than 1 motivation for adoption.

The motivation is to observe if I can improve the medication adherence, and manage my ADRs. [Patient 10, 68 years, male]

It [taking part in this research] could be helpful for the medical studies or something. So to advance their work. [Patient 4, 73 years, female]

My main motivation is to participate in this research for distracting me from my anxiety about the disease. [Patient 7, 55 years, male]

Adoption: Abilities

Most of the patients were able to activate and use the WeChat applet by themselves. Some (typically older) patients needed assistance from younger family members.

I’m not very good with these things but somebody younger in my family would help me for handling it. [Patient 2, 67 years, female]

I know how to use it … I think it is quite easy and straight forward because the layout is very clear (while showing the Homepage). [Patient 5, 35 years, female]

Adoption: Triggers

Most patients indicated that they would receive follow-up through the WeChat applet if it was recommended by their known and trusted health care professionals.

My trusted physician recommended me to use this ’wechat applet’ to improve my medication adherence and better manage ADRs, which makes me willing to use it. [Patient 8, 62 years, male]
Usability Testing

They were challenges encountered when adding a new medication, with regard to patients’ understanding of their complex medication regimen.

Challenges Encountered When Adding a New Medication

Several subthemes emerged under this theme: confusion by terms used when adding medications into DolphinCare, unfamiliarity with the entered generic name of the medication, and patients’ incomprehension of their complex medication regimen.

Unfamiliarity With the Generic Name of the Medication

When entering medication details into the WeChat applet, most patients knew their medication by brand names but not generic names. DolphinCare requires users to enter the generic name of the medication, as the pharmacy label only contains the generic name.

I am not sure of accurately different names of my medications, and I almost always have my pill boxes with me. [Patient 15, 59 years, male]

I’m not too sure what is the precise name of my medication. I only know it by its brand name. So having the indication automatically linked to the medication name is good to have. [Patient 16, 64 years, female]

Utility Testing

Two themes emerged from the utility testing of DolphinCare: utilities that could improve medication adherence and the management of ADRs.

A Medication Reminder System

All participants found the medication reminder useful, including timed pop-up push notifications and text alerts.

Oh yes this was helpful. It prompted me to remind my mum to take her medications. [Patient 20, 61 years, male]

It would like to set timed pop-up push notifications to depend on what time I wake up in the morning and go to bed in the evening. [Patient 18, 62 years, female]

A Medication Adherence Scoring System

Medication adherence among patients was evaluated using the MMAS-8. When a patient uses the WeChat applet for more than 1 month, a questionnaire to evaluate their medication adherence will be provided to the patient to fill in.

I’m sorry that I wasn’t aware of the MMAS-8 questionnaire until you reminded me. Happily, my medication adherence improved after using the applet. [Patient 9, 47 years, male]

The Management of ADRs

When patients input the antitumor medication they are taking, the applet interface automatically matches the corresponding educational information of ADRs. A week later, the applet provides the corresponding collection information forms of ADRs to the patient to fill out. Health care professionals receive messages or provide web-based medication guidance to the patient based on the severity of ADRs. In addition, the WeChat applet can intelligently recognize the inspection and image reports uploaded by the patient in paper-photo versions. The WeChat applet converts the reports into text formats, and organizes and records them in the patient’s file. When there are obvious abnormalities in indicators of the reports related to ADRs, health care professionals can promptly contact the patient.

The Web-Based Consultation System

The web-based consultation system enables patients to consult pharmacists or physicians in time when they have doubts about medications or have ADRs. There will be a professional exclusively in charge of web-based consultation services during working days.

Oh this is good. This saved me the time and efforts to go to the hospital for consultation, and the response I got from online consultations was equally satisfactory. [Patient 17, 50 years, male]

Discussion

Principal Findings

DolphinCare was designed and developed on the basis of the Fogg Behavior Model. This model comprised 3 phases—motivation, ability, and triggers—which suggests that a patient is able to achieve a target behavior if he or she has high motivation, ability, and an effective trigger simultaneously. The requirement phase was based on utilities that could improve medication adherence and manage ADRs, which led to the design and development of DolphinCare until the medical personnel and patients were satisfied with the prototype. This paper focused on the usability and utility testing of DolphinCare, for which patients with cancer were recruited to use the WeChat applet and provided feedback.

To our knowledge, no previous study has reported the experiences of patients with cancer when using a WeChat applet. The patients also preferred a summary page of medication, which was accessible by tapping on the medication icon on the home page of DolphinCare; this was useful as it provided a brief overview of their medication regimen. This further enhanced the usability of DolphinCare, as it would be more patient-centered and more likely to be adopted. It is worth noting that there was no particularly negative feedback provided by the participants. This is a limitation of the study, and future research needs explore the negative feedback from patients to better improve DolphinCare.

The steps to add a medication were simplified and displayed in a layered order to prevent cognitive overload [18]. However, some participants struggled when adding a new medication due to the complexity of this task. It is challenging to input data into a small device, as it requires the user to navigate the app on a small screen [19]. Despite the challenges encountered by patients, the process of adding a new medication “manually” benefited patients with regard to their medication knowledge.
Participants had to “learn” the generic name of their medications, their administration frequency, and their purpose, which is beneficial for the patient’s treatment process.

Several studies have shown that behavioral change is achievable through active reminders, which strengthens the benefits of medication adherence apps [20,21]. A review by Santo et al [22] in 2016 revealed that only 56% of medication adherence apps adjust flexible scheduling for medication reminders. Medication reminders with flexible scheduling (where users may opt for medication reminders on alternate days or on a weekly basis) allows for personalization of the app to suit their individual needs. Participants also reported that they had a better understanding of the frequency and indication of the medication, which appeared on the reminder, thereby improving their medication knowledge. Improved patient knowledge is known to enhance their medication adherence and clinical health outcomes [23]. However, areas involving strategies to improve patients’ medication knowledge require further investigation [24]. DolphinCare offers a pop-up push notification, with a “single-click” return to the WeChat applet, which was preset every 2 days. Besides a pop-up push notification, weekly text alerts were also provided. These allowed users who were unable to take their medications at a specific time point to take them later, which actively prompted the patients to take their medications properly and on time. DolphinCare required users to acknowledge the reminder that, theoretically, would make the patients more conscious of their adherence to medications.

Symptom monitoring is especially important for patients with cancer because they can experience varying acute and chronic side effects from their treatment regimen [25]. Egbring et al [26] conducted a 3-arm randomized controlled trial for 6 weeks with 139 patients with early-stage breast cancer undergoing chemotherapy. The participants were randomly assigned to a control group, an unsupervised group that used a mobile app to record data without physician review, or a supervised group that recorded data in the app with physician review. The results revealed that participants who had physician collaboration when using the health tracking app demonstrated increased reporting of adverse effects of chemotherapy, more precise health data entries, and stabilization of daily functional activities measured using the ECOG (Eastern Cooperative Oncology Group) scale.

Our study affirmed the importance of symptom monitoring among patients with cancer, as these patients can also experience significant side effects from their treatment regimen, which influence their overall quality of life during and after their course of therapy.

The wide demographic range of the participants of this study delineates the experiences of both young and old users. The usability and utility testing of DolphinCare demonstrated the needs of patients with cancer and their caregivers better and helped tailor the WeChat applet to suit their needs. This ensured that DolphinCare would be a more patient-centered WeChat applet and more likely to be used. Our study suggests that DolphinCare can aid patients with cancer and even those with other chronic diseases to improve medication adherence and manage ADRs.

Conclusions
DolphinCare was designed and developed on the basis of the Fogg Behavior Model. This study provides preliminary evidence of the usability and utility of this type of WeChat applet among patients with cancer. This WeChat applet had usabilities and utilities that could improve the patients’ medication adherence and ADR management.

Acknowledgments
This work was supported by a research project designed by the Chinese Pharmaceutical Association Hospital Pharmacy department (CPA-Z05-ZC-2023002) and a program for research-oriented physicians of Shanghai Tenth People’s Hospital (grant 2023Lcyjfzrc002). The MMAS-8 Scale, content, name, and trademarks are protected by US copyright and trademark laws. Permission for use of the scale and its coding is required. A license agreement is available from MMAR, LLC., www.moriskyscale.com.

Conflicts of Interest
None declared.

Multimedia Appendix 1
eHealth Literacy Scale.
[DOCX File, 26 KB - formative_v8i1e50528_app1.docx]

References

8. 2013 Medical Devices. U.S. Food and Drug Administration. URL: https://www.fda.gov/MedicalDevices/ [accessed 2024-02-12]

Abbreviations

ADR: adverse drug reaction
ECOG: Eastern Cooperative Oncology Group
eHEALS: eHealth Literacy Scale
MMAS-8: 8-item Morisky Medication Adherence Scale
Using mHealth to Improve Communication in Adult Day Services Around the Needs of People With Dementia: Mixed Methods Assessment of Acceptability and Feasibility

Amy Zheng1; Marissa Bergh1, RN, BSN; Komal Patel Murali1,2, RN, ACNP-BC, PhD; Tina Sadarangani1,2,3, RN, ANP-C, GNP-BC, PhD

1New York University Rory Meyers College of Nursing, New York, NY, United States
2Hartford Institute for Geriatric Nursing, New York University Rory Meyers College of Nursing, New York, NY, United States
3New York University Grossman School of Medicine, New York, NY, United States

Corresponding Author:
Marissa Bergh, RN, BSN
New York University Rory Meyers College of Nursing
433 First Avenue
6th Floor
New York, NY, 10010
United States
Phone: 1 212 998 5300
Email: msb7677@nyu.edu

Abstract

Background: Adult day services (ADS) provide community-based health care for older adults with complex chronic conditions but rely on outdated methods for communicating users’ health information with providers. CareMOBI, a novel mobile health (mHealth) app, was developed to address the need for a technological platform to improve bidirectional information exchange and communication between the ADS setting and providers.

Objective: This study aims to examine the feasibility and acceptability of CareMOBI in the ADS setting.

Methods: A concurrent-triangulation mixed methods design was used, and participants were client-facing ADS staff members, including direct care workers (paid caregivers), nurses, and social workers. Interviews were conducted to describe barriers and facilitators to the adoption of the CareMOBI app. The acceptability of the app was measured using an adapted version of the Technology Acceptance Model questionnaire. Data were integrated into 4 themes as anchors of an informational matrix: ease of use, clinical value, fit within workflow, and likelihood of adoption.

Results: A mix of ADS staff (N=22) participated in the study. Participants reported high levels of acceptability across the 4 domains. Qualitative findings corroborated the questionnaire results; participants viewed the app as useful and were likely to implement CareMOBI in their practice. However, participants expressed a need for proper training and technical support throughout the implementation process.

Conclusions: The CareMOBI app has the potential to improve care management in the ADS setting by promoting effective communication through an easy-to-use and portable method. While the integration of CareMOBI is acceptable and feasible, developing role-specific training modules and technical assistance programs is imperative for successful implementation within the ADS setting.

\textit{(JMIR Form Res 2024;8:e49492)} doi:10.2196/49492

KEYWORDS

day adult services; primary health care; health communication; dementia; mobile health; mHealth; community-based; health care; older adults; older adult; chronic condition; health information; feasibility; acceptability; CareMOBI; mixed methods design; caregivers; caregiver; care workers; nurses; social workers
Introduction

Adult day services (ADS), commonly referred to as adult day care, is a vital but overlooked source of health and social care for the burgeoning population of older adults with complex chronic conditions, particularly those with Alzheimer disease and related dementia (ADRD) [1]. ADS sites are nonresidential, congregate, and community-based facilities that offer interdisciplinary services, including opportunities for socialization, nursing care, and nutritious meals for chronically ill or functionally impaired adults. Each day in the United States, 251,100 adults with complex health and social needs receive care in the ADS setting: 65% have some combination of ADRD, diabetes, depression, heart disease, or other chronic conditions; 72% live below federal poverty lines; and 55% are from a racial or ethnic minoritized group [2]. Clients attend 2 to 5 days per week and may receive assistance with personal care, physical therapy, vital sign monitoring, and medication administration, while also participating in organized group activities [3]. ADS staff are skilled at using their in-depth, serial observations of clients to identify warning signs of acute illness and promote early clinical intervention, which are especially important in persons with ADRD, who may not be able to identify or communicate changes in their health status.

However, ADS sites face numerous barriers in communicating concerning changes in health status to primary care providers [4]. Ineffective communication in health care has been associated with costs exceeding US $10 billion, in addition to adverse outcomes and increased mortality [5,6]. We previously found that communication between free-standing community-based ADS centers is hampered by reliance on antiquated methods of information exchange that challenge information sharing and care coordination [7]. When ADS clients experience acute changes in health status or behavior, information is typically reported to primary care providers through fax or voicemail messages, which often result in nonresponse, delayed diagnosis, referral or treatment, and inadequate follow-up. Primary care providers and ADS staff have agreed that communication between them is infrequent, delayed, incomplete, and unreliable. Primary care providers prefer to communicate using direct messaging systems within their electronic health record; however, 92% of ADS sites in the United States lack the resources for interoperable electronic health record systems that enable e-communication [8]. The lack of resources shifts the burden of communication between ADS sites and primary care to the family caregiver (herein referred to as caregivers) who must deliver the information from the ADS site to the primary care provider at the point of service. Although engaged caregivers are often willing to track medical information and coordinate care, they may lack the necessary time, resources, and health education, resulting in medical errors or delays in care.

We developed CareMOBI (mobile health for organizations to bolster interconnectedness), a mobile health (mHealth) app prototype, to address the consistent need for improved care coordination and communication among care team members supporting care in home and community settings (Figure 1). CareMOBI acts as a centralized hub for families to track and share information about their loved one’s day-to-day health with other care team members (ie, ADS staff, home health aides, and family members). This enables multiple caregivers to support an individual across home and community-based settings. Within CareMOBI, individuals are first invited to a person’s care team. Each member can then record information and share updates about a person’s health, including how they ate, slept, or felt on a given day. They can track vital signs, keep up-to-date medication lists, and track medication administration. They can also track appointments and make notes of observations or questions to ask providers. Most importantly, care team members can report and be alerted when an individual is exhibiting concerning symptoms or experiencing an emergency. Information entered with the app can be summarized and shared via a PDF file to support shared clinical decision-making at appointments or appended to a chart. CareMOBI is a low-cost, portable means of exchanging information between ADS sites, caregivers, and health care providers. It also provides a centralized platform that allows ADS staff, caregivers, and care providers to provide updates and track the health progress of a person who cannot do so independently, as well as share any urgent concerns and observations, such as new or worsening confusion, behavioral changes, or abnormal vital signs. These features are designed to support critical early identification of clinical issues with the goal of reducing costly, traumatic, and avoidable emergency department care or hospitalizations, as well as overall care management for people with complex care needs. The purpose of this mixed methods study was to examine the feasibility and acceptability of CareMOBI in an ADS setting through surveys and interviews with ADS staff.
Methods

We used a mixed methods concurrent triangulation design to (1) assess acceptability and feasibility of the CareMOBI prototype among adult day center staff and (2) identify factors contributing to eventual likelihood of adoption or nonadoption.

Setting and Sample

Participants were eligible if (1) they were paid employees of a participating adult day center and (2) they had a client-facing role that involved daily interaction with persons living with dementia, as these are the target end users of the app in the ADS setting. Examples of client-facing staff are registered nurses, social workers, and program assistants. Individuals were excluded if they had worked in their current position for less than 6 months. Purposive sampling was used to recruit a diverse multistakeholder sample that represented the range of professionals in adult day centers (eg, registered nurses, social workers, and program directors).

Ethical Considerations

Eligible staff members were identified with the help of administrators at participating adult day centers. A research assistant contacted them by email or phone according to their preference, described the study, confirmed participants’ eligibility, and subsequently obtained informed consent. In total, 22 staff members from adult day centers in 3 states (New York, California, and Georgia) enrolled. All enrollees received a US $50 gift card for their participation. The New York University committee on activities involving human subjects provided Institutional Review Board approval for this study (IRB-FY2020-4615).

Procedures

Data collection consisted of one-to-one semistructured interviews and the completion of the Technology Acceptance Model questionnaire, adapted for health care settings [9]. The Technology Acceptance Model was developed 4 decades ago to explore factors that shape workers’ intention to use emerging technology. Rooted in the theory of reasoned action, it explores the beliefs and norms that influence attitudes and expectations that increase the desire to carry out a behavior. Thus, it is a logical and established framework to explore factors determining the likelihood of adoption of CareMOBI in ADS. The Technology Acceptance Model questionnaire provided insight into the acceptability of the app, while subsequent qualitative interviews provided additional insight into concerns around the feasibility of embedding CareMOBI within ADS.

Approximately 1 week prior to the interview, participants received a confirmation email that contained a link to an interactive prototype of CareMOBI. The prototype could be accessed from a smartphone, tablet, or computer. Participants were instructed to watch a 2-minute informational video about the app, also linked in the email, and were then asked to spend approximately 10 minutes navigating through the interactive prototype to complete several relevant tasks, including logging in, adding a new medication, recording day-to-day activities of a typical person living with dementia at their adult day center, as well as any health-related progress notes. They were also asked to use filters within CareMOBI to locate information...
about the person living with dementia in whom they were interested.

Qualitative Data Collection and Analytic Procedures

Web-based interviews were scheduled based on participants’ availability and conducted via a secure web-based platform. UX (user experience) and UI (user interface) design professionals, who had extensive knowledge of user-testing, provided input to develop a semistructured interview guide at the product development firm that built the CareMOBI prototype.

Participant interviews lasted 30 minutes on average. Interviews were conducted by either the principal investigator (TS) or a trained research assistant. Both individuals have extensive experience with qualitative interviewing. Open-ended questions allowed participants to elaborate on their reaction to the CareMOBI app and allowed the researchers to elicit information on different factors influencing their perceptions of the app, aspects related to its usability, and potential feasibility issues, including workflow integrations. Sample questions included:

1. What is your overall impression of the app?
2. In what ways do you think this app could help address some of the challenges you face in organizing and communicating information around the needs of person living with dementia?
3. Are there other challenges in caring for person living with dementia that this app doesn’t address? What might those be?
4. What features in the app were most confusing for you to understand/find/utilize?

All interviews were recorded, professionally transcribed, and reviewed for accuracy. Field notes by the interviewer supplemented the tape-recorded interviews. A detailed audit trail documented the rationale for any methodological changes during the interview or analysis (ie, when unique follow-up questions were posed).

Quantitative data were analyzed using a content analysis approach. A preliminary codebook was developed a priori based on the interview guide as a coding scheme for all transcripts. The research team discussed any text that could not be categorized within the codebook to determine if a new category or code needed to be defined or aligned with an existing category or code. The codebook was continuously updated to reflect the iterative process. Initially, 2 coders coded independently in Dedoose, a web-based platform for qualitative and mixed method coding, and met weekly to review coding and resolve any disagreements. To ensure the reliability and consistency of coding, a third independent coder analyzed a subset of 20% (n=5) of the transcripts. The principal investigator addressed any unresolved disagreements, as well as potential new categories or codes, in team meetings. Codes were summarized within cases and then compared across cases to identify emerging themes. Saturation occurred when no new themes emerged. The research team members regularly debriefed to discuss and validate the results of the analysis. Quotations were provided with participant’s initials to maintain anonymity.

Quantitative Data Collection and Analytic Procedures

Upon finishing the interview, participants completed a web-based questionnaire. In addition to providing basic demographic information, participants completed an adapted version of the Technology Acceptance Model questionnaire, which was previously validated for use in health care settings [9]. Responses to the 33 survey items enabled further examination of factors that could influence the eventual adoption of CareMOBI, and the anonymous nature reduced the potential for social desirability bias. Respondents rated each item on a 7-point Likert scale ranging from “strongly disagree” to “strongly agree.” Each domain-specific question was averaged to determine scores. Higher scores corresponded to higher perceived acceptability.

Descriptive statistics were used to characterize the sample, with measures of central tendency and spread for continuous measures and frequencies and percentages for dichotomous or categorical variables. Calculations for quantitative statistics were done using Qualtrics software (version May 2023; Qualtrics LLC).

Integration of Qualitative and Quantitative Data

Qualitative and quantitative data were integrated in the third and final phase of analysis. We sought to align with the Technology Acceptance Model: perceived ease of use, perceived value in clinical care, fit within existing workflows, and end users’ overall likelihood of adoption. Using the 4 themes as anchors, we developed an informational matrix in which qualitative data were embedded and compared with quantitative data. Using triangulation methods, we sought to understand the overall likelihood of adoption of the app by end users (quantitatively) and factors underpinning this across cases within each stakeholder group (qualitatively).

Results

Overview

The primary goals of this study were to (1) assess the acceptability of the CareMOBI prototype among adult day center staff and (2) identify factors contributing to the eventual likelihood of adoption or nonadoption. We evaluated the feasibility and acceptability of CareMOBI in an ADS setting quantitatively and qualitatively according to 4 themes; perceived ease of use, perceived value in clinical practice, how the mHealth app fits within existing workflows, and likelihood of adoption.

Study Sample

The total sample (N=22) of ADS staff members was majority non-Hispanic (20/22, 91%) and White (16/22, 73%). Most participants (19/22, 86%) were aged between 40 and 69 years. All respondents (100%) identified as women. Among those who responded when asked about their role, the majority (10/18, 56%) identified as direct care workers or professional caregivers (aides) in adult day centers (see Table 1).
Table 1. Demographic characteristics of adult day center staff.

<table>
<thead>
<tr>
<th>Participant characteristics</th>
<th>Participants (N=22), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>22 (100)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>African American or Black</td>
<td>5 (23)</td>
</tr>
<tr>
<td>White</td>
<td>16 (73)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>2 (9)</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>20 (91)</td>
</tr>
<tr>
<td>Age group (years)</td>
<td></td>
</tr>
<tr>
<td>≤29</td>
<td>2 (9)</td>
</tr>
<tr>
<td>30-39</td>
<td>0 (0)</td>
</tr>
<tr>
<td>40-49</td>
<td>9 (41)</td>
</tr>
<tr>
<td>50-59</td>
<td>5 (23)</td>
</tr>
<tr>
<td>60-69</td>
<td>5 (23)</td>
</tr>
<tr>
<td>≥70</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>High school graduate, or equivalent</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Professional degree</td>
<td>2 (9)</td>
</tr>
<tr>
<td>Some college credit, no degree</td>
<td>4 (18)</td>
</tr>
<tr>
<td>Associate’s degree</td>
<td>4 (18)</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>5 (23)</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>5 (23)</td>
</tr>
<tr>
<td>Doctorate degree</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Role at adult day center</td>
<td></td>
</tr>
<tr>
<td>Direct care worker or professional caregiver</td>
<td>10 (44)</td>
</tr>
<tr>
<td>Registered nurse</td>
<td>2 (9)</td>
</tr>
<tr>
<td>Social worker</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Program director</td>
<td>4 (18)</td>
</tr>
<tr>
<td>Activities coordinator</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Preferred not to answer or did not specify</td>
<td>4 (18)</td>
</tr>
</tbody>
</table>

Perceived Ease of Use

Perceived ease of use describes the effort level associated with understanding and using CareMOBI. There were 5 questions within the Technology Acceptance Model questionnaire that assessed the perceived ease of use: the overall ease of use, the technological skill required to use the app, and the user’s comfort level with the app (Figure 2). The mean score for this domain was 6.48, indicating a high ease of use for CareMOBI. The question with the highest mean score was “I think that I could easily learn how to use the proposed mHealth app” (mean of 6.77 or strongly agree). The lowest scoring question was “I feel comfortable with information and communication technologies” (mean of 6.00 or agree).

The qualitative interviews provided insight into what aspects of CareMOBI facilitated the ease of use for the participants (Table 2). Participants reported that the organized layout was simple and easy to navigate. Many expressed appreciation for how they did not have to spend time searching for what they needed, and that all of the features were “at their fingertips” (ADC-LP). However, the qualitative interviews did reveal that while ADS staff found CareMOBI easy to use, they had concerns about family caregivers’ ability to use it. This included challenges with the functionality of some app features and the lack of non-English language options for caregivers and patients with low English proficiency. One respondent stated:
For those who don’t speak English, that’s another issue—because participants here, we have different languages spoken here, more than five, six, seven languages. For caregivers who don’t understand or don’t speak English well, that’s challenging as well. [ADC-AL]

Furthermore, some participants expressed concern that technology-based solutions may not be appropriate methods of communication for some clients due to low technology proficiency and preferences for traditional methods. While many of the features were easy to use, participants noted a few exceptions that were too complex and potentially confusing for them to navigate, particularly the appointment tracking feature. A staff member noted that while navigating the app was “pretty easy,” it might confuse caregivers who could “get mixed up on appointments, whether it’s outside or they’re coming here” (ADC-NF).

Figure 2. Quantitative survey answer distributions for perceived ease of use. mHealth: mobile health.

Table 2. Qualitative subthemes for perceived ease of use.

<table>
<thead>
<tr>
<th>Qualitative subthemes</th>
<th>Qualitative feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>User centered design</td>
<td>“I liked it. I thought it was well organized. I like where everything’s at your fingertips. You can do it on your phone and share it with who you’d like to share it with. I was pretty impressed.” [ADC-LP]</td>
</tr>
<tr>
<td>Functionality</td>
<td>“It’s not letting me click on event. I think this was the issue before. I had to go all the way out to—and come back in if I wanted to access something other than—so, I’m stuck on mood right now. I can go to vitals. I can go to all, but I can’t go to event.” [ADC-DT]</td>
</tr>
<tr>
<td>Noninclusive Features</td>
<td>“Additional to that, for those who don’t speak English, that’s another—because participant here, we have different languages spoken here, more than five, six, seven languages. For caregiver who don’t understand or don’t speak English well, that’s challenging as well.” [ADC-AL]</td>
</tr>
<tr>
<td>Confusing or overly complex features</td>
<td>“…those boxes are right there in the forefront, so it’s pretty easy, but it’s easy to get mixed up on appointments, whether it’s outside or they’re coming here…” [ADC-NF]</td>
</tr>
</tbody>
</table>

Perceived Value in Clinical Practice

Perceived value in clinical practice is the degree to which CareMOBI could improve patient care and management within ADS. Thirteen questions in the survey assessed this domain (Figure 3). The mean score for this domain was 6.18 out of 7, indicating that participants generally rated the CareMOBI app well in terms of potential value to their clinical practice. The item with the highest average score was “The proposed mHealth app can facilitate the care of my patients/clients/loved ones” (mean of 6.55 or strongly agree). The item with the lowest average score was “The proposed mHealth app can facilitate the care of my patients/clients/loved ones” (mean of 5.70 or agree).

Data from the qualitative interviews suggested that staff felt there was immediate value to implementing the app in the day center (Table 3).

I know how it could help me and my family, so it just lights the torch for me the more. This is so huge because the next wave, they’re gonna be—they’re more technology savvy, so they’re gonna be wanting a lot of this information more so, so we have to keep evolving to be able to help make sure that we are communicating right away and training our staff to use it. Both the people were so excited, like, “Oh, my God, it’s so much easier,” and then they get an alert. I’m like, “Yeah, just to get an alert.” [ADC-NF]
Several features of the CareMOBI app would improve the staff’s ability to manage care for ADS participants. Specifically, study participants appreciated the alert and notifications feature for caregivers and staff and the built-in features that allow easy “communication on a daily basis” for members of the care team. The CareMOBI app has the capacity to track health progress (ie, vital sign trends, medication management, and appointment reminders) beyond ADS through caregiver and health professional portals. These features were viewed as beneficial to augment the traditional emergency communications and to facilitate chronic disease management within the adult day centers. While most features received positive feedback, 1 staff participant noted that the behavioral assessment tool, which used emoticons (or “smiley faces”) to evaluate daily behavior was oversimplified. Generally, both the qualitative and quantitative data indicate that staff participants perceived the CareMOBI app as a potentially valuable clinical tool to augment their practice due to its ability to facilitate communication, consolidate patient information, and organize care management.

Figure 3. Quantitative survey answer distributions for perceived value in clinical practice. mHealth: mobile health.
Table 3. Qualitative subthemes for perceived value in clinical care.

<table>
<thead>
<tr>
<th>Subthemes</th>
<th>Qualitative feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient monitoring and management</td>
<td>“I know how it could help me and my family, so it just lights the torch for me the more. Both the people were so excited, like, ‘Oh, my God, it’s so much easier,’ and then they get an alert. I’m like, ‘Yeah, just to get an alert.’” [ADC-NF]</td>
</tr>
<tr>
<td>Real time communication among the care team</td>
<td>“I think that the real-time communication makes it useful. What we’re seeing on a daily basis, if we’re able to communicate on a daily basis as opposed to—right now, we have—we will call a family member if there is an acute episode. If there’s not an acute episode, we’re not gonna just be like, ‘Hey, this is what happened today. This is what we saw. Blah, blah, blah, blah, blah.’” [ADC-DT]</td>
</tr>
<tr>
<td>Updates on health progress</td>
<td>“Even though they might not be able to communicate on a consistent basis when I call, tell me what was happenin’ this week or this weekend. I could at least gather that information and, like I said, with the app there, I could say, ‘Per a neighbor who’s slash the caregiver, this is what they observed.’” [ADC-LSM]</td>
</tr>
<tr>
<td>Trends</td>
<td>“Then visually having the client on-site, it would be able to give me a better way of communicating. ‘Oh, yeah. This is not just a bump. [Laughter] It’s a big bump from the baseline.’ That’s the whole point, being able to look at the trend.” [ADC-LSM]</td>
</tr>
<tr>
<td>Assist caregivers</td>
<td>“We, at adult daycare center, we take care of not only participant, but the caregiver also. When caregiver’s wellbeing are good, our participant are good. They can have quality of life at home instead of ending up in a placement. It’s not their wishes and their goals. That’s very good that in the app.” [ADC-AL]</td>
</tr>
<tr>
<td>Schedules and reminders</td>
<td>“I think it’s very good to have [appointments] on the calendar. It’s forgetful for those who have cognitive impairment and caregiver busy with the schedule. When you have those in place, it’s very good for the keep ongoing with the appointment, with the medication, make sure they take medication on time, don’t miss any doses. That help both caregiver and participant to do the daily tasks appropriately.” [ADC-AL]</td>
</tr>
<tr>
<td>Patient profile information</td>
<td>“Then they sign up their loved one and their pictures, information about themselves, information about their loved one, the medication they’re on, what they, little bit about themselves, a little bit about their loved one’s background.” [ADC-EK]</td>
</tr>
<tr>
<td>Disliked features</td>
<td>“Sometimes behavior issues where someone is having extraordinary anxiety or—then I think that that might be able to be addressed. It would be challenging to properly do that with just the smiley faces, I think. I thought that was very surface-related, very cursory thing. I’m not sure how incredibly helpful that would be unless there’s some depth later somewhere. That would be my only concern about that.” [ADC-HK]</td>
</tr>
<tr>
<td>Health progress logs</td>
<td>“I found that it had, the activities part of it and how their morning started or how they slept, and things that I deal with hands on here.” [ADC-LR]</td>
</tr>
<tr>
<td>Miscellaneous ways the app</td>
<td>“That is perfect, because then—in outcomes for us or if we utilize it regularly, it would help us with data collection too.” [ADC-BT]</td>
</tr>
</tbody>
</table>

Fits Within the Workflow

New technology should be compatible with the existing workflow of staff and patients and cause minimal disruptions to optimize adoption. A total of 9 questions assessed the extent to which the CareMOBI app could integrate into the existing health records and workflow of ADS staff (Figure 4). The mean domain score was 5.14 out of 7, indicating that most participants agreed that the CareMOBI app would fit within the workflow. The item with the highest average score was “I often use smartphone apps in my work or daily life” (mean of 6.38 or strongly agree), and the item with the lowest average score was “The use of the proposed app may interfere with the usual follow up of my patients” (mean of 3.36 or slightly disagree). Due to the wording of this item, a low rating has a positive implication for the compatibility of the CareMOBI app with ADS staff workflow.

However, data from the qualitative interviews highlighted several caveats that could preclude the successful integration of the CareMOBI app into the current staff workflow (Table 4). Staff recommended prioritizing the interoperability of CareMOBI with existing electronic health record systems (eg, TurboTAR) to avoid duplicitous documentation and streamline their workflow. Congruent with the quantitative data, staff participants cited that the lack of existing mHealth apps used in their routine workflows meant that staff and caregivers were not familiar with this interface and could be problematic when initially integrating the app into use. To ameliorate this, the staff participants emphasized the need for sufficient training using videos and other methods for both staff and caregivers, as many described being intimidated by the complexity of emerging technologies. Participants (ADC-JL) also voiced concern that documentation in the CareMOBI app would just be “one more thing” that needs to be done and believed it could be challenging to “actually utilize it” given their other responsibilities. Many participants also imparted that the benefits provided by improved e-communication and information sharing could encourage integration into their workflows. One staff member stated that the app was “great [for] communication with physicians” and another remarked that the ability to be able to take pictures of medication bottles and export patient information “clears up so much confusion” for them. Both the qualitative and quantitative data show relative support for using the app in the workflow but the qualitative interview data reveal several barriers that could inhibit integration.
Figure 4. Quantitative survey answer distribution for how CareMOBI fits within the adult day service workflow. mHealth: mobile health.

Table 4. Qualitative subthemes for how CareMOBI fits within the adult day service workflow.

<table>
<thead>
<tr>
<th>Subthemes</th>
<th>Qualitative feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits of e-communication</td>
<td>“I actually think it would help a lot, just because it would keep you—it would keep the family more informed, ’cause nowadays everybody uses their cell phones, so it would be right at—right in the palm of their hand. They wouldn’t have to worry about goin’ to their computer. I feel like it would be a great communication with the physicians, letting them know how our members are doing. Also, communication between the staff. Yeah, I thought it was a great tool. I work in another area with home care, and I was thinking how that would work out with that one really well, too. It just kinda would be a great communicator.” [ADC-BW]</td>
</tr>
<tr>
<td>Information sharing</td>
<td>“Also, for the medications where they’re seen, that’s huge ’cause they don’t know all the time, the majority of the time. Waiting for a doctor’s office to just snap that picture of the bottle, and the RN gets it right away, it clears up so much confusion.” [ADC-NF]</td>
</tr>
<tr>
<td>Suggestions for integrating within existing workflows</td>
<td>“The interoperability, I think that’s the biggie. That we’re entering information one time only so that once you do have your prototype, and it’s in place, how it maps to the software and, I would say, specifically, TurboTAR ’cause I think it is the most broadly used in adult day healthcare in California, that whatever terminology you’re using on your app maps to sections within TurboTAR so that that’s automatically populating.” [ADC-DT]</td>
</tr>
<tr>
<td>Training caregivers to use app</td>
<td>“This is so huge because the next wave, they’re gonna be—they’re more technology savvy, so they’re gonna be wanting a lot of this information more so, so we have to keep evolving to be able to help make sure that we are communicating right away and training our staff to use it.” [ADC-NF]</td>
</tr>
<tr>
<td>Feasibility of using app in practice</td>
<td>“I think your issue and hurdle is gonna get people to actually utilize it, especially on the health care side because we already have a thousand things to document and a thousand things to click and a thousand buttons to do. This would just be one more thing. You said something—I—you could put an event in like an urgent situation, but would the caregiver still understand that I’m not sitting here with my cell phone watching for something like that to happen so that they’re still responsible for the care of the member. They’re still responsible for calling 911 in any situation like that.” [ADC-JL]</td>
</tr>
</tbody>
</table>

Likelihood of Adoption

This domain assesses the extent to which staff participants intended to include CareMOBI in their program and use it with clients and caregivers. Five items assessed this domain (Figure 5) and had a mean score of 5.77, a score that suggests most respondents agreed that they intended to use the app after its release. The highest rated item was “I would use the proposed app if I receive appropriate training” (mean of 6.10 or strongly agree) and the lowest rated item was “I have the intention to
use the proposed app routinely for the care of my patients/clients/loved one” (mean of 5.40 or slightly agree).

The qualitative data revealed that many staff participants were motivated to adopt the CareMOBI app (Table 5). One participant said, “we were already talking about how we would utilize it in our program,” reflecting the high quantitative score for the likelihood of adoption. The app was designed to reflect the interdisciplinary nature of ADS, and staff participants were appreciative of this aspect. One participant (ADC-LR) commented that they were “very impressed with it and how it touched on all of the different disciplines that we have to do with in an adult day health center, social work, health, activities.” To increase the likelihood of adoption, staff participants also suggested new features of the app to improve care and user experience, including the option to print reports and collect education-level data from patients to help allocate activities.

Figure 5. Quantitative survey answer distribution for overall likelihood of adoption of CareMOBI. mHealth: mobile health.

Table 5. Qualitative subthemes for overall likelihood of adoption of CareMOBI.

<table>
<thead>
<tr>
<th>Subthemes</th>
<th>Qualitative feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall high likelihood of adoption</td>
<td>“Yep, yep. Very much. I definitely see for those that will—and I...my co-director, so we were already talking about how we would utilize it in our program. By creating direction and maybe even assistance with family members and setting it up.” [ADC-BT]</td>
</tr>
<tr>
<td>Suggested additional features</td>
<td>“I think also, education level. That would help because we do a lot of brain work. If we need to know their education level as to which kind of work to give them. I think education level would be a good question too.” [ADC-EK]</td>
</tr>
<tr>
<td>General impression of the app</td>
<td>“I was very impressed with it and how it touched on all of the different disciplines that we have to do with in an adult day health center, social work, health, activities. Yeah, I touched on everything, so I was really impressed with that.” [ADC-LR]</td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

The results of this study show that the CareMOBI app is highly acceptable to ADS staff, but there were questions about the feasibility of implementation. The high scores in all 4 domains of the survey—perceived ease of use, perceived value in clinical care, fit within existing workflows, and end users’ overall likelihood of adoption—demonstrate that ADS staff members generally considered that the app was easy to use; added clinical value; fit into their workflow; and that if given the option, would likely adapt the app into their system.

This high receptivity and likelihood of adoption may be attributable to the participatory design process, which engaged staff, caregivers, and providers to identify barriers to and facilitators of effective communication within the ADS setting.

Prior to developing the app, members of the study team conducted qualitative interviews nationwide to identify facilitators of effective communication between ADS sites and primary care providers. Results indicated that ADS staff wanted to exchange information bidirectionally with other care team members. They sought technology that would reduce their reliance on fax and voicemail while enabling them to share serial observations of a person living with dementia’s day-to-day health with all members of the care team (eg, ADS staff, health care providers, and caregivers) [7].

In this study, qualitative interviews largely qualified the high scores from survey data; however, interviewees expressed practical concerns about the app’s feasibility, particularly about its fit within the existing workflow of ADS. The feasibility of CareMOBI was threatened by the added workload and documentation burden it has the potential to create, especially for overburdened providers who “already have a thousand things...
to document and a thousand things to click and a thousand buttons to do.” This concern is not limited to the ADS setting; other research has shown that increased documentation burden in hospitals is a contributing factor to clinician burnout [10,11]. Notably, cost was not mentioned by any of the participants as a concern or barrier to adoption. This is likely because, with low-cost subscriptions (<5 US $/month) and little to no investment overhead, mHealth apps are reputed as a cost-effective solution to meet the needs of complex patients.

The potential workflow disruption and incompatibility with existing technology infrastructures have been cited as one of the major barriers to successful eHealth implementation in a systematic review, and our study was no exception [9,12]. As another participant pointed out, “The interoperability, I think that’s the biggie. That we’re entering information one time only.” This could be mitigated by making CareMOBI interoperable with ADS billing software which is what most sites rely on for day-to-day practice management. In a future study, a back-end dashboard for CareMOBI will be designed to integrate with existing ADS practice management systems, like TurboTAR. This will avoid what 1 participant referred to as “double documentation.”

Another key priority for future development will be the translation of CareMOBI into different languages. ADS is the most diverse subset of long-term care, with nearly 60% of participants identifying as a racial or ethnic minority individual [13]. Studies show that ADS can deliver relevant, person-centered care to diverse populations [3]. Adaptations of CareMOBI into other languages will be necessary to improve adoption and inclusivity and ensure the technology reflects the population it is designed to serve.

Successful adoption of new technology in health care settings requires buy-in from staff. It is, therefore, imperative that technology adds clinical value and does not hinder efficiency. While barriers and facilitators of app use in certain health care settings have been well documented, our study is the first to explore the unique perspectives of staff in ADS settings. Resourcing this setting with low-cost mobile technology is especially innovative because ADS sites provide essential care to persons living with dementia but are often resource-constrained and rarely embedded within health care systems.

CareMOBI was developed as a reaction to the overwhelming sentiment that methods of communication in ADS need to be modernized and streamlined to provide optimal care for their clients. Overall, our results from prototype testing show a high level of acceptability among ADS staff with a need for greater attention to feasibility. Recognized by many of the study’s participants, CareMOBI’s biggest strength is its ability to bring all the members of the care team—ADS staff, caregivers, patients, and health care providers—to the same digital table, managing the complex care of older adults as a true team.

Previous research by the Agency for Health Care Research and managing the complex care of older adults as a true team. care models emphasizing collaborative care were the only effective, evidence-based care models for persons with dementia [14]. By emphasizing effective communication, CareMOBI, with ongoing refinement and enhancement, has significant potential to help streamline and improve care for participants with dementia and other chronic conditions.

Limitations

While this study is the first to our knowledge to document the perceived feasibility and acceptability of a mHealth app in the ADS setting, these results should be interpreted with some limitations. The participants of this study were only furnished with a prototype of the CareMOBI app with a limited set of capabilities. At times, this elicited frustration from the participants due to certain functions not working correctly. Conversely, testing with only a prototype precludes assessment of real-world functionality, particularly in the assessment of integration within the workflow. This study consisted of a relatively small, sample of exclusively women participants representing 3 states. Regulations and documentation requirements for ADS and other community-based services differ greatly between states, and preferences around the design and use of technology can be influenced by gender [15]. These findings, therefore, may therefore not be generalizable. A larger, more representative study sample would have potentially offered more robust results. However, these findings—the emphasis on minimizing disruptions to workflow, training, and institutional support—are consistent with other previous implementation studies in a broad array of health care settings [9,12,14].

Future Directions

The feedback gleaned in this study will guide future improvements to the CareMOBI app and on-site implementation of the app. Prior to implementation, the CareMOBI team will aim to develop interactive training modules personalized for each type of end user (ie, a caregiver-specific training module vs an ADS staff or nurse training module). Small-scale implementation studies will help develop a robust framework for successful CareMOBI adoption in ADS settings. Further technological development will be pursued to integrate CareMOBI’s interface with other prominent technologies, like TurboTAR, that are already required in ADS settings.

Conclusions

This mixed methods study assessed the feasibility and acceptability of ADS staff toward adopting the CareMOBI app in ADS settings. Overall, staff participants were motivated to integrate CareMOBI into their clinical settings because of its potential to ameliorate long-standing communication challenges between ADS staff and other key members of the care team. However, the qualitative interviews highlighted many important potential barriers to successful implementation that researchers will have to consider as they move forward to the next phase of CareMOBI’s development. The CareMOBI team will continue to leverage this important feedback to develop an app that is optimized to fit the needs of all end users and help bring ADS communication into the 21st Century.
Acknowledgments

Research reported in this publication is supported by the National Institute on Aging (NIA) of the National Institutes of Health (NIH) under awards (1) R21AG069801; (2) U54AG063546, which funds the NIA Imbedded Pragmatic Alzheimer and AD-Related Dementias Clinical Trials Collaboratory (NIA IMPACT Collaboratory); and (3) K23AG071948. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflicts of Interest
None declared.

References

Abbreviations

ADRD: Alzheimer disease and related dementia
ADS: adult day services
mHealth: mobile health
UI: user interface
UX: user experience
Please cite as:
Zheng A, Bergh M, Patel Murali K, Sadarangani T
Using mHealth to Improve Communication in Adult Day Services Around the Needs of People With Dementia: Mixed Methods Assessment of Acceptability and Feasibility
JMIR Form Res 2024;8:e49492
URL: https://formative.jmir.org/2024/1/e49492
doi:10.2196/49492
PMID:38427418

©Amy Zheng, Marissa Bergh, Komal Patel Murali, Tina Sadarangani. Originally published in JMIR Formative Research (https://formative.jmir.org), 01.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

The Impact of a Web-Based Restorative Dentistry Course on the Learning Outcomes of Dental Graduates: Pre-Experimental Study

Rasha Al-Sbei1,2, MEd; Jawdat Ataya1,2, MEd; Issam Jamous1,2, PhD; Mayssoon Dashash1,2, PhD

1Medical Education Program, Syrian Virtual University, Damascus, Syrian Arab Republic
2Faculty of Dental Medicine, Damascus University, Damascus, Syrian Arab Republic

Corresponding Author:
Jawdat Ataya, MEd
Medical Education Program
Syrian Virtual University
Al-Mazzeh Street
Damascus, 35329
Syrian Arab Republic
Phone: 963 992287487
Email: dr.jawdat.ataya@gmail.com

Abstract

Background: Restorative dentistry plays a crucial role in dental practice, necessitating professionals to stay abreast with the latest advancements in the field. The advancement of technology has made web-based learning a widely used method of education delivery in dentistry, providing learners with extensive information and flexibility.

Objective: This study aims to evaluate how effective an online educational course in restorative dentistry is for dental graduates in Syria.

Methods: This study used a pre-experimental study design, with pretest and posttest assessments to measure changes in participants’ knowledge and skills. A total of 21 dental graduates completed the online course in restorative dentistry, which was hosted on Moodle, using the learning management system of the Syrian Virtual University. Participants were provided with a suggested learning sequence and had the flexibility to navigate the course on their own and at their own pace. The course was developed based on the principles of web course design and web-based course development using the ADDIE (Analysis, Design, Development, Implementation, and Evaluation) general instructional design model. The pretest and posttest assessments consisted of 50 multiple-choice questions with a single correct answer, aligning with the course content. Furthermore, participants were asked to complete a course acceptance survey upon finishing the course.

Results: The results showed a significant improvement in the participants’ knowledge of restorative dentistry, supported by a statistically significant P value of less than .05. The effect size of the difference between the pre and posttest indicated that the effect size, as indicated by ω^2, demonstrated a significant 62.1% difference between the pre and posttest, indicating a high and statistically significant effect. Furthermore, the value derived from the Haridy obtained work ratio formula indicated that the educational program was effective, with an effectiveness amount of 3.36%. Additionally, 93% (n=19) of respondents expressed confidence in having gained the expected benefits from the educational course upon its completion.

Conclusions: The findings indicated a notable enhancement in the participants’ understanding of restorative dentistry. The participants’ high satisfaction rate and positive feedback from the course acceptance survey further emphasize the favorable reception of the web-based learning approach. This study highlights the potential of web-based learning in dental education, opening the door for future research in this area. The findings of this study carry important implications for the design and implementation of web-based educational programs in dentistry, suggesting that such programs can serve as an effective tool for continuous professional development in the field.

(JMIR Form Res 2024;8:e51141) doi:10.2196/51141

KEYWORDS

restorative dentistry; online learning; dental education; dental graduates; Syria; education; dental; dentistry; dental practice; effectiveness; educational program; survey

https://formative.jmir.org/2024/1/e51141
Introduction

Restorative dentistry is a crucial aspect of dental practice, involving the use of various materials and techniques to restore the function and aesthetic appearance of teeth [1]. Continuous education, particularly in restorative dentistry, is essential for dental graduates and practitioners to stay updated with the latest developments in the field [2-4].

In recent years, web-based learning, also known as e-learning, has gained popularity as a method of delivering education in dentistry, thanks to technological advancements [5,6]. This approach provides learners with access to a wealth of information while offering the flexibility to learn at their own pace, overcoming the limitations of time and space [7]. In response to this trend, the dental profession has developed web-based dental courses and web-based continuing dental education programs [8]. The global implementation of web-based learning in dentistry has been further accelerated by the COVID-19 pandemic [9,10].

The transition to new education delivery models, such as web-based education, has reshaped teaching methods into a blended learning methods, particularly in dental education [11,12]. Studies have shown that web-based teaching is perceived as equally as effective as traditional classroom approaches in terms of knowledge acquisition and academic performance [1,13]. Web-based dental education programs and courses have been developed to enhance the knowledge of dental students and practitioners, providing them with easy access to a wide range of information and fostering empowerment [14-16].

Several universities and dental schools worldwide have integrated web-based education into their dental programs, acknowledging its advantages and potential to enhance patient health care outcomes through a patient-centered approach and continuous learning [17-19]. However, while web-based learning offers numerous advantages, careful consideration of technical and pedagogical factors is essential to ensure its effectiveness. Hands-on training with manikins during preclinical education remains crucial [19-21].

This study aims to evaluate the effectiveness of a web-based educational course in restorative dentistry in improving the learning outcomes for Syrian dental graduates. Through assessing the influence of this web-based course, we aim to contribute to the understanding of the benefits and effectiveness of web-based learning in dental education.

Methods

Ethical Considerations

The ethical approval of this study was obtained from the Syrian Virtual University Ethics Committee (237/0) on January 7, 2023. This study involved a pre-experimental web-based course with human participants. The course did not involve any harmful interventions or interactions that could harm the participants. There is a preprint version of this study [22].

Before their participation, informed consent was obtained from all participants. The consent form, written in Arabic, the first language of all participants, provided a clear description of the research objectives and procedures. Participants were assured that their information would be securely stored and used solely for this research. To ensure confidentiality and privacy, the study data collected from participants were anonymized and protected with appropriate security measures. Access to the participants’ identities was restricted to only one of the researchers involved in the study.

The participation questionnaire was indirectly distributed to approximately 50 graduates, and a voluntary and random selection process was conducted to include participants. Out of the 50 participants contacted individually, a total of 21 participants willingly agreed to take part in the study. The selection of participants was not influenced by any specific criteria or biases, ensuring a representative sample for the research. A total of 21 dental graduates completed the online course in restorative dentistry (OCRD) which used a pre-experimental study design with pretest and posttest assessments.

Overview

The course was asynchronous and hosted on Moodle, using the learning management system (LMS) of the Syrian Virtual University. Each participant had an account and full access to the course at any time. The course duration was 3 weeks, and it was available on LMS during this duration with full access for participants, it was divided into 4 thematic units with resources including documents, downloadable articles, presentations, short educational videos, examinations, and surveys.

The OCRD was developed by the principal researcher, RA, based on the principles of web course design [23,24], and web-based course development [25,26], using the ADDIE (Analysis, Design, Development, Implementation, and Evaluation) general instructional design model [27]. The course and its contents were reviewed by several experts from the Faculty of Dentistry at Damascus University.

The course primarily focused on theoretical aspects related to clinical topics. The course provided participants with a comprehensive understanding of various clinical topics within the field of dentistry. It aimed to enhance their theoretical knowledge and conceptual understanding of the principles and practices relevant to restorative dentistry. The course covered a wide range of theoretical aspects, including but not limited to dental materials, treatment planning, occlusion, tooth preparation, and aesthetic considerations. Participants were exposed to evidence-based theories, research findings, and best practices in the field. The course was theory about clinical topics and consisted of four main themes: (1) composite restoration including anterior and posterior composite restoration, (2) diastema closure, (3) direct composite veneer, and (4) tooth whitening.

In addition, we supported the course with clinical applications and clinical cases. The participants were given a suggested sequence for optimal learning but were allowed to access and navigate the course at their own pace. Participant contributions were reviewed daily to guide them in their studies and provide...
feedback. The daily feedback was given by the course tutor. Discussion of any issues related to the revised unit was also allowed, and any doubts were addressed. The study outcomes were based on the structure of the course, which was organized into units, lectures, and educational videos. Tools, methods, and resources were selected for use in the course, which included a set of presentations and related educational short videos.

The participants were informed about the pretest and posttest assessments that would be conducted as part of the study, and they were required to complete both assessments. The pretest was administered before the start of the course, while the posttest was conducted immediately after the course ended.

The study population comprised participants who had graduated from the Faculty of Dentistry. The invitation to the course was sent to a group of graduate students. A total of 21 participants agreed and accepted the invitation to participate in the course, and informed consent was obtained from those who accepted the invitation. The participants have been recruited according to the inclusion criteria including participants who had completed all restorative dentistry courses in their undergraduate studies, had access to a laptop, iPad, or smartphone, had good internet access, and had good knowledge of both Arabic and English, including medical terminology. Participants who did not complete the pretest were excluded from the study.

The pretest and posttest assessments were designed to measure the participants’ knowledge of restorative dentistry. The assessments were based on the course content. The assessments consisted of 50 multiple-choice questions with a single correct answer. The questions were designed to cover the 4 main themes of the course. Each multiple-choice question had 1 correct answer and 3 distractor options. A correct response received 2 points toward a total score of 100, while an incorrect response received zero points. The test was web-based, with limited time access. The duration of the test was 40 minutes.

In addition, participants were also asked to complete a course acceptance survey at the end of the course. The survey consisted of Likert scale questions and open-ended questions. The Likert scale questions were designed to measure the participant’s satisfaction with the course, the quality of the course content, and the effectiveness of the course in improving their knowledge of restorative dentistry. The open-ended questions allowed participants to provide additional feedback and comments about the course.

Data collected from the assessments were analyzed using SPSS (version 25.0; IBM). Descriptive statistics, including means and SDs, were calculated to describe the participants’ demographic characteristics and their pretest and posttest scores. The paired-sample 2-tailed t test was used to compare the mean scores of the pretest and posttest assessments. A P value of less than .05 was considered statistically significant.

Results

Overview

The study included 21 participants, of which 12 (57%) participants were female and 9 (43%) participants were male, with ages ranging from 23 to 30 years. Sixteen (76%) participants graduated from public universities and 5 (24%) participants graduated from private universities. The participants were distributed as follows: 12 (57%) participants were master candidates, 8 (38%) participants were general dentists, and 1 (5%) participant was a specialist. All participants had different years of experience in dental practice with 7 (33%) dentists having only 1 year of experience, 6 (29%) dentists having 2 years of experience, 6 (29%) dentists having 3 years of experience, and only 2 (10%) dentists having more than 3 years of experience.

A total of 21 participants completed the course, with course completion tracked by the LMS, and the time taken to complete the course ranged from 2 to 7 days. The pretest and posttest results were collected and stored in Google Forms and analyzed using SPSS. All 21 participants completed both tests without any significant lack of information. The change in knowledge between pretest and posttest results was analyzed using the paired-sample 2-tailed t test. A P value of less than .05 was considered significant. The P values, mean scores, and SDs for the precourse and postcourse tests for the entire test and each section are shown in Table 1.
Table 1. Results of paired-sample 2-tailed t test to test knowledge level change.

<table>
<thead>
<tr>
<th>Unit and test</th>
<th>Score, mean (SD)</th>
<th>P value</th>
<th>t test (df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precourse</td>
<td>53.05 (6.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postcourse</td>
<td>77.24 (11.8)</td>
<td><.001</td>
<td>9.592 (21)</td>
</tr>
<tr>
<td>Composite restoration</td>
<td></td>
<td><.001</td>
<td>4.468 (21)</td>
</tr>
<tr>
<td>Precourse</td>
<td>17.8 (1.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postcourse</td>
<td>21.52 (2.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diastema management</td>
<td></td>
<td><.001</td>
<td>6.664 (21)</td>
</tr>
<tr>
<td>Precourse</td>
<td>11.33 (3.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postcourse</td>
<td>17.14 (4.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct composite veneer</td>
<td></td>
<td><.001</td>
<td>8.087 (21)</td>
</tr>
<tr>
<td>Precourse</td>
<td>14.38 (3.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postcourse</td>
<td>20.3 (2.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teeth whitening</td>
<td></td>
<td><.001</td>
<td>9.118 (21)</td>
</tr>
<tr>
<td>Precourse</td>
<td>9.52 (3.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postcourse</td>
<td>18.3 (4.6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The normal distribution was tested using the 1-sample Kolmogorov-Smirnov test, which showed that the distribution of the sample was standard. The paired-sample 2-tailed t test was then applied, revealing no statistically significant difference in the post-course test results of the participants, regardless of their age group, gender, academic status, type of university, or prior experience with web-based courses.

Acceptance Questionnaire

The internal consistency of the user acceptance questionnaire items, as determined by Cronbach α, was demonstrated to be 0.924, indicating high reliability. In terms of user acceptance, all survey respondents (N=21) reported satisfaction with the web-based course when using a 5-point Likert scale. Moreover, the majority of survey respondents 93% (n=19) believed that they gained the expected benefit from the educational course after its completion.

The attendees showed the highest agreement with the well-employed materials and the enthusiasm of the instructor in presenting the web-based course, and the lowest agreement with the technical resources and communication methods required to attempt the web-based course as presented in Table 2.
Table 2. Results of statistical analysis of the user acceptance questionnaire.

<table>
<thead>
<tr>
<th>Number</th>
<th>Questionnaire</th>
<th>Results, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Level of knowledge at the beginning of the course</td>
<td>2.86 (0.727)</td>
</tr>
<tr>
<td>2</td>
<td>Level of knowledge at the end of the course</td>
<td>3.86 (0.478)</td>
</tr>
<tr>
<td>3</td>
<td>The learning process was easy and clear</td>
<td>3.67 (0.658)</td>
</tr>
<tr>
<td>4</td>
<td>I had full control of the learning process</td>
<td>3.81 (0.512)</td>
</tr>
<tr>
<td>5</td>
<td>Time assumed for the learning process was sufficient</td>
<td>3.86 (0.478)</td>
</tr>
<tr>
<td>6</td>
<td>I had full decisions in the sequences of the learning process</td>
<td>3.95 (0.218)</td>
</tr>
<tr>
<td>7</td>
<td>The learning objectives of the course were listed.</td>
<td>4.38 (0.590)</td>
</tr>
<tr>
<td>8</td>
<td>The e-content was well organized</td>
<td>4.57 (0.507)</td>
</tr>
<tr>
<td>9</td>
<td>Loads of the educational process were affordable</td>
<td>4.14 (0.727)</td>
</tr>
<tr>
<td>10</td>
<td>The course was organized to allow participants to participate adequately</td>
<td>4.29 (0.784)</td>
</tr>
<tr>
<td>11</td>
<td>The e-content was useful and gave added value</td>
<td>4.52 (0.512)</td>
</tr>
<tr>
<td>12</td>
<td>The e-content was obvious and clear</td>
<td>4.52 (0.512)</td>
</tr>
<tr>
<td>13</td>
<td>I think e-Learning is interesting</td>
<td>4.19 (0.512)</td>
</tr>
<tr>
<td>14</td>
<td>I believe that e-Learning is useful and gives an added value</td>
<td>4.14 (0.727)</td>
</tr>
<tr>
<td>15</td>
<td>I believe that the e-Learning process is easy and feasible</td>
<td>4.19 (0.814)</td>
</tr>
<tr>
<td>16</td>
<td>Log-in to the platform was easy and clear</td>
<td>4.38 (0.669)</td>
</tr>
<tr>
<td>17</td>
<td>Navigation with platform was easy and clear</td>
<td>4.48 (0.512)</td>
</tr>
<tr>
<td>18</td>
<td>The e-content on the platform was well-organized</td>
<td>4.62 (0.498)</td>
</tr>
<tr>
<td>19</td>
<td>The course instructor was active</td>
<td>4.43 (0.507)</td>
</tr>
<tr>
<td>20</td>
<td>The presentations were well-organized and clear</td>
<td>4.62 (0.498)</td>
</tr>
<tr>
<td>21</td>
<td>The recorded presentations were clear and understandable</td>
<td>4.19 (0.512)</td>
</tr>
<tr>
<td>22</td>
<td>The suggested educational videos were useful and related</td>
<td>4.33 (0.577)</td>
</tr>
<tr>
<td>23</td>
<td>The course instructor was available and useful</td>
<td>4.52 (0.512)</td>
</tr>
<tr>
<td>24</td>
<td>The feedback was direct and constructive</td>
<td>4.43 (0.507)</td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

This study aimed to evaluate the effectiveness of a web-based educational program in restorative dentistry for increasing the knowledge of Syrian dental graduates. The course was designed based on the fundamental principles of web course design and web-based course development. A total of 21 participants completed the entire course. The results of the study showed a significant increase in the participants’ levels of restorative dentistry knowledge after completing the web-based course, as demonstrated by the postcourse test scores.

The course was also well-received by the participants, as indicated by their positive evaluations. These findings are consistent with previous studies that have investigated the effectiveness of web-based learning in enhancing participants’ knowledge and skills. This success of the course could be attributed to the well-structured presentation and content of the course, as well as the ease of use of the web-based platform (LMS-Moodle) and its flexibility in navigating the course content [29,30].

The highest score in the students’ precourse tests was obtained about composite restoration (first unit), which may be attributed to the fact that composite restoration is widely used and considered the most popular restorative material in dentistry. In contrast, the lowest score in the precourse test was obtained for tooth whitening (fourth unit), because tooth whitening lectures are only given in advanced dental practice programs and postgraduate studies. However, the students’ scores on specific knowledge areas in the postcourse tests showed a notable improvement in all units, including tooth whitening, despite the widespread use of tooth whitening in dental clinics to restore the aesthetic appearance of teeth [31]. This result ensures that the course has been focused on new concepts and interesting ideas that the participants had not been taught before, as well as influencing their daily practice.

The result of this study is consistent with those of Morales - Pérez et al [29], Absi et al [32], and Rosenberg et al [33] regarding the effectiveness of web-based learning and web-based courses in increasing the knowledge of participants.

The current situation in Syria makes attending traditional courses challenging, due to, for example, the lack of transportation, fuel,
and electricity; lack of sufficient and qualified places to hold the courses; and shortage of human resources and staff [34-36].

However, the course offered flexibility in terms of delivery and content review, allowing participants access to the platform 24 hours a day. This approach is similar to previous studies by Murphy et al [37] and Rosenberg et al [33]. Asynchronous web-based learning was also an option that enabled participants to revisit the course materials as needed, based on their commitments and social life as noted by Ruiz et al [38].

Asynchronous web-based learning is considered an attractive, flexible, and convenient option for learners, with lower costs and easy access to information. Similarly, Kenjrawi and Dashash [39] found that asynchronous electronic medical education is an effective and feasible approach for improving the knowledge and attitude of Syrian clinical practitioners [39].

The web-based course proved a valuable option for continuing medical education in Syria given the current circumstances in Syria and after the impact of the COVID-19 pandemic [40]. In dental education, computerized sources of information and virtual reality are increasingly being used as educational tools and have shown promise in training dental students [41]. These technological advancements have the potential to revolutionize dental education and enhance the learning experience of students.

The results of this study indicate that the participants expressed high levels of acceptance and satisfaction with the restorative dentistry course, as evidenced by the questionnaire results. The majority of the cohort (19/21, 93%) reported that the course provided the desired benefit, and all participants reported enjoying it. The well-designed course materials and the instructor’s enthusiasm for delivering the web-based course were also praised by participants. However, there were some areas of the course that needed improvement, such as technical resources and communication methods required to improve the web-based course.

To further assess the effectiveness of the web-based course, future research using larger sample sizes would be beneficial, to evaluate both knowledge and skills in each unit of restorative dentistry separately. Nevertheless, implementing web-based courses of restorative dentistry in continuous medical education programs in Syria is advisable, as it may help dentists stay up to date with minimal requirements.

Limitations
The study did not assess the long-term retention of knowledge or the impact of this web-based course on the participants’ clinical practice. Furthermore, the study focused only on an OCRD. The findings might not apply to other areas of dentistry or other forms of web-based learning.

Conclusion
This study provides evidence that web-based learning can be an effective tool in improving the knowledge and skills of dental graduates about restorative dentistry. The high satisfaction rate expressed by the participants and the positive feedback received through the course acceptance survey indicate that the web-based educational program was well-received by the participants. These findings support the potential of web-based learning in dental education and suggest that it can be a valuable tool for providing continuous education to dental professionals, as it can help dental professionals stay up to date with the latest advancements in their field, which can ultimately benefit the patients they serve.

Acknowledgments
The authors would like to thank Syrian Virtual University for its assistance and all the participants who agreed to take part in this study. All authors declared that they had insufficient or no funding to support open access publication of this manuscript, including from affiliated organizations or institutions, funding agencies, or other organizations. JMIR Publications provided APF support for the publication of this article. Artificial intelligence was not used in writing this manuscript.

Data Availability
The data sets generated or analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

References

32. Absi EG, Drage NA, Thomas HS, Nash ES, Newcombe RG. The effectiveness of dental postgraduate courses--are we doing the right thing? Br Dent J 2006 Sep;Suppl:19-23. [doi: 10.1038/sj.bdj.4814068] [Medline: 16964275]

Abbreviations

ADDIE: Analysis, Design, Development, Implementation, and Evaluation
LMS: learning management system
OCRD: online course in restorative dentistry

©Rasha Al-Sbei, Jawdat Ataya, Issam Jamous, Mayssoon Dashash. Originally published in JMIR Formative Research (https://formative.jmir.org), 05.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete...
Comparison of the Discrimination Performance of AI Scoring and the Brixia Score in Predicting COVID-19 Severity on Chest X-Ray Imaging: Diagnostic Accuracy Study

Eric Daniel Tenda1*, MD, DIC, PhD; Reyhan Eddy Yunus2*, MD, MSc; Benny Zulkarnaen2, MD; Muhammad Reynalzi Yugo2, MD; Ceva Wicaksono Pitoyo1, MD; Moses Mazmur Asaf2, MD; Tiara Nur Islamiyati1, MD; Arierta Pujitresnani3, BSc, MSc; Andry Setiadharma1, MD; Joshua Henrina1, MD; Cleopas Martin Rumende1, MD, Prof Dr; Vally Wulanii2, MD; Kuntjoro Harimurti4, MSc, MD, PhD; Aida Lydian5, MD, PhD; Hamzah Shatri6, MEPid, MD, PhD; Pradana Soewondo7, MD, Prof Dr; Prasandhya Astagiri Yusuf8, BSc, MT, PhD

1Department of Internal Medicine, Pulmonology and Critical Care Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
2Department of Radiology, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
3Department of Medical Physiology and Biophysics/ Medical Technology Cluster IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
4Department of Internal Medicine, Geriatric Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
5Department of Internal Medicine, Nephrology and Hypertension Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
6Department of Internal Medicine, Psychosomatic Division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia
7Department of Internal Medicine, Endocrinology – Metabolism – Diabetes division, Faculty of Medicine Universitas Indonesia, RSUPN Dr. Cipto Mangunkusumo, Universitas Indonesia, Jakarta, Indonesia

*these authors contributed equally

Corresponding Author:
Prasandhya Astagiri Yusuf, BSc, MT, PhD
Department of Medical Physiology and Biophysics/ Medical Technology Cluster IMERI, Faculty of Medicine Universitas Indonesia
Jalan Salemba Raya No.6
Jakarta, 10430
Indonesia
Phone: 62 812 8459 4272
Email: prasandhya.a.yusuf@ui.ac.id

Abstract

Background: The artificial intelligence (AI) analysis of chest x-rays can increase the precision of binary COVID-19 diagnosis. However, it is unknown if AI-based chest x-rays can predict who will develop severe COVID-19, especially in low- and middle-income countries.

Objective: The study aims to compare the performance of human radiologist Brixia scores versus 2 AI scoring systems in predicting the severity of COVID-19 pneumonia.

Methods: We performed a cross-sectional study of 300 patients suspected with and with confirmed COVID-19 infection in Jakarta, Indonesia. A total of 2 AI scores were generated using CAD4COVID x-ray software.

Results: The AI probability score had slightly lower discrimination (area under the curve [AUC] 0.787, 95% CI 0.722-0.852). The AI score for the affected lung area (AUC 0.857, 95% CI 0.809-0.905) was almost as good as the human Brixia score (AUC 0.863, 95% CI 0.818-0.908).

Conclusions: The AI score for the affected lung area and the human radiologist Brixia score had similar and good discrimination performance in predicting COVID-19 severity. Our study demonstrated that using AI-based diagnostic tools is possible, even in low-resource settings. However, before it is widely adopted in daily practice, more studies with a larger scale and that are prospective in nature are needed to confirm our findings.
Introduction

Background

Humans have been learning to adapt to the COVID-19 pandemic. While vaccine development has mitigated the spread, mortality, and morbidity associated with COVID-19, waves of COVID-19 cases are still reported. The main driver of these cases is viral mutation, with the latest mutant, the XBB omicron subvariant, reported to be more virulent and responsible for another COVID-19 wave in Singapore [1]. As of November 1, 2022, a total of 4707 new cases have been reported throughout Indonesia [2]. This is the highest number of new cases reported since September 1, 2022, and might be attributed to SARS-CoV-2 variants. Importantly, at the time this study was conducted, the number of new daily cases reached 14,518 confirmed cases per day at its peak (January 30, 2021) [3].

Currently, the World Health Organization (WHO) endorses the use of the nucleic acid amplification test, including reverse transcription–polymerase chain reaction (RT-PCR), as the gold-standard diagnostic method for COVID-19 cases [4]. Nonetheless, at the height of the pandemic, the weaknesses associated with the test are accentuated, thus increasing the false-negative rates [5,6]. This is similar to the situation we experienced in Indonesia during our study period.

Therefore, another alternative is needed to help with the COVID-19 triage process. Imaging modalities, primarily chest computed tomography (CT) scan and chest x-ray (CXR), are widely available in most health care facilities. Lung CT is the most effective and sensitive method for diagnosing lung lesions during early disease progression [7]. While CXR is less sensitive than lung CT, it is easier to perform, is more cost-effective, is faster, is more portable, has less radiation exposure, has simpler decontamination, and is more widely distributed. Hence, the latter is the initial radiographic modality of choice amid the COVID-19 pandemic [8].

Several scoring systems have been developed to increase CXR’s diagnostic accuracy and reliability in diagnosing COVID-19. The Brixia scoring system (BSS), one of the most commonly used scoring systems, is a semiquantitative CXR scoring system for COVID-19 diagnosis [9]. However, this system is complicated because of the issue of ground truth, which is influenced by rater experience, interobserver agreement, CXR quality, the facility, and the environment surrounding the scoring process. Moreover, additional work burden is imposed on the radiologists as the system relied on manual, subjective scoring and became a less-interesting option at the height of the pandemic [10].

Fortunately, artificial intelligence (AI) is available to ease the workforce burden amid the COVID-19 pandemic. In the past decade, AI has been advancing rapidly, especially in radiology, with applications mainly to diagnose respiratory diseases such as tuberculosis [11]. With the help of AI and machine learning, diagnostic precision can be optimized through computing algorithms for image identification and analysis, resulting in quantitative image scoring [12]. Another important AI role is to determine COVID-19 severity [13], especially in the setting of limited medical resources, equipment, and hospital beds. The correct identification of disease severity can facilitate efficient, adequate, and prompt treatment for those who need it the most.

One of the most used AI software in the COVID-19 pandemic is CAD4COVID x-ray, which detects and scores COVID-19 pneumonia through the color heat map method. This software has been shown to be significantly superior in diagnosing COVID-19 pneumonia through CXR in 454 participants compared with 6 radiologists with an excellent area under the curve (AUC) [14]. However, studies that examined this software utility for disease severity classification remained scarce, especially in low- and middle-income countries such as Indonesia.

Similar to the study mentioned earlier, our study aimed to compare AI performance against that of radiologists. However, in our study, the radiologists used the BSS.

Objectives

The research questions are two-fold: (1) How does the AI scoring system, using the color heat map methodology, compare to the BSS when assessing CXR in correlation with SARS-CoV-2 RT-PCR results among participants suspected of having COVID-19 pneumonia? (2) What is the effectiveness of the AI scoring system in comparison with the BSS for classifying disease severity in participants suspected of having COVID-19 pneumonia?

The rationale for our research questions is in alignment with the WHO’s guidelines, which recommend the use of chest imaging for the diagnostic evaluation of COVID-19 in scenarios where (1) RT-PCR testing is available but results are delayed or in cases where (2) initial RT-PCR testing returns negative results but there is a strong clinical suspicion of COVID-19 [15]. Our practical experience indicates that these delays in RT-PCR results can extend up to a maximum of 2 weeks. In addition, during periods of high COVID-19 prevalence, the occurrence of false negatives in RT-PCR tests can be notably elevated. A meta-analysis revealed that under conditions of a 50% disease prevalence rate, the rate of misdiagnosis reached 290 out of 1000 participants [16].

Moreover, the wait for a positive RT-PCR result can significantly disrupt the triage system and the clinical flow for patients suspected with COVID-19 infection, consequently leading to delays in the allocation of appropriate treatments. To the best of our knowledge, this is the first study to examine these questions in an Indonesian population.
Methods

Study Design
This retrospective cross-sectional diagnostic study used secondary data from medical records and picture archiving and communication system chest radiography repositories. This study was conducted at the Rumah sakit Dr. Cipto Mangunkusumo (RSCM) National Referral Hospital, Jakarta. This study included adults (aged ≥18 years) hospitalized with suspected COVID-19 and RT-PCR–confirmed COVID-19 infection, with or without comorbidities, from April 2020 to April 2021. This study excluded cases with substandard chest radiography qualities, large lung cavities on CXR, concurrent mediastinal or lung mass, and an interval between RT-PCR and CXR acquisition of >7 days. Data were extracted from inpatient medical records from the RSCM department of internal medicine from April 2020 to April 2021 that met the inclusion criteria. Sampling was performed consecutively until the minimum number of samples was obtained.

Ethical Considerations
This study protocol was reviewed and approved by the Faculty of Medicine, University of Indonesia’s Ethical Board (approval number Nomor KET-588/UN2. FI/ETIK/PPM.00.02/2020). Written informed consent was waived because of the retrospective nature of the study and amid the COVID-19 pandemic. All medical records and CXRs were deidentified and anonymized to ensure patient confidentiality and compliance with privacy standards. No compensations were given to the participants because of the nature of the study.

Operational Definition
Vaccination data were ascertained from history taking and medical records and ordinarily stratified into not vaccinated, vaccinated once, and vaccinated twice. COVID-19 disease severity was determined on hospital admission by emergency medical doctors and was stratified according to the local Indonesian guideline, which adopted the WHO COVID-19 disease severity stratification (Table S1 in Multimedia Appendix 1) [17]. Oxygen saturation data were measured using the transmittance pulse oximeter. They were ordinarily stratified according to normal oxygen saturation (94%-100% on room air), mild to moderate hypoxia (90%-93% on room air), and severe hypoxia (<90% on room air). The RT-PCR data were ascertained from the medical records and used naso-oropharyngeal specimens. Specimen handling and processing for RT-PCR have been described elsewhere [18].

Diabetes was defined according to the American Diabetes Association and the Indonesian Guidelines for the Management and Prevention of Diabetes [19]. Hypertension was defined according to the Indonesian Society of Hypertension Guidelines and the Eighth Joint National Committee [20,21]. Chronic obstructive pulmonary disease and asthma were determined according to the Global Initiative for Obstructive Lung Disease and the Global Initiative for Asthma guidelines, respectively [22,23]. Finally, pulmonary tuberculosis was defined according to the WHO guideline. It was deemed positive if there was a previous history of tuberculosis or active pulmonary tuberculosis [24]. Acute respiratory distress syndrome was defined according to the Berlin criteria [25].

BSS Measurement
The BSS is a semiquantitative method used to measure the severity of lung lesions on CXR. The method has been described in detail elsewhere [9]. Briefly, the lung image on CXR is divided into 6 zones, and each zone can have a score of 0 to 3 with a total maximum score of 18. A total of 2 observers, both board-certified radiologists, measured the score. The third radiologist acted as the ground truth, with >20 years of experience. Every CXR was anonymized before the scoring was performed, and radiologists were blinded to the clinical data. In this study, we focused on the overall CXR score domain of BSS for comparison. We did not establish a predefined BSS cutoff for the classification of positive SARS-CoV-2 RT-PCR results and for the disease severity classification in advance.

AI System for CXR Interpretation
For AI-based CXR interpretation, we used the CAD4COVID x-ray software. It is an advanced AI system built upon deep learning techniques designed for the identification of COVID-19 indicators in frontal CXRs. This cutting-edge system, an extension of the commercially available CAD4TB software (version 6: Thirona), primarily developed for tuberculosis detection in chest radiographs, undergoes initial preprocessing steps, including image normalization and lung segmentation via U-net software. Subsequently, the system uses a patch-based analysis with a convolutional neural network and concludes with image-level classification using an ensemble of networks [14].

The following steps were performed on the software:

1. Digital CXR (Digital Imaging and Communications in Medicine) of patients suspected with COVID-19 infection was pseudoanonymized before image upload with the picture archiving and communication system INFINITT software (INFINITT Healthcare).

2. CXR scoring was performed in 4 consecutive steps, which are as follows:
 - Normalization: this step was to normalize the CXR scale from CXRs with larger or smaller sizes and to be generalized by AI so that it can be processed uniformly.
 - Lung fields segmentation: the AI automatically did this step to delineate the lungs and distinguish them from the rest of the image.
 - Texture analysis: this step was to determine relevant abnormalities in lung segments.
 - Finally, area analysis was done to estimate the percentage of involved lung parenchyma.

3. All filter weights were calculated. The average filter weight was used as a mask on the CXR image to generate a color heat map, which was visualized only in the lung area previously segmented by the previously trained model.

4. The color heat map produced different colors corresponding to its weight. Red, yellow, green, and blue correspond to high,
medium, low, and very low probability of abnormality on the CXR, respectively.

5. The digital CXR was uploaded to the CAD4COVID software to generate 2 AI scorings. First, the affected lung area (ALA) score, with a scale from 0 to 100, was determined according to the total lung volume with abnormalities detected on the CXR. A higher value indicates more lung area that is affected. Second, the COVID-19 probability score, with a scale from 0 to 100, was determined according to the average final weight of all layers. A higher value indicates a higher probability of COVID-19.

The CAD4COVID cutoff for a positive SARS-CoV-2 RT-PCR result and disease severity classification were determined during the study.

Data Analysis

Descriptive Statistics

We summarized baseline characteristics, presenting categorical variables as frequencies (n) and proportions (%). Continuous variables were described as means with SDs for normally distributed data and as medians with IQRs for nonnormally distributed data. The normality of continuous data was assessed using the Kolmogorov-Smirnov test.

Interobserver Reliability

Interobserver reliability was evaluated using the intraclass correlation coefficient (ICC) with a 2-way mixed-effect model (k=2) and consistency. We categorized ICC values as poor, moderate, good, or excellent reliability. Estimated means with their respective 95% CIs were reported for each respective ICC. ICC values of <0.50, 0.50 to 0.75, 0.75 to 0.90, and >0.90 were interpreted as poor, moderate, good, and excellent reliability, respectively. In addition, we also evaluated interobserver reliability based on CXR projections, that is, posteroanterior (PA) and anteroposterior (AP).

Receiver Operating Characteristic Analysis

To assess the diagnostic performance of both AI scoring and Brixia scoring, we used receiver operating characteristic curves and AUC analyses. AUC values of <0.60, 0.60 to 0.70, 0.70 to 0.80, 0.80 to 0.90, and 0.90 to 1 were classified as failure, poor, fair, good, and excellent, respectively. The results were calibrated and internally validated using the Hosmer-Lemeshow test and bootstrapping. A comparison between the AUCs was performed using the DeLong test. A P value of <.05 indicates significant difference.

Optimum Cutoff Values

We determined the optimum cutoff values for AI scoring (probability score and affected lung score) and the BSS to distinguish the RT-PCR results and classify disease severity. The Youden Index method guided our selection process, aiming for the highest sensitivity with a specificity of ≥50% (Tables S2 to S4 in Multimedia Appendix 1).

Diagnostic Performance

We calculated sensitivity, specificity, accuracy, positive predictive value, and negative predictive value based on the chosen cutoff values. The reference standard for COVID-19 diagnosis was RT-PCR, as it is the diagnostic modality needed to confirm COVID-19. The reference standard for disease severity classification was the BSS.

Agreement Tests

The agreement between AI and Brixia scoring in relation to RT-PCR results and disease severity was assessed using the kappa statistic. Kappa values of 0 to 0.20, 0.21 to 0.40, 0.41 to 0.60, 0.61 to 0.80, and 0.81 to 1 were classified as slight, fair, moderate, substantial, and near-perfect agreement, respectively.

We adhered to the Standards for Reporting of Diagnostic Accuracy statement in our reporting of results. Statistical analyses were performed using SPSS for Macintosh (version 27; IBM Corp), MedCalc for Windows (version 20.114; MedCalc Software Ltd), and Stata Statistical Software for Macintosh (version 14; StataCorp LP).

Results

From April 2020 to April 2021, there were 1145 hospitalized patients with COVID-19 in RSCM National Referral Hospital, Jakarta, with complete clinical data, CXR, and RT-PCR. Only 26.2% (300/1145) of the participants met the inclusion and exclusion criteria. The study outline is presented in Figure 1.
Baseline Characteristics

A total of 300 participants (refer to the Methods section) were enrolled in this study. Demographics, comorbidities, clinical data, and radiology scoring are presented in Table 1.

In this study, most hospitalized patients with COVID-19 were aged <60 years (211/300, 70.3%), with a median population age of 52 (IQR 39.0-61.0) years and male gender preponderance (159/300, 53%). In total, >two-thirds of the patients had a negative RT-PCR result (203/300, 67.7%). Moderate disease severity dominated COVID-19 disease severity. Moreover, the 3 most common comorbidities were hypertension, diabetes, and pulmonary tuberculosis.
Table 1. Baseline characteristics of study participants (N=300).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median (IQR)<sup>a</sup></td>
<td>52.0 (39.0-61.0)</td>
</tr>
<tr>
<td>Age (years), n (%)</td>
<td></td>
</tr>
<tr>
<td>>60</td>
<td>89 (29.7)</td>
</tr>
<tr>
<td><60</td>
<td>211 (70.3)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>159 (53)</td>
</tr>
<tr>
<td>Female</td>
<td>141 (47)</td>
</tr>
<tr>
<td>Oxygen saturation<sup>b</sup>, n (%)</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>132 (44)</td>
</tr>
<tr>
<td>Mild to moderate hypoxia</td>
<td>18 (6)</td>
</tr>
<tr>
<td>Severe hypoxia</td>
<td>25 (8.3)</td>
</tr>
<tr>
<td>RT-PCR<sup>c</sup>, n (%)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>97 (32.3)</td>
</tr>
<tr>
<td>Negative</td>
<td>203 (67.7)</td>
</tr>
<tr>
<td>Disease severity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>42 (14)</td>
</tr>
<tr>
<td>Moderate</td>
<td>178 (59.3)</td>
</tr>
<tr>
<td>Severe</td>
<td>27 (9)</td>
</tr>
<tr>
<td>Critical</td>
<td>53 (17.7)</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>77 (25.7)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>96 (32)</td>
</tr>
<tr>
<td>COPD<sup>d</sup></td>
<td>2 (0.7)</td>
</tr>
<tr>
<td>Asthma</td>
<td>4 (1.3)</td>
</tr>
<tr>
<td>Pulmonary tuberculosis</td>
<td>16 (5.3)</td>
</tr>
<tr>
<td>ARDS<sup>e</sup>, n (%)</td>
<td>45 (15)</td>
</tr>
<tr>
<td>Length of stay (days), median (IQR)</td>
<td>8.0 (4.0-13.3)</td>
</tr>
<tr>
<td>Overall CXR<sup>f</sup> score-Brixia score, median (IQR)</td>
<td>3.00 (0.0-9.5)</td>
</tr>
<tr>
<td>AI<sup>5</sup>-CAD4COVID, median (IQR)</td>
<td></td>
</tr>
<tr>
<td>Probability score<sup>h</sup></td>
<td>62.0 (35.75-83.25)</td>
</tr>
<tr>
<td>ALA<sup>i</sup> score<sup>j</sup></td>
<td>6.5 (1.0-27.0)</td>
</tr>
</tbody>
</table>

^aNormally distributed data are presented as mean (SD). Otherwise, it is presented as median (IQR).

^bThe sum of participants falls short of 300 since room air peripheral oxygen saturation data was missing for 125 patients.

^cRT-PCR: reverse transcription–polymerase chain reaction.

^dCOPD: chronic obstructive pulmonary disease.

^eARDS: acute respiratory distress syndrome.

^fCXR: chest x-ray.

^gAI: artificial intelligence.

^hHigher AI probability scores are commensurate with a higher COVID-19 probability.

ⁱALA: affected lung area.

^jHigher AI scores of affected lung area are commensurate with a larger affected lung area.
Interobserver Reliability of Lung Lesion Severity on CXR With the BSS

The analysis showed no statistically significant difference for every lung zone evaluation and the total score in Brixia scoring between the 2 observers (Table 2).

The ICC score for the BSS for every lung zone was >0.75, with good to excellent reliability for zone A (right upper lobe [RUL]) and zone D (left upper lobe [LUL]). Excellent reliability was noted for zone B (right middle lobe), zone C (right lower lobe), zone E (left middle lobe), zone F (left lower lobe), and for the overall CXR score. The Brixia score for each lung zone and the overall CXR score had similar proportions for both AP (187/300, 62.3%) and PA (101/300, 33.7%) CXR projections. The AP had a lower ICC score with a wider 95% CI (Figure S1 in Multimedia Appendix 1).

Table 2. Difference for every lung zone evaluation and the total score in Brixia scoring between the 2 observers.

<table>
<thead>
<tr>
<th>Scoring parameter</th>
<th>Observer, median (IQR)</th>
<th>2</th>
<th>P value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone A (RUL<sup>b</sup>)</td>
<td>0.0 (0.0-1.0)</td>
<td>0.0 (0.0-1.0)</td>
<td>.33</td>
</tr>
<tr>
<td>Zone B (RML<sup>c</sup>)</td>
<td>0.0 (0.0-2.0)</td>
<td>0.0 (0.0-2.0)</td>
<td>.45</td>
</tr>
<tr>
<td>Zone C (RLL<sup>d</sup>)</td>
<td>1.0 (0.0-2.0)</td>
<td>1.0 (0.0-2.0)</td>
<td>.99</td>
</tr>
<tr>
<td>Zone D (LUL<sup>e</sup>)</td>
<td>0.0 (0.0-0.0)</td>
<td>0.0 (0.0-1.0)</td>
<td>.37</td>
</tr>
<tr>
<td>Zone E (LML<sup>f</sup>)</td>
<td>0.0 (0.0-2.0)</td>
<td>0.0 (0.0-2.0)</td>
<td>.61</td>
</tr>
<tr>
<td>Zone F (LLL<sup>g</sup>)</td>
<td>1.0 (0.0-2.0)</td>
<td>1.0 (0.0-2.0)</td>
<td>.45</td>
</tr>
<tr>
<td>Overall CXR score</td>
<td>3.0 (0.0-9.25)</td>
<td>3.0 (0.0-10.0)</td>
<td>.55</td>
</tr>
<tr>
<td>Δ Overall CXR score</td>
<td>0.0 (0.0-1.0)</td>
<td>N/A<sup>i</sup></td>
<td>N/A</td>
</tr>
</tbody>
</table>

^aP<.05 is considered statistically significant.
^bRUL: right upper lobe.
^cRML: right middle lobe.
^dRLL: right lower lobe.
^eLUL: left upper lobe.
^fLML: left middle lobe.
^gLLL: left lower lobe.
^hCXR: chest x-ray.
ⁱN/A: not applicable.

Performance Comparison Between Color Heat Map–Based AI Scoring Performance and the BSS on CXR Against SARS-CoV-2 RT-PCR Results of Patients Suspected With COVID-19 Infection

Of the 300 participants suspected with COVID-19 infection, only 32.3% (97/300) had a positive RT-PCR result. Owing to the small number of RT-PCR–positive cases and its large measurement error, no scoring system was able to statistically discriminate between patients who had a positive RT-PCR result and those who had a negative RT-PCR result.

Performance Comparison Between Color Heat Map–Based AI Scoring and the BSS on CXR Against COVID-19 Disease Severity

All scores were higher among 86% (258/300) of cases of moderate to critical disease, when compared with 14% (42/300) of cases of mild disease (P<.001). The receiver operating characteristic analysis showed that the AI probability score, AI ALA score, and BSS had excellent discrimination against COVID-19 disease severity (Table 3; Figure 2).

Compared with the performance of BSS to discriminate disease severity (sensitivity 75.7% and accuracy 79.3%), the AI ALA score had better sensitivity and accuracy (Sn 84.5% and accuracy 83.0%), while the AI probability score did not (Sn 68.2% and accuracy 69.7%). The kappa statistic showed that there were moderate agreements between AI probability score (κ=0.271±0.050; P<.001), AI ALA score (κ=0.452±0.063; P<.001), and BSS (κ=0.456±0.053; P<.001) against COVID-19 disease severity (Table 3). However, there was no significant difference between the AUC for the AI probability score (AUC 0.787) and the BSS (AUC=0.863), with a difference of 0.076 (SD 0.034, 95% CI 0.010-0.142; P=.04). Similarly, no significant difference was observed between the AI ALA score (AUC 0.857) and the BSS, with a negligible difference of 0.006 (SD 0.023, 95% CI –0.039 to 0.052; P=.76), indicating that both AI scores were comparable to BSS in discriminating disease severity (Table 4).
Table 3. AUC\(a\), optimum cutoff, Sn\(b\), Sp\(c\), positive predictive value, negative predictive value, and diagnostic accuracy for AI\(d\) scores (probability and ALA\(e\)) and BSS\(f\) in discriminating 86% (258/300) of cases of moderate to critical disease from 14% (42/300) of cases of mild disease\(g\).

<table>
<thead>
<tr>
<th></th>
<th>AUC, mean (SD)</th>
<th>P value(h)</th>
<th>Value, 95% CI</th>
<th>Cutoff</th>
<th>Sn, %</th>
<th>Sp, %</th>
<th>Acc(i), %</th>
<th>PPV(j), %</th>
<th>NPV(k), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI probability score</td>
<td>0.787 (0.033)</td>
<td><.001</td>
<td>0.722-0.852</td>
<td>≥56</td>
<td>68.2</td>
<td>78.6</td>
<td>69.7</td>
<td>95.1</td>
<td>28.7</td>
</tr>
<tr>
<td>AI ALA score</td>
<td>0.857 (0.024)</td>
<td><.001</td>
<td>0.809-0.905</td>
<td>≥1</td>
<td>84.5</td>
<td>73.8</td>
<td>83.0</td>
<td>95.2</td>
<td>43.7</td>
</tr>
<tr>
<td>BSS</td>
<td>0.863 (0.023)</td>
<td><.001</td>
<td>0.818-0.908</td>
<td>≥1</td>
<td>76.7</td>
<td>95.2</td>
<td>79.3</td>
<td>99.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

\(a\)AUC: area under the curve.
\(b\)Sn: sensitivity.
\(c\)Sp: specificity.
\(d\)AI: artificial intelligence.
\(e\)ALA: affected lung area.
\(f\)BSS: Brixia scoring system.
\(g\)Interpretation: <0.60: fail; 0.60 to 0.70: poor classification; 0.70 to 0.80: fair classification; 0.80 to 0.90: good classification; 0.9 to 1: excellent classification.
\(h\)P<.05 was considered statistically significant and emphasized by bold texts.
\(i\)Acc: accuracy.
\(j\)PPV: positive predictive value.
\(k\)NPV: negative predictive value.

Figure 2. Receiver operating characteristic curves of artificial intelligence and Brixia scoring systems against disease severity of suspected and confirmed patients with COVID-19. CXR: chest x-ray.

Table 4. The comparison between AI\(a\) and Brixia scoring AUC\(b\) values against COVID-19 disease severity.

<table>
<thead>
<tr>
<th></th>
<th>AUC, mean difference (SD)</th>
<th>95% CI</th>
<th>P value(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI probability score vs BSS(d)</td>
<td>0.076 (0.034)</td>
<td>0.010 to 0.142</td>
<td>.04</td>
</tr>
<tr>
<td>AI ALA(e) score vs BSS</td>
<td>0.006 (0.023)</td>
<td>−0.039 to 0.052</td>
<td>.76</td>
</tr>
</tbody>
</table>

\(a\)AI: artificial intelligence.
\(b\)AUC: area under the curve.
\(c\)P<.05 is considered statistically significant.
\(d\)BSS: Brixia scoring system.
\(e\)ALA: affected lung area.
The distribution of the 2 binarized groups for all 3 scores is illustrated in a histogram (Figure S2 in Multimedia Appendix 1).

The Hosmer-Lemeshow test shows good calibration and internal validation for the AI probability score ($P=90$) and AI ALA score ($P=99$). Calibration and internal validation of the BSS could not be performed.

Discussion

Principal Findings

In this study, we demonstrated that the BSS had excellent interobserver reliability (ICC>0.75) to determine the severity of lung lesions on CXR (ICC 0.950, 95% CI 0.937-0.960). Our findings are in agreement with previous studies by Mruk et al [26] (ICC=0.847, 95% CI 0.816-0.848) and Chaudhari et al [27] (ICC=0.920, 95% CI 0.880-0.950). Our study also aligns with that of Mruk et al [26], who reported that PA projection had higher interobserver agreement and reliability than AP projection. Thus, it can be assumed that PA CXR projection has better image quality and thus can affect the interpretation.

In the context of lung anatomy, zone A (RUL) and zone D (LUL) had lower ICC values than the other zones. These findings were similar to those of a previous study by Monaco et al [28], who also reported that LUL had the lowest ICC, followed by the right lower lobe and the RUL. A hypothesis explaining these findings is the left upper zone sparing phenomenon seen in COVID-19 pneumonia, that is, infiltrates rarely develop on the LUL and the RUL. Moreover, anatomical structure juxtaposition with the clavicles and scapula influences the scoring subjectivity of these zones.

Although the interobserver reliability was excellent and the mean difference in the overall CXR score was low, the interobserver score had a very wide range (Δ Overall CXR score=0.0-16.0). This difference was influenced by a myriad of factors that were not studied in this research. Similarly, van Assen et al [29] reported poor interobserver agreement when assessing disease severity. The disease severity classification was different in 82% of CXR, with 59% showing a 1° difference in disease severity. The differences were primarily observed in the intermediate group (mild and moderate severity), which can greatly affect clinical decision-making for patient management.

While the semiquantitative method may be seen as more convenient, the subjective nature of this scoring system can give rise to multiple problems, including how to determine the ground truth. Thus, supporting data is needed to justify its use [10]. Moreover, the BSS can contribute to health care workers’ burnout, especially radiologists, as the system relies on them to manually sum up the score.

No scoring system was able to statistically discriminate between which patients had a positive RT-PCR result and which ones had a negative RT-PCR result. These findings might be explained by the low prevalence of positive RT-PCR results (97/300, 32.3%), which might have been caused by a high false-negative rate, considering the true COVID-19 prevalence during the participant enrollment was 47.6% (143/300).

False-negative RT-PCR results can be explained by numerous factors, including exposure time, symptom onset, SARS-CoV-2 virulence, and specimen handling and processing [30-35]. Lai and Lam [31] showed that the interval between the day of exposure and the day of RT-PCR specimen sampling contributed to false-negative rates. False-negative rates of RT-PCR for the 0-, 5-, 8-, and 21-day interval were 100%, 35%, 20%, and 66%, respectively. Viral virulence also contributed to a false-negative rate, as reported in studies by Alteri et al [34] and Petrillo et al [35]. They showed that the false-negative rates of participants infected with low viral virulence were approaching 20% to 30%.

Another possible contributor to an increased false-negative rate was specimen transportation, considering that the viral specimen should be kept at a minimum of $-70 \, ^\circ C$ to maintain viral isolation and viability [36]. This factor is crucial owing to the unavailability of an in-house RT-PCR facility in our hospital because it was centralized in the early days of the COVID-19 pandemic. Our hospital is a national referral hospital, which might have led to referral bias. Therefore, most patients referred from lower-tier health care facilities with COVID-19 may have negative RT-PCR results as they may have passed the virulence period and many days have passed since the first onset of symptoms. Finally, according to the Indonesian COVID-19 guidelines, the RT-PCR test did not have to be repeated, contrary to the WHO and European Center for Disease Control guidelines, which state that before discharging patients, 2 negative RT-PCRs are needed [4,37].

Therefore, in our circumstances, solely relying on RT-PCR can lead to an underestimation of the COVID-19 diagnosis, which will impact the decision-making and clinical management of COVID-19. In retrospect, as the RT-PCR turnaround time is high with a high operating cost, at the height of the COVID-19 pandemic, another screening modality that is fast, inexpensive, practical, reliable, and noninvasive is needed for triaging, diagnosing, and quarantining suspected COVID-19 cases as measures to curb the pandemic. Nonetheless, this modality will act as an adjunct to conventional CXR and should be incorporated while waiting for the RT-PCR results [38]. Therefore, we preferred CXR rather than CT scan as the modality that we researched because it is widely available, inexpensive, and has low radiation exposure.

Although our findings found that AI and Brixia scoring were poor COVID-19 diagnostic modalities, they were similar to previous studies that also reported that AI and manual radiologist scoring had similar performance. Murphy et al [14] showed that the AI system (AUC 0.810) gave similar scoring results and was even superior compared to 6 radiologists ($P<.001$). This was likely because of the heterogeneous lung lesions seen on CXR in patients with COVID-19, including peripheral and diffuse opacities, which made distinguishing COVID-19 from other pulmonary diseases more challenging. In contrast, Chamberlin et al [39] stated that radiologists had a superior diagnostic ability for COVID-19 (AUC 0.936, 95% CI 0.918-0.960) compared to AI (AUC 0.890, 95% CI 0.861-0.920), despite similar discriminatory abilities between them.

However, the AI scoring system has several advantages over manual evaluation for CXR interpretation. First, an automated
and quantified AI scoring system will decrease radiologists’ overall work burden. Second, with the help of the AI scoring system, radiologists can increase their accuracy up to 99.05%, which is comparable to that of RT-PCR [40,41]. Moreover, as nonradiologists, especially medical doctors who work on the front line, are the first ones to see the CXR before interpretation by the radiologists, AI use can increase the diagnostic agreement. Hwang et al [42] showed that AI scoring gave similar results to radiologists (AUC 0.714 vs 0.712) but was superior to nonradiologists (AUC 0.714 vs 0.584). Furthermore, hybrid AI use increased diagnostic agreement significantly for both groups (radiologists’ Fleiss κ=0.688, 95% CI 0.665-0.710; nonradiologists’ Fleiss =0.510, 95% CI 0.488-0.533) [42].

In our assessment of AI and BSS performance against disease severity in patients suspected with COVID-19 infection participants, the AI ALA score exhibited higher sensitivity and diagnostic accuracy compared with the BSS, although the difference was not statistically significant. This can be explained by the fact that CAD4COVID can eliminate the technical limitations of conventional CXR, such as its quality. Furthermore, before generating scores, the software normalized the CXR image and segmented lung fields, which optimized CXR image quality [14]. Considering the limited size of our data set, it is not possible to definitively assert the superiority of the AI system over human Brixia. Nonetheless, our analysis indicates a 95% CI that the AI system’s performance is not statistically distinct from that of human Brixia. This finding serves as a promising safety signal, warranting additional comprehensive testing and assessment of AI scoring systems in larger subsequent studies aimed at real-world implementation. Regardless, both had excellent discrimination without significant differences in AUC.

In the context of evaluating AI and Brixia scoring in assessing disease severity among patients suspected with COVID-19 infection participants, both AI scoring systems demonstrated notably higher sensitivity and diagnostic accuracy when compared with the BSS. This superiority can be attributed to the capacity of CAD4COVID to overcome the inherent technical limitations often associated with conventional CXR imaging, including variations in image quality. Notably, CAD4COVID effectively normalized CXR images and meticulously segmented lung fields before generating probability and ALA scores, thereby enhancing overall image quality. Notably, both AI and human Brixia scoring exhibited excellent discrimination without significant disparities in the AUC.

To the best of our knowledge, this is the first study to compare the AI scoring performance using the CAD4COVID software based on AI probability and AI ALA score with the BSS against disease severity in patients suspected with COVID-19 infection participants. Our findings align with those of Guiot et al [43], albeit with a different modality. In their research, CAD4COVID-CT, through the ALA and CT severity score (CT-SS), was able to predict the length of stay, the odds of intensive care unit admission, the odds of mechanical ventilation, and the odds of in-hospital mortality [43]. The cutoff value chosen for odds of intensive care unit admission was CT-SS 14 with an AUC of 0.84 (95% CI 0.79-0.90) and, for odds of mechanical ventilation, it was CT-SS 16 with an AUC of 0.71 (95% CI 0.63-0.78).

The sensitivity, specificity, and accuracy of the BSS were 75.6%, 100%, and 78.4%, respectively. These values were lower than reported by Abo-Hedibah et al [44]. In their study, the BSS sensitivity, specificity, and accuracy in diagnosing moderate disease were 90.4%, 100%, and 94.6%, respectively, whereas in diagnosing severe disease, they were 100%, 84.5%, and 86.7%, respectively. Nevertheless, they referred to disease severity stratified by the WHO, whereas our study referred to the Indonesian national guidelines.

The clinical implications of these findings are 2-fold. First, with the help of AI scoring, a clinician can more confidently exclude moderately to critically ill patients with COVID-19. However, the AI scoring system is image based and not clinically applicable. Thus, it will generate conflicting results when the disease severity classification relies on clinical criteria, as seen in the WHO and Indonesian guidelines [17,45]. In contrast, the US National Institutes of Health COVID-19 guidelines do not solely rely on clinical data [46]. For example, moderate COVID-19 infection can be diagnosed if there are pulmonary infiltrates on imaging. As COVID-19 pneumonia can be asymptomatic or without typical signs and symptoms of pneumonia, we argue that disease severity should be stratified according to the National Institutes of Health guideline [46].

Second, minimal pulmonary lesions on the CXR that are sometimes undetected by manual readers could be identified by AI. The AI probability and the ALA score had higher sensitivities than the BSS to rule out moderate to critical disease. The AI probability and the ALA score can mitigate drawbacks when relying on clinical judgment and conventional radiographs. These findings are significant, as the downstream effect will include patient management, that is, outpatient or inpatient treatment.

According to our study results, we propose the incorporation and clinical application of AI use on CXR as an ancillary diagnostic tool for patients suspected with COVID-19 infection in a structured algorithm. We hope that for future COVID-19 outbreaks, this algorithm can shorten triage and diagnostic time and shorten clinical decision-making as to whether the patients need to be quarantined or hospitalized. As AI and Brixia scoring did not have discriminatory ability against RT-PCR results in suspected COVID-19 cases, we hope that with the addition of clinical and laboratory data, a more precise diagnostic model can be developed. In contrast to the RT-PCR results, the AI and Brixia scoring had an excellent ability to discriminate disease severity in patients suspected with COVID-19 infection, with superior sensitivity and accuracy observed for the former. Thus, AI scoring can be considered for CXR interpretation because of the clinical–radiological incompatibility that can sometimes be observed in patients with COVID-19 pneumonia.

Our study showed that the AI scoring system has the potential to become a disease severity classifier for patients with suspected COVID-19 infection. As the AI scoring system was generated through machine learning, with more data available to train the system, the AI scoring accuracy will continue to increase. We proposed an algorithm for AI incorporation and
AI application on CXR as an ancillary diagnostic test for patients with COVID-19 (Figure 3).

Figure 3. Proposed algorithm of artificial intelligence (AI) incorporation and AI application on chest x-ray as an ancillary diagnostic test on patients with COVID-19. ALA: affected lung area; CXR: chest x-ray; Prob: probability; RT-PCR: reverse transcription–polymerase chain reaction.

Limitations
Our study has several limitations. First, the study population is relatively small compared with the COVID-19 prevalence during the participant’s enrollment, owing to missing data and the study’s exclusion criteria. Second, as our hospital is a national referral hospital, most patients came with moderate to critical disease and presented with other pulmonary lesions. Furthermore, several study variables could not be retrieved as they were not incorporated into the patient’s medical record. Finally, in the early days of the pandemic, our hospital did not have an in-house RT-PCR facility because of the centralized specimen processing, so the specimen had to be delivered to another facility, which could further compromise RT-PCR results.

Conclusions
The AI score for the ALA and the human radiologist Brixia score had similar and good discrimination performance in predicting COVID-19 severity. Our study demonstrated that using AI-based diagnostic tools is possible, even in low-resource settings. However, before it is widely adopted in daily practice, more studies with a larger scale and prospective in nature are needed to confirm our findings.

Acknowledgments
The authors thank Delft Imaging for providing CAD4COVID free of charge. The research team institutions have also signed a joint research arrangement between Universitas Indonesia, Dr. Cipto Mangunkusumo National Referral Hospital, and Delft Imaging System, encompassing rights and obligations for each party on data confidentiality during and after the research period. This study was supported by Universitas Indonesia PUTI Q1 2022 Research Grant NKB-429/UN2. RST/HKP:05.00/2022. The code for CAD4COVID is not publicly available as it is proprietary software. Any questions that arise regarding the CAD4COVID software can be directed to the Delft Imaging website [47]. The authors are also grateful for the valuable assistance provided by Dr Kahlil Gibran in acquiring data. All authors declared that they had insufficient or no funding to support open access publication of this manuscript, including from affiliated organizations or institutions, funding agencies, or other organizations. JMIR Publications provided article processing fee (APF) support for the publication of this article.

All authors declared that they had insufficient or no funding to support open access publication of this manuscript, including from affiliated organizations or institutions, funding agencies, or other organizations. JMIR Publications provided APF support for the publication of this article.
Data Availability
The data that support the findings of this study are available from the corresponding author on reasonable request.

Authors’ Contributions
EDT, REY, and BZ were instrumental in the conceptualization, formal analysis, investigation, methodology, and writing of the original draft. MRY contributed to data curation and played a significant role in reviewing and editing the manuscript. CWP provided supervision and was involved in the manuscript review and editing process. MMA also contributed to data curation and manuscript editing. TNI was responsible for formal analysis and contributed to the writing by reviewing and editing. AP provided resources and data curation. AS and JH were involved in data curation, formal analysis, and enhanced the manuscript through their reviewing and editing efforts. CMR, VW, KH, AL, HS, and PS provided supervision and lent their expertise to the reviewing and editing of the writing. Finally, PAY was pivotal in project administration and resources, and provided supervision in addition to reviewing and editing the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplementary tables and figures.

[DOCX File, 341 KB - formative_v8i1e46817_app1.docx]

References

33. Tenda et alJMIR FORMATIVE RESEARCH | vol. 8 | e46817 | p.1203https://formative.jmir.org/2024/1/e46817

https://formative.jmir.org/2024/1/e46817
47. CAD4COVID. Delft Imaging. 2023. URL: https://www.delft.care/cad4covid/ [accessed 2024-02-23]

Abbreviations

AI: artificial intelligence
ALA: affected lung area
AP: anteroposterior
AUC: area under the curve
BSS: Brixia scoring system
CT: computed tomography
CT-SS: computed tomography severity score
CXR: chest x-ray
ICC: intraclass correlation coefficient
LUL: left upper lobe
PA: posteroanterior
RSCM: Rumah sakit Dr. Cipto Mangunkusumo
RT-PCR: reverse transcription–polymerase chain reaction
RUL: right upper lobe
WHO: World Health Organization
Developing a Novel Web-Based Self-Management Support Intervention for Polycystic Ovary Syndrome: Mixed Methods Study With Patients and Health Care Professionals

Abstract

Background: Polycystic ovary syndrome (PCOS) represents a significant global health burden requiring urgent attention. This common chronic endocrine and cardiometabolic condition affects around 1 in 10 women and individuals assigned female at birth, with significant adverse effects on well-being, quality of life, and mental health, as well as serious and complex long-term health consequences. International guidelines for best health care practice recommend the provision of comprehensive cognitive behavioral interventions to support self-management and improve health outcomes for those living with PCOS. Web-based health interventions have the potential to meet this need in an accessible and scalable way.

Objective: We aim to identify barriers to self-management and psychological well-being in women with PCOS and adapt a web-based self-management program to provide a prototype digital support intervention for them.

Methods: We adapted an existing support program (HOPE) for PCOS using the antecedent target measure approach. We conducted qualitative interviews with 13 adult women living with PCOS, 3 trustees of a patients with PCOS advocacy charity, and 4 endocrinologists to identify “antecedents” (barriers) to self-management and psychological well-being. Framework analysis was used to identify potentially modifiable antecedents to be targeted by the novel intervention. At a national conference, 58 key stakeholders (patients and health professionals) voted for the antecedents they felt were most important to address. We used research evidence and relevant theory to design a prototype for the PCOS intervention.

Results: Voting identified 32 potentially modifiable antecedents, relating to knowledge, understanding, emotions, motivation, and behaviors, as priorities to be targeted in the new intervention. A modular, web-based prototype HOPE PCOS intervention was developed to address these, covering six broad topic areas (instilling HOPE for PCOS; managing the stress of PCOS; feeding your mind and body well; body image, intimacy, and close relationships; staying healthy with PCOS; and keeping PCOS in its place).

Conclusions: We identified barriers to self-management and psychological well-being in women with PCOS and used these to adapt a web-based self-management program, tailoring it for PCOS, which is a comprehensive group intervention combining education, empowerment, lifestyle management, peer support with cognitive behavioral tools, and goal-setting (to be delivered by peers or codelivered with health care professionals). The modular structure offers flexibility to adapt the program further as new clinical recommendations emerge. The intervention has the potential to be delivered, evaluated for feasibility, and, if effective, integrated into health care services. Self-management interventions are not designed to replace clinical care; rather, they serve as an additional source of support. The HOPE PCOS program conveys this message in its content and activities. Future research should evaluate the prototype intervention using primary outcomes such as measures of psychological well-being, self-management self-efficacy, depression, anxiety, and PCOS-related quality of life. They should also assess the intervention’s acceptability, scalability, and cost-effectiveness.
Introduction

A Complex Condition With Serious Physical and Mental Health Consequences

Polycystic ovary syndrome (PCOS) represents a significant global health burden requiring urgent attention [1]. It is a common chronic cardiometabolic condition affecting around 1 in 10 women and individuals assigned female at birth. PCOS has diverse symptoms, for example, acne, alopecia, hirsutism, obesity, impaired glucose metabolism, menstrual disturbances, and subfertility [2-4]. It has significant adverse effects on well-being, quality of life, and mental health. For example, compared with healthy controls, women with PCOS have lower health-related quality of life and higher scores on symptoms of depression and anxiety [5-9], and appear to be at risk for disordered eating [10-14] and unhealthy weight management practices [15]. There is also evidence that women with PCOS may experience impaired sexual satisfaction [16], which may impact relationship satisfaction for those in intimate relationships [17]. The adverse mental health impact of PCOS may have been worsened during the COVID-19 pandemic, as patients faced an uncertain risk of contracting COVID-19, more limited access to health care services, and barriers to using their normal support strategies [18].

PCOS has serious and complex long-term health consequences [19,20]. Women with PCOS are at increased risk of sleep disturbances [21] and obstructive sleep apnea [22,23] and appear to have an elevated risk for postpartum depression [24]. They also have an increased risk of developing type 2 diabetes and cardiovascular complications [4]. Hospital admission rates for patients with PCOS have been reported to be twice as high as those without the condition [25].

The Need for Self-Management Support

PCOS is a long-term condition with no cure, having a wide range of treatment options but no single treatment that targets every symptom or concern. Treatments are often complex and multifaceted and often include recommendations for lifestyle change, for example, altering diet and increasing physical activity [4]. Considerable self-management is required on the part of those living with PCOS, including adherence to treatment. There are wide disparities in adherence, with 1 review suggesting adherence rates ranging from 21.7% to 86% [26]. A large-scale survey suggests women with PCOS are open to adjusting their diet and physical activity to improve their health, but few achieve their goals [27].

Recent qualitative research [28-33] has identified that women with PCOS face a range of barriers to following health professionals’ lifestyle advice, including limited access to credible information, time, cost, and lack of access to safe exercise spaces, with some women lacking adequate social support, having unsupportive partners, or struggling to prioritize their own health because of responsibilities for feeding children [29]. In addition, women’s motivation and capability to adhere to recommended lifestyle changes may be impacted by the complex and multifaceted nature of PCOS, including fatigue, anxiety, depression, difficult emotions, disordered eating, the impact of stress, sleep disturbances, and a lack of critical health literacy [28,29,31-33]. Features of PCOS itself may add to the burden of following lifestyle advice, especially around weight management. For example, altered regulation of gut hormones and energy expenditure may affect women’s capability to follow diet and exercise regimes [28].

The Need for Comprehensive, Evidence-Based, Coproduced Interventions

Patients with PCOS value specialized, integrated health care services [34], and it has been argued that the ideal model of care would be “evidence-based, patient-centered, codeveloped by consumers and health professionals” [35]. International guidelines advise (in addition to appropriate medical treatment) “Comprehensive health behavioral or cognitive behavioral interventions could be considered to increase support, engagement, retention, adherence, and maintenance of a healthy lifestyle and improve health outcomes in women with PCOS.” [4]. There is therefore scope for developing new interventions that combine education and cognitive behavioral approaches with peer support to promote physical activity, healthy eating, and emotional well-being in women with PCOS. This multifaceted approach reflects the tradition of long-term self-management that is well established in other endocrine conditions, such as diabetes [36]. Self-management is arguably broader than lifestyle change, referring to what patients must do to manage their own health in collaboration with health professionals [37,38]. This may include behavior change but also requires emotional regulation, coping, and maintaining general well-being, such as self-worth, a positive outlook, and hope [39].

Objectives for This Study

The first aim of the study was to identify barriers to self-management and psychological well-being in women with PCOS. The second aim was to combine insights from these data to co-creatively adapt an existing web-based program to offer a prototype peer-delivered, self-management intervention to empower and support women with PCOS to enhance their psychological well-being and, if they chose to, to make appropriate lifestyle changes to self-manage their condition.

To develop our novel self-management intervention for PCOS, we selected an existing intervention that has been researched and developed with multiple patient groups. The HOPE program [40] is a complex intervention for long-term condition self-management with a distinctive theory and evidence base from positive psychology [41]. The HOPE program has reduced anxiety and depression and increased positive well-being for...
people with a range of health conditions and support needs, for example, people living with multiple sclerosis [42], parents of children with developmental disorders [43], and people living with and after cancer [44].

Methods

Approach to Intervention Development

The UK Medical Research Council’s (MRC) guidance on developing complex interventions [45,46] recommends that intervention development should be “a dynamic iterative process, involving stakeholders, reviewing published research evidence, drawing on existing theories, articulating program theory, undertaking primary data collection, understanding context, paying attention to future implementation in the real world, and designing and refining an intervention using iterative cycles of development with stakeholder input throughout” [46]. The most recent framework commissioned by the National Institute of Health Research and the MRC [47] further emphasizes the importance of developing interventions that are “implementable, cost-effective, transferable, and scalable in real-world conditions.” This may include adapting existing interventions and using existing, for example, digital infrastructure, rather than developing wholly new interventions ab initio. We chose to adapt and tailor an existing intervention to build on its previous successes and use its proven, scalable digital infrastructure to offer a PCOS intervention that would be as implementable, transferable, and scalable as possible.

The HOPE cancer program from which this intervention was adapted [44] was developed following the MRC recommended processes and continues to undergo refinements as each cohort or variant of the program is completed. In adapting HOPE for PCOS, we conducted an initial needs assessment with key stakeholders, reviewed published research evidence from primary sources, review papers, and international clinical guidelines, and drew on established and emerging theories about psychological well-being to produce a prototype digital intervention [48] that could be subjected to feasibility testing.

Underpinning Theory and Evidence: Self-Management Versus Behavior Change

Interventions in the field of health behavior are more likely to be successful if they are theory-based [49]. A number of different approaches were considered for adapting the existing HOPE program, including the behavior change wheel [50] and intervention mapping [51]. However, both of these approaches require very clear specification at the outset of the intervention design of what the target behavior is that the intervention seeks to increase, decrease, promote, or modify. “Lifestyle change” is recommended as a first-line treatment in relation to the management of PCOS, and this often refers to changes to diet and physical activity. However, there is as yet no international consensus as to what precise optimal self-management behaviors might be in PCOS, and it was felt that the groundwork was lacking for the development of a behavior change intervention per se. Given the diversity of the PCOS population, for example, some are lean, some are living with overweight and obesity, some are trying to conceive, others are not, some are physically active, some are more sedentary, some have issues around eating, and others are not, the development of a behavior change intervention to meet the needs of all these was beyond the scope of this study. As our objective was to adapt the existing HOPE program to support self-management, reduce depression and anxiety, and promote psychological well-being rather than develop a completely new intervention from scratch, we used the design process outlined in the following sections.

Cocreation Process

An iterative process of cocreation was used to develop the intervention, using a mixed methodology. An initial needs assessment was conducted with key stakeholders, following the antecedent target measure (ATM) approach [52,53]. This is a flexible model that has been used in the development of previous self-management interventions, for example, for people living with cancer or dementia [54,55].

Initial Data Collection

Semistructured interviews were conducted with women living with PCOS, trustees of the Verity UK PCOS charity who themselves had PCOS, and endocrinologists who provided services to patients with PCOS at a large publically funded teaching hospital.

Participant Characteristics

Those with lived experience of PCOS were 13 adult women recruited through purposive sampling from social media. All had received a formal diagnosis of PCOS from health professionals at least 6 months before the study and took part in individual interviews. The Verity trustees were 3 adult women, all diagnosed with PCOS by National Health Service (NHS) clinicians, who volunteered to be interviewed to assist with the “cocreation” of the new intervention. The health professionals interviewed in December 2016 were 4 endocrinologists working for a large UK NHS teaching hospital, which has a specialist clinic for PCOS.

Procedure

Interviewees were presented with the problem statement “Some women with PCOS struggle to cope and self-manage effectively” and asked if they agreed and, if so, to give all the reasons why. The reasons given (“antecedents” in the terminology of ATM) were typically difficulties women experience with PCOS and in self-managing their condition. Interviews continued until participants felt they had exhausted all the antecedents they viewed as relevant for PCOS. Antecedents and the conversation through which they were generated were audio recorded and transcribed verbatim for the patient interviews. Antecedents were transcribed contemporaneously for the trustee and health professional interviews.

Analysis

All the antecedents generated across interviews were collated and analyzed thematically following the framework analysis approach to theme development [56] to identify potential targets for intervention. When targets were chosen for intervention, only those considered to be potentially amenable to change by a self-management intervention were selected. For example,
the following antecedents were excluded: endocrine characteristics of PCOS itself, social and environmental factors such as stigmatizing behavior from others, and issues with the health care system such as general practitioners’ awareness of PCOS. Once antecedents judged to be unsuitable targets for the intervention were excluded, 36 potentially modifiable antecedents remained.

Stakeholder Voting on Priorities for Intervention

A web-based survey was created listing the 36 modifiable antecedents, and delegates at a national public engagement conference were asked to rate each of these on a 5-point scale of how important they would be to target in a self-management intervention (0=not at all important, 1=somewhat important, 2=important, 3=extremely important, and 4=crucial). Conference delegates included patients with PCOS and advocates and some health professionals treating PCOS, of whom 58 voted in the survey. All modifiable antecedents scoring 2.5 or above were retained as intervention targets; antecedents scoring below 2.5 were discarded.

Literature Searches for Intervention Targets

Literature searches were conducted, and clinical guidelines were consulted to generate further intervention targets. Review and systematic review papers [2,16,57-68] were reviewed alongside an international clinical guideline for the management of PCOS [4]. No new targets were generated from the literature, which confirmed the findings from the needs assessment with key stakeholders.

Adaptation of Existing Digital Intervention and Consultation With Stakeholders

The existing HOPE program has previously been specified using the Practical Reviews in Self-Management Support (PRISMS) self-management intervention taxonomy [69], and new intervention components were mapped onto or added to the program specification. New program content specific to the prototype PCOS program was created to complement the existing HOPE program materials. A paper prototype was presented to key stakeholders from the PCOS support charity, and following discussion, the new program materials were created and uploaded into the secure web-based platform that hosts the HOPE program. This produced a 6-week web-based intervention ready for feasibility testing.

Ethical Considerations

This study received clearance from the Coventry University Research and Ethics Governance Committee (approvals P40730, P44631, and P45355). For the data collection from health care professionals, NHS Research Ethics Committee approval was not required. A letter of access for research was provided by the Research, Development, and Innovation office of the University Hospitals Coventry and Warwickshire NHS Trust. Participants provided written, informed consent before being interviewed. Patients with PCOS and health care professionals at the public engagement event completed a digital informed consent statement before completing the web-based voting survey. Interview transcripts were anonymized for analysis. No personally identifiable data were collected in the voting survey. No compensation was offered to any participants.

Results

Stakeholder Needs Assessment and Voting

Table 1 shows the list of modifiable antecedents presented in the next stage of the intervention design.

Figure 1 shows a diagrammatic representation of the logic model developed from the PCOS self-management needs assessment done with stakeholders.
Table 1. Modifiable antecedents of polycystic ovary syndrome (PCOS) self-management and psychological well-being in order of priority, as voted on by patient and health care professional delegates at the public engagement event.

<table>
<thead>
<tr>
<th>Potentially modifiable antecedent</th>
<th>Mean score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge and understanding: long-term implications of PCOS</td>
<td>3.34</td>
</tr>
<tr>
<td>Knowledge and understanding: how to get the most from the health care system</td>
<td>3.31</td>
</tr>
<tr>
<td>Knowledge and understanding: how to eat well in PCOS</td>
<td>3.26</td>
</tr>
<tr>
<td>Emotions: low self esteem</td>
<td>3.21</td>
</tr>
<tr>
<td>Knowledge and understanding: what self-management of PCOS entails</td>
<td>3.19</td>
</tr>
<tr>
<td>Knowledge and understanding: how to use physical activity to manage PCOS</td>
<td>3.12</td>
</tr>
<tr>
<td>Knowledge and understanding: which information sources to trust</td>
<td>3.12</td>
</tr>
<tr>
<td>Motivation: women may find it hard to maintain motivation long-term</td>
<td>3.12</td>
</tr>
<tr>
<td>Emotions: feeling not properly feminine</td>
<td>3.09</td>
</tr>
<tr>
<td>Knowledge and understanding: the basic biology of PCOS</td>
<td>3.09</td>
</tr>
<tr>
<td>Emotions: depression and low mood</td>
<td>3.07</td>
</tr>
<tr>
<td>Behaviors: women may not follow a PCOS-healthy diet</td>
<td>3.02</td>
</tr>
<tr>
<td>Emotions: struggling to make healthy choices</td>
<td>3.02</td>
</tr>
<tr>
<td>Behaviors: women may eat in disordered ways, for example, binge eating and overeating</td>
<td>3.00</td>
</tr>
<tr>
<td>Motivation: women may lack motivation to self-manage</td>
<td>3.00</td>
</tr>
<tr>
<td>Emotions: embarrassment and shame</td>
<td>2.95</td>
</tr>
<tr>
<td>Motivation: women may have low confidence to self-manage</td>
<td>2.95</td>
</tr>
<tr>
<td>Behaviors: women may not use physical activity to manage their PCOS effectively</td>
<td>2.91</td>
</tr>
<tr>
<td>Emotions: lack of trust in health professionals</td>
<td>2.91</td>
</tr>
<tr>
<td>Emotions: anxiety and fear</td>
<td>2.90</td>
</tr>
<tr>
<td>Behaviors: women may not prioritize their own needs effectively</td>
<td>2.88</td>
</tr>
<tr>
<td>Motivation: women may lack clear self-management goals</td>
<td>2.79</td>
</tr>
<tr>
<td>Behaviors: women may avoid or give up on self-management</td>
<td>2.76</td>
</tr>
<tr>
<td>Emotions: frustration and anger</td>
<td>2.71</td>
</tr>
<tr>
<td>Emotions: loneliness and isolation</td>
<td>2.71</td>
</tr>
<tr>
<td>Motivation: women may not find physical activity enjoyable</td>
<td>2.67</td>
</tr>
<tr>
<td>Skills: women need better skills to communicate needs to health professionals</td>
<td>2.62</td>
</tr>
<tr>
<td>Behaviors: women may not self-monitor their menstrual cycle effectively</td>
<td>2.60</td>
</tr>
<tr>
<td>Motivation: women may be in denial and avoid trying to self-manage</td>
<td>2.60</td>
</tr>
<tr>
<td>Motivation: women may have unrealistic goals</td>
<td>2.59</td>
</tr>
<tr>
<td>Knowledge and understanding: women may have unrealistic expectations of the female body</td>
<td>2.57</td>
</tr>
<tr>
<td>Behaviors: women may isolate themselves from social contact</td>
<td>2.52</td>
</tr>
<tr>
<td>Behaviors: women may hide their self-management activity from othersa</td>
<td>2.47</td>
</tr>
<tr>
<td>Motivation: women may not be ready yet to start self-managinga</td>
<td>2.41</td>
</tr>
<tr>
<td>Behaviors: women may not take medications as prescribeda</td>
<td>2.21</td>
</tr>
<tr>
<td>Behaviors: women may self-harma</td>
<td>2.17</td>
</tr>
</tbody>
</table>

Potential antecedents scoring below 2.5 were discarded as intervention priorities. This left 32 antecedents that were targeted by the new intervention, 10 of which were thematically categorized in the framework analysis under behaviors, 9 under emotions, 8 under knowledge and understanding, 8 under motivation, and 1 under skills.
In a typical ATM design, logic models are often presented as linear processes in which 1 antecedent, such as knowledge or understanding, is represented as preceding another, such as motivation or behavior. We have selected the metaphor of interlocking gears for our schematic logic model on the assumption that knowledge, understanding, skills, motivation, emotions, and behavior interlock and may drive or impede each other, at times facilitating or hampering effective self-management. For example, a person might gain helpful knowledge about their condition, but without developing skills to apply this to practice, they might be unable to engage in effective self-management behaviors. Similarly, a person might have adequate knowledge, understanding, and skills to manage their condition, but difficult emotions might adversely impact their motivation and prevent effective self-management. This logic model was used to inform the adaptation of the existing HOPE program framework to produce a specific version for PCOS.

Mapping Modifiable Antecedents Onto Intervention Content

Table 2 shows how the antecedent “problems” derived from the logic model were mapped onto solution-focused content across 6 sessions of the prototype intervention.
Table 2. Mapping of antecedents of polycystic ovary syndrome (PCOS) self-management and psychological well-being onto new PCOS self-management intervention session content.

<table>
<thead>
<tr>
<th>Potentially modifiable antecedent</th>
<th>Course sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Long-term implications of PCOS</td>
<td>✓</td>
</tr>
<tr>
<td>Getting the most from the health care system</td>
<td>✓</td>
</tr>
<tr>
<td>How to eat well in PCOS</td>
<td>✓</td>
</tr>
<tr>
<td>Coping with low self esteem</td>
<td>✓</td>
</tr>
<tr>
<td>What self-management of PCOS entails</td>
<td>✓</td>
</tr>
<tr>
<td>How to use physical activity to manage PCOS</td>
<td>✓</td>
</tr>
<tr>
<td>Which information sources to trust</td>
<td>✓</td>
</tr>
<tr>
<td>Maintaining motivation longer term</td>
<td>✓</td>
</tr>
<tr>
<td>Coping with feeling “not properly feminine”</td>
<td>✓</td>
</tr>
<tr>
<td>Basic biology of PCOS</td>
<td>✓</td>
</tr>
<tr>
<td>Coping with depression and low mood</td>
<td>✓</td>
</tr>
<tr>
<td>Following a PCOS-healthy diet</td>
<td>✓</td>
</tr>
<tr>
<td>Making healthy choices</td>
<td>✓</td>
</tr>
<tr>
<td>Coping with eating distress, for example, binge eating and overeating</td>
<td>✓</td>
</tr>
<tr>
<td>Motivation to self-manage</td>
<td>✓</td>
</tr>
<tr>
<td>Coping with embarrassment and shame</td>
<td>✓</td>
</tr>
<tr>
<td>Confidence to self-manage</td>
<td>✓</td>
</tr>
<tr>
<td>Using physical activity to manage PCOS</td>
<td>✓</td>
</tr>
<tr>
<td>Trust in health professionals</td>
<td>✓</td>
</tr>
<tr>
<td>Coping with anxiety and fear</td>
<td>✓</td>
</tr>
<tr>
<td>Prioritizing your own needs</td>
<td>✓</td>
</tr>
<tr>
<td>Setting clear self-management goals</td>
<td>✓</td>
</tr>
<tr>
<td>Not giving up on self-management</td>
<td>✓</td>
</tr>
<tr>
<td>Coping with frustration and anger</td>
<td>✓</td>
</tr>
<tr>
<td>Coping with loneliness and isolation</td>
<td>✓</td>
</tr>
<tr>
<td>Finding a physical activity that is enjoyable</td>
<td>✓</td>
</tr>
<tr>
<td>Skills to communicate with health professionals</td>
<td>✓</td>
</tr>
<tr>
<td>Monitoring your menstrual cycle</td>
<td>✓</td>
</tr>
<tr>
<td>How to keep trying to self-manage</td>
<td>✓</td>
</tr>
<tr>
<td>Setting realistic goals</td>
<td>✓</td>
</tr>
<tr>
<td>Realistic expectations of the body</td>
<td>✓</td>
</tr>
<tr>
<td>Getting social support</td>
<td>✓</td>
</tr>
</tbody>
</table>

Choosing Theory- and Evidence-Based Intervention Components to Address Modifiable Antecedents of Self-Management

The HOPE program framework used to develop the PCOS intervention includes the following self-management intervention components: information about available resources, safety netting, training and rehearsal to communicate with health care professionals, training and rehearsal in psychological strategies, social support, and lifestyle advice and support [69]. Below, we outline how specific intervention content was selected to address the antecedents identified in the logic model for PCOS self-management.

Information and Activities to Target Knowledge and Understanding for Self-Management

Women with PCOS have unmet information needs [63,70-72] and may lack knowledge of how to manage their condition, for example, how to eat well to manage insulin resistance [33,73]. Unmet information needs may adversely impact...
self-management, including adherence to treatment [26,28,32,74,75]. PCOS-specific information is valued by patients with PCOS and may address unmet psychosocial needs [76-78], potentially enhancing understanding, reducing anxiety, and promoting quality of life [79]. There is a plethora of information sources available on the web, of varying quality, making it difficult for women with PCOS to select trustworthy material [71,80-83]. Signposting to trustworthy information sources may support patient activation and self-management. In the prototype intervention, factual information is provided about PCOS, including androgen excess and food intake, blood sugar and insulin resistance, eating well, and managing weight. The needs assessment and previous research [84,85] indicate women may have concerns about the long-term health sequelae of PCOS. Motivation to adopt healthy lifestyles may be impacted by perceptions of the health risks associated with PCOS [28]. In the prototype intervention, content is provided on focusing on future health and ways to manage emerging health concerns and worries. Information about specialist health professionals, the range of support, and some potential treatment options is designed to empower participants to be active partners in their health care. The intervention seeks to empower participants to engage in health protective behaviors, for example, exercise, healthy eating, self-monitoring of their health, managing worries to alleviate health anxiety, and future help-seeking as any new health issues arise. Links to further information and resources are provided, for example, Verity (a UK PCOS charity), the NHS Choices website, the NHS Improving Access to Psychological Therapies service, and the AskPCOS app [86].

Goal Setting and Feedback to Target Self-Management Motivation and Behavior

Women with PCOS may struggle to achieve the goals they set for lifestyle change [27], may lack the ability to identify and resolve barriers [32], experience tiredness, feel unrewarded, or have depressive and defeating thoughts that act as barriers to achieving their goals [29]. Goal setting is a widely used and effective component of self-management support [87,88]. Goal-oriented care, emphasizing patient priorities and values, may be particularly appropriate for patients with chronic or multifaceted health concerns [89]. Goal-setting theory and research recommend paying attention to multiple goal factors and multiple phases in the goal process [90].

Goal setting and solution-focused goal feedback are included in every session of the prototype intervention, with weekly and long-term goals chosen by participants themselves based on their personal priorities and values rather than set or recommended by program facilitators. The goal-setting and feedback processes are facilitated by peer facilitators, with attention to goal difficulty, goal specificity, goal proximity, goal commitment, and solution-focused feedback.

Psychoeducation and Activities to Target Emotions

Women with PCOS are prone to higher perceived stress [91], and stress may also impact women with PCOS differently and have an impact on the physiology of the condition [92,93]. Stress may be a barrier to lifestyle change [32]. Mindfulness-based stress reduction activities have been effective in reducing stress, depressive, and anxiety symptoms in PCOS [94] and in increasing self-efficacy for physical activity and nutrition behaviors [95]. Physical activity has well-recognized benefits for mood and perceived stress [96,97], including in women with PCOS [98,99]. In the prototype intervention, content is provided on managing stress, including mindfulness, soothing rhythm breathing, guided imagery, and “get active, feel good.” Because interviews with health professionals during the needs assessment suggested that some women with PCOS may exercise in dysfunctional ways in order to lose weight, the PCOS prototype intervention does not promote exercise for weight loss per se but rather for stress management and general well-being.

Psychological comorbidities may be a barrier to lifestyle change [32]. Interventions using aspects of cognitive behavioral therapy (CBT) have shown promise for improving fatigue, quality of life, weight loss, and depressive symptoms in women with PCOS [100-103]. In the prototype intervention, CBT-informed content is provided on managing common unhelpful thinking patterns. Compassionate mind approaches (sometimes referred to as part of a “third wave” of CBT) are particularly relevant to disordered eating, emotional eating, and weight management [104-107]. In the prototype intervention, a compassionate mind approach is taken to eating well, including eating mindfully, overeating, binge eating, and self-soothing.

Self-compassion activities, compassionate mind training, and compassion-focused therapy have been demonstrated to be particularly beneficial in improving anxiety, depression, shame, and self-criticism [106,108-111]. These issues have been identified as common in populations with PCOS. In the prototype intervention, content is provided on self-compassion, including, for example, compassion for perceived flaws, toward feelings of embarrassment or shame, and “getting to know your inner critic.”

Women with PCOS may have reduced relational and marital satisfaction [17,112], sexual satisfaction, function, and sense of sexual attractiveness [16,113-119]. Body dissatisfaction may be a barrier to lifestyle change [28]. The prototype intervention discusses and seeks to normalize the topic of common body changes and associated distress, for example, acne, alopecia, hirsutism, obesity, and associated low self-esteem, frustration, and depression, which have been identified in previous research [84,120-123], and in the needs assessment. Content is provided on common body changes in PCOS and associated difficult emotions. The potential impact of PCOS on intimate relationships and sexuality is explored, along with suggestions for ways to cope and adjust.

The population with PCOS is diverse, including women who will be more or less concerned about visible or invisible body changes. Interventions may empower them to respond and adjust in ways that are personally appropriate, including accepting changes, making adaptations, or seeking treatment, for example, for obesity or hirsutism. Previous research, including the needs assessment, indicates that embarrassment or shame may lead women to conceal the extent of their bodily changes, even from health professionals [124-127]. In the prototype intervention,
content is provided on responding to change, including acceptance, treatments and adaptations, and overcoming embarrassment to get help for body changes. The PCOS intervention takes an autonomy or body acceptance approach [128,129]. Unrealistic female body standards and body-positive activism are discussed in the program materials.

Women may struggle to manage and control their PCOS symptoms, especially if they have comorbidities, sometimes feeling controlled by their condition [84]. Motivational imagery interventions are widely used in sports psychology, with benefits for motor performance, motivational outcomes, and affective outcomes [130] and found to be motivating by a number of different populations, including people trying to manage their weight or type 2 diabetes [131,132]. Emotional mental imagery interventions have shown promise for reducing anxiety and depression [133,134]. Prospective (future-focused) mental imagery interventions are particularly relevant to fostering optimism in people with depression [135]. In the prototype intervention, content is provided on life priorities and motivational imagery—“keeping PCOS in its place”—and future-focused mental imagery.

Positive psychology interventions, such as character strengths and gratitude diaries, which focus on function rather than dysfunction, have shown promise in treating anxiety, depression, low mood, and low self-esteem and in promoting positive well-being [136-138]. In the prototype intervention, content is provided on maximizing psychological resources, for example, by focusing on character strengths and gratitude diaries rather than focusing purely on psychological deficits and dysfunctions.

Activities for Development of Self-Management Communication Skills

Being able to communicate the need for practical and social support is essential for effective self-management. Communicating with friends, family, peers, and health professionals may be particularly difficult for women with PCOS because of its sometimes visible, sometimes invisible nature and associated taboos and stigma [139-142]. In the prototype intervention, content is provided on communication, including communicating concerns with friends, family, peers, and health professionals.

The intervention explicitly acknowledges the issue that some women with PCOS may lack trust in, or feel dismissed or stigmatized by, health professionals [70,71,143-147]. Some health professionals treating PCOS recognize that “lifestyle change,” especially around weight, is a sensitive topic [148], but some patients report a lack of trust in and perceived lack of empathy from health professionals. Intervention materials in the prototype explore and deconstruct health communication around weight to foster shared understanding and trust.

People with long-term health conditions need a range of knowledge and skills to navigate health care systems and participate actively in consultations and care [149]. In the prototype intervention, content is provided on maximizing support from health services and health professionals, including health care specialists who treat PCOS, treatments, “why it may sometimes sound like health professionals are being preachy or judgemental,” summarizing concerns and requesting a referral, shared agenda setting at health care appointments, and communicating clearly and assertively with health professionals.

Building on Therapeutic Peer Group Factors and Collective Advocacy

Women with PCOS are interested in group education interventions [150]. Group psychosocial and psychoeducational interventions provide particular therapeutic factors, for example, instillation of hope, universality, imparting of information, and opportunities for altruism and catharsis [151]. A lack of social support may be a barrier to lifestyle change [32,33]. Group and peer support, provided face-to-face or on the web, have been beneficial for those living with PCOS [76,78,152-154]. Peers delivering interventions may be well placed to express empathy and to act as realistic role models, supporting self-management [155-157].

Peer group factors are emphasized and facilitated throughout the prototype PCOS intervention, including, for example, self-management, “your PCOS journey,” getting peer support, open space forums, support from health professionals, peers, and the UK PCOS charity, and signposting to ongoing participation with PCOS-related groups and networks. The intervention is delivered in a web-based group format with secure digital social sharing features, for example, a gratitude wall, hopes and dreams, goal sharing, and delivery by trained peer facilitators who themselves had PCOS. Group delivery allows the intervention to be made available to multiple participants, saving time and resources for facilitators.

Improving health care access and outcomes for PCOS is not simply a matter of individual patient assertiveness. Collective collaborative action between patients, health professionals, and powerful others is needed to bring about change. In the prototype intervention, content acknowledges the limits of personal assertiveness and emphasizes the value of collective action. For example, we signpost to activism by Verity [158] and other women’s health organizations.

Modular Web-Based Format for Accessibility And Scalability

Digital health interventions offer considerable scope for accessibility and scalability [159]. The prototype PCOS intervention is designed to be delivered digitally through a secure social platform developed by the social enterprise community interest company Hope for the Community (H4C) [160]. The social enterprise company hosts the intervention and has a track record of scaling up the existing HOPE interventions for a range of commissioners. The H4C web-based intervention platform allows peers to support each other and engage in synchronous or asynchronous therapeutic activities in a web-based space without the logistical and practical difficulties of travel and finding venues and times suitable for all.

Program Specification

Textbox 1 shows the content of the 6-week prototype intervention program. Solution-focused goal setting and feedback, open forum discussions, and further resources are provided in every session.
The H4C team uploaded the additional content and created a working prototype intervention that was checked and tested, ready for a pilot study with women living with PCOS.
Textbox 1. Content of polycystic ovary syndrome (PCOS) intervention.

<table>
<thead>
<tr>
<th>Session 1: Instilling HOPE for PCOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Welcome and introductions</td>
</tr>
<tr>
<td>• Responsibilities and ground rules</td>
</tr>
<tr>
<td>• Instilling HOPE</td>
</tr>
<tr>
<td>• Diaphragmatic breathing</td>
</tr>
<tr>
<td>• Gratitude diary</td>
</tr>
<tr>
<td>• Your PCOS journey</td>
</tr>
<tr>
<td>• Support from health professionals, peers, and Verity (UK PCOS charity)</td>
</tr>
<tr>
<td>• PCOS basics: androgen excess & insulin resistance</td>
</tr>
<tr>
<td>• Test your PCOS basics: quiz</td>
</tr>
<tr>
<td>• Factual information about PCOS</td>
</tr>
<tr>
<td>• Self-management</td>
</tr>
<tr>
<td>• Self-compassion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2: Managing the stress of PCOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gratitude diary</td>
</tr>
<tr>
<td>• Managing stress</td>
</tr>
<tr>
<td>• Mindfulness</td>
</tr>
<tr>
<td>• Physical activity for stress management: "get active, feel good"</td>
</tr>
<tr>
<td>• Managing common unhelpful thinking patterns (cognitive behavioral therapy [CBT])</td>
</tr>
<tr>
<td>• Mindfulness: and am I doing this “right”?</td>
</tr>
<tr>
<td>• Why self-compassionate mindfulness?</td>
</tr>
<tr>
<td>• Compassion-focused therapy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 3: Feeding your mind and body well</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gratitude diary</td>
</tr>
<tr>
<td>• Eating well in PCOS: role of food intake, blood sugar, and insulin</td>
</tr>
<tr>
<td>• Why being insulin resistant is a problem for the whole body</td>
</tr>
<tr>
<td>• Why it may sometimes sound like health professionals are being preachy or judgmental</td>
</tr>
<tr>
<td>• Eating well without depriving yourself, losing weight in PCOS</td>
</tr>
<tr>
<td>• Eating mindfully to eat well in PCOS</td>
</tr>
<tr>
<td>• Overeating and binge eating in PCOS: some helpful tips for reducing the chances of overeating</td>
</tr>
<tr>
<td>• Feeding your mind and body well</td>
</tr>
<tr>
<td>• Feeding your mind: three systems regulating our emotions</td>
</tr>
<tr>
<td>• Ways to soothe yourself without over- or undereating</td>
</tr>
<tr>
<td>• Getting to know your inner critic, developing a compassionate ideal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 4: Body image, intimacy, and close relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gratitude diary</td>
</tr>
<tr>
<td>• Body changes, sexuality, and intimacy</td>
</tr>
<tr>
<td>• Communication</td>
</tr>
<tr>
<td>• Common body changes in PCOS</td>
</tr>
<tr>
<td>• Difficult emotions that can come with body changes</td>
</tr>
<tr>
<td>• Getting ready to be self-compassionate</td>
</tr>
<tr>
<td>• Compassion for your perceived flaws</td>
</tr>
</tbody>
</table>
- Overcoming embarrassment to get help for body changes
- Getting ready to be self-compassionate toward feelings of embarrassment or shame
- Responding to change: acceptance, treatments, and adaptations
- Treatments

Session 5: Staying healthy with PCOS
- Gratitude diary
- Focusing on your future health
- Ways to manage emerging health concerns and worries about your future health
- Getting peer support
- Maximizing your psychological resources
- Maximize the support you get from health services and health professionals
- Health care specialists who treat PCOS
- Activity: Summarizing concerns and requesting a referral
- Communicating clearly and assertively with health professionals
- Activity: Shared agenda setting at health care appointments
- When communicating clearly and asking assertively do not get you what you want

Session 6: Keeping PCOS in its place—your strengths and life goals
- Gratitude diary
- Character strengths
- Life priorities
- Motivational imagery
- Sharing our successes
- Self-compassion
- Activity: self-compassionate letter
- Signposting to ongoing participation with PCOS related groups and networks

Discussion

Principal Results
We cocreatively identified and prioritized barriers to self-management and psychological well-being to adapt a successful web-based self-management program and tailor it for the needs of adult women with PCOS. We developed a web-based prototype program for the PCOS program, ready for testing with this population.

Comparison With Previous Work
Women with PCOS value specialized, integrated, evidence-based, patient-centered health care services, ideally codeveloped with consumers and health professionals [34,35]. The new HOPE PCOS intervention has been codeveloped by combining input from patients, patients with PCOS’ advocates, and health care professionals. It is a comprehensive intervention integrating education and empowerment with lifestyle management, cognitive behavioral tools, and peer support, ready to be delivered by trained peer facilitators or codelivered by peers and health care professionals.

Developed following MRC guidance for the development of complex interventions [45,47], the intervention is evidence-based, underpinned by relevant theory, and designed to support a collaborative approach to care. Subject to evaluation, the new intervention could be integrated as part of PCOS services to support self-management and the model of collaborative, patient-centered health care advocated by international guidelines [4,161].

The intervention deploys an existing secure web-based social platform that has been used successfully to scale up other self-management support programs for other populations and conditions [40,44]. The multicomponent and modular structure of the program offers flexibility in adapting it further as new clinical recommendations and patient information emerge. The intervention is therefore well placed to be delivered and evaluated at scale.

The HOPE PCOS intervention is designed to support self-management and promote psychological well-being, rather than as a behavior change intervention per se. Since we started the process of cocreating the HOPE PCOS intervention, a different team has undertaken development work for a behavior change lifestyle intervention using a different intervention design...
The development of the novel HOPE PCOS intervention contributes to ongoing efforts to support patients with long-term conditions to self-manage effectively and is, to our knowledge, the first such program for patients with PCOS. This study has demonstrated that comprehensive intervention programs can be codeveloped with patients with PCOS, patient advocates, and health care professionals to address multiple barriers to self-management and psychological well-being. A person-centered, holistic approach, organized around the self-reported needs and priorities of patients, may produce interventions that complement services provided by health care professionals and patient advocacy and support organizations.

This study demonstrates that the use of a remote digital platform with preloaded, evidence-based intervention content may offer economies of scale in that complex self-management support interventions might be delivered to many patients in parallel, potentially saving clinic resources for one-to-one care. A key message for those working to develop lifestyle or self-management support interventions is the potential value of adapting an existing program and reusing existing digital infrastructure to provide a tailored intervention without the additional resource implications of developing an entire intervention from scratch.

Acknowledgments
The HOPE Program is delivered by Hope for the Community, a community interest company of Coventry University. The intervention development work for this polycystic ovary syndrome intervention was supported by a short-term temporary research sabbatical for CP funded by Coventry University. The patient interviews were conducted by CO as part of her master’s study in Health Psychology at Coventry University.

Data Availability
The data sets generated or analyzed during this study are not publicly available due to participants’ consent being given for anonymized extracts only (not whole transcripts) to be used in published reports, but data are available from the corresponding author upon reasonable request.

Conflicts of Interest
AT is the co-inventor of the original HOPE Program, co-founder, and nonexecutive director of Hope For The Community (H4C).

References
https://formative.jmir.org/2024/1/e52427

AT is the co-inventor of the original HOPE Program, co-founder, and nonexecutive director of Hope For The Community (H4C).

https://formative.jmir.org/2024/1/e52427

121. Thorpe C, Arbeau KJ, Budlong B. 'I drew the parts of my body in proportion to how much PCOS ruined them': experiences of overweight women with polycystic ovary syndrome through drawings. Health Psychol Open 2019;6(2):1-8 [FREE Full text] [doi: 10.1177/2055102919896238] [Medline: 31903221]

131. Solbrig L, Jones R, Kavanagh D, May J, Parkin T, Andrade J. “If you never came in and saw me, you would probably be dead”: exploring intercultural communication and health communication issues surrounding PCOS. ProQuest Dissertations Publishing. 2020. URL: https://www.proquest.com/openview/06b95b7e2f897452004ef1837664b40/1?pq-origsite=gscholar&cbl=18750&diss=y [accessed 2024-03-31]

139. Otusanya AD. “If you never came in and saw me, you would probably be dead”: exploring intercultural communication and health communication issues surrounding PCOS. ProQuest Dissertations Publishing. 2020. URL: https://www.proquest.com/openview/06b95b7e2f897452004ef1837664b40/1?pq-origsite=gscholar&cbl=18750&diss=y [accessed 2024-03-31]

160. Hope for the Community—Community Interest Company. URL: https://www.h4c.or.uk/ [accessed 2024-01-31]

Abbreviations

ATM: antecedent target measure
CBT: cognitive behavioral therapy
H4C: Hope for the Community
MRC: Medical Research Council
NHS: National Health Service
PCOS: polycystic ovary syndrome
PRISMS: Practical Reviews in Self-Management Support
A Deep Learning–Based Approach for Prediction of Vancomycin Treatment Monitoring: Retrospective Study Among Patients With Critical Illness

Dohyun Kim1*, MSc; Hyun-Soo Choi1,2*, PhD; DongHoon Lee1, MSc; Minkyu Kim1, MSc; Yoon Kim1,3, PhD; Seon-Sook Han4, MD, PhD; Yeonjeong Heo4, MD; Ju-Hee Park5, MD; Jinkyeong Park6, MD, PhD

1Department of Research and Development, ZIOVISION Co, Ltd, Chuncheon, Republic of Korea
2Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
3Department of Computer Science and Engineering, Kangwon National University, Chuncheon, Republic of Korea
4Department of Internal Medicine, Kangwon National University, Chuncheon, Republic of Korea
5Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
6Department of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea

*these authors contributed equally

Corresponding Author:
Jinkyeong Park, MD, PhD
Department of Pulmonary, Allergy and Critical Care Medicine, School of Medicine
Kyung Hee University Hospital at Gangdong
892, Dongnam-ro, Gangdong-gu
Seoul, 05278
Republic of Korea
Phone: 82 1027747808
Email: pjk3318@gmail.com

Abstract

Background: Vancomycin pharmacokinetics are highly variable in patients with critical illnesses, and clinicians commonly use population pharmacokinetic (PPK) models based on a Bayesian approach to dose. However, these models are population-dependent, may only sometimes meet the needs of individual patients, and are only used by experienced clinicians as a reference for making treatment decisions. To assist real-world clinicians, we developed a deep learning–based decision-making system that predicts vancomycin therapeutic drug monitoring (TDM) levels in patients in intensive care unit.

Objective: This study aimed to establish joint multilayer perceptron (JointMLP), a new deep-learning model for predicting vancomycin TDM levels, and compare its performance with the PPK models, extreme gradient boosting (XGBoost), and TabNet.

Methods: We used a 977-case data set split into training and testing groups in a 9:1 ratio. We performed external validation of the model using 1429 cases from Kangwon National University Hospital and 2394 cases from the Medical Information Mart for Intensive Care–IV (MIMIC-IV). In addition, we performed 10-fold cross-validation on the internal training data set and calculated the 95% CIs using the metric. Finally, we evaluated the generalization ability of the JointMLP model using the MIMIC-IV data set.

Results: Our JointMLP model outperformed other models in predicting vancomycin TDM levels in internal and external data sets. Compared to PPK, the JointMLP model improved predictive power by up to 31% (mean absolute error [MAE] 6.68 vs 5.11) on the internal data set and 81% (MAE 11.87 vs 6.56) on the external data set. In addition, the JointMLP model significantly outperforms XGBoost and TabNet, with a 13% (MAE 5.75 vs 5.11) and 14% (MAE 5.85 vs 5.11) improvement in predictive accuracy on the inner data set, respectively. On both the internal and external data sets, our JointMLP model performed well compared to XGBoost and TabNet, achieving prediction accuracy improvements of 34% and 14%, respectively. Additionally, our JointMLP model showed higher robustness to outlier data than the other models, as evidenced by its higher root mean squared error performance across all data sets. The mean errors and variances of the JointMLP model were close to zero and smaller than those of the PPK model in internal and external data sets.
Conclusions: Our JointMLP approach can help optimize treatment outcomes in patients with critical illnesses in an intensive care unit setting, reducing side effects associated with suboptimal vancomycin administration. These include increased risk of bacterial resistance, extended hospital stays, and increased health care costs. In addition, the superior performance of our model compared to existing models highlights its potential to help real-world clinicians.

(JMIR Form Res 2024;8:e45202) doi: 10.2196/45202

KEYWORDS
critically ill; deep learning; inflammation; machine learning; pharmacokinetic; therapeutic drug monitoring; vancomycin

Introduction
Vancomycin is frequently used for severe infections caused by gram-positive bacteria (including methicillin-resistant Staphylococcus aureus), such as pneumonia, skin and soft tissue infections, and other sepsis or septic shock in patients with critical illnesses. For vancomycin, because of the narrow therapeutic range and individual differences in pharmacokinetic parameters, therapeutic drug monitoring (TDM) is recommended to minimize toxicity and improve therapeutic efficacy. Although various pharmacokinetic indicators related to the antibacterial action of vancomycin have been suggested, the most recent guideline [1] recommends that a ratio of the area under the curve (AUC) over 24 hours to the minimum inhibitory concentration (MIC) of ≥400 should be the primary pharmacokinetic and pharmacodynamic (PK/PD) predictor of vancomycin activity [2]. However, in the real world, especially in intensive care units (ICUs), a more practical method of vancomycin monitoring is evaluating with trough concentrations since calculating the AUC requires multiple blood samples per patient [3-5].

There are different methods to determine the vancomycin AUC, such as the Bayesian approach or equation-based methodologies such as the trapezoidal model. The Bayesian approach uses population data to estimate individual patient pharmacokinetic parameters, called Bayesian priors. However, this method requires complex mathematical calculations to estimate the posterior distribution of model parameters and relies on certain assumptions, such as the normality of errors and data independence. Violating these assumptions can result in biased results, and using the Bayesian approach requires expensive commercial software programs [6,7]. On the other hand, equation-based approaches, like the trapezoidal model, do not require specialized software but need multiple blood sampling to achieve 2 steady-state levels. Since it is done under steady-state conditions, it cannot account for potential changes in AUC due to ongoing acute physiological changes. The pharmacokinetic profile of vancomycin exhibits linear pharmacokinetics over a range of therapeutic doses, is highly variable, especially in older people or people with critical illnesses, and is different for adults with normal renal function [8,9].

Population pharmacokinetic (PPK) models of vancomycin required to determine the AUC have very limited robustness beyond the specific population studied. The training and experience of the clinician or clinical pharmacist are still vital in achieving adequate vancomycin TDM, especially in patients with critical illnesses with high heterogeneity. A more multidimensional and consistent decision-making system is needed in such a clinical decision-making system because differences inevitably influence the results of individual clinicians’ abilities. Machine learning algorithms have emerged as a promising approach for improving decision-making on specific questions related to rich multidimensional data and for medical research and clinical care [10-12]. In previous studies, machine learning techniques such as decision trees [13] and extreme gradient boosting (XGBoost) [14,15] were used to make better predictions on vancomycin concentrations. In addition, various deep learning models have had great success in various fields [16], including clinical practice. These might help solve more complex clinical problems. In this study, we aimed to establish an ideal model by comparing and integrating methods that have been successful so far in the decision-making system that predicts the vancomycin TDM level in patients in the ICU.

Methods

Study Population
This retrospective study involved 2406 patients with critical illnesses admitted to medical ICUs, including 1 each at Dongguk University Ilsan Hospital (DUIH) and Kangwon National University Hospital (KNUH) between January 1, 2010, and February 28, 2022. We used the data collected from DUIH and KNUH as the internal and external validation data sets. The internal validation data set contained 977 patients, while the external validation data set contained 1429 patients.

Patients with critical illnesses (>18 years) with intravenous vancomycin treatment history and who had at least 1 test for vancomycin TDM were eligible for this study. Vancomycin TDM was investigated for trough-level information. If the TDM was checked multiple times, only the first TDM value was selected. However, in patients with normal renal function, if the interval between stopping vancomycin and readministering it was 2 weeks or more, it was considered an independent TDM value and used for analyses. Patients who received oral vancomycin or were aged 18 years or younger were excluded. The total serum vancomycin concentrations were determined using a fluorescence immunoassay (VANC3, Cobas c 702; Roche Diagnostics).

The data set was split into training and testing groups in a 9:1 ratio, with 879 and 98 cases representing the internal data set, respectively. For external validation, 1429 cases from KNUH were used. To evaluate the model’s generalization and the range of expected errors of the classifiers, 10-fold cross-validation was performed on the internal training data set, with a 9:1 ratio and 791 and 88 cases, respectively. The model was tested on...
both the internal and external test data sets for each fold and the metrics obtained were used to calculate the 95% CI over the 10 folds. The internal and external data sets remained constant across all folds. To evaluate the generalization ability of the joint multilayer perceptron (JointMLP) model, we used 2394 cases from the Medical Information Mart for Intensive Care–IV (MIMIC-IV) [17] as a US critical care database used for large-scale multi-institutional research for external validation.

Experimental Model

We proposed a JointMLP to predict the vancomycin TDM level in patients in the ICU. The JointMLP model is an ensemble model, meaning it combines the predictions of multiple individual MLPs (multilayer perceptrons) to generate a final prediction. The MLP is an artificial neural network. The MLP consists of multiple layers of interconnected nodes (also known as neurons) that perform mathematical operations on the input data to generate an output. In the case of the JointMLP model proposed for vancomycin TDM prediction, each MLP in the ensemble consists of 3 hidden layers with a hidden unit size of 32, and the LeakyReLU activation function is used to introduce nonlinearity into the model (Figure 1). Using an ensemble helps reduce the risk of overfitting and improves the accuracy and robustness of the model. In this case, the JointMLP model comprises 100 different MLPs, each with its own set of weights learned during the training process. To find the best set of hyperparameters for the JointMLP model, grid search is used, which systematically tests different combinations of hyperparameters to find the combination that yields the best performance on a validation data set. In this case, the tuned hyperparameters included the number of MLPs, the number of hidden layers, and the size of the hidden units. In a JointMLP model, the MLPs are trained independently in parallel. During training, each MLP in the ensemble receives a randomly selected subset of the training data and learns to make predictions based on that subset. The individual MLPs are then combined to generate a final prediction, typically by taking the average of their outputs or using a weighted combination. The MLPs are trained independently of each other and in parallel. Our JointMLP model is available on the websites [18] for predicting TDM levels and recommending the frequency and dose.

Figure 1. The architecture of joint multilayer perceptron (JointMLP). The JointMLP model was built with 100 different multilayer perceptrons (MLPs) consisting of 3 hidden layers with a hidden unit size of 32 and LeakyReLU as an activation function.
We compared 4 other models: the PPK model [19], XGBoost, TabNet, and 300-layer MLP. The PPK is a pharmacokinetic model used to assess the relationship between drug concentration and time in the body. XGBoost is an open-source library for decision tree–based gradient-boosting machine learning. The XGBoost model especially works well on tabular data learning. It is a vital model for distributed training or regularization. TabNet is a deep learning model specialized for tabular data set analysis. TabNet could be optimized by automatically transforming input variables and using additional validation data to select the required variables.

For XGBoost, the hyperparameters are eta (learning rate), gamma (minimum loss reduction required to make a further partition on a leaf node of the tree), and max_depth (maximum depth of a tree). The grid search was performed to find the best combination of these hyperparameters. The eta, gamma, and max depth values were 0.2, 0.001, and 6, respectively.

For TabNet, the hyperparameters are n_d (width of the decision prediction layer), n_a (width of the attention embedding for each mask), n_steps (number of steps in the architecture), gamma (coefficient for feature reuse in the masks), and verbose (verbosity for notebook plots). The grid search was performed to find the best combination of these hyperparameters. The values chosen for n_d, n_a, n_steps, gamma, and verbose were 8, 8, 3, 1.3, and 0, respectively.

The 300-layer MLP model was constructed to verify the performance of the JointMLP model. The hyperparameters for the MLP model were chosen to have the same depth as the JointMLP model, which is 100 horizontal MLPs times 3 hidden layers. The number of hidden layers was set to 300, and the number of hidden units was set to 32.

Data Processing

Variables that are associated with vancomycin PK/PD were selected. These variables included the total dose of vancomycin from start to end, the usage of the loading dose at the first use, the total number of vancomycin infusions, the dose of vancomycin per infusion, the mean infusing interval of vancomycin, the interval from the start of vancomycin administration to the measurement of vancomycin serum levels, age, sex, height, body weight, serum creatinine levels, serum vancomycin levels, dialysis, and the total volume of transfusion from the start of vancomycin administration to the measurement of vancomycin levels. Patients with impaired kidney function may have issues with the metabolism and elimination of vancomycin. The estimated glomerular filtration rate (eGFR), which represents renal function, was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula and used as a variable. For the normalization of the data, for both the input and target variables, all values were scaled in the range (−1 to 1) using the minimum-maximum scaler. Moreover, we only had binary categorical variables in the model. Therefore, no special categorical variable encoding was performed in the model but a simple change to 0 and 1. To select significant input variables, we grouped variables into 5 categories. Each variable was classified as (1) baseline demographics—age, sex, body weight, and height; (2) drug administration-related variables; (3) variables related to the volume of distribution; (4) eGFRs using serum creatinine levels; and (5) variables related to the amount of transfusion. With the above-grouped categories, first, we have selected the default variables that would be used throughout all scenarios: the baseline demographics and the drug administration–related variables. Then, from the remaining 3 categories, with the clinician’s consultation, we tried to minimize the redundancy of the variables that would have the same meaning. Moreover, in accordance with the feature importance of each variable, we were able to find the best combination of model input variable sets. Furthermore, the contribution of the input data to the model in the test set was determined through the Shapley value of Shapley Additive exPlanations (SHAP) [19]. A high mean absolute estimated Shapley value indicates that the variable has a stronger impact on the output value.

Statistical Analysis

The primary end point was the predictive performance of the vancomycin level within the therapeutic range. The baseline variables and patient characteristics of internal and external data sets were presented as frequencies with percentages or mean values with SDs. Between–data set comparisons were performed using the paired 2-tailed t test for continuous variables or the chi-square test for categorical variables. The measured serum vancomycin levels were used as true values. The predictive abilities of 4 kinds of models for vancomycin trough concentrations, using the PPK model on the website of the infectious diseases management program at the University of California, San Francisco [20], machine learning models (XGBoost) [21], and deep learning models (TabNet [22] and JointMLP), were evaluated for bias and precision by calculating the mean absolute error (MAE), root-mean-square error (RMSE), R^2, and adjusted R^2. The paired t test on MAE was used [23,24] to confirm significant differences in prediction performance between models. P values of <.05 were considered statistically significant. All analyses were performed with R software (version 3.4.4; R Foundation for Statistical Computing) and Python (version 3.8.12; The Python Software Foundation) using the SciPy 1.9.1, PyTorch 1.10.2, and PyTorch Lightning 1.6.4 libraries.

Ethical Considerations

This study involved a retrospective analysis of medical records and did not involve collecting prospectively obtained data. As such, the study was considered to pose minimal risks and did not directly affect patients’ rights, welfare, or clinical care while offering recognized social benefits. To protect patient confidentiality during data collection and record review, all investigative records were securely stored in an encrypted database, and published results did not include any participants’ names or identifiers. The study received ethical approval from the institutional review board of Dongguk University Hospital (DUHI 2021-08-015) and Kangwon National University Hospital’s Institutional Review Board (KNUH-2022-03-020). This study was performed per the principles of the Declaration of Helsinki.
Results

Overview
Out of the 977 patients included in the DUIH data set, the testing data set was composed of 98 (10%) patients, with the other 879 patients belonging to the training data set. All 1429 patients included in KNUH were for external validation. The baseline characteristics did not differ significantly between the testing and training groups (Table 1). However, there were more older patients and shorter heights in the external validation set. The estimated renal function by the CKD-EPI method was worse in the patients for external validation. The patients included in MIMIC-IV showed significant differences in sex distribution compared to internal data sets or patients in other ICUs in Korea, and the proportion of non-Hispanic White patients was over 66.4% (n=1591).
Table 1. Baseline characteristics of all enrolled patients.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Internal data set</th>
<th>External data set</th>
<th>External data set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test (n=98)</td>
<td>Train or validation (n=879)</td>
<td>From KNUH<sup>a</sup> (n=1429)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>31 (31.6)</td>
<td>328 (37.3)</td>
<td>555 (38.8)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>67.65 (15.49)</td>
<td>68.38 (15.56)</td>
<td>70.48 (14.39)</td>
</tr>
<tr>
<td>Height (cm), mean (SD)</td>
<td>163.56 (9.04)</td>
<td>162.42 (9.61)</td>
<td>161.36 (9.51)</td>
</tr>
<tr>
<td>Body weight (kg), mean (SD)</td>
<td>58.54 (15.80)</td>
<td>57.02 (13.27)</td>
<td>58.36 (16.30)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>98 (100)</td>
<td>979 (100)</td>
<td>1429 (100)</td>
</tr>
<tr>
<td>African-American</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Serum trough value (mg/L), mean (SD)</td>
<td>14.49 (10.33)</td>
<td>15.01 (10.29)</td>
<td>13.37 (9.49)</td>
</tr>
<tr>
<td>Serum creatinine (μmol/L), mean (SD)</td>
<td>1.10 (1.16)</td>
<td>1.11 (1.32)</td>
<td>1.06 (1.34)</td>
</tr>
<tr>
<td>Dialysis, mean (SD)</td>
<td>3 (3.1)</td>
<td>41 (4.7)</td>
<td>55 (3.8)</td>
</tr>
<tr>
<td>The total dose of vancomycin before TDM<sup>e</sup> (mg), mean (SD)</td>
<td>3961.28 (2812.91)</td>
<td>4289.52 (3504.59)</td>
<td>4446.94 (4933.77)</td>
</tr>
<tr>
<td>Number of vancomycin injections, n (%)</td>
<td>4.42 (2.72)</td>
<td>4.80 (4.03)</td>
<td>4.77 (5.17)</td>
</tr>
<tr>
<td>The average dose of vancomycin before TDM (mg), mean (SD)</td>
<td>882.40 (207.66)</td>
<td>891.90 (186.89)</td>
<td>931.31 (184.90)</td>
</tr>
<tr>
<td>Time between administration of vancomycin and the TDM (day), mean (SD)</td>
<td>3.81 (1.37)</td>
<td>4.01 (2.70)</td>
<td>2.86 (2.62)</td>
</tr>
<tr>
<td>Interval among each dose of vancomycin (hours), mean (SD)</td>
<td>21.43 (11.59)</td>
<td>21.12 (11.75)</td>
<td>16.90 (10.58)</td>
</tr>
<tr>
<td>Vancomycin loading, mean (SD)</td>
<td>8 (8.2)</td>
<td>54 (6.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Volume distribution (L), mean (SD)</td>
<td>40.98 (11.06)</td>
<td>39.92 (9.29)</td>
<td>40.86 (9.52)</td>
</tr>
<tr>
<td>Adjusted volume distribution (L), mean (SD)</td>
<td>39.38 (3.81)</td>
<td>39.17 (3.34)</td>
<td>39.82 (3.25)</td>
</tr>
<tr>
<td>CrCl<sup>f</sup> (minutes), mean (SD)</td>
<td>91.49 (73.26)</td>
<td>84.06 (58.85)</td>
<td>90.36 (82.44)</td>
</tr>
<tr>
<td>CrCl (hours), mean (SD)</td>
<td>0.08 (0.06)</td>
<td>0.07 (0.05)</td>
<td>0.08 (0.07)</td>
</tr>
<tr>
<td>The elimination rate constant at infusion time (Kt), mean (SD)</td>
<td>1.70 (1.26)</td>
<td>1.59 (1.21)</td>
<td>1.17 (1.07)</td>
</tr>
<tr>
<td>Trough levels of vancomycin (mcg/mL), mean (SD)</td>
<td>10.07 (9.15)</td>
<td>12.19 (14.62)</td>
<td>20.87 (20.79)</td>
</tr>
<tr>
<td>eGFR<sup>g</sup> MDRD<sup>h</sup>, mean (SD)</td>
<td>116.94 (100.14)</td>
<td>114.23 (90.33)</td>
<td>122.70 (123.49)</td>
</tr>
<tr>
<td>eGFR CKD-EPI<sup>i</sup>, mean (SD)</td>
<td>82.33 (39.87)</td>
<td>82.00 (38.47)</td>
<td>84.35 (36.96)</td>
</tr>
<tr>
<td>Vancomycin clearance, mean (SD)</td>
<td>4.00 (3.03)</td>
<td>3.69 (2.43)</td>
<td>3.96 (3.41)</td>
</tr>
</tbody>
</table>

^aKNUH: Kangwon National University Hospital.

^bP value: comparison of the internal data set with the external data set from KNU hospital in Korea.

^cMIMIC-IV: Medical Information Mart for Intensive Care–IV.

^dP value: comparison of the internal data set with the external data set from MIMIC-IV.

^eTDM: therapeutic drug monitoring.

^fCrCl: creatinine clearance.

https://formative.jmir.org/2024/1/e45202

JMIR Form Res 2024 | vol. 8 | e45202 | p.1233
(page number not for citation purposes)
XGBoost (1 of the Machine Learning Models) Versus PPK Model

Compared to the PPK model, the XGBoost model only significantly improved the predictive performance of external data sets (20.43 vs 11.59, a 76% change by RMSE and 11.87 vs 8.75, a 36% change by MAE; Table 2) when evaluated by RMSE and MAE. Although statistical significance could not be determined, the predictive power of internal data sets also improved by 8% (10.38 vs 9.58 by RMSE) and 16% (6.68 vs 5.75 by MAE).

Table 2. Performances of different models with bootstrapping.

<table>
<thead>
<tr>
<th>Model</th>
<th>Internal, RMSe (95% CI)</th>
<th>External, RMSe (95% CI)</th>
<th>Internal, MAE (95% CI)</th>
<th>External, MAE (95% CI)</th>
<th>Internal, R² (95% CI)</th>
<th>External, R² (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPKc</td>
<td>10.38 (7.38 to 13.42)</td>
<td>20.43 (18.15 to 22.64)</td>
<td>6.68 (5.29 to 8.45)</td>
<td>11.87 (11.05 to 12.75)</td>
<td>−0.02 (−0.44 to 0.22)</td>
<td>−3.64 (−5.16 to −2.48)</td>
</tr>
<tr>
<td>XGBoostd</td>
<td>9.58 (6.31 to 12.6)</td>
<td>11.59 (10.88 to 12.17)</td>
<td>5.75 (4.37 to 7.48)</td>
<td>8.75 (8.34 to 9.13)</td>
<td>0.13 (−0.63 to 0.48)</td>
<td>−0.49 (−0.81 to −0.24)</td>
</tr>
<tr>
<td>TabNet</td>
<td>8.81 (6.33 to 11.29)</td>
<td>13.89 (11.01 to 17.71)</td>
<td>5.85 (4.53 to 7.25)</td>
<td>7.50 (6.90 to 8.13)</td>
<td>0.26 (−0.15 to 0.51)</td>
<td>−1.15 (−2.53 to −0.38)</td>
</tr>
<tr>
<td>300-layer MLPf</td>
<td>10.17 (7.06 to 13.09)</td>
<td>9.94 (8.84 to 11.04)</td>
<td>6.98 (5.61 to 8.63)</td>
<td>7.45 (6.55 to 7.28)</td>
<td>0.021 (−0.086 to 0.056)</td>
<td>−0.098 (−0.26 to −0.023)</td>
</tr>
<tr>
<td>JointMLP (proposed)</td>
<td>8.27 (5.33 to 11.19)</td>
<td>9.50 (8.72 to 10.30)</td>
<td>5.11 (3.92 to 6.58)</td>
<td>6.56 (6.18 to 6.90)</td>
<td>0.35 (−0.03 to 0.59)</td>
<td>−0.005 (−0.17 to 0.13)</td>
</tr>
</tbody>
</table>

aRMSE: root mean squared error.
bMAE: mean absolute error.
cPPK: population pharmacokinetic.
dXGBoost: extreme gradient boosting.
eMLP: multilayer perceptron.
fJointMLP: joint multilayer perceptron.

The TabNet model showed significantly better predictive performance for vancomycin TDM after vancomycin treatment than the PPK model in external data sets (20.43 vs 13.89, a 47% change by RMSE and 11.87 vs 7.50, a 58% change by MAE; \(P<.001\), respectively). Contrary to the prediction improvements compared to the PPK model in the external data set (TabNet 47% vs XGBoost 76% by RMSE), there was no significant difference between TabNet and XGBoost in predictive power for vancomycin TDM on the internal data set.

JointMLP Versus Other Models

In both internal and external data sets, the JointMLP model had better predictive performance for vancomycin TDM among the models we compared. It improved the predictive power up to 31% (6.68 vs 5.11) based on MAE for the vancomycin concentration after vancomycin infusion on the internal data set compared to PPK. Additionally, our JointMLP model was more accurate (11.87 vs 6.56, 81%) in predicting the vancomycin levels on the external data set than the PPK method.

The proposed JointMLP model significantly outperformed XGBoost and TabNet with a 13% (5.75 vs 5.11) and 14% (5.85 vs 5.11) improvement in predictive accuracy under MAE on the internal data set, respectively. Additionally, our trained JointMLP showed better performance not only on the internal data set but also on the external data set that consisted of 1429 patients with critical illnesses by 34% (8.75 vs 6.56) and 14% (7.50 vs 6.56) when compared with XGBoost and TabNet. Furthermore, JointMLP's RMSE performance is higher than that of other models on all data sets, which means that the proposed model is more robust than theirs against outlier data.

Within the external data set, we clearly see that all models are statistically significant among themselves (Figure 2). However, the \(P\) value of JointMLP within the internal data set expressed a trend more robust than all other models while showing statistical significance only when compared with PPK with MAE. The mean error and variance of the JointMLP model were nearer to zero and smaller in both internal and external data sets than in the PPK model (Figure 3).
Figure 2. P value heat map by paired t test on all the combinations of prediction models. The P value for each comparison of the mean absolute error for predictive performance on (A) the internal validation data set (B) and the external validation data set. 300MLP: 300-layer multilayer perceptron; JointMLP: joint multilayer perceptron; PPK: population pharmacokinetic; XGB: extreme gradient boosting.

Figure 3. Comparisons of the population pharmacokinetic (PPK) and joint multilayer perceptron (JointMLP) models on the internal and external validation sets. Scatter plots of (A) the internal data set and (B) the external data set with the predicted value against a target value. The error histograms of (C) the internal data set and (D) the external data set with a predicted value against a target value. TDM: therapeutic drug monitoring.

The most influential variables in TDM prediction were eGFR CKD-EPI, the average dose of vancomycin, and the average volume of distribution in both internal and external data sets. These variables consistently had high SHAP values in both data sets (Table 3).
Table 3. The mean values of Shapley Additive exPlanations on the internal and external validation sets.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Internal validation, mean (SD)</th>
<th>External validation, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR(^a) CKD-EPI(^b)</td>
<td>0.076 (0.09)</td>
<td>0.063 (0.088)</td>
</tr>
<tr>
<td>Average dose of vancomycin</td>
<td>0.045 (0.05)</td>
<td>0.04 (0.073)</td>
</tr>
<tr>
<td>Average volume of distribution</td>
<td>0.037 (0.029)</td>
<td>0.032 (0.04)</td>
</tr>
<tr>
<td>Interval of vancomycin</td>
<td>0.028 (0.014)</td>
<td>0.031 (0.03)</td>
</tr>
<tr>
<td>Body weight</td>
<td>0.027 (0.038)</td>
<td>0.024 (0.044)</td>
</tr>
<tr>
<td>Total dose</td>
<td>0.014 (0.028)</td>
<td>0.02 (0.066)</td>
</tr>
<tr>
<td>Height</td>
<td>0.013 (0.023)</td>
<td>0.015 (0.026)</td>
</tr>
<tr>
<td>Sex</td>
<td>0.01 (0.018)</td>
<td>0.011 (0.004)</td>
</tr>
<tr>
<td>Number of vancomycin injection</td>
<td>0.01 (0.012)</td>
<td>0.015 (0.031)</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.01 (0.007)</td>
<td>0.01 (0.011)</td>
</tr>
<tr>
<td>Loading</td>
<td>0.007 (0.012)</td>
<td>0.003 (0.01)</td>
</tr>
<tr>
<td>Age</td>
<td>0.006 (0.006)</td>
<td>0.006 (0.003)</td>
</tr>
<tr>
<td>Dialysis</td>
<td>0.005 (0.018)</td>
<td>0.005 (0.028)</td>
</tr>
<tr>
<td>The elimination rate constant at infusion time</td>
<td>0.005 (0.022)</td>
<td>0.005 (0.022)</td>
</tr>
<tr>
<td>Time between vancomycin injection and TDM(^c)</td>
<td>0.003 (0.002)</td>
<td>0.007 (0.007)</td>
</tr>
</tbody>
</table>

\(^a\) eGFR: estimated glomerular filtration rate.

\(^b\) CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration.

\(^c\) TDM: therapeutic drug monitoring.

JointMLP Versus 300-Layer MLP

The purpose of Table 2 was to compare the predictive performances of the 300-layer MLP model and the proposed JointMLP model. The results showed that JointMLP outperformed the 300-layer MLP model in both the internal (8.27 vs 9.94, a 23% improvement by RMSE, and 6.98 vs 5.11, a 37% improvement by MAE) and external (9.50 vs 9.94, a 5% improvement by RMSE, and 7.45 vs 6.56, a 14% improvement by MAE) data sets, indicating the effectiveness of the boosting ensemble approach used in JointMLP. Figure 2 shows the \(P \) value analysis of the comparison between JointMLP and the 300-layer MLP model. The analysis revealed that the difference between the 2 models was statistically significant \((P<.001)\) within the external data set. However, compared to other models, the difference between JointMLP and the 300-layer MLP model was not statistically significant \((P=.09)\) within the internal data set.

Model Comparisons in the MIMIC-IV Data Set

The findings presented in Table 4 clearly indicated that the JointMLP model performed better than both the PPK and 300-layer MLP models by a significant margin of 160% and 25%, respectively, when evaluated using the RMSE metric. This improvement in predictive performance was observed even in the MIMIC-IV data set, which included patients from multiple centers and races. The JointMLP model also demonstrated superior performance compared to the XGBoost and TabNet models, with improvements of 5% and 4%, respectively. When examining the MAE metric, the JointMLP model significantly outperformed the PPK model by 90%, with further improvements of 8%, 6%, and 5% over the XGBoost, 300-layer MLP, and TabNet models, respectively.
Table 4. Performances of models with Medical Information Mart for Intensive Care–IV data set.

<table>
<thead>
<tr>
<th>Model</th>
<th>MIMIC<sup>a</sup>, RMSE<sup>b</sup> (95% CI)</th>
<th>MIMIC, MAE<sup>c</sup> (95% CI)</th>
<th>MIMIC, R^2 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPK<sup>d</sup></td>
<td>22.22 (18.88 to 25.72)</td>
<td>12.13 (11.42 to 12.87)</td>
<td>−5.93 (−8.52 to −3.99)</td>
</tr>
<tr>
<td>XGBoost<sup>e</sup></td>
<td>8.93 (8.60 to 9.23)</td>
<td>6.93 (6.69 to 7.15)</td>
<td>−0.12 (−0.21 to 0.04)</td>
</tr>
<tr>
<td>TabNet</td>
<td>8.91 (8.53 to 9.25)</td>
<td>6.69 (6.45 to 6.93)</td>
<td>−0.11 (−0.17 to −0.06)</td>
</tr>
<tr>
<td>300-layer MLP<sup>f</sup></td>
<td>10.65 (8.88 to 12.72)</td>
<td>6.80 (6.48 to 7.13)</td>
<td>−0.59 (−1.30 to −0.12)</td>
</tr>
<tr>
<td>JointMLP<sup>g</sup> (proposed)</td>
<td>8.53 (8.17 to 8.88)</td>
<td>6.40 (6.17 to 6.64)</td>
<td>−0.02 (−0.08 to 0.03)</td>
</tr>
</tbody>
</table>

^aMIMIC: Medical Information Mart for Intensive Care.
^bRMSE: root mean squared error.
^cMAE: mean absolute error.
^dPPK: population pharmacokinetic.
^eXGBoost: extreme gradient boosting.
^fMLP: multilayer perceptron.
^gJointMLP: joint multilayer perceptron.

All models, except for the 300-layer MLP, were statistically significant in the MIMIC-IV data set (Figure 4A). The most influential variables in TDM prediction using the JointMLP model were consistent with eGFR CKD-EPI, average vancomycin dose, and average distribution volume, which were variables identified in the internal data set (Figure 4B). The 300-layer MLP was statistically significant ($P<.001$) compared to the PPK model. Additionally, the JointMLP model had a mean error and variance that were close to zero and smaller than those of the PPK model in the MIMIC-IV data set (Figure 4C and D).
Figure 4. Result figures from the Medical Information Mart for Intensive Care (MIMIC) validation set. (A) The P value for each comparison of the mean absolute error for predictive performance on the MIMIC validation data set; (B) the Shapley Additive exPlanations (SHAP) values of the joint multilayer perceptron (JointMLP) model on the MIMIC validation set; (C) scatter plots of the MIMIC data set with the JointMLP predicted values against target values; and (D) the error histograms of the MIMIC data set with the JointMLP predicted values against target values. 300MLP: 300-layer multilayer perceptron; CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration; eGFR: estimated glomerular filtration rate; PPK: population pharmacokinetic; TDM: therapeutic drug monitoring; XGB: extreme gradient boosting.

Discussion

Principal Findings

The PPK method is widely used for predicting vancomycin TDM levels. However, it is population-dependent, leading to inappropriate results for some patients. Therefore, this study proposes a consistent decision-making system that is population-independent and unaffected by clinicians’ abilities by applying a joint MLP model that integrates various successful deep learning models and decision trees. The proposed JointMLP showed the best performance for predicting vancomycin trough concentration in all data sets compared to other models. Significantly, in the MAE metric, the JointMLP model improved performance by 90% over the PPK model. Results mean that the proposed model can be applied to predict appropriate vancomycin trough concentrations in patients with critical illnesses who require vancomycin treatment in various situations.

Comparison to Machine Learning Model

In our study, we compared the performance of 3 machine learning models for predicting vancomycin levels: JointMLP, XGBoost, and TabNet. XGBoost is a popular gradient-boosting algorithm known for its high accuracy and flexibility, while TabNet is a newer deep-learning model [22] specifically designed for tabular data. Compared to XGBoost and TabNet, our JointMLP model outperformed both in terms of predictive accuracy. One of the main reasons for this is that our model was designed to handle noisy data samples, a common characteristic of medical data sets. A deep neural network architecture accomplishes this with multiple layers, which allows the model to learn complex relationships between the input features and the output variable. In contrast, XGBoost and TabNet are both tree-based models, which may need to be more effective at handling noisy data.

Compared to previous studies [15,24-26], our proposed JointMLP model performs better in accurately predicting vancomycin levels. Specifically, our model outperforms XGBoost and TabNet, 2 well-known models in analyzing tabular data and predicting drug concentrations. Moreover, our JointMLP model is designed to handle noisy data samples effectively, a crucial feature for real-world applications in the medical domain where data quality can be highly variable. Our model’s robustness is demonstrated by comparing it to a
300-layer MLP, confirming the effectiveness of our model structure in handling vancomycin TDM predictions. Importantly, our model is trained on a larger and more diverse data set than previous studies and tested on an unseen data set, demonstrating its generalizability and suitability for predicting drug concentrations. Overall, our findings highlight the potential of deep learning models in improving the accuracy and reliability of drug concentration prediction, which can lead to better treatment outcomes and improved patient health. Overall, our findings suggest that the JointMLP model is a promising approach for predicting vancomycin levels, particularly in the presence of noisy data. However, the choice of which model to use may depend on the specific characteristics of the data set being analyzed and the goals of the analysis.

Limitations and Future Work
When considering implementing our approach in clinical settings, there are several factors to consider. First, although we extended our model to validate across diverse ethnic groups by including patients from Asia and other regions in the MIMIC-IV data set, we acknowledge that there is still room for improvement in this regard. We used a larger data set than previous studies, with 977 samples as the internal data set and 1429 samples as the external data set. Additionally, we sought to develop a generalized model by applying the MIMIC-IV data set, which includes 2394 samples. However, additional validation with external data sets is necessary to enhance further the generalizability of our model for predicting vancomycin levels. Second, our comparison of the predictive performance with the PPK method was based on the trough-based target method, which is easily used in the treatment of patients with critical illnesses, rather than the AUC/MIC-specific range that is currently recommended. Therefore, further research is needed to compare the AUC/MIC range with our approach.

Despite these limitations, our deep learning model, if implemented in actual clinical practice, could significantly improve the treatment outcomes of ICUs by supporting clinical decision-making in a more standardized and consistent manner. Our proposed JointMLP model will continue to evolve and update its performance to mimic the human brain better and determine the optimal vancomycin dose.

Conclusions
In this study, proposing the JointMLP approach in clinical settings has significant implications for public health, as it can help optimize treatment outcomes for patients with critical illnesses in ICUs. By providing a more accurate and consistent method for predicting vancomycin levels, the model can reduce adverse events associated with suboptimal vancomycin dosing, such as the increased risk of bacterial resistance, longer hospital stays, and higher health care costs. Furthermore, the ongoing development and improvement of the JointMLP model through continuous learning and updating can lead to more effective treatments and better health outcomes for patients, improving the accuracy and reliability of other clinical prediction models in the future. Overall, the implementation of the JointMLP approach has the potential to improve public health outcomes and benefit patients worldwide.

Acknowledgments
We would like to thank Jihye Han for helping us with data mining. This study was supported by the National Research Foundation of Korea Grant and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Korean Government (HI21C1074).

Data Availability
The data used and analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions
JP contributed to the conceptualization. HSC, DHK, DHL, and MGK were involved in the methodology. DHK, DHL, and MGK were responsible for the software. HSC was responsible for validation. JP, HSC, and DHL contributed to the formal analysis. HSC and DHK were involved in the investigation. YK and MGK were responsible for resources. JP, JHP, YH, and SSH were involved in data curation. JP, DHK, DHL, and MGK wrote and prepared the original draft. JP, HSC, DHK, DHL, and MGK were involved in writing, reviewing, and editing. HSC, DHK, DHL, and MGK were responsible for visualization. YK, JP, HSC, and DHL contributed to supervision and project administration. YK, JP, and HSC were involved in funding acquisitions. All authors have read and approved the final manuscript.

Conflicts of Interest
None declared.

References
2. Lodise TP, Drusano G. Vancomycin area under the curve-guided dosing and monitoring for adult and pediatric patients with suspected or documented serious methicillin-resistant staphylococcus aureus infections: putting the safety of our patients first. Clin Infect Dis 2021;72(9):1497-1501 [FREE Full text] [doi: 10.1093/cid/ciaa1744] [Medline: 33740042]

20. Vancomycin IV. Infectious Diseases Management Program at UCSF. URL: https://idmp.ucsf.edu/content/vancomycin-iv [accessed 2023-12-29]

Abbreviations

AUC: area under the curve
CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration
DUIH: Dongguk University Ilsan Hospital
eGFR: estimated glomerular filtration rate
ICU: intensive care unit
JointMLP: joint multilayer perceptron
KNUH: Kangwon National University Hospital
MAE: mean absolute error
MIC: minimum inhibitory concentration
MIMIC-IV: Medical Information Mart for Intensive Care–IV
MLP: multilayer perceptron
PK/PD: pharmacokinetic/pharmacodynamic
PPK: population pharmacokinetic
RMSE: root-mean-square error
SHAP: Shapley Additive exPlanations
TDM: therapeutic drug monitoring
XGBoost: extreme gradient boosting

Please cite as:
A Deep Learning–Based Approach for Prediction of Vancomycin Treatment Monitoring: Retrospective Study Among Patients With Critical Illness
JMIR Form Res 2024;8:e45202
URL: https://formative.jmir.org/2024/1/e45202
doi:10.2196/45202
PMID:38152042

©Dohyun Kim, Hyun-Soo Choi, DongHoon Lee, Minkyu Kim, Yoon Kim, Seon-Sook Han, Yeonjeong Heo, Ju-Hee Park, Jinkyeong Park. Originally published in JMIR Formative Research (https://formative.jmir.org), 08.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Optimization of Using Multiple Machine Learning Approaches in Atrial Fibrillation Detection Based on a Large-Scale Data Set of 12-Lead Electrocardiograms: Cross-Sectional Study

Beau Bo-Sheng Chuang1*, Albert C Yang1,2,3*, MD, PhD

1School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
2Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
3Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
*all authors contributed equally

Corresponding Author:
Albert C Yang, MD, PhD
Digital Medicine and Smart Healthcare Research Center
National Yang Ming Chiao Tung University
No 155, Li-Nong St, Sec.2
Beitou District
Taipei, 112304
Taiwan
Phone: 886 228267995
Fax: 886 228267389
Email: acceyang@nycu.edu.tw

Abstract

Background: Atrial fibrillation (AF) represents a hazardous cardiac arrhythmia that significantly elevates the risk of stroke and heart failure. Despite its severity, its diagnosis largely relies on the proficiency of health care professionals. At present, the real-time identification of paroxysmal AF is hindered by the lack of automated techniques. Consequently, a highly effective machine learning algorithm specifically designed for AF detection could offer substantial clinical benefits. We hypothesized that machine learning algorithms have the potential to identify and extract features of AF with a high degree of accuracy, given the intricate and distinctive patterns present in electrocardiogram (ECG) recordings of AF.

Objective: This study aims to develop a clinically valuable machine learning algorithm that can accurately detect AF and compare different leads' performances of AF detection.

Methods: We used 12-lead ECG recordings sourced from the 2020 PhysioNet Challenge data sets. The Welch method was used to extract power spectral features of the 12-lead ECGs within a frequency range of 0.083 to 24.92 Hz. Subsequently, various machine learning techniques were evaluated and optimized to classify sinus rhythm (SR) and AF based on these power spectral features. Furthermore, we compared the effects of different frequency subbands and different lead selections on machine learning performances.

Results: The light gradient boosting machine (LightGBM) was found to be the most effective in classifying AF and SR, achieving an average F_1-score of 0.988 across all ECG leads. Among the frequency subbands, the 0.083 to 4.92 Hz range yielded the highest F_1-score of 0.985. In interlead comparisons, aVR had the highest performance ($F_1=0.993$), with minimal differences observed between leads.

Conclusions: In conclusion, this study successfully used machine learning methodologies, particularly the LightGBM model, to differentiate SR and AF based on power spectral features derived from 12-lead ECGs. The performance marked by an average F_1-score of 0.988 and minimal interlead variation underscores the potential of machine learning algorithms to bolster real-time AF detection. This advancement could significantly improve patient care in intensive care units as well as facilitate remote monitoring through wearable devices, ultimately enhancing clinical outcomes.

(JMIR Form Res 2024;8:e47803) doi: 10.2196/47803

https://formative.jmir.org/2024/1/e47803
KEYWORDS
machine learning; atrial fibrillation; light gradient boosting machine; power spectral density; digital health; electrocardiogram; machine learning algorithm; atrial fibrillation detection; real-time; detection; electrocardiography leads; clinical outcome

Introduction
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, impacting an estimated 33.5 million people worldwide [1]. This severe cardiac condition heightens the risks of stroke and heart failure [2]. Clinicians typically detect and diagnose AF through the noninvasive electrocardiogram (ECG) method. However, ECG interpretation relies heavily on the expertise of the medical professional, creating a need for automated ECG classification to support clinicians. Machine learning, a subset of artificial intelligence, has shown great potential in improving the detection and management of AF through automated ECG analysis [3], risk stratification [4], or treatment planning [5].

The 2020 PhysioNet Challenge data sets offer 12-lead ECG recordings that can be used to evaluate machine learning techniques for ECG interpretation [6]. Compared to machine learning approaches based on small and homogeneous data sets, algorithms using PhysioNet data are likely to be more representative of realistic clinical scenarios, thereby making them better suited for practical implementation. Various machine learning techniques have been used to detect AF using ECG data. Some of the widely explored methods include support vector machines, decision trees, random forests, and deep learning approaches like convolutional neural networks and recurrent neural networks. These techniques have demonstrated promising results in classifying normal sinus rhythm (SR) and AF, with fair accuracy and F_1-scores [4].

The performance of machine learning algorithms depends on the quality of the input features. Common feature extraction methods in AF detection include time-domain analysis, frequency-domain analysis, and wavelet transform. Power spectral density (PSD) is a popular frequency-domain feature that has been used to differentiate SR from AF. PSD analysis reveals information about the distribution of a signal’s power and frequency components. An ECG signal comprises various frequency components, including those related to the sinus heartbeat as well as atrial and ventricular activity. The PSD distribution of these frequency components may alter heart conditions that affect the cardiac contraction cycle, making it a potential indicator for identifying cardiac arrhythmias. Consequently, we developed an automated machine learning algorithm based on PSD to differentiate normal SR from AF based on a large-scale data set from PhysioNet 2020.

Methods
ECG Data
We used the 2020 PhysioNet Challenge data sets (Table 1) [6], comprising the China Physiological Signal Challenge (CPSC) Database (men: n=3699, women: n=3178, total: n=6877, and sampling rate: 500 Hz), CPSC-Extra Database (men: n=1843, women: n=1610, total: n=3453, and sampling rate: 500 Hz), St Petersburg Institute of Cardiological Technics INCART 12-lead Arrhythmia Database (total: n=72 and sampling rate: 257 Hz), Physikalisch Technische Bundesanstalt (PTB) Diagnostic ECG Database (men: n=377, women: n=139, total: n=516, and sampling rate: 1000 Hz), Physikalisch Technische Bundesanstalt extra large (PTB-XL) electrocardiography Database (men: n=11,379, women: n=10,458, total: n=21,837, and sampling rate: 500 Hz), and Georgia 12-lead ECG Challenge Database (men: n=5551, women: n=4793, total: n=10,344, and sampling rate: 500 Hz). The PhysioNet Challenge data sets can be accessed publicly [7], and data access is licensed under the Creative Commons Attribution 4.0 International Public License [8].

Table 1. 2020 PhysioNet challenge data sets.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Data set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPSCa Database</td>
</tr>
<tr>
<td>Recording time</td>
<td>6–60 seconds</td>
</tr>
<tr>
<td>Sampling frequency (Hz)</td>
<td>500</td>
</tr>
<tr>
<td>Participants, n</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3699</td>
</tr>
<tr>
<td>Female</td>
<td>3178</td>
</tr>
<tr>
<td>Total</td>
<td>6877</td>
</tr>
</tbody>
</table>

aCPSC: China Physiological Signal Challenge.
bINCART: Institute of Cardiological Technics.
cPTB: Physikalisch Technische Bundesanstalt.
dPTB-XL: Physikalisch Technische Bundesanstalt extra large.
eN/A: not applicable.
From these data sets, we initially selected data featuring a 500 Hz sampling rate. Next, we identified ECG diagnoses using the Systematized Nomenclature of Medicine—Clinical Terminology codes 426783006 and 164889003 for SR and AF, respectively. This led to the identification of 20,766 SR and 3458 AF ECG recordings. After excluding recordings corresponding to multiple diagnoses, the final data set comprised 9102 SR and 1088 AF ECG recordings.

Ethical Considerations

This study was approved by the institutional review board of Taipei Veterans General Hospital (2022-04-004BC).

ECG Preprocessing and Feature Extraction

The ECG patterns associated with AF exhibit greater variability compared to those of SR. To explore this distinction, we used the Welch method [9,10] to estimate PSD and determine the frequency composition of the ECG signals. The recording durations of the ECG data ranged from 6 to 60 seconds, with 10 seconds being the most common. This variability could lead to differences in PSD resolution. To address this issue, we used the frequency bin method to ensure consistent frequency resolution across our PSD features. We set the frequency resolution to 1/6 Hz and calculated the arithmetic mean of the PSD frequencies within this resolution to represent the midpoint of each envelope. The data we used had a sampling rate of 500 Hz. Based on Nyquist-Shannon sampling theorem, the highest frequency information we can get is 250 Hz. After observing several data plots of the original PSD graph, we can see that most of the power of the signal is within 0 to 25 Hz. Thus, for a 10-second ECG recording, we selected a frequency of 0 to 25 Hz which was converted to 0.083 to 24.92 Hz. Figure 1 presents an example of original PSD plots and explains why we chose the PSD from 0 to 25 Hz. For further segmentation, it was just reasonable to separate the whole frequency segment into 5 smaller segments since the whole frequency ranges from 0 to 25 Hz. Figure 2 presents example ECG signals and PSD plots, highlighting notable differences in PSD between SR and AF; narrower harmonic frequency components can be observed in SR, while AF patterns display more erratic frequency components. We used these PSD features as inputs for our machine learning algorithm.

Figure 1. Initial results of PSD for SR and AF in lead 1. The original frequency information we got from PSD is 0 to 250 Hz. From the figure, we can see that the power of the signal concentrates within 0 to 25 Hz. Thus, we selected 0 to 25 Hz as our main frequency band. AF: atrial fibrillation; PSD: power spectral density; SR: sinus rhythm.
Figure 2. A comparison of the ECG and PSD for SR and AF in lead V4. While there is a discernible difference between SR and AF in the ECG representation, it remains challenging to distinguish them in this format. In contrast, the PSD figure demonstrates the harmonic nature of SR and the chaotic nature of AF, making it much easier to differentiate between the two. As a result of these observations, we have chosen to use PSD as the primary feature for our machine learning algorithms. This decision is based on the enhanced clarity and distinction provided by the PSD representation, which allows for more accurate and effective differentiation between SR and AF in our analysis. AF: atrial fibrillation; ECG: electrocardiogram; PSD: power spectral density; SR: sinus rhythm.

Machine Learning Methods
Supervised machine learning is a type of machine learning where the algorithm is trained on a labeled data set, and the goal is to make predictions for new, unseen data. There are several types of supervised machine learning methods used in this study, including (1) discriminant analysis: a method for modeling the relationship between a dependent variable and one or more independent variables (used for continuous target variables); (2) logistic regression: a method for modeling the probability of a binary outcome based on one or more independent variables; (3) decision trees: a method for making predictions by creating a tree-like model of decisions and their potential consequences; (4) random forests: an ensemble method that combines multiple decision trees to make a prediction; (5) support vector machines: a method for classifying data by finding the best boundary (or “hyperplane”) that separates the classes; (6) neural networks: a method inspired by the structure and function of the human brain (can be used for a wide range of tasks, including classification and regression); and (7) naive Bayes: a probabilistic method for making predictions based on Bayes’ theorem (often used for text classification).

Additionally, we used a gradient boosting decision tree algorithm, namely light gradient boosting machine (LightGBM) [11]. It is one of the most efficient algorithms in recent years, known for its speed and accuracy. Boosting is an approach for combining multiple base models into a composite one. One of the ensemble tree algorithms of LightGBM is a “leaf-wise” tree algorithm, wherein the tree grows vertically; most of the others are “level-wise” tree algorithms, wherein the trees grow horizontally. The leaf-wise structure reduces time complexity and offers a favorable balance of accuracy and efficiency, especially for large-scale, high-dimensional data. Thus, it is useful in classification problems.

Perceptrons are single-neuron models and the precursors to larger neural networks; now, they are the building blocks of neural networks. A deep neural network (DNN) is a supplement of a feed-forward neural network and consists of 3 types of layers: the input layer, the output layer, and the hidden layer. The input layer receives the input signal to be processed. The output layer performs the required task, such as prediction or classification. The true processing engine is the hidden layers, placed between the input and output layers. In a DNN, data flow from the input layer to the output layer, just as in feed-forward neural networks. The neurons are trained through back propagation. DNNs are widely used in various applications, including automated diagnosis using ECG data [12].

Statistical Analysis
Data Imbalance
We used the synthetic minority over-sampling technique [13] to filter the data and reduce the imbalance between the numbers of SR and AF recordings (n=9102 and n=1088, respectively).

F1-Score
To mitigate bias resulting from data imbalance, we used the \(F_1 \)-score as the primary metric for evaluating machine learning models. \(F_1 \)-scores treat false-positive and false-negative errors equally and are more useful than accuracy in cases of class

https://formative.jmir.org/2024/1/e47803

JMIR Form Res 2024 | vol. 8 | e47803 | p.1245

XSL RenderX
imbalance. The F_1-score is the harmonic mean of precision and recall, which measures the errors contributed by false positives and false negatives, respectively.

Training, Validation, and Testing Data Sets

We divided our data sets into training, validation, and testing sets. The training set was used to develop the models, the validation set for model tuning, and the testing set for model assessment. In this study, 60% of the data comprised the training set, 20% the validation set, and 20% the testing set. For model tuning, we used ensemble learning to identify optimal parameters for each model based on the validation set.

Results

Comparison of the Performance of Various Machine Learning Algorithms

We evaluated various machine learning methods, including extra tree, LightGBM (Microsoft Corporation), CatBoost (Yandex), XGBoost (The XGBoost Contributors), decision tree, k-nearest neighbors, stochastic gradient descent, gradient boosting, random forest, naïve Bayesian, logistic regression, and DNN. Our analysis reveals that machine learning algorithms with boosting methods outperform those without boosting. In particular, LightGBM outperformed the other methods, achieving the highest average F_1-score of 0.988 across all 12 ECG leads and the lowest computation time for features within the entire frequency range (0.083–24.92 Hz). Conversely, our results indicate that the naïve Bayesian algorithm performs poorly in classifying SR and AF. Despite its simplicity, naïve Bayesian appears to be less suited for this specific task, and alternative approaches should be considered for better accuracy and reliability. Thus, we focused solely on LightGBM for subsequent analyses.

Effect of Frequency Band on Model Performance

We examined the contributions of various frequency subbands of ECG PSD features to model performance in detecting AF (Table 2). The entire frequency range was divided into 5 subbands (0.083-4.92, 5.083-9.92, 10.083-14.92, 15.083-19.92, and 20.083-24.92 Hz). The highest overall F_1-score was achieved by the model using the full frequency range (0.083-24.92 Hz), and the frequency subband of 0.083 to 4.92 Hz yielded the highest F_1-score among the subbands. Generally, the F_1-score for each subband was around 0.9, indicating that every subband contains valuable information for ECG classification.

Interlead Differences in Model Performance

In lead comparisons, aVR demonstrated the highest performance across all frequency subbands, although the differences between leads were minimal (Table 3). Specifically, for the entire frequency range, using aVL resulted in the lowest classification performance (F_1-score=0.980), while using aVR achieved the highest performance (F_1-score=0.993).

Discussion

Principal Findings

In this study, we found that the LightGBM algorithm was the most effective machine learning model for our purposes. Notably, all frequency subbands contained distinct information, achieving independent F_1-scores of approximately 0.9. Consequently, using the entire frequency range (0.083–24.92 Hz) provided the most comprehensive features and yielded the highest F_1-score of 0.988. Interestingly, among the limb leads, aVR produced the best result, which was marginally superior to the outcomes of chest leads and lead II. This finding is unexpected, as lead aVR is rarely used in real-world scenarios for detecting arrhythmia. The contributions of different frequency bands to classification performance showed that even though each subband contains unique features, the dominant frequency subband (0.083-4.92 Hz) is sufficient for distinguishing AF from SR.
In terms of the contributions of frequency bands to classification performance, it is important to note that the normal human heart beats between 60 to 100 times per minute (1-1.67 Hz), whereas the dominant frequency in AF ranges from 3.8 to 8 Hz [14]. Given the differences in frequency components between SR and AF, they can be used to distinguish one from the other. As demonstrated in Figure 1, multiple frequency peaks are observed within the 0 to 25 Hz range for both SR and AF. Consequently, frequency subbands containing distinct features may yield different results.

Initially, we hypothesized that the subband containing the dominant frequency (0.083–4.92 Hz) would result in the optimal classification of SR and AF. Similar to the whole frequency range (0.083–24.92 Hz), while other subbands would struggle to classify SR and AF effectively. Indeed, models using the dominant frequency subband performed well, with results closely resembling those of models using the whole frequency range. However, other subbands also demonstrated high performance independently (Table 2), with F_1-scores exceeding 0.854. The dominant frequency subband (0.083–4.92 Hz) yielded an F_1-score of 0.985, which is comparable to that of the whole frequency range (F_1-score=0.988). These findings suggest that although each subband contains unique features and cannot be replaced by other subbands, the dominant frequency subband alone is sufficient for differentiating AF from SR.

In this study, we explore the variations in AF classification performance across different ECG leads. Each ECG lead has unique physiological applications, which in turn influence the preference of medical professionals in identifying specific types of arrhythmias. For instance, lead 1, aVF, or V1 are frequently used in diagnosing right ventricular hypertrophy. Routine clinical practice suggests that lead 2, which is typically the focus of medical professionals when examining AF, would yield the most accurate results. Surprisingly, our findings revealed that all leads, within the frequency range of 0.083-24.92 Hz, generated F_1-scores in close proximity to 0.985. Among these, lead aVR achieved the highest F_1-score at 0.993. We believe this can be attributed to the visibility of AF in the majority of leads and the comprehensive features encompassed by the entire frequency range.

Contrary to our initial expectations, lead aVR, which is not a common choice in clinical settings, produced the most optimal results when using subbands [15]. This finding may potentially shed light on the reentry mechanism that underlies AF [16,17]. It is worth noting that lead aVR captures data from the right ventricle outflow tract and the basal portion of the septum, whereas AF predominantly manifests in the left ventricle. Consequently, the reentry mechanism emerges as the most plausible explanation for this observed phenomenon.

In a prior study [18], the 2020 PhysioNet Challenge data sets were used alongside the LightGBM machine learning algorithm. However, the approaches to signal extraction and processing in that study differed from those used in our research. The previous study implemented filtering techniques and wavelet multiresolution analysis, while our investigation used PSD and the Welch method. Another key distinction between the 2 studies is the scope of the classification task. While our research focused solely on differentiating AF from SR, the previous study attempted to identify 24 different diseases. Due to the varied physiological information provided by each ECG lead, we opted to compare the performance of LightGBM for each individual lead, rather than inputting data from all 12 leads into the LightGBM simultaneously. Furthermore, our study identified the most critical frequency subband within the total frequency range. We determined the dominant frequency subband to be 0.083–4.92 Hz, which played a significant role in our analysis.

There are several limitations to be addressed in this study. One notable constraint is our selection of 10-second ECG recordings, which may not accurately represent the full spectrum of real-world clinical scenarios. The data sets used in this study were predominantly clean, while actual clinical situations may involve data contaminated by noise, potentially affecting the results. Moreover, our study focused exclusively on single-diagnosis data, representing either AF or SR. This approach, however, does not account for the possibility of a patient experiencing multiple arrhythmias concurrently. Consequently, our findings were derived under simplified conditions that may not fully reflect the complexity of real-life cases. In light of these limitations, it is essential to interpret our results with caution and consider further research that incorporates a broader range of ECG recordings, addresses potential noise-related challenges, and examines cases with multiple coexisting arrhythmias to enhance the generalizability and applicability of our findings to real-world clinical settings.

In summary, LightGBM proves to be a highly effective algorithm for distinguishing AF from SR. Our study demonstrated that when dividing the entire ECG frequency range into subbands with fewer features, lead aVR delivered the best performance. This outcome could potentially be associated with the underlying pathological mechanisms of AF. By incorporating adequate frequency band features, lead 2 ECG data can achieve an F_1-score of approximately 0.99. This level of accuracy and efficiency of the LightGBM model renders the algorithm suitable for implementation in clinical practice and integration into commercialized electronic devices, such as the smartwatch with the ECG functionality, for a range of health care applications. This study’s findings suggest that leveraging the power of LightGBM could enhance arrhythmia detection and monitoring, ultimately improving patient care and outcomes.

Literature Review

In this review, we will talk about studies that introduce techniques for AF detection, analyzing their methods, results, and potential implications in the field of cardiology. First, one study [19] proposed a feature extraction method based on a gradient set for AF detection, which features simplicity, noise tolerance, and adaptability to various classifiers. However, we can still improve the feature extraction method in the future, such as improving AF detection performance by proposing a more representative feature set or combining it with other types of features. This approach shows the potential for streamlined, efficient feature extraction, providing a solid foundation for further research in the domain.
Next, the Transposed Projection–Convolutional Neural Network (TP-CNN) method was introduced in another study [20], aiming to use “compressed ECG signals” for AF detection. The approach demonstrates promising results in accurately detecting AF in wearable application scenarios while addressing energy consumption concerns. It shows the effective use of compressed signals and a highly accurate algorithm. Yet, its data sources only contain 25 patients. More patients should be included in further studies.

Another study [21] demonstrates a unique method using multiple parameters, including the average number of f waves in a TQ interval, showing robust real-time AF detection capabilities. This approach not only differentiates between AF and normal ECGs but also outperforms distinguishing AF from other arrhythmias. However, they can discuss more about how their algorithms will be implemented in clinical situations.

There is another study [22] focusing on low-complexity algorithms for AF detection, a method based on RR interval features. This approach demonstrated reasonable feature selection while maintaining a low computational cost, making it suitable for low-power devices. However, in future studies, it should focus on getting a better F_1-score.

In addition to ECG AF detection, there is also a signal called photoplethysmography common in wearable devices for AF detection, while we usually use ECG in clinical situations. This Fitbit Heart study [23] provides an algorithm that exhibited a high positive predictive value for concurrent AF, highlighting the potential of consumer wearables for large-scale AF identification. Though the result is nice, we hope we can know more about photoplethysmography comparison with ECG.

In conclusion, these studies collectively contribute to the evolving landscape of AF detection methods. While each approach offers unique advantages, further research should focus on refining these methods, exploring real-time applications, and enhancing the overall accuracy and efficiency of AF detection algorithms. Potential limitations should also be emphasized in future studies.

Acknowledgments
This study was supported by the National Science and Technology Council of Taiwan with grants to ACY (grant MOST 111-26228-075-002-IE, MOST 111-2321-B-A49-007, MOST 111-2628-B-A49-012, MOST 111-2321-B-A49-011, and NSTC 111-2634-F-A49-014). ACY was also supported by the Mt Jade Young Scholarship Award from the Ministry of Education, Taiwan, as well as Brain Research Center, National Yang Ming Chiao Tung University, and the Ministry of Education (Aim for the Top University Plan), Taipei, Taiwan. All the funding resources provided financial supports only and had no other role in study design, data collection, analysis, or interpretations.

Data Availability
The data sets generated and analyzed during the current study are available in the 2020 PhysioNet Challenge data sets repository [7].

Conflicts of Interest
None declared.

References
8. Attribution 4.0 International (CC BY 4.0). Creative Commons. URL: https://creativecommons.org/licenses/by/4.0/ [accessed 2024-01-22]

Abbreviations

- **AF**: atrial fibrillation
- **CPSC**: China Physiological Signal Challenge
- **DNN**: deep neural network
- **ECG**: electrocardiogram
- **INCART**: Institute of Cardiological Technics
- **LightGBM**: light gradient boosting machine
- **PSD**: power spectral density
- **PTB**: Physikalisch Technische Bundesanstalt
- **PTB-XL**: Physikalisch Technische Bundesanstalt extra large
- **SR**: sinus rhythm
- **TP-CNN**: Transposed Projection–Convolutional Neural Network
Optimization of Using Multiple Machine Learning Approaches in Atrial Fibrillation Detection Based on a Large-Scale Data Set of 12-Lead Electrocardiograms: Cross-Sectional Study

Chuang BBS, Yang AC

URL: https://formative.jmir.org/2024/1/e47803
doi: 10.2196/47803
PMID: 38466973

© Beau Bo-Sheng Chuang, Albert C Yang. Originally published in JMIR Formative Research (https://formative.jmir.org), 11.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Designing an App to Support Measurement-Based Peer Supervision of Frontline Health Workers Delivering Brief Psychosocial Interventions in Texas: Multimethod Study

Anubhuti Poudyal1, MPH; Delta-Marie Lewis2, BA; Sarah Taha3, SM; Alyssa J Martinez3, MS; Lauren Magoun2, MPH; Y Xian Ho2, PhD; Natali Carmio3, PsyD; John A Naslund3, PhD; Katherine Sanchez3, PhD; Neal Lesh2, PhD; Vikram Patel3, PhD

1Department of Sociomedical Sciences, Columbia Mailman School of Public Health, New York, NY, United States
2Dimagi, Inc, Cambridge, MA, United States
3Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, United States
4Patient and Community Engaged Research Center, Baylor Scott and White Research Institute, Dallas, TX, United States

Corresponding Author:
Anubhuti Poudyal, MPH
Department of Sociomedical Sciences
Columbia Mailman School of Public Health
722 W 168th St
New York, NY, 10032
United States
Phone: 1 (212) 305 2862
Email: ap4150@cumc.columbia.edu

Abstract

Background: The unmet need for mental health care affects millions of Americans. A growing body of evidence in implementation science supports the effectiveness of task sharing in the delivery of brief psychosocial interventions. The digitization of training and processes supporting supervision can rapidly scale up task-shared interventions and enable frontline health workers (FLWs) to learn, master, and deliver interventions with quality and support.

Objective: We aimed to assess the perceived feasibility and acceptability of a novel mobile and web app designed and adapted to support the supervision, training, and quality assurance of FLWs delivering brief psychosocial interventions.

Methods: We followed human-centered design principles to adapt a prototype app for FLWs delivering brief psychosocial interventions for depression, drawing from an app previously designed for use in rural India. Using a multimethod approach, we conducted focus group sessions comprising usability testing and group interviews with FLWs recruited from a large health system in Texas to assess the feasibility and acceptability of the app. The positive System Usability Scale was used to determine the app’s overall usability. We also calculated the participants’ likelihood of recommending the app to others using ratings of 0 to 10 from least to most likely (net promoter score). Focus group transcripts were coded and analyzed thematically, and recommendations were summarized across 4 key domains.

Results: A total of 18 FLWs varying in role and experience with client care participated in the study. Participants found the app to be usable, with an average System Usability Scale score of 72.5 (SD 18.1), consistent with the industry benchmark of 68. Participants’ likelihood of recommending the app ranged from 5 to 10, yielding a net promoter score of 0, indicating medium acceptability. Overall impressions of the app from participants were positive. Most participants found the app easy to access and navigate. The app was considered important to support FLWs in delivering high-quality mental health care services. Participants felt that the app could provide more structure to FLW training and supervision processes through the systematic collection and facilitation of performance-related feedback. Key concerns included privacy-related and time constraints regarding implementing a separate peer supervision mechanism that may add to FLWs’ workloads.

Conclusions: We designed, built, and tested a usable, functional mobile and web app prototype that supports FLW-delivered psychosocial interventions in the United States through a structured supervision mechanism and systematic collection and review of performance measures. The app has the potential to scale the work of FLWs tasked with delivering these interventions to the...
Introduction

Background

In the United States, 22.8% of adults have a mental illness, and 5.5% have a serious mental illness [1]. Following the COVID-19 pandemic, the percentage of adults with symptoms of anxiety or depressive disorders has increased substantially, with preliminary data reporting a prevalence of 20% to 32.3% [2,3], although the extent of the increase is still unclear [4]. In 2021, in the United States, only 65.4% of adults with serious mental illness and 47.2% with any mental illness received mental health services [1], and the proportion receiving “minimally adequate” treatment [5], defined as treatment minimally sufficient for common mental disorders, is low [6,7]. In addition to the direct impact on health and well-being, the economic cost of mental illness is high [8]. Worldwide, 418 million disability-adjusted life years and an economic burden of US $5 trillion are associated with mental health disorders [8]. In the United States, the federal government spent US $280 billion on mental health services in 2020 [9]. Despite significant efforts, access to mental health services remains highly limited owing to barriers such as cost and availability of services [9].

The rate of untreated mental health conditions is a major concern. Although psychosocial interventions have shown remarkable effectiveness in supporting individuals with mental conditions [10,11], barriers to accessing services limit the number of people benefiting from such interventions [12]. Access to mental health support varies widely across the country. According to a 2018 study, over 60% of rural counties reported lacking access to a psychiatrist or psychologist [13]. Studies have reported long delays in appointment scheduling [14], with clients sometimes having to wait many months before they are seen; this is especially true for scheduling first-time appointments [15] and has thus become a common issue for mental health care [16,17]. The COVID-19 pandemic has exacerbated the gaps between a need for and access to mental health services [18], with renewed calls to address the shortage of mental health professionals in the United States [19].

To address the gap in providing adequate services for mental health conditions, the World Health Organization and other institutions have advocated for task-sharing approaches, including screening and treatment protocols that frontline health workers (FLWs) can follow to extend the role of mental health specialists wherever possible, particularly in areas where specialist support is nonexistent or inaccessible [20]. Worldwide, there is growing evidence of the effectiveness of psychosocial interventions delivered by FLWs who are not behavioral health specialists [21-24]: frontline interventions have demonstrated effectiveness and cost-effectiveness in addressing mental health in high-income and low-income countries worldwide [25-29].

Task-sharing programs with trained FLWs were initially pioneered and have since been broadly evaluated across various low- and middle-income countries, many with <1 psychiatrist per 100,000 people, rendering specialist access a near impossibility for much of the world’s population [30-33]. Following the concept of “reciprocal innovation,” in which mutual benefit and learnings are derived from innovations demonstrated to be effective in low-income settings and then applied to high-income settings and vice versa [34], task-sharing programs are now being advocated for use in high-income countries experiencing critical shortages of mental health providers and a need for equitable, culturally competent, and value-based care [21,25,35]. Task-sharing programs show great promise for increasing the health system’s capacity to meet the overwhelming demand for mental health care in the United States, particularly in areas with already limited access to specialized care. They can further allow specialists to focus on more complicated cases, potentially reducing delays for those who require more specialized care [36,37]. Scaling up such task-shared programs requires innovative strategies to ensure quality delivery of interventions and support FLWs’ skill enhancement. Using digital tools for training and supervision of FLWs is a promising next step [21] to enhance FLW skills, deliver psychosocial interventions effectively, and provide supportive supervision. Here, we define an FLW as any health worker without specialized training in mental health care who may be tasked with providing mental health support to clients in their communities, which in the United States can include primary care providers, physician assistants, community health workers (CHWs), lay therapists, peer navigators, nurses, midwives, and health coaches [38]. FLW-delivered interventions often have brief core elements (eg, behavioral activation [BA] [21,39]) and are intended to be conducted during FLW visits with clients in the community or primary care settings.

We built an app prototype guided by the principles of measurement-based care and supportive supervision based on an earlier app designed to facilitate supervision for CHWs in rural India [40] to facilitate skill enhancement of FLWs and effective delivery of FLW-led interventions in Texas. Measurement-based care includes methods of monitoring and improving the quality of psychosocial intervention delivery through objective, measurable metrics generated through systematic data collection to monitor client progress and directly inform care decisions [41-43]. Supportive supervision shifts the focus from the supervisor-supervisee dyad to the entire workforce by including self-assessments and assessments by peers, community members, and supervisors [44]. By digitally supporting measurement-based care and supportive supervision, the app can provide scalable access to measurable, evidence-based metrics that can guide assessments by peers as well as oneself and one’s supervisor. The app is designed to

https://formative.jmir.org/2024/1/e55205

JMIR Form Res 2024 | vol. 8 | e55205 | p.1252

(page number not for citation purposes)
support FLWs trained to implement a psychosocial intervention and who can benefit from a metrics-driven, supportive supervision approach to enhance individual performance and ensure intervention fidelity.

Goal of This Study

In this study, we aimed to assess the feasibility and acceptability of an adapted version of this prototype app in preparation for potential implementation in the United States following the technology acceptance model [45] and learnings from prior work using similar technology in India and other global settings [46].

Methods

We used human-centered design principles to adapt an app for FLWs in the United States and used a multimethod approach combining usability testing and group interviews to yield collective interpretations of the feasibility and acceptability of the app among potential target end users [47].

Prototype Design

The design of the app was based on learnings from implementing an existing app in the Promoting Effective Mental Healthcare Through Peer Supervision (PEERS) project built on the CommCare platform and developed as part of a large-scale randomized controlled trial in India to understand whether the quality of mental health care offered by FLWs can be improved through a scalable measurement-based peer supervision model [46,48]. This study builds on evidence that an allied peer supervision model can provide a scalable approach to improve the quality of mental health care available to populations in low-resource settings [46,49]. As of late 2023, over 200 nonspecialist providers or lay counselors in Madhya Pradesh and Goa with appropriate training and supervision in mental health care but no formal mental health qualifications continue to use the app to support the peer supervision component of their work.

In this study, following the PEERS model, we adapted an Android and web app using an iterative prototype design with feedback from an advisory panel of stakeholders and subject matter experts with backgrounds in clinical professional development education, mental health policy, clinical social work, and development and implementation of CHW programs in Texas. Members of the study team held 4 rounds of discussions with 5 advisory panelists to assess face validity and help ensure that potential target users’ input was directly incorporated throughout the design and development process. Through a series of in-depth interviews, advisory panel members initially provided commentary on the original PEERS app, current supervision practices in the United States, and the app’s potential to support the supervision process. Subsequent in-depth interviews probed feedback on the usability of the prototype and considerations for its implementation within the United States. The advisory panel’s feedback included inputs for the design and development of the app and considerations for future implementation.

After incorporating preliminary advisory panel feedback, a final app prototype and study materials were created and prepared for usability testing with target end users. The final app was designed to support the following FLW activities: (1) registering clients, conducting and audio recording intervention sessions, and entering session-related notes; (2) reviewing and rating audio-recorded intervention sessions they conducted themselves using a validated scale (eg, the Behavioral Activation Quality Scale [44]); (3) reviewing and rating audio-recorded intervention sessions conducted by peers; (4) reviewing data visualizations of self-ratings as well as those given by their peers and supervisors for reviewed sessions; and (5) accessing related training materials. A screenshot of the app’s menu and the details of each module are shown in Figure 1.

Figure 1. Screenshot of the peer supervision web application menu with descriptions of each menu item.
Previous Mental Health Training
To assess the feasibility and acceptability of this prototype app, we identified participants who had completed a 2-part training on foundational skills and BA interventions for depression and received access to measurement-based peer supervision training developed by a nonprofit program, EMPOWER, that leverages digital tools for training and supervising FLWs worldwide [46]. The FLWs in this study had been trained as part of efforts to build workforce capacity and scale up access to brief psychosocial interventions for depression in primary care and community settings across Texas [46].

Recruitment
FLWs from a large health system in Texas (ie, Baylor Scott & White Health) were recruited via email by an experienced human subjects–trained member of the study team to participate in remote focus group sessions. Candidates who met the following eligibility criteria were invited to participate: (1) aged ≥18 years, (2) fluent in English, and (3) having completed training on foundational skills and BA interventions for depression and having access to the measurement-based peer supervision training course developed by EMPOWER. Informed consent was obtained before participation.

Onboarding to the App
After completing the aforementioned training courses, which included a brief introduction to the app and brief video tutorials on how to use it, participants were invited to join a remote focus group session comprising usability testing and a group interview. All sessions were conducted via Zoom (Zoom Video Communications) and lasted approximately 1.5 hours. Participants who did not own an Android device were mailed a study tablet with the app preinstalled for use during the usability testing portion of the focus group session. Study team members trained in user experience and qualitative methods moderated the sessions (YXH and DML).

Usability Testing
To assess the app’s usability, a set of 11 usability tasks and related scenarios were created based on tasks we anticipated FLWs would commonly perform if they were to use the app in practice (see the task list in Multimedia Appendix 1). One moderator (DML) introduced each task to the participants, who then performed each task independently at their own pace. The next task was introduced once everyone had completed the preceding one unless the task took much longer than anticipated, in which case the moderator then moved participants to the next task. Moderators observed and noted participants’ task performance while providing minimal assistance with task instructions when needed.

Surveys
In addition to usability testing, each participant independently completed a series of surveys via Qualtrics (Qualtrics International Inc) to collect information on participant demographics; experience with technology; and perceived ease of use, usefulness, and user satisfaction. We used the positive System Usability Scale (SUS) [50], a 10-item Likert scale survey to assess general usability, with possible scores ranging from 0 to 100, where higher scores indicate higher usability. We also calculated the net promoter score (NPS) [51], a single-item user-reported questionnaire to rate the likelihood of recommending the app to others to assess market viability. To generate an NPS, respondents provide scores between 0 (not at all likely) and 10 (extremely likely); scores of 9 or 10 are considered “promoters,” scores of 7 or 8 are considered “passives,” and scores of 0 to 6 are considered “detectors.” The NPS is then derived by subtracting detractors from promoters (both calculated as the percentage of total respondents), with possible NPS scores ranging from −100 to 100.

Group Interviews
All participants engaged in semistructured interviews following usability testing and survey completion. An interview guide was developed and used to collect feedback on user experience with probes on the overall impressions of the app, current supervision mechanisms, and barriers to and facilitators of the broader implementation of the app. A trained and experienced moderator (YXH) followed the guide to probe feedback on the app’s perceived feasibility, acceptability, and usefulness.

Data Analysis
The focus group sessions were audio recorded, transcribed, and anonymized before coding and analysis. The COREQ (Consolidated Criteria for Reporting Qualitative Research) checklist is included in Multimedia Appendix 2 [52]. We used both deductive and inductive approaches to coding. We first defined usability, feasibility, and acceptability following definitions published by Ginsburg et al [53]. In total, 2 coauthors (YXH and DML) who moderated the focus group sessions independently read 2 transcripts and generated codes from the data. YXH, AP, and DML then finalized the codebook, which was used to direct the coding process. We used a systematic thematic coding approach [54] to generate key themes based on a priori codes and emergent codes: (1) perceived feasibility of the app, (2) acceptability of the app, (3) perceived usefulness of the app, and (4) barriers to and facilitators of scalability. Textbox 1 summarizes the definitions of the themes as used in this paper. Following thematic coding, we developed code summaries or preliminary narratives describing each theme. YXH, AP, and DML then discussed and refined the code summaries to ensure depth and breadth across all participants. The final code summaries were used to describe the findings in this paper. An intercoder agreement was calculated between 2 coders (YXH and DML) on a portion of coded data until a κ value of 0.61 was achieved. All interview transcripts were double coded and analyzed using the qualitative research software Dedoose (version 9.0.107; SocioCultural Research Consultants) [55]. SUS and NPS scores were calculated following the focus group sessions.
Textbox 1. Key themes and definitions.

<table>
<thead>
<tr>
<th>Perceived feasibility</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived structural factors that could influence the introduction of the app, including administrative infrastructure and operational capabilities of the health systems</td>
<td></td>
</tr>
</tbody>
</table>

Acceptability

- Frontline health workers’ willingness to use the app during client interactions

Perceived usefulness

- Includes the ability to use the app for enhanced functioning and improvement of the current workflow

Barriers to and facilitators of scalability

- Any challenges that could limit scaling up or wider use of the app
- Improvements to the current app, along with changes in the current systems that could result in wider adoption of the app across current and wider health systems

Ethical Considerations

The institutional review boards at Baylor Scott & White Health (388136) and Harvard Medical School (IRB22-0692) approved the study.

Results

Overview

A total of 18 FLWs—including clinical managers, CHWs, social workers or social work students, research assistants, nurses, and medical assistants—participated in 1 of 6 focus group sessions. Participants were aged between 21 and 70 years. Most identified as female (15/18, 83%), were not Hispanic/Latino (11/18, 61%), and had bachelor’s degrees (8/18, 44%). Table 1 summarizes the demographic characteristics of the participants.
Table 1. Participant characteristics (N=18).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Female</td>
<td>15 (83)</td>
</tr>
<tr>
<td>Nonbinary</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>8 (44)</td>
</tr>
<tr>
<td>30-39</td>
<td>3 (17)</td>
</tr>
<tr>
<td>40-49</td>
<td>3 (17)</td>
</tr>
<tr>
<td>50-59</td>
<td>2 (11)</td>
</tr>
<tr>
<td>60-69</td>
<td>1 (6)</td>
</tr>
<tr>
<td>70-79</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Black/African American</td>
<td>7 (39)</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>1 (6)</td>
</tr>
<tr>
<td>White</td>
<td>7 (39)</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>7 (39)</td>
</tr>
<tr>
<td>Not Hispanic/Latino</td>
<td>11 (61)</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
</tr>
<tr>
<td>High school graduate or equivalent</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Some college or certificate program</td>
<td>7 (39)</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>8 (44)</td>
</tr>
<tr>
<td>Doctorate degree</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Role</td>
<td></td>
</tr>
<tr>
<td>Clinical manager</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Social worker</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Nurse</td>
<td>3 (17)</td>
</tr>
<tr>
<td>Social work student</td>
<td>4 (22)</td>
</tr>
<tr>
<td>Research assistant</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Medical assistant</td>
<td>3 (17)</td>
</tr>
<tr>
<td>Community health worker</td>
<td>4 (22)</td>
</tr>
</tbody>
</table>

Most participants (11/18, 61%) did not have mental health training before the EMPOWER training but interacted with individuals with mental illness regularly during their work (Table 2). None of the participants had experience delivering structured BA therapy.
Table 2. Mental health (MH) training (N=18).

<table>
<thead>
<tr>
<th></th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous MH training</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7 (39)</td>
</tr>
<tr>
<td>No</td>
<td>11 (61)</td>
</tr>
<tr>
<td>Years of MH training</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13 (72)</td>
</tr>
<tr>
<td>1</td>
<td>3 (17)</td>
</tr>
<tr>
<td>2</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Experience delivering structured psychosocial therapies</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td>No</td>
<td>18 (100)</td>
</tr>
<tr>
<td>Average number of clients with MH issues interacted with per month</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7 (39)</td>
</tr>
<tr>
<td>1-9</td>
<td>6 (33)</td>
</tr>
<tr>
<td>10-19</td>
<td>2 (11)</td>
</tr>
<tr>
<td>20-29</td>
<td>2 (11)</td>
</tr>
<tr>
<td>30-39</td>
<td>0 (0)</td>
</tr>
<tr>
<td>40-49</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

Table 3 summarizes the participants’ current technology use. Less than half (7/18, 39%) of the participants owned Android-supported devices. Participants were provided with Android tablets if they reported not having or being able to use an Android device during the focus group session; 28% (5/18) of the participants installed the app on their own devices, and the remaining participants were provided with Android tablets for this study.

Table 3. Technology use (N=18).

<table>
<thead>
<tr>
<th></th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hours spent on a computing device (daily)</td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>0 (0)</td>
</tr>
<tr>
<td>4-6</td>
<td>4 (22)</td>
</tr>
<tr>
<td>7-9</td>
<td>9 (50)</td>
</tr>
<tr>
<td>10-12</td>
<td>3 (17)</td>
</tr>
<tr>
<td>≥13</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Frequency of internet use</td>
<td></td>
</tr>
<tr>
<td>At least once a day</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Multiple times a day</td>
<td>5 (28)</td>
</tr>
<tr>
<td>Several times a day</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Most of the day</td>
<td>10 (56)</td>
</tr>
<tr>
<td>Confidence using electronic devices</td>
<td></td>
</tr>
<tr>
<td>Somewhat confident</td>
<td>4 (22)</td>
</tr>
<tr>
<td>Very confident</td>
<td>14 (78)</td>
</tr>
<tr>
<td>Owns an Android device</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7 (39)</td>
</tr>
<tr>
<td>No</td>
<td>11 (61)</td>
</tr>
</tbody>
</table>
Overall, participants found the app usable, with an average SUS of 72.5 (SD 18.1) compared with the industry benchmark of 68, which has been found to be the average SUS for digital health apps and used in previous digital health studies [56,57]. The average SUS scores from older participants (aged >50 years) were lower than those from younger participants (Table 4). The NPS was 0 (neutral), with an equal distribution of promoters, detractors, and passives (6/18, 33% per NPS category).

Table 4. System Usability Scale score (N=18).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Participants, n (%)</th>
<th>Scores, mean (SD)</th>
<th>Scores, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>8 (44)</td>
<td>74.7 (18.4)</td>
<td>72.5 (60-91.25)</td>
</tr>
<tr>
<td>30-39</td>
<td>3 (17)</td>
<td>79.1 (20.2)</td>
<td>82.5 (57.5-97.5)</td>
</tr>
<tr>
<td>40-49</td>
<td>3 (17)</td>
<td>73.3 (11.3)</td>
<td>72.5 (62.5-85)</td>
</tr>
<tr>
<td>≥50</td>
<td>4 (22)</td>
<td>62.5 (22.7)</td>
<td>57.5 (45-80)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Educational level</th>
<th>Participants, n (%)</th>
<th>Scores, mean (SD)</th>
<th>Scores, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school or some college</td>
<td>9 (50)</td>
<td>74.4 (20.7)</td>
<td>82.5 (57.5-92.5)</td>
</tr>
<tr>
<td>Bachelor’s degree or higher</td>
<td>9 (50)</td>
<td>70.5 (16.0)</td>
<td>70.0 (62.5-75.0)</td>
</tr>
</tbody>
</table>

Perceived Feasibility of the App

In this section, we discuss the perceived feasibility of the app, which includes structural factors such as the current administrative and operational capabilities of health systems that could influence the introduction of the app. The participants discussed their current client-provider engagements and supervision mechanisms that could affect the potential introduction and incorporation of the app into current workflows and across the existing health system.

Client-Provider Engagement

Participants described how they worked with clients, which revealed potential considerations of how the app may need to be flexibly designed to support the ways in which FLWs meet with clients today. First, although in-person visits were still common, many participants shared that they engaged with their clients via telehealth. Furthermore, when meeting remotely with clients, participants shared that they may not necessarily have a quiet, private space to speak with clients and connectivity may be less reliable. Thus, obtaining high-fidelity recordings of sessions conducted in settings with frequent disruptions is an important consideration. Second, FLWs have limited time to interact with clients, and some participants shared that additional time would be needed to deliver a brief psychosocial intervention. Third, in some cases, screenings such as the Patient Health Questionnaire—9 for depression are currently administered and updated in electronic health record (EHR) systems such as Epic, and it may not be the FLW’s role to access, collect, or update these data even though such screening data may be needed for the delivery of a psychosocial intervention such as BA. When discussing client engagement, one participant noted the following:

...the social worker is the first person that meets with the patient because she talks to the patient to see what barriers they have to their personal care, which would involve depression screening, and any kind of behavioral health barriers that they may have going on. So that’s how we get our information about what the patient is kind of going through and what they need as far as behavioral health management. [P04; nurse]

The integration of the app into existing EHR systems was reported as another important consideration.

Finally, although we did not specifically collect feedback on supervisors’ perceptions of the app, participants in supervisory roles suggested that additional time would be needed not only to review all the recordings but also to actually deliver the intervention—time that FLWs may not have:

From my role, like I said before, I don’t know that I would have the time to incorporate something like this into a patient encounter just because, like I said, we’ve got about 15, 20 minutes to see a patient for whatever issue is happening. And generally, when I see a patient for depression, anxiety, or something mental health, we certainly talk about it, talk about the role of treatment, maybe some options for counseling, not necessarily just medication. But I feel like when they get to me, it’s more about treatment and not so much about talking through things just because they’re not going to have as much time with a physician or a nurse practitioner because of their schedules. [P08; nurse practitioner]

Supervision Structure

According to the participants, the current supervision structure includes structured supervisor-supervisee meetings scheduled as a part of annual performance reviews. In most settings, although they are not perceived as part of supervision and are not standardized, peer support groups are also available. Although the existing peer support mechanisms are informal and do not follow a structure similar to the supervisor-supervisee meetings, they function as a good support mechanism for team members in which “a doctor can support a doctor, a manager can support a manager, or even their employees” (P06; clinical manager). A participant noted the following:
We do huddles where we kind of discuss different things that are going on and changes within our settings and our clinical practice that are similar, but we don’t necessarily do any ratings. [P16; certified medical assistant]

Thus, introducing the app would mean integrating these traditionally siloed supervisor-supervisee and peer support mechanisms and potentially introducing a new workflow that allows additional time and resources to be invested in supporting FLWs.

Acceptability of the App

On the basis of feedback from the focus group sessions, participants’ overall impressions of the app were mainly positive. Participants reported that they found the app “easy,” “useful,” and overall “important” to their current workflows. The app could provide a much needed structured platform to support peer supervision and overall training of FLWs. A participant with no training in mental health care delivery before the BA training program noted the following:

I don’t have to be a licensed professional counselor, and I can actually use it myself to help and...get supervision from my other peers to help me along the way. [P07; certified medical assistant]

Another participant described the app and process as an “objective way to actually hear the session and hear how much each person reacted, how they delivered the information to the person, how the patient received it” (P08; nurse practitioner). She added that, as a supervisor, she could instruct the trainee to “go ahead and do it, and then we’ll listen, and we can talk about feedback together.”

Even though most participants did not necessarily review or remember information from the app-related training materials provided to them before the focus group sessions, they considered the app easy to use. Participants who accessed the app on their devices found it easy to install. Most respondents also found the app navigation to be easy and self-explanatory. Nonetheless, it was noted that it could be a bit confusing at first “because you don’t know where to click,” (P02; social worker or social work student) and there were a few features within the app that the participants found more challenging to navigate than others (e.g., navigating and interpreting different graphs and reviewing self-ratings). Participants needed time to familiarize themselves with the app and use it comfortably as they had never used a similar app before. One FLW reported:

I watched the (training) videos a long time ago and didn’t remember exactly everything that was talked about in the videos. And so, there’s a little bit of difficulty at first, but it’s pretty intuitive [as to] where everything is and how to use it. Or at least for me, it was, and so I could be able to grasp onto it pretty easily. [P03; social worker or social work student]

The features that participants needed the most time to navigate included accessing recordings, graphs, and self-ratings.

Perceived Usefulness of the App

Participants generally perceived the app to be potentially useful for a few reasons. One respondent shared that such an app would be useful to have now to address gaps in care because of limited access to and availability of mental health specialists:

For me, it would be a great thing to refer someone to if this was—if this was available because I think right now our psychiatrists are scheduling out next year. I think it’s a year before you can get the next appointment. So obviously, mental health is a big problem. [P08; nurse practitioner]

The app could also help enhance FLWs’ job performance, highlight their areas for growth, and ensure overall intervention fidelity. The app’s ability to record and allow users to review and rate sessions can allow for more tailored feedback on performance enhancement, highlighting areas of growth:

I think as a supervisor, being able to record sessions could be really impactful if you have group supervision that you’re doing. Because if you have the consent from the patient and you’re able to kind of play this recording for everybody, you could kind of talk about what things went good [sic], areas of growth, basically. And so being able to use a recording, I think, could be helpful, as well as peer ratings and getting the ratings from your supervisor to kind of also see what areas of growth that you might have for behavioral activation or any other skills that you’re using at your place of employment. [P03; social worker or social work student]

In addition to individual performance enhancement, the app could ensure intervention fidelity. A CHW shared that counseling sessions were often interrupted in the hospital setting; therefore, audio recording or rating could verify that the sessions were comprehensive despite disruptions. Reviewing the recording asynchronously could also help FLWs ensure that their sessions adhere to the intervention protocol.

Finally, most participants mentioned how their current peer support groups lacked structure and did not use systematic guidance or frameworks such as ratings for peer supervision. Respondents highlighted the potential of this app to fill that gap; however, the challenge would be in how to systematically incorporate the use of the app across the health systems currently implementing or planning to implement task-shared mental health interventions. As aptly summarized by a CHW, “to say that we need something like this, we definitely do. It’s just ‘where-do-we-put-it type’ of situation” (P17; CHW).

Barriers to and Facilitators of Scalability

Following discussions on the app’s perceived feasibility, usefulness, and acceptability, we probed considerations that could help the app’s broader implementation, including its fit into the FLWs’ current workflows and recommendations for future implementation.

Addressing Privacy Concerns

Protecting client privacy was expressed as a top priority for most respondents. Although feedback was mixed about clients’
apprehension toward audio-recorded sessions, it was generally agreed that obtaining proper client consent before recording was critical and necessary. Participants shared that consent from both FLWs and clients would be essential to ensure transparency and that all parties were informed of and agreed to how recordings would be used. Suggestions for increasing client comfort and obtaining adequate consent included building a trusted relationship with the client before asking to record sessions. By doing this, clients may be less hesitant to be recorded and more comfortable sharing their potential concerns.

Finally, regarding physical infrastructure, as noted previously, there is not always a private, physical space for FLWs to engage with clients and conduct peer supervision activities. One participant shared the following:

...we would probably talk about a lot of stuff that people would really want to be kept private with no real chance of anyone else hearing it, but that space is a big issue. We have a lot of shared offices—a lot of people in the same room at the same time...it might be better for us to, say, record a session so that we can make sure we’re getting everything, make sure I’m not missing something because that person’s over here, this person’s doing this, this person interrupted me, that person bumped into me. Yeah, we would just need to find a way to do it where we could minimize distractions, interruptions, and that kind of stuff. [P17; CHW]

Another participant agreed, stating the following:

I’m in a room that can accommodate 25 people. And I have people all around me, and we’re all talking about different things. And it’s really hard. [P18; CHW]

Ensuring the App Fits Workflow and Time Capacity

Although the app was perceived as an important addition to support their work, some participants raised concerns about finding time to deliver brief interventions and reviewing and discussing self- and peer performances. It was suggested that the ability to review and rate recordings anytime and anywhere is an advantageous feature of an app accessible from any device and that FLWs may prefer different device types depending on their environment or workflow. For example, one FLW noted the following:

I think mostly it would be done at a computer because we have very set clinic hours where I’m at. But in some other environments, I could see somebody trying to access it from a car or something like that. [P16; certified medical assistant]

Another commented that, for her role, “...these (tasks) would be more flexible in very small devices, like iPad or phone, rather than recording it and everything, doing it in a computer” (P10; nurse). Asynchronous review would also allow for more flexibility in completing these follow-up activities:

I think being able to kind of reference the sessions that you’ve recorded will kind of allow for being a little more flexible in the schedule. Right now, you just have to go with each patient as it is, but this will allow...you to refer back. So, you don’t always have to just do it all at one time. [P16; certified medical assistant]

Collecting and managing data offline would also be critical for FLWs working in areas with limited connectivity.

Providing Structured, Supportive Supervision

Respondents noted how the app could help supervisors give structured feedback to their staff, identify and highlight growth areas, and delegate appropriate tasks to FLWs based on their performance and expertise. Similarly, peer supervision could allow for more structured feedback from peers in workplaces that currently have informal peer support groups. Respondents confirmed that structured supervisor feedback could help with performance enhancement and quality assurance, particularly during the training phase, when workers need the most support. One participant noted the following:

...it would be good to be able to listen to how we interact with the patients. And it would be good to listen to it with the provider so...the nursing staff would know what we could do different, if we did well, just to get an idea of how we’re doing and how the patients are reacting to what we do. [P09; medical assistant]

Participants felt that current app-supported supervision could allow for a more consistent feedback mechanism, systematic tracking of gradual performance improvement, and a constant feedback loop to enhance learning opportunities for FLWs.

Similarly, although respondents reported that informal peer feedback is available in some settings, it is largely unstructured. Most participants agreed that having their peers listen to their sessions and provide feedback is beneficial. Respondents were generally receptive to their peers being involved in supervisory processes, primarily as the participants viewed peer supervision more as “feedback” rather than a performance appraisal. However, it was suggested that it would be important, if not critical, to ensure that peers provide constructive and positive feedback to each other; concerns were raised about how the care team culture may be affected by peers giving and receiving negative ratings and critiques on performance. When asked how they would feel about their peers listening and rating their sessions, one participant noted that it is “beneficial to have another set of ears as long as it’s constructive criticism or constructive help” (P18; CHW). Regarding constructive criticism, “I think it’s all in bettering us so that we can better our patients, so that’s good” (P16; certified medical assistant). For some, ratings were only associated with yearly performance reviews with a supervisor. Respondents emphasized the importance of a nurturing and supportive peer group rather than a competitive one. Finally, participants agreed that the app had the potential to help with more structured self-assessments as well. The ability to record and review sessions could allow for more flexible self-evaluation and help with self-improvement and retrospective performance assessment.
Discussion

Principal Findings

We conducted this study to assess the feasibility and acceptability of a prototype app developed for FLW supervision using objective, metric-based performance evaluation and supportive feedback mechanisms in the United States. Participants found the app easy to use and acceptable. It was considered useful for supporting task sharing of mental health care services, enhancing FLWs’ skills, ensuring intervention fidelity, and providing structure to the traditionally unstructured peer support groups by introducing peer ratings and structured feedback mechanisms. Some key feasibility issues revealed in discussions with FLWs and stakeholders included (1) how the ability to record sessions with high fidelity may depend largely on the nature of the client encounter, (2) the potential need to integrate the app into an existing EHR system (eg, Epic), and (3) the introduction and integration of a new app-supported peer supervision workflow into existing supervisor-supervisee processes and peer support mechanisms. Among areas of improvement for scalability were privacy considerations both on recording and rating the session and ensuring the availability of private space in the health facility to conduct the mental health intervention successfully. Other areas of improvement included focusing on the additional time commitment required of FLWs and supervisors when introducing the app, including time to record and rate the sessions. Findings from our study highlight the app’s potential to catalyze the existing traditional supervisor-supervisee dyad model by shifting focus to a supportive supervision model that incorporates feedback not just from supervisors but also from peers and through self-assessments [44].

We would like to highlight 2 key findings that affect the scalability of the current app and similar digital tools that aim to support the monitoring of psychosocial intervention delivery through objective, measurable metrics. The first is the utility of the current app for supportive supervision of FLWs in the United States. Given the current focus on the scalability of task-shared mental health interventions and the need to ensure the quality delivery of task-shared psychosocial interventions, digital solutions such as the one proposed in this study are crucial [46,58]. Worldwide, digital interventions have shown great promise in supporting FLWs [59], and studies are now exploring digital supportive supervision more extensively [60,61]. The current app can rapidly scale this process, standardize performance measures, and account for evolving training needs with great flexibility. In this study, we demonstrated that an app based on work with nonspecialist providers in Madhya Pradesh and Goa, India, was found to be usable and potentially useful for FLWs in Texas and shows promise for supporting the scale-up of services delivered by FLWs in similar settings across the United States.

Another key finding of this study is the potential of the app to help merge traditionally siloed supervisor-supervisee and ad hoc peer feedback approaches to build a more unified, structured supervision process across existing health systems. This requires effort beyond adding the app to the existing workflow; rather, it may be necessary to develop a new workflow entirely. Participants expressed concerns about the additional time commitment required to use the app as a part of their job. However, it is important to note that the time constraints mentioned were not necessarily related to the use of the app itself but to adding objective, measurable metrics to assess FLWs’ performance. Introducing measurable metrics to evaluate performance requires recording, rating, and discussing sessions; additional time; and skill sets often beyond the FLWs’ job description. The time commitment required can constrain effective supervision in task-shared projects [29]. Therefore, the app’s scalability depends greatly on creating a workflow that benefits FLWs and communicating its need to support FLWs and task-sharing mental health care across health systems. Creating protocols that outline how to record sessions safely and securely for quality assurance is also critical, particularly in light of the privacy concerns associated with recording internet-based sessions [62]. Ensuring readiness for a systematized supportive supervision process guided by infrastructure and protocols contextualized for a particular type of setting is crucial for the success of task-shared mental health care delivery [63]. More importantly, the current app must flexibly align rather than conflict with existing supervision models and diverse FLW workflows to ensure that it truly supports FLW skill enhancement, effective feedback mechanisms, and adequate fidelity in task-shared interventions [64-66].

Recommendations for Future Implementation

On the basis of the feedback collected in this study, there are several key considerations, challenges, and proposed solutions for the future implementation of this app. Table 5 summarizes the key considerations raised during the preliminary prototype design of the app, including advisory panel discussions, usability testing, and focus group session interviews. We propose solutions for each consideration that can inform future studies aimed at introducing similar digital tools to assist FLWs. These recommendations will also facilitate organizations’ development of supportive and structured supervision mechanisms.
Table 5. Key considerations, challenges, and proposed solutions for improvement.

<table>
<thead>
<tr>
<th>Key considerations</th>
<th>Challenges</th>
<th>Proposed solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>System level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target users</td>
<td>• App must support a variety of FLW roles with different workflows and role requirements as well as their supervisors</td>
<td>• Design the app to include role-specific features that can be customized to support site-specific needs as allowed (eg, inclusion of depression screening)</td>
</tr>
<tr>
<td>Integration into the current systems</td>
<td>• Potential to increase workload associated with integrating measurement-based peer supervision into current workflows</td>
<td>• Integrate the new app with existing EHRs such as Epic, which can reduce data redundancy and support more comprehensive client care</td>
</tr>
<tr>
<td>Interoperability across operating systems</td>
<td>• Prototype is currently only supported as a web application or Android mobile app</td>
<td>• Ensure that the app is easily accessible and can support offline data collection on other commonly used devices (eg, iPhones)</td>
</tr>
<tr>
<td>Organization level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available resources in the implementing health facilities</td>
<td>• Inadequate physical space for conducting private and secure counseling sessions</td>
<td>• Assess the availability and accessibility of facilities’ resources before implementing the app</td>
</tr>
<tr>
<td></td>
<td>• Lack of current protocols on supportive supervision to guide FLWs</td>
<td>• Facilitate the development of protocols or updates to current protocols to promote the use of the app</td>
</tr>
<tr>
<td></td>
<td>• Need for structured peer supervision to implement the app</td>
<td>• Set up or use the existing structured peer supervision mechanisms to support app integration</td>
</tr>
<tr>
<td>Peer supervision model</td>
<td>• More structured peer supervision could be cumbersome and time-consuming, especially for FLWs who are used to feedback from supervisors and are more comfortable with informal peer feedback mechanisms</td>
<td>• Include specific training and guidance on delivering and receiving peer feedback</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure supervisor buy-in and system support</td>
</tr>
<tr>
<td>Hybrid workflow</td>
<td>• Both in-person and remote (telehealth) client visits are common</td>
<td>• Ensure the app can flexibly support recordings either directly in-app or via integration with other tools that may already be used</td>
</tr>
<tr>
<td>App related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer ratings</td>
<td>• Introducing a mechanism for peers to rate and critique each other may feel uncomfortable</td>
<td>• Include positive and encouraging language and features (eg, badges) to support improvement in performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Include space for qualitative feedback to provide more context for ratings</td>
</tr>
<tr>
<td>Navigation</td>
<td>• Navigation through parts of the app remains cumbersome</td>
<td>• Enhance the app to support the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unnested features (eg, client or patient lists)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An easy way to view completed self-ratings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A way to flag incomplete self- and peer ratings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Locating a session recording via multiple search parameters, such as client or patient ID, peer, or date</td>
</tr>
<tr>
<td>Data visualization</td>
<td>• Graphs and self-ratings are not intuitive</td>
<td>• Simplify current features such that graphs are more easily accessed and usable across device screen sizes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Highlight and indicate change in performance over time, noting specific areas that may need improvement</td>
</tr>
</tbody>
</table>

FLW: frontline health worker.
Conclusions

In summary, we demonstrated the feasibility and acceptability of a usable and functional mobile app prototype to support FLW-delivered psychosocial interventions in the United States. However, the success of future implementation hinges on further development of the app to ensure its adoption by both FLWs and their supervisors and overall readiness to adopt a novel peer supervision model of care. Feedback from stakeholders and target end users (FLWs) suggests that the app can help structure supervision mechanisms and systematize the collection and review of performance metrics in task-shared mental health interventions. With appropriate organization- and system-level support coupled with strong FLW training programs, the proposed app has the potential to scale up the delivery of high-quality, evidence-based mental health interventions in the United States through the critical role of FLWs who are already connected with and best positioned to serve some of the hardest-to-reach communities with the greatest needs for psychosocial support and care.

Acknowledgments

The authors would like to thank their colleagues at Dimagi, Akshita Sharma, and Surabhi Dubey, who assisted with app building and provided helpful inputs throughout this study. They would also like to thank Dr Daisy Singla, who has been leading the related study in rural India on which this study is based. Finally, they express their deepest gratitude to their advisory panelists from the Meadows Mental Health Policy Institute, Baylor Scott & White Health, the University of Texas at Arlington, and all the study participants for their time and contributions to this work. This project was supported by the National Institute of Mental Health award R43MH130305-01A1. AP has received support from the National Institute of Mental Health T32 on Social Determinants of HIV (T32MH128395-01). The development and testing of the app previously deployed in rural India were supported by Grand Challenges Canada under grant TTS-2109-47591 in collaboration with Sangath and the Sinai Health System.

Data Availability

The data sets generated during and analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest

YXH, DML, LM, and NL are employed by Dimagi, Inc, whose revenue is derived from the open-source platform on which the digital app described in this paper was built and studied. VP is a co-founder of the EMPOWER At Scale company in the US. He has zero income from this company.

Multimedia Appendix 1
Focus group discussion task list.
[DOCX File , 18 KB - formative_v8i1e55205_app1.docx]

Multimedia Appendix 2
COREQ (Consolidated Criteria for Reporting Qualitative Research) checklist.
[DOCX File , 18 KB - formative_v8i1e55205_app2.docx]

References

10. Institute of Medicine, Board on Health Sciences Policy, Committee on Developing Evidence-Based Standards for Psychosocial Interventions for Mental Disorders, England MJ, Butler AS, Gonzalez ML. Psychosocial Interventions for Mental and Substance Use Disorders: A Framework for Establishing Evidence-Based Standards. Washington, DC: National Academies Press (US); Sep 18, 2015.

16. Chatterjee R. Psychologists say they can't meet the growing demand for mental health care. National Public Radio. 2023 Dec 06. URL: https://tinyurl.com/5n7c6vhh [accessed 2023-12-06]

17. Dampier C. Mental health care appointments often come with a long wait. 3 ways to cope while help is delayed. Chicago Tribune. 2018 Oct 25. URL: https://tinyurl.com/4c3exrs9 [accessed 2023-08-02]

19. Weiner S. A growing psychiatrist shortage and an enormous demand for mental health services. Association of American Medical Colleges. 2022 Aug 09. URL: https://tinyurl.com/54s94kjw [accessed 2023-08-02]

37. HHS announces $226.5 million to launch community health worker training program. U.S. Department of Health and Human Services. 2022 Apr 15. URL: https://tinyurl.com/5d37arzx [accessed 2023-08-02]

48. PEERS (promoting effective mental healthcare through peer supervision). Sangath. URL: https://sangath.in/peers/ [accessed 2023-11-03]

55. Dedoose. URL: https://www.dedoose.com/ [accessed 2023-08-08]

Abbreviations

BA: behavioral activation
CHW: community health worker
COREQ: Consolidated Criteria for Reporting Qualitative Research
EHR: electronic health record
FLW: frontline health worker
NPS: net promoter score
PEERS: Promoting Effective Mental Healthcare Through Peer Supervision
SUS: System Usability Scale

https://formative.jmir.org/2024/1/e55205 JMIR Form Res 2024 | vol. 8 | e55205 | p.1266 (page number not for citation purposes)
Improving Behavioral-Based Safety Training in Using Verbal Commands Through a Theory-Driven and Feedback-Based Nonimmersive Virtual Reality Game: Development and Usability Study

Chukwudiebube Atagbuzia1*, MS; Ean H Ng1*, PhD; Ganapathy Natarajan2*, PhD

1Oregon State University, Corvallis, OR, United States
2University of Wisconsin-Platteville, Platteville, WI, United States
*all authors contributed equally

Abstract

Background: The construction, chemical, aviation, medical, and health care industries have used serious games for safety training. To our knowledge, serious games have not been developed focusing on behavioral change to improve safety through the use of verbal commands and instilling players with heightened awareness of their spatial proximity to other people in their surroundings.

Objective: We aimed to develop a theory-driven serious game for improving safety behavior using verbal commands and validate the implementation of the theoretical frameworks used for game development. The game developed, KitchenSpeak, was a first-person character (FPC) game where users respond to in-game prompts to use loud verbal commands when they are approaching another employee’s blind spot.

Methods: In addition to using the SERES framework in guiding the general game design and development, and the Reflection, Engagement, Choice, Information, Play, Exposition (RECIPE) framework to inform the design of the game mechanics, we also applied gestalt laws of perception for graphic design to guide the design of the game’s user interface. We conducted 2 evaluative tests (alpha and beta) to collect end user and stakeholder feedback on the implementation of the theoretical frameworks, as well as to collect relevant information for full-scale implementation and a future validation study.

Results: The alpha and beta tests had 8 and 40 participants, respectively. The alpha test results revealed that the theoretical frameworks were adequately applied; however, suggestions were also made to modify and improve the game. The beta test results suggested further improvements for the game design and found no differences in the perception of ease of play between participants with and without previous FPC gaming experience ($P=.47$; Kruskal-Wallis). Results suggested that the game met its design and theoretical requirements, and it would be easily playable by all players regardless of their previous experience in FPC games.

Conclusions: A theory-driven and evidence-based FPC game titled KitchenSpeak was developed to teach the use of kitchen-speak terms in commercial kitchens. Evaluative tests were conducted to validate the implementation of the theoretical frameworks. Our main contributions are creating and validating game-based training to improve behavioral-based safety in the workplace and the incorporation of gestalt laws of perception for graphic design in the game’s user interface.

(JMIR Form Res 2024;8:e48080) doi:10.2196/48080
KEYWORDS
behavioral safety training; SERES framework; Reflection, Engagement, Choice, Information, Play, Exposition framework; gamification; gestalt laws of perception

Introduction

Overview
In recent times, serious games have been used in industries and various occupations as training tools for employee safety. Serious games combine elements such as visual and auditory effects and the euphoria of completing challenges to facilitate user engagement to motivate the user to transfer gained knowledge to real-life experiences [1]. Serious games are effective tools to improve safety knowledge in the construction [2-8], chemical [9-11], medical and health care [12-15], and aviation [16-18] industries. However, to our knowledge, serious games have not been used in improving behavioral-based safety. In addition to acquiring safety knowledge, behavioral-based safety requires employees to repeat safe behavior over a period of time. Using verbal commands to alert fellow employees of their proximity is a safety practice that is important in high-traffic workplaces, where struck-by injuries can occur. Consistently using verbal commands is a behavior-based safety practice.

Verbal commands are used in various work settings, and this study used a commercial kitchen as a representative workplace to develop and validate our serious game. Verbal commands given in a commercial kitchen environment are generally called “kitchen-speak,” and they are widely used in commercial kitchens as a safety behavior aimed at reducing the risk of accidents due to collisions between employees. Existing methods to train employees to use verbal commands in the workplace using traditional training methods (lectures or videos with quizzes) have been ineffective. This study developed a theory-driven and feedback-based serious game for teaching and training employees to use verbal safety commands within a commercial kitchen.

KitchenSpeak Game Overview
KitchenSpeak is a first-person character (FPC) game where users respond to in-game prompts to use loud verbal commands when they are approaching another employee’s blind spot. These verbal commands to alert other employees of their proximity are called kitchen-speak, the namesake of this game.

Commonly used verbal commands in a commercial kitchen include “corner,” “behind,” “hot,” “sharp,” and combinations of these commands, such as “hot corner” and “sharp behind.” In our game, the player will use the keyboard and mouse to navigate the game environment. Whenever a scenario to use a verbal command occurs, a pop-up text message will inform the player of the verbal command required to be yelled. Upon successful yelling of the command, the game will display another pop-up to inform the player. The player will not be able to proceed through the scenario until the proper command is verbally completed.

KitchenSpeak game consists of 4 stages, where players will progressively learn a new command in every stage while applying the commands learned in previous stages. The last stage is a free-roam stage, where players will have to use a combination of the commands they have learned without any pop-up window to indicate the place of use. The players should now be able to identify the safety situation and act without a prompt. In each stage, a minimum of 4 verbal commands are required for completion, and the players are allowed 1 manual override per stage to minimize frustration and game abandonment.

Prior to starting the game, the player will have to enable the microphone on their computer. The voice recognition module used in this game is Google’s speech-to-text application programming interface which is trained with Google’s speech recognition models. The players do not calibrate or train the speech recognition module.

Significance of the Research
This study contributes to the body of knowledge on serious games by focusing on behavioral change to improve safety through the use of verbal commands and instilling the player with a heightened awareness of their spatial proximity to other people in their surroundings. Existing research in using serious games to improve safety has mainly focused on knowledge such as the proper use of tools [4,5] and proper procedures to perform high-risk tasks [19]. None of the existing serious games for safety focus on behavioral change and using verbal commands. The development and beta testing of the game from this study can be adapted to other training scenarios where behavioral change is needed and incorporate verbal commands as part of the gameplay.

Methods

Ethical Considerations
This study was reviewed by Oregon State University (OSU) institutional review board (IRB-2021-1174) and was determined to be exempt from review.

Methods Overview
The SERES framework [20] for developing serious games was used to guide KitchenSpeak’s development. Nicholson’s [21] Reflection, Engagement, Choice, Information, Play, Exposition (RECIPE) framework was used to guide the design of the game mechanics within the design foundation stage of the SERES framework. KitchenSpeak’s user interface (UI) was designed according to the 6 gestalt laws of perception as proposed by Smith-Gratto and Fisher [22]. An effective UI is important for game development as it ensures that the game players engage with the game in the intended manner [23].

SERES Framework
Overview
The five stages in the SERES framework are (1) scientific foundations, (2) design foundations, (3) development, (4)
validation, and (5) implementation. This study applies the first 3 stages of the framework to KitchenSpeak game development. The last 2 stages of the framework involve evaluating the effectiveness of the training tool, which is planned for a follow-up study. The following subsections present a summary of how the first 3 stages of the SERES framework were applied, as well as the plan for implementing the last 2 stages.

Scientific Foundations

There were 4 aspects of this stage. First, the target audience was Marketplace West Dining Center (MWDC) student employees (84% of the MWDC employee population). Second, the outcome objectives were to increase the use and knowledge of kitchen-speak among student employees. Third, the theoretical basis was our hypothesis that kitchen-speak use and knowledge will increase among people who play the game. Fourth, the tool evaluation will be performed in future work prior to implementation.

Design Foundations

Game Mechanics

We designed the game mechanics according to the RECIPE framework for gamification. Please see the RECIPE Framework for Game Mechanics section for further details.

Design Requirements

We modeled the virtual environment after the real-world MWDC environment to motivate reflection and foster immersion. A plug-in was used to transcribe verbal inputs from the players. For easy access, KitchenSpeak was designed for a web browser platform. MWDC management advised that the game’s completion time should be between 5 and 10 minutes.

Game Authoring Tools

Based on the design requirements, the following software and services were used to develop the game: (1) Unity-3D game engine for WebGL, (2) Autodesk 3ds Max for object modeling, (3) Google’s speech-to-text plug-in for speech transcription, and (4) PHP database hosted on OSU servers for game data storage.

Trial Design

Two validation tests (alpha and beta tests) were used to validate the implementation of the theoretical frameworks.

Development

Genre

KitchenSpeak was modeled to be a FPC game. The FPC perspective camera model was used since it encourages user immersion more than games in the third-person camera perspective [24].

Content

KitchenSpeak had 4 game stages: Corner, Behind, Hot Corner, and Free Roam stages. Each user must use kitchen-speak terms at least 3 times in the Corner and Behind stages, and at least 5 times in the Hot Corner and Free Roam stages. Each stage has a simple narrative where users are asked to complete tasks assigned by their supervisor. While navigating the virtual kitchen to complete tasks, the player is prompted to use kitchen-speak in blind areas. **Figure 1** shows the “yell corner” prompt shown to a user as they approach a blind area. Learned kitchen-speak words cascade in each stage, that is, the Behind stage includes “corner” and “behind” kitchen-speak, the Hot Corner stage includes “corner,” “behind,” and “hot-corner,” and Free Roam includes all previously used kitchen-speak, with an additional “sharp-corner” kitchen-speak.

![Figure 1. Prompt to use kitchen-speak in the Corner stage.](image-url)
Rules
There are three general rules: (1) All game stages must be completed to complete the game. (2) Within the Corner, Behind, and Hot Corner stages, a player must use kitchen-speak terms when prompted; otherwise they do not advance through the blind area and cannot complete their assigned task (“enforced-use rule”; the Free Roam stage does not have this rule). (3) In the Corner, Behind, and Hot Corner stages, users are allowed to override the prompt to use kitchen-speak if they are stuck in the blind area for over 30 seconds; users are allowed a maximum of 3 overrides throughout the 3 game stages (override rule).

Visuals and User Experience
Gestalt laws of perception for graphic design were applied to guide the design of the UI elements. User experience was tested and modified through the alpha test.

Validation and Implementation
Validation and implementation, the last 2 elements of the SERES framework, will be performed in future work.

RECIPE Framework for Game Mechanics
The six elements of the RECIPE framework were implemented in KitchenSpeak game mechanics as follows.

Reflection
This was implemented by modeling KitchenSpeak environment and activities after the MWDC kitchen environment, as well as the activities that occur within the MWDC kitchen. Figure 2 shows a scene of the virtual environment from KitchenSpeak compared to the MWDC environment.

Exposition
This was implemented by including simple narratives, such as “Your colleague John put some Teriyaki chicken into the oven, and it is now ready to be checked and served. Go and pick up the chicken from the oven.”

Choice
This was implemented by (1) allowing users to choose different navigating routes to complete an activity and (2) giving users the ability to choose when they want to complete a task. They may decide to free-roam within the game before completing the task.

Information
This was implemented by creating 3 tutorial stages that allow the user to practice the game controls before the main game stages. Informational texts highlighting the objectives of each stage are displayed at the start of each stage. A quick message is also shown to alert the player if they correctly use kitchen-speak, and if they have started, completed, or are in the process of completing a task.

Play
This was implemented by allowing players to restart each stage from within the game. If a user fails to complete certain tasks within a stage, the user is permitted to restart that stage an infinite number of times until they have completed the stage or feel satisfied with their progress. A player is always informed on their progress through the informational text during task progress and completion. Allowing the user to fail and restart within the learning environment creates an opportunity for the user to self-reflect and discuss their experiences with other players, thus improving long-term learning [25].

Engagement
This was implemented through interaction by including activities within the game that require the user’s response. The user is made to provide verbal input as a form of response to the kitchen-speak prompts and is asked to provide keyboard input while completing activities.

Gestalt Laws of Perception for Graphics Design
Gestalt laws of perception for graphics design leverage the laws of perception to develop a comprehensible screen design that is aimed at aiding viewers to interpret and remember the
presented materials [22,23]. The gestalt laws were applied to the UI elements within KitchenSpeak; however, the Controls menu and Stage Select menu in Figure 3 are used as examples to show how the laws were applied. The 6 gestalt laws of perception for graphics design applied in this game are as follows.

Figure 3. Controls and stage select menus.

Figure-Ground Contrast
This law states that the figure and background must be distinct so that viewers can easily distinguish the figure from the background. In the Controls and Stage Select menus, the primary background color is dark orange (#FF8000) while the text color on the primary background is white (#FFFFFF). This color combination creates high contrast, which improves its legibility.

Simplicity
This law states that people simplify their perceptions based on previous experiences. The UI should be designed with simple and familiar designs so that viewers may easily understand it. In KitchenSpeak, unrelated information is shown in separate UI objects, while related information is shown in a single UI object.

Proximity
This law states that objects that are close together in space are generally perceived to be grouped together. Similar game UI objects were placed together to reduce the mental load that a player uses to identify game objects. In the Stage Select menu, the game stages and tutorial stages buttons are arranged in close proximity so that the player can easily identify that those buttons represent the game stages and training stages, respectively.

Similarity
This law states that objects that possess similar characteristics are generally perceived as a whole. KitchenSpeak game objects that were similar in function were designed to have similar appearances. In the Controls menu, the same background color was used for the subheadings Controls and Stages to signify that these 2 texts were subheadings and not parts of the instructions. In the Stage Select menu, the game stage buttons are made the same color apart from the Free Roam stage button. The Free Roam stage button turns green after the player successfully completes the 3 other stages.

Symmetry
This law states that objects with an unbalanced symmetry are perceived to be incomplete and could be distracting to viewers.

In the Controls menu, the white vertical line between the Controls and Stage subheadings was designed to create a symmetrical design in the UI. Symmetry was also applied in the Stage Select menu to guide the arrangement of the game stage buttons.

Closure
This law states that open shapes are perceived as incomplete. Important figures should have closed shapes so that viewers do not have to be distracted from trying to close the shape. In the Controls menu, the message “Successfully complete all stages to finish the game” conveys information that is different from the information that the other UI objects convey. As a result, its UI object was designed to have a closed red rectangular figure that distinguished it from the other UI objects, thus reducing ambiguity and making the information easier to read.

Trial Design
Two evaluation tests (alpha and beta tests) were conducted. The alpha test was conducted as a qualitative test in the form of an open-ended discussion where participants played KitchenSpeak version 1.0 and were asked to provide their verbal feedback on their gameplay experiences. Our focus for the alpha test was the game content, navigation, UI, speech recognition, realism of environment, narrative, choice, information, and the restart and override rules.

The beta test was conducted by releasing KitchenSpeak version 2.0 to MWDC staff and collecting their (1) game completion times, (2) perception of ease of play, (3) gameplay engagement, and (4) experience with bugs and glitches during gameplay. A 5-point Likert scale survey was used to collect user perception of ease of play, while a survey with predetermined questions was used to collect users’ experience with bugs and glitches.

Results

Alpha Test Results
We recruited 8 participants, including 5 MWDC management staff and 3 nonmanagement staff with varying gaming experience, who were recruited by MWDC management.
Participants played the game one after another with the debugging window opened to observe how the speech recognition model transcribed the participant’s speech input. The results from this qualitative test are provided in Table 1.

Table 1. Results from the alpha test.

<table>
<thead>
<tr>
<th>Aspects of the game</th>
<th>Results</th>
<th>Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realism of game environment</td>
<td>Participants deemed the game environment design was similar in appearance to the MWDC kitchen.</td>
<td>Include more details to reflect real-world execution of activities, for example, while a player is picking up a hot pot from the gas oven top, they should turn off the gas and use heat-resistant gloves.</td>
</tr>
<tr>
<td>Content and narrative</td>
<td>Game narratives were perceived as short, but it was explained that they were intentionally kept short to avoid confounding the narrative with the game’s purpose. All participants agreed that the content and narrative were sufficient.</td>
<td>No suggestions for improvement.</td>
</tr>
<tr>
<td>Navigation</td>
<td>Difficulty in navigating for participants with no previous FPC gaming experience.</td>
<td>Limit the vertical camera viewing angle such that it cannot go above the game character’s horizontal line of sight. That is, FPC cannot look up, but only downwards.</td>
</tr>
<tr>
<td>Information</td>
<td>Instructions in the Stage Select menu were not easy to understand, and participants did not know how to start playing a stage.</td>
<td>Include descriptive instructions on how participants could access game stages.</td>
</tr>
<tr>
<td>UI</td>
<td>UI elements were without clutter, simple, and easy to understand.</td>
<td>No suggestions.</td>
</tr>
<tr>
<td>Speech recognition usability</td>
<td>Single-word kitchen-speak (ie, “corner” and “behind”) was transcribed correctly, but the “hot corner” phrase was often transcribed as “hot burner” and “hot porter.”</td>
<td>Include “hot burner” and “hot porter” phrases into a similar keyword dictionary such that they will be accepted as correct alternatives to “hot corner” when transcribed.</td>
</tr>
<tr>
<td>Choice</td>
<td>Participants enjoyed the liberty to explore the game environment while completing tasks. One participant mentioned that exploring the kitchen environment reminded them of the MWDC kitchen.</td>
<td>No suggestions.</td>
</tr>
<tr>
<td>Game rules</td>
<td>Two overrides per game session were too little given the accuracy of the speech recognition module. Participants agreed that the restart rule was good as it would allow users to practice within each stage.</td>
<td>Increase the allowable number of overrides per session to 3.</td>
</tr>
</tbody>
</table>

Table 2. Examining perception of ease of play.

<table>
<thead>
<tr>
<th>Group</th>
<th>Ease of play scorea</th>
</tr>
</thead>
<tbody>
<tr>
<td>All participants, mean (SD)</td>
<td>3.91 (1.12)</td>
</tr>
<tr>
<td>Had previous FPC experience, mean (SD)</td>
<td>4 (1.06)</td>
</tr>
<tr>
<td>No previous FPC experience, mean (SD)</td>
<td>3.63 (1.30)</td>
</tr>
<tr>
<td>Kruskal-Wallis P value</td>
<td>.47</td>
</tr>
</tbody>
</table>

aMeasured on a 5-point Likert scale.

aMWDC: Marketplace West Dining Center.
bFPC: first-person character.
cUI: user interface.

Beta Test Results

Overview

Feedback from the alpha test was used to release version 2.0, which was used for the beta test. The beta test had 40 participants; 34 of them played and responded to the FPC experience and the ease of play surveys, and 32 responses were valid. A total of 21 participants indicated they were in the 15-to-24-year age group, while 11 participants did not respond to the age question; 7 participants were male, 11 were female, 1 was nonbinary, and 13 did not indicate their gender. The age group and gender proportions were representative of the student population in MWDC. A total of 13 participants responded to the Bugs and Glitches questionnaire.

Ease of Play

We looked at the difference in perception of ease of play between participants with previous FPC experience and those without previous FPC experience. Table 2 shows the summary of the ease of play results. The average ease of play of all 32 participants was 3.91 (SD 1.12). There was no significant difference in the user’s perception of ease of play between players who had previous FPC experience and players who had no previous FPC experience at a .05 significance level.
Game Completion Time

We evaluated the average time it took a player to complete game stages and the difference in completion time between participants with FPC gaming experience and no FPC gaming experience. Table 3 shows a summary of the game completion time test. The Kruskal-Wallis test for game completion times indicated that there was a significant difference in the median time it took to complete the game between users with FPC experience and users without FPC experience.

Table 3. Statistical test results for completion times.

<table>
<thead>
<tr>
<th>Group</th>
<th>Game completion time (seconds), mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All participants (n=32)</td>
<td>369.94 (164.33)</td>
</tr>
<tr>
<td>Had previous FPC experience (n=24)</td>
<td>325.95 (129.41)</td>
</tr>
<tr>
<td>No previous FPC experience (n=8)</td>
<td>501.93 (195)</td>
</tr>
<tr>
<td>Kruskal-Wallis P value</td>
<td>.005</td>
</tr>
</tbody>
</table>

\(^{a}\text{Significant at 5\% significance level.}\)

Gameplay Engagement

At least 160 prompts were shown to all 32 players (minimum of 5 kitchen-speak prompts per player). We measured disengagement by the ratio of the number of times a user did not use kitchen-speak when prompted to the minimum number of times a prompt to use kitchen-speak was shown in the Free Roam stage (5 prompts). The results revealed that out of more than 160 prompts that were shown to all 32 players, 11 (6.9\%) prompts did not receive valid user responses, while at least 149 (93.1\%) prompts received valid user responses.

Bugs and Glitches

A total of 13 participants completed the Bugs and Glitches questionnaire. A total of 8 reported no issues, 5 had bugs in the Free Roam stage, and 2 had speech recognition issues. One participant found the game realistic. While the speech recognition module was adjusted to reduce recognition errors after the alpha test, issues with speech recognition were still expected.

Discussion

Overview

As part of this discussion, we will examine implications of this study and implications for future game developers based on our results. The major topics of discussion will be the frameworks used for game development, the results of the alpha and beta tests, and the development of serious games for behavioral safety.

Frameworks for Game Development

The frameworks used for our game design were SERES and RECIPE frameworks. In addition, we used gestalt laws of perception to design an effective UI for a serious game. In evaluating our implementation of the RECIPE framework, we found that evaluating player engagement was challenging. We measured engagement through the lack of disengagement, and we found our approach to be lacking. Engagement is a multiconstruct measurement [26] and as such must use a triangulation method using more than 1 input. For future game development, developers should consider including multiple measurements for engagement during the design phase.

Effective UI design can improve the gaming experience for inexperienced players, and the gestalt laws of perception can bridge the gap for game developers in designing an effective UI. Previous gaming experience affects user experience as inexperienced players report less positive experiences than experienced players [27]; however, effective UI design can be used to improve user experience and aid effective learning in electronic learning platforms [23]. Gestalt laws of perception for UI design are effective because they provide a holistic perspective that considers humans' perception and interpretation of information [23]. We applied gestalt laws of perception to design the UI and evaluated the UI’s usability. The alpha test results showed that the UI design was without clutter, simple, and the information was easy to understand. We encourage serious game developers to incorporate the laws of perception to improve their game design by reducing clutter and improving information retention with players.

Alpha and Beta Testing

The alpha tests showed us the importance of receiving feedback to improve the game. Including the players, the most important stakeholders, is key to successful game deployment. In our case, we used a qualitative method that provided rich feedback for version 2. Our methods here show that a full testing regime that includes quantitative methods such as A/B testing is not always required. Receiving qualitative feedback to make quick improvements is an effective and agile methodology we suggest for serious game developers.

Our analysis of game completion time showed players without FPC gaming experience completed the game significantly more slowly than those with prior experience. Even though we had a tutorial for inexperienced players, the difference in completion time results was significant. This shows that additional training is required. Players with no prior FPC experience must be eased into gameplay by observing player behavior and receiving real-time feedback. Failure to ease players into the game may cause frustration and game abandonment.

In terms of bugs and glitches, voice recognition was an area of interest. There was variability due to factors such as background noise levels and user-specific characteristics. User accent and voice pitch are factors that will inherently affect the accuracy
of a speech recognition module. Accent recognition is a problem of particular interest that requires further exploration.

KitchenSpeak game used the Unity3D WebGL. We used Unity3D’s profiling tool to review game assets and memory usage. The results showed that CPU memory was mostly used by rendering game object textures and audio data. To improve overall game performance, similar textures were applied to different game objects to reduce the number of times a type of texture was rendered. We encourage game developers to consider this aspect while developing a game and to use this technique to promote game performance.

Serious Game for Safety Behavior

Prior work in serious games for safety mainly focused on safety knowledge training. There are a few challenges in developing a serious game for behavior change from the safety behavior theoretical perspective. Safety behaviors are defined as acts that can be observed by other employees. Existing theories on changing safety behaviors are rooted in changing values, attitudes, and motivations, and emphasize providing consequences for not practicing the behavior [28].

The first challenge we encountered was finding the balance between providing sufficient exposition in the game to affect the value, attitude, and motivations of the players and managing the length of the gameplay. Our current approach to exposition is a pop-up text box to provide context. If the pop-up window is text-heavy or if we use too many consecutive pop-up windows, based on our own gameplay experience, it can lead to players skipping the pop-up windows or abandoning the game. We have opted to minimize the text in exposition, but have the player repeat the same behavior (verbal commands) multiple times for each play, each with a different exposition.

Second, the literature on safety behavior states that behavior must be observable by other employees; we included nonplayer characters (NPCs) into the scenes within our game. For future work, we plan to collect the gameplay information of actual players and create NPC movements based on actual players’ gameplay data to increase the realism of the NPCs. In either case, we are still looking into methods to assess whether the NPCs create the effect of observers.

Third, in terms of consequences to players when they did not perform the safety behavior, we considered adding consequences, and we evaluated two potential approaches. One is to create and display virtual scenes of accidents such as the spilling of hot food content after the collision and another is to use a pop-up window to inform the player that an accident had happened due to them not providing verbal commands. We decided against the pop-up window as we used it for exposition and did not want to overload the players and have them ignore it. Due to time constraints, we were not able to implement the actual scene of the accident for this study.

For safety behavior, using verbal commands consistently throughout an entire work shift is a relatively new concept to many employees who have never worked in a commercial kitchen. The behavior change we initiated through this study can serve as the baseline for future work to assess whether a change in value or attitude or motivations, a need for observers, and a need for consequences are necessary in a serious game to initiate behavior change.

Conclusion and Future Work

Serious games and other e-learning modules could be used as a cost-effective method for training as employers do not have to deal with the costs of face-to-face in-person training [29]. A serious game is a game that achieves an additional goal that is not for entertainment purposes [30]. By this definition, KitchenSpeak is a serious game. This study aimed to advance the serious games research field by developing a game aimed at changing behavior, specifically, instilling the behavior of consistently using verbal commands in blind areas within high-traffic workplaces.

KitchenSpeak development was successful; however, a new study should evaluate its effectiveness in improving the use of verbal commands and its effect on accidents that lead to struck-by injuries. In order to assess how effective KitchenSpeak is in enhancing the use of verbal commands, we need to compare the frequency of verbal command terms used in a commercial kitchen where the game is deployed to the frequency of kitchen-specific terms used in a commercial kitchen where the game is not deployed. To evaluate KitchenSpeak’s effect on accidents that lead to struck-by injuries, we will compare safety records on struck-by injury frequency before and after the game’s deployment in a commercial kitchen.

In this study, we discussed and validated the implementation of 3 theoretical frameworks that were used to develop the KitchenSpeak serious game for commercial kitchen safety. A serious game’s effectiveness is improved by incorporating theoretical concepts and principles that intend to achieve the desired results [30]. While theoretical concepts and principles serve as relevant tools for guiding serious game development, their effectiveness is linked to their success in application and implementation. In addition to testing the effectiveness of a serious game in achieving its desired outcomes, developers may also evaluate the implementation of their foundational theoretical principles, as they may provide relevant information on the cause of their game’s effectiveness or ineffectiveness.

Acknowledgments

We are grateful to Christopher Anderson, Kent Hildebrandt, Suzi Kritikos, and Michael Meeker of University Housing and Dining Services at Oregon State University for their assistance and input in the game’s development and validation. We are also grateful to Dan Kermoyan, MPH, and Tom Doyle, MBA, of Environmental Health and Safety at Oregon State University. There was no funding for this study. We used Google’s speech-to-text plug-in for transcribing users’ speech input to text, as well as a PHP database hosted on OSU’s servers for gathering all game-related data. The authors attest that there was no use of generative artificial intelligence technology in the generation of text, figures, or other informational content of this study.
Data Availability
The data sets generated during and analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions
EHN was responsible for the conceptualization of this study. CA wrote the study, developed the game, and provided data for all tables in the study. EHN and GN provided administration and supervision of the project. All authors reviewed the final study.

Conflicts of Interest
None declared.

References

Abbreviations

FPC: first-person character
MWDC: Marketplace West Dining Center
NPC: nonplayer character
OSU: Oregon State University
RECIPE: Reflection, Engagement, Choice, Information, Play, Exposition
UI: user interface

©Chukwudiebube Atagbuzia, Ean H Ng, Ganapathy Natarajan. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Implementing a Sodium-Glucose Cotransporter 2 Inhibitor Module With a Software Tool (Future Health Today): Qualitative Study

Matthew Suen, BBiomed, MD; Jo-Anne Manski-Nankervis, MBBS, PhD; Caroline McBride, MD; Natalie Lumsden, PhD; Barbara Hunter, PhD

Abstract

Background: Primary care plays a key role in the management of type 2 diabetes. Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been demonstrated to reduce hospitalization and cardiac and renal complications. Tools that optimize management, including appropriate prescribing, are a priority for treating chronic diseases. Future Health Today (FHT) is software that facilitates clinical decision support and quality improvement. FHT applies algorithms to data stored in electronic medical records in general practice to identify patients who are at risk of a chronic disease or who have a chronic disease that may benefit from intensification of management. The platform continues to evolve because of rigorous evaluation, continuous improvement, and expansion of the conditions hosted on the platform. FHT currently displays recommendations for the identification and management of chronic kidney disease, cardiovascular disease, type 2 diabetes, and cancer risk. A new module will be introduced to FHT focusing on SGLT2 inhibitors in patients with type 2 diabetes who have chronic kidney diseases, cardiovascular diseases, or risk factors for cardiovascular disease.

Objective: The study aims to explore the barriers and enablers to the implementation of an SGLT2 inhibitor module within the Future Health Today software.

Methods: Clinic staff were recruited to participate in interviews on their experience in their use of a tool to improve prescribing behavior for SGLT2 inhibitors. Thematic analysis was guided by Clinical Performance Feedback Intervention Theory.

Results: In total, 16 interviews were completed. Identified enablers of use included workflow alignment, clinical appropriateness, and active delivery of the module. Key barriers to use were competing priorities, staff engagement, and knowledge of the clinical topic.

Conclusions: There is a recognized benefit to the use of a clinical decision support tool to support type 2 diabetes management, but barriers were identified that impeded the usability and actionability of the module. Successful and effective implementation of this tool could support the optimization of patient management of type 2 diabetes in primary care.

Introduction

Type 2 diabetes places a significant burden on both people with this condition and the Australian health system. An estimated 1.3 million Australians older than the age of 15 years have diabetes [1], with an associated Aus $14 billion (US $12.9 billion at 2010 rates) [2] of health spending. This creates an enormous social and economic burden. General practitioners...
(GPs) play a vital role in reducing the impact of diabetes as most people receive their medical care in general practice. Guidelines produced by the Australian Diabetes Society [3], The Royal Australian College of General Practitioners [4], and the Living Evidence for Diabetes Consortium [5] provide support to GPs to inform both pharmacological and nonpharmacological management decisions.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been included in Australian guidelines for years, but their place in therapy has evolved as recent evidence demonstrates secondary prevention benefits for cardiovascular disease (CVD) and chronic kidney disease (CKD) irrespective of glycated hemoglobin [6-11]. Prescribing of SGLT2 inhibitors remains low [12], and reported barriers include a lack of knowledge of its nonglycemic benefits and concerns about side effects [13]. This can be mitigated if appropriate and relevant education is available [14]. However, education alone is not likely to have a significant impact on changing prescribing behavior.

Future Health Today (FHT) is a co-designed quality improvement and clinical decision support technology platform aimed at the detection and management of conditions in general practice. FHT integrates with the electronic medical record to provide two components: (1) a clinical decision support tool active at the point of care (PoC) and (2) a web-based dashboard that facilitates practice-wide audit and quality improvement activities, including patient recall. Wraparound activities are also included with links to the latest guidelines and access to educational resources. Following initial optimization in 12 general practices, using guidelines for CKD, CVD, and cancer prevention, it is now in use in 55 general practices across Australia. A new module was introduced to FHT practices in July 2022 recommending SGLT2 inhibitor prescribing in patients with type 2 diabetes who also have CKD, CVD, or risk factors for CVD consistent with the Australian Evidence-Based Clinical Guidelines for Diabetes [5]. If a patient is suitable for prescribing, the statement “Consider initiation of SGLT2 inhibitor to reduce CVD and CKD risk” will appear in the PoC. The objective of this paper is to report on the evaluation of the implementation of this new SGLT2 inhibitor module in FHT.

Methods

Study Design

Fifty-two practices in Victoria (n=51) and Tasmania (n=1) had access to the SGLT2 module between July 2022 and January 2023. A qualitative evaluation exploring the use of the module was undertaken using the Clinical Performance Feedback Intervention Theory (CP-FIT), a theory for designing, implementing, and evaluating feedback [15]. CP-FIT was chosen as it incorporates and builds on 30 pre-existing theories and was developed specifically for the health care context. The theory proposes 42 variables that influence a feedback cycle with each step vital for successful feedback to occur. The theory postulates that the cycle is affected by 3 variables: feedback, recipient, and context. In the context of FHT, CP-FIT outlines the steps that users move through when guideline-based recommendations are communicated to users. Algorithms are applied to electronic medical records (data collection and analysis); recommendations are delivered to users (feedback); and they are received (interaction), interpreted (perception), and interrogated (verification). If users find the recommendations appropriate (acceptance), they will respond to them (intention and behavior) and ultimately leads to changes in patient care (clinical performance improvement).

Participants were recruited through expression of interest to participate in semistructured interviews, from those who had at least 1 month access to the SGLT2 inhibitor module. Expressions of interest were sent via email to practices encouraging participation in an interview. Advertisements in the department and practice-based research network newsletters were also used to promote the study. Interviews were conducted between September and December 2022. All participants had access to the FHT software for between 6 and 18 months prior to the use of the SGLT2 inhibitor module in clinical practice.

Data Collection

Semistructured interviews using CP-FIT as a guide were conducted with GPs, general practice nurses (GPNs), and clinical health assistants (CHAs) to explore their perspectives on using the module and recommendations for improving the tool. CHA are administrative staff who use patient data for health research and quality improvement. The aim was to gather as many perspectives as possible until saturation was reached. Participants participated in one-to-one interviews that occurred via telephone or Zoom (Zoom Technologies). Interviews were conducted by MS, a male academic GP registrar with the University of Melbourne. An interview guide was developed to focus on questions regarding the clinical usefulness of the recommendations, the impact on clinical workflow, and perceived changes in clinical performance. Data were uploaded to NVivo (version 12; QSR International) and coded by MS to identify themes using CP-FIT as a coding framework. A second researcher (CM) reviewed the data to ensure the reliability of the analysis.

Ethical Considerations

This study was approved (23269) by the Faculty of Medicine, Dentistry and Health Sciences Human Ethics Subcommittee at The University of Melbourne. Consent was taken through a signed consent form prior to the interview, and verbal consent was also gained to record the audio component of the interview. Participation was voluntary, and participants were compensated with an Aus $50 (US $32) voucher for their time. Participants’ names and practice locations were deidentified and replaced by a pseudonym only known to MS and CM to ensure the protection of their privacy.

Results

Overview

Invitations for interviews were sent out to clinics that had at least 1 month of experience with the SGLT2 inhibitor module. There was interest from 14 general practice clinics, and 16 interviews were completed with participants from 11 clinics (Table 1). The sex of the interviewee was confirmed during the interview. A further 3 interviews were not completed as the
interviewees used FHT and previous modules but not the SGLT2 inhibitor module. Interviews ranged from 15 to 42 minutes. The themes were mapped across the 3 variables: context, feedback, and recipient. Barriers and facilitators related to these variables are summarized in Figure 1.

Table 1. Characteristics of study participants (N=16).

<table>
<thead>
<tr>
<th>Role</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General practitioner</td>
<td>8 (50)</td>
</tr>
<tr>
<td>Practice nurse</td>
<td>6 (38)</td>
</tr>
<tr>
<td>Practice manager and practice nurse</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Clinical health assistant</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>11 (69)</td>
</tr>
<tr>
<td>Male</td>
<td>5 (31)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rurality of practice</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metro</td>
<td>8 (50)</td>
</tr>
<tr>
<td>Regional or rural or remote</td>
<td>8 (50)</td>
</tr>
</tbody>
</table>

Figure 1. How CP-FIT explains the effectiveness of the FHT intervention. CP-FIT: Clinical Performance Feedback Intervention Theory; FHT: Future Health Today; PoC: point of care; SGLT2: sodium-glucose cotransporter 2.
Feedback Variables

Goal: Evidence-Based Nature, Relevance, and Importance

Common across all interviews were goals relating to the importance, relevance, and evidence-based nature of the SGLT2 recommendations. Users had confidence that the recommendations were accurate knowing they were based on the latest guidelines. Some incorporated FHT and the module in their conversation with patients by highlighting and explaining to patients the background and concept of FHT to instill patient confidence and acceptance of SGLT2 inhibitor prescribing.

I can say to people that the reason I’m suggesting the change in medicine or the increase in dose is because there is a little point of care prompt, it’s telling me there are advantages in doing this, in making a change. [GP2]

Feedback Delivery: Active Delivery, Frequency, and Function

Active delivery was demonstrated through the PoC but not the dashboard. Participants found the PoC user-friendly as it would automatically pop up once the patient file was opened. They also enjoyed the flexibility of being able to minimize and scroll through the recommendations in the PoC. In contrast, a majority indicated the need to log in to the dashboard to access it was a barrier to its use.

Well it [PoC] comes up automatically every time we enter a patient where it’s relevant and it’s a very good prompt to double check that we’re following the guidelines. [GP8]

Practices using the SGLT2 inhibitor module also had access to over 20 recommendations within FHT relating to other chronic diseases. With the multiple modules available, prompt fatigue was highlighted as a barrier, especially with time constraints during consultations. Several participants highlighted the possibility of a behavioral norm of not checking the PoC recommendations when they pop up. Despite this, most still acknowledged the accuracy, they may not be clinically appropriate. Practice staff have commented that due to time constraints and competing priorities, GPs were unable to prioritize the use of FHT.

As with all of those things in a busy practice, the catch is putting time aside [to use FHT]. I never get around to doing so. [GP8]

Participants believed a lack of familiarity and knowledge with SGLT2 inhibitors hindered their use of the module. This stemmed from a lack of time for users to upskill. They were aware of the education resources and support offered through FHT, but time pressures did not allow them to review these resources. For the feedback cycle to be completed, GPs must show leadership in engaging with the module as they are the ones that make the decision on whether the recommendation is clinically appropriate. Practice staff have commented that due to time constraints and competing priorities, GPs were unable to prioritize the use of FHT.

I think our GPs, you need to actually show them and go through it with them [FHT], then there’s always that “I’m time poor, not right now, can’t do it too much.” [CHA1]

Patient Population: Clinical Appropriateness and Choice Alignment

Participants recognized that the recommendations were a guide only and still required the use of clinical acumen. Although they acknowledged the accuracy, they may not be clinically appropriate at the individual patient level due to factors such as age, health literacy, comorbidities, and likely compliance.

They’re [GPs] not willing to introduce stricter control for a 70 year old that’s got diabetes and he’s well controlled and everything else.... It’s just a little bit reassessment and the individualisation of the knowing your patients. [Practice nurse 7]

Implementation Process: Cost, Training, and Support

The SGLT2 module encouraged collaboration between the staff. With the use of the cohort function, CHA and GPNs were able to generate recall list and book appointments for GPs to review patient suitability. This reduced the workload for GPs. In addition, GPNs felt comfortable initiating a conversation about the benefits of the medications, although they also acknowledged the final decision lay with the GP.

The autonomy is given to be able to do recalls without having to have the GP absolutely check through every little detail of the patient. [CHA1]

Competing priorities were identified as barriers to fully use FHT with a flow on effect to the SGLT2 inhibitor module, especially with the use of the dashboard. Multiple GPs commented that they used the PoC as the recommendations came to them once the patient file was open. This is in contrast with the dashboard which involved creating patient lists, recalling patients, and filling quality improvement forms. Time pressure was highlighted as a barrier, with many GPs commenting about having time constraints and an increased in workload due to workforce shortages, particularly in rural and regional clinics.

As with all of those things in a busy practice, the catch is putting time aside [to use FHT]. I never get around to doing so. [GP8]

The autonomy is given to be able to do recalls without having to have the GP absolutely check through every little detail of the patient. [CHA1]

The main cost attributed to the use of FHT was time. For GPs, the time spent on the use of PoC before and during consultations was appropriate for the benefit given as the recommendations...
could be actionable at the time or delayed. However, the dashboard was unused by GPs as they did not have time to use it. In contrast, practice nurses and the CHA found the dashboard function useful to create recall lists and as a quality improvement tool.

Would I love to have more of an opportunity to look at the online module and setting up cohorts and doing things? I’d love to have more time doing that. [GP2]

Participants reported that more support and training would increase their familiarity of confidence in discussing and prescribing SGLT2 inhibitors. They were aware of the educational materials offered to them through FHT, but time constraints prevented them from using them. Practice nurses noted that the resources provided specifically for the SGLT2 inhibitor module were tailored more to GPs for prescribing with broader education on the topic likely to be more beneficial for them. While feedback for these resources was positive, participants believed other modes of education would be beneficial for the broader use of FHT.

I suppose maybe just some how to put it into practice, maybe. Like some scenarios or that type of thing. See while these patients come in, this has popped up, this is what we should be talking about and discussing. [Practice nurse 6]

Recipient Variables

Many found it useful to prompt and raise awareness of the benefits of prescribing SGLT2 inhibitors but found the overcapture of patients an issue. While commenting they were confident with the accuracy of the recommendations, the guideline-based recommendations did not take the patient’s personal history and suitability into account. Participants believed that to maximize the potential of the module, they are still needed to use their own clinical judgment to interrogate and decide if the recommendations were appropriate. Some commented that by following the recommendations blindly, it would reduce the “patient centredness” of the clinical decision and remove shared decision-making with the patient. “I wouldn’t have thought of it without the popup... It’s making medicine more recipe-like” (GP3).

After seeing the recommendations, users identified their own need for further education on SGLT2 inhibitors and diabetic management in general. This stemmed from the need for more knowledge on the topics for them to confidently discuss these medications with patients. While they were aware of the resources offered through FHT, time constraints for education were again noted.

It’s improved my ability...my little areas of where I need to hone my education skills... I probably didn’t do it that well until we had the popup that forced me to think about why am I telling this patient. [Practice nurse 2]

The recommendation is shown every time the patient file is opened independent of the reason for presentation. Users have commented that it would be difficult to introduce the recommendations if the patients presented for a nondiabetes-related consultation and to steer the conversation toward diabetes. Some users would take note of it and often suggest making a subsequent appointment to discuss SGLT2 inhibitor prescribing. Others used the recommendation as a prompt to change their consultation style to incorporate the module in their consultations.

If I was to see a diabetic who wasn’t on a SGLT2 and had cardiovascular risks, then I would - I would in time change my plan. But as you would well know, best practice is hard to change because you’ve got to learn a new mental routine. [GP6]

Discussion

Principal Findings

The overall response to the use of the SGLT2 inhibitor module in FHT was positive. Enablers and barriers to the use of this module were explored. Enablers of the module’s use included users’ confidence about the accuracy of the recommendations and that they found it easy to incorporate into appropriate consultations and comfortable introducing the topic to patients. They felt the recommendations were proactive and a useful prompt for users to consider prescribing the medication. Unfamiliarity with SGLT2 inhibitors is a known barrier to its prescription [16], and GPs’ awareness of the nonglycemic benefits is low [14]. The inclusion and presentation of SGLT2 inhibitors in guidelines are relatively new, and they have also encouraged users to upskill on knowledge for them to feel more comfortable discussing it with patients.

The role of the GP and GPN and both vital to the management of diabetes in the primary care setting [17], and the module has helped define these roles. GPNs used the module to create lists from the dashboard to recall patients to initiate a conversation about possible SGLT2 inhibitor prescribing and optimization of diabetes management in general with the final decision made by the GP to determine suitability. The main barrier to the use of the module was time pressure and competing priorities during the consultations. Many users stated that the heavy workload prevented them from using the full function of FHT.

By mapping against the CP-FIT framework, the PoC function allowed users to move through the feedback cycle successfully. It has led to better recordkeeping (data collection and analysis) to maximize the efficacy of the algorithms to produce accurate recommendations. They still required to use their clinical acumen to decide whether the recommendation was appropriate for the patient (feedback, interaction, and perception). If appropriate (acceptance), they would initiate a conversation with the patient about prescribing SGLT2 inhibitors and discussing the benefits of improved glycemic control and better patient outcomes (clinical performance improvement). The expanding number of modules has led to prompt fatigue causing users to reduce their interaction with PoC and not initiating the feedback cycle.

There were several limitations to this study. Approximately half of the users of this module were the practice champions for FHT in their workplace. This may lead to responder bias with their enthusiasm for FHT making them more likely to participate and have a better understanding of the program. The study was...
conducted during the COVID-19 pandemic, which may prevent potential users from engaging with the program as the effects of the pandemic caused disruption to workflow, especially with staff and resource shortages. We aim to conduct follow-up interviews in the future to see if the pandemic had any significant effect on the use of FHT.

The use of clinical decision support systems (CDSSs) in diabetes has previously been shown to improve patient outcomes [18], although studies are focused on the hospital setting and glycemic control [19,20]. Literature has consistently reported a gap between optimal diabetes care practice and recommended care standards. Previous CDSS studies have found high clinician satisfaction with its use to facilitate the intensification of glucose control [21]. There is strong evidence that users of CDSS consistently recommend its use to others [22] and is appropriate for general practice use [23].

Previous barriers with CDSSs previously reported include increased workload and time constraints [24], which align with the findings of this study. A previous study showed that the implementation of a CDSS alone did not improve quality of care but required multifaceted strategies including continuing education and feedback mechanisms, organizational changes, and patient-orientated strategies [25]. While these strategies were made available to participants, engagement and uptake of the SGLT2 inhibitor module recommendations were variable.

With the increasing burden of type 2 diabetes on the Australian health care system, early diagnosis and treatment will no doubt reduce the risk of developing and delaying comorbidities and improve the quality of life for diabetics. CDSS can assist clinicians in diagnosing and optimizing the management of chronic disease beyond type 2 diabetes.

Conclusions
This study highlights the benefit of a clinical decision support tool to improve appropriate prescribing and increase clinician awareness of SGLT2 inhibitors for their diabetic and cardiorenal effects. Successful implementation of this module could be used to detect patients who will benefit from the effects of SGLT2 inhibitors in primary care and assist in reducing all-cause mortality and morbidity with guideline-concordant prescribing.

Acknowledgments
The authors would like to acknowledge the contributions of the Future Health Today project team and investigators. We would also like to acknowledge the time and commitment of all participants. The project was supported by the Australian Government’s Targeted Translation Research Accelerator program and the Paul Ramsey Foundation.

Data Availability
The data sets generated during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

References

Abbreviations

CDSS: clinical decision support system

CHA: clinical health assistant

CKD: chronic kidney disease

CP-FIT: Clinical Performance Feedback Intervention Theory

FIT: Future Health Today

GP: general practitioner

GPN: general practice nurse

PoC: point of care
SGLT2: sodium-glucose cotransporter 2
Characteristics of Users of a Digital Hypnotherapy Intervention for Hot Flashes: Retrospective Study

Morgan Snyder¹, PhD; Gary R Elkins¹, PhD

Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States

Corresponding Author:
Gary R Elkins, PhD
Department of Psychology and Neuroscience
Baylor University
One Bear Place 97334
Waco, TX, 76798
United States
Phone: 1 254 710 2961
Email: gary_elkins@baylor.edu

Abstract

Background: Hot flashes are associated with a lower quality of life and sleep disturbances. Given the many consequences of hot flashes, it is important to find treatments to reduce them. Hypnotherapy, the use of hypnosis for a medical disorder or concern, has been shown in clinical trials to be effective in reducing hot flashes, but it is not routinely used in clinical practice. One solution to close this implementation gap is to administer hypnotherapy for hot flashes via a smartphone app. Evia is a smartphone app that delivers hypnotherapy for hot flashes. Evia has made hypnotherapy more widely accessible for women who are experiencing hot flashes; however, the app has yet to undergo empirical testing. Additionally, research on user characteristics is lacking.

Objective: This study aims to (1) determine the average age, stage of menopause, and length of menopause symptoms for users of the Evia app; (2) determine the characteristics of hot flashes and night sweats for users of the Evia app; (3) determine the self-reported sleep quality of users of the Evia app; (4) determine the self-reported mental health of users of the Evia app; and (5) determine the relationship between hot flash frequency and anxiety and depression for users of the Evia app.

Methods: This study analyzed data collected from participants who have downloaded the Evia app. Data were collected at 1 time point from a self-report questionnaire that assessed the demographic and clinical characteristics of users. The questionnaire was given to users when they downloaded the Evia app. Users of the Evia app fill out a questionnaire upon enrolling in the program and prior to beginning the intervention. This included 9764 users.

Results: Results showed that the mean age of users was 49.31 years. A total of 41.6% (1942/4665) of users reported experiencing 5 or more hot flashes per day, while 51.2% (1473/2877) of users reported having difficulty falling asleep each night and 47.7% (1253/2626) of users reported their sleep quality to be terrible. In addition, 38.4% (1104/2877) of users reported that they often feel anxious or depressed. There was a small, significant, and negative correlation between hot flash frequency and self-report frequency of anxiety and depression ($r = -0.09$).

Conclusions: This study showed that the average age of app users is in line with the median age of natural menopause. A large percentage of users reported experiencing 5 or more hot flashes per day, reported difficulties falling asleep each night and anxiety. These findings are in line with previous studies that assessed hot flash frequency and the consequences of hot flashes. This was the first study to report on the characteristics of users of the Evia app. Results will be used to optimize the hypnotherapy program delivered via the Evia app.

(JMIR Form Res 2024;8:e53555) doi:10.2196/53555

KEYWORDS
hypnotherapy; hot flashes; smartphone app; mHealth; mobile health; app; apps; applications; hypnosis; menopause; menopausal; gynecology; usage; women's health; user; users; demographics; demographic; characteristic; characteristics; mental health; alternative; complementary; mind body; hypnotism
Introduction

Hot flashes are common during menopause, which is marked by 12 months of amenorrhea or absence of the menstrual period. It is estimated that approximately 75% of women experience hot flashes during menopause [1]. During the transition into menopause, hormone levels fluctuate, and this leads to many physical changes and symptoms, with hot flashes being known as the “hallmark” symptom of menopause. Hot flashes are distressing for women who experience them, and they are associated with a lower quality of life [2] and psychological well-being [3]. Hot flashes are also associated with sleep disturbances [4-6]. Given the many consequences of hot flashes, it is important to find treatments to reduce them.

The most effective treatment for reducing hot flashes is hormone therapy; however, this has been shown to increase the risk of breast cancer and its use is contraindicated in many situations such as in breast cancer survivors [7]. Other treatments for hot flashes such as selective serotonin reuptake inhibitors, selective norepinephrine reuptake inhibitors, clonidine, gabapentin, cognitive behavioral therapy, and mindfulness-based stress reduction have not been found to be as effective as hormone therapy, and they often include side effects that make their long-term use undesirable [8-13]. Therefore, effective and safe nonpharmacological treatment options are needed to relieve hot flashes.

Hypnotherapy, the use of hypnosis for a medical disorder or concern, has been shown to be effective in reducing hot flashes [14,15]. In a clinical trial that examined the efficacy of hypnotherapy for reducing hot flashes among breast cancer survivors, it was found that hypnotherapy reduced hot flashes by approximately 68% from baseline to intervention end point and this was significantly greater than controls [14]. In another clinical trial that examined the efficacy of hypnotherapy for reducing hot flashes among postmenopausal women, hot flashes were reduced by approximately 80% from baseline to week 12 and these reductions were significantly greater than the structured attention control condition [15].

Although hypnotherapy has been shown to be effective in clinical trials, it is not routinely used in clinical practice. Very few clinicians are trained to administer hypnotherapy for hot flashes. One solution to close this implementation gap is to administer hypnotherapy for hot flashes via a smartphone app. Evia is a smartphone app that delivers hypnotherapy for hot flashes. It is based on a hypnotherapy protocol that has been rigorously tested in randomized clinical trials [14,15] and was developed in consultation with an expert in the field of hypnotherapy for hot flashes. Evia includes a 5-week hypnotherapy intervention with daily tasks that include listening to the audio-recorded hypnotherapy session, tracking hot flashes, and psychoeducational readings. Evia has made hypnotherapy more widely accessible for women who are experiencing hot flashes; however, the app has yet to undergo empirical testing. Additionally, research on user characteristics is lacking. This is the first study to report the characteristics of users of Evia. The information gathered from this study will allow for the Evia app to be tailored and optimized toward its users. This study will also tell us whether individuals who seek relief from hot flashes via a smartphone app are different from those who seek treatment in a clinical setting or a clinical trial, and will allow us to better understand who is downloading and engaging with the digital hypnotherapy intervention. Some previous research has shown that smartphone app users are generally younger [16], and this study will explore whether users of Evia are younger than women who seek treatment in a clinical setting or clinical trial. Additionally, the study will explore how app users may differ in the length of time they have experienced menopause symptoms or symptom severity. In addition, this study is a first step to conducting further research on the Evia app, including clinical trials to evaluate efficacy.

This study analyzed data collected from participants who have downloaded the Evia app. These data were collected by Mindset Health, the developers of the Evia app. Users of the Evia app fill out a questionnaire upon enrolling in the program and prior to beginning the intervention. These data will be analyzed to achieve the study’s aims. This study aims to (1) determine the average age, stage of menopause, and length of menopause among postmenopausal women, hot flashes were found to be as effective as hormone therapy, and they often include side effects that make their long-term use undesirable [8-13]. Therefore, effective and safe nonpharmacological treatment options are needed to relieve hot flashes.

Methods

Overview

Data were collected at 1 time point from a self-report questionnaire that was given to users when they downloaded the Evia app between October 5, 2021, and July 8, 2022. Users filled out the self-report questionnaire directly on the Evia app. These data were collected prior to the user beginning the intervention and were analyzed retrospectively.

Participants

Participants included individuals who downloaded the Evia app between October 5, 2021, and July 08, 2022. Participants are users of the Evia app and were recruited via Facebook advertisements and the app. Any person who downloaded the Evia app during this time period was prompted to fill out a questionnaire with demographic and clinical information prior to beginning the intervention. This included 9764 participants.

Measures

Aim 1

Participants were asked to fill in their age. Participants were asked, “How would you classify your stage of menopause?” Response options included “perimenopause,” “menopause,” “postmenopausal,” “I’m not menopausal,” and “I’m not sure.” To determine the amount of time that users have been experiencing menopause symptoms, participants were asked, “How long have you been experiencing menopause symptoms?” Response options included “0-6 months,” “6-12 months,” “1-2 years,” “2-3 years,” “3-5 years,” “5-10 years,” and “10+ years.”
Aim 2
Participants were asked, “How many hot flashes do you experience each day?” Response options ranged from “0” to “5+.” To assess the severity of hot flashes that users are experiencing, participants were asked, “How severe are your hot flashes?” Response options included “very mild,” “mild,” “moderate,” “severe,” and “very severe.” To assess the characteristics of users’ hot flashes, they were asked, “What do your hot flashes feel like?” Response options included “sudden feeling of warmth,” “perspiration,” “flushed appearance,” “rapid heartbeat,” “anxiety/an aura,” “dizziness/weakness,” “nausea,” and “other.” Users were able to select multiple responses for this item. To assess the number of night sweats that users experience, they were asked, “How many night sweats do you experience each night, on average?” Response options ranged from “0” to “5+.”

Aim 3
Users were asked to report sleep difficulty with 1 self-report item that reads, “Many women also struggle with sleep during menopause. Do you find it difficult to fall asleep each night?” Response options include “no,” “a little bit,” and “yes.” Users were also asked to rate their sleep quality with 1 self-report question that read, “How would you rate the quality of your sleep?” Response options included “terrible,” “fair,” “good,” and “excellent.”

Aim 4
Users were asked 1 self-report question that read, “Some women also struggle with mental health during menopause. How often do you feel anxious or depressed?” Response options included “never,” “sometimes,” “often,” and “constantly.”

Aim 5
Users were asked, “How many hot flashes do you experience each day?” Response options ranged from “0” to “5+.” Users were asked, “Some women also struggle with mental health during menopause. How often do you feel anxious or depressed?” Response options included “never,” “sometimes,” “often,” and “constantly.”

Ethical Considerations
This study was reviewed by the institutional review board at Baylor University and was considered to be exempt. The institutional review board determined the study to be secondary research for which consent is not required. The data analyzed were deidentified.

Data Analyses
Descriptive statistics (means, SDs, and frequencies) were calculated for the variables of interest. For aim 5, which was to determine the relationship between hot flash frequency and self-report frequency of anxiety and depression, a Pearson correlation analysis was used.

Results
Aim 1: Age, Stage of Menopause, and Length of Menopause Symptoms
The mean age of users was 49.31 (SD 6.693) years. Out of 9103 valid responses, 0.5% (n=49) of users reported being not menopausal, 31.2% (n=2837) of users were perimenopausal, 14.2% (n=1293) of users were menopausal, 13.1% (n=1188) of users were postmenopausal, 7.6% (n=688) of users were uncertain, and 33.5% (n=3048) of users reported unknown (see Table 1). Out of 3127 valid responses reporting length of experiencing menopause symptoms, 20.4% (n=639) of users reported 0-6 months, 20.9% (n=655) of users reported 6-12 months, 20% (n=624) of users reported 1-2 years, 13.5% (n=421) of users reported 2-3 years, 11.3% (n=354) of users reported 3-5 years, 9.3% (n=290) of users reported 5-10 years, and 4.6% (n=144) of users reported 10+ years (see Table 1).
Table 1. Stage of menopause and length of menopause symptoms for Evia users. This table lists the frequencies and percentages of Evia app users who are in each stage of menopause and their length of menopause symptoms. These data were collected from Evia app users who downloaded the Evia app. Data were collected via a questionnaire given on the Evia app to users prior to beginning the intervention and were analyzed retrospectively. These data were collected between October 5, 2021, and July 8, 2022. The Evia app includes a hypnotherapy intervention to help reduce hot flashes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage of menopause (n=9103)</td>
<td></td>
</tr>
<tr>
<td>Not menopausal</td>
<td>49 (0.5)</td>
</tr>
<tr>
<td>Perimenopausal</td>
<td>2837 (31.2)</td>
</tr>
<tr>
<td>Menopausal</td>
<td>1293 (14.2)</td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>1188 (13.1)</td>
</tr>
<tr>
<td>Uncertain</td>
<td>688 (7.6)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3048 (33.5)</td>
</tr>
<tr>
<td>Length of menopause symptoms (n=3127)</td>
<td></td>
</tr>
<tr>
<td>0-6 months</td>
<td>639 (20.4)</td>
</tr>
<tr>
<td>6-12 months</td>
<td>655 (20.9)</td>
</tr>
<tr>
<td>1-2 years</td>
<td>624 (20)</td>
</tr>
<tr>
<td>2-3 years</td>
<td>421 (13.5)</td>
</tr>
<tr>
<td>3-5 years</td>
<td>354 (11.3)</td>
</tr>
<tr>
<td>5-10 years</td>
<td>290 (9.3)</td>
</tr>
<tr>
<td>10+ years</td>
<td>144 (4.6)</td>
</tr>
</tbody>
</table>

Aim 2: Hot Flash Characteristics

Out of 4665 valid responses, 13.5% (n=630) of users reported experiencing 0 hot flashes per day, 9.4% (n=437) of users reported experiencing 1 hot flash per day, 13% (n=607) of users reported experiencing 2 hot flashes per day, 12.8% (n=595) of users reported experiencing 3 hot flashes per day, 9.7% (n=454) of users reported experiencing 4 hot flashes per day, and 41.6% (n=1942) of users reported experiencing 5+ hot flashes per day (see Table 2). Out of 4183 valid responses, 1.9% (n=80) of users reported that their hot flashes were very mild, 30.4% (n=1273) of users reported that their hot flashes were mild, 40.9% (n=1710) of users reported that their hot flashes were moderate, 20.3% (n=851) of users reported that their hot flashes were severe, and 6.4% (n=269) of users reported that their hot flashes were very severe (see Table 2). Out of 4180 valid responses, 83% (n=3469) of users reported that their hot flashes felt like a sudden feeling of warmth, 59.2% (n=2474) of users reported perspiration, 47.5% (n=1987) of users reported a flushed appearance, 34.5% (n=1442) of users reported rapid heartbeat, 32.7% (n=1367) of users reported anxiety or an aura, 24.5% (n=1023) of users reported dizziness or weakness, and 16.4% (n=686) of users reported nausea (see Table 2). Out of 321 valid responses, 13.4% (n=43) of users reported experiencing 0 night sweats, 25.5% (n=82) of users reported experiencing 1 night sweat, 23.1% (n=74) of users reported experiencing 2 night sweats, 21.8% (n=70) of users reported experiencing 3 night sweats, and 16.2% (n=52) of users reported experiencing 4 night sweats (see Table 2).
Table 2. Number, severity, and characteristics of hot flashes for Evia users. This table lists the frequencies and percentages for Evia app users’ number of hot flashes, severity of hot flashes, hot flash characteristics, and number of night sweats. These data were collected from Evia app users who downloaded the Evia app. Data were collected via a questionnaire given on the Evia app to users prior to beginning the intervention and were analyzed retrospectively. These data were collected between October 5, 2021, and July 8, 2022. The Evia app includes a hypnotherapy intervention to help reduce hot flashes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hot flashes (n=4665)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>630 (13.5)</td>
</tr>
<tr>
<td>1</td>
<td>437 (9.4)</td>
</tr>
<tr>
<td>2</td>
<td>607 (13)</td>
</tr>
<tr>
<td>3</td>
<td>595 (12.8)</td>
</tr>
<tr>
<td>4</td>
<td>454 (9.7)</td>
</tr>
<tr>
<td>5+</td>
<td>1942 (41.6)</td>
</tr>
<tr>
<td>Severity of hot flashes (n=4183)</td>
<td></td>
</tr>
<tr>
<td>Very mild</td>
<td>80 (1.9)</td>
</tr>
<tr>
<td>Mild</td>
<td>1273 (30.4)</td>
</tr>
<tr>
<td>Moderate</td>
<td>1710 (40.9)</td>
</tr>
<tr>
<td>Severe</td>
<td>851 (20.3)</td>
</tr>
<tr>
<td>Very severe</td>
<td>269 (6.4)</td>
</tr>
<tr>
<td>Hot flashes feel like (n=4180)</td>
<td></td>
</tr>
<tr>
<td>Sudden feeling of warmth</td>
<td>3469 (83)</td>
</tr>
<tr>
<td>Perspiration</td>
<td>2474 (59.2)</td>
</tr>
<tr>
<td>Flushed appearance</td>
<td>1987 (47.5)</td>
</tr>
<tr>
<td>Rapid heartbeat</td>
<td>1442 (34.5)</td>
</tr>
<tr>
<td>Anxiety or an aura</td>
<td>1367 (32.7)</td>
</tr>
<tr>
<td>Dizziness or weakness</td>
<td>1023 (24.5)</td>
</tr>
<tr>
<td>Nausea</td>
<td>686 (16.4)</td>
</tr>
<tr>
<td>Other</td>
<td>307 (7.3)</td>
</tr>
<tr>
<td>Number of night sweats (n=321)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>43 (13.4)</td>
</tr>
<tr>
<td>1</td>
<td>82 (25.5)</td>
</tr>
<tr>
<td>2</td>
<td>74 (23.1)</td>
</tr>
<tr>
<td>3</td>
<td>70 (21.8)</td>
</tr>
<tr>
<td>4</td>
<td>52 (16.2)</td>
</tr>
</tbody>
</table>

Aim 3: Sleep
Out of 2877 valid responses, results demonstrated that 18% (n=519) of users reported no to having difficulty falling asleep each night, 30.8% (n=885) of users reported a little bit of difficulty falling asleep each night, and 51.2% (n=1473) of users reported yes to having difficulty falling asleep each night. Out of 2626 valid responses, results also demonstrated that 47.7% (n=1253) of users reported their sleep quality to be terrible, 44% (n=1155) of users reported their sleep quality to be fair, 7.8% (n=206) of users reported their sleep quality to be good, and 0.5% (n=12) of users reported their sleep quality to be excellent.

Aim 4: Mental Health
Out of 2877 valid responses, 5.9% (n=169) of users reported that they never feel anxious or depressed, 38.4% (n=1104) of users reported that they often feel anxious or depressed, and 16.2% (n=465) of users reported that they constantly feel anxious or depressed.

Aim 5: Relationship Between Hot Flash Frequency and Anxiety and Depression
There was a small, significant, and negative correlation between hot flash frequency and self-report frequency of anxiety and depression ($r(2875) = -0.09, P<.001$).
Discussion

Principal Findings

Results demonstrated that the average age of app users (49.31 years) is in line with the median age of the beginning of perimenopause (47.5 years) and the median age of natural menopause (51.3) [17]. Although previous studies have shown that, overall, app users are generally younger [16], users of Evia are the age we would expect based on the age of menopause onset and symptoms emerging. Additionally, a large percentage of users (2837/9103, 31.2%) reported being in perimenopause, and this is oftentimes when menopause symptoms, including hot flashes, begin. An unexpected finding in this study was that a large percentage of users did not know their stage of menopause (3048/9103, 33.5%). This shows that users of Evia may not be aware of the various stages of menopause and what the menopause transition entails. This suggests that it may be beneficial for the Evia app to include some psychoeducational components about the menopause transition and stages of menopause. These psychoeducational components may help users of Evia better understand their menopause transition and experiences. Many users reported experiencing menopause symptoms for 0-6 months (639/3127, 20.4%), 6-12 months (655/3127, 20.9%), or 1-2 years (624/3127, 20%) with users less commonly reporting experiencing menopause symptoms for 5-10 years (290/3127, 9.3%) or 10+ years (144/3127, 4.6%). These results demonstrate that users are starting to use Evia toward the beginning of menopause symptoms. It is possible that those who have been experiencing symptoms for longer have learned how to cope with or treat their symptoms.

The largest percentage of users reported experiencing 5 or more hot flashes per day and reported that their hot flashes were moderate intensity. This finding is in line with previous studies that assessed hot flash frequency at baseline [15]. In a clinical trial by Elkins et al [15], participants experienced approximately 10 hot flashes per day on average at baseline. This study showed that, on average, Evia app users experience 5 or more hot flashes per day, which is in line with participants in previous clinical trials.

In line with previous studies regarding hot flashes and sleep, a majority of users (1473/2877, 51.2%) reported difficulty falling asleep each night and reported their sleep quality to be terrible (1253/2626, 47.7%) or fair (1155/2626, 44%). Previous studies have shown that menopausal women generally have poorer sleep than those not in menopause [18]. In addition, previous studies have also shown that hot flashes are associated with worse sleep outcomes [4-6]. Therefore, the finding that Evia users are reporting sleep problems is in line with previous research. Hypnotherapy interventions have been shown to improve sleep in menopausal women [15,19]. Evia includes components to address sleep problems and this study suggests that those components should be kept or additional components should be added in order to help users who are reporting difficulty falling asleep and poor sleep quality.

A majority of users reported that they sometimes (1139/2877, 39.6%) or often (1104/2877, 38.4%) feel anxious or depressed. This is also in line with previous research which has shown associations between hot flashes and symptoms of anxiety or depression [20,21]. However, this study found that there was a small, negative correlation between hot flash frequency and frequency of anxiety and depression, and this did not support the hypothesis that there would be a positive correlation between hot flash frequency and frequency of anxiety and depression. As mentioned above, previous research has found positive associations between hot flashes and symptoms of anxiety and depression; therefore, this finding is not in line with previous research. The correlation of –0.09 is also very small and near zero. It is likely only significant due to the large sample size. There are a couple of reasons that this finding may have occurred. First, users were not able to report the true number of hot flashes that they may have been experiencing and were limited to selecting 0, 1, 2, 3, 4, or 5+. Therefore, we measured a limited range of measurement of number of hot flashes. If users were able to report the exact number of hot flashes they were experiencing, there may have been more variation in this variable, and this may have affected the correlation. Second, the measurement of the frequency of anxiety or depression symptoms with a single item is not optimal. If a validated scale that measures depression or anxiety had been used, the measurement of this variable would have been improved. There may have been greater variability in this variable and the correlation may have been different. In addition, validated scales generally ask about the frequency of specific symptoms experienced whereas the single-item measure in this study asked solely about how often one was feeling anxious or depressed. Therefore, by using the single-item scale, the construct may have not been fully captured.

Limitations

This study has several limitations that should be addressed. First, several characteristics of users remain unknown and were not addressed by this study. For example, information about geographic location and race or ethnicity was not reported. The study was not able to describe several important demographic factors of the sample, including race or ethnicity and education level.

There were also limitations regarding how variables in the study were measured. For example, sleep quality and frequency of anxiety and depression symptoms were measured using single items. There are limitations to using single-item scales, including that they may not accurately or fully capture the construct. In addition, the items may have been worded in a suggestive manner. For example, “Many women also struggle with sleep during menopause. Do you find it difficult to fall asleep each night?” By starting the item with, “Many women also struggle with sleep during menopause...” it may be suggested for the individual to respond in a certain way. By identifying these limitations of measurement, this study will help to inform the optimization of data collection and measurement with the Evia app.

Future Directions

The results of this study will inform the optimization of the hypnotherapy intervention delivered via the Evia app. The results of this study will also inform the optimization of data collection via the Evia app. Once the Evia app is optimized,
further research is warranted. Future studies should first examine the feasibility of the Evia app in a randomized controlled trial design. Then, future studies should examine the efficacy of the Evia app in comparison to a control group or even a face-to-face delivery.

Conclusions

This was the first study to report on the characteristics of users of the Evia app, which delivers hypnotherapy for hot flashes. Results showed that the average age of app users is in line with the average age of menopause onset. Results also showed that the largest percentage of users reported experiencing 5 or more hot flashes per day and reported that their hot flashes were moderate intensity. In line with previous research regarding hot flashes and sleep, a majority of users reported difficulty falling asleep each night and reported their sleep quality to be terrible or fair. In addition, a majority of users reported that they sometimes or often feel anxious or depressed. The results of this study will help to inform the optimization and tailoring of the hypnotherapy intervention delivered via the Evia app.

Acknowledgments

The authors would like to acknowledge Mindset Health and its employees for their collaboration in this project, as well as Clair Hall and Hanna Burrows for assistance with data collection.

Data Availability

The data set analyzed during this study is not publicly available due to confidentiality but is available from the corresponding author upon reasonable request.

Conflicts of Interest

GRE is a consultant to Mindset Health but was not involved in data collection. GRE discloses that he receives a consultant salary from Mindset Health and holds stock options within the company. However, this salary and equity were not dependent on the results of this research.

References

©Morgan Snyder, Gary R Elkins. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Adapting the Number of Questions Based on Detected Psychological Distress for Cognitive Behavioral Therapy With an Embodied Conversational Agent: Comparative Study

Kazuhiro Shidara¹, MEng; Hiroki Tanaka¹, PhD; Hiroyoshi Adachi², MD, PhD; Daisuke Kanayama², MD, PhD; Takashi Kudo², MD, PhD; Satoshi Nakamura¹, PhD

¹Nara Institute of Science and Technology, Ikoma, Japan
²Health and Counseling Center, Osaka University, Toyonaka, Japan

Corresponding Author:
Kazuhiro Shidara, MEng
Nara Institute of Science and Technology
8916-5, Takayama-cho
Ikoma, 630-0192
Japan
Phone: 81 80 4687 8116
Email: shidara.kazuhiro.sc5@is.naist.jp

Abstract

Background: The high prevalence of mental illness is a critical social problem. The limited availability of mental health services is a major factor that exacerbates this problem. One solution is to deliver cognitive behavioral therapy (CBT) using an embodied conversational agent (ECA). ECAs make it possible to provide health care without location or time constraints. One of the techniques used in CBT is Socratic questioning, which guides users to correct negative thoughts. The effectiveness of this approach depends on a therapist’s skill to adapt to the user’s mood or distress level. However, current ECAs do not possess this skill. Therefore, it is essential to implement this adaptation ability to the ECAs.

Objective: This study aims to develop and evaluate a method that automatically adapts the number of Socratic questions based on the level of detected psychological distress during a CBT session with an ECA. We hypothesize that this adaptive approach to selecting the number of questions will lower psychological distress, reduce negative emotional states, and produce more substantial cognitive changes compared with a random number of questions.

Methods: In this study, which envisions health care support in daily life, we recruited participants aged from 18 to 65 years for an experiment that involved 2 different conditions: an ECA that adapts a number of questions based on psychological distress detection or an ECA that only asked a random number of questions. The participants were assigned to 1 of the 2 conditions, experienced a single CBT session with an ECA, and completed questionnaires before and after the session.

Results: The participants completed the experiment. There were slight differences in sex, age, and preexperimental psychological distress levels between the 2 conditions. The adapted number of questions condition showed significantly lower psychological distress than the random number of questions condition after the session. We also found a significant difference in the cognitive change when the number of questions was adapted based on the detected distress level, compared with when the number of questions was fewer than what was appropriate for the level of distress detected.

Conclusions: The results show that an ECA adapting the number of Socratic questions based on detected distress levels increases the effectiveness of CBT. Participants who received an adaptive number of questions experienced greater reductions in distress than those who received a random number of questions. In addition, the participants showed a greater amount of cognitive change when the number of questions matched the detected distress level. This suggests that adapting the question quantity based on distress level detection can improve the results of CBT delivered by an ECA. These results illustrate the advantages of ECAs, paving the way for mental health care that is more tailored and effective.

(JMIR Form Res 2024;8:e50056) doi:10.2196/50056
KEYWORDS

cognitive behavioral therapy; psychological distress detection; embodied conversational agents; automatic thoughts; long short-term memory; multitask learning

Introduction

Background

Cognitive behavioral therapy (CBT) is an established and effective therapeutic approach for treating a wide range of mental illnesses, including depression and anxiety disorder [1,2]. This approach, rooted in the cognitive model of emotional responses, posits that our thoughts, feelings, and behaviors are interconnected. Its central principle asserts that negative automatic thoughts must be corrected because they deleteriously affect emotions and behaviors [3]. CBT has been widely adopted in clinical practice and in preventive health care for the general public [2,4]. Despite its efficacy, broad dissemination faces challenges [5,6]. The World Health Organization [5] asserts that factors such as a shortage of trained therapists, geographical and financial limitations, and societal stigma toward mental health contribute to a substantial treatment gap.

Researchers have attempted to provide CBT through embodied conversational agents (ECAs) to address social issues [7-9]. ECAs are computer-programmed interfaces that simulate human-like conversations with users by using natural language processing techniques. Examples include messaging app–like chatbots [10,11], robots [12,13], and ECAs displayed as computer graphics on a screen [14]. Text-based agents or chatbots are especially widespread and commercially available as smartphone apps. Inkster et al [11] and Fitzpatrick et al [10] are 2 examples of such agents whose ability has been extensively validated for targeting and helping individuals who are experiencing mild to moderate symptoms of depression and anxiety. These agents provide therapy for daily mental health care rather than intensive clinical treatment. Studies have shown their effectiveness in reducing symptoms of depression and anxiety, increasing mental well-being, and fostering user resilience [15].

ECAs, or chatbots, increase accessibility, affordability, and anonymity, potentially reaching a broader population that might benefit from CBT. However, the effectiveness of these digital therapies depends on several factors, including therapeutic techniques, empathy, user interface, and personalization. Asay and Lambert [16] categorized the factors affecting therapy effectiveness into four major groups: (1) extratherapeutic changes, which include clients’ personality and environmental factors that support recovery, independent of therapy participation; (2) common factors such as empathy and therapeutic alliance, which are found in various therapy approaches; (3) expectancy, which involves improvement resulting from clients’ anticipation of assistance and their belief in the therapy’s rationale and effectiveness; and (4) techniques, which are specific factors unique to particular therapies and adjusted to address specific issues. Among these 4 groups, the techniques are crucial for enhancing the quality of therapy. One critical CBT therapeutic technique strategically uses Socratic questioning [17]. On the basis of the pedagogical style of the ancient Greek philosopher Socrates, this method is a form of guided discovery that encourages clients to critically examine and articulate their thought patterns to facilitate cognitive change and distress reduction [18,19]. Socratic questioning helps clients deeply contemplate their problems and perspectives. Questions such as “Why do you think that way?,” “What evidence supports this perspective?,” and “Have you considered other perspectives?” can be adjusted to specific problems or situations. These flexible templates can be applied to various concerns and situations. The process involves carefully considering the content, timing, and sequence of questions adjusted to an individual’s cognitive processes and emotional state, emphasizing the quality of queries when engaging the client in Socratic questioning [2,4,20]. Therapists observe the content of clients’ utterances, changes in their voices, and facial expressions to understand changes in their mood [2,4].

Recent studies have started to investigate the application of Socratic questioning in automated CBT systems such as ECAs. Kimani et al [14] and Shidara et al [21] explored ways to implement Socratic questioning in CBT delivered by ECAs. The former work provided Socratic questions according to a dialogue context using a flowchart of selectable inputs and reduced the specific anxiety about giving a presentation. The latter study set up 2 dialogue scenarios, with and without Socratic questioning, and evaluated them in a comparative experiment. The group with the scenario containing Socratic questioning showed a larger reduction in negative moods. Both studies suggest that Socratic questioning by ECAs promotes cognitive changes and distress reduction.

However, there is a significant gap in current research. Existing studies have not explored how to automatically adapt Socratic questioning. Ideally, ECAs should adapt CBT strategies according to users’ psychological states, just like human therapists do. Specifically, there is limited research on this topic. We must focus on the adjustment of the number of questions or its types. Therefore, we set our goal to personalize CBT strategies based on an individual’s current psychological state.

This study addresses this gap by introducing an adaptive method to improve the effectiveness of CBT using ECAs. This method adjusts the number of questions during a therapy session based on the detected level of psychological distress. The main goal is to provide questions according to the user’s level of distress to improve the therapeutic interaction. To achieve this goal, we formulated the following research questions:

1. Research question 1: Can modifying the number of questions based on the user’s level of psychological distress lead to better therapeutic outcomes?

To address this question, our system uses a machine learning model with natural language processing techniques to estimate a user’s psychological state during a CBT session. Our system can automatically detect psychological distress, allowing it to adapt to the user’s mental state without using psychological...
scales such as the Kessler Psychological Distress Scale (K6) in each session. Furthermore, by integrating the distress detection model, our system can estimate the user’s distress in real time during the CBT session. This functionality is intended to improve the effectiveness of CBT with an ECA. In this sense, we present the hypothesis 1.

Hypothesis 1: In a condition with the adaptive number of questions, improvement in distress and emotion and cognitive change will be better than in a condition with a random number of questions.

2. Research question 2: Is there a clear benefit to modifying the number of questions to match the user’s specific psychological state rather than setting a fixed optimal number for all?

For this question, we emphasized the value of customization, recognizing that the most effective balance of questions may vary from user to user. Therefore, we aimed to clarify the therapeutic benefit of determining the distress reduction moments. Through this investigation, we aimed to identify the most effective strategy: changing the number of questions or setting a user-specific number of questions. Therefore, we propose hypothesis 2.

Hypothesis 2: The adapted question amount has better improvement than both the too few questions amount and the too many questions amount in terms of the users’ distress improvement, emotion improvement, and cognitive change.

To validate these hypotheses, we tested it experimentally by comparing 2 conditions: the adapted number of questions condition and the random number of questions condition. We assessed the reduction of psychological distress and negative emotional states and cognitive changes in both conditions. We also analyzed the influence of deviations in the number of questions from the model’s estimated value on the effectiveness of the ECAs.

The incorporation of a distress detection model into an ECA system is essential to our method. In the Psychological Distress Detection and Conversational Scenario section, we describe our psychological distress model and the design of the agent architecture.

Psychological Distress Detection and Conversational Scenario

System Overview

Figure 1 shows the overview of our system, including the abstract scenario. The detailed scenario can be found in Multimedia Appendix 1. This ECA uses an ECA toolkit called Greta (Institut des Systèmes Intelligents et de Robotique in Paris) [22]. Its animation’s appearance uses a version identified as more acceptable to Japanese people [23]. We used the ja-JP-Wavenet-B of Google’s Text-to-Speech service to generate the synthesized speech of a Japanese female voice. We used a laptop (i7, 32GB RAM, Dell Inc) for the ECA implementation and recorded the participants’ facial expressions and speech with its built-in camera. A microphone and a speaker were built into a headset (Sennheiser). Figure 2 shows a conversation between a user and our ECA.

Figure 1. A framework of an embodied conversational agent and a conversational scenario for cognitive behavioral therapy. MPEG-4: Moving Picture Experts Group Phase 4.
In this study, we developed a question scenario based on the principles of cognitive restructuring [2,4], a key component of CBT. The scenario was supervised and reviewed by a psychiatrist to ensure clinical accuracy and relevance. The CBT process involves 3 main steps: identifying automatic thoughts, correcting them, and examining new balanced thoughts.

The first step in the scenario involves identifying automatic thoughts by describing the situation, the mood, and the automatic thoughts themselves. Typically, the situation and mood are described first, followed by identifying the automatic thoughts that occur between the situation and the mood. When describing mood, participants also report the intensity of their moods using a score, which is a percentage ranging from 0 (not stressed at all) to 100 (the most stressed they have ever felt). In this step, the users select their strongest automatic thought. Although multiple automatic thoughts may arise from a single situation, focusing on the strongest thought allows for the largest reduction of mood score.

In this study, we incorporated a classification model developed by Shidara et al [21] that determines whether automatic thoughts are expressed. Their model, which helps users accurately identify their automatic thoughts, was integrated into the response selection component of the ECA. When the ECA asks the user about his automatic thoughts, the model takes the response as input and determines whether the answer is a thought or something other than a thought, such as a mood or situation. If the response is deemed to be something other than a thought, the agent asks another question to elicit an automatic thought. If the answer is a thought, the agent proceeds to the thought-correction section. The model, constructed using Bidirectional Encoder Representations from Transformers [24], demonstrated a high estimation F_1-score of 0.81.

Once the automatic thoughts have been identified, participants correct their thoughts by comparing them with the facts of the situation. The CBT system poses questions designed to increase participants’ awareness of overlooked facts and provides distance from their automatic thoughts to view them more objectively. After correcting their automatic thoughts, the participants were asked to state their new balanced thoughts. This step involved considering the insights gained while correcting automatic thoughts and generating new balanced thoughts. At the end of this process, participants reported their mood score again to confirm a reduction of their negative mood scores after deriving new balanced thoughts.

Adaptation of Number of Questions

In our developed scenario, multiple questions were included for correcting automatic thoughts. This step ensured that the standardized scenario effectively improved participants’ mood by incorporating multiple questions. In actual CBT sessions, questions are adjusted according to an individual patient’s condition and level of distress.

Our ECA posed questions aimed at helping participants notice overlooked facts and gain distance from their automatic thoughts.
to view them more objectively. In the developed scenario, multiple Socratic questions were included for correcting automatic thoughts. This step ensured that the standardized scenario effectively improved participants’ mood by incorporating multiple questions. The number of questions posed for correcting automatic thoughts was adapted based on the detected level of the participant’s psychological distress. After posing questions that correct an automatic thought, the participant’s responses were used to identify their current psychological distress state. If distress is detected, the system continues to pose additional questions that prompt the participants to correct their thinking from various perspectives. This process gently nudges participants to reconsider their automatic thoughts, offering them the opportunity to alter their perspective and reduce their distress. The system was designed using a pool of 21 Socratic questions to prompt the correction of automatic thoughts. If a participant continues to exhibit high levels of psychological distress, the agent can pose up to 20 additional questions to assist them in working through their distress.

If the estimated value of the detection model is nondistressed, the agent proceeds to the next step, where the participant composes a balanced alternative thought. This step was based on the insights gained in the previous step, which is the correction of automatic thoughts. After this process, the participant again reported a negative mood score, which was expected to confirm a less negative mood.

Pretraining of Detection Models to Address Japanese Conversation

In our quest to dynamically adapt the number of questions asked during a CBT session, psychological distress in users must be accurately detected. In this context, machine learning models have been developed to estimate psychological distress [25-29], often using publicly available data sets, such as the Distress Analysis Interview Corpus/Wizard-of-Oz (DAIC-WOZ) database [30]. Unfortunately, this data set primarily contains English language data focused on assessing depressive tendencies rather than providing mental health care. Therefore, our challenge is to adapt these models to suit a Japanese language context, especially for the CBT domain.

To address this challenge, we first applied a deep learning architecture of the depression detection model proposed by Li et al [31]. Their model identifies depressive tendencies in interactions with ECAs by classifying presence or absence into 2 categories. It combines recurrent neural network and long short-term memory networks and uses multitask learning for depression detection. Multitask learning enables simultaneous training on multiple tasks, leveraging shared knowledge to improve generalization, use relationships between tasks, and reduce overfitting. In the study by Li et al [31], the model achieved a high F_1-score of 0.71.

Figure 3 [30,32] shows the training flow of the psychological distress detection model [30,32]. For the training process, we used a combination of pretraining and transfer learning. First, we translated the original training data in the study by Li et al [31] from English into Japanese using machine translation software and pretrained the model with reference to the settings in the study by Li et al [31]. We then constructed a Japanese CBT data set using crowdsourcing and conducted transfer learning on the detection model.

Figure 3. (A) Pretraining of detection models to address Japanese conversation data sets. (B) Transfer learning for real-time psychological distress detection in CBT. CBT: cognitive behavioral therapy; DAIC-WOZ: Distress Analysis Interview Corpus/Wizard-of-Oz; FC: fully connected; LSTM: long short-term memory; RNN: recurrent neural network.

In the pretraining, we used data from 2 sources: the DAIC-WOZ data set [30] and the DailyDialogue data set [32]. The DAIC-WOZ data set consists of 189 two-party English interviews between participants and Ellie, an animated ECA interviewer. Participants were evaluated using the Patient Health Questionnaire-8 scale [33]. Participants with a Patient Health Questionnaire-8 score...
≥10 were considered depressed [33]. The DailyDialog data set [32] is an English dialogue collection containing 13,118 two-party daily life conversations. The data set included 3 expert-annotated information layers: 7 categorical emotions [34], 4 dialogue acts, and 10 dialogue topics. We maintained the original separation into training, validation, and test sets for both data sets. We used a transformer translation model, implemented with HuggingFace transformers [35], for the English-Japanese translation of both data sets.

We retained the original implementation details of the study by Li et al [31]. We trained the model for a maximum of 100 epochs with early stopping based on the macro F_1 metric for depression classification. We used cross-entropy loss and a batch size of 1 for the DailyDialog and DAIC-WOZ. Tokenization was performed using the McCab library [36], and we constructed word embeddings with a default dimension of 128. The turn-level encoder consisted of 1 hidden layer and 128 output neurons. We tuned the document-level recurrent neural network layers within a range of {1, 2, 3} and the hidden size within a range of {128, 256, 512}. The model parameters were optimized using the Adam optimizer [37] with a learning rate of 0.001. Dropout rates were set to 0.1 for both the turn and document encoders.

Transfer Learning for Real-Time Distress Detection in CBT

After pretraining the model with the translated data, we implemented transfer learning by replacing the fully connected layer. This transfer learning process allowed us to leverage the original model architecture while shaping it to our specific distress detection task in CBT. In this transfer learning phase, we incorporated only 3 types of user utterances corresponding to the situation, mood, and automatic thought responses within the CBT process. This approach was adopted to enable real-time distress detection during CBT sessions with the ECA. When the detection model makes inferences, it inputs the 3 most recent utterances. In this way, the distress detection model enables real-time detection in a CBT session.

Our crowdsourced data set was initially collected from 100 crowd workers from the general public. However, upon visual inspection of the data, it became apparent that the responses from some participants were not adequately informative or valid for our purpose. Therefore, we excluded data from 6 participants as likely outliers or nonresponsive. Thus, the final data set for our analysis consisted of responses from 94 participants. In the data collection, we assessed the level of psychological distress in our crowdsourced data set with the Japanese version of K6 [38] (Japanese version [39]). This scale is a concise and reliable self-report tool that assesses the level of psychological distress experienced by individuals in the previous 30 days. This 6-item scale measures the frequency of symptoms related to anxiety and depression, making it a valuable instrument for detecting and evaluating mental health disorders in both clinical and research settings. The items are rated on a 5-point Likert scale, from 0 (none of the time) to 4 (all of the time), leading to a total score range of 0 to 24. Higher scores indicate greater psychological distress. In this study, following Sakurai et al [40], a K6 score of ≥5 was considered distressed, and a score of <5 was considered nondistressed. We constructed a psychological distress detection model that classified these 2 classes. Of the 94 participants, 63 (67%) were categorized as distressed (K6 score of ≥5) and 31 (33%) as nondistressed (K6 score <5). We used stratified sampling to automatically split the data into training, validation, and testing subsets. We used 55% (52/94) of the participants for training, 19% (18/94) of the participants for validation, and 26% (24/94) of the participants for testing.

Methods

Ethical Considerations

The research ethics committee of the Nara Institute of Science and Technology reviewed and approved this study (2019-1-24-3). We engaged a human resources company to advertise and recruit participants. All participants provided written informed consent before participating in the experiment. The participants were compensated with an honorarium, which was paid by the human resources company. Study data were anonymized.

Participants

This study was conducted in February and March 2023. Eligibility criteria for the experimental participants were as follows: (1) aged between 18 and 65 years, (2) having no hearing impairments, and (3) ability to speak Japanese. For the analysis of this research, 49 participants were allocated into 2 conditions to assess the impact of varying the number of Socratic questions based on detected levels of psychological distress during CBT sessions with an ECA.

In addition to these participants, a separate group (of 26 participants) was involved in a distinct experimental condition, designed for a different research focus. Although data for this separate group were collected concurrently with the main study, the data from this separate group are not relevant to the current analysis and have not been included in this paper. The objective of collecting the data from this separate group was to analyze whether an extreme number of questions were stressful and discouraged cognitive changes. It is expected that participants in this separate group might experience or perceive the system rather than personal emotional challenges such as depression or anxiety. Specifically, participants may be dissatisfied with how the system works or interacts rather than with their internal struggles. Although this system-related dissatisfaction is also important, it is beyond the scope of this study. Only the 2 conditions were used in this study to focus on the person’s nonadaptive thoughts and moods regarding their problems.

Table 1 shows the demographics and baseline characteristics of the participants who were recruited through an external participant recruitment service. We also included 1 participant with a history of a mental health issue in the adapted number of questions condition. This participant was currently in remission and not taking any medication. This participant was recruited through a company that provides employment transition services for people with a history of mental health issues.
Table 1. Participants’ demographics and baseline characteristics (N=49).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Adapted number of questions condition</th>
<th>Random number of questions condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of participants, n (%)</td>
<td>25 (100)</td>
<td>24 (100)</td>
</tr>
<tr>
<td>Without mental health issues, n (%)</td>
<td>24 (96)</td>
<td>24 (100)</td>
</tr>
<tr>
<td>With a history of a mental health issue, n (%)</td>
<td>1 (4)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>13 (48)</td>
<td>13 (54)</td>
</tr>
<tr>
<td>Female</td>
<td>11 (46)</td>
<td>11 (46)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>41.72 (12.79)</td>
<td>38.88 (14.89)</td>
</tr>
<tr>
<td>K6(^a), mean (SD)</td>
<td>4.08 (4.31)</td>
<td>4.38 (3.10)</td>
</tr>
</tbody>
</table>

\(^{a}\)K6: Kessler Psychological Distress Scale.

To confirm whether there was any bias in the age of the participants and the preexperiment K6 scores between the 2 conditions, we conducted a 2-sided Welch \(t\) test and calculated Cohen \(d\) values. As a result, for age, Cohen \(d\) was 0.21 and the \(P\) value was .48; for preexperiment K6 scores, Cohen \(d\) was \(-0.08\) and the \(P\) value was .78. These results indicate that there was no significant bias in age and preexperiment K6 scores between the 2 conditions.

Experimental Conditions

Figure 4 illustrates the conversation scenarios for our 2 experimental conditions: the adapted number of questions and the random number of questions. In the adapted number of questions condition, the ECA used a distress detection model. This model continuously estimated the participant’s level of distress after each answer for a thought-correction question. If the model detects distress, it prompts the agent to ask a new question to correct the automatic thought. This process is repeated until the model detects no distress or the maximum number of questions is reached. In contrast, the condition of a random number of questions does not use the distress detection model. Instead, the system randomly determines the number of questions without considering the participant’s distress state. In both conditions, the number of questions asked to correct automatic thoughts varied from a minimum of 1 to a maximum of 21.

The condition assignment was not concealed from the experimental examiner. Participants were automatically assigned to conditions based on their age, sex, and K6 scores (a self-reported psychological distress scale). The day before the experiment, the participants responded to these 3 items using a questionnaire administered through Google Forms. On the basis of the questionnaire results, the conditions were divided such that no imbalance existed between the conditions in terms of K6, age, and sex. The participants conducted the experiment according to their predetermined condition assignments. They were unaware of their condition assignment and were not informed of the differences between the conditions.
Before the experiment, an experimenter explained this to the participants who signed the consent forms. They then completed the K6 questionnaire and read a publicly available leaflet explaining CBT [41]. The experiment consisted of the same questions as those in the ECA dialogue scenario created in our previous study [21]. The experiment was completed within 1 hour, including its briefing and preparation.

Measures

Psychological Distress

K6 was used as the rating scale to assess the psychological distress of our participants. Before the experiment, we obtained the K6 results for the previous 30 days. After the experiment, the participants were asked if any of the K6 items had changed after the CBT. The postexperimental measures differed from the original protocol, and we asked about the changes solely for analyzing our experiment. We calculated the change in psychological distress using equation 1.

\[
\text{Change in psychological distress} = \text{K6 score (pre)} - \text{K6 score (post)} \quad (1)
\]

Before the session, we measured the Quick Inventory of Depressive Symptomatology [42] (Japanese version [43]), which assesses depressive tendencies.

Cognitive Change

The Cognitive Change-Immediate scale [44] is a 5-item self-report measure that assesses the extent of the cognitive changes experienced by users during a single CBT session within therapy sessions. Items were rated on a scale from 0 (not at all) to 6 (completely), yielding a total score ranging from 0 to 30. Higher scores indicate a greater degree of cognitive change experienced by the participants.

Mood Change

A mood score is a numerical representation of the intensity of self-reported negative emotions experienced by the participants. The scores ranged from 0 to 100, with higher scores indicating more severe distress. Participants verbally provided their mood scores at 2 time points during scenarios involving CBT sessions with the ECA. The initial mood score was used for prethought correction, and the subsequent score was used for postthought correction. Specifically, participants were asked, “On a scale of 0 to 100, where 0 is no problem at all and 100 is a huge problem, how intense is that feeling?” These questions are commonly used to assess relief from negative moods [2,4]. Participants provided their responses verbally during the CBT. The participants’ moods were characterized using such language as anxiety, depression, sadness, feelings of inferiority, and fatigue. In this study, these negative emotional states were collectively assessed under an umbrella term, negative mood, and random number of questions conditions. The Mann-Whitney U test was used to analyze these within-condition differences, illustrating the effect of the session on the adapted and random number of questions conditions individually.

For within-condition comparisons, we compared the pre- and postsession scores for each measurement between the adapted and random number of questions conditions. The Multivariate Analysis of Variance (MANOVA) was used for this analysis. In addition, we conducted a comprehensive analysis across 4 key parameters: change in psychological distress, cognitive change, mood change, and

\[
\text{Mood change} = \frac{[\text{Mood score (pre)} - \text{Mood score (post)}]}{\text{Mood score (pre)}} \quad (2)
\]

This calculation is a measure of the degree of change in a participant’s negative mood, where a larger positive value indicates a decrease in negative mood.

State–Trait Anxiety

The State–Trait Anxiety Inventory [46] (Japanese version [47]) is a validated, self-report questionnaire that assesses both state anxiety (temporary and situational anxiety) and trait anxiety (general and stable anxiety) in adults. The State–Trait Anxiety Inventory consists of two 20-item scales: the State–Trait Anxiety Inventory-State (STAI-S) and the State–Trait Anxiety Inventory-Trait (STAI-T). The STAI-S measures the respondent’s current anxiety levels and feelings of apprehension, tension, and nervousness. It assesses the extent to which an individual is experiencing anxiety in response to a specific situation or event. Items are scored from 1 (not at all) to 4 (very much), where higher scores indicate more severe state anxiety. The STAI-T evaluates a respondent’s general tendency to experience anxiety as a stable personality characteristic. It focuses on the feelings of anxiety that are not associated with a particular event or situation; instead, it reflects an individual’s overall tendency to become anxious. Items are scored from 1 (almost never) to 4 (almost always), where higher scores represent greater trait anxiety levels. Both STAI-S and STAI-T scores can range from 20 to 80, and higher scores denote greater anxiety. We calculated the change in STAI-S using equation 3.

\[
\text{Change in STAI-S} = \text{STAI-S (pre)} - \text{STAI-S (post)} \quad (3)
\]

This calculation is a measure of the degree of change in a participant’s state anxiety, where a larger positive value indicates a decrease in state anxiety.

Statistical Analysis

We conducted an investigation to address hypothesis 1. This hypothesis states that an adaptive selection of the number of questions based on detected psychological distress would have superior effects in improving mental states. This approach was compared with the one in which the number of questions was randomized. For this investigation, we focused on several metrics, including K6 scores, mood scores, STAI-S, and cognitive change. Both within-condition and between-condition comparisons were conducted within these metrics. Owing to the inability to confirm the normal distribution of these measures in both the adapted number of questions condition and the random number of questions condition, we chose to use nonparametric tests for our analyses.

For within-condition comparisons, we assessed the differences in scores before and after the CBT session for each measurement in both conditions. The Wilcoxon signed-rank test was used to analyze these within-condition differences, illustrating the effect of the session on the adapted and random number of questions conditions individually.

For between-condition comparisons, we compared the pre- and postsession scores for each measurement between the adapted and random number of questions conditions. The Mann-Whitney U test was used for this analysis. In addition, we conducted a comprehensive analysis across 4 key parameters: change in psychological distress, cognitive change, mood change, and

\[
\text{Psychological Distress} = \frac{\text{K6 score (pre)} - \text{K6 score (post)}}{\text{K6 score (pre)}} \quad (1)
\]

\[
\text{Cognitive Change} = \frac{\text{STAI-S (pre)} - \text{STAI-S (post)}}{\text{STAI-S (pre)}} \quad (3)
\]
change in the STAI-S. This analysis involved multiple 1-sided Mann-Whitney \(U \) tests under the assumption that the adapted number of questions condition would show higher effects on each measure than the random number of questions condition.

We conducted a subgroup analysis to examine hypothesis 2, which asserts that adapting the number of questions according to the participant’s psychological distress is more effective. We categorized the participants into 3 subgroups based on the difference between the number of questions asked and the distress detection model’s estimation: the same group (participants who were asked the same number of questions as determined by the distress detection model), the fewer group (fewer questions were asked than determined by the distress detection model), and the more group (more questions were asked than determined by the distress detection model). In this analysis, we combined participants from both the adapted number of questions condition and the random number of questions condition. We did this because we expected too few participants in the same group within the random number of questions condition. We compared the same group with the fewer and more groups, expecting superior outcomes for the same group. This comparison used a 1-sided Mann-Whitney \(U \) test to compare the cognitive change, mood change, change in K6 scores, and change in the STAI-S across the subgroups.

In addition, we conducted further analysis to validate hypothesis 2. In this step, we examined the differences in various measurements across specific question counts. We focused on groups divided by question amount, such as 10, in the condition of a random number of questions. These were then compared with the participants in the adapted number of questions condition. Owing to the limited sample size in each category, we restricted our examination to qualitative analysis. In this comparative analysis, we did not conduct statistical testing. Furthermore, we reported the number of nondistressed and distressed values automatically detected for each individual question. These analyses aimed to demonstrate the effectiveness of a flexible approach to the number of questions presented.

Although we collected usability questionnaires and subjective evaluation feedback from the participants, this information was not included in the primary analysis of this study.

Results

Model Construction Results

Pretraining our detection models to address Japanese conversation yielded the following results: for the English data set (original condition and reproductive experiment), the accuracy was 0.72, precision was 0.67, recall was 0.58, and \(F_1 \)-score was 0.62. When the data set was translated by an automatic translation model into Japanese, the models achieved an accuracy of 0.64, precision of 0.59, recall of 0.60, and an \(F_1 \)-score of 0.59, demonstrating that we maintained equivalent performance levels despite the change in language.

We further applied transfer learning to the pretrained model with Japanese conversation for real-time distress detection in CBT. The results of implementing this transfer learning are as follows: In the condition where only pretraining was applied, the model achieved an average accuracy of 0.55, precision of 0.47, recall of 0.48, and an \(F_1 \)-score of 0.48 across 5 evaluation trials. When both pretraining and transfer learning were implemented, the average scores improved, with the model achieving an accuracy of 0.70, precision of 0.60, recall of 0.63, and an \(F_1 \)-score of 0.61. The model that demonstrated the highest performance during these trials, exhibiting an accuracy of 0.75, recall of 0.69, precision of 0.72, and an \(F_1 \)-score of 0.70, was selected for integration into the conversational scenario.

Experimental Results

Table 2 presents the pre- and postsession scores for both the adapted and random number of questions conditions across various metrics.
<table>
<thead>
<tr>
<th></th>
<th>Adapted number of questions condition (n=25)</th>
<th>Random number of questions condition (n=24)</th>
<th>Between-condition comparison Cliff delta</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K6<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presession measures, mean (SD)</td>
<td>4.08 (4.31)</td>
<td>4.38 (3.10)</td>
<td>-0.07</td>
<td>.40</td>
</tr>
<tr>
<td>Postsession measures, mean (SD)</td>
<td>3.04 (4.19)</td>
<td>4.30 (3.17)</td>
<td>-0.17</td>
<td>.04</td>
</tr>
<tr>
<td>Within-condition comparison, effect size r (<i>P</i> value)</td>
<td>-0.49 (.01)</td>
<td>-0.09 (.65)</td>
<td>b</td>
<td>—</td>
</tr>
<tr>
<td>Mood score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presession measures, mean (SD)</td>
<td>57.44 (22.30)</td>
<td>65.63 (20.76)</td>
<td>-0.10</td>
<td>.23</td>
</tr>
<tr>
<td>Postsession measures, mean (SD)</td>
<td>46.12 (24.53)</td>
<td>57.92 (17.38)</td>
<td>-0.11</td>
<td>.19</td>
</tr>
<tr>
<td>Within-condition comparison, effect size r (<i>P</i> value)</td>
<td>-0.66 (.001)</td>
<td>-0.44 (.03)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>STAI-S<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presession measures, mean (SD)</td>
<td>41.40 (12.43)</td>
<td>40.75 (9.53)</td>
<td>-0.01</td>
<td>.89</td>
</tr>
<tr>
<td>Postsession measures, mean (SD)</td>
<td>38.40 (10.46)</td>
<td>38.21 (10.27)</td>
<td>0.02</td>
<td>.85</td>
</tr>
<tr>
<td>Within-condition comparison, effect size r (<i>P</i> value)</td>
<td>-0.29 (.14)</td>
<td>-0.39 (.05)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>QIDS<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presession measures, mean (SD)</td>
<td>5.00 (4.62)</td>
<td>4.83 (3.67)</td>
<td>-0.03</td>
<td>.74</td>
</tr>
<tr>
<td>STAI-T<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presession measures, mean (SD)</td>
<td>44.10 (12.5)</td>
<td>42.1 (10.8)</td>
<td>0.04</td>
<td>.65</td>
</tr>
<tr>
<td>Time spent (second), mean (SD)</td>
<td>494.96 (161.10)</td>
<td>661.40 (289.20)</td>
<td>-0.10</td>
<td>.26</td>
</tr>
<tr>
<td>Number of questions, mean (SD)</td>
<td>4.76 (4.48)</td>
<td>8.83 (6.52)</td>
<td>-0.17</td>
<td>.03</td>
</tr>
</tbody>
</table>

^aK6: Kessler Psychological Distress Scale.

^bNot available.

^cSTAI-S: State–Trait Anxiety Inventory-State.

^dQIDS: Quick Inventory of Depressive Symptomatology.

^eSTAI-T: State–Trait Anxiety Inventory-Trait.

The average time spent on the dialogues in the adapted number of questions condition was 494.96 (SD 161.10) seconds, whereas the random number of questions condition spent an average of 661.40 (SD 289.20) seconds. However, it should be noted that owing to system issues, we were unable to record the time spent by one participant in each condition. As a result, the reported mean and SD for time spent exclude the data from these 2 participants. All other measurements were successfully recorded for these participants.

The average number of questions asked to correct an automatic thought was 4.76 (SD 4.48) for the adapted number of questions condition and 8.83 (SD 6.52) for the random number of questions condition.

We evaluated the distress detection model’s performance in the adapted number of questions condition. Specifically, we evaluated its accuracy in correctly identifying the nondistressed states, indicating when to stop asking Socratic questions. The model’s performance was measured by comparing its output (0 denoting nondistressed) with the participants’ actual postexperiment psychological distress states. The model correctly identified nondistressed state in 72% (18/25) of the instances.

In the presession phase, the K6 scores did not significantly differ between the 2 conditions. However, a significant difference was observed in the postsession phase; the adapted number of questions condition recorded a notably lower K6 score, indicating a substantial reduction in distress compared with the random number of questions condition. On other measures, the pre- and postsession scores were not significantly different between the 2 conditions.

A closer look at the within-condition comparisons revealed that the adapted number of questions condition experienced a decrease in scores across several metrics following the session, albeit to varying degrees. The adapted number of questions condition showed more marked improvements, especially in the K6 and mood scores, with significant reductions after the session, as evidenced by Cliff delta values of -0.49 (<i>P</i>=.01) and -0.66 (<i>P</i>=.001), respectively. In contrast, although the random...
number of questions condition also showed a reduction in the mood score, characterized by a medium effect size (Cliff delta = −0.44; \(P = 0.03 \)), the change in the K6 score was negligible between the pre- and postsession periods.

Table 3 presents the comparative results of changes in each measurement. We conducted a 1-sided Mann-Whitney \(U \) test to compare the cognitive change, mood change, change in the K6 scores, and change in the STAI-S between the adapted number of questions condition and the random number of questions condition. The results indicated that there was no significant difference in the change in psychological distress, mood change, and change in STAI-S between the 2 conditions, with \(P \) values of .11, .16, and .54, respectively. However, for cognitive change, a relatively large effect size was observed with a Cliff delta of 0.12, and the \(P \) value was .07, showing a trend toward significance, suggesting that the adapted number of questions condition exhibited a tendency for greater cognitive change compared with the random number of questions condition.

<table>
<thead>
<tr>
<th>Table 3. Comparative results of changes in each measurement using nonparametric analysis of 1-sided Mann-Whitney (U) test for differences between conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapted number of questions condition, mean (SD)</td>
</tr>
<tr>
<td>Change in psychological distress</td>
</tr>
<tr>
<td>Cognitive change</td>
</tr>
<tr>
<td>Mood change</td>
</tr>
<tr>
<td>Change in STAI-S(^a)</td>
</tr>
</tbody>
</table>

\(^a\)STAI-S: State–Trait Anxiety Inventory-State.

To investigate hypothesis 2, we conducted a subgroup analysis as described in the Statistical Analysis subsection. We categorized the 49 participants from the adapted and random number of questions conditions based on the deviation between the differences in the questions asked and the estimated value of the model. Of the 21 participants, 7 (14%) received fewer questions than estimated and 14 (29%) received more questions than estimated, and for 28 (57%) participants, the number of questions matched the estimated value, denoted as the same group.

Table 4 shows the mean and SD for each subgroup. For cognitive changes, comparisons between the same and fewer groups showed a small effect size (Cliff delta=0.24; \(P = 0.03 \)), indicating a significant difference. In contrast, comparisons between the same and more groups showed a negligible effect size (Cliff delta=−0.04; \(P = 0.65 \)), indicating no significant difference. For the change in psychological distress, the comparisons between the same and fewer groups showed a negligible effect size (Cliff delta=0.03; \(P = 0.40 \)), indicating no significant difference. Similarly, comparisons between the same and more groups showed a negligible effect size (Cliff delta=0.04; \(P = 0.34 \)), indicating no significant difference. For mood changes, the comparisons between the same and fewer groups showed a negligible effect size (Cliff delta=0.08; \(P = 0.26 \)), indicating no significant difference. Similarly, the comparisons between the same and more groups showed a negligible effect size (Cliff delta=−0.01; \(P = 0.44 \)), indicating no significant difference. Finally, for changes in the STAI-S, comparisons between the same and fewer groups showed a negligible effect size (Cliff delta=−0.03; \(P = 0.46 \)), indicating no significant difference. The comparisons between the same and more groups also showed a negligible effect size (Cliff delta=−0.07; \(P = 0.77 \)), indicating no significant difference.

<table>
<thead>
<tr>
<th>Table 4. Mean and SD in the same, more, and fewer groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same, mean (SD)</td>
</tr>
<tr>
<td>Change in psychological distress</td>
</tr>
<tr>
<td>Cognitive change</td>
</tr>
<tr>
<td>Mood change</td>
</tr>
<tr>
<td>Change in STAI-S(^a)</td>
</tr>
</tbody>
</table>

\(^a\)STAI-S: State–Trait Anxiety Inventory-State.

Table 5 illustrates the mean changes in various measurements such as distress, cognitive change, and mood change across different numbers of questions. As indicated in Table 4, the mean changes for the adapted number of questions condition were 1.04 for change in psychological distress, 16.3 for cognitive change, 0.22 for mood change, and 3.00 for change in STAI-S. The bar graphs of these data can be found in Multimedia Appendix 2. For the random number of questions condition, it was observed that in most instances, the mean change was lower compared with the overall average of the adapted number of questions condition. However, a notable exception was observed at a question count close to the average question count for the adapted number of questions condition (mean 4.76, SD 4.48), specifically at 5 questions. At this count, the random number of questions condition exhibited...
slightly higher scores in both distress change and cognitive change compared with the adapted number of questions condition. Furthermore, a trend was observed in cognitive change, where an increase in the number of questions correlated with a larger change, indicating a potential area for further exploration and validation in subsequent studies. Despite these observations, it was consistently found that the adapted number of questions condition manifested superior effectiveness across various numbers of questions, indicating robustness in its application regardless of the question count.

Table 5. Mean change in each questionnaire across different numbers of questions posed to participants in the random number of questions condition. Instances where the mean is “not available” indicate that the number of participants (n) is 0. Instances where the standard SD is “not available” are due to the number of participants (n) being either 0 or 1.

<table>
<thead>
<tr>
<th>Number of questions</th>
<th>Change in distress, mean (SD)</th>
<th>Mood change, mean (SD)</th>
<th>Cognitive change, mean (SD)</th>
<th>Change in STAI-S(^a), mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.67 (0.58)</td>
<td>0.21 (0.08)</td>
<td>12.67 (2.08)</td>
<td>1.33 (4.51)</td>
</tr>
<tr>
<td>2</td>
<td>-1.00 (1.41)</td>
<td>-0.03 (0.04)</td>
<td>4.50 (0.71)</td>
<td>4.00 (5.66)</td>
</tr>
<tr>
<td>3</td>
<td>0.50 (0.71)</td>
<td>0.08 (0.12)</td>
<td>11.00 (9.90)</td>
<td>4.00 (0.00)</td>
</tr>
<tr>
<td>4</td>
<td>0.00 (—)</td>
<td>0.00 (—)</td>
<td>12.00 (—)</td>
<td>-5.00 (—)</td>
</tr>
<tr>
<td>5</td>
<td>1.50 (2.12)</td>
<td>0.10 (0.14)</td>
<td>18.00 (2.83)</td>
<td>1.50 (9.19)</td>
</tr>
<tr>
<td>6</td>
<td>0.50 (0.71)</td>
<td>0.13 (0.19)</td>
<td>7.00 (8.49)</td>
<td>5.00 (8.49)</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>0.00 (—)</td>
<td>0.17 (—)</td>
<td>13.00 (—)</td>
<td>1.00 (—)</td>
</tr>
<tr>
<td>9</td>
<td>-4.00 (—)</td>
<td>-4.00 (—)</td>
<td>11.00 (—)</td>
<td>-9.00 (—)</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>1.00 (—)</td>
<td>0.83 (—)</td>
<td>19.00 (—)</td>
<td>5.00 (—)</td>
</tr>
<tr>
<td>12</td>
<td>0.50 (0.71)</td>
<td>0.20 (0.00)</td>
<td>19.50 (3.54)</td>
<td>3.50 (3.54)</td>
</tr>
<tr>
<td>13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>-1.00 (0.00)</td>
<td>-0.33 (0.47)</td>
<td>16.50 (0.71)</td>
<td>-0.50 (6.36)</td>
</tr>
<tr>
<td>15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>0.00 (—)</td>
<td>0.00 (—)</td>
<td>15.00 (—)</td>
<td>-1.00 (—)</td>
</tr>
<tr>
<td>18</td>
<td>0.50 (0.71)</td>
<td>0.21 (0.06)</td>
<td>15.50 (4.95)</td>
<td>12.50 (9.19)</td>
</tr>
<tr>
<td>19</td>
<td>0.00 (—)</td>
<td>0.00 (—)</td>
<td>17.00 (—)</td>
<td>4.00 (—)</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>0.00 (—)</td>
<td>0.43 (—)</td>
<td>20.00 (—)</td>
<td>2.00 (—)</td>
</tr>
</tbody>
</table>

\(^a\)STAI-S: State–Trait Anxiety Inventory-State.
\(^b\)Not available.

Table 6 displays the number of detected values classified as nondistressed and distressed for each question aimed at correcting automatic thoughts. The bar graphs of these data can be found in Multimedia Appendix 3. In the adaptive question amount condition, questioning concluded with the detection of a participant’s first nondistressed value. Conversely, the process continued regardless of the values detected in the random question amount condition. Consequently, the total number of participants decreased as the number of questions increased. A significant proportion of participants were identified with nondistressed values, particularly within the initial 4 questions. However, as the number of questions reached a certain amount, the frequency of nondistressed value detection decreased, with none identified from questions 16 to 21. Meanwhile, distressed value detection persisted, with at least 1 individual exhibiting distressed values through the 21st question.
Table 6. Number of nondistressed and distressed values detected for each question aimed at correcting automatic thoughts, including only those participants who were presented with the same or a greater number of questions.

<table>
<thead>
<tr>
<th>Number of questions</th>
<th>Number of destressed values</th>
<th>Number of nondestressed values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

The primary aim of this study was to evaluate a method that adapts the number of questions in a CBT session based on the user's level of distress, aiming to enhance the session's effectiveness.

Hypothesis 1 posited that an adaptive approach to the number of questions selection, based on detected psychological distress, would lead to superior cognitive change and reduce psychological distress as well as negative emotional states compared with the random number of questions condition. The results partially supported this hypothesis. We observed a reduction in psychological distress from before the session to after the session in the adapted number of questions condition, whereas no such reduction was evident in the random number of questions condition. Furthermore, the level of distress after the session was significantly lower in the adapted number of questions condition than in the random number of questions condition. In contrast, no significant difference was observed in the changes in each measurement between the 2 conditions. These findings overall indicate that our approach contributed to optimizing the health care process and its outcomes.

A plausible reason for the significant improvement observed only in distress is that the deep learning model incorporated in this study was designed to detect the presence or absence of psychological distress. This suggests that although the CBT system's adjustment of the number of questions was adjusted for distress, it was not necessarily adjusted for other measures. In cognitive models, cognition, including automatic thoughts, and reactions such as distress are considered distinct entities [2]. Relevant studies [19,44,45] explore the ways in which cognitive shifts can influence stress levels. Moving forward, it might be necessary to analyze the content of CBT and propose methods that enhance both cognitive and distress changes.

Hypothesis 2 proposed that better improvement would occur when the number of questions corresponded with the model’s estimated value. The data partially supported this, indicating more significant cognitive changes when the number of questions was aligned with the model’s estimate compared with when fewer questions were asked. This insight suggests the importance of precision in the number of questions selected to enhance the effectiveness of CBT delivered by ECAs. It was also implied that a large number of questions does not necessarily work effectively. Table 6 (Multimedia Appendix 3) shows that none of the participants were detected as nondistressed from questions 16 to 21. This result suggests that further questioning might not lead to significant improvements when there is no improvement in distress after a certain number of questions. Therefore, it would be prudent to set an upper limit on the number of questions that the system can ask.
We personalized the therapeutic process by ensuring a timely adjustment of the number of questions when the distress alleviation was projected to be insufficient. Our experimental data suggest that this approach significantly bolsters the effectiveness of ECAs in integrating thought-correction techniques into the therapy process. The data also revealed that maintaining a balance in the number of questions was critical for improving CBT’s effectiveness. Our findings highlight the potential of dynamic and personalized strategies in enhancing mental health care.

Comparison With Prior Work

The field of mental health care has significantly evolved owing to advancements in artificial intelligence. Among these advancements, using ECAs to deliver mental health care services is particularly promising. Influential studies in this domain, including the work of Fitzpatrick et al [10], DeVault et al [48], and Fulmer et al [49], investigate the effectiveness of these text-based conversational agents or ECAs in mental health care. Furthermore, research by Inkster et al [11], Ghadeharioun et al [50], and Murali et al [51] has revealed the importance of these agents’ ability to convey empathy.

These empathetic elements are crucial for creating a therapeutic alliance and supportive mental health care. Among these, they have not tapped into the CBT’s full potential to foster self-insight and bring about cognitive and behavioral changes. The transformative process in CBT requires a strategic use of questions. These questions aim to probe, challenge, and reshape negative thoughts and behaviors. This aspect of questioning remains underexplored in existing research.

In addition, research endeavors by Kimani et al [14] and Shidara et al [21] initiated the exploration of the application of Socratic questioning in CBT delivered by ECAs. These studies have shown promising results in fostering cognitive changes and reducing distress. However, they have not explored the dynamic adjustment of Socratic questioning based on users’ psychological states. This study aims to address this gap.

The integration of such adaptive strategies in mental health care, as demonstrated by our study, underscores the substantial contribution of our research in advancing the field. Our study introduces a novel component that modulates the number of questions according to the degree of the user’s psychological distress. The results of our study indicate that adapting to a user’s psychological distress by modulating the number of questions significantly reduced psychological distress compared with a random number of questions. This finding is in alignment with psychiatric insights suggesting that the modification of automatic thoughts through questioning may not yield sufficient effectiveness if such thoughts remain superficial [2].

Limitations

When interpreting the results of this study, several limitations must be addressed. First, the cross-sectional design used in our research did not capture the long-term effects of ECAs on psychological distress. A long-term experiment is important to gain a deeper understanding of the lasting effects of ECAs and their potential role in improving mental health outcomes. Another limitation of our study is the small number of participants who exhibited high depressive tendencies. To enhance the generalizability of our findings, future research should involve a more diverse sample of participants, covering a broad range of psychological distress levels. This sample should include individuals with varying degrees of depression and other mental health concerns, ensuring that the results are more widely applicable to different populations that are experiencing various psychological issues. In addition, further research is needed on the effective selection of the number of Socratic questions to maximize the effectiveness of CBT. Techniques such as the WOZ method, in which a therapist operates an ECA, might shed light on this aspect [52].

Conclusions

Our study provides evidence that adjusting the selection of questions based on an individual’s distress levels can significantly enhance CBT effectiveness. This adjusted approach allows for a more personalized health care, which can improve the therapeutic outcomes for individuals who are struggling with mental health issues, including anxiety and depression.

Our research highlights the importance of timely and appropriate reactions when an individual’s distress levels improve during therapy. By carefully monitoring and responding to these changes in distress, the ECAs can better support users’ progress. Overall, our study highlights the value of personalized and adaptive approaches in CBT, paving the way for more effective and responsive mental health care.

Acknowledgments

This work was funded by the Japan Science and Technology Agency Core Research for Evolutional Science and Technology (grant JPMJCR19M5).

Data Availability

The data sets generated during and analyzed during this study are not publicly available because of privacy and personal information protection concerns, but they are available from the corresponding author on reasonable request.

Conflicts of Interest

None declared.
Multimedia Appendix 1
Conversational scenario of an embodied conversational agent.

[DOCX File, 16 KB - formative_v81e50056_app1.docx]

Multimedia Appendix 2
Mean change across different numbers of questions posed to participants in the random number of questions condition. The blue bars represent the variation in mean change for measurements: (A) change in distress, (B) mood change, (C) cognitive change, and (D) change in State–Trait Anxiety Inventory-State (STAI-S). The green dashed line serves as a reference for comparison, indicating the average change in the adapted number of questions condition.

[PNG File, 248 KB - formative_v81e50056_app2.png]

Multimedia Appendix 3
Number of detected values for each question aimed at correcting automatic thoughts: (A) nondistressed and (B) distressed values, including only those participants who were presented with the same or a greater number of questions.

[PNG File, 68 KB - formative_v81e50056_app3.png]

References
6. A new benchmark for mental health systems: tackling the social and economic costs of mental Ill-health. Organisation for Economic Co-operation and Development. URL: https://tinyurl.com/58rhf2y [accessed 2024-01-29]

41. Ono Y. Leaflet: using cognitive behavior therapy to improve mental skills. Woman Wave Co. URL: https://www.cbtjp.net/downloads/skillup/ [accessed 2023-06-03]

Abbreviations

CBT: cognitive behavioral therapy
ECA: embodied conversational agent
DAIC-WOZ: Distress Analysis Interview Corpus/Wizard-of-Oz
K6: Kessler Psychological Distress Scale
STAI-S: State–Trait Anxiety Inventory-State
STAI-T: State–Trait Anxiety Inventory-Trait
A Closed-Loop Digital Health Tool to Improve Depression Care in Multiple Sclerosis: Iterative Design and Cross-Sectional Pilot Randomized Controlled Trial and its Impact on Depression Care

Kyra Henderson1, BA; Jennifer Reihm1, MPA; Kanishka Koshal1, MSPH; Jaelene Wijangco1, BS; Narender Sara1, MBA, MS; Nicolette Miller1, BS; Marianne Doyle1, LCSW; Alicia Mallory1, BA, BSN, RN; Judith Sheridan1, PhD; Chu-Yueh Guo1, MD; Lauren Oommen1, DO; Katherine P Rankin1, PhD; Stephan Sanders1, PhD; Anthony Feinstein2, MPhil, PhD; Christina Mangurian3, MAS, MD; Riley Bove1, MMSc, MD

1Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
2Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
3Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States

Corresponding Author:
Riley Bove, MMSc, MD
Department of Neurology
Weill Institute for Neurosciences
University of California, San Francisco
1651 4th Street
San Francisco, CA, 94158
United States
Phone: 1 4155027209
Email: riley.bove@ucsf.edu

Abstract

Background: People living with multiple sclerosis (MS) face a higher likelihood of being diagnosed with a depressive disorder than the general population. Although many low-cost screening tools and evidence-based interventions exist, depression in people living with MS is underreported, underascertained by clinicians, and undertreated.

Objective: This study aims to design a closed-loop tool to improve depression care for these patients. It would support regular depression screening, tie into the point of care, and support shared decision-making and comprehensive follow-up. After an initial development phase, this study involved a proof-of-concept pilot randomized controlled trial (RCT) validation phase and a detailed human-centered design (HCD) phase.

Methods: During the initial development phase, the technological infrastructure of a clinician-facing point-of-care clinical dashboard for MS management (BRIDGE) was leveraged to incorporate features that would support depression screening and comprehensive care (Care Technology to Ascertain, Treat, and Engage the Community to Heal Depression in people living with MS [MS CATCH]). This linked a patient survey, in-basket messages, and a clinician dashboard. During the pilot RCT phase, a convenience sample of 50 adults with MS was recruited from a single MS center with 9-item Patient Health Questionnaire scores of 5-19 (mild to moderately severe depression). During the routine MS visit, their clinicians were either asked or not to use MS CATCH to review their scores and care outcomes were collected. During the HCD phase, the MS CATCH components were iteratively modified based on feedback from stakeholders: people living with MS, MS clinicians, and interprofessional experts.

Results: MS CATCH links 3 features designed to support mood reporting and ascertainment, comprehensive evidence-based management, and clinician and patient self-management behaviors likely to lead to sustained depression relief. In the pilot RCT (n=50 visits), visits in which the clinician was randomized to use MS CATCH had more notes documenting a discussion of depressive symptoms than those in which MS CATCH was not used (75% vs 34.6%; $\chi^2=8.2; P=.004$). During the HCD phase, 45 people living with MS, clinicians, and other experts participated in the design and refinement. The final testing round included 20 people living with MS and 10 clinicians including 5 not affiliated with our health system. Most scoring targets for likeability and usability, including perceived ease of use and perceived effectiveness, were met. Net Promoter Scale was 50 for patients and 40 for clinicians.
Conclusions: Created with extensive stakeholder feedback, MS CATCH is a closed-loop system aimed to increase communication about depression between people living with MS and their clinicians, and ultimately improve depression care. The pilot findings showed evidence of enhanced communication. Stakeholders also advised on trial design features of a full year long Department of Defense–funded feasibility and efficacy trial, which is now underway.

Trial Registration: ClinicalTrials.gov NCT05865405; http://tinyurl.com/4zkvr9x

(JMIR Form Res 2024;8:e52809) doi:10.2196/52809

KEYWORDS
depression; quality of life; bring your own device; mHealth; closed-loop; clinical trial; multiple sclerosis

Introduction

Background

Approximately 50% of people with multiple sclerosis (MS) have a depressive disorder, and people living with MS are 2-3 times more likely to be diagnosed with a depressive disorder than the general population [1]. However, depression in MS remains underreported, underevaluated [2], and undertreated [3,4], despite the prevalence of depression in people living with MS, low-cost tools available to screen for depression, and evidence-proven, society-recommended pharmacologic and nonpharmacologic treatment modalities [5,6]. In clinical practice, common barriers to these clinical goals include time constraints during clinical visits (Nelson, M, unpublished data, August 2020), stigma and discomfort discussing psychiatric symptoms [7], insufficient antidepressant medication dose, duration or mechanism of action [8], inadequate attention to other MS symptoms (fatigue, cognitive impairment, and urinary retention) that could interfere with mood and worsen symptom burden [2,9], and patient difficulty following treatments owing to difficulties with access, insurance, or finding specialists close to home [10], as well as the many competing demands on their time. Solutions to address these gaps in reporting, screening, and treatment are needed.

A closed-loop intervention could close these gaps in care and represent a pragmatic approach to address the suboptimal treatment of depression in real-world MS settings. Closed-loop interventions in health care refer to systems that minimize gaps in communication between patients and clinicians; these have been implemented effectively for a number of medical conditions [11-13]. For the purpose of improving depression care in MS, such an intervention would support relevant clinical information flow from patients to clinicians at the point of care and back to patients to support patient-centered care. Such a system would not focus on a specific “one size fits all” treatment or intervention modality (eg, social intervention) or on a specific proprietary mood app, but could support developing a complex plan individualized for each patient’s symptoms, goals, and capability. To accomplish this, the tool should efficiently deliver patient-reported mood symptoms to clinicians in line with the “5 rights” [14] (right information, to the right person, in the right format, through the right channel, and at the right time in the workflow). Further, the tool must promote the behaviors (eg, reporting, screening, treatment recommendations, and following through with timely refills or referral scheduling) that are likely to lead to mood improvements. Finally, this tool should seek to streamline workflows and streamline care.
creating the BRIDGE dashboard concept [21], testing the acceptability of patient-reported outcomes (PROs) in a point-of-care MS clinical dashboard (MS NeuroShare; [19]), and developing a closed-loop reporting system that collects and synthesizes data at the point of care (MS Falls Insight Track; MS-FIT); [22]). Each of these design processes informed the current technical build.

BRIDGE

BRIDGE [21] is a technologically scalable, institutionally approved, workflow friendly, cross-disease, modular precision medicine platform [23]. BRIDGE launches from within a patient’s encounter from the Epic electronic health record (EHR) at the University of California, San Francisco (UCSF) using industry standard integration (Figure 1; Table S1 in Multimedia Appendix 1 [24]), delivering a seamless experience for clinicians [21]. BRIDGE was designed using an extensive process of HCD [19,20]. The tool accesses and visualizes data that are currently available in various disparate sources (EHR, patient diaries, and publicly accessible websites), with the substantial innovation that they are presented here in one comprehensive and streamlined format. A disease-specific version of BRIDGE is live within multiple clinics at the UCSF, with the MS clinic BRIDGE used as a point-of-care dashboard for the current project.

Figure 1. Components of the MS CATCH (Care Technology to Ascertain, Treat, and Engage the Community to Heal Depression in people living with multiple sclerosis) tool, including the (A) patient-facing survey and log, (B) the clinician-facing dashboard, and (C) the closed-loop system, with in-basket alerts for the clinician.

MS NeuroShare

This closed-loop prototype designed for a collaborative health system integrated a patient-facing PRO app with an EHR-based clinician-facing dashboard [25]. Patient participants cited the perceived value of thinking about and recording information before their appointments, noting how it impacted discussions with their clinicians, adding that coviewing information with the physician put physicians and patients on the same page and promoted a conversation of equals. Clinicians perceived patients’ prospectively collected mood scores as more sensitive, accurate, and comprehensive than a patient’s recall during the visit, and felt that these could improve value and promote clinician engagement [25].

MS-FIT Tool

A closed-loop system to prospectively record, report, and prevent falls in people living with MS was designed using HCD in a process analogous to that intended for MS CATCH [22]. MS-FIT includes low-burden regular falls ascertainment that patients can access with one click from any computer, tablet, or device, triggering a clinician’s inbox message for new or serious falls. Clinicians can then access and launch, from the medical record, a comprehensive version of BRIDGE refined
to support multimodal falls assessment and prevention [22]. The MS-FIT development process informed the feasibility of a closed-loop approach as well as specific needs and concerns of intended users, people living with MS, and MS care teams.

MS CATCH Prototype

The prototype for MS CATCH used in this study was refined for the specific purposes of depression monitoring and treatment by the study team using the BRIDGE and MS-FIT technical scaffolding, and informed by the MS NeuroShare and MS-FIT design processes and experiences. The MS CATCH prototype used in this study is shown in Figure S1 in Multimedia Appendix 1.

Phase 2: Proof-of-Concept Pilot Randomized Controlled Trial

Research Setting and Participants

Design

This was a cross-sectional, randomized controlled pilot study.

Setting

The primary clinical setting was the UCSF Center for MS and Neuroinflammation, which specializes in providing care to >5000 adults with MS annually, and has an extensive track record of pivotal trials for MS [26,27], remote monitoring [28,29], and treatment [16].

Participants

MS clinicians were invited to participate in the study during the center’s monthly research meeting, and a convenience cohort of 6 clinicians was enrolled using a signed electronic consent form. Then, from the participating neurologists’ practices, adult patients with an MS diagnosis scheduled for upcoming in-person and video neurology visits were contacted before the clinic visit by the study coordinator via email and phone call. Interested patients were scheduled for an enrollment visit whether in-person, or via telephone, or Zoom (Zoom Video Communications, Inc; an institutionally approved, Health Insurance Portability and Accountability Act–secure, televideo platform). During this visit, they provided detailed informed consent via DocuSign (DocuSign, Inc). Once patients signed the informed consent form, they were asked to complete a series of PROs, including the 9-item Patient Health Questionnaire (PHQ-9) scale, via a secure REDCap (Research Electronic Data Capture; Vanderbilt University) link. Patients with scores of ≥5 (mild depression: 5-9, moderate: 10-14, moderately severe: 15-19, and severe: 20-27) met the study criteria and were then enrolled in the pilot study. All participants were computer literate. Enrollment was capped at 50 individuals meeting criteria. Full inclusion criteria are summarized in Table S1 in Multimedia Appendix 1.

Study Procedures

The PRO data obtained from the patient participants populate the BRIDGE dashboard in real time. Patient visits were randomized 1:1 using a simple randomization scheme in which the clinician was asked by the study team to launch BRIDGE during the participant’s visit. For those who did not use BRIDGE, the visit proceeded as a usual clinical visit. Clinicians were reminded to launch BRIDGE via text or email before the patient appointment when applicable, and neither clinician nor patient participant were blinded to the intervention. Patients continued to be recruited until a target (n=50) had met the inclusion criteria and were seen in the clinic. For participants with PHQ-9 scores of ≥19, even if their clinician was not asked to use BRIDGE, the clinician was informed of their score near the conclusion of the clinic visit to ensure safe treatment of the patient. At the conclusion of the study visit, both clinician and patient feedback regarding the tool were solicited. During the proof of concept pilot, MS CATCH was used once during the visit in real time. For the full RCT, the patient-facing mood survey will be completed monthly, as described in the results for phase III.

Trial Outcomes

Usability: Participant Feedback on Tool

At the end of the study visit, patients were asked to provide feedback on the tool. There were 2 main prompted questions: “Tell us (with illustrative examples) of what worked well and what didn’t, with regards to BRIDGE, during your appointment.” This question was asked to both patients and clinicians, whereas “Please explain in detail, why it was or wasn’t useful for you to report your mood symptoms before the visit” was just addressed to the patients. Then, 2 questions informed from the System Usability Scale [30,31] and the health IT usability evaluation model [32] were completed, assessing likeability and perceived usefulness of the tool.

Efficacy: Effect of the Tool on Attention to Depression

At the end of the study, each clinical encounter was reviewed by a team member with an eye to whether mood was mentioned during the clinical visit. After the review was completed by one team member, another team member blinded to the treatment assignment audited the report. Only the second team member was blinded to treatment assignments. Any disagreements were resolved by a third party.

Ethical Considerations

This study was approved by the UCSF institutional review board (#18-26148).

Statistical Analysis

The participant demographics and usability outcomes were analyzed using descriptive statistics. The main efficacy outcome, percentage visits where depression was mentioned in the clinic notes, was compared for visits with and without the use of MS CATCH using chi-square analysis [33].

Phase 3: MS CATCH Tool Refinement (Stakeholder Engagement and Intended User Input Over 6 Months)

Study Design

HCD is a process that holds at its center the needs of the intended users. During the MS CATCH refinement phase, the overall goal was to fine-tune and optimize the intervention by partnering with patient and clinician users and multidisciplinary stakeholders in a sequence of iterative feedback sessions to inform and validate design decisions (Figure 2). To our knowledge, features assembled into the MS CATCH prototype
had never before been available at the point of care in a clinically actionable format for depression treatment in MS. It was important to verify that the workflow and displays promoted behavioral change likely to improve depression care and to simplify the display into the features most likely to drive adoption of the tool and support depression care. Here, the “capability, opportunity, and motivation model for behavioral change” (COM-B) [18] was used. COM-B is a hub in the center of Michie’s behavioral change wheel [18] and can help inform a patient’s intention to engage in a planned behavior, which is considered the best predictor of that behavior [34,35]. The COM-B approach, and individual intervention functions, have been successfully applied to facilitate behavioral change in people living with MS [17].

Figure 2. The sequence of iterative feedback and human-centered design (HCD) development leading to tool optimization over 9 months, including activities, participants, and outcomes. COM-B: capability, opportunity, and motivation model for behavioral change; Health ITUES: Health IT Usability Evaluation Scale; MS: multiple sclerosis; MS CATCH: Care Technology to Ascertain, Treat, and Engage the Community to Heal Depression in people living with multiple sclerosis UCSF: University of California, San Francisco.

To maximize the likelihood that the tool would be adopted and effective, it was evaluated using the health IT usability evaluation model [32]. This model integrates multiple usability theories including the Technology Acceptance Model and evaluates both subjective and objective outcomes. Although refining the critical data and visualization elements, as well as technological and clinical workflow aspects, the 4 key variables proposed by Mathews et al [36] for digital health tool validation were examined to determine whether the tool (1) reflects HCD principles and (2) is likely to engage patients. These factors include usability, effectiveness, learnability or ease of use, and likeability. Usability was defined using the System Usability Scale, learnability and ease of use were measured with a subset of the Health Information Technology Usability Evaluation Scale–based questions, and likeability was assessed with a single Likert scale question: “Do you like the tool?” and the net promoter score (NPS). Effectiveness was determined based on the pilot study visit notes outcomes.

Sequential Methods With Iterative Technological Modifications
Over a 9-month period between September and June, sequential activities were conducted as outlined in Figure 2.
Stakeholder Advisory Group

This group was convened and led by members of the primary research team. The primary research team comprised investigators with a track record of collaboration as well as expertise in both scientific and technological aspects of this project, including MS clinical trials (RB), digital tools to evaluate and treat cognition and mood in MS [16] (RB and AF), psychiatric care for underserved populations and innovations in treatment of psychiatric conditions in diverse settings (CM) [37-44], implementation science (CM), statistics (Ann Lazar), patient engagement (RB and JR) [20,21,25], HCD of digital tools (JR, RB, NS, and NM) [20,21,25], and launching an institutionally and technologically sophisticated, scalable, cross-disease platform from the EHR at UCSF (RB and BRIDGE team). The stakeholder advisory group included the research team listed above, as well as a patient champion JS, patient advocacy group leader Linda Glassel, National Multiple Sclerosis Society, Northern California Chapter President, MS nurse expert AM, Registered Nurse, social worker MD licensed independent clinical social worker, and MS neurologist CYG.

Participants

MS clinicians and other experts (degrees including Doctor of Medicine, Nurse Practitioner, Registered Nurse, and Masters in Social Work) were identified within the UCSF MS clinic and the investigators’ broader professional network. Adults with MS were recruited from the UCSF MS center by the study team (convenience sampling). All participants provided informed consent to test the tool and provide preliminary data. Furthermore, 31% (10/32) of the patients participated in the phase II pilot study.

Ethical Considerations

Activities during this phase (HCD phase) were approved by the UCSF institutional review board (#22-36620).

Results

Phase 1: Initial Technical Build

The MS CATCH prototype used for the current phase II and phase III study phases, informed by prior HCD processes (BRIDGE, MS NeuroShare, and MS-FIT), is shown in Figure S1 in Multimedia Appendix 1. A patient-facing mood survey was selected to be administered via a secure REDCap link that could be accessed on any device with Wi-Fi or cellular data capabilities. The validated, self-administered PHQ-9 scale was selected because it assists clinicians in objectively assessing the severity of depression. It has sensitivity and specificity values of 88% and contains 9 criteria that comprise a diagnosis of depressive disorder per the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders [Fourth Edition]) [45]. This mood survey was then connected to the BRIDGE platform so that it could be visualized at the point of care and interpreted in BRIDGE in addition to the other elements of the patient’s MS history, as well as a list of resources including psychotherapy and psychiatry, available in the patient’s home area (California only). The PHQ-9 survey also triggered a clinician’s inbox message for worsening mood. The mechanism by which MS CATCH is postulated to work is by facilitating communication flows that are likely to support intended users’ COM-B behaviors (patient: reporting and follow through and clinician: evaluating and recommending) likely to lead to symptom improvement. With regard to usability, the intended users, that is, both clinicians and patients, can each access it with one click.

Phase 2: Proof-of-Concept Pilot Randomized Controlled Trial

Participants

Of the 200 patients contacted, 106 (53%) agreed to participate in this study. Of these, 50 (47.2%) met the inclusion criteria of a PHQ-9 score ≥4 and were cared for by 6 participating physicians. Distribution of PHQ-9 scores was as follows: 52% (26/50) mild depression (5-9); 32% (16/50) moderate depression (10-14); 10% (5/50) moderately severe depression (15-19); and 6% (3/50) severe depression (20-27). Patients were then randomized to visits where the BRIDGE dashboard was used (24/50, 48%) or not used (26/50, 52%). All participants were contacted before their clinical visit, which was conducted between May and December, 2021. This visit was where the MS CATCH intervention was used. The cohort included 40 (80%) females and 10 (20%) males, aged 25-75 (mean 50.46, SD 13.0) years, including individuals with all MS subtypes (32 relapsing remitting MS, 9 primary progressive MS, 1 progressive relapsing MS, 6 secondary progressive MS, 1 unspecified, and 1 MS likely).

Tool Usability

The mean likeability score was 4.3/5 for patients (93% of the patient participants agreed or strongly agreed that they liked the tool) and 4.4/5 for clinicians (100% of the clinicians agreed or strongly agreed that they liked the tool).

For perceived usefulness [30,31], among clinicians, 100% of them reported that the tool increased their attention to the patient’s mood, particularly for patients with mild to moderate symptoms that might otherwise have been missed. Clinicians provided some specific feedback on how to further customize the dashboard, suggesting that it would be better to have the categorical components of the PHQ-9 rather than just the raw score (3/6, 50%).

Among patients, 71% (20/28) reported feeling that it was useful to report their mood-related symptoms before the visit. In qualitative feedback, many patients reported that filling out the mood survey ahead of time gave them the opportunity to reflect on their own feelings: “It set the tone, upfront, about how I was feeling.” “It’s helpful for me to think about assessing my mood in a structured way,” “was useful because it made me stop and reflect,” and “it opened the door to explain how...new MS symptoms are affecting my mood.”

Tool Effectiveness

For the patients with a PHQ-9 score of ≥5, visit notes documented a discussion of depressive symptoms in 75% of the visits where MS CATCH was used versus 35% of the visits where it was not used (N=50; χ²=8.2; P=.004; Table 1). One patient was referred to a psychiatrist for suicidal ideation.
Table 1. MS CATCH (Care Technology to Ascertain, Treat, and Engage the Community to Heal Depression in people living with multiple sclerosis) pilot randomized controlled trial cross-sectional effectiveness. Visit notes documented a discussion of depressive symptoms in 75% of the visits where MS CATCH was used versus 34.6% of the visits where it was not used (N=50; $\chi^2=8.2; P=.004$).

<table>
<thead>
<tr>
<th></th>
<th>MS CATCH tool used (n=24), n (%)</th>
<th>MS CATCH tool not used (n=26), n (%)</th>
<th>Total (n=50), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood discussed</td>
<td>18 (75)</td>
<td>9 (35)</td>
<td>27 (100)</td>
</tr>
<tr>
<td>Mood not discussed</td>
<td>6 (26)</td>
<td>17 (74)</td>
<td>23 (100)</td>
</tr>
</tbody>
</table>

Phase 3: MS CATCH Tool Refinement

Study Participants

Overall, 45 individuals provided feedback on the tool during successive phases of development. The results are summarized in Table 2.

Table 2. Demographic information for each round of interviews during the MS CATCH (Care Technology to Ascertain, Treat, and Engage the Community to Heal Depression in people living with multiple sclerosis) intervention refinement.

<table>
<thead>
<tr>
<th>Phase (cohort, round #)</th>
<th>Sample size</th>
<th>Age rangea (years)</th>
<th>Sex (females), n (%)</th>
<th>Clinical context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery interviews: Patients</td>
<td>5</td>
<td>30-57.6</td>
<td>3 (60)</td>
<td>MSb</td>
</tr>
<tr>
<td>Discovery interviews: Clinicians</td>
<td>5</td>
<td>N/Ac</td>
<td>4 (80)</td>
<td>MS (MDd, NPe, and MSWf)</td>
</tr>
<tr>
<td>Think-alouds: patients</td>
<td>7</td>
<td>30.4-66</td>
<td>6 (86)</td>
<td>MS</td>
</tr>
<tr>
<td>Think-alouds combined with final tool testing: Clinicians</td>
<td>Think-alouds: 5; tool testing: 10</td>
<td>N/A</td>
<td>6 (60)</td>
<td>MS</td>
</tr>
<tr>
<td>Final tool testing: Patients</td>
<td>20</td>
<td>29-63</td>
<td>15 (88)</td>
<td>MS</td>
</tr>
</tbody>
</table>

aIf applicable.
bMS: multiple sclerosis.
cN/A: not applicable.
dMD: Doctor of Medicine.
eNP: Nurse Practitioner.
fMSW: Masters in Social Work.

Discovery and Think-Aloud Sessions: Selected Findings

Detailed findings and scores from each round of engagement, as well as iterative development steps, are presented in Multimedia Appendix 1 and summarized here. During the discovery interviews (N=5 patients, N=5 clinicians), each tool component was found to be useful and usable. A number of features and data types were identified that mapped to the COM-B principles of behavior change, and these resulted in design changes and interventions promoted to address potential boosters or blockers (Table S2 in Multimedia Appendix 1). For example, patients universally felt that the PHQ-9 should be delivered monthly if not more often, despite concerns by the study team that it would be too burdensome. The patient-facing survey was edited to support free-text entry and addition of language at end of survey informing patients who scored >15 to seek care urgently, as their care team may not see the score for 36 hours, and instructing patients to seek immediate care if experiencing a mental health crisis. During the think-aloud sessions (N=7 patients, N=5 clinicians), some patients articulated concern for how answers might be interpreted by their clinicians, for example, concern about sending up unnecessary “red flags” with their survey answers as symptoms addressed on the survey can overlap with MS symptoms.

Relatedly, the free text box proved to be a popular design feature as it presents an opportunity to offer context for potentially concerning or MS symptom-related survey answers. Additional features were noted to be of value; for example, neighborhood walkability was specifically identified by patients as useful context for their clinicians to have within the clinical decision support view. Patients also universally expressed interest in having dashboard views available in a summary display for reference following appointments. All surveyed participants preferred an electronic summary format distributed through the patient portal (MyChart) as opposed to an alternative format that was not integrated with their EHR portal. Clinician feedback led to a reduction in the visual “wordiness” of the original clinical decision support widget. One decision that could not be accommodated was the ability to include patient insurance information, which substantially influences prescribing choices and referral decisions, as there is unfortunately no “ground truth” source for this information.

Final Changes Made to Tool Before Scoring

The patient survey was further developed to include an in-survey pop-up directing patients who screened positive for suicidal intent to seek immediate medical care (with contact information), a catalog of mental health resources at the end,
and a companion patient-facing mood tracker displaying the patient’s longitudinal mood survey results. On the dashboard side, the clinical decision support screen was further refined to be less “visually overwhelming.”

Qualitative Feedback on the Closed-Loop System

Clinicians’ qualitative feedback on the potential impact of MS CATCH on the care delivery experience and quality of conversations with patients and caregivers ranged from appreciation for the intervention’s holistic approach to concern that limited visit times will constrain the dashboards’ seemingly limitless potential.

- “Patients will feel empowered to make decisions using the information.”
- “The value comes from physicians being able to see the patient’s trajectory, and from patients being able to have a longitudinal view.”
- “It will allow me to come into visits with more of a plan.”
- “While [BRIDGE] may not be useful for every problem, it can be valuable for high stakes symptoms (depression, falls).”
- “Feel like it gives me more to offer my patients.”
- “Reinforces what we should do.”
- “Helps to have an objective measure of symptom worsening. Is more reliable than past notes.”

Description of the Final MS CATCH Prototype

The final prototype is displayed in Figure 1. The patient-facing survey is easily accessible via email. Along with receiving the short monthly survey via email, the patient’s response history and resources relevant to depression self-management can be viewed at the end of the survey (Figure S2 in Multimedia Appendix 1). PHQ-9 scores of 15 or higher or any suicidal intent trigger an alert to the patient’s MS clinician’s EHR in-basket. This is a critical feature allowing for timely follow-up within the usual care workflow, including an urgent referral to psychiatry. The clinician-facing dashboard (Figure 1) has a comprehensive mood evaluation and treatment dashboard that launches from the EHR. This dashboard can be copied and pasted into the clinical notes as well as the patient’s after visit summary to be accessed at the end of the visit and between visits. The tool uses a closed loop system, diagramed in Figure 1, which integrates the patient survey, in-basket messaging, and clinical dashboard tools.

Final Tool Scoring

A convenience sample of adults with MS (n=20) and clinicians (n=10) participated in the final tool testing. Of the participating clinicians, 5 (50%) practiced at external (non–UCSF-affiliated) institutions, and 5 (50%) were affiliated with UCSF. The target and achieved results are presented in Table 3.

Patient assessment ratings exceeded the goals in approximately all categories. Despite a patient NPS of 50, which is considered one point below excellent, slightly fewer (75%) than the goal of 80% agreed or strongly agreed that the tool was likeable (mean 4.25, SD 1.12). Of those (n=5) who scored the tool ≤4 with regard to likeability, approximately all (n=4, 80%) were neutral (score=3). Reasons varied from lack of personal applicability, “Mood symptoms are due to MS, not depression,” and “I have a lot of anxiety, but not depression”; to survey design, “I don’t like the multiple-choice options”; and to formatting, “Font is small.” Concrete follow-on actions taken by the development team in response to this feedback were as follows:

- Increasing the default survey font size, in addition to giving patients the option to adjust the font independently.
- Adding a note above the free text box indicating it can be used to add comments or clarify answers.
- Coaching physicians on how to communicate with patients about the survey, including how it can help detect anxiety and mood symptoms that may or may not be MS-related.

Similarly, clinician ratings exceeded the goals in approximately all categories. A clinician NPS of 40 indicated strong favorability in terms of recommending to peers. Perceived usefulness was slightly under goal at 95%. Although all but 1 clinician agreed or strongly agreed that the tool was useful (mean 4.35, SD 0.75) and 1 rated the tool ≤4 citing concerns about limited bandwidth and lack of financial incentives or reimbursable mechanisms for clinicians to address mood between clinical encounters. This feedback echoes concerns noted during discovery interviews about visit time limitations and the need for complementary workflows to ensure that patient mood issues can be monitored in a timely fashion, with the assistance of multidisciplinary staff (registered nurse and masters in social work) and elevated to physicians as needed.
Table 3. Final tool scoring by patients (N=20) and clinicians (N=10): Likeability and Usability. Prespecified targets and achieved results are presented; bolded results are at or above target.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Patients (N=20)</th>
<th>Clinicians (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Result</td>
</tr>
<tr>
<td>Likeability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single question (“Do you like this tool?”)</td>
<td>80%</td>
<td>75%</td>
</tr>
<tr>
<td>Net promoter score (NPS) (^b): “how likely are you to recommend this tool to another patient with MS/clinician?” ([46])</td>
<td>Good: >0; favorable: >20: excellent: >50</td>
<td>50%</td>
</tr>
<tr>
<td>Usability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUS(^c): a rapid, valid, scalable industry standard, reliable with small sample sizes</td>
<td>_d(^d)</td>
<td>_</td>
</tr>
<tr>
<td>Perceived usefulness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health ITUES(^e)-based questions for perceived usefulness ([30,31]): metric: score ≥4 (agree or strongly agree)</td>
<td>80%</td>
<td>88%</td>
</tr>
<tr>
<td>Perceived ease of use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health ITUES-based questions for perceived ease of use ([30,31]): metric: score ≥4 (agree or strongly agree)</td>
<td>80%</td>
<td>97%</td>
</tr>
</tbody>
</table>

\(^a\)Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree).

\(^b\)NPS responses (0-10 scale) were calculated by subtracting the percentage of detractors (those who scored 0-6) from the percentage of promoters (those who scored 9 or 10).

\(^c\)SUS: System Usability Scale.

\(^d\)Not available.

\(^e\)Health ITUES: Health IT Usability Evaluation Scale.

Discussion

Depression is a serious comorbidity in MS that is associated with an increased risk of disability progression \([47]\), yet it remains severely undertreated; by one estimate, two-thirds of individuals meeting the clinical criteria for major depressive disorder receive no antidepressant medications \([48]\). Depression is often missed altogether by neurologists, even when it is severe and accompanied by suicidal ideation \([49,50]\). We iteratively and extensively piloted and developed a closed-loop intervention designed to improve reporting, screening, and treatment of depression in a cohort of clinical patients with MS. The preliminary data presented here support our key premise underlying this closed-loop approach \([11]\) that delivering reliable information about a patient’s mood in an interpretable, visual format to the clinician would increase the likelihood that depression was detected (including, in one case, suicidality) and addressed in the clinical encounter. Further, our robust process of HCD and tool evaluation allowed us to maximize the likelihood that this tool would be adopted by ensuring that it met the stringent goals of being likeable, easy to use, and perceived as being effective.

We are not aware of other closed-loop tools developed to support depression care in MS that are integrated with the EHR. Distinct from other mood apps on the market, the patient self-report app directly connects to the clinician’s in-basket so that the information can be efficiently streamlined. In full clinical use, the patient-facing survey would be distributed once per month, and clinicians will not be reminded to launch BRIDGE. Studies have generally shown that integration between psychiatric and nonpsychiatric care in the EHR is often low, and better integration is associated with improved psychiatric care \([51]\). In this study, we showed that viewing patients’ self-reported mood at the point of care improved attention to depression in the clinical notes. This of course does not inform follow through on this intention. To that end, our 3-month pilot CoachMS RCT (NCT03335618; 21 people living with MS) showed that monitoring and responding to patients in real time \([16]\) was feasible, acceptable, and showed preliminary effects on behavioral change \([17,18]\) suggesting that sustained monitoring and feedback can promote behavioral change \([16]\).

After development, implementation into clinical workflows represents the final goal of health-related tools. From prior experience in developing platforms for the clinical encounter, it was clear that socialization of a tool is a critical step. For patients, knowing that information about their mood will tie back to their care team and translate into improved attention to their care is an important component of tool use, as is the ability to self-monitor using the survey results. Furthermore, direct actionable steps were implemented based on patient feedback, such as providing a list of resources at the end of the survey to reduce the activation energy required to access resources during a depressive episode. Similarly, clinicians are more likely to use and recommend a tool if they know that patients will have completed their surveys \([25]\) and are more likely to want access to patient-generated data if it is clinically actionable. Integrating comprehensive management resources will support individualization of the treatment plan rather than “one size fits all” treatment interventions.

Many treatment trials for depression have to date focused on “one size fits all” approaches testing a specific intervention or combination of interventions. Novel approaches tested within
MS include sequential blocks of medications [52] as well as combinations of behavioral and pharmacological interventions [53]. Extending beyond the usual screening and care components (such as asking about moods retrospectively), MS CATCH will comprehensively visualize the other functions contributing to depression, including other conditions (eg, sleep) and unmet social needs (eg, substance use counseling, neighborhood unsafe for walking exercise). These will support customized action prompts to help patients self-manage, and clinicians will tailor treatments, anticipate challenges, and make social and behavioral health referrals.

Some limitations were evident in the design and compromises had to be made. For example, the PHQ-9, which is widely adopted as a screening tool, may not be particularly specific. For example, in response to the “constant bother” question, one participant responded “MS is a constant bother.” However, this tool was selected because of its brevity, extensive validation across multiple conditions including MS, and because it comprised the 9 criteria that are identified in the diagnosis of depressive disorder per the DSM-IV [45]. Another limitation is the lack of information regarding insurance acceptance by mental health professionals. Unfortunately, this limits actionability in terms of referrals to mental health professionals in the United States. For the resources map, we chose to focus on mental health professionals near the patient who were considered to have expertise for individuals with MS, but we also included a link to a website that includes insurance information to allow cross-checking. A third challenge is scalability. Key technological and clinical features were intentionally selected to ensure that the tool’s modular infrastructure could be scaled to other symptoms, conditions, and clinical settings. Technological factors designed to support scalability include (1) the quality and content of static visualizations that can be disseminated broadly regardless of a clinic’s technology and (2) optimizing the industry technological standards used for the build so that the code can be shared by clinicians in other health settings (eg, other MS centers using Epic EHR). However, the integration of the build into other health systems ultimately depends on governance and motivation internal to that system.

MS CATCH is a comprehensive, low-burden, closed-loop platform designed to reduce depression severity and prevalence in people living with MS by supporting real-time communication and alerts, shared decision-making, and action prompts for comprehensive, personalized interventions. The research findings summarized here suggest that MS CATCH scores well on likeability and usefulness scales and that it improves attention to mood in individual clinic visits. In a complementary pilot study, we previously showed that remote monitoring of mood can lead to timely intervention [16]. Altogether, these findings support the results of a planned randomized single-center clinical trial evaluating its effect on behaviors that support depression reporting, ascertainment, and care. A similar model can be used to improve other clinical symptoms in MS and for managing other chronic medical conditions with high prevalence of depression.

Acknowledgments
This trial is funded by a Department of Defense US Army Medical Research Acquisition Activity Clinical Trials Award (project #W81XWH2210894; principal investigator: RB).

Authors' Contributions
KH drafted the manuscript. KK and JW collected preliminary data and revised the manuscript. JR was involved in trial design, conducted discovery interviews and interpreted results, and revised the manuscript. AF, CM, MD, AM, CYG, and LO contributed expertise from their respective fields through stakeholder feedback sessions and other avenues and revised the manuscript. NS and NM were involved in tool iterative development and revised the manuscript. RB was involved in trial design, obtained study funding, and drafted the manuscript. KPR and SS revised the manuscript.

Conflicts of Interest
The authors report no disclosures relevant to this clinical trial. KH, JR, KK, JW, NS, NM, MD, AM, JS, LO, and KPR had no conflicts of interest to disclose. CYG reports personal advisory board or consulting fees from Genentech and Horizon. AF received grant support from Multiple Sclerosis (MS) Society of Canada, Canadian Institutes of Health Research, book royalties from Johns Hopkins University Press, and speaker’s honoraria from Novartis. CM is supported by several grants from the National Institutes of Health (NIH; National Institute of Mental Health, National Institute on Minority Health and Health Disparities, National Institute of Allergy and Infectious Diseases, and National Institute on Drug Abuse), Health Resources and Services Administration, Doris Duke Charitable Foundation, California Health Care Foundation, Genentech, Gilead, and United Health Group. RB received research support from NIH, Department of Defense, National Multiple Sclerosis Harry Weaver Award, Biogen, Novartis, and Hoffman-La Roche. RB has received personal advisory board or consulting fees from EMD Serono, Horizon, Janssen, and TG Therapeutics. SS receives research funding from BioMarin Pharmaceutical.

Multimedia Appendix 1
Supplementary tables and figures.

[PDF File (Adobe PDF File), 649 KB] - formativ_v8i1e52809_app1.pdf]
References

45. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 2001 Sep;16(9):606-613 [FREE Full text] [doi: 10.1046/j.1525-1497.2001.016009606.x] [Medline: 11556941]

Abbreviations

COM-B: capability, opportunity, and motivation model for behavioral change
DSM-IV: Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition)
EHR: electronic health record
HCD: human-centered design
MS CATCH: Care Technology to Ascertain, Treat, and Engage the Community to Heal Depression in people living with multiple sclerosis
MS: multiple sclerosis
NPS: net promoter score
PHQ-9: 9-item Patient Health Questionnaire
PRO: patient-reported outcome
RCT: randomized controlled trial
REDCap: Research Electronic Data Capture
UCSF: University of California, San Francisco

Edited by A Mavragani; submitted 18.09.23; peer-reviewed by J Simard; comments to author 17.10.23; revised version received 27.10.23; accepted 24.11.23; published 15.03.24.

Please cite as:
A Closed-Loop Digital Health Tool to Improve Depression Care in Multiple Sclerosis: Iterative Design and Cross-Sectional Pilot Randomized Controlled Trial and its Impact on Depression Care
JMIR Form Res 2024;8:e52809
URL: https://formative.jmir.org/2024/1/e52809
doi:10.2196/52809
PMID:38488827
Assessing a GPS-Based 6-Minute Walk Test for People With Persistent Pain: Validation Study

Joshua Simmich¹,², PhD; Nicole Emma Andrews¹,²,³,⁴, PhD; Andrew Claus³,⁵, PhD; Megan Murdoch³,⁶, BPhty(Hons); Trevor Glen Russell¹,², PhD

¹RECOVER Injury Research Centre, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
²STARS Education and Research Alliance, Surgical Treatment and Rehabilitation Service, The University of Queensland and Metro North Health, Brisbane, Australia
³The Tess Cramond Pain and Research Centre, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia
⁴Occupational Therapy Department, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia
⁵School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
⁶Physiotherapy Department, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia

Corresponding Author:
Joshua Simmich, PhD
RECOVER Injury Research Centre
Faculty of Health and Behavioural Sciences
The University of Queensland
296 Herston Road
Herston
Brisbane, 4029
Australia
Phone: 61 7 3365 5560
Email: j.simmich@uq.edu.au

Abstract

Background: The 6-minute walk test (6MWT) is a commonly used method to assess the exercise capacity of people with many health conditions, including persistent pain. However, it is conventionally performed with in-person supervision in a hospital or clinic, therefore requiring staff resources. It may also be difficult when in-person supervision is unavailable, such as during the COVID-19 pandemic, or when the person is geographically remote. A potential solution to these issues could be to use GPS to measure walking distance.

Objective: The primary aim of this study was to assess the validity of a GPS-based smartphone app to measure walking distance as an alternative to the conventional 6MWT in a population with persistent pain. The secondary aim of this study was to estimate the difference between the pain evoked by the 2 test methods.

Methods: People with persistent pain (N=36) were recruited to complete a conventional 6MWT on a 30-m shuttle track and a 6MWT assessed by a smartphone app using GPS, performed on outdoor walking circuits. Tests were performed in random order, separated by a 15-minute rest. The 95% limits of agreement were calculated using the Bland-Altman method, with a specified maximum allowable difference of 100 m. Pain was assessed using an 11-point numerical rating scale before and after each walk test.

Results: The mean 6-minute walk distance measured by the GPS-based smartphone app was 13.2 (SD 46; 95% CI −2.7 to 29.1) m higher than that assessed in the conventional manner. The 95% limits of agreement were 103.9 (95% CI −107.7 to −61) m, which exceeded the maximum allowable difference. Pain increased in the conventional walk test by 1.1 (SD 1.0) points, whereas pain increased in the app test by 0.8 (SD 1.4) points.

Conclusions: In individuals with persistent pain, the 2 methods of assessing the 6MWT may not be interchangeable due to limited validity. Potential reasons for the differences between the 2 methods might be attributed to the variation in track layout (shuttle track vs continuous circuit); poor GPS accuracy; deviations from the 30-m shuttle track; human variability in walking speed; and the potential impact of a first test on the second test due to fatigue, pain provocation, or a learning effect. Future research is needed to improve the accuracy of the GPS-based approach. Despite its limitations, the GPS-based 6MWT may still...
have value as a tool for remote monitoring that could allow individuals with persistent pain to self-administer frequent assessments of their functional capacity in their home environment.

(JMIR Form Res 2024;8:e46820) doi: 10.2196/46820

KEYWORDS
GPS; mobile apps; exercise test; pain; chronic pain; mobile phone

Introduction

Background
Persistent pain affects 20% of the Australian population, has fueled the opioid epidemic, and cost the Australian government Aus $73.2 billion (US $54.7 billion) in 2018, the latest year for which figures are available [1,2]. People with persistent pain report that their pain negatively affects their ability to exercise and their physical functioning [3].

The 6-minute walk test (6MWT) is a standard method for measuring submaximal exercise capacity, which measures the distance a person can walk over 6 minutes (6-minute walk distance; 6MWD). Conventionally, the 6MWT involves the participant walking multiple laps of a straight path that is 30 m in length [4]. Track length can influence the results of the 6MWT [5-8], likely due to a difference in the number of 180-degree turns, each necessitating acceleration and deceleration. Standard instructions are given and standard encouragement prompts are provided at preset intervals, as it is known that changes in instructions or encouragement can affect the performance during this test [9,10].

The 6MWT has been used in a range of conditions including chronic heart failure [11], peripheral artery disease [12], and chronic obstructive pulmonary disease [13]. It has also been used for older adults more generally [14]. Within the context of pain conditions, the 6MWT has been used as an outcome measure in both observational studies [15] and clinical trials [16,17]. The average 6MWD for people with persistent pain upon entry into pain programs has been reported to be 389 (SD 94) m [18] or 427 (SD 127) m [19]. In comparison, the reference values of the 6MWD for healthy men and women aged between 50 and 60 years are approximately 578 m and 534 m, respectively [20].

The minimum clinically important difference (MCID) for the 6MWD has been estimated for various conditions: 25 to 80 m in people with chronic obstructive pulmonary disease [21-23]; 22 to 42 m in people with lung cancer [24]; 33 m in people with pulmonary arterial hypertension [25]; 36 m in people with chronic heart failure [26]; 25 m in people with coronary artery disease [27]; and 18 m in older adults at risk of falls [28]. However, estimates in the population with persistent pain are less well defined, with different studies providing a range of estimates from a distance between 15 m and 30 m used in a clinical trial [16] to a distance between 156 m and 167 m calculated in fibromyalgia (a persistent pain disorder) [29]. Benaim et al [19] used an anchor-based approach to estimate MCID values of 60 m for chronic musculoskeletal pain of the spine and 75 m for chronic musculoskeletal pain of the lower limb. On the other hand, a recent study was unable to calculate an MCID in people with persistent pain undergoing a pain rehabilitation program due to a lack of correlation between the 6MWD and patient-reported outcome measures [18]. Therefore, further studies are needed to determine a more precise and consistent estimate of MCID values for the 6MWD in the population with persistent pain.

The conventional 6MWT is typically performed in a clinic or hospital. However, this is a significant limitation if patients cannot attend the facility due to distance or lack of access to transport. In addition, it can be difficult for some facilities to locate a straight section of corridor that is at least 30 m in length and largely free of obstacles and interruptions from other users of the corridor. The 6MWT can be performed outdoors, as an outdoor 6MWT appears to be comparable to an indoor 6MWT when the standard 30-m track is used [30], although outdoor testing can be limited by weather at the time of the test. The 6MWT can also be conducted at a participant’s residence, but this requires the clinician to travel to the patient, which increases the requirement for staff time and resources. In addition, locating a suitable 30-m track inside a house or in a backyard can be difficult. Holland et al [31] attempted to perform the 6MWT using the longest length of track that was practicable in the home environment but achieved an average track length of just 13 (SD 7) m for indoor tests and 20 (SD 10) m for outdoor tests. As such, the 6MWD estimates obtained from 6MWTs conducted inside or outside a home underestimated the 6MWD by an average of 30 (SD 69) m compared to the standard in-clinic tests using a 30-m track [31]. The variability in track length also contributed to wide limits of agreement (LoAs) between a conventional 6MWT conducted at a hospital and a 6MWT conducted at home (95% LoA 167 m-102 m). Finally, any method of performing the 6MWT that requires a clinician to assess the participant in person may be precluded if in-person contact needs to be limited, such as occurred worldwide during the COVID-19 pandemic. This has highlighted the need for alternative methods of performing the 6MWT.

Performing the 6MWT remotely would eliminate the problems associated with travel or in-person contact. Several studies have reported the use of accelerometers in smartphones or consumer-level wearable activity monitors to perform 6MWTs by detecting the number of steps or number of turns [32-38]. For instance, in a study conducted among healthy adults, the mean difference between accelerometer-based measurement and simultaneous clinician observation of a conventional 6MWT was 0, although the SD was 42 m [32]. However, this has not been replicated in clinical populations, and the app is not publicly available. Other accelerometer studies required their participants to use a holster or harness to affix their smartphone to a specific location on their body [38] or to wear a wrist-worn activity tracking device [33], both of which are potential barriers...
to use or uptake in a home environment. Furthermore, the 6MWT assessed via an app would ideally be undertaken on a 30-m-long track to best replicate the clinical setting, but it is unlikely that people with persistent pain would have access to such a length of track or the equipment to precisely measure its length in the home environment.

A potential solution to these issues could be to use GPS to measure the walking distance [39]. Modern smartphones include GPS receivers, and GPS-based walk tests can be conducted during an outdoor walk over level terrain (given this walk is free from the obstructions of tall buildings and does not involve many sharp turns). Although changing the 6MWT from the conventional shuttle to a continuous walk introduces some bias due to the removal of acceleration and deceleration when turning around, this might be less than the bias that would occur from using very short track lengths. For instance, in a population with respiratory problems, when compared to a 6MWT performed on a 30-m shuttle track, a 6MWT performed on a continuous circular track of 40-m circumference overestimates the 6MWD by 3% [40], but decreasing a shuttle track to 10 m underestimates the 6MWD by approximately 9% to 10% [8]. Furthermore, it may be possible to use an algorithm to compensate for the overestimation associated with continuous walking if it is consistent, but this is unlikely for the variable error that is associated with using tracks of varying and imprecisely measured lengths in a home environment.

Salvi et al [36] recently developed an app, called Timed Walk, which could use either an indoor algorithm using smartphone sensors or an outdoor algorithm using GPS. To the best of our knowledge, this is the only purpose-built app for conducting a 6MWT that is available on both Android and Apple iOS smartphones and the only app that uses GPS. This app has been tested in a population with pulmonary arterial hypertension in 2 studies that estimated the bias (the average difference between the app’s measurement and a reference) and the variability of the differences (given as SD of the differences). In the first study, Salvi et al [36] used a distance wheel as the reference measurement and found a larger bias but smaller variability when using the indoor algorithm (mean −2.0, SD 7.8 m) than when using the outdoor algorithm (mean −0.80, SD 18.6 m). However, in their later pilot trial, the indoor algorithm differed by 14.6 (SD 75) m when compared to the simultaneous performance of a conventional 6MWT in a clinic. This difference and SD is greater than that of the outdoor algorithm (mean 2.5, SD 47 m) compared to a clinic-based test performed within a 7-day period (before or after) [41]. The authors believe that much of this variation can be attributed to the app being used incorrectly, such as using the outdoor test on a tightly curved path. However, these studies compared the outdoor GPS mode of the app to a distance wheel [36] or to a conventional 6MWT performed within a 7-day period (before or after) [41]. Thus, interday variation in submaximal exercise capacity could also have contributed to the variation between these measurements. A comparison between the GPS-based test function of this app and a conventional 6MWT performed on the same day has not been attempted. In addition, this app has not been validated in the population with persistent pain.

Aims and Hypothesis

The primary aim of this study was to evaluate the concurrent validity of the GPS-based 6MWT using the Timed Walk smartphone app in an outdoor setting and conducted on the same day as the conventional 6MWT using a 30-m straight path. The secondary aim of this study was to estimate the difference between the pain evoked by the 2 test methods. It was hypothesized that the agreement between the results of the 2 methods will be within the nominated maximum allowable difference and that the 2 methods will demonstrate an excellent level of correlation.

Methods

This was an observational study comparing 2 methods of estimating the 6MWD: a conventional 6MWT with a clinician and a 6MWT using a smartphone app with GPS.

Participants

The sample comprised a combination of participants recruited from 2 sources, to ensure a broad sample of people with persistent pain. The first recruitment method involved outpatients from a persistent pain clinic located in a large, tertiary public hospital in Australia. Potential participants were invited to participate in the study by their treating clinician. The second method of recruitment involved advertising the study via social media (Facebook and Twitter).

Participants were screened via an in-person or telephone conversation with a member of the research team. Individuals were eligible for inclusion if they were aged >18 years, had persistent pain (>9 months in duration), claimed that they were able to walk at least 100 m on flat ground, and owned a compatible smartphone on which they were willing to install the Timed Walk app. Individuals were excluded from participating if they had comorbidities impacting their ability to walk on flat ground (and did not have medical clearance to participate), were unable to speak English, or did not possess a compatible smartphone.

Data Collection

Participants performed 2 6MWTs: one in the conventional manner with a clinician and another with the Timed Walk app (version 0.2.0 or 0.3.0, depending on the date of the test). The app test was conducted outdoors to use the GPS signal. Participants were instructed to walk either in a circuit around the paths of a local park or around the perimeter of a hockey playing field for the app test. Care was taken to select a mostly level path and to avoid sharp turns. As walking alongside a participant can influence the results of a 6MWT [42], a researcher walked at a comfortable distance behind each participant to provide supervision. The Timed Walk app automatically announced the standard encouragement prompts at appropriate times.

The 6MWT assessed in the conventional manner was completed in accordance with existing guidelines [4], using a straight track of 30 m in length, with the ends of the track marked with cones and the starting line marked with a clearly visible line on the
ground. A researcher (JS) conducted all the tests and provided the standard encouragement prompts.

For practical reasons and to minimize differences between the testing methods, the conventional 6MWT was also conducted outdoors at the same location as the GPS test. Outdoor testing has been shown to be no different to indoor testing in individuals with pulmonary disease [30]. Outdoor testing was only performed when weather conditions were mild (temperature of 10 °C-30 °C, no rain, and wind speed <20 km/h).

To account for potential fatigue or learning effects, the sequence in which the participants performed each form of the 6MWT was randomized on the day of testing. Urn design randomization was used [43]. Participants were randomized using a simulated urn initially containing 2 balls, with 1 ball representing each test method. After drawing a ball to allocate each participant to their starting test method, the ball was returned to the urn and an additional ball added for the opposite test method. To further minimize the effect of fatigue, participants were rested in a shaded location for 15 minutes between tests. Participants were instructed to wear comfortable clothing and appropriate footwear, to be well hydrated (and bring a water bottle), and to not perform any vigorous exercise 2 hours before and after the test.

Neither the participants nor the researcher performing the conventional 6MWT were blinded to the study hypothesis or to the methods of assessment being received.

Outcome Measures

The primary outcome of this study was the 95% LoAs between conventionally measured and GPS-measured 6MWD.

Secondary outcomes included the following: (1) the intraclass correlation coefficient (ICC) between the conventionally measured and GPS-based 6MWD and (2) the difference between the change in pain for the 2 types of 6MWTs. Pain intensity data were collected at four time points: (1) immediately before the first 6MWT, (2) immediately after the first 6MWT, (3) immediately before the second 6MWT, and (4) immediately after the second 6MWT. Pain was assessed on an 11-point numerical rating scale (NRS), verbally delivered to the participant at the abovementioned time points. This scale ranged from 0 (indicating no pain at all) to 10 (indicating pain as bad as it could be or worst pain).

Additional demographic data collected included participant age, gender, employment status, primary diagnosis (including pain source or body region), and years since diagnosis of the persistent pain condition. These data were collected using a paper-based questionnaire on the day of testing.

Statistical Analysis

The Bland-Altman method of analysis was used to estimate the 95% LoAs between the conventionally measured and GPS-measured 6MWD. The exact parametric 95% CIs for the upper and lower limits of the 95% LoAs, considered together as pairs, were calculated using the methods proposed by Carkeet [44]. The maximum allowable difference between measures was set at 100 m, approximately in between the 60-m to 75-m MCID for people with chronic musculoskeletal pain at a single site undergoing occupational rehabilitation [19] and 156-m to 167-m MCID in people with fibromyalgia [29].

Outliers were excluded from the analysis if the difference between the 2 test methods was >3 SDs from the mean difference.

Assumptions of normality and homoscedasticity were assessed through visual inspection of quantile-quantile plots and residual plots. The ICC was calculated using a 2-way random-effects model for both absolute agreement and consistency, with values >0.8 considered to be good and those >0.9 considered to be excellent. The difference between the mean change in pain due to each test was presented with paired-sample CIs.

Several exploratory analyses that were not initially planned were conducted after the results for the main outcome measures were inspected. The exploratory analysis of the variance between recruitment groups was conducted using an F test. Welch 2-sample CIs were used for the exploratory comparisons between the 2 smartphone operating systems (Android and iOS) and the 2 sequences in which the tests were conducted (in-person test conducted first and app test conducted first). Paired-sample CIs were used to present the results of an exploratory comparison between pain at the start of the first test and pain at the start of the second test.

Randomization and statistical analyses were performed using R software (version 4.2.1; R Foundation for Statistical Computing). ICCs were calculated using the irr package (version 0.84.1) [45].

Sample Size and Power

The sample size required for the Bland-Altman analysis was calculated using the method outlined by Shieh [46]. A difference of 2.5 m was used for this calculation, based on a study comparing an unsupervised test using the GPS-based Timed Walk app performed at home and a clinic-based test conducted within a 7-day period (before or after) [41]. However, with the assumption that the tests performed on the same day and under supervision would result in slightly less variability, sample size calculation assumed an SD of 40 m rather than the previously reported value of 47 m. The maximum allowable difference between measures was set at 100 m as previously stated. Additional assumptions include the following: 90% power, α of .05, and a null central portion of 0.95 (ie, 95% of measurements lie between the 100-m maximum allowable difference boundaries). This calculation resulted in a requirement for 34 participants, which was increased to 38 participants to account for potential dropouts.

Ethical Considerations

All participants were provided with a participant information sheet that explained the study, and they provided their written consent to participate. Participants were compensated with a voucher worth Aus $20 (US $14-15) for their time and travel expenses. All data were deidentified. The study was approved by the Royal Brisbane and Women’s Hospital Human Research Ethics Committee (reference number HREC/2021/QRBW/75331) and ratified by the University of...
Queensland Human Research Ethics Committee (reference number 2021/HE001471).

Results

Sample Description

A total of 38 participants (n=17, 45% from the community and n=21, 55% from the outpatient pain clinic) were eligible and consented to participate. Of the 38 participants, 1 (3%) withdrew due to illness, 1 (3%) was excluded for no longer meeting the inclusion criteria, and 1 (3%) participant, whose GPS-based 6MWD was 88% more than their conventional 6MWD, was considered as an outlier and excluded from the analysis. The first participant was tested on October 27, 2021, and the final participant was tested on August 27, 2022 (reflecting issues with recruitment during the COVID-19 pandemic). A full description of the final sample of participants (N=35) is presented in Table 1.

Table 1. Description of individual samples and the combined sample.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Community (n=16)</th>
<th>Outpatient pain clinic (n=19)</th>
<th>Total (N=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean (SD)</td>
<td>50 (16)</td>
<td>49 (12)</td>
<td>49 (13)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>14 (88)</td>
<td>15 (79)</td>
<td>29 (83)</td>
</tr>
<tr>
<td>Men</td>
<td>2 (13)</td>
<td>4 (21)</td>
<td>6 (17)</td>
</tr>
<tr>
<td>Type or location of pain, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low back pain</td>
<td>8 (50)</td>
<td>9 (47)</td>
<td>17 (49)</td>
</tr>
<tr>
<td>Whole body pain or fibromyalgia</td>
<td>2 (13)</td>
<td>8 (42)</td>
<td>10 (29)</td>
</tr>
<tr>
<td>Lower limb pain</td>
<td>4 (25)</td>
<td>1 (5)</td>
<td>5 (14)</td>
</tr>
<tr>
<td>Neck or upper limb pain</td>
<td>2 (13)</td>
<td>1 (5)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Years since pain onset, mean (SD)</td>
<td>13 (15)</td>
<td>13 (11)</td>
<td>13 (13)</td>
</tr>
<tr>
<td>Baseline pain score (0-10 on NRS<sup>a</sup>), mean (SD)</td>
<td>2.9 (2.2)</td>
<td>5.1 (2.5)</td>
<td>4.1 (2.6)</td>
</tr>
<tr>
<td>Smartphone operating system, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Android</td>
<td>9 (56)</td>
<td>15 (79)</td>
<td>24 (69)</td>
</tr>
<tr>
<td>Apple iOS</td>
<td>7 (44)</td>
<td>4 (21)</td>
<td>11 (31)</td>
</tr>
</tbody>
</table>

^aNRS: numerical rating scale.

After randomization, of the 35 participants, 17 (49%) participants performed the GPS-based 6MWT first and the conventional 6MWT second and the remaining 18 (51%) participants performed the tests in the reverse order. The results for the 2 types of 6MWTs, according to the order of the tests, are presented in Table 2.

Table 2. Values for the 6-minute walk distance (6MWD) according to method of measurement and order of tests.

<table>
<thead>
<tr>
<th></th>
<th>First 6MWD, mean (SD)</th>
<th>Second 6MWD, mean (SD)</th>
<th>Average 6MWD, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-based 6MWD</td>
<td>426.5 (132.7)</td>
<td>466 (148.7)</td>
<td>446.8 (140.5)</td>
</tr>
<tr>
<td>Conventional 6MWD</td>
<td>453 (134.8)</td>
<td>413.1 (125.3)</td>
<td>433.6 (129.9)</td>
</tr>
<tr>
<td>Average 6MWD, mean (SD)</td>
<td>440.1 (132.5)</td>
<td>440.3 (138.4)</td>
<td>N/A<sup>a</sup></td>
</tr>
</tbody>
</table>

^aN/A: not applicable.

Concurrent Validity

The mean 6MWD measured by the GPS-based smartphone app was 13.2 m (SD 46 m; 95% CI −2.7 to 29.1) higher than the 6MWD assessed in the conventional manner. The 95% LoAs were 103.9 (95% CI 87.4-134.1) m and −77.6 (95% CI −107.7 to −61.0) m, which are not entirely within the maximum allowable difference of 100 m. A Bland-Altman plot is presented as Figure 1. As the distribution of the differences was leptokurtotic (an excess kurtosis of 2.2), an alternative, nonparametric Bland-Altman approach was applied, which yielded a median difference of 25.1 m and 95% LoAs (at the 2.5% and 97.5% quantiles) of −86.9 m and 76.4 m.
The ICC for agreement (2-way random-effects model) between the 2 6MWTs was 0.94 (95% CI 0.88-0.97) and the ICC for consistency (2-way random-effects model) was 0.94 (95% CI 0.89-0.97), both of which indicate good to excellent agreement. The average of the two 6MWD measurements differed based on recruitment source, with those recruited from the community having a higher 6MWD (527 m, 95% CI 489-564) compared to those recruited from the outpatient clinic (368 m, 95% CI 304-431). The mean difference between the two 6MWD measurements also differed based on recruitment source, with outpatient measurements only differing by –4 m (95% CI –30 to 23) compared to a much higher difference of 33 m (95% CI 22-44) in the community sample. The apparent trend of overestimation by the GPS-based 6MWT relative to the conventional 6MWT with increased walking distance seems to be attributable to participants from the community displaying greater values than outpatients for both the average 6MWD and the difference between GPS-based and conventional 6MWD measurements (Multimedia Appendix 1). An exploratory comparison suggests that the difference between the two 6MWTs in the outpatient sample had a variance that was 6.5 (95% CI 2.3-17.4) times higher than the variance in the community sample (3009 m² vs 461 m²).

In addition, an exploratory comparison found that the mean difference between the two 6MWT methods (GPS 6MWD minus conventional 6MWD) was 34.9 m (95% CI –5.29 to 75.2) greater when Android smartphones were used compared to that when Apple smartphones were used. The difference in 6MWDs when the GPS-based 6MWT was performed on Android smartphones was 34.2 (SD 61.6) m, whereas the difference in 6MWDs when the app test was performed on Apple smartphones was –10.8 (SD 57) m.
Another exploratory comparison suggests that the order in which the 2 tests were conducted has no clear effect on the difference between the tests. The mean difference between the two 6MWT methods (GPS 6MWD minus conventional 6MWD) when the GPS-based 6MWT was conducted first was 13.4 (SD 45.5) m, and the difference between the methods when the conventional 6MWT was performed first was 13.0 (SD 48.4) m. Therefore, when the app 6MWT was performed first, the mean difference between the tests was increased by 0.3 m (95% CI –31.9 to 32.6) versus when the conventional 6MWT was performed first.

Change in Pain

Pain increased in the conventional walk test by 1.1 (SD 1) points, whereas pain increased in the app test by 0.8 (SD 1.4) points. The conventional walk test produced a change in pain score that was 0.26 (95% CI –0.20 to 0.73) points higher than that produced by the app test.

An exploratory comparison suggests a statistically significant difference between pain at the start of the first test compared to pain at the start of the second test (t_{34}=2.969; P=.005). The pain rating before the first test averaged 4.1 (SD 2.5) points, and the pain rating before the second test (after the rest period) averaged 4.7 (SD 2.6) points. On average, pain at the beginning of the second test was 0.57 (95% CI 0.18-0.96) points higher than pain at the beginning of the first test. However, the median difference in pain was 0 (range –1 to 4) points. Approximately half (17/35, 49%) of the participants reported a pain level at the start of the second test that was identical to the level reported at the start of the first test. Figure 2 illustrates the distribution of individual differences between pain ratings at the start of each test.

Discussion

Principal Findings

This study investigated the validity of a GPS-based 6MWT smartphone app (Timed Walk) compared to that of the conventional method of conducting a 6MWT in people with persistent pain. To the best of our knowledge, this is also the first study to compare the Timed Walk app to a conventional 6MWT conducted on the same day in any population.

Participants walked an average of 433.6 (SD 129.9) m during the conventional 6MWT, which is typical of people with persistent pain [15,19,47]. The mean pain score at baseline for
participants of this study was 4.1 (SD 2.6), which is moderately lower than the averages of 6.0 and 6.4 noted during enrollment into a pain program in the literature [15,47]. This is likely due to our inclusion of participants from the community, who would be expected to have lower pain scores than those enrolled in a rehabilitation program. However, the baseline pain scores of the outpatients included in this study was 5.2 (SD 2.5), which is more consistent with previous estimates. Therefore, we can still be confident that the study sample was representative of people with persistent pain.

The results of the Bland-Altman analysis indicated uncertainty about the agreement between the 2 methods of measuring 6MWD. The 95% LoAs were 103.9 (95% CI 87.4-134.1) m and –77.6 (95% CI –107.7 to –61.0) m. These CIs are consistent with LoAs that are fully outside or within our a priori 100-m maximum allowable difference. Therefore, there is uncertainty about whether 95% of the differences will lie within this 100-m threshold. These LoAs are also larger than the estimated MCID in the 6MWT for chronic musculoskeletal pain, which is estimated to be 60 m for chronic musculoskeletal pain of the spine and 75 m for chronic musculoskeletal pain of the lower limb [19], but are within the much larger MCID estimate range of 156 m to 167 m for fibromyalgia [29]. Therefore, agreement between methods might not be sufficient for clinicians to use these two 6MWT methods interchangeably and still be able to reliably detect clinically important differences in the 6MWD for people with chronic pain of the limbs and spine. It is possible that the level of agreement is sufficient to detect clinically significant differences in people with fibromyalgia; however, this study was not performed specifically among people with fibromyalgia.

There are several potential reasons for differences between the two 6MWD measurements. First, the tests differed in how they were conducted, with one using a 30-m shuttle track and the other using various circuits around a public park. The GPS-based 6MWT involved fewer and more gradual turns, without the requirement to decelerate and accelerate with short turns on a shuttle track. Previous studies have demonstrated that continuous (circular or rectangular) tracks result in 6MWD estimates that are 3% to 10% higher than those obtained from a straight shuttle track [7,40,48]. Therefore, this is a likely explanation for the observed 6MWD derived from the Timed Walk app in this study being 13.2 m (95% CI –2.7 to 29.1) higher than that obtained from the conventional 6MWT—approximately a 3% increase. However, the CIs for the mean difference in the 6MWD between tests are wide enough to include both the possibility of no difference between the tests and a difference as large as approximately 30 m or approximately 7% of the total 6MWD. The 2 tests also differed in how encouragement phrases were delivered—by a researcher or through audio from the smartphone app—which could also impact walking distance. In addition, although the 30-m track was consistent for all conventional 6MWTs, the exact walking route used for the GPS-based 6MWT for each participant varied in terms of potentially influential factors such as the number of turns, radius of turns, and number of laps performed. It is possible that differences in the walking routes used could also partially explain the variability between the 2 tests.

Second, the tests differed in how they were measured, which could have introduced errors that could be observed as either systemic bias or as variability in the results. Inaccuracy of measurement in the conventional 6MWT might occur due to inaccurate measurement of the length of the track (or partial final lap), the participant not being able to stop instantly at 6 minutes, and the participant deviating from the track during walking or making wider turns around the markers. Although none of these issues are present for the GPS method of measurement, other sources of inaccuracy likely exist. In their initial 30 tests with 8 different smartphones, Salvi et al [36] compared the GPS-based algorithm of the Timed Walk app to a simultaneous measurement of distance with a trundle wheel, thereby eliminating variability between separate walking tests. Although the mean difference between those 2 measurements was minimal at 0.8 m, the SD was 18.6 m (or approximately 4.2% of the mean 6MWD of 438 m). As the Bland-Altman method calculates 95% LoAs as 1.96 SDs from the mean, approximately 36-m wide 95% LoAs (or 8.4% of the 6MWD) might be expected based on measurement error alone. This measurement error could be related to a poor-quality GPS signal (due to tree coverage or cloud cover), inaccurate GPS receivers in smartphones, and issues with the app’s algorithm. GPS accuracy is typically assessed in a static (nonmoving) condition or while driving [49,50], both of which differ significantly from a walking test. The accuracy of GPS measurements in the context of a dynamic, real-world activity such as walking is influenced by various factors, including signal processing and filtering algorithms specific to each app. Some previous studies suggest that the GPS receivers have different levels of accuracy across different models of smartphones [51]. The difference we observed between Android and Apple smartphones suggests some role for the hardware or operating system, which, as participants’ devices were effectively random, could introduce an additional source of variability.

Conducting 2 separate walking tests introduces an additional source of variability due to normal human variability in walking speed, in addition to the measurement error discussed previously. The conventional 6MWT, when performed 1 week apart, has a minimum detectable change (at 95% confidence) of 86 m in people with persistent pain [18] and from 50 m to 80 m in adults aged >60 years [52]. The minimum detectable change at 95% confidence is equivalent to the difference between the 95% LoA and the mean difference [53,54]. This suggests that the conventional method of assessing a 6MWT is only barely able to reliably detect a change of the same magnitude as our nominated 100-m maximum allowable difference. The test-retest reliability of the Timed Walk app has only been reported once in the literature. Salvi et al [41] have reported data about the test-retest reliability of the Timed Walk app in pulmonary hypertension, based on 89 pairs of outdoor tests performed 7 days apart in 10 patients. That study also reported a mean difference of 1.8 m (0.7% of the 6MWD) and an SD of 37 m (or 10.1% of the 6MWD) between pairs of GPS-based 6MWTs, giving a 95% LoA of approximately 74 m on either side of the mean. Therefore, this evidence suggests that it can be difficult to reliably detect a change of 100 m between two 6MWTs, even when both 6MWTs are conducted...
using the same methods (either the conventional method or the GPS-based method).

Finally, there could be some effect of the first test on the results of the second text. For instance, performance might have decreased during the second test due to the provocation of fatigue or pain. Although a 15-minute rest period is sufficient for people with cardiac disease to recover from fatigue induced by walking [55], this may not be the case for recovery from pain. We found that some (15/35, 43%) of participants reported higher pain scores at the start of their second test than at the start of their first test. This residual pain could have altered their performance during the second test, as pain can increase the energy cost of walking [56,57]. On the other hand, a learning or practice effect whereby 6MWD increases for a second 6MWT conducted on the same day has been demonstrated in several studies in healthy adults [58,59] and people with respiratory disease [60] and chronic heart failure [61]. This learning effect may be due to decreased anxiety (more willingness to walk faster if they see that it does not provoke as much pain or fatigue) or improvements in technique (optimum stride length or pacing) during subsequent tests [4]. In addition, a learning effect may still occur regardless of the rest period between tests conducted on the same day. As the order in which the 2 tests were conducted was randomized in this study, any effect of test order would manifest as variance in the difference between the 2 methods. However, when the difference between 6MWD measurements was compared between the subgroup randomized to perform the app test first versus the subgroup performing the app test second, there was no clear evidence of a difference. As the 2 walk tests investigated in this study were very dissimilar, a learning effect may have been less likely to occur. Alternatively, a learning effect could have been countered by an approximately equal and opposite effect of pain or fatigue. Interestingly, the greater variability between the 2 tests seen in the outpatient subsample, who also had higher pain scores and more widespread pain than the community subsample, may also suggest that those who are experiencing greater pain have more variable walking speeds in general. This could be related to spatiotemporal gait mechanics, which are known to be affected by pain conditions [62,63].

Validity, as assessed by the ICC for agreement (2-way random-effects model) between the 2 6MWTs, was good to excellent at 0.94 (95% CI 0.88-0.97), suggesting that approximately 12% of the variation between the 2 measurements is due to bias or error. ICC for consistency was also good to excellent at 0.94 (95% CI 0.89-0.97). The near equality of these ICC values indicates that the validity is mostly being affected by random error rather than systemic error (bias). Despite the variability introduced by the previously mentioned differences between the GPS-based and conventional 6MWTs, the ICC for agreement in this study is similar to previously reported ICC values (agreement) of 0.91 and 0.92 for the test-retest reliability (with 1 day or 7 days between tests) of the conventional 6MWT in fibromyalgia [64,65]. Similarly, it is comparable to the ICC of 0.91 reported by Salvi et al [41] for the test-retest reliability of the Timed Walk app in pulmonary hypertension, based on 89 pairs of outdoor tests performed 7 days apart in 10 patients.

Pain

Secondarily, the study also compared the 2 methods to examine the differences in the degree of pain evoked by the test. Pain increased by approximately 1 point on NRS in both tests. Therefore, there is no indication of any additional advantage or disadvantage to either method with respect to pain provocation. However, this sample comprised people with a variety of different pain conditions. It is possible that a population with only hip or knee pain would have experienced a difference between the 2 tests, perhaps due to the increased frequency of turning in the conventional 6MWT. Moreover, pain was only assessed immediately after the walking tests, and both tests were completed 15 minutes apart; therefore, potential differences in pain experienced in the hours or days after the tests are beyond the scope of this study.

Strengths and Limitations

This study compared Timed Walk against a conventional 6MWT on the same day. People with persistent pain can have variability in day-to-day pain [66,67], which may result in variations in walking speed. Conducting the tests 15 minutes apart removed this source of variability. However, the pain caused by the first 6MWT was clearly still a factor during the second 6MWT for some individuals. It is unclear whether extending the rest period to 30 minutes or an hour would have been sufficient for this pain to resolve completely. Moreover, only pain intensity was assessed and not the quality of the pain. Recording descriptors of the quality of pain (such as sharp, dull, throbbing, or aching) or assessing pain-related fear of movement might have provided deeper insights into why some participants with significant pain increases did not exhibit changes in walking distance but others did.

The study used the Timed Walk app on participant’s own smartphones. Similarly, this study used a wide variety of heterogenous walking tracks on grass or paved surfaces at a local park, with this heterogeneity precluding any analysis of the effect of walking track on the results. Although the observed agreement between methods may have been higher if a single smartphone and a set walking track were used consistently for all GPS-based walking tests, the results of this study have more practical relevance to people using their own smartphone in real-world environments. Similarly, as GPS is reported to have issues in measuring distances around sharp corners, a linear track for GPS may have been a more accurate measure of distance walked but would have been practically more difficult for participants to replicate at home and thus would be of less practical relevance.

This study calculated the 95% LoAs and their CIs under the assumption that the data were normally distributed. However, due to noticeable kurtosis (excess kurtosis of 2.2), the calculated 95% LoAs may be a slight overestimate. Although a nonparametric approach found that the 2.5% and 97.5% quantiles of the sample fell just within the nominated maximum allowable difference, it did not provide CIs to represent the uncertainty in the 95% LoAs. To obtain these CIs, the data could have been transformed to better approximate a normal distribution, or a bootstrap approach could have been used. However, regardless of the approach used, it is likely that the
95% LoAs or the associated CIs would be outside the maximum allowable difference.

The maximum allowable difference nominated in this study was selected in the absence of clearly established values for clinically relevant differences in the 6MWT in persistent pain conditions. A value of 100 m was selected as a compromise between the existing MCID estimates for the 6MWT in people with chronic pain of the back and lower limbs (60 m and 75 m, respectively) [19] and in those with fibromyalgia (which range from 156 to 167 m) [29]. The lack of knowledge about clinically acceptable differences for the 6MWT significantly limits the interpretation of the Bland-Altman analysis.

Implications for Future Studies and Clinical Practice
Future studies are required to develop more accurate methods for remotely performing the 6MWT in populations with chronic disease including persistent pain. This may involve accelerometer-based methods, GPS-based methods, or a combination of both. Future updates to the Timed Walk app will require reassessment of concurrent validity. In addition, future studies could further elucidate the sources of variability between the GPS-based 6MWT and conventional 6MWT. This could entail performing a GPS-based 6MWT with the additional use of a trundle wheel as a third measurement of the 6MWD, simultaneous measurements derived from multiple smartphones from various manufacturers, and a systematic comparison of specific walking tracks. It may also be wise for future research studies to ensure that participants unfamiliar with the 6MWT are given a practice test to minimize the potential learning effect. Finally, more research is needed to establish a more precise estimate of the MCID in persistent pain to allow for future studies to better define the maximum allowable difference between 6MWT methods.

As both tests in this study were performed under supervision, future investigations should consider the effect of unsupervised use of the GPS-based 6MWT app. Tests that are self-administered may be even more variable if care is not taken to avoid sharp turns, tall buildings, uneven terrain, or inconsistencies in weather conditions. Future studies are also required to investigate whether the test-retest reliability of the GPS-based 6MWT, when used unsupervised in people with persistent pain, is sufficient for use as a tool for remote monitoring. It is feasible that the imprecision in the estimates from the GPS-based app may be less of an issue if testing is conducted more frequently, as the average of a series of tests may provide a more stable estimate of the participant’s functional status over time.

Although conventional and GPS-based 6MWT methods do not demonstrate sufficient agreement to be used interchangeably in people with persistent pain, the ability to perform the test remotely using the GPS-based app may still have benefits in a clinical context. The ability for patients to perform the GPS-based assessment at home without the need for a clinician’s presence may increase patient autonomy and reduce the burden of frequent clinic visits. In addition, for individuals who are unable to regularly attend in-clinic evaluations, obtaining an approximate measurement of functional capacity more frequently via a GPS-based 6MWT may still be clinically useful, even if the estimate is imprecise, as it provides some information, which is better than a complete lack of data. GPS-based measurements may also offer more ecologically relevant assessments of functional capacity than in-clinic testing, better reflecting a patient’s natural walking abilities and providing an opportunity for training walking capacity in the patient’s everyday environment. Overall, although the in-clinic standard 6MWT performed by experienced personnel remains as the gold standard, the GPS-based app may still be considered as a complementary tool.

Conclusions
This study demonstrated that the concurrent validity between the GPS-based 6MWT using the Timed Walk app and the conventional 6MWT may not be sufficient for the 2 methods to be used interchangeably in people with persistent pain while still being able to detect clinically significant differences in the 6MWD. Despite limited validity, the GPS-based 6MWT may still have clinical application as a complementary tool to the conventional 6MWT performed in the clinic, especially for remote monitoring. In addition, the GPS-based 6MWT makes it possible to conduct more frequent assessments of functional capacity, which are self-measured without the presence of a clinician and conducted in a more ecologically relevant environment. Future studies are needed to improve the accuracy of the GPS-based 6MWT for remote monitoring.

Acknowledgments
The authors would like to thank the participants for their participation in this study. In addition, the authors would like to thank D Salvi for answering their questions regarding previous investigations of the Timed Walk mobile app. Finally, the authors acknowledge the use of ChatGPT (version 3.5; OpenAI; February 2023) as a writing assistant, specifically for rephrasing and summarizing content.

Data Availability
The data sets generated during and analyzed in this study are not publicly available due to lack of ethical clearance to disclose data to third parties.

Conflicts of Interest
None declared.
Multimedia Appendix 1
Bland-Altman plots depicting the difference between GPS-based and conventional 6-minute walk distances against the average of the 2 measurements, with linear regression trend lines estimated for either the whole sample or for each recruitment group.

[PDF File (Adobe PDF File), 220 KB - formative_v8i1e46820_app1.pdf]

Multimedia Appendix 2
Scatter plots depicting the difference in walking distance between the 2 pairs of tests (GPS-based test vs conventional test and type of walk test conducted first vs type of walk test conducted second) against the difference in pain levels at the start of each walk test.

[PDF File (Adobe PDF File), 208 KB - formative_v8i1e46820_app2.pdf]

References

18. Murdoch D, Window P, Morton C, O'Donohue R, Ballard E, Claus A. People at a persistent pain service can walk it, but some struggle to talk about it: reliability, detectable difference and clinically important difference of the six-minute walk test. Musculoskeletal Care 2023 Mar;21(1):221-231. [doi: 10.1002/msc.1687] [Medline: 36065494]

27. Gremieux V, Troisgros O, Bena...

51. Arkesteyn M, Low D. Responsiveness of functional assessments to monitor change in balance, walking speed and strength of older adults: a systematic review of the minimal detectable change. medRxiv. Preprint posted online June 06, 2022 2024 [FREE Full text] [doi: 10.1101/2022.06.06.22276029]

54. Rychlicki M, Kasprzyk Z, Rosi

55. Arkesteyn M, Low D. Responsiveness of functional assessments to monitor change in balance, walking speed and strength of older adults: a systematic review of the minimal detectable change. medRxiv. Preprint posted online June 06, 2022 2024 [FREE Full text] [doi: 10.1101/2022.06.06.22276029]

Abbreviations

- **6MWD**: 6-minute walk distance
- **6MWT**: 6-minute walk test
- **ICC**: intraclass correlation coefficient
- **LoA**: limit of agreement
- **MCID**: minimum clinically important difference
- **NRS**: numerical rating scale
Using Principles of Digital Development for a Smartphone App to Support Data Collection in Patients With Acute Myocardial Infarction and Physical Activity Intolerance: Case Study

Diana Isabel Cáceres Rivera1*, MSc, PhD; Luz Mileyde Jaimes Rojas1*, MSc; Lyda Z Rojas2*, MSc, PhD; Diana Canon Gomez2*, MD; David Andrés Castro Ruiz1*, MSc; Luis Alberto López Romero3*, MSc

1Facultad de Enfermería, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
2Centro de Investigaciones, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
3Departamento de Pediatria, de Obstetricia y Ginecología y de Medicina Preventiva y Salud Pública, Universidad Autónoma de Barcelona, Barcelona, Spain

* these authors contributed equally

Corresponding Author:
Diana Isabel Cáceres Rivera, MSc, PhD
Facultad de Enfermería
Universidad Cooperativa de Colombia
Torre 2 Apto 203
Bucaramanga, 64000
Colombia
Phone: 57 3014006658
Email: dianacaceresrivera@gmail.com

Abstract

Background: Advances in health have highlighted the need to implement technologies as a fundamental part of the diagnosis, treatment, and recovery of patients at risk of or with health alterations. For this purpose, digital platforms have demonstrated their applicability in the identification of care needs. Nursing is a fundamental component in the care of patients with cardiovascular disorders and plays a crucial role in diagnosing human responses to these health conditions. Consequently, the validation of nursing diagnoses through ongoing research processes has become a necessity that can significantly impact both patients and health care professionals.

Objective: We aimed to describe the process of developing a mobile app to validate the nursing diagnosis “intolerance to physical activity” in patients with acute myocardial infarction.

Methods: We describe the development and pilot-testing of a mobile system to support data collection for validating the nursing diagnosis of activity intolerance. This was a descriptive study conducted with 11 adults (aged ≥18 years) who attended a health institution for highly complex needs with a suspected diagnosis of coronary syndrome between August and September 2019 in Floridablanca, Colombia. An app for the clinical validation of activity intolerance (North American Nursing Diagnosis Association [NANDA] code 00092) in patients with acute coronary syndrome was developed in two steps: (1) operationalization of the nursing diagnosis and (2) the app development process, which included an evaluation of the initial requirements, development and digitization of the forms, and a pilot test. The agreement level between the 2 evaluating nurses was evaluated with the κ index.

Results: We developed a form that included sociodemographic data, hospital admission data, medical history, current pharmacological treatment, and thrombolysis in myocardial infarction risk score (TIMI-RS) and GRACE (Global Registry of Acute Coronary Events) scores. To identify the defining characteristics, we included official guidelines, physiological measurements, and scales such as the Piper fatigue scale and Borg scale. Participants in the pilot test (n=11) had an average age of 63.2 (SD 4.0) years and were 82% (9/11) men; 18% (2/11) had incomplete primary schooling. The agreement between the evaluators was approximately 80% for most of the defining characteristics. The most prevalent characteristics were exercise discomfort (10/11, 91%), weakness (7/11, 64%), dyspnea (3/11, 27%), abnormal heart rate in response to exercise (2/10, 20%), electrocardiogram abnormalities (1/10, 9%), and abnormal blood pressure in response to activity (1/10, 10%).

Conclusions: We developed a mobile app for validating the diagnosis of “activity intolerance.” Its use will guarantee not only optimal data collection, minimizing errors to perform validation, but will also allow the identification of individual care needs.
Introduction

In recent decades, the ability to produce, collect, and communicate data around the world has increased exponentially with access to technologies such as smartphones. These technologies have improved data storage as well as its handling and analysis [1]. In the field of health, electronic record systems facilitate data collection that can be used for various purposes, allowing data retrieval that promotes the improvement of research processes such as identification and recruitment of patients for clinical projects [2,3].

In addition to obtaining individual data from each patient, the collection of large amounts of data can be useful to obtain information that more effectively supports the exploration of diseases, treatment, and rehabilitation. This creates the need to develop research platforms that optimize the capacity to conduct informative and innovative research and enable scientific approaches where objective data can be obtained with a minimum of errors and expended resources [4].

As part of the health staff providing care to cardiovascular patients, nurses can be the first to identify individual needs. To aid this, tools are available such as the NANDA (North American Nursing Diagnosis Association) taxonomy, which identifies the response of a person, family, or community to real health problems and potential vital processes. However, these diagnoses and their respective defining characteristics must be validated according to the context where they will be assessed, which constitutes a challenge in research into the use, implementation, and dissemination of technologies of information [5-7]. For this purpose, the use of digital platforms has demonstrated its applicability from the early stages of research, such as the assessment of care needs [8,9].

Mobile apps in health, education, and work in Colombia are increasing in number. These technologies have improved data storage as well as its handling and analysis [9]. In the field of health, electronic record systems facilitate data collection that can be used for various purposes, allowing data retrieval that promotes the improvement of research processes such as identification and recruitment of patients for clinical projects [2,3].

Overview

This was a descriptive study conducted with 11 adults (aged ≥18 years) with a suspected diagnosis of coronary syndrome who attended a health institution for highly complex needs between August and September 2019 in Floridablanca, Colombia. An app for clinical validation of the “activity intolerance” diagnosis (NANDA code 00092) in patients with acute coronary syndrome was developed in three steps, outlined in the following sections.

Step 1: Operationalization of the Nursing Diagnosis

The first step consisted in the operationalization of the defining characteristics of the nursing diagnosis [11] of activity intolerance (NANDA code 00092), defined by NANDA-I [6] as “the lack of sufficient physiological or psychological energy to tolerate or complete the required or desired daily activities.” This diagnosis is categorized as “Domain 4: Activity / Rest, Class 4: Cardiovascular / pulmonary responses Need: Move and Pattern Activity-exercise.” It is also related to an imbalance between oxygen supply and demand, a sedentary lifestyle, immobility, and bed rest; it has defined characteristics [12]. Through an extensive search of the literature, we selected scales or instruments to standardize the measurement of each defining characteristic of this nursing diagnosis [11]. An interdisciplinary group that included 2 nurses, an epidemiologist, and a cardiologist verified the face validity of the operationalization.

Step 2: App Development Process

Initial Requirements Evaluation

Health professionals, along with a systems engineer, carried out the structural design of the data collection forms or case report forms. The digitization process was carried out using CommCare [7], which is an open source, cloud-based platform that helps researchers develop data capture tools using mobile devices. An open source tool was also used to create an Android-based mobile app for a low-income setting. Mobile apps can be used as a tool to track beneficiaries through a service lifecycle and can also streamline data collection [13]. Our app used the HTTPS protocol, which made it cryptographically secure. Access to data was password protected. The CommCare [7] platform was selected because it has been widely used for health projects all over the world and because of its ease of use and compatibility with older versions of Android. CommCare is a platform that works on Android mobile phones from version 2.3, but the platform recommends reviewing the documentation for these older versions because they may have limitations in terms of functionality and compatibility with the latest features developed by CommCare, so it is recommended to have at least Android version 4.0.3 or later, a storage space of at least 100MB,
a minimum of 1GB of RAM, and a processor with at least 2 cores for a better user experience.

Finally, we did not use any programming language because we used a platform that prevents us from reaching that level. We worked directly with CommCare, which allowed us to create data collection applications without touching or programming source code (Figure 1).

CommCare requires the use of a password to access the app and the data stored on the platform. This helps to ensure that only authorized users can access information. The platform uses the secure HTTPS communications protocol, uses role-based access, and is in compliance with data security regulations and standards such as the European Union’s General Data Protection Regulation (GDPR). This ensures that the platform follows good practices in terms of privacy and personal data protection.

Development and Digitization of the Forms
The principles of the Scrum methodology for agile software development were applied. This is a regularly applied process that includes a set of best practices to work collaboratively in teams and obtain the best possible outcome of projects. It is characterized by a strategy of incremental development, boosting the quality of the result by getting to know people in self-organized teams and matching the different phases of development, rather than doing one after the other in a sequential or cascading cycle [14]. Through this methodology, an app was developed to gather data. This phase included the following six steps: (1) specifying the forms to be digitized, which contained the questions or variables to be obtained in the field; (2) dividing the various sections of the form into smaller subforms, depending on the size of the questionnaire or the time of application; (3) defining the variables as the simple question-and-answer type or as more complex ones containing calculations, depending on others, or having a different logical flow; (4) building the form on the CommCare platform; (5) generating app versions (eg, test versions); and (6) testing the app with health professionals who simulated data from possible patients and followed the flow of questions within the app to check if the different flows worked correctly; if errors or possible improvements were found during the process, the entire procedure was repeated from step 4.

Ethical Considerations
The Ethics Committee of Universidad Cooperativa de Colombia thoroughly reviewed and approved the research (report 003; April 16, 2018), as did the Fundación Cardiovascular de Colombia ethics committee (report 450; May 22, 2018). The study was carried out in strict adherence to the established protocol, regulatory requirements, Good Clinical Practice, the Declaration of Helsinki, and the clinical investigation guidelines of Universidad Cooperativa de Colombia. All participants provided their informed consent by signing a form. Participation in this study was entirely voluntary, and no financial compensation or reimbursements were offered to the participants.

The information obtained has been securely stored in the archives of the Universidad Cooperativa de Colombia to safeguard the privacy of individuals. Each patient was assigned a code to ensure that their names or identification did not appear in the database. Access to the collected data was restricted to the researchers, and the data will be used exclusively for the study’s intended purposes. Personal information is being protected in compliance with Colombian Law 1581 of 2012, which pertains to the right of “habeas data.”

Results
After repeatedly performing the entire process and correctly digitizing all the forms proposed in advance, the last version of the app (the production version) was generated. The result of the development process was an app that allowed obtaining information using the forms shown in Table 1. The study was carried out in strict adherence to the established protocol, regulatory requirements, Good Clinical Practice, the Declaration of Helsinki, and the clinical investigation guidelines of Universidad Cooperativa de Colombia. All participants provided their informed consent by signing a form. Participation in this study was entirely voluntary, and no financial compensation or reimbursements were offered to the participants.

Table 2 shows the scales and instruments used for the operationalization of the defining characteristics of nursing. The resulting app allowed the simultaneous collection, data entry, and follow-up of patients in different stages of investigation. Two previously trained nurses conducted a pilot test with the first 11 patients included in the research. Taking

Figure 1. Commcare platform design.
into account the inclusion and exclusion criteria, a cardiologist selected potential patients. Subsequently, the patient received an explanation of the study; if they agreed to participate, they provided informed written consent. The information was filled out on tablet-type mobile device. Once the data were collected, a process of sending or synchronizing the data with the database in the cloud was carried out, for which it was necessary to have an internet connection (Wi-Fi network).

Table 1. General information included in the app.

<table>
<thead>
<tr>
<th>Information collected</th>
<th>Forms used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographic data</td>
<td>Personal data of the patient</td>
</tr>
<tr>
<td>Registered patient forms</td>
<td>Information about the patient</td>
</tr>
<tr>
<td>Hospital admission data</td>
<td>Referral or admission information</td>
</tr>
<tr>
<td>Background</td>
<td>Medical, surgical, family, and toxicology history</td>
</tr>
<tr>
<td>Current drug treatment</td>
<td>Angiotensin-converting enzyme inhibitors, statins, β-blockers, angiotensin II receptor blockers, aldosterone antagonists, acetylsalicylic acid, diuretics, thiazide diuretics, digitalis, antiplatelet agents, anticoagulants, vasodilators, antiarrhythmics, analgesics, inotropes</td>
</tr>
<tr>
<td>Intensity of angina</td>
<td>Angina intensity level</td>
</tr>
<tr>
<td>Diagnostic means</td>
<td>Electrocardiogram, electrographic changes, electrocardiogram findings, arteriography findings, cardiac enzymes, and other paraclinical tools</td>
</tr>
<tr>
<td>TIMI-RS<sup>a</sup></td>
<td>TIMI-RS (S-elevation and non-ST elevation; acute myocardial infarction/unstable angina)</td>
</tr>
<tr>
<td>GRACE<sup>b</sup> score</td>
<td>GRACE score</td>
</tr>
<tr>
<td>Defining characteristics of the diagnosis</td>
<td>Electrocardiogram changes, generalized weakness, exertional discomfort, dyspnea on exertion, fatigue, abnormal heart rate in response to activity, and abnormal blood pressure in response to activity</td>
</tr>
<tr>
<td>Follow-up</td>
<td>Presence of fatigue, pain, dyspnea on exertion, and physical activity</td>
</tr>
</tbody>
</table>

^a TIMI-RS: thrombolysis in myocardial infarction risk score.

^b GRACE: Global Registry of Acute Coronary Events.

Table 2. Scales and validated instruments included in the app for diagnosing intolerance to activity.

<table>
<thead>
<tr>
<th>Defining characteristics</th>
<th>Scale or instrument used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiogram changes (arrhythmias, conduction abnormality, ischemia)</td>
<td>Suggested changes by Clinical Practice Guideline of the Ministry of Social Protection of Colombia [15]</td>
</tr>
<tr>
<td>General weakness</td>
<td>Handgrip measurement (muscle strength in kg) and bioimpedance measurement</td>
</tr>
<tr>
<td>Exertional discomfort</td>
<td>Brief Disease Perception Questionnaire [16]</td>
</tr>
<tr>
<td>Exertional dyspnea</td>
<td>Grade of dyspnea according to the New York Heart Association [17]</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Piper Fatigue Scale [18]; Ruffier test (aerobic capacity) [19]; Borg scale (perceived physical exertion) [20]</td>
</tr>
<tr>
<td>Abnormal heart rate in response to activity</td>
<td>The suggested values in the Clinical Practice Guide of the Ministry of Social Protection of Colombia [14]</td>
</tr>
<tr>
<td>Abnormal blood pressure in response to activity</td>
<td>2018 European Society of Cardiology/European Society of Hypertension Clinical Practice Guidelines for the Management of Arterial Hypertension [21]</td>
</tr>
</tbody>
</table>

Later, the systems engineer reviewed the database obtained through the web platform CommCare, which allows downloading information as a flat file or in spreadsheet format. In this way, the research team verified the correct operation of the app and its use in the field, obtaining positive results that allowed the continuity of the investigation with more patients. Figures 2-4 show 3 screenshots of the app.

The pilot test yielded descriptive data (n=11). The participants had an average age of 63.2 (SD 4.0) years, 82% (9/11) were men, and 18% (2/11) had incomplete primary schooling. We found that 64% (7/11) had a history of hypertension and 73% (8/11) had ever smoked. The defining characteristics present in this group of patients were exercise discomfort in 91% (10/11), electrocardiogram abnormalities in 9% (1/10), abnormal heart rate in response to exercise in 20% (2/10), dyspnea in 27% (3/11), weakness in 64% (7/11) and abnormal blood pressure in response to activity in 10% (9/10) (Table 3). The κ agreement index ranged from 73% to 100%.
Figure 2. Screenshot of app start screen.

Figure 3. Screenshot showing the list of forms that can be used with patients in the field.

Figure 4. Screenshot showing question on the personal data of the patient.
Table 3. Presence of defining characteristics of the nursing diagnosis “activity intolerance” in patients (n=11) with acute coronary syndrome according to 2 independent evaluators.

<table>
<thead>
<tr>
<th>Defining characteristics</th>
<th>Participants evaluated by nurse 1, n (%)</th>
<th>Participants evaluated by nurse 2, n (%)</th>
<th>Agreement between the evaluators, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Electrocardiogram changes (arrhythmias, conduction abnormality, ischemia)</td>
<td>1 (9)</td>
<td>10 (91)</td>
<td>11 (100)</td>
</tr>
<tr>
<td>General weakness</td>
<td>7 (64)</td>
<td>4 (36)</td>
<td>8 (73)</td>
</tr>
<tr>
<td>Exertional discomfort</td>
<td>10 (91)</td>
<td>1 (9)</td>
<td>9 (82)</td>
</tr>
<tr>
<td>Exertional dyspnea</td>
<td>3 (27)</td>
<td>8 (73)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0 (0)</td>
<td>11 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Abnormal heart rate in response to activity</td>
<td>2 (20)</td>
<td>8 (80)</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Abnormal systolic blood pressure in response to activity</td>
<td>1 (10)</td>
<td>9 (90)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Abnormal diastolic blood pressure in response to activity</td>
<td>0.0 (0)</td>
<td>10 (100)</td>
<td>1 (10)</td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

We describe the development process of a mobile app for collecting health research data in an easy, agile, and practical way. This strategy may be used for the complete collection of samples in the process of clinical validation of the nursing diagnosis “activity intolerance.” In addition, a good rate of agreement was found among the evaluators thanks to the standardization used in the app.

In recent years there has been an increase in the use of computer technologies to replace paper records by means of mobile apps, web forms, and specialized software; likewise, it has become evident that these are key tools to improve quality in health care [22]. However, it is still a challenge to continue implementing new strategies, achieve their efficient use by health professionals, and make their implementation easier and more accessible.

This process enabled us to validate the app’s use for identifying prevalent nursing diagnoses, such as activity intolerance, in patients with acute myocardial infarction. Among the 9 defining characteristics we evaluated, there was an agreement of over 80% among the evaluators for 5 of them. This, in turn, helped us identify the most prevalent characteristics, namely dyspnea on exertion and heart rate alteration in response to activity. It is also noteworthy that none of the evaluators identified fatigue in any of the users.

Mobile Apps

We evaluated this strategy for identifying nursing diagnoses that require an objective definition of their characteristics and clinical judgment [23]. The precise operationalization of the defining characteristics through a predefined registry structure, as seen in this mobile app, enhances the precision of nursing diagnoses [1]. In this sense, it enables the evaluation of these characteristics, which can improve documentation for nursing staff, thereby aiding in the inference and evaluation of diagnoses [2]. Therefore, this app aims not only to enhance the quality and safety of care processes but also to promote the adoption of standardized nursing language, addressing the limitations in its use.

Another possible use of this app is in education, where it would potentially help to strengthen the precision of documentation in nursing diagnoses [3]. This strategy is adapted to current conditions, in which the use of virtual methods and mobile technologies has been shown to be a new basic input for the teaching process, making it necessary for professionals and trainers to make an adequate use of this type of strategy.

A relationship where nurse and patient can contribute to improving administrative processes that benefit others has been described in settings such as outpatient care [5]. This is expected to contribute to research scenarios that promote improved caregiving. Apps can assist in the assessment and generation of nursing diagnoses in hospital practice [24], and they have been used in research studies such as clinical trials for the self-management of angina [25].

Limitations

This work was limited to a specific nursing diagnosis. Future work should include other prevalent diagnoses in patients with cardiac disease. An evaluation of usability among end users could help improve our strategy, and more data is also needed to better specify the large-scale feasibility and cost of this strategy with other nursing diagnoses.

Other aspects to improve in the design of future research are to include scales and instruments used in health care to measure different variables. These sources of information should be updated according to the context, clinical conditions, and even environmental conditions. An additional challenge is the integration of these types of apps to existing health systems. A recent review with the objective to provide an overview of studies that have collected patient data using an app-based approach indicated that using mobile technologies could help to overcome challenges linked with data collection in epidemiological research. However, further feasibility studies need to be conducted to test the applicability and acceptance of these mobile apps for epidemiological research in various subpopulations [26].
Conclusions
We developed a mobile app for use in the validation process of the nursing diagnosis activity intolerance. This app enabled the evaluation of defining characteristics, which can enhance documentation for nursing staff, facilitate more effective inference and evaluation of diagnoses, and reduce errors in information recording. One significant potential of this app lies in its impact on education, as it aids in improving the precision of nursing diagnosis documentation and, as a result, enhances the quality of care planning.

Data Availability
The data sets generated during and/or analyzed during this study are available in the Mendeley repository [27].

Conflicts of Interest
None declared.

References
7. CommCare. URL: http://www commcarehq org/ [accessed 2020-02-09]

22. Lunney M. Critical need to address accuracy of nurses’ diagnoses. Online J Issues Nurs 2008 Jan 31;13(1) [FREE Full text] [doi: 10.3912/ojin.vol13no01ppt06]

Abbreviations

GDPR: General Data Protection Regulation
NANDA: North American Nursing Diagnosis Association

Edited by A Mavragani; submitted 10.02.23; peer-reviewed by T Behera, J King; comments to author 07.07.23; revised version received 18.10.23; accepted 02.01.24; published 18.03.24.

Please cite as:
Cáceres Rivera DI, Rojas LMJ, Rojas LZ, Gomez DC, Castro Ruiz DA, López Romero LA
Using Principles of Digital Development for a Smartphone App to Support Data Collection in Patients With Acute Myocardial Infarction and Physical Activity Intolerance: Case Study
JMIR Form Res 2024;8:e33868
URL: https://formative.jmir.org/2024/1/e33868
doi:10.2196/33868
PMID:38498019

©Diana Isabel Cáceres Rivera, Luz Mileyde Jaime Rojas, Lyda Z Rojas, Diana Canon Gomez, David Andrés Castro Ruiz, Luis Alberto López Romero. Originally published in JMIR Formative Research (https://formative.jmir.org), 18.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Preliminary Efficacy of a Cognitive Behavioral Therapy–Based Smartphone App for Smoking Cessation in China: Randomized Controlled Pilot Trial

Shanshan Chen¹, MD; Jinsong Tang¹, PhD; Congyang Wu², MBA; Ge Zhang², BM; Jing Zhang², PhD; Yanhui Liao¹, PhD

¹Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
²Johnson & Johnson Pharmaceutical Company, Shanghai, China

Corresponding Author:
Yanhui Liao, PhD
Sir Run Run Shaw Hospital
Zhejiang University School of Medicine
3 East Qingchun Road
Hangzhou, 310016
China
Phone: 86 18814898844
Email: liayanhui@zju.edu.cn

Abstract

Background: The overall prevalence of cigarette smokers in China is very high, and China's total cigarette consumption makes up more than 40% of the world’s consumption. In view of the lack of smoking cessation services and social support in China and the effectiveness of mobile phone apps for quitting smoking in other countries, we carried out a smartphone app–based smoking cessation trial in China.

Objective: This study aimed to evaluate the efficacy of a cognitive behavioral therapy (CBT)–based smoking cessation smartphone app among smokers seeking treatment in China.

Methods: We conducted a randomized controlled, web-based pilot clinical trial in China between February 23 and June 27, 2021. Eligible participants were randomly assigned to the smoking cessation app intervention group or the control group in a ratio of 1:1. The intervention group received the CBT smoking cessation intervention using a smartphone app, and the control group received a “thank you” message. The intervention was 4 weeks long, and the patients were followed up for 4 weeks. The primary outcome was self-reported continuous smoking abstinence at week 4 after the quit date. The secondary outcomes included self-reported 7-day point prevalence of smoking abstinence; reduction of the number of cigarettes smoked per day at weeks 1, 2, 3, and 4; and program acceptability.

Results: A total of 973 people were recruited to quit smoking, of whom 262 completed basic information, 56 were excluded, and 206 were randomized and included in the final analysis. There were 189 (91.7%) men and 17 (8.3%) women, with an average age of 34.46 (SD 7.53) years and an average daily smoking rate of 15.93 (SD 7.10) cigarettes/day. We found 30 (29.7%) of the 101 participants in the intervention group and 7 (6.7%) of the 105 participants in the control group reported continuous smoking cessation after the quit date at week 4 (odds ratio 5.92, 95% CI 3.78-9.26; P<.001). The 7-day point prevalence abstinence rate of the intervention group varied from 42.6% (43/101) to 46.5% (47/101) after 1, 2, 3, and 4 weeks, while the control group varied from 18.1% (19/105) to 26.7% (28/105). Compared to the control group, continued smokers consumed 1.5-3.0 fewer cigarettes per day in the intervention group. The overall program got positive user feedback with a high satisfaction rate (66/87, 76%) and an average Mobile Application Rating Scale user version score of 3.46.

Conclusions: Our pilot study provided preliminary evidence that the CBT-based smoking cessation smartphone app led to improved smoking quit rates versus control in Chinese smokers. The study demonstrated the CBT-based smartphone app may be an effective and feasible digital treatment model to help smokers quit, which may improve smoking cessation service quality and accessibility in China.

Trial Registration: ClinicalTrials.gov NCT04421170; https://clinicaltrials.gov/study/NCT04421170

International Registered Report Identifier (IRRID): RR2-10.1136/bmjopen-2020-041985
Introduction

Tobacco smoking remains one of the leading causes of preventable death [1]. More than 8 million smokers worldwide die each year from smoking-related causes, of whom about 7 million die of diseases caused by smoking and about 1.2 million die from diseases caused by secondhand smoke exposure [2]. More than 1 million people in China lose their lives due to smoking every year. If effective action were not taken to significantly reduce the smoking rate, the number of deaths due to smoking would increase to 2 million per year by 2030 and 3 million per year by 2050 [3]. Since 1978, cigarette production in China has grown from 20% to over 40% of the world's cigarette products [4]. Tobacco has caused a huge economic burden to society and individuals, including the high cost of medical care, more diseases, and premature death [5]. According to survey results on adult smoking prevalence in China in 2018, the smoking rate of people aged 15 years or older in China was 26.6% [6], which was still higher than in many other countries.

One of the key reasons for China's low smoking cessation rate is limited smoking cessation services. The 2018 China Adult Tobacco Survey demonstrated that 90.1% of smokers who tried to quit in the past 12 months did not use any form of cessation aid [6]. A report in 2019 showed that 366 hospitals and primary health care institutions in China set up smoking cessation clinics, of which only 43% provided smoking cessation medications [7]. Few smokers were willing to go to the smoking cessation clinic for help [5], and most self-help cessation attempts failed [8,9]. Most smokers tend to relapse in the first few weeks after trying to quit smoking [10]. The success rate of quitting smoking after 1 year was 3%-5% for those without support, 7%-16% when smokers received behavioral intervention, and as high as 24% when smokers received drug treatment and behavioral help [11]. At present, it is necessary and meaningful to find accessible, effective, and scalable smoking cessation intervention methods to improve smoking cessation services in China.

Nowadays, mobile phone–based smoking cessation support provides a new channel for those who cannot get access to or lack the willingness to use face-to-face support [12]. About 45% of mobile phone subscriptions worldwide were related to smartphones, and this number continues to grow as 75% of new mobile phone sales were smartphones [13]. Around the world, mobile phones are becoming more and more useful in health information and health care service delivery [14]. Digital medical service has the advantages of economy, easy access [12], and easy promotion, which provides an opportunity for developing cost-effective smoking cessation digital interventions [15]. We previously carried out a study on smoking cessation intervention based on SMS text messaging (Happy Quit) in China, which supported the effectiveness and feasibility of digital medical services [16]. Smartphone apps for health and health care are increasing rapidly, but there are few in the smoking cessation area [17]. Smartphone apps can enable diverse functions, including audio and video materials, and can provide additional resources through the network [18]. Besides, smartphone apps could be more powerful than SMS text messaging programs for digital intervention because they have the potential to increase user engagement through diversified user interfaces and user experiences [19]. A study has found that under the same intervention content, the effect of a smartphone-based smoking cessation intervention app was stronger than that of a non–mobile device–based web page intervention. Mobile devices have the potential to make it easier for smokers to get smoking cessation support [20]. However, most of the currently available smartphone smoking cessation apps on the market have the problem of low compliance with standard clinical practice guidelines [21]. In 2018, a study of smoking cessation apps for the UK mobile phone app market found that most smoking cessation apps had low theoretical adherence, and the overall quality of smoking cessation apps was still unsatisfactory [22]. A review showed that there was insufficient evidence of the smartphone app’s effectiveness on smoking cessation support; thus, more randomized controlled trials (RCTs) were recommended to validate the smartphone-based digital smoking cessation interventions [12]. Specifically, as far as we know, there has been no mobile smoking cessation app with sufficient clinical evidence in China.

As an indispensable part of psychotherapy, cognitive behavioral therapy (CBT) plays an important role in the field of psychological and behavioral intervention [23]. One of the roles of CBT involves challenging behaviors that may trigger or sustain difficulties, such as smoking. CBT has been proven to help reduce cravings and promote smoking cessation by changing participants’ thoughts and behaviors [24]. The CBT quitting method consists of several parts, generally including preparation before quitting smoking, starting quitting smoking, and maintaining or preventing the recurrence treatment stage [25]. CBT may be a good choice for people who want to quit smoking, especially for those who want to quit smoking through nondrug methods [25,26]. Our previous study on “Happy Quit” SMS text message smoking cessation in China found that a CBT-based smoking cessation intervention can effectively improve the 24-week continuous smoking cessation rate [16,27]. As far as we know, there is little research to explore the effect of CBT-based mobile apps on smoking cessation intervention. Therefore, we are committed to designing a CBT-based mobile app for Chinese smokers who want to quit smoking, so as to find more effective ways to quit smoking.

Considering the above factors, in order to provide more feasible and effective smoking cessation services, we developed a scientific mobile smoking cessation app based on clinical practice guidelines. Smoking is an unhealthy behavior that can be altered, and CBT can help solve a wide range of smoking cessation problems. Various forms of interventions were developed in the app based on CBT to help smokers learn new
skills, resist smoking cravings [28], and better deal with emotional disorders [29].

This Mandarin mobile smoking cessation app, based on CBT, integrates smoking cessation support and social skills training and finally achieves the goal of cognitive behavior change. A previous 1-arm study on the feasibility and acceptability of this CBT-based smartphone app was carried out for Chinese smokers who wanted to quit and showed that the smoking cessation app may become a new digital therapy model and have the potential to provide support for smoking cessation services in China [30]. We hypothesized in this study that the CBT-based smoking cessation app is feasible and acceptable and can significantly increase the quit rate.

Methods

Objectives

In the current trial, the objectives were to evaluate the feasibility and acceptability of this Chinese CBT-based app in a direct-to-participant clinical design and preliminarily evaluate the efficacy of the CBT-based app for smoking cessation in China. Given that CBT [23] is the current standard in behavioral intervention for smoking cessation, we tested the hypotheses that participation in this intervention will lead to significant improvement in the self-reported continuous smoking cessation rate at 4 weeks; self-reported 7-day point prevalence smoking abstinence and reduction of the number of cigarettes smoked per day at weeks 1, 2, 3, and 4; and that the program would be acceptable to participants.

Study Design

This was a randomized controlled, direct-to-participant clinical trial conducted in China. Researchers conducted preliminary conditional screenings for each participant. In the baseline assessment, all eligible participants were required to fill out a baseline questionnaire that included demographic information, motivation to quit smoking and willingness.

Using a randomization method by electronic data capture system, participants were randomly assigned to a smoking cessation app intervention group or to a control group in a 1:1 ratio after the completion of the screening, consent, and baseline questionnaires. No changes have been made to the trial design since its commencement. Participants in the intervention group received the CBT-based smoking cessation app, while those in the control group were encouraged to quit but were not provided with the CBT-based smoking cessation app. A control group was used since this was an exploratory study designed to assess both the feasibility, acceptability, and initial efficacy of the app intervention. Participants were required to complete the program acceptability assessment, including the App Satisfaction Assessment Scale and the Mobile Application Rating Scale, user version (uMARS; including engagement, functionality, aesthetics, information, and the average score of the uMARS total score), 4 weeks after the quit date. Each item is scored from 1 to 5, with a maximum total score of 5.0. The higher the score, the better the satisfaction [31]. Follow-up visits were conducted at weeks 1, 2, 3, and 4 after the participants started smoking cessation. The study design is depicted in Figure 1.
Participants
The eligibility criteria for participants are shown in Textbox 1.

Textbox 1. Eligibility criteria for participants.

Inclusion criteria
- Cigarette smokers (smoked more than 100 cigarettes in their lifetime and currently smoke 5 or more cigarettes a day)
- Aged 25 years or older
- Able to read and write in Chinese
- Owning a smartphone (operating system: iOS or Android)
- Having experience in using apps
- Expressing an interest in quitting smoking within the next month
- Willing to provide informed consent to participate in the study
- Able to follow up for at least 1 week

Exclusion criteria
- Nonsmokers or only use electronic cigarettes
- Smokers without previous “serious” attempts to quit smoking (Motivation to Stop Scale score <7)
- Currently experiencing severe mental illness
- Had already started their quit attempt or used any smoking cessation treatment at the time of registration
- Unable to use smartphones and apps
- Did not have sufficient command of Chinese to participate in the trial
Procedures

Sample Size
A sample size of about 200 participants was calculated to give 80% power and a 2-sided 5% significance for detecting a beneficial difference in the self-reported continuous smoking cessation rates between the CBT app intervention and the control intervention. These assumptions were made based on our previous RCT of CBT-based SMS text messaging interventions for smoking cessation [16] and other previous RCTs of smartphone app interventions for smoking cessation [15], as well as the consideration of the better efficacy of the CBT-based app than the non–CBT-based app for smoking cessation [32]. A total of 200 participants randomized 1:1 to each arm (n=100) would obtain a 95% CI width estimate of ±10% for the CBT-based app for a 4-week self-reported continuous quit rate. The 20%-30% CBT-based app quit rate CI (95% CI) was designed to provide precision in estimating the main study of CBT-based app intervention. There were no planned interim analyses or stopping rules.

Recruitment
From February 23 to June 27, 2021, a total of 206 participants were recruited through advertisements on social media, such as WeChat (Tencent), Weibo, the website, and the principal investigator–affiliated hospital WeChat official account. Potential participants were screened through a mobile phone or WeChat phone contact. Of the 973 screened, 711 did not meet the preliminary inclusion and exclusion criteria. Of the 262 baseline assessments completed, 56 were deemed ineligible to participate. Therefore, a total of 206 participants were randomized and included in the analysis according to the intention-to-treat (ITT) principle.

Recruitment was undertaken through (1) the telephone number for quitting smoking and (2) WeChat, a popular social media in China. For recruitment through the telephone number, research investigators directly contacted these participants about the study by phone call. For recruitment through WeChat, participants were invited to make a WeChat voice or video call to research investigators. A link to informed written consent was sent by email to each eligible participant, and e-consent was obtained from all participants before the study commencement and data collection.

Stratified Block Randomization
Randomization was conducted by an electronic data capture system, a computerized system designed for the collection of clinical data in electronic format for RCTs and other clinical trials. Randomization was at the level of the individual participant with a 1:1 ratio by the method of minimization stratified by balancing for (1) with or without previous quit attempts and (2) 10 cigarettes or more per day. The study investigators were blinded to participants’ treatment allocation until all data were collected. The investigators who analyzed the data were also blinded to participants’ allocated groups until analysis completion.

Interventions

Overview
Following randomization, participants set a smoking cessation day. On that day, participants began receiving personalized messages to help quit smoking through either a smartphone app (intervention group) or by simply receiving SMS text messages (control group). The intervention group also logged into the smoking cessation app, started a smoking cessation journey, completed tasks, and sought personalized smoking cessation assistance under the automatic guidance of the app, while the control group received regular SMS text messages.

Control Group
Participants in the control group received information to thank them for their participation and to remind them to complete their smoking status at each point.

Intervention Group
Participants from the intervention group were invited to download the CBT-based app. The app integrates cognitive-behavioral principles and tailored behavior-change skills in Chinese. More descriptive details of this smartphone app were available elsewhere [33]. Participants who were randomly assigned to the intervention group were instructed on how to access and use the app, including a schedule of intervention activities, tasks during the pre- and post-preparation stages, and expected completion dates. Participants could begin their assigned tasks immediately after completing the pretest assessment. The system limited participants to 3 tasks each day during the preparation stage. To encourage completion, SMS text message reminders were sent each week after the quit date.

Both Groups
All participants earned CNY 20 (US $2.8) phone top-ups for the completion of pre- and posttest questionnaires. Participants from both groups received a reminder by SMS text message to complete questions about their smoking status during weeks 1, 2, 3, and 4 after the quit date by electronic Patient Reported Outcomes (ePRO) software.

Outcome Measures

Participant Demographics and Smoking Behaviors at Baseline
Participant demographic and smoking behaviors at baseline, including gender, age, height, weight, education, cigarettes per day, quit history, motivation, self-efficacy to quit, quitting smoking gradually or abruptly, smoking craving, and severity of nicotine dependence, were evaluated using the Fagerstrom Test for Nicotine Dependence (FTND).

4-Week Continuous Smoking Abstinence
Continuous smoking abstinence for 4 weeks is defined as smoking no more than 5 cigarettes in the past 4 weeks since quitting, measured through response to the following item: (1) “How many cigarettes have you smoked in the last 4 weeks?” Response choices were “0,” “1-5,” or “more than 5”; and (2) “If more than 5,” recorded the number of smoked cigarettes per week.” Within 4 weeks, participants who smoked more than

https://formative.jmir.org/2024/1/e48050

Chen et al

JMIR FORMATIVE RESEARCH

JMIR Form Res 2024 | vol. 8 | e48050 | p.1352

XSL•FO
5 cigarettes indicated a recurrence [34]. This was the primary outcome measure.

7-Day Point Prevalence Smoking Abstinence
Self-reported abstinence of at least 7 days before the assessment day was assessed 1, 2, 3, and 4 weeks after each participant’s quit date. It is defined as smoking no more than 5 cigarettes in the past 1, 2, 3, and 4 weeks since quitting.

Reduction of the Number of Cigarettes Smoked Per Day
Daily cigarette consumption among participants who were still smoking after quitting days (participants who smoked more than 5 cigarettes in total but less than 1 cigarette per day were considered to have smoked 1 cigarette per day).

Program Acceptability
A questionnaire of program acceptability was assessed at 4 weeks post quitting, including the App Satisfaction Assessment Scale and the uMARS. Questions are shown in the Results section.

Safety
The safety of this program was evaluated by the collection and analysis of spontaneous adverse events reported by participants. No serious adverse events were reported by participants in our trial.

Intervention Effects
The primary outcome was the self-reported continuous smoking abstinence rates at 4 weeks after the quit date. Secondary outcomes included self-reported 7-day point prevalence smoking abstinence at weeks 1, 2, 3, and 4, reduction of the number of cigarettes smoked per day from week 1 to week 4, program acceptability, and the association of outcomes with baseline data. In all analyses, participants who dropped out or were lost to follow-up were considered treatment failures and smokers. Participants using smoking cessation methods not allowed in this study were not included in the efficacy analysis.

Statistical Analysis
Statistical analyses were conducted with R software (R Foundation for Statistical Computing) and SPSS (version 23; IBM Corp). All baseline data comparisons, including participant demographics and smoking behaviors, were conducted using a chi-square test. A total of 206 participants were included in the analysis according to the ITT principle. In both groups, nominal and ordinal demographics were compared using chi-square tests, and continuous variables were compared using independent samples 2-tailed t tests. The number of average cigarettes smoked per day was compared using a 2-sample t test between groups. The mixed-effects model was used to test the self-reported smoking abstinence rates in intervention groups and control groups. Program acceptability (treatment satisfaction ratings) for participants with the app intervention was evaluated by tallying the proportion of users answering each item on the usability measure. If the smoking status was not available after quitting, the participant was considered to have smoked the same number of cigarettes per day as before quitting. The odds ratio was used as a measure of outcomes in the intervention group compared to the control group. Multiple imputations will be used in chained equations. A 2-sided P<.05 was used to determine statistical significance.

Ethical Considerations
The study protocol was approved by the ethics committee of Sir Run Run Shaw Hospital, an affiliate of Zhejiang University School of Medicine (protocol number 20200129-33), and was published [33]. The trial was performed in accordance with the Declaration of Helsinki. Informed consent was obtained from all participants. The purpose, procedures and measurements, potential risks, and benefits of the trial were explained to each participant before recruitment. The investigators who analyzed the data were also blinded to participants’ allocated groups until analysis completion.

Results

Follow-Up Rate
Figure 1 shows the process of screening, grouping, and follow-up of participants in this study. A total of 206 participants were recruited from February 23 to June 27, 2021. Of the 973 screened, 711 did not meet the preliminary inclusion and exclusion criteria. Overall, 262 completed baseline assessments, but 56 were deemed ineligible to participate. Therefore, a total of 206 participants were included in the analysis according to the ITT principle.

Participant Characteristics
Demographics and smoking characteristics at baseline for all participants are presented in Table 1. There were no statistically significant differences in the baseline characteristics of the 2 groups of participants (P>.05). A total of 206 participants were enrolled in the trial. There were 189 (91.7%) men and 17 (8.3%) women, with an average age of 34.46 (SD 7.53) years and an average daily smoking rate of 15.93 (SD 7.10) cigarettes per day.
Table 1. Baseline characteristics of study groups.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Intervention (n=101)</th>
<th>Control (n=105)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man</td>
<td>94 (93.1)</td>
<td>95 (90.5)</td>
</tr>
<tr>
<td>Woman</td>
<td>7 (6.9)</td>
<td>10 (9.5)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-34</td>
<td>34.62 (8.03)</td>
<td>34.30 (7.04)</td>
</tr>
<tr>
<td>>34</td>
<td>43 (42.6)</td>
<td>44 (41.9)</td>
</tr>
<tr>
<td>Education (years), n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤12</td>
<td>14 (13.9)</td>
<td>12 (11.4)</td>
</tr>
<tr>
<td>>12</td>
<td>87 (86.1)</td>
<td>93 (88.6)</td>
</tr>
<tr>
<td>Cigarettes smoked per day, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤10</td>
<td>39 (38.6)</td>
<td>38 (36.2)</td>
</tr>
<tr>
<td>11-20</td>
<td>49 (48.5)</td>
<td>55 (52.4)</td>
</tr>
<tr>
<td>21-30</td>
<td>10 (9.9)</td>
<td>11 (10.5)</td>
</tr>
<tr>
<td>>30</td>
<td>3 (3)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Number of previous quit attempts, mean (SD)</td>
<td>2.07 (5.47)</td>
<td>3.33 (13.7)</td>
</tr>
<tr>
<td>FTNDa score, mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤4 (low dependence)</td>
<td>55 (54.5)</td>
<td>55 (52.4)</td>
</tr>
<tr>
<td>4-6 (moderate dependence)</td>
<td>29 (28.7)</td>
<td>37 (35.2)</td>
</tr>
<tr>
<td>>6 (high dependence)</td>
<td>17 (16.8)</td>
<td>13 (12.4)</td>
</tr>
<tr>
<td>BMI, mean (SD)</td>
<td>24.39 (2.96)</td>
<td>24.54 (3.91)</td>
</tr>
<tr>
<td>Smoking (years), mean (SD)</td>
<td>13.85 (7.88)</td>
<td>14.50 (6.65)</td>
</tr>
<tr>
<td>Motivation to quit, mean (SD)</td>
<td>9.04 (1.48)</td>
<td>8.94 (1.31)</td>
</tr>
<tr>
<td>Self-efficacy to quit, mean (SD)</td>
<td>8.03 (2.37)</td>
<td>8.13 (1.89)</td>
</tr>
<tr>
<td>VASb score, mean (SD)</td>
<td>6.77 (2.53)</td>
<td>6.81 (2.16)</td>
</tr>
</tbody>
</table>

aFTND: Fagerstrom Test for Nicotine Dependence.
bVAS: Visual Analogue Scale (VAS measures the degree of craving for smoking; 0-10 points, where 0 represents no craving and 10 represents strong craving.

The Outcome of Abstinence Rates

The Primary Outcome

Compared with 7/105 (6.7%) participants in the control group, self-reported continuous smoking abstinence at week 4 was higher (30/101, 29.7% participants) in the intervention group (odds ratio 5.92, 95% CI 3.78-9.26; P<.001; Table 2).
Table 2. Primary and secondary outcomes.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Intervention participants (n=101), n (%)</th>
<th>Control participants (n=105), n (%)</th>
<th>OR (95% CI)</th>
<th>P value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-reported continuous abstinence at 4 weeks</td>
<td>30 (29.7)</td>
<td>7 (6.7)</td>
<td>5.92 (3.78-9.26)</td>
<td><.001</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-reported 7-day point prevalence of abstinence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 week</td>
<td>47 (46.5)</td>
<td>28 (26.7)</td>
<td>2.39 (1.78-3.22)</td>
<td>.003</td>
</tr>
<tr>
<td>2 weeks</td>
<td>43 (42.6)</td>
<td>19 (18.1)</td>
<td>3.36 (2.43-4.64)</td>
<td><.001</td>
</tr>
<tr>
<td>3 weeks</td>
<td>43 (42.6)</td>
<td>21 (20)</td>
<td>2.97 (2.16-4.07)</td>
<td><.001</td>
</tr>
<tr>
<td>4 weeks</td>
<td>45 (44.6)</td>
<td>20 (19)</td>
<td>3.42 (2.48-4.70)</td>
<td><.001</td>
</tr>
</tbody>
</table>

^a OR: odds ratio.
^b Bonferroni corrected P values.

The Secondary Outcomes

The Secondary Outcomes Table 2 details the results of self-reported 7-day point prevalence of smoking abstinence at weeks 1, 2, 3, and 4. It was shown that the self-reported 7-day point prevalence of smoking abstinence at weeks 1, 2, 3, and 4 of the intervention group were 46.5% (47/101), 42.6% (43/101), 42.6% (43/101), and 44.6% (45/101), respectively, while 7-day point prevalence of smoking abstinence in the control group was 26.7% (28/105), 18.1% (19/105), 20% (21/105), and 19% (20/105), respectively. The differences were statistically significant at all time points. Compared to the control group, continued smokers consumed 1.5-3.0 fewer cigarettes per day in the intervention group (Table 3).

Table 3. Cigarettes consumed per day in nonabstinent participants (only those who self-reported smoking more than 5 cigarettes [reaching the standard of relapse] after the quit date were included).

<table>
<thead>
<tr>
<th>Assessment point</th>
<th>Intervention group</th>
<th>Control group</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Participants, n</td>
<td>Participants, n</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>15.96 (7.46)</td>
<td>15.90 (6.77)</td>
<td>.45</td>
</tr>
<tr>
<td>Follow-up</td>
<td>5.96 (7.46)</td>
<td>5.90 (6.77)</td>
<td><.05</td>
</tr>
<tr>
<td>1 week</td>
<td>8.81 (5.56)</td>
<td>7.70 (7.06)</td>
<td>.10</td>
</tr>
<tr>
<td>2 week</td>
<td>9.53 (5.69)</td>
<td>10.70 (7.57)</td>
<td>.22</td>
</tr>
<tr>
<td>3 week</td>
<td>9.21 (5.58)</td>
<td>11.29 (6.85)</td>
<td>.06</td>
</tr>
<tr>
<td>4 week</td>
<td>9.50 (5.58)</td>
<td>11.67 (8.17)</td>
<td>.09</td>
</tr>
</tbody>
</table>

The Acceptability and Feasibility of the CBT-Based Smoking Cessation App Program

The Acceptability and Feasibility of the CBT-Based Smoking Cessation App Program Participants were required to complete the program acceptability assessment, including the App Satisfaction Assessment Scale and uMARS, 4 weeks after their quit date. All participants (n=101) in the intervention group were contacted to evaluate the program based on their experience, and we finally obtained responses from 87 people, including 87 on the App Satisfaction Assessment Scale and 84 on the uMARS. The overall program satisfaction was 76% (66/87) and the percentage of dislikes was less than 10% (9/87). The uMARS included the average scores of 5 items scored 1-5, namely, engagement (2.96), functionality (3.73), aesthetics (3.56), information (3.6), and the average score of the uMARS total score (3.46). More details are available in Tables S1 in Multimedia Appendix 1 and Table 4.

Table 4. Descriptive analysis of Mobile Application Rating Scale user version subdomains total score (n=84).

<table>
<thead>
<tr>
<th>subdomain</th>
<th>Mean (SD)</th>
<th>Median (IQR)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engagement</td>
<td>2.96 (0.76)</td>
<td>3.00 (2.60-3.40)</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Functionality</td>
<td>3.73 (0.81)</td>
<td>3.75 (3.25-4.25)</td>
<td>1.50</td>
<td>5.00</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>3.56 (0.81)</td>
<td>3.67 (3.00-4.00)</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Information</td>
<td>3.60 (0.92)</td>
<td>3.75 (3.00-4.25)</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Average of total score<sup>a</sup></td>
<td>3.46 (0.71)</td>
<td>3.47 (3.06-3.92)</td>
<td>1.53</td>
<td>5.00</td>
</tr>
</tbody>
</table>

^aAverage of total score = total score (engagement + functionality + aesthetics + information)/4.
Discussion

Principal Findings

In this study, our main results indicate that (1) the 4-week continuous smoking cessation rate of the intervention group participants (30/101, 29.7%) was statistically significantly higher than that of control group participants (7/105, 6.7%); (2) the self-reported 7-day point prevalence smoking abstinence rate in the intervention group at the weeks 1, 2, 3, and 4 was higher than that in the control group (43/101, 42.6% to 47/101, 46.5% vs 19/105, 18.1% to 28/105, 26.7%); (3) compared with the control group, those who continued to smoke in the intervention group smoked 1.5-3.0 fewer cigarettes a day; (4) the app had high overall satisfaction rating (66/87, 76%) and average uMARS scores (3.46). These findings suggest that the CBT-based smartphone app is effective for smoking cessation, and it could be an effective, feasible, and easy-to-access quitting app in China. It is hopeful for this app to be introduced to a large-scale Chinese population to intervene in smoking cessation.

The effectiveness of this CBT-based smartphone app intervention on short-term smoking cessation rates was encouraging. About half (47/101, 46.5%) of participants in the intervention group and about a quarter (28/105, 26.7%) in the control group reported 7-day abstinence in the first week after quitting, which was comparable to the preliminary results of other randomized controlled digital intervention studies on smoking cessation [35,36]. Previous research results for smartphone apps and SMS text messaging smoking cessation programs were similar to ours [16,37]. Participants in the intervention group reported point prevalence that was 3 to 4 times higher than that in the control group from 1 to 4 weeks, and self-reported continuous abstinence at 4 weeks in the intervention group was similar to that in previous smartphone smoking cessation app studies [37,38].

The results of this study show that the smoking cessation rate is high, and there have been some similar or inconsistent studies in the past, although there are some differences in smoking cessation standards. A systematic evaluation of smartphone apps for quitting smoking found that the results of 11 RCTs were not consistent. Among these 11 studies, the abstinence rate of the test group was significantly higher than that of the control group in 4 studies, the abstinence rate of the test group was not significantly higher than that of the control group in 5 studies, and there was no difference between the test and control groups in 2 studies [1]. The social environment in China is still quite tolerant of smokers and appears less supportive of quitting behavior, so potential quitters in China may be more resistant to personal intervention than smokers in other countries [16]. As far as we know, there are no mobile smoking cessation platforms developed under the theoretical guidance of professional medical institutions in the domestic software development market, and most of the smoking cessation apps in China are developed by individuals or companies that may not have knowledge of clinical smoking cessation practice. Those apps comply less with the recommendations from the China clinical smoking cessation guidelines (2015 edition), and their smoking cessation effect is limited [21]. Therefore, for most Chinese smokers, using apps to quit smoking is a new way to quit smoking that needs further improvement.

China has introduced some smoking control measures, but the choice of a mobile smoking cessation service is relatively limited. The earliest method of smoking cessation based on mobile phones was mainly SMS text messages [39]. Our team previously carried out an SMS text message smoking cessation project, and the effect of smoking cessation was relatively significant [16]. China’s smoking cessation services are inadequate. An authoritative national survey found that in 31 provinces, only 366 hospitals and primary care centers offered smoking cessation clinics [7]. Among them, smoking cessation clinics are mostly attached to tertiary or secondary hospitals, but population-level interventions rely heavily on primary care settings [40], where fewer clinics exist. In addition, the limited use of smoking cessation medications in China is also a serious problem [7]. Additionally, many smokers who want to quit smoking have low awareness of and use of smoking cessation support services [41].

It is noteworthy that the overall program satisfaction (66/87, 76%) and the average score of the uMARS total score (3.46) were high. About 80% (69/87) of the participants would happily recommend the app to others, which was consistent with the results of a randomized clinical trial of a smartphone app based on acceptance and commitment therapy for quitting smoking [37]. In this study, except for engagement, the software’s functionality, aesthetics, information, and the average score of the uMARS total score were all around 3.5, indicating that the participant’s overall satisfaction level was relatively high. Similar to our results, a study showed that participants made suggestions, including making features more ramified and integrating with some social media platforms to increase app and user interactivity, although some smartphone smoking cessation apps were widely accepted [41].

This pilot study provided valuable learning for future research. A review study showed that the certainty of evidence comparing smartphone apps to very low-intensity smoking cessation support was very low, and more RCTs were needed to test these interventions [12]. Also, the recruitment of participants in the intervention and control groups of RCTs related to smartphone apps for smoking cessation was not easily supported [41]. It is worth mentioning that we recruited eligible participants in this preliminary study and carried out RCTs in accordance with the norms, obtaining relatively accurate data and also providing a reference and basis for subsequent RCT studies. These preliminary data still provide sufficient and reliable information for our subsequent larger, robust trials.

Limitations and Strengths

There are some limitations to our study. First, this study was a pilot study with a small sample size, and the results may be biased. At present, our large-sample trial has begun, which will help to further confirm our preliminary research results. Second, due to the need to master the basic ability to use the app, the enrolled smokers were relatively younger and had a higher education level, so the smoking cessation effect of the smoking cessation APP is uncertain for older or less educated smokers.
and more caution needs to be exercised if the results are
genormalized to older or less educated smokers. Finally, some
important subgroup analyses, such as smoking cessation rates
between men and women, tobacco users, and e-cigarette users,
were not considered in this study. Although we matched the 2
groups of quitters on factors such as gender and smoking status,
these differences could potentially have an impact on smoking
cessation outcomes. Despite these limitations, this study’s
strengths included its conduct in China, the direct-to-participant
design, and the use of an RCT.

Conclusions
This pilot study of a CBT-based smartphone smoking cessation
app provided preliminary evidence that the app led to improved
smoking cessation rates versus control in Chinese smokers. This
study demonstrated that the CBT-based smartphone app may
be an effective and feasible digital treatment model to quit
smoking, which may improve smoking cessation services in
China.

Acknowledgments
We sincerely thank all participants, their families, and all workers for their support. We are grateful to Johnson & Johnson
Pharmaceutical Company for providing critical comments and suggestions for the study design and development of the digital
intervention app. The source of funding had no impact on the data collection and analysis of the study or the writing and submission
of the manuscript.

The research is supported by Johnson & Johnson Pharmaceutical Company (K-20201478). The funder was collaboratively
involved in the study design, development of the data collection tool, and app software development, but the company had no
involvement in enrollment, providing an informed consent form, contacting participants, addressing safety issues, or monitoring
and collecting data.

Data Availability
All data in this study will be available from the corresponding author on reasonable request and upon completion of the data user
agreement.

Authors’ Contributions
YL and JT developed and designed the study, and SC collected and analyzed the data. SC and YL took the lead in drafting the
manuscript protocol, with contributions by JT, who advised on the study design and coordinated study approval. YL and JT read
and proposed critical comments, as well as approved the manuscript for publication. All authors read and approved the final
manuscript.

Conflicts of Interest
YL received funding from Johnson & Johnson Pharmaceutical Company for the study. SC, JT, CW, GZ, JZ, and YL have no
potential conflicts of interest to declare.

Multimedia Appendix 1
Questions for assessing program satisfaction.
[DOCX File, 17 KB - formative_v8i1e48050_app1.docx]

Multimedia Appendix 2
CONSORT-eHEALTH checklist (V 1.6.1).
[PDF File (Adobe PDF File), 1408 KB - formative_v8i1e48050_app2.pdf]

References
1. Chu KH, Matheny SJ, Escobar-Viera CG, Wessel C, Notier AE, Davis EM. Smartphone health apps for tobacco cessation:
URL: http://www.tobaccoatlas.org/ [accessed 2014-10-07]

Abbreviations
- **CBT**: cognitive behavioral therapy
- **ePRO**: electronic Patient Reported Outcomes
- **FTND**: Fagerstrom Test for Nicotine Dependence
- **ITT**: intention to treat
- **RCT**: randomized controlled trial
- **uMARS**: Mobile Application Rating Scale user version

Caitlin M Drover¹, MPH; Adam S Elder¹, PhD; Brandon L Guthrie¹,², PhD; Debra Revere³, MLIS; Nicole L Briggs¹, MPH; Laura M West⁴, MS; Amanda Higgins⁴, MSHI; William B Lober⁵,⁶, MD; Bryant T Karras⁴, MD; Janet G Baseman¹, PhD

¹Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
²Department of Global Health, School of Public Health, University of Washington, Seattle, WA, United States
³Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, WA, United States
⁴Department of Health, Washington State, Tumwater, WA, United States
⁵Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, United States
⁶Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, United States

Corresponding Author:
Adam S Elder, PhD
Department of Epidemiology
School of Public Health
University of Washington
Hans Rosling Center for Population Health
3980 15th Avenue NE
Seattle, WA, 98195-1616
United States
Phone: 1 5056159180
Email: eldera3@uw.edu

Abstract

Background: WA Notify was Washington State’s smartphone-based COVID-19 digital exposure notification (EN) tool, which was used to help limit the spread of COVID-19 between November 30, 2020, and May 11, 2023. Following the 2022 Washington State Public Health Association Annual Conference, attendees who had WA Notify activated began receiving ENs alerting them to a possible COVID-19 exposure during the conference. A survey was emailed to all conference attendees to measure WA Notify adoption, mechanisms through which attendees received ENs, and self-reported engagement in protective behaviors postexposure.

Objective: This study aimed to learn more about the experiences of WA Notify adopters and nonadopters who may have been exposed to COVID-19 at a large group gathering.

Methods: A web-based survey administered through REDCap (Research Electronic Data Capture; Vanderbilt University) was sent to all attendees of the Washington State Public Health Association conference. Self-reported demographic information and characteristics of respondents were summarized. Regression models were used to estimate relative risks to compare WA Notify adoption and testing behaviors between groups.

Results: Of the 464 total registered attendees who were sent the survey, 205 (44%) responses were received; 201 eligible attendees were included in this analysis. Of those, 149 (74%) respondents reported having WA Notify activated on their phones at the time of the conference. Among respondents with WA Notify activated, 54% (n=77) reported learning of their potential exposure from a WA Notify EN. Respondents who reported that they did not have WA Notify activated and learned of their potential exposure via the event-wide email from conference organizers were 39% less likely to test for COVID-19 compared to respondents with WA Notify activated who learned of their potential exposure from the email (relative risk 0.61, 95% CI 0.40-0.93; P=.02), and this gap was even larger when compared to respondents who learned of their exposure from a WA Notify EN. The most commonly cited reason for not having WA Notify activated was privacy concerns (n=17, 35%), followed by not wanting to receive ENs (n=6, 12%) and being unaware of WA Notify (n=5, 10%).

Conclusions: Digital EN systems are an important tool to directly and anonymously notify close contacts of potential exposures and provide guidance on the next steps in a timely manner. Given the privacy concerns, there is still a need for increasing
Background
Smartphone-based COVID-19 digital exposure notification (EN) tools were developed at the beginning of the COVID-19 pandemic to help limit the spread of the SARS-CoV-2 virus. These tools alert users of possible exposure to COVID-19 based on Bluetooth-based proximity to other users' devices and other users informing the system of a positive COVID-19 diagnosis [1]. According to the Association of Public Health Laboratories, which helped support EN systems across the United States, 28 states have implemented a digital EN tool, including Washington State, which launched its EN system, WA Notify on November 30, 2020 [2,3]. Like most of these tools, WA Notify was built using the Google-Apple Exposure Notification (GAEN) Bluetooth system and its GAEN Express platform [1-4]. GAEN-based digital COVID-19 EN tools preserve the users' privacy; adoption or activation of the tool is anonymous, users and their locations are not tracked, and data protections ensure ENs are distributed anonymously. As of April 11, 2023, WA Notify had been activated on smartphones over 3.92 million times. During the period in which WA Notify was operating, approximately 230,000 positive COVID-19 cases were reported to the system and an estimated 1.94 million ENs were shown to users [5].

The effectiveness of EN tools like WA Notify is presumed to include providing rapid notification of possible exposure to users [6] and using effective strategies to encourage individuals shown an EN to engage in behaviors to reduce further spread, such as testing and isolating [7,8]. While direct observation of WA Notify users’ protective behaviors after being shown an EN is not possible, we can ask users who were shown an EN about their anticipated and completed protective behaviors through optional, anonymous surveys. The results from these surveys suggest that ENs do influence behavior, and it has been estimated that digital EN tools such as WA Notify have averted thousands of new COVID-19 cases in the states in which they have been deployed and widely adopted [9-11].

In October 2022, the Washington State Public Health Association (WSPHA) held its Annual Conference. Several conference attendees tested positive for COVID-19 either during or following the conference. In the week following, WA Notify users who attended the conference began receiving ENs of possible exposure during the time period when they were attending the conference. This event presented a unique opportunity to capture WA Notify user interactions in the context of a large public gathering as well as the experiences of public health professionals—a population potentially more likely to both adopt digital EN tools and engage in protective behaviors—undertaking protective health behaviors in response to receiving an EN. We describe the results of a postconference web-based survey emailed to all attendees to measure WA Notify adoption, mechanisms through which attendees were alerted to a possible COVID-19 exposure (digital EN, personal communication, etc), and self-report of engagement in protective behaviors after learning of the exposure.

Objectives
We aimed to learn more about the experiences of WA Notify adopters and nonadopters who may have been exposed to COVID-19 at a large group gathering.

Methods
How WA Notify Works
WA Notify (and other similar EN systems) can be activated either through the settings on iPhones or downloaded as an app on Android phones [3,5]. When in close proximity to another activated phone, the devices will exchange random, anonymous cryptographic Bluetooth keys. If the owner of either device later tests positive for COVID-19, they may anonymously confirm their positive result using the tool. Depending on the length and proximity of the phones’ interaction, ENs will be shown on phones belonging to individuals who have exchanged Bluetooth keys with the infected individual. While ENs may be displayed on phones for exposures happening up to 10 days earlier, the average time between exposure and the EN alert was 4.6 days in October 2022. The examples of EN messages from WA Notify can be found in Multimedia Appendix 1.

Survey Instrument
A web-based survey was designed to capture WA Notify engagement (adoption and reasons for not having WA Notify activated), awareness that someone who attended the conference later tested positive for COVID-19, respondents’ COVID-19 status (presence of symptoms, testing, and result), vaccination status, and demographics (race or ethnicity, age, gender, and state residency). The survey was piloted internally to assess clarity, question order, and timing. The final survey was programmed and administered through REDCap (Research Electronic Data Capture) [12]. A copy of the survey can be found in Multimedia Appendix 2.

Survey invitations were distributed via email to a list of all WSPHA conference attendees on October 28, 2022, a total of 15 days after the conference, by the conference organizer. Reminders were sent on November 6, 2022, and the survey closed on November 10, 2022.
Inclusion Criteria
Only respondents who attended the WSPHA Annual Conference on October 11 through 13, 2022, were included. Reports of ENs distributed outside of October 11 through 23 were excluded since these ENs fall outside of the 10-day window for ENs plausibly resulting from interactions at the WSPHA conference [3].

Statistical Analysis
Survey responses were tallied and stratified by the primary outcome of interest, WA Notify activation status. Variables of interest included how respondents learned that someone who attended the conference later tested positive for COVID-19, the development of COVID-19 symptoms, engagement in protective behaviors after being shown an EN, and vaccination status. Univariate Poisson regression models were used to estimate relative risks (RRs) of having WA Notify activated and postconference testing behavior between groups.

Ethical Considerations
The University of Washington institutional review board determined that this project was a public health quality improvement or surveillance project and nonhuman subjects research. The data used in this study were obtained from a voluntary survey that did not provide any compensation for participation and did not collect any personally identifiable information.

Results
Respondent Demographics and Characteristics

Demographics
Of the 464 total registered attendees who were sent the survey, 205 (44%) responses were received. Four surveys were excluded because the respondents did not attend the conference in person. A total of 201 completed surveys were included in the analysis, of which 149 (74%) reported having WA Notify active on their phones during the conference (Table 1).

The majority of the sample identified as female (n=158, 79%), White (n=156, 78%), and non-Hispanic, any race (n=174, 87%). Sixty-four percent (n=128) resided in Western Washington and 92% (n=184) reported having completed the primary COVID-19 vaccination series and receiving at least 1 booster.
Table 1. Respondent characteristics by WA Notify activation status (N=201).

<table>
<thead>
<tr>
<th></th>
<th>WA Notify activated</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (n=149)</td>
<td>No (n=49)</td>
<td>Total (N=201)</td>
<td></td>
</tr>
<tr>
<td>Age (years), n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-34</td>
<td>55 (36.9)</td>
<td>9 (18.4)</td>
<td>66 (32.8)</td>
<td></td>
</tr>
<tr>
<td>35-44</td>
<td>35 (23.5)</td>
<td>17 (34.7)</td>
<td>52 (25.9)</td>
<td></td>
</tr>
<tr>
<td>45-54</td>
<td>30 (20.1)</td>
<td>9 (18.4)</td>
<td>39 (19.4)</td>
<td></td>
</tr>
<tr>
<td>55-64</td>
<td>26 (17.4)</td>
<td>8 (16.3)</td>
<td>34 (16.9)</td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td>3 (2.0)</td>
<td>5 (10.2)</td>
<td>9 (4.5)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>1 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>23 (15.4)</td>
<td>9 (18.4)</td>
<td>33 (16.4)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>119 (79.9)</td>
<td>37 (75.5)</td>
<td>158 (78.6)</td>
<td></td>
</tr>
<tr>
<td>Nonbinary</td>
<td>3 (2)</td>
<td>1 (2)</td>
<td>4 (2)</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>3 (2)</td>
<td>0 (0)</td>
<td>3 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1 (0.7)</td>
<td>2 (4.1)</td>
<td>3 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Race b, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>4 (2.7)</td>
<td>2 (4.1)</td>
<td>6 (3)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>18 (12.1)</td>
<td>1 (2)</td>
<td>19 (9.5)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>9 (6)</td>
<td>3 (6.1)</td>
<td>12 (6)</td>
<td></td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>113 (75.8)</td>
<td>41 (83.7)</td>
<td>156 (77.6)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>8 (5.4)</td>
<td>0 (0)</td>
<td>9 (4.5)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>4 (2.7)</td>
<td>4 (8.2)</td>
<td>8 (4)</td>
<td></td>
</tr>
<tr>
<td>Hispanic ethnicity c, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>16 (10.7)</td>
<td>4 (8.2)</td>
<td>21 (10.4)</td>
<td></td>
</tr>
<tr>
<td>Not Hispanic</td>
<td>130 (87.2)</td>
<td>42 (85.7)</td>
<td>174 (86.6)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>3 (2)</td>
<td>3 (6.1)</td>
<td>6 (3)</td>
<td></td>
</tr>
<tr>
<td>Region, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Washington</td>
<td>26 (17.4)</td>
<td>15 (30.6)</td>
<td>41 (20.4)</td>
<td></td>
</tr>
<tr>
<td>Western Washington</td>
<td>103 (69.1)</td>
<td>24 (49)</td>
<td>128 (63.7)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>20 (13.4)</td>
<td>10 (20.4)</td>
<td>32 (15.9)</td>
<td></td>
</tr>
<tr>
<td>Work from home status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All of the time</td>
<td>61 (40.9)</td>
<td>21 (42.9)</td>
<td>84 (41.8)</td>
<td></td>
</tr>
<tr>
<td>Most of the time</td>
<td>42 (28.2)</td>
<td>7 (14.3)</td>
<td>50 (24.9)</td>
<td></td>
</tr>
<tr>
<td>Some of the time</td>
<td>34 (22.8)</td>
<td>14 (28.6)</td>
<td>48 (23.9)</td>
<td></td>
</tr>
<tr>
<td>Not at all</td>
<td>12 (8.1)</td>
<td>7 (14.3)</td>
<td>19 (9.5)</td>
<td></td>
</tr>
<tr>
<td>Vaccination status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>2 (1.3)</td>
<td>0 (0)</td>
<td>2 (1)</td>
<td></td>
</tr>
<tr>
<td>Primary series only</td>
<td>6 (4)</td>
<td>8 (16.3)</td>
<td>15 (7.5)</td>
<td></td>
</tr>
<tr>
<td>Primary series+booster</td>
<td>141 (94.6)</td>
<td>41 (83.7)</td>
<td>184 (91.5)</td>
<td></td>
</tr>
<tr>
<td>Days since the last dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>124 (152)</td>
<td>154 (191)</td>
<td>134 (165)</td>
<td></td>
</tr>
</tbody>
</table>
WA Notify activated

<table>
<thead>
<tr>
<th></th>
<th>Yes (n=149)</th>
<th>No (n=49)</th>
<th>Total(^a) (N=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR)</td>
<td>42.0 (0-665)</td>
<td>48.5 (0-772)</td>
<td>43.5 (0-772)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>6 (4)</td>
<td>3 (6.1)</td>
<td>9 (4.5)</td>
</tr>
</tbody>
</table>

\(^a\)Three respondents reported “I’m not sure” to whether they had WA Notify activated on their phones.
\(^b\)Respondents could select more than 1 answer and percentages can add to over 100%.
\(^c\)Hispanic origin is considered here as a grouping often considered by public health researchers and the United States Census Bureau.

WA Notify Adoption

Reported WA Notify adoption was highest among younger age groups, with 86% (n=55) of those 18-34 years old having WA Notify activated on their smartphones compared to 38% (n=3) of those 65 years and older (Table 2). We found that those aged 35-44 years were 22% less likely to have WA Notify activated than those aged 18-34 years (RR 0.78, 95% CI 0.63-0.97; \(P=.03\)).

Reported adoption also varied across racial groups. Respondents who identified as Asian were 29% more likely to have WA Notify activated compared to those who did not identify as Asian (RR 1.29, 95% CI 1.13-1.49; \(P<.001\)). Respondents who identified as “other” race were 35% more likely to have WA Notify activated compared to those who did not identify as “other” (RR 1.35, 95% CI 1.24-1.47; \(P<.001\)). We found no statistically significant association between WA Notify adoption and Hispanic ethnicity of any race.

Respondents living in Eastern Washington were 22% less likely to have WA Notify activated compared to those living in Western Washington (RR 0.78, 95% CI 0.61-1.00; \(P=.05\)).
Table 2. Respondent characteristics associated with having WA Notify activated (n=198).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values, n/N (%)</th>
<th>Risk ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-34</td>
<td>55/64 (86)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>35-44</td>
<td>35/52 (67)</td>
<td>0.78 (0.63-0.97)</td>
<td>.03 a</td>
</tr>
<tr>
<td>45-54</td>
<td>30/39 (77)</td>
<td>0.90 (0.73-1.09)</td>
<td>.27</td>
</tr>
<tr>
<td>55-64</td>
<td>26/34 (77)</td>
<td>0.89 (0.72-1.10)</td>
<td>.28</td>
</tr>
<tr>
<td>65+</td>
<td>3/8 (38)</td>
<td>0.44 (0.18-1.07)</td>
<td>.07</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>23/32 (72)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>Female</td>
<td>119/156 (76)</td>
<td>1.06 (0.84-1.34)</td>
<td>.62</td>
</tr>
<tr>
<td>Nonbinary</td>
<td>3/4 (75)</td>
<td>1.04 (0.57-1.91)</td>
<td>.89</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>4/6 (67)</td>
<td>0.88 (0.50-1.56)</td>
<td>.67</td>
</tr>
<tr>
<td>Asian</td>
<td>18/19 (95)</td>
<td>1.29 (1.13-1.49)</td>
<td><.001</td>
</tr>
<tr>
<td>Black</td>
<td>9/12 (75)</td>
<td>1.00 (0.71-1.40)</td>
<td>.98</td>
</tr>
<tr>
<td>White</td>
<td>113/154 (73)</td>
<td>0.90 (0.76-1.06)</td>
<td>.21</td>
</tr>
<tr>
<td>Other</td>
<td>8/8 (100)</td>
<td>1.35 (1.24-1.47)</td>
<td><.001</td>
</tr>
<tr>
<td>Hispanic ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Hispanic</td>
<td>130/172 (76)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>Hispanic</td>
<td>16/20 (80)</td>
<td>1.06 (0.84-1.34)</td>
<td>.64</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Washington</td>
<td>103/127 (81)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>Eastern Washington</td>
<td>26/41 (63)</td>
<td>0.78 (0.61-1.00)</td>
<td>.05</td>
</tr>
<tr>
<td>Work from home status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All of the time</td>
<td>61/82 (74)</td>
<td>1.18 (0.82-1.70)</td>
<td>.38</td>
</tr>
<tr>
<td>Most of the time</td>
<td>42/49 (86)</td>
<td>1.36 (0.95-1.95)</td>
<td>.10</td>
</tr>
<tr>
<td>Some of the time</td>
<td>34/48 (71)</td>
<td>1.12 (0.76-1.65)</td>
<td>.56</td>
</tr>
<tr>
<td>Not at all</td>
<td>12/19 (63)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>Vaccination status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>2/2 (100)</td>
<td>N/A c</td>
<td>N/A</td>
</tr>
<tr>
<td>Primary series only</td>
<td>6/14 (43)</td>
<td>0.55 (0.30-1.02)</td>
<td>.06</td>
</tr>
<tr>
<td>Primary series+booster</td>
<td>141/182 (78)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
</tbody>
</table>

aItalic formatting in this table indicates that the β coefficient from the corresponding regression is significantly different from 0 at the $P=.05$ level.
bRespondents could select more than 1 answer. The reference category for each comparison was those who did not select each respective response.
cN/A: not available.

COVID-19 Vaccination Status

Only 2 respondents reported being unvaccinated (Table 2). Respondents who reported receiving only the primary vaccination series were 45% less likely to have WA Notify activated than those with at least 1 booster, although this association was not statistically significant (RR 0.55, 95% CI 0.30-1.02; $P=.06$).

EN Receipt

The WSPHA Annual Conference took place from October 11 through 13, 2022, in Wenatchee, WA. From October 13 through October 23, there were 42 conference attendees who reported receiving their first WA Notify EN. Figure 1 illustrates the dates of the first reported WA Notify EN among participants who remember the date of the EN and who had WA Notify activated during this period. We do not know when attendees tested positive or confirmed their positive tests using WA Notify.
However, due to the 10-day storage period for keys used to determine exposure, the plausible dates for an EN shown due to a potential exposure during the conference were between October 11 and 23. Three respondents reported ENs outside of this range (October 2, 10, and 31), and these ENs were not included in the analysis.

The only EN dates collected with this survey were for the first WA Notify EN shown to those who reported having WA Notify activated and who reported being aware that someone who attended the conference later tested positive for COVID-19. Dates for other ENs were unavailable, except for the WSPHA conference organizer email EN sent to all attendees on October 17.

Figure 1. The plausible dates for an exposure notification shown because of potential exposure during the conference were between October 11 and 23 due to the 10-day storage period for keys used to show exposure notifications. Data were only available for respondents with WA Notify activated who remembered the date of the first WA Notify exposure notification received. Three respondents reported exposure notifications outside of this range (October 2, 10, and 31), and these exposure notifications were not included in the analysis. WSPHA: Washington State Public Health Association.

Symptoms, Testing, and WA Notify Adoption
Following the conference, 17% (n=35) of respondents reported experiencing at least 1 symptom and 63% (n=126) took a test for COVID-19 (Table 3).

Among those who tested, 92.1% (n=116) reported taking an “at-home” rapid antigen test for COVID-19, while the others received a polymerase chain reaction test. Testing was most frequently prompted by receiving an EN from WA Notify (n=58, 29%) or email notification from WSPHA conference organizers (n=56, 28%), although many respondents also reported testing being a routine behavior when they travel (n=44, 22%). Respondents who reported having WA Notify activated were 74% more likely to test for COVID-19 following the conference compared to those who did not have WA Notify activated (RR 1.74, 95% CI 1.22-2.47; P=.002). Nine (7%) respondents reported testing positive following the conference.
Table 3. Respondent testing behaviors and postconference health outcomes by WA Notify activation status (N=201).

<table>
<thead>
<tr>
<th></th>
<th>WA Notify activated, n (%)</th>
<th>Yes (n=149)</th>
<th>No (n=49)</th>
<th>Total^4 (N=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms postconference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>112 (75.2)</td>
<td>35 (71.4)</td>
<td>148 (73.6)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8 (5.4)</td>
<td>3 (6.1)</td>
<td>11 (5.5)</td>
</tr>
<tr>
<td>2+</td>
<td></td>
<td>19 (12.8)</td>
<td>4 (8.2)</td>
<td>24 (11.9)</td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td>10 (6.7)</td>
<td>7 (14.3)</td>
<td>18 (9)</td>
</tr>
<tr>
<td>Tested postconference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>105 (70.5)</td>
<td>20 (40.8)</td>
<td>126 (62.7)</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>43 (28.9)</td>
<td>29 (59.2)</td>
<td>74 (36.8)</td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td>1 (0.7)</td>
<td>0 (0)</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Test reason^b,c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA Notify EN^d</td>
<td></td>
<td>56 (37.6)</td>
<td>2 (4.1)</td>
<td>58 (28.9)</td>
</tr>
<tr>
<td>Conference EN</td>
<td></td>
<td>44 (29.5)</td>
<td>12 (24.5)</td>
<td>56 (27.9)</td>
</tr>
<tr>
<td>Personal EN</td>
<td></td>
<td>14 (9.4)</td>
<td>1 (2)</td>
<td>15 (7.5)</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td>13 (8.7)</td>
<td>3 (6.1)</td>
<td>16 (8)</td>
</tr>
<tr>
<td>Routine</td>
<td></td>
<td>38 (25.5)</td>
<td>6 (12.2)</td>
<td>44 (21.9)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>11 (7.4)</td>
<td>2 (4.1)</td>
<td>14 (7)</td>
</tr>
<tr>
<td>Test method^c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home rapid test</td>
<td></td>
<td>96 (91.4)</td>
<td>19 (95)</td>
<td>116 (92.1)</td>
</tr>
<tr>
<td>Testing center</td>
<td></td>
<td>9 (8.6)</td>
<td>1 (5)</td>
<td>10 (7.9)</td>
</tr>
<tr>
<td>Tested positive^c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>7 (6.7)</td>
<td>1 (5)</td>
<td>9 (7.1)</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>98 (93.3)</td>
<td>19 (95)</td>
<td>117 (92.9)</td>
</tr>
</tbody>
</table>

^aThree respondents reported “I’m not sure” to whether they had WA Notify activated on their phones.
^bRespondents could select more than 1 answer and percentages can add to over 100%.
^cAmong respondents who reported testing for COVID-19 following the conference (n=126).
^dEN: exposure notification.

Pathways for Receiving First EN

Most respondents (n=194, 97%) reported that they were aware that someone who attended the conference later tested positive for COVID-19 (Table 4).

Respondents learned about the attendees who tested positive for COVID-19 through a variety of pathways. Among those who were aware, respondents most frequently reported learning of the COVID-19–positive attendees via an event-wide email notification from WSPHA conference organizers (n=93, 48%) or receiving a WA Notify EN (n=77, 40%). A small number of respondents learned about the COVID-19–positive attendees via personal communication from another attendee who tested positive for COVID-19 (n=7, 4%), communication from someone else who had been exposed (n=6, 3%), or an internal email notification from the Washington State Department of Health (n=4, 2%). Among respondents with WA Notify activated, 54% (n=77) reported learning of their exposure from WA Notify, while 33% (n=48) learned of their exposure from the conference organizer email. It is possible that some portion of the 33% (n=48) of respondents with WA Notify activated who received the email notification first were not considered exposed based on Bluetooth proximity or the risk score used in WA Notify. Alternatively, this group may have also been shown a WA Notify EN after the email notification, but data were not collected on additional notifications.
Table 4. Awareness of conference attendees who later tested positive for COVID-19 by WA Notify activation status (N=201).

<table>
<thead>
<tr>
<th>Aware of COVID-19–positive attendees</th>
<th>WA Notify activated, n (%)</th>
<th>Totala (N=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (n=149)</td>
<td>No (n=49)</td>
</tr>
<tr>
<td>Yes</td>
<td>144 (96.6)</td>
<td>47 (95.9)</td>
</tr>
<tr>
<td>No</td>
<td>5 (3.4)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Missing</td>
<td>0 (0)</td>
<td>1 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>How COVID-19–positive attendees first heard aboutb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email from WSPHAc conference organizers</td>
<td>48 (33.3)</td>
<td>42 (91.3)</td>
</tr>
<tr>
<td>WA Notify ENd</td>
<td>77 (39.9)</td>
<td></td>
</tr>
<tr>
<td>Personal communication from a COVID-19–positive attendee</td>
<td>7 (4.9)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Notified by a contact tracer</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Otherc</td>
<td>12 (8.3)</td>
<td>4 (8.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 (8.3)</td>
</tr>
</tbody>
</table>

aThree respondents reported “I’m not sure” to whether they had WA Notify activated on their phones.

bAmong respondents who were aware that someone who attended the conference later tested positive for COVID-19 (n=194).

ENDen: exposure notification.

eReasons included communication from someone else who was exposed (n=6), Washington State Department of Health email notification (n=4), and cannot remember (n=2).

Associations Among Pathway of First Received EN, Symptoms, Vaccination History, and Testing

Respondents who reported that they did not have WA Notify activated and learned that someone who attended the conference later tested positive for COVID-19 via the email from conference organizers were 39% less likely to take a test for COVID-19 than respondents with WA Notify activated who learned of their potential exposure from the email (RR 0.61, 95% CI 0.40-0.93; P=.02; Table 5).

Respondents with WA Notify activated who learned of their potential exposure from a WA Notify EN were slightly more likely to test compared to those with WA Notify who received the email notification first, although this association was not significant (RR 1.14, 95% CI 0.90-1.45; P=.28).

The number of symptoms experienced was associated with testing for COVID-19 following the conference. Respondents who reported experiencing 1 symptom were 62% more likely to test than those who experienced no symptoms (RR 1.62, 95% CI 1.28-2.05; P<.001), and those who experienced 2 or more symptoms were 78% more likely to test than those who experienced no symptoms (RR 1.78, 95% CI 1.55-2.06; P<.001; Table 5). With the exception of 1 person who reported a sore throat, everyone who reported symptoms also reported testing for COVID-19.
Table 5. Associations among the method of receiving an EN\(^a\), symptoms, vaccination history, and testing postconference (N=201).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Postconference testing, n/N (%)</th>
<th>RR(^b) (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>How COVID-19–positive attendees first heard about(^c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA Notify EN</td>
<td>58/77 (75)</td>
<td>1.14 (0.90-1.45)</td>
<td>.28</td>
</tr>
<tr>
<td>Email from WSPHA(^d) conference organizers—WA Notify activated</td>
<td>31/47 (66)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>Email from WSPHA conference organizers—WA Notify not activated</td>
<td>17/42 (41)</td>
<td>0.61 (0.40-0.93)</td>
<td>.02(^e)</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>83/148 (56)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>1</td>
<td>10/11 (91)</td>
<td>1.62 (1.28-2.05)</td>
<td><.001</td>
</tr>
<tr>
<td>2+</td>
<td>23/23 (100)</td>
<td>1.78 (1.55-2.06)</td>
<td><.001</td>
</tr>
<tr>
<td>Vaccination status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>0/2 (0)</td>
<td>N/A(^f)</td>
<td>N/A</td>
</tr>
<tr>
<td>Primary series only</td>
<td>7/15 (47)</td>
<td>0.72 (0.41-1.25)</td>
<td>.24</td>
</tr>
<tr>
<td>Primary series+booster</td>
<td>119/183 (65)</td>
<td>1 (Reference)</td>
<td>Reference</td>
</tr>
<tr>
<td>Days since last the vaccine dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-day difference</td>
<td>N/A</td>
<td>0.98 (0.96-1.01)</td>
<td>.13</td>
</tr>
</tbody>
</table>

\(^a\)EN: exposure notification.
\(^b\)RR: relative risk.
\(^c\)Among respondents who were aware that someone who attended the conference later tested positive for COVID-19 (n=194).
\(^d\)WSPHA: Washington State Public Health Association.
\(^e\)Italic formatting in this table indicates that the \(\hat{\beta}\) coefficient from the corresponding regression is significantly different from 0 at the \(P=.05\) level.
\(^f\)N/A: not available.

Associations Between Pathway of First Received EN and Developing COVID-19

No statistically significant association was found between how respondents learned of the conference attendees who later tested positive for COVID-19 and whether the respondent developed COVID-19 using the Fisher exact test (\(P=.21\); Table 6).

Table 6. Associations between the method of receiving an EN\(^a\) and developing COVID-19 among those who were aware of COVID-19–positive attendees and tested following the conference (N=120).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Values, n/N (%)</th>
<th>P value(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How COVID-19–positive attendees first heard about(^c)</td>
<td></td>
<td>.21</td>
</tr>
<tr>
<td>Email from WSPHA(^d) conference organizers</td>
<td>6/49 (12)</td>
<td></td>
</tr>
<tr>
<td>WA Notify EN</td>
<td>2/58 (3)</td>
<td></td>
</tr>
<tr>
<td>Personal communication from a COVID-19–positive attendee</td>
<td>1/6 (17)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0/7 (0)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)EN: exposure notification.
\(^b\)Fisher exact \(P\) value.
\(^c\)There was an option for “Notified by a contact tracer,” but 0 respondents selected it.
\(^d\)WSPHA: Washington State Public Health Association.

Reasons for Not Activating WA Notify

Among those who reported not having WA Notify activated (N=49), there were a variety of reasons reported with some respondents (n=7) reporting multiple reasons. The most commonly cited reason was privacy concerns (n=17, 35%), followed by not wanting to receive ENs (n=6, 12%), and being unaware of WA Notify (n=5, 10%). Other reasons for not activating WA Notify included not understanding it (n=3, 6%), thinking it is cumbersome or bothersome (n=3, 6%), not getting around to it (n=3, 6%), having limited phone storage (n=3, 6%),
Discussion

Overview

This analysis allowed us to compare the characteristics of WA Notify adopters and nonadopters among those attending the WSPHA Annual Conference. It also explored testing behavior following a possible exposure and factors that may influence EN tool uptake. Our survey population consisted of public health professionals who, compared to the general public, are likely to be more aware of COVID-19 risks and prevention measures and are more inclined to use digital EN tools.

Principal Results

Our findings indicate that respondents who identified as WA Notify users were more likely to be younger compared to their counterparts, although this is unsurprising as younger age groups may be more comfortable with digital tools and technology in general. WA Notify users were also more likely to receive COVID-19 vaccinations relative to their counterparts, which would align with a higher likelihood of taking health precautions in general. Key findings included high levels of reported privacy concerns among nonadopters, that the majority (n=77, 54%) of WA Notify users reported first learning about their possible exposure from the tool, and that WA Notify users were more likely to test for COVID-19 compared to nonusers regardless of how they were first notified about their exposure.

Among nonusers, the most common reason for not having WA Notify activated was privacy concerns (n=17, 35%), despite stringent privacy protections, which make it nearly impossible for any government agency or corporation to obtain individual-level information [13,14]. We recognize that social desirability bias may have led nonusers to more frequently cite privacy concerns for not adopting WA Notify and assume that the general public, whose affiliation with public health is lower, likely has equal or greater privacy concerns than our sample. Still, this finding underscores the need for improved communications surrounding the privacy and data security of digital EN systems.

WA Notify users were significantly more likely to test for COVID-19 irrespective of how they first learned of their potential exposure. It is possible that testing was encouraged by the more personalized WA Notify EN or receiving multiple notifications or the combination of these 2 factors. Unfortunately, we cannot determine the extent to which WA Notify ENs encouraged testing. It is possible individuals with WA Notify activated were also more likely to test for COVID-19 regardless of whether they received an EN.

However, our findings indicate that WA Notify played an important role in distributing timely ENs to conference attendees following COVID-19 exposures at the WSPHA conference. Additionally, we believe a proximity-based digital EN system could be particularly useful in other large gatherings to alert close contacts of their exposure and reduce further transmission. The WSPHA conference was unique in that the attendees were public health professionals, and the sponsoring organization’s mission focused on health and public safety. Organizers in other event contexts may not be informed about infectious individuals attending the event, and if informed, organizers may be unable to or choose not to distribute their own EN to attendees.

Our results add to the evidence of the value of digital EN systems, but work remains to encourage adoption and engagement with these systems. The adoption of these systems is influenced by how easy they are to use (which is improved by the GAEN Express platform). Additionally, conducting pilot studies of the system, strong advertising campaigns, and engaging a wide array of stakeholders all likely contributed to WA Notify’s successes and can improve the adoption of similar systems in the future [3].

Limitations

There are several limitations to our findings. The survey population was a subset of individuals from the WSPHA conference and thus could have limited generalizability to the general population since the survey respondents are likely highly invested in public health and public health measures. These individuals could be more likely to use EN tools and take additional precautions against COVID-19 infection compared to the population of all WSPHA conference attendees or the general public.

There are also limitations to our survey design. The survey did not ask about prior COVID-19 infection, so natural immunity could not be accounted for. The question about vaccination status allowed an option for primary series-boosters; respondents who selected that response may have received either 1 booster or multiple boosters because the new bivalent booster had recently become available. We did not assess the respondents’ role within public health, such as if they worked at the state or local level or were a student. Knowing these characteristics may have provided more insight into the differences between these groups. When assessing the type and number of ENs received, data were only collected regarding the first EN method. The EN date information was only available for those who reported receiving a WA Notify EN; dates of other ENs were unknown if multiple were received.

Conclusions

Digital EN systems are important tools that have been used to notify close contacts of potential COVID-19 exposures. Our data suggest that having WA Notify activated encouraged individuals to engage in postexposure protective behaviors relative to those who did not have the tool activated. For digital EN technologies to sustain and expand their use in slowing the spread of communicable diseases moving forward, more work must be done to encourage uptake in groups less comfortable with the technology. Developing clear, consistent, and transparent messaging around the privacy and data security protocols built into these tools is needed to reduce these barriers to adoption. Additionally, understanding how to communicate evidence of public health value both to the general public and within the public health community is needed. Investment in future digital public health tools would benefit from an improved evidence base that includes systematic research on the impact of tailored messaging and the attributes and components of such
messaging for encouraging the adoption and sustained use of public health digital tools like WA Notify.

Acknowledgments
The work described in our manuscript was supported through an Interagency Agreement between the Washington State Department of Health and the University of Washington (HED 25742).

Authors’ Contributions
JGB, NLB, DR, LMW, AH, WBL, and BTK conceptualized, reviewed, and implemented the survey. CMD analyzed the data with support from BLG and ASE. CMD wrote the manuscript with support from BLG, ASE, DR, and JGB. All authors reviewed and approved the final version of the manuscript for publication.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Examples of EN messages from WA Notify.

[DOCX File, 305 KB - formative_v8i1e50716_app1.docx]

Multimedia Appendix 2
REDCap survey sent to conference participants.

[PDF File (Adobe PDF File), 44 KB - formative_v8i1e50716_app2.pdf]

References

Abbreviations

EN: exposure notification
GAEN: Google-Apple Exposure Notification
REDCap: Research Electronic Data Capture
RR: relative risk
WSPHA: Washington State Public Health Association

©Caitlin M Drover, Adam S Elder, Brandon L Guthrie, Debra Revere, Nicole L Briggs, Laura M West, Amanda Higgins, William B Lober, Bryant T Karras, Janet G Baseman. Originally published in JMIR Formative Research (https://formative.jmir.org), 18.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Developing a Text Messaging Intervention to Prevent Binge and Heavy Drinking in a Military Population: Mixed Methods Development Study

Chase A Aycock1, PsyD; Indika Mallawaarachchi2, MS; Xin-Qun Wang2, MS; Daniel G Cassidy3, PhD; Jordan M Ellis4, PhD; Robert C Klesges2, PhD; G Wayne Talcott2, PhD; Kara Wiseman2, MPH, PhD

1United States Air Force, 37th Human Performance Squadron, Joint Base San Antonio-Lackland Air Force Base, San Antonio, TX, United States
2Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
3United States Air Force, 37th Training Wing, Joint Base San Antonio-Lackland Air Force Base, San Antonio, TX, United States
4United States Air Force, Wilford Hall Ambulatory Surgical Center, 59th Medical Wing, Joint Base San Antonio-Lackland Air Force Base, San Antonio, TX, United States

Corresponding Author:
Kara Wiseman, MPH, PhD
Department of Public Health Sciences
University of Virginia
P.O. Box 800717
Charlottesville, VA, 22908
United States
Phone: 1 4342348126
Email: kara.wiseman@virginia.edu

Abstract

Background: Alcohol misuse is the fourth leading cause of death in the United States and a significant problem in the US military. Brief alcohol interventions can reduce negative alcohol outcomes in civilian and military populations, but additional scalable interventions are needed to reduce binge and heavy drinking. SMS text messaging interventions could address this need, but to date, no programs exist for military populations.

Objective: We aimed to develop an SMS text messaging intervention to address binge and heavy drinking among Airmen in Technical Training in the US Air Force.

Methods: We implemented a 2-phase, mixed methods study to develop the SMS text messaging intervention. In phase 1, a total of 149 respondents provided feedback about the persuasiveness of 49 expert-developed messages, preferences regarding message frequency, timing and days to receive messages, and suggested messages, which were qualitatively coded. In phase 2, a total of 283 respondents provided feedback about the persuasiveness of 77 new messages, including those developed through the refinement of messages from phase 1, which were coded and assessed based on the Behavior Change Technique Taxonomy (BCTT). For both phases, mean persuasiveness scores (range 1-5) were calculated and compared according to age (aged <21 or ≥21 years) and gender. Top-ranking messages from phase 2 were considered for inclusion in the final message library.

Results: In phase 1, top-rated message themes were about warnings about adverse outcomes (eg, impaired judgment and financial costs), recommendations to reduce drinking, and invoking values and goals. Through qualitative coding of suggested messages, we identified themes related to warnings about adverse outcomes, recommendations, prioritizing long-term goals, team and belonging, and invoking values and goals. Respondents preferred to receive 1 to 3 messages per week (124/137, 90.5%) and to be sent messages on Friday, Saturday, and Sunday (65/142, 45.8%). In phase 2, mean scores for messages in the final message library ranged from 3.31 (SD 1.29) to 4.21 (SD 0.90). Of the top 5 highest-rated messages, 4 were categorized into 2 behavior change techniques (BCTs): valued self-identity and information about health consequences. The final message library includes 28 BCTT-informed messages across 13 BCTs, with messages having similar scores across genders. More than one-fourth (8/28, 29%) of the final messages were informed by the suggested messages from phase 1. As Airmen aged <21 years face harsher disciplinary action for alcohol consumption, the program is tailored based on the US legal drinking age.

Conclusions: This study involved members from the target population throughout 2 formative stages of intervention development to design a BCTT-informed SMS text messaging intervention to reduce binge and heavy drinking, which is now being tested in
an efficacy trial. The results will determine the impact of the intervention on binge drinking and alcohol consumption in the US Air Force.

KEYWORDS

Text messaging: alcohol reduction; binge drinking; US; United States; US military; alcohol misuse; military; functioning; readiness; health; career; careers; text message; text messages; short message service; SMS; SMS intervention; drinking; Air Force; Airmen; mixed methods approach; message; messages; development study; qualitative coding; drinking alcohol; alcohol consumption; survey; descriptive statistics

Introduction

Overview

Alcohol misuse contributes to 140,000 deaths per year, making it the fourth leading cause of death in the United States [1]. Alcohol use also contributes significantly to the epidemic of *deaths of despair*, both as a primary cause of death and as a contributor to approximately 25% of opiate overdose deaths and suicides [2,3]. Deaths from alcohol have increased by 37% since 2005 [4]. Binge drinking and the associated health and social consequences are substantial public health concerns, with a high prevalence among young adults [5,6].

Alcohol misuse is a significant problem in the US military because of its impact on military functioning and readiness and its effect on the health and careers of service members. The Millennium Cohort Study, sampling >77,000 troops (active duty and reserve/guard), indicated that 18.5% of respondents reported a history of alcohol problems, and 7% to 8% reported current weekly heavy drinking (ie, ≥14 and >7 drinks per week for men and women, respectively) [5]. In 2018, overall, 34% of all Department of Defense (DoD) service members reported binge drinking at least once a month, defined as ≥5 drinks per sitting for men and ≥4 drinks per sitting for women, with significant differences based on gender (35.2% and 28.2% for men and women, respectively, P<.05) [7]. Specifically, in the Air Force, 24.1% reported binge drinking in the past month. Overall, young adults drink more than any other age group, and on average, young adults in the military drink 22% more than demographically similar civilians (33.1% vs 27.1%) [5,8].

Fortunately, brief alcohol interventions (BAIs) have been validated in college students and community-dwelling young adults who report elevated drinking levels and alcohol-related health or social problems. Overall, BAIs (typically 1-2 individual counseling sessions that include personalized feedback on drinking that are delivered in a motivational interviewing style) result in 30% to 50% reduction in binge drinking, with positive treatment effects reported up to 4 years after the intervention [9-11].

While individually delivered BAIs are effective, they are challenging to implement in large populations, such as the US military, due to logistics and cost. Therefore, scalable and cost-effective approaches for reducing the prevalence of binge and heavy drinking in this population are needed. One very promising approach to cost-effectively disseminate BAI content to many thousands of at-risk service members is through the use of automated SMS text messages sent at key times during training or when participants may be at the greatest risk for binge drinking. For example, Cadigan et al [12] evaluated specific personalized feedback during football tailgating, an event heavily associated with binge drinking. College students (N=130) who reported a history of tailgating and binge drinking were randomized to 1 of 2 SMS text message groups: an event-specific SMS text message or generic alcohol education messages. At the 1-month follow-up, those in the event-specific SMS text message group reported lower estimated peak blood alcohol concentration than those who received generic alcohol education messages.

In another study, 765 young adults who screened positive for hazardous drinking were randomized to SMS text message assessments and feedback group, SMS text message assessments only group, or no SMS text message control group over a 12-week period [13,14]. Overall, there were decreases in the number of self-reported binge drinking days from baseline in the SMS text message assessments and feedback group, whereas there were increases in binge drinking days in the SMS text message assessments only and no SMS text message groups. Overall weekend bingeing was also lowest in the SMS text message assessments and feedback group.

Finally, Teeters et al [15] tested a mobile phone–based intervention with personalized SMS text messages to determine its impact on driving after drinking. Participants included 84 college students who endorsed driving after drinking ≥3 drinks at least twice in the past 3 months. Participants were randomized to either information about driving after drinking (eg, how alcohol affected the brain and nervous system) or mobile phone–based BAI related to driving after drinking that included personalized feedback and interactive SMS text messaging. The mobile phone–based interventions included personalized feedback delivered via secure SMS text message (eg, normative feedback about drinking level and frequency of drinking and driving). The feedback was delivered in the context of a 15- to 20-minute, SMS text-based “session” that included open-ended, motivational interviewing–style SMS text messages asking participants about their reaction to the feedback, the potential personal and professional costs of being arrested for driving under the influence of alcohol (eg, losing their college scholarship), and their plans for avoiding drinking and driving in the future. The study clinicians made tailored empathic reflections about the participants’ reactions and encouraged specific goal setting/planning. The primary outcome variable was self-reports of driving after drinking at a 3-month follow-up. Results indicated that students receiving the mobile phone–based BAI reported significantly greater reductions in the likelihood...
of driving after drinking and the number of drinks consumed before driving than those in the information group.

While these findings suggest a potentially promising impact of SMS text message interventions on hazardous drinking outcomes, 2 recent meta-analyses in specific settings have shown potentially less robust efficacy of SMS text message interventions on heavy drinking when delivered as the only intervention [16] and when delivered as a preventive intervention [17]. For example, when delivered as the only intervention, Bendtsen et al [16] determined that while heavy episodic drinking and weekly alcohol consumption were low among participants who received the SMS text message intervention, the CI of these estimates both included the null, indicating a lack of a statistically significant association. In addition, the included studies were judged to be of low quality [16]. Therefore, more studies are needed to fully understand the potential impact of SMS text message interventions on binging and heavy drinking.

To date, the few studies that evaluated SMS text messages for binge drinking have been conducted in civilian settings. However, a large percentage of military personnel are also similar in age to college populations, making them potentially similarly receptive to mobile health interventions. Military personnel may also have confidentiality and health stigma concerns, which mobile health interventions are well suited to mitigate. Furthermore, military populations have expressed general interest in digital interventions [18,19]. As mentioned previously, the military has a particular problem with binge and heavy drinking. In all service branches, there is a protracted ban of alcohol in Basic Military Training and the first part of Technical (advanced) Training. In the Air Force, the ban is for approximately 12 weeks and tolerance to alcohol, even if the Airman (note that Airman is the term used by the Air Force for its service members, regardless of gender or position in the Air Force) used to drink alcohol before basic training, tolerance is low at the completion of training. Our research team has successfully implemented a group-based BAI and observed a significant reduction in the odds of an alcohol-related incident (ARI; getting in trouble while drinking) over the year of the intervention compared to the previous year (odds ratio 0.56, 95% CI 0.38-0.81; P=.002) [20]. Implementing an SMS text message intervention to complement this group-based BAI when Airmen begin to be allowed to leave base and access alcohol for the first time in approximately 3 months has enormous potential.

As the types of messages that civilians find persuasive may not be persuasive to military personnel, it is crucial to develop messages using feedback directly from Airmen in Technical Training to find messages that will be compelling and influential for this population. While individually tailoring the messages is often presumed to be beneficial in targeting addictive behaviors, there are also benefits to having universally acceptable messages. Nontailored messages require no information about the recipient, potentially diminishing the service members’ concerns regarding anonymity. In addition, nontailored messaging can increase feasibility and future dissemination if the intervention is determined to be effective.

Objectives
This paper describes a 2-phase mixed methods study designed to develop an SMS text message intervention to reduce binge and heavy drinking among Airmen in Technical Training. Specifically, the aims of this study were to (1) determine the persuasiveness of SMS text messages suggested by experts and Airmen designed to discourage binge and heavy drinking, (2) obtain data about the dose and timing of messages, and (3) create a final message library for efficacy testing.

Methods

Phase 1

Study Population
Participants included 149 Airmen in Technical Training located across 4 US Air Force bases who were attending, as part of standard training, a squadron-level group BAI session. Surveys were administered in each squadron at the end of the BAI session.

Procedures

Message Development
An initial set of 49 messages were created by content and population experts (eg, military, retired military, and nonmilitary psychologists and health behavior change experts). To reduce participant burden, the 49 messages were divided randomly into 3 sets, with 16 to 17 messages in each set.

Message Evaluation
All Airmen were asked to provide their age, gender, and past-month binge drinking frequency (“During the past 30 days, how many times did you have 4 (for women)/5 (for men) or more alcoholic drinks on one occasion?” with response options, “never,” “1 or 2 times,” “3 to 5 times,” “6 to 10 times,” and “11 or more times”). Overall, 3 questions assessed general beliefs about the importance of being successful in Technical Training, perceived impact of receiving a punishment related to alcohol while in the Air Force, and level of concern about having problem drinking, all of which used a 5-point Likert-type scale ranging from 1 (strongly disagree) to 5 (strongly agree). The Airmen were then presented with their set of messages to be evaluated. All 3 sets of messages were included equally in each survey administration, so that all 49 items were assessed evenly within each squadron. For each message, the Airmen responded to 2 items (ie, “This statement makes me concerned about the impact of drinking while in Technical Training” and “This statement discourages me from wanting to drink alcohol excessively”) using a 5-point Likert-type scale ranging from 1 (strongly disagree) to 5 (strongly agree) [21]. Following message rating, the Airmen were asked, “What might be a good text message that you can think of that might discourage an Airmen from drinking too much during Technical Training?” and provided space for a write-in response. Finally, the Airmen were asked about message timing and frequency and for specific points during their training when information of this nature might be particularly useful to receive.
Data Analysis
Following data entry, all responses were summarized using descriptive statistics. The Airmen’s age was dichotomized to <21 years or ≥21 years to reflect US legal drinking limits. Airmen who reported any binge drinking in the past month were coded as binge drinkers. To explore the messages’ persuasiveness, means, medians, and SDs were calculated for the persuasiveness item, “This statement discourages me from wanting to drink alcohol excessively” for each message. The messages were ranked based on persuasiveness and compared according to age and gender using Wilcoxon rank sum tests to identify the top-ranked messages with no statistically significant differences in rating based on age or gender. The resulting top messages were qualitatively coded for themes by 3 study authors (CAA, DGC, and JME). The frequency and timing of message delivery was explored using frequencies and percentages. Finally, messages suggested by Airmen were qualitatively coded for themes.

Phase 2
Study Population
Participants included 283 Airmen in Technical Training located across 4 US Air Force bases who were attending, as part of standard training, a squadron-level group BAI session. Surveys were administered in each squadron at the end of the BAI session.

Procedures
Message Development
Messages suggested by Airmen from phase 1 were refined, often by reformatting them into Airmen quotes, and coded based on the Behavior Change Technique Taxonomy (BCTT). Highly rated messages from phase 1 were also refined and coded based on the BCTT. Informed by the study by Michie et al [22], additional expert-created messages were developed to ensure a pool of messages that addressed key behavior change techniques (BCTs) previously identified to successfully reduce alcohol consumption. The final pool of 77 messages covered the following BCTs: problem solving, goal setting (outcome), action planning, discrepancy between current behavior and goal, review outcome goals, self-monitoring of behavior, information about consequences, information about social and environmental consequences, anticipated regret, social comparison, behavior substitution, comparative imagining of future outcomes, future punishment, reducing negative emotions, restructuring the social environment, avoiding/reducing exposure to cues for the behavior, identification of self as a role model, valued self-identity, and verbal persuasion about capability. To reduce participant burden, the 77 messages were divided randomly into 5 sets, grouped according to BCTs, with 15 to 16 messages in each set.

Message Evaluation
All Airmen were asked to provide their age, gender, and past-month binge drinking frequency (“During the past 30 days, how many times did you have 4 (for women)/5 (for men) or more alcoholic drinks on one occasion?” with the following response options: “never,” “1 or 2 times,” “3 to 5 times,” “6 to 10 times,” and “11 or more times”). Overall, 8 questions were included to assess general beliefs about the importance of being successful in Technical Training, perceived impact of receiving a punishment related to alcohol while in the Air Force, level of concern about having problem drinking, perceived culture of drinking in the Air Force, and opinions about alcohol reduction strategies and not drinking while in Technical Training, all of which used a 5-point Likert-type response scale ranging from 1 (strongly disagree) to 5 (strongly agree). The Airmen were then presented with their set of messages to be evaluated. All 5 sets of messages were included equally in each survey administration, so that all 77 items were assessed evenly within each squadron. For each message, the Airmen responded to 4 items to assess persuasiveness (ie, “This statement makes me concerned about the impact of drinking while in Technical Training”; “This message makes me think about how to be successful in Technical Training”; “This statement discourages me from wanting to drink alcohol excessively”; and “This message would be useful if I wanted to reduce or limit my drinking”) using a 5-point Likert-type scale ranging from 1 (strongly disagree) to 5 (strongly agree) [21]. Following message rating, the Airmen were asked to select 3 messages from their set that they believed would be most likely and least likely to help Airmen make good choices about alcohol.

Data Analysis
Following data entry, all responses were summarized using descriptive statistics. The Airmen’s age was dichotomized to <21 years or ≥ 21 years to reflect US legal drinking limits. Airmen who reported any binge drinking in the past month were coded as binge drinkers. To determine message suitability for inclusion in the final message pool, means, medians, and SDs were calculated for each item regarding message persuasiveness. The messages’ persuasiveness was compared according to age and gender using Wilcoxon rank sum tests to identify any messages with statistically significant differences in rating based on age or gender. The messages in phase 2 were ranked based on persuasiveness and considered within each BCT and overall to develop a final message pool that could address multiple BCT targets. Any messages that were statistically different based on age or gender where 1 group had a mean score below a threshold of 3.5 were excluded from consideration.

Ethical Considerations
In both phases, participants were asked to complete an anonymous survey. Both surveys were approved by the Joint Base San Antonio institutional review board as quality improvement, and thus, a full review was not required. The voluntary, fully informed consent of participants was obtained as required by 32 Code of Federal Regulations (CFR) 219 and Department of Defense Instruction (DODI) 3216.02. The study staff emphasized that participation in the survey was optional and anonymous, and >99% of the population consented to participate. No information was obtained about the individuals who did not choose to participate.
Results

Phase 1

Among the 149 respondents, 113 were men, 76 were aged <21 years, and 131 reported no heavy drinking in the 30 days before starting military training (Table 1). Approximately all (140/148, 94.6%) reported agreement with the statement, “Being successful in Technical Training is extremely important to me.” Motivation to be successful in Technical Training was also high; 89.9% (133/148) agreed to the statement, “Receiving punishment for an alcohol related incident (ARI) in Technical Training could harm or end my career,” and 91.2% (135/148) agreed that “Whether I drink alcohol or not, it is very important to me to NOT have a problem related to my drinking” (data not shown).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Phase 1 (n=149), n (%)</th>
<th>Phase 2 (n=283), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman</td>
<td>33 (22.6)</td>
<td>90 (32.3)</td>
</tr>
<tr>
<td>Man</td>
<td>113 (77.4)</td>
<td>189 (67.7)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><21</td>
<td>76 (51.4)</td>
<td>125 (46.3)</td>
</tr>
<tr>
<td>≥21</td>
<td>72 (48.6)</td>
<td>145 (53.7)</td>
</tr>
<tr>
<td>Binge drinking in the past 30 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>17 (11.5)</td>
<td>73 (26.4)</td>
</tr>
<tr>
<td>None</td>
<td>131 (88.5)</td>
<td>204 (73.6)</td>
</tr>
</tbody>
</table>

The values do not add up to 100% owing to missing data.

The 10 expert-created messages with highest median persuasiveness scores and statistically similar responses based on age (<21 years and ≥21 years) and gender (man and woman) are shown in Table 2. Qualitative coding indicated that 9 of the 10 (90%) top-rated messages had a theme related to warning about adverse outcomes, with specific adverse events related to the following: impaired judgment (4/9, 44%), career or receiving an ARI (3/9, 22%), assault (1/9, 11%), and financial costs (1/9, 11%). Of the 10 top-rated messages, 5 (50%) also included recommendations, with specific recommendations related to the following: planning (3/5, 60%), moderation (1/5, 20%), and low-risk drinking (1/5, 20%). Of the 10 top-rated messages, 1 (10%) invoked values and goal reminders.
Table 2. Top-rated, expert-created messages among respondents, with theme coding performed by the study team in phase a,b,c.

<table>
<thead>
<tr>
<th>Themes and expert-created messages</th>
<th>Score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning about adverse outcomes</td>
<td></td>
</tr>
<tr>
<td>Career</td>
<td></td>
</tr>
<tr>
<td>“You should develop a plan if you drink alcohol to avoid the risk of harming your Air Force career.”</td>
<td>4.21 (0.90)</td>
</tr>
<tr>
<td>“No one who gets an ARId ever planned to get one.”</td>
<td>3.92 (1.27)</td>
</tr>
<tr>
<td>“An ARI is potentially career ending in the Air Force.”</td>
<td>3.78 (1.34)</td>
</tr>
<tr>
<td>Impaired judgment</td>
<td></td>
</tr>
<tr>
<td>“Drinking can lower your inhibitions, leading to poor social judgement. Limit your drinking or don’t drink at all.”</td>
<td>4.13 (1.08)</td>
</tr>
<tr>
<td>“Drinking impairs your judgement. Plan to keep your drinking under control so you won’t make decisions that you later regret.”</td>
<td>4.13 (1.02)</td>
</tr>
<tr>
<td>“Set your limit ahead of time. Once you’ve had two drinks, you’re no longer the best judge of what should come next.”</td>
<td>4.02 (1.13)</td>
</tr>
<tr>
<td>“Drinking can lead to aggression (verbal and physical). If you are going to drink, avoid people and places that could lead to conflicts.”</td>
<td>3.96 (0.98)</td>
</tr>
<tr>
<td>Assault</td>
<td></td>
</tr>
<tr>
<td>“WARNING, almost all sexual assaults in Technical Training involved heavy drinking.”</td>
<td>4.06 (0.88)</td>
</tr>
<tr>
<td>Financial costs</td>
<td></td>
</tr>
<tr>
<td>“You’ve earned that paycheck, so make it last. Consider slowly sipping on a drink instead of gulping it. Non-alcoholic drinks cost much less than alcoholic ones. Water is free.”</td>
<td>4.00 (1.07)</td>
</tr>
<tr>
<td>Recommendation</td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>“You should develop a plan if you drink alcohol to avoid the risk of harming your Air Force career.”</td>
<td>4.21 (0.90)</td>
</tr>
<tr>
<td>“You want to have a successful plan for your future in the Air Force and are willing to take the time to work at making responsible decisions when it comes to drinking alcohol.”</td>
<td>4.10 (0.95)</td>
</tr>
<tr>
<td>“Set your limit ahead of time. Once you’ve had two drinks, you’re no longer the best judge of what should come next.”</td>
<td>4.02 (1.13)</td>
</tr>
<tr>
<td>Moderation</td>
<td></td>
</tr>
<tr>
<td>“Drinking can lower your inhibitions, leading to poor social judgement. Limit your drinking or don’t drink at all.”</td>
<td>4.13 (1.08)</td>
</tr>
<tr>
<td>Low-risk drinking</td>
<td></td>
</tr>
<tr>
<td>“Drinking impairs your judgement. Plan to keep your drinking under control so you won’t make decisions that you later regret.”</td>
<td>4.13 (1.02)</td>
</tr>
<tr>
<td>Reminder of values and goals</td>
<td></td>
</tr>
<tr>
<td>“You want to have a successful plan for your future in the Air Force and are willing to take the time to work at making responsible decisions when it comes to drinking alcohol.”</td>
<td>4.10 (0.95)</td>
</tr>
</tbody>
</table>

aMean scores for the item, “This statement discourages me from wanting to drink alcohol excessively.”

bResponse range 1-5 [21].

cMessages could have multiple theme codings and appear more than once in the table.

dARI: alcohol-related incident.

Exemplar messages suggested by Airmen are shown in Table 3. Qualitative coding indicated that among the 13 exemplar messages, 11 (85%) had a theme or themes related to warning about adverse outcomes, with specific adverse events related to career (6/11, 55%) and impaired judgment (1/11, 9%) or nonspecified consequences (5/11, 45%). Of the 13 exemplar messages, 5 (39%) included recommendations, all with specific recommendations related to prioritizing long-term goals. In addition, of the 13 messages, 2 (15%) contained themes related to team and belonging and 2 (15%) contained themes related to values and goal reminders.
Table 3. Messages suggested by Airmen respondents to discourage peers from excessive drinking during Technical Training, with theme coding performed by the study team in phase 1.

<table>
<thead>
<tr>
<th>Messages suggested by Airmen</th>
<th>Theme coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Alcohol lasts a night; paperwork goes on your record. Don’t risk it.”</td>
<td>● Warning about adverse outcomes (career)</td>
</tr>
<tr>
<td></td>
<td>● Recommendation (prioritize long-term goals)</td>
</tr>
<tr>
<td>“Choose carefully if you want to ruin your life just for one night of fun.”</td>
<td>● Warning about adverse outcomes (nonspecific)</td>
</tr>
<tr>
<td></td>
<td>● Recommendation (prioritize long-term goals)</td>
</tr>
<tr>
<td>“Do not let actions taken while drunk ruin how far you’ve come and ruin the rest of your life. Think, ‘Is this what I would do if I were sober?’”</td>
<td>● Warning about adverse outcomes (nonspecific)</td>
</tr>
<tr>
<td></td>
<td>● Warning about adverse outcomes (impaired judgment)</td>
</tr>
<tr>
<td></td>
<td>● Recommendation (prioritize long-term goals)</td>
</tr>
<tr>
<td>“Don’t throw away your money and career this early on alcohol just to have some ‘fun’.”</td>
<td>● Warning about adverse outcomes (career)</td>
</tr>
<tr>
<td></td>
<td>● Recommendation (prioritize long-term goals)</td>
</tr>
<tr>
<td>“Enjoy yourself off base; however, just remember that your actions have consequences, which includes drinking.”</td>
<td>● Warning about adverse outcomes (nonspecific)</td>
</tr>
<tr>
<td>“First the man takes the drink, then the drink takes the man.”</td>
<td>● Warning about adverse outcomes (nonspecific)</td>
</tr>
<tr>
<td>“Live in the moment but make sure that moment doesn’t destroy your future.”</td>
<td>● Warning about adverse outcomes (nonspecific)</td>
</tr>
<tr>
<td>“If you drink, we won’t be on the same team anymore.”</td>
<td>● Warning about adverse outcomes (nonspecific)</td>
</tr>
<tr>
<td>“Remember what the Air Force represents.”</td>
<td>● Reminder about values and goals</td>
</tr>
<tr>
<td>“Remember, having casual drinks with friends is fine, but know your limit and be responsible. Aim High Airman!”</td>
<td>● Warning about adverse outcomes (career)</td>
</tr>
<tr>
<td></td>
<td>● Values and goals reminder</td>
</tr>
<tr>
<td>“We have made so many memories together and have many more to go on. Make good choices.”</td>
<td>● Team and belonging</td>
</tr>
<tr>
<td>“Why risk a lifelong career for a few drinks?”</td>
<td>● Warning about adverse outcomes (career)</td>
</tr>
<tr>
<td></td>
<td>● Recommendation (prioritize long-term goals)</td>
</tr>
<tr>
<td>“Your career could be in that bottle.”</td>
<td>● Warning about adverse outcomes (career)</td>
</tr>
</tbody>
</table>

Most Airmen preferred to be sent 1 to 3 messages per week (124/137, 90.5%), followed by 4 to 6 messages per week (10/137, 7.3%). The most frequently selected days to receive messages were Friday, Saturday, and Sunday in combination (65/142, 45.8%) and Thursday, Friday, and Saturday in combination (20/142, 14.1%). Most respondents preferred messages to be sent in the early evening (84/149, 56.4%) or late evening (80/149, 53.7%; data not shown).

Phase 2

Among the 283 respondents, 189 were men, 125 were aged <21 years, and 204 reported no heavy drinking in the 30 days before starting military training (Table 1). Approximately all (243/259, 93.8%) reported agreement with the statement, “Being successful in Technical Training is extremely important to me.” Motivation to be successful in Technical Training was also high, as 90.3% (233/258) agreed to the statement, “Receiving punishment for an alcohol related incident (ARI) in Technical Training could harm or end my career,” and 88.7% (228/257) agreed that “Whether I drink alcohol or not, it is very important to me to NOT have a problem related to my drinking” (data not shown).

The final messages selected for inclusion in the SMS text message intervention are shown in Table 4. The final message library includes 28 BCTT-informed messages across 13 different BCTs and 5 messages (not shown) directly referencing content originally introduced in the group BAI. The program is designed to be delivered over 6 weeks, sending 3 to 4 messages per week, and most messages are sent on Friday and Saturday in the late afternoon and early evening. Mean scores for the included messages ranged from 3.31 (SD 1.29) to 4.21 (SD 0.90). Of the top 5 highest-rated messages in the final message library, 4 were categorized into 2 BCTs: valued self-identity and information about health consequences. Specific recommendations for behavior differ for those who are and those who are not legally allowed to drink in the United States, as those with ARIs and aged <21 years face harsher disciplinary action. Therefore, while designed to be a universally delivered program, for Airmen aged 21 years or those who will be aged 21 years during the intervention period, safe drinking–related messages were prioritized, whereas for Airmen aged <21 years, abstinence-related messages were prioritized. The total number of messages received by each Airmen is the same. Therefore, the distribution of BCTs differs according to age, with most action planning messages (3/4, 75%) only being sent to Airmen aged <21 years.

Most Airmen preferred to be sent 1 to 3 messages per week (124/137, 90.5%), followed by 4 to 6 messages per week (10/137, 7.3%). The most frequently selected days to receive messages were Friday, Saturday, and Sunday in combination (65/142, 45.8%) and Thursday, Friday, and Saturday in combination (20/142, 14.1%). Most respondents preferred messages to be sent in the early evening (84/149, 56.4%) or late evening (80/149, 53.7%; data not shown).

Phase 2

Among the 283 respondents, 189 were men, 125 were aged <21 years, and 204 reported no heavy drinking in the 30 days before starting military training (Table 1). Approximately all (243/259, 93.8%) reported agreement with the statement, “Being successful in Technical Training is extremely important to me.” Motivation to be successful in Technical Training was also high, as 90.3% (233/258) agreed to the statement, “Receiving punishment for an alcohol related incident (ARI) in Technical Training could harm or end my career,” and 88.7% (228/257) agreed that “Whether I drink alcohol or not, it is very important to me to NOT have a problem related to my drinking” (data not shown).

The final messages selected for inclusion in the SMS text message intervention are shown in Table 4. The final message library includes 28 BCTT-informed messages across 13 different BCTs and 5 messages (not shown) directly referencing content originally introduced in the group BAI. The program is designed to be delivered over 6 weeks, sending 3 to 4 messages per week, and most messages are sent on Friday and Saturday in the late afternoon and early evening. Mean scores for the included messages ranged from 3.31 (SD 1.29) to 4.21 (SD 0.90). Of the top 5 highest-rated messages in the final message library, 4 were categorized into 2 BCTs: valued self-identity and information about health consequences. Specific recommendations for behavior differ for those who are and those who are not legally allowed to drink in the United States, as those with ARIs and aged <21 years face harsher disciplinary action. Therefore, while designed to be a universally delivered program, for Airmen aged 21 years or those who will be aged 21 years during the intervention period, safe drinking–related messages were prioritized, whereas for Airmen aged <21 years, abstinence-related messages were prioritized. The total number of messages received by each Airmen is the same. Therefore, the distribution of BCTs differs according to age, with most action planning messages (3/4, 75%) only being sent to Airmen aged <21 years.

Most Airmen preferred to be sent 1 to 3 messages per week (124/137, 90.5%), followed by 4 to 6 messages per week (10/137, 7.3%). The most frequently selected days to receive messages were Friday, Saturday, and Sunday in combination (65/142, 45.8%) and Thursday, Friday, and Saturday in combination (20/142, 14.1%). Most respondents preferred messages to be sent in the early evening (84/149, 56.4%) or late evening (80/149, 53.7%; data not shown).

Phase 2

Among the 283 respondents, 189 were men, 125 were aged <21 years, and 204 reported no heavy drinking in the 30 days before starting military training (Table 1). Approximately all (243/259, 93.8%) reported agreement with the statement, “Being successful in Technical Training is extremely important to me.” Motivation to be successful in Technical Training was also high, as 90.3% (233/258) agreed to the statement, “Receiving punishment for an alcohol related incident (ARI) in Technical Training could harm or end my career,” and 88.7% (228/257) agreed that “Whether I drink alcohol or not, it is very important to me to NOT have a problem related to my drinking” (data not shown).

The final messages selected for inclusion in the SMS text message intervention are shown in Table 4. The final message library includes 28 BCTT-informed messages across 13 different BCTs and 5 messages (not shown) directly referencing content originally introduced in the group BAI. The program is designed to be delivered over 6 weeks, sending 3 to 4 messages per week, and most messages are sent on Friday and Saturday in the late afternoon and early evening. Mean scores for the included messages ranged from 3.31 (SD 1.29) to 4.21 (SD 0.90). Of the top 5 highest-rated messages in the final message library, 4 were categorized into 2 BCTs: valued self-identity and information about health consequences. Specific recommendations for behavior differ for those who are and those who are not legally allowed to drink in the United States, as those with ARIs and aged <21 years face harsher disciplinary action. Therefore, while designed to be a universally delivered program, for Airmen aged 21 years or those who will be aged 21 years during the intervention period, safe drinking–related messages were prioritized, whereas for Airmen aged <21 years, abstinence-related messages were prioritized. The total number of messages received by each Airmen is the same. Therefore, the distribution of BCTs differs according to age, with most action planning messages (3/4, 75%) only being sent to Airmen aged <21 years.
aged ≥21 years. Messages for Airmen aged <21 years have a high percentage of messages addressing the consequences of alcohol use. The inclusion of targeted messages based on age also resulted in 2 new messages needing to be created that were informed by phase 2 results but not evaluated by Airmen. Of the final 28 messages, 8 (28.6%) were informed by messages suggested by Airmen from phase 1.
Table 4. The final message library of an SMS text message intervention to prevent binge and heavy drinking among Airmen in Technical Training, with coding based on Behavior Change Technique Taxonomy.

<table>
<thead>
<tr>
<th>Themes and messages</th>
<th>Score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem solving</td>
<td></td>
</tr>
<tr>
<td>“Write down your money and career goals. How does alcohol fit into the picture? How would a DUIa or an ARIb impact those goals?”</td>
<td>4.07 (1.19)</td>
</tr>
<tr>
<td>Goal setting (outcome)</td>
<td></td>
</tr>
<tr>
<td>“Only you can choose how to spend your free time. What are options that are most in line with your long-term goals and plans?”</td>
<td>3.82 (1.22)</td>
</tr>
<tr>
<td>Action planning</td>
<td></td>
</tr>
<tr>
<td>“If you drink, eat a meal beforehand and consider having a glass of water between drinks.”c</td>
<td>3.69 (1.21)</td>
</tr>
<tr>
<td>“Before going out, think about choosing a Wingman who will not drink at all and who will be a designated driver.”c</td>
<td>3.62 (1.29)</td>
</tr>
<tr>
<td>“If you drink tonight, don’t drive. Call an Uber [link to Uber] or a Lyft [link to Lyft]”d</td>
<td>3.57 (1.15)</td>
</tr>
<tr>
<td>“You can help prevent an ARI for you or a friend by helping them get home safely. Call them an Uber [link to Uber] or a Lyft [link to Lyft]”d</td>
<td>_c</td>
</tr>
<tr>
<td>“Your tolerance to alcohol will probably be very low after not drinking for several weeks. If you are going to drink, consider limiting your alcohol to three or less drinks.”c</td>
<td>3.58 (1.26)</td>
</tr>
<tr>
<td>Review outcome goals</td>
<td></td>
</tr>
<tr>
<td>“Advice from a fellow Airman: ‘Think about what truly matters to you in the long run.’”f</td>
<td>3.90 (1.19)</td>
</tr>
<tr>
<td>Self-monitoring of behavior</td>
<td></td>
</tr>
<tr>
<td>“If you choose to drink, partner with a Wingman to keep your drink count to less than 3 per outing and 1 per hour.”c</td>
<td>3.43 (1.25)</td>
</tr>
<tr>
<td>Information about consequences</td>
<td></td>
</tr>
<tr>
<td>“Imagine failing Technical Training because of a drinking incident. Is it worth the risk? What’s your plan to make sure alcohol use doesn’t derail your career goals?”d,f</td>
<td>4.16 (1.08)</td>
</tr>
<tr>
<td>“Alcohol lasts a night, but paperwork stays forever on your record. What can you do to make sure today’s decisions do not hurt your tomorrows?”d,f</td>
<td>4.07 (1.08)</td>
</tr>
<tr>
<td>“Underage drinking or legal drinking that results in an adverse incident can both lead to an ARI. What would be the impact of an ARI on your long-term goals?”d</td>
<td>3.96 (1.08)</td>
</tr>
<tr>
<td>“Advice from a fellow Airman: ‘Live in the moment but make sure that moment doesn’t hurt your future.’”d</td>
<td>4.00 (0.99)</td>
</tr>
<tr>
<td>“Choosing not to drink can lead to better sleep and feeling refreshed and rested each morning. What would you like to get out of each day?”</td>
<td>3.85 (1.17)</td>
</tr>
<tr>
<td>“We are all in this together for the good times and the bad. Remember, if one of us gets in trouble, the whole squadron will have to suffer the consequences.”d</td>
<td>3.87 (1.37)</td>
</tr>
<tr>
<td>Social comparison</td>
<td></td>
</tr>
<tr>
<td>“Many of your fellow Airmen choose not to drink at all during Tech Training to avoid getting side-tracked. What will you choose to do?”</td>
<td>3.71 (1.23)</td>
</tr>
<tr>
<td>“46% of Airmen choose not to drink in technical school. Consider calling a friend and seeing if they’d like to do something alcohol free this weekend.”</td>
<td>3.31 (1.29)</td>
</tr>
<tr>
<td>Behavior substitution</td>
<td></td>
</tr>
<tr>
<td>“One of the best ways to prevent hazardous drinking is to participate in fun alcohol-free group activities. What plans can you make this weekend to keep everyone entertained, safe, and out of trouble?”d</td>
<td>3.83 (1.06)</td>
</tr>
<tr>
<td>“Interested in an alcohol-free weekend? Click here [Link to study webpage listing alcohol-free activities by base] to see the top things people do to have fun around here.”</td>
<td>3.81 (1.25)</td>
</tr>
<tr>
<td>Comparative imagining of future outcomes</td>
<td></td>
</tr>
<tr>
<td>“Take a moment to reflect on what you hope to achieve in the next year, academically, professionally, or athletically. How could alcohol get in the way?”</td>
<td>4.19 (0.95)</td>
</tr>
</tbody>
</table>

a DUI = driving under the influence

b ARI = alcohol-related injury

c These messages were adapted from a pre-intervention survey question that asked participants to identify strategies they used to manage alcohol use during training.

d These messages were adapted from past research with college students.

e These messages were adapted from past research with deployed military personnel.

f These messages were based on the advice of a fellow Airman.

https://formative.jmir.org/2024/1/e55041 JMIR Form Res 2024 | vol. 8 | e55041 | p.1382 (page number not for citation purposes)
Theme and messages

“Underage drinking is a primary reason Airmen get Article 15s and those can lead to a separation. What are other ways you can have fun?”

Score, mean (SD)
3.65 (1.16)

“Drinking can be a reason why Airmen get Article 15s and those can lead to a separation. What are other ways you can have fun?”

Score, mean (SD)
—

Reduce negative emotions

“Alcohol is not the only way to unwind. Many Airmen enjoy doing things that do not include alcohol. Local alcohol-free activities include movies, coffee/dessert shops, trampoline parks, playing video games or sports, or visiting a museum. What might you like to do that is alcohol-free?”

Score, mean (SD)
3.98 (1.13)

“There are healthier, safer, and cheaper ways to manage stress than drinking. Consider going to the gym or calling a friend.”

Score, mean (SD)
3.94 (1.02)

“Tech Training is challenging, and it’s helpful to have ways to relax and unwind. Have you ever tried tactical breathing? Find out more: [link to breathing exercise website].”

Score, mean (SD)
3.86 (0.97)

Identification of self as a role model

“Evenings out are a good time to be a responsible Wingman. Set the example and others will follow.”

Score, mean (SD)
3.91 (1.21)

Valued self-identity

“Remember why you joined the Air Force. [link to inspirational video]. Don’t let alcohol be what stops you from achieving these goals.”

Score, mean (SD)
4.21 (1.08)

“You are among the 1% who chose a profession of arms. Consider the role you would like alcohol to have within your professional identity.”

Score, mean (SD)
4.00 (1.17)

Discussion

Principal Findings

This 2-phase study developed an automated SMS text message intervention designed to reduce binge and heavy alcohol use among young adults entering the military. In phase 1, a sample of US Air Force Technical School trainees rated the messages created by experts and provided suggestions. In phase 2, the messages suggested by Airmen and those that were highly rated in phase 1 were refined and rated alongside additional expert-created messages. These phases culminated in the creation of a BCTT-informed SMS text message program for Airmen in Air Force Technical Training and highlight an approach for message testing and program development, which incorporates mixed methods feedback from the target population. This approach allowed us to have a final program that was directly informed by the target population.

Top-rated, expert-created messages from phase 1 included recommendations for planning or drinking in moderation and warnings about adverse outcomes associated with drinking in excess (eg, career impact, risk for sexual assault, and impaired judgment associated with drinking). In particular, most (9/10, 90%) of the top-rated messages in phase 1 were loss-framed messages. Messages suggested by both experts and Airmen included warnings about adverse outcomes, especially pertaining to one’s career. Other themes of the messages suggested by Airmen were reminders to prioritize long-term goals and values over short-term “fun” and emphasis on belonging to the same collective team.

In phase 2, an expanded set of items organized based on BCTs allowed for a more nuanced analysis of the potential message pool. Specifically, it also allowed for the inclusion of more gain-framed messages. As in phase 1, the highly rated messages in phase 2 were related to themes such as adverse outcomes and long-term values and goals. The 2 highest-rated messages in the final program were related to the topics of valued self-identity (“Remember why you joined the Air Force. [link to inspirational video]. Don’t let alcohol be what stops you from achieving these goals.”) and comparative imagining of future outcomes (“Take a moment to reflect on what you hope to achieve in the next year, academically, professionally, or athletically. How could alcohol get in the way?”), which both had loss-framed messages around alcohol getting in the way. Thematic consistency of top-rated messages across both phases of the study suggests that the messages ultimately included in the final message pool are likely to resonate with the target population. The real-world effectiveness of these messages are being empirically evaluated in an ongoing clinical trial.

The final intervention is targeted at Airmen of the US legal drinking age, while also being designed to be uniformly acceptable across genders. Therefore, message ratings were
considered overall and according to age and gender. This allowed for a program that can still be scaled up easily while providing relevant content for specific subsets of the population. If tailoring based on other factors becomes necessary, for example, the Airman’s specific role in the Air Force, this study provides a framework through which messages can be developed and evaluated with specific tailoring needs in mind. It will also be important to explore the potential moderators of program success after completion of the currently underway clinical trial. The presence of a strong effect modifier would suggest a potential need to tailor based on specific Airmen characteristics and would help justify the collection of additional personal information at the time of program sign-up.

Phase 1 also identified Airmen’s preferences for receiving SMS text messages, which were incorporated into the final intervention. Specifically, the Airmen preferred to receive messages at a frequency of approximately 3 to 5 times per week, in the evenings and on weekends. This could be an ideal window to receive a timely prompt in the form of an SMS text message, given that Airmen are most at risk for binge drinking from Friday evening to Sunday evening when they become able to leave their base (approximately 10-12 weeks after starting Basic Military Training). Having information about message timing and frequency preferences allowed us to develop an SMS text message program that should fit within each Airman’s daily routine and maximizes the number of messages sent at times when the Airmen may be considering and planning off-base activities, where alcohol is more readily available.

Across both phases, respondents reported interest in being successful in Technical Training, believed that an ARI would be detrimental to their careers, and did not want to have a problem associated with their drinking. These results should be interpreted with some caution, as respondents had just completed the group BAI; therefore, the Airmen might have been having heightened feelings regarding the potential harms of alcohol use. It could also show the potential of the group BAI to be a teachable moment, which the SMS text message intervention will attempt to capitalize on to sustain self-reflection and opinions about alcohol use and the desire for success during Technical Training. The sentiment of success during Technical Training is also referenced in the SMS text message intervention to increase the potential salience of the messages.

In addition to being developed specifically for a noncivilians population, there are other differences between the SMS text message intervention described in this paper and the previously developed alcohol reduction SMS text message interventions [12,13]. For example, the 2 previous studies designed to address binge drinking included assessments of drinking behavior. Specifically, Cadigan et al [12] collected information about participant drinking behavior while tailgating at baseline to provide normative feedback to participants during the intervention, which referenced back to the information each participant provided. Suffoletto et al [13] asked participants to report anticipated drinking behavior and the highest number of drinks consumed over the weekend, and responses were used to tailor other intervention messages. Owing to confidentiality concerns within the military, actual alcohol use behavior is not able to be captured by Airmen within the SMS text message intervention described in this paper. Thus, direct normative feedback cannot be delivered to participants. However, there is a message included to allow for social comparison. Despite this difference, there are also similarities between the proposed intervention and previous studies, such as sending messages when participants are at the highest risk of drinking (ie, weekends) and not tailoring the messages based on other personal characteristics.

In addition to the programmatic differences described previously, to the best of our knowledge, the SMS text message intervention described in this paper is the first to use BCTs to guide intervention development within the context of alcohol reduction [22,23]. The use of BCTs is helpful for understanding the hypothesized mechanisms of action through which the SMS text message intervention may reduce binge and heavy alcohol use. In addition, it allows for the testing of active components in future evaluations. This SMS text message intervention includes content that covers 13 distinct BCTs, which is more than the average number seen in previous behavior change interventions to reduce alcohol use (mean 9.1 BCTs) [24], but less than another SMS text message intervention that was coded based on BCT after its development and evaluation (23 BCTs) [23]. However, there may be other BCTs that could prove to be valuable. A future study could evaluate the impact of adding content that addresses additional BCTs. Moreover, the SMS text message intervention could be separated into unique BCT components and compared directly [25] to better understand which BCTs are most important for addressing binge and heavy drinking in this population.

Limitations

A limitation of this study is that this pool of messages is based solely on the Airmen’s predictions about which messages will influence future drinking behavior. Consequently, the final message pool must be empirically tested to determine its impact on alcohol-related behavior. This study is the first to develop an SMS text message intervention to reduce binge and heavy drinking within a US military population, specifically, the US Air Force. However, it is possible that the results of this mixed methods approach are not generalizable to other military settings.

Conclusions

This study included the involvement of members from the target population throughout the formative stages of intervention development, to design an SMS text message intervention to reduce binge and heavy drinking in the US Air Force. Message content was anchored to evidence-based behavior change techniques according to the BCTT in conjunction with integration of feedback from Airmen regarding SMS text messaging language, timing, and frequency, thus increasing the odds of a robust intervention effect.
Acknowledgments

This study was conducted in collaboration with the Readiness and Performance Lab (RiPL). This study was supported by a grant from the National Institute of Alcohol Abuse and Alcoholism (R01AA029074) and was a collaborative endeavor between the US Air Force and University of Virginia.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Disclaimer

The views expressed are those of the authors and do not reflect the official views or policy of the Department of Defense or its components.

Conflicts of Interest

None declared.

References

4. Radley DC, Collins SR, Hayes SL. 2019 scorecard on state health system performance: deaths from suicide, alcohol, drugs on the rise; progress expanding health care coverage stalls; health costs are a growing burden. The Commonwealth Fund. 2019. URL: https://tinyurl.com/3td5wb3 [accessed 2023-11-10]

provided the original work, first published in Jmir Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Association of Digital Engagement With Relaxation Tools and Stress Level Reduction: Retrospective Cohort Study

Inbar Breuer-Asher¹, MPH; Marilyn D Ritholz², PhD; David L Horwitz³, MD, PhD; Omar Manejwala¹, MD; Ephraim Behar¹, MSc; Yifat Fundoiano-Hershcovitz¹, PhD

¹DarioHealth, Caesarea, Israel
²Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
³DLH Biomedical Consulting, Las Vegas, NV, United States

Corresponding Author:
Yifat Fundoiano-Hershcovitz, PhD
DarioHealth
Ofek 8, 5 Tarshish Street
Caesarea, 3079821
Israel
Phone: 972 525296979
Email: yifat@dariohealth.com

Abstract

Background: Stress is an emotional response caused by external triggers and is a high-prevalence global problem affecting mental and physical health. Several different digital therapeutic solutions are effective for stress management. However, there is limited understanding of the association between relaxation components and stress levels when using a digital app.

Objective: This study investigated the contribution of relaxation tools to stress levels over time. We hypothesized that participation in breathing exercises and cognitive behavioral therapy–based video sessions would be associated with a reduction in stress levels. We also hypothesized a significant reduction specifically in participants’ perceived sense of burden and lack of productivity when engaged with breathing exercises and video sessions.

Methods: Stress levels were evaluated in a real-world data cohort using a behavioral health app for digital intervention and monitoring change. This retrospective real-world analysis of users on a mobile platform–based treatment followed users (N=490) who started with moderate and above levels of stress and completed at least 2 stress assessments. The levels of stress were tracked throughout the first 10 weeks. A piecewise mixed effects model was applied to model the trajectories of weekly stress mean scores in 2 time segments (1-6 weeks and 6-10 weeks). Next, a simple slope analysis was used for interpreting interactions probing the moderators: breathing exercises and video sessions. Piecewise mixed-effects models were also used to model the trajectories of specific perceived stress item rates in the stress questionnaire in the 2 segments (1-6 weeks and 6-10 weeks) and whether they are moderated by the relaxation engagements. Simple slope analysis was also used here for the interpretation of the interactions.

Results: Analysis revealed a significant decrease in stress symptoms (β=-.25; 95% CI -0.32 to -0.17; P<.001) during the period of 1-6 weeks of app use that was maintained during the period of 6-10 weeks. Breathing exercises significantly moderated the reduction in stress symptoms during the period of 1-6 weeks (β=-0.07; 95% CI -0.13 to -0.01; P=.03), while engagement in digital video sessions did not moderate stress scores. Engagement in digital video sessions, as well as breathing exercises, significantly moderated the reduction in perceived sense of burden and lack of productivity during weeks 1-6 and remained stable during weeks 6-10 on both items.

Conclusions: This study sheds light on the association between stress level reduction and specific components of engagement in a digital health app, breathing exercises, and cognitive behavioral therapy–based video sessions. Our findings provide a basis for further investigation of current and moderating factors that contribute to the personalization of digital intervention. In addition, results may aid in developing a more comprehensive understanding of how digital intervention tools work for mental health and for whom they are most effective.

(JMIR Form Res 2024;8:e50506) doi:10.2196/50506

https://formative.jmir.org/2024/1/e50506
Introduction

Stress is defined as an emotional or physical reaction typically caused by an external trigger [1,2] and is known to be a high-prevalence global problem, negatively affecting mental and physical health [3]. According to Gallup 2019 Global Emotions Report, the percentage of the American population who experienced stress (55%) is one of the highest in the world, as compared to the global average of 35% [4,5]. Furthermore, it is reported that distress levels have only increased during the COVID-19 pandemic due to health concerns, altered everyday life routines [6], and the unpredictability of its future implications [3]. A recent US stress survey conducted, reports an elevated average reported stress level from prepandemic levels [7]. Moreover, an alarming proportion of adults reported that stress has an impact on their day-to-day functioning, with more than a quarter (27%) saying that most days they are so stressed they cannot function [7].

Stress has a major impact on managing daily life, as everyone experiences it in varying forms every day [8]. According to the American Psychological Association’s 2014 Work and Well-Being Survey, 31% of employed adults indicated that they felt tense or stressed out during the workday [9]. Several studies investigating the understanding of how employee health impacts work performance have found stress can cause burnout, absenteeism, and reduced efficiency and performance [10], which can negatively impact the organization [11]. Yet, some resources can be implemented to help meet the pressures and demands faced at work [12].

There is evidence of improvements in health status due to workplace wellness programs for mental health [13,14]. In the past decade, the delivery of digital interventions has become increasingly popular; these interventions target common mental health illnesses [15] within the workplace due to their easy implementation [16]. Web-based interventions are shown to offer several advantages that may overcome some of the limitations of face-to-face approaches [17] as they are accessible through any internet-connected device. Among the working population, these interventions could especially benefit those who do not seek regular mental health treatment because of negative perceptions of mental health needs in the workplace [14].

It is reported that a substantial proportion of adults with common mental disorders fail to receive treatment [18]. The barriers thought to impede appropriate mental health care seeking have been well documented in the literature [18,19]. Many patients experience accessibility issues such as prolonged wait times, cost, clinic location, and transportation [20]. Others report that the stigma associated with mental illness diagnosis is the main reason that decreases their willingness to seek treatment [19]. Thus, digital interventions have the potential to overcome many of the barriers associated with seeking and accessing mental health care [18] and to provide increased convenience for patients allowing them access to care at any time.

Furthermore, digital health solutions aim to foster patient empowerment [21,22] by encouraging them to be proactive in the care process. These interventions allow people the right guidance and support for self-management, consequently addressing their own health-related goals [23]. Digital solutions also enable users to be better informed about their health, share experiences, assess and monitor specified health states, reach treatment, and improve communication between them and health care professionals [24].

In recent years, there has been an increase in the delivery of digital therapeutics targeting common mental health conditions [25,26]. Depression and anxiety, which have the highest prevalence among mental health conditions, are at the forefront of these targeted programs [26]. Previous research has demonstrated the efficacy of web-based interventions on the prevention and management of these conditions [27,28] and these conditions were even reported as efficacious as traditional face-to-face treatments [29].

Most treatment provided in behavioral health apps uses module-based sessions and the teaching of coping and management strategies based on cognitive behavioral therapy (CBT) principles, problem-solving therapy, and psychoeducation [20,26]. The digital application of CBT is showing promising results in the treatment of depression and anxiety disorders [30]. Additional research suggests that a successful approach to addressing digital health interventions is through a multicomponent design [13], using features such as tailored messages, reporting of thoughts, feelings, or behaviors [31]; relaxations features [5]; integrated therapist contact and other supplementary worksheets and engagements [20].

Notwithstanding that stress itself is not defined as a disorder, it can lead to major psychological and physical implications that could place people at risk for illness [17,32]. Given that stress represents a major threat to public health, effective and scalable solutions to accommodate the demand for stress-management interventions are needed [17]. The concept of “stress management” refers to the emotional, psychological, and behavioral methods used to develop skills to manage and reduce stress [33]. Several types of stress management interventions have been reported to be effective at reducing stress levels, such as CBT, time management, relaxation, and meditation exercises [34]. However, applying these self-help skills to achieve improvement requires motivation and self-discipline.

One of the easiest methods for managing stress-related symptoms is deep breathing exercises [3]; these exercises have been proposed as first-line and supplemental treatments for emotional disorders [35]. Several studies reported that the use of different breathing techniques showed significant improvement in mood states and perceived stress [36,37].
resulting in an effective improvement in the management of stress in daily life [36]. Slow and deep breathing can have a significant impact on reducing stress feelings and activating the relaxation response. This exercise is efficient as it reduces the ventilation in the dead space of the lungs and decreases the effect of stress and strain on the body by shifting the balance toward the parasympathetic system [38].

In recent years, the number of studies on digitally delivered stress management has been rising, yet the overall effect of specific formats of treatment delivery remains unclear [17]. Moreover, existing web-based stress management programs differ in various aspects such as type, content, and guidance, and this may influence their efficacy [17].

A recurring element described in the literature is video-based self-administered intervention programs, which are mainly rooted in a CBT framework [39,40]. Previous studies reported that video-based CBT has shown effectiveness for anxiety, sexual pain, and insomnia [39-41]. However, these video-based programs have not yet been integrated into the treatment of stress in a digital form. This method is described as a third waveform of CBT [40], which is characterized by concepts such as acceptance and mindfulness that focus on the person’s relationship to thought and emotions [42].

In their meta-analysis review of digital mindfulness-based interventions, Spijkerman et al [43] suggested that these interventions can be effective in reducing perceived stress. Mindfulness is a complete therapy that can minimize stress levels and improve psychological well-being because it includes various components of relaxation, such as yoga, deep breathing techniques, and focusing attention [44]. However, despite the abundance of digital mindfulness-based interventions and considering the structured variability [45], it is presently unknown whether different components of these interventions are effective.

In summary, although there has been an established body of research evaluating the efficacy of mobile app platforms for stress management, there has been less focus on the effectiveness of engagement with specific components and relaxation strategies for stress reduction. The purpose of this study is to evaluate the effect of a relaxation engagement digital behavioral health app on perceived stress. Our primary hypothesis is that in users with moderate-to-high stress levels, improvements in stress scores will be observed during the initial weekly period of the intervention and will be followed by maintenance for several weeks after. We hypothesized that engagement with certain digital components would moderate the reduction in stress levels. Specifically, we hypothesized that breathing exercises and video sessions would moderate stress levels’ reduction. We also anticipated a significant reduction in the perceived sense of burden and perceived level of productivity ranking as these measures were designed to reflect a change in perceived stress levels over time.

Methods

Behavioral Health App

The Dario Health behavioral health app is essentially a modular tool delivering emotion-focused support designed to apply to a range of mental health conditions. Members generally have access to the Dario Health behavioral health platform as part of their employee or health plan benefits. A clinically based screening tool assesses each person’s needs and guides users to the most efficient support. The app provides several CBT programs including depression, anxiety, anger, stress, and substance use, and can be used as a self-guided intervention or with the help of a certified coach. The structure of each program includes conceptual videos, textual skills, breathing exercises, and monitoring progress tools. This study focuses on tracking cohorts of users with stress scores measured by their responses to the stress questionnaire.

The stress program begins with a psychology education module about stress, identifying symptoms, as well as how it presents itself physically, mentally, and emotionally. The program includes short CBT-based and empirically supported whiteboard educational videos, introducing skills such as understanding the impact of stress, coping strategies, identifying stress signs and symptoms, and stress-related behaviors. By increasing the awareness of the individuals’ thoughts and feelings and gradually explaining specific situations leading to stress, these modules provide a way to promote stress self-management. During these skills-based sessions, various techniques are introduced to assist with reducing stress such as relaxation exercises, breathing exercises, monitoring progress, and coaching. The content is delivered to engage the users and appealingly convey information. Relaxation exercises provide a digital experience including audio or video sessions of mindfulness, muscle relaxation techniques, and automatic thoughts and emotions regulation.

The breathing exercises are instructed as a short up to 5-minute audio guide; each one educates about a different technique, that is, progressive muscle relaxation, diaphragmatic breathing, or 4-7-8 breathing.

Coaching is introduced to users for support and assistance and people who choose to obtain coaching services via the app.

Measures

Stress levels were assessed over 10 weeks using a stress questionnaire. The questionnaire that objectifies the degree of stress severity is a 5-item self-reported, in-app delivered questionnaire. Each of the 5 items is scored from 0 (not at all) to 3 (nearly every day; Table 1). The questionnaire aims to assess an individual’s level of stress and the factors contributing to it. The questionnaire items reflect perceived stress such as a sense of burden, lack of productivity, and symptoms of stress such as lack of sleep, body tension, and irritability. As a severity measure, scores range from 0 (absent of stress symptoms) to 15 (severe stress levels). Stress scores of ≤5, 6-10, and >10 represent low, moderate, and high stress levels, respectively. Internal reliability testing of the questionnaire demonstrated an acceptable internal reliability with a Cronbach α of 0.73 [46].
Table 1. The components in the stress questionnaire grading stress severity.

<table>
<thead>
<tr>
<th>Item</th>
<th>Questionnaire</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Have you felt overwhelmed or stressed about important responsibilities?</td>
<td>0="Not at all"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1="Several days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2="More than half the days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3="Nearly every day"</td>
</tr>
<tr>
<td>2</td>
<td>What about feeling as though you were not as productive as you should've been?</td>
<td>0="Not at all"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1="Several days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2="More than half the days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3="Nearly every day"</td>
</tr>
<tr>
<td>3</td>
<td>Had trouble sleeping because your mind was racing or worrying?</td>
<td>0="Not at all"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1="Several days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2="More than half the days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3="Nearly every day"</td>
</tr>
<tr>
<td>4</td>
<td>Felt tension in your neck, back, or shoulders?</td>
<td>0="Not at all"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1="Several days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2="More than half the days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3="Nearly every day"</td>
</tr>
<tr>
<td>5</td>
<td>Felt noticeably more irritable, restless, or agitated than usual?</td>
<td>0="Not at all"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1="Several days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2="More than half the days"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3="Nearly every day"</td>
</tr>
</tbody>
</table>

Independent variables were included in the analysis as potential moderating factors such as app sessions, videos, breathing exercises, and coaching interactions.

All data were transferred and stored in compliance with HIPAA (Health Insurance Portability and Accountability Act) requirements, using MongoDB or BigQuery database services. All data were anonymized before extraction for this study.

Users

A retrospective data evaluation study was performed on the Dario database.

The stress cohort consisted of a group of 490 users who used the Dario Behavioral Health platform between 2019 and 2022. The population included users who started at a moderate and above level of stress (stress questionnaire score >5) and those who completed at least two stress assessments. The sample included 388 (79%) women, 95 (19%) men, and 7 (2%) others. The age distribution was as follows: ≤35 (38%), 36-55 (49%), 56-65 (12%), and 66-76 (1%) years. The average baseline score of the stress questionnaire was 9.8 (SD 2.7; median 10, IQR 4). The weekly average time of app use observed in this cohort was 26.4 minutes (SD 39.2; median 14, IQR 21).

Ethical Considerations

All data used for the analysis were anonymized before extraction for this study. This study received an exemption from the institutional review board. Ethical & Independent Review Services [47], a professional review board, issued the institutional review board exemption for this study (21235 - 01#).

Statistical Analysis

A classical linear longitudinal model assumes a single-slope growth pattern for changes in an outcome variable across time. In contrast, piecewise - based mixed effects models allow flexibility in the modeling of variable change trajectories across time [48]. Previous studies consistently demonstrated a 2-stage dynamic of clinical outcomes associated with digital interventions: an initial improvement is followed by stabilization of the outcome [49,50].

Following a visualization of the distribution of the stress estimates over time, a piecewise cutoff point for the model slopes was chosen at 6 weeks of product use, assuming a change in the time-related stress severity level trajectory after 6 weeks considering previous research as well [51,52]. Such a behavior including 2 trajectories is in line with our previous research on digital follow-up measures in chronic conditions management [53,54].

Here, a piecewise mixed effects model was conducted to model the trajectory of the stress questionnaire mean score in 2 segments to allow the data to exhibit different linear trends over different periods. We tested whether digital engagement moderated 2 piecewise time trajectories in stress (1-6 weeks and 6-10 weeks). The model included a person-based random intercept and random slope for the time trajectory after the piecewise cutoff. Simple slope analysis was used for the interpretation of the interactions probing the moderators at 1 SD below (low engagement) and 1 SD above (high engagement) the average.

Next, we used mixed model analysis to model the trajectory of questions 1 and 2 rates (Table 1) in the stress questionnaire in
the 2 segments (1-6 weeks and 6-10 weeks). Moreover, we tested whether these scores were moderated by engagement with specific components in the app. The models included a random intercept and random slope of the time trajectory. Simple slope analysis was used for the interpretation of the interactions probing the moderators at 1 SD below (low engagement) and 1 SD above (high engagement) the average.

Results

First Analysis: Stress Score Reduction Is Associated With Breathing Exercises

In total, 90% (441/490) of the users improved or maintained their stress level over this study’s period, that is, remained at a moderate level or improved from moderate or high to a low level of stress.

Piecewise mixed model analysis revealed a significant decrease in stress levels ($\beta = -0.25; 95\% \text{ CI} -0.32$ to $-0.17; P<.001$) during the period of weeks 1-6. There were no significant time-related trends in stress during the period of weeks 6-10 ($\beta = 0.00; 95\% \text{ CI} -0.21$ to $0.22; P=.98$). Figure 1A demonstrates time-related fluctuations in stress levels.

Breathing exercises significantly moderated the reduction in stress score during the period of weeks 1-6 ($\beta = -0.07; 95\% \text{ CI} -0.13$ to $-0.01; P=.03$). The weekly average number of breathing exercises completed is 1.55 (2.34 SD). Users with increased breathing exercise completion (+1 SD) demonstrated stronger reduction in stress score ($\beta = -0.45; 95\% \text{ CI} -0.64$ to $-0.25; P<.001$) compared to users who completed fewer breathing exercises (−1 SD), that was not significant ($\beta = -1.3; 95\% \text{ CI} -0.32$ to $0.05; P=.15$). Breathing exercise did not moderate the time trajectory of stress levels during the period of weeks 6-10 ($\beta = -0.02; 95\% \text{ CI} -0.23$ to $0.19; P=.87$).

Figure 1B presents low and high levels of breathing exercise engagement, showing a significant reduction in stress levels only for users with high engagement, while the decrease for users with low engagement was not significant.

The engagement in digital video sessions did not significantly moderate stress score during both segments of time ($\beta = -0.01; 95\% \text{ CI} -0.03$ to $0.00; P=1.4$ and $\beta = -0.03; 95\% \text{ CI} -0.11$ to $0.04; P=.37$ to week 1-6 and 6-10 accordingly).

Second Analysis: Improvement in Perceived Stress Is Moderated by Digital Video Sessions

Overview

The perceived stress level was reflected by items 1 and 2 in the questionnaire.

Question 1: “Have you felt overwhelmed or stressed about important responsibilities?”

Piecewise mixed model analysis revealed that breathing exercises significantly moderated the reduction in question 1 ranking during the period of weeks 1-6 ($\beta = -0.02; 95\% \text{ CI} -0.04$ to $-0.01; P=.009$). Breathing exercises did not moderate the time trajectory of question 1 ranking during weeks 6-10 ($\beta = -0.00; 95\% \text{ CI} -0.06$ to $0.06; P=.91$). The weekly average number of breathing exercises completion is 1.55 (2.34 SD). Users with increased breathing exercise engagement (+1 SD) demonstrated a stronger reduction in perceived stress prompted by important responsibilities ($\beta = -1.3; 95\% \text{ CI} -0.19$ to $-0.08; P<.001$) compared to users who were less engaged in breathing exercises (−1 SD), that was not significant ($\beta = -0.02; 95\% \text{ CI} -0.07$ to $0.03; P=.40$).

Further piecewise mixed model analysis revealed that engagement in digital video sessions significantly moderated...
the reduction in question 1 ranking during the period of weeks 1-6 (β=−.01; 95% CI −0.01 to −0.00; \(P=0.02\)), yet no significant reduction was seen during the period of 6-10 weeks (β=−0.00; 95% CI −0.02 to 0.02; \(P=0.91\)). The weekly average number of video session completion is 6.38 (8.59 SD). In addition, it was found that users who completed a higher number of video sessions (+1 SD) demonstrated a greater reduction in question 1 ranking (β=−0.13; 95% CI −0.19 to −0.07; \(P<0.001\)) compared to those who were less engaged (−1 SD) with video sessions (β=−0.02; 95% CI −0.08 to 0.03; \(P=0.38\)).

Question 2: “What about feeling as though you were not as productive as you should’ve been?”

A piecewise mixed model has shown that the completion of breathing exercises has also significantly moderated the reduction of question 2 ranking in the stress questionnaire during the period of weeks 1-6 (β=−0.02; 95% CI −0.04 to −0.00; \(P=0.04\)); however, the period of 6-10 weeks was not significant (β=0.01; 95% CI −0.05 to 0.07; \(P=0.64\)). The weekly average number of breathing exercises completion is 1.55 (2.34 SD). Users with an increased number of completed breathing exercises (+1 SD) displayed a significant reduction in the question 2 ranking (β=−0.07; 95% CI −0.13 to −0.01; \(P=0.02\)), while in users who completed fewer breathing exercises (−1 SD), the reduction was not significant (β=0.02; 95% CI −0.04 to 0.07; \(P=0.55\)).

Here as well, an additional piecewise mixed model has demonstrated that engagement in video sessions significantly moderated the reduction in question 2 ranking during weeks 1-6 (β=−0.01; 95% CI −0.01 to −0.00; \(P=0.01\)), yet no significant reduction was found in weeks 6-10 (β=0.00; 95% CI −0.02 to 0.02; \(P=0.84\)). The weekly average number of video session completion is 6.38 (8.59 SD). Furthermore, results from the simple slope analysis showed that users with increased engagement in video sessions (+1 SD) were significantly associated with improvement in question 2 rank (β=−0.08; 95% CI −0.14 to −0.02; \(P=0.01\)), compared to users with lower engagement (−1 SD) to video sessions (β=0.03; 95% CI −0.02 to 0.08; \(P=0.27\)).

Discussion

Principal Results

The Dario Health behavioral health stress program delivers an optimized solution that combines videos, textual skills, breathing exercises, and interaction with a coach to improve the users’ emotional wellness. The goal of this study was to assess changes in stress outcomes over time among users with moderate and above levels of stress scores at baseline. This study tested the effect of digital therapeutic use on stress levels over time, using a specific engagement instrument for stress conditions. Piecewise mixed model analysis indicated a significant decrease in stress levels during the period of the first 6 weeks of product use and maintained during the period from 6 to 10 weeks with no significant time-related trends. Engagement in breathing exercises significantly moderated the reduction in stress levels during weeks 1-6. During the period of 6-10 weeks, the reduced level of stress was maintained, and there were no significant time-related trends. An additional piecewise mixed model revealed that engagement in video sessions significantly moderated the reduction of perceived stress as shown by a decreased sense of burden (question 1) and a decreased lack of productivity (question 2), during weeks 1-6. It is worth noting that stress can have various causes and effects, and everyone experiences stress differently. However, a sense of burden and lack of productivity are commonly associated with stress, and identifying and acknowledging them can help individuals take steps to manage their stress levels and improve their well-being.

This real-world analysis presents new evidence regarding the dynamic efficacy of digital therapeutic solutions for people with moderate to high stress levels. The results are consistent with previous research that observed improvements in mental health metrics following digital, app-based interventions [26,29,33]. Our findings also provide insight into the nonlinear nature of stress level reduction during the first 10 weeks of a digital behavioral health program by showing the direct association with breathing exercises during the improvement stage in the first 6 weeks and emphasizing the key role of breathing exercises on stress reduction. In the next 6-10 weeks, the reduced levels of stress are maintained indicating that experiencing the use of a behavioral health digital program is a sustainable approach that may create a positive environment leading to a meaningful change. A nonlinear effect of digital therapeutics has previously been demonstrated in studies of mental health recovery via digital therapeutic intervention [50,55]. Additionally, the nonlinear effect of chronic condition management has been previously demonstrated in studies of chronic condition management such as glucose levels in diabetes, blood pressure, and pain level changes over time [53,54,56].

The study of nonlinear change requires multiple assessments over time and examination of the individual trajectories of variables [55,57]. If the variables of interest are assessed frequently over the course of product use, processes can be examined to better understand what facilitates and inhibits change. In this study, we examined time course data moving beyond the question of whether stress level change occurs and toward an understanding of how change occurs. A piecewise mixed model analysis indicated a significant decrease in stress level during the period of the first 6 weeks of product use and maintained during the period from 6 to 10 weeks with no significant time-related trends. This real-world intervention may have captured how change in coping may occur. In other words, people initially improve by learning to cope more effectively with stress but that needs to be incorporated, so this change can occur over only a limited period before it can be truly integrated. Based on current findings it appears that it takes 6 weeks to learn and then 6-10 weeks to integrate before becoming a changed behavior.

Although this real-world study does not relate to gender-specific experiences, it is notable that the gender ratio predominantly consists of women by 79% (388/490). Per previous studies, women are more likely to use e-mental health programs, designed features, and practices to reduce symptoms of stress or depression although they do not differ in terms of their general internet use [58]. The prevalence of major depressive episodes in women is about 2 times higher than that in men [59]. This could be explained by the existence of gender norms,
men are less likely than women to disclose mental health symptoms and often delay seeking help until symptoms become severe [60,61]. From the social role perspective, women often have a multitasking agenda hence, efficiency and convenience of treatment may be more regarded [62,63].

In terms of physiological aspects, men and women were not seen to differ in terms of breathing practice and integrative body-mind training for dealing with stress conditions [64]. To date, there have been very few large-scale studies examining the effectiveness of digital therapeutic interventions for emotional disorders delivered in real-world settings [65-67]. There is also limited quantitative literature on the associations between the program components and direct methods with clinical outcomes [68].

We hypothesized that breathing techniques may be an enhanced method to address and reduce the bodily and mental processes associated with stress. Breathing exercises are an easily taught and practiced direct method, and they can realize almost immediate benefits and therefore allow for greater behavioral change. Stress causes sympathetic activation; the sympathetic nervous system is 1 of the 2 branches of the autonomic nervous system [35]. The sympathetic nervous system plays a critical role in the body’s response to stress. When it is activated, it triggers the “fight or flight” response, which prepares the body for immediate action in response to a perceived threat or danger [69]. The sympathetic nervous system is activated by the hypothalamus in response to a threat, which triggers the release of hormones such as adrenaline and noradrenaline [70]. Therefore, various physiological responses are caused such as increased heart rate, blood pressure, and respiratory rate, as well as the release of glucose from the liver to provide energy for the body’s response [71]. Our findings demonstrated that engagement with breathing exercises significantly moderated the reduction in stress levels during the period of weeks 1-6. Slow and deep breathing is known to activate the parasympathetic nervous system.

Stress can have various causes and effects, and everyone experiences stress differently. However, a perceived sense of burden and a perceived lack of productivity are commonly associated with stress. Identifying and acknowledging these stress-related feelings are the first steps in taking proactive measures to address them. Therefore, we also hypothesized that the ranking of the two items in the questionnaire, that is, (1) “Have you felt overwhelmed or stressed about important responsibilities?” and (2) “What about feeling as though you were not as productive as you should’ve been?” would be associated with engagement with certain digital components.

We assumed that an improvement in perceived stress is reflected by the ways those 2 items would be linked to product use when combining video sessions with digital tools. Our findings showed that both items’ rankings 1 and 2 were moderated by engagement in video sessions as well as in breathing exercises. Engagement with CBT-based video sessions has the potential to be effective and efficient in treating symptoms of mental health conditions in real-world settings [72-74]. Managing stress and handling challenges are obtained by learning how to cope with stress in day-to-day life and adjusting it to the level of stress necessary for optimal functioning. The video sessions explain the core concepts of problem-solving and decision-making to reduce burden and modulate perceptions of responsibilities.

One of the strategies that helped to manage stress and improve well-being is setting realistic goals and prioritizing tasks [75]. Offering content and recommendations about breaking down tasks into manageable steps and setting realistic goals that combat the style of perfectionistic thinking possibly helped individuals to reduce feelings of burden and increase productivity reflected in items 1 and 2 in the questionnaire.

It was consistently demonstrated in our findings that breathing exercises moderated the improvement of the general stress score and the ranking of items 1 and 2 as well. Breathing exercises have a significant impact on reducing perceived stress and promoting relaxation [64,76]. Deep breathing exercises, such as diaphragmatic breathing or belly breathing, engage the diaphragm muscle and stimulate the parasympathetic nervous system. The parasympathetic nervous system is the other branch of the autonomic nervous system, and it is responsible for promoting rest, relaxation, and digestion [35]. It has been demonstrated that during respiration, inspiration inhibits sympathetic nervous system activity [77]. Therefore, breathing techniques could be used as first-line and supplemental treatments for stress and emotional disorders [35,78]. Deep breathing exercises can help slow down the heart rate, bringing it closer to a calm and regular rhythm, contributing to a feeling of relaxation [79]. By consciously focusing on deep breaths and consciously relaxing the muscles, breathing exercises help release tension and promote a sense of physical relaxation [79]. During breathing exercise oxygen supply is increased supporting better delivery of oxygen to the body’s tissues, including the brain [80]. It can improve mental clarity, focus, and overall well-being. Lastly, engaging in breathing exercises requires focusing attention on the breath. This helps shift the focus away from stressors, worries, and racing thoughts, promoting a mindful state of being in the present moment. Mindfulness has been shown to reduce stress and enhance overall psychological well-being [81].

Recent reviews in the field of mental health programs highlight the need for research that goes beyond examining the overall effects of such programs. Instead, there is a call for more nuanced investigations that delve into the associations between specific components or building blocks of these programs and the clinical outcomes observed. This approach aims to comprehend the relative contributions of various activities within digital health management protocols. Researchers and digital health organizations can gain a deeper understanding of what works best in digital health management protocols and improve the effectiveness of mental health interventions [65,68].

Our findings indicate that breathing exercises and CBT-based video sessions help people lower their stress levels. These findings suggest that increasing digital engagement to specific activities in a lower engaged population may be an efficient way to optimize digital platforms supporting patients with moderate levels of stress. New models of care and digital tools have the potential to transform health care by increasing
accessibility, promoting patient-centered care, improving timeliness, enhancing equity, and optimizing efficiency. Digital tools can empower patients to take an active role in their health care journey. This shift toward patient-centered care promotes collaboration and empowers individuals to make informed choices about their health [82,83].

We expect that the analytical approach applied in this study will be beneficial for personalizing interventions and optimizing incentivization planning. This information could be used to further personalize outreach to encourage users to maintain their personal critical level of mental health activities. More research is required to further understand the current and potential moderating factors of digital intervention tools for mental health and how independent use of these tools facilitates the care of patients with day-to-day stress levels.

Limitations

In this study, we used a single-arm design that analyzed retrospective real-world data that lacked a comparison group or control group, contained a self-selection bias, and lacked randomization. While this design allowed us to explore the association between digital relaxation tools and stress levels, we acknowledge the limitation of not having a control group. The lack of a control group restricts our ability to establish causal relationships and control potential confounding variables. Future research efforts could consider incorporating a control group to further validate and extend the implications of our findings. Additionally, we acknowledged the gender distribution predominantly consisting of 79% (388/490) women that may potentially influence the results and interpretation of the results. However, women have higher rates of anxiety and depression and use more digital treatment [58,59], therefore our results may be specifically applicable to the real world. In other words, the real-world population of women who have more anxiety and depression may be better served with the use of a mobile app. Although this study’s research topics are not related to gender-specific experiences, future research should strive for a more balanced gender representation. It is also possible that people who chose to use digital therapeutic instruments were those who were most motivated to make a change in their conditions. These factors could limit the generalizability and create a challenge for drawing causal conclusions. The time scale was designed to reflect a weekly interval change over 10 weeks; however, the relationships of interest in this study could be potentially investigated in different scales emphasizing daily or monthly outcomes. Owing to the difficulty in tracking daily changes in stress levels, most real-world studies focus on weekly fluctuations.

Stress level was the key outcome assessed in this study by using a stress questionnaire constructed by our internal experts. This questionnaire demonstrated a Cronbach α value of 0.73, an adequate reliability coefficient, as >0.70 is considered a measure of internal consistency [84,85]. It was decided to use our stress questionnaire although the Perceived Stress Scale-14, a 14-item scale, is the most widely used for measuring perceived stress [86] since it has fewer items and may be more useful in increasing the answer rate among platform users.

Conclusions

This study provided evidence that an increase in mental health management via digital engagement, specifically with relaxation tools, can help reduce stress levels over time. Although stress can be experienced in various forms, it is established that using an app as an integrated part of the health self-management process significantly improves clinical outcomes. It was demonstrated that breathing exercises have a significant impact on promoting relaxation. From a behavioral perspective, engaging with CBT content helps recognize stress causes and provides strategies to self-manage the feelings of burden, ultimately improving well-being. These findings provide a basis for encouraging users to take an active role and make informed choices about their health. Future work is needed to investigate current and other potential moderating factors and to develop a more comprehensive understanding of the importance of the app, how digital intervention tools work for mental health, and for whom they are most effective. This knowledge will guide the development and implementation of personalized and evidence-based digital interventions, ultimately improving mental health outcomes for individuals in a variety of contexts.

Conflicts of Interest

IB-A, OM, EB, and YF-H are employees of Dario Health. MDR and DLH are members of the Dario Health Scientific Advisory Board. OM is a stock and option holder of Dario Health.

References

67. Breuer-Asher et al. JMIR FORMATIVE RESEARCH 2024 | vol. 8 | e50506 | p.1398 https://formative.jmir.org/2024/1/e50506

Abbreviations

CBT: cognitive behavioral therapy
HIPAA: Health Insurance Portability and Accountability Act
An Ecological Mobile Momentary Intervention to Support Dynamic Goal Pursuit: Feasibility and Acceptability Study

Ciarán O'Driscoll¹, DClinPsy, PhD; Aneesha Singh², PhD; Iya Chichua¹, BSc; Joachim Clodic¹, MSc; Anjali Desai¹, BSc; Dara Nikolova¹, BSc; Alex Jie Yap¹, BSc; Irene Zhou¹, BSc; Stephen Pilling¹, PhD

¹CORE Data Lab, Centre for Outcomes Research and Effectiveness, University College London, London, United Kingdom
²UCL Interaction Centre, University College London, London, United Kingdom

Corresponding Author:
Ciarán O'Driscoll, DClinPsy, PhD
CORE Data Lab, Centre for Outcomes Research and Effectiveness
University College London
Gower Street
London, WC1E 6BT
United Kingdom
Phone: 44 207679 1897
Email: c.odriscoll@ucl.ac.uk

Abstract

Background: Individuals can experience difficulties pursuing their goals amid multiple competing priorities in their environment. Effective goal dynamics require flexible and generalizable pursuit skills. Supporting successful goal pursuit requires a perpetually adapting intervention responsive to internal states.

Objective: The purpose of this study was to (1) develop a flexible intervention that can adapt to an individual's changing short to medium-term goals and be applied to their daily life and (2) examine the feasibility and acceptability of the just-in-time adaptive intervention for goal pursuit.

Methods: This study involved 3 iterations to test and systematically enhance all aspects of the intervention. During the pilot phase, 73 participants engaged in an ecological momentary assessment (EMA) over 1 month. After week 1, they attended an intervention training session and received just-in-time intervention prompts during the following 3 weeks. The training employed the Capability, Opportunity, Motivation, and Behavior (COM-B) framework for goal setting, along with mental contrasting with implementation intentions (MCII). Subsequent prompts, triggered by variability in goal pursuit, guided the participants to engage in MCII in relation to their current goal. We evaluated feasibility and acceptability, efficacy, and individual change processes by combining intensive (single-case experimental design) and extensive methods.

Results: The results suggest that the digital intervention was feasible and acceptable to participants. Compliance with the intervention was high (n=63, 86%). The participants endorsed high acceptability ratings relating to both the study procedures and the intervention. All participants (N=73, 100%) demonstrated significant improvements in goal pursuit with an average difference of 0.495 units in the outcome (P<.001). The results of the dynamic network modeling suggest that self-monitoring behavior (EMA) and implementing the MCII strategy may aid in goal reprioritization, where goal pursuit itself is a driver of further goal pursuit.

Conclusions: This pilot study demonstrated the feasibility and acceptability of a just-in-time adaptive intervention among a nonclinical adult sample. This intervention used self-monitoring of behavior, the COM-B framework, and MCII strategies to improve dynamic goal pursuit. It was delivered via an Ecological Momentary Intervention (EMI) procedure. Future research should consider the utility of this approach as an additional intervention element within psychological interventions to improve goal pursuit. Sustaining goal pursuit throughout interventions is central to their effectiveness and warrants further evaluation.

(JMIR Form Res 2024;8:e49857) doi:10.2196/49857

KEYWORDS

goal pursuit; ecological momentary intervention; ecological momentary assessment; mood; dynamics; network analysis; MCII; COM-B; support; pilot study; training; feasibility; acceptability; self-monitoring; implementation; psychological; effectiveness
Introduction

Background

We have all experienced difficulties in developing, pursuing, and achieving our goals. This can be influenced by our internal state (e.g., mood and motivation), environmental factors (e.g., competing goals or demands), and resources (e.g., skills and opportunity). We need the ability to prioritize goal pursuit in a dynamic environment, determining how much effort to allocate and deciding when to shift our attention to other goals [1]. Managing this is a dynamic, within-person process that varies over time based on how much progress one has made toward their goals. These goals or tasks related to goals vary in how demanding they are, and our ability to pursue those goals will be influenced by capacity. Pursuing goals requires effort, both physical and mental, not just due to the difficulty of the task [2] but also for maintaining a mental representation of the goal [3]. Moreover, we need to make decisions around the allocation of resources to the task (e.g., breaking down a task or abandoning it), affecting successful pursuit. Effort can be considered synonymous with motivation when measured objectively [4], with motivation influenced by expectancy or certainty and value attributed to the outcome. People exert more effort if the outcome is perceived to be more likely, important, and rewarding [5, 6]. In addition, mood, particularly anhedonia, has been associated with behavioral reward processing deficits [4]. The application of theory to intervention suggests a need for a “perpetually adapting” intervention [7].

Successful goal pursuit involves numerous steps: option generation, cost-benefit decision leading to option selection, initiation, and pursuit [8]. Failure at any point can reduce the likelihood of pursuit, and there is a need to anticipate obstacles [9]. By considering obstacles, the individual is better able to anticipate and plan for challenges that may arise as they work toward their goal [10]. The individual must also be able to employ metacognitive strategies such as planning, self-monitoring, and flexibility to overcome challenges, and they may benefit from prompts and support to facilitate these strategies [11].

People’s intentions do not always translate into action: medium-to-large changes in intentions only lead to small-to-medium changes in behavior [12]. Most interventions focus on altering specific behaviors within specific contexts, and the results are not conclusive. Personalized feedback, goal setting, and self-monitoring appear promising, but they are not consistently effective across behaviors and contexts [13]. It is also unclear whether these skills generalize to other behaviors and contexts. Simple strategies or microinterventions can provide easy access and low-effort solutions to increase or maintain engagement in behavior change [14, 15]. These strategies may be simple but difficult to sustain without practice.

Ecological Momentary Intervention (EMI) involves providing feedback or intervention to participants in real time based on the data collected from Ecological Momentary Assessment (EMA). The deployment of interventions via mobile devices (e.g., smartphones) provides the opportunity to deliver intervention on scale as either a standalone or adjunct intervention. EMA alone can act as a form of self-monitoring, facilitating an awareness of thoughts, emotions, and behavior. From a clinical perspective, the information provided via EMA can support ecological valid assessment and screening, experiential learning, and within the context of an intervention, shed light on the mechanisms of change [16]. Interventions can be personalized, based on momentary assessments, and delivered in anticipation of a change in the target behavior. In the context of adaptive ecological momentary interventions, push/pull strategies involve delivering interventions either proactively by the system (push) or in response to a user’s request (pull), while just-in-time interventions are provided at opportune moments when they are likely to be most effective, based on a real-time assessment of the individual’s context and state [17]. This method can benefit the generalization of skill acquisition, where the just-in-time intervention prompts the individual to allocate increased resources toward skill acquisition.

We propose an intervention that aims to bolster skill acquisition (i.e., effective goal pursuit) through a combination of evidence-based strategies and EMI implementation. These strategies include frequent self-monitoring, shown to improve goal attainment [13]; mental contrasting with implementation intentions (MCI) [18], shown to produce a moderate effect on health behaviors [19]; and the Capability, Opportunity, Motivation, and Behavior (COM-B) framework [20] for goal setting. In addition, the intensive measurement of relevant goal-pursuit processes can be used to model the dynamics in daily life [21]. To develop an intervention for implementation within the clinical sample, we optimized the design following a research model for developing digital health interventions through iterations [22].

Study Aim

This study aimed to develop, evaluate, and implement a just-in-time adaptive intervention to improve goal pursuit. The intervention sought to provide training for a goal pursuit strategy that could easily be incorporated into participants’ daily lives in terms of time and effort. The goal was for this intervention to serve as an adjunct to behavioral interventions (whether psychological or health-related) in future research.

The aim was addressed by (1) developing a personalized approach to implementing a goal pursuit intervention in daily life; (2) identifying barriers and facilitators and monitoring the implementation process of the intervention through several iterations; and (3) piloting the intervention to evaluate its feasibility and acceptability, efficacy, and individual change processes by combining intensive single-case experimental design (SCED) and extensive methods. Figure 1 outlines the procedure for optimizing and piloting the ecological momentary intervention via 3 iterations.
Figure 1. Procedure for optimizing and piloting the ecological momentary intervention, outlining the steps undertaken within each iteration.

Methods

Study Design

This study involved 3 iterations to test and gradually improve all features of the intervention to ultimately inform a randomized control trial evaluation of the intervention. Two iterations focused on optimization, while the third iteration was an uncontrolled pilot study. After each iteration, feedback was used to improve the design and intervention to increase the feasibility and acceptability. Questionnaires and strategy training were delivered via Qualtrics and EMA/EMI using the m-path platform [23].

Ethical Considerations

Ethical approval was granted by the University College London (UCL) Research Ethics Department (21883/001). All participants were provided with details of the study, confirmed eligibility, and provided informed written consent. The study data were deidentified. All participants (including those who chose to withdraw partway through) were entered into a prize draw to win a £50 (US $64) voucher. They received £20 (US $25) and a personalized report outlining their results if they reached 70% completion of the EMA at the end of the study.

Recruitment

The participants were recruited through a convenience sampling approach from various social media platforms. Individuals were eligible if they (1) were over the age of 18 years; (2) able to read and understand English; (3) were based in the United Kingdom; and (4) had a personal smartphone with Android or iOS operating software. Because we were seeking to pilot in a “healthy” sample, our exclusion criteria were (1) current mental health difficulties, including anyone scoring above 15 on the 9-item Patient Health Questionnaire (PHQ-9) or >1 on the suicidal ideation item and 12 on the Generalized Anxiety Disorder 7 (GAD-7); and (2) anyone undergoing psychotherapy at the time the study was conducted. Figure 2 shows the study flowchart.

EMA studies require commitment from participants over a long period (up to 6 times a day for 28 days); therefore, dropout rates can be high. Appropriate incentives can encourage compliance. Therefore, we created a 2-fold incentive as outlined in the previous section. Participants were also incentivized through app functions such as earning badges and data visualization.
Figure 2. Flowchart outlining the design and participant flow through the development and pilot study. EMI: Ecological Momentary Intervention.

Developing the Intervention
Developing the intervention relied on adapting existing evidence-based strategies for goal pursuit. We aimed to develop an intervention that was adaptable to each participant’s goals and generalizable enough to accommodate shifts and changes in goal focus during their daily lives. A self-guided training session was developed and supplemented with abbreviated prompts that could be delivered throughout the intervention period (Multimedia Appendix 1).

Feasibility Assessment
Within each iteration, we collected information relating to the experience of participating in the study, specifically undertaking EMA and the intervention. This included Likert scale questions assessing the ease, helpfulness, and intrusiveness of the EMA; perceived effectiveness and utility of undertaking the intervention; and helpfulness of the strategy training guide. Participants could also provide qualitative feedback on their goal progress and experience. Feasibility was assessed through data relating flow of participant recruitment and retention throughout the intervention. Acceptability was assessed post intervention. This feedback took the form of a questionnaire assessing how feasible and acceptable the EMA schedule was for them; whether it was easy, helpful, or enjoyable; or whether it was intrusive and impeded optimal goal pursuit.

Assessment of Outcomes
Primary Outcome
Goal pursuit was used as the primary outcome to test the preliminary efficacy of our intervention, goal. This was measured using EMA, and participants were also asked about goal attainment post intervention.

Secondary Measures
To test whether the intervention influenced goal pursuit–related processes, we assessed participants’ pre–post changes on 5 goal pursuit–related measures, which are outlined in Textbox 1.
Textbox 1. The goal pursuit–related measures we used to assess participants’ pre-post changes.

1. **Action orientation:** The Action Control Scale (ACS-90) [24] is divided into 3 subscales: Hesitation (8 items), the ability to initiate a task; Preoccupation (8 items), the ability to actively work on the task; and Volatility (6 items), the ability to stay action-oriented until completion.
2. **Defeatist Performance Beliefs:** The 15-item Defeatist Performance Beliefs (DPB) scale [25] measures overgeneralized negative thoughts in goal-striving.
3. **Prospective imagery:** The Prospective Imagery Test (PIT) [26] measures the ability to vividly imagine positive and negative future-orientated scenarios.
4. **Intertemporal choice:** The 27-item Money Choice Questionnaire (MCQ) [27] measures preferences between small immediate rewards and large delayed rewards. A general delay discounting parameter (“k”) is estimated, wherein greater k values represent steeper delay discounting.
5. **Difficulties in Emotion Regulation:** The 18-item Difficulties in Emotion Regulation Scale (DERS) [28] measures participants’ emotion regulation representation, as this was considered aversive in previous iterations.

Ecological Momentary Assessment

The participants completed a series of questions numerous times a day over 28 days. The number changed across iterations. The questions aimed to (1) track mood and motivation; (2) assess goal characteristics such as reward, meaning, and importance; and (3) estimate the extent to which people are acting toward a goal, can visualize it, and feel self-efficacious.

In terms of goal pursuit, “I am acting toward a goal” was the primary outcome. Other questions measured mood, such as “How do you feel right now?” (smiley visual analog scale), anhedonia (“I’m enjoying what I am doing”), motivation (“I feel motivated”), expectation (“I feel hopeful”), energy (“I feel energized”), and questions related to goals, domain (“What I am doing is related to [recreation/relaxation, education, relationships, work or health]”), difficulty (“What I am doing is difficult”), importance (“What I am doing is important”), reward (“What I am doing is rewarding”), meaning (“What I am doing is meaningful”), implementation (“I know how I am going to reach this goal”), and representation (“I can picture myself achieving this goal”).

Ecological Momentary Intervention

The study design was guided by the Risk of Bias in N-of-1 Trials (RoBiNT) scale to ensure the methodological quality of intervention studies employing single-case methodology (Multimedia Appendix 2). Details of each iteration and adaptation can be found in Multimedia Appendix 3.

Pilot Component

Following the completion of baseline measures, the participants completed a 7-day EMA monitoring period, during which they completed 4 EMA surveys per day, occurring at semirandom intervals within an individualized 12-hour waking period (baseline). Following the completion of 7-day monitoring, the participants completed the self-guided COM-B/MCII training via the internet.

During the intervention period (the subsequent 21 days), all participants received a prompt at the start of each day, following which the goal pursuit variable alone was used to trigger prompts (falling 1 SD below their rolling average). If the individual indicated low goal pursuit, they were not asked subsequent questions relating to the goal (domain, difficulty, importance, reward, meaning, implementation, and

Statistical Analyses

Acceptability / Feasibility

To evaluate the acceptability of study procedures, participants’ experiences were assessed in the postintervention questionnaire and analyzed descriptively.

EMA Analysis: Preprocessing Period

Participants with less than 48 time points were removed from the EMA analysis. In addition, participants were excluded when there was a baseline trend (ordinary least squares standardized beta coefficient \(\beta > \pm 0.3 \)) on the basis that differences between phases can be difficult to interpret if improvement trends are observed in phase 1 (ie, due to natural improvement unrelated to the intervention).

SCED Analysis

The data obtained from the single-case experimental phase design used in this study have a hierarchical 2-level structure with observations (level 1) nested within individuals (level 2). We estimated design-comparable between-case standardized mean differences (BC-SMD) using restricted maximum likelihood methods [29]. We modeled baselines including both fixed and random effects for each level. The treatment phase was modeled with linear trends with both fixed and random effects at the level and slope. Assumptions were set around the session level error structure—an autoregressive model of order 1 (AR1) with variance differing by phase.

In addition, we estimated the differences in scores between the 2 phases using Ruscio A [30]. This metric reflects the probability that a randomly selected time point in phase 2 is larger than a randomly selected time point in phase 1 (calculated via Monte Carlo simulation: 10,000 runs) [31]. We also estimated the unstandardized difference in scores between the median values in the 2 phases.

Pre-Post Change

Differences between baseline and postintervention assessment measures were estimated using paired-sample \(t \) test.

Network Modeling

To explore the theoretical conceptualization of goal pursuit dynamics, we estimated a temporal network analysis. We
generated 2 models, the first with mood-related variables (mood, motivation, energy, hope, and interest) and goal pursuit (as these were captured at each time point), along with a separate model with goal-specific variables (difficulty, meaning, reward, importance, implementation, and representation) and goal pursuit. These were assessed separately, as the participants only rated the goal-specific variables if their goal pursuit was >1 SD below their rolling average.

We estimated multilevel vector autoregression networks via the mlVAR package on R software (R Foundation for Statistical Computing) [32], using the method lmer (sequential univariate multilevel estimation) with orthogonal estimation. We then visualized the autoregression networks with the qgraph package [33].

Both a temporal network (how the variable is predicted by all other variables after controlling for all other temporal effects) at the previous time point and a contemporaneous network (how variables are associated at the same time point, controlling for the influence of all other variables and temporal effects) were used within the results. The model assumes stationarity; as such, all items were detrended before including them in the network.

Results

Overview

As the purpose of the initial 2 iterations was to inform the optimization of the EMI, only data from iteration 3 (the pilot) are reported in this section.

Participant Characteristics

Sample characteristics are presented in Table 1. The total sample size was 73 participants (participants undertaking the EMI), with 65 (89%) completing postintervention measures. There were more female than male participants. While there was variation in ethnicity, there were no Black participants, and most of the sample were students. This was a healthy sample with low to no symptoms of depression (PHQ-9: mean 3.71, SD 3.73; range 0-15) and anxiety (GAD-7: mean 3.45, SD 3.65; range: 0-12).

Table 1. Sociodemographic characteristics of the study sample (N=73).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>25.05 (7.49)</td>
</tr>
<tr>
<td>Female gender, n (%)</td>
<td>46 (63)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>27 (37)</td>
</tr>
<tr>
<td>Chinese</td>
<td>15 (21)</td>
</tr>
<tr>
<td>Mixed</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Other</td>
<td>4 (5)</td>
</tr>
<tr>
<td>White</td>
<td>26 (36)</td>
</tr>
<tr>
<td>Employment status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>25 (34)</td>
</tr>
<tr>
<td>Student</td>
<td>46 (63)</td>
</tr>
<tr>
<td>Unemployed/unable to work</td>
<td>2 (3)</td>
</tr>
</tbody>
</table>

Acceptability Assessment

Post intervention, the participants completed a survey on the acceptability of the intervention (Figure 3, Multimedia Appendix 4). A total of 22 (35%) respondents stated they achieved the goal “a little better than expected,” 16 (25%) reported that they achieved the goal “much better than expected,” and only 2 (3%) reported not achieving the goal or experiencing a decline in their ability to reach a desired objective. When asked to assess the general ability to effectively pursue goals, 14 (22%) participants said it became much better and 33 (52%) reported a slight improvement. Moreover, 2 (3%) participants indicated that their overall competence in accomplishing goals had deteriorated. One participant’s goal was to get a promotion, and they did not get it; it wasn’t clear why the other participant thought their competence had deteriorated.

Open feedback on user experience was largely positive. In general, participants endorsed the simplicity and interactivity of the app, which had a visualization component to help track their responses. They suggested decreasing the number of notifications during the day and making a more varied list of EMAs to avoid respondent fatigue. The participants stated the MCI strategy was helpful, and engaging with the app helped them become more aware of their own goal-related behaviors:

…Helped to keep reminding myself what I needed to accomplish and keep it in the forefront of my mind. [Participant #15]

Whenever I see a reminder from the app, I seem to be persuaded to do something to change the current situation, even though I might have answered the questions with a negative emotion. [Participant #32]
Feasibility Assessment

To assess feasibility, we examined compliance with the EMA. Among all those who started the EMA (N=73), 10 (14%) were excluded from statistical analysis due to low compliance. Participants were sent 112 EMA surveys. On average, all 73 (100%) participants completed a mean of 85 (SD 33) or 76% of the EMAs across the month. While the strategy was presented at the first beep of each day, the prompt was also triggered by changes in mood on average 18 (SD 13) times per participant over a 21-day period.

Primary Outcome: Goal Pursuit SCED Analysis

We assessed changes in goal pursuit between the baseline and intervention phases for 73 participants (Multimedia Appendix 5). Throughout the experiment, the participants’ goal pursuit domains were recreation/relaxation (1024 observations, 29%), education (882 observations, 25%), relationships (559 observations, 16%), work (581 observations, 16%), and health (508 observations, 14%). There was a small effect size (BC-SMD) 0.15, 95% CI 0.03-0.27). The intervention had an immediate significant effect, increasing the participants’ goal pursuit by 0.495 units (standard error: 0.152) (P<.001) but no significant additional improvement during the intervention period, at an intervention trend of 0.002 (P=.002). The probability of superiority (Ruscio A) was 0.59 (95% CI 0.54-0.63). There was a large amount of heterogeneity (I² =78.2%; $H^2=4.6$), with 20 (27%) participants demonstrating CIs >0.5, 3 (4%) below 0.5 (suggesting poorer performance during the intervention phase), and the remaining 50 (69%) unclear (CIs crossing 0.5). The median difference between phases was 0.41 (SD 1.29).

Secondary Outcomes

A total of 65 (89%) participants completed the postintervention measures. No significant pre-post changes were noted for Defeatist Performance Beliefs (DPB) (t_{64}=0.36, P=.72), Prospective Imagery Test (PIT) (t_{64}=0.47, P=.64), DERS (t_{64}=0.47, P=.64), MCQ (t_{51}=1.36, P=19), PHQ-9 (t_{63}=1.65, P=.10), and GAD-7 (t_{64} = -0.24, P=.81). GAD-7 and PHQ-9 were affected by floor effects. On the Action Control Scale (ACS) subscales, hesitation was significant (t_{63}=2.1121, P=.04) but not volatility (t_{64} = -0.76017, P=.45) or preoccupation (t_{63}=1.0326, P=.31). There was no significant change between baseline and intervention phases for the other EMA variables: mood (BC-SMD 0.03, 95% CI –0.07 to 0.13), motivation (BC-SMD 0.03, 95% CI –0.08 to 0.14), energy (BC-SMD –0.01, 95% CI –0.13 to 0.11), anhedonia (BC-SMD 0.01, 95% CI –0.12 to 0.10), and expectancy (BC-SMD 0.06, 95% CI –0.07 to 0.19).

Contemporaneous Networks

To elucidate dynamic processes during goal pursuit, we also estimated the network of associations between variables (Figure 4). The contemporaneous network visualized the partial correlations between variables at the same time point (controlling for the influence of all other variables and temporal effects). In the primary network, mood-related variables were associated as expected (mood, motivation, energy, and expectation) and anhedonia, motivation, and energy directly were associated with goal pursuit (explained variance for goal pursuit: $R^2=0.24$). Meanwhile, in the secondary network, goal-specific variables were strongly associated, with representation, implementation, importance, and reward directly associated with goal pursuit (explained variance for goal pursuit: $R^2=0.07$).
Figure 4. Network plots of the primary (top) and secondary (bottom) variables. Circles represent the ecological momentary assessment (EMA) items. Within the contemporaneous networks, lines represent partial correlations between symptoms at the same timepoint, after controlling for all other variables and temporal effects. In the temporal networks, directed lines indicate where a symptom predicts another symptom at the next time point after controlling for all other variables. Blue lines indicate positive relationships, and red lines indicate negative relationships. The width and saturation of a line indicate the strength of the relationship.

Temporal networks

The temporal network demonstrated how the variables predicted each other from 1 time point to the next. Within the primary temporal network, all variables demonstrated strong autocorrelations; only motivation predicted pursuit at the next time point, with motivation predicated by energy. There was a bidirectional relationship between expectation and anhedonia, with anhedonia negatively predicting mood. Expectation and mood both influenced each other at the next time point.

Within the secondary network, there were strong autocorrelations for all variables except implementation and reward. Pursuit was predicted by implementation but had a stronger influence on implementation. Representation also predicted implementation at the next time point, as well as importance and meaning. Meanwhile, implementation negatively predicted meaning at the next time point. Reward negatively predicted difficulty, while difficulty only predicted itself.

Discussion

Principal Findings

This study aimed to develop, evaluate, and implement a just-in-time adaptive intervention to improve goal pursuit. Overall, the results suggest that the digital intervention was feasible and acceptable to participants. Our results show that participants endorsed high acceptability ratings relating to both the study procedures and the intervention. While there was a high level of attrition between baseline measures and those setting up the app, there was also a high level of retention and completion for those who did begin the EMI. There was a significant improvement in goal pursuit (between baseline and intervention) with most participants achieving their primary
goal and reporting that they would continue using the strategy, supporting its potential effectiveness in promoting positive behavior change. There was no improvement in pre-post measures measuring processes associated with goal pursuit.

This study focuses on the dynamics of goal pursuit including the reality that people will switch between multiple goals. There is little in the intervention literature that covers dynamic within-person processes that help individuals pursue their goals over time. Similar digital intervention studies have examined the use of employing within-person dynamic data to inform prompts. Korinek et al [34] used dynamical systems modeling within their adaptive intervention to increase walking behavior in participants who were overweight to set an “ambitious but doable” goal for themselves. Fallon et al [35] used a microrandomized control design to randomize participants to an intervention option (providing goal or social feedback relating to a physical activity goal) based on each participant’s specific state. Notably, their results suggested that the effectiveness of the intervention depended on the stage of their goal pursuit (how close they were to attainment). This study contributes to the literature by using the within-person variation on goal pursuit to prompt the intervention, leading to improved goal pursuit over time.

The only change in the associated goal pursuit measures was for hesitation—the ability to initiate intended actions. This construct appeared to align with implementation intentions, looking to improve the ability to translate specific intentions into behavior. This construct has been suggested to be particularly important for goal-striving across numerous domains [36]. Given the emphasis on mental representation within the strategy, it was surprising that there was no improvement in representation. This may be due to the sensitivity of the measures, where similar measures have not been associated with task performance [37]. The measures did not capture the vividness or intensity of the imagery, which would be important phenomena underpinning scene construct [38], and were expected to be targeted. While we assessed processes related to goal pursuit, we did not assess the mechanisms of change related to all strategies. Self-monitoring, for instance, is thought to improve mental health and well-being by increasing emotional self-awareness [39,40]. Future studies should endeavor to identify measures related to the mechanisms of change.

The network analysis can inform our understanding of dynamic goal pursuit highlighting a complex cyclical process involving interdependence, influence, and self-sustaining processes. There were no changes in the associated goal pursuit measures, either in terms of pre-post measures or EMA items. Contemporaneously, motivation and reward were directly associated with goal pursuit, while anhedonia was negatively associated with it. In terms of goal-specific constructs, representation, implementation, importance, and reward were directly associated with goal pursuit. Only motivation and implementation (knowing how the goal could be achieved) predicted goal pursuit at the next time point, with goal pursuit itself being the strongest predictor of goal pursuit. This would seem to suggest that the intervention directly targets goal pursuit rather than indirectly through an associated process (eg, motivation). Indeed, within the sample, motivational levels were high. Pursuit also predicted implementation, suggesting that goal pursuit is self-sustaining and boosts confidence in knowing how to achieve the goal. This is in line with the GOAL (goal-orientated action-linking) architecture, where motivation arises from the individual’s perception that their actions can impact the likelihood of achieving a goal [1]. Self-monitoring behavior and implementing the strategy may aid goal reprioritization, where the goal pursuit itself is a driver of further goal pursuit (within or between goals), as noted by the bidirectional relationship between pursuit and implementation.

Strengths and Limitations

The study had a few strengths and limitations. The development of the study procedure over multiple iterations facilitated adjustments including short momentary assessments, an efficient reporting process, low attrition, and high compliance. In addition to the app, the researchers provided consistent support through the intervention period, with reminder emails appearing particularly useful for improving compliance. For EMA technology to be successful in gathering accurate data and sustaining user interest over time, it is essential to engage users effectively. This is especially important when considering the translational application to mental health, where it can facilitate individuals taking a more active role in their recovery [41,42].

While there is an indication of an impact on goal pursuit, the single-case design reveals that while it might prompt change for some individuals, its effects remain unclear for the majority and entirely absent for others. In addition, the trend over the intervention did not indicate an incremental benefit; however, it may have been a sustaining pursuit, and without prompts, we may have seen a decline. Without a follow-up, it is also unclear whether the changes were maintained over time without prompts. Self-report requires self-awareness; indeed, we viewed the EMA as an active component enhancing awareness, but this could affect the measurement (either through meaning associated with items or change consequential to EMA), and this reactivity can interfere with causal claims [43].

This study aimed to personalize the just-in-time adaptive intervention. In the second iteration, we aimed to personalize the approach by identifying predictors of goal pursuit during the baseline period. However, this approach was hampered by poor compliance. In the pilot, we adopted a more conservative approach focusing solely on variation in goal pursuit; however, further studies may be able to improve the design by reinstating this approach. Finally, in relation to strategy training, the results from the initial iteration indicated that the web-based self-facilitated guide was considered optimal over video. There is evidence that the mode of learning may affect the effect size, although more research is needed on this aspect.

Behavioral interventions that can be delivered via an app can address barriers that typically hamper engagement in intervention and may aid in study retention. Strategies for user engagement are a key aspect of EMI design. In this study, reducing participant burden was an important consideration; through iterations, we reduced the number of assessments and introduced branching of responses when not pursuing a goal. The number of assessments was still an issue for some participants, and this reduction comes at a cost to the availability.
and validity of data—for instance, nonrandom missing data (we had far fewer responses to model the secondary network). Passive monitoring helps reduce the burden but relies on proxy measures of goal pursuit and associated psychological processes, and it may not be as relevant for some goals as others [45].

Further research will need to consider piloting this EMI within a clinical sample before proceeding to a larger trial. The design has been optimized for easy integration into an individual’s daily life in terms of time and effort, with the intention that it could serve as an adjunct to behavioral interventions (psychological or health-related) in future research. Further considerations will need to be given to whether this should be tested as a standalone or an adjunct within an established intervention—for instance, facilitating behavioral activation for depression, or with cognitive behavioral therapy targeting the negative symptoms of psychosis. In this study, the participants were required to have enough motivation to pursue their goals. There is the question of whether this would be appropriate for those who lack motivation, as experienced in depression or psychosis. It is also unclear which aspects of the study design may need to vary, as it has been suggested that while compliance is related to fewer prompts in nonclinical samples, more frequent prompts led to higher compliance in studies with clinical samples [43]. Further research will need to carefully consider the design, intensity, and appropriateness of this EMI intervention for use within different clinical samples, while also accounting for differences in the mechanism of change between nonclinical and clinical samples.

Conclusion

This pilot just-in-time adaptive intervention used behavior self-monitoring, COM-B, and MCII strategies to improve dynamic goal pursuit. It was delivered via an EMI procedure and shown to be feasible and acceptable among a nonclinical adult sample. Given the potential feasibility, these results provide a foundation from which future research may implement a more rigorous methodology to assess efficacy within clinical populations that experience goal pursuit deficits. There was preliminary evidence of an effect on goal pursuit. However, this should be tested in a fully powered trial before drawing conclusions. Future research should consider the utility of this approach as an additional intervention element within psychological interventions to improve goal pursuit. Sustaining goal pursuit throughout interventions is central to their effectiveness and warrants further evaluation.

Data Availability

The data sets and scripts generated and analyzed during this study are available in the OSF repository [46].

Conflicts of Interest

None declared.

Multimedia Appendix 1

Details of the training session.

[DOCX File, 30 KB - formative_v8i1e49857_app1.docx]

Multimedia Appendix 2

Methodological single-case experimental design (SCED) approach based on the Risk of Bias in N-of-1 Trials (RoBiNT) scale.

[DOCX File, 22 KB - formative_v8i1e49857_app2.docx]

Multimedia Appendix 3

Details of each iteration and adaptions.

[DOCX File, 21 KB - formative_v8i1e49857_app3.docx]

Multimedia Appendix 4

Acceptability questions and ratings.

[DOCX File, 20 KB - formative_v8i1e49857_app4.docx]

Multimedia Appendix 5

Ecological Momentary Assessment (EMA) descriptives.

[DOCX File, 20 KB - formative_v8i1e49857_app5.docx]

References

46. OSF Repository. URL: https://osf.io/sa6h9/ [accessed 2024-03-06]

Abbreviations

ACS: Action Control Scale
AR1: autoregressive model of order 1
BC-SMD: between-case standardized mean difference
COM-B: Capability, Opportunity, Motivation, and Behavior framework
DPB: Defeatist Performance Beliefs
EMA: Ecological Momentary Assessment
EMI: Ecological Momentary Intervention
GAD-7: Generalized Anxiety Disorder 7
GOAL: goal-orientated action linking
MCII: mental contrasting with implementation intentions
PHQ-9: 9-item Patient Health Questionnaire
PIT: Prospective Imagery Test
RoBiNT: Risk of Bias in N-of-1 Trials
SCED: single-case experimental design

An Ecological Mobile Momentary Intervention to Support Dynamic Goal Pursuit: Feasibility and Acceptability Study
JMIR Form Res 2024;8:e49857
URL: https://formative.jmir.org/2024/1/e49857
doi:10.2196/49857
PMID:38506904

©Ciarán O'Driscoll, Aneesha Singh, Iya Chichua, Joachim Clodic, Anjali Desai, Dara Nikolova, Alex Jie Yap, Irene Zhou, Stephen Pilling. Originally published in JMIR Formative Research (https://formative.jmir.org), 20.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Effectiveness of a Web-based and Mobile Therapy Chatbot on Anxiety and Depressive Symptoms in Subclinical Young Adults: Randomized Controlled Trial

Stanisław Karkosz1*, MA; Robert Szymański1*, BA; Katarzyna Sanna2*, PhD; Jarosław Michałowski1*, PhD

1Laboratory of Affective Neuroscience in Poznan, SWPS University, Warsaw, Poland
2Center for Research on Personality Development in Poznan, SWPS University, Warsaw, Poland
*all authors contributed equally

Corresponding Author:
Stanisław Karkosz, MA
Laboratory of Affective Neuroscience in Poznan
SWPS University
Chodakowska 19/31
Warsaw, 03-815
Poland
Phone: 48 22 517 96 00
Email: skarkosz@swps.edu.pl

Abstract

Background: There has been an increased need to provide specialized help for people with depressive and anxiety symptoms, particularly teenagers and young adults. There is evidence from a 2-week intervention that chatbots (eg, Woebot) are effective in reducing depression and anxiety, an effect that was not detected in the control group that was provided self-help materials. Although chatbots are a promising solution, there is limited scientific evidence for the efficacy of agent-guided cognitive behavioral therapy (CBT) outside the English language, especially for highly inflected languages.

Objective: This study aimed to measure the efficacy of Fido, a therapy chatbot that uses the Polish language. It targets depressive and anxiety symptoms using CBT techniques. We hypothesized that participants using Fido would show a greater reduction in anxiety and depressive symptoms than the control group.

Methods: We conducted a 2-arm, open-label, randomized controlled trial with 81 participants with subclinical depression or anxiety who were recruited via social media. Participants were divided into experimental (interacted with a fully automated Fido chatbot) and control (received a self-help book) groups. Both intervention methods addressed topics such as general psychoeducation and cognitive distortion identification and modification via Socratic questioning. The chatbot also featured suicidal ideation identification and redirection to suicide hotlines. We used self-assessment scales to measure primary outcomes, including the levels of depression, anxiety, worry tendencies, satisfaction with life, and loneliness at baseline, after the 2-week intervention and at the 1-month follow-up. We also controlled for secondary outcomes, including engagement and frequency of use.

Results: There were no differences in anxiety and depressive symptoms between the groups at enrollment and baseline. After the intervention, depressive and anxiety symptoms were reduced in both groups (chatbot: n=36; control: n=38), which remained stable at the 1-month follow-up. Loneliness was not significantly different between the groups after the intervention, but an exploratory analysis showed a decline in loneliness among participants who used Fido more frequently. Both groups used their intervention technique with similar frequency; however, the control group spent more time (mean 117.57, SD 72.40 minutes) on the intervention than the Fido group (mean 79.44, SD 42.96 minutes).

Conclusions: We did not replicate the findings from previous (eg, Woebot) studies, as both arms yielded therapeutic effects. However, such results are in line with other research of Internet interventions. Nevertheless, Fido provided sufficient help to reduce anxiety and depressive symptoms and decreased perceived loneliness among high-frequency users, which is one of the first pieces of evidence of chatbot efficacy with agents that use a highly inflected language. Further research is needed to determine the long-term, real-world effectiveness of Fido and its efficacy in a clinical sample.

Trial Registration: ClinicalTrials.gov NCT05762939; https://clinicaltrials.gov/study/NCT05762939; Open Science Foundation Registry 2cqt3; https://osf.io/2cqt3
mental health support to adolescents and young adults struggling with anxiety and depression. Our previous research on the interaction between humans and Fido showed that it is considerably user-friendly [18]. However, Fido still required an efficacy study, which is presented in this article along with the exploratory analysis of human—therapy chatbot interactions. We hope that this study will extend previous research in this field and enrich the discussion on agent-guided mental health treatment.

Objectives
A previous study on human-chatbot interactions using Fido provided satisfactory results, suggesting that Fido is pleasant to use; however, it hasn’t been optimized yet and required further development in the area of user experience (UX) [18]. After its UX optimization, Fido has been ready to use in an efficacy study. Therefore, we performed the first RCT aimed at testing the effects of using Fido to reduce subclinical depression and anxiety symptoms and compared them with the use of self-help materials from the book “Mind Over Mood” [19].

Based on previous clinical research of chatbots [6,8-10], we aimed to investigate the direct intervention effects and their stability. We hypothesized that, after a 2-week intervention and a 1-month follow-up, the following would occur:

1. The chatbot group reports lower depression, anxiety, and worry symptoms than those with the self-help book only.
2. The chatbot group has higher satisfaction with life than those using the self-help book only.
3. The positive affect is higher, and negative affect is lower than prior to intervention. Furthermore, this change is greater in the chatbot group than in the group with the self-help book.

Based on previous research on the chatbot-user interaction [8,18], we also hypothesized that:

1. Loneliness is lower in the chatbot group than in the group with the self-help book.
2. Participants form a bond with the chatbot, scoring at least 4 on the Working Alliance Inventory-Short Revised (WAI-SR) scale.
3. The users’ assessments of the chatbot’s linguistic pragmatics correlate positively with the level of UX.

Methods
Trial Design
We used a 2 x 3 mixed factorial design with 2 intervention arms (Fido chatbot vs self-help book) and 3 time points (before the intervention [T1], immediately after the intervention [T2], and at a follow-up 1 month after the previous measurement [T3]).
The primary intervention lasted 2 weeks. After the intervention, the use of the technique was not obligatory (but it was not forbidden). For an overview of the procedure, see Figure 1.

Figure 1. Procedure flowchart with measures and time points (T0-T3).

Participants

Participants were recruited via Facebook and Instagram advertisements from May 2022 to June 2022 and screened using a Qualtrics online survey (measurement at T0). The estimated sample size was 80 participants, with an estimated dropout of around 15%. The sample size was based on previous studies of chatbot interventions [6,9], in which the estimated sample size (ie, N=70) allowed for detecting a moderate-large effect for depression. We increased the sample size to 80 due to the high dropout rate in previous studies (average of 7 participants per group) [6,9].

Eligibility criteria included (1) age between 18 years and 35 years; (2) not undergoing psychotherapy, coaching, nor psychopharmacological treatment; (3) no diagnosis of a neurological disorder; (4) declaring at least mild depressive or anxiety symptoms by achieving a total score of at least 16 points on the Center for Epidemiologic Studies Depression Scale Revised (CESD-R) [20,21] or at least 50 points on the Penn State Worry Questionnaire (PSWQ) [22,23]; and (5) being able to visit the study site in Poznań (Poland) to complete the follow-up measurements. Computer literacy and proficiency in Polish were implicitly presumed as all participants completed an online screening survey written in Polish.

After enrollment, the research team members performed simple randomization with a 1:1 ratio (via Python script). Because the intervention involved either using the chatbot or the book, participants were informed about their assignment. To reduce the effect of expectation bias, we intentionally masked our hypotheses about the superiority of chatbot-supported therapy. The research team members remained unblinded as well.

During the onboarding for the intervention, the participants were asked to use the assigned intervention technique as needed (ie, with no prespecified minimal time of use per day or week). The uptake of the intervention was monitored via regular commitment checks delivered by email, which could serve as a reminder to use the assigned intervention technique.

All participants received compensation for their involvement: Zł 90 (US $22.57) directly after the intervention and Zł 70 (US $17.56) at the follow-up.

Ethics Approval and Informed Consent

The study received approval from the Ethical Review Board at SWPS University of Social Sciences and Humanities (opinion no. 2022-158) and was registered during participant enrollment in the Open Science Framework (OSF) Registries [24].

We retrospectively registered the protocol and analysis plan under the clinical trial number NCT05762939. Participants were informed about each intervention, step-by-step procedure, their right to withdraw, and research data confidentiality. All participants expressed their consent via a checkbox on a screening survey. Should one of the interventions have proved more beneficial, we ensured the participants from the other arm could gain access to that intervention’s materials.

Due to the Messenger chatbot policies [25], the research team members were hypothetically able to access individual participant messages from the chatbot conversations. This limitation is due to the fact that, formally, Messenger chatbots are an interface to send messages to Facebook pages. Participants from the experimental condition were informed of this potential privacy breach via a consent form explicitly presented in the chatbot and Meta’s Data Policy [26].

Interventions

Chatbot Intervention—Fido

For the experimental group, we used a free, prerelease version of a therapy-supporting Polish-language chatbot, called Fido [27], integrated into Facebook Messenger. Participants were added as testers in Meta’s development website and accessed the chatbot via links embedded in individual emails. They were given no special training (apart from the initial email instructions) but were offered technical assistance in case of any problems.

The chatbot uses machine learning models for intelligent user intent detection and close-ended input methods (such as choosing 1 option from a list). It was developed using iterative co-development with focus groups consisting of therapists and potential users (for more information, see [18]). Moreover, external therapists provided quality assurance for all therapeutic methods used by the chatbot, while software engineers used standard testing procedures. During the trial, none of the features underwent any changes.
During the onboarding procedure, participants indicate their gender and receive information on user terms and data protection, as well as basic training in cognitive biases because understanding them is crucial for interaction with Fido. After onboarding, users can try different therapeutic techniques implemented in Fido using a tree-based structure.

The primary functionality of Fido is providing dialogue focused on intelligent recognition of cognitive biases and their subsequent modification using Socratic questioning. It also recognizes suicidal ideation and reacts to it by redirecting users to emergency hotlines.

To maximize Fido’s performance, one of its machine learning models implements the so-called ABC technique (known from CBT), which helps patients organize and differentiate between activating events, beliefs, and their emotional or behavioral consequences [28], as presented in Figure 2. Fido also provides psychoeducation about depression, anxiety, and emotions. Last, it embraces gratitude practice exercises [19].

Figure 2. An example of a Fido-patient conversation (translated from Polish to English): ABC technique and cognitive distortion recognition.

Control Intervention—Materials From “Mind Over Mood”

Chapters 1-6 and 12 from the Polish translation of “Mind Over Mood” [19,29] were used to familiarize control participants with similar content and tasks as those provided to the experimental group. The book contains psychoeducation content with self-help exercises and is a well-established therapist’s guide to depression.

Outcomes

Primary Outcomes Measures

Overview

Primary outcomes were assessed at the 3 time points: T1, T2, T3. All questionnaires were implemented in Qualtrics and administered mostly offline at the study site; when participants could not visit the lab, they were given a link to an online version of the survey. Participants completed validated Polish adaptations of the scales. For primary analyses, we used sum scores of every single primary outcome measured at 1 time point (not change scores).

CESD-R

Depression symptom severity was measured using the CESD-R [20,21]. It is a 20-item screening tool for major depressive disorder. The scale uses 9 symptom groups defined in the Diagnostic and Statistical Manual (DSM)-5 [30]: sadness, anhedonia, appetite, sleep, thinking/concentration, guilt, fatigue, agitation, and suicidal ideation.

Patient Health Questionnaire-9

Another measure used to assess participants’ depression was the Patient Health Questionnaire-9 (PHQ-9) [31,32] from the...
self-administered version of the Primary Care Evaluation of Mental Disorders (PRIME-MD) inventory [33]. This brief, 9-item scale is based on DSM-IV criteria for depression. It is used mainly for symptom severity monitoring in primary care.

PSWQ
We used the PSWQ [22,23] to measure worry tendency, which is the primary component of generalized anxiety disorder. The 16-item scale addresses worry excessiveness, generality, and uncontrollable dimensions.

State-Trait Anxiety Inventory
The State-Trait Anxiety Inventory (STAI) [34,35] is another questionnaire used to measure anxiety, both as a temporary state and as a relatively fixed trait of an individual. We used the 20-item trait scale of STAI.

Positive and Negative Affect Schedule
The Positive and Negative Affect Schedule (PANAS) [36,37] was used to measure the general affect during the last 2 weeks. We calculated 2 subscale sum scores: 1 for positive feelings (9 items) and 1 for negative affect (9 items). The last 2 items of the original scale were not administered due to human error in the online survey implementation.

Satisfaction With Life Scale
Primary measures also included a brief, 5-item Satisfaction With Life Scale (SWLS) [38,39], which was used to assess global life satisfaction in a cognitive-judgmental aspect. Together with positive and negative affect, life satisfaction is an important component of subjective well-being.

Revised UCLA Loneliness Scale
We used the 20-item Revised UCLA Loneliness Scale (R-UCLA) [40,41] to assess other specific aspects of well-being, namely subjective feelings of loneliness and social isolation.

Secondary and Other Outcome Measures

Overview
During the 2-week intervention, participants received 5 engagement check surveys, each containing a single question: “How much time have you spent on therapeutic chatbot/book use during the last 48 hours?” Answers were in 10-minute increments. We calculated the sum score of the engagement checks as the total amount of declared time spent on book or chatbot use in minutes. Each survey had to be completed in less than 24 hours.

After the intervention (T2), all participants also were asked an open-ended question: “How many times have you used the chatbot / read the book in the past two weeks?” If a participant declared a range of values (eg, “10-12 times”), we recoded their answer as the median value in this range.

Another secondary measure used in both arms at T2 was a 12-item test that assessed the participants’ acquired knowledge of psychoeducation topics covered both by Fido and the “Mind Over Mood” book (see Multimedia Appendix 1). The test was administered in a paper-and-pencil format at the study site.

Participants from the chatbot arm were also asked to complete several additional scales at T2, including the WAI-SR and UX.

WAI-SR
The WAI-SR [42] is a 12-item scale that measures therapeutic alliance in 3 key areas defined by Bordin [43], which are (1) agreement on the tasks and (2) goals of the therapy and (3) overall patient-therapist affective bond. As agent-guided therapy also requires some form of therapeutic chatbot–user alliance, we adapted this scale to be used in our study. All items were first translated to Polish using a forward and backward translation with reconciliation. Next, we modified phrases related to human-led therapy to increase their relevance for the chatbot therapy (see Multimedia Appendix 2 for the original WAI-SR items and their adaptation for this study). Items from the tasks and goals subscales were not as relevant to this study (because Fido does not establish these elements of the intervention; they are determined ad hoc by the user), so alongside the total average scale score, we also made use of the average of the bond subscale.

UX
For the general assessment of UX, we included nonmandatory items from several scales used in other studies: Acceptability E-scale, Human-Agent Interaction Scale (HAIS), Language Pragmaticality Scale (LPS).

The Acceptability E-scale [44] is used to measure the overall acceptability and usability of health-related computer applications. The team prepared its Polish translation using a similar procedure to our adaptation of WAI-SR (see Multimedia Appendix 3 for both the original and the translation). The original scale included 5 items. One of the items regarded the functionality of the program. We used this item 4 times, as we wanted to check the functionality of 4 different techniques (psychoeducation, cognitive bias recognition, suicidal thought recognition, and gratitude practice). This way, we ended up with 9 items and used their sum as a total score.

The HAIS [45] has answers that range from 1 to 7 (see Multimedia Appendix 4). The calculated sums from 6 subscales were used: Supportive Anthropomorphic Traits (3 items), Unsupportive Anthropomorphic Traits (4 items), Behavioral Traits (7 items), Uncanny Valley (6 items), Competence (6 items), Warmth (6 items).

We previously used the LPS [18] to assess the perceived ability of Fido to communicate in a pragmatically sound manner. The scale consists of 4 separately scored items with answers on a percentage scale (0%-100%): “What percentage of overall chatbot statements were adequate?” “In what percentage have you been feeling understood by a chatbot?”

The preregistered plan of the study also included chatbot metadata (frequency of use or time spent in the conversation) for each user after the intervention (T2). However, due to technical and ethical reasons, we could not link the questionnaire data with anonymous chatbot metadata. Therefore, we only used the metadata (frequency of use) at a group level.
Analytical Methods
For baseline, we conducted contingency analyses on the nominal and ordinal data and 2-tailed Welch t-tests on the continuous data, to measure whether groups were different in any way at the beginning of the study.

To assess the direct treatment effects on each primary outcome, we conducted repeated measures ANOVA with arm (experimental/control) as a between-group factor, as well as time point (T1/T2) as a within-group factor. We repeated the analyses to test treatment stability, including the scores obtained before versus 1 month after the intervention (T1/T3).

After the intervention (T2), we calculated descriptive statistics on human-agent interaction measures as well as the frequency of use (subjective measures and metadata), declared time spent on the intervention, and knowledge test scores. We also analyzed Pearson correlations between the human-agent interaction measures.

Results
Participants
Of the 245 people screened, 81 were admitted to the study. For an overview of participant flow, see the CONSORT (Consolidated Standards of Reporting Trials) diagram (Figure 3). Basic demographic characteristics as well as screening scores (CESD-R and PSWQ at T0) are presented in Table 1. Participants from the chatbot and control conditions did not differ in terms of age, sex, education, employment, university student status, or screening scores (at T0). Moreover, there was no major difference between the groups in any primary outcome measures at baseline ($t_{72} < 1.57, P_{s} > .12$). Detailed t test results are presented in Multimedia Appendix 5.

Figure 3. Flow of participants through each stage of the study.
Table 1. Participants’ demographic characteristics and screening scores (Center for Epidemiologic Studies Depression Scale Revised [CESD-R] and Penn State Worry Questionnaire [PSWQ]) as well as \(P \) values for the between-group tests before randomization (at T0).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Treatment group</th>
<th>(P) value(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chatbot (n=40)</td>
<td>Control (n=41)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex, n (%)(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>29 (73)</td>
<td>29 (71)</td>
</tr>
<tr>
<td>Male</td>
<td>11 (28)</td>
<td>10 (24)</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>0</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>26.60 (5.06)</td>
<td>24.76 (4.01)</td>
</tr>
<tr>
<td>Employment status, n (%)(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>26 (65)</td>
<td>27 (66)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>7 (2)</td>
<td>5 (12)</td>
</tr>
<tr>
<td>Other</td>
<td>7 (2)</td>
<td>9 (22)</td>
</tr>
<tr>
<td>University student status, n (%)(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>19 (48)</td>
<td>23 (56)</td>
</tr>
<tr>
<td>Not a student</td>
<td>21 (52)</td>
<td>18 (44)</td>
</tr>
<tr>
<td>Highest level of education, n (%)(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General secondary school</td>
<td>17 (43)</td>
<td>19 (46)</td>
</tr>
<tr>
<td>University degree (bachelor’s or higher)</td>
<td>23 (58)</td>
<td>22 (54)</td>
</tr>
<tr>
<td>CESD-R score at T0, mean (SD)</td>
<td>27.58 (13.35)</td>
<td>31 (14.24)</td>
</tr>
<tr>
<td>PSWQ score at T0, mean (SD)</td>
<td>59.78 (10)</td>
<td>59.27 (9.91)</td>
</tr>
</tbody>
</table>

\(^a\)Calculated using the Pearson \(\chi^2\) test for nominal variables and 2-tailed Welch \(t \) test for continuous variables.

\(^b\)Percentages were rounded and may exceed 100.

Efficacy After 2 Weeks

We analyzed the efficacy of the intervention, comparing the data from baseline (T1) and after the 2-week intervention (T2). Only the main effects of time were significant at \(\alpha = .05 \). For the between-subject and interaction effect results, see the tables in Multimedia Appendix 5.

For depressive symptoms, there were moderate effects of time. Scores for the CESD-R (\(F_{1,66}=62.58, P<.001; \omega^2=0.08 \)) and PHQ-9 (\(F_{1,66}=34.18, P<.001; \omega^2=0.06 \)) decreased in both groups.

In terms of anxiety and worry tendency, there was a small decrease in symptom severity in both groups, as measured with the PSWQ (\(F_{1,66}=10.78, P=.002; \omega^2=0.01 \)) and STAI (\(F_{1,66}=25.87, P<.001; \omega^2=0.03 \)).

For both study arms, we also detected small increases in satisfaction with life (SWLS; \(F_{1,66}=13.59, P<.001; \omega^2=0.01 \)) and positive affect (PANAS-P; \(F_{1,66}=16.54, P<.001; \omega^2=0.04 \)), while negative affect decreased (PANAS-N; \(F_{1,66}=24.02, P<.001; \omega^2=0.05 \)). The decrease in feelings of loneliness was very small and not significant (\(F_{1,66}=3.47, P=.07; \omega^2=0.00 \); see Table 2). For a visual representation of treatment efficacy and stability, see Figure 4 [46].
Table 2. Primary outcomes at baseline (T1), after the intervention (T2), and at the follow-up (T3), as well as difference scores (T1 vs T2 and T1 vs T3).

<table>
<thead>
<tr>
<th>Outcome per arm</th>
<th>Score at T1, mean (SD)</th>
<th>Score at T2, mean (SD)</th>
<th>Score at T3, mean (SD)</th>
<th>T1 vs T2, mean difference (95% CI)</th>
<th>T1 vs T3, mean difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESD-R<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>30.74 (13.94)</td>
<td>23.03 (14.30)</td>
<td>23.00 (14.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANAS<sup>b</sup>-Positive</td>
<td></td>
<td></td>
<td></td>
<td>2.56 (1.30 to 3.81)</td>
<td>2.51 (1.21 to 3.82)</td>
</tr>
<tr>
<td>Chatbot</td>
<td>17.89 (6.51)</td>
<td>20.27 (6.29)</td>
<td>21.22 (5.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>17.71 (5.52)</td>
<td>20.66 (7.09)</td>
<td>20.13 (5.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANAS-Negative</td>
<td></td>
<td></td>
<td></td>
<td>–3.83 (–5.39 to –2.27)</td>
<td>–4.38 (–6.26 to –2.50)</td>
</tr>
<tr>
<td>Chatbot</td>
<td>31.19 (7.70)</td>
<td>27.00 (7.26)</td>
<td>26.81 (8.81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>32.50 (7.86)</td>
<td>29.77 (8.76)</td>
<td>29.16 (8.46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHQ-9<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td>–2.56 (–3.44 to –1.69)</td>
<td>–2.82 (–3.91 to –1.72)</td>
</tr>
<tr>
<td>Chatbot</td>
<td>9.97 (4.98)</td>
<td>7.64 (4.53)</td>
<td>7.22 (4.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>11.87 (5.40)</td>
<td>9.11 (5.59)</td>
<td>9.50 (5.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSWQ<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td>–2.36 (–3.79 to –0.92)</td>
<td>–2.84 (–4.47 to –1.21)</td>
</tr>
<tr>
<td>Chatbot</td>
<td>9.97 (4.98)</td>
<td>7.64 (4.53)</td>
<td>7.22 (4.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>11.87 (5.40)</td>
<td>9.11 (5.59)</td>
<td>9.50 (5.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-UCLA<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
<td>–1.56 (–3.23 to 0.11)</td>
<td>–1.11 (–3.14 to 0.92)</td>
</tr>
<tr>
<td>Chatbot</td>
<td>45.44 (12.15)</td>
<td>43.06 (13.38)</td>
<td>41.67 (13.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>42.39 (13.25)</td>
<td>41.49 (13.42)</td>
<td>43.69 (12.84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAI<sup>f</sup></td>
<td></td>
<td></td>
<td></td>
<td>–3.31 (–4.61 to –2.01)</td>
<td>–3.40 (–4.99 to –1.80)</td>
</tr>
<tr>
<td>Chatbot</td>
<td>51.86 (8.75)</td>
<td>48.82 (9.25)</td>
<td>47.44 (9.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>52.42 (8.99)</td>
<td>48.54 (8.94)</td>
<td>49.53 (7.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWLS<sup>g</sup></td>
<td></td>
<td></td>
<td></td>
<td>1.44 (0.66 to 2.22)</td>
<td>1.34 (0.34 to 2.34)</td>
</tr>
<tr>
<td>Chatbot</td>
<td>17.61 (6.67)</td>
<td>18.97 (7.03)</td>
<td>20.00 (7.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>19.50 (5.49)</td>
<td>20.91 (6.07)</td>
<td>19.91 (6.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aCESD-R: Center for Epidemiologic Studies Depression Scale Revised.

^bPANAS: Positive and Negative Affect Scale.

^cPHQ-9: Patient Health Questionnaire-9.

^dPSWQ: Penn State Worry Questionnaire.

^eR-UCLA: Revised UCLA Loneliness Scale.

^fSTAI: State-Trait Anxiety Inventory.

^gSWLS: Satisfaction With Life Scale.
Figure 4. Mean (95% CI) scores at screening, at baseline (Pre), after the intervention (Post), and at the 1-month follow-up for the following primary outcomes: (A) Center for Epidemiologic Studies Depression Scale Revised (CESD-R), (B) Penn State Worry Questionnaire (PSWQ), (C) Satisfaction With Life Scale (SWLS), (D) State-Trait Anxiety Inventory (STAI), (E) Patient Health Questionnaire-9 (PHQ-9), (F) Revised UCLA Loneliness Scale (R-UCLA), (G) Positive and Negative Affect Scale (PANAS)-Positive, (H) PANAS-Negative. Confidence intervals were difference- and correlation-adjusted using the superb R library described by Cousineau et al [46].

Treatment Stability After 1 Month

The measurements from the follow-up (T3) were compared with those at baseline (T1) to determine if previously observed therapeutic effects were stable.

Depressive symptoms remained at a reduced level, as observed in both the CESD-R ($F_{1,57}=32.10, P<.001; \omega^2=0.11$) and PHQ-9 ($F_{1,57}=26.58, P<.001; \omega^2=0.07$) scores. A similar effect was found in anxiety (PSWQ: $F_{1,57}=12.14, P<.001; \omega^2=0.01$) and
worry tendency (STAI: \(F_{1,57} = 18.12, P < .001; \omega^2 = 0.03 \)) scores. Stability in the therapeutic effect was also observed for satisfaction with life (SWLS: \(F_{1,57} = 7.22, P = .009, \omega^2 = 0.01 \)), positive affect (PANAS-P: \(F_{1,57} = 14.87, P < .001; \omega^2 = 0.04 \)), and negative affect (PANAS-N: \(F_{1,57} = 21.67, P < .001; \omega^2 = 0.06 \)). There was not sufficient evidence to conclude that loneliness (as measured using R-UCLA scores) changed from baseline to follow-up (\(F_{1,57} = 1.19, P = .28; \omega^2 = 0 \)).

As discussed previously, no group and interaction (of group and time) effects were detected for any primary outcomes measures (for detailed results, see Multimedia Appendix 5).

Human-Agent Interaction Effects

In terms of human-agent interaction characteristics, Fido achieved a mean 2.71 (SD 0.94) points on the WAI-SR scale, with an average score of 3.25 (SD 1.14) on the bond subscale. We detected a moderate correlation of language pragmaticality (item 1: % of messages rated as adequate) with the general UX level measured using the Acceptability E-scale \((r = 0.60, 95\% \ CI 0.32 \text{ to } 0.78; P < .001) \).

Groups were similar in terms of the frequency of use they reported after the intervention \((t_{63} = 1.44, P = .15; d = 0.36, 95\% \ CI 0.13 \text{ to } 0.84) \) and scores on the knowledge test \((t_{62} = 0.02, P = .99; d = 0.01, 95\% \ CI 0.51 \text{ to } 0.52) \). However, the analysis of the time spent on the intervention via regular commitment checks suggested that the control group (mean 117.57, SD 72.40 minutes) actually spent more time reading the book than the chatbot group (mean 79.44, SD 42.96 minutes) spent on the interaction with Fido \((t_{59} = 2.75, P = .008; d = 0.64, 95\% \ CI 0.17 \text{ to } 1.11) \).

Exploratory Analyses

We extended our preregistered analyses after gaining insight into the data. The therapeutic alliance score (WAI-SR) correlated positively with the subjective sense of being, as understood from the LPS \((r = 0.79, 95\% \ CI 0.60 \text{ to } 0.89; P < .001) \), overall acceptability \((r = 0.77, 95\% \ CI 0.57 \text{ to } 0.88; P < .001) \), and scores for competence \((r = 0.71, 95\% \ CI 0.48 \text{ to } 0.85; P < .01) \) and behavioral traits \((r = 0.45, 95\% \ CI 0.12 \text{ to } 0.69; P = .01) \) from the HAIS.

We also detected a moderate, negative correlation between the WAI-SR score and age \((r = 0.37, 95\% \ CI –0.63 \text{ to } –0.03; P = .04) \), which motivated us to split the experimental group into 2 subgroups by median (younger and older participants) and compare them using the Student t test. Younger participants formed a stronger human-chatbot bond (mean 3.59, SD 0.97) than older participants (mean 2.79, SD 1.23; \(t_{31} = 2.11, P = .04; d = 0.74, 95\% \ CI 0.02 \text{ to } 1.45) \).

Moreover, in the chatbot group, loneliness (R-UCLA) scores after the intervention (at T2) were negatively correlated with the declared frequency of use \((r = –0.48, 95\% \ CI –0.71 \text{ to } –0.16; P = .006) \). This finding motivated us to split the observations by median into subgroups of high- and low-frequency chatbot users. Repeated measures ANOVA of the R-UCLA scores with low-frequency and high-frequency users as the between-subjects effect and 2 time points (T1-T2) as the within-subjects effect yielded a statistically significant interaction of frequency and time point \((F_{1,66} = 7.417, P = .01; \omega^2 = 0.01; \text{ see Figure 5}) \). After 2 weeks, only high-frequency users reported lower levels of loneliness \((t_{16} = 3.69, P_{\text{Bonf}} = .005; d = 0.44, 95\% \ CI 0.07 \text{ to } 0.81) \).

Figure 5. Revised UCLA Loneliness Scale (R-UCLA) scores for the high-frequency and low-frequency users at baseline and after the intervention. Confidence intervals were difference- and correlation-adjusted using the superb R library described by Cousineau et al [46].
Qualitative Feedback

The team also collected informal, qualitative data through individual in-depth interviews and an open-ended survey question after the intervention (T2). Volunteers (n=16) from the chatbot group answered questions about the perceived advantages and pitfalls of Fido, as well as other unintended effects that had not been assessed by the previously administered questionnaires. The most common response about the negative aspects of using Fido was that there were many failures in recognizing the user’s intent, which resulted in the chatbot telling the user that it did not know what they are talking about. Regarding the positive side effects, the most prominent was that using Fido encouraged the user to make a decision about starting traditional therapy.

Discussion

Principal Findings

This study is one of the few that presents an RCT of chatbot therapy efficacy in comparison with an active control, to the best knowledge of authors—the first one for the Polish language. Fido was effective in terms of reducing depression, anxiety, and worry symptoms, as well as for increasing satisfaction with life during the 2-week intervention. We also detected an increase in positive affect, along with a decrease in negative affect, after the intervention using Fido. All effects were stable for at least one month following the interventions. In contrast to some previous findings [6] about agent-guided therapy, we did not detect expected differences in the effectiveness between the intervention based on Fido and the one in which the book chapters were used.

Although there were no between-group effects in terms of symptoms or affect, or for obtained psychoeducational knowledge or the frequency of use, we did detect some other differences. Worth consideration is that the chatbot users spent less time on the intervention than the control group. Thus, although the effects of working with Fido were comparable to those achieved using self-help materials, they were achieved in a shorter period of time, which is an obvious benefit considering the concentration and motivation problems of patients in mental health crises. The differences in time spent on the 2 interventions may be related to differences in the form of the presented content: Even though both techniques are text-based, reading an ebook may be challenging, in contrast to absorbing shorter messages from the chatbot.

Contrary to our expectations, we did not detect a superior decrease in loneliness levels in the chatbot group when compared with the control group. However, we observed a drop in loneliness among participants who used the chatbot with higher frequency, an effect that did not occur either among participants who used Fido with low frequency or in the control group. Interestingly, although loneliness is linked to well-being, we did not detect a decrease in loneliness in the control group, but we did observe a therapeutic effect on all other primary outcome variables. In the face of this result, it is difficult to relate a decline in loneliness observed in high-frequency chatbot users to the decrease in depression or anxiety. A dissociation between treatment effects on loneliness versus anxiety and depression was observed in a study investigating the efficacy of internet-delivered CBT [47]. Some authors consider loneliness as a transdiagnostic phenomenon that can vary in intensity across different diagnoses [48]. It is possible that loneliness was differentially represented as a factor related to depressiveness and anxiety in our study sample, and we, therefore, did not observe a stable relationship between the effects observed for loneliness and those for the anxiety and depression levels. It is also possible that the duration of our study was simply too short to capture this relationship, as changes in levels of loneliness and depression seem to occur with different temporal dynamics [49]. Future studies should try to track the effects of therapy chatbots for longer time periods and replicate our findings regarding loneliness using nontherapeutic agents, as the interaction with such chatbots may also have a direct effect on loneliness with or without any effect on the mental health condition.

Younger participants formed a stronger relationship with Fido, bonding at an average score of 3.59 (on a 1-to-5 positively scored scale), which is higher than the bond reported for internet interventions but lower than Woebot or human-involved therapy (Woebot formed a bond at 3.8, traditional CBT formed a bond at 4, and group CBT formed a bond at 3.8 on the same scale [8]). Participants used the chatbot as frequently as the book in the 2-week intervention period, but the book readers declared spending more time using their psychoeducational materials than chatbot users.

Comparison With Prior Work and Limitations

We did not replicate the findings from the study on Woebot that demonstrated better treatment effects for the chatbot-based intervention than those for the self-help materials [6]. In addition, the alliance built with Woebot was higher than with Fido. This may suggest that, at this stage, Fido is less effective and user-friendly than Woebot.

However, we would argue that the lack of group differences in this study do not result from Fido’s insufficiency but is rather related to the fairly high effectiveness of the self-help materials that we used and the differences in our experimental procedure. First, the materials used in the study by Fitzpatrick et al [6] were mostly psychoeducation, and the materials used in the previous study required not only getting acquainted with psychoeducation but also performing a few cognitive exercises. Second, the materials used for the control group in the Woebot study were provided by the WHO, and those included in our study were derived from a CBT handbook that was empirically proven to be efficient [50]. Third, our study differed in the experimental protocol from the Woebot protocol; that is, in our study, engagement checks were sent to participants every 3 days, which may have served as a reminder to use the intervention. Although it provided valuable insight into participants’ behaviors, it may have also increased the treatment effects, making the 2 studies difficult to compare.

Even though we did not replicate the outcomes from the Woebot study [6], our data are in line with the results of other studies on digital therapeutics. Studies of mental health–supporting applications yield high efficacy mostly when compared with waiting list control samples but not with active control groups.
The lack of differences between the 2 groups investigated in this study prompts us to ask whether the interventions that we used would also be more efficacious when compared with a passive control group (ie, waiting control) and if they would match traditional CBT. To gain a deeper understanding of the patient-reported outcomes, further assessment methods could be used, such as clinical interviews [3] or even psychophysiological methods, that were previously used for human-agent interaction studies [45].

Another important factor when we consider the lack of replication of previous effects is the kind of intervention used in our control group, as different effect sizes are reported depending on the kind of intervention. In our study, the well-established handbook materials were used for the control condition, and the procedure ensured that participants used them regularly, which might have increased the effects of the control intervention [3]. It seems important for the entire area of intervention research to systematize the issue of the control condition in the future and to enable thoroughly selected active control conditions to a greater extent.

There are some other limitations. Our experimental procedure does not allow us to completely exclude the influence of the time factor. It may be that all participants improved only as a result of the passing time or regression toward the mean. The use of a waiting control group could control for this aspect of our study, providing information about differences in the outcome data without any intervention. However, if we compare the recruitment and baseline data, we can see that waiting for the beginning of treatment did not change the levels of depression and worry, which suggests that the overall affect and well-being were stable over time and changed only after the intervention.

Last, some elements of this study would be different in a routine application setting. The standard use of Fido or other self-help materials may not include frequent commitment checks or psychological assessments and certainly would not involve financial compensation. All of these factors could have influenced intervention uptake, effectiveness, and side effects. The generalizability of the results is also limited by the fact that subsequent free versions of Fido will use improved machine learning models (ie, achieving better precision and recall scores in intent recognition) while offering the same set of conversation functionalities. However, the level of human involvement and support should be very similar in the standard use of Fido.

Future Research

Prospective studies should try to replicate the effects presented here. One future direction would be to extend the timing of the intervention, as 2 weeks are relatively short. Thus, it would be beneficial to conduct at least a 4-week intervention and a 3- or 6-month follow-up to assess whether the effects are sustained after a longer period of time. Furthermore, future studies should consider using other control groups such as waiting lists or traditional CBT.

This article focused mainly on the therapeutic effects; however, during this experiment, we used several measures linked to human-chatbot interaction, which may be further explored. Future studies may provide insight not only into the quantitative measures linked to the use of chatbots but also into qualitative measures, as well as deep analysis of metadata, such as the distribution of cognitive biases and their relationship with the mental health condition. Those studies may extend our knowledge linked to digital therapeutics and provide a theoretical background for the development of further therapy applications.

Data Availability

The data sets generated during and/or analyzed during this study are available in the Open Science Framework repository [24].

Acknowledgments

This work was supported by a Ministry of Science and Higher Education grant (grant number 012/RID/2018/19). The authors would like to thank Norbert Szczepaniak and Iwona Gawrycka for their continuous contribution to the development of Fido, as well as Barbara Konat, who worked with us at the beginning of the project. It is worth noting that Fido was implemented by Emplocity and runs on natural language processing technology provided by this company.

Conflicts of Interest

All authors are actively involved in the development of Fido at a pre-release stage. Fido was commercialized in April 2023 in the form of a spin-off company, in which SK, KS, and JM have stock options.

Multimedia Appendix 1
Psychoeducation Knowledge Test.
[PDF File (Adobe PDF File), 111 KB - formative_v8i1e47960_app1.pdf]

Multimedia Appendix 2
Working Alliance Inventory-Short Revised.
[PDF File (Adobe PDF File), 111 KB - formative_v8i1e47960_app2.pdf]

Multimedia Appendix 3
Acceptability E-scale.

Multimedia Appendix 4
Human-Agent Interaction Scale.

Multimedia Appendix 5
Detailed Results.

Multimedia Appendix 6
CONSORT-EHEALTH checklist (V 1.6.1).

References

27. Fido. URL: https://fido.ws [accessed 2023-04-02]

Abbreviations

AG-CBT: agent-guided cognitive behavioral therapy
CESD-R: Center for Epidemiologic Studies Depression Scale Revised
CONSORT: Consolidated Standards of Reporting Trials
DSM: Diagnostic and Statistical Manual
HAIS: Human-Agent Interaction Scale
LPS: Language Pragmaticality Scale
OSF: Open Science Framework
PANAS: Positive and Negative Affect Scale
PHQ-9: Patient Health Questionnaire-9
PRIME-MD: Primary Care Evaluation of Mental Disorders
PSWQ: Penn State Worry Questionnaire
RCT: randomized controlled trial
R-UCLA: Revised UCLA Loneliness Scale
STA1: State-Trait Anxiety Inventory
SWLS: Satisfaction With Life Scale
T0: recruitment
T1: baseline
T2: immediately after the 2-week intervention
T3: 1-month follow-up
UX: user experience
WAI-SR: Working Alliance Inventory-Short Revised
WHO: World Health Organization
Effectiveness of a Web-based and Mobile Therapy Chatbot on Anxiety and Depressive Symptoms in Subclinical Young Adults: Randomized Controlled Trial

Karkosz S, Szymański R, Sanna K, Michałowski J

URL: https://formative.jmir.org/2024/1/e47960
doi: 10.2196/47960
PMID: 38506892

© Stanisław Karkosz, Robert Szymański, Katarzyna Sanna, Jarosław Michałowski. Originally published in JMIR Formative Research (https://formative.jmir.org), 20.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Parents’ User Experience Accessing and Using a Web-Based Map of COVID-19 Recommendations for Health Decision-Making: Qualitative Descriptive Study

Samantha Cyrkot¹, MSc; Lisa Hartling¹,², PhD; Shannon D Scott³, PhD; Sarah A Elliott¹,², PhD

¹Alberta Research Centre for Health Evidence, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
²Cochrane Child Health, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
³Faculty of Nursing, University of Alberta, Edmonton, AB, Canada

Corresponding Author:
Sarah A Elliott, PhD
Alberta Research Centre for Health Evidence
Department of Pediatrics
University of Alberta
4-474 Edmonton Clinical Health Academy
11405-87 Avenue
Edmonton, AB, T6G1C9
Canada
Phone: 1 7804921241
Fax: 1 7802485627
Email: se2@ualberta.ca

Abstract

Background: The eCOVID19 Recommendations Map & Gateway to Contextualization (RecMap) website was developed to identify all COVID-19 guidelines, assess the credibility and trustworthiness of the guidelines, and make recommendations understandable to various stakeholder groups. To date, little has been done to understand and explore parents’ experiences when accessing and using the RecMap website for COVID-19 health decision-making.

Objective: To explore (1) where parents look for COVID-19 health information and why, (2) parents’ user experience when accessing and using the RecMap website to make health decisions, and (3) what knowledge mobilization activities are needed to increase parents’ awareness, use, and engagement with the RecMap website.

Methods: We conducted a qualitative descriptive study using semistructured interviews and a think-aloud activity with parents of children aged 18 years or younger living in Canada. Participants were asked to provide feedback on the RecMap website and to “think aloud” as they navigated the website to find relevant COVID-19 health recommendations. Demographic information was collected using a web-based questionnaire. A hybrid deductive and inductive thematic approach guided analysis and data synthesis.

Results: A total of 21 participants (13/21, 62% mothers) were interviewed and participated in a think-aloud activity. The data were categorized into four sections, representative of key elements that deductively and inductively emerged from the data: (1) parent information seeking behaviors and preferences for COVID-19, (2) RecMap website usability, (3) perceived usefulness of the RecMap website, and (4) knowledge mobilization strategies to increase awareness, use, and engagement of the RecMap website. Parents primarily used the internet to find COVID-19 information and focused on sources that they determined to be credible, trustworthy, simple, and engaging. As the pandemic evolved, participants’ information-seeking behaviors changed, specifically their topics of interest and search frequency. Most parents were not aware of the RecMap website before this study but found satisfaction with its concept and layout and expressed intentions to use and share it with others. Parents experienced some barriers to using the RecMap website and suggested key areas for improvement to facilitate its usability and perceived usefulness. Recommendations included a more user-friendly home page for lay audiences (separate public-facing user interface), improving the search and filter options, quicker navigation, clearer titles, more family-friendly graphics, and improving mobile-friendly access. Several strategies to disseminate the RecMap website were also expressed, including a mix of traditional and nontraditional methods (handouts and social media) in credible and high-traffic locations that parents frequent often.

https://formative.jmir.org/2024/1/e53593
Conclusions: Overall, parents liked the concept of the RecMap website but had some suggestions to improve its usability (language, navigation, and website interface). These findings can be used to improve the RecMap website for parents and offer insight for the development and dissemination of effective web-based health information tools and resources for the general public.

(JMIR Form Res 2024;8:e53593) doi: 10.2196/53593

KEYWORDS

awareness; COVID-19; credibility; credible; descriptive; guidelines; health evidence; information behavior; information needs; information seeking; information-seeking behavior; interface; internet; interview; knowledge mobilization; parent; parenting; public health; qualitative; recommendation; recommender; SARS-CoV-2; think-aloud activity; think-aloud; trust; trustworthy; usability; user experience; web design; website

Introduction

During the COVID-19 pandemic, digital information sharing and exchange exploded as disease information emerged and messaging around various restrictions, such as lockdowns and physical distancing, came into effect. While this generated a wealth of web-based COVID-19 information, it presented challenges for the public, including parents and families, when navigating and recognizing trustworthy health recommendations [1,2].

In response, the eCOVID19 Recommendations Map & Gateway to Contextualization (RecMap) website was developed [3]. The overall aim of the RecMap is to identify and collate all COVID-19 guidelines, assess the credibility and trustworthiness of the recommendations, and make the recommendations understandable to various stakeholder groups. The RecMap was developed by Cochrane Canada in collaboration with the World Health Organization’s (WHO) Collaborating Center for Infectious Diseases, Research Methods and Recommendations at McMaster University, the GRADE (Grading of Recommendations Assessment, Development and Evaluation) centers, the Norwegian Institute of Public Health, the Guidelines International Network, the National Institute of Health and Care Excellence (NICE), WHO and the Pan American Health Organization’s (PAHO), and many other organizations [3,4]. The living catalogue of COVID-19 guidelines is freely accessible, in English and French [5].

On the RecMap website, the recommendations, which are typically written for health care professionals, are currently being adapted into plain language products. These products have been developed as easy-to-understand summaries of health recommendations [6,7]. Our group’s previous findings suggest that parents prefer and better understand plain language versions compared to standard language recommendations [8].

It is critical that the evidence-based information available to parents is effectively communicated, understandable, and engaging for lay audiences. This is necessary to guide uptake and create actionable impact [9-11]. However, previous anecdotal data have suggested that parents are unaware of the RecMap website when seeking COVID-19–related health information or recommendations. There is also little information about the RecMap website’s usability from the perspective of parents. Usability and perceived usefulness are key criteria to consider when developing effective web-based health information tools [12-15].

To address this gap, we aimed to explore (1) where parents look for COVID-19 health information and why, (2) parents’ user experiences (including barriers and facilitators) when accessing and using the RecMap website to make health decisions, and (3) what knowledge mobilization activities are needed to increase parents’ awareness, use, and engagement with the RecMap website. The results of this study can be used to inform the enhancement and knowledge mobilization of a web-based COVID-19 tool for the general public, as well as the future development of web-based resources on other health topics.

Methods

Ethical Considerations

Approval was received from the University of Alberta Health Research Ethics Board and the McMaster Research Ethics Board (Pro00126429, Pro15646), and all participants gave informed consent before any data collection. After study completion, participants were compensated with a CAD $50 (a currency exchange rate of CAD $1=US $0.6518 is applicable) electronic gift card for their time.

Overview, Sampling, and Recruitment

We conducted a qualitative-descriptive study [16]. Participants were eligible and self-identified for study enrollment if they were a parent, legal guardian, or grandparent of a child aged 18 years or younger, were aged 18 years or older themselves, lived in Canada, could read and speak English, had access to email and the internet through a computer, tablet, or smartphone. The study was advertised nationwide on the web between February and April 2023 through our collaborators (eg, the RecMap Team, Pediatric Parent Consultancy Network, and Pediatric Parent Advisory Group), and networks (eg, Cochrane Canada, Translating Emergency Knowledge for Kids, and Children’s Healthcare Canada) through email, as well as on social media through Instagram, Twitter, and Facebook. Purposive sampling (based upon parenting role and ethnicity) was used to gather an in-depth understanding of Canadian parents’ experiences with the RecMap website [17]. Results are reported following the Consolidated Criteria for Reporting Qualitative Research checklist [18].

https://formative.jmir.org/2024/1/e53593
Sample Size
Sample size was shaped by data saturation, which was assessed concurrently throughout data collection and analysis to assess data comprehensiveness, variation, richness, and redundancy [19].

Study Components

Semistructured Interview and Think-Aloud Activity
Participants were invited to attend a web-based, one-on-one, semistructured interview using Zoom video conferencing software. The interview guide was field tested and adapted over 2 nonrecorded interviews using in-house research staff and a parent volunteer (Multimedia Appendix 1). Interviews were conducted by SC (a woman), who is a research coordinator with a Master of Science and has previous experience conducting qualitative interviews. Consenting participants had no previous relationship with the coordinator and were informed of the study objectives at the beginning of the interview. There were no other individuals present during each interview besides the participant and the research coordinator. Interviews were audio-recorded, deidentified, and transcribed verbatim using a third-party transcription service (SimplyTranscription). Field notes were made throughout the interviews, including during the think-aloud activity, on which the participant observed navigating the website and sharing their screen so the interviewer could ascertain the steps and clicks they used to complete the different tasks. The first part of the interview focused on understanding where parents look for COVID-19 information and for what purpose. Participants were then asked to visit the RecMap website on their electronic device of choice (eg, computer, tablet, or smartphone). The second part of the interview asked participants to provide feedback about the RecMap website and to “think aloud” as they were asked to navigate the website to find relevant health recommendations for children. The think-aloud activity is based in cognitive and psychological research, where participants talk aloud while performing a task to verbalize their thoughts that come to mind [20-22]. Think-aloud interview methods have formerly been used in combination to explore usability and perceived usefulness [12]. Participants were also asked to share possible knowledge mobilization strategies to increase parents’ awareness, use, and engagement with the RecMap website. No participants withdrew from the study, no repeat interviews were conducted, and transcripts were not returned to the participants for corrections or to provide feedback on the findings.

Demographic Questionnaire
Participants were asked to complete a short web-based demographic questionnaire (eg, parenting role, age, education, ethnicity, and child’s age) after finishing the interviews. Quantitative data were collected and managed using REDCap (Research Electronic Data Capture), hosted at the University of Alberta [23,24].

Data Analysis

Thematic Analysis
Thematic analysis was used to synthesize and identify common behaviors, processes, and preferences described in the semistructured interviews. Data management and analysis were facilitated using NVivo 14 Software (version 14.23.1; QSR International).

Data collection and analysis occurred iteratively, with data collection occurring until data redundancy was achieved. Interviews were coded by SC (the primary coder) and categorized to facilitate the development of themes. A hybrid deductive and inductive approach guided analysis in which data were categorized into 4 components. An established framework, the Technology Acceptance Model, was used to deductively organize the data, and additional codes were inductively gathered as they emerged from the data [12-15,25]. The analysis was guided by the following six main steps: (1) comparing the transcript with the recording and revising to ensure alignment (data cleaning); (2) reading transcripts and data familiarization; (3) generating initial codes (using a code manual and testing the reliability of codes through verification by a second reviewer [SAE]); (4) summarizing data and identifying initial themes guided by the model (deductive) and coding themes that extend beyond the model (inductive); (5) connecting the codes, identifying themes, and generating a “thematic map;” and (6) corroborating and legitimating coded themes. The coding system was refined throughout the iterative data collection and analysis stages, using a secondary coder (SAE) to code approximately 10% of the transcripts and compare them to maintain intrarater reliability [26]. Any discrepancies between the reviewers were discussed and resolved through consensus. The focused codes were further refined through collaboration between the 2 authors into themes and subthemes that identified common factors contributing to parental preference, usability, and perceived usefulness. All codes and transcripts were then re-examined to ensure the consistency and accuracy of the interpretation. Preliminary findings and interpretations were continuously reviewed and discussed among the research team. Other strategies for maintaining rigor were followed, such as detailed study logs and audit trails to ensure transparency [26].

Demographic Analysis
Demographic data were downloaded from REDCap into Microsoft Office Excel (2019; Microsoft Corp), and frequency distributions were used to describe the study sample.

Results

Sampling and Demographics
A total of 21 parents, mostly mothers (13/21, 62%) living in Canada, participated in interviews lasting between 30 and 60 minutes from February to April 2023. Participant demographics are presented in Table 1. Briefly, all parents reported a postsecondary education, with 57% (12/21) having a graduate or postgraduate degree. Parents identified most often as White (11/21, 52%) and South Asian (4/21, 19%). The RecMap website was accessed during the interviews by parents using a desktop or laptop computer (19/21, 90%), a tablet (1/21, 5%), and a smartphone (1/21, 5%).
Table 1. Participant demographics (N=21). A currency exchange rate of CAD $1=US $0.6518 is applicable.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parenting role</td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>13 (62)</td>
</tr>
<tr>
<td>Father</td>
<td>8 (38)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>13 (62)</td>
</tr>
<tr>
<td>41-50</td>
<td>7 (33)</td>
</tr>
<tr>
<td>≥51</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Relationship status</td>
<td></td>
</tr>
<tr>
<td>Partnered (married or common law)</td>
<td>20 (95)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1 (5)</td>
</tr>
<tr>
<td>South Asian</td>
<td>4 (19)</td>
</tr>
<tr>
<td>East Asian</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Middle Eastern</td>
<td>1 (5)</td>
</tr>
<tr>
<td>White</td>
<td>11 (52)</td>
</tr>
<tr>
<td>Mixed Race</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Income (CAD)</td>
<td></td>
</tr>
<tr>
<td>50,000-74,999</td>
<td>3 (14)</td>
</tr>
<tr>
<td>75,000-99,999</td>
<td>1 (5)</td>
</tr>
<tr>
<td>100,000-149,999</td>
<td>8 (38)</td>
</tr>
<tr>
<td>≥150,000</td>
<td>8 (38)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Postsecondary certificate or diploma</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Postsecondary degree</td>
<td>8 (38)</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>11 (52)</td>
</tr>
<tr>
<td>Postgraduate degree</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Number of children</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9 (43)</td>
</tr>
<tr>
<td>2</td>
<td>11 (52)</td>
</tr>
<tr>
<td>3</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Children’s age range (years)</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>12 (35)</td>
</tr>
<tr>
<td>6-10</td>
<td>17 (50)</td>
</tr>
<tr>
<td>≥11</td>
<td>5 (15)</td>
</tr>
</tbody>
</table>

No participants identified as being a legal guardian, aged 30 years or younger, with an income of <CAD $50,000 (US $37,100.25), an education below postsecondary, having ≥4 children, or their child being aged 1 year or younger. All participants identified as being partnered, except for 1 participant who selected “prefer not to answer.”

Semistructured Interview and Think-Aloud Activity

The data were categorized into 4 sections, each representative of key elements that deductively and inductively emerged from the data. The first section addressed our first study objective of parent information-seeking behaviors and preferences for
COVID-19. The second and third sections addressed our second objective, where we analyzed user experience based on 2 dimensions, namely, RecMap website usability and perceived usefulness of the RecMap website. The fourth section addressed our final objective of knowledge mobilization strategies to increase awareness, use, and engagement with the RecMap website. Illustrative quotes to support themes and subthemes are presented in Multimedia Appendix 2.

Parent Information-Seeking Behaviors and Preferences for COVID-19
Relevant parent information-seeking behaviors and preferences about COVID-19 were grouped into 3 themes described in subsequent sections.

Parents Seek COVID-19 Information From a Variety of Sources
Parents reported seeking COVID-19 information from a variety of sources. The majority of parents used the internet (eg, web-based search engines, visiting health websites, and social media) as their primary source and reported being very comfortable using this modality to look for information. Secondary sources included the news, radio, and respected friends, family, and health care providers. Parents sought information applicable to their local jurisdiction (ie, province and community) to ensure familiarity with their current guidelines and mandates.

Parents Changed Their Information-Seeking Behaviors During the COVID-19 Pandemic
Parents reported a change in their information-seeking behaviors throughout the pandemic, particularly related to their topics of interest and information-seeking frequency. At the start of the pandemic, many parents reported seeking COVID-19 information on a daily or weekly basis, and their topics of interest included COVID-19 signs and symptoms, isolation requirements, and case numbers. At the time of conducting these interviews, parents reported seeking information less frequently (eg, on a monthly basis or less) and revealed looking for information on topics such as vaccines, masking, or travel guidelines when relevant to their situation and when needing to make an informed health decision for their family.

Parents Look for Specific Features and Elements When Seeking COVID-19 Information
The majority of parents described looking for COVID-19 information that was credible and trustworthy, which they characterized as being from a reputable source (eg, health authorities and the government). Parents also looked for information that was convenient to access (eg, mobile-friendly through a smartphone), relevant to their current environment (eg, email directly from their workplace or their child’s school), and aesthetically pleasing (eg, simple and engaging).

RecMap Website Usability
The data from the think-aloud activity were grouped into the following three themes related to RecMap website usability: (1) RecMap website purpose and target audience, which explored parents’ overall thoughts about the usefulness of the website; (2) RecMap website presentation and navigation, which explored their preferences for layout, formatting, language, and how parents used the website; and (3) RecMap website functionality, which highlighted parents’ experiences with website features and overall usability.

RecMap Website Purpose and Target Audience
The purpose of the RecMap website was well understood by most parents; however, the purpose of the RecMap website was not described anywhere on its home page. Parents wanted clearer messaging on the home page about what the website could offer families and the types of health recommendations available for children.

The target audience of the RecMap website was described as “for everyone” (ie, academics, health care providers, and the public), but again, parents felt that the home page lacked content directly addressing the public (or lay audiences), especially families. Some parents also questioned if the RecMap website was intended for a Canadian or global audience, as some content seemed specific to Canada (eg, McMaster University and Cochrane Canada logos on embedded videos and the website being only available in English and French), while other content felt geared toward a broader population (eg, recommendations presented based on European sources).

RecMap Website Presentation and Navigation
The overall layout and format of the RecMap website were appealing to parents and were described as professional and simple. However, some parents did not readily see who the website was developed by, particularly within the first few moments of navigating the home page, and this led them to initially question its credibility. The color scheme of the website was said to be aesthetically pleasing, but some parents felt that an extra pop of color with more family-friendly graphics could better engage a lay audience. Parents also noted the navigation buttons were not always intuitively located, and they found some headings to be repetitive, with the font size not consistently proportionate between headings, subheadings, and body text.

The recommendations in the format of a list compared to a map on the RecMap website were preferred by most parents, as they felt that it was more familiar to them and easier to understand and navigate (Figures S1 and S2 in Multimedia Appendix 3). However, many parents commented that the list was lengthy and wondered how it was organized (eg, alphabetically or by date), as that impacted their ability to find relevant information quickly.

Parents felt that some terminology used on the website (eg, adolopment and conditional) was too complex and that many lay audiences would struggle to understand the terms “RecMap” and “plain language,” which were frequently used. Parents noted that although the navigation button titled “plain language recommendations” was well-situated on the home page, they cautioned that parents who are unfamiliar with this term may not know how to navigate and seek out these recommendations, which are tailored to lay audiences. Parents cautioned that it may lead to others exploring standard language recommendations first when they could benefit from plain language. Parents suggested refraining from titling these
recommendations as “plain language” and generating an alternative title that is clearer and more suitable for lay audiences.

Parents thought the website was easy to navigate, especially the home page, but found that it required several clicks to reach a specific health recommendation. Parents also found that navigating the recommendations in map view was challenging as many were unfamiliar with this format and required a few moments to understand what the headings and numbers signified (Figure S2 in Multimedia Appendix 3).

Parents used a variety of navigation strategies when asked to find a recommendation specific to children. Most parents’ initial instinct was to use the search function. Others clicked on a preset option that was located on the home page (ie, either the map, list, or plain language recommendations button). Parents described their strategy rationale as being based on a combination of comfort levels (eg, using the search function), convenience (eg, quick), and taking into consideration the existing features and information available on the website. Parents who clicked on the “plain language recommendations” option from the start often felt less overwhelmed with information compared to those who initially browsed the standard language recommendations. Additionally, parents noticed that when using the search function on the home page, the results generated standard language recommendations, but parents felt that results for plain language recommendations should be prioritized for lay audiences.

RecMap Website Functionality

Parents found a variety of features to be useful and improve their user experience and overall website usability. The RecMap website’s search feature was emphasized by parents as appealing because it was well-located and gave the freedom to search for any topic of interest. However, challenges were experienced when the use of basic search terms led to unsuccessful findings (eg, irrelevant or no recommended results), and parents had to adjust their terms multiple times or try a new navigation strategy to obtain relevant results.

The filter option on the list of recommendations was frequently used by parents. This feature was reported as practical, but with some complex and irrelevant categories for a lay audience (eg, adolescence and grading approach). Based on the available categories, parents thought that age group (eg, infant, child, or youth), world region, source, and year of publication were most relevant and suggested adding age range. They also felt that these categories should be rearranged and listed at the top for easy access.

Parents were divided on whether they liked the feature of a new tab opening up (within their web browser) for each specific recommendation that they clicked on and explored. Some parents enjoyed this feature because they could easily navigate between tabs to different recommendations, but some did not notice the new tab, which made it challenging for them to return to the home page.

Parents noted a few undesirable features and some technical barriers as they explored the website. Many parents found that the mailing list pop-up (eg, subscribe to receive information about upcoming activities) was distracting and appeared too soon before they had a chance to explore the full website. Some parents also experienced extended loading times (eg, when trying to access the recommendations in map view), which impacted the overall usability and user experience of the website.

Perceived Usefulness of the RecMap Website

Regarding perceived usefulness, two themes emerged as follows: (1) intentions to use the RecMap website, which looked at parents’ thoughts about its usefulness and their desire to share and discuss it with others and seek supportive information; and (2) parents’ awareness and expectations of the RecMap website, which explored whether parents were familiar with and had previously accessed the website and if it met their needs and expectations.

Intentions to use the RecMap Website

After completing the think-aloud activity, most parents discussed their intentions to use and share the website with others (eg, friends and family). Parents who were hesitant to use or share it suggested that the home page needed to be more user-friendly (for a lay audience) with clearer titles, quicker navigation, and improved search and filter options to seek out relevant plain language recommendations in a timely manner.

Parents felt that if needed, they would discuss the RecMap website with their health care provider or seek out supplementary information (eg, other web-based sources) to enhance their understanding of what was available on the website in order to make an informed health decision for their child.

Awareness and Expectations of the RecMap Website

Very few parents reported being aware of or previously accessing the RecMap website before this study. Parents suggested that their unawareness may be due to limited promotion, a lack of health care referral, or that the RecMap website did not appear in their search engine results for COVID-19.

The overall concept of the RecMap website was liked by most parents, and they perceived this tool to be useful. Parents highlighted that it gives users an opportunity to search for COVID-19 information from a credible source, and some positively compared it to a large COVID-19 web-based search engine.

Some parents expressed that parts of the RecMap website were not what they expected and wanted to see more information tailored for parents and lay audiences. This included addressing COVID-19 topics related to possible child COVID-19 complications and symptom management, which parents felt were not clearly addressed. Additionally, most parents did not expect that when navigating the website, they would have the option to see recommendations in both standard and plain language. This had taken many parents a few moments to realize, particularly those who were unfamiliar with the term “plain language.” They also wanted more clarification about what the recommendation map was compared to the
recommendation list and if there was a difference between them beyond format.

Knowledge Mobilization Strategies

Knowledge mobilization strategies were grouped into two themes: (1) recommendations to tailor the RecMap website for parents, which highlighted suggestions to make the website more user-friendly and accessible for parents; and (2) approaches to dissemination, which explored where and how to share information about the RecMap website within the parent community to increase awareness, use, and engagement.

Recommendations to Tailor the RecMap Website for Parents

To better tailor the website for parents, it was often suggested to develop a separate user interface within the website to split the content into lay or public and health care professional or academic. This would facilitate relocating the standard language recommendations, which most parents find challenging to understand. This would also enable more tailored features, where some parents suggested a “frequently asked questions” section to dispel myths or an ability to insert anonymous data about your child (eg, age and vaccine status) into the RecMap website to generate relevant recommendations. A “bookmark” or “share” option to save recommendations was also suggested by parents, as they described having busy schedules and wanting quick and easy-to-find information.

Parents felt that the accessibility of the website was another key element to highlight. A mobile-friendly website and mobile apps were mentioned by many parents, who reported that they often use their smartphones as a convenient tool to look for information. Even though the RecMap is currently accessible through a smartphone, the map of recommendations is inaccessible. Parents also felt that being mindful of contrasting colors on the RecMap website was important for the accessibility of those with various visual abilities.

Approaches to Dissemination

Parents shared a variety of dissemination strategies to increase awareness of the RecMap website within the parent community. Parents felt that sharing information in convenient and high-traffic locations where parents frequent often (eg, social media, such as Facebook, Instagram, TikTok, and Twitter; health and immunization clinics; schools; parent groups; at extracurricular activities or events such as soccer games) would increase parents’ awareness and thus website use. Other strategies included collaborating with credible and trusted organizations and individuals (eg, health authorities, health care providers, and schools) to share information through their networks in person or through a web-based presence.

Parents suggested that approaches to increasing awareness of the RecMap website should not be limited to just one but rather should consist of multiple captivating methods to attract and engage parents with different preferences and means to access information. Methods suggested included QR codes, handouts, posters, social media posts, advertisements and sponsors (eg, on the radio, podcasts, in parenting magazines, school newsletters), media interviews (eg, on the news and radio), and word of mouth from trusted individuals (eg, health care providers).

Discussion

Principal Findings

The aim of this study was to explore parental COVID-19 information-seeking behaviors and preferences, along with their experience when accessing and using the RecMap website. Parents also shared several knowledge mobilization strategies to facilitate parents’ awareness, use, and engagement of the RecMap website.

Information-Seeking Behaviors and Preferences

This study identified that most parents report using the internet as a primary source to look for COVID-19 health information. This is not surprising given that recent reports document that approximately 70% of Canadians and Americans use the web to search for health information [27,28]. There is also now an array of COVID-19–specific information on the web that has become easily and conveniently accessible to the public [2]. Of note, parents reported a change in their information-seeking behaviors and preferences since the pandemic started, with parents looking for information less frequently as the pandemic evolved. This is important to consider when planning future knowledge mobilization strategies aimed at parents and the general public.

Barriers to Using the RecMap Website

When parents initially accessed the RecMap website, most struggled to identify who developed it; thus, many parents questioned its credibility. Web-based tools that are immediately recognizable (eg, well-branded and clear messaging on the home page) may help increase credibility and should be considered for future knowledge mobilization efforts among the general public and lay audiences [29].

Additionally, there was some content and language within the RecMap website that was deemed too advanced or complex by participants and thus a barrier, such as recommendations that were written in standard language. However, some participants expressed benefits to having access to standard language and suggested a public-facing user interface to separate laypersons and the public from health care professionals or academic content. Similar interface designs have been used on other health-related information websites across Canada, including Alberta Health Service and Ontario Health [30,31]. This format (lay-friendly material upfront with the ability to access standard language content) will also provide more opportunities to customize the RecMap website for this population and address additional suggestions mentioned by participants (eg, messaging that is focused on what the RecMap website can offer the general public).

Parents also experienced technical barriers with the loading time of the recommendations in the map view. A study on web usability testing in parents found that technological difficulties were a key barrier to successfully using a website and its features [32]. Load time is also an important web performance metric that can directly impact user engagement. Websites that take
longer than 3 seconds to load have reported that almost 55% of
users leave the website [33]. In fact, some of our participants
mentioned that they would potentially exit a website and find
a new one if the loading time was extensively long. Other minor
barriers noted in this study were shortcomings in the visual
design (eg, color and graphics), unclear titles, and challenges
with returning to the home page. Similar barriers have been
reported in previous research that explored website user
experience and usability testing [12,34], highlighting the need
for end user input into the design at an early stage.

Facilitators for Using the RecMap Website

While parents liked the concept and felt the RecMap website
could be useful to them, they described several facilitators to
optimize use. The concept of the RecMap has previously been
used and implemented by the World Health Organization to
house living guidelines and recommendations on tuberculosis
prevention and care [35]. At this time, usability testing has not
been formally completed with parents or the general public.
However, the RecMap’s digitized dissemination format has
been compared for usability to a conventional tuberculosis
website containing guideline recommendations, and the RecMap
was found to be more accessible, improve understanding, and
enable decision-making [36].

Other facilitators for parents using the RecMap website included
a professional and simple presentation, the availability of an
internal search engine, and a home page that was easy to
navigate. These suggested elements are in line with standards
that have been identified for the development of digital-based
health information resources. In particular, when information
is aesthetically pleasing, easy to find and navigate, this can
contribute to increased user trust, readability, and facilitation
of understanding [37]. Other research has found that simple
aesthetics [29], clearly described headings and labels, information that is logically organized [38], limited
technological barriers [32], and being usable in stressful
situations [29] are equally preferred by parents. The use of
tailored features to meet the needs and preferences of parents
was also suggested to improve website usability and quality
[32]. This was recommended by our participants in the form of
a frequently asked questions section or the ability to bookmark
recommendations for easy access.

Knowledge Mobilization Strategies

In 2018, it was reported that almost 90% of Canadian internet
users aged 15 years and older have a smartphone and that almost
50% check their smartphone at least every 30 minutes [39].
Many parents in our study reported that they typically use their
smartphones to look for and access health-related information,
however, the initial version of the RecMap was not specifically
designed to be smartphone compatible. It is clearly important
that health-based websites are mobile-friendly and compatible
on devices with smaller screens to optimize viewing and ease
of navigation. Better accessibility may also support user
experience, which can lead to better user engagement and
increase usage.

Mobile apps are another avenue to explore for the RecMap, as
there is a rise in parents using apps to support their parenting

[40]. This modality is versatile and can encompass multimedia
elements (eg, graphics and videos) to engage users and push
notifications to alert users of new information or updates on the
application. This is an interesting feature to consider given that
the RecMap contains living recommendations that are frequently
updated or changed. It is equally important for parents that
mobile apps are of high quality, relevant, visually appealing,
interactive, and seamless (ie, easy to navigate, do not freeze, or
crash); otherwise, there is a risk that flawed apps will be deleted
by end users within minutes after being downloaded [40].

It has been previously reported that dissemination strategies
appropriate for parents include targeting credible sources such as
community centers, public health institutions, schools,
physicians, and government agencies [41]. This is comparable
to our findings, where parents suggested targeting schools,
health clinics, and collaborating with credible and trusted
organizations and individuals to increase the RecMap website’s
awareness. Furthermore, collaborating with reputable
messengers (eg, physicians) can be an effective strategy. In fact,
it is suggested that 70% of patients would like their physician
to recommend web-based health information for them to review
[42]. Similar to our findings, it has also been suggested that
using a combination of dissemination methods can be most
effective. This includes a multiplatform approach of digital (eg,
social media and websites), traditional (eg, brochures and radio),
and unique means (eg, community “parent nights”) [41].

Strengths and Limitations

This work has important implications for knowledge
mobilization strategies to enhance and contextualize products
to meet diverse end users’ needs as we move beyond the
pandemic and for other public health issues, including regular
seasonal outbreaks and future epidemic approaches.

A strength of this study is the use of multiple methods. The
think-aloud activity allowed us to collect direct data on user
experience and parent thoughts while using the RecMap website,
and the interviews provided us with an opportunity to clarify
initial thoughts and ask further questions. Nevertheless, the
majority of participants self-identified as White and of higher
socioeconomic status, which limited the generalizability of
study findings to a wider audience and was not representative
of Canada’s ethnically diverse population. However, we were
able to recruit participants who identified as both mothers
(13/21, 62%) and fathers (8/21, 38%), which enabled us to
gather differing perspectives in terms of parenting roles. Future
studies may benefit from developing a recruitment strategy that
targets those with different parenting roles, visible minority
groups, those of lower socioeconomic status, and those living
in geographically diverse locations (eg, rural). In doing so, a
better understanding of the diverse needs of parents across
Canada could be examined, and strategies (digital and
nondigital) to support knowledge mobilization around
COVID-19 in various contexts could be developed. It is also
worth noting that all participants lived in Canada and had access
to a similar health care setting.

https://formative.jmir.org/2024/1/e53593

Cyrkot et al

(page number not for citation purposes)
Directions for Future Research

Future work related to the RecMap website should focus on using an integrated knowledge translation model where end users (e.g., parents) codevelop and implement a plan to increase the awareness, use, and engagement of the website among the general public and lay audiences. Our group will also work to improve the usability of the RecMap website and implement the changes based on our findings related to parents’ user experiences. This may also include further work on mobile-friendly access (e.g., smartphones and mobile apps). These steps will enhance the existing RecMap website and ensure that it is user-friendly and meets the needs of parents and the general public. Future projects similar to RecMap that seek to share health recommendations should involve various end users (e.g., parents, health care providers, and the general public) during the conceptual phase of web-based tool development to better tailor the final product toward their specific goals and needs.

As public health approaches to COVID-19 evolve and the focus shifts to post–COVID-19 conditions, researchers developing knowledge mobilization strategies can use these findings to inform decisions for implementing knowledge. While the RecMap was not developed specifically to meet parents’ information needs during the pandemic, it provides a model for how rapidly changing evidence can be synthesized and presented to support decision-making. However, rapidly changing contextual factors may affect the potential use, relevance, and positioning of the RecMap to support knowledge needs around COVID-19 in the future. The waning of attention to COVID-19 guidelines internationally and jurisdictional changes to COVID-19 management question the advantages of resources such as the RecMap post pandemic. Future research should explore sustainable models of knowledge mobilization to support parental information-seeking behaviors. The pandemic highlighted how families engage with web-based health information and how changes in knowledge needs and information-seeking behaviors need to be considered.

Conclusions

This study reports on the COVID-19 information-seeking behaviors and preferences of parents, the RecMap website user experience (including barriers and facilitators), and potential knowledge mobilization strategies. The concept of the RecMap website was appealing to parents and has the potential to become a user-friendly web-based tool for parents. However, understanding how, when, and why parents search for COVID-19 information, as well as what aspects of the user experience can be improved, has provided meaningful insight and recommendations to improve the usability and perceived usefulness of the RecMap website. Additionally, appropriately tailored knowledge mobilization strategies targeted at parents will increase their awareness, use, and engagement of the RecMap website. This data will contribute to the enhancement of the COVID-19 RecMap website for parents and can inform the development of effective web-based tools for the general public about other health topics.

Acknowledgments

The authors would like to thank members of the Pediatric Parent Advisory Group for supporting this work through the design, research materials, and pilot testing of the survey and interview guide. We also acknowledge the input of the RecMap Knowledge Mobilization Advisory Committee.

This study received funding from the Canadian Institutes of Health Research (CIHR; REC 183153), awarded to Dr Holger Schünemann (McMaster University). CIHR had no involvement in the study design, collection, data analysis and interpretation, or report writing, and was not part of the decision to submit the paper for publication. LH is supported by a Canada Research Chair in Knowledge Synthesis and Translation. LH and SDS are distinguished researchers with the Stollery Children’s Hospital Foundation and the Women and Children’s Health Research Institute.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Interview guide questions and think-aloud activity processes.

[PDF File (Adobe PDF File), 201 KB - formative_v8i1e53593_app1.pdf]

Multimedia Appendix 2

Illustrative quotes to support the themes and subthemes.

[PDF File (Adobe PDF File), 183 KB - formative_v8i1e53593_app2.pdf]

Multimedia Appendix 3

The a) list and b) map view of the COVID-19 recommendations available on the RecMap website.

[PDF File (Adobe PDF File), 271 KB - formative_v8i1e53593_app3.pdf]

5. eCOVID RecMap. URL: https://covid19.recmap.org/ [accessed 2024-03-05]

27. Table 22-10-0137-01. Selected online activities by gender, age group and highest certificate, diploma or degree completed. Statistics Canada. 2021. URL: https://doi.org/10.25318/2210013701-eng [accessed 2024-02-27]

Abbreviations

GRADE: Grading of Recommendations Assessment, Development and Evaluation

NICE: National Institute of Health and Care Excellence

PAHO: Pan American Health Organization

RecMap: Recommendations Map & Gateway to Contextualization

REDCap: Research Electronic Data Capture

WHO: World Health Organization
Assessing Knowledge, Competence, and Performance Following Web-Based Education on Early Breast Cancer Management: Health Care Professional Questionnaire Study and Anonymized Patient Records Analysis

Michael Gnant¹, MD; Khatijah Lim Abdullah², PhD; Frances Boyle³, MD; Chiun-Sheng Huang⁴, MD; Katie Bickford⁵, BSc; Sola Neunie⁵, MSc; Alexander Noble⁵, MSc; Anne Nunn⁵, PhD; Caroline Sproat⁵, PhD; Nadia Harbeck⁶, MD; Carlos Barrios⁷, MD

¹Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
²Department of Nursing, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
³Patricia Ritchie Centre for Cancer Care and Research, University of Sydney, Sydney, Australia
⁴Department of Surgery, National Taiwan University Hospital, Taipei City, Taiwan
⁵touch Independent Medical Education Limited, Stockport, United Kingdom
⁶Breast Center, Department of Obstetrics & Gynecology and Comprehensive Cancer Center Munich, University Hospital of Munich Ludwig Maximilian, Munich, Germany
⁷Latin American Cooperative Group and Oncoclínicas Group, Hospital São Lucas da Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil

Corresponding Author:
Michael Gnant, MD
Comprehensive Cancer Center
Medical University of Vienna
Spitalgasse 23
BT86/E01
Vienna, 1090
Austria
Phone: 43 1 40160 35602
Email: mgnant@icloud.com

Abstract

Background: Web-based learning activities are key components of continuing medical education (CME) for health care professionals (HCPs). However, the published outcomes of web-based educational interventions for early breast cancer (EBC) are limited.

Objective: This study aims to objectively assess knowledge, competence, and performance among HCPs following participation in 2 EBC-focused CME activities and to identify the remaining educational gaps.

Methods: We developed 2 CME-accredited web-based educational activities addressing high-risk EBC, including integration of shared decision-making to optimize patient care (touchMDT) and stratification for early identification of high-risk patients and novel treatment strategies (touchPANEL DISCUSSION). Knowledge, competence, and performance were assessed before and after the activities against an expanded outcomes framework (levels 1-5) using self-reported questionnaires and an analysis of anonymized data extracted from patient records.

Results: Six months after the launch of the activity, 7047 and 8989 HCP participants engaged with touchMDT and touchPANEL DISCUSSION, respectively. The overall satisfaction was 82% (a total score of 20.6 out of 25) for the touchMDT and 88% (a total score of 21.9 out of 25) for the touchPANEL DISCUSSION. For the evaluation of knowledge and competence (50 respondents before the activity and 50 learners after the activity), there was a significant increase in the mean number of correctly answered questions from pre- to postactivity (touchMDT: median 4.0, IQR 3.0-5.0 to median 5.5, IQR 4.0-7.0; mean 4.00, SD 1.39 to mean 5.30, SD 1.56 and touchPANEL DISCUSSION: median 4.0, IQR 4.0-5.0 to median 6.0, IQR 5.0-7.0; mean 4.32, SD 1.30 to mean 5.88, SD 1.49; both P<.001). A significant improvement in self-reported performance (50 respondents before the activity and 50 learners after the activity) was observed in a combined analysis of both activities (median 3.0, IQR 2.0-3.0 to median 4.0,
IQR 3.0-5.0: mean 2.82, SD 1.08 to mean 4.16, SD 1.45; P<.001). Patient record analysis (50 respondents before the activity and 50 learners after the activity) showed that the HCPs used a range of measures to determine EBC recurrence risk and revealed no significant differences in adjuvant therapies used before and after the activity (P=.97 and P>.99 for Ki-67 <20% and Ki-67 ≥20% tumors, respectively). The remaining educational gaps included strategies for implementing shared decision-making in clinical practice and the use of genetic and biomarker testing to guide treatment selection.

Conclusions: Brief, web-based CME activities on EBC were associated with an improvement in HCP knowledge, competence, and self-reported performance and can help identify unmet needs to inform the design of future CME activities.

doi:10.2196/50931

KEYWORDS
continuing medical education; early breast cancer; performance; risk stratification; shared decision-making

Clinical Decision-Making in High-Risk Early Breast Cancer

Clinical decision-making in cancer can be complex, requiring health care professionals (HCPs) to consider multiple clinical factors, patient preferences, and environmental factors [1-3]. A multidisciplinary team approach can improve the overall quality of decision-making [4-7], and there is evidence that shared decision-making (SDM) with patients can lead to better adherence to treatment and outcomes [1,8,9]. However, obstacles such as lack of resource availability and patient factors (eg, cultures and health literacy) have prevented the complete integration of SDM into cancer care [1,10-14]. HCPs need to understand these obstacles to deliver high-level care tailored to the individual.

The complexity of treating high-risk early breast cancer (EBC) has increased further with the emergence of complex new data on risk stratification and treatment. These include data on the prognostic and predictive value of biomarkers and the benefits of cyclin-dependent kinase 4 and 6 inhibitors, second-generation selective estrogen receptor antagonists and degraders, and protein kinase B (Akt) inhibitors [15-20]. Furthermore, the guidelines on the management of EBC have been updated recently to reflect recent data, which can be interpreted as influencing clinical practice [5,21-28]. Because of this rapid influx of complex information, HCPs who treat EBC are challenged to keep up with practice changes; consequently, it can take time for new and emerging data to be effectively integrated into practice, and patients with EBC may not receive optimal care [29-32].

Effectiveness of Web-Based HCP Education in Breast Cancer

Effective continuing medical education (CME) programs are crucial to ensure that HCPs implement up-to-date, evidence-based practices for their patients. Although CME for HCPs has traditionally been delivered using face-to-face formats, web-based educational activities now offer a viable alternative approach [33]. To date, several studies have demonstrated the effectiveness of web-based HCP education for breast cancer [34-36]. However, gaps remain in the provision of independent web-based medical education programs for high-risk EBC treatment and effective SDM. Although a small number of programs have been developed in EBC [37-39], these have typically been nonaccredited, therefore not providing HCPs with continuing professional development credits for attendance; pharmaceutical company–led, therefore with the potential to be perceived as promotional; and restricted or limited in terms of access; therefore only accessible to those with the means to do so. To address these gaps and complement the currently available programs, accredited, independent, expert-led education available on free-to-access platforms is required to support the knowledge, competence, and performance of HCPs.

Study Rationale, Objectives, and Aims

An expanded 7-level framework for assessing the outcomes of CME programs was developed by Moore et al [40] in 2009. This framework evaluates participation (level 1), satisfaction (level 2), knowledge (level 3), competence (level 4), performance (level 5), patient health status (level 6), and community health status (level 7). These levels are now widely used and included in many consensus documents and practice recommendations [41]. To date, published Moore’s level 5 [40] outcomes analyses in medical education have largely used subjective self-reported outcomes [42-44]. Although these can provide valuable insights, they can be open to bias, for example, recall bias or social desirability bias [45,46]. An analysis of anonymized patient records provides a complementary objective measure of performance that may enhance the understanding of physician behavior changes in practice.

In this study, we developed and implemented 2 faculty-led, CME-accredited web-based educational activities in high-risk EBC. The objectives of this study were to (1) measure changes in knowledge, competence, and self-reported performance after participation in the activities; (2) objectively evaluate changes in performance using anonymized patient records; and (3) identify the remaining educational gaps.

Methods

Study Design

This was a web-based study that analyzed the impact of 2 educational activities in high-risk EBC through HCP questionnaires and deidentified patient records. The target audience comprised oncocologists (including breast cancer surgeons), oncology nurse specialists, pathologists, and radiologists from Asia, Brazil, and Europe (excluding the United Kingdom). Satisfaction, knowledge, competence, and performance were assessed according to levels 2 to 5 of the
expanded framework for assessing the outcomes of CME programs by Moore et al [40] using self-reported questionnaires and anonymized data extracted from patient records. Questionnaire distribution and data collection were carried out by an independent third party (nuaxia Limited, United Kingdom).

Ethical Considerations

All consents and ethical confirmations for this study were obtained before the completion of both outcome questionnaires. The personal data of HCPs and patients were anonymized. General Data Protection Regulation [47] consents were obtained in the European Union and North America for each questionnaire; adherence to additional requirements in local markets was required to be confirmed in line with European Pharmaceutical Market Research Association professional guidance [48]. For respondents to the patient records questionnaire, consents and ethical confirmations were obtained as part of the questionnaire in accordance with the British Healthcare Business Intelligence Association professional guidelines [49] to ensure patient confidentiality. As part of their written consent to participate in the questionnaires, the HCPs were required to agree to the statement, “As with all research, your identity and personal data are strictly confidential and will not be revealed without your explicit further consent. You have the right to withdraw your consent to participate in market research at any time.” Complete patient records were not obtained by touch Independent Medical Education (touchIME) or any third party; the HCPs were instructed to extract the required anonymized information into a questionnaire. Ethics approval was not applicable for this study because this analysis was not classified as “health research” according to the UK Research and Innovation definition that guides whether research requires Research Ethics Committee review and Health Research Authority approval [50,51]. The study was defined as “market research” per rule 1.1 of the European Pharmaceutical Market Research Association code of conduct, which states that market research does not require a Clinical Research Ethics Committee or independent review board approval [48].

Educational Activities

Educational gaps and learning objectives were identified before the start of activity development in October 2021 by touchIME (a provider of IME for the global HCP community) through a review of the published literature. The expert faculty members further inputted into the educational gaps and learning objectives at the start of activity development. Expert faculty members with a background in breast cancer and SDM were identified by touchIME medical directors through searches of literature indexed in the PubMed database, congress websites, and web-based educational videos. Patient faculty were identified using social media searches across multiple channels. The faculty members (CB, FB, MG, NH, CSH and KLA) were blinded to the plans to assess participation and satisfaction with the education and to publish the outcomes. All the expert faculty (CB, FB, MG, NH, CSH and KLA) involved in the educational activities are authors of this manuscript.

A total of 2 web-based educational activities, touchMDT: “how can shared decision-making be successfully integrated to optimize care of patients with high-risk early breast cancer?” and touchPANEL DISCUSSION: “new horizons in high-risk HR+ HER2- EBC: Risk stratification for early identification and novel treatment strategies” were developed by touchIME in collaboration with the faculty members (CB, FB, MG, NH, CSH and KLA; complete details and learning objectives are included in Multimedia Appendix 1). The touchMDT activity comprised three 13- to 15-minute videos, providing 42 minutes of education in total, and the touchPANEL DISCUSSION activity comprised three 11- to 15-minute videos, providing 39 minutes of education in total. The activities were CME accredited by the Accreditation Council for Continuing Medical Education and the American Nurses Credentialing Center at the University of South Florida Health. Both activities were translated (video subtitles and downloadable slides) from English into Brazilian Portuguese, Chinese Mandarin, French, German, Italian, and Spanish by an independent third party (UnBabel, United States), and both activities were free to access for 1 year (the permissible lifetime of an accredited educational activity) on the touchONCOLOGY website from March 30, 2022, to March 30, 2023 (touchMDT) and from June 15, 2022, to June 15, 2023 (touchPANEL DISCUSSION). The 2 activities featured together on the host website, but participation in both activities was not mandatory.

Various communication channels were used to reach the target audience, including direct publicity emails to the touchONCOLOGY database within the first 12 weeks of the activity launch, with a further reminder at around 6 months; display banners on the touchONCOLOGY website; advertisements in the peer-reviewed journal touchREVIEWS in Oncology and Haematology; publicity via various relevant medical society partnerships; and social media partnerships on Facebook (Meta Platforms, Inc), LinkedIn (Microsoft Corp), and Twitter (rebranded as X; X Corp) targeted at the HCPs throughout the lifetime of the activity.

Assessment of Educational Outcomes

Levels 1 and 2 (Participation and Satisfaction)

Levels 1 (participation) and 2 (satisfaction) were assessed separately for each activity (Multimedia Appendix 2). Level 1 included the number of HCPs who engaged in the web-based educational activities and the average time they spent viewing the videos, and it was the only assessment not evaluated using a questionnaire.

Level 2 (satisfaction) was assessed by scoring 5 statements of satisfaction (using a Likert scale) in a postactivity questionnaire.

Levels 3 to 4 and Level 5 (Knowledge, Competence, and Performance)

Levels 3 to 4 and level 5 were assessed using questionnaires completed by relevant respondents (HCPs completing the questionnaire before the activity) and learners (HCPs completing the questionnaire following the education). No pretesting was performed. The target audience was predefined by specialty (eg, oncologists [including breast cancer surgeons], oncology nurse specialists, pathologists, and radiologists) and by region (Brazil, France, Germany, Italy, and Spain). To avoid any pre-exposure bias and to obtain a statistically representative
sample size, data were collected using an independent samples model for each activity. For levels 3 to 4, separate questionnaires were developed for each activity (each comprising 7 questions), whereas for level 5, a combined questionnaire was developed for both activities (3 questions each for touchMDT and touchPANEL DISCUSSION). All questions were developed by touchIME medical directors and writers and were approved for medical accuracy by the faculty. An overview of the topics and the complete questionnaires are provided in Multimedia Appendices 3 to 6.

For the touchPANEL DISCUSSION activity, changes in performance were also assessed through an evaluation of redacted patient records. The HCPs were sent a web-based questionnaire that captured data on (1) general patient demographics and history, (2) risk assessment and stratification to predict disease recurrence, and (3) treatment. Each HCP was requested to extract all relevant nonidentifiable information from a single anonymized patient record into the questionnaire.

Self-Reported Confidence and Intention to Change Practice
As part of the questionnaires, respondents and learners were asked, “How confident are you in treating patients with breast cancer?” (mutually exclusive responses: “not confident,” “a little confident,” “somewhat confident,” “moderately confident,” and “extremely confident”) and “As a result of your participation in this session, will you make a change in your practice?” (mutually exclusive responses: “yes,” “uncertain—more education needed,” “uncertain—practical limitations,” “no—more education needed,” and “no—practical limitations”).

Identification of Outstanding Educational Gaps
A total of 5 potential educational gaps were included in the levels 3 to 4 and level 5 questionnaires (Multimedia Appendix 7), and the learners were asked to rank them by importance. The results were analyzed using a single transferable vote system (Multimedia Appendix 8 [52]). In addition, questions that were answered incorrectly by ≥30% (15/50) of the learners in all postactivity questionnaires were identified as educational gaps. The 30% cutoff was determined by touchIME as an indicator of the requirement for further education based on analyses of data from previous outcomes.

Fielding of the Questionnaires
Preactivity levels 3 to 4 questionnaires were fielded 1 to 2 weeks before launch, whereas postactivity levels 2 to 4 questionnaires were fielded immediately after launch to a different set of HCPs who had participated in the education. The questionnaires were distributed to a database of 20,420 HCPs and then “closed” once a prespecified number had responded (n=50).

The level 5 questionnaire and first patient records questionnaire were fielded 1 to 2 weeks before launch—to a different set of HCPs than those who answered the levels 3 to 4 questionnaires—and closed after completion by a prespecified number of respondents (n=50). A total of 26 weeks after launch, the postactivity level 5 questionnaire and second patient records questionnaire were distributed to the same set of HCPs who completed the level 5 questionnaire and patient records questionnaire before launch. Because of drop out over time, additional HCPs who were matched to the dropouts were surveyed postactivity, if needed.

The HCP participants’ specialties were all validated by nuaxia Limited against third-party data with the assistance of artificial intelligence. This comprised any combination of data from professional associations, hospitals, professional publications, and prescribing and insurance databases.

The participants were required to answer “yes” to the screening question “Do you treat patients with early breast cancer?” to be eligible to participate in the questionnaire study. The HCPs eligible to participate received an honorarium in the form of a digital reward, which could be redeemed via a number of reward partners. In accordance with industry regulations and professional body guidance, the honorarium received was limited to the fair market value for an HCP of that seniority.

Statistical Analyses
Data were analyzed using SPSS Statistics software (version 28.0.1; IBM Corp). The sample size (50 respondents and 50 learners for each activity) was predetermined by the level of funding, and by applying a power analysis, we determined a resulting margin of error of 10% for both the touchMDT and touchPANEL DISCUSSION. Knowledge, competence, and self-reported outcomes were compared for the overall population using an independent samples 2-tailed t test. Data were subdivided by region and years of experience, and a 2-way ANOVA was used to assess the variation in results by these demographics. Individual questions were analyzed with a paired samples 2-tailed t test and a 1-way ANOVA, followed by a cluster analysis, to provide insights into the overall change in correct answers across the questions asked and the specific changes in all the answers given. Data on the number of questions answered correctly were measured as a continuous variable. At the individual question level, the answers were categorical. For performance, measured by the redacted patient records questionnaire, pre- and postactivity comparisons were made using paired and independent samples 2-tailed t tests, chi-square tests, and cluster analysis. These tests were used to assess patient history, use of risk assessment and stratification strategies, and patient treatment pathways.

Results
Assessment of Educational Outcomes
Levels 1 and 2 (Participation and Satisfaction)
By 6 months after launch, 7047 and 8989 participants had engaged with the touchMDT and touchPANEL DISCUSSION activities, respectively. The participants were predominantly oncologists, and the majority were based in Italy for the touchMDT and Brazil for the touchPANEL DISCUSSION activities (Multimedia Appendix 9). Overall satisfaction was 82% (a total score of 20.6 out of 25) for touchMDT and 88% (a total score of 21.9 out of 25) for touchPANEL DISCUSSION (Multimedia Appendix 10). Multichannel publicity reach and impact for the touchMDT and touchPANEL DISCUSSION activities are reported in Multimedia Appendix 11.
Levels 3 and 4 (Knowledge and Competence)

A total of 50 respondents and 50 learners were questioned to assess levels 3 to 4 outcomes (Table 1).

Table 1. Demographics of participating health care professionals (HCPs) for the touchMDT and touchPANEL DISCUSSION activities.\(^a\)

<table>
<thead>
<tr>
<th>Demographics of HCPs</th>
<th>Levels 2 to 4 questionnaire</th>
<th>Level 5 questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>touchMDT</td>
<td>touchPANEL DISCUSSION</td>
</tr>
<tr>
<td></td>
<td>Respondents</td>
<td>Respondents</td>
</tr>
<tr>
<td></td>
<td>Learners</td>
<td>Learners</td>
</tr>
<tr>
<td>Participants, N</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Specialty, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncologist</td>
<td>40 (80%)</td>
<td>44 (88%)</td>
</tr>
<tr>
<td>Radiologist</td>
<td>0 (0%)</td>
<td>6 (12%)</td>
</tr>
<tr>
<td>Pathologist</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Radiologist and pathologist</td>
<td>10 (20%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Years of practice, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 to 5</td>
<td>6 (12%)</td>
<td>N/A(^b)</td>
</tr>
<tr>
<td>>5 to 20</td>
<td>29 (58%)</td>
<td>N/A</td>
</tr>
<tr>
<td><10</td>
<td>N/A</td>
<td>11 (22%)</td>
</tr>
<tr>
<td>10 to 20</td>
<td>N/A</td>
<td>27 (54%)</td>
</tr>
<tr>
<td>0 to 20</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>>20</td>
<td>15 (30%)</td>
<td>13 (26%)</td>
</tr>
<tr>
<td>Country, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>14 (28%)</td>
<td>16 (32%)</td>
</tr>
<tr>
<td>France</td>
<td>5 (10%)</td>
<td>5 (10%)</td>
</tr>
<tr>
<td>Germany</td>
<td>14 (28%)</td>
<td>16 (32%)</td>
</tr>
<tr>
<td>Italy</td>
<td>8 (16%)</td>
<td>10 (20%)</td>
</tr>
<tr>
<td>Spain</td>
<td>9 (18%)</td>
<td>6 (12%)</td>
</tr>
</tbody>
</table>

\(^a\)Data were collected 6 months after the launch of the touchMDT and touchPANEL DISCUSSION activities on September 29, 2022, and November 21, 2022, respectively. The questionnaire response categories differed between questionnaires and activities, meaning that some options were not applicable. The respondents and learners were the HCPs who completed the pre- and postactivity questionnaires, respectively.

\(^b\)N/A: not applicable.

For the touchMDT and touchPANEL DISCUSSION activities, respectively, only 12% (6/50) and 18% (9/50) of the respondents answered at least 6 (86%) of the 7 questions correctly before the activity. This increased to 50% (25/50) and 70% (35/50) in the learners, respectively, after the activity (Figure 1). In Figure 1A, the heat maps show the proportion of respondents (N=50) and learners (n=50) who answered a specific number of questions correctly, as displayed by colors ranging from white (the lowest proportion of respondents and learners) to dark red (the highest proportion of respondents and learners). In Figure 1B, the box and whisker plots show the distribution of the number of questions correctly answered by all respondents and learners. In both plots, the horizontal red line within the box indicates the median, the “x” symbol represents the mean, the boxes indicate the IQR, and the vertical lines (whiskers) extend to the range of values, excluding outliers. The outliers are defined as values that fall outside a distance of 1.5 times the IQR from the upper and lower quartiles and are represented by empty circles. The respondents and learners were the HCPs who completed the pre- and postactivity questionnaires, respectively. For both activities, there was a statistically significant increase in the number of correctly answered questions from pre- to postactivity for all participants (touchMDT: median 4.0, IQR 3.0-5.0 to median 5.5, IQR 4.0-7.0; mean 4.00, SD 1.39 to mean 5.30, SD 1.39; \(P<.001\)) and touchPANEL DISCUSSION: median 4.0, IQR 4.0-5.0 to median 6.0, IQR 5.0-7.0; mean 4.32, SD 1.30 to mean 5.88, SD 1.49; \(P<.001\); Figure 1). In subgroup analyses, significant increases in the number of correctly answered questions were observed irrespective of specialty or country for both activities and irrespective of years of experience for the touchPANEL DISCUSSION (Multimedia Appendices 12 and 13). Refer to Multimedia Appendix 14 for the responses to individual topics for the levels 3 to 4 questionnaires.
Figure 1. Summary of the number of correct responses for the levels 3 and 4 outcomes questionnaire before and after the launch of touchMDT and touchPANEL DISCUSSION. (A) Heat maps show the proportion of respondents (n=50) and learners (n=50) who answered a specific number of questions correctly, as displayed by colors ranging from white (the lowest proportion of respondents and learners) to dark red (the highest proportion of respondents and learners). (B) Box and whisker plots show the distribution of the number of questions correctly answered by all respondents and learners. In both plots, the horizontal red line within the box indicates the median, the “x” symbol represents the mean, the boxes indicate the IQR, and the vertical lines (whiskers) extend to the range of values, excluding outliers.

Level 5 (Performance)

A total of 50 respondents and 50 learners completed the level 5 questionnaire and the patient records questionnaire (Table 1). The dropout rate was 16% (8/50); therefore, 8 of the 50 learners were de novo HCPs who were matched to the dropouts.

Self-Reported

Preactivity, in total, 6% (3/50) of respondents answered at least 5 (83%) out of 6 questions with the best clinical option. This increased to 44% (22/50) of the learners after the activity (Figure 2). In Figure 2A, the heat maps show the proportion of respondents (n=50) and learners (n=50) who answered a specific number of questions correctly, as displayed by colors ranging from white (the lowest proportion of respondents and learners) to dark red (the highest proportion of respondents and learners).

In Figure 2B, the box and whisker plots show the distribution of the number of questions correctly answered by all respondents and learners. The horizontal red line within the box indicates the median, the “x” symbol represents the mean, the boxes indicate the IQR, and the vertical lines (whiskers) extend to the range of values, excluding outliers. The outliers are defined as values that fall outside a distance of 1.5 times the IQR from the upper and lower quartiles and are represented by empty circles. The respondents and learners were HCPs who completed the pre- and postactivity questionnaires, respectively. There was a statistically significant increase in the number of correctly answered questions from pre- to postactivity for all participants (median 3.0, IQR 2.0-3.0 to median 4.0, IQR 3.0-5.0; mean 2.82, SD 1.08 to mean 4.16, SD 1.45; P<.001). Refer to Multimedia Appendix 15 for the responses to individual topics for the level 5 questionnaires.
In subgroup analyses of data by specialty, years of experience and country (Multimedia Appendix 16), increases in the number of questions with the correct clinical response were observed irrespective of specialty or years of experience, and in the subgroups of participants from Germany, Spain, and Italy.

Patient Record Data

The patient characteristics reported by the respondents and learners were broadly similar (Multimedia Appendix 17). The respondents and learners used a wide range of measures to determine the patient risk of recurrence (30 and 26 different combinations of measures, respectively; Multimedia Appendix 18). There was a significant difference between the number of respondents and learners selecting each measure ($\chi^2=508.474; P<.001$) and the number of measures selected ($\chi^2=203.125; P<.001$; Multimedia Appendix 19). The Ki-67 index use was >90% for both groups, and most of those who used the Ki-67 index reported patients who had tumors with a Ki-67 score of ≥20% (respondents: 30/48, 62.5% and learners: 30/47, 64%; Figure S1 in Multimedia Appendix 20). There was no significant difference between responders and learners regarding adjuvant therapy when analyzing patient record data by Ki-67 index, menopausal status, germline BRCA status, or the number of positive lymph nodes (Figure S2 in Multimedia Appendix 20).

Self-Reported Confidence and Intention to Change Practice

Results from the levels 3 to 4 and level 5 questionnaires indicated modest increases in confidence in treating patients with EBC from pre- to postavity, with the proportion of participants reporting that they felt moderately or extremely confident increasing from 72% (36/50) to 78% (39/50; $P=.82$) for touchMDT and 74% (37/50) to 86% (43/50; $P=.49$) for touchPANEL DISCUSSION and from 72% (36/50) to 80% (40/50; $P=.90$) for the level 5 questionnaire (Figure S3 in Multimedia Appendix 20).

At least half of all learners stated that they would make a change to their practice following their participation in the activities (levels 3 to 4 questionnaire: touchMDT—25/50, 50% and touchPANEL DISCUSSION—29/50, 58%; level 5 questionnaire: 26/50, 52%). The reasons given for not making a change were split between the need for more education (levels 3 to 4 questionnaire: touchMDT—12/50, 24% and touchPANEL DISCUSSION—7/50, 14%; level 5 questionnaire: 13/50, 26%) and practical limitations (levels 3 to 4 questionnaire: touchMDT—13/50, 26% and touchPANEL DISCUSSION—14/50, 28%; level 5 questionnaire: 11/50, 22%).

Identification of Outstanding Educational Gaps

In ranking the unmet educational needs, touchMDT learners highlighted “strategies for implementing SDM in clinical practice” and “effective communication strategies in SDM to optimize patient outcomes” as key areas for future education, and touchPANEL DISCUSSION learners highlighted “using genetic and biomarker testing to guide therapy choice” and “individualization of treatment choice in high-risk hormone receptor–positive human epidermal growth factor receptor 2 negative (HR+ HER2–) EBC.” From the level 5 questionnaire, learners highlighted “using genetic and biomarker testing to guide therapy choice for patients with high-risk HR+ HER2- EBC” and “understanding the latest data on emerging treatments for high-risk HR+ HER2- EBC” as their most important unmet educational needs (Table S1 in Multimedia Appendix 20).

For the touchPANEL DISCUSSION, high levels of knowledge and competence were achieved for all 3 learning objectives. However, some unmet needs remained after participation in touchMDT, with 60% (30/50) and 36% (18/50) of the learners, respectively, being unable to demonstrate declarative knowledge.
of the current consensus on the use of patient decision aids to support SDM in breast cancer and being unable to demonstrate competence in supporting patients in understanding data and reaching a shared decision regarding neoadjuvant systemic therapy. In the level 5 questionnaire, ≥36% (18/50) of the learners were unable to provide the best clinical responses to the questions on reducing the patient burden (18/50, 36%), risk of recurrence (20/50, 40%), and chemotherapy treatment decisions (26/50, 52%).

Discussion

Principal Findings

This study evaluated the impact of 2 faculty-led, CME-accredited web-based learning activities on EBC. Participation in both activities resulted in high satisfaction scores and statistically significant improvements in self-reported knowledge, competence, and performance. Subgroup analyses indicated that the education was broadly beneficial, regardless of region, specialty, and experience. Patient record data analysis showed statistically significant differences in how the risk of recurrence was determined by responders and learners. The impact of the activities on therapeutic choice was limited, although this may be because of factors such as local guidelines, access to treatments, and individual patient characteristics. Approximately half of the learners (80/150, 53%) stated that they would change their practice in response to the educational material, further suggesting that the activities were valuable learning tools.

Participation in these web-based activities was considerably higher than could be achieved with traditional face-to-face programs and may also reflect the involvement of a multinational panel of recognized experts and the availability of translations. The latter is a major difference from traditional conference-based activities, as they are usually only available in 1 language, typically English.

Although many learners stated that they would change their practice, there remained a considerable number who were uncertain or who would not change their practice at the current time. The reasons for not changing practice were largely split between the requirement for more education and practical limitations. Although learners were not canvassed for specific details regarding practical limitations, we can speculate that they may relate to regional or national differences in institutional resources and structure or regulatory and reimbursement approvals of treatment. Indeed, documented barriers to change in clinical practice include institution-related issues such as flawed leadership and communication and insufficient organizational culture shift, and practical restrictions such as recently updated guidelines and access to emerging drugs [53]. In addition, a 2022 study on factors that influenced HCP’s intent to put newly acquired learning into practice suggested that a lack of belief in one’s capabilities and the potential consequences of adopting new clinical behaviors can prevent HCPs from translating education into practice [54].

These data demonstrate the potential value of succinct web-based learning activities that are specifically designed to address knowledge gaps in complex and rapidly evolving medical fields. Although published data on outcomes following educational activities with similar methodologies remain limited, the results of this study are consistent with the results of a small number of previous studies in other disease areas [55-57]. Notably, the field of breast cancer is evolving rapidly, and it is essential for oncologists, particularly nonspecialists, to remain informed of the latest findings and recommendations [19-26]. Therefore, focused web-based learning activities may also be valuable for general oncologists to enable them to keep up-to-date with changes in specialist fields.

Strengths and Limitations

There were several strengths associated with this study:

1. The activities provided a holistic curriculum and unbiased education focused on clearly defined learning objectives.
2. The activities were translated into several languages and were available on a free-to-access website, which likely increased their global accessibility.
3. A broad target audience was successfully reached, highlighting the importance of the multichannel publicity strategy and the inclusion of faculty from often underrepresented geographies (Latin America and Asia-Pacific).
4. The multidisciplinary team approach and inclusion of a survivor of breast cancer ensured that the activities were directly applicable to the participants’ daily practice; the emotive element can also aid learning and retention [58].
5. The format used in the touchPANEL DISCUSSION allowed the latest evidence to be put into context for practicing physicians.
6. The development of the education in a short time frame allowed for emerging data to be communicated to the HCPs potentially ahead of publications and conventional educational formats.
7. A major strength was using an objective measure of performance to complement the more subjective self-reported data.

This study also has several limitations:

1. The conclusions that could be drawn from the main and subgroup analyses were speculative and limited because of the relatively small sample size.
2. All medical educational studies are affected by inevitable self-selection bias; that is, the HCPs who feel they lack knowledge on a specific topic are more likely to participate and, therefore, show a bigger impact of the education than might be the case for a wider audience.
3. This study only evaluated outcomes following 2 specific CME activities in EBC, and the conclusions may not be generalizable to other web-based learning formats.
4. An independent samples method was used for the levels 3 to 4 questionnaires and the self-reported level 5 questionnaire to avoid pre-exposure bias; however, this meant that the direct impact of education on each learner could not be determined. Therefore, we cannot rule out the possibility that other sources of education may have contributed to the reported outcomes.
Despite these limitations, this study offers the first comprehensive assessment of such activities using an accepted methodology.

Identification of Needs for Further Education in High-Risk EBC

Notably, only 30% (15/50) and 48% (24/50) of the touchMDT and touchPANEL DISCUSSION learners, respectively, answered all questions correctly in the levels 3 to 4 questionnaires. Similarly, only 20% (10/50) of the learners gave the best clinical response for all questions in the level 5 questionnaire. This may, in part, reflect a mixed audience but suggests that further education may be warranted to reinforce the content of these activities. To refine future educational activities, we identified several unmet needs during this study from the questions that were incorrectly answered after the activities. In addition, several self-reported educational gaps were identified, including implementing SDM in clinical practice, using genetic and biomarker testing to guide therapy choices, and understanding the latest data on emerging treatments.

Future Directions

Limitations of traditional CME approaches in affecting changes in physician performance have been previously reported [59]; however, the optimal format for continuing educational activities in both breast cancer and the wider medical field remains to be fully defined. This study and other similar studies show evidence that more engaging approaches have the potential to improve the effectiveness of CME [55-57,60,61]. Evaluation of the long-term impacts of CME on HCP performance, alongside assessment against Moore’s Levels 6 and 7 [40] to determine the effect of education on patient (level 6) and community (level 7) health will add further value to CME programs in the future. Activity formats that may be particularly relevant include experts sharing insights drawn from experience and their own clinical practice, conversational and panel discussion formats, and expert interviews supplemented by vignettes of consultation strategies. Furthermore, web-based delivery may offer scope for developing more individualized approaches. Web-based activities can also be made available as enduring materials, providing a resource designed for optimal HCP accessibility. Future studies will need to be designed to evaluate the comparative effectiveness of these different approaches to CME.

In addition, in future studies, a larger sample size will increase the statistical power of the analyses.

Conclusions

Our study demonstrated that focused, free-to-access web-based CME activities on EBC were associated with improvements in HCP knowledge, competence, and self-reported performance. This study addressed the gaps in the provision of HCP-focused web-based IME programs that encompass recent advances in the high-risk EBC treatment landscape, the need for and approaches to effective SDM, and the gaps within the literature in terms of reporting outcomes from web-based CME activities. The identified unmet needs should be used to inform the design of future educational activities for this disease area. Further studies evaluating the long-term impact of education on HCP performance and on patient and community health will be valuable in defining the clinical impact of CME and the most effective channels for its delivery.

Acknowledgments

Medical writing support was provided by Steph Carter, and editorial support was provided by Cheryl Brant, both from touchIME, Cheshire, United Kingdom. The educational activities were jointly provided by the University of South Florida Health and touchIME. The authors would like to thank the touchIME audience outreach team (Joel Turner, Hannah Morton-Fishwick, and Louise Jarman) for the collection and analysis of the level 1 data. The authors would like to thank former employee of touchIME Sonia Mills for additional editorial support. Eli Lilly provided an independent medical education grant to fund the educational activity, medical writing, and editorial support but did not contribute directly to manuscript development, the decision to submit, or the submission process.

Data Availability

The data sets generated during and/or analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions

All authors contributed to the conceptualization, formal analysis of the data, and writing (review and editing) of the manuscript. KB, SN, A Noble, A Nunn and CS contributed to the investigation, methodology, project administration, visualization of the study, and writing (original draft) of the manuscript. SN contributed to the funding acquisition for and supervision of the manuscript. A Noble contributed to data curation.

Conflicts of Interest

CB reports receiving advisory board fees from AstraZeneca, Bayer, Boehringer Ingelheim, Eisai, GlaxoSmithKline, Lilly, MSD, Novartis, Pfizer, Genentech (Roche), Sanofi, and Zodiac Pharma; consultancy fees from AstraZeneca, Bayer, Boehringer Ingelheim, Eisai, GlaxoSmithKline, Lilly, MSD, Novartis, Pfizer, Genentech (Roche), Sanofi, and Zodiac Pharma; grants and research support from AbbVie, Abraxis Biosciences, AB Science, Amgen, Asana Biosciences, Astellas Pharma, AstraZeneca, BioMarin,
Boehringer Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, Exelixis, GlaxoSmithKline, ImClone Systems, LEO Pharma, Lilly, Medivation, MSD, Merck KGaA, Merrimack, Millennium, Mylan, Novartis, Pfizer, PharmaMar, Polyphor, Genentech (Roche), Sanofi, Shanghai Henlius Biotech, and Taiho Pharmaceutical; and holding stock and shares (self-managed) in MEDSIR and Tummi. FB reports receiving advisory board fees from Eisai, Eli Lilly, Gilead, MSD, Novartis, Pfizer, and Roche and consultancy fees from Eli Lilly. MG reports receiving personal fees and travel support from AstraZeneca, Daiichi Sankyo, Eli Lilly, Menarini-Stemline, MSD, Novartis, Pierre Fabre, and Veracyte, and his immediate family member is employed by Sandoz. NH reports receiving consultancy fees from Gilead, Roche, Sandoz, and Seagen and speaker bureau fees from AstraZeneca, Daiichi Sankyo, Gilead, Lilly, MSD, Novartis, Pierre Fabre, Pfizer, Roche, and Seagen. CSH reports receiving advisory board fees from AstraZeneca, Lilly, Pfizer, Novartis, and Roche; grants and research support from AstraZeneca, Daiichi Sankyo, EirGenix, Lilly, MSD, Novartis, OBI Pharma, Pfizer, and Roche; and speaker bureau fees from AstraZeneca, Novartis, Pfizer, and Roche. KLA has no interests or relationships or affiliations to disclose. KB, SN, A Noble, A Nunn and CS are employees of touch Independent Medical Education Limited.

Multimedia Appendix 1
Activity development process.
[DOCX File, 25 KB - formative_v8i1e50931_app1.docx]

Multimedia Appendix 2
Assessment of participation (level 1) and satisfaction (level 2).
[DOCX File, 22 KB - formative_v8i1e50931_app2.docx]

Multimedia Appendix 3
Topics included in levels 3 and 4 and level 5 outcomes questionnaires.
[DOCX File, 13 KB - formative_v8i1e50931_app3.docx]

Multimedia Appendix 4
Questions included in the levels 3 and 4 outcomes questionnaire for the touchMDT activity.
[DOCX File, 16 KB - formative_v8i1e50931_app4.docx]

Multimedia Appendix 5
Questions included in the levels 3 and 4 outcomes questionnaire for the touchPANEL DISCUSSION activity.
[DOCX File, 16 KB - formative_v8i1e50931_app5.docx]

Multimedia Appendix 6
Questions included in the level 5 outcomes questionnaire for the touchMDT and touchPANEL DISCUSSION activities.
[DOCX File, 16 KB - formative_v8i1e50931_app6.docx]

Multimedia Appendix 7
Unmet educational need options included in levels 3 to 4 and level 5 questionnaires.
[DOCX File, 13 KB - formative_v8i1e50931_app7.docx]

Multimedia Appendix 8
Single transferable vote system methodology.
[DOCX File, 12 KB - formative_v8i1e50931_app8.docx]

Multimedia Appendix 9
Engagement results and demographics for the touchMDT and touchPANEL DISCUSSION activities.
[DOCX File, 14 KB - formative_v8i1e50931_app9.docx]

Multimedia Appendix 10
Mean satisfaction scores of levels 2 to 4 questionnaire (out of a maximum of 5) completed by touchMDT and touchPANEL DISCUSSION learners.
[DOCX File, 13 KB - formative_v8i1e50931_app10.docx]

Multimedia Appendix 11
Multichannel publicity reach and impact for the touchMDT and touchPANEL DISCUSSION activities.
Multimedia Appendix 12
Mean number of correct responses for the levels 3 and 4 outcomes questionnaire before and after the launch of touchMDT by (A) country, (B) years of experience, and (C) specialty subgroups of the respondents and learners.

Multimedia Appendix 13
Mean number of correct responses for the levels 3 and 4 outcomes questionnaire before and after the launch of touchPANEL DISCUSSION by (A) country, (B) level of experience, and (C) specialty of the respondents and learners.

Multimedia Appendix 14
Summary of correct responses for individual topics for the levels 3 and 4 outcomes questionnaire before and after the launch of (A) touchMDT and (B) touchPANEL DISCUSSION.

Multimedia Appendix 15
Summary of correct responses for individual topics for the level 5 outcomes questionnaire before and after the launch of touchMDT and touchPANEL DISCUSSION.

Multimedia Appendix 16
Mean number of correct responses for the level 5 outcomes questionnaire before and after the launch of touchMDT and touchPANEL DISCUSSION by (A) country, (B) level of experience, and (C) specialty of the respondents and learners.

Multimedia Appendix 17
Patient characteristics from patient records data (level 5) submitted by responders and learners for the touchPANEL DISCUSSION activity.

Multimedia Appendix 18
Combinations of measures used to determine patient risk for recurrence from patient records data (level 5) submitted by responders and learners for the touchPANEL DISCUSSION activity.

Multimedia Appendix 19
Measures used to determine patient risk for recurrence reported by respondents and learners in the level 5 patient records questionnaire.

Multimedia Appendix 20
Ki-67 use and Ki-67 index scores reported by respondents and learners in the level 5 patient records questionnaire (Figure S1); adjuvant or planned adjuvant therapy reported by respondents and learners in the level 5 patient records questionnaire (Figure S2); changes in self-reported confidence in (A) levels 3 to 4 questionnaires and (B) level 5 questionnaires following participation in the touchMDT and touchPANEL DISCUSSION activities (Figure S3); unmet educational needs identified by the touchMDT and touchPANEL DISCUSSION learners (Table S1).

References

https://formative.jmir.org/2024/1/e50931 | JMIR Form Res 2024 | vol. 8 | e50931 | p.1451 (page number not for citation purposes)

50. Understanding health research. UK Research and Innovation. URL: https://tinyurl.com/4u32dw35 [accessed 2024-01-26]

54. Bergeron L, D... [additional text redacted for brevity]

56. Larkin A, Schrand J, Le A. Success of CME at improving knowledge of clinical use of real-time CGM. Diabetes 2021;70(Supplement_1):614P [FREE Full text] [doi: 10.2337/db21-614-P]

Abbreviations

Akt: protein kinase B
CME: continuing medical education
EBC: early breast cancer
HCP: health care professional
SDM: shared decision-making
touchIME: touch Independent Medical Education

Edited by A Mavragani; submitted 24.07.23; peer-reviewed by J Lapointe, N Than, S Ganesh; comments to author 09.01.24; revised version received 06.02.24; accepted 07.02.24; published 21.03.24.

Please cite as:
Development of Therapeutic Alliance and Social Presence in a Digital Intervention for Pediatric Concussion: Qualitative Exploratory Study

Kiara M K O’Kane1, BA; Thalia Otamendi2, PhD; Noah D Silverberg1, PhD; Esther Choi1, BA; Veronik Sicard3, PhD; Roger Zemek3,4, MD; Katherine Healey3, MSc; Olivier Brown3,5, BA; Lauren Butterfield1,6, BSc; Andra Smith5, PhD; Gary Goldfield3, PhD; Rachel Kardish3, MSc; Bechara Saab5, PhD; Andrée-Anne Ledoux3,5,6,8, PhD; Molly Cairncross9, PhD

1Department of Psychology, University of British Columbia, Vancouver, BC, Canada
2Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
3Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
4Department of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, ON, Canada
5School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, BC, Canada
6Department of Neuroscience, Carleton University, Ottawa, ON, Canada
7Mobio Interactive, Singapore, Singapore
8Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
9Department of Psychology, Simon Fraser University, Burnaby, BC, Canada

Corresponding Author:
Molly Cairncross, PhD
Department of Psychology
Simon Fraser University
Robert C. Brown Hall 7321
8888 University Drive
Burnaby, BC, V5A 1S6
Canada
Phone: 1 778 782 7458
Email: molly_cairncross@sfu.ca

Abstract

Background: Despite the promising benefits of self-guided digital interventions for adolescents recovering from concussion, attrition rates for such interventions are high. Evidence suggests that adults can develop therapeutic alliance with self-guided digital interventions, which is in turn associated with intervention engagement. However, no research has examined whether adolescents develop therapeutic alliance with self-guided digital interventions and what factors are important to its development. Additionally, social presence—the extent to which digital encounters feel like they are occurring in person—may be another relevant factor to understanding the nature of the connection between adolescents and a self-guided digital intervention, though this has yet to be explored.

Objective: This qualitative study explored the extent to which adolescents recovering from concussion developed therapeutic alliance and social presence during their use of a self-guided digital mindfulness-based intervention. Additionally, this study aimed to determine factors important to adolescents’ development of therapeutic alliance and social presence with the intervention.

Methods: Adolescents aged between 12 and 17.99 years who sustained a concussion were recruited from 2 sites: a pediatric emergency department up to 48 hours after a concussion and a tertiary care clinic over 1 month following a concussion to capture adolescents who had both acute and persisting symptoms after concussion. Participants (N=10) completed a 4-week mindfulness-based intervention delivered through a smartphone app. Within the app, participants listened to audio recordings of mindfulness guides (voice actors) narrating psychoeducation and mindfulness practices. At 4 weeks, participants completed questionnaires and a semistructured interview exploring their experience of therapeutic alliance and social presence with the mindfulness guides in the intervention.
Results: Themes identified within the qualitative results revealed that participants developed therapeutic alliance and social presence by “developing a genuine connection” with their mindfulness guides and “sensing real people.” Particularly important to the development of therapeutic alliance and social presence were the mindfulness guides’ “personal backgrounds and voices,” such that participants felt more connected to the guides by knowing information about them and through the guides’ calm tone of voice in audio recordings. Quantitative findings supported qualitative results; participants’ average score for therapeutic alliance was far above the scale midpoint, while the mixed results for social presence measures aligned with qualitative findings that participants felt that the mindfulness guides seemed real but not quite as real as an in-person connection would.

Conclusions: Our data suggest that adolescents can develop therapeutic alliance and social presence when using digital interventions with no direct human contact. Adolescents’ development of therapeutic alliance and social presence with self-guided digital interventions can be bolstered by increasing human-like qualities (eg, real voices) within interventions. Maximizing therapeutic alliance and social presence may be a promising way to reduce attrition in self-guided digital interventions while providing accessible treatment.

(JMIR Form Res 2024;8:e49133) doi:10.2196/49133

KEYWORDS adolescent; concussion; digital therapeutics; eHealth; mHealth; mindfulness; mobile health; social presence; working alliance

Introduction

Concussions are one of the most common injuries among adolescents, responsible for nearly 50,000 pediatric emergency department visits in Canada each year [1]. While most adolescents who sustain a concussion recover within 1 month, approximately 30% develop persistent postconcussion symptoms (PPCS) that continue longer than 1 month after their injury [2-4]. PPCS are associated with a variety of negative outcomes in adolescents, including reduced quality of life [5]. Despite the prevalence of PPCS and the detrimental effects that they have on the quality of life, few accessible evidence-based treatments exist for acute and persistent symptoms of concussion [6].

One promising intervention for those with acute or persisting concussion symptoms is mindfulness-based intervention (MBI) [7,8]. Most MBI research has focused on interventions delivered in-person. However, traditional in-person therapies are inaccessible for many due to financial barriers and sociodemographic disparities in access to health care. Moreover, a higher incidence of concussion in rural settings [9] means that many patients may have difficulty accessing specialized concussion care clinics, which are typically concentrated in urban settings [10]. Beyond geographical distance alone, specialized clinics often have long waitlists and operate solely during work and school hours, further complicating access to care. Additional barriers for adolescents to accessing treatment result from reliance on parental support for transport to and funding for in-person treatments. Finally, during infectious disease outbreaks such as the COVID-19 pandemic, in-person treatments may be severely limited or not available at all due to public health regulations. Taken together, in-person treatment for acute or persisting concussion symptoms in adolescents may not be readily accessible.

By contrast, self-guided digital interventions offer a potential solution to disparities in access to care for concussions in adolescents. A total of 95% of adolescents in Canada own a mobile digital device [11], highlighting that almost all youth in Canada have good access to digital care regardless of socioeconomic status. Digital interventions can be used anywhere and are a more affordable alternative to in-person treatments [12]. Some digital MBIs have also been shown to be effective in treating a range of conditions such as chronic pain, depression, anxiety, and stress [13,14], even when controlling for expectancy effects with active control comparison groups [15]. These conditions are also secondary consequences of concussion [2,16], which can further complicate the recovery process. Given digital MBIs’ effectiveness for treating these secondary consequences of concussion, they may have use for concussion recovery itself as well. However, attrition rates are high, and adherence suboptimal to digital interventions, with attrition rates as high as 52% in self-guided digital MBIs [12,17,18]. If patients do not adhere to treatment, they are less likely to benefit from it as intended. Thus, it is imperative to understand the factors underlying the large variation in self-guided MBI attrition rates.

One factor known to be essential for adherence and positive patient-reported outcomes following clinician-delivered behavioral interventions is the therapeutic alliance. Therapeutic alliance refers to the collaborative relationship and affective bond between a therapist and their patient [19,20]. The therapeutic alliance comprises 3 dimensions: the agreement on therapeutic goals, the agreement on therapeutic tasks, and the emotional bond between a therapist and their patient [21]. Particularly important to the conceptualization of therapeutic alliance is the collaborative nature of the relationship between a therapist and patient; this collaboration is integral to the success of psychotherapeutic treatments [19]. In face-to-face treatments, a strong therapeutic alliance is associated with positive treatment outcomes [20] and lower attrition [22].

Therapeutic alliance may also be relevant to patient adherence in the context of self-guided digital interventions. Self-guided digital interventions lack the direct contact with human therapists found in in-person treatments. However, research suggests that individuals often respond to digital technology as if it was another person [23]. As such, researchers have explored whether individuals may anthropomorphize—or attribute human-like qualities to—digital interventions themselves and therefore develop therapeutic alliance with the interventions. Indeed, initial evidence from interventions for adults focused on addressing a range of health behaviors and outcomes [24-31]
suggests that individuals can develop therapeutic alliance when using self-guided digital interventions by feeling a connection to the intervention or digital social actors within it. Intervention format varied across studies; interventions included audio recordings of human voice actors [30], human-like digital avatars [25], fully automated text-based “conversations” with an intervention [28,29], and intervention content delivered through multimedia modules [24,26,27,31,32], highlighting that therapeutic alliance can develop with self-guided digital interventions in a variety of contexts. Additionally, evidence from quantitative studies of self-guided digital interventions indicates that therapeutic alliance is positively associated with patient engagement [27,32] and therapeutic outcomes [31,32]. This suggests that similar to in-person treatments, feeling socially supported is important to adherence in self-guided digital contexts as well. However, none of these studies sampled adolescents. Adolescents’ experiences of therapeutic alliance with self-guided digital interventions may differ from those of adults, given that adolescents engage with digital technology in unique ways from adults [33,34]. As such, whether and how adolescents develop therapeutic alliance when using self-guided digital interventions remains to be explored.

The nature of therapeutic alliance in self-guided digital interventions may differ from that developed during face-to-face treatments, given the lack of real-time interaction with a human therapist. For example, previous research found that while participants felt emotionally connected to and anthropomorphized their self-guided digital intervention, at other times, they felt that the intervention was a thing rather than a real person [29,30]. Holter’s relational model of “making come-alive” and “keeping un-alive” [28,29] can provide theoretical context as to why therapeutic alliance in self-guided interventions may be unique from therapeutic alliance developed in in-person therapy. The model suggests that individuals engage in 2 types of relational processes when using self-guided digital interventions: “making come-alive,” or thinking of a digital intervention as a social actor with human-like qualities, and “keeping un-alive,” or viewing the intervention as an inanimate object without real emotions. Individuals’ dynamic interplay between “making come-alive” and “keeping un-alive” produces a therapeutic alliance that at once both involves emotional closeness to a digital intervention and emotional distance through recognition that the program is not a real human entity.

Social presence may be a suitable construct for further understanding the therapeutic relationship and the extent to which individuals “make come-alive” or “keep un-alive” within self-guided digital interventions. Stemming from the communications and education literature, social presence is the extent to which a digital encounter feels like it is occurring in-person and has a sense of human connection to it [35-37]. Higher social presence is related to more trust in a web-based communicator [38] and greater relationship satisfaction, attachment, and perceived benefit of caregiving robots [39]. This suggests that social presence may approximate how much individuals experience a bond with social actors within a digital intervention. Social presence is also associated with satisfaction with, enjoyability of, and intention to use a mobile app or website [40-42]. Given the importance of these factors for adherence to treatment [43], attending to the social presence in self-guided digital intervention design may maximize adherence.

Social presence has not yet been examined in the context of a clinical intervention, and adolescents’ development of therapeutic alliance in the context of self-guided digital interventions is not well understood. This study sought to address these gaps in the literature and identify what factors may be relevant to adolescents’ development of therapeutic alliance and social presence in self-guided digital interventions. The aim of the present study was to determine if therapeutic alliance and social presence can be developed with audio-recorded mindfulness guides in a self-guided digital intervention among adolescents with acute or persisting concussion symptoms. Second, we aimed to determine what aspects of the intervention were important to the therapeutic alliance’s and social presence’s development.

Methods

Study Design

A qualitative exploratory design was used in the study. Since adolescents’ experiences of social presence and therapeutic alliance in clinical self-guided digital interventions are not yet well understood, we chose to use qualitative methods to explore the nuances of these experiences. Qualitative methods are well-suited for exploring participants’ experiences with digital applications, including what aspects of the application met their needs and what could improve their experience with the application. This was a planned secondary data analysis from an open-label pilot trial of a digital MBI for adolescents post concussion. The study was an open-label pilot trial because both the research team and participants knew that participants would be receiving a digital MBI. The pilot trial was a small-scale study and centered around the first stage of intervention development. The primary aim of the pilot trial was to gain information on the feasibility, credibility, and satisfaction of patient users with the digital MBI. The reporting of the study followed the Journal Article Reporting Standards for Qualitative Research (JARS-Qual) guideline [44].

Research Team and Reflexivity

Interviews were conducted by KMKO, OB, and RK. KMKO conducted interviews with the PPCS cohort (adolescents experiencing PPCS) and OB and RK with the acute cohort (adolescents recovering from acute concussion). KMKO has a bachelor’s degree in psychology and was a directed studies student at the University of British Columbia at the time of the interviews. They were trained and supervised while conducting the interviews by MC, a postdoctoral fellow at the University of British Columbia at the time of data collection. MC holds a PhD in clinical psychology. OB has a bachelor’s degree in psychology and was a PhD candidate in experimental psychology at the time of the interviews. RK has a bachelor’s degree in neuroscience and mental health and was a master’s candidate at the time of the interview. They were trained and supervised while conducting the interviews by AAL, a scientist at the Children’s Hospital of Eastern Ontario Research Institute. AAL holds a PhD in experimental psychology.
Interviewers were specifically trained to conduct interviews in a nondirective manner and were given feedback from supervisors during practice interviews. Given the self-guided nature of the intervention, the research team remained open to the possibility that participants would not develop a therapeutic alliance or social presence with their mindfulness guides. If participants did not develop a therapeutic alliance or social presence when using the app, the research team planned to change the intervention during subsequent stages of intervention development based on participant feedback in this study to better support future users. As such, interviewers explored whether or not participants experienced therapeutic alliance and social presence with curiosity and openness to participant feedback. The participants and interviewers were unknown to each other before the study. At the beginning of the interviews, participants were made aware that the interviewers were research assistants affiliated with the research team that conducted the study. They were told that the researcher was interested in learning about their experiences while using the mindfulness app.

Qualitative data were analyzed by KMKO and TO. At the time of data analysis, KMKO had approximately 2 years of experience conducting research about patient experiences with digital interventions. Based on their professional background and familiarity with the therapeutic alliance and social presence literature, KMKO brought certain assumptions to data analysis. For example, KMKO expected that participants would likely develop some degree of therapeutic alliance and social presence with the mindfulness guides given the human-like qualities present in audio recordings of the guides (eg, using real human voices). Additionally, because KMKO conducted interviews with the PPCS cohort, they had familiarity with the experiences of the PPCS cohort before beginning data analysis. Due to KMKO’s awareness of their preconceived expectations, they exercised caution during data analysis and engaged in constant peer debriefing with TO to ensure that findings were indeed based on participants’ accounts. TO is a Rehabilitation Sciences PhD student at the University of British Columbia who is trained in qualitative methodologies and has a background in psychology. TO was not versed in the therapeutic alliance, social presence, or digital intervention literature and did not conduct any of the interviews. As such, TO had limited assumptions about the findings going into data analysis.

Participants

The sample included 10 adolescents aged between 12 and 17.99 years who were either recovering from acute concussion (acute cohort) or were experiencing PPCS (PPCS cohort). The sample included both the acute cohort and the PPCS cohort because the digital MBI was designed both to help adolescents acutely recovering from concussion and those with persisting symptoms. As such, one of the primary aims of the pilot trial was to understand whether the digital intervention met the needs of both populations. In this study, we did not expect the acute cohort and PPCS cohort to differ with respect to their experiences of therapeutic alliance and social presence. Therefore, the 2 cohorts were collapsed into 1 overall sample for data analysis.

The acute and PPCS cohorts were recruited from 2 separate sites. Participants in the acute cohort (n=7) were recruited from the emergency department within 48 hours of sustaining a concussion. Participants in the PPCS cohort (n=3) were youth who sustained a concussion between 1 and 12 months before participation in the study and continued to experience concussion symptoms in at least 3 categories, as defined by the International Classification of Diseases, Tenth Revision criteria for PPCS [45]. They were recruited from a tertiary care concussion clinic. Additional eligibility criteria for the study included that participants were proficient in English and had access to a smartphone or tablet with an internet connection. Participants were excluded if they had a severe chronic neurological developmental delay resulting in communication difficulties, previous psychiatric hospitalization, previous diagnosis of a severe psychiatric disorder, such as schizophrenia (acute cohort only), or if participants were currently involved in other MBIs (PPCS cohort only). The acute and PPCS cohorts differed in size due to challenges associated with recruiting participants experiencing chronic concussion symptoms. In particular, given that recruitment was carried out during the COVID-19 pandemic, anecdotally, adolescents with PPCS faced greater barriers to care than usual, such as increased family stress and restricted access to the tertiary care concussion clinic where recruitment was carried out due to public health regulations.

Participants’ demographic information is summarized in Table 1. A total of 10 adolescents (mean age 15.93, SD 1.86 years) participated in our study. Overall, 7 participants identified as female, and 3 participants identified as male. Participants are described using pseudonyms to protect their identities.
Table 1. Participant demographic characteristics of adolescents recovering from concussion. Participant names presented in this table are pseudonyms to protect the participants’ anonymity.

<table>
<thead>
<tr>
<th>Cohort and participants</th>
<th>Sex</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophia</td>
<td>Female</td>
<td>17.22</td>
</tr>
<tr>
<td>Julian</td>
<td>Male</td>
<td>16.62</td>
</tr>
<tr>
<td>June</td>
<td>Female</td>
<td>13.94</td>
</tr>
<tr>
<td>Ella</td>
<td>Female</td>
<td>14.26</td>
</tr>
<tr>
<td>Olivier</td>
<td>Male</td>
<td>16.94</td>
</tr>
<tr>
<td>Marie-Claude</td>
<td>Female</td>
<td>12.63</td>
</tr>
<tr>
<td>Gabrielle</td>
<td>Female</td>
<td>14.73</td>
</tr>
<tr>
<td>Persistent postconcussion symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alex</td>
<td>Male</td>
<td>17.86</td>
</tr>
<tr>
<td>Ada</td>
<td>Female</td>
<td>17.48</td>
</tr>
<tr>
<td>Kay</td>
<td>Female</td>
<td>17.62</td>
</tr>
</tbody>
</table>

Ethical Considerations

This study’s procedures were reviewed and granted ethics approval by the Behavioral Research Ethics Board at the University of British Columbia (H20-00120) and the Research Ethics Board at the Children’s Hospital of Eastern Ontario Research Institute (20/72X). Participants capable of consenting provided their informed consent, and parents also provided consent on their children’s behalf. Participants who were unable to consent provided assent instead, and their parents provided informed consent on their behalf. Participants were able to ask the research assistant questions that they had about the study procedures before providing their consent. With respect to study data, all participants were assigned a unique participant ID number that was linked to their data; as such, all study data were deidentified and stored in the secure platform, Research Electronic Data Capture (REDCap) [46,47]. Participants in the acute cohort were compensated for their participation with a CAD $10 (US $7.40) gift card and received a letter stating that they completed 10 hours of volunteer work, while those in the PPCS cohort were given a CAD $15 (US $11.11) gift card. Compensation differed between the 2 cohorts because they were recruited from separate sites, with data collection for each cohort led by teams at 2 different institutions. As such, the cohorts were compensated in accordance with the norms of the given institution leading each cohort’s data collection.

Procedure

Prospective participants for the acute cohort were approached in the emergency department. A member of the research team briefly described the study. Interested prospective participants were called by telephone by a research assistant for the eligibility screening and consent or assent process the next day.

Prospective participants for the PPCS cohort were approached at web-based psychoeducation sessions at a tertiary care concussion clinic. A research assistant provided prospective participants with information about the study and gave all participants a link to a survey on the secure platform, REDCap. The survey allowed patients to provide consent to be contacted by the research team if they were interested in participating in the study. Interested prospective participants were called by telephone by a research assistant for the eligibility screening and consent or assent process.

Upon confirming participants’ eligibility and receiving informed consent, participants were emailed a unique link to register and download the intervention through REDCap. The intervention was developed by the research team and is hosted on the AmDTx app. The app was downloaded on participants’ smartphone or tablet, along with instructions for use. A research assistant also called participants by telephone to help instruct them through the app download process and answer any technical questions they had. Concurrently, participants were emailed links to complete baseline measures through REDCap. All data were collected and stored in a secure database on REDCap.

Participants then engaged with the intervention at their own pace over the course of 4 weeks, following which they received a link to complete outcome measures assessing social presence and therapeutic alliance on REDCap. After participants finished the outcome measures, they completed a 30-45–minute semistructured interview through Zoom (Zoom Video Communication) video call with a member of the research team. Audio of the interviews was recorded for transcription.

Intervention

During this pilot phase, participants completed 4 weeks of the 8-week treatment. The recordings of psychoeducation and mindfulness practices in the app were narrated by 2 professional mindfulness guides, Ruby and Brian. Ruby and Brian both have substantial mindfulness training and teaching experience. Moreover, Ruby (who led all the psychoeducation) had experience working with adolescents with concussion. The MBI was modeled based on mindfulness-based stress reduction [48] with meditations and content specifically designed for adolescents with concussion. The psychoeducation topics covered in the MBI involved pain acceptance, stress...
management, and nonjudgement toward concussion symptoms. Mindfulness practices included mindful breathing, body scans, and mindful movement. Participants listened to the audio recordings of the mindfulness guides narrating the psychoeducation sessions and mindfulness exercises while using the app. Participants were encouraged to participate in the intervention for 15 minutes per day, for 4 days a week. The content was the same for all participants. See Multimedia Appendix 1 for images of the intervention content.

Throughout treatment, participants also received weekly SMS text messaging support from an “SMS text messaging coach,” who was a trained member of the research team. The SMS text messaging coach’s role was to support participants with any technical issues and problem-solve any barriers to engagement, such as having difficulty finding time to complete their mindfulness practices. SMS text messages sent to participants followed a highly templated SMS text messaging protocol. For a copy of the SMS text messaging protocol, see Multimedia Appendix 2.

Measures

Therapeutic Alliance

Therapeutic alliance was measured using the Working Alliance Inventory adapted for Guided Internet Interventions (WAI-I). The WAI-I is an adaptation of the Working Alliance Inventory–Short Form Revised designed for use with digital interventions. It is a self-reported, 12-item measure assessing participants’ alignment on tasks and goals with a digital intervention and their bond with their mindfulness guides during the intervention [49]. In this study, items were modified to reflect the MBI at hand (eg, “The goals of the app-based mindfulness program are in line with my goals”), including replacing the word “psychologist” in the original measure with “mindfulness guides” (eg, “The mindfulness guides who support me in the app-based program are really interested in my well-being”). Each item was assessed using a 5-point Likert scale ranging from 1 (never) to 5 (always). WAI-I total scores were calculated by summing items out of a possible 60 points. The WAI-I is a reliable measure with good construct, convergent, discriminant, and external validity [49].

Social Presence

In order to evaluate distinct aspects of social presence, 2 measures were used to capture how much digital encounters feel like they are occurring in-person and the ways in which digital encounters have human-like qualities. The first measure was adapted from Nowak and Biocca’s self-reported, 6-item Perceived Social Presence (PSP) scale [36]. The measure assessed how much participants felt like their mindfulness guides were real people and how much it felt like they were “with” their guides while using the app (ie, “To what extent was this as if you were in the same room with your mindfulness guide?”) [36]. We modified the wording of items to reflect that participants were reporting about their experiences with the mindfulness guides, as opposed to the wording “partner” used in the original measure. Items were measured on a Likert scale ranging from 1 (no extent) to 7 (full extent). The measure was scored by summing items out of a possible 42 points. The PSP scale has good internal consistency, convergent validity, and discriminant validity [36,50].

The second measure was the self-reported, 17-item Gunawardena Social Presence Indicators (SPI) scale [51] which assessed the human-like qualities of the audio-recorded mindfulness guides in the intervention. Participants were presented with 5-point bipolar items consisting of contrasting adjectives (ie, “personal-impersonal”) [51] and were instructed to circle the number that best reflected their perceptions of their mindfulness guides’ interpersonal qualities for each item. The measure was scored by summing items out of a possible 85 points. Higher scores reflected more negative perceptions of mindfulness guides. The SPI scale demonstrates good convergent validity [52,53].

Semistructured Interview

A semistructured, qualitative interview was developed by the research team to better understand participants’ experience with the app. Before the study’s commencement, the interview was pilot-tested with a 15-year-old nonparticipant to obtain feedback about understandability and was also reviewed by expert clinicians and researchers for content. The interview covered topics such as participants’ experience of therapeutic alliance and social presence with the mindfulness guides while using the app, as well as changes they would make to the app to improve those experiences (ie, “Can you tell me about your connection with your mindfulness guides? Is there anything you would have liked to change about your connection with your mindfulness guides?”). Other topics explored in the interview included participants’ satisfaction with the app content and ease of use and their satisfaction with support received from their SMS text messaging coaches, though data gathered from these questions is outside the scope of this study (for more information, see [54]). For a copy of the interview guide, see Multimedia Appendix 3.

Data Analysis

Quantitative Analysis

Participant demographics were summarized using descriptive and frequency statistics, as appropriate. Scores on the WAI-I and the PSP scale represent the degree to which participants developed therapeutic alliance and experienced social presence when using the app. As such, scores above the scales’ floor suggest participants developed some degree of therapeutic alliance and social presence. The scale midpoint was used for the SPI scale to indicate whether participants viewed their mindfulness guides more positively, neutrally, or negatively. We chose this method of examining our quantitative results because traditional quantitative data analysis was not appropriate for our data, given our small sample size. The quantitative results are used to supplement the main, qualitative results stemming from the semistructured interview by demonstrating the degree to which participants did or did not develop therapeutic alliance and social presence when using the intervention.
Qualitative Analysis

Qualitative interviews were audio recorded and transcribed verbatim using NVivo 12 software (Lumivero). Following transcription, interviews were analyzed by KMKO and TO using conventional content analysis [55]. The researchers first read each interview multiple times to familiarize themselves with the data. Transcripts were then open-coded, codes were grouped into meaningful clusters, and these clusters were used to form overarching categories that related to social presence and therapeutic alliance. Categories were discussed, refined, and finalized in consultation with MC. Content analysis allows for a mix of deductive and inductive analysis [56]. Deductive analysis was used to code transcripts based on understandings of social presence and therapeutic alliance gained from previous literature, while inductive analysis was used to explore how social presence and therapeutic alliance developed and were important in the novel context of self-guided digital interventions. Representative quotes were chosen to supplement the written findings.

Results

Quantitative Results

A total of 9 (90%) participants completed all quantitative measures. Descriptive values for the quantitative questionnaires are presented in Table 2. Participants’ mean therapeutic alliance score on the WAI-I was far above the WAI-I scale floor, suggesting that in general, our participants did develop therapeutic alliance with the mindfulness guides. The mean score for the bond subscale of the WAI-I was particularly high, suggesting that participants especially developed a sense of bonding with their guides, relative to their sense of agreement with guides on tasks or goals in the intervention.

Participants’ mean social presence score on the PSP scale was far above the scale floor, suggesting that participants developed a social presence with their mindfulness guides. Participants’ average score on the SPI scale was slightly above its scale midpoint—with lower scores indicating greater social presence. This result indicates that participants had fairly neutral impressions of their mindfulness guides’ interpersonal characteristics and the social presence experienced with the guides.

Table 2. Descriptive values for questionnaire outcomes from adolescents recovering from concussion using a digital mindfulness-based intervention.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Minimum-Maximum</th>
<th>Mean (SD)</th>
<th>Scale midpoint</th>
<th>Scale range</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAI-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total score</td>
<td>38.00-59.00</td>
<td>47.00 (6.80)</td>
<td>24.00</td>
<td>12.00-60.00</td>
</tr>
<tr>
<td>Task and goal agreement</td>
<td>20.00-39.00</td>
<td>30.33 (6.34)</td>
<td>16.00</td>
<td>8.00-40.00</td>
</tr>
<tr>
<td>Bonding with guides</td>
<td>12.00-20.00</td>
<td>16.67 (2.55)</td>
<td>8.00</td>
<td>4.00-20.00</td>
</tr>
<tr>
<td>PSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total score</td>
<td>11.00-39.00</td>
<td>24.40 (7.55)</td>
<td>17.50</td>
<td>6.00-30.00</td>
</tr>
<tr>
<td>SPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total score</td>
<td>19.00-58.00</td>
<td>35.89 (10.63)</td>
<td>34.00</td>
<td>17.00-85.00</td>
</tr>
</tbody>
</table>

aWAI-I: Working Alliance Inventory for Guided Internet Interventions.
bPSP: Perceived Social Presence scale.
cSPI: Social Presence Indicators Scale.
dA lower score indicates a more positive social presence.

Qualitative Results

Developing a “Genuine Connection”

When asked about their mindfulness guides, many participants readily described developing an important emotional bond with their guides. For example, Gabrielle said that their connection with the guides “didn’t feel artificial... it felt like it was a genuine connection.” Olivier expressed, “I like that they kind of got what the listener was feeling... they had pretty good insight into various different things that... I was feeling.” Sophia also indicated feeling a sense of safety with their guides, stating, “I don’t know how to describe it. [The connection is] like feeling safe with someone.” This was echoed by Ella, who stated that listening to the guides “was just kind of like a comfortable situation, and you didn’t really feel like there was anything wrong.”

The participants further elaborated on how this connection with the guides helped them progress through the mindfulness program. Alex noted, “It just makes you feel like they were trying to help you the whole time. Like they want you to accomplish your goals... you can definitely tell that they’re like guiding you through.” Olivier highlighted that the guides also normalized challenges that arose during the program, citing 1 example where the guides said, “If you’re thinking that you’re bad at mindfulness, it’s normal for your thoughts to wander and all that. [The guides] just kind of understood.” This experience was shared with Kay, who said, “I would lose track of what I was doing, and they’re like, if you lose track like it’s okay, just come back to what we’re doing, think about this.” And I’m like,
“Okay, thank you.” The use of certain adjectives when describing the guides, such as “understanding” (Ella and Olivier), “caring” (Ada and Olivier), “helpful” (Alex and Sophia), and “friendly” (Alex and Kay), further exemplified the participants’ feeling of being taken care of by the guides, which facilitated their progression through the program.

Sensing “Real People”

The use of human-like adjectives to describe the mindfulness guides indicates that participants viewed the guides as real people. Indeed, participants elaborated on the perceived realness of the guides. For example, Gabrielle mentioned that Ruby “felt like... a real person, like really genuine.” Ada also contrasted the realness of the guides to the absence of realness in automated computer voices; they said, “This is a person and like, again, not an automated voice message... it was at one point another person on the other side of the screen, it’s not like Siri talking back to you.” One participant even stated, “I would be surprised if [you] told me they weren’t real people” (Kay). Some participants additionally assigned a particular identity role to their guides, saying that their guides felt like “teachers” (Olivier), or “a parental figure” (Gabrielle); beyond feeling like real people, the mindfulness guides also felt like particular kinds of people for some participants.

In addition to feeling like their guides were real people, participants also noted that their experiences with the guides felt like real-life interactions. For example, Ada offered that it “felt like someone was talking in my ear when I was like, lying down and things... it definitely felt like there was like somebody there.” Alex highlighted that “it feels like they’re actually talking to you.” Gabrielle said “It felt like they were like right in front of me, too. So like, presence.” Multiple participants noted that the interactions with the guides felt private and personal, with both Alex and Ella describing that their mindfulness sessions with the guides felt like a “one-on-one talk” and Olivier saying that sessions “just felt like more like a conversation that they’re having with me, and it just felt like as though they’re talking to me rather than just talking and letting someone hear.”

As participants elaborated on their guides, however, tensions in their accounts were palpable when describing their ability to develop feelings of presence and connection despite the guides not actually being present. Ella offered, “This is probably going to sound weird, but [they were] understanding even though you couldn’t talk to them. It kind of felt like they were listening.” When asked to what extent it felt like the guides were present during the intervention, Sophia answered, “I feel like they’re with me, but not with me at the same time, because I know they’re not with me.” Ada noted that contextual factors were relevant to whether they felt like their guides were present or not, stating, “I don’t think I felt [like the guides were talking in my ear] when I was walking, because when I’m walking, I’m like, nine times out of ten having to pay attention to my areas around me... But when I was lying down, it was definitely there.” Kay also stated, “I wasn’t connected, but I wasn’t not connected.” The dissonance in the participants’ narrative accounts alluded to the sense that participants could not help but feel a connection with their guides but also did not want to deceive themselves into thinking that these connections were real—or at least, quite as real as an in-person connection would be. Indeed, Sophia said that “it felt like I was on a phone call with someone,” suggesting that while their interactions with guides did not necessarily feel like they were happening in-person, their relationship with the guides still felt more interactive than the completely noninteractive connection they actually had.

Personal Backgrounds and Voices

The mindfulness guides’ backgrounds and tone of voice emerged as factors key to the development of participants’ bond and sense of presence with the guides. Getting to know the guides allowed the participants to “trust them” (Olivier) by getting the sense that the guides “knew what they were talking about” (Olivier). Some participants trusted Brian due to his personal experience with concussion. As Alex noted, Brian’s experience of having concussions in the past made him seem very “personable,” as participants felt that it was not “just someone like talking to you about it, it’s someone who’s actually experienced [concussion]” (Alex). Others trusted Ruby because of her professional and educational background, for example, because she mentioned her degree in psychology. Ada noted, “Obviously [Ruby] knew about concussions. And I respected that.” The sharing of the personal or professional backgrounds of the guides allowed participants to feel like the guides had “either been through this (ie, a concussion experience) or they’ve worked with other people who’ve been through this,” (Kay) which allowed them to trust the trajectory and goals of the intervention.

Most participants also expressed that the guides’ voices were important for helping them get to know the guides and making them feel real. Ada captured this sentiment by sharing, “I definitely think that you just kind of get to know a person by the way that they speak.” The most common descriptors of the guides’ voices were “calm” or “calming” (Sophia, Ella, Olivier, Marie-Claude, Sophia, Ada, and Kay) and “soothing” (Julian, Olivier, and Ada). When probed about why this tone of voice was important, participants shared that a calming voice allowed them to feel like they were being cared for, and this had important implications for the development of trust in the guides. For example, Sophia elaborated, “I think them being calm with their voices made me closer to feel like they’re actually here to help me instead of being rushed and stuff.” Thus, participants highlighted that factors that allowed them to get to know their mindfulness guides (ie, personal backgrounds and tone of voice) were beneficial for the development of their therapeutic alliance and sense of social presence, which in turn had benefits for their engagement with the app.

Discussion

Overview

This study aimed to determine whether and how therapeutic alliance and social presence could develop in the context of a self-guided digital MBI for adolescents post concussion. Qualitative and quantitative findings revealed that adolescents did develop therapeutic alliance through their use of the intervention, with qualitative findings providing insight into
factors important for its development; participants readily described experiencing a bond with the mindfulness guides in the intervention. While participants’ average score on the SPI scale was slightly above the scale midpoint, this may be explained by nuances uncovered with qualitative findings, which highlighted the tension in how the participants experienced social presence with their guides (e.g., it felt real, but not quite as real as in-person connections). Indeed, this tension aligns with Holter’s relational model [29], suggesting that individuals’ connections with their mindfulness guides in this digital context involved both “making come-alive” and “keeping un-alive.” This, along with participants’ high average score on the PSP scale, suggests that participants did develop social presence during their use of the intervention. The guides’ personal backgrounds and the tone of their voices emerged as particularly important factors in the development of therapeutic alliance and social presence in a digital context. Additionally, participants stated that their connection with the guides and sense of the guides’ realness helped maintain their engagement with and interest in the intervention. Results extend previous findings that adults can develop therapeutic alliance with self-guided digital interventions [24-31] by demonstrating that adolescents also develop therapeutic alliance in self-guided digital contexts. Overall, findings highlighted the potential feasibility and use of maximizing therapeutic alliance and social presence to bolster participant engagement with self-guided digital interventions.

Since the onset of the COVID-19 pandemic, clinicians have identified the need for accessible, engaging, and effective digital interventions [57,58]. Digital interventions circumvent a number of accessibility barriers that limit adolescents’ access to concussion care. Therefore, they represent a promising treatment option for both acute and persistent concussion symptoms. However, numerous studies have noted particularly high attrition rates for self-guided digital interventions, which researchers have suggested are because of their limited human contact and lack of social support [12,17,18]. Our findings demonstrate that even in self-guided digital interventions, participants can develop therapeutic alliance and a sense of social presence in the program with audio recordings of mindfulness guides. This suggests that, despite the absence of a human for participants to directly interact with, adolescents can still experience being socially supported through self-guided interventions. Thus, it is important to consider ways of maximizing the human support participants feel during self-guided digital interventions to bolster participant engagement.

In self-guided contexts, factors that anthropomorphize digital guides—in other words, make them feel more human—emerged as particularly important to the development of therapeutic alliance and social presence among our sample. Participants highlighted that learning about the guides’ backgrounds (either their experiences of concussions or their background in psychology) helped them to feel connected to guides and trust that the content of the intervention would help them work toward their goals—both key aspects of therapeutic alliance. The guides’ voices also emerged as a salient factor that made guides feel like real people to participants, demonstrating that the “realness” of guides’ voices was key to the development of social presence. Indeed, when asked whether guides’ voices sounded like those of real people, every participant except 1 (Sophia) said yes. Thus, factors that increased participants’ ability to anthropomorphize their guides stood out as a potential mechanism important to the development of both therapeutic alliance and social presence in self-guided digital interventions. Our data align with quantitative findings that individuals experience greater social presence when digital conversational agents are characterized by higher levels of anthropomorphic cues (e.g., human-like voices) [59]. Potentially, a higher level of anthropomorphic cues in self-guided digital interventions better enables individuals to “make come-alive” [28,29].

Recommendations

Our findings have several implications for researchers developing self-guided digital interventions for mental health concerns. Given that anthropomorphizing guides emerged as particularly important to the development of both therapeutic alliance and social presence in our sample, we recommend multiple strategies to increase the human-like qualities of audio-recorded guides in self-guided digital interventions. First, providing information about the guides’ personal connection with the topic of focus of the intervention (e.g., concussion knowledge in this study) will promote how relatable and trustworthy guides seem to participants. Our findings suggest that guides either having personal experience with the topic of the intervention or having a background in psychology (and thus, seeming knowledgeable to participants about the intervention) may both be promising ways for mindfulness guides to encourage connection with participants and seem more real. Second, using real human actors to record audio for guides’ voices, as was done in our intervention, will seem more realistic and promote a greater bond with guides compared to using computerized voices. Guides may benefit from training in clinical microskills (e.g., conveying warmth, genuineness, and empathy) [60] to ensure that their tone of voice is calming and soothing, both of which were identified by our participants as important attributes in guides’ voices for therapeutic alliance and social presence. Additionally, guides can facilitate participants’ sense of connection with them by anticipating and addressing potential challenges that may arise for participants. Participants in our sample reported that this helped them feel understood by the guides. Lastly, 1 key addition participants in our study suggested to increase their sense of connection with and humanness of guides was to show pictures of the guides’ faces. Indeed, previous research suggests that elements of a digital interface’s design—for example, providing identity cues like names and photos of the communicators within the interface—increase social presence [38,61]. Therefore, having an image of the voice actors who are the mindfulness guides may better allow participants to develop a narrative of who their guides are, impacting both the connection they feel to their guides (therapeutic alliance) and the extent to which the guides feel like real people (social presence).

Limitations and Future Directions

Given our small sample size, our findings are limited with respect to the quantitative analyses we were able to conduct. While it was a secondary focus of our study, having a larger sample may have allowed us to conduct formal quantitative
analyses as opposed to the descriptive analyses presented in this paper. Future research can use quantitative methods with a larger sample to formally explore the independent and interactive roles that therapeutic alliance and social presence play in the development of self-guided digital interventions.

Future research may also benefit from building upon this study’s results and previous research on adults [28] by exploring whether individual differences impact the extent to which adolescents experience therapeutic alliance and social presence during self-guided digital interventions and whether they benefit from experiencing them. Adolescents may differ in how much they desire and benefit from human support in digital interventions. For example, therapeutic alliance and social presence may be less important to the engagement of participants who are more introverted and potentially desire human support in therapeutic contexts to a lesser extent. Research can also examine whether sharing characteristics with guides (eg, race or ethnicity and gender) or not impacts how much participants develop therapeutic alliance and social presence with their guides. Potentially, participants may relate to guides who share their characteristics more, thus developing more of a connection with them.

Conclusions

This study found that adolescents with concussion develop therapeutic alliance and social presence in self-guided digital interventions and identified factors key to their development (eg, tone of voice and personal backgrounds). Our study is one of the first to examine the role of social presence in a clinical context with adolescents and demonstrate the use of social presence for encouraging adolescent engagement with self-guided digital interventions. Future research should focus on maximizing therapeutic alliance and social presence for digital intervention development by increasing the number of human-like qualities that guide the intervention process. This may address key concerns about self-guided digital interventions—high attrition rates and low participant engagement—to maximize their effectiveness. Doing so will allow for the development of digital interventions that are more accessible and less resource-intensive than in-person treatments, as well as being engaging for users. Ultimately, understanding the development of therapeutic alliance and social presence within self-guided digital interventions aids in the development of accessible and engaging digital treatments—one digital connection at a time.

Acknowledgments

We would like to thank the research teams and clinicians at the University of British Columbia, the GF Strong Rehabilitation Centre Adolescent Complex Concussion Clinic, and the Children’s Hospital of Eastern Ontario Research Institute for their dedication to the project. We thank Dr Jonathan Greenberg and Dr Ana-Maria Vranceanu for reviewing and providing feedback on the intervention.

Data Availability

The data analyzed during this study are not publicly available in order to protect the privacy and confidentiality of participants, given the small sample size. However, data are available from the corresponding author on reasonable request.

Conflicts of Interest

AAL reports being one of the authors of the mindfulness-based intervention for concussion protocol used in this study; she did not receive any financial benefit. AAL received funding from the Ontario Brain Institute Neurotech Early Research and Development (NERD) program for a separate component of the study. AAL has no other conflict of interest to disclose. MC reports being the CEO and chief scientist of Mobio Interactive and a major shareholder, owning approximately 23% of the company at the time of manuscript submission. RZ reports being an investigator on competitively funded research grants from the Canadian Institutes of Health Research, the Ontario Neurotrauma Foundation, the Physician Services Incorporated Foundation, the Children's Hospital of Eastern Ontario (CHEO) Foundation, the Ontario Brain Institute, the Ontario SPOR Support Unit, the Ontario Ministry of Health, the Public Health Agency of Canada, Health Canada, and the National Football League Scientific Advisory Board. RZ is a clinical research chair in pediatric concussion from the University of Ottawa. RZ is the scientific director and minority shareholder of 360 Concussion Care (a learning health system and network of interdisciplinary concussion clinics in Ontario). VS receives royalties for the sales of a concussion book (Commotions Cérébrales) by Flammarion Québec. NDS has received research operating funds from multiple granting agencies (Canada Foundation for Innovation, Canadian Institutes of Health Research, Mitacs, Ontario Brain Institute, US Department of Defense, WorkSafeBC, VGH+UBC Hospital Foundation) for research related to traumatic brain injury diagnosis, prognosis, and treatment. He has received speaker fees for providing continuing medical education on these topics. He serves as chair of the American Congress of Rehabilitation Medicine’s Brain Injury Special Interest Group Task Force on Mild TBI (unpaid). He has served as an expert panel member for the Living Concussion Guidelines and as an external reviewer for other clinical practice guidelines on concussion/traumatic brain injury (unpaid). He has provided expert testimony and medical-legal consulting in the past 5 years (<10% of total income). The remaining authors have no conflicts of interest to report.
Multimedia Appendix 1
Images of intervention content.
[DOCX File, 434 KB - formative_v8i1e49133_app1.docx]

Multimedia Appendix 2
Texting protocol.
[DOCX File, 30 KB - formative_v8i1e49133_app2.docx]

Multimedia Appendix 3
Semistructured interview.
[DOCX File, 23 KB - formative_v8i1e49133_app3.docx]

References

11. Table 22-10-0115-01 smartphone use and smartphone habits by gender and age group, inactive. Statistics Canada. Ottawa, ON URL: https://doi.org/10.25318/2210011501-eng [accessed 2024-02-14]

Abbreviations

- **JARS-Qual**: Journal Article Reporting Standards for Qualitative Research
- **MBI**: mindfulness-based intervention
- **PPCS**: persistent postconcussion symptoms
- **PSP**: Perceived Social Presence
- **REDCap**: Research Electronic Data Capture
- **SPI**: Social Presence Indicators
WAI-I: Working Alliance Inventory adapted for Guided Internet Interventions

Edited by A Mavragani; submitted 27.06.23; peer-reviewed by M Holter; comments to author 01.11.23; revised version received 28.01.24; accepted 29.01.24; published 22.03.24.

Please cite as:
Development of Therapeutic Alliance and Social Presence in a Digital Intervention for Pediatric Concussion: Qualitative Exploratory Study
JMIR Form Res 2024;8:e49133
URL: https://formative.jmir.org/2024/1/e49133
doi:10.2196/49133
PMID:

©Kiarah M K O'Kane, Thalia Otamendi, Noah D Silverberg, Esther Choi, Veronik Sicard, Roger Zemek, Katherine Healey, Olivier Brown, Lauren Butterfield, Andrea Smith, Gary Goldfield, Rachel Kardish, Bechara Saab, Andrée-Anne Ledoux, Molly Cairncross. Originally published in JMIR Formative Research (https://formative.jmir.org), 22.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Low-Fidelity Prototype of a Sensor-Dependent Interaction Platform: Formative Evaluation With Informal Caregivers of Older Adults With Cognitive Impairment

Nikita Sharma1,2, PhD; Karen Grotenhuijs1, MSc; J E W C van Gemert-Pijnen1, PhD; Harri Oinas-Kukkonen2, PhD; L M A Braakman-Jansen1, PhD

1Faculty of Behavioural, Management and Social Sciences, University of Twente, Enschede, Netherlands
2Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland

Corresponding Author:
Nikita Sharma, PhD
Faculty of Behavioural, Management and Social Sciences
University of Twente
Zilverling, Hallenweg 19,
Enschede, 7522 NH
Netherlands
Phone: 31 534899111
Email: n.sharma@utwente.nl

Abstract

Background: Unobtrusive sensing technologies developed for monitoring deviant behaviors in older adult care require integration with an interaction platform to facilitate the flow of information between older adults and their caregivers. However, the continuous monitoring capabilities generate a considerable amount of data that must be interpreted, filtered, and personalized before being communicated to the informal caregivers based on their specific care needs and requirements.

Objective: For the effective implementation of unobtrusive sensing solutions (USSs) in the care of older adults with cognitive impairment, we aimed to explore the expectations and preconditions regarding the implementation of USSs from the perspective of informal caregivers. Subsequently, we designed and evaluated a low-fidelity prototype of an interaction platform for its conceptual workflow and usability, incorporating persuasive system design features based on the needs and requirements of informal caregivers.

Methods: Overall, 6 informal caregivers of older adults with cognitive impairment living alone participated in this qualitative interview study. We explored the expectation and preconditions regarding implementation through open-ended questions and conducted a formative evaluation (usability study with a think-aloud approach) to evaluate the conceptual workflow and used persuasive system design features in the interaction platform. Overall, a combination of inductive and thematic analyses was used to analyze the interviews.

Results: The results of this study present both positive and negative outcome expectations regarding the implementation of USSs, highlighting benefits such as objective decision-making and peace of mind and concerns about information overload and the potential substitution of human contact. Strategic information communication agreements between informal and formal caregivers were deemed crucial for the successful implementation of USSs in care. Overall, informal caregivers had a positive experience with the low-fidelity prototype of the interaction platform, particularly valuing the personalization feature.

Conclusions: In conclusion, to achieve successful implementation, a holistic design approach is necessary, and equal consideration should be given to the personalization-privacy paradox to balance users' needs and privacy.

(JMIR Form Res 2024;8:e53402) doi:10.2196/53402

KEYWORDS
older adult care; informal caregivers; cognitive impairment; sensing solutions; information communication platform; low-fidelity; lo-fi prototype
Introduction

Background

The increase in the older adult population (≥65 years) imposes significant challenges on the organization and functioning of the current health care infrastructure worldwide [1]. It demands the active involvement of different stakeholders including informal caregivers, formal caregivers, general practitioners, technology developers, policy makers, and government organizations to maintain continuous care [2]. Primarily, informal caregivers are perceived as responsible for organizing and ensuring on-time care for older adults, which impacts their physical, financial, emotional, and social well-being [3,4]. Moreover, with the emergence of cognitive impairment or comorbidities, the care process becomes more complex and challenging for informal caregivers [5].

To support informal caregivers in delivering on-time care, sensor-based solutions, specifically those that are unobtrusive or device free (ie, do not demand direct involvement or attention from older adults), are being developed [6]. Studies have shown that unobtrusive sensing solutions (USSs) are in demand and appear to be useful among informal caregivers of older adults with cognitive impairment due to their 24/7 monitoring capabilities, which provide real-time insights into the health of care recipients [2,6]. A USS comprises 3 main units: a sensing unit responsible for collecting data from the care recipient, a computing unit responsible for analyzing the obtained sensing data, and a communicating unit that communicates the output of the computing unit to the informal caregivers to enable monitoring at a distance [7].

Over the past decade, there have been notable advancements and successful endeavors to facilitate the development of unobtrusive and ubiquitous sensing technology [8]. For example, Wi-Fi channel state information (CSI; as a sensing unit) can be used for monitoring physical activities (falls, sitting, hand gestures, etc), physiological activities (heart rate and breathing rate), and behaviors (sleeping patterns, personal hygiene, etc) [9-11]. Significant growth in the computing unit through the use of advanced machine learning methods (such as deep neural networks, generative adversarial networks, etc) to improve privacy, reliability (minimizing false alarms), and computing time is also evident [12,13]. However, efforts from the IT domain (communication unit), particularly in the direction of developing and designing interaction platforms adhering to the information communication (IC) needs and requirements of informal caregivers (or other stakeholders), are limited [14]. Designing an interaction platform according to the preferences of informal caregivers can assist in prioritizing and optimizing their care plans, thereby reducing the care (information) load [7].

In our previous multimethod study encompassing a survey and interviews with informal caregivers of older adults with cognitive impairment, diverse needs and requirements for the following 4 distinct care scenarios were explored: falls, nocturnal unrest, agitation, and normal daily life [7]. The findings indicated varying information needs regarding the mode, content, timing, and stakeholders involved, contingent upon the care scenario. In addition, these needs were observed to be influenced by the personal circumstances of caregivers and care recipients and the progression of illness in care recipients. Furthermore, to facilitate the designing of an interaction platform (ie, this study) persuasive system design (PSD) features, namely reduction, tailoring, personalization, reminders, suggestions, trustworthiness, and social learning, were identified for the involved care scenarios. One of the limitations that we observed was the lack of proper understanding of USSs among informal caregivers. Due to the technical novelty of the solution, informal caregivers perceived it as a black box, potentially introducing biases in their responses regarding its usefulness and expectations.

Objective

Building upon the findings from our previous study [7], the objectives of this study were two-fold: (1) to explore the expectations (positive and negative) and preconditions regarding implementing USSs in the care of older adults with cognitive impairment from the perspective of informal caregivers after showing them a video prototype of the solution and (2) to design and evaluate a clickable, low-fidelity (lo-fi) prototype of a sensor-dependent interaction platform, incorporating the identified PSD features regarding fall, agitation, and normal daily life care scenarios with informal caregivers.

Methods

Ethical Considerations

The Ethics Committee of the Behavioral, Management, and Social Sciences department at the University of Twente formally approved the execution of this study (request number 230141). Before engaging in the surveys and interviews, participants received both oral and written description elucidating the study’s objectives, methodologies, data collection procedures, storage protocols, and the intended use of the collected data. Subsequently, each participant provided a signed consent form. The participants were also free to withdraw from the study at any stage if they felt uncomfortable.

Finally, the participants were offered a small honorarium as a token of appreciation for their valuable time and contributions.

Study Design: Participatory Development

The study followed the Center for eHealth Research and Disease Management (CeHRes) road map to create a sensor-dependent interaction platform that can communicate the information obtained by USSs to informal caregivers of older adults with cognitive impairment [15]. The CeHRes road map fosters progress toward context-aware sensing and computing by offering early feedback regarding users’ needs and requirements to the designers and developers [15]. For instance, if informal caregivers prefer insights into emergencies only, the algorithm can be trained and optimized accordingly to provide relevant data, avoiding computing overload for the system and information overload for the caregivers. The framework encompasses 5 distinct but intertwined phases: contextual inquiry, value specification, design, operationalization, and summative evaluation (Figure 1 [7]). The description of these
phases, along with their relevance to this study, is provided in **Textbox 1**.

Figure 1. The Center for eHealth Research and Disease Management framework. IC: information communication; lo-fi: low-fidelity; USS: unobtrusive sensing solution. *The study by Sharma et al [7].*

Textbox 1. Description of Center for eHealth Research and Disease Management (CeHRes) phases along with their relevance to this study.

<table>
<thead>
<tr>
<th>CeHRes phases and description of relevance to this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contextual inquiry</td>
</tr>
<tr>
<td>- This phase helped in building an understanding of the prospective users (informal caregivers) and their context (care of older adults with cognitive impairment)</td>
</tr>
<tr>
<td>- The understanding of experiences, expectations, and usefulness of unobtrusive sensing solutions (USSs) among informal caregivers of older adults with cognitive impairment were obtained from a previous study [7]</td>
</tr>
<tr>
<td>- To further advance the findings, we dwelled deeper into informal caregivers’ expectations and preconditions regarding the implementation of USSs after providing them with more detailed information about the functioning and potential benefits of using USSs in the care of older adults with cognitive impairment</td>
</tr>
<tr>
<td>Value specification</td>
</tr>
<tr>
<td>- This phase helped in identifying the needs and values that are important for the intended stakeholders (informal caregivers), which can be translated into the requirements later [15]</td>
</tr>
<tr>
<td>- Information communication design requirements regarding different care scenarios (fall, agitation, and normal daily life) obtained in a previous mixed methods study [7] were used to develop the interaction platform</td>
</tr>
<tr>
<td>Design</td>
</tr>
<tr>
<td>- The primary focus of this study lied within the design phase that involves the agile development and testing of the interaction platform</td>
</tr>
<tr>
<td>- A low-fidelity prototype was developed by using the rapid prototyping technique by the involved researchers’ team [16,17]</td>
</tr>
<tr>
<td>- The prototype was subjected to formative evaluation with informal caregivers, with specific emphasis on evaluating the conceptual workflow and used persuasive system design features</td>
</tr>
<tr>
<td>- A task-based study design [18,19] in conjunction with a think-aloud approach [20] was used for this study</td>
</tr>
<tr>
<td>Operationalization and summative evaluation</td>
</tr>
<tr>
<td>- These phases will be activated when the technology is launched into the market. The results obtained from this study can serve as valuable inputs for these phases, ensuring that the final product meets the needs and requirements of informal caregivers of older adults with cognitive impairment</td>
</tr>
</tbody>
</table>
Participants

Participants were recruited from an already existing pool of candidates who had previously been involved in a similar study [7]. While previous experience with digital care technology was not a prerequisite for informal caregivers, all of them were users of the Caren Platform (a digital care platform; Caren [NEDAP]), implying that they had default experience with digital care technology [21]. Informal caregivers were approached for participation in this study via email. The participants received an invitation, along with an information letter describing the study’s purposes, procedures, and the researcher’s contact information. When an informal caregiver expressed willingness to participate, they were screened based on the following inclusion criteria: (1) providing unpaid care to a person with cognitive impairment who is a relative, friend, or someone else within their personal circle; (2) the person with cognitive impairment is aged ≥65 years; and (3) the person with cognitive impairment lives alone at home. Subsequently, an appointment for the evaluation session was scheduled with the researcher.

Materials: Designing the Lo-Fi Prototype of the Interaction Platform

Video Prototype

Given the novelty of USSs, a lack of awareness among informal caregivers about their working and implementation was observed. Therefore, to educate informal caregivers, a video prototype demonstrating the working, system architecture, and benefits of USSs in the care of older adults with cognitive impairment was created. While the video was largely inspired by previous studies that used Wi-Fi CSI as a technology in USSs for recognizing older adult activities [11], some brainstorming sessions with the research team (composed of eHealth researchers, experts, technology developers, and designers) also occurred to align it with the use case of care of older adults with cognitive impairment.

Overall, the video depicted 3 units of USSs, namely, sensing, computing, and communicating units. The “sensing unit” of the solution showed the working (how) and the manner of data collection (what) through Wi-Fi CSI (as an unobtrusive sensing technology). The “computing unit” of the solution presented the use of artificial intelligence (AI) algorithms for analyzing the collected data. In the “communicating unit” of the solution, the channel for communicating the computed information to the caregivers was presented. The video provides examples of 3 different care scenarios, namely fall incident, agitated behavior, nocturnal unrest, and normal daily life (drinking activity).

To make the video footage realistic, it was recorded in the eHealth house at the University of Twente, the Netherlands [22]. The video had a Dutch voice-over with English subtitles, given that informal caregivers were comfortable with Dutch. The video has a total duration of 3.5 minutes. It was presented to the participants at the start of the interview sessions to ensure that they had the necessary information to answer the questions posed in the interview, thereby promoting more informed responses. Figure 2 shows a simplified overview of the system architecture (as conveyed in the video) of the intended USSs.

Figure 2. Simplified overview of the system architecture of unobtrusive sensing solutions.
Lo-Fi Prototype

Overview

We designed the lo-fi prototype of the interaction platform using Figma software [22]. As the Wi-Fi CSI system is in the early development phase (Technology Readiness Level 2/4) [7,23], a lo-fi prototype was chosen to gain initial insights from informal caregivers about the communication unit, showcasing the conceptual workflow and main functionalities of the interaction platform. Note that this interaction platform does not intend to change the behavior of the informal caregivers but requires persuasion to form (ie, F outcome) or alter (ie, A outcome) the behavior of informal caregivers for complying (ie, C change) with the information communicated (outcome: F and A; change: C) [24].

The findings from previous studies [2,7,25] were used to design the lo-fi prototype of the interaction platform. The studies by Wrede et al [2,25] demonstrate the value of USSs in continuous and objective monitoring, leading to timely interventions. In particular, informal caregivers found USSs to be helpful in clearly classifying the care scenarios as urgent, nonurgent, and future risk. Further exploration in a multimethod study by Sharma et al [7] (comprising a survey [n=464] and interviews [n=10]) revealed divergent IC needs in different care scenarios (fall, nocturnal unrest, agitation, and normal daily), including mode, content, timing, intended users, feedback to the system for self-learning, and dialogue support. Furthermore, the study also identified 7 PSD features: 3 from primary task support (reduction, tailoring, and personalization), 2 from dialogue support (reminders and suggestions), 1 from system credibility (trustworthiness), and 1 from social support (social learning) for designing the interaction platform. On the basis of these findings, the conceptual workflow of the interaction platform and user interfaces for 3 care scenarios, namely, fall incident, agitated behavior, and normal daily life activities were designed. In addition to these features, a system verifiability feature was added to assess its necessity or impact on the interaction platform [26]. Table 1 presents the used PSD features, their interpreted meaning, and their application in the lo-fi prototype. The following sections provide details regarding the design of the conceptual workflow and user interfaces.

Table 1. Persuasive system design (PSD) features used to design the low-fidelity (lo-fi) prototype.

<table>
<thead>
<tr>
<th>PSD category, feature, and meaning</th>
<th>Application in the lo-fi prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary task support</td>
<td></td>
</tr>
<tr>
<td>Personalization</td>
<td>Providing personalized content</td>
</tr>
<tr>
<td>Reduction</td>
<td>Reducing complex tasks into smaller tasks</td>
</tr>
<tr>
<td>Tailoring</td>
<td>Providing information tailored to the user’s needs</td>
</tr>
<tr>
<td>Dialogue support</td>
<td></td>
</tr>
<tr>
<td>Reminder</td>
<td>Reminding users about the target behavior</td>
</tr>
<tr>
<td>Suggestion</td>
<td>Offering suggestions to facilitate behavior</td>
</tr>
<tr>
<td>Social support</td>
<td>Social learning</td>
</tr>
<tr>
<td>System credibility</td>
<td></td>
</tr>
<tr>
<td>Trustworthiness</td>
<td>Providing reliable information</td>
</tr>
<tr>
<td>Verifiability</td>
<td>Providing evidence to validate the accuracy</td>
</tr>
</tbody>
</table>

\(^a\)IC: information communication.
Design of the Conceptual Workflow

The conceptual workflow of the interaction platform is illustrated in Figure 3. This workflow reflects the logical flow of the interaction platform when personalizing the IC options. It starts from the log-in page, followed by choosing the preferred activities for monitoring; adjusting the communication preferences for the chosen activities; and the home screen, where multiple functionalities of the interaction platform can be checked or adjusted. Note that the feature of choosing the activities to be monitored and adjusting the preference is attributed to the personalization feature of the PSD model.

Figure 3. Conceptual workflow of the interaction platform.

Design of the User Interfaces

User interfaces for fall, agitation, normal daily life, and home screen were designed. As falling is an emergency scenario, informal caregivers expect to receive a direct call (reduction feature), and if they do not respond within 5 minutes, they expect a reminder notification (reminder feature) in their preferred content style (raw, interpreted, or suggestions). Furthermore, the details of the fall incident such as time, location, system’s confidence in prediction, and current state of the care recipient were made accessible to the informal caregivers. In addition, to support informal caregivers, options to obtain suggestions from the system regarding what to do and when to act (suggestion feature) and to directly communicate with formal caregivers were also provided. Finally, as informal caregivers desire a trustable system (with minimum false alarms), an option to provide feedback to the system about its predictions to enable self-learning was also added (trustworthiness feature). Figure 4 illustrates the interfaces for the fall scenario.
On the other hand, as agitation is an acute scenario, informal caregivers expect the system to monitor it for a few weeks and share a report tailored to the concerned stakeholders, that is, themselves or formal caregivers (tailoring feature). Interfaces depicting notification (in the preferred content style), details about agitation behavior (duration, system’s confidence in prediction, and other observations), suggestions from the system (suggestion feature), the possibility to share the report with formal caregivers, and an option to provide feedback to the system for its predictions were designed (trustworthiness feature). Figure 5 illustrates the interfaces for the agitation scenario. The user interface for normal daily life (Figure 3) presented multiple self-care activities (eating, drinking, showering, etc). The informal caregivers can adjust their preferences for the content, frequency, and depth of information they want to receive regarding the selected activity.

In general, informal caregivers demand a centralized care approach, that is, the possibility to access all the relevant care information such as general information, medical information, and communications with other stakeholders in 1 platform [7]. Thus, consistent with this requirement, the home screen contained the following functionalities: observing the present and past situation of the care recipient (reduction), obtaining more detailed information or reports about daily activities, general and medical information about the care recipient (verifiability), an overview of the involved formal and informal caregivers, communication options with the involved formal caregivers, and system credibility (Figure 6). In addition, an option to read the care experiences shared by other caregivers as a part of the social learning feature of the PSD model was added. Finally, options for app settings (adjusting preferences) and information about the organization or team developing the app to show system credibility (real-world feel) were also added.
Figure 5. Interfaces for agitation scenario.
Procedure

The semistructured interviews were conducted via Microsoft Teams with 33% (2/6) of the informal caregivers and in person with 67% (4/6) of the caregivers, based on their preference. The interview guide (Multimedia Appendix 1) was used and consisted of the following sections: (1) introduction (goals, procedures, and informed consent), (2) background information obtained from the participant, (3) video prototype to explore the expectations (positive and negative) and preconditions, (4) formative evaluation of user interfaces, and (5) closing remarks. Upon watching the video, participants were asked whether they had any further questions regarding the systems, and the questions were clarified. This video and explanation were important because, due to the novelty of USSs, informal caregivers are not very aware of this concept or type of sensing solution. Then, their expectations and preconditions regarding implementation were discussed in depth.
Thereafter, a formative evaluation (using a task-based and think-aloud approach) of the designed interaction platform was conducted using 5 tasks (Table 2). In task 1, the informal caregivers were asked to choose the emergency or acute situations of their care recipient that they want to monitor, followed by adjusting the IC preferences for the chosen activities. Similarly, in task 2, the informal caregivers were asked to choose and adjust their IC preferences for the daily life (self-care) activities of the care recipient that they want to monitor in the long term. Here, the use of PSD feature personalization was evaluated. Furthermore, for tasks 3 and 4, a possible sequence of actions in the fall and agitation scenarios was evaluated. Specifically, the ability of the platform to immediately call or notify informal caregivers (reduction), send reminder notifications in case they do not respond (reminder), provide suggestions to support the informal caregivers (suggestion), and maintain a transparent link between the system and caregiver by providing the predication percentage (trustworthiness) were assessed.

Table 2. Tasks used to evaluate the conceptual workflow and persuasive system design features of the interaction platform.

<table>
<thead>
<tr>
<th>Task description</th>
<th>Feature added and evaluated</th>
<th>Value associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: Choose emergency activities and adjust preferences for the chosen activities</td>
<td>Personalization</td>
<td>Every care scenario is different, and thus, informal caregivers should be able to choose which activity they want to monitor (for both emergency and daily life). Furthermore, they should also be able to adjust the preference regarding ICa for the chosen activities. Informal caregivers need the flexibility to select and monitor specific activities based on the care scenario. They should also have the option to customize their preferences for IC related to the chosen activities [7,25].</td>
</tr>
<tr>
<td>Task 2: Choose self-care activities and adjust preferences for the chosen activities</td>
<td>Reduction, Reminder, Suggestion, Trustworthiness</td>
<td>During emergencies, informal caregivers expect the following: direct calls or reminders if they are unable to answer, trustworthy and accurate information, and suggestions to ensure timely and appropriate actions [7]</td>
</tr>
<tr>
<td>Task 3: Suppose a fall incident occurred in the home of your care recipient</td>
<td>Reduction, Reminder, Suggestion, Trustworthiness</td>
<td>During acute scenarios such as agitation, informal caregivers expect the following: notification and long-term reports that can be shared with formal caregivers and trustworthy and accurate information along with suggestions to support the care recipient in the right manner [7]</td>
</tr>
<tr>
<td>Task 4: Suppose your care recipient is experiencing agitation</td>
<td>Reduction, Tailoring, Suggestion, Trustworthiness</td>
<td>Informal caregivers desire a centralized care platform, where they can find important care elements immediately, eg, quick or detailed overview of the activities, access to medical records, and connection with caregivers [7]</td>
</tr>
<tr>
<td>Task 5: Explore the features of the home screen</td>
<td>Reduction, Verifiability, Social learning, System credibility</td>
<td></td>
</tr>
</tbody>
</table>

aIC: information communication.

Finally, in task 5, the informal caregivers were asked to explore the home screen to check whether it satisfies their requirement of a centralized care platform and present evidence to validate the provided information (verifiability). They were encouraged to identify, suggest, and reason the functionalities that help them in improving the caregiving process. The sessions were conducted in Dutch by a native Dutch speaker and were audio recorded to facilitate analysis. The duration of each session was approximately 60 minutes. On the basis of the feedback obtained from the first 4 sessions, slight improvements in the design were made and further evaluated in the last 2 sessions.

Data Analysis

The recordings were transcribed verbatim by using the description software, Amberscript. Qualitative analysis was performed by using Atlas.ti [27]. A thematic analysis was performed, based on the six steps by Braun and Clarke [28]: (1) familiarizing with the data, (2) generating initial codes, (3) searching for themes, (4) reviewing themes, (5) defining and naming themes, and (6) producing the report. The transcripts were coded using a mixed inductive and deductive approach. An inductive approach was used for exploring the expectations and preconditions, whereas an inductive-deductive approach was used for analyzing the experiences with PSD features. All the transcripts were read by both researchers, NS and KG, in English and Dutch, respectively. Overall, the joint probability of agreement was 75%, followed by an in-depth discussion until consensus was reached regarding all the defined themes.

Results

This section is divided into 2 parts: first, the results related to the expectations and preconditions regarding implementation are presented, and second, the results corresponding to the formative evaluation of the lo-fi prototype including PSD features are presented.

Demographics

A total of 6 informal caregivers (mean age 58.7, SD 2.87 years) of older adults (mean age 85.7, SD 4.18 years) living alone participated in the study. Among the 6 participants, 4 (67%) were women and 2 (33%) were men. All informal caregivers (6/6, 100%) were children of the care recipient and were the primary informal caregiver. All care recipients (6/6, 100%) were living alone. Half of the care recipients (3/6, 50%) had Alzheimer disease, and the other half (3/6, 50%) had cognitive impairment due to other causes or no official dementia diagnosis. All informal caregivers (6/6, 100%) have used...
technology previously in the care provision, differing from using communication platforms (Caren platform) or medication dispensers to personal alarm and monitoring systems. They have been providing care for at least the past 2 years, and their care hours ranged from 1.5 to 15 hours. Table 3 provides an overview of the characteristics of the interview participants.

<table>
<thead>
<tr>
<th>Participant number</th>
<th>Sex</th>
<th>Age of the informal caregiver (years)</th>
<th>Age of the care recipient (years)</th>
<th>Experience in providing informal care (years)</th>
<th>Time spent on informal care (hours/week)</th>
<th>Distance from or time needed to reach the care recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female</td>
<td>61</td>
<td>87</td>
<td>2</td>
<td>5</td>
<td>30 minutes</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>59</td>
<td>88</td>
<td>2-3</td>
<td>1.5</td>
<td>2 hours</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>60</td>
<td>86</td>
<td>3</td>
<td>8</td>
<td>Next door</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>53</td>
<td>79</td>
<td>2</td>
<td>10-15</td>
<td>1.5-2 km</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>60</td>
<td>91</td>
<td>20</td>
<td>12</td>
<td>45 minutes</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>59</td>
<td>83</td>
<td>5</td>
<td>2</td>
<td>20 minutes</td>
</tr>
</tbody>
</table>

Expectations and Preconditions

The expectations and preconditions regarding implementation are presented as three broad themes: (1) positive outcome expectations, (2) negative outcome expectations, and (3) preconditions for implementation.

Positive Outcome Expectations

Objective Decision-Making

The informal caregivers indicated that USSs could contribute toward making objective decisions regardless of the care of their loved ones. Instead of relying solely on observations of both informal and formal caregivers or on what the care recipient mentions themselves, the system can provide the involved informal and professional caregivers with more objective and in-depth monitoring information. According to informal caregivers, this information not only enables prompt diagnosis of underlying health conditions but also facilitates objective communication among the professional caregivers, care recipient, and themselves. This fosters a shared understanding of the care situation, consensus about the provision of care, and better coordination regarding the response to the (emergency) situations:

"It provides the facts, so what she herself isn’t mentioning yet, but what is actually already there, that could be beneficial to support her, to make better choices and to better understand what is going on." [Participant 2]

"It provides monitoring information, for example, we are now at a stalemate with my father; he should have more help and we need to request that, but he doesn’t want that because he believes he can still manage. It [the monitoring data] can prove that we are right, but it can also prove if he is right. If he is right, then we’ll have some peace for a while, so it indicates such things." [Participant 4]

Safer Environments for Independent Living

Informal caregivers expected USSs to contribute to the feeling of safety of their loved one; they believe that the system will notice when a safety risk occurs. Moreover, it was mentioned that the system could give insight into whether it is safe for older adults to live independently at home. All informal caregivers (6/6, 100%) mentioned being interested in receiving information about safety matters, for instance, if the door has been opened or if the gas is on:

"She [mother of informal caregiver] will feel safer. Her desire is to continue living at home for as long as possible, but she has concerns about it, like: “yes, I am alone and if something happens to me, well, what should I do then?” And this is a system that detects it [a fall] without her having to do anything. So, if she feels safer, she will also feel calmer, which has an impact on her dementia symptoms." [Participant 1]

Providing Peace of Mind to Informal Caregivers

Some informal caregivers indicated that they expect USSs to contribute to their peace of mind and probably to the peace of mind of their care recipient also. They find it reassuring that the system acts as a safety net and alerts them or the care professionals when there is an emergency situation. Furthermore, they indicated that the system could confirm the well-being of their loved one, whereas without such as system, there would be uncertainty and doubt about the situation, and they might be unnecessarily worried about their loved one:

"It brings peace of mind. It provides, like, you can’t fully rely on the technology, but knowing that you have an additional safety net, that you are a bit more at ease, and also for the person involved it helps." [Participant 3]

"I only see reassurance, you know, you receive, you know that everything is fine, but you receive a confirmation that it is indeed going well." [Participant 5]

Stimulating Meaningful Conversations

A few informal caregivers indicated that if USSs can collect care-related information, they might be able to spend more meaningful time (personal conversations) with their loved ones. This is because the care component is important and requires a lot of attention, and they overlook the personal or relational aspect, thus impacting their relationship with the care recipient:

"Because it’s not constantly asking “how are you doing,” there is an additional aspect behind it. Yes,
you still have to keep asking, but it’s more about showing interest in the person rather than focusing solely on the care component. So, I think there’s more room for the human aspect rather than just the caregiving aspect. [Participant 3]

It can help in relational aspect, I would really appreciate that, because I miss the conversations with my mother; there is always that caregiving component that comes in-between. [Participant 3]

Negative Outcome Expectations

Information Overload

A few informal caregivers also expressed concerns about the possibility of information overload from USSs. They mentioned that the continuous availability of information about the care recipient, enabled by USSs, might lead them to constantly check and monitor every aspect of their loved one’s situation. In addition, informal caregivers highlighted that receiving notifications might trigger panic and worry, particularly if they are unable to respond immediately, even after being aware of it:

> At some point, you want to know everything. Especially if you’re worried, then it’s nice to be able to see a lot, yet you can’t do anything with it. [Participant 2]

> If I look at myself...I think if I receive such a notification [emergency] then the first reaction is panic, okay that is a strong word, but as I already said: I work in healthcare myself. I see the most terrible things, that doesn’t affect me. But when it concerns your own parents, it immediately causes stress. [Participant 4]

Feeling Obliged to Undertake Action

The informal caregivers also mentioned that once they are aware of their loved one’s situation, they cannot ignore the situation and they feel obliged to undertake actions according to the information provided by USSs. However, sometimes, it is simply not possible to take action immediately due to physical distance or other factors. However, some participants indicated not having the urge to immediately act upon the data or being able to filter important information; they suggested it might be problematic for other informal caregivers:

> If I see worrying things, then I literally and figuratively have to go there, if I see it, then I have to go there: normally, you wouldn’t, or quickly call, but now you see it, so you feel compelled to go there... [Participant 4]

> So for my situation that [information overload] won’t happen so quickly. For my sister, it might be a bigger struggle, as she is less able to distance herself from the situation as it is. I think when she receives detailed information from the system, she may feel the need to intervene, whereas I have less trouble with that. [Participant 6]

Substitution of Human Contact

Although not all informal caregivers expect the system to substitute the human contact of their care recipient, some of them perceived this as a risk from using USSs. They suggested that if USSs are capable of providing comprehensive insights into the health of the care recipient, it could potentially result in reduced or no visits from professional care staff. This is concerning, considering the already existing scarcity of professional caregivers:

> It’s simply impossible to find enough staff, and apparently the situation is even worse in home care. So, if you’re going to develop technology to do more, with fewer people, to be more efficient, it means there will be less human contact, and that means less home care visits for my father, while on the other hand, he’s already experiencing so much loneliness. [Participant 4]

> I find it a risk that people retrieve all their information from this system and they might start thinking they no longer need the contact moment, while it is actually so important. [Participant 1]

Preconditions for Implementation

Shared Decision-Making

According to informal caregivers, it is necessary to discuss and reach an agreement together with professional caregivers about IC, including which activities should be monitored, what communication strategy should be used, who should receive and respond to the information, and what should be the content of the information. This would be necessary to prevent unclarities, unfulfilled expectations, and unaddressed notifications or follow-ups, as it could otherwise potentially hinder the effectiveness of care provision:

> You can benefit a lot from it [USSs] together and I think if you don’t do this together, everyone can get a lot of trouble from it. That’s not what you want. [Participant 1]

> I would never fill it [the settings of the system] in alone, I would really do that together with other professional caregivers or informal caregivers. I think you should all agree with each other about how you fill this in and what you expect and so on...this would be a nice moment to put our heads together and make a choice together. [Participant 1]

> It could be that you alert three parties simultaneously and one thinks, “hold on, I won’t do anything because the other two will take care of it,” and everyone assumes that of themselves. And then, nobody responds... [Participant 6]

USS as a Supportive Tool

The informal caregivers indicated that it is important to perceive USSs as a supportive tool rather than a tool to replace the human component in care:

> They [persons with cognitive impairment] actually require people around them to be present. It’s better for them, otherwise, they will completely withdraw.
Human interaction, maintaining contact with others is extremely important. So that aspect should be preserved. The system should not result in less human contact, as that would further distance individuals with dementia. [Participant 1]

However, they expected the solution to provide concrete data to facilitate the conversations about and interpretation of the situation together with formal caregivers:

Cognitive decline happens slowly and there are some things that we [informal caregivers] can’t point out. Now it [wandering in the house] is starting to happen more and more. Such raw data can be important for such situations, especially if you have to go to the neurologist or something, then you can do a lot of things. [Participant 4]

It was also mentioned that care decisions should not solely be based on the information provided by the system. Instead, it is imperative to engage in discussions with professional caregivers before making definitive decisions:

So it’s a support system and it shouldn’t take over the analysis of the situation. It may give the numbers, but if on that basis it is said of oh, she [care recipient] only needs so much more care time, or this is no longer necessary since she can still handle this task herself. Yes, then we’re going the wrong way. [Participant 2]

Informal Caregivers’ Experiences With PSD Features and the User Interface Prototype

Overview

In general, the informal caregivers indicated being quite positive about the user interface prototype. Most of the screens were reported to be clear and understandable. However, there were also some negative experiences and suggestions for improvement. Overall, the experiences of informal caregivers are presented as three main themes: (1) positive experiences, (2) mixed experiences, and (3) suggestions for improvement.

Positive Experiences

Personalization: Options to Customize Settings

All informal caregivers (6/6, 100%) had a positive experience with the flexibility (not a one-time setup) of adjusting the interaction platform settings to accommodate their dynamic care needs, thereby improving the quality of life for care recipients. Specifically, they appreciated being able to personalize the settings based on their individual circumstances, the evolving condition of their care recipient, and the monitoring scenario at hand (such as emergencies or self-care activities):

I think this is a good thing. The more you can adjust it to fit your and well in this case my father’s needs and lifestyle, the quality of care can be improved. [Participant 4]

We’ll do everything first [make all the settings], and then I’ll figure it out, or change it later. It is nice that I could still make adjustments later on, so that it’s not a one-time set-up. [Participant 3]

Tailoring: Provide Information According to the Stakeholder

Tailoring alerts, notifications, and reports based on the intended recipients (formal or informal caregivers) were found to be valuable in the development of the interaction platform. Informal caregivers felt that a formal caregiver may require different information compared to an informal caregiver:

The information to professionals should be sent as per their needs. Of course, it will be very different from what informal caregivers need. [Participant 2]

For example, the raw data obtained from the sensors could provide more meaningful information to the formal caregivers, whereas they found the interpreted data to be sufficient for themselves:

The raw data is more useful for the healthcare professional than data which is already interpreted by the system. I don’t want raw data because that won’t help me, so then I would go for interpreted data. [Participant 3]

Reduction: Being Informed About the Situation Directly

The reduction feature was used in 2 ways: to receive direct calls or notifications in emergency situations, and to provide a quick overview of the current and past activities throughout the day on the home screen. In emergency scenarios such as falls, informal caregivers found the system-generated alerts (via quick calls or notifications) to be valuable, as they have the potential to streamline the communication and facilitate on-time care. This automated approach eliminated the need for caregivers to contemplate whom to contact and bypassed potential delays when reaching out to formal caregivers:

It is about on-time care. I think, if something happens, what do you need to do? Whom should you call to organize care quickly? There must be logical thinking behind it and the system can do it quickly. [Participant 3]

What I find important is that there is an alarm service-like solution, but initially it could be directed straight to the caregiver, a direct signal from the system saying: “here we see a deviation, this is what the system, the technology detects and intervention
Furthermore, all informal caregivers (6/6, 100%) found the possibility to glance at the current and past activities in the day on the home screen to be convenient:

I find this [home screen] quite clear now, that you can see which activity has already been performed earlier today, but also what is happening at the moment. This is really nice, and at the top, okay so is the situation at the moment. [Participant 1]

Yes, I think this is fantastic, I must say. Specifically, the fact that you do indeed see an interpretation of the situation that the system has apparently determined and everything goes well. [Participant 6]

The informal caregivers were also positive about the functionalities of sending messages, finding contact information about caregivers, and connecting to an electronic client dossier as these would address the issue of having to use multiple systems:

I think it is always desirable to have everything in one place and not having to deal with various different systems again. [Participant 2]

Trustworthiness: Insight Into the Reliability of the Information Provided in the System

Most informal caregivers (4/6, 66%) indicated being positive about the system providing a reliability percentage regarding the notification and information. According to them, a reliability score increases their trustworthiness toward the system:

It is still a technology, sometimes false alarms may occur, for example, when she has dropped something and trying to pick it up. Then, that's okay, that system indicates it is reliability percent. I actually like it. It points towards the trustworthiness of the system and also indicates that at times it can miss classify some things. [Participant 2]

When the reliability percentage is high, they sense the urgency and seriousness of the situations and were compelled to take required actions:

A reliability of 80 percent, yes, that did something with me...I thought that I should really take this seriously, like really seriously. [Participant 1]

On the other hand, when the confidence percentage was low, informal caregivers might be slightly relaxed, but they still wanted to ensure the safety of the care recipient. However, they felt that an indication of a low or high confidence percentage might help formal caregivers to organize their care better. For example, they can prioritize their visits depending on the system’s reliability percentages:

For me, it’s fine to read that information, whether it is 50 percent or 80 percent, that doesn’t matter. But I think for professional caregivers that it does matter, because if they receive 6 notifications and one has 30 percent reliability and the other 80 percent. Then they will first go to the one with 80 percent reliability. [Participant 4]

Interestingly, 1 informal caregiver expressed that viewing percentages might be slightly confusing for them to interpret; thus, simple terms such as “very reliable” or “less reliable” can be used:

Now I can’t judge 10 percent or 80 percent or 20 percent or whether that’s right. [Participant 3]

Furthermore, informal caregivers demonstrated a willingness to offer feedback to the system to enhance the reliability of the system’s alerts. However, it was recognized that this responsibility should be shared with other caregivers, particularly formal caregivers, who are also involved in responding to alerts and, thus, can also provide context-aware and detailed feedback to enhance the system’s learning:

The system is self-learning, so I’m actually positive about it. I hope people understand that when they provide feedback, they need to specify what exactly went wrong, so that the system can learn from that. For example, if someone didn’t fall but just lay down on the couch, then this should be adjusted. The system can become smarter by processing more data and thus increase the reliability of notifications. So, it’s important to add more context in order for the system to learn from it. [Participant 5]

Verifiability: Possibility to View the Electronic Health Record and Connect With Formal Caregivers

The possibility to view the electronic health records and connect with the concerned formal caregivers was found to be very handy and desirable. These functionalities also support the notion of an all-inclusive platform:

For example, If I want to speak to Mrs. Baker [formal caregivers], I click on Mrs. Baker and she can guide me further. [Participant 1]

I think it is always desirable to have everything in one place and not have to deal with various different systems again, also considering different passwords and identification or authentication as well. [Participant 2]

Mixed Experiences

Reminder: Receiving a Reminder in Case of a Missed Emergency Call

Mixed experiences were reported regarding the reminder that was received in case of a missed emergency call. Some informal caregivers found it useful, and others thought that reminders were not necessary for them, as this would be more useful for formal caregivers, depending on their personal situation. One informal caregiver experienced the reminder as confronting:

I would like a care professional to receive such a reminder when she falls, because I am always at a distance. [Participant 1]

If I see this message, and realize I’ve missed the emergency call, then I feel like I should have been more attentive, then I would like to have the information quickly and in a concise format, without...
having to read through a lot of details. [Participant 3]

Suggestions: Receiving Suggestions Regarding What Actions to Take

The use of suggestions along with alerts or notifications was found to be debatable in older adult care. On one hand, informal caregivers found suggestions to be valuable in situations such as emergencies, where they panic or are unsure about the possible actions to take to facilitate the right care:

We all know what stress and panic can do, in those moments we can sometimes make stupid decisions, or forget the best order of doing things. So, having such a suggestion can serve as a helpful guide. [Participant 4]

I feel that falling is different from agitated behavior. Falling means immediate danger, while agitated behavior often arises in the context of the dementia process that people experience. In such cases, it would be helpful to receive tips on what to do. [Participant 1]

On the other hand, some informal caregivers felt that suggestion were unnecessary and subjective to the care experiences of the informal caregivers:

I think many people would appreciate it. You see, I’ve been working in healthcare for many years, so I’m familiar with these things. I believe there are many people who would benefit from receiving suggestions on what to do in certain situations. While I may quickly come up with solutions based on my experience, this is not the case for everyone. Thus I think many people would find it supportive. [Participant 1]

Moreover, informal caregivers expressed concern that if suggestions are system generated, they will be generic, which could potentially limit their thinking to the provided suggestions only, thus losing the personal touch in care and inducing the feeling of annoyance:

I find this terrible, very annoying. Because I’m already stressed out, and then I get those too obvious suggestions that say “do this, do that.” My stress levels are already high and then I read something stupid...no thank you. Very irritating... [Participant 2]

Overall, while the usefulness of suggestions differs from person to person, it would be valuable to have such an option for those who are willing to receive it.

Social Learning: Reading Other Informal Caregiver’s Experiences

The informal caregivers reported varying experiences regarding the page that included stories about the experiences of other informal caregivers. Some indicated this was valuable for them because reading about the experiences of others could provide them with some support, insight, and inspiration regarding how others handled certain situations:

You can share your experiences, this is not strictly necessary, but it does help because then you realize you’re not the only caregiver. And when you share experiences, you get tips and tricks, you can learn from them. I think this is really great. [Participant 5]

Other informal caregivers who are experienced (either caring for a long time or were medical or care professionals) or have support from other informal caregivers did not perceive social learning as advantageous. However, they seek value in social learning for people who are providing care by themselves and do not have a social network to support them:

I don’t need this, because I actually know the possibilities in the field quite well and I experience a lot of support from my brother and sister. We are doing well together... [Participant 1]

I think that for some people who live alone and are the only informal caregivers, it would be a welcome thought. This is about how you have organized your caregiving network. That is not always easy, sometimes quite complicated. So in that sense, it could be a very helpful feature. [Participant 3]

Suggestions for Improving the User Interface Prototype

Overview

Overall, the conceptual workflow of the prototype of the interaction platform was assessed positively by the informal caregivers. They indicated that most of the screens were clear and understandable. However, they provided some suggestions about screens or connections that were perceived as less logical or where improvements could be made.

Improvements in Conceptual Flow

Informal caregivers highlighted that some choices regarding the notification settings were repetitive or unnecessary, which made the flow unclear or redundant. Specifically, in Figure 3 (third screen [agitation] and fourth screen [fall incident]), the option to share the respective information with the formal caregiver was given; however, informal caregivers already mentioned their choices to share or not share the information with formal caregivers while adjusting their preference (Figure 2). Consistent with an iterative process, this was adjusted for the next (last 2) interview sessions:

Here, I again have the choice if I want to share with a care professional. But if that happens again, then I won’t have set it up correctly in the settings. Does this still appear on my screen? In the beginning, you make a choice about sharing information with a care professional, and here that comes up again, so it’s kind of redundant. [Participant 3]

This is what I don’t understand. If I let the notifications go to the home care professionals for this situation, then I should not have to fill this in [choice for the content of the notification]. [Participant 4]

Furthermore, informal caregivers indicated that it was inconvenient to immediately receive the option to provide
feedback to the system in case of an emergency notification as they mentioned, at that moment, they were not thinking about the feedback and were probably not the right person to provide the information. It was suggested to send a reminder to provide feedback at a later moment. Moreover, there should be an option to receive more details about the situation:

Provide feedback on this notification, yes that can be useful, but it has to be at a later moment. You don’t do this in the notification itself, but you can add at a later moment what the issue was and whether the notification was accurate. [Participant 2]

For this, I would appreciate a reminder. I don’t necessarily enjoy receiving a lot of notifications all the time, but specifically for this purpose, yes. It’s about helping each other and helping the system learn, and thus improving the care. And I think when I’m actually there [at loved one] or when I come from there, then I might forget that. So, a reminder would be helpful, but it would be good to have a choice in the type of notification. [Participant 3]

Informal caregivers also suggested that feedback should be provided to them after they received a notification, so that they know that someone handled the situation and what actions have been taken:

I think that is a bit of a gray area, so you received or made a notification, but what happens with it? That I would expect to receive feedback on. [Participant 5]

Now I still have the feeling like I have to go there because I don’t know if it [notification] has been received and if someone is going there. [Participant 1]

Improvements in Visual Design

The informal caregivers suggested to include a clear visual indication when a deviation in behavior was noticed by the system, for example, a warning sign. In addition, an informal caregiver mentioned it would be more useful to express reliability in words instead of percentages, as this might be easier to interpret. Finally, informal caregivers suggested that the prototype could be improved by providing information in a more visual manner and including more graphs, images, and pictograms, as this could make it easier to interpret the information they were looking for:

At a glance, I can see that everything is going well...but then [in case of deviation] could have a different color like red, and for yourself there could an exclamation mark or warning sign to indicate that this is not optional information but something that needs to be looked into because it is not as it should be. [Participant 5]

Discussion

Principal Findings

In this study, informal caregivers showed a significantly positive attitude toward using USSs driven by AI algorithms for providing care to home-dwelling older adults with cognitive impairment. However, a previous study that explored care recipients’ perspectives regarding AI in health care revealed hesitancy, primarily driven by worries related to safety, privacy, and autonomy [29]. This divergence could be attributed to 2 factors: the difference in the study population and the potential lack of knowledge about USSs (in general, technological care solutions) among the previous study’s participants. The previous study by Richardson et al [29] focused on care recipients’ perspectives, whereas this study involved informal caregivers who might have a different perspective, as USSs will be monitoring the care recipient and it does not concern informal caregivers. Furthermore, many people have limited knowledge about AI algorithms and view AI as a “black box” [30]. Previous studies suggest that educating and engaging individuals about AI can enhance their trust in AI and contribute toward its successful implementation in health care [29,30]. In this study, USSs were explained using a video prototype and additional verbal explanations, which most likely increased the participants’ awareness of AI use. However, individual differences in understanding AI might also influence their positive and accepting attitude toward USSs.

USSs rely on AI algorithms to predict the behavior of older adults with cognitive impairment, which might not function flawlessly and could misclassify certain behavior patterns. Therefore, care providers need to be cautious and should not become overly reliant on USSs, as it may lead to incorrect care choices [31]. This would present an ethical issue regarding accountability, as it prompts the question of who is responsible and to what extent [31]. Educating caregivers about its use, capabilities, and limitations might help to overcome this risk. In addition, the risk of bias when using AI in health care should also be considered [31,32]. If the training data predominantly represent a specific population (sex, age, ethnicity, etc), they might create biases [32]. This risk could be mitigated by ensuring representative and inclusive training data sets, that is, including data from a wide range of individuals with different demographic characteristics and backgrounds when training the AI algorithm [32].

Furthermore, the informal caregivers recognize the value of USSs as a supportive tool in the care of home-dwelling older adults with cognitive impairment [2]. Specifically, USSs can facilitate appropriate care decision-making, contributing to their peace of mind while also creating a safe environment for their care recipients. However, they also expressed some concerns regarding the possible information overload, substitution of the human aspect in care provision, and overinterpretation of data. To mitigate these issues, they acknowledged the importance of setting up (make agreements about the monitored activities and strategies regarding communication) the solution together with other stakeholders (specifically, formal caregivers). This is consistent with the CeHRes road map, that is, for successful implementation of an eHealth technology, it is important to consider the perspectives and needs of the different stakeholders involved [15,33]. Moreover, it can be said that by combining the strengths of technology with the insights and expertise of caregivers, a more comprehensive and effective care approach and implementation could be achieved.
In addition, informal caregivers experienced the lo-fi prototype and the use of most PSD features elicited in a previous study as positive [7]. Particularly, participants valued the possibility to personalize the settings and change them to their preferences at any given moment in time. The use of the personalization feature, as suggested in the PSD theory, has the potential to enhance the usefulness of eHealth technologies such as USSs [7]. However, before making personalized solutions, the personalization-privacy paradox should be considered carefully [34]. This paradox demands right balance between offering personalized experiences and safeguarding user privacy [34,35]. This balance might be achieved by implementing robust privacy measures, obtaining informed consent, being transparent about data use, and providing users with control over their data as described in the ethical guidelines issued by the European Commission for trustworthy AI [36] and the European Health Data Space regulation [37]. Moreover, regarding the PSD features reminders, suggestions, and social learning, the experiences were slightly mixed. These findings emphasize the importance of a user-centered design approach, as the preferences of each individual can vary depending on the care situation, personal circumstances, and preferences in IC [15]. For example, the travel distance to the care recipient could influence their choice regarding whether they want to receive an emergency call when a fall incident occurred.

Implications for Future Studies and Practices

For the successful implementation of a complex eHealth intervention such as USSs for home-dwelling older adults with cognitive impairment, a holistic design approach is required [15]. It is important to consider the perspective of different key stakeholders such as informal and professional caregivers, care recipients, and care organizations and secondary stakeholders such as health insurers, governments, and technology businesses while designing and implementing such solutions. In future studies, it would be interesting to perform the next design iteration by using the results of this study as a starting point. Gradually, a high-fidelity prototype of the user interface could be created and evaluated with different stakeholders in the care of older adults with cognitive impairment. Furthermore, the creation of personas would be helpful in studies, as different types of end users may have different needs and requirements [38]. The personas could be based on characteristics such as caregiving experience, educational level, or need for cognition [38]. In addition, it would be interesting to explore the ethical implications of implementing a smart monitoring and communication system for home-dwelling older adults, which could be performed using in-depth interviews with involved stakeholders.

Before the implementation stage, a business modeling approach can be used. It provides insight into how value is generated and delivered to customers, which should be considered to bring eHealth technology to the market [39]. In addition, the implementation of such a solution requires guidelines and agreements (about how to work with such a system) within organizations and at the government level. Caregivers should be educated about how to interact with the system and interpret and communicate the data. In addition, it is essential to consider regulations such as Medical Device Regulation to determine whether USSs will be categorized as medical devices. Medical Device Regulation offers provisions to address privacy and security concerns, especially regarding medical devices that collect and process personal health data [40]. Furthermore, as USSs use AI, it is crucial to take into account the new AI Act proposed by the European Union (EU). This act aims to regulate the use of AI in EU countries, ensuring better conditions for the development and use of AI technologies (EU AI Act, 2023) [41]. In this act, different rules will apply to different risk levels, with USSs probably falling under the category of high risk, and they will be subjected to a high degree of regulations [41]. This might have consequences for the extent and manner in which AI is applied.

Strengths and Limitations

The key strength of this study is rooted in its methodology, specifically the adoption of a participatory development process that actively engaged informal caregivers during the early development stage of the interaction platform. The designed lo-fi prototype of the interaction platform provided an overview of the overall conceptual workflow and PSD features in different care scenarios to informal caregivers. While lo-fi prototyping is cost-effective, it can be seen as an opportunity for rapid development with end users in the early stages of development. Specifically, a task-based study design in conjunction with a think-aloud approach was used for this study. The task-based study design facilitated a realistic evaluation of user interactions with interfaces in various care scenarios [18,19], and the think-aloud approach provided direct access to users’ thoughts, perceptions, expectations, experiences, and decision-making processes during their interactions with the interfaces and PSD features [20]. By combining these 2 approaches, a comprehensive understanding of potential issues (in the used PSD features) and areas for improvement (in the conceptual workflow) was obtained, which could be incorporated into subsequent design iterations. In addition, the use of a video prototype assisted participants in comprehensively understanding the proposed USS. This, in turn, facilitated the development of more concrete and well-informed themes regarding the implementation outcomes and preconditions necessary for the successful integration of novel USSs.

Along with strengths, this study also has some limitations, which should be considered when interpreting the results. First, all the informal caregivers (6/6, 100%) who participated in this study had previous experience with technological interventions in care provision (eg, Caren platform) and had previously participated in related studies. While it is important to acknowledge that the findings of this study may not be fully generalizable to participants with no previous experience in digital care technology, the overall growth in digital literacy is noteworthy and holds promise for the realization of the study’s findings. Second, most informal caregivers (4/6, 67%) who participated in this study reported that their care recipient had received a formal diagnosis of cognitive impairment. However, some informal caregivers also expressed their own opinions regarding the indication of cognitive impairment in their care recipients. Given the scope of this study, which aimed to explore the perspectives of informal caregivers, their opinions hold high value in this study [42-44].
Third, it is important to note that this study was conducted in the Netherlands, which may limit the generalizability of the results to international health care infrastructure. Different countries have diverse regulations and policies regarding older adult care; thus, different expectations and preimplementation conditions regarding USSs can be imagined. Finally, it is worth mentioning that data saturation was not reached in this study, as new information was obtained from all interviews. This indicates that there may be additional themes that were not fully explored, suggesting that the results of this study may not be exhaustive. However, it is important to recognize that the design process was iterative, and during the evaluation of the lo-fi prototype, the aim was to further enrich the platform, making data saturation less critical for this stage of development [45].

Conclusions

Overall, informal caregivers of older adults with cognitive impairment had positive expectations regarding the implementation of USSs. They expect the use of such a system to contribute to care decision-making and to provide insight into the situation of the care recipient. However, information overload and loss of human aspect were perceived as risks. To successfully implement a USS, good communication and agreements among informal caregivers, formal caregivers, and the care recipient are needed, thus necessitating a holistic approach in the development and implementation process. Informal caregivers were quite positive about the lo-fi prototype of the user interface and the application of PSD features; however, there were also mixed experiences and suggestions for improvement regarding the conceptual flow and visual design of the prototype. Personalization of the settings of the prototype was perceived as highly valuable. The results of this study, especially the identified concerns, should be considered in the further development and implementation of USSs for home-dwelling older adults with cognitive impairment.

Acknowledgments

This study was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (814072) for the ITN ENTWINEd informal care. The authors would like to thank Prof Dr Paul Havinga, Jan Hendrik, and Dr Duc Le Viet for their valuable feedback.

Data Availability

In this study, some personal details about the participants were obtained, constraining our ability to make quantitative data available for any secondary analysis. However, upon request, a summary of the qualitative data (after anonymization) can be provided.

Conflicts of Interest

None declared.

Multimedia Appendix 1

The semistructured interview script used for qualitative data collection.

References

Abbreviations

AI: artificial intelligence
CeHRes: Center for eHealth Research and Disease Management
CSI: channel state information
EU: European Union
IC: information communication
Io-fi: low-fidelity
PSD: persuasive system design
USS: unobtrusive sensing solution

Edited by A Mavragani; submitted 05.10.23; peer-reviewed by K Eason, C Peres; comments to author 14.12.23; revised version received 15.01.24; accepted 05.02.24; published 22.03.24.

Please cite as:
Sharma N, Grotenhuijs K, Gemert-Pijnen JEWCV, Oinas-Kukkonen H, Braakman-Jansen LMA
Low-Fidelity Prototype of a Sensor-Dependent Interaction Platform: Formative Evaluation With Informal Caregivers of Older Adults With Cognitive Impairment
JMIR Form Res 2024;8:e53402
URL: https://formative.jmir.org/2024/1/e53402
doi:10.2196/53402
PMID:
the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Medical Students’ Perceptions on Identifying and Addressing Emotional Responses in Emergency Medicine: Pilot Investigation

Anish Kumar Agarwal¹,², MD, MPH, MS; Rachel Gonzales¹,², MPH; Cory Munden¹, MD; DaCarla Albright³, MD; Suzana Tsao¹, DO

¹Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, United States
²Center for Health Care Transformation and Innovation, Penn Medicine, Philadelphia, PA, United States
³Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, United States

Corresponding Author:
Anish Kumar Agarwal, MD, MPH, MS
Department of Emergency Medicine
University of Pennsylvania
423 Guardian Drive
410 Blockley Hall
Philadelphia, PA, 19104
United States
Phone: 1 215 573 6784
Email: anish.agarwal@pennmedicine.upenn.edu

Abstract

Background: Training in acute care, such as emergency medicine (EM), where exposure to critically ill and injured patients is high, impacts the well-being of trainees and contributes to burnout. Investigating how, and if, trainees prepare for these situations is necessary to ensure they are supported.

Objective: This study aimed to evaluate medical students’ perspectives and emotional preparedness for handling acute care and trauma.

Methods: We conducted a pilot investigation using a remote digital survey of medical students during their EM clerkship at a large, urban academic institution. The primary outcome of interest was student-reported preparedness and comfort in handling trauma and critical care patient encounters. Secondary outcomes included awareness of well-being resources and comfort in accessing digital well-being resources.

Results: A total of 57 medical students completed the voluntary digital survey, and half of the students (n=28, 49%) reported having witnessed the care of a critically ill or a penetrating trauma patient (e.g., a victim of gun violence). A majority (n=40, 70%) had thought about how these events may impact them, and over half felt unprepared to identify the emotional impact these cases may have on them (n=31, 54%) or address the emotional or mental health impact (n=36, 63%). Less than a quarter (n=14, 25%) were aware of digital mental health resources, and 58% (n=33) did not feel fully comfortable connecting with resources if needed. Students who had previously witnessed critical care were significantly more likely to report feeling well prepared in identifying the emotional impact and addressing this impact.

Conclusions: In this cross-sectional survey, students did not feel fully prepared to identify or address the emotional impact of working in EM. Additionally, they lacked awareness of or comfort with accessing digital institutional resources meant to support their well-being, such as a large web-based platform. These findings can help inform and guide interventions by educational and academic leaders. The aim would be to create and promote environments that empower students with tools to identify their own emotions and connect to well-being resources.

(JMIR Form Res 2024;8:e50827) doi:10.2196/50827

KEYWORDS
well-being; burnout; medical education; coping; student; students; university; college; acute care; trauma; traumatic; emotion; emotional; stress; distress; psychological; cross-sectional; survey; surveys; critical; critically; perception; perspectives; prepared; preparedness
Introduction

Health care–associated burnout persists in medicine and can be identified early in medical training [1-4]. This syndrome has negative impacts at the individual level, and it also affects patient care and the health care system by contributing to more medical errors, lower patient satisfaction, reduced productivity, poor clinical teaching and role modeling for trainees, increased cost, and increased physician attrition and ultimately contributes to physician suicide [5-8]. Physicians have a higher risk for suicide than the general population, and these mental health risks have been labeled as known “occupational hazards” [9,10]. Notably, the rate of US physicians annually completing suicide is estimated to be equivalent to the number of students in 3 graduating medical school classes [11,12].

Studies have demonstrated that the impacts of burnout and mental health symptoms, such as depression and anxiety, begin early in medical education and are found in medical students, residents, and physicians in training [2,13-15]. Studies have also found that rates of depression are higher for medical students than other trainees, suggesting this group may be particularly in need of interventions to support well-being and prevent burnout [11,14]. The strain and emotional toll of working in health care emerges early in training. For students, investigating how one identifies, processes, and copes with feelings of anxiety, sadness, depression, or stress related to their clinical experiences within clerkships remains understudied [16]. Emergency medicine (EM) physicians consistently report some of the highest rates of burnout, with EM often being referred to as the “center” of burnout [6,17]. EM physicians are 3 times more likely to be burned out compared to non-EM physicians [4].

Investing in strategies to help trainees identify their own emotions related to providing care, how to cope, and how to sustain well-being is critical for the future of the workforce [18]. Rather than awaiting burnout to evolve, examining how prepared these students feel is necessary to ensure that health systems and medical schools adequately support and proactively maintain medical students’ well-being. This is especially important given the rise of mental health symptoms and burnout in health care within the backdrop of the COVID-19 pandemic and social unrest related to racial injustice and rising gun violence.

The goal of this study was to assess medical students’ preparation during their EM rotation to understand how students self-identify their capacity to deal with emotionally charged clinical settings (eg, critical care cases or trauma).

Methods

Ethical Considerations

This pilot investigation used an electronic voluntary survey administered to second- and third-year medical students at the University of Pennsylvania in Philadelphia during their EM clerkship at a large, urban academic institution. The study was approved by the University of Pennsylvania Institutional Review Board (849318). All research methods, consent, and activities were performed in accordance with the university guidelines and regulations.

Eligible Participants and Study Type

Inclusion criteria consisted of students in their second (preclerkship or M2) or third (clerkship or M3) year of medical school. This study was cross-sectional, and a voluntary response sample was used. There were no specific exclusion criteria, as other students were not invited to the survey.

Recruitment Procedures

Participants were invited via email, completed informed consent, and were not compensated for participating. Data were collected and aggregated for analysis. The students at this medical school are routinely surveyed, and questions from this study were incorporated into the preexisting and ongoing school surveying. In total, the survey was sent to 161 students in their preclerkship (M2) and 153 students in their clerkship (M3) during the final week of classes in December 2021.

Approach and Analysis

This cross-sectional pilot study was developed by the research team, with expertise in medical education (authors ST and DA), qualitative methods (AKA and RG), and clinician well-being (AKA). No previous instrument, to the knowledge of the study team, exists; thus, the instrument was developed and pilot-tested in this study. All answers were anonymous, and no demographic information was collected. The primary outcome of interest was student-reported preparedness and comfort in handling trauma and critical care patient encounters. Secondary outcomes included awareness of well-being resources available to them during their clerkship, feelings of preparedness, and comfort in accessing well-being resources. Comparisons were done using chi-square tests in Stata IC 16.1 (StataCorp), and a P<.05 was considered statistically significant.

Results

A total of 57 medical students completed the voluntary survey: 26 (46%) of them were M2 students, and 31 (54%) were M3 students. Almost half (n=28, 49%) of the students reported having witnessed the care of a critically ill or injured patient (defined as a victim of gun violence). Most (n=40, 70%) students had thought about how these events may impact them, but most did not feel fully prepared to identify the emotional impact these cases may have on them (n=31, 55%) or prepared to address this emotional or mental health impact (n=36, 63%). Although resources are widely available to support students’ well-being at this institution, only 25% (n=14) were aware of these institutional resources to help them cope with the emotions involved with care, and 58% (n=33) did not feel fully comfortable connecting with resources if needed (Table 1).

Differences were identified between those students who had witnessed the care of a critically ill or injured patient and those who had not (Table 2). Students who had witnessed such care were more likely to feel well prepared in identifying the emotional impact of these cases (n=7, 25% vs n=0, 0%; P=.007) and in addressing this impact (n=9, 32% vs n=0, 0%; P=.001). No significant differences were found in student awareness of
resources and their comfort in connecting with these resources to cope with the emotions involved with care.

Table 1. Medical students’ perspectives on the emotional impact and preparedness of caring for critical patients.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Values (N=57)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you witnessed the immediate care of a critically ill or injured patient?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>28 (49)</td>
</tr>
<tr>
<td>No</td>
<td>29 (51)</td>
</tr>
<tr>
<td>Have you thought about how these events may impact you?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>40 (70)</td>
</tr>
<tr>
<td>No</td>
<td>15 (26)</td>
</tr>
<tr>
<td>N/A</td>
<td>2 (4)</td>
</tr>
<tr>
<td>How prepared do you feel in identifying the emotional impact these cases may have?</td>
<td></td>
</tr>
<tr>
<td>Well prepared</td>
<td>7 (12)</td>
</tr>
<tr>
<td>Prepared</td>
<td>18 (32)</td>
</tr>
<tr>
<td>Somewhat prepared</td>
<td>23 (40)</td>
</tr>
<tr>
<td>Not prepared</td>
<td>8 (14)</td>
</tr>
<tr>
<td>N/A</td>
<td>1 (2)</td>
</tr>
<tr>
<td>How prepared do you feel in addressing with the emotional impact these cases may have?</td>
<td></td>
</tr>
<tr>
<td>Well prepared</td>
<td>9 (16)</td>
</tr>
<tr>
<td>Prepared</td>
<td>11 (19)</td>
</tr>
<tr>
<td>Somewhat prepared</td>
<td>25 (44)</td>
</tr>
<tr>
<td>Not prepared</td>
<td>11 (19)</td>
</tr>
<tr>
<td>N/A</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Are you aware of university resources to support learners as they cope with the emotions involved with care?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14 (25)</td>
</tr>
<tr>
<td>No</td>
<td>42 (74)</td>
</tr>
<tr>
<td>N/A</td>
<td>1 (2)</td>
</tr>
<tr>
<td>How comfortable you would feel in connecting with resources if needed?</td>
<td></td>
</tr>
<tr>
<td>Very comfortable</td>
<td>7 (12)</td>
</tr>
<tr>
<td>Comfortable</td>
<td>16 (28)</td>
</tr>
<tr>
<td>Somewhat comfortable</td>
<td>23 (40)</td>
</tr>
<tr>
<td>Not comfortable</td>
<td>10 (18)</td>
</tr>
<tr>
<td>N/A</td>
<td>1 (1.8)</td>
</tr>
</tbody>
</table>

aN/A: not applicable.
Table 2. Medical students’ perspectives on personal emotional reaction, preparation, and coping skills based on prior exposure.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Ever witnessed the care of a critically ill or injured patient (N=57)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (n=28)</td>
<td>No (n=29)</td>
</tr>
<tr>
<td>Have you thought about how these events may impact you?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>22 (78.6)</td>
<td>18 (62)</td>
</tr>
<tr>
<td>No</td>
<td>6 (21.4)</td>
<td>9 (31)</td>
</tr>
<tr>
<td>N/A*</td>
<td>0 (0.0)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>How prepared do you feel in identifying the emotional impact these cases may have?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well prepared</td>
<td>7 (25.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Prepared</td>
<td>10 (35.7)</td>
<td>8 (28)</td>
</tr>
<tr>
<td>Somewhat prepared</td>
<td>10 (35.7)</td>
<td>13 (45)</td>
</tr>
<tr>
<td>Not prepared</td>
<td>1 (3.6)</td>
<td>7 (24)</td>
</tr>
<tr>
<td>N/A</td>
<td>0 (0.0)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>How prepared do you feel in addressing with the emotional impact these cases may have?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well prepared</td>
<td>9 (32.1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Prepared</td>
<td>6 (21.4)</td>
<td>5 (17)</td>
</tr>
<tr>
<td>Somewhat prepared</td>
<td>12 (42.9)</td>
<td>13 (45)</td>
</tr>
<tr>
<td>Not prepared</td>
<td>1 (3.6)</td>
<td>10 (35)</td>
</tr>
<tr>
<td>N/A</td>
<td>0 (0.0)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Are you aware of university resources to support learners as they cope with the emotions involved with care?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>9 (32.1)</td>
<td>5 (17)</td>
</tr>
<tr>
<td>No</td>
<td>19 (67.9)</td>
<td>23 (79)</td>
</tr>
<tr>
<td>N/A</td>
<td>0 (0.0)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>How comfortable you would feel in connecting with resources if needed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very comfortable</td>
<td>5 (17.9)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Comfortable</td>
<td>8 (28.5)</td>
<td>8 (28)</td>
</tr>
<tr>
<td>Somewhat comfortable</td>
<td>11 (39.3)</td>
<td>12 (41)</td>
</tr>
<tr>
<td>Not comfortable</td>
<td>4 (14.3)</td>
<td>6 (21)</td>
</tr>
<tr>
<td>N/A</td>
<td>0 (0.0)</td>
<td>1 (4)</td>
</tr>
</tbody>
</table>

*aN/A: not applicable.

Discussion

Principal Findings

Given EM’s high rates of burnout and the vulnerable role medical students hold as trainees, medical students undergoing their EM clerkship are at high risk of emotional strain and stress [15]. The rising focus on physician mental health extends to those in training [8]. There is a gap in understanding how prepared medical students feel in identifying and addressing their emotional response and the impact experiences in EM may have upon them. This study assessed medical students’ preparation to better understand their needs and guide interventions toward key priority areas of focus.

This study found that, regardless of whether students had already witnessed the care of a critically ill patient, most students did not feel prepared to identify or address the emotional impact associated with these situations. This highlights the need to train students early and normalize the emotional impact of working in medicine [19,20]. The stigma associated with mental health in health care has pervaded the classroom and hospitals, and to build structures to prevent burnout, we must begin early to help trainees identify feelings of anxiety, depression, or stress as they experience them [13,21-23]. A proactive approach would provide students with the tools and resources they need to adequately identify their emotions and connect to appropriate resources when needed.

It is essential for institutions not only to have resources available to support students’ well-being and mental health but also to make these resources readily accessible and easy to navigate. Our findings reveal that even in an environment where resources are present, students may be unaware of these resources or may not be comfortable accessing them. The University of Pennsylvania School of Medicine has a robust infrastructure within the medical school, a separate web-based mental health...
and well-being platform, accessible to the entire health system community [24]. However, students in this study remained unaware of their availability or accessibility. Institutions must work to incorporate these resources into the clinical and teaching environments to reduce the stigma that may prevent students from accessing them.

Finally, the significant differences in feelings of preparedness between those students who had and those who had not witnessed the care of critical care patients suggest that students do not feel prepared to identify the emotional impact such experience may have until it has happened. It is important to act proactively to prepare students to experience the care of critical patients. EM provides an ideal environment to do so, as the likelihood that students will be placed in an emotionally charged setting is high [17,25]. Venues such as critical care, pediatrics, obstetrics and gynecology, as well as surgery provide other opportune areas for schools to think about deploying focused interventions to where students may need them most.

Limitations

This study has some limitations. First, to protect confidentiality and privacy, we did not collect demographic information. This prevented us from analyzing how these findings might differ by age, race, or ethnicity. Second, as medical students self-selected to participate, selection bias may play a role. The participants surveyed here may not accurately represent the experiences of all medical students in the clerkship program. Additionally, this study was performed at a single urban, academic program and may not be applicable to all medical students at other various institutions. We are also limited by a sample of 56 students, which may further limit our ability to generalize these findings.

Conclusions

Similar to other roles in health care, medical students do not feel fully prepared to identify or address the emotional impact of working in acute care. Additionally, they lack awareness of or comfort with accessing institutional resources designed to support their well-being. Medical students who have not witnessed the care of a critically ill or injured patient were more likely to feel unprepared in identifying or addressing the emotional impact such an event might have on them. These findings can help inform and guide interventions by educational and academic leaders. The aim would be to create and promote training environments that empower students with tools to identify their own emotions and connect to well-being resources. We need to normalize the conversation around mental health in the health care workforce and reduce stigma early in medicine, beginning with our medical students.

Acknowledgments

We would like to acknowledge the students and staff of the University of Pennsylvania Department of Emergency Medicine.

Data Availability

The data sets generated and analyzed during the study are not publicly available due to the sensitivity of data content in responses, but deidentified data are available by email request to the corresponding author upon reasonable request.

Authors’ Contributions

AKA planned, executed, and led this study. RG planned data collection and completed analysis. CM drafted and revised the manuscript. DA executed the study and revised the manuscript. ST planned and supervised the study. All authors contributed to the draft, revisions, and manuscript preparation.

Conflicts of Interest

None declared.

References

Abbreviations

EM: emergency medicine
Factors Associated With Perception of Stigma Among Parents of Children With Cleft Lip and Palate: Cross-Sectional Study

 abstract

Background: Parents of children with cleft lip with or without cleft palate (CL/P) often face stigmatization, which has a significant impact on their quality of life and mental health. However, to date, there is a lack of comprehensive, multicenter empirical research on parents of children with CL/P in China, particularly those with large-scale samples.

Objective: This study aimed to identify major factors that contribute to the perception of stigma experienced by parents of children with CL/P.

Methods: A cross-sectional survey was conducted. A total of 104 parents of children diagnosed with CL/P in 2 hospitals were selected by convenience sampling. Demographics and disease information, the Chinese Perception of Stigma Questionnaire, the Center for Epidemiological Studies Depression Scale, and the Social Anxiety Scale were used in this study. Descriptive statistics, t tests, and one-way ANOVA were used to compare the differences between participants’ demographic information and perception of stigma. Multivariable linear regression was performed to assess associations between demographic factors, social anxiety, depression, and perception of stigma.

Results: The mean scores for the dimensions of perception of stigma, depression, and social anxiety were 22.97 (SD 9.21), 38.34 (SD 8.25), and 22.86 (SD 6.69), respectively. Depression and social anxiety were positively associated with discrimination, while surgery status was a negatively associated variable. Parents with a college education or higher had significantly lower levels of perceived stigma compared to parents with a junior high school education (all P values <.05). These 4 factors explained 40.4% of the total model variance (F8=9.726; P<.001; R2=0.450; adjusted R2=0.404).

Conclusions: Our findings highlight a concerning trend of diminished quality of life among parents of children with CL/P. Factors such as parents’ education level, surgery status, depression, and social anxiety are shown to influence the level of stigma experienced. Implementing comprehensive nursing care and providing presurgical support are effective strategies for alleviating parents’ social anxiety, reducing perceived stigma, and preventing depression.

(JMIR Form Res 2024;8:e53353) doi:10.2196/53353

KEYWORDS

stigma; social anxiety; depression; parents of children with cleft lip and palate; cleft lip; cleft palate; cross-sectional study
Introduction

Cleft lip with or without palate (CL/P) is a common congenital developmental malformation affecting the oral and maxillofacial region [1], with a global prevalence of about 1.62%–1.82% [2], and the highest prevalence in Asian countries [3]. There are 35,000 babies born with CL/P in China each year [4]. Palate repair surgery is usually done when babies are 10 to 24 months old, while lip surgery is generally performed at the age of 6 months [3]. The management of CL/P is long-term, beginning from birth and continuing into the late teenage years. Children born with CL/P not only face a visible facial disfigurement but also have other challenges related to the cleft, such as feeding difficulties, speech impediments, hearing issues, and psychological problems, which may compromise their ability to communicate effectively [5].

Children with CL/P are vulnerable to external discrimination because of the malformation. A child with CL/P is subjected to bullying, rejection, and social isolation, sometimes even from their own family [6]. The discrimination can have devastating health and well-being impacts, not only on children affected but also on people associated with the discriminated person. Having a baby with CL/P has variable psychological impacts on the parents [7]. Parents are often concerned about whether their children will be accepted as they grow up, and parents’ psychological state directly affects their children’s perception of the condition [6,8,9]. Some studies [10,11] have indicated that the perception of stigma experienced by the mother and children is consistent. Numerous studies [2,12,13] have shown that children with CL/P experience significant stigma, and limited engagement in social activities suggests that the parents of these children may experience high levels of stigma. Furthermore, Parents are troubled by their children’s conditions from birth to adulthood, while children often experience discrimination after their cognitive development has matured. Therefore, exploring ways to prevent these patients and their parents from feeling stigmatized is urgently necessary.

Currently, research on the perception of stigma among parents of children with CL/P is predominantly qualitative, emphasizing the exploration of factors contributing to parental stigma. However, there is limited reporting on assessments regarding the level and variation in the perception of stigma. In particular, there is no research on the perception of stigma in children with CL/P in China. Previous studies [11,14] have shown that superstition is the main reason for parents’ perception of stigma, and only 40% of parents believe that genetic problems cause CL/P. One study [11] found that 72% of mothers felt ashamed of having children with CL/P, and some even abandoned their babies. Therefore, it is crucial to examine the perception of stigma among parents of children with CL/P, pinpoint those experiencing heightened stigma levels, implement tailored nursing interventions based on sensitive factors, and mitigate the likelihood of public incidents. This study aims to investigate experiences of stigma in parents of children with CL/P and analyze the contributing factors.

Methods

Study Design and Participants

This cross-sectional study was conducted using a convenience sample of parents of children with CL/P, recruited from 2 hospitals in southern and western China (from the cities of Guizhou and Guangzhou) between June 2020 and January 2023. All parents of children who met the inclusion and exclusion criteria for surgical treatment in the Department of Stomatology were invited to complete a questionnaire.

The inclusion criteria were as follows: parents of children (aged <15 years) with CL/P undergoing nasoalveolar molding therapy at the Department of Stomatology. These parents were invited to complete an anonymous questionnaire.

Exclusion criteria included parents of infants with additional birth defects or medical conditions, those with genetic diagnoses (eg, Down syndrome or Trisomy 21 syndrome), and individuals unable to complete the questionnaires due to critical illness or mental disorders.

Data Collection

After the doctors introduced the operational procedure or the nurses introduced the environment of the wards, the participants were invited to fill in the questionnaires. Uniform instructions were used to explain the study aims and their relevance to the participants. The participants were informed that the study was anonymous and voluntary and that they could quit anytime.

Variables and Instruments

The demographic data were collected via a questionnaire. Three questionnaires with good reliability and validity were used to collect the data on stigma, social anxiety, and depression.

Demographics Questionnaire

The demographic information questionnaire was designed by researchers after consulting the literature and mainly included parents’ age, role (father or mother), education level, and working status as well as children’s age, sex, type of CL/P, surgery status, and number of surgeries.

Disability Discrimination Perception Scale

Stigma was assessed using the Disability Discrimination Scale (DDPS), initially developed by Liu and Shen [15]. The questionnaire comprises 10 items (eg, “When participating in activities, I feel that people around me would not talk to me and avoid me”), designed to explore the perception of stigma among individuals with disabilities in their daily lives. It is also suitable for children aged 10 to 16 years. Respondents rated each item on a 5-point scale, ranging from 1 (very inconsistent) to 5 (completely consistent). Higher total scores indicate a greater perception of stigma, with scores ranging from 10 to 50. The scale demonstrates good internal consistency, as evidenced by a Cronbach’s reliability of 0.89. The criterion validity was 0.47, indicating good validity [15].

The Center for Epidemiological Studies Depression Scale

The level of depression was measured by the Center for Epidemiological Studies Depression Scale (CES-D) [16]. CES-D
consists of 20 items (eg, “I was bothered by things that usually don’t bother me”), and each item is scored from 0, indicating “rarely or none of the time (less than 1 day)” to 3, indicating “most or all of the time (5-7 days).” The total score of all items ranges from 12 to 60, with higher scores indicating a greater likelihood of depression; a total score of 15 points or less indicates no depression; 16 to 19 points indicate possible depression; and a score of 20 points or higher indicates definite depression [16]. The scale is suitable for screening people with depressive symptoms and can also be used to assess the severity of depressive symptoms. The Cronbach α of CES-D was 0.87, indicating good internal consistency. The split-half reliability was 0.85, the test-retest reliability was 0.70, and the criterion validity was 0.75. Therefore, CES-D had good reliability and validity.

The Interaction Anxiousness Scale
The Interaction Anxiousness Scale (IAS) was used to assess the subjective propensity to experience social anxiety independent of behavior [17]. The IAS contains 15 self-reported items (eg, “I want to be confident in social situations more”), which are answered on a 5-point scale, ranging from 1 (very inconsistent) to 5 (completely consistent). Total scores range from 15 to 75, with higher scores indicating higher levels of social concern. The Cronbach α reliability of the scale was 0.87, the test-retest reliability was 0.80, and the criterion validity was 0.48. In this study, according to the actual situation, 7 items related to sexual life were deleted, and 8 items were selected for evaluation. The reliability of the scale was retested, and Cronbach α reliability was 0.68, indicating acceptable reliability.

Statistical Analysis
IBM SPSS Statistics (version 25.0; IBM Corp) for Windows, was used for statistical analysis. Standard descriptive statistical values (means and SDs) were calculated. The independent samples 2-tailed t test and ANOVA were used for the intergroup comparisons of parameter changes. Pearson analysis was used to examine the relationship between perception of stigma, social anxiety, and depression. Multiple linear regression was performed to assess the association between demographic factors, anxiety, depression, and perception of stigma. The significance level was set at 5%.

Ethical Considerations
The study was approved by the Ethics Committee for Clinical Studies at Guangzhou Women and Children's Medical Center, Guangzhou Medical University (NO.2022268A01). This study obtained informed consent from participants, who had the option to withdraw at any time. The research data were collected anonymously.

Results
In this study, a total of 110 questionnaires were distributed. Of the collected questionnaires, 104 were complete, resulting in a 94.6% response rate.

Participant Characteristics
Most participants were mothers aged 25-30 years and unemployed, with a high school diploma. Their children had CL/P, and surgery had not been performed. Unemployed parents constituted 71% (n=74) of the sample, with nearly half (n=14, 47%) of the employed parents being self-employed. Over half (n=61, 59%) of the respondents had completed high school. The children’s average age was 3.06 (SD 2.02) years. A total of 73 (72%) children had not undergone surgery, while most of those who had done the surgery (n=20, 65%) had undergone the procedure twice. A descriptive analysis of the general demographics, work-related characteristics, and disease-related information of the participants is shown in Table 1.
Table 1. Demographic characteristics of the participants (N=104).

<table>
<thead>
<tr>
<th>Variable and category</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>18-25</td>
<td>30 (29)</td>
</tr>
<tr>
<td>25-30</td>
<td>42 (40)</td>
</tr>
<tr>
<td>30-35</td>
<td>26 (25)</td>
</tr>
<tr>
<td>>35</td>
<td>6 (6)</td>
</tr>
<tr>
<td>Role</td>
<td></td>
</tr>
<tr>
<td>Father</td>
<td>39 (38)</td>
</tr>
<tr>
<td>Mother</td>
<td>65 (63)</td>
</tr>
<tr>
<td>Educational background</td>
<td></td>
</tr>
<tr>
<td>Primary school or lower</td>
<td>6 (6)</td>
</tr>
<tr>
<td>Junior high school</td>
<td>23 (22)</td>
</tr>
<tr>
<td>Senior high school</td>
<td>61 (59)</td>
</tr>
<tr>
<td>College</td>
<td>7 (7)</td>
</tr>
<tr>
<td>Bachelor’s degree or higher</td>
<td>7 (7)</td>
</tr>
<tr>
<td>Working status</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>74 (71)</td>
</tr>
<tr>
<td>Working</td>
<td>30 (29)</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>74 (71)</td>
</tr>
<tr>
<td>Independent management</td>
<td>14 (14)</td>
</tr>
<tr>
<td>Enterprise unit</td>
<td>9 (9)</td>
</tr>
<tr>
<td>Public service unit</td>
<td>7 (7)</td>
</tr>
<tr>
<td>Children’s sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>60 (58)</td>
</tr>
<tr>
<td>Female</td>
<td>44 (43)</td>
</tr>
<tr>
<td>Condition type</td>
<td></td>
</tr>
<tr>
<td>Cleft lip</td>
<td>36 (35)</td>
</tr>
<tr>
<td>Cleft lip and palate</td>
<td>68 (65)</td>
</tr>
<tr>
<td>Number of surgeries</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>73 (70)</td>
</tr>
<tr>
<td>1</td>
<td>7 (7)</td>
</tr>
<tr>
<td>2</td>
<td>20 (19)</td>
</tr>
<tr>
<td>≥3</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Status of surgery</td>
<td></td>
</tr>
<tr>
<td>After surgery</td>
<td>73 (70)</td>
</tr>
<tr>
<td>Before surgery</td>
<td>31 (30)</td>
</tr>
</tbody>
</table>

Prevalence of Stigma, Social Anxiety, and Depression

The mean scores for the dimensions of perception of stigma, depression, and social anxiety were 22.97 (SD 9.21), 38.34 (SD 8.25), and 22.86 (SD 6.69), respectively. Additionally, 38% (n=40) of the participants exhibited a perception of stigma level beyond the moderate level, and every participant experienced evident depression, with 72% (n=75) displaying average levels of social anxiety.

Univariate Analyses of Factors Associated With Stigma

The demographic data, including parents’ age, role, education level, and working status as well as the children’s age, sex, CL/P type, surgery status, and the number of surgeries, were analyzed.
using a one-way ANOVA and t tests. The results of the Kolmogorov-Smirnov test suggested that the continuous variables were reasonably and normally distributed. The t tests revealed that the parents whose children had undergone surgery experienced lower stigma levels compared to those whose children had not undergone surgery ($P = .01$). The perception of stigma scores differed significantly among parents having different educational backgrounds ($P < .001$) and between those whose children underwent different numbers of surgeries ($P = .04$). The specific results are detailed in Table 2.

Table 2. Univariate analyses of factors associated with stigma (N=104).

<table>
<thead>
<tr>
<th>Variable and category</th>
<th>Mean (SD)</th>
<th>F test (df)</th>
<th>t test (df)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>1.58 (3)</td>
<td>—</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>18-25</td>
<td>25.74 (9.93)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-30</td>
<td>21.14 (8.46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td>22.24 (8.30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>35</td>
<td>23.50 (12.06)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>0.32 (102)</td>
<td>.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father</td>
<td>23.28 (9.62)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>22.69 (8.96)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education background</td>
<td>3.62 (4)</td>
<td><.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary school or lower</td>
<td>22.50 (9.89)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior high school</td>
<td>24.52 (8.94)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior high school</td>
<td>24.21 (9.34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College</td>
<td>16.14 (2.73)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor’s degree or higher</td>
<td>13.43 (1.81)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working status</td>
<td>2.02 (102)</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>24.00 (8.84)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working</td>
<td>20.23 (9.56)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td>1.36 (3)</td>
<td>.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>24.00 (8.84)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent management</td>
<td>19.43 (8.49)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterprise unit</td>
<td>21.89 (10.95)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public service unit</td>
<td>19.71 (10.95)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children’s sex</td>
<td>0.83 (102)</td>
<td>.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>23.55 (9.47)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>22.05 (8.78)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition type</td>
<td>0.34 (102)</td>
<td>.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleft lip</td>
<td>23.33 (8.91)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleft lip and palate</td>
<td>22.69 (9.36)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of surgeries</td>
<td>2.94 (3)</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>24.34 (9.49)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17.57 (7.28)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.95 (7.28)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3</td>
<td>26.00 (7.07)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status of surgery</td>
<td>2.50 (102)</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before surgery</td>
<td>24.34 (9.49)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After surgery</td>
<td>19.55 (7.47)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not applicable.
Correlation Analysis With Perception of Stigma, Social Anxiety, and Depression

The results showed that the perception of stigma was related to social anxiety ($r=0.54; P<.001$) and depression ($r=0.39; P<.001$); there was also a correlation between depression and social anxiety ($r=0.30; P=.002$). The specific results are shown in Table 3.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Stigma</th>
<th>Depression</th>
<th>Social anxiety</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1</td>
<td>0.39</td>
<td>0.54</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td><.001</td>
<td><.001</td>
</tr>
</tbody>
</table>

Depression

P value <.001

Social anxiety

P value <.001

aNot applicable.

Regression Analyses of Stigma

With the perception of stigma as the dependent variable, depression, social anxiety, and demographic data with differences between groups were included in the model as independent variables, and multiple linear regression analyses were performed. In the perception of stigma model, depression, social anxiety, educational background, and status of surgery were significant correlates explaining 40.4% of the total model variance ($F_8=9.726; P<.001; R^2=0.450$; adjusted $R^2=0.404$).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Unstandardized coefficients (B)</th>
<th>SE</th>
<th>t test (df)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant value</td>
<td>0.10</td>
<td>4.36</td>
<td>0.02 (95)</td>
<td>.98</td>
</tr>
<tr>
<td>Status of surgery</td>
<td>−5.85</td>
<td>2.22</td>
<td>−2.64 (95)</td>
<td>.01</td>
</tr>
<tr>
<td>Number of operations</td>
<td>2.08</td>
<td>1.14</td>
<td>1.82 (95)</td>
<td>.07</td>
</tr>
<tr>
<td>Depression</td>
<td>0.26</td>
<td>0.09</td>
<td>2.93 (95)</td>
<td><.001</td>
</tr>
<tr>
<td>Social anxiety</td>
<td>0.52</td>
<td>0.12</td>
<td>4.48 (95)</td>
<td><.001</td>
</tr>
<tr>
<td>Primary school or lower</td>
<td>0.23</td>
<td>3.30</td>
<td>0.07 (95)</td>
<td>.95</td>
</tr>
<tr>
<td>Senior high school</td>
<td>−0.29</td>
<td>1.75</td>
<td>−0.16 (95)</td>
<td>.87</td>
</tr>
<tr>
<td>College education</td>
<td>−6.53</td>
<td>3.09</td>
<td>−2.11 (95)</td>
<td>.04</td>
</tr>
<tr>
<td>Bachelor’s degree or higher</td>
<td>−7.21</td>
<td>3.15</td>
<td>−2.29 (95)</td>
<td>.02</td>
</tr>
</tbody>
</table>

Discussion

This study found that parents of children with CL/P experienced a high level of perception of stigma and obvious social anxiety and depression. In addition, parents’ education level, children’s status of surgery, social anxiety, and depression affect parents’ levels of perceived stigma. This study complements the gap in the study of stigma perception in families of children with CL/P in China. Parents in our study exhibited a higher level of stigma perception. This could be attributed to the fact that most children underwent corrective surgery during infancy, making parents more attuned to discrimination, as they believe that visual impairments affect their children’s social lives. Thus, prevailing data suggest that Chinese clinical nurses should pay attention to the quality of life of parents of children with CL/P.

Our study showed that children’s sex and the type of CL/P could not affect parents’ discrimination perception. This is consistent with the findings of previous studies that reported no significant difference in the level of discrimination perception between patients of different sexes and CL/P types [10]. The results of our study showed no significant difference in the level of stigma perception between fathers and mothers. Fathers also had a high
level of stigma perception. However, previous studies [14,18] suggested that mothers of children with CL/P experienced severe stigma or discrimination while ignoring the possibility that fathers also experienced high levels of discrimination. Two other studies [19,20] pointed out that the main sources of stress among fathers were the treatment process, feeding, and social stigma. Therefore, in the care process of children with CL/P, we should not only focus on the mother’s psychological state but also consider the psychological state of the father. The importance of family nursing should also be emphasized.

Parents of children with CL/P experience obvious depression and anxiety. It is consistent with the findings of previous studies reporting that parents of newborns with CL/P had significantly higher levels of anxiety compared to control parents [20]. The study findings are consistent with the current literature, as depression or depressed mood in parents of children with CL/P is a common phenomenon [21,22]. Kumar [23] reported the highest incidence of depressive episodes, with 42% of parents of children with CL/P aged >10 years showing a strongly or very strongly elevated depressive disorders screening index. Sommer [24] has pointed out that mothers of children with CL/P believe their children have a negative impact on them. Their negative views and emotions are mainly derived from the long treatment times, the difficulty of treatment, the uncertainty of the infant’s future condition, and the fear of rejection. Family members of infants with CL/P experience stigma, anxiety, and worry, which may lead to individual negative emotions and coping styles, produce adverse intergroup relations, reduce subjective well-being and life satisfaction, and ultimately affect the quality of family life. Relieving the stigma perceived by parents of children with CL/P is the first step to relieving negative emotions like anxiety and depression in these parents. Therefore, we should pay attention to the physical rehabilitation of children as well as the mental health of children and their parents.

In this study, parents with junior high school education showed a high level of stigma perception, and the perception of stigma was lower among parents with a college education or higher. So far, no study has investigated the relationship between the education level of parents who have children with CL/P and their stigma perception. A previous study [6] showed that caregivers of children with attention deficit hyperactivity disorder, who have higher education levels, experience higher levels of stigma. However, the results of this study were inconsistent with a previous study, possibly because parents with a junior high school education have less knowledge of the condition and are more likely to focus on the appearance of their children. The difference could potentially be attributed to the fact that parents with higher education levels are more likely to access relevant information about the condition and feel more confident about the later recovery process. Hence, health care professionals should focus on parents with a high school education or lower, monitor variations in their perceived stigma levels, comprehend their psychological well-being across different stages of their children’s lives, and offer tailored psychological support.

Cleft surgery provides hope to those children and their parents, offering the possibility of re-enrollment in schools, employment opportunities, social acceptance, and improved prospects for marriage [6]. Undergoing surgery directly affects the level of the stigma perceived by parents. Parents of children without surgery perceive a higher level of stigma, which is consistent with previous studies [14] suggesting that parents of children with CL/P show obvious negative emotions in the first 3 months after the birth of their children without surgery. Therefore, the initial 3 months emerge as a pivotal phase for health care professionals to alleviate parental anxiety and deliver emotional and educational assistance to parents of infants with CL/P. Through comprehensive nursing and presurgical support, mothers can enhance their early feeding capabilities, expedite the bonding process with their infants, and facilitate the infants’ swift recovery. Familiarity with CL/P beforehand serves to diminish maternal stress during initial interactions, mitigating anxiety and perceptions of discrimination. Consequently, encouraging mothers to engage with CL/P-related charitable organizations or fostering interaction among children with CL/P in shared spaces can effectively reduce anxiety and perception of stigma levels.

This study has several limitations. All the participants in this study were family members of children who were willing to undergo surgery, and no family members of children who were unwilling to undergo treatment were included, which may have led to selective bias. Parents filled out the scale based on recall, which may introduce information bias. The sample size of this study was small, as it was limited to hospitals only from 2 provinces with a large gap in economic levels between the 2 places, and fewer fathers were included in the study. Future studies should increase the sample size and broaden the scope of the investigation.

Our findings highlight a concerning trend of diminished quality of life among parents of children with CL/P. Factors such as parents’ education level, the status of surgery in children, depression, and social anxiety are shown to influence the level of stigma experienced by these parents. Implementing comprehensive nursing care and providing presurgical support are effective strategies for alleviating parents’ social anxiety, reducing perceived stigma, and preventing depression.

Acknowledgments
The authors are sincerely grateful to all the participants who responded to the questionnaires and all the nurses and doctors for supporting this investigation.

This research was funded by the Guangzhou Municipal Science and Technology Bureau (grant 2023A03J0913 and 202103000088).
Data Availability
The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

References

Abbreviations

CES-D: Center for Epidemiological Studies Depression Scale
CL/P: cleft lip with or without cleft palate
DDPS: Disability Discrimination Scale
IAS: Interaction Anxiousness Scale

©Yanan Zhang, Xinwen Zhang, Jinzhuo Jiang, Wanhua Xie, Daoman Xiang. Originally published in JMIR Formative Research (https://formative.jmir.org), 04.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Machine Learning for Early Prediction of Major Adverse Cardiovascular Events After First Percutaneous Coronary Intervention in Patients With Acute Myocardial Infarction: Retrospective Cohort Study

Pin Zhang¹,²*, MM; Lei Wu¹*, MM; Ting-Ting Zou¹, MM; ZiXuan Zou¹, MM; JiaXin Tu¹, MM; Ren Gong³*, PhD; Jie Kuang¹*, PhD

¹Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
²School of Public Health and Management, Nanchang Medical College, Nanchang, China
³Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
* these authors contributed equally

Corresponding Author:
Jie Kuang, PhD
Jiangxi Provincial Key Laboratory of Preventive Medicine
School of Public Health
Nanchang University
461 BaYi Road
Nanchang, 330006
China
Phone: 86 0791 8636228
Email: kuangjie@ncu.edu.cn

Abstract

Background: The incidence of major adverse cardiovascular events (MACEs) remains high in patients with acute myocardial infarction (AMI) who undergo percutaneous coronary intervention (PCI), and early prediction models to guide their clinical management are lacking.

Objective: This study aimed to develop machine learning–based early prediction models for MACEs in patients with newly diagnosed AMI who underwent PCI.

Methods: A total of 1531 patients with AMI who underwent PCI from January 2018 to December 2019 were enrolled in this consecutive cohort. The data comprised demographic characteristics, clinical investigations, laboratory tests, and disease-related events. Four machine learning models—artificial neural network (ANN), k-nearest neighbors, support vector machine, and random forest—were developed and compared with the logistic regression model. Our primary outcome was the model performance that predicted the MACEs, which was determined by accuracy, area under the receiver operating characteristic curve, and F1-score.

Results: In total, 1362 patients were successfully followed up. With a median follow-up of 25.9 months, the incidence of MACEs was 18.5% (252/1362). The area under the receiver operating characteristic curve of the ANN, random forest, k-nearest neighbors, support vector machine, and logistic regression models were 80.49%, 72.67%, 79.80%, 77.20%, and 71.77%, respectively. The top 5 predictors in the ANN model were left ventricular ejection fraction, the number of implanted stents, age, diabetes, and the number of vessels with coronary artery disease.

Conclusions: The ANN model showed good MACE prediction after PCI for patients with AMI. The use of machine learning–based prediction models may improve patient management and outcomes in clinical practice.

(JMIR Form Res 2024;8:e48487) doi:10.2196/48487

KEYWORDS
acute myocardial infarction; percutaneous coronary intervention; machine learning; early prediction; cardiovascular event
Introduction

Acute myocardial infarction (AMI) is a common clinical acute and severe disease with rapid onset, rapid progression, and high mortality [1-3]. In 2017, there were approximately 695,000 new cases of AMI in the United States, and it is estimated that 325,000 people will have recurrent events [4]. There are approximately 500,000 new cases of AMI in China every year, and 2.5 million patients have a history of myocardial infarction [5]. As technology has advanced, percutaneous coronary intervention (PCI) has become the primary approach for treating AMI. Although PCI can significantly reduce the fatality rate of AMI, the rate of major adverse cardiovascular events (MACEs) among patients after PCI is still very high, which seriously affects the clinical outcomes of patients [6-10]. A study by Copeland-Halperin et al [11] showed that the incidence of MACEs in patients with AMI one year after PCI was 17.8% [11].

Identifying patients with AMI undergoing PCI who are at high risk of MACEs may help clinical decision-making incorporate timely measures to improve clinical outcomes. Some studies, such as Global Registry of Acute Coronary Event [12], Thrombolysis in Myocardial Infarction Risk [13,14], and Acute Catheterization and Urgent Intervention Triage StrategY-PCI [15], as well as studies that generated the Mayo Clinic PCI Risk and the China Acute Myocardial Infarction scoring systems, have explored the risks after PCI [16]. Despite these advances, individualized prediction of MACEs remains challenging with low specificity and positive predictive accuracy, and most of the methods rely on traditional parameter models, such as logistic regression, to screen for variables and build a series of risk-scoring models.

In recent years, machine learning methods that rely on a strong self-learning capability, such as random forest (RF), K-nearest neighbors (KNN), support vector machine (SVM), and artificial neural network (ANN) have become increasingly prevalent in prognostic prediction [1,13,17,18]. By calling various functions, these models can extract and integrate information from all kinds of complex data to make better predictions. A study of a consecutive cohort of patients with hypertrophic cardiomyopathy (HCM) presented a machine learning–based model to identify individual patients with HCM at high risk of developing advanced heart failure symptoms. The results showed that the 5-year risk prediction of progressive heart failure in patients with HCM can be estimated [19].

We found that machine learning models, such as RF, ANN, SVM, and KNN, perform well in clinical prognosis prediction research. Thus, this study sought to develop a machine learning–based model, integrating clinical, anatomical, and laboratory features, to predict MACEs in patients who have recently been diagnosed with AMI after their first PCI and improve overall patient outcomes by implementing earlier management.

Methods

Study Design, Setting and Participant Selection

This retrospective cohort study was conducted at the Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University (a teaching tertiary hospital), in Jiangxi Province, China. We collected electronic medical records of patients with AMI who underwent PCI for the first time from January 2018 to December 2019. These patients were followed up through December 2021.

The inclusion criteria of the participants were as follows:

- The patient was ≥18 years of age.
- This was the patient’s first clinically diagnosed AMI (clinical evidence of AMI as evident from the detection of a rise or fall of cardiac troponin values and at least one of the following symptoms of myocardial ischemia: symptoms of acute myocardial ischemia, new ischemic electrocardiogram (ECG) changes, and development of pathological Q waves.
- PCI was performed for the first time at this hospital.
- Among the left main artery, left circumflex branch, left anterior descending branch, and right coronary artery, at least one had stenosis ≥50%.
- Complete medical records and follow-up data were available.

The following exclusion criteria were applied:

- History of PCI and coronary artery bypass grafting treatment
- Complications from other heart diseases requiring surgical procedures, such as heart bypass
- Recent active bleeding
- An intracerebral mass or an aneurysm

We adopted the “Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research” to guide the reporting of our study [20].

Data Collection, Definition of Outcomes, and Predictor Variables

Data were collected from electronic health records, including demographic characteristics, clinical investigations, the first laboratory tests, and disease-related events. MACEs were defined as cardiomyopathies (excluding infectious, familial, alcohol, and drug-related cardiomyopathies), hypertensive heart disease, recurrent myocardial infarction, heart failure, sudden cardiac death, revascularization, malignant arrhythmia, and stent thrombosis [21]. Abnormal Q waves were identified by the clinician based on ECG results. Left ventricular ejection fraction (LVEF) was defined as normal (more than 50%), mildly abnormal (40% to 50%), moderately abnormal (30% to 40%), and severely abnormal (less than 30%) [22]. According to the number of diseased coronary vessels and implanted stents, they were classified as I, II, III, and IV.
Ethics Approval

This study was reviewed and approved by the Second Affiliated Hospital of Nanchang University Medical Ethics Committee (No. Review 2017 No. (098)).

Data Preprocessing for Machine Learning Model Development

All analyses were performed with R software (version 4.0.1; R Core Team). The patients were randomly assigned to training (n=953, 70%) and testing (n=409, 30%) data sets by calling the createDataPartition function using the random number method, and chi-square tests showed that there was no statistical difference between them ($\chi^2_{1} = 2.169; P = .14$). We developed machine learning models using the training data set. We analyzed the missing and out-of-range values with imputation methods. We used multiple imputation with chained equations to assign any missing predictor values [23]. The imputation processes were performed separately in the training and testing sets after the data were split. To improve the accuracy of the machine learning models and increase the speed of finding the optimal solution by gradient descent, we standardized and normalized all input variables before the model was built. To alleviate the problem of imbalanced classification samples, we adopted the random oversampling method. We used the ROSE package in R to generate new balanced training data. After random oversampling, the number of patients with MACE in the training data sets changed from 186 to 471.

Predictor Selection for Model Development

The model was built using demographic information (age and sex), personal comorbidities (diabetes and peripheral arterial disease), preoperative PCI (LVEF, the number of diseased vessels, and abnormal Q waves), serological examination (beta 2 microglobulin, B-type brain natriuretic peptide, glucose, serum creatinine clearance, and estimated glomerular filtration rate), and the characteristics of PCI (the number of implanted stents; n=65; Table S1 in Multimedia Appendix 1). A total of 12 variables with significant differences in the univariate analysis were included in the model development (Table 1).
Table 1. Baseline characteristics of the study patients (N=1362).

<table>
<thead>
<tr>
<th>Variables</th>
<th>MACE<sup>a</sup> (n=252)</th>
<th>Non-MACE (n=1110)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65</td>
<td>101 (40.08)</td>
<td>543 (48.92)</td>
<td>.04</td>
</tr>
<tr>
<td>65</td>
<td>94 (37.30)</td>
<td>332 (29.91)</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>57 (22.62)</td>
<td>235 (21.17)</td>
<td></td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td></td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>Yes</td>
<td>75 (29.76)</td>
<td>261 (23.51)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>177 (70.24)</td>
<td>849 (76.49)</td>
<td></td>
</tr>
<tr>
<td>Vascular disease, n (%)</td>
<td></td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>Yes</td>
<td>111 (44.05)</td>
<td>569 (51.26)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>141 (55.95)</td>
<td>541 (48.74)</td>
<td></td>
</tr>
<tr>
<td>Abnormal Q wave, n (%)</td>
<td></td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>Yes</td>
<td>125 (49.60)</td>
<td>480 (43.24)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>127 (50.40)</td>
<td>630 (56.76)</td>
<td></td>
</tr>
<tr>
<td>LVEF<sup>b</sup>, n (%)</td>
<td></td>
<td></td>
<td>.005</td>
</tr>
<tr>
<td>>50%</td>
<td>167 (66.27)</td>
<td>832 (74.95)</td>
<td></td>
</tr>
<tr>
<td>40%-50%</td>
<td>57 (22.62)</td>
<td>188 (16.94)</td>
<td></td>
</tr>
<tr>
<td>30%-40%</td>
<td>19 (7.54)</td>
<td>65 (5.86)</td>
<td></td>
</tr>
<tr>
<td><30%</td>
<td>9 (3.57)</td>
<td>25 (2.25)</td>
<td></td>
</tr>
<tr>
<td>Vessels with coronary artery disease, n (%)</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>I</td>
<td>45 (17.86)</td>
<td>288 (25.95)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>75 (29.76)</td>
<td>370 (33.33)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>123 (48.81)</td>
<td>418 (37.66)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>9 (3.57)</td>
<td>34 (3.06)</td>
<td></td>
</tr>
<tr>
<td>Implanted stent number, n (%)</td>
<td></td>
<td></td>
<td>.004</td>
</tr>
<tr>
<td>No stent</td>
<td>10 (3.97)</td>
<td>40 (3.60)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>106 (42.06)</td>
<td>594 (53.51)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>84 (33.33)</td>
<td>301 (27.12)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>37 (14.68)</td>
<td>114 (10.27)</td>
<td></td>
</tr>
<tr>
<td>≥IV</td>
<td>15 (5.95)</td>
<td>61 (5.50)</td>
<td></td>
</tr>
<tr>
<td>Brain natriuretic peptide (pg/μL), mean (SD)</td>
<td>684.36 (997.90)</td>
<td>518.27 (773.65)</td>
<td>.01</td>
</tr>
<tr>
<td>Serum creatinine clearance (mL/min), mean (SD)</td>
<td>65.19 (30.18)</td>
<td>71.87 (44.35)</td>
<td>.02</td>
</tr>
<tr>
<td>EGFR<sup>c</sup> (ml/min), mean (SD)</td>
<td>75.68 (28.92)</td>
<td>80.55 (31.82)</td>
<td>.03</td>
</tr>
<tr>
<td>Beta 2 microglobulin (mg/L), mean (SD)</td>
<td>3.23 (3.61)</td>
<td>2.72 (5.51)</td>
<td>.03</td>
</tr>
<tr>
<td>Glucose (mmol/L), mean (SD)</td>
<td>7.22 (3.32)</td>
<td>6.68 (3.00)</td>
<td>.02</td>
</tr>
</tbody>
</table>

^aMACE: major adverse cardiovascular events.
^bLVEF: left ventricular ejection fraction.
^cEGFR: estimated glomerular filtration rate.

Model Testing and Performance Evaluation

Based on a previous application of the model [24], the parameter range of the model was preset, and the GridSearchCV function was used to select the optimal parameters of each machine learning model.

To minimize potential overfitting in the above machine learning models, we called the trainControl function in the caret package of R language for 7-fold cross-validation during the development process. The model performance was assessed for accuracy, recall, precision, area under the receiver operating characteristic curve (AUC), and F_1-score in the testing data set. We identified...
the important predictors through importance analysis of the variables. Logistic regression analysis was used to compare the absolute value of the coefficients of variables; RF was used to measure the importance of features by calculating information gain through entropy; and the ANN method was used to calculate the relative importance of variables based on the generalized weight method.

Statistical Analysis

The following R packages for machine learning approaches were used: caret, randomForest, and neuralnet. Baseline characteristics were compared with the Wilcoxon rank sum test for continuous variables and the chi-square test for categorical variables. We considered $P<.05$ (2-sided) to be statistically significant.

Results

A total of 1531 patients were screened; 140 patients who did not undergo PCI for the first time were excluded; 19 patients were lost to follow-up; and 1362 patients who were successfully followed up were included in this analysis (Figure 1). The mean follow-up time was 28.0 (SD 11.0) months (median 29.9 months). A total of 252 MACEs were observed, including 128 cases of recurrent myocardial ischemia and 117 cases of myocardial infarction and reinfarction. The positive rates of MACEs were 4.63%, 11.38%, 14.54%, and 18.50% at 30 days, 6 months, 1 year, and 3 years after PCI, respectively. MACEs occurred in 203 (18.7%) male patients and 49 (17.8%) female patients. As shown in Figure 2, the survival rate of the sample population decreased rapidly in the first 3 months after PCI, especially 30 days after PCI, and there was no difference in the log-rank test of the survival curve between male and female patients.

Table 1 shows the baseline characteristics of the MACE group and the non-MACE group. Age, diabetes, peripheral and cerebrovascular history, LVEF, abnormal Q wave, the number of vessels with coronary artery disease, the number of implanted stents, brain natriuretic peptide, serum creatinine, estimated glomerular filtration rate, beta 2 microglobulin, and glucose were significantly different between the 2 groups ($P<.001$). The nonsignificant differences in variables between the 2 groups are shown in Table S1-S6 in Multimedia Appendix 1.

Table 2 shows the performance of the 3 models with 7-fold cross-validation. ANN, KNN, SVM, RF, and logistic regression exhibited the best to worst performance in terms of their AUC, accuracy, recall, and F_1-score. However, KNN performed best in terms of precision. The average accuracy, recall, precision, AUC, and F_1-score of the ANN model were 80.52%, 81.33%, 69.94%, 83.68%, and 79.47%, respectively.

In the testing data set, the ANN model showed a higher AUC than RF and logistic regression. Figure 3 shows that the AUCs of the ANN, RF, KNN, SVM, and logistic regression models were 0.805, 0.798, 0.772, 0.727, and 0.718, respectively; the average accuracy for the above 3 models was 0.821, 0.741, and 0.729, respectively, and the average F_1-scores were 0.804, 0.722, and 0.709, respectively.

The 10 most important predictors in the ANN model are shown in Table 3. These were LVEF (0.27), the number of implanted stents (0.14), age (0.13), diabetes (0.10), the number of vessels with coronary artery disease (0.09), vascular disease (0.08), brain natriuretic peptide (0.05), glucose (0.05), beta 2 microglobulin (0.04), and abnormal Q wave (0.02).

Figure 1. Flowchart for patient enrollment. AMI: acute myocardial infarction; MACE: major adverse cardiovascular event.

![Flowchart for patient enrollment](https://formative.jmir.org/2024/1/e48487/figure1.png)
Figure 2. Prognostic survival curve of patients with acute myocardial infarction undergoing percutaneous coronary intervention.

Table 2. Comparison of models for predicting major adverse cardiovascular events based on 7-fold cross-validation.

<table>
<thead>
<tr>
<th>Models</th>
<th>Accuracy, mean (SD)</th>
<th>Recall, mean (SD)</th>
<th>Precision, mean (SD)</th>
<th>AUC, mean (SD)</th>
<th>F1-score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>72.37 (2.05)</td>
<td>67.33 (8.42)</td>
<td>59.62 (8.34)</td>
<td>73.52 (2.37)</td>
<td>71.11 (6.01)</td>
</tr>
<tr>
<td>K-nearest neighbors</td>
<td>81.44 (2.22)</td>
<td>80.23 (1.56)</td>
<td>70.22 (7.23)</td>
<td>81.87 (3.32)</td>
<td>77.95 (5.70)</td>
</tr>
<tr>
<td>Support vector machine</td>
<td>74.91 (3.03)</td>
<td>80.03 (1.76)</td>
<td>65.94 (7.02)</td>
<td>78.68 (1.82)</td>
<td>76.41 (5.92)</td>
</tr>
<tr>
<td>Random forest</td>
<td>73.44 (1.58)</td>
<td>71.23 (1.56)</td>
<td>61.22 (7.23)</td>
<td>74.87 (2.12)</td>
<td>71.92 (6.30)</td>
</tr>
<tr>
<td>Artificial neural network</td>
<td>80.52 (1.13)</td>
<td>81.33 (0.56)</td>
<td>69.94 (7.02)</td>
<td>83.68 (1.82)</td>
<td>79.47 (4.57)</td>
</tr>
</tbody>
</table>

*AUC: area under the receiver operating characteristic curve.

Figure 3. The area under the receiver operating characteristic (ROC) curve of artificial neural network (ANN), random forest (RF), k-nearest neighbors (KNN), support vector machine (SVM), and logistic regression models.
Discussion

Principal Findings

In this study, we developed a machine learning–based model integrating clinical, anatomical, and laboratory test features to predict MACEs in patients with newly diagnosed AMI after their first PCI. The major findings suggest that the ANN model had higher predictive accuracy (accuracy of 87.99%, AUC of 0.81, and F1-score of 0.71), compared to RF, KNN, SVM, and logistic regression.

Among the patients with AMI in this study, the rates of MACEs at 30 days, 6 months, 1 year, and 3 years after PCI were 4.63%, 11.38%, 14.54%, and 18.50%, respectively, and the incidence of MACEs at 30 days after PCI was slightly less than the 5.5% reported in the Harmonizing Outcomes with RevascularIZatiON and Stents in Acute Myocardial Infarction study (HORIZONS-AMI) [25]. The incidence of MACEs at half a year was higher than the 6.67% reported by Chow et al [26], consistent with the 2-year rate of MACEs reported by Sanmenxia City (18.06%). The survival condition of patients with AMI after PCI was slightly different from that in other studies. The participants in this study were all patients who were first diagnosed with AMI and underwent PCI for the first time, and their prognosis was better than that of patients with previous myocardial infarctions and multiple PCIs [27]. In addition, the progression of a patient’s disease is affected by not only individual differences but also access to medical resources and services. The HORIZONS-AMI trial was first reported in 2012. Although the treatment level in the HORIZONS-AMI trial was higher than that available in China at that time, with the development of China’s economy, the progress of science and technology, and the substantial improvement of medical care, the MACE rate obtained in our study was lower than that reported in the HORIZONS-AMI study.

One study found that machine learning demonstrated the highest performance for risk prediction in patients with extracardiac vascular disease for the prediction of both arhythogenic cardiomyopathy and MACEs [10]. McCord et al [28] proposed that machine learning can be used to assess AMI within 30 minutes and that the algorithm has high diagnostic and prognostic utility. In this study, 3 algorithms were used to predict MACE occurrence for patients with newly diagnosed AMI undergoing PCI treatment for the first time. The MACE prediction ability of the logistic regression model was lower than that of the ANN model and almost the same as that of the RF model. However, the positive predictive values of these 3 prediction models were not high. Kuang et al [29] also found that the ANN model had the best predictive value for the transition from mild cognitive impairment to Alzheimer disease with ideal stability [29]. The positive predictive values of the RF model and the logistic regression model were both approximately 50%, which means that their predictive ability for MACEs was poor. Their shortcomings may be associated with class imbalances [30], which can easily cause the predicted results to be biased toward a large number of classes (the positive type of fault can be placed into the negative class). ANNs, with their powerful self-adaptability, self-organization, fault tolerance, and “black box” operation of nonlinear mapping, are especially suitable for solving problems with complex internal mechanisms and have been widely used in various disciplines [31].

Our results indicated that the 3-year prognostic risk among patients with AMI undergoing their first PCI was mainly related to age, ECG characteristics, ventricular ejection ability, coronary artery lesions, stent implantation after PCI, and some serological variables. Yang et al [32] found that the risk ratio of hospital deaths after PCI was 3.723 (95% CI 2.86-4.84) for South Korean patients aged >65 years relative to those aged ≤65 years. A Korean multicenter AMI National Institutes of Health–registered project found that the MACE rate, 3 years after PCI, among patients with AMI with an LVEF <40% was 3.34 times that of the control group [33]. Fam et al [34] conducted a retrospective study on patients with clinical AMI in Asian multiethnic groups and found that the risk of MACEs among patients with diabetes, 2 years after PCI, was 1.84 times higher than that among patients without diabetes [34]. Diabetes is a chronic metabolic disease, and long-term diabetes is often accompanied by bleeding disorders, vascular endothelial dysfunction, small artery lesions, high blood sugar [35], hemostatic disorders [36], endothelial dysfunction, and a series of other changes [37]. These characteristics will accelerate the process of atherosclerotic disease deterioration. The number of coronary artery lesions

Table 3. Importance of each variable in the artificial neural network model.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular ejection fraction</td>
<td>0.27</td>
</tr>
<tr>
<td>The number of implanted stents</td>
<td>0.14</td>
</tr>
<tr>
<td>Age</td>
<td>0.13</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.10</td>
</tr>
<tr>
<td>The number of vessels with coronary artery disease</td>
<td>0.09</td>
</tr>
<tr>
<td>Vascular disease</td>
<td>0.08</td>
</tr>
<tr>
<td>Brain natriuretic peptide</td>
<td>0.05</td>
</tr>
<tr>
<td>Glucose</td>
<td>0.05</td>
</tr>
<tr>
<td>Beta 2 microglobulin</td>
<td>0.04</td>
</tr>
<tr>
<td>Abnormal Q wave</td>
<td>0.02</td>
</tr>
</tbody>
</table>
and the number of stents implanted in a patient are also positively correlated with the risk of postoperative MACEs to a certain extent. This may be because a higher number of vessels with coronary artery disease and the number of implanted stents tend to indicate a more serious condition, leading to a worse prognosis for the patients. Hongbo et al [38] found that the probability of a poor prognosis in patients with multiple coronary artery lesions was 20.0%, compared with 6.98% in patients with single coronary artery lesions [38]. The results of the machine learning model showed that predictors like LVEF, number of implanted stents, and age were more important to the model. LVEF is a common variable that reflects left ventricular function, and patients with a low LVEF have a significantly higher MACE rate [39]. An increase in age can lead to the aggravation of atherosclerosis [40]. The number of implanted stents may be related to the severity of the disease and the extent of the infarction [41]. This reminds us that we should pay special attention to the prognosis of patients with AMI who have a low LVEF value, older age, and more implanted stents in clinical practice.

Study Limitations
This study has some limitations. First, there may have been an issue of survival bias in the study, as patients with missing follow-up data were excluded. Second, the data have missing values. We have filled missing values with multiple imputation; however, imputation with these techniques could synthetically reduce the variance in these variables and may have affected the accuracy of the constructed model. Finally, although the models were internally validated with data from the same hospital, further work should include validation with external data from other hospitals or centers.

Conclusions
This study revealed that the ANN model showed good MACE prediction performance for patients with AMI after PCI, and it identified the most important predictors, which may aid in clinical decision-making and improve outcomes. This model needs to be externally validated in larger populations and multicenter settings.

Acknowledgments
The authors are grateful to the following individuals for contributing data: Li Li, Nan Wang, LiFang Deng, ShanLan Yang, and Bin Liu. This study was supported by the National Natural Science Foundation of China (grants 81960611, 82160645, 82360667, and 81260441), Natural Science Foundation of Jiangxi Province (grants 20192BAA208005 and 20212BAB206091), and the National Undergraduate Training Program for Innovation and Entrepreneurship (grant 202010403019).

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Additional statistics.

[DOCX File. 53 KB - formative_v8i1e48487_app1.docx]

References

Abbreviations

AMI: acute myocardial infarction
ANN: artificial neural network
AUC: area under the receiver operating characteristic curve
ECG: electrocardiogram
HCM: hypertrophic cardiomyopathy
HORIZONS-AMI: Harmonizing Outcomes with RevascularIZatiON and Stents in Acute Myocardial Infarction
KNN: k-nearest neighbors
LVEF: left ventricular ejection fraction
MAC: major adverse cardiovascular event
PCI: percutaneous coronary intervention
RF: random forest
SVM: support vector machine

https://formative.jmir.org/2024/1/e48487

Zhang et al JMIR FORMATIVE RESEARCH

JMIR Form Res 2024 | vol. 8 | e48487 | p.1516

(page number not for citation purposes)
Differences in Psychological Inflexibility Among Men With Erectile Dysfunction Younger and Older Than 40 Years: Web-Based Cross-Sectional Study

Junichi Saito1, PhD; Hiroaki Kumano2, MD, PhD; Mohammad Ghazizadeh3, MD, PhD; Chigusa Shimokawa3, MA; Hideki Tanemura3, MBA

1Comprehensive Research Organization, Waseda University, Saitama, Japan
2Faculty of Human Sciences, Waseda University, Saitama, Japan
3Logos Science Corp, Tokyo, Japan

Corresponding Author:
Junichi Saito, PhD
Comprehensive Research Organization
Waseda University
2-579-15, Mikajima, Tokorozawa
Saitama, 359-1192
Japan
Phone: 81 429498113
Email: tekuteke@aoni.waseda.jp

Abstract

Background: Psychological inflexibility is a core concept of acceptance and commitment therapy (ACT), which is a comprehensive, transdiagnostic interpretation of mental health symptoms. Erectile dysfunction (ED) is a condition that affects male sexual performance, involving the inability to achieve and maintain a penile erection sufficient for satisfactory sexual activity. Psychosocial factors primarily influence ED in men younger than 40 years, whereas biological factors are more likely to be the underlying cause in older men.

Objective: This web-based cross-sectional study examined differences in depression, anxiety, and psychological inflexibility among men with ED younger and older than 40 years in a Japanese population.

Methods: We used a web-based survey to gather data from various community samples. ED was assessed by the International Index of Erectile Function - 5 (IIEF-5) questionnaire, while depression, anxiety, and psychological inflexibility were evaluated by the Patient Health Questionnaire-9 (PHQ-9), General Anxiety Disorder-7 (GAD-7), Acceptance and Action Questionnaire-II (AAQ-II), Cognitive Fusion Questionnaire (CFQ), and Valuing Questionnaire–Obstacle Subscale (VQ-OB) questionnaires. The chi-square test estimated the scores of PHQ-9 and GAD-7 among men with ED, comparing those younger than 40 years and those older than 40 years. Additionally, a two-way ANOVA was conducted with ED severity and age group as independent variables, assessing psychological inflexibility.

Results: Valid responses from 643 individuals (mean age 36.19, SD 7.54 years) were obtained. Of these, 422 were younger than 40 years (mean age 31.76, SD 5.00 years), and 221 were older than 40 years (mean age 44.67, SD 2.88 years). There was a statistical difference in the prevalence of depression as judged by PHQ≥10 between men with ED younger and older than 40 years (P<.001). On the other hand, there was no difference in the prevalence of anxiety as judged by GAD≥10 (P=.12). The two-way ANOVA revealed that the interactions for CFQ (P=.04) and VQ-OB (P=.01) were significant. The simple main effect was that men with ED younger than 40 years had significantly higher CFQ (P=.01; d=0.62) and VQ-OB (P<.001; d=0.87) scores compared to those older than 40 years in moderate ED and severe ED. Additionally, it was found that men younger than 40 years with moderate to severe ED had significantly higher CFQ (P=.01; d=0.42) and VQ-OB (P=.02; d=0.38) scores compared to men younger than 40 years without ED. On the other hand, no interaction was found for AAQ-II (P=.16) scores.

Conclusions: To the best of our knowledge, this web-based cross-sectional study is the first to examine the relationship between psychological inflexibility and ED. We conclude that men with moderate and severe ED younger than 40 years have higher psychological inflexibility and might be eligible for ACT.

(JMIR Form Res 2024;8:e45998) doi:10.2196/45998

https://formative.jmir.org/2024/1/e45998
KEYWORDS
erectile dysfunction; acceptance and commitment therapy; psychological inflexibility; depression; anxiety; men; cross-sectional study; psychological; utility; psychosocial; men; therapy; impotence; erection

Introduction
The efficacy of acceptance and commitment therapy (ACT) has been evaluated in numerous randomized controlled studies exploring various targeted conditions [1]. There is supporting evidence for ACT across various physical illnesses (eg, chronic pain [2], diabetes [3], epilepsy [4], cancer [5], and irritable bowel syndrome [6]). Many of these studies use a transdiagnostic method to analyze psychological issues within individual health conditions. Psychological inflexibility is a core concept of ACT, which is a comprehensive, transdiagnostic interpretation of mental health symptoms [7]. Psychological inflexibility highlights two interrelated processes: cognitive fusion and experiential avoidance. Cognitive fusion represents the phenomenon by which individuals are influenced by the literal meaning of their thoughts instead of viewing them as transient internal states [8]. Experiential avoidance represents an attempt or desire to suppress unwanted internal experiences, such as emotions, thoughts, memories, and bodily sensations [9]. These processes are obstacles to one’s valued living activities, decreasing well-being [10].

Erectile dysfunction (ED) is a condition that affects male sexual performance, involving the inability to achieve and maintain a penile erection sufficient for satisfactory sexual activity [11]. Several reviews and clinical guidelines are available for ED. However, many of these approaches to assessing and treating ED purely from a medical perspective seldom address the psychosocial components of ED [12]. Pharmacological treatment alone does not respond to all the concurrent factors of ED, including anxiety, loss of self-confidence, depressed mood, difficulties in a couple’s communication, relationship disputes, or a partner’s sexual problems [13]. Recent systematic reviews have shown that combining phosphodiesterase-5 inhibitors with psychological treatment exhibits significant potential for treating ED [14].

There is a widespread assumption that psychosocial factors primarily influence ED in men younger than 40 years, whereas biological factors are more likely to be the underlying cause of ED in older men. Moore et al [15] showed different symptom patterns among patients with ED according to age groups. They reported that younger men had comparatively more significant depressive symptoms, with lower relationship satisfaction, more negative reactions from partners, and lower job satisfaction. Given these findings, it is possible that people younger than 40 years are more psychologically inflexible than those older than 40 years and that ACT is more effective for them. However, studies on ACT for ED remain limited, with only a few identified. Therefore, this cross-sectional study used assessments to evaluate depression, anxiety, and psychological inflexibility in men younger and older than 40 years. However, it is well known that ED prevalence varies across geographical groups [16,17]; therefore, it is essential to research ED etiology according to different racial, cultural, religious, and socioeconomic backgrounds. There might be many potential

Methods
Participants
To gather data from a wide range of community samples, we used a web-based survey, conducted with the assistance of a marketing research service provider (Rakuten Insight, Inc) in Japan. Based on the International Index of Erectile Function – 5 (IIEF-5) cutoff point [18], participants of all severities were recruited to include a certain percentage of patients of all ages. All enrolled participants followed the following criteria: (1) male; (2) aged 20 to 50 years; and (3) married or living with a fixed sexual partner for more than 6 months. The exclusion criteria were as follows: (1) sexual dysfunction caused by Peyronie disease or other organic lesions of the external genitalia; (2) prostate cancer, hypertensive disease, cardiac disease, cerebrovascular disease, chronic kidney disease, and diabetes; and (3) a history of sertraline or other medicines that may influence erection and psychological symptoms.

Participants were first instructed that this survey would be administered anonymously, and their responses were not compulsory. Then, those participants who agreed to participate in this research responded to the surveys. Participants were given points to exchange for items within the survey company’s system as a reward.

Ethical Considerations
This study was approved by the Waseda University Academic Research Ethical Review Committee (2019-363). The study protocol followed the guidelines for epidemiological studies in accordance with the Declaration of Helsinki.

Measurements
International Index of Erectile Function-5 (IIEF-5)
The Japanese version of IIEF-5 is a 5-item self-report questionnaire designed to measure erectile function [18]. Items are rated on a 5-point Likert-type scale, ranging from 1 to 5. The total score can range from 5 to 25, with high scores meaning high erectile function. Based on the original validation studies, the total score can then be interpreted as suggesting “no ED” (22-25), “mild ED” (17-21), “mild-to-moderate ED” (12-16), “moderate ED” (8-11), and “severe ED” (5-7).

Patient Health Questionnaire-9 (PHQ-9)
The Japanese version of the Patient Health Questionnaire-9 (PHQ-9) is a 9-item self-report questionnaire designed to measure depression [19]. Items are rated on a 4-point Likert-type scale, ranging from 0 to 3. The total score can range from 0 to 27, with high scores meaning high depression. Based on the original validation studies, the total score can then be interpreted as suggesting no depression (0-4), mild depression (5-9), moderate depression (10-14), moderately severe depression (15-19), and severe depression (20-27).
(15-19), or severe depression (20-27). A cutoff score of 10 is suggested as indicating a possible diagnosis of depressive disorder.

Generalized Anxiety Disorder-7 (GAD-7)

The Japanese version of the Generalized Anxiety Disorder-7 (GAD-7) questionnaire is a 7-item self-report questionnaire designed to measure generalized anxiety disorder [20]. Items are rated on a 4-point Likert-type scale, ranging from 0 to 3. The total score can range from 0 to 21, with high scores meaning high anxiety. Based on the original validation studies, the total score can then be interpreted as suggesting no anxiety (0-4), mild anxiety (5-9), moderate anxiety (10-14), or severe anxiety (14-21). A cutoff score of 10 is suggested as indicating a possible diagnosis of generalized anxiety disorder.

Acceptance and Action Questionnaire-II (AAQ-II)

The Japanese version of the Acceptance and Action Questionnaire-II (AAQ-II) is a 7-item self-report questionnaire designed to measure experiential avoidance [21]. Items are rated on a 7-point Likert-type scale, ranging from 1 to 7. The total score can range from 7 to 49, with high scores meaning high experiential avoidance.

Cognitive Fusion Questionnaire (CFQ)

The Japanese version of the Cognitive Fusion Questionnaire (CFQ) is a 7-item self-report questionnaire designed to measure cognitive fusion [22]. Items are rated on a 7-point Likert-type scale, ranging from 1 to 7. The total score can range from 7 to 49, with high scores meaning high cognitive fusion.

Valuing Questionnaire–Obstacle Subscale (VQ-OB)

The Japanese version of the Valuing Questionnaire–Obstacle Subscale (VQ-OB) is a 5-item self-report questionnaire designed to measure obstruction of valued living [23]. Items are rated on a 7-point Likert-type scale, ranging from 0 to 6. The total score can range from 0 to 30, with high scores meaning high obstruction of valued living.

Statistical Analysis

We used mean (SD) values to describe numerical data and counts and percentages to describe categorical data. The chi-square tests estimated categorical data, and numerical data were estimated by t tests. A two-way ANOVA test was used to assess the differences in men with ED aged younger and older than 40 years regarding psychological inflexibility and the interaction between them. Post hoc tests were conducted using the Holm method to control for type I errors. Cohen d index was calculated as effect sizes, serving as standardized indicators unaffected by sample sizes. All tests were 2-tailed, and a statistical difference was assumed when the P value was <.05. All statistical analyses were conducted through IBM SPSS Statistics (version 25.0; IBM Corp).

Results

We obtained valid responses from 643 individuals (mean age 36.19, SD 7.54 years). Of these, 422 were younger than 40 years (mean age 31.76, SD 5.00 years), and 221 were older than 40 years (mean age 44.67, SD 2.88 years). Table 1 shows the demographic characteristics of participants by age difference. No statistical difference was found in ED severity, phosphodiesterase-5 inhibitors use, and marriage status between men with ED younger and older than 40 years.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th><40 years of age (n=422)</th>
<th>≥40 years of age (n=221)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>31.76 (5.00)</td>
<td>44.67 (2.88)</td>
<td><.001</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
<td>.44</td>
</tr>
<tr>
<td>Single</td>
<td>77 (18.25)</td>
<td>35 (15.84)</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>345 (81.75)</td>
<td>186 (84.16)</td>
<td></td>
</tr>
<tr>
<td>Duration of marriage (years), mean (SD)</td>
<td>4.87 (3.90)</td>
<td>10.43 (7.53)</td>
<td><.001</td>
</tr>
<tr>
<td>IIEF-5 severity, n (%)</td>
<td></td>
<td></td>
<td>.84</td>
</tr>
<tr>
<td>No ED</td>
<td>84 (19.91)</td>
<td>49 (22.17)</td>
<td></td>
</tr>
<tr>
<td>Mild to mild-to-moderate ED</td>
<td>226 (53.55)</td>
<td>112 (50.68)</td>
<td></td>
</tr>
<tr>
<td>Moderate to severe ED</td>
<td>112 (26.54)</td>
<td>60 (27.15)</td>
<td></td>
</tr>
<tr>
<td>PDE-5 use, n (%)</td>
<td></td>
<td></td>
<td>.63</td>
</tr>
<tr>
<td>Not using</td>
<td>337 (79.86)</td>
<td>180 (81.45)</td>
<td></td>
</tr>
<tr>
<td>Using</td>
<td>85 (20.14)</td>
<td>41 (18.55)</td>
<td></td>
</tr>
</tbody>
</table>

aIIEF-5: International Index of Erectile Function - 5.
bPDE-5: phosphodiesterase-5 inhibitor.

The prevalence of depression as judged by PHQ≥10 among men younger than 40 years was 39.81% (168/422), and it was 24.89% (55/221) among those older than 40 years. There was a statistical difference in the prevalence of depression between the two groups ($P<.001$). In addition, the prevalence of anxiety, as judged by GAD≥10, was 27.25% (115/422) among men younger than 40 years.
younger than 40 years, and it was 21.72% (48/221) among those older than 40 years. There was no difference in the prevalence of anxiety between men with ED in the two age groups (P=.12). Table 2 illustrates these results.

Table 2. Prevalence of depression and anxiety among men with erectile dysfunction younger and older than 40 years.

<table>
<thead>
<tr>
<th>Questionnaires and characteristics</th>
<th><40 years of age (n=422)</th>
<th>≥40 years of age (n=221)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHQ-9<sup>a</sup></td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>No depression or mild depression (PHQ-9<10), n (%)</td>
<td>254 (60.19)</td>
<td>166 (75.11)</td>
<td></td>
</tr>
<tr>
<td>Prevalence of depression (PHQ-9≥10), n (%)</td>
<td>168 (39.81)</td>
<td>55 (24.89)</td>
<td></td>
</tr>
<tr>
<td>GAD-7<sup>b</sup></td>
<td></td>
<td></td>
<td>.13</td>
</tr>
<tr>
<td>No anxiety or mild anxiety (GAD-7<10), n (%)</td>
<td>307 (72.75)</td>
<td>173 (78.52)</td>
<td></td>
</tr>
<tr>
<td>Prevalence of anxiety (GAD-7≥10), n (%)</td>
<td>115 (27.25)</td>
<td>48 (21.72)</td>
<td></td>
</tr>
</tbody>
</table>

^aPHQ-9: Patient Health Questionnaire-9.
^bGAD-7: Generalized Anxiety Disorder-7.

The two-way ANOVA was performed with ED severity and age (<40 or >40 years) as independent variables and the scores of AAQ, CFQ, and VQ-OB as dependent variables. The results showed no significant differences in AAQ-II (P=.14), CFQ (P=.08), and VQ-OB (P=.30) scores attributed to ED severity. Moreover, no difference in ED severity or psychological inflexibility depending on the duration of the marriage was found. On the other hand, there were significant differences in the scores of CFQ (P=.04) and VQ-OB (P=.004) attributed to age. As the interactions were significant for CFQ (P=.04) and VQ-OB (P=.01) scores, the simple main effect was examined. It was found that men with ED younger than 40 years had significantly higher CFQ (P=.01; d=0.62) and VQ-OB (P<.001; d=0.87) scores compared to those older than 40 years, in cases of moderate and severe ED. Additionally, it was found that men with moderate to severe ED younger than 40 years had significantly higher CFQ (P=.01; d=0.42) and VQ-OB (P=.02; d=0.38) scores compared to men with no ED younger than 40 years. These results are illustrated in Table 3 and Figures 1 and 2.

Table 3. Two-way ANOVA results of the influence of erectile dysfunction (ED) severity, age, and interaction on psychological inflexibility.

<table>
<thead>
<tr>
<th>Parameters and factors</th>
<th>Sum of squares</th>
<th>Mean squares</th>
<th>F test (df)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAQ-II<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED severity</td>
<td>281.60</td>
<td>140.80</td>
<td>1.91 (2,637)</td>
<td>.14</td>
</tr>
<tr>
<td>Age</td>
<td>204.74</td>
<td>204.74</td>
<td>2.78 (1,637)</td>
<td>.10</td>
</tr>
<tr>
<td>ED severity x age</td>
<td>267.27</td>
<td>133.64</td>
<td>1.81 (2,637)</td>
<td>.16</td>
</tr>
<tr>
<td>CFQ<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED severity</td>
<td>433.63</td>
<td>216.82</td>
<td>2.49 (2,637)</td>
<td>.08</td>
</tr>
<tr>
<td>Age</td>
<td>348.12</td>
<td>348.12</td>
<td>3.99 (1,637)</td>
<td>.04</td>
</tr>
<tr>
<td>ED severity x age</td>
<td>534.92</td>
<td>267.46</td>
<td>3.07 (2,637)</td>
<td>.04</td>
</tr>
<tr>
<td>VQ-OB<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED severity</td>
<td>74.56</td>
<td>37.28</td>
<td>1.19 (2,637)</td>
<td>.30</td>
</tr>
<tr>
<td>Age</td>
<td>263.36</td>
<td>263.36</td>
<td>8.38 (1,637)</td>
<td>.004</td>
</tr>
<tr>
<td>ED severity x age</td>
<td>250.82</td>
<td>125.41</td>
<td>3.99 (2,637)</td>
<td>.01</td>
</tr>
</tbody>
</table>

^aAAQ-II: Acceptance and Action Questionnaire-II.
^bCFQ: Cognitive Fusion Questionnaire.
^cVQ-OB: Valuing Questionnaire–Obstacle Subscale.
Discussion

Principal Findings

This cross-sectional study evaluated depression, anxiety, and psychological inflexibility in men younger and older than 40 years with ED. There was no statistical difference in demographic characteristics between the two groups. The average age of the participants was 31.76 (SD 5.00) years in men younger than 40 years; the population was assumed to have mainly mild-to-moderate psychogenic ED. On the other hand, the average age of the participants was 44.67 (SD 2.88) years in men older than 40 years; the population was assumed to have mostly mild-to-moderate organic ED.

Depression was found in both groups. The results of our study were consistent with a previous study [15], which found that younger men had comparatively greater depressive symptoms. In contrast, the prevalence of anxiety was not different between the two age groups. One possible reason is that the anxiety in men with ED is not general anxiety but specific anxiety about sexual situations. Masters and Johnson [24] highlighted the
Men with ED younger than 40 years had significantly higher CFQ and VQ-OB scores than those older than 40 years in cases of moderate and severe ED. Furthermore, men with moderate-to-severe ED younger than 40 years had significantly higher CFQ and VQ-OB scores compared to men without ED. These results partly support our hypothesis that men younger than 40 years are more psychologically inflexible than those older than 40 years. Cognitive fusion might be the critical component of ACT for ED. For example, the fusion with sexual performance anxiety, such as “I might fail again,” makes it impossible to pay attention to the sexual partner, which results in erectile failure. It is also consistent with Barlow’s theory [27]. Barlow [27] proposed a model for the interaction of anxiety and cognitive interference. This model examines how anxiety and cognitive interference interact, particularly in a sexual context, where a lack of control over one’s arousal diverts attention from erotic arousal to physical arousal and the negative consequences associated with failure to attain an erection.

On the other hand, there were no significant differences in the scores of the AAQ-II, which might be related to psychometric issues with AAQ-II. To date, the most used self-report measure of psychological inflexibility, especially experience avoidance, has been the AAQ-II. There was no significant difference in ED severity and psychological inflexibility depending on the duration of the marriage. However, various issues regarding the AAQ-II have emerged from the existing literature [28]. The authors found that the AAQ-II faced challenges in distinguishing distress (like negative affect and neuroticism) from experiential avoidance. For clinical application, researchers have expanded the range of measures for psychological inflexibility. They have developed specific versions of the AAQ-II tailored to different populations or disorders, with currently over 20 available versions (examples include those for the workplace, tinnitus, irritable bowel syndrome, exercise, and epilepsy). The disorder-specific AAQ-II variants indicate greater incremental validity in their targeted areas than the general AAQ-II [29]. Thus, developing a questionnaire on ED-related psychological inflexibility might be necessary.

There are some limitations to this study. First, this study used a cross-sectional approach, indicating merely “associations” rather than “causality” between psychological inflexibility and ED. Further controlled experimental and longitudinal studies are essential to delve deeper into the impact of psychological inflexibility on ED. Second, in this study, no responses were obtained from the partners of men with ED. Including the partners in the assessment and treatment of ED is recommended. It is desirable to obtain responses from partners in future studies. Finally, the specific racial or ethnic and socioeconomic profiles of the participants may restrict the broader applicability of the findings. The study was also conducted during the COVID-19 epidemic, which may have influenced the results.

Conclusions
To the best of our knowledge, this web-based cross-sectional study was the first to examine the relationship between psychological inflexibility and ED. We conclude that men with moderate and severe ED younger than 40 years have higher psychological inflexibility and might be eligible for the ACT. In addition, developing a Japanese version of the questionnaire is necessary to measure ED-related anxiety and psychological inflexibility.

Data Availability
The data sets generated and analyzed during this study are not publicly available due to the Waseda University Academic Research Ethical Review Committee’s data-sharing policy but are available from the corresponding author upon reasonable request.

Conflicts of Interest
This research was funded by Logos Science Corp, Ltd, Tokyo, Japan. MG, CS, and HT are members of the Logos Science Corp, Ltd.

References

Abbreviations

AAQ-II: Acceptance and Action Questionnaire - II
ACT: Acceptance and Commitment Therapy
CFQ: Cognitive Fusion Questionnaire
ED: Erectile Dysfunction
GAD-7: Generalized Anxiety Disorder - 7
IIEF-5: International Index of Erectile Function - 5
PHQ-9: Patient Health Questionnaire - 9
VQ-OB: Valuing Questionnaire–Obstacle Subscale
Determining Distinct Suicide Attempts From Recurrent Electronic Health Record Codes: Classification Study

Kate H Bentley1,2*, PhD; Emily M Madsen1,3*, BSc; Eugene Song1,3, BA; Yu Zhou1,3, MPP; Victor Castro4, MS; Hyunjoon Lee1,3, MSc; Younga H Lee2,3, PhD; Jordan W Smoller1,2,3, MD, SCD

1Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
2Department of Psychiatry, Harvard Medical School, Boston, MA, United States
3Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
4Mass General Brigham Research Information Science and Computing, Somerville, MA, United States
*these authors contributed equally

Corresponding Author:
Kate H Bentley, PhD
Center for Precision Psychiatry
Department of Psychiatry
Massachusetts General Hospital
185 Cambridge Street
2nd Floor
Boston, MA, 02114
United States
Phone: 1 6177247741
Email: kbentley@mgh.harvard.edu

Abstract

Background: Prior suicide attempts are a relatively strong risk factor for future suicide attempts. There is growing interest in using longitudinal electronic health record (EHR) data to derive statistical risk prediction models for future suicide attempts and other suicidal behavior outcomes. However, model performance may be inflated by a largely unrecognized form of “data leakage” during model training: diagnostic codes for suicide attempt outcomes may refer to prior attempts that are also included in the model as predictors.

Objective: We aimed to develop an automated rule for determining when documented suicide attempt diagnostic codes identify distinct suicide attempt events.

Methods: From a large health care system’s EHR, we randomly sampled suicide attempt codes for 300 patients with at least one pair of suicide attempt codes documented at least one but no more than 90 days apart. Supervised chart reviewers assigned the clinical settings (ie, emergency department [ED] versus non-ED), methods of suicide attempt, and intercode interval (number of days). The probability (or positive predictive value) that the second suicide attempt code in a given pair of codes referred to a distinct suicide attempt event from its preceding suicide attempt code was calculated by clinical setting, method, and intercode interval.

Results: Of 1015 code pairs reviewed, 835 (82.3%) were nonindependent (ie, the 2 codes referred to the same suicide attempt event). When the second code in a pair was documented in a clinical setting other than the ED, it represented a distinct suicide attempt 3.3% of the time. The more time elapsed between codes, the more likely the second code in a pair referred to a distinct suicide attempt event from its preceding code. Code pairs in which the second suicide attempt code was assigned in an ED at least 5 days after its preceding suicide attempt code had a positive predictive value of 0.90.

Conclusions: EHR-based suicide risk prediction models that include International Classification of Diseases codes for prior suicide attempts as a predictor may be highly susceptible to bias due to data leakage in model training. We derived a simple rule to distinguish codes that reflect new, independent suicide attempts: suicide attempt codes documented in an ED setting at least 5 days after a preceding suicide attempt code had a positive predictive value of 0.90.
Introduction

Suicide is the tenth leading cause of death in the United States, with more than 48,000 suicide deaths annually [1]. Over the past 20 years, the suicide rate has increased by over 35% [2]. Most people who die by suicide have recently interacted with the health care system, with over half having a health care visit in the month prior to death [3,4]. Health care systems thus offer a key opportunity to identify people at high risk for suicide. Unfortunately, clinicians are poor at predicting who will make a suicide attempt [5] and traditionally studied risk factors perform no better than chance at predicting future suicidal behavior [6].

Recent work has focused on developing and validating machine learning models that use routinely collected electronic health record (EHR) data to predict future suicidal behavior [7]. Such models have demonstrated high levels of accuracy, exceeding that seen with clinician prediction and usual clinical risk factors [6,8-10]. EHR-based suicide risk prediction models, however, face one significant challenge that to date has not been adequately addressed. Suicide attempt is generally the outcome of interest in these models and is typically defined by International Classification of Diseases (ICD) diagnostic codes [11,12]. Within a given patient’s EHR, a suicide attempt code may be given multiple times across distinct health care encounters, often over very short periods of time (eg, days and weeks). Such “recurrent” codes may represent either distinct, new events (ie, multiple suicide attempts) or refer to the same event (ie, a single suicide attempt). The latter may occur when, for example, after making a suicide attempt, a patient has an emergency department (ED) visit followed by an inpatient hospitalization or outpatient follow-up encounters, with one (or multiple) suicide attempt codes assigned at each. In the absence of manual reviews of the narrative notes within patients’ EHRs, which cannot be performed at scale, it can be challenging to determine whether such recurrent suicide attempt codes, especially when documented over short time periods, refer to independent, distinct suicide attempts. Failure to make this important distinction can result in a form of “data leakage” in which the outcome to be predicted is included among features used for the prediction. This can result in substantial inflation of model performance [13].

To address this issue, some researchers have restricted model development to predict only the first occurrence of a suicide attempt code in a patient’s EHR [14-16]. This approach has a major limitation, however, in that a past suicide attempt is among the strongest known predictors of future suicidal behavior [17]. Thus, models that predict only the first documented suicide attempt ignore the subset of patients who may be at highest risk and thus of greatest clinical concern: those with a prior suicide attempt. Another approach is to include any previous suicide attempt codes as predictors of a subsequent suicide attempt code [18-21] thus including potential “repeat attempters” in these models. This approach, however, poses a significant risk of artificially inflating model performance if subsequent codes do not in fact refer to new suicide attempts. In other words, if a suicide attempt code instance used as an outcome actually indexes an attempt that was included a predictor, model performance will be inflated.

To minimize the risk of data leakage while retaining the option of including prior attempts as predictors, we aimed to develop an automated rule for determining whether recurrent suicide attempt codes in the EHR refer to distinct events. Such a rule might be based on relevant variables including clinical setting (eg, a suicide attempt code documented in the ED may be more likely to refer to a new suicide attempt event than one given in a non-ED setting), method (eg, suicide attempt codes that specify different methods may be more likely to refer to distinct events than codes specifying the same method), and time (eg, the more time elapsed between 2 suicide attempt codes, the less likely it may be that the codes refer to the same event). Here, we conducted a comprehensive manual EHR chart review to derive an automated rule that could identify criteria for selecting distinct suicide attempts with high confidence.

Methods

Data Source

The data source for this study was the Mass General Brigham (MGB) Research Patient Data Registry [22]. This registry covers 6.7 million patients treated in MGB-affiliated hospitals including the Massachusetts General Hospital and Brigham and Women’s Hospital in Boston.

Ethics Approval

This research was approved by the MGB institutional review board, which granted a waiver of informed consent (protocol #2018P001508).

Case Definition and Inclusion Criteria

Details of the development of our EHR-based case definitions for suicide attempt in the MGB health care system are reported elsewhere [14,15]. In brief, we first identified candidate ICD, Ninth Revision (ICD-9) and ICD, Tenth Revision (ICD-10) codes that are likely to capture suicide attempts. Next, expert clinicians conducted manual chart reviews of 670 patients (over 3000 narrative notes) to determine a final set of codes that capture suicide attempts with a positive predictive value (PPV) of >0.70: for ICD-9, E95*, 965*, 967*, 969*, and 881*; and for ICD-10, X71*-X83*, T14.91*, T36*-T50* where the sixth character is 2 (except for T36.9, T37.9, T39.9, T41.4, T42.7, T43.9, T45.9, T47.9, and T49.9, where the fifth is 2) and T51*-T65* where the sixth character is 2 (except for T51.9, T52.9, T53.9, T54.9, T56.9, T57.9, T58.0, T58.1, T58.9, T59.9, T60.9, T61.0, T61.1,
T61.9, T62.9, T63.9, T64.0, T64.8, and T65.9, where the fifth is 2).

For this study, we randomly selected a sample of 300 patients with 2 suicide attempt codes documented at least one but no more than 90 days apart (the “narrow sample”). This interval was chosen to capture codes that were given within a narrow time frame and thus potentially enriched for being “leaked” codes. In a sensitivity analysis, we randomly selected a second, smaller sample of 100 patients with 2 suicide attempt codes documented at least 1 day apart but with no other restrictions on intercode interval (the “broad sample”). A total of 31 patients appeared in both narrow and broad samples. Patients for whom we were unable to confidently locate the narrative notes corresponding to documented suicide attempt codes (eg, no narrative notes available within 30 days of the suicide attempt code date, narrative notes recorded on paper and never migrated to the EHR) were excluded after the sampling process.

Procedure

Under the supervision of JWS (a senior clinician with expertise in the treatment of suicidal behavior), 2 study team members (EMM and ES) manually reviewed the EHR clinical encounter data (including narrative notes) relevant to each pair of suicide attempt codes (“code pair”) per sampled patient (1015 in the narrow sample and 300 in the broad sample; 1253 unique codes across the 2 samples). Each code pair comprised a given suicide attempt code and the immediately (temporally) preceding code in a patient’s EHR. All applicable code pairs per patient were examined (including other code pairs with >90-day intervals for patients in the narrow sample). Chart reviewers assigned the following variables to each code pair: (1) whether the code pair referred to 2 distinct suicide attempts (dichotomous variable indicating distinct or not distinct suicide attempts), (2) clinical setting in which each code in the pair was documented (dichotomous variable indicating ED or non-ED [eg, outpatient and inpatient setting]), (3) suicide attempt method of each code in the pair (categorical variable with 6 categories derived from previous literature: poisoning, cutting or piercing, hanging or strangulation or suffocation, jumping, firearm, and other [which included codes with no specified method]), and (4) time elapsed (in days) between codes in each pair [23]. When there were multiple encounters with suicide attempt codes on the same day, these variables were assigned to codes at the day level; see Table S1 in Multimedia Appendix 1 for an example of sampled codes (and the variables assigned to each code and code pair) for a deidentified patient.

Data Analysis

We defined PPV as the probability that the second code in a pair was assigned in a non-ED setting, PPVs were low (below 0.10).

Results

Descriptive Statistics

The mean number of suicide attempt codes per patient in the narrow sample was 3.38 (SD 4.62; range 1–47). A total of 225 (75%) patients had <4 codes and 281 (93.7%) had <10 codes. A total of 210 (20.7%) code pairs had a second code reflecting a subsequent encounter for a condition for which the patient had received active treatment (indicated by a seventh “D” character).

Regarding how often the codes in a pair referred to distinct suicide attempts, of the 300 patients in the narrow sample, only 81 (27%) had more than one confirmed (by manual chart review) suicide attempt captured by the reviewed code pairs. Of the 1015 code pairs, only 180 (17.7%) referred to 2 distinct suicide attempt events. Table S1 in Multimedia Appendix 1 presents an example of sampled codes (and the variables assigned to each code and code pair) for a deidentified patient.

For clinical setting, the most common code pair types were non-ED/non-ED (n=542, 53.4%) followed by ED/ED (n=274, 27%). Regarding the 749 total non-ED codes, the most commonly represented clinical setting was inpatient (n=411, 54.9% of all non-ED codes), followed by other or unclear setting (n=149, 19.9% codes), intensive or critical care units (n=134, 17.9% codes), and outpatient (n=55, 7.3% codes). For suicide attempt method, the majority of code pairs (n=766, 75.5%) comprised 2 codes that referred to the same method. The median interval between codes in each code pair, across all codes, was 1 day. Among code pairs that referred to distinct suicide attempt events, the median interval was 35 days.

PPVs

Clinical Setting

Non-ED/ED code pairs (23 total code pairs) had the highest PPVs (0.96, 95% CI 0.87–1.04) for distinct suicide attempt events (Table 1). ED/ED pairs (274 total code pairs) had the second-highest PPVs (0.49, 95% CI 0.43–0.55). When the second code in a pair was assigned in a non-ED setting, PPVs were low (below 0.10).

In a sensitivity analysis, we excluded codes or encounters documented in inpatient settings with a prior code on the previous day from an inpatient or critical or intensive care
setting. For example, if a patient was given suicide attempt codes on three consecutive days in an inpatient setting, we only used the day 1 code. This resulted in 792 (versus 1015) analyzed code pairs. The results were overall very similar to when we did not exclude contiguous inpatient codes (Multimedia Appendix 2).

Table 1. Code pairs in the narrow sample defined by the clinical setting (EDa or non-ED) of the first and second codes in each pair.

<table>
<thead>
<tr>
<th>First code clinical setting</th>
<th>Second code clinical setting</th>
<th>Code pairs (percentage of all code pairs), n (%)</th>
<th>Interval between codes (days), median (Q1b, Q3c)</th>
<th>Code pairs referring to distinct attempts, n</th>
<th>PPVd (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-ED</td>
<td>Non-ED</td>
<td>542 (53.4)</td>
<td>1 (1, 1)</td>
<td>14</td>
<td>0.03 (0.01-0.04)</td>
</tr>
<tr>
<td>ED</td>
<td>Non-ED</td>
<td>176 (17.3)</td>
<td>1 (1, 3)</td>
<td>10</td>
<td>0.06 (0.02-0.09)</td>
</tr>
<tr>
<td>Non-ED</td>
<td>ED</td>
<td>23 (2.3)</td>
<td>52 (13, 125)</td>
<td>22</td>
<td>0.96 (0.87-1.04)</td>
</tr>
<tr>
<td>ED</td>
<td>ED</td>
<td>274 (27)</td>
<td>5 (1, 36)</td>
<td>134</td>
<td>0.49 (0.43-0.55)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>1015</td>
<td>1</td>
<td>180</td>
<td>0.18 (0.15-0.20)</td>
</tr>
</tbody>
</table>

aED: emergency department.
bQ1: first quartile.
cQ3: third quartile.
dPPV: positive predictive value.

Suicide Attempt Method

For suicide attempt method (same versus different method for 2 codes in a code pair), the PPVs were below 0.25 (Table 2).

Table S6 in Multimedia Appendix 3 shows PPVs for each combination of the 6 aforementioned specific method categories derived from previous literature. All PPVs for strata containing more than 1 code pair were at or below 0.50.

Table 2. Code pairs defined by whether the first and second codes referred to the same or a different suicide attempt method.

<table>
<thead>
<tr>
<th>First and second code</th>
<th>Code pairs (percentage of all code pairs), n (%)</th>
<th>Code pairs referring to distinct attempts, n</th>
<th>PPVa (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same method</td>
<td>766 (75.5)</td>
<td>128</td>
<td>0.17 (0.14-0.19)</td>
</tr>
<tr>
<td>Different method</td>
<td>249 (24.5)</td>
<td>52</td>
<td>0.21 (0.16-0.26)</td>
</tr>
<tr>
<td>Overall</td>
<td>1015</td>
<td>180</td>
<td>0.18 (0.15-0.20)</td>
</tr>
</tbody>
</table>

aPPV: positive predictive value.

Intercode Interval

Table 3 presents PPVs for code pairs broken down by 7-day (week-long) intervals; the majority (n=797, 78.5%) of code pairs had an intercode interval of 7 days or less. The more days elapsed between 2 codes, the larger the PPV (and, fewer code pairs per strata). Table S7 in Multimedia Appendix 4 presents PPVs for code pairs broken down by interval and clinical setting (non-ED/non-ED, ED/non-ED, non-ED/ED, ED/ED), and Table S8 in Multimedia Appendix 5 presents PPVs for code pairs broken down by interval and suicide attempt method (same versus different). In another sensitivity analysis, given that ICD-9 is no longer used, we also computed all PPVs reported in Tables 1-3 when excluding code pairs with at least one ICD-9 coded event. The same pattern of findings held, with 95% CIs for all PPVs overlapping with those in Tables 1-3.
Table 3. Code pairs defined by intercode interval.

<table>
<thead>
<tr>
<th>Intercode interval</th>
<th>Code pairs (percentage of all code pairs), n (%)</th>
<th>Code pairs referring to distinct attempts, n</th>
<th>PPV* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7 days</td>
<td>797 (78.5)</td>
<td>31</td>
<td>0.04 (0.03-0.05)</td>
</tr>
<tr>
<td>8-14 days</td>
<td>48 (4.7)</td>
<td>19</td>
<td>0.40 (0.26-0.53)</td>
</tr>
<tr>
<td>15-21 days</td>
<td>31 (3)</td>
<td>17</td>
<td>0.55 (0.37-0.72)</td>
</tr>
<tr>
<td>22-28 days</td>
<td>20 (2)</td>
<td>14</td>
<td>0.70 (0.50-0.90)</td>
</tr>
<tr>
<td>29-35 days</td>
<td>17 (1.7)</td>
<td>10</td>
<td>0.59 (0.35-0.82)</td>
</tr>
<tr>
<td>36-42 days</td>
<td>17 (1.7)</td>
<td>15</td>
<td>0.88 (0.73-1.04)</td>
</tr>
<tr>
<td>43-49 days</td>
<td>10 (1)</td>
<td>8</td>
<td>0.80 (0.55-1.05)</td>
</tr>
<tr>
<td>50-56 days</td>
<td>18 (1.8)</td>
<td>14</td>
<td>0.78 (0.59-0.97)</td>
</tr>
<tr>
<td>57-63 days</td>
<td>5 (4.9)</td>
<td>3</td>
<td>0.60 (0.17-1.03)</td>
</tr>
<tr>
<td>64-70 days</td>
<td>7 (0.7)</td>
<td>6</td>
<td>0.86 (0.60-1.12)</td>
</tr>
<tr>
<td>71-77 days</td>
<td>2 (0.2)</td>
<td>2</td>
<td>1.00 (1.00-1.00)</td>
</tr>
<tr>
<td>78-84 days</td>
<td>9 (0.9)</td>
<td>9</td>
<td>1.00 (1.00-1.00)</td>
</tr>
<tr>
<td>85-91 days</td>
<td>6 (0.6)</td>
<td>6</td>
<td>1.00 (1.00-1.00)</td>
</tr>
<tr>
<td>92+ days</td>
<td>28 (2.7)</td>
<td>26</td>
<td>0.93 (0.83-1.02)</td>
</tr>
<tr>
<td>Overall</td>
<td>1015</td>
<td>180</td>
<td>0.18 (0.15-0.20)</td>
</tr>
</tbody>
</table>

*PPV: positive predictive value.

As shown in Figure 1, across all code pairs, pairs with an interval of at least 53 days had a PPV of 0.90 (range 0.88-0.93). The interval floors meeting our benchmark PPV (at least 0.90) within each of the 6 code pair types are also labeled in Figure 1 (clinical setting) and Figure 2 (suicide attempt method). For non-ED/ED code pairs (23 code pairs), an interval floor of 1 day had a PPV of 0.96. When both codes were assigned in the ED (271 code pairs), PPV reached 0.90 when the intercode interval was at least 5 days. When the second code in a pair was documented in an ED (regardless of the setting in which the first code was documented), PPV was 0.91 when the intercode interval was 5 days (the PPV was 0.89 for 4 days). Thus, whenever the second code in a pair was documented in an ED at least 5 days after the previous code, the probability that the second code referred to an independent suicide attempt was at least 90%.

Figure 1. PPVs for interval floors by code pair types defined by clinical setting. The labeled data points indicate the interval floor at which the PPV was at least 0.90 (or the maximum PPV). Gray lines reflect PPVs for interval floors across all code pair types. Red lines refer to code pairs documented in ED (first code) and ED (second code) settings (ED/ED); Blue lines are non-ED/ED code pairs; purple lines ED/non-ED; and green lines non-ED/non-ED. ED: emergency department; PPV: positive predictive value.
Figure 2. PPVs for interval floors by code pair types defined by suicide attempt method with intervals greater than or equal to the plotted interval floor values. The labeled data points indicate the interval floor at which the PPV was at least 0.90 (or the maximum PPV). Gray lines reflect PPVs for interval floors across all code pair types. Orange lines refer to code pairs in which the 2 codes refer to the same suicide attempt method. Blue lines refer to code pairs in codes in the pairs referring to different suicide attempt methods. PPV: positive predictive value.

Sensitivity Analysis: Broad Sample

Results from the same series of analyses in the broad sample are presented in Multimedia Appendix 6. Of the 100 patients, 45 (45%) had more than 1 confirmed suicide attempt. Of the 300 code pairs, 86 (28.7%) referred to 2 distinct suicide attempts. The median interval between codes in each pair was also 1 day. Among code pairs that referred to distinct suicide attempts, the median interval was 133 days. Overall, we found a similar pattern of PPVs (in almost all cases overlapping 95% CIs) to those from the narrow sample. Across all code pairs in the broad sample, those with an interval of at least 37 days had a PPV of 0.90 (range 0.87-0.93). When both codes were given in the ED (86 pairs), PPV reached 0.90 when the interval was at least 2 days.

Discussion

Primary Findings

Machine learning suicide risk prediction models that leverage routinely collected EHR data can outperform clinician assessment [8] and have the potential to improve how patients at risk for suicide are identified and treated. These models are typically trained using ICD codes to label suicide attempts. An under-appreciated challenge when building these models, however, is that ICD codes indexing a single suicide attempt are often used repeatedly across multiple encounters. This could create a substantial problem for models that incorporate prior suicide attempts, an established risk factor, in predicting subsequent attempts or suicidal behavior.

Some investigators side-step this issue by restricting model predictions to only the first occurrence of a suicide attempt code. This approach, however, limits the utility of prediction models by ignoring prior attempts, the best-known risk factor for suicidal behavior, and limiting their application to a subset of those at risk; prior studies indicate that nearly one-quarter of those who engage in deliberate self-harm have recurrent episodes within 3 years [24]. Here we aimed to develop a portable, automated rule for determining when recurrent suicide attempt codes refer to distinct suicide attempt events in a patient’s history. Based on chart review of clinical encounters corresponding to 1015 unique ICD code pairs, we found that, for patients with more than 1 documented suicide attempt code, repeat codes most often (>80% of the time) reflected nonindependent events, underscoring the high frequency of “leaked” suicide attempt codes. When collapsing across all clinical settings, repeat codes needed to be documented at least 53 days after the preceding code in order to refer (with probability >90%) to a new, distinct suicide attempt. However, repeat codes documented in an ED at least 5 days after the preceding suicide attempt code were likely (probability >90%) to refer to a new, distinct suicide attempt.

The most informative variables for determining whether recurrent suicide attempt codes referred to distinct suicide attempts were the clinical setting in which the codes were documented and the time elapsed between codes. First, regarding clinical setting, when a suicide attempt code was documented in an ED after the preceding code, it referred to a new suicide attempt more than half the time. Suicide attempt codes documented in non-ED settings, accounting for most of the second codes among all code pairs, however, were highly unlikely to refer to a new suicide attempt (probability <5%). This may be due to the fact that the vast majority (nearly three-quarters) of non-ED codes occurred in inpatient or intensive or critical care units, where patients may be treated over the course of several days or longer, potentially accumulating multiple suicide attempt codes that all refer to the same index event that may have prompted inpatient or intensive treatment. This pattern of findings, for one, highlights the considerable risk of treating all recurrent suicide attempt codes (especially those from non-ED settings) as distinct events, and the potential importance of using a simple rule, such as that proposed here, to identify probable distinct suicide attempt events.
Along these lines, the more time elapsed between 2 suicide attempt codes, the more likely it was the codes referred to distinct events. Combining these 2 variables—clinical setting and time elapsed—provided a simple rule for determining whether recurrent suicide attempt codes refer to distinct events with at least 90% probability. Although the accuracy of our proposed rule (at least 5 days elapsed between a code given in the ED and the preceding code) may differ in other health care systems, we recommend that others consider taking into account these 2 variables when incorporating recurrent suicide attempt codes in EHR-based suicide risk prediction models.

Perhaps surprisingly, whether the coded suicide attempt method for 2 codes in a pair was the same or different did not provide value in identifying distinct suicide attempt events. However, in the relatively small proportion of code pairs (24.5%) that referred to different methods, the most common “profile” was 1 code with a specific method (eg, poisoning and cutting or piercing) and the other code with method categorized as “other” (not a different specific method); notably, the “other” category included codes lacking any specified method. Thus, the fact that method did not help identify distinct events may largely reflect inconsistencies in how or whether the suicide attempt method is coded by providers. In contrast, neither of the other 2 variables examined (clinical setting nor intercode interval) should be impacted by irregular coding practices, and thus may also be more scalable and reliable for other health care systems planning to use this or a similar rule.

Our derived rule (at least 5 days elapsed between a code from the ED and the preceding code) may have more impact on certain suicide-related prediction tasks than others. For example, it may be especially relevant when estimating patients’ risk of repeat suicidal behavior, for example after an ED visit for suicidal behavior, which could influence clinical decision-making at the point of care (eg, about discharge home or to outpatient care versus hospitalization). This rule may have less impact for other related prediction tasks, such as estimating patients’ risk of suicidal behavior after nonsuicide-related outpatient visits or broader population-based prediction efforts [25]. These results may also be less relevant for models that solely predict fatal self-harm or suicide deaths [26,27]. Future work should systematically evaluate the performance and clinical utility of models that do and do not incorporate the proposed rule for incorporating recurrent suicide attempt codes across a range of prediction goals and clinical contexts.

Our results must be considered in the context of a few key limitations. First, some of the sampled patients may have presented to hospitals outside of the MGB system for suicide attempts. In these cases, the corresponding diagnostic codes and contextual information were either unavailable or only sporadically recorded in narrative notes at subsequent clinical encounters within MGB. We also excluded sampled patients for whom chart reviewers could not confidently match data pulled from the MGB Research Patient Data Registry to the narrative notes.

Conclusions

This analysis indicates that EHR-based suicide attempt prediction models that include ICD codes for prior attempts as a predictor may be highly susceptible to bias due to data leakage in model training. Our proposed rule for circumventing this issue should minimize this bias and its inflationary effect on model performance metrics. The key variables included in our rule (clinical setting and time elapsed between codes) are widely available in health system data warehouses and should be easily integrated into EHR-based models. It is also possible that the approach taken in this study may be relevant for developing and refining machine learning models aimed to predict other episodic events of interest that can be repeatedly documented in the health record, such as unintentional overdose, domestic abuse, or episodes of violence. If effectively implemented into existing and future suicide risk prediction models, this rule could increase the robustness and validity of machine-learning based approaches to identifying the individuals at highest risk for suicide, and ultimately advance suicide prevention efforts in health care contexts on a large scale.

Acknowledgments

The authors thank the Enterprise Research Infrastructure and Services at MGB for their in-depth support and for the provision of the research patient data registry and the ERISOne Linux cluster. This work was supported by grants (NIMH R01 MH117599; JWS) and (K23MH120436; KHB) from the National Institute of Mental Health, and a gift from the Tommy Fuss Fund (JWS). JWS is a member of the Leon Levy Foundation Neuroscience Advisory Board, the Scientific Advisory Board of Sensorium Therapeutics (with equity), and has received an honorarium for an internal seminar Tempus Labs. He is principal investigator of a collaborative study of the genetics of depression and bipolar disorder sponsored by 23andMe for which 23andMe provides analysis time as in-kind support but no payments.

Data Availability

The data used in this study cannot be made publicly available due to restrictions relating to the use of EHR data.

Conflicts of Interest

None declared.
Multimedia Appendix 2
Sensitivity analysis (excluding contiguous codes from inpatient settings).

Multimedia Appendix 3
Code pairs in the narrow sample defined by specific category of suicide attempt method (poisoning, cutting or piercing, hanging or strangulation or suffocation, jumping, firearm, or other) of the first and second code in each code pair.

Multimedia Appendix 4
Code pairs in the narrow sample defined by both the clinical setting (ED or non-ED) of and the interval (in days) between the first and second codes in each pair.

Multimedia Appendix 5
Code pairs in the narrow sample defined by both suicide attempt method (same or different) and the interval (in days) between first and second codes in each pair.

Multimedia Appendix 6
Sensitivity analysis (results for broad sample).

References

22. Nalichowski R, Keogh D, Chueh HC, Murphy SN. Calculating the benefits of a research patient data repository. AMIA Annu Symp Proc 2006;2006:1044 [FREE Full text] [Medline: 17238663]

Abbreviations

ED: emergency department
EHR: electronic health record
ICD: International Classification of Diseases
MGB: Mass General Brigham
PPV: positive predictive value
Synergizing the Behavior Change Wheel and a Cocreative Approach to Design a Physical Activity Intervention for Adolescents and Young Adults With Intellectual Disabilities: Development Study

Laura Maenhout¹, MSc; Julie Latomme¹, PhD; Greet Cardon¹, PhD; Geert Crombez², PhD; Geert Van Hove³, PhD; Sofie Compernolle¹, PhD

¹Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
²Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
³Department of Special Needs Education, Ghent University, Ghent, Belgium

Abstract

Background: There is a need for physical activity promotion interventions in adolescents and young adults with intellectual disabilities. Current interventions have shown limited effectiveness, which may be attributed to the absence of theory and a population-specific development. Combining a planning model (including theory) and cocreation with the target audience during intervention development could potentially address this gap.

Objective: This study aimed to report the systematic development of the Move it, Move ID! intervention by describing how the 8 different steps of the Behavior Change Wheel (BCW) were applied and present the results that emerged from those steps. In doing so, the (theoretical) content of the intervention is described in detail.

Methods: A total of 23 adolescents and young adults (aged 14-22 years) with mild to moderate intellectual disabilities were designated as cocreators of the intervention. Across 2 groups, 6 similar cocreation sessions were organized in each. The content and sequence of the sessions were structured to align with the 8 steps of the BCW. All sessions were recorded and transcribed verbatim. Both a deductive (ie, steps of the BCW) and inductive (ie, resonating the voice of the participants) analysis approach were applied specifically focusing on identifying and describing the findings within each of the BCW steps.

Results: After behavioral analysis (steps 1-4), 10 intervention goals were chosen and linked to Capability, Opportunity, and Motivation–Behavior components (theory within the BCW) that needed to be addressed. Psychological capability, social opportunity, and reflective motivation were emphasized as the first targets to focus on. A key finding was the urge for real-life social connectedness and social integration, which makes the social component as part of physical activity a central theme to focus on within intervention development. Judgments on the most suitable intervention functions (step 5) and behavior change techniques (step 7) were explained. When discussing the mode of delivery of the intervention (step 8), it was underscored that solely relying on a mobile health app would not fulfill participants’ social needs. Hence, the chosen intervention adopts a dyadic approach in which young individuals with intellectual disabilities are matched with peers without intellectual disabilities to engage in physical activities together, with a mobile app playing a supportive role in this partnership.

Conclusions: The transparent description of the development process highlights why certain intervention components and behavior change techniques were chosen and how they are intertwined by means of the selected intervention design. This paper provides a detailed blueprint for practitioners wanting to integrate the BCW and its associated behavior change techniques, in combination with actively involving the target group, into their intervention development for people with intellectual disabilities.

(JMIR Form Res 2024;8:e51693) doi:10.2196/51693
KEYWORDS
Behavior Change Wheel; cocreation; intervention; physical activity; adolescents; young adults; intellectual disabilities

Introduction

Physical Activity for People With Intellectual Disabilities

People with intellectual disabilities (IDs), defined as limitations in intellectual functioning (IQ of <70) and adaptive behavior emerging in childhood (age of <22 years) [1], are at higher risk of chronic health problems, such as type 2 diabetes, obesity, osteoarthritis, thyroid disorders, and cardiovascular diseases, than people without IDs [2-7]. In addition, compared with their peers without disabilities, individuals with IDs have less access to health care services, face increased polypharmacy, have higher poverty rates, encounter social isolation, and engage more in behaviors that put their health at risk (eg, unhealthy nutrition and physical inactivity) [4].

Promoting physical activity (PA) may be one avenue to reduce increased health problems. PA has been shown to have beneficial effects on the physical and psychosocial health of people with IDs [8,9]. Nevertheless, they are less physically active than their peers without IDs [10-16]. The World Health Organization (WHO) recommends that adolescents engage in at least 60 minutes of moderate to vigorous PA (MVPA) per day and participate in muscle- and bone-strengthening activities 3 days per week. Adults are recommended to perform at least 150 minutes of moderate-intensity PA or 75 minutes of vigorous-intensity PA throughout the week or an equivalent combination of moderate- and vigorous-intensity activity supplemented by performing activities twice a week to strengthen muscles and bones [17]. Since 2020, these global PA guidelines include groups such as people living with IDs. It is a positive trend that, for the first time, there is attention to the specific target group in the WHO PA guidelines. However, it should be noted that the evidence is primarily based on individuals without IDs, and some argue that disability-specific guidelines are necessary [2].

A 2016 systematic review including 15 studies described that only 9% of adults with IDs achieved minimum PA guidelines (with a range of 0%-46%), measured using both objective and self-reported measurement tools [18]. Different PA guidelines were used as outcome measures in the included studies, such as 150 minutes of MVPA per week (in bouts of >10 minutes), 30 minutes of MVPA for at least 5 days per week, 20 minutes of mild exercise ≥4 times per week, 12 bouts of MVPA in 4 weeks (retrospectively), and >10,000 steps per day. A systematic review the year after (2017) reported that, in 5 out of 17 studies that assessed MVPA through accelerometry in participants with IDs (aged 6-72 years), none of the participants met the PA guidelines of 150 minutes of MVPA per week for adults and 60 minutes of MVPA per day for children and adolescents. In the remaining 12 studies, the percentage of participants with IDs who met the guidelines ranged from 6% to 66% (mostly because of the use of different protocols to measure PA) [19].

Both reviews concluded that only a small number of individuals with IDs meet the PA guidelines, indicating that they are less active than the general population [18,19].

Current PA Interventions and Their Effectiveness

Although PA research in people with IDs has been growing over the last decade, this field has been underresearched. A PA Series in *The Lancet* (2021) stated that, between 1999 and 2019, <5% of all articles in the 5 highest-impact medical journals focused on people with disabilities (not limited to IDs) and <7% of these addressed PA or health [2]. A systematic review from 2019 on the effectiveness of PA interventions among participants with IDs of all ages identified only three effective randomized controlled trials out of 9 [20]: (1) a 10-week progressive resistance training program in adolescents and young adults (aged 14-22 years) with Down syndrome in Australia [21], (2) a 12- to 16-month multicomponent diet and PA program in adults (aged 20-66 years) with mild to moderate IDs in Sweden [22], and (3) an 8-month PA and fitness program in “fast-walking” older adults with mild to moderate IDs (aged >40 years) in the Netherlands [23]. The success of these randomized controlled trials was mainly attributed to the following factors: (1) practical support from others (eg, a mentor) in guiding and helping participants with IDs through the intervention and for increasing motivation, (2) establishing a routine that involves regular PA as well as the adaptability of an intervention to the specific routines of both carers and participants, (3) the simplicity of an intervention by adapting interventions to the specific needs of the participants, and (4) familiarity with the intervention [20]. None of the 9 interventions in the systematic review by Hassan et al [20] included a technological component (ie, eHealth or mobile health (mHealth)). However, there seems to be no reason why digital interventions would not be feasible in this target group [24]. In the study by Ptomey et al [25], 95% of the participants, aged 14.9 (SD 2.2) years on average, reported that using a tablet computer was easy and enjoyable. It is then no surprise that, in recent years, there has been a growing interest in the development of digital interventions for individuals with IDs [26-30].

The number of effective PA interventions for people with IDs remains limited. A potential reason for the limited effectiveness is currently attributed to the lack of a theoretical framework for intervention development and the difficulty in concretizing behavior change techniques (BCTs) in an understandable way for this population [10,20,31,32]. A 2017 systematic review on the use of BCTs in lifestyle change interventions for people with IDs, for example, concluded that 73% of the studies aiming to improve PA in the target group did not use any theoretical framework [31]. Nevertheless, the use of a theoretical framework is an important prerequisite for intervention effectiveness [2,20,33-36]. Furthermore, when examining theory-based interventions for people with IDs, concerns have been raised regarding the suitability of the theories used (eg, social cognitive theory, theory of planned behavior, and self-determination theory) as a starting point for designing interventions for this specific target group. These theories may...
not sufficiently address the specific challenges faced by people with IDs. More specifically, these theories tend to be specific and detailed, yet they may not encompass the complete spectrum of potential influences on behavior within this particular target group and often concentrate on individual-level factors [20,31,32].

Applying the Behavior Change Wheel and a Cocreational Approach to Build Theory-Based PA Interventions

The Behavior Change Wheel (BCW) is a planning model aimed at guiding a scientific and systematic intervention development process [33,37]. The BCW contains a behavioral theory at its heart, the Capability, Opportunity, and Motivation–Behavior (COM-B) model, which encompasses the full range of influences contributing to the behavior of interest [33,38]. A total of 3 behavioral components are summarized in the COM-B model, which states that, for each behavior to occur, individuals need capability (physical and psychological), opportunity (physical and social), and motivation (reflective and automatic) [33,37,39]. The COM-B model is in turn linked to the Theoretical Domains Framework (TDF) [33,40], which subdivides the COM-B model into 14 domains. The BCW further formulates 9 intervention functions linked to 93 BCTs [41] and 7 policy types with the aim of modifying each of the 3 COM-B components and, thus, changing behavior. The COM-B model describes the minimal factors that behavioral scientists agree on to achieve behavior change and has been developed with interdisciplinary research in mind [37]. It is an open model and relatively easy to communicate, especially with vulnerable groups. In recent years, this model has demonstrated applicability in the context of PA among people with IDs and their carers [32,42]. This study chose the BCW as a planning model for intervention development because of its practical use and feasibility in combination with a cocreative approach.

Aims

This paper aimed to (1) report the systematic development of the Move it, Move ID! intervention by describing how the different steps of the BCW were applied and (2) present the results that emerged from those steps. In doing so, we described the (theoretical) content of the Move it, Move ID! intervention in detail.

Methods

Participants and Recruitment

It was prioritized to focus on young people with IDs as cocreators rather than their parents or teachers because of the historical pattern of marginalization in previous research on intervention development [43]. Through purpose sampling, 2 class groups of adolescents or young adults with mild to moderate IDs aged between 13 and 22 years (ie, age of special needs secondary education in Flanders, Belgium) were recruited to participate in the cocreation sessions. In February 2021 and March 2021, a total of 2 physical education (PE) teachers from different special needs schools in Flanders were contacted to explain the purpose and design of the project via email and phone. They were asked whether they were interested in involving one of their classes in cocreating a PA promotion intervention. Each PE teacher subsequently suggested 1 class group to take part. All adolescents from the selected classes (classes A and B) were invited to participate during the first visit, in which written informed consent from all participants and passive consent from their parents were obtained (Table 1).

Class A comprised 14 adolescents aged between 17 and 22 years with a mild to moderate level of ID (mean age 20.33, SD 1.94 years; 3/14, 21% female). Class B comprised 9 adolescents aged between 14 and 15 years with mild IDs (mean age 14.22, SD 0.44 years; 6/9, 67% girls). This aligned with cocreation guidelines, which recommend groups of 10 to 12 cocreators [45,50]. A detailed description of (the recruitment of) participants, as well as the ethical process (next subsection), can be found in the study by Maenhout et al [51].
Table 1. Merging the Behavior Change Wheel (BCW) with a cocreational approach.

<table>
<thead>
<tr>
<th>BCW Stage</th>
<th>Researchers’ tasks</th>
<th>Cocreation part with participants with IDs<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1: understand the behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 1: define the health problem in behavioral terms</td>
<td>• Determine the health problem in behavioral terms using the literature: insufficient PA<sup>b</sup> in people with IDs</td>
<td>• No input was gathered from the participants with IDs in the first 2 steps as we relied on the literature to define the health problem and select the target behavior. Furthermore, the PI<sup>c</sup> is currently affiliated with the Department of Movement and Sports Sciences (Ghent University), which is why we focused on PA.</td>
</tr>
<tr>
<td>Step 2: select the target behavior</td>
<td>• Select the target behavior: increasing PA levels in adolescents and young adults with IDs</td>
<td>• No input was gathered from the participants with IDs in the first 2 steps as we relied on the literature to define the health problem and select the target behavior. Furthermore, the PI<sup>c</sup> is currently affiliated with the Department of Movement and Sports Sciences (Ghent University), which is why we focused on PA.</td>
</tr>
</tbody>
</table>
| Step 3: specify the target behavior and formulate intervention goals | • Specify the target behavior by:
 • Generating a nonexhaustive list of all potential barriers and facilitators that may be relevant to the target behavior
 • Describing these barriers and facilitators as what needs to be targeted in the intervention (who needs to do it, what do they need to do differently to achieve change, where and when do they need to do it, and how often and with whom do they need to do it)
 • Formulating 10 intervention goals based on the ranking by the cocreators | • Cocreation session 1:
 • Introduction session (ie, explanation of the project and its purpose, process of informed consent, and getting to know each other)
 • Cocreation session 2:
 • Comapping barriers to and facilitators of PA
 • What PAs are they currently performing? What do they like or dislike?
 • Cocreation session 3:
 • Explore the most important barriers and facilitators on which the intervention should focus by voting and ranking them by importance |
| | | No input was gathered from the participants with IDs in this step as their input (from step 3) only needed to be linked to the theoretical components of the COM-B and TDF. |
| Step 4: link intervention goals to COM-B^d components and TDF^e domains | • Select the components of the COM-B model and the theoretical domains of the TDF for each intervention goal | |
| **Stage 2: identify intervention options** | | |
| Step 5: select intervention functions | • Select intervention functions using the APEASE^f criteria from the BCW guide [33] | No input was gathered from the participants with IDs in this step as intervention functions were first considered to be feasible by the project team. However, an open-minded perspective was adopted in which only intervention functions that were deemed not feasible by the project team were removed. |
| Step 6: identify policy categories | • Not applied as designers limited to a specific policy lever are directed immediately to step 7 [33] | N/A^g |
| **Stage 3: identify content and implementation options** | | |
| Step 7: identify BCTs^h | • Choose the most appropriate BCT(s) based on the following:
 • The BCW guide [33]
 • Input from participants with IDs
 • APEASE criteria (expert consultation) | Cocreation session 4:
 • Select BCTs and identify whether selected BCTs would suit the target group or how they can be redesigned to work for them |
BCW

<table>
<thead>
<tr>
<th>Step 8: identify mode of delivery</th>
<th>Researchers’ tasks</th>
<th>Cocreation part with participants with IDs<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Choose mode of delivery based on the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The literature (ie, high potential of using an mHealth<sup>i</sup> intervention)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input from participants with IDs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cocreation session 5:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Explore facilitators of and barriers to mHealth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• How can we make an mHealth intervention as feasible and acceptable as possible for them?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cocreation session 6—this session was no longer about intervention development but about the study itself, such as the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Explore the opinion of participants with IDs on the best recruitment strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Find out which incentives they would prefer</td>
<td></td>
</tr>
</tbody>
</table>

^aID: intellectual disability.
^bPA: physical activity.
^cPI: principal investigator.
^dCOM-B: Capability, Opportunity, and Motivation–Behavior.
^eTDF: Theoretical Domains Framework.
^fAPEASE: Affordability, Practicality, Effectiveness and Cost-Effectiveness, Acceptability, Side Effects or Safety, and Equity.
^gN/A: not applicable.
^hBCT: behavior change technique.
ⁱmHealth: mobile health.

Ethical Considerations

All participants and their parents or legal guardians received detailed and accessible information regarding the study design and purpose as well as data handling. To ensure privacy, the data were pseudonymized and only accessible to the researchers or their appointed representatives. Data confidentiality was always maintained. In consultation with the data protection officer of Ghent University (Belgium), the legal basis was changed from “active informed consent” of parents or legal guardians to “public interest,” although this did not exempt researchers from informing participants. This meant that parents or legal guardians needed to contact the researchers only if they disagreed with their child’s participation and, thus, researchers did not require active consent from parents or guardians to commence. The participants with IDs themselves were required to provide their active consent, which is why the first session involved a thorough, step-by-step review of the information and consent process with time for discussion. Young people with IDs participated voluntarily and could withdraw at any time. In appreciation of their participation, all participants received 2 cinema tickets, about which they were informed when they decided to participate. This study received approval from the Ethical Committee of the Faculty of Psychology and Educational Sciences at Ghent University, Belgium (2021/056 LM).

Combining the BCW Development Process and a Cocreational Approach

Overview

From April 2021 to June 2021, the 8 steps of the BCW were systematically followed for intervention development (Figure 1) [33]. In parallel, input was gathered from adolescents and young adults with IDs through 6 cocreation sessions (Table 1). The entire process was a mix of theoretical underpinnings (ie, COM-B), the domain expertise of the researcher, and the lived experiences of the target group (ie, cocreation sessions). The 6 sessions took place in their classrooms, each during 2 consecutive class hours. For a comprehensive explanation of the cocreation process, the methods used, and the participants’ experiences, we refer interested readers to our previously published paper [51].
Stage 1: Understand the Behavior

In step 1, the literature was reviewed by the principal investigator (PI; LM) to articulate the (health) problem in behavioral terms, this being “insufficient PA in people with IDs.” The next steps were then to select (step 2) and specify (step 3) the target behavior of the intervention, this being “increasing PA levels in adolescents and young adults with IDs,” by defining who needs to do it, what needs to be done differently to achieve change, where and when they need to do it, and how often and with whom they need to do it. This was done by generating a nonexhaustive list of possible barriers to and facilitators of PA for adolescents and young adults with IDs based on both the literature and information gathered in the second cocreation session (Table 1). Owing to the cocreative approach, insights from the literature (brought in by the PI) and input from the target group were intertwined (eg, visual cards of barriers and facilitators were developed by the PI inspired by the literature, which were brought up when the participants themselves could not come up with barriers and facilitators [anymore] [51]). In cocreation session 3, these barriers and facilitators were ranked according to importance by the target group. The most important barriers and facilitators were described as what needed to be targeted in the intervention and, consequently, formulated as the intervention goals. In step 4, these intervention goals were then assigned by the PI to the specific components of the COM-B model and theoretical domains of the TDF. No direct cocreation session was organized within this step as their input (from step 3) only needed to be linked to the theoretical components of the COM-B and TDF. However, this does not deviate from the essence of cocreation as the PI established these connections based on all the input provided by the participants.

Stage 2: Identify Intervention Options

In step 5, the BCW guide links COM-B components and TDF domains to 9 intervention functions [33]. Consequently, the broader research group of the PI (ie, the Physical Activity and Health research group) held expert meetings to decide which intervention functions were most suitable to work with based on the Affordability, Practicability, Effectiveness or Cost-Effectiveness, Acceptability, Side Effects or Safety, and Equity criteria [33]. These criteria are recommended by the BCW guide to make strategic judgments on the most appropriate intervention functions. No direct input from the cocreators was sought in this case, either. However, we approached this step with an open-minded perspective and only removed the intervention functions that were deemed not feasible by the project team. All other intervention functions were retained, allowing the cocreators to continue shaping the direction of development. The sixth step was to consider which policies would support the delivery of the intervention functions identified in step 5 [33]. However, as the researchers within this project did not have access to policy levers, step 6 was not applied. This is also described in the BCW guide by stating that “designers limited to a specific policy lever are directed to step 7 to identify BCTs” [33].

Stage 3: Identify Content and Implementation Options

In step 7, the BCW guide proposes the most appropriate BCTs for each intervention function (selected in step 5) [33]. In each of these, a distinction is made between “BCTs used most frequently and less frequently” [33]. For feasibility reasons, we focused primarily on the most frequently used BCTs during the development process. However, for the fourth cocreation session on BCTs, we also explored the less frequently used BCTs and selected relevant ones based on our expertise with the target group. The aim of this cocreation session was to find out which BCTs were understandable and feasible for adolescents and young adults with IDs and how BCTs could be adapted to meet these criteria. On the basis of the Affordability, Practicability, Effectiveness or Cost-Effectiveness, Acceptability, Side Effects or Safety, and Equity criteria and on input from the cocreators with IDs, a decision was made on which BCTs to include in the
Move it, Move ID! intervention. Finally, the eighth step was to identify the best way to deliver the intervention (ie, mode of delivery). As research has shown that the use of technology (ie, mHealth) is feasible and has high potential in adolescents and young adults with IDs [24,25,52], the target group was asked in the fifth cocreation session about their preferences and barriers to and facilitators of mHealth use.

Analysis
All the cocreation sessions were recorded and transcribed verbatim. A combination of a deductive (ie, 8 steps of the BCW) and inductive (ie, resonating the voice of the participants) analysis approach was applied specifically focusing on identifying and describing the findings from each of the steps of the BCW.

Results
Stage 1: Understand the Behavior

Step 1: Define the Health Problem in Behavioral Terms
Few people with IDs are sufficiently physically active [18,19].

Step 2: Select the Target Behavior
An increase in the total volume of PA should be targeted rather than aiming to meet the WHO guidelines regarding MVPA as even small positive changes in PA levels are associated with health benefits among people with IDs [53].

Step 3: Specify the Target Behavior and Formulate Intervention Goals
Multimedia Appendix 1 [32,54-63] provides an overview of 72 barriers to and 66 facilitators of PA for adolescents and young adults with IDs based on (1) a review of the literature by the PI in preparation for the cocreation sessions and (2) input from cocreators with IDs during these sessions. The appendix is divided into intrapersonal, interpersonal, and contextual factors, reflecting the multifaceted and complex nature of the influences on PA in this population. In the third cocreation session, participants ranked the barriers and facilitators according to their importance, providing guidance on which ones to address in the intervention. The 10 most important barriers (in the opposite direction, these would be facilitators) were identified: (1) the need for social connectedness, (2) the lack of practical support within the PA context, (3) the absence of a role model, (4) the need for others around them who also engage in PA, (5) the lack of confidence in their own abilities and body image, (6) the need for knowledge about the (health) benefits of PA, (7) the lack of knowledge about the different PA options available, (8) the low motivation to engage in PA, (9) the difficulty in setting goals, and (10) the need for help to incorporate PA into their existing schedules (ie, goal conflict) as they often depend on others for this. Evidently, this top list does not mean that the other barriers and facilitators were not relevant for some individuals at particular times, but in view of feasibility, it was decided to prioritize and primarily address those that were identified as the most important.

Previous studies have proposed schools as the ideal setting for PA promotion [8,32,64]. Participants with IDs in this study indicated that they are sufficiently encouraged at school to engage in PA via compulsory PE classes. However, they expressed difficulties in being physically active during leisure time. In the cocreation sessions, they expressed a preference for an intervention during their leisure time (ie, at home or in the community setting) rather than a school-based intervention:

I think it’s best to go somewhere else. Then you have something separate from school. That you are really away. When you come back to school, that you can start again with a fresh head. [Cocreator 1; cocreation session 3; group A]

[...] that you just keep your activities outside school and that you don’t keep it here between these four walls. [Cocreator 2; cocreation session 3; group A]

Textbox 1 summarizes the specifics of the target behavior gathered during the first 3 steps: who will perform the behavior; what needs to be done differently; and when, where, how often, and with whom it needs to be done.

Finally, the PI formulated 10 intervention goals targeting the most important barriers chosen by the cocreators (Table 2).
Textbox 1. Specify the target behavior (step 3 of the Behavior Change Wheel).

<table>
<thead>
<tr>
<th>Who needs to perform the behavior?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flemish adolescents and young adults aged between 14 and 22 years with mild to moderate intellectual disabilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What does the person need to do differently to achieve the desired change?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address the 10 most important barriers or facilitators (described in Table 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When do they need to do it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>During leisure time (weekdays+weekends)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Where do they need to do it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the community setting or at home</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How often do they need to do it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not specified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With whom do they need to do it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Together with someone (at this stage, it was not specified yet who this someone could be, but the need for social connectedness during physical activity did emerge as the main barrier or facilitator in both groups)</td>
</tr>
</tbody>
</table>
Table 2. Linking of intervention goals to Capability, Opportunity, and Motivation–Behavior (COM-B) components and Theoretical Domains Framework (TDF) domains (step 4 of the Behavior Change Wheel).

<table>
<thead>
<tr>
<th>COM-B component and relevant TDF domain</th>
<th>Most important barriers or facilitators</th>
<th>Intervention goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td>Insufficient knowledge about options for PA(^b), where, what suits the person best, and what are the barriers and how to counter them</td>
<td>Adolescents and young adults with IDs(^b) need a better understanding of where, when, and how to engage in PA; they need to be offered a range or variety of PA options they can choose from. Adolescents and young adults with IDs need a better understanding of their (own) barriers to PA and how to counter them.</td>
</tr>
<tr>
<td>Behavioral regulation</td>
<td>Difficulty in setting up PA goals (mostly because of a lack of knowledge about PA options)</td>
<td>Adolescents and young adults with IDs need to be facilitated/support in formulating specific PA goals.</td>
</tr>
<tr>
<td></td>
<td>Difficulty with planning PA (eg, mostly because of the dependency on others and goal conflict)</td>
<td>Adolescents and young adults with IDs need to be facilitated/support in planning PA.</td>
</tr>
<tr>
<td>Opportunity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social influences</td>
<td>Lack of social connectedness; having no one to do PA with (eg, friends or loved ones)</td>
<td>Adolescents and young adults with IDs need to have the opportunity to engage in PA together with someone (ie, social connectedness).</td>
</tr>
<tr>
<td></td>
<td>Not having a role model (ie, seeing other people engage in PA as well)</td>
<td>Adolescents and young adults with IDs need a role model regarding PA.</td>
</tr>
<tr>
<td></td>
<td>No guidance during PA or no practical support</td>
<td>Adolescents and young adults with IDs need to have more (social and practical) support from others when engaging in PA.</td>
</tr>
<tr>
<td>Motivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intentions</td>
<td>No motivation to engage in PA</td>
<td>Adolescents and young adults with IDs need to be encouraged in feeling a sense of enjoyment when engaging in PA.</td>
</tr>
<tr>
<td>Beliefs about capabilities</td>
<td>Insecure about own capabilities and skills (eg, afraid of doing something wrong, afraid of the reaction of others, afraid of PA being too difficult, or afraid of being laughed at)</td>
<td>Adolescents and young adults with IDs need to build self-confidence regarding PA (ie, increase self-image and confidence in their ability to perform certain activities).</td>
</tr>
<tr>
<td>Beliefs about consequences</td>
<td>Insecure or ashamed about weight or body shape</td>
<td>Adolescents and young adults with IDs need a better understanding of the benefits of PA.</td>
</tr>
<tr>
<td></td>
<td>Lack of awareness about the health consequences of physical inactivity</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)PA: physical activity.
\(^b\)ID: intellectual disability.

Step 4: Link Intervention Goals to COM-B Components and TDF Domains

In step 4, the PI assigned the 10 intervention goals to the specific COM-B and TDF components of the BCW (Table 2). From this behavioral analysis, it can be inferred that psychological capability, social opportunity, and reflective motivation would be the first targets to focus on for increasing PA levels in adolescents and young adults with IDs.

Stage 2: Identify Intervention Options and Steps 5 and 6 (Identify Intervention Functions and Policy Categories)

Linking the selected COM-B components and TDF domains from step 4 to the intervention functions proposed by the BCW guide, all 9 intervention functions could be applied. In total, 7 intervention functions were chosen to further focus on: education, persuasion, incentivization, training, environmental restructuring, modeling, and enablement (see the detailed argumentation in Multimedia Appendix 2). The 2 other intervention functions were not selected as they were deemed (1) less practicable to apply as a research team (ie, restriction).
and (2) less acceptable or unlikely to have an impact on adolescents or young adults with IDs (ie, coercion).

Stage 3: Identify Content and Implementation Options

Step 7: Identify BCTs

Overview

A total of 12 BCTs were selected to proceed with. We have outlined our selection and reasoning for each selected BCT within the specific intervention function in the following sections. Multimedia Appendix 3 provides a detailed explanation of all the BCTs that were considered for the 7 intervention functions that came out of step 5, along with the accompanying rationale for why they were chosen and others were not.

Education

Participants with IDs expressed a lack of knowledge about PA options (eg, what is out there, what suits the person best, and where can it be done). For this reason, it was considered valuable to provide information on various PA options. However, the only BCTs formulated within the taxonomy by Michie et al [41] related to providing information are pertaining to consequences (ie, social, emotional, environmental, and health). Although participants mentioned the value of information about the health benefits of PA in previous stages, we collectively decided not to place a direct emphasis on information provision within our intervention. Participants do not desire an intervention centered on “learning” or “teaching” (see also their preference for an intervention outside the school context). According to them, the focus should be on enjoyment. Nonetheless, we anticipate that the target audience may indirectly experience positive effects through the intervention. In this regard, the BCT “salience of consequences” (under the persuasion intervention function) seemed more applicable as it focuses on using methods to specifically emphasize the consequences of performing a behavior, making them more memorable, which goes beyond mere information provision about these consequences. “Feedback on behavior” was also selected as participants indicated that they would like to receive feedback on how well they are performing the behavior.

Persuasion

The BCT “credible source” was valued by participants, but opinions varied on its presentation. Some preferred health professionals using fun visual communication, whereas others liked animated movies. In this target group, experts or influencers explaining PA benefits in an engaging way were considered more appealing than scientific videos. Furthermore, the significance of “verbal persuasion about capability” was strongly emphasized. Given the low self-efficacy within this population, offering verbal persuasion to counteract self-doubt was deemed highly valuable for adolescents/young adults with IDs.

Incentivization

Owing to the prominent role of social factors, we observed that the BCT “social reward” would be highly motivating for this target group.

Environmental Restructuring

Cocreators highlighted the importance of social connectedness and support in encouraging PA. As a result, we expect the greatest impact from recognizing and meeting their social needs, which entails a “restructuring of their social environment.”

Modeling

Participants expressed that it would be motivating to witness others engaging in PA around them, whether in person or indirectly through influencers such as on TikTok (serving as role models). The cocreators showed enthusiasm for involving influencers they admired to encourage PA. Considering budget limitations, it would not be feasible for us to incorporate a well-known influencer into the intervention. However, this does indicate that “demonstration of the behavior” might be an interesting BCT to include.

Enablement

The entire development process highlighted a strong emphasis on the importance of social support and social connections, whether from friends or individuals with expertise in PA (ie, social support BCT—practical, emotional, and unspecified). Participants expressed increased confidence when they could openly discuss their goals and challenges with friends, and their motivation to engage in PA was significantly higher when they could do it with others rather than exercising alone. Peer support was generally preferred, although younger adolescents with IDs (aged 14 years) also mentioned the potential for support from family members. Furthermore, participants agreed that having a list of goals to choose from would make it easier for them rather than having to come up with their own goals (ie, goal setting BCT). Most participants recognized the importance of “action planning” as a valuable BCT. However, insights from teachers revealed that adolescents and young adults with IDs often struggle with tasks such as maintaining a personal agenda or planner, which is typically managed by parents or carers. Therefore, it would be crucial to offer guidance during action planning. Creating a detailed action plan independently, including specifics such as what, when, where, and with whom, seemed challenging and burdensome for this group. Simplicity and minimizing cognitive effort were emphasized as essential factors. Similarly, the collaborative review and adjustment of the behavioral goal with individuals with IDs based on their progress was seen as advantageous. It was considered feasible to engage in close negotiation with them to either retain the same goal, make minor adjustments, or establish a new goal if necessary (referred to as “reviewing behavior goals”). The primary focus in this case is on shared decision-making and active involvement.

Training

The only BCT that we considered including under the “training” intervention function is “demonstration of the behavior.” However, we view this as more related to modeling behavior rather than as actual behavior demonstration within a training context. In the course of our intervention development, it became evident that the primary focus should be on addressing social needs and creating enjoyable experiences rather than on formal training in activities. Therefore, the “training” intervention function was omitted from this phase onward.
Step 8: Identify Mode of Delivery

On the basis of the literature, an mHealth app appeared to be a good and feasible approach for adolescents and young adults with IDs and, therefore, was verified during the fifth cocreation session. The cocreators indicated that they preferred an mHealth app with a straightforward design that clearly indicated its purpose and functionality (e.g., through an introductory video). They suggested that the app should be visually appealing, with minimal text, bright colors, and no foreign-language words. They also suggested that a game component or chat feature would be of added value. Cocreators would not use an app that they had to pay for, was childish, or looked rather old-fashioned. They mentioned preferring not to receive too many notifications (i.e., no more than 1 notification per day). Finally, this is a group that often faces negative comments and experiences of failure. When talking about mHealth, this also emerged as an aspect to be considered (e.g., by keeping the reactions that can be given to each other in an app controlled).

At the end of the fifth cocreation session, cocreators indicated that an app alone would not be sufficient to encourage them to engage in (more) PA. They suggested that an app could be integrated into a broader intervention but not be a stand-alone intervention. More specifically, the desire for social connection with peers and social integration in real life was found to be a more important theme in intervention development. Therefore, the decision was made to focus on a buddy system as many people with IDs reported a lack of friendships with peers outside school, resulting in decreased opportunities to engage in PA during leisure time. To facilitate this buddy partnership, we chose to work with a buddy without IDs who could offer practical support during the intervention period, which reduced the reliance on context alone (i.e., parents or carers) to guide the intervention implementation.

Move It, Move ID! Intervention

On the basis of the systematic steps of the BCW combined with a cocreational approach, the Move it, Move ID! intervention ultimately consists of a buddy partnership with a supporting app (i.e., dyadic intervention). Figure 2 illustrates the development process, showing how COM-B components, intervention functions, and behavior change techniques (BCTs) are intertwined with the selected intervention design. A more in-depth description can also be found in Multimedia Appendix 3.

Figure 2. Visualization of the development process showing how Capability, Opportunity, and Motivation–Behavior (COM-B) components; intervention functions; and behavior change techniques (BCTs) are intertwined with the selected intervention design. PA: physical activity; TDF: Theoretical Domains Framework.

During an intervention period of 3 months, adolescents and young adults with IDs will be paired with a buddy without IDs of the same age range and encouraged to try out weekly PAs in Ghent (Flanders, Belgium). Buddies without IDs will be students (aged 17-23 years) of the coauthors of this paper and will receive 3 short training sessions (i.e., maximum of 1 hour per session) on their role and responsibilities as a buddy. Although the buddy partnership forms the core of the intervention, a supporting app will also be provided in which buddies and participants with IDs will be in direct contact with each other (an explanation of the scope and screenshots of the supporting app can be found in Multimedia Appendix 4). The app is considered a private space between participants with IDs and their buddys without adding parents or carers to the app. The PI will add a range of activities (e.g., walking a shelter dog, dancing, playing Kubb, and undertaking an altitude trail) to the app at the start of the intervention. Participants will have the autonomy to choose whether they want to try an activity by agreeing (swiping right) or disagreeing (swiping left) with a proposed activity. When both the participant with IDs and the
buddy agree with a certain proposed activity, they will receive a pop-up to a chat function to make arrangements and schedule this activity on their shared agenda. The buddy will take the lead in this process. During an activity, the buddy can provide feedback such as how well they perform the behavior or words of encouragement. On the app pinboard, pairs can share photos of the activity they performed together, give comments, and also rate the activity afterward. This allows them to keep track of successful activities and identify less enjoyable ones.

Discussion

Principal Findings

This paper describes the systematic, theory-driven development of a lifestyle intervention to promote PA in adolescents and young adults with IDs using the BCW planning model combined with cocreation sessions involving the target group. The purpose of this transparent and detailed description was 2-fold. First, it aimed to develop a PA promotion intervention by identifying intervention components and BCTs that address the specific needs of this target group. Second, it aimed to encourage future researchers and intervention developers interested in PA among adolescents and young adults with IDs to apply a theoretical planning model in combination with cocreation when designing similar interventions or take the insights described into account in their own intervention development. By transparently describing the theory and BCTs that underpin the intervention, researchers are facilitated in broader evaluations to explore their driving mechanisms. In doing so, we adhered to the Medical Research Council guidelines, which emphasize the importance of theorizing how an intervention works and what works in which setting and identifying its other impacts [65]. This discussion will first delve deeper into the key findings regarding the development of the Move it, Move ID! intervention followed by a reflection on the experience of the development process by combining the BCW and cocreation.

The development process underscored the essential importance of collaborating with the target group as the intervention looks different from what the research team had envisioned in the project proposal (ie, developing an mHealth app). Active collaboration with young people with IDs highlighted the urge for real-life social connectedness and social integration, which makes the social component as part of PA a cornerstone within our intervention development [54-58]. Although the importance of social interaction has emerged in qualitative studies with the target group [66,67], this correlate has surprisingly not been included in studies examining the correlates and determinants of PA levels among young people with IDs [16,68]. However, a study from 2004 conducted within the context of the Special Olympics has already articulated that social support may be particularly crucial for individuals with IDs as they likely have a more limited friendship network compared with individuals without IDs [67]. In total, 3 intervention goals within this setting and planning goals, a requirement to enhance their confidence in their own capabilities, and the need to experience genuine enjoyment during PA before they would be motivated to engage in it. Throughout the remainder of the development process, the appropriate intervention functions and BCTs were then linked to these 3 COM-B components. At the end of the process, the cocreators underscored that solely relying on an mHealth app would not meet their social connectedness needs. They preferred face-to-face interaction over distant delivery modes. In addition, they expressed a preference for an intervention targeting their leisure time rather than one connected to their school context. For these reasons, a dyadic intervention was chosen in which young individuals with IDs will be paired with a peer without IDs to explore various PAs together outside the school context. A dyadic intervention refers to an approach or program that involves 2 individuals, typically with a focus on the interaction, relationship, or dynamic between them. Dyadic behavior change has been proven to be a promising approach in previous research [69-71].

As such, by incorporating an extensive and collaborative development process within a project application, one could re-evaluate the initial project proposal (ie, develop an mHealth app for young people with IDs targeted at promoting PA) with a thorough argument that adaptations are necessary from the perspective of the target group itself. In that regard, the combination of actively involving the target audience and applying a clear and scientific planning model was crucial. The most prominent planning models that are currently proposed to guide the development of effective interventions are Intervention Mapping [72] and the BCW [33]. Intervention Mapping includes 6 different steps to rigorously select determinants, performance, and change objectives using appropriate methods and strategies [72]. Although Intervention Mapping is comprehensive, its level of detail makes it more complex and, thus, less feasible, especially in combination with cocreation [73]. The BCW, in contrast, is more open, practical, and flexible as it was developed with interdisciplinary application in mind [37]. However, in applying the BCW within this project, it was noticed that its openness and flexibility could also lead to variable interpretations, with judgments from the researchers often required throughout the development process (eg, step 5). The variations in intervention development mainly depended on the resources available to the project team (eg, affordability and practicability). Moreover, even within this small research team of the Move it, Move ID! intervention, different steps within the BCW were sometimes interpreted differently. Some researchers saw the formulation of barriers to and facilitators of PA as belonging to steps 2 and 3 (as it was described in this paper), whereas others ascribed this to step 4 [74]. In our opinion, assigning these aspects to a certain step will not differ much from the behavioral diagnosis one will eventually arrive at. We consider it more important to discuss the different steps thoroughly within the research team so that the decisions made are well informed and can be argued for. By going through the different steps of the BCW, we learned that interventions can look different depending on the choices made without necessarily making one intervention better than the other. Further research should subsequently indicate which
interventions prove to be effective and why (ie, identifying driving mechanisms [65]). This could potentially lead to the formulation of guidelines outlining the best possible choices that could be made during intervention development within a specific target group and setting.

Nevertheless, by applying the theoretical planning model, the PI had a clear goal in mind in setting up the structure and flow of the cocreation sessions. In doing so, the BCW was instrumental in identifying an informed behavioral diagnosis and choosing which BCTs would be most applicable to have an impact on PA behavior change within this target group and setting. Although the literature suggests that the use of theory in intervention development is key [2,20,33-36], a 2019 meta-analysis formulated that the effectiveness of interventions would be less influenced by whether they are theoretically developed than by the specific BCTs used [75]. In contrast, we believe that both (ie, theory and choice of BCTs) are intertwined. A 2017 systematic review found that lifestyle change interventions for people with IDs aimed at improving PA levels typically used 5.9 BCTs, with “provide information on consequences of behavior in general,” “plan social support/social change,” “provide instruction on how to perform the behavior,” and “goal setting (behavior)” being the most frequently used BCTs [31]. However, 73% of the studies did not use any theoretical framework for intervention development [31]. After completing the full behavioral diagnosis based on the BCW, we included 12 BCTs in our intervention. This is not to say that the inclusion of more BCTs would be better but, rather, that the transparent description of the BCW steps made more evident why these specific BCTs were chosen and how they are intertwined by means of the intervention design. This demonstrates why we believe that the use of theory and the selection of BCTs are strongly connected.

Linking cocreation to the BCW, our goal was to create an intervention that starts with the experiences of the target group. This approach was intended to enhance the effectiveness and sustainability of the intervention by making it more suitable and acceptable for the target audience [10,44-48]. Cocreation with the target audience extended well beyond the described cocreation sessions for intervention development in this project. As the project progressed toward the effect study, ongoing collaboration continued with 2 coresearchers with IDs (ie, inclusive research [48]). These coresearchers maintained regular meetings (every 2 weeks) with the PI (LM) at the Department of Movement and Sports Sciences (Ghent University), actively engaging in various facets of the project. Their responsibilities included assessing prototypes of the app; offering feedback on the training of buddies; testing measurement instruments (comprising questionnaires, interviews, and accelerometers); providing insights into the recruitment strategy; contributing to the development of promotional materials such as flyers, information letters, and informed consent forms; and participating in efforts to enhance the project’s visibility among their peers, classmates, and other stakeholders. This ongoing collaboration with the coresearchers was purposefully designed to ensure the continued accessibility of the project even beyond the initial phase of intervention blueprinting. To conclude, the described intervention development addresses an important and often overlooked population that experiences health disparities and is at higher risk of physical inactivity and related health issues. This study highlights the importance of considering the unique requirements of people with IDs to develop tailored interventions that effectively meet their needs.

Limitations and Strengths

This study has some limitations. First, a wide age range of adolescents and young adults with IDs was included, which might make us question whether this intervention is applicable to both an individual aged 13 years and one aged 22 years. Indeed, younger adolescents with IDs (ie, aged 14 and 15 years) did indicate that they would be open to involving parents as buddies within an intervention, whereas this was not the case for young adults (ie, aged 17-22 years old). Choosing a tighter age limit (eg, ages of 13-16 years or 17-22 years) is recommended in future intervention development. Second, of the 23 coresearchers, 5 (22%) had a comorbidity with autism spectrum disorder, and 1 (4%) adolescent had attention-deficit/hyperactivity disorder. This is considered a limitation as previous research has found different effects on PA among youth who have IDs and youth who have other developmental disabilities in addition to IDs [8], suggesting that further comparison of PA experiences between these groups is warranted. Within the further intervention development, little weight was given to these comorbidities. In contrast, we can also conclude that their perspective was included from the start of intervention development as they also acted as cocreators and this was not an exclusion criterion. Third, following the prioritization of young people with IDs as cocreators in the initial stages of blueprinting an intervention idea, we were unable to gather input from buddies (peers intended to be matched with the participants with IDs) and consider the broader context of individuals with IDs in the actual development phase of the intervention. This constraint was due to the project’s timeline. In light of this constraint, we recommend that future intervention developers consider including these stakeholders in subsequent phases of intervention development. Their perspectives and insights are invaluable in creating interventions that are comprehensive, inclusive, and truly reflective of the needs and dynamics of the entire participant group. The greatest strength of this study was the fact that a theoretical planning model was used in combination with cocreation to develop a PA promotion intervention for this target group. In this way, it addressed the two main reasons why current interventions often prove to be ineffective: (1) a lack of use of theory and (2) a lack of population-specific research. To the best of our knowledge, this is the first study that describes the collaborative development of a PA promotion intervention for and with adolescents and young adults with IDs. Within the Move it, Move ID! project, the decision was made to work only with participants with mild to moderate IDs; consequently, the findings cannot be extended to the target group of severe or profound IDs. Although future research should focus on the representation of all people with IDs in health research, the fact that a specific group was chosen to truly tailor an intervention to their needs can also be seen as a strength.
Conclusions

The Move it, Move ID! intervention was developed based on the BCW in combination with cocreation. Going through this process was seen as an added value by the research team, which makes it highly recommended to allocate adequate time, budget, and experienced scientific staff for intervention development. By systematically identifying the needs of young people with IDs and linking them to theoretical concepts step by step, cocreators with IDs emphasized the importance of face-to-face interactions and social components in PA promotion interventions. They indicated that relying solely on an mHealth app would not fulfill their social needs. The intervention will consist of a dyadic approach in which young individuals with IDs are paired with a peer without IDs to engage in PAs together, with an app solely providing support within this partnership. The detailed and transparent development process described is a valuable blueprint for practitioners wanting to integrate the BCW and its associated BCTs, in combination with actively involving the target group, into their intervention development for people with IDs.

Acknowledgments

The authors wish to thank the adolescents or young adults and teachers who expressed their opinions during intervention development for this project. This work was supported by the Research Foundation–Flanders under grant 11F3621N (2020-2024).

Data Availability

The data sets generated and analyzed during this study are not publicly available to protect participants’ privacy and confidentiality because of the small number of participants but are available from the corresponding author upon reasonable request. In addition, the upcoming effect study has been preregistered at the Open Science Framework, where all other materials concerning this project can be found.

Authors’ Contributions

LM, SC, G Cardon, G Crombez, and GVH conceptualized the study. LM collected the data (ie, organized the cocreation sessions) and wrote the original draft. JL assisted in combining the Behavior Change Wheel planning model and a cocreational approach. SC, JL, G Cardon, G Crombez, and GVH edited the manuscript and provided feedback. All authors have read and approved the final manuscript.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Barriers to and facilitators of physical activity for adolescents or young adults with intellectual disabilities. [PDF File (Adobe PDF File), 170 KB - formative_v8i1e51693_app1.pdf]

Multimedia Appendix 2

Selection of intervention functions using the Affordability, Practicality, Effectiveness and Cost-Effectiveness, Acceptability, Side Effects or Safety, and Equity criteria. [PDF File (Adobe PDF File), 201 KB - formative_v8i1e51693_app2.pdf]

Multimedia Appendix 3

Selection and reasoning for each selected and nonselected behavior change technique. [PDF File (Adobe PDF File), 194 KB - formative_v8i1e51693_app3.pdf]

Multimedia Appendix 4

Scope of the Move it, Move ID! app. [PDF File (Adobe PDF File), 525 KB - formative_v8i1e51693_app4.pdf]

References

Abbreviations

BCT: behavior change technique
BCW: Behavior Change Wheel
COM-B: Capability, Opportunity, and Motivation–Behavior
ID: intellectual disability
mHealth: mobile health
MVPA: moderate to vigorous physical activity
PA: physical activity
PE: physical education
PI: principal investigator
TDF: Theoretical Domains Framework
WHO: World Health Organization
Assessing and Improving Data Integrity in Web-Based Surveys: Comparison of Fraud Detection Systems in a COVID-19 Study

Stephen Bonett¹, RN, PhD; Willey Lin¹, MB; Patrina Sexton Topper¹, BSN, MS, PhD; James Wolfe¹, MS; Jesse Golinkoff², MPH; Aayushi Deshpande², MPhil; Antonia Villarruel¹, RN, PhD; José Bauermeister¹, MPH, PhD

¹School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
²Department of Psychology, Ashoka University, Sonepat, India

Corresponding Author:
Stephen Bonett, RN, PhD
School of Nursing
University of Pennsylvania
418 Curie Boulevard
Philadelphia, PA, 19104
United States
Phone: 1 2155734299
Email: stepdo@nursing.upenn.edu

Abstract

Background: Web-based surveys increase access to study participation and improve opportunities to reach diverse populations. However, web-based surveys are vulnerable to data quality threats, including fraudulent entries from automated bots and duplicative submissions. Widely used proprietary tools to identify fraud offer little transparency about the methods used, effectiveness, or representativeness of resulting data sets. Robust, reproducible, and context-specific methods of accurately detecting fraudulent responses are needed to ensure integrity and maximize the value of web-based survey research.

Objective: This study aims to describe a multilayered fraud detection system implemented in a large web-based survey about COVID-19 attitudes, beliefs, and behaviors; examine the agreement between this fraud detection system and a proprietary fraud detection system; and compare the resulting study samples from each of the 2 fraud detection methods.

Methods: The PhillyCEAL Common Survey is a cross-sectional web-based survey that remotely enrolled residents ages 13 years and older to assess how the COVID-19 pandemic impacted individuals, neighborhoods, and communities in Philadelphia, Pennsylvania. Two fraud detection methods are described and compared: (1) a multilayer fraud detection strategy developed by the research team that combined automated validation of response data and real-time verification of study entries by study personnel and (2) the proprietary fraud detection system used by the Qualtrics (Qualtrics) survey platform. Descriptive statistics were computed for the full sample and for responses classified as valid by 2 different fraud detection methods, and classification tables were created to assess agreement between the methods. The impact of fraud detection methods on the distribution of vaccine confidence by racial or ethnic group was assessed.

Results: Of 7950 completed surveys, our multilayer fraud detection system identified 3228 (40.60%) cases as valid, while the Qualtrics fraud detection system identified 4389 (55.21%) cases as valid. The 2 methods showed only “fair” or “minimal” agreement in their classifications (κ=0.25; 95% CI 0.23-0.27). The choice of fraud detection method impacted the distribution of vaccine confidence by racial or ethnic group was assessed.

Conclusions: The selection of a fraud detection method can affect the study’s sample composition. The findings of this study, while not conclusive, suggest that a multilayered approach to fraud detection that includes conservative use of automated fraud detection and integration of human review of entries tailored to the study’s specific context and its participants may be warranted for future survey research.

(JMIR Form Res 2024;8:e47091) doi:10.2196/47091

KEYWORDS
web-based survey; data quality; fraud; survey methodology; COVID-19; survey; fraud detection; Philadelphia; data privacy; data protection; privacy; security; data; information security; data validation; cross-sectional; web-based
Introduction

Web-based survey research has become increasingly common in recent years, particularly because of its ability to reach broad populations efficiently and economically [1]. Web-based surveys involve inviting potential respondents to complete questionnaires through digital platforms that manage how questions are presented and how data are collected and stored [2,3]. These research methods have been used in response to the difficulties faced in traditional survey methods (i.e., recruiting participants using flyers, newspaper or radio or television advertisements or spreading by word of mouth and collecting data in person using computer-assisted survey instruments or over the phone), especially in reaching underrepresented populations [4,5]. The advantages of web-based surveys include eliminating the requirement for face-to-face interaction, offering flexible access to surveys, removing transportation and logistical barriers, and preserving anonymity. In recent years, COVID-19 pandemic restrictions limited opportunities for in-person research and provided additional justification for researchers to adopt web-based study designs while leveraging social media recruitment methods to reach diverse populations [6-9].

As web-based recruitment and survey methods in health research have become more ubiquitous and refined, so too have methods of web-based research fraud [10,11]. Fraud can manifest in multiple ways. For example, individuals may misrepresent themselves in order to appear eligible for a study or may submit duplicate surveys in order to receive multiple incentive payments. Additionally, fraudulent data may also come from automated operations enacting fraud at a large scale, often referred to as “bots” [11,12]. These methods are often used to target surveys offering participation compensation payments and can be lucrative when aimed at large web-based surveys, even those offering small payments [9,13]. Such fraud poses risks not only to research resources but also, importantly, to the integrity of research findings, as fraudulent data can distort results and undermine data quality. Specifically, fraudulent responses can introduce additional random noise or potentially add systematic bias to the data [14-16].

In response, researchers, companies operating in the digital research space (e.g., Qualtrics) [17], and organizations interested in digital data integrity (e.g., Google) [18] have developed methods to address fraudulent activity. The research community has crafted recommendations for fraudulent data identification and participant identity verification protocols [13,19,20]. Platforms specializing in web-based survey research such as Qualtrics [17] and Amazon Mechanical Turk [21] have also developed fraud detection features that accompany their services. While these proprietary systems for fraud detection offer a simple, automated approach to improving data quality, little information is available about the mechanisms they use [22]. Fraud detection systems often obscure details about how their validation process functions as an important strategy to protect the integrity of the fraud detection system, making it more difficult for fraudulent participants to circumvent protections. However, obfuscation also introduces questions about how fraud detection algorithms alter study samples and whether they introduce bias into analyses [20].

Little research has compared how fraud detection strategies impact study sample composition or examined their comparative effectiveness in correctly identifying fraud [22-25]. By accurately identifying and removing fraudulent responses to web-based surveys, research can improve data quality and strengthen the overall rigor of their methods. Robust, reproducible, and context-specific methods of accurately detecting fraudulent responses are needed to ensure integrity and maximize the value of web-based survey research. This paper aims to (1) describe the multilayer fraud detection techniques we developed and implemented in a large web-based survey collecting data about attitudes, beliefs, and behaviors related to COVID-19; (2) examine the degree of agreement between our multilayer fraud detection strategy and the proprietary fraud detection system used by Qualtrics; and (3) compare the study samples that resulted when using each of the 2 fraud detection methods.

Methods

Study Design

We collected data from November 2021 through February 2022 for the PhillyCEAL Common Survey, a cross-sectional study using a web-based survey to assess how the COVID-19 pandemic and response have impacted individuals, neighborhoods, and communities across the city of Philadelphia, Pennsylvania. The Checklist for Reporting Results on Internet E-Surveys was used to guide the reporting of our methods and results (Multimedia Appendix 1) [26]. The Qualtrics web-based survey platform was used to design the survey and automatically capture responses in a database. The usability and technical functionality of the survey were tested by the study team before launching the survey. Individuals were eligible to participate if they (1) resided within Philadelphia County (coterminous with the city limits) and (2) were at least 13 years of age. We recruited participants through advertisements on social media platforms (i.e., Facebook, Instagram, Twitter, and Reddit) and referrals from community partners (including one partner that provided study recruitment materials to individuals via door-to-door canvassing). The recruitment process directed individuals to a voluntary, open web-based survey, where they completed a screener consent form and answered a series of questions to determine eligibility and record basic demographic information. We did not allow participants to change their answers through a back button feature.

Eligible participants were automatically directed to the full study consent form. Following consent, participants were asked to complete a 20-minute questionnaire about their experiences, behaviors, and beliefs about COVID-19, risk of infection, testing, vaccination, treatment, and knowledge and beliefs about COVID-19 clinical trials. Participants completed 1 of 3 slight variations of the survey (i.e., the adult survey, the parent survey, and the youth survey), where additional questions or slight changes to wording were used on the parent and youth surveys. Participants completed only 1 of these 3 potential variations (i.e., survey groups were mutually exclusive), with participants of any age who reported having minor children completing the parent survey (103 questions), participants ages 25 years or
younger and not having minor children completing the youth survey (126 questions), and all other participants completing the adult survey (92 questions). To reduce participant burden, we used adaptive questioning to reduce the number of questions displayed based on their answers. Participants saw an average of 6 questions per page.

Participants were excluded if they did not complete the entire survey (n=2930) or did not provide a residential zip code matching 1 of the 48 zip codes of Philadelphia County (n=647). Participants confirmed eligible and marked as complete by both Qualtrics automation and our manual review of the data were compensated with a US $15 electronic gift card. To protect participant data, the web survey data were downloaded to a secure university server, deidentified by replacing contact information with unique IDs, and stored in a restricted folder with password protection.

Ethical Considerations
All participants completed an informed consent process before proceeding to the survey. Ethics approval was obtained from the institutional review board at the University of Pennsylvania (protocol 848650).

Preliminary Fraud Protection
Given the prevalence of fraud and duplicate responses in web-based survey research, we used several strategies to prevent fraudulent participants from accessing and completing the survey, serving as a baseline level of fraud protection for both our multilayer and the Qualtrics detection methods. Our preliminary line of defense against fraud was targeted toward nonhuman interferences such as bots. To proceed with the survey, all respondents had to pass a built-in Turing test provided by Qualtrics using Google’s reCAPTCHA (version 2) antifraud technology [27]. Depending on the respondent’s on-device saved data such as browser cookies, they either had to click a checkbox or solve a simple image challenge to pass the reCAPTCHA (version 2) test.

Since sophisticated bots can trick the reCAPTCHA (version 2) test [28], we added a honeypot question as a second line of defense against bots. Honeypots are survey questions hidden from rendering on the screen using custom JavaScript code [11]. They are, therefore, invisible to human respondents but accessible to bots that do not rely on what is rendered on screen. Since the honeypot is not visible to human respondents, any responses to the honeypot would immediately disqualify the entire survey response and end the survey.

We also created unique URLs for each recruitment source and advertisement campaign for the study. The unique URLs enabled us to identify the origin (recruitment source and ad campaign) of each survey response. This allowed us to individually monitor and suspend links that became the target of fraudulent survey responses.

Multilayer Fraud Detection Methods
Real-Time Exclusion of Fraudulent Responses
We implemented a suite near real-time data verification procedures to assess the veracity of data as they were collected, including techniques based on recommendations from prior research as well as several manual checks that were developed specifically for this study. A research team member would individually inspect submitted responses and label responses as fraudulent using the following criteria: (1) participants were asked to provide their residential address and the colloquial name of their neighborhood. Responses were marked as fraud if the neighborhood name provided did not match a standard Philadelphia neighborhood name corresponding to the residential address provided or any adjacent neighborhood; (2) the residential address provided did not match an existing address in Philadelphia County [20,23,29]; (3) the survey had the same start times and stop times plus or minus 1 minute as 2 or more other submitted surveys (rapid survey submission) [11,29]; (4) the respondent’s email address matched a previously enrolled participant’s email address [11,20]; (5) the zip code provided as part of the residential address was nonstandard (ie, a post office box code or a unique code) [20,23]; (6) the residential address had already been reported by at least 2 other respondents [20,23]; or (7) the URL from which the response was referred did not match any of the URL links distributed by the study team during recruitment. Responses labeled as fraud during real-time validation were not eligible to receive survey compensation.

Automated Post Hoc Identification of Fraudulent Responses
We developed a set of automated post hoc techniques designed to detect fraud that our real-time procedures may not have captured. Three criteria were developed for this post hoc fraud identification based on recommendations from prior research [11,20,22,23,29-32]. Since these criteria only identify suspicious entries and do not definitively prove that an entry is fraudulent, responses were labeled as fraud only if they satisfied 2 or more criteria. We settled on using a threshold of 2 criteria (rather than 1 or 3) in order to balance concerns about the potential of each of our 3 criteria to incorrectly label a participant as fraud with the necessity to exclude causes that showed strong evidence of fraud. The criteria were as follows:

1. In response to a free text item at the end of the survey soliciting additional comments or questions from the participant, the submitted survey included text that was identical to text submitted by other respondents. We considered a free text response an identical match if it was among free text entries of 1 word or greater that were repeated 100 or more times, free text entries of 2 words or greater that were repeated 10 or more times, or free text entries of 3 words or greater that were repeated 3 or more times (see Table S1 in Multimedia Appendix 2 for list of unique text strings excluded and their frequency in the full set of responses);
2. The IP address of a response belonged to a virtual private network or data center or originated from outside the United States, as determined by using a security service for proxy and virtual private network detection and IP location information [32]; and
3. Responses provided in the main survey were inconsistent with responses to the same items in the screener for one or more key items that would not be expected to be variable
(ie, age, zip code, number of adults living at home with the participant, number of minors living at home with the participant, Hispanic or Latinx ethnicity, “Have you ever been tested for COVID-19?,” and “Have you received at least 1 dose of the COVID-19 vaccine?”).

Qualtrics Fraud Detection Methods

Qualtrics is a widely used web-based survey platform that allows users to create surveys with complex flow logic and customizable visual design. Qualtrics surveys are easily optimized for use on mobile devices and can display a wide variety of question types on both computer and mobile phone interfaces. Another key strength of the Qualtrics platform is its integration of 1-click translation, allowing users to quickly switch between various languages. This was crucial for our study, which recruited participants from diverse populations across Philadelphia and was available in English, Spanish, and Mandarin. In addition to these valuable features, Qualtrics also offers tools for detecting fraudulent survey responses. This automated and user-friendly system for fraud detection has the potential to help researchers improve data quality in their web-based surveys. Given the lack of research exploring how these consumer tools compare to existing published protocols for fraud detection, we sought to compare our multilayer fraud detection methods to the system used by Qualtrics.

The Qualtrics fraud detection system relies on Google’s reCAPTCHA (version 3) and Imperium’s RelevantID antifraud technologies. Both tools rely on proprietary machine learning models that analyze passive and behavioral data, browser interactions, and respondent metadata to identify abuse and fraud [18,34,35]. Unlike the reCAPTCHA (version 2) test respondents had to solve at the start of the survey, bot detection using reCAPTCHA (version 3) does not present respondents with an image challenge nor block respondents and bots from proceeding with the survey. Instead, it returns a score (Q_RecaptchaScore) between 0.0 and 1.0 that Qualtrics records as part of the survey response. We used the recommended 0.5 score as the threshold for fraud, where a score under 0.5 is deemed likely to be a bot [17,18].

Like reCAPTCHA (version 3), RelevantID does not prevent bots from completing the survey. Instead, it attaches a score (Q_RelevantIDFraudScore) between 0 and 130 to each survey response. We followed Qualtrics’ recommendation in interpreting a score ≥30 as fraudulent and likely a bot [17]. In addition to bot detection, RelevantID identifies duplicate responses through digital fingerprinting and proprietary detection algorithms [34]. Qualtrics then attaches another score (Q_RelevantIDDuplicateScore) between 0 and 100 to the survey response. We followed the suggested score threshold where any score ≥75 is considered a duplicate [17].

Statistical Analysis

Agreement and Comparative Performance

The classification tables were created to display the degree of agreement between the 2 fraud detection methods for the full sample and for each of the 3 survey-type categories (ie, adult, parent, and youth).

Impact of Fraud Detection Method on Sample Characteristics

Descriptive statistics were computed for the full sample of responses, the subset classified as valid by our multilayer fraud detection method, and the subset classified as valid by the Qualtrics fraud detection method. As these 3 sets of responses are not mutually exclusive, we did not directly compare them statistically.

To test for differences between fraudulent and valid responses as classified by each fraud detection method, statistical comparisons were conducted for key study variables between the mutually exclusive sets of responses classified as fraudulent or valid within each method. Specifically, we used chi-square tests for categorical variables, 2-tailed t tests for normally distributed continuous variables, and Mann-Whitney U tests for continuous variables that were not normally distributed. The results of these analyses are presented in Table S2 in Multimedia Appendix 2 for the multilayer method and Table S3 in Multimedia Appendix 2 for Qualtrics.

To assess the degree to which the 2 fraud detection methods would impact the distribution of a key study variable, the point estimate and 95% CI were calculated for vaccine confidence by racial or ethnic group for each fraud detection method and for the entire sample without any fraud mitigation.

Variations in Survey Responses During Study Period

A time-series plot was created to show the cumulative responses to the study survey over time and their fraud classification by each of the 2 fraud detection methods. This plot highlights the periods in which social media recruitment campaigns are active and can also shed light on how the 2 fraud detection methods diverge in their classification of responses during different periods of high survey response. Additionally, we present a time-series plot showing the proportion of responses classified as fraud across the study period, including smooth locally weighted smoothing lines to visualize the trends over time. All analyses were performed with R (version 4.1.0; R Foundation for Statistical Computing).

Results

Multilayer Fraud Detection Methods

A total of 7950 completed survey responses were received. See Figures 1 and 2 for an overview of fraud detection results from our multilayer fraud detection methods. Using the real-time exclusion criteria of the multilayer fraud detection method, 4207 (52.92%) entries were classified as fraud. Of those classified as fraud, 1242 (29.52%) reported a neighborhood name that did not match their residential address, 648 (15.4%) provided an invalid residential address, 1397 (33.21%) displayed rapid survey submission, 42 (1%) used a repeated email address, 77 (1.83%) reported a nonstandard zip code, 398 (9.46%) reported a residential address that was used more than twice, and 403 (9.58%) did not have a valid recruitment URL. After the real-time exclusion, 3743 (47.08%) cases remained classified as valid.
Our automated post hoc fraud detection criteria identified additional cases as fraud. Of the remaining 3743 initially valid cases, 1561 (41.70%) cases had a duplicate response in the free text entry item, 394 (10.53%) cases had an IP address from outside the United States or from a virtual private network, and 619 (16.54%) had inconsistencies between the screener and main survey on at least 1 key item. Using our “2-strike” rule, we classified an additional 515 (13.76%) responses as fraud for meeting at least 2 of the above criteria. Thus, our multilayer fraud detection strategy classified a total of 4722 (59.40%) entries as fraud and 3228 (40.60%) entries as valid.

Qualtrics Fraud Detection Methods

The Qualtrics fraud detection methods identified 498 (6.26%) cases as duplicates by the RelevantID DuplicateScore, and 938 (11.80%) cases as fraud by the RelevantID FraudScore, and 2776 (34.92%) cases as fraud by the relevantID FraudScore, and 3589 (44.79%) cases as fraud by the reCAPTCHA (version 3) score. The Qualtrics fraud detection strategy classified a total of 3589 (44.79%) entries as fraud (ie, meeting one or more of the 3 criteria above) and 4389 (55.21%) entries as valid.

Agreement and Comparative Performance

Table 1 presents confusion matrices showing the degree of agreement between our multilayer fraud detection method and the Qualtrics fraud detection method for the full sample and each survey-type category. The intrarater reliability indicated “fair” or “minimal” agreement between the 2 methods for the full sample (κ=0.25; 95% CI 0.23-0.27), “moderate” or “weak” agreement for the adult (κ=0.48; 95% CI 0.43-0.53) and youth (κ=0.50; 95% CI 0.43-0.58) surveys, and “slight” or “none” agreement for the parent survey (κ=0.13; 95% CI 0.10-0.15) [36,37].
Table 1. Confusion matrix and interrater reliability (κ) between our multilayer fraud detection system and the Qualtrics fraud detection system for the full sample, only adult surveys, only parent surveys, and only youth surveys.

<table>
<thead>
<tr>
<th></th>
<th>Fraud (multilayer)</th>
<th>Valid (multilayer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraud (Qualtrics)</td>
<td>2627a</td>
<td>934c</td>
</tr>
<tr>
<td>Valid (Qualtrics)</td>
<td>2095c</td>
<td>2294</td>
</tr>
<tr>
<td>Adult survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraud (Qualtrics)</td>
<td>299</td>
<td>166c</td>
</tr>
<tr>
<td>Valid (Qualtrics)</td>
<td>174c</td>
<td>904</td>
</tr>
<tr>
<td>Parent survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraud (Qualtrics)</td>
<td>2184</td>
<td>710c</td>
</tr>
<tr>
<td>Valid (Qualtrics)</td>
<td>1848c</td>
<td>1102</td>
</tr>
<tr>
<td>Youth survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraud (Qualtrics)</td>
<td>144 c</td>
<td>58</td>
</tr>
<tr>
<td>Valid (Qualtrics)</td>
<td>73 c</td>
<td>288</td>
</tr>
</tbody>
</table>

a$\kappa=0.25; 95\% \text{ CI } 0.23-0.27.$

bValues in italics represent agreement between the 2 methods.

cValues represent disagreement between the 2 methods.

d$\kappa=0.48; 95\% \text{ CI } 0.43-0.53.$

e$\kappa=0.13; 95\% \text{ CI } 0.10-0.15.$

f$\kappa=0.50; 95\% \text{ CI } 0.43-0.58.$

We conducted sensitivity analyses to assess the impact of choosing a “2-strike rule” for our post hoc fraud detection rather than a “1-strike rule” or a “3-strike rule.” Compared to the “2-strike rule,” which resulted in 515 additional cases being classified as fraud during the post hoc phase of fraud detection, the “1-strike rule” would have classified 2047 additional cases as fraud, and the “3-strike rule” would have classified 12 additional cases as fraud. In terms of agreement with Qualtrics’ fraud detection methods, the “1-strike rule” would have resulted in a κ of 0.20 (95% CI 0.19-0.22) for the full sample, and the “3-strike rule” would have resulted in a κ of 0.24 (95% CI 0.22-0.26) for the full sample.

Additionally, we explored how the 2 fraud detection strategies compared in their ability to classify cases with validated email addresses as valid entries. Validated email addresses were defined as email addresses ending in “.edu” or “.gov,” indicating an institutional affiliation. Of the 168 cases with validated emails, the multilayer fraud detection system correctly classified 166 (98.81%) as valid, while the Qualtrics fraud detection system correctly classified only 126 (75%) as valid.

Impact of Fraud Detection Method on Sample Characteristics

Decisions about which fraud detection strategies to use can impact the results of web-based survey research. Table 2 presents the descriptive statistics for sociodemographic variables, survey metric variables, and key study outcome variables on 3 versions of the data set: the full data set with no fraud detection (n=7950), the cases identified as valid by our multilayer fraud detection methods (n=3228), and the cases identified as valid by the Qualtrics fraud detection methods (n=4389). As these sets are not mutually exclusive, we cannot compare them directly; however, there are clear differences in the distributions of many study variables between the 3 sets. When comparing entries classified as fraud to those classified as valid for each of the 2 fraud detection methods (ie, mutually exclusive sets), all study variables, except for lifetime COVID-19 testing for the multilayer fraud detection, were found to be significantly different for both methods (Tables S2 and S3 in Multimedia Appendix 2).

Table 3 showcases in detail how a key variable of interest to researchers may be affected by using different fraud detection methods. In this data set, vaccine confidence among White respondents was greater when using our multilayer fraud detection ($\mu=0.867; 95\% \text{ CI } 0.851-0.882$) when compared to Qualtrics fraud detection ($\mu=0.782; 95\% \text{ CI } 0.766-0.798$). A similar pattern is seen for Hispanic or Latinx respondents and Black or African American respondents.
Table 2. Demographics, survey metrics, and key study responses in overall sample, multilayer valid set, and Qualtrics valid set.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Full sample (N=7950)</th>
<th>Multilayer valid set (n=3228)</th>
<th>Qualtrics valid set (n=4389)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race or ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latinx</td>
<td>1188 (14.9)</td>
<td>254 (7.9)</td>
<td>571 (13)</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>135 (1.7)</td>
<td>7 (0.2)</td>
<td>34 (0.8)</td>
</tr>
<tr>
<td>Asian</td>
<td>311 (3.9)</td>
<td>219 (6.8)</td>
<td>221 (5)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>1856 (23.3)</td>
<td>728 (22.6)</td>
<td>853 (19.4)</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>42 (0.5)</td>
<td>11 (0.3)</td>
<td>10 (0.2)</td>
</tr>
<tr>
<td>White</td>
<td>4272 (53.7)</td>
<td>1889 (58.5)</td>
<td>2600 (59.2)</td>
</tr>
<tr>
<td>Multiracial or others</td>
<td>146 (1.8)</td>
<td>120 (3.7)</td>
<td>100 (2.3)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman</td>
<td>4253 (53.5)</td>
<td>2028 (62.8)</td>
<td>2645 (60.3)</td>
</tr>
<tr>
<td>Man</td>
<td>3571 (44.9)</td>
<td>1108 (34.3)</td>
<td>1663 (37.9)</td>
</tr>
<tr>
<td>Transgender or gender diverse</td>
<td>105 (1.3)</td>
<td>76 (2.4)</td>
<td>64 (1.5)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>21 (0.3)</td>
<td>16 (0.5)</td>
<td>17 (0.4)</td>
</tr>
<tr>
<td>Sexual orientation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisexual</td>
<td>361 (4.5)</td>
<td>242 (7.5)</td>
<td>262 (6)</td>
</tr>
<tr>
<td>Gay</td>
<td>231 (2.9)</td>
<td>101 (3.1)</td>
<td>147 (3.3)</td>
</tr>
<tr>
<td>Lesbian</td>
<td>142 (1.8)</td>
<td>69 (2.1)</td>
<td>65 (1.5)</td>
</tr>
<tr>
<td>Straight (ie, not gay, lesbian, or bisexual)</td>
<td>7039 (88.5)</td>
<td>2682 (83.1)</td>
<td>3791 (86.4)</td>
</tr>
<tr>
<td>Others</td>
<td>94 (1.2)</td>
<td>84 (2.6)</td>
<td>71 (1.6)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>83 (1)</td>
<td>50 (1.5)</td>
<td>53 (1.2)</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than high school</td>
<td>215 (2.7)</td>
<td>49 (1.5)</td>
<td>65 (1.5)</td>
</tr>
<tr>
<td>High school or equivalent</td>
<td>1013 (12.7)</td>
<td>299 (9.3)</td>
<td>479 (10.9)</td>
</tr>
<tr>
<td>Some college</td>
<td>1890 (23.8)</td>
<td>579 (17.9)</td>
<td>964 (22)</td>
</tr>
<tr>
<td>College graduate</td>
<td>3935 (49.5)</td>
<td>1672 (51.8)</td>
<td>2253 (51.3)</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>882 (11.1)</td>
<td>620 (19.2)</td>
<td>617 (14.1)</td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>15 (0.2)</td>
<td>9 (0.3)</td>
<td>11 (0.3)</td>
</tr>
<tr>
<td>Survey type, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>1543 (19.4)</td>
<td>1070 (33.1)</td>
<td>1078 (24.6)</td>
</tr>
<tr>
<td>Parent</td>
<td>5844 (73.5)</td>
<td>1812 (56.1)</td>
<td>2950 (67.2)</td>
</tr>
<tr>
<td>Youth</td>
<td>563 (7.1)</td>
<td>346 (10.7)</td>
<td>361 (8.2)</td>
</tr>
<tr>
<td>Survey metrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey duration (minutes), median (IQR)</td>
<td>23.46 (18.38-38.10)</td>
<td>22.02 (18.13-32.57)</td>
<td>22.82 (18.52-35.13)</td>
</tr>
<tr>
<td>User language=Spanish, n (%)</td>
<td>127 (1.6)</td>
<td>22 (0.7)</td>
<td>53 (1.2)</td>
</tr>
<tr>
<td>Key study variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever tested for COVID-19=yes, n (%)</td>
<td>6968 (87.6)</td>
<td>2840 (88)</td>
<td>3903 (88.9)</td>
</tr>
<tr>
<td>Ever COVID-19–positive, n (%)</td>
<td>5836 (83)</td>
<td>2498 (87.3)</td>
<td>3294 (83.8)</td>
</tr>
</tbody>
</table>
Variations in Survey Responses During Study Period

The response rate varied throughout the study and was correlated to several social media advertising campaigns and an extended holiday break where no responses were accepted. Figure 3 shows the cumulative number of responses over time, differentiated by fraud detection method and fraud classification. Time periods when social media advertising campaigns were active are highlighted on these plots. Responses tend to increase during social media campaigns. Notably, between January 13 and February 7, 2022, no social media campaign was active, yet a significant number of responses were received (n=766). These responses were largely classified as fraud by our multilayer fraud detection method (n=716, 93.47% classified as fraud) but were often classified as valid by the Qualtrics fraud detection method (n=296, 38.64% classified as fraud). Figure 4 shows the proportion of responses classified as fraud across the study period. The comparative fraud detection between the 2 methods was similar during the first half of the study period (November to December 2021), while the multilayer fraud detection method consistently identified a higher proportion of responses as fraud during the later portion of the study period (January to February 2022).
Figure 3. Fraud detection by multilayer fraud detection system and Qualtrics fraud detection system during the study period (November 2021 to February 2022). Highlighted regions indicate periods when social media campaigns were active (November 3-18, 2021; November 29-December 22, 2021; and February 7-10, 2022. Data collection was paused during an extended winter break from December 23, 2021, until January 12, 2022. The dotted vertical line represents January 12, 2022, when data collection was resumed.

Figure 4. Proportion of responses classified as fraud by multilayer fraud detection system and Qualtrics fraud detection system during the study period (November 2021 to February 2022). Smooth locally weighted smoothing lines are included to help visualize the trends over time.

Discussion

Principal Findings

Our multilayer fraud detection methods identified a substantial number of fraudulent cases. However, when comparing our fraud detection methods to proprietary fraud detection systems provided by web-based survey software, we saw low levels of agreement between the 2 methods. Our results highlight how the choice of fraud detection method can alter the distribution of key study variables.

Both our multilayer fraud detection methods and the Qualtrics fraud detection system identified significant levels of fraud; however, the 2 methods differed in which cases they identified as fraudulent and in which they identified as valid. Notably, these differences were most pronounced for participants who administered the survey specifically for parents. It is possible that fraudulent participants made assumptions about eligibility or compensation (eg, parents are a more specific demographic that may be of interest to researchers, and thus, fraudulent entries that claim to be parents may be more likely to screen as eligible and receive compensation) and responded to eligibility questions in ways that guided them to the parent survey. With a greater
number, and perhaps a greater variety, of fraudulent participants, we then may have seen greater variability in the 2 methods’ ability to consistently identify the fraud.

The disagreement between our multilayer fraud detection and the Qualtrics fraud detection suggests that there are important differences in the methodologies being used by the 2 systems, which resulted in differences in classification. To fully understand and compare the relative performance of the 2 systems, detailed information is needed about the methods used by the Qualtrics fraud detection system. It is likely that the features of the RelevantID proprietary fraud detection method used by Qualtrics are intentionally obfuscated to prevent fraudulent participants from undermining its effectiveness.

The trade-off for this black box tactic is that researchers who use the Qualtrics platform cannot ascertain how Qualtrics’ fraud detection algorithms function and how these methods compare to alternative fraud detection strategies. There is an inherent tension between transparency (ie, publishing the features of a fraud detection method improves scientific rigor) and defending against fraud (ie, making comprehensive information about a fraud detection method available may enable fraudulent participants to avoid detection) [22]. Additional research is needed to evaluate the effectiveness of proprietary fraud detection systems and compare them to published techniques used by researchers.

For both fraud detection methods, the cases identified as fraud differed in nonrandom ways from the cases classified as valid on key study variables. These differences could have implications for the interpretation of study results; if legitimate survey participants are classified as fraudulent, critical data are lost, and potential bias could be introduced. In addition, many automated fraud detection tools turn to proprietary machine learning data and predictive modeling for fraud detection [22,38]. This could disproportionately affect those with low literacy or barriers to internet access, as fraud detection tools may be more likely to flag them as fraudulent [19]. Given the existing digital divide across racial or ethnic groups [39,40], this may result in the further exclusion of racial or ethnic minorities in research if they are more likely to use older technologies and shared devices at home or in public spaces, such as computers at libraries or community centers (which may trigger the threshold for fraud due to user behavior that is atypical of a single-user device). One approach to overcoming this challenge is to integrate manual inspection of survey entries in place of or in addition to automatic processes that could result in bias [41,42]. However, human inspection of each survey entry can be time-consuming, more variable than automated processes, and could also result in bias. Future work should aim to better characterize subgroups that may be disproportionately flagged by fraud detection systems and develop ensemble approaches that integrate manual and automatic fraud detection while balancing fraud detection accuracy with protections against excluding valid participants.

While overly sensitive fraud detection could result in bias, fraud detection methods that are not sensitive enough to detect fraudulent entries could also add random noise or systematic bias to the data and threaten the integrity of the research [14-16]. It is important to note that we do not have insight into fraudulent participants’ techniques for responding to survey questions. Fraudulent participants may deliberately select specific demographic options (characteristics they believe will be more likely to result in their entry into the study), randomly select their responses, or use some combination of those techniques [9]. Additionally, rapid developments in machine learning and artificial intelligence have increasingly allowed bots to mimic human behavior [11,22], which could contribute to the seemingly human selection of responses on these surveys, including entries into free text fields [43]. Regardless, this analysis demonstrated the importance of developing study-specific fraud detection methods to supplant or supplement the proprietary fraud detection methods of web-based survey platforms.

Another point of note is the decreased effectiveness of fraud detection tools in determining user legitimacy, as major technology companies take increasing measures to protect user privacy. For example, it is common for fraud detection tools to rely on device fingerprinting and browser cookies to help determine the legitimacy of an individual [44]. While these 2 methods are regularly used by advertisers and marketers to track individuals and deliver targeted advertisements, they also provide a way for fraud detection tools to flag known bad actors and differentiate between legitimate and fraudulent responses. However, the invasive and comprehensive nature of device and browser fingerprinting has raised privacy concerns from users and privacy advocates alike [45,46]. Technology companies, such as Apple, Mozilla, and Brave, have in turn introduced measures to hide users’ identities and activity in a bid to protect user privacy. For instance, Apple’s Safari browser on the macOS desktop operating system now strips all unique identifiers from a user’s device profile, so they appear no different from millions of other Safari users [47]. These privacy-protecting measures, while helpful in safeguarding an individual’s digital presence, make it more difficult for fraud detection tools to differentiate between a legitimate human and a bot. This could partially explain the discrepancy we found between the fraud detection by Qualtrics using reCAPTCHA and RelevantID and our multilayer fraud detection.

Without a method to make a conclusive determination regarding which entries are truly fraudulent and which entries are genuinely valid, it is difficult to compare the relative performance of our multilayer fraud detection methods with the Qualtrics fraud detection methods. However, several pieces of evidence suggest that our fraud detection methods have advantages over Qualtrics in this study context. First, we saw that for email addresses that had an institutional affiliation (ie, “.edu” or “.gov,” which require identity confirmation and cannot be generated en masse) and thus were presumed to be valid, our fraud detection methods correctly validated 98% (n=166) of cases. In comparison, Qualtrics only validated 75% (n=126) of cases. Second, we saw an unusually large discrepancy between the 2 fraud detection methods during a period when the survey link was open, but no advertising or recruitment had recently been active. During this time when we did not expect to receive legitimate responses, we received hundreds of responses that were largely classified as fraud by our fraud detection methods but were generally classified as valid by the Qualtrics system.
While it is possible that valid participants were still able to find and access this survey in the absence of active recruiting, we believe this pattern is evidence of noneligible actors using automated systems in an attempt to gain additional compensation payments from the survey. Taken together, these 2 observations are indirect evidence that our multilayer fraud detection method may have better specificity (ie, can correctly identify valid entries) as well as better sensitivity (ie, can accurately detect fraudulent entries) when compared to the Qualtrics system in this study. While we are unable to conclude that the approach we developed for this study is more or less accurate in identifying fraud when compared to the system used by Qualtrics, we believe these pieces of indirect evidence suggest that using an automated system, such as the one available through Qualtrics, alone may be suboptimal. A multilayered approach was recommended to fraud detection that includes conservative use of automated fraud detection and integration of human review of entries that is tailored to the study’s specific context and its participants.

Limitations
This study is subject to several limitations. First, our comparison of fraud detection methods is limited by the fact that we are unable to definitively determine which entries are valid and which are fraudulent. We selected fraud detection criteria specifically intended to identify repeat respondents (eg, multiple responses providing identical information), fraudulent submissions from outside the Philadelphia region (eg, location verification using IP addresses), and submissions from bots or bot-assisted fraudulent participants (eg, requiring responses that would be difficult to generate via algorithm such as local, colloquial neighborhood names). Applying these criteria may still have resulted in the inclusion of illegitimate responses and the exclusion of legitimate ones. Second, because we cannot know for certain the true fraud status of participants, we are unable to calculate metrics like precision and recall for the fraud detection methods. Future research should aim to establish gold-standard indicators for fraud that could then be used to directly compare the efficacy of the different methods for fraud detection. Third, without knowing how Qualtrics detects fraud, we are unable to determine which components of our strategy may overlap with the Qualtrics strategy. This limits the conclusions we can draw about the comparative effectiveness of these fraud detection methods. Fourth, while we choose to compare our fraud detection methods with the automated systems used by the Qualtrics platform, we believe that similar comparisons and research are also needed with other proprietary fraud detection systems.

Recommendations
The following recommendations are offered for improving data integrity in web-based survey research based on the findings from this study:

- Use a multilayered approach to fraud detection that combines different techniques like bot detection, location verification, consistency checks, and manual review. Relying solely on one method may miss certain types of fraud.
- Carefully evaluate proprietary fraud detection systems and request details on their methodology if possible. Black box methods make it difficult to fully assess their impact on sample composition.
- Avoid overly strict fraud detection rules that may disproportionately exclude valid respondents from vulnerable groups. Balance rigor with inclusion.
- Continuously monitor survey responses over time to identify changes in fraud patterns that may require adjustments to detection methods.

Conclusions
Web-based research and recruitment through social media platforms offer powerful flexibility for researchers to collect large, diverse samples. Web-based surveys, however, are vulnerable to low-quality data from fraud and duplicate entries. Researchers must actively design their web-based studies with this vulnerability in mind and adopt active and adaptable methods of detecting and responding to fraudulent survey responses. Automated, proprietary fraud detection systems offered by web-based survey software may be an important tool in combating fraud, but additional research is needed to evaluate their effectiveness. Human verification of survey entries, while time-consuming, can add another layer of protection and enhance the rigor of web-based survey research. We believe a multilayered strategy that includes a combination of automated fraud detection tools, data enrichment, and human intelligence is the best approach for combating fraud.

Acknowledgments
The authors would like to recognize the contributions of the community partners who helped to distribute the survey as well as the research participants who shared their experiences and insights as part of this research. The authors would also like to thank Gared Harbison for his contributions to validating survey responses and cleaning and managing the data. This work was supported by funding from the National Institutes of Health Agreement OT2HL16156 as part of the Community Engagement Alliance Against COVID-19 Disparities, PhillyCEAL.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

https://formative.jmir.org/2024/1/e47091

(page number not for citation purposes)
Authors' Contributions
SB, PST, JW, AD, AV, and JB conceptualized the research project; SB, PST, JW, and AD cleaned and managed the data; SB conducted formal statistical analysis of the data; AV and JB acquired financial support for the project; SB, PST, JW, JG, and JB developed the methodology for the analysis; SB, PST, and JW managed and coordinated day-to-day operations for the project; AV and JB provided oversight and leadership for the research; SB and WL created visualizations and data presentations; and SB, WL, PST, JW, and JG wrote the original draft of the paper. All authors reviewed and revised the paper and approved the final version.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Checklist for Reporting Results of Internet E-Surveys (CHERRIES).
[DOCX File .22 KB - formative_v81e47091_app1.docx]

Multimedia Appendix 2
Fraud detection analysis.
[DOCX File .39 KB - formative_v81e47091_app2.docx]

References
27. reCAPTCHA v2. Google. 2023. URL: https://developers.google.com/recaptcha/docs/display [accessed 2023-12-14]
33. Proxy and VPN detection API. proxycheck. 2022. URL: https://www.proxycheck.io [accessed 2023-12-14]

Virtual and Interprofessional Objective Structured Clinical Examination in Dentistry and Dental Technology: Development and User Evaluations

Abstract

Background: Interprofessional education (IPE) facilitates interprofessional collaborative practice (IPCP) to encourage teamwork among dental care professionals and is increasingly becoming a part of training programs for dental and dental technology students. However, the focus of previous IPE and IPCP studies has largely been on subjective student and instructor perceptions without including objective assessments of collaborative practice as an outcome measure.

Objective: The purposes of this study were to develop the framework for a novel virtual and interprofessional objective structured clinical examination (viOSCE) applicable to dental and dental technology students, to assess the effectiveness of the framework as a tool for measuring the outcomes of IPE, and to promote IPCP among dental and dental technology students.

Methods: The framework of the proposed novel viOSCE was developed using the modified Delphi method and then piloted. The lead researcher and a group of experts determined the content and scoring system. Subjective data were collected using the Readiness for Interprofessional Learning Scale and a self-made scale, and objective data were collected using examiner ratings. Data were analyzed using nonparametric tests.

Results: We successfully developed a viOSCE framework applicable to dental and dental technology students. Of 50 students, 32 (64%) participated in the pilot study and completed the questionnaires. On the basis of the Readiness for Interprofessional Learning Scale, the subjective evaluation indicated that teamwork skills were improved, and the only statistically significant difference in participant motivation between the 2 professional groups was in the mutual evaluation scale ($P=0.004$). For the viOSCE evaluation scale, the difference between the professional groups in removable prosthodontics was statistically significant, and a trend for negative correlation between subjective and objective scores was noted, but it was not statistically significant.

Conclusions: The results confirm that viOSCE can be used as an objective evaluation tool to assess the outcomes of IPE and IPCP. This study also revealed an interesting relationship between mutual evaluation and IPCP results, further demonstrating that the IPE and IPCP results urgently need to be supplemented with objective evaluation tools. Therefore, the implementation of viOSCE as part of a large and more complete objective structured clinical examination to test the ability of students to meet undergraduate graduation requirements will be the focus of our future studies.
Introduction

Interprofessional Collaboration Between Dentists and Dental Technicians

Conflicts are part of the life of any organization, and the dental professions are not spared. Jurisdictional battles and supremacy struggles are not alien to dentistry [1]. Unfortunately, despite the obvious reported benefits of interprofessional education (IPE) for interprofessional collaborative practice (IPCP) [2], there is a paucity of data about IPE to promote IPCP among dental professionals. Dentists and dental technicians need to communicate effectively and contribute their professional skills to ensure that they make decisions that are in the best interests of their patients [3]. A clear understanding of the interactions of the dental care team can promote teamwork [4]; establish cooperative goals [5], encourage mutual respect [6], and promote IPCP between dental students and dental technology students [7].

IPE encourages teamwork among dental care professionals [8-11] and is increasingly becoming a part of the training programs for dental and dental technology students [12-17]; however, gaps still remain. Perhaps, the largest gaps are owing to the predominant focus of previous studies regarding IPE and IPCP on student and instructor perceptions and a lack of objective assessment of collaborative practice as an outcome measure [18,19]. This marked gap has necessitated the development of a conceptual framework to evaluate the impact of IPE on IPCP to strengthen the evidence for IPE as a tool to improve IPCP between dental and dental technology students [20].

The Objective Structured Clinical Examination

The objective structured clinical examination (OSCE) is an assessment tool based on the principles of objectivity and standardization, in which individual students move through a series of time-limited stations in a circuit for the purpose of assessment of professional performance in a simulated environment. At each station, the student is assessed and marked against standardized scoring rubrics by trained assessors [21]. OSCE has been widely adopted as a summative assessment in the medical undergraduate curriculum and is universally accepted as the gold standard for assessing clinical competence in dental education [22,23]; furthermore, its effectiveness has been confirmed by several studies [24-26]. On the basis of the extensive application of OSCE, the interprofessional OSCE (iOSCE) was initially developed to simulate IPCP [27]. Unlike conventional OSCE, iOSCE involves students from different professions, encourages students to work as a team, and requires the entire team to participate in all tasks [28]. This is performed to objectively evaluate the results of IPCP. Within this framework, several variations of iOSCE have been developed to accommodate the training needs of health care teams built to address different disease categories (team OSCE [29,30], group OSCE [31,32], interprofessional team OSCE [28,33], etc). These iOSCE variants can be roughly divided into synchronous [33-36] and asynchronous [29,37] task-based variants. A team working in an operating room typically works synchronously, whereas health care teams of dentists and dental technicians typically work asynchronously. Although the use of iOSCE in medical education has been extensively reported [27-30,38-42], to the best of our knowledge, the use of iOSCE for asynchronous work, especially within dentistry and dental technology cross-professional education, has not been reported.

Although iOSCE may provide an ideal solution for dental and dental technology students to perform IPCP simulation based on real patient cases, the COVID-19 pandemic [43] highlighted the limitations of this traditional approach. For example, a plaster model generated from a clinical case and passed multiple times among students and examiners may pose a risk of infection. In addition, diagnostic stations are usually set up to facilitate OSCE. A station is typically equipped with a trained, standardized patient, and the students complete the diagnosis by asking questions and examining this standardized patient. The risk of infection at this type of station was heightened during the pandemic. Nevertheless, compared with the traditional OSCE, iOSCEs are more time consuming and resource intensive [44,45], especially in dental education; hence, a virtual approach, as developed and piloted in this study, is justified [46,47]. Notably, the conventional virtual OSCE (vOSCE) has been described as a method of performing OSCE using internet technology in medicine [47-49]. The major reason for this technological approach was the scattered nature of the locations of students requiring assessment. However, this approach does not fully leverage virtual technology in dentistry. The integration of digital dental technologies and cloud-based dental laboratory workflows could be practiced within the vOSCE framework [50], which now also forms a professional core course in dental technology education [51-53]. The development of iOSCE based on virtual technology could facilitate the inclusion of digital dental technology in the blueprint design of examination stations. This combination could simulate the critical needs of present-day dental laboratories and promote students’ improved perception about the current demands of the profession.

Objective

To address these research gaps, this study presented a new virtual iOSCE (viOSCE) to objectively assess the effectiveness of IPE as a tool to promote IPCP among dental and dental technology students. We have described the development and piloting of a viOSCE framework and its virtual techniques to validate the user-friendliness of IPE and document its effect on IPCP among dental and dental technology students. Data from both subjective and objective evaluations were collected, and their correlation was assessed.
Methods

Development of viOSCE

The principal investigator (PI) first limited the viOSCE knowledge to content related to the prosthodontics course. Content related to implantology and orthodontics was excluded because it is not part of the core undergraduate coursework for dental or dental technology students. On the basis of the Association for Medical Education in Europe guide [54], a modified Delphi method was used to generate content for viOSCE. The Delphi method is a decision-making process that uses expert opinion, gathered in the form of a survey, under the guidance and direction of the PI to reach group consensus through collaboration, independent analysis, and iteration [55]; this process is the most frequently used method to generate content for OSCEs [54]. The panel of experts in this study consisted of 9 instructors (including the PI) from the College of Stomatology, Chongqing Medical University. All 9 instructors had prosthodontics teaching experience and digital technology practical teaching experience with undergraduate dental and dental technology students. They had also participated in the design and examiner training for traditional OSCE, but only the PI had experience in IPE and vOSCE design.

In this study, there were 4 iterations (rounds) before the viOSCE station design was finalized. In the first round, the PI identified 10 potential topics for viOSCE based on the syllabus of the prosthodontics course for dentistry and dental technology students, gave initial suggestions for the station design, and created a manuscript that was emailed to the panel of experts. Each expert independently gave their opinion and selected 5 topics that they considered as the most important in the syllabus and the most suitable for assessment using viOSCE. In the second round, the PI identified 3 topics with the highest selection rate based on the expert feedback and designed draft blueprints for 20 stations based on the top 3 selected topics using existing virtual technology support. These were sent to the expert panel via email. The expert panel commented about the potential effectiveness of interprofessional collaboration at the stations, made necessary corrections, and returned the design drafts to the PI. In the third round, the PI summarized all the changes made by the expert panel and, finally, decided on 7 stations based on the availability of virtual technology and the time to be spent on the stations within the allotted time frame of the examination. Stations consuming a lot of time, requiring multiple devices for support, or requiring very large spaces were rejected. Next, the selected viOSCE station blueprint design was completed, the virtual technical support was finalized, and the PI sent the final viOSCE station blueprint to the expert panel via email. The expert panel created the scoring rubrics based on the final viOSCE station blueprint, and these were returned to the PI for finalization. In the final round, the PI compiled all the information and met with the group to get a consensus regarding the viOSCE station blueprint and scoring rubrics. Once all the experts approved the viOSCE test station blueprint and scoring rubrics, the PI declared the viOSCE design as complete and declared the panel of experts the viOSCE examiner panel (Figure 1).
The viOSCE development process based on the modified Delphi method. PI: principal investigator; viOSCE: virtual and interprofessional objective structured clinical examination.

The viOSCE Framework

The developed viOSCE framework consisted of 3 topics, namely, fixed prosthodontics, removable prosthodontics, and clinical diagnostics. There were 7 collaborative examination stations consisting of 4 asynchronous and 3 synchronous stations. All these stations were designed and developed using the Delphi method (Figure 2).
At the fixed prosthodontic stations, the dental student prepared tooth 8 (maxillary right central incisor) on the simulator (Nissan Dental Products) and then worked with the dental technology student to scan the preparations using an intraoral scanner (Panda P2; Freqty Technology). The dental and dental technology students at the intraoral scanning station worked collaboratively. The dental student performed an intraoral scan task, and the dental technology student observed the scan results to determine whether they could be used for the computer-aided design (CAD) wax pattern station. After obtaining a digital model, the dental technology student used a CAD system (Dental system; 3shape) to design a single crown on the digital model of the preparation. Individual scoring rubrics were designed for tooth preparation, intraoral scan, and CAD wax pattern. The 3 examiners scored each of the 3 stations (Figure 3 and Tables 1-3).
Figure 3. The fixed prosthodontics stations of the viOSCE. (A) A dental student prepared tooth 8 on the simulator. (B) Dental and dental technology students scanned the preparation using an intraoral scanner. (C) A dental technology student created a digital wax pattern using the computer-aided design system. (D) A viOSCE examiner scored the preparation process and results. (E) A viOSCE examiner scored the intraoral scanning process and results. (F) A viOSCE examiner scored the digital wax patterns. viOSCE: virtual and interprofessional objective structured clinical examination.
Table 1. The scoring rubric used to assess the tooth preparation stations.

<table>
<thead>
<tr>
<th>Scoring component</th>
<th>Points</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation before operation</td>
<td>5</td>
<td>• Infection control was correctly performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct adjustment of phantom head position and lighting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The operating position is correct</td>
</tr>
<tr>
<td>Fine motor skills</td>
<td>15</td>
<td>• Holds the handpiece correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fulcrum stability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct use of the mouth mirror to reflect areas to be operated under</td>
</tr>
<tr>
<td></td>
<td></td>
<td>indirect vision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accurate application of burs</td>
</tr>
<tr>
<td>Preparation during operation</td>
<td>15</td>
<td>• Operation sequence correctly performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Placement of depth orientation grooves</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Labial surface prepared in 2 planes</td>
</tr>
<tr>
<td>Incisal reduction</td>
<td>10</td>
<td>• 1.5-2 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Formed a small bevel inclined 45° to the lingual side</td>
</tr>
<tr>
<td>Axial reduction</td>
<td>15</td>
<td>• 2 mm for the labial surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 mm for the proximal surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0.7-1 mm for the lingual surface</td>
</tr>
<tr>
<td>2-plane reduction</td>
<td>5</td>
<td>• Labial surface forms 2 planes and has rounded line angles and point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>angles</td>
</tr>
<tr>
<td>Taper</td>
<td>5</td>
<td>• Retentive walls: 6°-10°</td>
</tr>
<tr>
<td>Margin placement</td>
<td>10</td>
<td>• Margins extended to a specified target (1 mm supragingivally)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0.8-1 mm for the shoulder, modified form of the shoulder, and small</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radius internal angle with a 90° cavosurface margin</td>
</tr>
<tr>
<td>Details</td>
<td>20</td>
<td>• Adjacent teeth and gingiva are unaffected by the preparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No undercut areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Margins and walls are smooth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Margins are continuous and well defined</td>
</tr>
</tbody>
</table>

Table 2. The scoring rubric used to assess the intraoral scan stations.

<table>
<thead>
<tr>
<th>Scoring component</th>
<th>Points</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning preparation</td>
<td>25</td>
<td>• Order creation is correct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The tip is held smoothly and stable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No saliva interference during scanning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cleans the lens and waits for 10 s to preheat the lens</td>
</tr>
<tr>
<td>Scanning operation</td>
<td>35</td>
<td>• Continuous operation of the standard scanning sequence without</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pauses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• During the scanning, the lip and other soft tissues are pulled to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expand the scanning field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Scanning should be completed in 6 min (upper and lower jaws)</td>
</tr>
<tr>
<td>Scanning integrity</td>
<td>35</td>
<td>• Mesial and distal interproximal surfaces are intact with no missing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>red-blue data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The scan width of the gingival area is at least 2 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Scanning of the occlusal surface or incisal edge is complete and clear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The bite registration is correct</td>
</tr>
<tr>
<td>Software tool selection</td>
<td>5</td>
<td>• Ability to use the software tools accurately</td>
</tr>
</tbody>
</table>
Table 3. The scoring rubric was used to assess the computer-aided design wax pattern stations (crowns).

<table>
<thead>
<tr>
<th>Scoring component</th>
<th>Points</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order creation</td>
<td>5</td>
<td>• Selects preparation in the teeth overview correctly
• Selects the category correctly (anatomy, wax, and zirconia)
• Selects the import option correctly
• Selects the relevant import type correctly
• Imports the intraoral scan data correctly</td>
</tr>
<tr>
<td>Margin</td>
<td>10</td>
<td>• Places the margin line correctly
• Sets the insertion direction correctly</td>
</tr>
<tr>
<td>Occlusion</td>
<td>15</td>
<td>• Normal overlap and overbite
• Accurate restoration of the occlusal vertical dimension
• The occlusion can be checked by dynamic virtual articulation
• Balanced occlusal forces and no premature contacts</td>
</tr>
<tr>
<td>Proximal contact area</td>
<td>10</td>
<td>• Correct position and shape of the proximal contact area
• Correct contact relationship between adjacent teeth</td>
</tr>
<tr>
<td>Shape</td>
<td>35</td>
<td>• Tooth position: long axis is correctly aligned with the lip and tongue direction, correct proximal and distal orientation, tooth is correctly positioned in the dental arch, and ratio of the tooth length to width is coordinated with that of the adjacent teeth
• Thickness: the thinnest thickness is not <0.5 mm, and the axial surface thickness is not <1 mm and not >1.5 mm
• Gingival embrasures are correctly designed and coordinated with those of the adjacent teeth
• Tooth length: the incisal position is in harmony with that of the adjacent teeth
• Detailed structure of the surface, such as developmental grooves and ridges
• Lingual morphology: lingual fossa and marginal ridge morphology</td>
</tr>
<tr>
<td>Cement space</td>
<td>5</td>
<td>• Acceptable cement space
• Acceptable extra cement space</td>
</tr>
<tr>
<td>Restoration effect</td>
<td>20</td>
<td>• Acceptable functionality
• Acceptable esthetics
• Acceptable visual harmony</td>
</tr>
</tbody>
</table>

At the removable prosthodontics station, real patient cases and intraoral digital models were selected and prepared by the PI, followed by approval by the expert panel. The intraoral digital model was a clinical plaster model scanned using Lab Scanner (E4; 3shape). Each dental student used our previously developed Objective Manipulative Skill Examination of Dental Technicians (OMEDT) system [56] to observe the intraoral digital model and to design a removable partial denture (RPD) framework. At the end of the design task, the dental student submitted the design and then discussed the design with the dental technology student; the dental student could make modifications if they wanted to. Next, each dental technology student used a CAD system (Dental system; 3shape) to design the framework of an RPD on the intraoral digital model based on the final design. A viOSCE examiner scored the first RPD design using the OMEDT system. Next, the viOSCE examiner scored the final RPD design and the digital framework of the RPD. The design discussion station was not scored by a separate examiner (Figure 4 and Tables 4 and 5).

https://formative.jmir.org/2024/1/e44653
Figure 4. The removable prosthodontics stations of the viOSCE. (A) A dental student designed the framework of an RPD using the Objective Manipulative Skill Examination of Dental Technicians system. (B) Dental and dental technology students discussed the RPD design. (C) A dental technology student created a digital framework of an RPD using the computer-aided design system. (D) A viOSCE examiner scored the first RPD design using the Objective Manipulative Skill Examination of Dental Technician system. (E) A viOSCE examiner scored the final RPD design and the digital framework of the RPD. RPD: removable partial denture; viOSCE: virtual and interprofessional objective structured clinical examination.

Table 4. The scoring rubric used to assess the removable partial denture design stations.

<table>
<thead>
<tr>
<th>Scoring component</th>
<th>Points</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case observation</td>
<td>20</td>
<td>• The missing tooth position is identified accurately and marked correctly on the drawing</td>
</tr>
<tr>
<td>Design choices</td>
<td>40</td>
<td>• No missing component</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Indirect retainer is present in the optimal position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Design choices do not violate biological principles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clasp choice is optimal for the case</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The major connector is selected properly with reasonable extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Justified use of clasps and rests</td>
</tr>
<tr>
<td>Drawing</td>
<td>20</td>
<td>• Ideal drawing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Metal components are painted in blue, and resin bases are painted in red</td>
</tr>
<tr>
<td>Consistency with task description</td>
<td>10</td>
<td>• Exactly as described in the task description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clearly presents the requirements implied in the description, and the design is well aligned with the corresponding description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gives consideration to both esthetics and functions</td>
</tr>
<tr>
<td>Neatness and accuracy in presentation</td>
<td>10</td>
<td>• Neat and accurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No inconsistencies between the table and drawing</td>
</tr>
</tbody>
</table>
Table 5. The scoring rubric used to assess the computer-aided design wax pattern stations (removable partial denture [RPD] framework).

<table>
<thead>
<tr>
<th>Scoring component</th>
<th>Points</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order creation</td>
<td>5</td>
<td>• Selects artificial teeth in the teeth overview correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Selects the category correctly (removable—RPD frame)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Selects the import option correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Selects the relevant import type correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Imports the laboratory scan data correctly</td>
</tr>
<tr>
<td>Surveying</td>
<td>10</td>
<td>• Insertion direction is correctly chosen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Undercuts are correctly identified</td>
</tr>
<tr>
<td>Virtual cast preparation</td>
<td>20</td>
<td>• Correct paralleled blockout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct shaped blockout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct arbitrary blockout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct relief setting</td>
</tr>
<tr>
<td>Framework design</td>
<td>40</td>
<td>• Reasonable position and shape of clasp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reasonable position and shape of rest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reasonable position and shape of major connector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reasonable position and shape of retention grid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reasonable position and shape of finishing line</td>
</tr>
<tr>
<td>Form</td>
<td>25</td>
<td>• All parts are connected as a whole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The thickness and strength of the framework meet the requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The thickness is uniform, and the surface is smooth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Esthetics are acceptable</td>
</tr>
</tbody>
</table>

The clinical diagnostics station used a virtual standardized patient (VSP) with the haptic device (UniDental, Unidraw). The VSP hardware does not have an anthropomorphic shape, but it interacts through vocal, visual, and haptic devices. On the basis of the novel oral knowledge graph and the coupled, pretrained Bert models, the VSP can accurately interact with a dentist’s underlying intention and express the symptom characteristics in a natural style [57]. On the basis of this algorithm, the PI adjusted and entered the real patient case details, allowing the dental technology student to work with the dental student as a chairside dental technician to make a diagnosis based on the information obtained from the interactions with the VSP. In this study, the clinical case designed on the VSP was a patient who required root canal treatment and full crown restoration. At the end of the dental student’s diagnosis and simulation, the dental technology student was required to assist the dental student in designing the restoration plan and help the patient in choosing the materials for crown restoration (this often determines the price of the treatment). Thus, dental and dental technology students finalized the prosthodontic treatment plan collaboratively. The visual device built a virtual dental clinic environment and VSP model, allowing the students to view the VSP from global, extraoral, and intraoral perspectives. The haptic device allows dental students to perform intraoral and extraoral examinations using essential tools to explore the diagnostic evidence.

Owing to the complexity of collaborative diagnosis, the station was manually scored by 2 examiners independently based on the previously developed scoring rubrics, whereas the UniDental output machine provided an additional score according to the previously developed scoring rubrics. The average of the 3 scores formed the final score for the station. To ensure the relative independence and internal consistency of all scores, the examiners were not informed about the existence of the machine score. The PI exported the machine score data from the VSP at the end of the experiment (Figure 5 and Table 6).
Figure 5. The clinical diagnostics station of the viOSCE. (A) The VSP with the haptic device, UniDental. (B) Dental and dental technology students performed intraoral palpation on the VSP using the haptic device. (C) Then, 2 viOSCE examiners scored the process and clinical diagnostic results. viOSCE: virtual and interprofessional objective structured clinical examination; VSP: virtual standardized patient.
Table 6. The scoring rubric used to assess the clinical diagnostic stations.

<table>
<thead>
<tr>
<th>Scoring component</th>
<th>Points</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>History taking</td>
<td>25</td>
<td>• The content of the inquiry is accurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Few questions unrelated to the disease or clinical situation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inquiries are made sequentially, purposefully, and hierarchically</td>
</tr>
<tr>
<td>Intraoral examination</td>
<td>25</td>
<td>• Tool selection is accurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Humanistic care is reflected during the examination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Appropriate oral examination items are performed based on the case information</td>
</tr>
<tr>
<td>Auxiliary examination</td>
<td>10</td>
<td>• Correct auxiliary examination items are selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct interpretation of auxiliary examination results</td>
</tr>
<tr>
<td>Case analysis</td>
<td>20</td>
<td>• Correct diagnosis of the case</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct selection of the diagnostic criteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct differential diagnosis of the case</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correct selection of the basis for differential diagnosis</td>
</tr>
<tr>
<td>Plan design</td>
<td>20</td>
<td>• Correct treatment plan design according to the disease condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provides advice about material selection based on patient request</td>
</tr>
</tbody>
</table>

Performance Evaluation of viOSCE

In this study, fourth-year undergraduate dental students and third-year undergraduate dental technology students participated in viOSCE because students at this stage of education had completed preclinical professional training. Overall, 50 students who met these requirements, including 25 (50%) dental students and 25 (50%) dental technology students, were recruited into the viOSCE user evaluation experiment and were divided into groups of 2 comprising 1 dental student and 1 dental technology student. The PI and examiner teams did not influence or determine the team-formation process. All participating students were informed that as this viOSCE was in the experimental phase, it was conducted as a small extracurricular skills competition, thus allowing for self-evaluation without a final examination situation, as previously reported [58]. This approach allowed for the simulation of an examination situation without affecting the final examination grade of the students. A month before commencing the experiment, the PI led an web meeting for students to explain the viOSCE, the relevant knowledge points, and the need to practice fully during the upcoming month. At the end of the meeting, the students completed the Readiness for Interprofessional Learning Scale (RIPLS) pretest questionnaire, which is a 19-item 5-point Likert-scale questionnaire; this type of questionnaire is the most frequently used method for the subjective evaluation of IPE and IPCP [18].

viOSCE was piloted after the 1-month preparation period. The panel of examiners marked points according to the previously prepared scoring rubrics, whereas some of the points were automatically scored by a machine. After this step, the participating students completed the posttest self-made questionnaire, to which a mutual evaluation scale and a viOSCE evaluation scale were added. The mutual evaluation scale asked the students to score the performance of their partner, whereas the viOSCE evaluation scale asked the students to score viOSCE. In total, 6 items were included in the mutual evaluation scale, and 7 items were included in the viOSCE evaluation scale (Textboxes 1 and 2). All items in both questionnaires were set to a maximum score of 100. Before issuing the questionnaire, the panel first reviewed all the questions, clarified ambiguities, and removed any double-barreled questions [59,60]. At the end of the experiment, one-on-one interviews were conducted with all the students to determine their perceptions about viOSCE.

Textbox 1. The mutual evaluation scale administered to dental and dental technology student groups who participated in the virtual and interprofessional objective structured clinical examination (viOSCE).

<table>
<thead>
<tr>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Final contribution</td>
</tr>
<tr>
<td>• Person-organization fit</td>
</tr>
<tr>
<td>• Performance in viOSCE</td>
</tr>
<tr>
<td>• Professional skill</td>
</tr>
<tr>
<td>• Practice volume before viOSCE</td>
</tr>
<tr>
<td>• Motivation to participate</td>
</tr>
</tbody>
</table>
The virtual and interprofessional objective structured clinical examination (viOSCE) evaluation scale administered to dental and dental technology student groups who participated in viOSCE.

Items
- Evaluation of viOSCE effectiveness
- Evaluation of equipment, network operation and maintenance
- Evaluation of viOSCE examiners
- Evaluation of viOSCE staff
- Rationality of the clinical diagnostic design
- Rationality of the fixed prosthodontics design
- Rationality of the removable prosthodontics design

Statistical Analysis
Data were tabulated in a Microsoft Excel spreadsheet and imported into IBM SPSS Statistics for Windows (version 26.0; IBM Corp) for descriptive analysis. GraphPad PRISM 8.0 software (GraphPad Software) was used to create the graphs. Responses were summarized, and comparisons were made. Output data were presented as percentages and in graphical format. The Shapiro-Wilk test was used to test for normal distribution. Specific data analysis tests performed included descriptive statistics, 2-tailed paired t tests, and correlation analyses.

Ethical Considerations
The research ethics committee of the Affiliated Hospital of Stomatology, Chongqing Medical University, approved this study protocol (COHS-REC-2022; LS number: 096). All participants provided written informed consent before participation in the study.

Results
Of the 50 students, 32 (64%) completed the experiment. Interviews were conducted with the students who dropped out of further participation in the study. The main reasons for dropping out included the students’ belief that they or their collaborating partners had not practiced sufficiently to perform well in the experiment. A group had a verbal confrontation approximately an hour before the experiment began. The main reason for the conflict was that the dental technology student accused the dental student of not practicing sufficiently before the experiment. According to the study protocol, at the end of the experiment, the conflict was resolved by the PI. Both parties were counseled, mediated by the PI, and the 2 parties reconciled.

Data from the RIPLS, mutual evaluation scale, and viOSCE evaluation scale were first analyzed to determine the impact of viOSCE on the subjective evaluation of IPCP. All students (32/32, 100%) who completed the experiment were administered the RIPLS questionnaire before and after the experiment. The Cronbach α values were .835 for the pretest data and .731 for the posttest data, suggesting that the reliability and internal consistency were acceptable. The results failed the Shapiro-Wilk test for normality; therefore, the data were analyzed using the Wilcoxon signed rank test. The teamwork and collaboration subscale scores were significantly increased after the experiment ($P=.004$). In addition, there was a nonsignificant decrease in the negative professional identity subscale scores ($P=.21$). There was also an insignificant increase in the scores on the positive identity subscale and on the roles and responsibilities subscale ($P=.13$ and $P=.96$, respectively). Figure 6 depicts the RIPLS data before and after the viOSCE pilot.
After the experiment, the mutual evaluation scale was administered to all participating students (32/32, 100%) who completed the experiment. The Cronbach α value was .873, suggesting good reliability and internal consistency. Comparison of the results of the dental and dental technology students revealed that only the mutual evaluation scores for competition motivation were significantly different between the 2 groups ($P=.04$). The dentistry and dental technology students evaluated each other’s motivation to participate in the competition (competition motivation), and the dental students had higher scores than the dental technology students. Figure 7 depicts the mutual evaluation scale scores of the dental and dental technology students.
Figure 7. Mutual evaluation scale data for the dental and dental technology students. viOSCE: virtual and interprofessional objective structured clinical examination.

Similarly, after the experiment, the viOSCE evaluation scale was administered to all students (32/32, 100%). The Cronbach α value was .706, suggesting acceptable reliability and internal consistency. Comparison of the viOSCE evaluation scale results of the dental and dental technology students with the Wilcoxon signed rank test results revealed that only the evaluation scores for the removable prosthodontics design were statistically significant ($P=.01$) among the 7 items. Figure 8 depicts the viOSCE evaluation scale scores of the dental and dental technology students.

Figure 8. viOSCE evaluation scale data for dental and dental technology students. viOSCE: virtual and interprofessional objective structured clinical examination.
To explore the validity of the examiner panel scores in viOSCE, correlation analysis was conducted on the scores of each station under the 3 topics. Using Spearman correlation coefficient, for the fixed prosthodontics topic, a strong positive correlation between the scores of the tooth preparation station and the CAD wax pattern station was noted, and it was statistically significant \((r=0.67; P=.005)\). Positive correlations between the scores of the intraoral scan station and the CAD wax pattern station and between the intraoral scan station and the tooth preparation station were not statistically significant \((r=0.179; P=.51\) and \(r=0.387; P=.14\), respectively). For the removable prosthodontics topic, 11 (69%) of the 16 student groups finally decided to modify the RPD design initially made by the dental students. A negative but statistically insignificant correlation between the scores of the RPD design station and the CAD wax pattern station was noted \((r=-0.111; P=.68)\). For the clinical diagnostics topic, the correlation analysis was conducted primarily for the machine scores and the examiner scores to determine the usability of the VSP in viOSCE and the consistency of machine scoring and examiner scoring. The results revealed a significant positive correlation between the scores of the 2 examiners, and the positive correlation between the machine scores and the 2 examiners’ scores was also significant. The results are shown in Table 7 and Figure 9.

Table 7. Spearman correlation analysis of the virtual and interprofessional objective structured clinical examination scores.

<table>
<thead>
<tr>
<th>Topic and station</th>
<th>Correlation coefficient</th>
<th>(P) value (2-tailed)</th>
<th>Participants (n=16), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed prosthodontics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tooth preparation vs CAD(^a) wax pattern</td>
<td>0.670</td>
<td>.005(^b)</td>
<td>16 (100)</td>
</tr>
<tr>
<td>Intraoral scan vs tooth preparation</td>
<td>0.387</td>
<td>.14</td>
<td>16 (100)</td>
</tr>
<tr>
<td>Intraoral scan vs CAD wax pattern</td>
<td>0.179</td>
<td>.51</td>
<td>16 (100)</td>
</tr>
<tr>
<td>Removable prosthodontics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPD(^b) design vs CAD wax pattern</td>
<td>(-0.111)</td>
<td>.68</td>
<td>16 (100)</td>
</tr>
<tr>
<td>Clinical diagnostics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine score vs examiner-1 score</td>
<td>0.601</td>
<td>.01(^d)</td>
<td>16 (100)</td>
</tr>
<tr>
<td>Machine score vs examiner-2 score</td>
<td>0.629</td>
<td>.009(^b)</td>
<td>16 (100)</td>
</tr>
<tr>
<td>Examiner 1 score vs examiner-2 score</td>
<td>0.855</td>
<td><.001(^e)</td>
<td>16 (100)</td>
</tr>
</tbody>
</table>

\(^a\)CAD: computer-aided design.

\(^b\)RPD: removable partial denture.
Figure 9. Spearman correlation analysis of the virtual and interprofessional objective structured clinical examination scores. (A) For the fixed prosthodontics topic, the positive correlations between the scores of the tooth preparation station and the CAD wax pattern station were significant. (B) For the clinical diagnostics topic, the positive correlations between the virtual standardized patient machine score and the examiners’ scores were significant. CAD: computer-aided design.

To explore the relationship between the objective and subjective evaluations, correlation analysis was conducted between the viOSCE scores and the RIPLS scores as well as between the viOSCE scores and the mutual evaluation scale scores. Insignificant negative correlations were noted between the subjective evaluation scores presented by RIPLS and viOSCE. Similarly, the correlation of the mutual evaluation scale score with the viOSCE scores was not significant. The SD of the scores on the mutual evaluation scale showed a decreasing trend among students with higher viOSCE scores and those with lower scores, but an increasing trend was observed among those with median scores (Table 8 and Figure 10).
Table 8. Spearman correlation analysis between the subjective and objective evaluations presented by the Readiness for Interprofessional Learning Scale (RIPLS) and mutual evaluation scale.

<table>
<thead>
<tr>
<th>Correlation coefficient</th>
<th>P value (2-tailed)</th>
<th>Participants (n=16), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The examiner panel scores of viOSCE(^a) vs the intragroup mean score of RIPLS (before the test)</td>
<td>−0.272</td>
<td>.15</td>
</tr>
<tr>
<td>The examiner panel scores of viOSCE vs the intragroup mean score of RIPLS (after the test)</td>
<td>−0.302</td>
<td>.13</td>
</tr>
<tr>
<td>The examiner panel scores of viOSCE vs the intragroup mean score of the mutual evaluation scale</td>
<td>−0.038</td>
<td>.44</td>
</tr>
</tbody>
</table>

\(^a\)viOSCE: virtual and interprofessional objective structured clinical examination.

Figure 10. Correlation analysis of the viOSCE scores and the mutual evaluation scale. (A) Correlation analysis of the viOSCE scores and the SD of the scores for each item on the mutual evaluation scale. (B) Correlation analysis of the viOSCE scores and the SD of the mean scores on the mutual evaluation scale. viOSCE: virtual and interprofessional objective structured clinical examination.

In the one-on-one interviews, 29 (91%) of the 32 students approved of the effectiveness of viOSCE and wanted to use it to assess their IPCP ability in the graduation examination. At the fixed prosthetics station, 56% (9/16) of the dental technology students complained about the lack of lingual space prepared by their partners at the tooth preparation station, which made it difficult to design crown wax patterns, and the corresponding dental students reported not being aware of the condition before viOSCE. At the removable prosthodontics station, almost all the dental students (15/16, 94%) reported that the advice given by the dental technology students was effective in helping them complete the RPD design and considered their
design practice to be insufficient. In contrast, the dental technology students reported that helping the dental students complete the RPD design made them feel satisfied with their professional competence and felt that they were truly part of the team during the collaboration. At the clinical diagnosis station, the dental students felt that their clinical practice experience was not sufficient, especially when the dental technology students could provide a diagnostic plan faster than themselves.

In terms of positive feedback, the students believed that viOSCE promoted the friendship between themselves and their partners, helped them realize the continuity and relevance between their own work and the work of their partners, and enabled them to acquire a deep understanding of IPCP. The negative feedback mainly focused on their lack of clinical knowledge, inadequate preparation, and long waiting time at some stations.

Discussion

Principal Findings

The IPCP results of dentists and dental technicians reflect the quality of their IPE, skill training, and clinical experience. The results contribute to the much-needed IPE assessment literature and suggest that teamwork skills can be improved by IPCP and effectively assessed using this new evaluation scale. We used a modified Delphi process in this study. This is in accordance with Simmons et al [27], who found that the modified Delphi process is an effective tool to obtain consensus among professionals for the foundational work required. In addition, our study demonstrated the effectiveness of iOSCE in asynchronous and synchronous collaboration scenarios, while providing a methodological reference for developing a new iOSCE for dental health care professionals. As the collaboration scenario between the dentist and the dental technician may be both asynchronously applied through prescriptions and synchronously conducted in chairside discussions [61-63], it was deemed appropriate for the viOSCE framework to consider both synchronous and asynchronous scenarios.

The viOSCE scores in this study also reflect the effectiveness of the framework design. From the viOSCE examiner scores in the fixed prosthodontics section, a significant positive correlation between the scores of the tooth preparation station and the CAD wax pattern station was evident. This finding is consistent with the actual clinical asynchronous delivery scenario, where the dentist’s preparation largely determines the quality of the dental technician’s crown wax pattern. Qualitative evaluations extracted from the one-on-one interviews also supported this result. For the removable prosthodontics section, the negative correlation between the scores of the RPD design station and the CAD wax pattern station was not statistically significant, which might be owing to the fact that more than half of the groups (15/16, 94%) worked collaboratively to modify the RPD design to possibly compensate for the lack of training, which is consistent with the findings about dentists’ inadequate competence in RPD design reported in other studies [64,65].

As OSCE is essentially a simulated scenario-based examination, the use of virtual technology to build simulated scenarios has become an important direction for OSCE-related studies, especially in the field of dental education [43]. The COVID-19 pandemic has further contributed to dental educators’ interest in this area, as dental clinical practice typically occurs in a virus-laden aerosolized environment [66]. Therefore, providing a safe and robust learning environment in the simulation clinic is also critical to help students compensate for lost educational time. The virtual technologies used to construct the simulated clinical environment in this study include VSP and CAD. Previously, Janda et al [67] developed a virtual patient as a supplement to standard instruction in the diagnosis and treatment planning of periodontal disease. However, it could not fully understand complex or ambiguous questions, and the students felt frustrated during the practice [67].

Tanzawa et al [68] developed a robot patient that could reproduce an authentic clinical situation and introduced it into OSCE. However, the dialogue recognition of the robot patients was prespecified; the robot was unable to identify subjective patient descriptions or the dentist’s interrogation intention and could not support intraoral or extraoral examinations to obtain diagnostic evidence [68]. To fill these gaps, our study used VSP with intention recognition and haptic feedback to construct virtual dental clinical practice and diagnosis scenarios more realistically. As the diagnostic evidence collected by students through interrogation, inspection, and palpation was automatically summarized for the final differential diagnosis, and omissions in the examination process eventually led to a misdiagnosis, the system simulated a high-fidelity clinical environment. In addition, the results showed that 1 (6%) of the 16 student groups misdiagnosed their VSP because of incomplete interrogation and palpation. The correlations between the scores of the 2 examiners and the machine scores were statistically significant, thus confirming the robustness of the high-fidelity simulation scenarios constructed by the VSP and the machine scores. On the basis of these results, the use of VSP should be expanded and integrated into daily teaching to give students more opportunities for clinical practice training.

Consistent with the results of previous OMEDT studies [56], the use of CAD technology in viOSCE significantly reduced the time spent at each station for the dental technology students. Some dental technology students complained about the slowness of the CAD program. Upon further investigation, it was found that they imported both impressions at the same time. In dental laboratory practice, dental technicians usually import the impressions separately to prevent computational issues. This finding exposes the lack of virtual dental laboratory practice skills in teaching, which needs to be addressed.

The results showed that the teamwork and collaboration subscale scores were significantly increased at the end of the study (P=0.004), suggesting that viOSCE can improve students’ teamwork skills. The increase in the other 3 subscale scores, although not statistically significant, can be explained by the choice of timing of viOSCE. The optimal time to expose medical students to IPE is still subject to debate [18]. viOSCE, as a clinical IPCP intervention introduced during the clinical year, had no significant effect on the promotion of negative or positive
identity or roles and responsibilities. This finding may be due to the fact that the students’ professional cognition had been stereotyped at this time, making it difficult to effect significant changes through IPE or IPCP intervention. This conclusion is supported by a previous study [69].

The results of the mutual evaluation scale showed statistically significant difference in participant motivation between the 2 professional groups, which could be explained by the results of the roles and responsibilities subscale. Of the 16 dental technology students, 4 (25%) expressed that they would not practice as dental technicians in the future because they wanted to choose other careers. The differences in the scores of the other items were not statistically significant, thus showing the effectiveness of viOSCE in the development of teamwork spirit. This result confirms that the OSCE design is well suited as a final evaluation of IPE and IPCP. In addition, the average score of each item of viOSCE was >60, indicating that the students were satisfied with the design and operation of viOSCE. The differences in scores between the 2 types of professionals were not statistically significant, except at the removable prosthodontics station, which was probably caused by the dental technology students’ unfamiliarity with the CAD program.

Overall, the internal consistency of all subjective evaluations was acceptable, and the results met expectations. Interesting observations were also made regarding the correlation between the subjective and objective evaluations. The SD of the scores on the mutual evaluation scale showed a decreasing trend among the dental and dental technology students with higher viOSCE scores and those with lower scores, but an increasing trend in the median score was observed. Although this trend was not statistically significant due to sample size limitations, this early finding provides data support for a summary of clinical experience published previously by Preston [70], who reported that the intensity of the relationship between dentists and dental technicians is determined by the difference in their professional skills. If the professional skills of both parties are high, there will be few problems in their cooperative relationship. The more discriminating and demanding the technician or dentist becomes, the more the relationship is strained when either fails to perform up to the other’s standards. This result suggests that in the study of IPE and IPCP for dentists and dental technicians, it is not sufficient to explore the improvement of the traditional assessment dimensions such as team collaboration skills and identity. The final quality of the output must be included in the assessment dimension. This also reaffirms the effectiveness of viOSCE as an objective, quantitative evaluation tool for IPE and IPCP.

Limitations and Future Studies

The main limitation of our study is the small convenience sample of participating students, which could have led to self-selection bias. The sample size should be expanded in the future to obtain more data and to further verify the robustness of the viOSCE framework. In addition, whether viOSCE should be made a part of the large and more complete OSCE to test the ability of students to meet undergraduate graduation requirements will also be the focus of our next study. Moreover, the independent application of the novel VSP in the education of dental students is an interesting topic that will be explored in the next step of this study.

Recommendations

On the basis of our results, we provide the following recommendations:

1. All dental health professionals should be educated to deliver patient-centered care as members of an interdisciplinary team [16].
2. IPE intervention–related skills should be introduced as preclinical skills.
3. The cooperation of the dental care team is complex, and the training for improving the cooperation ability of the dental care team should include both subjective and objective assessments.
4. viOSCE and scale assessment should be introduced for the assessment of IPE and IPCP at the clinical stage of training.

Conclusions

In this study, a novel viOSCE framework was developed and piloted. Data based on subjective evaluation scales and objective examiner scores were collected and analyzed, confirming the effectiveness of viOSCE as an objective evaluation tool for IPE and IPCP. The experimental design should be expanded to include more randomly selected students with a scientifically determined sample size to further develop studies focused on IPE and IPCP in dentistry and dental technology, ultimately promoting quality in dental clinical practice.

Acknowledgments

This study was funded by a major project of Chongqing Higher Education and Teaching Reform of the People’s Republic of China (reference number 201019 to JS and reference number 193070 to MP) and the Teaching Reformation Fund of the College of Stomatology, Chongqing Medical University (KQJ202105 to YD and KQJ202003 to MP). All authors thank Beijing Unidraw Virtual Reality Technology Research Institute Co Ltd for assisting in the pilot study and the maintenance of the virtual standardized patient and Objective Manipulative Skill Examination of Dental Technicians systems.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.
Authors' Contributions

MP was the principal investigator who organized the group of experts to develop the framework of the virtual and interprofessional objective structured clinical examination (viOSCE); designed the validity experiment; collected and analyzed the data; and drafted the manuscript. YD organized the viOSCE pilot study and assisted with fundraising and distribution, expert panel recruitment, and data collection. XZ and JW led an engineer team from Beijing Unidraw Virtual Reality Technology Research Institute Co Ltd to complete the development of the virtual standardized patient and Objective Manipulative Skill Examination of Dental Technicians systems and assisted in the maintenance of the virtual standardized patient and Objective Manipulative Skill Examination of Dental Technicians systems during the viOSCE pilot study. Li Jiang assisted in the preparation of clinical cases and equipment related to viOSCE, checked all the details, and was responsible for maintaining order at the viOSCE facility. PJ and JS supervised and directed the project. Lin Jiang supervised the advancement of the project and assisted in recruiting the participating students. All authors approved the manuscript.

Conflicts of Interest

None declared.

References

61. Mykhaylyuk N, Mykhaylyuk B, Dias NS, Blatz MB. Interdisciplinary esthetic restorative dentistry: the digital way. Compendium 2021 Nov;42(10) [FREE Full text]

Abbreviations

- CAD: computer-aided design
- IPCP: interprofessional collaborative practice
- IPE: interprofessional education
- OMEDT: Objective Manipulative Skill Examination of Dental Technicians
- OSCE: objective structured clinical examination
- PI: principal investigator
- RIPLS: Readiness for Interprofessional Learning Scale
- RPD: removable partial denture
- viOSCE: virtual and interprofessional objective structured clinical examination
- vOSCE: virtual objective structured clinical examination
- VSP: virtual standardized patient

©MengWei Pang, YanLing Dong, XiaoHan Zhao, JiaWu Wan, Li Jiang, JinLin Song, Ping Ji, Lin Jiang. Originally published in JMIR Formative Research (https://formative.jmir.org), 17.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Use of Machine Learning Tools in Evidence Synthesis of Tobacco Use Among Sexual and Gender Diverse Populations: Algorithm Development and Validation

Shaoying Ma1*, PhD; Shuning Jiang2*, BS; Olivia Yang2; Xuanzhi Zhang2, BS; Yu Fu2, BS; Yusen Zhang2, BS; Aadeeba Kaareen1, B SocSci; Meng Ling2, PhD; Jian Chen2, PhD; Ce Shang1, PhD

1Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
2Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, United States
* these authors contributed equally

Corresponding Author:
Shaoying Ma, PhD
Center for Tobacco Research
The Ohio State University Comprehensive Cancer Center
3650 Olentangy River Road
1st Floor, Suite 110
Columbus, OH, 43214
United States
Phone: 1 6148976063
Email: shaoying.ma@osumc.edu

Abstract

Background: From 2016 to 2021, the volume of peer-reviewed publications related to tobacco has experienced a significant increase. This presents a considerable challenge in efficiently summarizing, synthesizing, and disseminating research findings, especially when it comes to addressing specific target populations, such as the LGBTQ+ (lesbian, gay, bisexual, transgender, queer, intersex, asexual, Two Spirit, and other persons who identify as part of this community) populations.

Objective: In order to expedite evidence synthesis and research gap discoveries, this pilot study has the following three aims: (1) to compile a specialized semantic database for tobacco policy research to extract information from journal article abstracts, (2) to develop natural language processing (NLP) algorithms that comprehend the literature on nicotine and tobacco product use among sexual and gender diverse populations, and (3) to compare the discoveries of the NLP algorithms with an ongoing systematic review of tobacco policy research among LGBTQ+ populations.

Methods: We built a tobacco research domain–specific semantic database using data from 2993 paper abstracts from 4 leading tobacco-specific journals, with enrichment from other publicly available sources. We then trained an NLP model to extract named entities after learning patterns and relationships between words and their context in text, which further enriched the semantic database. Using this iterative process, we extracted and assessed studies relevant to LGBTQ+ tobacco control issues, further comparing our findings with an ongoing systematic review that also focuses on evidence synthesis for this demographic group.

Results: In total, 33 studies were identified as relevant to sexual and gender diverse individuals’ nicotine and tobacco product use. Consistent with the ongoing systematic review, the NLP results showed that there is a scarcity of studies assessing policy impact on this demographic using causal inference methods. In addition, the literature is dominated by US data. We found that the product drawing the most attention in the body of existing research is cigarettes or cigarette smoking and that the number of studies of various age groups is almost evenly distributed between youth or young adults and adults, consistent with the research needs identified by the US health agencies.

Conclusions: Our pilot study serves as a compelling demonstration of the capabilities of NLP tools in expediting the processes of evidence synthesis and the identification of research gaps. While future research is needed to statistically test the NLP tool’s performance, there is potential for NLP tools to fundamentally transform the approach to evidence synthesis.

(JMIR Form Res 2024;8:e49031) doi:10.2196/49031

https://formative.jmir.org/2024/1/e49031

JMIR Form Res 2024 | vol. 8 | e49031 | p.1593
(page number not for citation purposes)
KEYWORDS
machine learning; natural language processing; tobacco control; sexual and gender diverse populations; lesbian; gay; bisexual; transgender; queer; LGBTQ+; evidence synthesis

Introduction

The use of nicotine or tobacco products is a leading preventable cause of cancer, heart diseases, and lung diseases in the United States [1], with cigarette smoking alone responsible for the death of half a million Americans each year [2]. Notably, sexual and gender diverse individuals, often referred to as the LGBTQ+ (lesbian, gay, bisexual, transgender, queer, intersex, asexual, Two Spirit, and other persons who identify as part of this community) populations, are particularly vulnerable to nicotine and tobacco product use [3]. Both the National Cancer Institute and the Centers for Disease Control and Prevention have recognized the LGBTQ+ populations as a critical target in their efforts to combat tobacco use disparities [4-10].

In response to the pressing need for tobacco control and the rapidly evolving landscape of the tobacco market, the National Institutes of Health (NIH) and other health foundations, including the American Cancer Society, have made substantial investments in tobacco control research and tobacco regulatory science [11,12]. According to our calculations using data from the NIH era reporter, funding for tobacco research has shown a remarkable increase, growing from US $7.7 billion in 2016 to US $11.2 billion in 2021 (Multimedia Appendix 1 [13]). Consequently, the volume of peer-reviewed publications related to tobacco has experienced a significant increase. This presents a considerable challenge in efficiently summarizing, synthesizing, and disseminating research findings, especially when it comes to addressing specific target populations, such as the LGBTQ+ populations.

One promising pathway to rapidly assessing the expanding body of literature is the use of natural language processing (NLP) models. NLP is dedicated to deciphering and comprehending how computers interpret human language, equipping them to analyze extensive data sets of natural language [14-16]. While NLP tools have garnered considerable recognition in biomedical research [4-10], aiding in tasks such as disease surveillance (eg, COVID-19) and diagnosing using medical records [17-23], their potential to expedite near real-time synthesis of evidence in tobacco control research remains untapped [24].

Another gap in existing NLP tools is the lack of applications in synthesizing social science research and modeling. A noteworthy example in the domain of tobacco research is the evaluation of the effectiveness of tobacco control policies, which are often assessed using complex statistical modelling and large-scale survey data. These methods demand a specialized semantic database for labelling studies and interpreting results. However, to the best of knowledge, such a semantic database has not been developed yet. Considering that policy interventions at federal, state, and local levels are designed to reach a large number of populations, the lack of a database to facilitate NLP applications may significantly undermine evidence synthesis and thereby the timely adoption of effective policies [25].

Furthermore, in light of the calls from entities such as the NIH and other health agencies to address tobacco use disparities within priority populations, including LGBTQ+ populations, the development NLP tools to aid in the discovery of effective policies tailored to these special populations remains uncharted territory [26-31]. There is an urgent demand for the development of NLP tools (eg, semantic database, NLP algorithms) in tobacco research that have the abilities to synthesize evidence in social science and assist in research gap discovery for priority populations.

In this pilot study, we aimed to achieve the following goals to address the identified research and application gaps: (1) compile a specialized semantic database for tobacco policy research to extract information from journal article abstracts, (2) develop NLP algorithms that comprehend the literature on nicotine and tobacco product use among sexual and gender diverse populations, and (3) compare the discoveries of the NLP algorithms with an ongoing systematic review of tobacco policy research among LGBTQ+ populations [32]. While this pilot study does not fully address the gaps by developing a comprehensive evidence synthesis or discovery tool for tobacco research, the outcomes may pave the road for future tools that can achieve this goal. Our vision is that NLP tools may be able to assist academic scholars and policy makers in prescribing public health policies, such as tobacco control policies, and addressing public health needs, such as reducing health disparities.

Methods

Development of a Tobacco Research Domain–Specific Semantic Database

Overview

To generate a tobacco research domain-specific semantic database, we used an iterative process that combines expert opinions and the reading of tobacco research papers in 4 leading tobacco journals (Tobacco Control, Nicotine and Tobacco Research, Tobacco Induced Diseases, and Tobacco Prevention and Cessation). The main categories of keywords were the follows: (1) tobacco use behaviors, prevalence, and outcomes; (2) population characteristics; (3) geographic locations; (4) method and inference; (5) policy; (6) tobacco products; (7) relation statement; and (8) tobacco characteristics. Under each main category, there were one or more subcategories, and each subcategory contained a list of named entities. Table 1 presents the categories of named entities in a domain-specific semantic database that were used for training and improving a language model for tobacco research on sexual and gender diverse populations. These categories are based on journal articles’ keywords, further guided by existing literature on how to use NLP methods to synthesize public health evidence [25,33]. These categories are important components of a study, encompassing measures, methods, results, conclusions, and hypothesis testing.
Table 1. Main categories and subcategories of named entities.

<table>
<thead>
<tr>
<th>Main categories</th>
<th>Subcategories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco use behavioral outcomes</td>
<td>• Tobacco cessation</td>
</tr>
<tr>
<td></td>
<td>• Exposure to tobacco-related or antitobacco content, or exposure to secondhand or thirdhand smoking</td>
</tr>
<tr>
<td></td>
<td>• Health and disease</td>
</tr>
<tr>
<td></td>
<td>• Perception and belief</td>
</tr>
<tr>
<td></td>
<td>• Tobacco use prevalence</td>
</tr>
<tr>
<td></td>
<td>• Time period</td>
</tr>
<tr>
<td>Population characteristics</td>
<td>• Age groups</td>
</tr>
<tr>
<td></td>
<td>• Sex</td>
</tr>
<tr>
<td></td>
<td>• Sexual and gender diverse populations</td>
</tr>
<tr>
<td></td>
<td>• Racial and ethnic minoritized groups</td>
</tr>
<tr>
<td></td>
<td>• Socioeconomic status</td>
</tr>
<tr>
<td>Geographic locations</td>
<td>• Countries, states, provinces, or cities</td>
</tr>
<tr>
<td>Method and inference</td>
<td>• Data</td>
</tr>
<tr>
<td></td>
<td>• Methodology</td>
</tr>
<tr>
<td></td>
<td>• Statistics</td>
</tr>
<tr>
<td>Policy</td>
<td>• Marketing</td>
</tr>
<tr>
<td></td>
<td>• Law, policy, and regulation</td>
</tr>
<tr>
<td></td>
<td>• Regulation body</td>
</tr>
<tr>
<td></td>
<td>• Treatment</td>
</tr>
<tr>
<td>Tobacco products</td>
<td>• Combustible tobacco products</td>
</tr>
<tr>
<td></td>
<td>• Noncombustible tobacco products</td>
</tr>
<tr>
<td>Relation statement</td>
<td>• Relation terms</td>
</tr>
<tr>
<td>Tobacco characteristics</td>
<td>• Chemical</td>
</tr>
<tr>
<td></td>
<td>• Flavor</td>
</tr>
</tbody>
</table>

Journal Selection

We chose 4 peer-reviewed tobacco-specific multidisciplinary journals, namely, Tobacco Control, Nicotine and Tobacco Research, Tobacco Induced Diseases, and Tobacco Prevention and Cessation, to extract articles and compile keywords at the initial stage. The first 2 are among the journals that have the highest impact factors in addiction research; in 2022, Tobacco Control had an impact factor of 5.2 and a 5-year impact factor of 5.7 [34], and Nicotine and Tobacco Research had an impact factor of 4.7 and a 5-year impact factor of 4.2 [35]. Tobacco Induced Diseases [36] and Tobacco Prevention and Cessation [37] are 2 other peer-reviewed journals that specifically publish research on nicotine and tobacco products but are not as highly ranked as the other 2 journals. The textual data from the 4 peer-reviewed journal articles contained a total of 2993 abstracts from published papers from 2015 to early 2021.

While the 2993 articles extracted from these journals do not represent the full body of tobacco research, they cover a significant share of tobacco studies and integrate evidence across the 5 translational research stages: basic research, preclinical research, clinical research, clinical implementation, and public health. These journals also ask authors to specify how the research reported contributes to tobacco control objectives, which have policy implications. Alternatively, a random sampling from PubMed searches using tobacco related terms may not yield studies that are necessarily translational in nature. Therefore, we focused on the articles published in the 4 journals in our study.

Iterative Process to Expand Terms (Named Entities) in the Database

The general process included the following iterative steps: (1) to generate initial annotation data, we first compiled key terms from extracted articles and allocated key terms to categories using group discussions; (2) we enriched the database using various sources and group discussions (more specific descriptions below); (3) we fine-tuned the spaCy en_core_web_lg model with the initial annotation and following iterative versions of data (the en_core_web_lg model is a pretrained large language model that can extract multiple general named entities); (4) we expanded the list of named entities to include more keywords of similar meanings using SeedNER [38,39], that is, a small set of initial labeled examples or patterns that was used as a starting point for training a model; (5) we searched the occurrence of each keyword in the database abstracts and kept those with high frequency; (6) during this process, named entities that were too generic to yield meaningful relations were removed from the database; and (7) we repeated steps 3 to 6 until the set of entities reached our satisfaction during group discussions.
Specific approaches were used for conducting step 2. For categories including “tobacco use behavioral outcomes,” “tobacco products,” and “tobacco characteristics,” the iterative process involved four steps: (1) discussions to determine whether to include newly identified key terms and how to allocate them into additional subcategories (Table 1); (2) using a named entity recognition (NER) model to extract named entities from 2993 paper abstracts from the 4 specific journals; (3) randomly sampling and reviewing the output of the NER model, correcting identified errors, and adding missed NERS; and 4) repeating steps 1 to 3 until we were satisfied with the model output.

The categories “population characteristics,” “geographic locations,” and “relation terms” are commonly used concepts in real life and not specific to tobacco control. We used Google searches, Wikipedia, and WordNet to enrich the key terms. In addition, for the “method and inference” category, we used the glossary of an econometrics methodology textbook by Cameron and Trividi to enrich the terms [40]. This textbook is widely used in economics and social science and its glossary should provide sufficient terms for this category.

For the “policy” category, we drew named entities from 2 sources that comprehensively summarize available tobacco control policies in the regulatory space. The first source was a peer-reviewed journal article by McDaniel et al [41] that conducted an intensive policy scan of all possible regulations that can contribute to tobacco endgame. The second source was the World Health Organization’s report on the global progress in implementing tobacco control policies, as recommended by the World Health Organization’s Framework Convention on Tobacco Control [42], which is the largest public health treaty signed by 182 countries and prescribes a comprehensive set of tobacco control policies. These policies are classified into 5 groups: M (monitor tobacco use and prevention policies), P (protect people from tobacco smoke), O (offer help to quit tobacco use), W (warn about the dangers of tobacco), E (enforce bans on tobacco advertising, promotion, and sponsorship), and R (raise taxes on tobacco) [42]. These sources cover policy key terms related to both national and international contexts and together create the most comprehensive policy terms to our knowledge.

Development of NLP Algorithms That Comprehend the Literature on Nicotine and Tobacco Product Use Among Sexual and Gender Diverse Populations

We used RoBERTa, an optimized BERT (bidirectional encoder representations from transformers)-based language model [43], to perform NER tasks. BERT is a state-of-the-art language model that excels at tasks such as sentiment analysis and text summarization. By learning patterns and relationships between words and their context in text, BERT can extract named entities that it has learned during training and potentially discover new ones.

We developed an NER model based on RoBERTa using the Python (Python Software Foundation) programming language and the spaCy library [44]. We began by defining 36 labels of categories (main and subcategories; Table 1) and extracting 1582 named entities using the existing NER model RoBERTa. Next, those named entities were used to tag abstracts and create a training set, using the annotation tool Prodigy [45]. A subset of the abstracts with labeled named entities was reviewed by 2 domain experts to identify key terms that were missing in our semantic database, which were added to the lists of named entities.

The RoBERTa model was then updated based on the richer database and further trained for a maximum of 20,000 steps, with early stopping implemented if no improvement was observed for 1600 consecutive steps. With a series of iterations, we used the updated RoBERTa model to assess the 2993 abstracts and labeled them with the categories.

When identifying studies related to LGBTQ+ populations, it is important to understand that this community is heterogeneous [46,47]. Given that LGBTQ+ key terms are included in the “population characteristics” categories, we were able to identify LGBTQ+ populations based on categorization. There were 111 LGBTQ+-related named entities in our database.

Comparison of the Discoveries of the NLP Algorithms With an Ongoing Systematic Review of Tobacco Policy Research Among LGBTQ+ Populations

Ideally, we would like to compare the results from our tools with those from systematic reviews and meta-analyses of studies related to tobacco control issues among LGBTQ+ populations. Systematic reviews and meta-analyses are state-of-the-art evidence synthesis methods that can provide the ground truth [48-50]. While we are currently conducting a separate systematic review of the effectiveness of tobacco control policies among LGBTQ+ populations, this review has not been finalized yet [32]. Nonetheless, the ongoing systematic review does provide some data points for comparisons, including the number of studies extracted from the 4 journals and presence of policy assessment. Therefore, we conducted comparisons of these 2 domains.

Ethical Considerations

This study does not involve human subjects, as it synthesizes data from research articles published at peer-reviewed journals. The Ohio State University Institutional Review Board has determined that it contains no human subjects and thus no further review is needed (study number: 2021E0776).

Results

In total, we identified 33 articles relevant to sexual and gender diverse populations from the 2993 abstracts. Our trained model successfully extracted 773 named entities (181 unique named entities) from the 33 paper abstracts to describe the themes of these articles. Among the 773 extracted named entities, 688 were already learned by the model during training, while 70 were new time- or age-related words (eg, 18 years, 2013), 9 were new statistical terms (eg, N=20), and 6 were newly discovered and labeled within other categories. We did not observe any newly discovered policy-related terms.

In Figures 1-3, we present the hierarchy of named entities extracted from abstracts in published papers that studied nicotine
or tobacco product use among sexual and gender diverse individuals. Each number on the right is the frequency of the corresponding named entity by paper abstract. Named entities with the same color belong to the same main category.

Figure 1. Hierarchy and frequency counts of named entities extracted from published research in tobacco-specific journals from 2015 to early 2021 in 4 main categories: tobacco use, products, characteristics, and relation statement. Numbers represent the frequency of the corresponding named entity by paper abstract.
Figure 2. Hierarchy and frequency counts of named entities extracted from published research in tobacco-specific journals from 2015 to early 2021 in the main category of population characteristics. Numbers represent the frequency of the corresponding named entity by paper abstract.
According to our tool, among the 33 tobacco studies related to LGBTQ+ populations, the most frequent use outcomes were “cigarette smoking” (n=17), “substance use” (n=16), “prevalence” (n=16), and “risk” perception (n=14). Also, for these populations, “cigarettes” (n=15) were the most frequently mentioned combustible tobacco product and “e-cigarettes are” (n=8) was the most frequently mentioned noncombustible tobacco product. In addition, for tobacco characteristics, “alcohol” (n=7) and “nicotine” (n=5) were the most mentioned attributes among LGBTQ+ tobacco research papers.

The relation statement findings suggest that a majority of the studies examined “comparison” (n=26), “association” (n=23), and “correlation” (n=6). We found no studies that explicitly used the term “causal” or “causality” in the studies.
The population characteristics mentioned in the studies illustrated that among socioeconomic status terms, the most frequently included were “demographics” (n=8) and “SES factors” (n=8). Among sex and sexual and gender minority terms, the most frequent ones were “bisexual” (n=21), “lesbian” (n=19), and “gay” (n=19). Among racial and ethnic minority group terms, the most frequent ones were “minority groups” (n=8) and “Race/ethnicity” (n=6). For age group terms, the terms included “adult” (n=14), “young adult” (n=11), “adolescent” (n=5), “students” (n=3), and “adolescents and young adults” (n=2).

The policy category showed that in these studies, the most mentioned term was “intervention” (n=16). In addition, while the general term “tobacco control” was mentioned in 6 studies, only 1 study contained any specific policy term (“smoke free air law”). As such, there was a significant gap in policy research among the published articles in the 4 leading tobacco journals between 2015 and early 2021, since only 1 study mentions specific policies when it comes to tobacco research among the LGBTQ+ populations. The statistics and methodology terms further indicated that the most used terms included “survey” (n=18) and “logistic regression” (n=10), and relatively fewer studies mentioned terms related to causal inferences, such as “experimental research” (n=4), “randomization” (n=3), and “clinical trial” (n=1). The studies mentioning “US” also dominated in the numbers, with 12 studies in total. Several studies that assessed countries with multilevel governing levels, such as Canada and the United States, also appeared to have mentioned “state,” “city,” and “province,” suggesting that attention was paid to these defined areas.

We next compared our results using the NLP tools with our ongoing systematic review. Similar to the conclusions of the ongoing systematic review, we found very few studies that yielded specific policy recommendations. This finding was further corroborated by the lack of causal inference methods labeled by the NLP tool. While our NLP tool cannot replace systematic reviews just yet, it does show potential to complement the existing methods and requires less human supervision (systematic reviews usually require at least 2 human coders).

Discussion

This pilot study builds a semantic database dedicated to tobacco research and developed NLP algorithms to automatically identify, extract, and summarize textual data from published tobacco studies. We further demonstrated a user case wherein we assessed LGBTQ+ tobacco research by labeling key components of a tobacco study: tobacco use outcomes, tobacco characteristics, population characteristics, geographic locations, method and inference, and policy relevance.

It is worth noting that the components we categorized, such as “method and inference,” align with the typical sections found in scientific articles in social science, including measures, methods, results, conclusions, and hypothesis testing. As a result, our tool extracts text segments that are frequently assessed in evidence synthesis, thereby showing the potential of using NLP tools to enhance systematic reviews and facilitate meta-analyses [25].

Additionally, we leveraged the NLP algorithms we created to identify gaps in tobacco research concerning the LGBTQ+ populations and concluded that there is a scarcity of studies assessing policy impacts on this demographic using causal inference methods. This finding is consistent with our ongoing systematic review [32], highlighting how NLPs have the capacity to aid in both evidence synthesis and research gap discoveries. This, in turn, has the potential to streamline research efforts, reduce labor costs, and influence the trajectories of future research directions [51,52].

Using the NLP tool, we further found some interesting patterns in tobacco research involving LGBTQ+ populations. It appears that the product drawing the most attention in the field is cigarettes or cigarette smoking and that the number of studies of various age groups is almost evenly distributed between youth or young adults and adults. Moreover, the existing evidence body is dominated by studies coming from the United States. These patterns are consistent with the research needs to reduce cigarette smoking among LGBTQ+ populations. It appears that the product drawing the most attention in the field is cigarettes or cigarette smoking and that the number of studies of various age groups is almost evenly distributed between youth or young adults and adults. Moreover, the existing evidence body is dominated by studies coming from the United States. These patterns are consistent with the research needs to reduce cigarette smoking among LGBTQ+ populations. It appears that the product drawing the most attention in the field is cigarettes or cigarette smoking and that the number of studies of various age groups is almost evenly distributed between youth or young adults and adults. Moreover, the existing evidence body is dominated by studies coming from the United States. These patterns are consistent with the research needs to reduce cigarette smoking among LGBTQ+ populations. It appears that the product drawing the most attention in the field is cigarettes or cigarette smoking and that the number of studies of various age groups is almost evenly distributed between youth or young adults and adults. Moreover, the existing evidence body is dominated by studies coming from the United States.

Finally, while the semantic database and language model in this pilot study are designed to extract and summarize key components of tobacco research, many of the terms and labeling categories are broad and applicable to public health and social science research in general, such as “methods and inference” and “relation terms.” Therefore, our tool has the potential to transform the evidence synthesis paradigm in tobacco control and public health at large by enabling more efficient and effective analyses of large volumes of textual data. Future tool development may extend its reach to other public health domains, fostering the real-time translation of research findings into evidence-based policymaking, thereby contributing significantly to the advancement of public health initiatives.

Our study has several limitations. First, for the development of keywords and the application of the NLP, we focused on 4 peer-reviewed tobacco-specific research journals, which were not representative of the entire tobacco control literature. However, considering the prominence and extensive content covered by these journals, we believe that this selection is unlikely to introduce significant selection bias or result in the omission of crucial keywords. Second, although we used our ongoing systematic review as a benchmark for the qualitative assessment of the results obtained in this pilot study, we did not perform a quantitative comparison of our findings with the ground truth derived from the systematic review. This quantitative evaluation, which might include measures like Cohen kappa, was not conducted because the systematic review has not yet been finalized. Consequently, future research endeavors are required to undertake a thorough quantitative
comparison between the training data and the established ground truth using statistical testing for a more comprehensive assessment of the NLP tool’s performance.

Despite the limitations, our pilot study serves as a compelling demonstration of the capabilities of NLP tools in expediting the processes of evidence synthesis and the identification of research gaps. Expanding the scope of this pilot research to encompass other public health disciplines, extending beyond the realm of tobacco control, holds the promise of fundamentally transforming the approach to evidence synthesis. Such expansion has the potential to play a pivotal role in shaping policy development across a wide spectrum of public health domains.

Acknowledgments
This study was supported by the President’s Research Excellence (PRE) Accelerator Grant from The Ohio State University (principal investigator: CS). CS was funded by the National Cancer Institute (R21CA249757). SM was supported by the Pelotonia Fellowship from The Ohio State University Comprehensive Cancer Center.

During the preparation of this work, the authors used ChatGPT 3.5 in order to check grammar errors and improve language flow. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Data Availability
The data sets generated and analyzed during this study are available in the GitHub repository [55].

Authors’ Contributions
CS and SM conceptualized the study. JC, ML, SJ, CS, and SM designed the methodology. SJ and ML were responsible for the software. CS and JC validated the data. SM and SJ performed the formal analysis. ML, SJ, and SM carried out the investigation. CS and JC provided resources. ML, OY, XZ, YF, YZ, SJ, and SM performed data curation. SM and SJ wrote the original draft. SM, SJ, JC, and CS reviewed and edited the manuscript. CS and JC supervised the study. ML and SJ were responsible for project administration. CS acquired funding. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Tobacco-related funding from the National Institutes of Health (NIH), 2010-2022. Data was obtained from the National Institutes of Health [13].

References

Abbreviations

BERT: bidirectional encoder representations from transformers
LGBTQ+: lesbian, gay, bisexual, transgender, queer, intersex, and other persons who identify as part of this community
NER: named entity recognition
NIH: National Institutes of Health
NLP: natural language processing
Use of Machine Learning Tools in Evidence Synthesis of Tobacco Use Among Sexual and Gender Diverse Populations: Algorithm Development and Validation

Please cite as:

Use of Machine Learning Tools in Evidence Synthesis of Tobacco Use Among Sexual and Gender Diverse Populations: Algorithm Development and Validation
JMIR Form Res 2024;8:e49031
URL: https://formative.jmir.org/2024/1/e49031
doi:10.2196/49031
PMID:38265858

©Shaoying Ma, Shuning Jiang, Olivia Yang, Xuanzhi Zhang, Yu Fu, Yusen Zhang, Aadeeba Kaareen, Meng Ling, Jian Chen, Ce Shang. Originally published in JMIR Formative Research (https://formative.jmir.org), 24.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Designing and Developing Online Training for Diabetes Prevention Program Coaches Using an Integrated Knowledge Translation Approach: Development and Usability Study

Kaela D Cranston¹, BSc, MSc; Natalie J Grieve¹, BA, MSc; Tineke E Dineen¹, BSc, MA, PhD; Mary E Jung¹, BHK, MSc, PhD

Faculty of Health and Social Development, University of British Columbia, Kelowna, BC, Canada

Corresponding Author:
Mary E Jung, BHK, MSc, PhD
Faculty of Health and Social Development
University of British Columbia
1238 Discovery Road
Kelowna, BC, V1V 1V7
Canada
Phone: 1 2508079670
Email: mary.jung@ubc.ca

Abstract

Background: e-Learning has rapidly become a popular alternative to in-person learning due to its flexibility, convenience, and wide reach. Using a systematic and partnered process to transfer in-person training to an e-learning platform helps to ensure the training will be effective and acceptable to learners.

Objective: This study aimed to develop an e-learning platform for Small Steps for Big Changes (SSBC) type 2 diabetes prevention program coaches to improve the viability of coach training.

Methods: An integrated knowledge translation approach was used in the first 3 stages of the technology-enhanced learning (TEL) evaluation framework to address the study objective. This included three steps: (1) conducting a needs analysis based on focus groups with previously trained SSBC coaches, meetings with the SSBC research team, and a review of research results on the effectiveness of the previous in-person version of the training; (2) documenting processes and decisions in the design and development of the e-learning training platform; and (3) performing usability testing. Previously trained SSBC coaches and the SSBC research team were included in all stages of this study.

Results: Step 1 identified components from the in-person training that should be maintained in the e-learning training (ie, a focus on motivational interviewing), additional components to be added to the e-learning training (ie, how to deliver culturally safe and inclusive care), and mode of delivery (videos and opportunities to synchronously practice skills). Step 2 documented the processes and decisions made in the design and development of the e-learning training, including the resources (ie, time and finances) used, the content of the training modules, and how coaches would flow through the training process. The design and development process consisted of creating a blueprint of the training. The training included 7 e-learning modules, the learning modalities of which included narrated demonstration videos and user-engaging activities, a mock session with feedback from the research team, and a final knowledge test. Step 3, usability testing, demonstrated high levels of learnability, efficiency, memorability, and satisfaction, with minor bugs documented and resolved.

Conclusions: Using an integrated knowledge translation approach to the technology-enhanced learning evaluation framework was successful in developing an e-learning training platform for SSBC coaches. Incorporating end users in this process can increase the chances that the e-learning training platform is usable, engaging, and acceptable. Future research will include examining the satisfaction of coaches using the SSBC coach e-learning training platform, assessing coach learning outcomes (ie, knowledge and behavior), and estimating the cost and viability of implementing this training.

(JMIR Form Res 2024;8:e50942) doi:10.2196/50942

KEYWORDS

program evaluation; prediabetic state; e-learning education; e-learning; platform; usability; diabetes; prevention; knowledge translation; end user; type 2 diabetes; framework
Introduction

E-learning has emerged as a popular alternative to traditional in-person education in recent years, particularly with the advancement of technology and widespread availability of internet connectivity. E-learning has revolutionized the way people learn by providing flexible, wide-reaching, and convenient access to educational resources, as well as personalized learning experiences that cater to individual needs and preferences. E-learning has been adopted across various fields, including health care, and is effective in enhancing learning outcomes and improving overall learner engagement [1-3].

There is a paucity of research on how e-learning platforms are designed and developed. Partnering with end users can help guide e-learning platform development. An integrated knowledge translation (IKT) approach meaningfully engages the right research users at the right time throughout the research process and can increase the chances that the e-learning platform is usable, engaging, and acceptable [4-7]. Such approaches require in-depth qualitative methods to understand the perspectives of end users throughout the entire research process.

Frameworks can help guide the process of platform conception, design, development, implementation, and evaluation. This study was guided by the technology-enhanced learning (TEL) evaluation framework [8]. The TEL evaluation framework was informed by commonly used learning models, including the Kirkpatrick model [9]. The seven TEL evaluation framework stages are (1) conduct needs analysis and environmental scan; (2) document processes, decisions, and final product; (3) test usability; (4) document key events during implementation and final product; (5) assess participant experience and satisfaction; (6) assess learning outcomes; and (7) estimate cost, reusability, and sustainability. The TEL lacks specific guidelines, which can be seen as both a strength and a limitation, as it permits flexibility for different users and contexts, but it can also be used haphazardly and may result in a product that has not considered end user needs.

This paper offers a guide for including an IKT approach to the needs analysis, design, development, and usability testing of an e-learning platform using the first 3 stages of the TEL evaluation framework. The proposed partnered stages of the TEL evaluation framework are described using the example of developing an e-learning platform for type 2 diabetes (T2D) prevention program coaches.

Methods

Context

Small Steps for Big Changes (SSBC) is a community-based T2D prevention program that aims to empower individuals with prediabetes to increase physical activity and improve their diet to reduce their risk of developing T2D. SSBC is delivered in and by staff and volunteers of the YMCA of Southern Interior British Columbia. Trained SSBC coaches (YMCA staff and volunteers) deliver 6 one-on-one sessions to clients over 4 weeks using a motivational interviewing (MI)-informed approach.

In-person 3-day workshops were previously used to train coaches to deliver SSBC. After completing the in-person training, coaches delivered the SSBC program with good levels of fidelity [10,11]. However, in-person coach training is not a viable format for future coach training due to difficulty in scheduling training time and the inability to revisit training components. Additionally, the in-person training was not developed using an IKT approach. To ensure usability and acceptability, the development of the SSBC coach e-learning platform used an IKT approach (ie, partnering with current SSBC coaches).

Needs Analysis

Overview

The information was gathered on the program needs and capacities (eg, the specific knowledge and skills required to become an SSBC coach) and individual needs of SSBC coaches (eg, preference for specific content and instructional approach). The various components of the needs analysis stage were assessed through meetings with the SSBC research team, focus groups with previously trained SSBC coaches, and analysis of previous research.

Previous Research

Dineen et al [10] evaluated the effectiveness of the SSBC in-person training. Data from this study helped determine coaches’ baseline levels of knowledge and skills prior to any training.

SSBC Research Team Meetings

The SSBC research team included the founder and director of SSBC (the last author) and the 2 in-person training facilitators (first and third author). The first meeting was held to determine whether the in-person training was a feasible and viable mode to continue to train SSBC coaches. The main reasons discussed for transitioning to e-learning were difficulties scheduling a 3-day in-person SSBC coach training for YMCA staff and volunteers, and concerns for practicality in the future expansion of SSBC to other Canadian and global facilities. Additional meetings with the research team were used to determine what knowledge and skills would be required of new SSBC coaches, what content from the in-person training would be included and excluded, and what new concepts could be added. Finally, SSBC research team meetings included discussions on measures to determine the effectiveness of the e-learning platform. In-depth meeting notes and minutes were recorded during meetings for later analysis.

Focus Groups With SSBC Coaches

Incorporating end users into the development of the e-learning platform (a main tenet of IKT) was done throughout the needs analysis, design, and development of the SSBC coach e-learning platform. Within the need analysis, focus groups with previously trained SSBC coaches were conducted. SSBC coaches who were trained through the in-person workshop were recruited via email to participate in a 2-hour focus group. Focus group questions centered on what content should or should not be included in the e-learning platform. Coaches also answered questions about motivation to learn, learning preferences (ie,
synchronicity, length of time, interactivity, and choice), and potential barriers for new coaches. Focus group data were analyzed using conventional content analysis [12].

Design and Development

To facilitate the design and development phase of this project, the research team hired a third-party digital health solutions company (3C Institute) that specializes in developing e-learning platforms. The first and last author had meetings with 3C Institute every 2 weeks to discuss project progress and make decisions. Throughout this time, the research team created a blueprint and storyboard of the detailed topics to be taught, discussed options for teaching formats (ie, a variety of didactic and user-engaging methods), and defined the learning objectives. The research team wrote the content for the module scripts, which were edited by 3C Institute to ensure they were clear and succinct. Modules were filmed by the research team, and 3C Institute developed graphics and compiled the modules.

SSBC coaches from the needs analysis phase were invited to participate in the design and development phase, specifically to review the overview of modules and methods of instruction and provide feedback.

All processes and decisions were documented in detailed meeting notes (eg, attendees, discussion points, and decisions). Calendar events and contracts captured the resources (eg, financial and time) required to develop the e-learning platform.

Test Usability

Usability evaluation helps to ensure that a product is usable, efficient, effective, and satisfying to its end users. Nielsen [13] identified five key components of usability: (1) learnability—how easily end users can accomplish basic tasks the first time they enter the e-learning platform; (2) efficiency—how well end users can perform tasks on the e-learning platform; (3) memorability—how easily end users can reestablish proficiency when they return to the e-learning platform after a period of not using it; (4) errors—how many errors the end users make, the severity of the errors, and their ease of recovery from the errors; and (5) satisfaction—how pleasant it is to use the e-learning platform.

Initial usability testing was conducted by the SSBC research team and the SSBC coaches involved in the e-learning platform design and development. Users were asked to navigate through the modules and learning activities and complete various tasks (eg, log in to the training platform, move through modules, and access the resource center). Written and verbal feedback on issues and errors were collected. A summary of concerns and usability issues was documented and sent to 3C Institute to be addressed. The level of usability was deemed acceptable by the first and last authors once all errors were resolved. In the true spirit of IKT, further usability testing will be examined through qualitative and quantitative methods upon release and implementation of the e-learning platform to ensure that the platform is usable by the end users.

Ethical Considerations

This study was approved by the behavioral research ethics board of the University of British Columbia (H21-01800). The participants provided informed consent for the focus groups and were involved in the further design and development of the e-learning platform. All data were deidentified upon data collection. Individuals were renumerated for their participation via e-transfer. Participants each received $50 CAD (US $36.83) for their participation in a focus group, and participants were given $25 CAD (US $18.42) for each module storyboard that they reviewed.

Results

Needs Analysis

Previous Research

Dineen et al [10] demonstrated that coaches had little knowledge about MI and SSBC program content prior to taking the in-person training. Coaches also reported high levels of satisfaction with the in-person training topics.

SSBC Research Team Meetings

The SSBC research team made the following decisions based on 3 meetings. SSBC coaches needed to have basic knowledge about T2D prevention, specific SSBC session content (ie, Canada’s physical activity guidelines, daily added sugar limits, carbohydrates, and the talk test), what MI is, the spirit of MI, MI skills (ie, open-ended questions, affirmations, reflections, summaries and ask-tell-ask), the 4 processes of MI, how to deliver SSBC content using MI, and how to deliver culturally safe and inclusive care. Coaches would need to demonstrate skills associated with delivering the SSBC program to clients, which includes appropriately delivering the correct information using an MI-informed approach.

Once a coach completed the e-learning modules, the coach would demonstrate their skills through a mock session, providing an opportunity for assessment and provision of feedback. Sufficient knowledge would be determined by scoring a minimum of 70% on a knowledge test on T2D prevention, SSBC-specific content, and MI at the end of the training. The research team would develop the knowledge tests, drawing from content directly covered in the SSBC coach e-learning training. Finally, the coaches’ skills would be monitored and assessed by coding a random selection of audio recordings from sessions with clients using session-content checklists and the Motivational Interviewing Competency Assessment tool [14].

Focus Groups With SSBC Coaches

Invitation emails were sent to 15 SSBC coaches to participate in a focus group, including information about the purpose of the focus group and remuneration of time. A total of 9 SSBC coaches volunteered to take part in a focus group, and they were split into 3 equal-numbered focus groups based on their availability. See Table 1 for focus group participants’ demographics and experience as a coach. On average, each focus group was 62 minutes.

The results from the conventional content analysis showed that coaches wanted more information on the evoking process of MI, on transitioning from sustain talk to change talk, and an understanding of the effectiveness of MI. The coaches spoke about the importance of knowledge checks throughout the
e-learning training, a collection of resources and commonly used documents (ie, a resource center), role-play videos demonstrating the skills being taught, and live sessions with a workshop facilitator to practice skills and receive feedback. The coaches suggested that modules be short in duration and for training to span over 2 weeks. The coaches’ recommendations also included the integration of a variety of learning methods through the use of didactic and user-engaging components. Additional resources suggested by coaches included video examples of delivering SSBC content using MI and various SSBC program delivery styles and scenarios. The participants desired a blended approach of asynchronous and synchronous learning, with an opportunity for practice and feedback.

<table>
<thead>
<tr>
<th>Individual-level factor</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>3 (33)</td>
</tr>
<tr>
<td>25-34</td>
<td>3 (33)</td>
</tr>
<tr>
<td>35-44</td>
<td>1 (11)</td>
</tr>
<tr>
<td>45-54</td>
<td>2 (22)</td>
</tr>
<tr>
<td>Gender identity</td>
<td></td>
</tr>
<tr>
<td>Woman</td>
<td>8 (89)</td>
</tr>
<tr>
<td>Man</td>
<td>1 (11)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>8 (89)</td>
</tr>
<tr>
<td>White and Indigenous</td>
<td>1 (11)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>University certificate, diploma, or degree</td>
<td>4 (44)</td>
</tr>
<tr>
<td>Apprenticeships, trades services, or diploma</td>
<td>1 (11)</td>
</tr>
<tr>
<td>College, college d’enseignement general et professionnel, or other nonuniversity certificate or diploma</td>
<td>1 (11)</td>
</tr>
<tr>
<td>High school</td>
<td>3 (33)</td>
</tr>
<tr>
<td>Years of experience working in customer service</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>1 (11)</td>
</tr>
<tr>
<td>Greater than 5</td>
<td>8 (89)</td>
</tr>
</tbody>
</table>

Design and Development

The research team worked with 3C Institute and SSBC coaches over a series of 13 months (21 meetings) to design and develop the e-learning platform. Correspondence with the involved SSBC coaches to collect feedback was done over email. The flow of the entire design and development phases can be seen in Figure 1, showing each group’s contributions to development.

Information collected in the needs analysis stage was used to develop a blueprint for the e-learning platform, which was then reviewed by the 3C Institute. After consultations with 3C Institute and SSBC coaches, it was determined that the e-learning training would include seven modules—1 introducing SSBC and inclusivity, 1 covering SSBC-specific content, 4 covering MI, and 1 putting everything together. Additionally, 3C Institute provided suggestions for learning activities (eg, narrated videos, demonstration videos, and user-engaging activities) based on their expertise in developing e-learning platforms. All modules were designed to be asynchronous so coaches could move through them at their own pace, with user-engaging components and knowledge checks throughout the modules, and at the end of each module. The e-learning platform includes a resource center for coaches to access resources (eg, PDFs, video examples, and SSBC session paperwork).

The research team drafted 1 module script at a time. Scripts included what the narrator would say, and the content for the user-engaging activities and knowledge. The script for each module underwent numerous editing cycles between the 3C Institute and the research team before being sent to the 3C Institute multimedia artist. The multimedia artist developed storyboard proofs for each module. Storyboard proofs included still images representing what would be on the screen with the associated script. Feedback was collected from both the research team and SSBC coaches from the focus groups. For each module storyboard proof, 2 to 4 coaches provided feedback (dependent on their schedules and availability) and were remunerated for their time. After the storyboard proofs were approved by the SSBC research team and coaches, the narrators for the videos (first and last author) worked with a University of British Columbia Studios Okanagan producer and the 3C Institute editor to film the 7 modules. Talent was hired to act as coaches and clients in the role-play videos for the modules and the resource center. After each module was filmed, the 3C Institute
multimedia artist and video director worked to edit and finalize the modules. An overview of the SSBC e-learning training platform is provided in Table 2 and a selection of screenshots from the online training platform are provided in Multimedia Appendix 1.

Based on decisions made following the needs analysis, the entire training process for new SSBC coaches includes 3 stages. First, the coaches must complete the 7 modules. Next, the coaches are required to schedule a 1-hour mock session with an SSBC research team member and are then provided with written feedback within 2 weeks of completing the mock session. Following the mock session, coaches are given access to the final knowledge test. After passing the final knowledge check, coaches are certified to take on SSBC clients independently.

Overall, the authors spent a total of 192 hours on this project (eg, preparing for and leading SSBC research team meetings and focus groups, analyzing data from needs analysis, designing blueprints, writing and editing scripts, developing knowledge check questions, emails, correspondence with SSBC coaches and talent, meetings with 3C Institute, filming, and usability testing). The final cost of developing the SSBC coach e-learning platform was ~US $80,000 (cost to hire 3C Institute and professional talent for filming).

Figure 1. e-Learning platform design and development process with each group’s contributions.
Table 2. Overview of SSBC^a e-learning platform.

<table>
<thead>
<tr>
<th>e-Learning component</th>
<th>Topics covered</th>
<th>Learning objectives</th>
<th>Module features</th>
</tr>
</thead>
</table>
| Module 1 | Introduction to SSBC, prediabetes and T2D^b, cultural safety, and inclusivity | • Broadly describe T2D and prediabetes
• Explain how diet and exercise changes can help prevent T2D
• Describe what the SSBC program includes
• Understand why having an inclusive mindset is integral to being a SSBC coach
• Understand the need to learn and act with empathy when working with clients, regardless of their background and life experiences | Narrated video, role-play videos, and knowledge check questions |
| Module 2 | SSBC session content, taking client measurements, tools associated with the program (eg, health tracking mobile app), and exercise protocols | • Describe the content that comprises each of the 6 SSBC counseling sessions
• Understand the program tools and session documentation requirements
• Know the difference between SSBC’s moderate-intensity continuous training and high-intensity interval training exercise sessions and the weekly progressions for each
• Know which measurements to perform on your clients and when to take them | Narrated videos, demonstration videos, and knowledge check questions |
| Module 3 | Introduction to MI, definition of MI, and spirit of MI | • Define MI and identify where it falls on the spectrum of counseling styles
• Describe each of the 4 elements of the spirit of MI
• Understand how to implement the spirit of MI in SSBC sessions | Narrated videos, role-play videos, and knowledge check questions |
| Module 4 | MI skills: open-ended questions, affirmations, reflections, summaries (OARS^d), and ask-tell-ask | • Define and use the OARS skills
• Describe and use the method “ask-tell-ask” to provide information or advice to your clients | Narrated videos, role-play videos, and knowledge check questions |
| Module 5 | Listening and responding to change talk, sustain talk, and ambivalence | • Define change talk and sustain talk
• Define ambivalence
• Describe preparatory change talk and mobilizing change talk
• Understand which OARS skill will work best when a client engages in change talk, sustain talk, or ambivalence | Narrated videos, role-play videos, and knowledge check questions |
| Module 6 | 4 processes of MI: engaging, focusing, evoking, and planning | • Describe the 4 processes of MI
• Understand how to use them in sessions with your clients | Narrated videos, role-play videos, and knowledge check questions |
| Module 7 | Putting it all together: how to deliver the SSBC content using MI | • Describe the elements of an SSBC session
• Understand how to provide SSBC content in a way that embodies the spirit and skills of MI | Narrated videos, role-play videos, and knowledge check questions |
| Resource Centre | Additional information on topics covered in modules, sessions scripts, session checklists, and video role-plays | • N/A^e | PDFs and role-play videos |

^aSSBC: Small Steps for Big Changes.
^bT2D: type 2 diabetes.
^cMI: motivational interviewing.
^dOARS: open-ended questions, affirmations, reflections, summaries.
^eN/A: not applicable.

Test Usability

Results from the initial usability tests conducted by the research team and the SSBC coach partners showed high levels of learnability, efficiency, memorability, and satisfaction within the provided feedback. Some errors were recorded including technical bugs, which were corrected by 3C Institute.
Discussion

Principal Results

This paper provides a clear and transparent outline for the needs analysis, design, development, and initial usability testing of the SSBC coach training e-learning platform. Importantly, this process demonstrates how an IKT approach can be used with the TEL evaluation framework. To our knowledge, this is one of the first e-learning platforms that has been developed using an IKT approach. Engaging end users through this process increases the chances that they will find the e-learning platform useful, acceptable, and appropriate [15,16].

The development and use of e-learning platforms for SSBC coaches will improve the viability of the program as new coaches will be able to take the training from any location and at a time that is convenient for them. This process can be used to inform other T2D prevention and health programs currently training coaches in person. e-Learning has become a popular education tool; however, there is still a lack of meaningful engagement with end users and research outlining the development process.

A preliminary study demonstrated high levels of satisfaction and gain in coach knowledge after completing this SSBC e-learning platform [17]. The next steps include implementing and evaluating the SSBC coach e-learning platform to examine the real-world applicability and effects of the platform using the TEL evaluation framework phases 4-7. This will include documenting key events during implementation, assessing new coaches' experience and satisfaction with the e-learning platform (ie, user-friendliness and appropriateness of the platform), assessing learning outcomes (Kirkpatrick levels 2-4) through changes in knowledge, behavior, SSBC client outcomes, and finally, estimating the total costs to develop and implement the e-learning platform, as well as determining viability.

Beyond the use of SSBC, other programs should consider an IKT approach in developing e-learning platforms and transparently report the process. Once training programs have been developed and implemented, it is crucial that research teams monitor coaches’ knowledge, skills, and behaviors and report on the fidelity of their coaches [18].

Limitations

Only a small number of previous SSBC coaches were involved in the design and development of this e-learning platform, and their preferences for content and delivery style might not be reflective of that of all coaches who will take this e-learning training. However, working with 3C Institute allowed us to incorporate their expertise in e-learning platforms, content, and learning styles. This study does not examine the effectiveness of this training, and at this point, we cannot be certain that this training will improve coaches' knowledge, skills, and behaviors. Future research will look at these learning outcomes.

Conclusions

This is the first paper to outline the needs assessment, design, and development of an e-learning platform for a T2D prevention program. One of the main limitations of the current T2D prevention programs is the limited reporting of coach training modes and training fidelity. This paper demonstrates how an e-learning platform can be designed and developed for T2D prevention program coaches using an IKT approach combined with the TEL evaluation framework. It is expected that this training will be acceptable and effective because of the methods and approaches used in this study.

Acknowledgments

The authors would like to acknowledge the Small Steps for Big Changes coaches for their important input on this project and the 3C Institute as the software developer and host of the e-learning training platform. This work was supported by a Canadian Institute for Health Research Grant (018647). This work was also supported by a Social Sciences and Humanities Research Council of Canada doctoral fellowship and the WorkSafe BC Doctoral Research Training Award.

Data Availability

The data sets generated and analyzed during this study are not publicly available to protect the intellectual property of SSBC but are available from the corresponding author on reasonable request.

Authors' Contributions

KDC conceived the study, conducted the focus groups, led analysis, and wrote the paper. NJG assisted with the focus groups, data analysis, development, and usability testing. TED assisted in study conception and development. MEJ assisted with study conception and oversaw the project. All authors reviewed and approved the final paper.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Screenshots from the e-learning platform.

[DOCX File, 4863 KB - formative_v811e50942_app1.docx]
References

Abbreviations

IKT: integrated knowledge translation
MI: motivational interviewing
SSBC: Small Steps for Big Changes
TEL: technology-enhanced learning
T2D: type 2 diabetes

https://formative.jmir.org/2024/1/e50942 JMIR Form Res 2024 | vol. 8 | e50942 p.1612 (page number not for citation purposes)
Evaluation of Eligibility Criteria Relevance for the Purpose of IT-Supported Trial Recruitment: Descriptive Quantitative Analysis

Romina Blasini¹, MSc; Cosima Strantz², MSc; Christian Gulden³, PhD; Sven Helfer³, MSc, MD; Jakub Lidke⁴, MSc; Hans-Ulrich Prokosch², PhD; Keywan Sohrabi⁵, PhD; Henning Schneider¹,⁵, MD

¹Institute of Medical Informatics, Justus Liebig University, Giessen, Germany
²Department of Medical Informatics, Biometrics and Epidemiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
³Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
⁴Data Integration Center, Medical Faculty, Philipps University of Marburg, Marburg, Germany
⁵Faculty of Health Sciences, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany

Corresponding Author:
Romina Blasini, MSc
Institute of Medical Informatics
Justus Liebig University
Rudolf-Buchheim-Strasse 6
Giessen, 35392
Germany
Phone: 49 06419941386
Email: romina.blasini@informatik.med.uni-giessen.de

Abstract

Background: Clinical trials (CTs) are crucial for medical research; however, they frequently fall short of the requisite number of participants who meet all eligibility criteria (EC). A clinical trial recruitment support system (CTRSS) is developed to help identify potential participants by performing a search on a specific data pool. The accuracy of the search results is directly related to the quality of the data used for comparison. Data accessibility can present challenges, making it crucial to identify the necessary data for a CTRSS to query. Prior research has examined the data elements frequently used in CT EC but has not evaluated which criteria are actually used to search for participants. Although all EC must be met to enroll a person in a CT, not all criteria have the same importance when searching for potential participants in an existing data pool, such as an electronic health record, because some of the criteria are only relevant at the time of enrollment.

Objective: In this study, we investigated which groups of data elements are relevant in practice for finding suitable participants and whether there are typical elements that are not relevant and can therefore be omitted.

Methods: We asked trial experts and CTRSS developers to first categorize the EC of their CTs according to data element groups and then to classify them into 1 of 3 categories: necessary, complementary, and irrelevant. In addition, the experts assessed whether a criterion was documented (on paper or digitally) or whether it was information known only to the treating physicians or patients.

Results: We reviewed 82 CTs with 1132 unique EC. Of these 1132 EC, 350 (30.9%) were considered necessary, 224 (19.8%) complementary, and 341 (30.1%) total irrelevant. To identify the most relevant data elements, we introduced the data element relevance index (DERI). This describes the percentage of studies in which the corresponding data element occurs and is also classified as necessary or supplementary. We found that the query of “diagnosis” was relevant for finding participants in 79 (96.3%) of the CTs. This group was followed by “date of birth/age” with a DERI of 85.4% (n=70) and “procedure” with a DERI of 35.4% (n=29).

Conclusions: The distribution of data element groups in CTs has been heterogeneously described in previous works. Therefore, we recommend identifying the percentage of CTs in which data element groups can be found as a more reliable way to determine the relevance of EC. Only necessary and complementary criteria should be included in this DERI.

(JMIR Form Res 2024;8:e49347) doi:10.2196/49347

https://formative.jmir.org/2024/1/e49347

JMIR Form Res 2024 | vol. 8 | e49347 | p.1614
(page number not for citation purposes)
Introduction

Background

Clinical trials (CTs) are a key to medical progress as they are used to implement a new therapy, a medical device, a diagnostic procedure, or a preventive measure [1, 2]. CTs thus form an essential component of "translation," the transfer of findings from basic medical research to clinical application [3].

An important part of planning a CT is to define criteria that all participants must meet. The main goal of these inclusion—and exclusion—or eligibility criteria (EC) is to specify the CT’s target population (ie, patients who have specific conditions and might benefit from the studied therapy). EC are also used to minimize disruptive factors that are under suspicion to interfere with the CT objectives. Additionally, EC consider individuals for whom a CT could pose a health risk, such as pregnant women. Finally, some EC are necessary for legal or organizational reasons [4, 5].

The successful implementation of CTs depends on the recruitment of a suitable number of participants who fulfill all EC. Insufficient participant recruitment is the foremost reason for the premature discontinuation of CTs, which raises ethical concerns because participants are exposed to risk, without potential benefits. Furthermore, the extension of the recruitment period is also associated with significant financial costs and is consequently inefficient [6-10].

Clinical Trial Recruitment Support Systems

Identifying individuals who fulfill all the EC of a study and are willing to enroll is challenging and time-consuming. In many cases, trial personnel manually search for suitable candidates in electronic health records (EHRs) [9, 11]. A clinical trial recruitment support system (CTRSS), also called a patient recruitment system (PRS), can assist in increasing participant numbers [12-14]. These systems simplify study participant identification with secondary use of data already collected for care and billing purposes in clinics [15] and work by comparing EHR data with the specified EC of CTs. Most CTRSSs described in the recent literature are implemented for only 1 specific trial, as this helps narrow down the pool of potential CT participants efficiently. Some EC can only be assessed right before including participants in the study or necessitate a personal evaluation by the trial staff. One such criterion is the consent form that participants are required to sign during the inclusion process.

When searching for potential study participants, there is often a need to manually search through a large number of patient files. Study personnel typically start by making a preselection. Initially, they check the EC that they consider most important, followed by data about therapies, medications, and diagnostic examinations are heterogeneous, it is evident that diagnosis is the most frequent data element used in official study protocols, as well as in ATLAS software, which can partially automate the process [25].

As previously stated, medical data from hospitals or medical centers are used to compare a CTRSS with the EC and shortlist individuals from the data pool who meet the EC for the study [26]. Consequently, a CTRSS can only specify search criteria that correspond to the existing data pool. Hence, to ensure efficient prefiltering of the data pool, the CTRSS must contain the maximum number of desired search criteria.

The consolidation of medical data in a centralized format remains a significant challenge in many systems due to limited data availability [27]. Additionally, many hospitals lack a retrievable centralized system for all accumulating medical data. Despite ongoing efforts to harmonize data, these approaches are not yet widely accessible. Therefore, establishing a connection to a comprehensive data repository that facilitates all the necessary search criteria is crucial in implementing a CTRSS, and a predetermined list of search criteria is essential.

Eligibility Criteria

To characterize the necessary data for CTRSS implementation, multiple studies have examined the prevalence of data element groups in the EC of CTs. Even though the results of these examinations are heterogeneous, it is evident that diagnosis is the most frequent data element used in official study protocols, followed by data about therapies, medications, and diagnostic results [25, 28-30].

When searching for potential study participants, there is often a need to manually search through a large number of patient files. Study personnel typically start by making a preselection. Initially, they check the EC that they consider most important, as this helps narrow down the pool of potential CT participants effectively. Some EC can only be assessed right before including participants in the study or necessitate a personal evaluation by the trial staff. One such criterion is the consent form that participants are required to sign during the inclusion process. Not all the EC specified in the study protocol are likely used for preselection in the context of a CTRSS [11]. When implementing a CTRSS, it is sufficient that only relevant data element groups be queried to obtain appropriate suggestions [30].

Objectives

In previous work, we identified which data element groups are most commonly used in CT EC [30]. In this study, we investigated which of the data element groups identified in the previous studies, mentioned in the Eligibility Criteria section, are relevant in practice [25, 28-30].

Another objective was to categorize these EC according to their underlying data element in order to identify the element groups, such as diagnosis, laboratory values, or demographics, that are most commonly used for patient recruitment, as well as those
that are mostly irrelevant to a CTRSS. Since the use of different data elements and search algorithms is strongly influenced by the availability of this information in EHRs, we also investigated when a data element needs to be checked but is not available in the patient’s EHR.

The overall goal was to determine the relevance of data element groups for use in a CTRSS. Therefore, we wanted to find out how often different data element groups occur in CTs and how often the groups are considered relevant. We also wanted to determine how many studies these data element groups occur in.

Methods

Participants

Two groups of participants were enrolled in the study. The first group included 1 or more project participants (PPs) at each site who were responsible for data collection. These individuals had deep knowledge of medical informatics in general and were also involved in the development of a CTRSS.

The second group of participants were trial staff actively working in the field of study recruitment. They were referred to as trial professionals.

Data Collection Sheet

To assess the relevance of data element groups, we first developed a data collection sheet to capture relevant information from the trial professionals. We wanted to capture all EC of the selected CTs in their original format, the underlying data element, and the assessment of study personnel in terms of relevance to patient recruitment. The development of the data collection sheet was an iterative process in which the categories were first discussed in a group of 10 CTRSS developers and then tested by 2 persons of this group on 3 randomly selected studies. In the next step, the group discussed any issues that arose. After 3 iterations, we achieved full agreement among all testers and developers.

For simple but unambiguous categorization, we used the 40 most common data element groups of EC from our previous work [30] and combined some rarely used groups into broader categories (e.g., special laboratory information into a category laboratory value). If none of the given data element groups were appropriate, it was also possible to select a broader category, such as other procedural information, and provide a more specific description as a comment. These categories are then strongly linked to the data in EHRs and can therefore provide more insight into the possibilities of accessing elements of EC in clinical systems. For a complete list of all data element groups and other information composed on the data collection sheet, see Multimedia Appendix 1.

EC were classified into 3 CTRSS relevance categories: necessary, complementary, and irrelevant. Necessary items are those that determine the main selection of the desired cohort, complementary criteria in a manual process are mostly used in a second step to obtain more precise results, and irrelevant criteria are not used at all. Because there are criteria that may be important for participant selection but are not regularly documented in the EHRs and therefore must either be known by the treating physician or verified by direct questioning of the patient, we added the categories “necessary, not documented” and “complementary, not documented.” In addition, there are various reasons criteria may be irrelevant. Therefore, we decided to add the categories “irrelevant, redundant” and “irrelevant, recorded at the time of enrollment.” The category descriptions are summarized in Table 1.

| Table 1. Tabular view of EC relevance categories with descriptions. |
|--------------------------|---|
| Relevance category | Description |
| Necessary | Used for the main filter criterion, for example, the main diagnosis under investigation |
| Necessary, not documented| Used for the main filter criterion but cannot be checked on paper or digitally |
| Complementary | Used for the secondary filter criteria used to achieve more precise search results |
| Complementary, not documented | Used for the secondary filter criteria but cannot be checked on paper or digitally |
| Irrelevant | Not relevant, because it is only relevant after the initial participant search during the process of enrollment |
| Irrelevant, recorded at the time of enrollment | Not relevant, because it is only relevant after the initial participant search during the process of enrollment |
| Irrelevant, redundant | Used for criteria listed twice (duplicated), one time marked as redundant |

*EC: eligibility criteria.

In addition, we had a field to note surrogate data element groups that could be used if a criterion was not documented in the EHR system. For example, if a particular condition is not documented in a timely manner and there is a lab result that is indicative of that condition, that lab result can potentially be used as an alternative data element.

Taking an example CT on diabetes with the inclusion criteria of a diagnosis of diabetes, an elevated laboratory value, and consent to participate in the CT, as well as the exclusion of drug abuse, this can be classified as shown in Table 2. In this example, the presence of diabetes is the main inclusion criterion, so it is classified as “necessary” and the laboratory value is classified as “supplementary,” since this criterion usually applies to all patients with diabetes. Alcohol abuse can be diagnosed in the medical history but is usually not documented in the patient’s record, and therefore, it is an additional filter criterion but cannot be verified by inspection of the file. Alternatively,
it is possible to find notes about possible alcohol abuse in the records of the patient’s medical history.

Table 2. Sample representation of a completed data extraction sheet.

<table>
<thead>
<tr>
<th>Original description</th>
<th>Content (simplified)</th>
<th>Data element</th>
<th>Relevance assessment</th>
<th>Surrogate parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants with a confirmed diagnosis of type 2 or type 1 diabetes</td>
<td>Type 1 or 2 diabetes</td>
<td>Diagnosis</td>
<td>Necessary</td>
<td>— a</td>
</tr>
<tr>
<td>Patients with controlled diabetes (HbA1c < 9%)</td>
<td>HbA1c < 9%</td>
<td>Laboratory result</td>
<td>Complementary</td>
<td>—</td>
</tr>
<tr>
<td>Willing to take part in the trial</td>
<td>Consent</td>
<td>Informed consent</td>
<td>Irrelevant, recorded at the time of enrollment</td>
<td>—</td>
</tr>
<tr>
<td>History of drug abuse within 1 year prior to screening</td>
<td>Drug abuse</td>
<td>Diagnosis</td>
<td>Complementary, not documented</td>
<td>Other medical history</td>
</tr>
</tbody>
</table>

aNot applicable.
bHbA1c: glycated hemoglobin.

Selection of Trials

We collected CT information from 8 university hospitals in Germany between December 2021 and March 2022 using the data collection sheet described in the *Data Collection Sheet* section.

The participating centers conducted the CT selection, including only CTs that recruited participants prospectively. This means that the CTs actively searched for individuals and asked them to participate. Animal, biomaterial, and case-control CTs were excluded. Psychiatric and oncological CTs were also excluded due to organizational reasons. There were no further restrictions on the selection of medical specialties.

Trial centers were contacted by the PPs to inquire about participation in the study. If a positive response was received, the CTs recommended by the trial personnel were incorporated into the analysis. The trial professionals were also asked to participate in this study to obtain a real-world view of the CT recruitment process. The PPs had either face-to-face or video meetings with the trial professionals to discuss the process of identifying potential participants and to categorize each individual criterion based on both parties’ experiences. If a positive response was received, the CTs recommended by the trial professionals were discussed and incorporated into the analysis.

Data Validation and Analysis

All PPs were trained in a common training session where the data collection sheet was presented and tested. To ensure the correct use of the data element groups and the CTRSS relevance categories, we performed an additional step to validate the collected data: 2 authors went through all records and checked for consistency and face validity. If the entries were not fully understandable, they contacted the responsible PPs and discussed the case until agreement was reached. Despite the validation step, the distribution of relevance categories remained unchanged. However, the distribution of data element groups changed. All steps are shown in Figure 1.

Statistical Analysis

Statistical analysis and graphing were performed using R (R Core Team and the R Foundation for Statistical Computing) [31]. Due to a high number of items in the collection categories such as “Other” or “Other medical history,” we decided to group the corresponding items into new categories. This work was performed by 2 authors to avoid errors.

Ethical Considerations

Data capture and analysis only included individuals associated with the project. No Institutional Review Board approval was requested, as this would only be appropriate for studies including direct contact with patients [32], but we did not capture or process any patient-related data, so informed consent was not required.

Results

Studies Investigated

Figure 2 shows the departments to which the reviewed studies belong. Although no prior decision was made as to which departments to select, there was an overrepresentation of neurological studies.
Figure 2. Distribution of the medical specialties among the analyzed studies, sorted in descending order: neurology (n=30, 36.6%), cardiology (n=8, 9.8%), urology (n=7, 8.5%), general surgery (n=7, 8.5%), dermatology (n=6, 7.3%), gastroenterology (n=5, 6.1%), orthopedics (n=3, 3.7%), pulmonology (n=2, 2.4%), neurosurgery (n=2, 2.4%), gynecology (n=2, 2.4%), diabetics (n=2, 2.4%), anesthesiology (n=2, 2.4%), trauma surgery (n=1, 1.2%), rheumatology (n=1, 1.2%), and other (n=1, 1.2%).

Data Element Groups

In total, we included 82 CTs from 8 different university hospitals, and at each site, 3-25 (4%-30%) CTs were processed. In total, we identified 1157 EC, of which 1132 (97.8%) unique criteria remained after the removal of duplicates, which were classified as “irrelevant, redundant.”

Figure 3 shows the frequency of data element groups in all examined EC. With 28.4% (321/1132) of all EC, diagnosis was, by far, the most common data element, followed by informed consent and date of birth/age in second and third places, respectively.

Figure 3. Frequency of data element groups in all EC, in descending order: most frequent were diagnosis (n=321, 28.4%), followed by informed consent (n=97, with 8.6%) and date of birth/age (n=78, 6.9%). EC: eligibility criteria.
Relevance Categories

In terms of EC relevance, 350 (30.9%) of the 1132 EC were categorized as “necessary,” 224 (19.8%) as “complementary,” 217 (19.2%) as “not documented,” 52 (4.6%) as “irrelevant,” and 289 (25.5%) as “irrelevant, recorded at the time of enrollment.” The overall percentages are shown in Figure 4.

Figure 4. Distribution of relevance categories of all EC: 350 (30.9%) “necessary” criteria, 109 (9.6%) “necessary, not documented,” 224 (19.8%) “complementary,” 108 (9.5%) “complementary, not documented,” 52 (4.6%) “irrelevant,” and 289 (25.5%) “irrelevant, recorded at the time of enrollment.” EC: eligibility criteria.

Total Irrelevant Criteria

In total, 341 (30.1%) EC were categorized as “irrelevant” and “irrelevant, recorded at the time of enrollment.” These were mainly patient consent information (n=90, 26.4%). In addition, the EC “other” (n=42, 12.3%) and “other medical history” (n=26, 7.6%) were often marked as not relevant for patient screening. Diagnosis was only a small part (n=24, 7%) of all irrelevant EC, which is low compared to the general data element distribution shown in Figure 3, where this category makes up the largest part. A visualization of the complete list and frequencies can be found in Multimedia Appendix 2.

Nondocumented Criteria

In total, 217 (19.2%) necessary and complementary EC were categorized as not documented and were most commonly the data element groups diagnosis (n=121, 55.8%), examination results (n=36, 16.6%), and procedures (n=28, 12.9%). As noted in the example in Table 2, it is possible that data element groups such as diagnosis were sometimes categorized as documented and sometimes with other categories, which is valid because it may depend on the medical context of what information is documented. All data element groups and their frequencies can be found in Multimedia Appendix 3.

All Relevant Criteria

As defined before, both complementary and necessary EC were relevant for an automated search of potential participants, which were 574 in number (Multimedia Appendix 4). The most frequently used data element groups were diagnosis code, which accounted for 44.4% (n=255) of all necessary EC, followed by date of birth (n=74, 12.9%) and procedure codes (n=48, 8.4%).

Relevance Distribution by Data Element Group

Since each criterion was individually classified into a data element group, and a relevance category, it is possible that common data element groups play a role in several of the categories. For this reason, the categorization between data element groups was heterogeneous. For example, the data element group diagnosis was mostly categorized as necessary or complementary (n=255, 79.4%), while the data element group informed consent was mostly categorized as “irrelevant, recorded at the time of enrollment” (n=90, 92.8%). In addition, the data element groups pregnancy, contraception, and lactation were mostly either not documented or documented at the time of enrollment. Figure 5 shows the relevance distribution for all data element groups.
Figure 5. Distribution of relevance categories in percentage by data element group; the groups were recorded at least 5 times in our data set, ordered by the proportion of necessary EC: date of birth/age, other details of encounter, diagnosis, and diagnosis date showed the highest proportion of necessary EC. EC: eligibility criteria.

Data Element Relevance Index

More important than the absolute frequency of a data element is the question of how many CTs the element is used for in patient screening and not how often a group is represented in a CT. This parameter, the data element relevance index (DERI), can be calculated without considering the frequency of data element groups in CTs.

For the calculation, we determined the number of CTs in which the data element was used at least once and removed all entries marked as undocumented or irrelevant. The results showed that the data element groups diagnosis and date of birth/age were present in more than 50% of the CTs: diagnosis, n=79 (96.3%); date of birth/age (85.4%). All other DERI values are shown in Figure 6.
Surrogate Parameters

For the case of unavailability of an original data element, 92 (8.1%) of the EC were documented surrogate parameters to use. Surrogate parameters were often used for the grouping categories “Other medical history” (n=14, 15.2%) and “Other diagnosis information” (n=13, 14.1%). Diagnosis had the highest frequency in both original elements (n=20, 20.7%) and surrogates (n=52, 56.5%). As a surrogate data element for diagnosis, procedures (n=5, 25%) and laboratory results (n=5, 25%) were most often used.

Discussion

Principal Findings

EC have been analyzed and categorized repeatedly in recent years to measure their prevalence in CTs. These studies have mostly categorized EC into semantic categories [33]. Comparing the studies, we saw that the frequency of semantic categories shows some overlap but also varies to some extent [28]. This could be due to the selection process of the studies or a different way of categorization by the diverse researchers.

Data Element Groups

Although the categorization by Luo et al [33] focuses on the semantic categories of EC rather than individual data elements, as in this paper, parallel categories exist that we used to find similarities and differences. Previous studies have measured the prevalence of data element groups as a percentage of all EC examined [25,28-30,33].

Our measured prevalence of similar data element groups differed by no more than 0.5 from the minimum and maximum of the measured frequency percentages of comparable studies. This comparison using the semantic categories described by Luo et al [33] is provided in Multimedia Appendix 5. An exception is the consent category, which we used more often. In our review, consent was often used more than once for a CT, not only to describe consent to the CT itself, but also when a participant was asked to consent to specific procedures or circumstances of the CT. This included, for example, consent to use adequate contraception for the duration of the CT. The high deviation from other studies may be due to the fact that other studies have only used this data category for specific CT consent [25,28,29].

Relevance Categories

The results show that about 70% of the examined EC are relevant for the selection of potential CT participants. About 19% are not usually documented in EHRs and therefore cannot be used for filtering, even if the trial professional searches all patient records. Whether a criterion is classified as undocumented depends, in part, on the capabilities of hospital information systems and therefore varies from hospital to hospital. In addition, certain information may only be collected depending on the context of care and the severity of illness.

About 51% of all EC are relevant for the electronic prefiltering of patients. Since the implementation of EC is one of the obstacles in the development of a CTRSS, the realization that only about half of the EC are relevant can mean a simplification in the implementation of EC in the systems.

Figure 5 shows that it is not possible to link data element groups only to 1 relevance category. Instead, depending on the context of the CT, different relevance categories were assigned to the data element groups. In some cases, the same group was sometimes categorized as documented and sometimes as undocumented. This can be explained by the fact that whether information is documented depends not only on the data element group but also on several other factors. For example, often, only diagnoses that are considered important and investigated in the context of therapy are documented. In these cases, the trial
professionals may be able to make an assessment because they are either part of the patient care or are in close contact with the treatment physicians and are therefore aware of these details for documentation purposes. Figure 5 can provide some guidance as to which data element groups are typically not needed, but an assessment should always be made directly by the trial professionals.

In previously published studies on the prevalence of EC, this was usually also referred to as their relevance. Our results show that a significant proportion of EC is not used to search for participants. Since the classification according to relevance categories varies between the data element groups, as shown in Figure 5, it is apparent that filtering according to relevance criteria affects not only the number of EC but also the frequency distribution of the data element groups.

For this reason, we compared the general frequency of data element groups (Figure 3) with those categorized as necessary or complementary (Multimedia Appendix 4). From this comparison, we saw that the percentage prevalence of all data element groups is sometimes different from the prevalence of the relevant data element groups. Diagnosis and date of birth/age as well as procedures show a particularly strong increase in frequency. However, consent, other medical history, and pregnancy are significantly less frequent among the data elements classified as relevant.

Data Element Relevance Index

The frequency order of data element groups depends on how they are viewed. If the EC criteria are filtered based on their relevance in prefiltering possible participants, the frequency order changes.

The introduction of a new DERI measurement value changes the perspective. The occurrence frequency of data element groups, such as various laboratory values, in a study is no longer relevant. The consideration now lies only in the frequency of the respective group’s use in studies. Studies with a significant number of exceptional cases exert less influence on the general outcome.

Furthermore, by using the DERI value, it is possible to determine the number of studies reliant on a specific data element group. Consequently, a direct inference can be made about its impact within a CTRSS, which is unachievable through pure frequency data.

Data Completeness

In 2018, Vass et al [34] examined the data quality of data element groups commonly used in CT EC in 10 university hospitals in Germany. They found that the data completeness is partly heterogeneous and that elements are rarely collected in a structured way in daily clinical practice, which hinders automated retrieval [34].

Comparing the DERI values of the data element groups and the completeness of data in the EHRs (Figure 7), we saw that more than 80% of the information is available for the 3 most relevant data element groups (diagnoses, demographics, and procedures). The less relevant categories of laboratory results and other diagnostic information are still available in more than 65% of cases. However, medication information (medication history and current medication) is problematic, with availability ranging from 13% to 61%. Nevertheless, medication history and current medication are relevant groups, with DERI values of 13% and 26%, respectively. Scores are also poorly documented, with a data completeness of 18%.

Figure 7. Data completeness measured by Vass et al [34] in comparison with DERI. It can be seen that although diagnosis and date of birth/age both have a high data completeness rate and DERI, problems arise with scores, medication anamnesis, and current medication, which have a low data completeness rate. OPS: Operationen- und Prozedurenschlüssel.
To reliably use these data in a CTRSS, a higher level of completeness should be present for DERI values higher than 10%. Poor data quality of data from EHRs, when matched with EC from CTs, can lead to high false-negative rates for inclusion criteria and high false-positive rates for exclusion criteria. The former, in particular, is fatal to the use of a CTRSS, as matching individuals are thus overlooked. High false-negative rates, in turn, lead to increased workload for trial personnel.

The study by Vass et al [34] showed that some data element groups are well captured in EHRs but other elements are problematic. This generates a data gap between EC and EHRs, which was analyzed by Butler et al [35]. They found that about 40% of all EC are not captured in EHRs. Since a structured collection of clinical patient-related information is important not only for the implementation of a CTRSS but also for billing purposes and patient safety, hospitals as well as governments are pushing the digitalization of patient records. In recent years, many initiatives and laws have been implemented to make data from EHRs available for research purposes [36,37]. Therefore, it is likely that the accessibility of medical information has recently improved or will improve in the future.

The timeliness of data element accessibility was not considered here but should be in future studies to assess not only whether a data element is documented in EHRs but also whether this data element is accessible in time. We should also examine whether the results of Butler et al [35] are reproducible when only relevant criteria are examined.

Implementation of Patient Recruitment Systems

In previous publications, the relevance of data element groups has been described as the frequency of a group relative to the number of all data elements found in all EC, which depends only on the distribution of data element groups. Since the prevalence of EC is defined heterogeneously in the literature, it is not useful to assess the relevance of data element groups based on the frequency distribution alone.

Especially for the implementation of a CTRSS, it is useful to evaluate how many CTs use a data element group. Using the DERI to determine the relevance of data element groups can be helpful here, as it additionally includes only groups that are used to search for participants.

The core functionality of a CTRSS is to compare EC with clinical data to identify potential participants. For the system to be useful to trial staff, the suggestions must be as accurate as possible, with minimal false-positive or false-negative rates. Since the comparison between the clinical database and EC is the critical factor at this point, it is particularly important that as many EC as possible be checked automatically. When implementing a CTRSS for different types of CTs, it is recommended to first identify important data element groups by determining a local DERI for all data element groups. Therefore, a set of CTs should be analyzed in cooperation with the trial sites, and all data element groups with a high DERI should be accessible to the CTRSS. For this purpose, it is useful to set a threshold value for the DERI determined and to make available all data element groups that exceed this value. For this purpose, we could start with a value of 10, since this means that a data element group is used in at least 10% of the CTs, and gradually increase this value. Further studies are needed to determine the quantitative relationship of the DERI to the results of a CTRSS.

In contrast to the determination of local DERI values, there is the additional task of determining the data quality of the available data sources to be used for matching with the EC of CTs. Again, data completeness and timeliness should be determined locally to ensure that the necessary data element groups identified are available in the highest-possible data quality.

Limitations

Since the PPs at the study sites were allowed to select participants themselves, the selection of participants was through the convenience sampling method. Randomization was not possible; instead, all participants who were currently supervising at least 1 CT and who were willing to participate in the study were included. Additionally, we could see an overrepresentation of neurological CTs in our sample and had to exclude oncological and psychiatric CTs.

The categorization of EC was performed with the cooperation of CTRSS experts and trial professionals at each site. To minimize the bias of different categorization methods, all the categorization of data element groups was validated by 2 experts.

The results presented here are dependent on the study sites selected. The clusters identified may be prone to local variation, and their applicability to other sites is unclear.

Conclusion

In this study, we demonstrated that automated recruitment support of CT personnel requires only roughly 50% of the EC indicated in the CT protocols. Since the frequency of EC in CTs is described differently in the literature, exclusively focusing on the frequency of EC is misleading. Instead, we propose to define the relevance of EC as the proportion of CTs in which a criterion occurs. In addition, only EC considered relevant (necessary or complementary) for patient recruitment should be included for this determination. This DERI can be used to quantify the relevance of EC data element groups.

Further examination is necessary to find out whether the relevant data element groups are documented in EHRs in a structured way and accessible in time for the implementation of a CTRSS.

Acknowledgments

This study was conducted in the Medical Informatics in Research and Care in University Medicine (MIRACUM) Consortium. MIRACUM is funded by the German Ministry for Education and Research (funding number FKZ 01ZZ1801A/B/C/D/G/L/M).
We greatly appreciate the work of Ines Reinecke, Susanne Zabka, Phillip Macho, Alexandra Stein, and Frederike Elisabeth Euchner for their support in the development of data extraction sheets and in data collection. We also thank Fabian Wäldchen for his help with writing and proofreading.

Data Availability
We added the parameters of our data collection sheet, as well as all analysis and results, either in this paper or in the appendices. Additionally, all data our analysis is based on can be found in Multimedia Appendix 6. We only had to remove original trial descriptions, as they would allow a conclusion on concrete clinical trials and locations.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Captured information.
[DOCX File, 14 KB - formative_v8i1e49347_app1.docx]

Multimedia Appendix 2
Irrelevant data element groups with frequency.
[PNG File, 50 KB - formative_v8i1e49347_app2.png]

Multimedia Appendix 3
Not-documented data element groups with frequency.
[PNG File, 48 KB - formative_v8i1e49347_app3.png]

Multimedia Appendix 4
Relevant data element groups with frequency.
[PNG File, 45 KB - formative_v8i1e49347_app4.png]

Multimedia Appendix 5
Comparison of data element groups’ distribution with other studies.
[PNG File, 51 KB - formative_v8i1e49347_app5.png]

Multimedia Appendix 6
All analyzed eligibility criteria of all included trials.
[XLSX File (Microsoft Excel File), 38 KB - formative_v8i1e49347_app6.xlsx]

References

37. Hendolin M. Towards the European health data space: from diversity to a common framework. Eurohealth 2021;27(2):15-17 [FREE Full text]

Abbreviations

CT: clinical trial
DERI: data element relevance index
EC: eligibility criteria
EHR: electronic health record
OPS: Operationen- und Prozedurenschlüssel
PP: project participant

Edited by A Mavragani; submitted 25.05.23; peer-reviewed by W Wei, V Barber; comments to author 07.08.23; revised version received 28.09.23; accepted 22.11.23; published 31.01.24.

Please cite as:
URL: https://formative.jmir.org/2024/1/e49347
doi:10.2196/49347
PMID:38294862

©Romina Blasini, Cosima Strantz, Christian Gulden, Sven Helfer, Jakub Lidke, Hans-Ulrich Prokosch, Keywan Sohrabi, Henning Schneider. Originally published in JMIR Formative Research (https://formative.jmir.org), 31.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

User Requirements in Developing a Novel Dietary Assessment Tool for Children: Mixed Methods Study

Zoë van der Heijden¹, MSc; Femke de Gooijer¹, MSc; Guido Camps¹, PhD; Desiree Lucassen¹, PhD; Edith Feskens¹, Prof Dr; Marlou Lasschuijt¹, PhD; Elske Brouwer-Brolsma¹, PhD

Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands

Corresponding Author:
Zoë van der Heijden, MSc
Division of Human Nutrition and Health
Wageningen University & Research
Stippeneng 4
Wageningen, 6700 AA
Netherlands
Phone: 31 7480 100
Email: zoe.vanderheijden@wur.nl

Abstract

Background: The prevalence of childhood obesity and comorbidities is rising alarmingly, and diet is an important modifiable determinant. Numerous dietary interventions in children have been developed to reduce childhood obesity and overweight rates, but their long-term effects are unsatisfactory. Stakeholders call for more personalized approaches, which require detailed dietary intake data. In the case of primary school children, caregivers are key to providing such dietary information. However, as school-aged children are not under the full supervision of one specific caregiver anymore, data are likely to be biased. Recent technological advancements provide opportunities for the role of children themselves, which would serve the overall quality of the obtained dietary data.

Objective: This study aims to conduct a child-centered exploratory sequential mixed methods study to identify user requirements for a dietary assessment tool for children aged 5 to 6 years.

Methods: Formative, nonsystematic narrative literature research was undertaken to delineate initial user requirements and inform prototype ideation in an expert panel workshop (n=11). This yielded 3 prototype dietary assessment tools: FoodBear (tangible piggy bank), myBear (smartphone or tablet app), and FoodCam (physical camera). All 3 prototypes were tested for usability by means of a usability task (video analyses) and user experience (This or That method) among 14 Dutch children aged 5 to 6 years (n=8, 57% boys and n=6, 43% girls).

Results: Most children were able to complete FoodBear’s (11/14, 79%), myBear’s (10/14, 71%), and FoodCam’s (9/14, 64%) usability tasks, but all children required assistance (14/14, 100%) and most of the children encountered usability problems (13/14, 93%). Usability issues were related to food group categorization and recognition, frustrations owing to unsatisfactory functioning of (parts) of the prototypes, recall of food products, and the distinction between eating moments. No short-term differences in product preference between the 3 prototypes were observed, but autonomy, challenge, gaming elements, being tablet based, appearance, social elements, and time frame were identified as determinants of liking the product.

Conclusions: Our results suggest that children can play a complementary role in dietary data collection to enhance the data collected by their parents. Incorporation of a training program, auditory or visual prompts, reminders and feedback, a user-friendly and intuitive interaction design, child-friendly food groups or icons, and room for children’s autonomy were identified as requirements for the future development of a novel and usable dietary assessment tool for children aged 5 to 6 years. Our findings can serve as valuable guidance for ongoing innovations in the field of children’s dietary assessment and the provision of personalized dietary support.

(JMIR Form Res 2024;8:e47850) doi:10.2196/47850

KEYWORDS
diet; children; dietary assessment; recall; technological innovation; mobile health; mHealth; mobile phone
Introduction

In the Netherlands, childhood overweight and obesity have reached an alarming prevalence of 15% in 2021, indicating a pressing public health concern [1]. Childhood obesity has a major impact on psychological health and later-life risks of developing noncommunicable diseases, mortality, and morbidity [2,3]. As a healthy diet is known to play a vital role in the prevention of obesity [4], interventions encouraging children toward healthier food choices receive high priority globally. However, the long-lasting effects of past and ongoing dietary interventions are rather limited, mainly related to their “one-size-fits-all” approach, which calls for more personalized interventions [5].

Personalized dietary interventions require accurate individual-level dietary assessment and monitoring [6] to facilitate realistic personalized dietary feedback. However, dietary assessment methods in young children are extremely challenging owing to their limited literacy, writing skills, food knowledge, and interest [7]. Consequently, caregivers currently serve as the primary sources of (surrogate) dietary information for their children. However, as primary school children gain independence in their food choices, the likelihood of misreporting increases [8]. Recent technological advancements now provide opportunities for a role for children themselves in the dietary assessment, which may serve the overall obtained dietary data quality.

Accordingly, there is growing interest in the development of innovative tools to assess dietary intake in children, with a particular emphasis on more effective and engaging technology-based solutions [9,10]. However, most of the developed tools thus far lack proper validation and are not tailored to the Dutch context, including Dutch food databases [11,12]. Country-specific dietary assessment tools are essential to accurately capture dietary information while considering cultural, regional, and nutritional differences. Moreover, given children’s rapid cognitive development, there is also a need for dietary assessment tools that align with their age-specific developmental stages. Current research has mostly focused on tools for children aged ≥8 years [11], as children tend to be better at independently reporting their food intake from this age onward [7]. However, considering the high level of technology readiness in today’s generation of children and the continuously changing technological possibilities, it is worth exploring the development of dietary assessment tools for younger children.

A “child-centered approach,” which places the user in the center of the design and development process, can effectively address young children’s age-specific cognitive needs for innovative dietary assessment. This approach enables researchers to understand the context, needs, and preferences of the tool’s intended end users [13,14] by engaging children in identifying challenges and finding solutions [15]. As a result, a child-centered approach can enhance design outcomes, improve user experience [16], and potentially improve data collection procedures and accuracy. In the decades marked by an increasing prevalence of childhood health issues, understanding the dietary behaviors and needs of young children is vital for informing effective interventions.

Therefore, as a first step, this study aimed to reveal user requirements for a novel child-friendly food intake registration tool designed for Dutch children aged 5 to 6 years. In pursuit of this goal, we developed and evaluated 3 distinct prototypes specifically created for children aged 5 to 6 years while considering age-specific cognitive and developmental characteristics to serve as valuable guidance for advancing the field of dietary assessment tools for children across a broader age range.

Methods

This study applied an exploratory sequential mixed methods study design, combining qualitative and quantitative measures [17]. Phases included a formative research phase (qualitative), a developmental phase (qualitative), and an evaluation phase (mixed methods, but with qualitative emphasis; Figure 1).

Figure 1. Flowchart illustrating the design process of the dietary assessment tool prototypes FoodBear, myBear, and FoodCam.

Formative Research

We performed a nonsystematic narrative literature research to identify existing dietary intake assessment tools for young children, their validity, and age-specific developmental considerations. This information was then used in an expert workshop to probe prototype idea generation. This nonsystematic search followed an abductive approach [18], focusing on extracting valuable insights to inform the design process effectively (eg, formulation of a list of user requirements and wishes for designing a dietary assessment tool for children aged 5-6 years; Textbox 1), rather than aiming for an exhaustive review of the available literature. The search query included a combination of the following Medical Subject Headings terms: dietary assessment, food intake, nutritional assessment, child centered design, child*, kid*, preschool*, child computer interaction, and eHealth. To our knowledge, this study is the first to focus on self-reported tool development among children...
aged 5 to 6 years. Therefore, our requirements are based on heterogeneous literature, including studies related to design for children [19-21], dietary assessment tools for older children outside the Netherlands [22-27], or child development [7,28]. In the context of this study, requirements were defined as being vital for usability and wishes as being desirable for enhancing usability and motivation among children. Our requirements were assessed in terms of perceived importance (ranging from 1 to 5) based on close consultation and consensus within our research team (Textbox 1). In the weighted decision matrix (WDM), decisions were rated on a scale of 1 to 5, with 1 indicating low importance and 5 signifying high importance for successful use.

Textbox 1. List of user requirements for a novel dietary assessment tool for children resulting from formative research and their importance (score ranging from 1 to 5). The list includes aspects that the dietary assessment tool should have (ie, requirements) or could have (ie, wishes).

<table>
<thead>
<tr>
<th>Requirements (importance score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Collect accurate and useful data on dietary intake in children (importance score 5) [7,22-26]</td>
</tr>
<tr>
<td>• Be understandable (ie, simple, easy-to-use, and intuitive; importance score 5) [26]</td>
</tr>
<tr>
<td>• Be fast paced (ie, completed in a short time; importance score 4) [26,28]</td>
</tr>
<tr>
<td>• Give feedback and context-specific help (eg, auditory or visual; importance score 3) [19,20]</td>
</tr>
<tr>
<td>• Be motivating and encouraging to use (importance score 3) [19,26,27]</td>
</tr>
<tr>
<td>• Be social (importance score 3) [19]</td>
</tr>
<tr>
<td>• Be challenging (importance score 3) [19]</td>
</tr>
<tr>
<td>Wishes</td>
</tr>
<tr>
<td>• Incorporate photography [22,27]</td>
</tr>
<tr>
<td>• Incorporate an avatar [21,25,26]</td>
</tr>
<tr>
<td>• Incorporate gamification [21,26]</td>
</tr>
<tr>
<td>• Include a storyline [21,25,26]</td>
</tr>
<tr>
<td>• Include rewards [21]</td>
</tr>
<tr>
<td>• Incorporate learning and/or repetitive elements [19]</td>
</tr>
</tbody>
</table>

Development

Idea Generation

Concepts for dietary assessment tools were developed through a 1-hour web-based expert panel workshop hosting nutrition (n=4), design (n=4), behavior (n=1), and technology researchers (n=2). Experts were carefully selected from various universities in the Netherlands and came together on the web-based Miro whiteboard platform. The workshop unfolded in 3 key stages. First, the experts immersed themselves in the world of our target audience by engaging with emotional image prompts. Next, experts were presented with our comprehensive list of requirements, as detailed in Textbox 1, and tasked with generating prototype ideas that could address these requirements. In the third and final phase of the workshop, the experts collaborated in pairs to refine these ideas and transform them into feasible prototypes. The results of this collaborative effort produced a wide range of innovative concepts, including a food piggy bank, food camera, digital plate, Tamagotchi, smartwatch, and a food diary.

Prototype Development

The results of the expert panel workshop were scored and evaluated against the list of requirements and subsequently multiplied by their importance (ranging from 1 to 5) in a WDM [18] (Multimedia Appendix 1), a decision-making tool that can be used to evaluate a set of options against critical factors and compare design concepts based on the overall value of each design concept. Three researchers from Wageningen University and Research (WUR) completed the WDM individually to ensure objectivity. The 3 concepts were considered to align most closely with the requirements and subsequently further advanced, which resulted in the 3 functional prototypes, FoodBear (average WDM score: 144.1), myBear (average WDM score: 148.4), and FoodCam (average WDM score: 144.7; Figure 2; Multimedia Appendix 2).
FoodBear can be used as a food recall or food record [9] and serves as a physical eating buddy in the shape of a bear. FoodBear can be fed with coins that match the foods consumed by the child (Table 1). A coin represents 1 item of the food group eaten (e.g., 1 slice of bread) and children are challenged to put the number of coins corresponding to the number of items eaten in the bear’s belly as an estimate of portion size. This allows the assessment of food group diversity and provides a rough estimate of dietary intake.

Table 1. Included food groups in myBear and FoodBear and their contribution to the lunch of Dutch children aged 5 to 6 years [24].

<table>
<thead>
<tr>
<th>Food group</th>
<th>Contribution to lunch (%)</th>
<th>Child-friendly categories in prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals and grain products</td>
<td>43</td>
<td>Bread</td>
</tr>
<tr>
<td>Eggs</td>
<td>28</td>
<td>Eggs</td>
</tr>
<tr>
<td>Milk products</td>
<td>26</td>
<td>Milk, yogurt, and cheese</td>
</tr>
<tr>
<td>Soups, broth</td>
<td>23</td>
<td>Soup</td>
</tr>
<tr>
<td>Meat and meat products</td>
<td>20</td>
<td>Sausage or meat</td>
</tr>
<tr>
<td>Sugar and confectionery</td>
<td>15</td>
<td>Sweet toppings and candy</td>
</tr>
<tr>
<td>Fruits, nuts, and olives</td>
<td>14</td>
<td>Fruit</td>
</tr>
<tr>
<td>Different</td>
<td>13</td>
<td>Something different</td>
</tr>
<tr>
<td>Fish, crustaceans, and shellfish</td>
<td>12</td>
<td>Fish</td>
</tr>
</tbody>
</table>

myBear can be used as a food recall or food record [9] but in the form of a tablet-based app. The user interface design was developed with Adobe XD software, and the prototype app can be displayed on a smartphone or tablet. Children feed the bear with the same foods as they ate themselves. On the home screen of the app, children select the food groups they consumed, which then appear in the belly of myBear. The child uses plus and minus buttons to indicate the quantities of items from the food group they have consumed. Children receive a sticker on a digital sticker sheet after completing all entries. Similar to FoodBear, myBear can be used to provide a rough estimate of dietary intake and to track food group diversity.

FoodCam is based on the food record methodology [9] and consists of a camera and a “cookbook template.” The camera is specifically designed for children, and for this specific purpose, it was used to take pictures of food items. As the camera immediately prints the captured photo, it also provides immediate feedback to the child. Subsequently, the printed photos can be used by children to create their own cookbook, which offers the opportunity for children to draw and express their creativity. FoodCam can be used to assess daily food intake. FoodCam is accompanied by a cookbook stencil (in Dutch) on which children can put a picture of their lunch, draw it, indicate how full they feel [29], and how much they enjoyed it [30].

Prototype Content

The first prototypes were developed to assess lunchtime and focused on the most frequently consumed foods during lunchtime by young Dutch children according to the Dutch Food Consumption Survey [31] (Table 1). Only food groups that contributed for >10% to children’s lunch were included.

Recruitment

Overview

We recruited 14 Dutch (n=6, 43% girls and n=8, 57% boys) children aged 5 to 6 years through purposive sampling, as 10 ±2 participants were considered sufficient for usability evaluation [32]. Data saturation was assumed to be acquired within 6 to 12 sessions [33], which in this study was reached after 11 sessions. Children were recruited via colleagues within the Division of Human Nutrition and Health at WUR and through personal networks.
User Testing

The functional prototypes were evaluated on usability and user experience by combining qualitative and quantitative measures [17]. To make the child feel comfortable, the researcher visited the child at home in the presence of a parent or caregiver. Before the start of the session, the parent or caregiver was instructed to introduce the researcher as a toy inventor and that their child would act as an assistant inventor. Moreover, parents were instructed to interfere as little as possible during the user tests. The entire procedure took approximately 30 minutes and took place after lunch, between 1:30 PM and 3:00 PM. The 30-minute time frame was selected to align with the attention span of young children. We conducted 3 streamlined usability tasks (lasting a maximum of 140 seconds) and a user experience task and interview within this time frame to minimize any potential loss of interest or fatigue among participating children. To ensure that all tasks would fit within our proposed time frame, the procedures were piloted twice. All parents completed a demographic questionnaire on the child’s age (y), gender (boys or girls), number of siblings, siblings’ age (y), interactive screen time (h/d), foods and portion sizes eaten during lunch, and time of lunch. Parental lunch dietary intake data gathered in the questionnaire were used as the criterion to assess successful recall by the children, instead of more objective direct lunch observation, to be able to create a study environment that is comfortable and engaging for children. Testing order for FoodBear and myBear was alternated across participants. To assess the usability of FoodCam, parents were instructed to prepare a duplicate (ie, an “identical meal to what their child had eaten for lunch on the day of testing”) of the children’s previously consumed lunch during the test. This prototype was always tested last because FoodCam is the only prototype that does not rely on children memorizing their lunch.

The procedure consisted of 3 usability tests (steps 3, 5, and 6; Textbox 2) and a user experience test (steps 7-9; Textbox 2). To assess usability, children performed a task with every prototype while measuring the completion rate and task completion time. Completion rate was defined as the proportion of children that successfully completed the usability tasks, and completion time was defined as the time needed to complete the task. The time required for the researcher to explain or draw attention to the task was subtracted and the number of interruptions required to complete the tasks were registered. Behavioral observations and field notes were evaluated to identify the usability issues. A detailed description of the study procedures is provided in Textbox 2.
Textbox 2. Within-participant procedures consisting of 9 steps (maximum 30 min in total). Steps 3 and 5 are alternated across participants.

Step 1: Introduction
- The researcher engaged in a small talk with the child to build trust. Study procedures were explained in a child-friendly manner, and it was emphasized that the child could say anything.

Step 2: Lunch recall
- As the usability task of myBear and FoodBear required recall of the lunch, the child was asked to do this before starting these tasks. Lunch was considered as being correctly recalled when it resembled the lunch written down in the questionnaire by caregivers, in terms of food items and numbers. If the child was unable to recall his or her lunch independently, standardized help questions were asked: (1) “Did you eat bread?” (2) “How much bread did you eat?” (3) “What kind of topping did you eat? Cheese, meat or something sweet?” (4) “How much bread did you eat with this topping?” If the child answered a question with “no,” the following questions were prepared: (5) “Did you eat a salad, pasta or rice for lunch?” (6) “Did you drink something with your lunch? Milk, tea, or water?” (7) “Did you eat anything else, such as candy, fruit or soup?” The number of questions required was noted.

Step 3: Usability task: myBear
- The child was asked to provide myBear with the same foods as recalled in step 2 or 4. The session started by clicking the “lunch” button (ie, as one of 5 different eating moments), which started the time measurement. The time measurement ended once the last food item was entered in myBear. The assignment was completed when all food groups and amounts were correctly entered.

Step 4: Lunch recall
- To mitigate potential effects arising from the passage of time between recalling the lunch and subsequent assessment of prototype’s usability, the child was asked to recall the lunch again.

Step 5: Usability task: FoodBear
- The child was asked to give the same lunch to FoodBear as recalled in step 2 or 4. The time measurement started once the researcher asked the child to start feeding FoodBear and ended when the child put the last coin into its belly. The assignment was completed when all food groups and amounts were correctly entered.

Step 6: Usability task: FoodCam
- The child was asked to take a picture of his or her (duplicate) lunch with FoodCam. Time measurement started once the researcher handed over the camera to the child and ended when the child took the picture. The assignment was completed when the (1) photo was sharp and (2) included all consumed foods in a recognizable way. To assure objectivity, photos were assessed by 3 researchers.

Step 7: This or That method
- As a response to 5 “This or That” questions, children indicated which prototype they liked best [34]. The original This or That method uses pairwise comparison, but this study compared 3 prototypes. One of the original questions was considered irrelevant and excluded: “Which of these three would you most like to take home?” The following This or That questions were included: “Which of these three was most fun?” “Which of these three was a bit stupid?” “Which of these three was a little boring?” “Show me which of these three you would like to play again?” “Show me which of these three you would like to receive as a gift?” Children could indicate more than 1 prototype but were not told beforehand to facilitate decision-making.

Step 8: Reward
- The child received a biscuit and a stamp set to express gratitude for time investment and participation in the study.

Step 9: Behavioral choice selection
- The researcher told the child “that there was some time left,” and that he or she could select a prototype to play with again. The researcher ensured that the child ate the biscuit first to prevent the child from automatically choosing the prototype they played with last.

Data Analysis

Usability

All sessions were audio- and video-recorded and transcribed verbatim. The researcher watched the videos and documented the examples of interest. Using the qualitative data analysis software ATLAS.ti (ATLAS.ti Scientific Software Development GmbH), examples of interest were grouped into themes to identify the most important usability issues, by means of using a reflexive and inductive approach, allowing for the emergence of unexpected insights, and understanding of prototype usability. Specific attention was paid to behaviors that hindered the completion of the usability tasks. As this study was exploratory in nature, our goal was to generate a foundation for further research. Therefore, data were coded by a single coder to gain a deeper understanding of the research objectives and context. To determine usability task effectiveness and efficiency for each prototype, average time and corresponding SDs were calculated for the usability tasks. By integrating qualitative and quantitative usability in the discussion and interpreting our results, we aimed to provide a more comprehensive assessment of the prototypes’ usability among the target group.
User Experience

The quantitative results for This or That method were coded dichotomously for each of the 5 questions. A preference was scored 1 in case of the 3 positive questions. In contrast, a preference was scored −1 in case of the 2 negative questions. Consequently, the total score for the 3 prototypes ranged from a minimum of −2 to a maximum of 3, for which a mean score and corresponding SD were calculated. One-way ANOVA was performed to test for significant differences using SPSS Statistics (version 25; IBM Corp). A P value of ≤ 0.05 was considered statistically significant. Furthermore, qualitative data were analyzed by using a combination of deductive and inductive thematic coding in ATLAS.ti. Qualitative and quantitative data were integrated to gain a deeper understanding of prototype user experience.

Ethical Considerations

All parents provided written informed consent and children gave their verbal consent. When the child did not fully understand the study procedures, these were explained again. Participation was voluntary and participants could withdraw from the study at any time, without stating a reason. The study protocol was reviewed and deemed not subject to the Medical Research Involving Human Subjects Act (2021-13199). Subsequently, the protocol was reviewed and approved by the Social Sciences Ethics Committee of the WUR. The organization conducting this study established procedures for data management and data protection. Participants were not financially compensated for participating in this study, but children received a small gift as a thank you (a cookie and a stamp set).

Results

Sample Characteristics

Table 2 presents the descriptive characteristics of the study sample. A total of 14 children participated in the study and evaluated the 3 prototypes. Most children had at least 1 highly educated parent (12/14, 86%) and actively used technology for ≤1 hour per day (11/14, 79%). Moreover, most of the children had no older siblings (11/14, 79%).

Table 2. Sociodemographic participant characteristics across usability and user experience tasks (N=14).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>8 (57)</td>
</tr>
<tr>
<td>Girls</td>
<td>6 (43)</td>
</tr>
<tr>
<td>Age (y), mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>5.9 (0.8)</td>
</tr>
<tr>
<td>Girls</td>
<td>6.0 (0.6)</td>
</tr>
<tr>
<td>Older siblings, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3 (21)</td>
</tr>
<tr>
<td>No</td>
<td>11 (79)</td>
</tr>
<tr>
<td>Interactive screen timea, n (%)</td>
<td></td>
</tr>
<tr>
<td>≤1 h daily</td>
<td>11 (79)</td>
</tr>
<tr>
<td>2 h daily</td>
<td>3 (21)</td>
</tr>
<tr>
<td>3 h daily</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Education level of caregiver or caregiversb, n (%)</td>
<td></td>
</tr>
<tr>
<td>No highly educated caregiver</td>
<td>2 (14)</td>
</tr>
<tr>
<td>1 highly educated caregiver</td>
<td>2 (14)</td>
</tr>
<tr>
<td>2 highly educated caregivers</td>
<td>10 (72)</td>
</tr>
</tbody>
</table>

aInteractive screen time use is defined as the time a child spends actively interacting with a device (eg, tablet, PC, or smartphone).

b“Highly educated” is defined as having completed a degree at a university or a university of applied sciences.

Usability Testing

Quantitative Results

Of 14 children, 10 (71%) correctly recalled their lunch; half of the boys (4/8, 50%) and all the girls (6/6, 100%) succeeded in recalling their lunch. None of the successful children were able to do so without the assistance of standardized recall questions. Overall, 1 (7%) child needed the maximum number of 5 recall questions and 4 (40%) children needed one recall question; successful children needed an average of 2.2 (SD 1.4) recall questions. FoodBear’s usability task had the highest completion rate (n=11, 79%), followed by myBear (n=10, 71%) and FoodCam (n=19, 64%). The mean completion time (s) was faster and the number of interruptions (n) was lower for FoodCam (mean 9, SD 6; n=0.9) followed by myBear (mean 51, SD 17; n=3.3), and FoodBear (mean 65, SD 43; n=3.9; Table 3.)
Children who failed to complete either FoodBear’s (n=3, 21%) or myBear’s usability task (n=4, 29%) were all boys, but 1 (20%) girl failed to complete FoodCam’s usability task (n=5, 36%). Among these children, approximately all children had no highly educated parents (100%) or one highly educated parent (50%). When visually inspecting our data, no differences in age, interactive screen time (≤1 hour per day), or having older siblings (no) were observed across the children who did not complete their tasks. Finally, the order in which FoodBear and myBear were tested alternated. Children who successfully completed both FoodBear’s and myBear’s usability task (n=10, 71%) performed their second task on average 26.1 (SD 27.1) seconds faster.

Table 3. Descriptive data (task effectiveness and task efficiency) of usability tasks of FoodBear, myBear, and FoodCam.

<table>
<thead>
<tr>
<th>Task</th>
<th>Completion rate, n (%)</th>
<th>Completion time (seconds), mean (SD; range)</th>
<th>Interruptions for help, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoodBear: “Give FoodBear the same lunch as you ate”</td>
<td>11 (79)</td>
<td>65 (43; 16-140)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>myBear: “Give myBear the same lunch as you ate”</td>
<td>10 (71)</td>
<td>51 (17; 15-70)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>FoodCam: “Photograph your lunch with FoodCam”</td>
<td>9 (64)</td>
<td>9 (6; 3-24)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

Observational Results

Thematic analysis of the video and field notes obtained during usability testing revealed several key usability issues that were mainly related to 4 themes: **food groups, frustrations related to unsatisfactory functioning of (parts of) the prototype, recall of food products, and distinction between eating moments** (Figure 3).

Figure 3. Thematic map of usability issues revealed by user testing of the dietary assessment tool prototypes FoodBear, myBear, and FoodCam.

Theme 1: Food Groups

In terms of food group–related usability issues, 93% (13/14) of the children reported problems related to the **recognition of icon/images and classification of food products into food groups**. When using FoodBear and myBear, approximately all children (13/14, 93%) experienced usability problems related to the depicted icons or images, which were mainly related to recognizing the food group represented by the icon, resulting in incorrect food group reporting. To illustrate, most children (n=10, 71%) became confused when the consumed product did not exactly resemble the depicted icon: “Cheese spread and jam. Which one is the jam?” (Participant 11). Some children (n=8, 57%) solved the problem by choosing the icon that they thought most resembled the product they ate. In some cases (n=5, 36%),
the children eventually classified food products into the correct food group: “I don’t see baguette, but I do see bread, so I press the bread” (Participant 10), but other participants failed to do so: “Which one is gingerbread? This one? [points to icon for fish]” (Participant 14). Moreover, 21% (3/14) of the children ate >1 product of the same food group during their lunch and reported problems with categorizing these different food products into the same food group. One participant asked the researcher for help and the other 2 chose different icons for different products. Finally, it was also observed that some icons were not chosen at all even though the icon was applicable for several of the children, for example, the icon for “something else.”

Theme 2: Frustrations Related to Unsatisfactory Functioning of (Parts of) the Prototypes

Overall, 93% (13/14) of the children encountered ≥1 usability problem related to unsatisfactory functioning of (parts of) the prototypes, that is, prototype-specific issues. For FoodBear, several children encountered problems with where and how to put coins in FoodBear’s belly (n=4, 29%) and that coins did not fit properly through the intended opening (n=6, 43%). The latter led to visible frustrations among participants: “Stupid bear!” (Participant 6). When using myBear, the main usability issues were caused by interaction design. Most children (n=9, 64%) struggled with the plus and minus button to indicate the amount of the product eaten; children either pressed the button again, causing the product to disappear from myBear’s belly or asked the researcher for help. FoodCam’s usability issues were mainly related to finding the photo button (n=5, 36%) and quality of the printed photos (n=6, 43%): “It’s annoying that you cannot choose colors when you print it, so you can see the right colors” (Participant 6).

Theme 3: Distinction Between Eating Moments

More than half of the participants (n=8, 57%) had difficulties with distinguishing eating moments throughout the day. Some children (n=4, 29%) pointed out that they did not fully understand the concept of lunch. Other children (n=2, 14%) tended to also name products they consumed earlier that day: “But I had also yogurt today!” (Participant 6).

Theme 4: Recall

In the category of recall-related usability issues, the subcategories forgetfulness, portion size, and fantasy issues were distinguished. Overall, 57% (8/14) of the children reported usability issues related to ≥1 of these subcategories. For FoodBear and myBear, 29% (4/14) of the children failed to perform the usability tasks because of forgetfulness. For example, children forgot to feed certain products to myBear or FoodBear: “O, I just completely forgot about that one!” (Participant 6). Moreover, 36% (5/14) of the children had problems indicating consumed quantities, which resulted in underreporting by all 5 children, that is, an insufficient number of icons or coins for a specific food group in FoodBear’s or myBear’s belly. Finally, 21% (3/14) of the children were unable to complete the usability tasks because of their fantasy, that is, children fed FoodBear or myBear products that were not consumed (n=2, 14%) or expressed unrealistic amounts (n=1, 7%). To illustrate the latter, one participant reported: “I think ten breads. In every lunchbox” (Participant 2).

User Experience

Quantitative Results

No significant difference in mean preference scores for FoodBear, myBear, and FoodCam was observed based on the This or That method, that is, 0.57 (SD 1.94), 0.50 (SD 1.45), and 0.86 (SD 1.65; F=0.18; P=0.80), respectively (Table 4).

<table>
<thead>
<tr>
<th></th>
<th>FoodBear</th>
<th>myBear</th>
<th>FoodCam</th>
</tr>
</thead>
<tbody>
<tr>
<td>First choice, n (%)<sup>a</sup></td>
<td>5 (36)</td>
<td>5 (36)</td>
<td>6 (43)</td>
</tr>
<tr>
<td>Last choice, n (%)<sup>a</sup></td>
<td>7 (50)</td>
<td>7 (50)</td>
<td>5 (36)</td>
</tr>
<tr>
<td>Score, mean (SD)</td>
<td>0.57 (1.94)</td>
<td>0.50 (1.45)</td>
<td>0.86 (1.65)</td>
</tr>
</tbody>
</table>

^aPercentages are calculated based on the number of times participants selected each prototype. As children were allowed to choose more than one prototype, the sum of percentages may exceed 100%.

Observational Results

During the behavioral choice selection (Textbox 2; step 9), all children (14/14, 100%) chose (one of) the prototypes they scored best during This or That.

Qualitative Results

Although some children (n=5, 36%) experienced difficulties with answering the “why-questions” that followed the 5 This or That questions, several determinants for product liking could be identified. First, an important reason for children to choose one prototype over the others was autonomy, because they liked being able to do it “themselves” (n=5, 36%): “Because I can put the coins in there myself!” (Participant 13). Moreover, children (n=5, 36%) referred to the reward, such as the printed photo, as being a determinant for product liking: “I like that one because you can print your taken picture and keep it as a memory!” (Participant 6). In addition, 29% (4/14) of the children indicated that they liked the prototype being challenging: “I like that one because you can do a lot with that one. The camera is a bit stupid because you can only take a picture with it” (Participant 4). Such a challenge could be presented in the form of a game; the gaming element was emphasized by some children (n=4, 29%) as a fun element of one of the prototypes: “I like myBear because you can play games on it” (Participant 9). The shape of the prototype was also mentioned by several
of the children indicated that they liked the prototype because it was tablet based or because they liked its appearance (n=2, 14%). Other determinants of preference included its social aspect (n=2, 14%) and the time frame (n=2, 14%): “I didn’t like this one very much because this one took too long and that one took too short” (Participant 13).

Discussion

Principal Findings

This study provided several insights related to usability and user experience that can be used to inform the development of dietary assessment tools for use by children. At the first encounter, most children were able to use FoodBear, myBear, and FoodCam and fulfill the accompanying usability tasks. However, all children required assistance from the researcher to succeed, and most of the children encountered several usability problems. The most important usability issues included problems related to food groups, frustrations related to the unsatisfactory functioning of (parts of) the prototypes, recall of food products, and distinction between eating moments. These issues, along with the queries needed to accomplish usability tasks, may suggest that dietary assessment tools may not be independently usable by children aged 5 to 6 years. However, the completion rates suggest that children can play a complementary role in dietary data collection to enhance data collected by their parents. No differences in product liking were observed when comparing the 3 prototypes. However, it is notable that all children selected one of the prototypes they scored best with This or That for the behavioral choice selection to play with again. The qualitative part of This or That revealed several determinants for liking a product, including autonomy, challenge, gaming elements, being tablet based, appearance, social elements, and time frame.

Usability

Overview

The 3 prototypes differed in terms of usability rate, time needed to complete the assessment, and required number of interruptions by the researcher, which may be partly explained by the fact that prototypes are based on different dietary assessment methodologies, that is, food recall (FoodBear and myBear) and food record (FoodCam) [9]. As a recall requires additional memory-based cognitive capacities compared with a food record, FoodCam was expected to yield the best results in this population. However, a lower number of children successfully completed FoodCam’s (9/14, 64%) usability task compared with FoodBear’s (11/14, 79%) and myBear’s (10/14, 71%) tasks, meaning that a lower number of children were able to take a sharp photo on which all consumed products were recognizable. On the other hand, if completed, the time and help needed with FoodCam’s usability task was substantially less than the other 2 tools. Aflague et al [27] showed that using the Mobile Food Record for capturing eating occasions could be a feasible method for use by children aged ≥3 years. In contrast to our study, participants in the study by Aflague et al [27] were allowed to practice and use a tablet or smartphone, whereas FoodCam is based on a more old-fashioned camera. Additional research is required to determine whether there is a difference in usability between traditional cameras and the cameras on smartphones or tablets. However, this research should also address the current challenges related to automatically extracting dietary information from real-world, user-generated images. As our prototypes were tested at the first encounter, it is likely that usability will increase with practice or a training module, but further studies are required to test this. Moreover, this study primarily evaluated the usability of 3 prototypes designed for independent use, thereby revealing some inherent challenges. Nonetheless, adopting an approach that combines children’s data with those collected by parents can potentially enrich the comprehensiveness of a child’s daily dietary intake assessment.

Such a combined method would offer the possibility of gaining more detailed insights into foods consumed outside the home, ultimately enhancing the reliability of the dietary intake data. Further research is needed to investigate the potential bias of this approach. Moreover, consistent with previous findings [23,35], girls performed better than boys for all 3 usability and lunch recall tasks in terms of completion rate. This difference may be explained by girls’ higher attentional and memory performance compared with boys and emphasizes the need to consider sex differences in further development of the tools [36].

Strategies to Increase Usability

To address these usability issues, we identified several strategies for further improvement. To increase usability, the tools might benefit from a training module providing practice runs on estimating quantities and portion sizes, recognizing food categories, handling FoodCam, or the interaction design of myBear. Practical effects were already observed in this study, that is, all children who successfully completed myBear’s or FoodBear’s usability task performed their second usability task at a faster pace. Similar training effects have been observed in other studies [27,37]. Auditory or visual prompts, reminders, and feedback may also improve the usability of updated versions of the prototypes, that is, to remind participants to report their dietary intake throughout the day, or help with the correct use of the tool, for example, by checking whether all products have been reported in the correct amount, or send reminders when photos are incomplete or unsharp. Reminders and help with the tasks were now verbally performed by the researcher (eg, with recall questions), but should be automated in the next versions of the prototypes to facilitate independent use by the target group. Integrating multiple reminders is commonly used in other methods as well, for example, in Compl-eat [38], and is used to trigger the report of often forgotten products, such as cooking fats or drinks. In addition, myBear could particularly benefit from a more user-friendly and intuitive interaction design. Improvements in the interaction design should among others focus on simplifying consumed portion sizes. For example, using a slider to indicate portion size or pressing the button twice for the specific product may be more intuitive than using a plus or minus button. The use of age-appropriate interactions and images could also contribute to a better understanding of the different eating moments, for example, by using a clock model to capture mealtimes throughout the day. The direct effect of improving the interaction design has proven to be effective.
in another study on the adolescent dietary assessment tool myfood24, where they compared the usability and acceptability of myfood24 among adolescents before and after making amendments [39]. Finally, the usability tasks of FoodBear and myBear illustrated that children experienced difficulties in understanding or interpreting the food group icons and categorizing their consumed products into food groups, asking for a more child-friendly approach. Therefore, further research is needed to identify child-friendly food groups and icons [25].

User Experience

No preferences were observed for one prototype over the others when using This or That method. However, it is notable that all children selected one of the prototypes they scored best with This or That to play again. This consistency suggests that the reported This or That choice is a good predictor for short-term preference in this sample. However, as the children only used the prototypes for a short time, it should be emphasized that This or That may not reflect the long-term preference. To gain insight into long-term engagement, more research is needed where children use the prototypes for a longer period in a home-use setting handling different mealtimes throughout the day.

As This or That determines preference relatively, it does not offer the opportunity to determine the magnitude of preference [34]. Although the This or That scores revealed no differences between the prototypes, it is important to consider this relativity when interpreting the qualitative results. What stands out is that most of the determinants for product liking pointed out by the children were in line with our list of requirements (Textbox 1), except for the determinant autonomy. Children in the preoperational phase, including our target group, have a strong curiosity and are interested in learning [40]. Therefore, the finding of autonomy being a determinant for product liking by children is not unexpected and should be included in the updated version of the program of requirements. Strategies to increase this feeling of autonomy within young children’s dietary assessment could include, for example, making the design accessible for children’s independent navigation (eg, by using navigation without text and making it real-time responsive), focus on children’s decision-making (eg, by including options for personalization and customization in the design), or encouraging their initiatives (eg, by including a reward system) [41].

Strengths and Limitations

Although this exploratory study contributes to the body of knowledge in several areas, it has some limitations. First, our first list of user requirements (Textbox 1) is based on literature only, which ideally would have included expert interviews as well, as conducted by de Gooijer et al [42]. As this study is the first to explore self-reported dietary assessment among children aged 5 to 6 years, this first list may have been insufficient. Second, as the usability tasks in this study were performed under favorable circumstances, the usability for FoodBear and myBear may have been overestimated. More specifically, the dietary assessment tasks took place shortly after lunch (a maximum of 3 hours after lunch). As other studies showed that meals with shorter retention intervals are in general easier to accurately recall and report compared with meals with longer retention intervals, results may become less accurate when measurements were performed after a longer period [43,44]. Moreover, prototypes were only evaluated for lunch and longer interaction (eg, over the course of a day) with the prototypes is needed to evaluate the accuracy of dietary intake data collected through our prototypes. In addition, it is worth noting that Dutch children typically have bread with spreads or toppings for lunch [45]. This was also reflected in our study sample, where all participating children ate bread for lunch. As previous studies showed that children struggle with identifying components within mixed meals [46], it is important to consider the relative simplicity of the Dutch lunch when interpreting our results. Considering these favorable conditions in this study, it raises questions about the ability of children aged 5 to 6 years to accurately use FoodBear and myBear without parental assistance for more complex meals consumed over an extended time frame in future research. Therefore, FoodBear and myBear might have more potential for use with caregivers. Another important limitation that should be considered when interpreting our findings is related to our sample. The sample size of this study was small and not representative of the Dutch population, primarily owing to the high proportion of highly educated parents among the participants. This demographic bias limits our ability to generalize our findings to a more diverse population. To gain a better understanding of the application of such tools in populations of lower socioeconomic status, further studies are necessary. Moreover, considering the qualitative focus of our research, the small sample size of our study underscores the necessity for caution when interpreting our quantitative results. This is particularly relevant in terms of statistical power and generalizability. Future research efforts could focus on studying the quantitative aspects of our study in more detail by recruiting a larger sample size.

Conclusions

This exploratory study identified essential user requirements for a novel dietary assessment tool designed for children aged 5 to 6 years, including (1) a comprehensive training program, (2) incorporation of auditory or visual prompts, (3) implementing reminders and feedback mechanisms, (4) a focus on a user-friendly and intuitive interaction design, (5) use of child-friendly food groups or icons, and (6) allowing room for children to exercise autonomy. By addressing these identified user requirements in the development of new dietary assessment tools, we can significantly enhance the quality of dietary intake data collected among children. Furthermore, these findings can serve as valuable guidance for ongoing innovations in the field of children’s dietary assessment and the provision of personalized dietary support. This, in turn, can inform strategies aimed at guiding children toward healthier food choices.
Acknowledgments
The authors would like to thank Eline Chin for assisting in completing the weighted decision matrix and photo quality assessment.

Data Availability
The data sets generated during or analyzed during this study are available from the corresponding author upon reasonable request.

Authors' Contributions
ZvdH, FdG, ML, GC, DL, and EB-B participated in concept development. ZvdH, FdG, and EB-B cooperated in the development of the prototypes. ZvdH collected and analyzed the data and wrote the first draft. All the authors reviewed and commented on the drafts of the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Summary of weighted decision matrixes.
[DOCX File, 27 KB - formative_v8i1e47850_app1.docx]

Multimedia Appendix 2
The functionality of myBear and FoodCam.
[DOCX File, 1409 KB - formative_v8i1e47850_app2.docx]

References

Abbreviations

WDM: weighted decision matrix

WUR: Wageningen University and Research

©Zoë van der Heijden, Femke de Gooijer, Guido Camps, Desiree Lucassen, Edith Feskens, Marlou Lasschuijt, Elske Brouwer-Brolsma. Originally published in JMIR Formative Research (https://formative.jmir.org), 01.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
The Development and Use of a New Visual Tool (REVISIT) to Support Participant Recall: Web-Based Interview Study Among Older Adults

Eileen M Dryden1, PhD; Chitra Anwar1*, MA; Jennifer Conti1, MPH; Jacqueline H Boudreau1, MPH; Meaghan A Kennedy2,3, MPH, MD; William W Hung4,5, MPH, MD; Kathryn A Nearing6,7, MA, PhD; Camilla B Pimentel1,2,8, MPH, PhD; Lauren Moo1,2,9, MD

1Center for Healthcare Organization and Implementation Research, VA Bedford Healthcare System, Veterans Health Administration, Bedford, MA, United States
2New England Geriatric Research, Education, and Clinical Center, VA Bedford Healthcare System, Veterans Health Administration, Bedford, MA, United States
3Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
4Bronx Geriatric Research, Education, and Clinical Center, James J. Peters VA Medical Center, Veterans Health Administration, Bronx, NY, United States
5Icahn School of Medicine, New York, NY, United States
6Eastern Colorado Geriatric Research, Education, and Clinical Center, Rocky Mountain Regional VA Medical Center, Veterans Health Administration, Aurora, CO, United States
7Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
8Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, United States
9Harvard Medical School, Boston, MA, United States

*these authors contributed equally

Corresponding Author:
Eileen M Dryden, PhD
Center for Healthcare Organization and Implementation Research
VA Bedford Healthcare System
Veterans Health Administration
200 Springs Road
Bedford, MA, 01730
United States
Phone: 1 781 506 2369
Email: eileen.dryden@va.gov

Abstract

Background: Qualitative health services research often relies on semistructured or in-depth interviews to develop a deeper understanding of patient experiences, motivations, and perspectives. The quality of data gathered is contingent upon a patient’s recall capacity; yet, studies have shown that recall of medical information is low. Threats to generating rich and detailed interview data may be more prevalent when interviewing older adults.

Objective: We developed and studied the feasibility of using a tool, Remembering Healthcare Encounters Visually and Interactively (REVISIT), which has been created to aid the recall of a specific telemedicine encounter to provide health services research teams with a visual tool, to improve qualitative interviews with older adults.

Methods: The REVISIT visual appointment summary was developed to facilitate web-based interviews with our participants as part of an evaluation of a geriatric telemedicine program. Our primary aims were to aid participant recall, maintain focus on the index visit, and establish a shared understanding of the visit between participants and interviewers. The authors’ experiences and observations developing REVISIT and using it during videoconference interviews (N=16) were systematically documented and synthesized. We discuss these experiences with REVISIT and suggest considerations for broader implementation and future research to expand upon this preliminary work.

Results: REVISIT enhanced the interview process by providing a focus and catalyst for discussion and supporting rapport-building with participants. REVISIT appeared to support older patients’ and caregivers’ recollection of a clinical visit, helping them to
share additional details about their experience. REVISIT was difficult to read for some participants, however, and could not be used for phone interviews.

Conclusions: REVISIT is a promising tool to enhance the quality of data collected during interviews with older, rural adults and caregivers about a health care encounter. This novel tool may aid recall of health care experiences for those groups for whom it may be more challenging to collect accurate, rich qualitative data (eg, those with cognitive impairment or complex medical care), allowing health services research to include more diverse patient experiences.

KEYWORDS

qualitative interviews; visual recall aid; older adults; health services research; web-based methods; visual tool; recall; qualitative interview; experience; perspective; motivation; patient; recall capacity; medical information; visual appointment; geriatric; older people; telemedicine; videoconference; e-consultation; e-medicine; internet medicine; REVISIT; Remembering Healthcare Encounters Visually and Interactively; mobile phone

Introduction

Qualitative health services research often relies on semistructured or in-depth interviews to develop a deeper understanding of patient experiences, motivations, and perspectives. The quality of data gathered is contingent upon a patient’s recall capacity. Studies consistently show recall of medical information is low. Patients remember between 20% and 60% of the information provided by health care practitioners immediately after an encounter [1], dropping to 12.8% a month later [2]. In a seminal study of patient recall in a routine clinical setting by Anderson et al [3], of the 40% of medical information recalled by patients, 48% of it was misconstrued. Various practitioner- and patient-related factors pose threats to recall: practitioner-related factors include the use of complicated medical terminology, high volume of information relayed, and mode of information presentation (eg, verbal vs visual), while patient-related factors include low education level and emotional state during the visit [1,4].

Threats to generating rich and detailed interview data may be more prevalent when interviewing older adults. Aging is associated with a decline in sensory and cognitive function, making it difficult to understand and remember medical information [5]. Compared to younger individuals, older adults have more difficulty recalling details of health care experiences that researchers may be interested in exploring, including medication regimens [6], treatment recommendations [7], and appointment reminder telephone messages [8]. Routine recurring visits are also more poorly recalled than nonrecurring ones—patients tend to collapse recurring visits into a single, generic memory instead of separate, specific occurrences [9]. Older adults may be especially prone to do so as they are estimated to have an average of 7 medical visits per year [10].

To ensure qualitative data are accurate, researchers must carefully consider how to plan and conduct qualitative interviews with older adults. Visual methodologies have been used to mitigate the threats to validity resulting from recall bias in qualitative health services research [11-13]. These methods invite participants to tap into memories through nonverbal ways of thinking, improving participant recall and allowing researchers to access participant perspectives that can be difficult to articulate through conversation alone. Commonly used strategies include viewing and discussing photographs, video elicitation, drawing, chart-stimulated recall, and mapping and timelines exercises [11,14,15]. In our review of the literature, we found no documented cases of using visual recall aids with older adults, a group for whom such tools may be particularly useful, given known challenges with medical information recall [1].

In this paper, we explore the development and use of a new visual tool, Remembering Healthcare Encounters Visually and Interactively (REVISIT), created to aid recall of a specific telemedicine encounter among older adult interview participants. In spring 2021, a team of Veterans Health Administration (VA) qualitative researchers interviewed 30 rural, older (65 years of age and older) veterans and their caregivers remotely as part of an evaluation of GRECC Connect, a program that uses telemedicine to connect rural veterans with complex care needs to geriatric specialty care at 15 urban VA medical center hub sites. GRECC Connect hub teams are comprised of interprofessional care teams affiliated with Geriatric Research, Education, and Clinical Centers, VA centers of excellence focused on aging. Given the focus of many GRECC Connect sites on treating cognitive impairment, we anticipated that interviewees might experience challenges recalling details of their most recent GRECC Connect appointment (the “index visit”), posing a risk to the completeness and validity of interview data. We also anticipated challenges isolating information about their most recent GRECC Connect appointment from other appointments due to the increase in telemedicine visits during the COVID-19 pandemic. The REVISIT visual appointment summary was developed to better facilitate interviews conducted remotely with our participants. Our primary aims were to aid participant recall, maintain focus on the index visit, and establish a shared understanding of the visit between participants and interviewers. In this paper, we describe the development of REVISIT and interviewer experiences with the tool and suggest considerations for broader implementation and future research to expand upon this preliminary work.

Methods

Evaluation Team

A multidisciplinary VA project team contributed to the evaluation. Team members included physicians with expertise...
Developing REVISIT

REVISIT was designed as a template to be populated with data from the veteran’s electronic health record (EHR). A member of the team with a background in media design drafted template options on Canva (Canva), a free web-based graphic design platform. REVISIT’s design drew upon VA’s Patient Experience Journey Map, a visual representation of commonly experienced moments before, during, and after a veteran’s health care visit [16]. Draft REVISIT templates were presented to the full multidisciplinary team for review, resulting in 3 iterative rounds of feedback and refinement.

The information included in the final iteration of REVISIT focused on aspects of the index visit we sought to confirm and explore, which were separated into three groupings: (1) the referral, including the reason and referring provider; (2) the index visit, including individuals present and main topics discussed; and (3) changes in the veteran’s health and health care resulting from the visit, including changes in diagnoses, medications, and referrals.

The overall structure of the first iteration of REVISIT (Figure 1) contained 3 columns, with each column representing a step in the GRECC Connect visit (before, during, and after the visit). For the first iteration, initial refinements suggested by the team focused on simplifying the template to include only information pertinent to the interview. Team members also felt REVISIT should focus more on the “Post-Visit” section to better aid participants’ recall of what worked well about the visit and what health needs remained unmet.

Figure 1. First iteration: the first iteration of REVISIT included elements subsequently omitted, such as the sections containing questions at the bottom of each column. REVISIT: Remembering Healthcare Encounters Visually and Interactively.

The second iteration (Figure 2) incorporated the aforementioned feedback for simplification. For example, the “Pre-Visit” section was changed completely to include only GRECC Connect referral information, and the heading for this section was edited to “Referral” to reflect this change. The “GRECC Connect Visit” section still included persons present during the index visit, but the other sections were collapsed into one summary of the visit details. The “Post-Visit” section was expanded to take up more of the page, emphasizing this section as the focus of the interview.

The information included in the final iteration of REVISIT focused on aspects of the index visit we sought to confirm and explore, which were separated into three groupings: (1) the referral, including the reason and referring provider; (2) the index visit, including individuals present and main topics discussed; and (3) changes in the veteran’s health and health care resulting from the visit, including changes in diagnoses, medications, and referrals.

The overall structure of the first iteration of REVISIT (Figure 1) contained 3 columns, with each column representing a step in the GRECC Connect visit (before, during, and after the visit). For the first iteration, initial refinements suggested by the team focused on simplifying the template to include only information pertinent to the interview. Team members also felt REVISIT should focus more on the “Post-Visit” section to better aid participants’ recall of what worked well about the visit and what health needs remained unmet.

Figure 1. First iteration: the first iteration of REVISIT included elements subsequently omitted, such as the sections containing questions at the bottom of each column. REVISIT: Remembering Healthcare Encounters Visually and Interactively.

Patient’s GRECC Connect Journey Map

The second iteration (Figure 2) incorporated the aforementioned feedback for simplification. For example, the “Pre-Visit” section was changed completely to include only GRECC Connect referral information, and the heading for this section was edited to “Referral” to reflect this change. The “GRECC Connect Visit” section still included persons present during the index visit, but the other sections were collapsed into one summary of the visit details. The “Post-Visit” section was expanded to take up more of the page, emphasizing this section as the focus of the interview.
After reviewing the second iteration, the team encouraged further simplification of the template’s design to reflect REVISIT’s primary goal of helping participants recall details about their experience of the telemedicine visit. Team review of the second iteration also focused on possible modifications to the included language. EHRs contain medical jargon that is likely unfamiliar to interview participants. Team members suggested translation of these terms into more lay language for the last iteration, a process that relied heavily on input from the physician team members.

Design considerations for the final REVISIT iteration (Figure 3) included using boxes with rounded edges, as the team felt this connoted friendliness compared to the sharp edges shown in Figure 1. Icons were included alongside text descriptions wherever possible to increase ease of understanding. Arrows showed flow from one section to the next, green “+” symbols signified newly prescribed medications, and red “x” symbols signified deprescribed medications. Calibri font was used in accordance with VA’s graphic design standards.
The colors of each section were specifically chosen based on color-in-context theory [17], which posits color meanings are grounded in learned associations that develop from repeated pairings of colors with particular messages, concepts, or experiences. The color motif was loosely based on the 3 phases of a traffic light—the initial referral to GRECC Connect was yellow (to symbolize a transition) and the postvisit was green (to symbolize moving forward). Blue, as opposed to red, was chosen to represent the index visit because of its generally accepted calming effects [18]. The team felt this was a more suitable color choice, given the potentially sensitive topics that may surface during discussion of the index visit during interviews. The team also opted for colors with lighter versus darker hues, as these were felt to be easier on the eyes.

Language edits were incorporated into the final iteration. Potentially sensitive medical issues such as dementia diagnoses or cognitive decline were instead referred to as “memory changes.” We deemed this step necessary as it was sometimes unclear, based on the medical notes, what was explicitly discussed with the participant versus only documented in the clinic note. The inclusion of more neutral language helped ensure that REVISIT would avoid distressing a participant with potentially new information about their health.

Participants
REVISIT was used in the context of a health care evaluation with a sample of 30 rural veterans attending specialty geriatric telemedicine visits at 6 geographically diverse GRECC Connect hub sites. We defined “telemedicine” as medical appointments conducted through one of three modalities: (1) video appointments from a veteran’s home or other location to a remote specialist using VA Video Connect (VVC), (2) video appointments from a VA outpatient clinic near the veteran’s home to a remote specialist using Clinical Video Telehealth (CVT), or (3) telephone. An option to participate as a veteran-caregiver dyad was offered in cases where veteran participants had some degree of cognitive impairment or where caregivers were substantially involved in care. Due to the impact of dementia, some dyads were primarily represented by the caregiver.

Prior to initial contact, 3 team members briefly reviewed each veteran’s EHR to confirm the most recent telemedicine visit date and modality (VVC, CVT, or phone), veteran location, initial reason for referral, the presence of a caregiver, and any cognitive or other health concerns that would preclude study participation (eg, a veteran in hospice or deceased). Veterans were considered eligible for participation if they were 65 years and older of age, resided in a rural area (rural-urban commuting...
area [RUCA] >1), participated in a telemedicine GRECC Connect appointment between December 2020 and March 2021, and spoke English as their primary language. Verbal permission was obtained from each veteran and caregiver to participate in the evaluation.

Interview Preparation

Once participants agreed to participate in an interview, a team member performed a detailed chart abstraction of the veteran’s EHR 6 months prior to the index appointment using a structured data abstraction template (Multimedia Appendix 1). This data abstraction template helped team members extract only information relevant to the GRECC Connect visit from the participant’s EHR, which can contain many notes from numerous clinicians. GRECC physicians on the multidisciplinary team helped to develop the data abstraction template and interpret EHR data when questions arose. These data were then used to populate REVISIT to create an individualized visual appointment summary and tailored interview guide for each participant. To protect participants’ health information, each populated REVISIT was saved in a password-protected participant-specific folder on a secure server. On average, team members spent 2 to 4 hours abstracting data and creating the visual summary. Time varied depending on the extensiveness and clarity of the participant’s medical chart.

Data Collection

Four experienced qualitative researchers conducted semistructured qualitative interviews with veterans and their caregivers who agreed to participate in the evaluation. We asked participants about their GRECC Connect telemedicine visit, including support received, what worked and did not work well, preferred modality for medical care, impact of visit, satisfaction, and recommendations. Interviews took place approximately a month after the index visit and were conducted via VVC or by phone depending on participant preference and ability. In total, 16 interviews were conducted via VVC on various devices (eg, smartphone, tablet, and laptop), and 14 were conducted by phone.

REVISIT was shared with participants who were interviewed via VVC using its screen-sharing feature. The use of REVISIT was incorporated into the GRECC Connect interview guide. The interviewer shared REVISIT when beginning to discuss the index visit following initial rapport-building questions. In at least one case, REVISIT was shown earlier in the interview because the participant needed more recall support.

Following the data collection process, team members who conducted interviews debriefed their experience using REVISIT, sharing the benefits and challenges of using the tool. Elements of the debrief were recorded on digital sticky notes, which were then grouped together by theme along the project timeline. Team members’ perspectives were informed by observations of participants when REVISIT was shared onscreen. We reviewed participant interview transcripts to find relevant excerpts to illustrate our observations.

Ethical Considerations

The VA Bedford Healthcare System Institutional Review Board determined this work was undertaken to inform VA operations as part of program evaluation and quality improvement activities and was not human subjects research.

Results

Use of REVISIT was limited to the 16 participants with whom interviews were conducted via VVC. Given the focus on our development of and initial experience with REVISIT, patient perspectives are only included insofar as their observed reactions influenced the team’s experiences and perspectives.

Interviewers used REVISIT to familiarize themselves with relevant details of the index visit prior to conducting interviews. This was particularly helpful when the interviewer did not complete the detailed chart review and was therefore less immersed in the details of each participant’s case or care. REVISIT provided the most salient information at a glance, so interviewers felt it was easier to review than the longer summary extracted from the chart review. With REVISIT, team members also felt better prepared to tailor interview questions to each participant. Additionally, the process of creating or reviewing each participant’s REVISIT visual encouraged the team to consider appropriate language to use during the interviews, such as using “changes in memory” versus “cognitive impairment.”

During the interview, team members used REVISIT as a shared reference point with participants, providing a focus and catalyst for discussion and prompt for further questioning. In one example, REVISIT allowed an interviewer to probe about other aspects of the index visit that were not brought up by the participant organically:

Interviewer: So this [REVISIT] is what we saw as sort of the summary of the visit that you and Mr. XXXX had. We’ve talked about a lot of this. We’ve talked about the changes in diagnoses, the memory changes. It did look like … they referred you to Audiology to check his hearing. Do you remember that referral at all?

In this way, REVISIT allowed interviewers to bring up contextual details about the visit, which helped to confirm that participants were discussing the index visit. This was particularly important for those who had numerous health care encounters. Using REVISIT also helped interviewers cross-reference EHR data with participant accounts in real time, confirming congruence or revealing discrepancies between participant recollection and EHR data:

Interviewer: So you mentioned that there were some suggestions for medication changes in the future if anything progresses. We also noticed that there was a recommendation to consider using B12 supplements.

Participant: I don’t recall hearing the recommendation of the B12 supplements.

Interviewer: Okay.
Caregiver: So I didn’t have that in my notes. He has previously been given B12 but it has been quite some time since he’s been given B12 so I don’t remember her mentioning that.

In several cases, interviewers felt that REVISIT seemed to help both veterans and caregivers remember details about the index visit that they otherwise did not bring up:

Caregiver: So, I remember now those conversations and that I had requested – his [the veteran’s] mood was so angry, rage-y – that I had requested Dr. XXXX to increase his quetiapine, get to add one more during the morning and one at noon in addition to the three at night and so your visual helps me remember that.

This contributed to rapport-building by alleviating participants from the onus of remembering every detail of their visit. REVISIT was appreciated by participants, at least one of whom expressed challenges with information recall:

Caregiver: ... it was hard for me to remember what all we talked about that day and that [REVISIT] was very helpful.

However, the use of the tool was not without challenges. Interviewers noted that several participants expressed difficulty seeing REVISIT when shared over the videoconference platform. At least one participant felt that the visual was too light, while several others noted it was too small to read. Most participants who had difficulties with the size of REVISIT viewed it through their cell phone, so the issue of size may partially have to do with the device used:

Participant: I think I can say, for me, it was too small a screen, and you could probably mention, you know, it’s better if you’ve got a tablet or a laptop.

However, one participant on a larger tablet still had issues with font size and readability. It is thus unclear whether these challenges can be attributed to the visual alone or other computer-related factors (eg, whether the VVC window was maximized on the screen and the device’s brightness display). Researchers could not assess or control participants’ computer settings during interviews.

See Table 1 for further organization of interviewer experiences with REVISIT into relevant benefits and challenges.

Table 1. Benefits and challenges of using Remembering Healthcare Encounters Visually and Interactively throughout the interview process.

<table>
<thead>
<tr>
<th>Interview preparation (development or completion of template)</th>
<th>Interview (data collection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td>Challenges</td>
</tr>
<tr>
<td>• Promoted use of sensitive language (eg, describing symptoms discussed with doctor vs displaying sensitive diagnoses like dementia)</td>
<td>• Required careful thought about displaying sensitive information that may be upsetting to the participants, for example, a new or sensitive diagnosis</td>
</tr>
<tr>
<td>• Supported organization of participant index visit data from participant’s health records</td>
<td></td>
</tr>
<tr>
<td>• Served as a succinct preinterview refresher for interviewers</td>
<td>• Some participants had difficulty seeing visual due to the size or low contrast of the document</td>
</tr>
<tr>
<td>• Contributed to rapport-building with participants through creation of shared understanding of events</td>
<td></td>
</tr>
<tr>
<td>• Helped catalyze and focus discussion, providing a basis from which the interviewers could probe</td>
<td></td>
</tr>
<tr>
<td>• Appeared to help participants recall and share details about their experiences</td>
<td></td>
</tr>
<tr>
<td>• Allowed interviewers to contrast recall with health record information in real time</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Principal Results

REVISIT is a promising visual tool for enhancing the quality of data collected during interviews with older, rural veterans and caregivers. REVISIT enhanced the interview process by providing a focus and catalyst for discussion and supporting rapport-building with participants. Interviewers felt that the tool supported participants’ recollection of the clinical visit, as many participants noted this while sharing additional details about their experience. Our findings demonstrate that the novel use of visual methodologies during videoconference interviews with older adults is feasible and may be useful in supporting the overall success of qualitative evaluations.

Comparison With Prior Work

Visual methods, combined with in-depth interviews, have been shown to increase data quality, relevance, and trustworthiness [11,13]. Using REVISIT in our evaluation of GRECC Connect appeared to lead to similar enhancements in data quality by aiding participant recall during interviews, resulting in additional disclosure from participants. This finding is consistent with neuroscience principles that demonstrate how visual stimuli evoke brain regions involved in nonverbal information processing and memory [19].

Our experience is also consistent with other studies that demonstrate visual methods support interviewers in facilitating discussions with participants by prompting further questioning by interviewers, providing direction for discussion, streamlining topic transitions, and promoting increased attention [20-24]. Maintaining participant focus on relevant topics during an interview is essential to generating valid data [25]. Yet, researchers have argued that inhibition, or the ability to direct attention away from irrelevant information, declines with age [5]. Using a simplified visual aid such as REVISIT, which we found to provide a focus for discussion, may be particularly useful when interviewing older adults.

Using REVISIT highlighted, for interviewers, difficulties participants experienced recalling details of their index visit. A real-world implication of this insight is that patients may not remember the health and health care information shared by clinicians to properly care for themselves after the visit. For
some evaluation participants, viewing REVISIT was the first time they saw any written information about their visit from a practitioner. There are a number of provider-focused information-giving interventions that have been shown to positively influence patient recall [26,27], including intentional specific structuring of written postdischarge information [28]. At the very least, then, as our experience also suggests, older telemedicine patients may benefit from an after-visit summary outlining pertinent details about their health and health care discussed during the visit.

Consistent with previous studies [23], interviewers felt that using a visual memory aid contributed to rapport-building by providing a shared focus with which to interact and reflect upon. Rapport building is an important dimension of interviewing older adults with communication or cognitive barriers, as these challenges may lead them to view interviewers as threatening and increase feelings of powerlessness or a desire to withdraw from study participation [25,29]. Kirkevold and Bergland [30] suggest allocating more time over the course of a project to establish rapport with older interviewees, which can be challenging for research and evaluation projects with strict time constraints. REVISIT addresses this challenge by providing an accelerated rapport-building option for use directly within participant interviews.

The main challenge of using REVISIT as expressed by participants was the inability of some to see the visual due to its light color and font size. Age-related changes in visual acuity and contrast sensitivity can make it more difficult for older adults to read [5]. Therefore, images should have a high degree of contrast and use a large font. Further, participants in this study noted they or others might benefit from viewing images from a larger screen (eg, a tablet or laptop vs a cell phone). Additionally, although our evaluation of GRECC Connect showed it is possible to use visual tools during video interviews with older adults, it does not address potential barriers to the use of technology among this population; limited knowledge, comfort, or experience with technology, challenges with internet access, and existing cognitive and sensory impairments may hinder participants in studies conducted over videoconferencing platforms [31].

Additional Considerations

Future users of REVISIT and other similar recall aids should be mindful of how to introduce such tools and integrate them into the interview process. REVISIT may diminish rapport if interviewers share the visual at the wrong time; doing so may inadvertently disrupt the flow of the conversation, distracting participants from the interview as they try to make sense of the visual tool. Using REVISIT also reduces the capacity for nonverbal communication when shared on screen, since this action usually minimizes the window of the participant and researcher across videoconferencing platforms. Additionally, if a participant disagrees with the information presented on the visual, it may create confusion, discomfort, or distrust. Another consideration is the substantial amount of time it takes to prepare the visit summaries and subsequent REVISIT visuals for each interviewee. While the preparation time reduced as the team members gained experience with the methodology, given the time investment needed, this method may not be practical for studies with considerably larger sample sizes.

More research is needed to optimize REVISIT’s usability and understand its acceptability among older adults with cognitive impairments. Future research should also explore the extent to which the visual tool affects recall by systematically comparing appointment recall using REVISIT with interview discussion alone. REVISIT may be useful for understanding the experiences of other patient populations with cognitive impairment (eg, traumatic brain injury and posttraumatic stress disorder) or complex medical care (eg, cancer treatment) and adaptable to in-person use (eg, on an iPad or paper). Further research and evaluation are needed to ensure the efficacy of REVISIT with different populations and settings.

Limitations

This is a preliminary study. Observations were limited to our sample of 16 veterans and veteran-caregiver dyads, most of whom had some degree of cognitive impairment and were interviewed over VVC, as REVISIT use was only possible through its screen-sharing feature. Further, participants were not systematically asked about their experience of viewing and using REVISIT during the interview. Because of this, we only included patient experiences that directly influenced team members’ own experience with and perceptions of the tool. Additionally, though REVISIT appeared to support recall in this study, it does not guarantee that a participant will truly recall relevant details as opposed to simply agreeing with what they are seeing.

Conclusions

REVISIT is a novel visual tool that aids the recall of health care encounters by tapping into memories through nonverbal ways of thinking. The use of REVISIT, a carefully curated visual representation of one particular health care encounter, helps to address a number of threats to generating rich, detailed interview data that may be more prevalent when interviewing older adults. As health services research seeks to understand more diverse patient experiences within health care, a tool such as REVISIT may aid recall of health care experiences for those groups for whom it may be more challenging to collect accurate, rich qualitative data. Further research is needed to understand its usefulness with different populations and settings.

Acknowledgments

The authors wish to acknowledge Mr Robert Bruno, a veteran consultant on our project team, for providing valuable input and feedback on our work. This work was supported by funding from the US Department of Veterans Affairs, Office of Rural Health, Veteran Rural Health Resource Center-Salt Lake City for portfolio project FY21-16035. MAK is supported by Career Development Award (IK2 RX003930) from the VA Rehabilitation Research and Development Service. CBP is supported by Career Development
References

https://formative.jmir.org/2024/1/e52096

JMIR Form Res 2024 | vol. 8 | e52096 | p.1649

(page number not for citation purposes)

Abbreviations

CVT: Clinical Video Telehealth
EHR: electronic health record
GRECC: Geriatric Research Education and Clinical Center
REVIST: Remembering Healthcare Encounters Visually and Interactively
RUCA: rural-urban commuting areas
VA: Veterans Health Administration
VVC: VA Video Connect

©Eileen M Dryden, Chitra Anwar, Jennifer Conti, Jacqueline H Boudreau, Meaghan A Kennedy, William W Hung, Kathryn A Nearing, Camilla B Pimentel, Lauren Moo. Originally published in JMIR Formative Research (https://formative.jmir.org), 01.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

Testing Behavioral Messages to Increase Recruitment to Health Research When Embedded Within Social Media Campaigns on Twitter: Web-Based Experimental Study

Sandro T Stoffel1,2, MSc, PhD; Jing Hui Law3, MSc, MRes; Robert Kerrison4, MSc, PhD; Hannah R Brewer5, MSc, PhD; James M Flanagan5, BSc, PhD; Yasemin Hirst1,6,7, MSc, PhD

1Department of Behavioural Science and Health, University College London, London, United Kingdom
2Institute of Pharmaceutical Medicine, University of Basel, Basel, Switzerland
3Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
4School of Health Sciences, University of Surrey, Guildford, United Kingdom
5Department of Surgery and Cancer, Imperial College London, London, United Kingdom
6Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
7Applied Health Research Hub, University of Central Lancashire, Preston, United Kingdom

Corresponding Author:
Sandro T Stoffel, MSc, PhD
Department of Behavioural Science and Health
University College London
Gower Street
London, WC1E 6BT
United Kingdom
Phone: 44 2076792000
Email: s.stoffel@ucl.ac.uk

Abstract

Background: Social media is rapidly becoming the primary source to disseminate invitations to the public to consider taking part in research studies. There is, however, little information on how the contents of the advertisement can be communicated to facilitate engagement and subsequently promote intentions to participate in research.

Objective: This paper describes an experimental study that tested different behavioral messages for recruiting study participants for a real-life observational case-control study.

Methods: We included 1060 women in a web-based experiment and randomized them to 1 of 3 experimental conditions: standard advertisement (n=360), patient endorsement advertisement (n=345), and social norms advertisement (n=355). After seeing 1 of the 3 advertisements, participants were asked to state (1) their intention to take part in the advertised case-control study, (2) the ease of understanding the message and study aims, and (3) their willingness to be redirected to the website of the case-control study after completing the survey. Individuals were further asked to suggest ways to improve the messages. Intentions were compared between groups using ordinal logistic regression, reported in percentages, adjusted odds ratio (aOR), and 95% CIs.

Results: Those who were in the patient endorsement and social norms–based advertisement groups had significantly lower intentions to take part in the advertised study compared with those in the standard advertisement group (aOR 0.73, 95% CI 0.55-0.97; P=.03 and aOR 0.69, 95% CI 0.52-0.92; P=.009, respectively). The patient endorsement advertisement was perceived to be more difficult to understand (aOR 0.65, 95% CI 0.48-0.87; P=.004) and to communicate the study aims less clearly (aOR 0.72, 95% CI 0.55-0.95; P=.01). While the patient endorsement advertisement had no impact on intention to visit the main study website, the social norms advertisement decreased willingness compared with the standard advertisement group (157/355, 44.2% vs 191/360, 53.1%; aOR 0.74, 95% CI 0.54-0.99; P=.02). The majority of participants (395/609, 64.8%) stated that the messages did not require changes, but some preferred clearer (75/609, 12.3%) and shorter (59/609, 9.7%) messages.

Conclusions: The results of this study indicate that adding normative behavioral messages to simulated tweets decreased participant intention to take part in our web-based case-control study, as this made the tweet harder to understand. This suggests that simple messages should be used for participant recruitment through Twitter (subsequently rebranded X).
Introduction

For researchers, increasing use of the internet has opened up new ways to investigate society and behavior at lower costs [1], producing higher data quality (Kongsved et al [2]), faster return rates, and lower data entry times [3]. Web-based participant recruitment (eg, websites and apps, such as social media) has also been applied in the social and behavioral sciences.

The new internet, or social media, also known as Web 2.0, enables people to connect with friends, family, companies, and other entities to produce and share content on the web [4,5]. The benefits of using social media for participant recruitment, over and above Internet 1.0, have been increasingly demonstrated [6,7]. For example, at the height of the COVID-19 pandemic in 2020, social media allowed many social scientists to connect with thousands of people and include populations with unmet needs in their research [8-10]. In addition, compared to paid panels, using paid social media advertisements to recruit research participants has been shown to cost less [11,12] and be more time-efficient [13,14]. Furthermore, it is also suggested that social media can reach larger pools of participants and access hard-to-reach populations [15]. Social media allow researchers to recruit participants quickly and cost-effectively, as they are accessible through various devices at any time and allow the creation of specific digital content to target specific populations, increasing the likelihood of achieving the required sample size [15,16].

Facebook, Twitter (subsequently rebranded X), and Instagram are some of the most popular social media platforms for health research [13,17-20]. In 2022, more than 70% of internet users in the United Kingdom reported using Facebook and 42.8% Twitter [21]. Social media has become so deeply embedded in our daily lives that people rely on them for every need, such as entertainment, information, purchases, social connections, and work [22]. As new social media platforms enter the market, it is expected that the number of social media users will continue to grow [22].

So far, only a few studies have investigated the effectiveness of social media for health research. Most studies have investigated their effectiveness concerning recruitment in offline studies [13,16,17,23], with only a few making comparisons between different web-based recruitment methods for web-based studies [24]. While there is some guidance for the ethical use of social media for recruiting participants for health research [25], little is known about optimizing the use of platforms such as Twitter and Facebook for health-related research recruitment [19,26], such as the contents of the message to be used for targeting eligible individuals.

However, we can infer potential key components of a social media message from other areas using behavioral sciences. For example, marketing research has shown that credibility and trust in the source are important factors for clicking on advertisements [17,27-30]. In relation to this, studies have suggested that web-based health information from an expert source is viewed as more experienced and credible [31,32]. These findings demonstrate that aspects of endorsement and credibility when creating and disseminating messages are important. Similarly, several studies have shown that messages containing descriptive and normative social norms can be effective methods of engaging with the public [33-35]. In these studies, individuals receive information about socially desired (normative norms) or most frequently observed behavior (descriptive norms). Social norm messages provide individuals with a standard against which they can compare their intentions [36]. To our knowledge, no previous studies have tested whether social norms or patient endorsement messages on social media posts increase engagement with target audiences. The primary aim of this web-based experimental study, therefore, was to design and test the use of tailored Twitter posts, which integrate elements of patient endorsement and social norms, for the recruitment of participants into an observational case-control study.

Methods

Setting and Context

In 2020, a simulated randomized web-based experiment was programmed on SurveyMonkey (SurveyMonkey Inc). The experiment was designed to test the effectiveness of targeted social media messages to increase intentions to participate in a real-world observational case-control study called the Cancer Loyalty Card Study (CLOCS) [37]. CLOCS is an observational case-control study that aims to investigate the self-care behaviors of patients with ovarian cancer before their cancer diagnosis. It seeks to do this by investigating differences in transactional data (such as medication purchasing) between women with and without ovarian cancer (the transactional data are collected through the loyalty cards of 2 UK-based high street retailers). Cases (ie, women with ovarian cancer) were recruited through participating National Health Service sites, while controls were recruited through the study website. Thus, those who were eligible to take part as control participants were recruited through social media and other internet-based sources.

Study Eligibility and Recruitment

The study sample comprised women aged between 18 and 70 years living in the United Kingdom without an ovarian cancer diagnosis who were potentially eligible for the real-world observational case-control study. Study participants were recruited through a web-based survey vendor, Dynata (Dynata Global UK Ltd).
Procedure

At the beginning of the experiment, those who were interested in taking part in the web-based experiment were presented with information about the study, including a brief description of CLOCS as well as a consent form. If participants consented and were eligible, they were randomized (in a 1:1:1 ratio) to receive 1 of 3 simulated Twitter posts: a standard advertisement (control condition), an advertisement with patient endorsement (patient endorsement condition), or an advertisement with a descriptive social norms message (social norms condition; Table 1). To generate authentic Twitter messages, real tweets were posted on a dummy Twitter account, alongside an infographic detailing information about CLOCS. Screenshots were taken of these posts for use in the experiment (the messages were immediately deleted after each one was posted; Figures S1, S2, and S3 in Multimedia Appendix 1 contain screenshots of the messages).

Table 1. Messages used in the experimental study with readability scores and character count. The Flesch-Kincaid readability score ranges from 0 (“extremely difficult to read, best understood by university graduates”) to 100 (“very easy to read, easily understood by an average 11-year-old student”).

<table>
<thead>
<tr>
<th>Condition</th>
<th>Content</th>
<th>Readability score</th>
<th>Readability score</th>
<th>Number of characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control condition</td>
<td>NEW RESEARCH RECRUITING WOMEN WITHOUT OVARIANCANCER We are recruiting women in the UK, aged 18+ without ovarian cancer to an online survey about potential symptoms, shopping and self-care behaviours. Take part @ clocsproject.org.uk/participants</td>
<td>23.8</td>
<td>15</td>
<td>222</td>
</tr>
<tr>
<td>Patient endorsement condition</td>
<td>NEW RESEARCH RECRUITING WOMEN WITHOUT OVARIANCANCER Fiona (CLOCS patient representative): #ParticipatedinCLOCS because I bought medication for my symptoms from retailers before my cancer diagnosis.” Take part @ clocsproject.org.uk/participants</td>
<td>24</td>
<td>7.9</td>
<td>224</td>
</tr>
<tr>
<td>Descriptive norms condition</td>
<td>NEW RESEARCH RECRUITING WOMEN WITHOUT OVARIANCANCER Most women with #ovariancancer are happy to take part in CLOCS. You can help us better understand their illness and symptoms by taking part as a healthy volunteer. Take part @ clocsproject.org.uk/participants</td>
<td>57.8</td>
<td>37</td>
<td>232</td>
</tr>
</tbody>
</table>

The content of the messages is presented in Table 1, along with a Flesch-Kincaid readability score calculated using the web-based software Grammarly (Max Lytvyn, Dmytro Lider, and Alex Shevchenko). This was done to ensure that the message was understandable to the target audience [38]. The standard and patient endorsement messages had the lowest readability scores (15 and 7.9, respectively) and were the easiest to understand (Table 1).

After being presented with the Twitter messages, participants were asked 2 comprehension questions on whether CLOCS only recruits women with ovarian cancer and what kind of data CLOCS are analyzing. Participants could only continue in the survey if they answered the questions correctly [35,39,40]. The primary outcome was participants’ intention to take part in CLOCS, and we asked individuals whether they would participate in the advertised study, adapted from previous literature [34,35,39,41,42]. It featured a fully labeled 4-point response scale (“definitely not,” “probably not,” “yes probably,” and “yes definitely”).

To explore how the messages were perceived by the participants, we included 2 questions on how easy the message was to understand (“very difficult,” “fairly difficult,” “fairly easy,” or “very easy”) and how clearly the aims of the study were communicated (“not at all,” “a little,” “very,” or “extremely”).

In the next step, participants were asked about their past participation in health care research (“yes” or “no”) and whether they had loyalty cards from UK-based high-street retailers. Sociodemographic questions covered age (“18-24,” “25-34,” “35-44,” “45-54,” or “55-70”), education (“no college degree” or “college degree, equivalent, or higher”), employment status (“yes” or “no”), marital status (“single”, “married or living with a partner”, “divorced or separated or widowed”), self-reported health (“poor,” “fair,” “good,” or “excellent”), and history of cancer in themselves, family, or close friends (“yes” or “no”). Individuals were then given the opportunity to state their thoughts on improving social media messages for the recruitment of study participants in an open-ended question.

The survey concluded with an active interest question on whether participants would be interested in being redirected to the CLOCS website for more information on how to participate [34,40-42]. Those who responded yes were provided with a link to the CLOCS website on the final page of the survey. The website opened in a new tab for participants who clicked on the link. No further data associated with their direct participation in CLOCS were collected in this experiment. The web-based experiment took, on average, 5 minutes to complete.

Ethical Considerations

Ethics approval for this study was obtained from the University College London Research Ethics Committee (17813/001). All participants provided consent to take part in the study. All the data collected as part of the study were anonymized, meaning no identifiable information were collected. Eligible participants who completed the questionnaire received a small financial incentive from Dynata, as per their panelist agreements.
Data Analysis
A pilot study was conducted beforehand for sample size calculations. Based on the findings from the initial sample of 359 participants, with a 10 percentage point difference in the intention to take part (“yes, definitely” or “yes, probably” versus “definitely no” or “probably no”), we determined that the number of participants needed to achieve 95% CI and 80% power was 350 per trial arm. Data from participants in both the pilot and final samples were combined for analysis.

Sample characteristics were assessed using descriptive statistics (Table 2). Differences in participants’ intention to take part in CLOCS and perception of the messages were assessed using univariate and multivariate ordinal logistic regression. Willingness to visit the actual website was assessed between groups using univariate and multivariate binary logistic regressions. Adjusted odds ratios (aORs), 95% CIs, and P values are presented in the results, with P values below .05 regarded as statistically significant.

The responses to the open-ended feedback question were categorized into main themes through content analysis [43].

Table 2. Sociodemographic characteristics of study participants.

<table>
<thead>
<tr>
<th>Demographic categories</th>
<th>Control condition (n=360), n (%)</th>
<th>Patient endorsement condition (n=345), n (%)</th>
<th>Social norms condition (n=355), n (%)</th>
<th>Overall (N=1060), n (%)</th>
<th>Chi-square test (df)</th>
<th>P valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>48 (13.3)</td>
<td>45 (13.0)</td>
<td>51 (14.4)</td>
<td>144 (13.6)</td>
<td>8.54 (8)</td>
<td>.38</td>
</tr>
<tr>
<td>25-34</td>
<td>71 (19.7)</td>
<td>74 (21.4)</td>
<td>76 (21.4)</td>
<td>221 (20.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-44</td>
<td>80 (22.2)</td>
<td>87 (25.2)</td>
<td>86 (24.2)</td>
<td>253 (23.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-54</td>
<td>76 (21.1)</td>
<td>74 (21.4)</td>
<td>87 (24.5)</td>
<td>237 (22.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-70</td>
<td>85 (23.6)</td>
<td>65 (18.8)</td>
<td>55 (15.5)</td>
<td>205 (19.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.40 (6)</td>
<td>.05</td>
</tr>
<tr>
<td>Poor</td>
<td>15 (4.2)</td>
<td>17 (4.9)</td>
<td>25 (7.0)</td>
<td>57 (5.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>94 (26.1)</td>
<td>118 (34.2)</td>
<td>90 (25.4)</td>
<td>302 (28.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>201 (55.8)</td>
<td>175 (50.7)</td>
<td>190 (53.5)</td>
<td>566 (53.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>50 (13.9)</td>
<td>35 (10.1)</td>
<td>50 (14.1)</td>
<td>135 (12.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.67 (2)</td>
<td>.10</td>
</tr>
<tr>
<td>Lower than a college degree</td>
<td>171 (47.5)</td>
<td>181 (52.5)</td>
<td>197 (55.5)</td>
<td>549 (51.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College degree, equivalent, or higher</td>
<td>189 (52.5)</td>
<td>164 (47.5)</td>
<td>158 (44.5)</td>
<td>511 (48.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paid employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09 (2)</td>
<td>.96</td>
</tr>
<tr>
<td>Yes</td>
<td>119 (33.1)</td>
<td>115 (33.3)</td>
<td>121 (34.1)</td>
<td>355 (33.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>241 (66.9)</td>
<td>230 (66.7)</td>
<td>234 (65.9)</td>
<td>705 (66.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.450</td>
<td>.45</td>
</tr>
<tr>
<td>Single</td>
<td>164 (45.6)</td>
<td>145 (42.0)</td>
<td>146 (41.1)</td>
<td>455 (42.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married or living with a partner</td>
<td>196 (54.4)</td>
<td>200 (58.0)</td>
<td>209 (58.9)</td>
<td>605 (57.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experienced cancer closely</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.776</td>
<td>.78</td>
</tr>
<tr>
<td>Yes</td>
<td>263 (73.1)</td>
<td>255 (73.9)</td>
<td>254 (71.5)</td>
<td>772 (72.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>97 (26.9)</td>
<td>90 (26.1)</td>
<td>101 (28.5)</td>
<td>288 (27.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy loyalty card</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.445</td>
<td>.45</td>
</tr>
<tr>
<td>Yes</td>
<td>264 (73.3)</td>
<td>263 (76.2)</td>
<td>256 (72.1)</td>
<td>783 (73.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>96 (26.7)</td>
<td>82 (23.8)</td>
<td>99 (27.9)</td>
<td>277 (26.1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aChi-square test.
Results

Study Sample

Figure 1 demonstrates the flow of participants through the study. In total, 2500 invitations were sent out on behalf of University College London researchers to women registered on a survey panel (Dynata), and 47.8% (1195/2500) responded to the invitation. Out of these potential participants, 92.6% (1107/1195) were eligible for the study. Eligible participants were randomized to the experimental conditions: 376 to the control condition, 358 to the patient endorsement condition, and 373 to the social norms condition. Across conditions, 4.2% (47/1107) did not finish the survey after randomization, leaving a final sample of 1060, who were all included in the analysis: 34% (360/1060) in the control condition, 32.5% (345/1060) in the patient endorsement condition, and 33.5% (355/1060) in the social norms condition. Most women in the analytical sample were in paid employment (705/1060, 66.5%), were married or cohabiting (605/1060, 57.1%), did not have a college degree (549/1060, 51.2%), owned at least 1 loyalty card from a pharmacy (783/1060, 73.9%), experienced cancer closely (ie, either themselves or with family or close friends) (772/1060, 72.8%), and reported good or excellent health (701/1060, 66.1%). Post hoc comparisons revealed that sociodemographic variables did not vary significantly across the experimental conditions (Table 2).

Intention to Take Part in CLOCS

Overall, the intention to take part in CLOCS was high, with 60% (636/1060) of women stating that they would probably or definitely participate. Table 3 shows the distribution of intentions after reading the Twitter messages. The ordered logistic regressions in Table S1 in Multimedia Appendix 1 show that the behavioral messages, both patient endorsement (odds ratio [OR] 0.74, 95% CI 0.56-0.98; \(P = .03 \)) and social norms (OR 0.74, 95% CI 0.54-0.93; \(P = .015 \)) and aOR 0.69, 95% CI 0.52-0.92; \(P = .009 \)) decreased intention to take part in CLOCS. None of the sociodemographic variables were significantly associated with the intention to participate in CLOCS.

Perception of the Messages

Table 4 shows that most study participants stated that the messages were fairly or very easy to understand (796/1060, 75.1%) and that the aims of the study were very or extremely clearly communicated (594/1060, 56%). However, the ordered logistic regression results in Table S2 in Multimedia Appendix 1 show that individuals in the patient endorsement condition perceived the message as more difficult to understand (OR 0.63, 95% CI 0.47-0.84; \(P = .002 \) and aOR 0.65, 95% CI 0.48-0.87; \(P = .004 \)) and the study aims as less clear (OR 0.70, 95% CI 0.53-0.92; \(P = .01 \) and aOR 0.72, 95% CI 0.55-0.95; \(P = .02 \)) than those in the control condition. There were no statistically significant differences in the perceptions of those in the social norms condition and those in the control condition.

Table 3. Intention to take part in the case-control study.

<table>
<thead>
<tr>
<th></th>
<th>Control (n=360), n (%)</th>
<th>Patient endorsement (n=345), n (%)</th>
<th>Social norms (n=355), n (%)</th>
<th>Overall (N=1060), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitely not(_{a,b})</td>
<td>24 (6.7)</td>
<td>27 (7.8)</td>
<td>29 (8.2)</td>
<td>80 (7.5)</td>
</tr>
<tr>
<td>Probably not(_{a,b})</td>
<td>101 (28.1)</td>
<td>125 (36.2)</td>
<td>118 (33.2)</td>
<td>344 (32.5)</td>
</tr>
<tr>
<td>Probably yes(_{a,b})</td>
<td>183 (50.8)</td>
<td>146 (42.3)</td>
<td>179 (50.4)</td>
<td>508 (47.9)</td>
</tr>
<tr>
<td>Definitely yes(_{a,b})</td>
<td>52 (14.4)</td>
<td>47 (13.6)</td>
<td>29 (8.2)</td>
<td>128 (12.1)</td>
</tr>
</tbody>
</table>

\(\chi^2 = 14.52 \)

\(P = .02 \)
Table 4. Perception of the messages.

<table>
<thead>
<tr>
<th>Understanding the message</th>
<th>Control (n=360), n (%)</th>
<th>Patient endorsement (n=345), n (%)</th>
<th>Social norms (n=355), n (%)</th>
<th>Overall (N=1060), n (%)</th>
<th>Chi-square test (df)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very difficult</td>
<td>6 (1.7)</td>
<td>10 (2.9)</td>
<td>8 (2.3)</td>
<td>24 (2.3)</td>
<td>10.9 (6)</td>
<td>.09</td>
</tr>
<tr>
<td>Fairly difficult</td>
<td>72 (20.0)</td>
<td>94 (27.3)</td>
<td>74 (20.8)</td>
<td>240 (22.6)</td>
<td>.091 (6)</td>
<td></td>
</tr>
<tr>
<td>Fairly easy</td>
<td>213 (59.2)</td>
<td>196 (56.8)</td>
<td>218 (61.4)</td>
<td>627 (59.2)</td>
<td>9.23 (6)</td>
<td>.16</td>
</tr>
<tr>
<td>Very easy</td>
<td>69 (19.2)</td>
<td>45 (13.0)</td>
<td>55 (15.5)</td>
<td>169 (15.9)</td>
<td>9.23 (6)</td>
<td>.16</td>
</tr>
</tbody>
</table>

Communication of study aims

Not at all clear	9 (2.5)	16 (4.6)	15 (4.2)	15 (3.8)	9.23 (6)	.16
A little clear	139 (38.6)	153 (44.4)	134 (37.8)	426 (40.2)	9.23 (6)	.16
Very clear	145 (40.3)	131 (38.0)	152 (42.8)	428 (40.4)	9.23 (6)	.16
Extremely clear	67 (18.6)	45 (13.0)	54 (15.2)	166 (15.6)	9.23 (6)	.16

Active Interest in CLOCS

Almost half of the study participants (526/1060, 49.6%) indicated that they would like to be redirected to the CLOCS website after the survey. The binary logistic regression in Table S1 in Multimedia Appendix 1 shows that participants who were presented with the social norms message were less interested in being redirected than those in the control condition (157/355, 44.2% vs 191/360, 53.1%; OR 0.70, 95% CI 0.52-0.94; P=.02 and aOR 0.74, 95% CI 0.54-0.99; P=.05). While there were no significant differences between the patient endorsement and control conditions (178/345, 51.6% vs 191/360, 53.1%; OR 0.94, 95% CI 0.70-1.27; P=.70 and aOR 0.96, 95% CI 0.71-1.30; P=.78), women with a loyalty card (117/205, 57.1% vs 58/144, 40.3%; aOR 1.47, 95% CI 1.10-1.95; P=.008), excellent health (70/135, 51.8% vs 22/57, 38.6%; aOR 1.94, 95% CI 1.00-3.76; P=.05), aged between 55 and 70 years (117/205, 57.1% vs n/N, 40.3%; aOR 1.89, 95% CI 1.19-3.00; P=.007) and those who had experienced cancer closely (404/772, 52.34% vs 122/288, 42.4%; aOR 1.37, 95% CI 1.03-1.83; P=.03) were more interested in visiting the study website. Those who had previously participated in health research were less likely to want to be redirected (348/734, 47.4% vs 178/326, 54.6%; aOR 0.75, 95% CI 0.58-0.99; P=.04).

Feedback Question

Table 5 shows the main themes of the content analysis per message. While 57.5% (609/1060) of the study participants were willing to provide some feedback, the majority (395/609, 64.8%) stated that the messages did not require changes. Another common theme was clarity (75/609, 12.3%), where participants thought there was too much jargon, that the message should be shorter, adding the hashtags at the end would make it more readable, and message format (59/609, 9.7%), where participants recommended using brighter colors or adding more infographics or a video instead of text.

Moreover, some participants (237/609, 3.8%) stated that the messages were unclear on how the advertised study uses loyalty cards to help with an ovarian cancer diagnosis. To increase the credibility of the message, 3.3% (20/609) of participants suggested including the university’s or sponsor’s logo at the beginning of the message. Some participants also suggested posting the messages on several social media platforms (16/609, 2.6%), as well as using patient or celebrity endorsement (9/609, 1.5%) or advertising an incentive (7/609, 1.1%).

Table 5. Themes extracted from the content analysis for each of the messages.

<table>
<thead>
<tr>
<th>Themes</th>
<th>Control (n=205), n (%)</th>
<th>Patient endorsement (n=203), n (%)</th>
<th>Social norms (n=201), n (%)</th>
<th>Overall (N=609), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No change</td>
<td>144 (70.2)</td>
<td>118 (58.1)</td>
<td>133 (66.2)</td>
<td>395 (64.9)</td>
</tr>
<tr>
<td>2. Clarity of the message</td>
<td>20 (9.8)</td>
<td>32 (15.8)</td>
<td>23 (11.4)</td>
<td>75 (12.3)</td>
</tr>
<tr>
<td>3. Format of the message</td>
<td>16 (7.8)</td>
<td>28 (13.8)</td>
<td>15 (7.5)</td>
<td>59 (9.7)</td>
</tr>
<tr>
<td>4. Confusion about the advertised study</td>
<td>9 (4.4)</td>
<td>6 (3)</td>
<td>8 (4)</td>
<td>23 (3.8)</td>
</tr>
<tr>
<td>5. Credibility of the message</td>
<td>7 (3.4)</td>
<td>8 (3.9)</td>
<td>5 (2.5)</td>
<td>20 (3.3)</td>
</tr>
<tr>
<td>6. Advertise on several social media platforms</td>
<td>6 (2.9)</td>
<td>7 (3.4)</td>
<td>3 (1.5)</td>
<td>16 (2.6)</td>
</tr>
<tr>
<td>7. Endorsement of patients or celebrity</td>
<td>2 (1)</td>
<td>1 (0.5)</td>
<td>6 (3)</td>
<td>9 (1.5)</td>
</tr>
<tr>
<td>8. Advertise an incentive</td>
<td>1 (0.5)</td>
<td>1 (0.5)</td>
<td>5 (2.5)</td>
<td>7 (1.1)</td>
</tr>
<tr>
<td>9. Random irrelevant comment</td>
<td>0 (0)</td>
<td>2 (1)</td>
<td>3 (1.5)</td>
<td>5 (0.8)</td>
</tr>
</tbody>
</table>
Discussion

Overview

This randomized web-based experiment examined the effectiveness of adding behavioral messages to Twitter advertisements for participant recruitment in a real-world case-control study (CLOCS). The results show that the standard messages yielded the highest intentions compared to the 2 normative behavioral messages. Furthermore, the social norms message decreased the willingness to visit the real study website after the survey. The vast majority of participants stated that the messages did not require changes, but some preferred clearer and shorter advertisements.

Comparison With Previous Literature

Our findings contrast with previous research, which has shown that using behavioral messages, such as social norms [34,35] and patient endorsement [31,32] can be effective methods to engage with the public on the web. The negative effect we found can partially be explained by the reduced readability of the messages, as individuals in the social norms condition perceived the message to be more difficult to understand—and the aims of the study were less clear than those in the standard advertisement.

Individuals who have had experience with a cancer diagnosis, either themselves, with family, or with close friends, were found to be more interested in CLOCS. This is in line with research reporting that familial history of cancer is associated with increased breast and ovarian cancer screenings due to individuals’ increased awareness of cancer-related complications [44]. In this study, participants’ awareness of ovarian cancer and its risks—partially informed by their close experiences with cancer—may explain their increased interest in CLOCS. Therefore, having a personal awareness of or connection to the proposed project can increase individuals’ interest in health-related research. We also found that women aged between 55 and 70 years had increased interest in visiting the CLOCS website. Ovarian cancer is rare in women younger than 30 years, but the risk increases with age, drastically spiking after 50 years—with the average age of diagnosis being between the ages of 50 and 70 years [45]. Thus, the saliency of the risk for ovarian cancer in these age groups may, in part, explain their interest. Final, while individuals recommended including a video in the message, a recent experimental study did not find any effect of adding animated decision aids to a website with the intention to participate in a case-control study [42].

Strengths and Limitations

One strength of this study was the use of a randomized experimental design to evaluate the effectiveness of adding behavioral messages to Twitter messages. Additionally, the study used validated questions on intentions and active interest. A final strength of this study is that the statistical analysis included a large number of covariates known to influence participation in health research.

This study has some important limitations, which call for follow-up research. First, the 2 messages were grounded in social norms and patient endorsement, which have mixed and limited evidence supporting the efficacy of these messages in influencing participation in clinical research [46] and may not have been the right theoretical basis for the content of the recruitment messages. This limitation is further exacerbated by the paucity of experimental research testing and reporting different messages on digital and social media platforms and their effectiveness on research recruitment. More theory-based formative research using social media marketing techniques, field experiments, and co-design approaches is needed to improve our understanding of the evidence-based application of social influence on research participation for recruiting participants to health research using social media.

Second, throughout the design and testing of both the social norms and patient endorsement messages, the authors considered whether the messages were suboptimally designed despite having contributions from patient representatives who reviewed the messages, and these have undergone various iterations. This is due to 2 reasons. While previous studies have shown that proximal social norms are more effective in different contexts [30-36], it was not possible to use them in our experiment due to the lack of data supporting the claim at the time of the CLOCS recruitment [37] and the novelty of this case-control study. Additionally, the social norm message had to use a vague verbal quantifier, “many women,” and focus on satisfaction with participation rather than the participation rate to ensure messages were ethical and not coercive. Similarly, the patient endorsement message may not have highlighted the link between motivation and action because the message only referred to the patient representative buying medication for symptoms from retailers before a cancer diagnosis. It is possible that future studies focusing on barriers and facilitators of health research participation in the design of the recruitment messages rather than normative behaviors may demonstrate different outcomes.

The authors aimed to address the aforementioned issues with feedback from the participants. However, this exercise did not lead to clear future recommendations other than the use of the factual message used in the control condition. Nevertheless, the outcomes of this experiment informed the recruitment of the CLOCS participants. The authors gained further understanding of the potential limitations of recruiting participants to CLOCS and successfully recruited 249 participants using Facebook advertisements with the control message [47]. The cost per participant recruited was between US $12 and $19, which is comparable to and less than other health-related studies with a targeted population [48]. This hypothetical experimental study demonstrates the importance of testing messages to be used in internet-based recruitment strategies, the potential limitations, and biases, and not relying only on consensus methods. Embedding process evaluations and pre- and postresearch data collection could have a significant impact on the resources allocated to recruitment as well as whether they reach their intended outcomes. Based on the outcomes of the CLOCS study [37], future studies could emphasize how the participation of women without ovarian cancer in the case-control study can help better early diagnosis of ovarian cancer, use their response rates, and further explore why the existing participants took part in this research to develop effective messages.
Furthermore, in line with previous literature, we measured attitudes toward the simulated Twitter message and CLOCS to capture individuals’ potential reactions to the website [42], which has its limitations, as several studies have reported on the intention-behavior gap [49]. As such, motivational interventions are necessary but often not sufficient to change behavior. It is possible that the hypothetical nature of the web-based experiment may have introduced a potential response bias. Similarly, there might have been a social desirability or agreement bias, where study participants tended to overestimate their intentions.

Last, we did not account for participants’ familiarity with Twitter. Our sample may have contained women who were not used to reading messages containing hashtags (Twitter use was not verified). Moreover, while we tried to include a behavioral outcome by including an option for participants to visit the CLOCS website, our experiment did not formally assess the analytics of the website or investigate how the messages influenced click behavior. Final, this study may have been affected by selection bias, as factors shaping computer use (age, gender, socio-economic status, etc) tend to influence the demographics of the sample in web-based studies [50]. For instance, there are usually similar demographic patterns across social media platforms, where users are primarily made up of young, female, and urban individuals [51,52].

Implications for Policy and Future Research
Our findings suggest that researchers conducting health-related studies should focus on using simple messages for participant recruitment through Twitter. To increase engagement with potential participants through social media, recruitment messages should be easy to read, transparent, and appropriately targeted to an audience that could have experience related to or an interest in the proposed study. Future research could test messages involving social proofing, such as sharing the experiences of study participants. Additionally, messages could be tested in field experiments by controlling the date, time, hashtags, and images used.

Conclusion
In conclusion, our results indicate that adding behavioral messages containing patient endorsement or social norms to simulated recruitment messages on Twitter decreased participants’ intention to take part in a real-world case-control study. The social norms message also decreased participant interest in visiting the actual study website. These results can be partially explained by difficulties in reading and understanding the message content, with the addition of normative behavioral components. Future research should continue exploring and optimizing methods that can effectively leverage social media platforms for the engagement of potential participants in health-related research.

Acknowledgments
This study was funded by Cancer Research UK’s Early Detection and Diagnosis Project (grant C38463/A26726 to YH and HRB) with support from the Peter Sowerby Foundation. The authors would like to acknowledge Emily Kuipers, MSc, who worked on this project as part of her MSc health psychology dissertation project at University College London. We did not use generative artificial intelligence for this project or for its write-up.

Data Availability
The data sets generated during and/or analyzed during this study are available from the corresponding author on reasonable request

Authors’ Contributions
STS, RK, and YH developed the study concept and design. YH, HRB, and JMF designed and developed the Twitter messages for the Cancer Loyalty Card Study. STS and YH performed the data analysis and interpretation. STS and YH drafted the manuscript, and all authors provided critical revisions. All authors approved the final version of the manuscript for submission.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplementary data.

References

6. Frandsen M, Thow M, Ferguson SG. The effectiveness of social media (Facebook) compared with more traditional advertising methods for recruiting eligible participants to health research studies: a randomized, controlled clinical trial. JMRI Res Protoc 2016;5(3):e161 [FREE Full text] [doi: 10.2196/resprot.5747] [Medline: 27511829]

45. Stoffel et al. JMIR FORMATIVE RESEARCH. 2024;8(1):e48538. https://formative.jmir.org/2024/1/e48538 (page number not for citation purposes)

Abbreviations

- **aOR**: adjusted odds ratio
- **CLOCS**: Cancer Loyalty Card Study
- **OR**: odds ratio
Original Paper

Clinical Informatics Team Members’ Perspectives on Health Information Technology Safety After Experiential Learning and Safety Process Development: Qualitative Descriptive Study

Chantelle Recsky¹, PhD; Kathy L Rush², PhD; Maura MacPhee¹, PhD; Megan Stowe³, MSN; Lorraine Blackburn⁴, MSN; Allison Muniaik⁵, MASc; Leanne M Currie¹, PhD

¹School of Nursing, University of British Columbia, Vancouver, BC, Canada
²School of Nursing, University of British Columbia Okanagan, Kelowna, BC, Canada
³Digital Health, Provincial Health Services Authority, Vancouver, BC, Canada
⁴Vancouver Coastal Health, Vancouver, BC, Canada
⁵Health Quality BC, Vancouver, BC, Canada

Corresponding Author:
Chantelle Recsky, PhD
School of Nursing
University of British Columbia
T201-2211 Wesbrook Mall
Vancouver, BC, V6T 2B5
Canada
Phone: 1 604 822 7417
Email: chantelle.recsky@ubc.ca

Abstract

Background: Although intended to support improvement, the rapid adoption and evolution of technologies in health care can also bring about unintended consequences related to safety. In this project, an embedded researcher with expertise in patient safety and clinical education worked with a clinical informatics team to examine safety and harm related to health information technologies (HITs) in primary and community care settings. The clinical informatics team participated in learning activities around relevant topics (eg, human factors, high reliability organizations, and sociotechnical systems) and cocreated a process to address safety events related to technology (ie, safety huddles and sociotechnical analysis of safety events).

Objective: This study aimed to explore clinical informaticians’ experiences of incorporating safety practices into their work.

Methods: We used a qualitative descriptive design and conducted web-based focus groups with clinical informaticians. Thematic analysis was used to analyze the data.

Results: A total of 10 informants participated. Barriers to addressing safety and harm in their context included limited prior knowledge of HIT safety, previous assumptions and perspectives, competing priorities and organizational barriers, difficulty with the reporting system and processes, and a limited number of reports for learning. Enablers to promoting safety and mitigating harm included participating in learning sessions, gaining experience analyzing reported events, participating in safety huddles, and role modeling and leadership from the embedded researcher. Individual outcomes included increased ownership and interest in HIT safety, the development of a sociotechnical systems perspective, thinking differently about safety, and increased consideration for user perspectives. Team outcomes included enhanced communication within the team, using safety events to inform future work and strategic planning, and an overall promotion of a culture of safety.

Conclusions: As HITs are integrated into care delivery, it is important for clinical informaticians to recognize the risks related to safety. Experiential learning activities, including reviewing safety event reports and participating in safety huddles, were identified as particularly impactful. An HIT safety learning initiative is a feasible approach for clinical informaticians to become more knowledgeable and engaged in HIT safety issues in their work.

(JMIR Form Res 2024;8:e53302) doi:10.2196/53302

KEYWORDS
informatics; community health services; knowledge translation; qualitative research; patient safety
Introduction

Background

Health care delivery is increasingly dependent on technology, and health care organizations are heavily investing in technological infrastructure [1]. Health information technologies (HITs), such as electronic health records (EHRs), computerized provider order entry, and mobile devices, play an ever-increasing role in clinical practice, and it is largely thought that these technologies have the potential to promote safe care and contribute to better patient outcomes [2,3]. However, a growing body of research [4-7] has also identified the potential for HITs to contribute to harm, where harm is defined as something “that should not have happened and that you don’t want to happen again” [8]. In this study, the acronym HIT refers to technologies used in the health care system for health information management. This study focused on HIT safety concerns, more specifically, unintended harm or potential harm that involved an HIT-based system.

An example of harm related to HIT is an overdose event that occurred when a patient aged 16 years received 39 antibiotic pills when they should have received only 1 pill [9]. The overdose event occurred after a series of computer and human failures, including a confusing computer interface design that forced weight-based dosing for pediatrics, an automated “robot” system in the pharmacy that performed a “double check” rather than human verification, a hidden curriculum for prescribing doctors to “ignore all computer alerts,” and a novice nurse who trusted the computer recommendations because “the computer had been right” in the past [9]. The design of technology and overreliance on the accuracy of the information presented can lead to unintended consequences, and there is increasing recognition that events such as this are occurring alongside the increasing uptake of technologies in health care [4-6,10-13]. There is also a growing identification that well-designed and well-deployed systems may help to mitigate some of these issues [14,15]. Clinical informatics teams, with expertise in the effective use of HITs, are ideally positioned to recognize and respond to HIT-related harms and contribute toward enhanced quality and safety in health care delivery. In this study, we explored clinical informaticians’ experiences in incorporating safety practices into their work.

Defining HIT Safety and Harm

The field of patient safety has conventionally focused on hospital and inpatient settings, with the measurement and monitoring of adverse events (including near misses) well established as a widespread practice designed to reduce harm from activities in the acute care setting (e.g., medications, surgical procedures, falls, and diagnostics) [16-19]. For this study, focused on primary and community care settings, a broader view of safety was taken up, with consideration for all 6 interconnected dimensions of quality health care (safety, effectiveness, patient centeredness, timeliness, efficiency, and equity) [20]. Using the broad definition of harm as “something happened that you did not want to happen,” harm is not simply the opposite of safety; instead, the definition makes space for recognizing the potential for harm related to other circumstances, such as inequity, inaccessibility, and poor patient experiences. Recognizing the interconnectedness of the 6 dimensions of quality, an expansive definition of harm is useful because it places a greater emphasis on the complex nature of the health care system and can thus help identify latent problems. A focus on latent problems that contribute to harm (as opposed to a focus on human error) has the potential to yield more systems-focused solutions to mitigate against recurrence and thereby improve the quality of care. This is particularly relevant with HIT, where latent errors may impact people who are several degrees away from an HIT origin of error, such as the numerous clinicians involved in the overdose example described in the preceding section.

Embedded Research Context

This study was conducted as part of an embedded researcher project supported by an innovative program and funding model designed to maximize the impact of research by supporting formal partnerships between emerging academics and health system leaders to address pressing challenges in health service delivery [21]. The funding program provided support for a doctoral student researcher to conduct their dissertation research while holding a position within the health service organization. The program is designed to help researchers develop professional skills to support evidence-informed improvement within the health system alongside conventional research outputs [22]. The embedded researcher, the researcher’s supporting academic committee, and leaders from the organization collaborated to design an applied research project that met usual academic requirements and simultaneously was relevant and useful to the organization. In project conceptualization, the health care organization prioritized patient safety and a focus on HIT in primary and community care settings. Upon funding, the researcher was embedded within the organization’s community clinical informatics team for a 2-year period (2019 to 2021). The embedded researcher was experienced in clinical education and had experience in the areas of clinical nursing, clinical education, informatics, patient safety, and quality improvement. Having a role within the organization allowed the researcher extraordinary insights into the role of the team within the organization, the team’s learning needs related to HIT safety, and opportunities to address learning needs. Fostering daily working relationships was an intentional aspect of the project to support engagement and build capacity in the team, apply learning to existing processes, and promote sustainable practices [23]. The organization’s quality and safety leaders were also key contributors to the project, collaborating closely with the embedded researcher to guide the course of the project.

Codevelopment of the HIT Safety Process

In the early stages of the project, the embedded researcher worked with a clinical informatics leader to conduct a retrospective sociotechnical analysis of reported HIT safety concerns [24]. This part of the project was possible because the organization had added a question (“Was a computer involved in the incident?”) to their web-based voluntary incident reporting system in 2016. The findings from the incident analysis study [25] provided the foundation for the clinical informatics team and the embedded researcher to cocreate a new process that
uses sociotechnical systems analysis for identifying, analyzing, and responding to HIT safety events. The new process used safety huddles [26,27] and was aligned with the concept of a learning health system in which theoretical frameworks and scientific evidence are integrated with internal data to inform continuous improvements [28,29]. Throughout the project, the researcher was positioned within the clinical informatics team with a constant focus on facilitating learning using adult learning principles [30-32], drawing on a variety of fields such as patient safety [17,18,20,33,34], quality improvement [35-37], and learning health systems [38-40] as well as HIT safety and harm specifically [5,41-45]. The aim of this study was to examine the clinical informaticians’ experiences in learning about HIT safety and to understand their experiences in codeveloping the new process to address HIT safety concerns in their work.

Methods

Setting

The study was carried out in a large health care organization in western Canada that provides acute, primary, and community care for >1.25 million people and includes both densely populated urban areas as well as rural and remote communities. The study focused on members of a clinical informatics team assigned to support services delivered in non–acute care settings (ie, primary care, home care, population and public health, long-term care, mental health, and substance use services). The clinical informatics team comprised 15 to 20 multidisciplinary staff members as part of the organization’s efforts to strengthen primary and community care delivery. The team was established at the beginning of the research project, which proved to be serendipitous for the research project because the embedded researcher was able to enter a newly formed group. The team was responsible for the clinical integration and operation of all HIT systems in primary and community care settings. There were different roles and responsibilities among the members of the team. For example, the educators were responsible for supporting clinical staff in using the clinical software systems. The specialists were responsible for working with the HIT software development team to communicate the changes that might be required for the HIT system (eg, practice policy changes). In addition, team members were dedicated to specific clinical service areas, such as mental health or home care. The clinical informatics team did not include any prescribing clinicians, pharmacists, or medical office assistants; however, the embedded researcher did consult and obtain input from members of these groups to inform them of the learning experiences and codevelopment of the HIT safety process. An organizational chart of the team is available in Figure 1.

Figure 1. Team chart and research participation.

Study Design

This study used qualitative description methods to explore the clinical informaticians’ perspectives and reflections on their experiences of learning about HIT safety and the codevelopment of the process to manage HIT safety events. Qualitative description is useful for capturing the meanings and interpretations that informants ascribe to their experiences [46,47]. Aligned with a constructivist paradigm, which posits that human knowledge is subjective and socially constructed, the study aimed to capture both the participants’ perspectives and acknowledge the subjectivity and involvement of the embedded researcher in constructing interpretations of the data [48]. In this study, having been embedded within the team for an extended period, the researcher was able to glean an in-depth understanding of the context surrounding the participants’ accounts.
During data collection and analysis, the embedded researcher engaged in ongoing reflexivity by attending to their unique positioning, the circumstances surrounding the study, and the potential influences on knowledge construction [48]. From a postpositivist perspective, the close relationship between the researcher and participant is conventionally thought to perpetuate bias and prevent the attainment of rigor in research [49,50]. However, we contend that it was the strength of the relationship between the embedded researcher and the clinical informatics team that allowed the researcher to fully explore how HIT safety was in alignment (or not) with the work of the team. The intention of situating an embedded researcher with the team was to encourage relationships between the researcher and the clinical informatics team members to support the meaningful, effective, and sustainable integration of knowledge into practice [51-54]. Indeed, as team members began to apply their learning in their work (ie, using the sociotechnical framework to analyze a problem), the researcher was available for guidance and consultation as needed, and as the team’s capabilities developed, less support from the researcher was required.

Ethical Considerations
Before conducting this study, ethics approval was obtained from the University of British Columbia Research Ethics Board (H18-02677), and all participants signed a consent form. The conduct and reporting of the study followed the Consolidated Criteria for Reporting Qualitative Studies guidelines for qualitative research reporting.

Data Collection
We used purposive sampling, targeting clinical informatics team members who supported primary and community care and who had participated in the HIT safety initiatives over the previous 12 to 24 months. The embedded researcher emailed all team members (N=16), inviting them to participate in 1 of 3 web-based focus groups, with a clear statement that participation was optional and in no way related to their job. The study was carried out during the COVID-19 pandemic when face-to-face meetings were discouraged; thus, the embedded researcher facilitated focus groups over Zoom (Zoom Video Communications, Inc) [55]. A semistructured interview guide was used (Multimedia Appendix 1), and the focus group sessions were recorded using Zoom video capture, downloaded onto the private secure computer of the researcher, and manually transcribed verbatim by the researcher. The informants reviewed the transcript of their comments, and all participants approved the transcripts with no revisions.

Data Analysis
Thematic analysis was conducted [46,56,57] using NVivo (version 12; Lumivero). Thematic analysis is well suited to address broad research questions and provides a flexible approach to remain “data-near” [47], searching across the data for patterns and allowing for both inductive and deductive approaches to the analysis. An overarching framework of 3 categories—barriers, enablers, and outcomes (Textbox 1)—was used to provide an initial structure for the analysis.

After completing the deductive coding to classify the data as barriers, enablers, or outcomes, the data were re-examined to inductively generate subcategories. Subcategories were developed and refined over several iterations (between CR and LMC), and a member-checking session was conducted with the clinical informatics team to support the descriptive and interpretive validity of the findings [46,48].

Textbox 1. Operational definitions of high-level analytic categories.

- Barriers to understanding and applying methods to address health information technology (HIT) safety: Activities or conditions that may have impeded learning
- Enablers to learning about safety and mobilizing their knowledge: Activities or experiences that facilitated or promoted learning
- Outcomes of the HIT safety project: A product or result from engaging in learning activities

Results
Overview
Three 1-hour web-based focus groups were held with 10 informants. Of the 10 informants, half were in clinical informatics educator roles, and the other half held roles such as clinical informatics team leader or clinical informatics project manager. A total of 50% (5/10) of the informants had been in their current role for <2 years, 40% (4/10) for 2 to 5 years, and 10% (1/10) for >10 years. In total, 90% (9/10) of the informants had a clinical background, including 6 nurses, 1 physiotherapist, 1 occupational therapist, and 1 social worker. The team member, who did not have a clinical background, had been working in the health care sector for >10 years. The informants’ previous work experience in their respective clinical roles before taking on an informatics-focused role ranged from 0 to 24 years, with an average of 9.7 years.

The informants shared several barriers and enablers related to their experiences of learning about and developing strategies to address safety. They also described outcomes such as new learning and capabilities. Figure 2 displays the categories and subcategories. A description of each item follows, including excerpts from the data. Characteristics of the individual informants are limited to preserve their anonymity.
Barriers to Understanding and Applying Methods to Address HIT Safety

The informants identified several barriers to understanding and applying methods to address HIT safety, including a lack of knowledge, previously held perspectives, organizational pressures, and challenges related to event reporting before the project began.

Limited Prior Knowledge of HIT Safety

A common barrier described by the informants was initially having little or no foundational knowledge related to safety principles and their application to HIT. As an informant reported, “My experience with technology safety was pretty limited prior to all of this.... I didn’t really know much at all.” More specifically, informants shared that they had a limited understanding of any negative impact HIT systems could have on patient care. For example, one of the most experienced informants stated, “I had no idea what was going on for people at the front-line level with whatever they consider a computer incident.” This limited initial understanding exemplifies the learning needs within the team that needed to be addressed to begin to incorporate HIT safety practices into their work.

Previous Assumptions and Perspectives

The informants also shared different assumptions and perspectives about safety and harm in health care that they had previously held. Some were unaware that HIT could introduce risks to safety, were under the impression that safety concerns were beyond the scope of their role, or attributed safety concerns to user mistakes. An informant stated:

Technology was always supposed to be something that would make things safer, right? You streamline some processes, you make some things maybe, more automatic, take out some of the human element—that should be safer.

Others expressed that they were initially uncertain whether this topic was relevant. For example, an informant who had been with the team for 2 years stated, “I felt like it wasn’t really my role or responsibility to be identifying them [safety concerns].” Another shared that they had previously assumed another department of “internal auditors” was responsible for addressing problems related to HIT and now they saw the value in having a clinical perspective, “focusing on solutions, rather than, it’s just a number.”

Some informants described their initial attitudes toward reported HIT safety events as “narrow,” “judgey,” or “blaming,” articulating that they previously dismissed these events as user error. An educator described this shift away from a perspective of blame as, “not just dismissing it as ok, this one person screwed up this one thing, but more than likely, that person isn’t the only one who’s maybe made that same mistake.” Another educator explained how their perspectives moved from blaming toward curiosity:

I came from a narrow point of view, you [the end user] did something wrong, the [HIT] system didn’t work for you, what was that about? And now it’s more about, more curious—what else happened? How could we support you? What would’ve filled the gaps to make this less of an incident?

Competing Priorities and Organizational Barriers

The informants indicated that their capacity and capabilities to address HIT-related safety concerns were challenged by competing priorities and organizational barriers. An informant who had worked within the organization for 4 years perceived this as a systems issue: “The whole organization gets caught up in all these new initiatives, all these new projects, all these things...
you know to make things better, but learning from the past and all these safety incidents, I feel like they get brushed aside.” Another team member described recognizing that there was a need for a focus on HIT safety but struggled with knowing how to proceed: “It just seemed too big to wrap our hands around without some support.”

Safety Culture and Reporting

A further challenge was related to the internal patient safety reporting system and processes, including concerns that it is onerous to use and, therefore, underutilized. A person who had extensive clinical experience questioned the usefulness of the reporting system, “Coming from the mindset of a clinician, you’re busy you know, am I going to take the time to do a [report], what’s the value there?”

On a broader scale, there were also knowledge gaps related to using the existing reporting system. As 1 person commented, “There’s still a lot to do in developing the reporting culture around technology needs in community.” More specifically, an informant noted the point-of-care staff’s lack of understanding of what constituted a computer-related safety event, “People don’t really understand what [an HIT] system-related error really is, and so a lot gets put into that [reporting] system that may not be appropriate for our eyes.”

The informants were also concerned that underuse of the patient safety reporting system meant that issues reported in the event reports were just the tip of the iceberg: “There’s so many safety issues that we don’t know about, things that are actually happening that aren’t being reported.” The challenges with the reporting system impeded their ability to address HIT issues because fewer reports meant that they had fewer opportunities for learning by analyzing events. Another informant made an analogy to the concurrent COVID-19 pandemic:

> It’s just like the COVID out there right now, there’s probably more cases than there actually are, we just don’t know about them...what we don’t know, is how to actually properly capture that all, and encourage people to come forward when they have an issue.

Enablers to Learning About HIT Safety and Mobilizing Their Knowledge

The informants reported some key enablers to learning about HIT safety and mobilizing their knowledge, including making space to participate in learning sessions and safety huddles, the hands-on experience of analyzing reports, and their observations of the embedded researcher as a role model.

Participating in Learning Sessions

Team members identified short education sessions led by the embedded researcher as supportive of their learning, having “collapsed all the salient points into a quick, easy-to-understand, salient presentation.” The evidence and resources referenced in the learning sessions were also identified as helpful: “I don’t know that there’s often opportunity to bring in scientific literature into our day-to-day jobs so I think that was a great opportunity, to hear and to see what’s happening in the academic realm and consider its application to practice.”

The informants specifically highlighted the case study about the antibiotic overdose (described earlier in this paper) [9] from the learning sessions as an effective tool to understand complexity and sociotechnical systems. A clinical informatics educator who had been with the organization for 3.5 years stated: “That [case study] was very, very engaging and very interesting, and you could see how like, just to see the breakdown like that...and it again, made me aware of all these little things that can go wrong or have to go wrong to lead to something like this, and how the [HIT] system played into it at each step.”

Gaining Experience Analyzing Reported Events

The informants also shared that the experience of analyzing safety events was valuable in learning how to apply what was gleaned from the analyses to make improvements. An informant who was newer to the team explained, “Actually receiving the [reports] and actually doing the investigative work teaches you a lot about the [HIT] systems.... I enjoyed doing that and then thinking about how it could be better in the long run.” They went on to explain how this experience provided an opportunity to consider how different sociotechnical dimensions may be related to safety concerns: “You’re not just thinking about the actual documentation system, but you’re thinking about all the systems around that, like whether it be a workflow, or chaos, or whatever it is that contributed to that scenario.”

Participating in Safety Huddles

The informants also explained that the experience of sharing the event analyses with other members of the team and participating in the safety huddles was supportive of their learning around HIT safety in that this activity provided a peer learning experience. One of the educators stated, “I found [safety huddles] really informative, especially having other people there that use other [HIT] systems, and again, it’s someone else’s perspective and how they’re reading the situation and what I can learn from that other person that I’m working with.”

Another team member expressed an appreciation for safety huddles as a venue for communication among the team members and found them worth the time and effort for the team:

> I found that making space for us, like dedicated time and focus, to talk about these concerns that we have, or the patient safety events that have occurred.... I’d never had that experience before, and I found it was so helpful talking as a group about what we found or what those problems that were being reported were about.... I found that it was easy to actually make the time and spend the effort to do that. You know we are all busy, but I think in the long run it’s all going to do us well as an organization and as a team to continue that [the safety huddles]

Role Modeling and Leadership From the Embedded Researcher

The informants also indicated that the role of the embedded researcher supported their learning and facilitated changes within the team’s practices. An informant who had been with the team for 2 years described the key function of the embedded researcher as initiating a focus on HIT safety: “I think we needed
someone to come in and really help to set the tone and set that framework...and so it’s been learning. I think the last year has been learning across the board.” Building on this, the informants also recognized the embedded researcher as an expert and champion for HIT safety, as a different informant explained: “It’s helped really mobilize the team in that direction and create more of a team sort of focus on working with these teams committed to safety-related issues.” An educator from the team described the embedded researcher as a role model for how to approach analyzing safety events, having “instilled curiosity” in the team. Finally, there was also a recognition of how to integrate HIT safety into the work of the informatics team; a long-standing member of the team noted, “what I didn’t realize before is really how well this conversation fits within an organizational structure and within a team structure.”

Outcomes

A variety of outcomes from the HIT safety project surfaced in the focus group discussions, some of which were individual outcomes and some of which were team outcomes. Individual outcomes included increased ownership and interest in HIT safety, the development of a sociotechnical systems perspective, and increased consideration of end-user perspectives. Team outcomes included increased team communication and the ability to use the processes to guide strategic planning.

Individual Outcomes

Expanding Ownership and Interest in HIT Safety

Several informants shared an increased sense of personal interest in the topic of HIT safety. A team member explained, “It’s given me an appreciation and actual interest in safety and how that pertains to design of [HIT] systems and how we interact with the [HIT] systems.” Furthermore, an informant with 8 years at the organization described having an increased sense of both personal and team ownership in relation to HIT safety: “Not only is it my role and responsibility, but we’re really well positioned to identify and sort of bridge between practice and workflows.” The informants recognized the role their team plays within the organization in supporting the delivery of care, as one person with extensive clinical and informatics experience noted, “Having a good understanding of why we exist as informatics...it’s not just for the users, although that’s important, it’s also for the patients and reducing risk...so it all ties together...that kind of holistic view.”

Sociotechnical Systems Perspective

The informants shared new insights into their work based on learning about sociotechnical systems theory as it applies to informatics. They expressed an increased appreciation for the relationships among the technology, the users, and the context in which these are situated. An educator with 24 years of experience explained:

I sort of think that technology doesn’t take into account the human being. It’s just, technology is a set of algorithms, it’s a set of stuff that’s written by a developer who tries to take in all the considerations possible. But you can’t take in all the considerations of a human being, and how a human being will respond to certain situations, or certain pieces of technology.

This was echoed by another educator with 3.5 years of experience, who stated, “Our technology is only as good as how people understand it, and so the education piece around it and you know, understanding the workflow and how to actually apply it and use our [HIT] systems is so important...because the [HIT] system could be working as designed, but if people don’t know how to use it properly, then it just leads to a lot of problems.”

Related to this, the notion of human factors as it applies to safe HIT use was also a new concept for many team members. An informant explained, “I never knew this existed, human factors—and now I am seeing that there is a whole theory behind it, there’s a lot to learn about, there’s best practices in design, there’s all these things that I had no idea even existed.”

Thinking Differently About Safety

Building on their knowledge of the sociotechnical perspective, the informants demonstrated an increased awareness of the factors and circumstances that may increase the risks of harm. As one educator highlighted, they previously “had just kind of considered the obvious errors, like with a malfunction or with a bug or something like that.” However, this educator went on to explain how their awareness of safety risks had grown beyond the technical aspects of HIT, noting, “Technology’s not infallible. There’s so many factors, and it’s quite complex, and it’s given me kind of an appreciation for...the whole topic, and it makes me think about problems in a different way.” Similarly, another educator described how their view of safety had expanded beyond just focusing on the HIT end user:

It’s not simply, one person did something wrong. There [are] so many different things—there’s the workflow, the human factor, was it the actual user interface—all those different subcategories.

Developing the Ability to Identify and Analyze Reported Events

The informants shared how they applied what they learned to their work and developed the ability to identify and analyze HIT-related safety events. First, among the informants, there was a greater awareness of “just what is a safety event,” as one of the more experienced members of the team put it. Several people described adopting the practice of systematically analyzing reported events. For example, how they learned to “think of [HIT safety events] in those different dimensions that we learnt about with the sociotechnical model, just being able to, like, think of it in a framework like that, in sort of a structured way, to help break it down.” Another informant shared how taking a systematic approach had changed their thinking:

It does help us see sort of where perhaps a gap was with a reported [event]. So, before we just knew there was an issue, but...I wasn’t looking at it as all these different sort of levels.

Similarly, another informant explained:

What I’ve learned is how to break it up. Was it the [HIT] system?... Was it the workflow? The process?
Applying Learning to Mitigate Against Harm

Going a step further, informants also articulated how they learned to be more proactive and tried to prevent harm from occurring in the future. An educator explained that they have observed patterns over time from the analyses of events, and this has increased their awareness of the potential for future risks:

I’m actually already starting to see some patterns and starting to think about the complexities of some of these [HIT] systems. Just this one tiny little move can make a big change, can put someone at risk, and it shouldn’t be that easy to put a client [patient] at risk.

Another educator described having an increased awareness of patterns as well, and how this informed their thinking around mitigating future issues: “I think being aware of the patterns and being aware of the common sort of issues is really helpful in terms of thinking about future solutions and making sure that those problems can’t be easily replicated.” Furthermore, the informants described how they had been able to communicate concerns about HIT safety in the context of their work. One of the more experienced team members explained, “I didn’t always have the language to describe why something in the [HIT] system was a problem, but that information with systems thinking really helped me frame those conversations.” Another informant described how the clinical informatics team has begun to take a more proactive approach to safety:

I think it’s also changed the conversation around; just when we’re discussing [HIT] system changes or potential projects that we may undertake, is just the safety risks factors. Having more general dialogue around that...just being more proactive.

Growing Consideration for User Perspectives

Consideration for clinicians and HIT users was a commonly expressed sentiment. Team members reflected on their previous experiences as clinical care providers and reflected on this when considering the functions and dysfunctions of HIT in a clinical context. An educator commented:

When we get these reports now, I’m trying to think like the clinician. I’m not working as a clinician anymore, but I am trying to put myself in their shoes—what are all these other surrounding factors, what led them to report about this?

Another informant in the role of educator elaborated on this idea:

But it’s probably easier if you have the open mind to actually really understand, again the empathy factor of it, understanding what had happened in terms of if it’s a system error or whatever, and yeah, it’s just having that understanding that it’s not always the person at fault, it’s not always the system at fault, it could be a combination of everything. And again, what do we do next? It’s how do we learn from this.

Pairing this consideration with their knowledge of HIT safety, another informant demonstrated new insight into the users’ experiences with HIT:

And so they think it’s one way, and then an error happens because they misread something or they didn’t know to check somewhere, and...I just felt like I never clued into how much the design can really impact that front end user experience.

Furthermore, another informant contextualized the challenges clinicians and HIT users may face in using HIT:

I’m just thinking about, really, the environment that people are working in and the complexity of that...the environment might be...very chaotic, and then we’re asking them to do something very complex in the [HIT] system. I think that is a safety concern,...I think that’s where it would be very easy to have errors, obviously.

Team-Level Outcomes

Enhanced Communication Within the Team

The informants described how sharing their experiences about HIT safety worked to enhance communication within the team and further expand their awareness of potential HIT safety concerns. As described earlier, there were separate groups within the team that focused on different HIT systems and clinical areas in primary and community care, which could sometimes create siloed communication. Team members expressed that participating in the HIT safety activities opened up new communication channels and supported an exchange of learning across the different teams. An educator, whose work was focused on a particular clinical area, shared the following:

It was great awareness to hear what was happening in other places...kind of raising that awareness so that if we see something similar in our clinical area, it just kind of alerts you to look out for things that you maybe would’ve never considered...and all of a sudden, your level of awareness is there.

Another informant highlighted how increasing communication across the smaller teams within the larger clinical informatics team helps provide better support to the clinicians or HIT users: “Clinicians are interacting with many systems, and many applications, and many types of technologies, that in fact, we need those opportunities to speak with our colleagues who lead or support other [HIT] programs so that we really get a sense of what those safety events meant.”

Informed Future Teamwork and Strategic Planning

On a broader scale, the informants also gleaned new insights into the role of their team within the organization. One of the more senior team members asserted:

I think that our team is perfectly positioned to handle, be handlers of technology related [safety] reports, and make sure we close the loop. I think it needs to be part of our work and just have it as a regular ongoing piece of work that we do and...service that we provide to the organization.
In addition, the informants shared insights into how their knowledge of HIT safety relates to organizational decision-making and strategic planning. An informant in an educator role considered how their team can contribute to future decisions about HIT: “Whether it be just the organization, or operationally within a clinic, and they make a request for a change in a [HIT] system, or it’s a bigger change, like made at a higher level, even at the [executive] level, maybe they’re not making the best decision because we’re not providing them with the best information about our clinical [HIT] systems.”

Promoted a Culture of Safety

From a patient safety perspective, the informants shared an increased emphasis on a culture of safety and leveraged learning from their analyses to mitigate future concerns and make improvements. An informant explained:

> I think as a team member in clinical informatics, instead of focusing on the mistakes...thinking of the next time. What can be done better? How can it be resolved much better? It’s always the next time, it’s always learning, and it’s always a different situation. But it’s probably easier if you have the open mind to actually really understand...it’s just having that understanding that it’s not always the person at fault, it’s not always the system at fault, it could be a combination of everything. And again, what do we do next? How do we learn from this?

Discussion

Principal Findings

Overview

This study examined clinical informaticians’ perspectives on learning about HIT safety and the cocreation of a process to manage HIT-related safety reports. To our knowledge, this is a novel examination of the topic. The findings from this study provide valuable new insights into the barriers and facilitators to developing HIT safety within clinical informaticians’ practices, as well as the potential outcomes that a robust, evidence-based approach to knowledge mobilization can have.

Barriers to the Uptake of HIT Safety

From the clinical informaticians’ perspectives, some of the barriers that were initially challenging included the lack of knowledge about HIT safety and previous assumptions they carried at the outset of the project. For patient safety in general, a lack of knowledge about incident reporting and assumptions about the value or repercussions of event reporting are known barriers to initiating reports [58]. The embedded researcher was able to spend time at the beginning of the project to build relationships and assess the team’s gaps in knowledge. Recognizing the team’s initial limited understanding of HIT safety, learning activities were focused on fundamental topics in HIT safety and contextualizing learning within their existing work. Another identified barrier was competing priorities and organizational barriers, a challenge echoed in the literature about evidence-based practice [51,59]. While competing priorities may be a perennial challenge in health care, strategically aligning and incorporating learning activities into the current priorities of the clinical informatics team was crucial because mutual learning and appreciation of others’ perspectives and contributions may lead to better processes and outcomes by generating more relevant and applicable knowledge [60].

The findings surfaced challenges with the internal safety reporting systems, the processes, and the underuse of the safety system. The informants expressed concern over the value of reporting if there is not a proper follow-up, stressing the value of “closing the loop” to ensure that the person who reported the event is aware of the implications of their report from an informatics perspective. The costs and benefits of safety reporting are debated in the literature. Insufficient action following a safety report is thought to negatively affect clinicians’ commitment to the reporting process [61]. Macrae [62] argues that “we collect too much and do too little” [63], explaining that although the technical infrastructure for safety reporting has been established in many health care organizations, the requisite processes of investigation and improvement have been underemphasized. Other research suggests that low rates of safety reporting derive from clinicians being prone to applying quick fixes or workarounds to system failures rather than reporting issues to trigger more in-depth analysis and sustainable solutions [64,65]. In any case, it seems that safety reporting is yet to achieve its full potential [61], and the latency of safety issues related to HIT may pose further challenges, with near misses and errors being dismissed or going undetected [66]. However, the findings of this study suggest a way to establish practices to identify and mitigate latent errors.

Supportive Learning Environment and Openness to New Ideas

The enabling elements identified by the clinical informaticians focused primarily on participatory and experiential activities. Facilitating informal, locally owned processes for clinical informaticians’ learning around safety has been shown to enable the staff to raise concerns and actively contribute to improvement [58]. Although there is a growing collection of research studies that have applied the Sittig and Singh [24] sociotechnical model in analyzing safety concerns [27,67-69], no literature was identified where this framework was incorporated into experiential learning activities or embedded into clinical informatics work processes in real time. Safety huddles are thought to be transformational in shifting attitudes and practices related to safety, providing a “reliable framework for interdisciplinary communication and action” [26]; however, the evidence to support this is largely anecdotal [70]. Menon et al [27] used safety huddles to address EHR safety concerns in a hospital setting, and although the format differed from this project, the huddles promoted a culture of safety for clinical informaticians, providing a venue for open communication about safety concerns and facilitating learning and improvement, which was also found in this study.

The informants also noted the role the embedded researcher played on the team to “set the tone,” “mobilize the team,” and “instill curiosity,” which supported their learning in the project. A concerted effort was made in the initial stages of the project to develop strong, collaborative partnerships at all levels of the
organization [52,60]. At the end of the project, efforts were made to promote the sustainability of the cocreated sociotechnical analysis of HIT safety events by integrating new practices into existing team workflows, and the researcher intentionally stepped back to allow the clinical informatics team to carry out new practices with minimal support [71].

The findings indicated that the clinical informatics team exhibited the knowledge, skills, and attitudes of an effective team [72], which in turn support the notion of a high reliability team [73]. For example, the participants found the safety huddles a “good use of their time.” Furthermore, formal financial and organizational support for the embedded researcher throughout the duration of the project created a fertile environment for learning, with dedicated resources, endorsement and collaboration from leaders, and multiple opportunities for interactions between researchers and knowledge users [51,60].

Effective Knowledge Mobilization

The findings of this study include positive outcomes in terms of moving knowledge into action. The focused approach to supporting HIT safety seemed to support a group-level identity transformation, incorporating different professional perspectives, adding value, and acting as a lever for system-wide, evidence-informed sustainable change [74]. The informants described being more knowledgeable and engaged in HIT safety issues in their work. They developed their knowledge base in clinical informatics, with an increased recognition of some perennial problems related to HIT [60,75], and the contextual issues that surround the use of HIT in health care settings [76,77]. The informants also expressed greater ownership regarding safety. This is echoed in the literature in which EHR safety is ascribed as being a shared responsibility among key stakeholders including EHR developers, health care organizations and users, and government regulators [42]. Clinical informatics, with its emphasis on bridging technical and clinical perspectives, can play a central role in facilitating efforts to improve safety [78,79].

The cocreated sociotechnical analysis process for addressing HIT safety events produced immediate and ongoing insights to inform operational decision-making within the organization. The current findings provide additional evidence that a clinically focused informatics team is well positioned to take on this work of “closing the loop” with the end user using the system to report an event. Similarly, by leveraging voluntary safety reporting for quality assurance, Williams et al [54] identified 242 EHR-related safety events analyzed by nurse informaticians, 30 of which led to specific system changes to improve usability.

In this study, informants expressed an appreciation for the structure that the Sittig and Singh [24] analytic framework brought to conducting an analysis and that they learned to look for patterns in reviewing reported events. The process developed by the team was an adaptive approach based on experiential cycles of learning, from which they gradually developed new insights and expanded their collective expertise on HIT safety [80]. Demonstrating a thoughtful approach to safety, the findings indicate that informants’ perspectives moved beyond a reactive “find and fix” approach and instead they were embracing complexity to “enable things to go right more often” [81].

The findings of our study also indicate that enhanced communication helped team members develop a more empathetic approach to supporting clinicians using HIT. Specifically, safety huddles were thought to have improved communication within the team as well as informed their perspectives on all aspects of their work, including planning for future HIT-related needs of the organization [27,82]. Although safety event reporting is not without its limitations [83], reporting can effectively contribute to participatory learning, improve practice, and promote safer care [84].

Limitations

A possible limitation of this study is that the embedded researcher functioned as both the lead of the initiative and the interviewer for this project. It is possible that the informants’ responses were influenced by social desirability [48]. However, the participants’ responses also showed vulnerability. For example, several respondents indicated that they had been judgmental about end users’ errors in the past. This level of candor suggests that social response bias may have been minimal and possibly was overcome by prolonged engagement, given the long duration that the embedded researcher participated with the team. This study also assessed only the experiences of the clinical informaticians in retrospect. It did not account for the impact on the knowledge users in the same way that a longitudinal design may have. Tracking the knowledge user’s experiences over the course of the project may have offered a more precise account of the impact of the various approaches to supporting HIT safety and the progression of the partnerships within the research [52]. Future research should focus on assessing the mechanisms by which the impact is achieved to articulate an optimal, replicable approach to knowledge mobilization. In addition, this study was situated in a nonacute setting, and therefore, the applicability of our findings is limited as such. However, given the adaptable and codeveloped nature of the processes for learning, it is possible that other health care settings may benefit from using similar approaches [45,85].

Conclusions

Overall, the findings of this study indicate that the evidence-based, experiential learning model used in this instance was an impactful approach to supporting HIT safety in the context of clinical informatics. Furthermore, the intensive focus on HIT safety resulted in increased knowledge and some evidence of group-level identity transformation related to clinical informaticians’ management of HIT safety events. An embedded researcher model can be an effective mechanism to support clinical informaticians in learning and applying HIT safety practices in their work.

Acknowledgments

The Canadian Institute of Health Research Health System Impact Fellowship funded this study.
Authors' Contributions

CR contributed to the conceptualization, investigation, formal analysis, and wrote the original draft. KLR was involved in the conceptualization, methodology, and participated in writing, reviewing, and editing. MM contributed to the conceptualization, methodology, and also participated in reviewing and editing. MS, LB, and AM each contributed to the conceptualization, provided resources, and were involved in the writing, reviewing, and editing process. LMC contributed to the conceptualization, supervised the project, was involved in formal analysis, and participated in writing the original draft, reviewing, and editing.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Semistructured interview guide.

References

42. Sittig DF, Belmont E, Singh H. Improving the safety of health information technology requires shared responsibility: it is time we all step up. Healthc (Amst) 2018 Mar;6(1):7-12 [FREE Full text] [doi: 10.1016/j.hjdsi.2017.06.004] [Medline: 28716376]

Abbreviations

EHR: electronic health record
HIT: health information technology
Attitudes, Barriers, and Motivators Toward Daily Walking and a Mobile App to Increase Walking Among Women: Web-Based Anonymous Survey

Catherine Jones1*, MPH; Shikha Chandarana1*, MPH; Amita Vyas1*, PhD; Melissa Napolitano1*, PhD
Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
*all authors contributed equally

Corresponding Author:
Catherine Jones, MPH
Milken Institute School of Public Health
The George Washington University
950 New Hampshire Avenue
Washington, DC, 20052
United States
Phone: 1 301 283 8703
Email: catherinejones@gwu.edu

Abstract

Background: There are disparities in the prevalence of physical activity (PA) with women engaging in less PA than men, a gap which widens during midlife. Walking is a generally accepted form of PA among women and should be encouraged. Motivations, barriers, and attitudes to engaging in walking change with age, but the influencing factors are not well understood nor are the features of mobile apps that facilitate daily walking.

Objective: This study explores the relationship between age and women’s self-reported motivations, barriers, attitudes, and beliefs toward daily walking. It further assesses attitudes toward features of a mobile app designed to sync with a wearable step tracker to increase and maintain levels of daily walking among women.

Methods: A web-based anonymous survey was completed by 400 women, aged 21-75 years. The 31-item survey captured women’s perceived barriers and motivators toward daily walking and attitudes toward mobile apps to support and maintain daily walking. For analysis, responses to the survey were grouped into 2 categories of women: ages 21-49 years and ages 50-75 years. Bivariate analyses were conducted through SPSS (IBM Corp) for each of the survey questions using chi-square for dichotomous variables and 1-tailed t tests for scales and continuous variables to identify significant differences between the groups. One-tailed t tests were run for scaled variables to identify significant differences between the 10-year age increments.

Results: Significant barriers to daily walking were observed in the 21-49–year group for personal and work responsibilities, motivational and psychosocial factors, and physical and environmental factors. Motivators to walk daily in the 21–49–year group were significantly higher to reduce stress and anxiety, and motivators to walk daily in the 50–75–year group were significantly higher to help manage or lose weight and to reduce the risk of chronic illness. Women’s walking preferences, beliefs around their walking behaviors, and their perceived importance of the features of a future mobile app for walking designed specifically for women showed significant variation according to age. When asked about the importance of features for a mobile app, women aged 21–49 years indicated a significantly higher number of positive responses for the following features: digital community support, rewards or point system, and seeing a daily or weekly or monthly progress chart.

Conclusions: Our findings indicate that barriers, motivators, and beliefs around daily walking and the importance of preferred features of a mobile app vary according to women’s ages. Messaging and app features should be tailored to different age groups of women. These study results can be viewed as a foundation for future research and development of mobile health interventions to effectively increase daily walking among women of all ages.

(JMIR Form Res 2024;8:e48668) doi:10.2196/48668

KEYWORDS
mHealth; mobile health; mobile app; walking; physical activity; step counts; women’s health; age; wearable activity tracker; chronic disease; mental health; mobile phone; COVID-19
Introduction

Physical activity (PA) has established benefits of preventing and treating many adverse health conditions in women, such as heart disease [1], type 2 diabetes [1], osteoporosis [2], depression [3], and anxiety [4]. Current guidelines recommend that adults engage in at least 150 minutes of weekly moderate-intensity aerobic PA, such as walking, and suggest that health benefits can be achieved in bouts as short as 10 minutes [5]. However, despite the overwhelmingly positive evidence for performing regular PA, older adults continue to be underactive, with older women in particular being the most inactive segment of the population [6]. This gender difference, which is observed across the life span, widens during midlife (ages 40-60 years) [7,8]. Regular exercise declines for many women just when menopause-related physiological changes increase their risk of weight gain and chronic diseases [7,9-11].

The percentage of all adults in the United States, aged 18 years and older, who met the Centers for Disease Control and Prevention’s Physical Activity Guidelines for Americans for aerobic PA in 2020 was 22.7% [12]. Percentages by gender of all age groups who met both aerobic activity and muscle strengthening guidelines in 2020 show males at 28.3% and females at 20.4%. The prevalence of PA among females declines with age from 28.7% for ages 18-34 years to 22.7% for ages 35-49 years [12]. Prevalence continues to further decline to 17.6% for ages 50-64 years ending with 10.8% for those aged 65 years and older. The decline in males moves from 41.3% (ages 18-34 years) to 15.3% (65 years and older) [12]. Men are more likely than women to meet both PA guidelines across all age groups [12].

Walking is one of the most effective interventions for reducing rates of chronic disease as well as one of the best, low-cost, easily implemented, widely accessible, moderate-intensity forms of PA [10,13-16]. Furthermore, the low risk of injury can allow individuals to remain active in older age [10]. The effectiveness of walking programs relies on initiatives aligning with women’s key barriers and motivators [7]. Previous research on walking levels in midlife women shows a lack of time as the primary barrier [7,10,14]. This combined with professional obligations and family care responsibilities relegates walking to a low daily priority for many women [7,17]. Health issues, poor motivation, and absence of social support are other barriers noted [7]. Women are more likely than men to a cite lack of social support and other social influences (eg, embarrassment due to being overweight) as obstacles to PA engagement [18,19]. Furthermore, the effectiveness of the role of social support for PA may be influenced by cultural norms, which should be considered when creating groups and matching walking partners [18]. Environmental factors, such as poor weather, lack of walking paths, and safety concerns [10], can inhibit daily walking as well [7,19].

Motivators of daily walking for midlife women include the associated health benefits, greater well-being, reduced stress, enjoyment, social support, and accountability to others [20]. Walking for transport was an important facilitator for some. Midlife women are motivated by immediate enjoyment versus long-term benefits [7]. The social aspect of making friends was a primary motivation for participating in health walks [7,21]. A study involving low-income urban mothers identified social connection as their most powerful facilitator alongside “me time” and the opportunity to gain a brief respite from their responsibilities [22].

Encouraging inactive populations, particularly women, to increase walking is an important public health consideration and remains a challenge [23]. The first step to increasing walking is to accurately measure it [24]. The use of technology, including wearable fitness trackers and smartphones, shows a great deal of promise for measuring and encouraging walking among women [25]. Results of a 2015 feasibility study by Arigo [17] showed that a large proportion of midlife women had purchased or intended to purchase a wearable tracking device for personal use after returning the program device used in the study (16/20, 80%). This continued interest in tracking highlights the potential for longer-term behavior change, particularly with novice users, with commercially available wearable technology [18].

Increasing health issues among youths due to a sedentary lifestyle as well as the growing demand for fitness apps for women are key factors propelling the market growth into a multibillion-dollar business [26]. Fitness apps are designed to motivate and persuade behavior change to help their users achieve health and wellness goals. While the industry of fitness apps for women is rapidly evolving, there is a lack of research on the impact of gender-centered design on users’ adoption, usage, perceptions, retention, and outcomes. This study explores the relationship between age and women’s self-reported motivations, barriers, attitudes, and beliefs toward daily walking. It further assesses attitudes toward features of a mobile app designed to sync with a wearable step tracker to increase and maintain levels of daily walking among women.

Methods

Research Design and Participant Recruitment

Our study design involved a web-based anonymous survey hosted on SurveyMonkey only in English. The inclusion criteria were to be female as sex assigned at birth, or intersex identifying as female, and to be 21-75 years of age living in the United States. Exclusion criteria were to be male as sex assigned at birth and to be younger than 21 years or older than 75 years of age. Proof of gender and age was not required. Recruitment for the survey was carried out using a URL link or QR code, which was distributed on the following digital platforms: email listservs, Facebook, LinkedIn, and Reddit. The survey remained open for approximately 4 months, from February to June 2022, until 400 participants consented to take it.

Ethical Considerations

The “Research on Daily Walking Habits Among Women Ages 21 to 75” was approved by The George Washington University Institutional Review Board on February 3, 2021 (NCR224026). All participants were recruited via digital outreach. Privacy and confidentiality protections included anonymous and deidentified data collection. All questions on the survey were broad enough...
to avoid any chance of identification of individuals. To ensure informed consent, immediately upon opening the survey, as the first question, participants were greeted and given information about the research to decide whether to complete it or not. The paragraph concluded with the question, “Would you like to continue?” Answering yes opened the survey. Participants could skip questions or opt out of the survey at any time. There was no time limit to complete it. Completion rate by the 400 respondents was 100%. Average completion time was 5 minutes. There was no compensation, and no physical risks were associated with the survey.

Data Collection

The survey was comprised of 31 questions (Multimedia Appendix 1). The first question was focused on consent to participate, and the next 5 questions were designed to capture sociodemographic information including sex assigned at birth, age, current relationship status, race, Hispanic, Latinx, or Spanish origin, and employment or student status. Questions 7 to 13 covered dog ownership, employment status, chronic disease diagnosis, advice from a doctor on walking, and the use of mobile apps and devices to track steps. Question 14 asked participants if their walking rates changed since the start of the COVID-19 pandemic. Question 15 asked approximately how many steps a participant walks each day. Questions 16 to 21 were designed to glean information on possible barriers and motivators for daily walking. Questions 22 to 30 were aimed at capturing data on the acceptability of features of a mobile app designed for women to increase walking. The last question, question 31, asked participants if they would be willing to use a walking app designed for women and to wear an activity-tracking device, such as a Fitbit, to increase daily walking.

Data Analysis

When the survey results were downloaded, a codebook was created and uploaded to SPSS software (version 28.0.0.0-142; IBM Corp). We analyzed our independent variable, ages of women, and two dependent variables: (1) barriers and motivators toward daily walking and (2) attitudes toward features of a mobile app to increase walking. Data analysis included descriptive statistics to describe respondents’ demographics (eg, age, relationship status, employment status, and diagnosis of chronic illness). All data were analyzed with stratification by age. The first type of stratification was based on dividing the population into 2 groups of ages: 21-49 years (21- to 49-year group) and 50-75 years (50- to 75-year group), respectively. The second type of stratification was based on dividing the population into groups with 10-year age increments. Bivariate analyses were conducted through SPSS for each survey question using chi-square for dichotomous variables and 1-tailed t tests for scales and continuous variables to identify significant differences between the 2 groups. One-tailed t tests were run for scaled variables to identify significant differences divided by decades.

Results

Descriptive Statistics of Demographics

Sociodemographic questions captured in the survey and displayed in Table 1 included information on sex assigned at birth, age, relationship status, race and ethnicity, employment or student status, chronic disease status, doctor’s advice regarding walking, and having a dog that you walk daily. Results showed that all 400 respondents self-identified as female for sex at birth. Most women were in their 20s (n=123, 29.6%), followed by 30s (n=101, 25.4%), 50s (n=78, 19.3%), then 40s (n=52, 13%), 60s (n=32, 8%), and 70s (n=14, 3%).

<table>
<thead>
<tr>
<th>Demographic characteristics</th>
<th>Full sample (N=400), n (%)</th>
<th>Respondents aged 21-49 years (n=276, 69%), n (%)</th>
<th>Respondents aged 50-75 years (n=124, 31%), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>142 (35.5)</td>
<td>123 (44.6)</td>
<td>19 (15.3)</td>
</tr>
<tr>
<td>Married</td>
<td>196 (49)</td>
<td>104 (37.7)</td>
<td>93 (75.2)</td>
</tr>
<tr>
<td>Living with partner</td>
<td>46 (11.5)</td>
<td>43 (15.6)</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>Once married</td>
<td>16 (4)</td>
<td>6 (2.2)</td>
<td>10 (8.1)</td>
</tr>
<tr>
<td>Walks a dog</td>
<td>111 (27.7)</td>
<td>64 (23.3)</td>
<td>46 (37.4)</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not employed</td>
<td>51 (12.8)</td>
<td>16 (5.8)</td>
<td>35 (28.2)</td>
</tr>
<tr>
<td>Part-time employment</td>
<td>42 (10.5)</td>
<td>16 (5.8)</td>
<td>26 (21)</td>
</tr>
<tr>
<td>Full-time employment</td>
<td>185 (46.3)</td>
<td>128 (46.3)</td>
<td>60 (48.4)</td>
</tr>
<tr>
<td>Student status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time student</td>
<td>80 (20)</td>
<td>79 (28.6)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Part-time student</td>
<td>42 (10.5)</td>
<td>40 (14.5)</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>Diagnosed with a chronic illness</td>
<td>93 (23.3)</td>
<td>56 (20.3)</td>
<td>37 (29.8)</td>
</tr>
</tbody>
</table>
In the 21- to 49-year group, most women were single, while in the 50- to 75-year group, most were married. The majority of the 400 women were White (n=297, 74.3%), followed by Black (n=54, 13.5%), and small percentages were Asian, American Indian or Alaska Native, and others. Only 7.5% (n=30) of the women identified as Hispanic, Latinx, or Spanish origin. In both groups, the majority of women were full-time employed. The 50- to 75-year group had significantly more part-time employment and significantly less students. Women who self-reported chronic disease were 20% (55/276) in the 21- to 49-year group and 29% (36/124) in the 50- to 75-year group. More women owned a dog that they walked daily in the 50- to 75-year group. Almost no women were told by their doctor not to walk 2.3% (n=9), and 39.9% (n=159) of all women were advised by their doctor to increase their daily walking.

Women’s Current Walking Behaviors

Results of current walking behaviors show that approximately the same percentage of women in both groups use a step-tracking device (n=144, 52% in the 21- to 49-year group vs n=57, 45.9% in the 50- to 75-year group) and a mobile app to track steps (n=90, 32.7% and n=39, 31.7%). The number of approximate daily steps self-reported by women showed that the 21- to 49-year group had significantly higher percentages for less than 2000 steps (n=28, 10.1% vs n=4, 3.2%; \(P=0.03 \)). Other differences in step counts were not as significant between the 2 groups: 2000 to 3000 steps (n=42, 15.2% vs n=16, 13%), 3001 to 5000 steps (n=72, 26% vs n=29, 23.2%), and 5001 to 8000 steps (n=80, 28.9% vs n=28, 22.7%). The 50- to 75-year group had significantly higher percentages in the 8001 steps or more (n=83, 30% vs n=22, 17.4%; \(P=0.001 \)) category.

This survey was conducted from February to June 2022 during the COVID-19 pandemic. Women were asked one question on the survey about COVID-19 to give some context to possible changes in their daily walking habits during the time of the pandemic. Their responses showed that a significantly higher percentage of women in the 21- to 49-year group reportedly reduced their daily walking than the 50- to 75-year group (n=77, 27.9% vs n=15, 12.1%; \(P=0.01 \)), while a higher percentage of women in the 50- to 75-year group maintained their amount of daily walking (n=40, 32.2% vs n=55, 19.9%; \(P=0.01 \)) or increased it (n=67, 54% vs n=142, 51.4%) during the time period of the survey. Specific groups of women, delineated by age decade, who increased daily step counts during COVID-19 showed that women in their 70s (n=13) self-reported the highest change in walking, and those in their 30s (n=96) self-reported the lowest. Figure 1 illustrates these findings.

Women’s Barriers to Walk Daily

Regarding barriers to daily walking displayed in Table 2, the 21- to 49-year group had significantly higher percentages than the 50- to 75-year group for the following reasons: personal and work responsibilities (including lack of time, lack of child or older adult care, and work or other scheduling barriers), motivational and psychosocial factors (including lack of motivation to exercise in general, lack of motivation to engage in self-care, lack of support from partner or family, lack of support from work environment, not being able to find a walking group or community to support walking, not enjoying walking or would rather do another form of exercise), and physical or environmental factors (including lack of safe spaces to walk, lack of proper clothing, fear of falling or getting injured, doctor advised not to walk, and difficult or uncomfortable to walk). The most cited barriers with significant differences between the 2 groups, with the 21- to 49-year group higher in all categories, were lack of time (n=172, 62.3% vs n=43, 34.6%; \(P<0.001 \)), lack of motivation to exercise (n=119, 43.1% vs n=38, 30.6%;
Motivators for Women to Walk Daily

Motivators to walking daily displayed in Table 3 included the following options: physical factors (feels good physically, gives me more energy, reduces my risk for chronic disease or improves my overall health, burns calories or helps with weight management, and builds strength) and mental or emotional factors (reduces depression, reduces anxiety, reduces stress levels, boosts self-esteem, and allows me to work through issues). Both groups had approximately the same percentage of responses in the categories of feels good physically, gives me more energy, and reduces depression. The 21- to 49-year group had significantly higher percentages than the 50- to 75-year group for the motivator category reduces anxiety (n=181, 65.6% vs n=62, 50%; \(P=0.003\)). While the 50- to 75-year group had significantly higher percentages for walking to burn calories or help with weight management (n=100, 81% vs n=186, 67.4%; \(P=0.004\)) and reduce risk of chronic disease or improve overall health (n=95, 76.6% vs n=168, 61%; \(P=0.002\)). The top 5 motivators to walking by women’s age groups were feels good physically, reduces stress levels, helps with weight management, gives me more energy, and reduces risk for chronic illness or improves overall health as illustrated in the category “Most cited motivators” of Table 3.

Table 3. Survey results of motivators for women to walk daily by age groups.

<table>
<thead>
<tr>
<th>Domains</th>
<th>Full sample (N=400), n (%)</th>
<th>Respondents aged 21-49 years (n=276), n (%)</th>
<th>Respondents aged 50-75 years (n=124), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall physical well-being</td>
<td>387 (96.8)</td>
<td>266 (96.4)</td>
<td>121 (97.6)</td>
</tr>
<tr>
<td>Overall mental well-being(^\text{a})</td>
<td>344 (86)</td>
<td>244 (88.4)</td>
<td>100 (80.7)</td>
</tr>
<tr>
<td>Most cited motivators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feels good physically</td>
<td>336 (84)</td>
<td>235 (85.1)</td>
<td>101 (81.5)</td>
</tr>
<tr>
<td>Reduces stress levels</td>
<td>298 (74.5)</td>
<td>213 (77.2)</td>
<td>85 (68.6)</td>
</tr>
<tr>
<td>Helps with weight management(^\text{b})</td>
<td>286 (71.5)</td>
<td>186 (67.4)</td>
<td>100 (80.7)</td>
</tr>
<tr>
<td>Gives me more energy</td>
<td>283 (70.8)</td>
<td>194 (70.3)</td>
<td>89 (71.8)</td>
</tr>
<tr>
<td>Reduces risk for chronic illness or improves overall health(^\text{b})</td>
<td>263 (65.8)</td>
<td>168 (60.9)</td>
<td>95 (76.6)</td>
</tr>
<tr>
<td>Reduces anxiety(^\text{b})</td>
<td>243 (60.8)</td>
<td>181 (65.6)</td>
<td>62 (50)</td>
</tr>
<tr>
<td>Reduces depression</td>
<td>229 (57.3)</td>
<td>164 (59.4)</td>
<td>65 (52.4)</td>
</tr>
</tbody>
</table>

\(^{a}\)\(P<0.05\).
\(^{b}\)\(P<0.01\).
Daily Current Walking Routines and Preferences

Results on current and preferred daily walking routines showed that the 21- to 49-year group had higher percentages than the 50- to 75-year group in the categories of taking child or children on walks (n=39, 14.1% vs n=3, 2.4%; P<.001), walking for work or use of public transit (n=92, 33.3% vs n=14, 11.3%; P<.001), and walking on campus (n=84, 30.4% vs n=7, 5.7%; P<.001). The 50- to 75-year group scored highest in the categories of walking the dog (n=48, 39% vs n=69, 25%; P=.005) and none of the above, referring to all of the options as motivators to walk (n=59, 48% vs n=35, 28.2%; P<.001). Findings in Table 4 show that more women in the 21- to 49-year group prefer to walk alone than in the 50- to 75-year group (n=193, 70% vs n=62, 50%; P<.001), while more women in the 50- to 75-year group prefer to walk with a friend (n=66, 53.2% vs n=105, 38%; P<.001), or walk with their partner (n=44, 35.1% vs n=76, 27.4%), or with their dog (n=45, 36.2% vs n=72, 26.1%; P=.04).

Table 4. Survey results of daily current walking routines and preferences by age groups.

<table>
<thead>
<tr>
<th>Domains</th>
<th>Full sample (N=400), n (%)</th>
<th>Respondents aged 21-49 years (n=276), n (%)</th>
<th>Respondents aged 50-75 years (n=124), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question: Where does walking fit into your daily routine?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walking the dog</td>
<td>117 (29.3)</td>
<td>69 (25)</td>
<td>48 (38.7)</td>
</tr>
<tr>
<td>Take child or children on walks</td>
<td>42 (10.5)</td>
<td>39 (14.1)</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>For work or to use public transit</td>
<td>106 (26.5)</td>
<td>92 (33.3)</td>
<td>14 (11.3)</td>
</tr>
<tr>
<td>Part of my job</td>
<td>36 (9)</td>
<td>26 (9.4)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>Walk on campus</td>
<td>91 (22.8)</td>
<td>84 (30.4)</td>
<td>7 (5.7)</td>
</tr>
<tr>
<td>None of the above</td>
<td>137 (34.3)</td>
<td>78 (28.3)</td>
<td>59 (47.6)</td>
</tr>
<tr>
<td>Preferred walking company</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alone</td>
<td>254 (63.5)</td>
<td>267 (69.6)</td>
<td>62 (50)</td>
</tr>
<tr>
<td>With their partner</td>
<td>131 (32.8)</td>
<td>97 (35.1)</td>
<td>34 (27.4)</td>
</tr>
<tr>
<td>With a friend</td>
<td>170 (42.5)</td>
<td>104 (37.7)</td>
<td>66 (53.2)</td>
</tr>
<tr>
<td>In a social group</td>
<td>37 (9.3)</td>
<td>28 (10.1)</td>
<td>9 (7.3)</td>
</tr>
<tr>
<td>With their dog</td>
<td>117 (29.3)</td>
<td>72 (26.1)</td>
<td>45 (36.3)</td>
</tr>
</tbody>
</table>

Women’s Beliefs Around Increasing Walking Behavior

The results of survey questions about beliefs around walking behaviors showed one significant value in the 50- to 75-year group associated with the survey statement: “I would walk more often if people around me walked more often” (scale: 1=strongly disagree to 5=strongly agree). Overall, respondents scored 3.67, while respondents aged 21-49 years scored 3.78, and respondents aged 50-75 years scored 3.41 (P<.001). Other survey statements using the same response scale did not show significance: “I would walk more if I had an app with reminders,” all respondents scored 2.83, ages 21-49 years scored 2.84, and ages 50-75 years scored 2.80; and “I believe I can walk up to 8000 steps on most days with proper support,” all respondents scored 4.04, ages 21-49 years scored 4.00, and ages 50-75 years scored 4.12 (Figure 2).
Women’s Attitudes Toward the Importance of Mobile App Features

Results for survey questions concerning the importance of features for a mobile app showed a significantly higher number of positive responses in the 21- to 49-year group for the following features (scale: 1=low, 2=medium, and 3=high): digital community support ($P=.03$), rewards or point system ($P<.001$), and seeing a daily or weekly or monthly chart of progress ($P<.001$). No significant differences were found for tracking of steps, reminders to walk daily, reminders to wear a step-tracking device, daily in-app motivational messaging, and daily in-app educational messaging.

In Table 5, a deeper analysis of the importance of features on a mobile app was examined by age categories delineated by age decades. The results showed that the youngest age group of women, aged 20-29 years, placed the highest importance on the following features: reminders to walk daily, reminders to wear a step-tracking device, digital community for support ($P<.05$), daily in-app motivational messaging, daily in-app educational messaging, in-app reward or point system ($P<.001$), and daily or weekly or monthly progress reports ($P<.001$). The 50- to 75-year group only placed higher importance on step tracking.

Figures 3-5 map out mobile app features grouped into different categories: the importance of step tracking and reminders, importance of community support and daily messaging, importance of in-app rewards, progress charts (daily, monthly, and weekly), and willingness to use an app designed for women and to wear a step-tracking device. Our results show that approximately the same percentage of women in both groups use a step-tracking device (n=64, 52% in the younger group and n=127, 46% in the older group), and the same applies to using a mobile app to track daily steps (n=91, 33% and n=40, 32%). Responses to the survey question, “I would be willing to use a walking app designed for women and to wear an activity-tracking device to increase daily walking,” showed overwhelmingly positive responses among all women: yes (n=240, 60%), no (n=55, 13.8%), and not sure (n=105, 26.3%).
Table 5. Survey results of the importance of women’s perceptions of mobile app features by age decades.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Importance levels<sup>a</sup></th>
<th>20-29 years</th>
<th>30-39 years</th>
<th>40-49 years</th>
<th>50-59 years</th>
<th>60-69 years</th>
<th>70+ years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking steps</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>2.1</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Reminders to walk daily</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Reminder to wear a step-tracking device</td>
<td>1.7</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Build digital community for support<sup>b</sup></td>
<td>1.7</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Daily motivational messaging</td>
<td>1.5</td>
<td>1.6</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Daily educational messaging</td>
<td>1.5</td>
<td>1.6</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Reward or point system<sup>c</sup></td>
<td>1.6</td>
<td>1.9</td>
<td>1.6</td>
<td>1.4</td>
<td>1.5</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Seeing a daily or weekly or monthly chart of progress<sup>c</sup></td>
<td>2.3</td>
<td>2.5</td>
<td>2.4</td>
<td>2.0</td>
<td>2.2</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Willingness to use a walking app designed for women and to wear a step-tracking device</td>
<td>2.4</td>
<td>2.4</td>
<td>2.3</td>
<td>2.5</td>
<td>2.2</td>
<td>2.4</td>
<td>2.3</td>
</tr>
</tbody>
</table>

^a1=low, 2=medium, and 3=high.

^b<i>P</i><.05.

^c<i>P</i><.001.

Figure 3. Survey results of the importance of step tracking and reminders for women by age decades.
Discussion

Principal Findings

This study explores the relationship between age and women’s self-reported motivations, barriers, attitudes, and beliefs toward daily walking. It further assesses attitudes toward features of a mobile app designed to sync with a wearable step tracker to increase and maintain levels of daily walking among women. Findings indicate that barriers, motivators, and beliefs around daily walking and the importance of preferred features of a mobile app vary according to women’s ages. Therefore, messaging and app features should be tailored to different age groups of women.

Explanations for Women’s Walking Behaviors

Not surprisingly, women in the 21- to 49-year group, comprised primarily of students, women of childbearing age, young mothers, and women with careers, tended to walk more with children, walk to work or use public transit, or walk on campus.
The majority prefer to walk alone, which may be attributed to the need for alone time in their hectic lives, similar to the results of Jones et al’s [21] study in which women wanted “me time” and a respite from their responsibilities. Women in the 50- to 75-year group also preferred to walk alone, but they were more accepting of walking with a friend. One reason might be that more women in the older group have leisure time to walk with friends. In this study, older women were more inclined to walk more if people around them walked more often, which is an important data point to be considered in any walking intervention for older women. These age-focused findings demonstrate the need for more research on gender-tailored fitness apps that satisfy the specific needs of women’s lifestyles at different stages. Catering to women engaged in childcare, for instance, requires communication reminding them to make time for themselves without feeling guilty, while older women might respond well to messaging about walking with a friend to help keep them motivated. There is a dearth of research that systematically examines the acceptability, user experiences, and outcomes of tailored messaging in walking apps for women and the potential impacts they deliver.

Barriers to Women Walking

The main barriers to walking in the 21- to 49-year group included lack of time, lack of motivation, and work scheduling. This is understandable as many women might be advancing their careers, while also juggling families and other pressures. For the 50- to 75-year group, these same barriers existed but were not as significant and became less significant as age increased. Previous studies have shown lack of time as a primary barrier to PA, as well as professional obligations, family care responsibilities, health issues, poor motivation, and absent social support, which are consistent with our results [7,19]. Addressing these barriers has generated meaningful insights in previous research but has not yet led to a large increase in PA that is sustained over time [25].

This study did not find environmental and safety concerns as common barriers, but these may be related to our sample demographic of mostly White women in either their 20s or 50s. Other studies have shown that in the presence of individual characteristics, such as low self-efficacy and functional limitations, the effects of a prohibitive neighborhood environment on walking behavior in older women were further magnified [6]. More work is desperately needed to address the barriers of environmental concerns, particularly among older women in underserved or unsafe neighborhoods.

Motivators for Women to Walk

Both age groups of women in this study were motivated to walk because it makes them feel good physically, gives them more energy, and reduces depression, suggesting the powerful physical and mental health benefits of walking. The younger group was more focused on reducing anxiety, while the older group noted walking for burning calories, weight management, reducing the risk of chronic disease, and improving overall health. However, given our concurrent findings of relatively high rates of self-reported chronic disease in the 21- to 49-year group, messaging on chronic disease prevention and management in a walking app should be equally targeted to both groups but in different contexts with tailored nuances.

Menopause increases the risk of weight gain and chronic diseases, happening simultaneously as women’s PA levels tend to decline [27]. Research by Sydora et al [10] found that women experiencing menopause were not averse to regular exercise, especially those seeking to avoid the perceived increased health risks of hormonal therapy, and that walking is the preferred type of exercise among menopausal women. In this study, walking to reduce stress and anxiety was less important for the older group, which supports the results of the Hedgeman et al [28] study on perceived stress across midlife, which found self-reported stress decreased for most women as they transitioned across midlife.

The social aspect of walking, whether to make friends or for social support, has been well received in previous studies, particularly in midlife women [7]. Interestingly, our results showed that social- and family-based walking was not as popular as walking with a friend or walking alone in both age groups of women. A study by Cho et al [29] offers insights into how walking with a partner might motivate walking due to social support; however, it often results in reduced speed that may unintentionally reduce health benefits, a trade-off that needs more research. A feature to build a digital community of support was more favored in the younger group. This is admitted contradictory, as our data for the 21- to 49-year group showed a preference to walk alone. Furthermore, while the younger group may not want to walk in person with others or they cannot fit it into their schedules, they placed importance on a digital community of support through a mobile app. A study by Hollander et al [20] found that a mobile app for walking (not limited to women) created a digital connection among walking group members, and participants felt that walking improved their mental health, helped to relieve stress, and made them feel more connected with friends or family members. More research should be aimed at determining the effects of sociodemographic variables of women (eg, income, location, age, race, and ethnicity) and their preferences for a digital or in-person community to support walking.

Acceptance of Technology

The use of smartphones, mobile apps for fitness, and wearable devices to track steps, such as Fitbit, are accepted by women of all ages, and adoption of these devices and exercise apps increases every year [30]. The Pew Research Center concluded that about 1 in 5 Americans use a smartwatch or fitness tracker, with more women than men wearing one (25% vs 18%), and among age groups, more adults aged 18-49 years (25%) wearing one than people aged 50 years and older (17%) [30,31]. In Tong et al’s [32] study, the use of mobile apps and fitness trackers during the COVID-19 pandemic was associated with higher levels of PA in a sample of educated and likely health-conscious individuals among males and females [32]. Our survey responses showed that while an equal percentage of both groups of women wore fitness trackers in general, during COVID-19, higher percentages of women in the younger group reduced their daily walking, as opposed to the older group who maintained or increased steps. More research is needed to ensure walking is
maintained among all women during adverse events, such as a pandemic.

Successful interventions to increase women’s daily walking should ideally combine a wearable tracking device with support from mobile app features, such as goal setting, self-monitoring, positive feedback, and social support [9,24,25]. In 2022, findings from a systematic literature review on assessing the acceptability and effectiveness of mobile-based PA interventions for midlife women during menopause concluded that mobile apps and wearable activity trackers showed a small to moderate increase in moderate to vigorous PA among midlife women [27]. The most acceptable features of mobile apps were manual goal setting and step tracking plus the attractiveness and comfort of wearable activity trackers [27].

In this study, younger women placed importance on app features for community support, rewards or a point system, and progress charts, and they are more inclined to use technology for lifestyle interventions, from gaining and redeeming points for coffee and grocery purchases to using apps to track sleep and menstrual cycles. Women in the 21- to 49-year group placed high importance on reminders to walk daily, reminders to wear a step-tracking device, motivational messaging, and educational messaging. The 50- to 75-year group placed the highest importance on step tracking, though they did not place significant importance on progress charts. This may be a technology-based generational difference as more younger women engage with progress charts for academics, digital banking, and other platforms and therefore are more inclined to accept them and to possess the digital literacy to use them with confidence. Daily motivational and educational messaging was more accepted in the younger group perhaps because mini modules of communication, such as text messages and direct messaging on social media platforms, are widely used.

Insufficient exercise among women of all ages is a global public health issue [33]. Walking should be encouraged as much as possible using evidence-based tools to obtain sustainable results. Integrating fitness into health care on a large scale continues to be a challenge, but this is changing as the US health care system is moving more toward a value-based model of care with a focus on prevention and population health versus a fee-for-service model [34]. Today, a prescription for exercise is changing from a doctor simply advising a patient to exercise more to writing out a prescription for exercise, mentioning the type, duration, and frequency [35].

As more doctors are prescribing exercise for chronic health conditions, such as diabetes and hypertension [30], mobile apps connected to wearable devices are playing an increasingly important role in disease management and prevention. Mobile health (mHealth) tools that provide bioinformatic data to doctors and care teams, such as mobile apps and wearable tracking devices, ideally should be supplied or reimbursed by insurers or employee wellness accounts. One example is the United Health Care Rewards plan that provides an app to members, and those who add a fitness tracker, including Apple Watch or other tracking device, have opportunities to earn US $5.25 per week for walking 5000 steps per day and US $8.75 per week for 30 active minutes of fitness a day [36].

Understanding how and why women are motivated to walk will lead to increasingly effective interventions to manage physical and mental health issues at all ages. As the US population aged 65 years and older is projected to nearly double over the next 3 decades, from 48 million to 88 million by 2050 [37], promoting PA among older adults is an important public health, clinical, and economic issue deserving greater attention [27,31,38]. Ideally, future mHealth walking interventions that are uniquely designed for women will combine a wearable tracking device and mobile app with evidence-based behavioral approaches to promote daily walking [39]. This study is among the few focused on women’s walking habits from ages 21 to 75 years old, providing insights into walking behaviors and the motivations and barriers behind them. Our results provide a foundation on which to guide future research and development in this space.

Strength and Limitations

The major strength of this study was the number of respondents (N=400), all of whom completed the survey 100%. This study had several limitations. First, the survey included self-selected participants who might already be walking enough or would be willing to increase their daily steps. Second, survey question 15 asked approximately how many steps a participant walks each day. Limitations to answering this question include the inherent difficulty to recall and estimate accurately the number of steps one walks daily without using a tracker, which may lead to a lack of reliable data. Inflating daily step counts may also reflect an element of social desirability. Third, the uneven number of participants in each group causes concern as well as the lack of diversity in the sample. Fourth, we did not specifically define chronic disease in the survey. Reporting might be different among women with a chronic disease that significantly reduces mobility, such as rheumatoid arthritis, versus one that does not normally inhibit walking, such as diabetes.

Conclusions

Insufficient PA is a leading risk factor for noncommunicable diseases and can also negatively affect mental health and quality of life for women of all ages. Findings indicate that barriers, motivators, and beliefs around daily walking and the importance of preferred features of a mobile app vary according to women’s ages. Messaging and app features should be tailored to different age groups of women. These study results can be viewed as a foundation for future research and development of mHealth interventions to effectively increase daily walking among women of all ages.
Acknowledgments
The research team would like to thank the Milken Institute School of Public Health, The George Washington University for supporting the institutional review board for this study. This research was completely voluntary; no funding was used for any part of this research. The authors would like to thank anyone who participated in their anonymous survey. No artificial intelligence was used in any portion of this paper.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions
CJ conceptualized and designed the study and survey, managed recruitment, collected data, and drafted the paper. SC interpreted and analyzed the data, created the tables and figures, and made contributions to the overall paper. AV assisted with the study and survey design and made significant editorial contributions to the paper. MN helped interpret the data and critically reviewed the paper. All authors read and approved the final paper.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Web-based survey instrument with 31 questions designed to measure women’s attitudes, barriers, and motivators toward daily walking and the features of a mobile app to increase daily walking.

[DOCX File, 24 KB - formative_v8i1e48668_app1.docx]

References

21. Jones et alJMIR FORMATIVE RESEARCH

24. Conger SA, Bassett D, Toth L. A boom in fitness trackers isn’t leading to a boom in physical activity—men, women, kids and adults in developed countries are all moving less. ProQuest. URL: https://www.proquest.com/docview/265936716/abstract/B0DA512D27B44EACPO/1 [accessed 2022-06-12]

Abbreviations

mHealth: mobile health

PA: physical activity

©Catherine Jones, Shikha Chandarana, Amita Vyas, Melissa Napolitano. Originally published in JMIR Formative Research (https://formative.jmir.org), 06.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Brief Intervention as a Method to Reduce Z-Hypnotic Use by Older Adults: Feasibility Case Series

Maria Torheim Bjelkarøy1,2, BSc, MChiro; Tone Breines Simonsen2, MSc; Tahreem Ghazal Siddiqui1,2, PhD; Sigrid Halset3, MD; Socheat Cheng1,2, PhD; Ramune Grambaite3,4, PhD; Jūratė Šaltytė Benth1,2, Prof Dr; Jennifer Gerwing2, PhD; Espen Saxhaug Kristoffersen5,6, PhD; Christofer Lundqvist1,2,5, Prof Dr

1Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus Ahus, Lørenskog, Norway
2Health Services Research Unit Helsetjenesteforskning, Akershus University Hospital, Lørenskog, Norway
3Department of Geriatrics, Akershus University Hospital, Lørenskog, Norway
4Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
5Department of Neurology, Akershus University Hospital, Lørenskog, Norway
6Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway

Corresponding Author:
Maria Torheim Bjelkarøy, BSc, MChiro
Institute of Clinical Medicine
Faculty of Medicine
University of Oslo, Campus Ahus
Sykehusveien 25
Lørenskog, 1478
Norway
Phone: 47 67960000
Email: matobj@ahus.no

Abstract

Background: Z-hypnotics or z-drugs are commonly prescribed for insomnia and sleep difficulties in older adults. These drugs are associated with adverse events and dependence and are not recommended for long-term use. Despite evidence of older adults being more sensitive to a wide array of adverse events and clinical guidelines advocating limiting use, inappropriate use in this population is still prevalent. Previous intervention studies have focused mainly on prescriber information. Simple, individually focused intervention designs are less studied. Brief intervention (BI) is a simple, easily transferable method mainly used to treat patients at risk of alcohol overuse.

Objective: Our objective was to design and test the feasibility and acceptability of a BI intervention adapted to address individual, inappropriate use of z-hypnotics among older adults. This preparatory study aimed to optimize the intervention in advance of a quantitative randomized controlled trial investigating the treatment effect in a larger population.

Methods: This feasibility case series was conducted at Akershus University Hospital, Norway, in autumn 2021. We included 5 adults aged ≥65 years with long-term (≥4 weeks) use of z-hypnotics and 2 intervening physicians. Additionally, 2 study investigators contributed with process evaluation notes. The BI consists of information on the risk of inappropriate use and individualized advice on how to reduce use. The focus of the intervention is behavioral and aims, in cooperation with the patient and based on shared decision-making, to change patient behavior regarding sleep medication rather than physician-based detoxification and termination of z-hypnotic prescriptions. Qualitative and descriptive quantitative data were collected from intervening physicians, study investigators, and participants at baseline, immediately after the intervention, and at the 6-week follow-up.

Results: Data were obtained from 2 physicians, 2 study investigators, and 5 participants (4 women) with a median age of 84 years. The average time spent on the BI consultation was 15 minutes. All 5 participants completed the intervention without problems. The participants and 2 intervening physicians reported the intervention as acceptable and were satisfied with the delivery of the intervention. After the intervention, 2 participants stopped their use of z-hypnotics completely and participated in the follow-up interview. Study investigators identified logistical challenges regarding location and time requirements. Identified aspects that may improve the intervention and reduce dropouts included revising the intervention content, focusing on rebound insomnia, adding an information leaflet, and supporting the patient in the period between the intervention and follow-up. The
notion that the intervention should best be located and conducted by the patient’s own general practitioner was supported by the participants.

Conclusions: We identified important aspects to improve the designed intervention and found that the BI is feasible and acceptable for incorporation into a larger randomized trial investigating the treatment effect of BI for reducing z-hypnotic use by older adults.

Trial Registration: ClinicalTrials.gov NCT03162081; http://tinyurl.com/rmzx6brn

(JMIR Form Res 2024;8:e51862) doi:10.2196/51862

KEYWORDS
prescription medication misuse; older adults; brief intervention; z-drugs; benzodiazepine-related drugs; BZD-related drugs; z-hypnotic; intervention; feasibility; case series; insomnia; sleep; substance overuse; older adult; treatment; reduction; benzodiazepine; hypnotics

Introduction

Sleep difficulties and symptoms of insomnia are common, experienced by up to 50% of older adults [1]. Prevalence is higher in the older population than the younger population, and not staying asleep is the most common complaint, followed by initiating sleep and nonrestorative sleep [1-4]. Sleep difficulties in older adults are often associated with comorbid conditions including obstructive sleep apnea, cardiovascular disease, restless legs, nocturia, depression, and neurological conditions, as well as side effects from medication use [3,5].

Z-hypnotics or z-drugs (zolpidem, zopiclone, and zaleplon) are commonly used in the treatment of insomnia and sleep difficulties in older adults. These drugs have been suggested to be milder and safer options than benzodiazepines with a shorter half-life and selective gamma-aminobutyric acid (GABA)–binding qualities [6]. They are now the dominant prescribed sleeping medication in many countries [7,8]. Even so, these drugs are associated with adverse events and dependence [9,10]. A meta-analysis concluded that 13 patients need to be treated for 1 patient to experience improved sleep, while the number needed to harm (any adverse event) is 6 patients [11]. Z-hypnotics are not recommended for more than 2 weeks to 4 weeks of continuous use [12,13], as such use has been associated with reduced sleep quality, reduced cognitive function, and reduced psychomotor skills, including increased risk of falls [11,14]. In our work investigating hospitalized older Norwegian adults, we found a substantial proportion using z-hypnotics on a regular basis with a further considerable share having addictive behavior related to their use [15]. Reducing the use of these drugs by older adults is associated with improved muscle strength, better sleep quality, improved quality of life, and reduced daytime fatigue [16,17]. Despite the risks associated with z-hypnotics, reducing their use seems difficult for patients, with initial rebound insomnia as a common withdrawal symptom [9].

Evidence supports brief interventions (BIs) for reducing z-hypnotic and benzodiazepine use [18]. A BI is a specific structured intervention method that aims to facilitate and encourage a behavioral change in the patient. We developed a BI based on the framework suggested by Babor and Higgins-Biddle [19]. This framework has previously been used as an early intervention for patients at risk of substance abuse and is effective in treating patients at risk of alcohol overuse. Our research team has demonstrated that the BI method is effective for reducing pain medication use in patients with medication-overuse headache [20,21]. Based on this, we suggest that an adapted BI may also be beneficial for reducing the use of z-hypnotics. The BI scheme is a short one-time intervention based on individual behavioral adaptation and shared decision-making. It offers possibilities for the intervening physician to provide individualized support for the participant. The focus is to reduce the use of potentially addictive medications, in this case z-hypnotics, and not as an intervention to specifically treat insomnia. Cognitive behavioral therapy for insomnia is the recommended first-line treatment for insomnia [22] and includes a range of different components including sleep hygiene. With the risk of experiencing rebound insomnia as a side effect of reducing the use of z-hypnotics, the individualized BI scheme is open to provide advice on sleep hygiene, although this is not the main focus of the BI itself. Our aim was to investigate the logistics, feasibility, and acceptability of using the BI with older adults who have inappropriate use of z-hypnotics, in order to optimize the intervention itself in preparation for a later full-scale randomized controlled trial (RCT).

Methods

This feasibility study investigated the logistics, feasibility, and acceptability of our BI design for reducing the use of z-hypnotics by older adults. The study was conducted at Akershus University Hospital, Norway, during September 2021 to November 2021.

Main Outcomes

The main outcomes for this study were the feasibility and acceptability of the intervention. Acceptability was tested based on indicated parameters [23-26] with an emphasis on the following: logistics including the costs and practicalities, burden and the perceived effort for participation, affective attitude and self-efficacy toward the intervention, and intervention coherence and perceived effectiveness. This was investigated using the following research questions:

- How do the logistics work out from the participating patient point of view?
- How do the logistics and administration work out from an organizing point of view?
- Are the instruments for data collection acceptable?
• Is the BI framework acceptable to perform from a physician point of view?
• Is the BI understandable and acceptable for the patients?
• How do the patients experience the attempt to reduce use of z-hypnotics?

The collected data consisted of qualitative measures and descriptive data collected at baseline and a 6-week follow-up.

Participants
Adults aged 65 years and older with long-term (≥4 weeks) use of z-hypnotics were invited to participate. Prescription of z-hypnotics in Norway is exclusively approved for the purpose of sleep difficulties, with or without fulfilling the diagnostic criteria for insomnia [27,28]. Participants were recruited from eligible z-hypnotic users in an in-hospital observational study of 246 older adults originally conducted in 2017 and 2018 [15] as well as directly through the geriatric department at the hospital. The participation flowchart is presented in Figure 1.

Figure 1. Study population flowchart. BI: brief intervention; SDS: Severity of Dependence Scale.

We included 5 participants aged ≥65 years with previously reported inappropriate use of z-hypnotics. Inappropriate use was defined as using z-hypnotics for ≥5 days per week for ≥4 weeks based on clinical guidelines [12,13]. A score ≥5 on the 15-point Severity of Dependence Scale (SDS) indicated a risk of dependence [29]. Participants were not excluded if there was a discrepancy between previously reported inappropriate use and their current self-reported use during the BI intervention. As part of the individualized intervention, self-reported use as well as the SDS score were incorporated in the discussion as basis for the individual plan (see the description of the BI in Figure 2). Exclusion criteria consisted of having a Mini-Mental State Examination (MMSE) score ≤21, a serious visual or hearing impairment, insufficient Norwegian language skills, and the following pre-existing diagnoses: moderate to severe depression, stroke, dementia, or psychiatric disorders.
Study Logistics

The intervention consisted of a baseline consultation and follow-up 6 weeks later. The baseline data collection was conducted in a hospital setting either in a consultation room or at the bedside by the study investigators (MTB and TBS). Subsequently, the BI consultation was conducted separately by 1 of 2 participating physicians (CL and SH). After the intervention session, both physicians and participating patients completed a short, written questionnaire with open-text responses regarding their experiences with the BI. The follow-up 6 weeks later involved a home visit by the study investigators (MTB and TBS) and consisted of questionnaires and a qualitative semistructured interview. This study was conducted during the COVID-19 pandemic, and care was taken with regards to safety measures and infection control.

Brief Intervention

The developed BI scheme was based on the BI framework as described by Babor and Higgins-Biddle [19]. Based on studies previously conducted by our research group, we adapted the BI scheme for older adults using z-hypnotics [30,31].

Application of the BI was conducted in 2 steps. The first step consisted of providing training, information, and communication advice for the intervening physicians. The second step consisted of the physicians performing the BI scheme with the participants included in the study.

The BI conversation with the participant consisted of the following (full procedure outlined in Figure 2): identifying the risk of the participant’s dependency on z-hypnotics using the SDS questionnaire (Table 1), informing participants of their risk of inappropriate use and dependence, providing structured information using fact sheets about difficulties associated with

<table>
<thead>
<tr>
<th>Invitation to participate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS score</td>
</tr>
<tr>
<td>- A score of ≥5 indicates risk of inappropriate use of z-hypnotics.</td>
</tr>
<tr>
<td>- With a score < 5, the patient may be offered a shortened version of the BI consisting of general information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A full individualized BI was indicated at an SDS score above the cutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Information regarding limiting use beyond 2-4 weeks</td>
</tr>
<tr>
<td>- Relate to length of patient’s own use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information regarding use of sleeping medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Information on who is at risk of inappropriate use: older and especially 75-84 years, women more than men, living alone, pain intensity</td>
</tr>
<tr>
<td>- Information regarding combination with other centrally acting medications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information regarding possible consequences of inappropriate use</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Associated with risk of addiction to sleeping medications</td>
</tr>
<tr>
<td>- May have poorer quality of life</td>
</tr>
<tr>
<td>- Associated with reduced cognitive function, which can lead to difficulties with activities of daily living</td>
</tr>
<tr>
<td>- Long-term use may lead to tolerance, reduced effect, and need of increased dosage for effect</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advantages of reducing medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Avoid reduced cognitive function due to medication use both in long and short-term use</td>
</tr>
<tr>
<td>- Avoid side effects such as constipation, drowsiness, confusion, loss of coordination, and risk of falls</td>
</tr>
<tr>
<td>- Lower risk of addiction and inappropriate use of sleeping medications</td>
</tr>
<tr>
<td>- Higher quality of life</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Explanation about rebound insomnia</td>
</tr>
<tr>
<td>- Difficulties may last 1-2 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invitation to reduce medication use and formulate individual treatment plan including support</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Individual plan: reduce or stop medication</td>
</tr>
<tr>
<td>- Evaluate sleep at follow-up</td>
</tr>
<tr>
<td>- Support from doctor in case of difficulties</td>
</tr>
<tr>
<td>- Write down goals together with patient</td>
</tr>
</tbody>
</table>
reducing medication and possible withdrawal symptoms such as rebound insomnia [32,33], and adjusting individualized information to the participant’s own experience and inviting the participants to make a decision toward reducing or stopping use and to make a plan on how to proceed. The plan could include strategies on how to handle withdrawal symptoms including rebound insomnia and strategies for contact and support from a physician if needed.

Table 1. Questions in and scoring of the Severity of Dependence Scale (SDS).

<table>
<thead>
<tr>
<th>Question number</th>
<th>Question content</th>
<th>Answer options and corresponding scoresa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Do you think your use of sleeping pills is out of control?</td>
<td>Never/almost never=0, sometimes=1, often=2, always/nearly always=3</td>
</tr>
<tr>
<td>2</td>
<td>Does the prospect of missing a dose make you anxious or worried?</td>
<td>Never/almost never=0, sometimes=1, often=2, always/nearly always=3</td>
</tr>
<tr>
<td>3</td>
<td>Do you worry about your use of sleeping pills?</td>
<td>Never/almost never=0, sometimes=1, often=2, always/nearly always=3</td>
</tr>
<tr>
<td>4</td>
<td>Do you wish you could stop?</td>
<td>Never/almost never=0, sometimes=1, often=2, always/nearly always=3</td>
</tr>
<tr>
<td>5</td>
<td>How difficult do you find it to stop or go without your sleeping pills?</td>
<td>Not difficult=0, quite difficult=1, very difficult=2, impossible=3</td>
</tr>
</tbody>
</table>

aEach is scored on a 4-point scale (0-3), and the total maximum score is 15 points. In older adults using z-hypnotics, the cutoff score was ≥5 [26].

Data Collection and Instruments

The main focus was to test the experience with, acceptability of, and logistics of the entire BI including the incorporation of quantitative assessment instruments that would be needed in a full-scale RCT. In this study, however, the demographic information and instruments were only used as descriptive information. The data collected included demographic information; the MMSE [34]; health-related quality of life measured with the EuroQol Group’s EQ-5D-3L [35]; the 6-item De Jong Gierveld Loneliness Scale [36]; the Hospital Anxiety and Depression Scale [37]; visual analogue scale (VAS) [38] scores for intensity of pain, anxiety, and depression; questions on experiences with pain; questions on experiences with sleep difficulties; the Bergen Insomnia Scale (BIS) [39]; the PROMIS-57 Profile v2.1 for sleep quality [40]; the clock test [41]; Cognistat [42]; the SDS [29]; the Cumulative Illness Rating Score-Geriatrics [43]; the Barthel Index for Activity of Daily Living [44]; the single leg balance test [45]; a record of medications and dosage; the degree of expectations and beliefs in the intervention and outcome measured using a VAS at baseline; and a written plan with individual goals for reducing z-hypnotics. A questionnaire on the experience delivering the BI was collected from physicians after each session. Process evaluation notes were obtained from study investigators.

At the 6-week follow-up, we also collected the experiences with the intervention and outcome using a VAS and a medication diary (z-hypnotics) for the past 6 weeks. We also conducted a semistructured qualitative interview (interview guide in Multimedia Appendix 1) evaluating the participants’ experiences with the BI conversation and their experiences during the 6-week follow-up period. The qualitative interview was tape-recorded and subsequently transcribed verbatim and analyzed.

Analysis

The qualitative data were analyzed by investigators MTB and TBS using the text condensation method [46], and findings are reported as quotations. ELAN computer software (version 6.3; Max Planck Institute for Psycholinguistics) was used to transcribe the interviews. SPSS for Windows (version 26.0; IBM Corp) was used to record quantitative data. Quantitative data are reported descriptively.

Ethical Considerations

This study was approved by the Regional Committee for Medical and Health Research Ethics (REK) (2016/2289) and the Akershus University Hospital data protection officer (PVO; 17-054). All participation was by written informed consent. Collected data were analyzed and stored de-identified as required by the REK and PVO. Data were stored on a protected server approved by the Akershus University Hospital PVO. Participants received no financial nor other compensation for their participation.

Patient and Public Involvement

The Health Services Research Unit User Advisory Board at Akershus University Hospital reviewed and provided advice about the study. The board includes both patient representatives and representatives of the health services as well as other public representatives.

Results

Participants

We recruited 5 older adults (4 women) with a median age of 84 years and ≥4 weeks of z-hypnotic use. We recruited 3 of the 5 participants from eligible participants in our previous hospital-based observational study [15,29,47-50], and 2 participants were recruited directly through the geriatric department. The study population flowchart is presented in Figure 1.

Of the 5 participants, 4 reported using z-hypnotics ≥6 days per week, and 1 participant reported using z-hypnotics 1 day per week at baseline. The median number of days per week using z-hypnotics was 7 days. The median SDS score was 5. The median BIS score was 27 (max score 42), and 3 participants reported that they believed that they would have greater sleep disturbance. The main reasons for sleep disturbance included extensive daytime napping, nocturia, pain, and lying in bed thinking. Demographic and clinical characteristics of the
participants are presented in Table 2. At baseline, 3 participants reported that their current experience with not regularly taking their z-hypnotics resulted in greater sleep disturbance, and 3 patients reported that they believed that they would have greater sleep disturbance if they did not take their sleeping medication (Table 2).

Table 2. Demographic data for the study population and beliefs about sleeping medication at baseline.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participant 1</th>
<th>Participant 2</th>
<th>Participant 3</th>
<th>Participant 4</th>
<th>Participant 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>Age (years)</td>
<td>81</td>
<td>70</td>
<td>84</td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>MMSE(^a) score</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>BIS(^b) score</td>
<td>22</td>
<td>4</td>
<td>27</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>Insomnia(^c)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SDS(^d) score</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Use of medication (days per week)</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Medication</td>
<td>Zopiclone</td>
<td>Zopiclone</td>
<td>Zolpidem</td>
<td>Zolpidem</td>
<td>Zopiclone</td>
</tr>
<tr>
<td>EQ-5D VAS(^e) score</td>
<td>45</td>
<td>80</td>
<td>70</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Cognistat score</td>
<td>70</td>
<td>67</td>
<td>65</td>
<td>66</td>
<td>61</td>
</tr>
<tr>
<td>Main reason for sleep disturbance</td>
<td>Daytime napping 4-5 times/day</td>
<td>Lay in bed thinking</td>
<td>Nocturia 3 times/night</td>
<td>Pain, unsettled, and thinking</td>
<td>Sleep itself and thinking</td>
</tr>
<tr>
<td>CIRS-G(^f)</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Current beliefs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep without meds(^g)</td>
<td>Unsure if there is a difference</td>
<td>Worse</td>
<td>Worse</td>
<td>Worse</td>
<td>Do not know, always take it</td>
</tr>
<tr>
<td>Belief about sleep without meds(^h)</td>
<td>As good</td>
<td>Worse</td>
<td>Worse</td>
<td>Worse</td>
<td>Not sure</td>
</tr>
</tbody>
</table>

\(^a\)MMSE: Mini-Mental State Examination.
\(^b\)BIS: Bergen Insomnia Scale (range 0-42).
\(^c\)Occurrence of insomnia according to the Bergen Insomnia Scale.
\(^d\)SDS: Severity of Dependence Scale.
\(^e\)VAS: visual analogue scale.
\(^f\)CIRS-G: Cumulative Illness Rating Score-Geriatrics.
\(^g\)“How have you slept the nights you have not taken sleeping pills?”
\(^h\)“How do you think you will sleep if you do not take your sleeping pills?”

Intervention Logistics, Physicians’ Experience, and Feasibility

The median duration of the BI consultation was 15 minutes. The 2 intervening physicians reported that the BI framework for a potentially sensitive subject made the doctor-patient consultation easier to conduct (Textbox 1, quotes 1 and 2). They also reported that performing the BI in a consultation room was preferred over a bedside setting. They further reported that all 5 participants were open and positive toward the BI conversation (Textbox 1, quotes 2 and 3), as demonstrated by the participants listening actively and asking questions. The tools for patient communication that were received during training for the BI were beneficial during the consultation. The most beneficial tools for communication included asking open questions, letting the participants talk about their own experiences, having the participant repeat information, and writing down information together with the participant. The study investigators identified that the number of instruments used and the travel to participants were time consuming and advised making adjustments toward limiting time consumption.
Textbox 1. Individual quotations from physicians immediately after the brief intervention (BI) consultation and individual quotations from the participating patients at the 6-week follow-up.

<table>
<thead>
<tr>
<th>Quotations from the intervening physicians immediately after the BI consultation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. “Overall positive atmosphere. Patient understood the content and stated that effect on cognitive function made an impression. Patient stated little belief in health advantages of changing medication use and stated that, at her age, it did not matter.”</td>
</tr>
<tr>
<td>2. “The BI was overall received with a positive attitude. Patient stated that she found quitting difficult as she was living alone and was afraid of not falling asleep.”</td>
</tr>
<tr>
<td>3. “Patient was open-minded, interested, and motivated to try to change medication use. Was aware of possibilities of medication misuse in general.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quotations from the participants at the 6-week follow-up:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. “I stopped the sleeping pills that same night and have not touched them since. [...] I thought, that pill I will manage without, and that has gone very well. And after that, I have realized that I do not need to take them. [...] It does not take me any longer to fall asleep, and when I sleep, I sleep well. [...] It has been a relief not having to remember to take that pill.”</td>
</tr>
<tr>
<td>5. “Trying to stop the sleeping medication has been very hard. [...] I have not slept more than half of what I should have. Normally, I am up for the toilet 1 to 2 times a night, but throughout this period, I have been up 3 to 5 times each night, and that leads to poor sleeping. [...] So, therefore, I had decided to tell you that I cannot have it like this in the future. I am so old, maybe I will live 2 more years. It does not matter. I rather have good nights than to become a hundred years.”</td>
</tr>
<tr>
<td>6. “It [the BI] was a mild form of advice. I believe in that type of approach. Doctors have tried to scare me about things before, for example, when they wanted me to quit smoking.”</td>
</tr>
<tr>
<td>7. “I experience that what they said at the hospital [the BI] and what my general practitioner has said earlier; that information corresponds. That is good for me to hear.”</td>
</tr>
</tbody>
</table>

Participants’ Experiences and Feasibility at Baseline

All 5 participants attending the BI consultation were positive overall toward participating and interested in the BI conversation. Expectations and beliefs measured by the VAS immediately after the intervention found median expectations of reducing medication use of 35 (min;max 3;100), median beliefs about improved health with reducing z-hypnotic use of 33 (min;max 2;100), median beliefs about the importance of reducing the medication of 27 (min;max 2;100), and beliefs in one’s own ability to reduce z-hypnotic use of 42 (min;max 1;100). Expectations and beliefs are presented in Table 3.

The participants’ intentions and goals on how to proceed after the BI were recorded, and 2 participants decided to quit z-hypnotics completely and immediately. Of the remaining 3 participants, 1 wanted to reduce dosage but continue regular use, 1 wanted to discuss a change to the type of z-hypnotic used with her general practitioner (GP), and 1 aimed to continue use as before and reported that this was about once a month.

The greatest challenge for reducing or stopping z-hypnotic use was reported by 3 participants as a worry that they would not sleep. One stated that she was not sure if changing medication mattered, as she was old and was soon going to die. One participant reported a need for support from the physician to stay motivated to stop z-hypnotic use, and 4 participants did not set up a direct plan for what they would do if they encountered difficulties.
Logistics and Participants’ Experiences With Reducing Z-Hypnotics

At the 6-week follow-up, 2 participants completed the questionnaire and qualitative interview. Both managed to completely stop their use of z-hypnotics. Although 1 participant reported that stopping was easy and did not notice any difference (Textbox 1, quote 4), the other participant reported that trying to reduce medication had been very hard and aimed to start the medication again in the hope of getting more sleep (Textbox 1, quote 5). Of the 3 participants who decided to not participate in the follow-up interview, 1 stated a preference to engage in conversation about these types of medications with her GP, 1 reported having too much going on at home with disease in the family, and 1 participant was lost to follow-up. Experiences at the 6-week follow-up are presented in Table 3.

Participant Feedback During Interviews at the 6-Week Follow-Up

Regarding the practicalities of participating, the 2 participants stated that it had been very easy, with no burden regarding cost or time requirements. They added that there would have been difficulties with participating at the follow-up if it had not been arranged as a home visit, as travelling to the hospital was difficult. Both stated that the BI conversation itself had been a good experience and that the information conveyed had been understandable (Textbox 1, quotes 6 and 7). They had both been aware of the negative side effects of z-hypnotics before the BI conversation and stated that they had not learned anything new in the BI conversation. At the follow-up, they could not recall any specific piece of information that had stood out regarding risks for long-term use, possible adverse events, or advantage for reducing use.

Discussion

Principal Findings

In this study investigating the feasibility of a BI for older adults with inappropriate use of z-hypnotics, we identified important aspects to improve before we proceed with the intervention. The focus for this study was to test the method, logistics, and intervention coherence, identifying strengths and weaknesses to improve the protocol for a larger study investigating the treatment effect. We tested the logistics and found that it is advantageous for the intervention to be delivered in primary care as opposed to secondary care; we need to reduce the number of data collection instruments; the designed BI communication framework was acceptable overall for both physicians and participants; and the participants found it challenging to participate further and reduce their medication, which in turn calls for further support during the intervention period.

Previous research has concluded that long-term use of z-hypnotics by older adults is to be avoided [12,13] and that the
treatment effect of z-hypnotics is questionable [8]. It is suggested that attention should be directed at educational interventions [8], and such interventions have been found beneficial [51-53]. The BI method has been proven effective at handling substance overuse and dependence [19,20]. Adjusting the BI to benefit older adults with inappropriate use of z-hypnotics is probably appropriate and valuable for both individual patients and health care professionals and systems.

Evaluation of Study Logistics

Female gender and being ≥75 years of age are associated with a greater risk of inappropriate use [15], hence we believe we tested our intervention in a relevant population. Recruiting and intervention were linked to a previous observational study [15] and conducted in a hospital setting, which we decided was the most cost-effective and practical solution to test both the study logistics and intervention under the current circumstances. The hospital setting is a good opportunity for revising patients’ medications according to START/STOP criteria [54]. Conducting the intervention in a specialist environment at the secondary health care level was theorized to carry some impact for adherence. We did, however, experience that this type of intervention may be better suited to the primary care setting where it can occur as a conversation between patients and their GPs. Prescriptions for z-hypnotics, although often initiated during a hospital stay, are commonly continued by the GP. Training GPs to perform the BI may increase awareness of prescription habits regarding z-hypnotics. One study participant reported her preference for discussing issues regarding her use of z-hypnotics directly with her GP as the reason for withdrawing from the follow-up interview. Although the participants reported no burden and low perceived effort with participating in the study, they noted not having to travel to the hospital was important for participation. GPs’ proximity to their patients’ locale and their everyday involvement in their patients’ health issues may provide a more effective and suitable setting for this intervention.

The average duration of the BI was 15 minutes, which is longer than anticipated. During the design, we aimed for a 10-minute intervention, as we have previously experienced this duration to be acceptable [20,30]. We believe that limiting time spent on the intervention could increase feasibility in a busy daily practice for both patients and GPs, and it may be advantageous to revise the BI scheme accordingly. However, the increase in expected duration could be manageable for GPs during a conversation with older patients.

Both at baseline and follow-up, the participants completed a series of questionnaires, patient-reported outcomes forms, and tests. As these were in addition to the BI itself, participating in the study was both time-consuming and demanding. In a future study investigating the treatment effect, limiting data collection would be advantageous for both reducing load and possibly increasing adherence at follow-up.

Evaluation of Patient Intervention Coherence

Core to this study was investigating the participants’ own understanding of the intervention and their thoughts and beliefs regarding it. To get an understanding of how the intervention would affect the participants, we also investigated their thoughts and beliefs regarding sleep disturbance and z-hypnotics.

In our study, reported reasons for not sleeping included extensive daytime napping (poor sleep hygiene), nocturia, and pain. Once awake, lying in bed thinking was reported as the most common reason for not sleeping. When adjusting for comorbidities, pain, depression, and medication use, which are all factors associated with sleep disturbance, the prevalence of insomnia, as defined by the International Classification of Sleep Disorders (3rd edition) [27,28,55] criteria, decreases in older adults [3,56]. This calls into question the appropriateness of pharmacological treatment for sleep disturbance in older adults and underlines the importance of identifying all issues regarding sleep disturbance during diagnosis and treatment. Reasons for sleep disturbance may have an impact on the measured effect of an intervention study, indicating a benefit for adjusting for this in the study design.

When reporting on their pre-intervention experience with the use of z-hypnotics, the participants stated that, during nights when they had not taken their z-hypnotics, they would have a worse night. Further, they reported anticipating having a worse night if they did not take their z-hypnotics. Rebound insomnia is a known symptom of z-hypnotic withdrawal [32]. It is most prevalent during the first days of withdrawal, and the patient may interpret this as confirmation that they cannot sleep without their medication. In addition, research has shown that there is a large placebo effect with z-hypnotics. The difference in sleep latency between active treatment and placebo is only 22 minutes of objectively measured effect in favor of active treatment [8], demonstrating a very low clinical gain of active treatment compared with placebo and underlining anticipation as a considerable portion of the experienced effect. Further, only 50% of patients are aware that long-term use of z-hypnotics can reduce sleep quality, and up to 84% of patients are aware of dependence, interaction with alcohol use, and dizziness. Regardless of the awareness of side effects, only 26% of patients report an interest in reducing their use of z-hypnotics [57]. Not being aware of possible side effects and placebo effects in addition to experiencing rebound insomnia with withdrawal are factors that will affect intervention compliance and patients’ interest in making changes to their z-hypnotics.

At the follow-up interviews, the participants reported that they could not recall information shared during the BI consultation regarding use of z-hypnotics, risk of adverse events, and benefits from reducing use. They stated that they did not learn anything new about z-hypnotics during the consultation but that the BI consultation had confirmed some previous knowledge. This underlines the importance of investigating the patients’ knowledge about the substance in question. Awareness about patients’ knowledge is important on an individual level. It emphasizes the importance of revising the content and delivery of the information about z-hypnotics presented in the BI. It also prompts exploring more aspects of the BI technique such as providing a short information leaflet [19] that summarizes and repeats the core information given at the consultation. In this study, we chose not to use such additions, as we wanted to explore the feasibility of using just a single consultation.
Another aspect of the BI technique we chose not to pursue in this study was to contact participants to offer support during the follow-up period. We regarded 6 weeks to be a relatively short follow-up period and therefore did not actively seek contact. As part of the BI, the participants were invited to make a plan about what to do in case they had challenges reducing their medication. They were given a phone number to contact if they had questions, needed support, or encountered difficulties. One participant reported needing support from the physicians during the follow-up, but 4 did not make a plan for what to do if they met with challenges. Prompting patients to create a plan about what to do if they meet with difficulties and contacting the patients during the weeks after the intervention may improve participation and adherence.

Strengths and Weaknesses

This feasibility case series was performed as part of our development of a complex intervention [58], as suggested by the UK Medical Research Council, in which a central component is conducting a feasibility study [58,60]. It provided useful information regarding the feasibility, acceptability, and logistics. Naturally, such a small feasibility series does not contribute quantitative data nor solve the central question about whether the BI is an effective intervention. It was a valuable opportunity for an in-depth investigation of the BI scheme with older adults using z-hypnotics. It also provided information about older adults’ thoughts and beliefs about sleep disturbance and their medication use. The main weakness was the small sample as well as the attrition of participants: 3 of 5 participants declined the follow-up interview. We found, however, that both the participants who completed and those who withdrew provided valuable information to further design and optimize the BI scheme for older adults using z-hypnotics.

Conclusion

This study assessing the feasibility of the BI design for older adults with inappropriate use of z-hypnotics identified some important aspects with regards to improving the design before proceeding to a larger study investigating the treatment effect. Conducting the BI in primary care, limiting the duration of the BI while emphasizing core information, providing patients with an information leaflet, and contacting patients for support may improve the effect of the intervention.

Acknowledgments

We are grateful for the support during data collection from the geriatric department at Akershus University Hospital. We also recognize the extraordinary commitment of the patients who participated in this study.

This work was funded by ELIB (Stiftelsen Et Liv I Bevegelse) and the Health Services Research Unit of the Akershus University Hospital. CL also received funding from the South Eastern Norway Regional health authority. No grant numbers were provided by the funders. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data Availability

The raw data are closed for public access due to data protection regulations by the Akershus University Hospital data protection officer and the Regional Committees for Medical and Health Research Ethics. However, summarized data may be available upon reasonable request to the corresponding author MTB.

Conflicts of Interest

CL has participated on an advisory board and received payment for lectures arranged by AbbVie Pharma AS, Novartis AS, Lundbeck AS, Teva AS, and Roche AS, Norway. He has also received research sponsorship from AbbVie Pharma and Lundbeck AS. The other authors declare no conflict of interest.

Multimedia Appendix 1

Interview guide.

[PDF File (Adobe PDF File), 517 KB - formative_v8i1e51862_app1.pdf]

References

Investigating the Impact of Prompt Engineering on the Performance of Large Language Models for Standardizing Obstetric Diagnosis Text: Comparative Study

Lei Wang¹, MS; Wenshuai Bi¹, MS; Suling Zhao¹, MS; Yinyao Ma², MS, MD; Longting Lv¹, MS; Chenwei Meng¹, MS; Jingru Fu¹, MS; Hanlin Lv¹, PhD, MD

¹BGI Research, Shenzhen, China
²The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China

Corresponding Author:
Hanlin Lv, PhD, MD
BGI Research
Building 11, Beishan Industrial Zone
Yantian District
Shenzhen, 518083
China
Phone: 86 18707190886
Email: lvhanlin@genomics.cn

Abstract

Background: The accumulation of vast electronic medical records (EMRs) through medical informatization creates significant research value, particularly in obstetrics. Diagnostic standardization across different health care institutions and regions is vital for medical data analysis. Large language models (LLMs) have been extensively used for various medical tasks. Prompt engineering is key to use LLMs effectively.

Objective: This study aims to evaluate and compare the performance of LLMs with various prompt engineering techniques on the task of standardizing obstetric diagnostic terminology using real-world obstetric data.

Methods: The paper describes a 4-step approach used for mapping diagnoses in electronic medical records to the International Classification of Diseases, 10th revision, observation domain. First, similarity measures were used for mapping the diagnoses. Second, candidate mapping terms were collected based on similarity scores above a threshold, to be used as the training data set. For generating optimal mapping terms, we used two LLMs (ChatGLM2 and Qwen-14B-Chat [QWEN]) for zero-shot learning in step 3. Finally, a performance comparison was conducted by using 3 pretrained bidirectional encoder representations from transformers (BERTs), including BERT, whole word masking BERT, and momentum contrastive learning with BERT (MC-BERT), for unsupervised optimal mapping term generation in the fourth step.

Results: LLMs and BERT demonstrated comparable performance at their respective optimal levels. LLMs showed clear advantages in terms of performance and efficiency in unsupervised settings. Interestingly, the performance of the LLMs varied significantly across different prompt engineering setups. For instance, when applying the self-consistency approach in QWEN, the F_1-score improved by 5%, with precision increasing by 7.9%, outperforming the zero-shot method. Likewise, ChatGLM2 delivered similar rates of accurately generated responses. During the analysis, the BERT series served as a comparative model with comparable results. Among the 3 models, MC-BERT demonstrated the highest level of performance. However, the differences among the versions of BERT in this study were relatively insignificant.

Conclusions: After applying LLMs to standardize diagnoses and designing 4 different prompts, we compared the results to those generated by the BERT model. Our findings indicate that QWEN prompts largely outperformed the other prompts, with precision comparable to that of the BERT model. These results demonstrate the potential of unsupervised approaches in improving the efficiency of aligning diagnostic terms in daily research and uncovering hidden information values in patient data.

(JMIR Form Res 2024;8:e53216) doi:10.2196/53216

KEYWORDS
obstetric data; similarity embedding; term standardization; large language models; LLMs
Introduction

The advancement of medical informatization has resulted in the accumulation of vast amounts of electronic medical records (EMRs) in hospitals, giving rise to medical big data [1]. These data hold significant research value. Using obstetrics as an example, the implementation of China’s “three-child” policy in 2021 has led to an increasing proportion of women with advanced maternal age and multiparity. Studies indicate that as maternal age and parity increase, the occurrence of pregnancy complications and adverse pregnancy outcomes also tends to rise, posing new challenges for obstetrics across health care institutions at all levels [2]. Extracting valuable information from obstetric EMRs could significantly benefit clinical research aimed at improving pregnancy success rates.

However, due to varying writing habits among doctors, diagnostic descriptions in medical records lack standardization, which hinders the analysis and use of medical data. Consequently, mapping clinical diagnostic descriptions to a standard terminology database is vital for medical data analysis. This process enables the standardization of medical terms across different health care institutions and regions, preventing misunderstandings and confusion caused by varying terminologies. It positively impacts health care quality, reduces medical costs, enhances doctor-patient relationships, and promotes the development of medical science.

The emergence of large language models (LLMs), represented by ChatGPT, has caused a surge in interest in their application across various fields of research. In the medical domain, LLMs have been extensively used for tasks such as intelligent medical history collection and preliminary diagnosis, personalized treatment and drug recommendations, medical record documentation and report generation, literature retrieval and analysis, and medical education and training [3-6]. Kanjee et al [7] assessed ChatGPT’s ability to accurately diagnose challenging medical cases and suggested that generative artificial intelligence (AI) models hold promise as potential aids to human diagnostic cognition. Research by Agбавor and Liang [8] demonstrated that GPT-3–generated text embeddings can reliably distinguish Alzheimer disease patients from healthy controls and infer cognitive test scores of patients, potentially enhancing early dementia diagnosis. Palanca et al [9] explored ChatGPT’s potential applications in psychological counseling, emotional support, and mental illness screening while discussing related challenges and future research directions.

LLMs have also played a crucial role in medical research. Clinical research often involves large amounts of unlabeled natural language data, and LLMs’ zero-shot learning ability allows them to effectively process such data. Agrawal et al [10] showed that ChatGPT excels in extracting zero-shot and few-shot information from clinical texts. Hu et al [11] revealed ChatGPT’s potential in zero-shot clinical entity recognition tasks. Furthermore, Lamichhane's [12] 3 text-based experiments on mental health classification demonstrated ChatGPT’s potential in zero-shot text classification tasks.

LLMs are chatbot technologies based on natural language processing and deep learning; they learn language patterns and knowledge from a large amount of text data to realize natural conversations with humans. The key to effectively using LLMs is to set an optimal prompt [13].

In few-shot learning, designing appropriate prompts can help LLMs learn better from a small number of training samples and improve performance [13]. Even in zero-shot learning scenarios, appropriate prompts can guide LLMs to use contextual information to output correct results [14]. Prompt engineering has been widely used in various fields of natural language processing, such as question answering, text generation, and sentiment classification, as well as other tasks. By carefully designing prompts, LLMs can better understand the task requirements and context and generate more accurate and useful outputs [13,15,16]. In addition, prompt engineering is an efficient method that does not rely on large-scale computing resources. It can narrow the gap between the pretraining and fine-tuning stages, improve the model’s learning ability and generalization ability on a small amount of data, and fully exploit the model’s potential performance [15].

Chain-of-thought (CoT) prompts were proposed by Wei et al [17], who experimented with the effect of CoT prompts on multiple tasks, including mathematical problems, logical reasoning, reading comprehension, and common sense reasoning; they compared it with other prompt engineering techniques and pointed out that CoT prompts could significantly improve the model’s performance on these tasks and even allow the model to show complex reasoning abilities, such as induction, deduction, and analogy. The basic idea of CoT prompts is that, when giving a question or task, instead of directly asking the model to give an answer or result, the user asks the model to give a CoT, that is, a series of intermediate reasoning steps in which each step is a complete sentence, and the last step is the answer or result. The advantage of this is that it can make the model better understand the meaning and goal of the question or task, avoid irrelevant or wrong outputs, and also make it easier for human users to check and evaluate the model’s output.

The goal of self-consistency prompts is to improve the quality and consistency of the generated results by requiring the model to make consistency judgments on the previously generated text [18]. When using self-consistency prompts, the user first provides an initial text as a prompt and then lets the model continue to generate the subsequent text. Next, the user replaces the “greedy decoding” in the CoT prompt with sampling from the language model’s decoder to generate a set of diverse reasoning paths; finally, the user marginalizes the reasoning paths and aggregates them by selecting the most consistent answer in the final answer. This can force the model to maintain self-consistency when generating text, avoiding contradictions and incoherence.

This paper delves into the potential of LLMs for zero-shot or unsupervised learning in the domain of standardizing diagnostic terminology in obstetrics. By leveraging a composite approach that merges different prompt engineering techniques with LLMs, our goal is to identify the most fitting pipeline for unsupervised scenarios.
As most of the LLMs used in the Chinese domain use the Chinese version of the International Classification of Diseases, 10th revision (ICD-10-CN), as their core training corpus [19], in order to compare the performance of LLMs and supervised learning algorithms horizontally on a baseline, we used standard diagnostic terminology in the ICD-10-CN as the alignment target throughout this study.

Methods

Task Overview

The approach can be divided into 4 steps: (1) mapping the diagnosis in EMRs to the observation domain of the ICD-10-CN via embedded similarity; (2) collecting the candidate mapping terms with similarity above the threshold as the training data set; (3) using 2 LLMs, ChatGLM2 [20] and Qwen-14B-Chat (QWEN) [21], with zero-shot learning to generate the optimal mapping terms; and (4) using 3 pretrained bidirectional encoder representations from transformers (BERTs), BERT [22], whole word masking BERT (BERT-WWM) [23], and momentum contrastive learning with BERT (MC-BERT) [24], for unsupervised generation of the optimal mapping terms for performance comparison. The entire workflow is illustrated in Figure 1.

Figure 1. The 4-step approach of this study. For optimal term selection, the combination of a large language model (LLM) and prompt engineering contributes to the unsupervised learning approach to select the optimal terms from 10 candidates. BERT: bidirectional encoder representations from transformers; BERT-WMM: whole word masking BERT; MC-BERT: momentum contrastive learning with BERT; QWEN: Qwen-14B-Chat.

Data Preparation

In this study, the raw data were collected from the obstetric EMR data of the People’s Hospital of Guangxi Zhuang Autonomous Region from April 2014 to April 2022; these data contained only diagnostic reports. Sample data are shown in Textbox 1.

Textbox 1. A sample data of diagnoses for ID 720444 is listed below with a translated version. All data processed in this research were in Chinese.

<table>
<thead>
<tr>
<th>Discharge diagnoses</th>
<th>Translations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 头位顺产</td>
<td>1. Vertex delivery</td>
</tr>
<tr>
<td>2. 单胎活产</td>
<td>2. Singleton live birth</td>
</tr>
<tr>
<td>3. 孕1产1妊娠39+4周</td>
<td>3. Pregnancy: G1P1, 39+4 weeks</td>
</tr>
<tr>
<td>4. 脐水偏少</td>
<td>4. Oligohydramnios</td>
</tr>
</tbody>
</table>

The raw data set underwent data preprocessing by removing punctuation marks and meaningless special symbols to avoid potential interference with subsequent word segmentation operations.

We implemented LLMs in an intranet security environment. Both ChatGLM2 and QWEN were used exclusively on physically isolated graphical processing units, with access facilitated via OpenAI format and FastAPI (built on PyTorch 2.0). Temperature settings for the LLMs were configured at 0, with max_token parameters tailored on a task-by-task basis.

The standard vocabulary referred to in the following text consists of the diagnostic categories belonging to the observation domain of ICD-10-CN.
Embedding Learning

We used the conditional random fields (CRF) model [24] to segment the text and obtained original-diagnosis raw data aligned with standard vocabulary terms. The principle of CRF is to treat word segmentation as a character position classification problem. Character position information is often defined as follows: \(B \) represents the beginning of a word, \(M \) denotes the middle of a word, \(E \) signifies the end of a word, and \(S \) indicates a single-character word. Feature functions are constructed to describe the relationship between each character and label and the transition between adjacent labels. Using training data, we learn the weights of feature functions to maximize conditional probability. The Viterbi algorithm predicts new input sequences and finds the most probable label sequence; according to the label sequence, we construct word segmentation results from characters between \(B \) and \(E \) and single characters \(S \). As shown in Textbox 2, we conducted CRF word segmentation on diagnoses in EMRs.

Textbox 2. Sample of word segmentation with the conditional random fields model. The data below represent a preliminary diagnosis of placenta abruption.

<table>
<thead>
<tr>
<th>Original word: 初步 诊断 为 胎 盘 早剥.</th>
<th>After CRF annotation: 初/B 步/M 诊/M 断/E 为/S 胎/B 盘/M 早/M 剥/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>According to the label, the word segmentation result is as follows: 初步 诊断 为/胎 盘 早剥.</td>
<td></td>
</tr>
</tbody>
</table>

To calculate the similarity between diagnoses in the raw data set and terms in the standard vocabulary, we used the BERT-medicine model to transform diagnoses and terms into embeddings for storage. The BERT-medicine model is specifically designed to improve the model’s understanding of medical terms and symptoms by introducing a medical domain–specific vocabulary list, lexicon, and pretraining tasks.

The main structure of the BERT-medicine model is the BERT, and the main inputs are the raw word vectors of each word or phrase in the text. In this study, we used diagnoses in the raw data set as the input text sequences. The BERT model extracted the contextual information of the text through a self-attention mechanism and learned the bidirectional linguistic representations, so as to obtain a semantic representation of each word in its context. The final output embedding vector is represented by the sum of character embedding, partition embedding, and position embedding, which constitute the input sequence.

Similarity Computation

The feature embedding of the diagnosis is denoted by \(\mathbf{d} \), the feature embedding of the standard terms is denoted by \(\mathbf{t} \), and their similarity is calculated using the cosine similarity with the following formula:

\[
\text{sim} (\mathbf{d}, \mathbf{t}) = \frac{\mathbf{d} \cdot \mathbf{t}}{\|\mathbf{d}\| \|\mathbf{t}\|}
\]

The proposed approach is evaluated through the following steps: Standard terms with a similarity score higher than 0.9 are considered candidates for diagnosis keywords and are then verified by medical experts. The normalized precision and recall are calculated, and the precision-recall curve is obtained. Since a particular diagnosis might have multiple similar standard terms, we aimed to identify as many similar terms as possible, and we thus expected high recall and precision. To obtain candidate terms, we collected the original diagnosis and the 10 most similar standard terms having a similarity score greater than or equal to 0.855.

Optimal Term Selection

To comprehensively evaluate the performance of LLMs in the standardization of obstetric diagnostic terminology, we used 4 different prompts, with the prompt design ranging from simple to complex. This started with the prompt trained on zero samples (the zero-shot learning prompt); next were the prompt trained on a small number of samples, the in-context learning prompt, the CoT prompt, and finally the self-consistency prompt. The specific flow chart of LLM training is shown in Figure 2.
Figure 2. Prompt examples under 4 distinct prompt engineering methods: (A) the zero-shot learning prompt, (B) the in-context learning prompt, (C) the chain-of-thought prompt, and (D) the self-consistency prompt. In the experiment, the raw data being in Chinese led us to use Chinese prompts, which are translated for readability purposes. However, “diagnosis” and “candidate terms” are displayed in their original Chinese format. LLM: large language model.

The zero-shot learning prompt was meant to guide the LLMs’ output by directly telling them the purpose of this study. The target task of this study was to find the standard-term expression for the diagnosis, that is, to let the LLMs determine the word with the highest similarity. Therefore, we directly told the LLMs to find the most similar word to the input word among the candidate words for the standard term. The LLMs determined the similarity between words based on their own learned knowledge, and then output the word with the highest similarity to the input word as the output result.

The purpose of in-context learning prompts is to give context hints and let LLMs learn by analogy from few shots to output results that more closely meet the requirements [25]. Its input is in the form of \{question, answer\}, that is, in the input, the question and result are given to the LLM as a template, and it answers the same type of questions in a specific way according to the specific answer.

The input form of CoT prompts is similar to in-context learning prompts, that is, \{question, answer\}, with the difference that the answer contains the intermediate steps of thinking. In order to reduce human costs, we used LLMs to generate CoT prompts, and then encapsulated them into the prompt inputs.

The key method of self-consistency prompts in this study was to input the CoT prompts from the previous section multiple times, obtain multiple results, randomly sample a group of output results, and use the majority voting method to decide the final result. Next, we will demonstrate the experimental process with different prompts through specific examples, shown in Figure 3.
Figure 3. Detailed illustration of the technical intricacies underlying this study. The process of mapping nonstandardized local diagnostic text to standardized International Classification of Diseases, 10th revision, Chinese version (ICD-10-CN) terms involves preliminary similarity-based selection through the vector database, followed by optimal solution selection performed by large language models (LLMs) based on semantic comprehension.

![Diagram of the technical process](image)

Evaluation

The evaluation metrics in this study to assess the model’s performance were precision, recall, and \(F_1 \)-score [26]. We classified words that matched the original word and the standard word as positives, and those that did not match as negatives. There were 4 possible classification outcomes: true positive, in which the model correctly identified a positive as positive; false negative, in which the model mistakenly classified a positive as negative; true negative, in which the model correctly identified a negative as negative; and false positive, in which the model mistakenly classified a negative as positive. Using these classification outcomes, we could calculate precision, recall, and \(F_1 \)-score to evaluate the model’s performance in standardizing diagnoses.

Precision, recall, and \(F_1 \)-score (the reconciled mean of precision and recall) were defined as follows:

Ethical Considerations

The study was approved by the People’s Hospital of the Guangxi Zhuang Autonomous Region in China (KT-KJT-2021-67), and all pregnancy data were deidentified and anonymized.
Table 1. Metric performance comparison across large language model and bidirectional encoder representations from transformers (BERT) series.

<table>
<thead>
<tr>
<th>Model and prompt engineering approach</th>
<th>Precision, %</th>
<th>Recall, %</th>
<th>F_1-score, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERTa</td>
<td>91.93</td>
<td>91.95</td>
<td>91.94</td>
</tr>
<tr>
<td>Momentum contrastive learning with BERT (MC-BERT)a</td>
<td>92.34</td>
<td>92.37</td>
<td>92.35</td>
</tr>
<tr>
<td>BERT-whole word maskinga</td>
<td>92.13</td>
<td>92.17</td>
<td>92.15</td>
</tr>
<tr>
<td>ChatGLM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero shot</td>
<td>75.02</td>
<td>89.90</td>
<td>81.79</td>
</tr>
<tr>
<td>BERT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In context</td>
<td>85.13</td>
<td>86.60</td>
<td>85.85</td>
</tr>
<tr>
<td>Chain of thought</td>
<td>86.52</td>
<td>88.93</td>
<td>82.51</td>
</tr>
<tr>
<td>Self consistency</td>
<td>88.53</td>
<td>90.11</td>
<td>89.31</td>
</tr>
<tr>
<td>Qwen-14B-Chat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero shot</td>
<td>84.01</td>
<td>86.72</td>
<td>85.53</td>
</tr>
<tr>
<td>In context</td>
<td>88.25</td>
<td>91.18</td>
<td>89.69</td>
</tr>
<tr>
<td>Chain of thought</td>
<td>89.92</td>
<td>91.30</td>
<td>90.60</td>
</tr>
<tr>
<td>Self consistency</td>
<td>90.91</td>
<td>92.13</td>
<td>91.51</td>
</tr>
</tbody>
</table>

aPrompt engineering not applicable to these models.

It is evident from the table that the LLMs and BERT displayed comparable performance at their optimal levels, indicating that the LLMs provided a performance and time advantage under unsupervised conditions. Furthermore, the LLMs exhibited varied performance under different prompt engineering setups. Taking Qwen as an example, the implementation of the self-consistency approach improved the F_1-score by 5% and precision by 7.9% compared to the zero-shot method. Similarly, the same proportion of correctly generated responses was observed in ChatGLM2’s performance, with a range from 9.19% to 18.02%. Thus, QWEN achieved better performance than ChatGLM2 in all 4 prompt engineering approaches.

The BERT series were additional comparison models and exhibited more comparable results in this task. Among the 3 models shown in Table 2, MC-BERT delivered the best performance. However, in this study, the disparity between the 3 versions of BERT was relatively small.

Table 2. Cluster results of standardized terms. Original words in Chinese translated to English via ChatGPT.

<table>
<thead>
<tr>
<th>ID</th>
<th>Word 0</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Word 3</th>
<th>Word 4</th>
<th>Word 5</th>
<th>Word 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>α-Thalassemia</td>
<td>β-Thalassemia</td>
<td>δ-β-Thalassemia</td>
<td>Intermediate thalassemia</td>
<td>Major thalassemia</td>
<td>Combined thalassemia</td>
<td>Thalassemia</td>
</tr>
<tr>
<td>23</td>
<td>Acute mixed-type fetal distress</td>
<td>Acute fetal distress</td>
<td>Acute fetal heart-type fetal distress</td>
<td>Acute anamniotic fluidtype fetal distress</td>
<td>Chronic fetal distress</td>
<td>Chronic fetal-type fetal distress</td>
<td>Chronic anamniotic fluid-type fetal distress</td>
</tr>
<tr>
<td>55</td>
<td>Fetal cardiac malformations</td>
<td>Fetal limb malformations</td>
<td>Fetus with multiple malformations</td>
<td>Fetal ear malformations</td>
<td>Fetal malformations</td>
<td>Fetal structural anomalies</td>
<td>Fetal kidney malformations</td>
</tr>
<tr>
<td>73</td>
<td>Uterine interstitial leiomyoma</td>
<td>Uterine subserosal leiomyoma</td>
<td>Uterine intramural leiomyoma</td>
<td>Uterine submucosal leiomyoma</td>
<td>Uterine mucosal leiomyoma</td>
<td>Uterine leiomyoma</td>
<td>Uterine multiple leiomyoma</td>
</tr>
<tr>
<td>76</td>
<td>Intrahepatic bile duct stones</td>
<td>Hepatobiliary stones</td>
<td>Biliary stones</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>25</td>
<td>Severe pulmonary arterial hypertension</td>
<td>Mild pulmonary arterial hypertension</td>
<td>Moderate pulmonary arterial hypertension</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>Central pelvic stenosis</td>
<td>Pelvic stenosis</td>
<td>Pelvic outlet stenosis</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>36</td>
<td>Acute bronchitis</td>
<td>Acute tracheitis</td>
<td>Chronic bronchitis</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>91</td>
<td>Pregnancy-related reproductive tract infection</td>
<td>Pregnancy-related uterine tract infection</td>
<td>Pregnancy-related urethral infection</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

aNot applicable.
Additional Research

In this study, we used the Louvain algorithm to mine terms from the standard data set output by the LLMs and obtained 1100 relatively common diagnostic terms. In the medical field, different medical institutions and professionals may use different terms to describe the same or similar clinical diagnoses, which can cause difficulties and misunderstandings in data exchange, statistics, and analysis. Therefore, standardizing clinical diagnostic terms is an important task. The standardized terms can be used to unify treatment plans and disease statistics, as well as to build clinical diagnostic knowledge bases. The data in our study were clustered into 107 clusters, and each cluster was analyzed separately, resulting in a diagnostic clustering table. Part of the results of the clustering table are shown in Table 2.

Discussion

Principal Results

This paper proposes an effective unsupervised standardization method for obstetric diagnosis. Through a multi-metrics comparison of different LLMs under various prompt engineering strategies, we found that unsupervised LLMs coupled with effective prompt engineering can achieve performance comparable to supervised learning.

A comparison of different prompt engineering strategies showed that although the models’ baseline performance under zero-shot settings varied, they generally showed significant improvement after incorporating strategies such as CoT, which also highlights the importance of effective prompts for LLMs.

The goal of our alignment in this study is the ICD-10-CN terminology, which belongs to the core vocabulary of the Chinese medical field. LLMs trained on Chinese language data usually include it as part of the training corpus [19], and the performance of the baseline model allows prompt engineering to further improve the alignment performance.

Comparison With Prior Work

Compared to previous research that primarily relied on BERT-based methods to map diagnostic descriptions from EMRs to standard terminologies, this study explores a novel approach based on LLMs. Among BERT models, we identified MC-BERT as the top performer, achieving an F1-score of 0.9235.

Beyond the conventional BERT methods, we examined 4 mainstream prompt strategies and found that the self-consistency method outperformed the others, achieving an F1-score of 0.9233. This level of performance matches that of supervised learning, opening up new possibilities for terminology mapping research in the medical domain.

Limitations

As all data were sourced from real-world patient information, and even though we anonymized the data through multiple strategies and only used a portion of the diagnostic text information without any personal identifying information, there is still a risk associated with uploading patient data to an open network. Additionally, as our research objective was to align and standardize Chinese text based on Chinese target terminologies, the choice of LLMs used in this study was limited. The development of LLMs in the Chinese domain is advancing rapidly, and there are many newly released versions that we have yet to explore.

Moreover, our alignment target was for scientific exploration. In future studies, we will attempt to train target vocabulary that is more suited to the scientific research context into the model through methods such as global optimization and exploring semantic alignment scenarios.

Conclusions

This paper investigates the capability of LLMs in standardizing clinical medical terms. By using LLMs to standardize diagnostic terms extracted from real-world obstetric EMRs and designing 4 different prompts for LLMs, we were able to compare their output results with those of the BERT model. Our findings demonstrate that QWEN mostly achieved the best performance and had precision on par with the BERT model, which illustrates that an unsupervised approach improved the efficiency of aligning diagnostic terms in daily research and to uncover the hidden value of patient data information.

Acknowledgments

This study was supported by Guangxi Key Research and Development Program (AB22035056). We thank the China National GeneBank for technical support.

Data Availability

The data sets generated during and/or analyzed during this study are not publicly available due to privacy and ethical restrictions but are available from the corresponding author on reasonable request.

Conflicts of Interest

None declared.

References

Abbreviations

AI: artificial intelligence
BERT: bidirectional encoder representations from transformers
BERT-WMM: whole word masking bidirectional encoder representations from transformers
CoT: chain-of-thought
CRF: conditional random fields
EMR: electronic medical record
ICD-10-CN: Chinese version of the International Classification of Diseases, 10th revision
LLM: large language model
MC-BERT: momentum contrastive learning with bidirectional encoder representations from transformers
QWEN: Qwen-14B-Chat

©Lei Wang, Wenshuai Bi, Suling Zhao, Yinyao Ma, Longting Lv, Chenwei Meng, Jingru Fu, Hanlin Lv. Originally published in JMIR Formative Research (https://formative.jmir.org), 08.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Efficacy of Digital Outreach Strategies for Collecting Smoking Data: Pragmatic Randomized Trial

Lauren E Kearney1*, MD; Emily Jansen2*, MPH; Hasmeena Kathuria1, MD; Katrina Steiling1, MD, MSc; Kayla C Jones3, MA; Allan Walkey1,3, MD, MSc; Nicholas Cordella2, MD, MSc

1The Pulmonary Center, Boston University, Boston, MA, United States
2Department of Quality and Patient Safety, Boston Medical Center, Boston, MA, United States
3The Evan’s Center for Implementation & Improvement Sciences, Boston University, Boston, MA, United States
*these authors contributed equally

Corresponding Author:
Lauren E Kearney, MD
The Pulmonary Center
Boston University
72 East Concord Street
Boston, MA, 02118
United States
Phone: 1 9788070286
Email: lekearn@bu.edu

Abstract

Background: Tobacco smoking is an important risk factor for disease, but inaccurate smoking history data in the electronic medical record (EMR) limits the reach of lung cancer screening (LCS) and tobacco cessation interventions. Patient-generated health data is a novel approach to documenting smoking history; however, the comparative effectiveness of different approaches is unclear.

Objective: We designed a quality improvement intervention to evaluate the effectiveness of portal questionnaires compared to SMS text message–based surveys, to compare message frames, and to evaluate the completeness of patient-generated smoking histories.

Methods: We randomly assigned patients aged between 50 and 80 years with a history of tobacco use who identified English as a preferred language and have never undergone LCS to receive an EMR portal questionnaire or a text survey. The portal questionnaire used a “helpfulness” message, while the text survey tested frame types informed by behavior economics (“gain,” “loss,” and “helpfulness”) and nudge messaging. The primary outcome was the response rate for each modality and framing type. Completeness and consistency with documented structured smoking data were also evaluated.

Results: Participants were more likely to respond to the text survey (191/1000, 19.1%) compared to the portal questionnaire (35/504, 6.9%). Across all text survey rounds, patients were less responsive to the “helpfulness” frame compared with the “gain” frame (odds ratio [OR] 0.29, 95% CI 0.09-0.91; P<.05) and “loss” frame (OR 0.32, 95% CI 11.8-99.4; P<.05). Compared to the structured data in the EMR, the patient-generated data were significantly more likely to be complete enough to determine LCS eligibility both compared to the portal questionnaire (OR 34.2, 95% CI 3.8-11.1; P<.05) and to the text survey (OR 6.8, 95% CI 3.8-11.1; P<.05).

Conclusions: We found that an approach using patient-generated data is a feasible way to engage patients and collect complete smoking histories. Patients are likely to respond to a text survey using “gain” or “loss” framing to report detailed smoking histories. Optimizing an SMS text message approach to collect medical information has implications for preventative and follow-up clinical care beyond smoking histories, LCS, and smoking cessation therapy.

(JMIR Form Res 2024;8:e50465) doi:10.2196/50465

KEYWORDS

electronic health records; EHR; informatics; learning health system; lung cancer screening; smoking history
Introduction

Tobacco use is an important risk factor for multiple diseases, including lung cancer, and is one of the leading contributors to preventable death in the United States [1]. The collection of nuanced, complete, and accurate tobacco use histories has significant implications for clinical care. For example, determination of lung cancer screening (LCS) eligibility (eligibility criteria: adults aged between 50 and 80 years with a 20 pack-year smoking history and who are either currently smoking or have quit within the past 15 years) [2] requires full documentation of pack-years (calculated by multiplying the number of packs of cigarettes smoked per day by the number of years the person has smoked) [3]. Clinicians across specialties discuss smoking histories with patients and record them in structured (eg, within a dedicated place in social history) and unstructured data fields (eg, within the clinical note) in the electronic medical record (EMR). Despite this theoretical wealth of longitudinal smoking information, past research illustrates that smoking history data documented in the health record are usually inaccurate, internally inconsistent, incomplete, or outdated [3-8]. Further, while unstructured data may be more accurate, it is limited in its ability to be extracted quickly and easily for clinical care [9,10]. Interventions aimed at improving the documentation and use of patient tobacco histories may have significant implications for interventions that seek to accurately identify patients eligible for LCS, cardiovascular risk reduction, and smoking cessation interventions [4,11,12].

A learning health system (LHS) systematically integrates clinical care, informatics, and research and engages patients to provide opportunities to implement new knowledge rapidly and iteratively [13]. Patient-generated health data (PGHD) is one promising modality to engage patients and build components of a LHS [14]. One challenge, however, is determining the best approach to engaging patients for self-reported data and scaling interventions for use across the health care system. Implementation of initiatives using patient surveys to generate health data are most effective when systematically designed and studied to determine effectiveness and scalability [15,16]. For example, which technology to use and which message framing to use are important considerations to optimize PGHD. Framed messages describe a choice in terms of how participation may provide gain or loss to the individual or helpfulness to the clinician.

We used a PGHD approach to address the issue of poorly documented smoking history, a previously highlighted barrier to uptake of LCS at our institution [7]. Given the clinical relevance of smoking histories to LCS and smoking cessation counseling, the primary objective of this study was to evaluate the impact of patient-generated methods to improve smoking history documentation. To this end, we designed a quality improvement intervention to evaluate three questions about history documentation. To this end, we designed a quality improvement intervention to evaluate three questions about history documentation. To this end, we designed a quality improvement intervention to evaluate three questions about history documentation. To this end, we designed a quality improvement intervention to evaluate three questions about history documentation.

Methods

Setting and Cohort

We conducted this trial at a large academic safety net hospital in the northeast United States [17]. The institutional review board determined this project qualified for an exemption determination as quality improvement research. We carried out our pragmatic trial from October 2022 to January 2023 in the general internal medicine practice, the largest adult primary care clinic at our hospital. Our hospital uses EPIC (Verona), referred to as “EMR” throughout this manuscript.

Participants

A quality analyst generated random patient lists from the EMR for portal questionnaires and text survey cohorts. Our inclusion criteria were a history of tobacco use (current or former), being aged between 50 and 80 years, and having English as a preferred language. We basing the patient’s smoking status on their recorded substance use history within the structured social history section of the medical record. In addition to smoking status, this included entry fields for cigarette smoking start date, quit date, cigarette packs per day, cigarette use years, and a pack-year calculated field, which multiplied the packs per day and years. Not all fields were complete for every patient. Because this trial was designed to increase uptake of LCS by gathering an accurate smoking history, we excluded patients who had LCS or an existing LCS order pending since presumably a more accurate smoking status already existed. Additionally, the portal cohort had to have an active portal account, whereas the SMS text message survey cohort needed to have a recorded mobile or home number documented. Finally, we excluded patients from the text survey cohort if they received the portal questionnaire message, so that each cohort was mutually exclusive.

The portal questionnaire cohort consisted of 500 patients, and the text survey cohort consisted of 1000 patients from general internal medicine clinics. The sample size was determined through a judgment sampling approach [18]. Time and resource limitations (our text survey contract was capped at 1000 patients) played a role in the determination of the judgment sample size. The chosen sample size sought to balance meaningful insights and adherence to practical constraints.

Smoking History Query Interventions

We evaluated 2 modalities: an electronic health record portal questionnaire using EPIC’s MyChart (Verona) and a text survey using Patient Navigation Manager CareTour (Philips Healthcare), a texting platform. The EPIC MyChart questionnaire is referred to as the “portal questionnaire,” and the Philips Healthcare texting platform is referred to as the “text survey” throughout this manuscript. For both modalities, questions pertaining to obtaining an accurate smoking history were designed based on a review of the literature and in consultation with pulmonary and critical care specialists with expertise in tobacco dependence treatment and written in plain language to promote readability and interpretability (Table S1 and Figures S1 and S2 in Multimedia Appendix 1 provide information on the survey questions and user interface).
also used an intentional phased approach for both surveys to assess technical issues, identify remediable issues, and scale more widely. Given that this study used patient-generated smoking history queries, which required participant comprehension and engagement, blinding participants to the study’s purpose was deemed impractical.

Message Framing

We reviewed the behavioral economic theory literature to inform our approach and to use message framing that we hoped would best engage patients [15,16,19,20]. We chose to evaluate 3 message framings: “gain,” “loss,” and “helpfulness” (Table 1). Gain- or loss-framed messages have been shown to be effective in smoking cessation, cancer prevention, and vaccination work [21,22]. We also included a helpfulness message, which has been explored within the web-based industry and marketing research but has been underexplored in health care settings [23,24]. We tested these different message frames in the text survey. The EPIC MyChart questionnaire portal system is configured to send users a general email that reads, “You have a portal questionnaire message.” This is a global configuration setting that cannot be modified on a per-project basis. Thus, we did not test different message frames in the portal questionnaire.

Survey Modalities

Electronic Health Record Portal Questionnaire

The portal questionnaire to assess smoking status consisted of up to 6 questions, which were a combination of multiple-choice or open-ended questions with answers restricted to numeric-only values (Table S1 and Figure S2 in Multimedia Appendix 1). The portal questionnaire design permitted the conditional display of questions tailored to their smoking status. For example, only people who formerly smoked saw the question, “How old were you when you stopped smoking?” Once the message was accessed, a “helpfulness” frame (Table 1) was shown in the portal message’s subject and body (Multimedia Appendix 1 provides full details of surveys).

<table>
<thead>
<tr>
<th>Survey modality</th>
<th>Message framing options</th>
<th>Conditional display of messages</th>
<th>Nudge message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal questionnaire (EPIC’s MyChart; Verona)</td>
<td>• “Helpfulness” frame for all patients: Help your [hospital name] healthcare team give you the best care possible by answering a few questions about your health. (Msg/data rates may apply. Reply STOP to stop msgs)</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
| Text survey (Patient Navigation Manager CareTour texting platform; Philips Healthcare) | • “Gain”: Please answer a few questions for your [hospital name] healthcare team to help you get screenings to keep you healthy. (Msg/data rates may apply. Reply STOP to stop msgs)
 • “Loss”: Please answer a few questions for your [hospital name] healthcare team so you don’t miss out on any screenings. (Msg/data rates may apply. Reply STOP to stop msgs)
 • “Helpfulness”: Help your [hospital name] healthcare team give you the best care possible by answering a few questions about your health. (Msg/data rates may apply. Reply STOP to stop msgs) | No | Yes |

We deployed the portal questionnaire in 3 steps to support iterative optimization (Figure 1). The portal notified patients that there was a new questionnaire in their portal through a general email or a pop-up on their smartphone app. Patients were required to have an active portal account and had to log into the account to complete the questionnaire. For both round 1 and round 2, we held our date and time fields constant by sending the message on Tuesdays at 10:20 AM Eastern Daylight Time (EDT).
A total of 16 participants were sent the survey both in the pilot and in the subsequent rounds of the portal questionnaire rollout (5 in round 1 and 11 in round 2). These participants were only included for analysis based on their initial participation in the pilot and were excluded from analysis in round 1 and round 2.

SMS Text Message Survey

The text survey to assess smoking status consisted of 4 questions, which were either multiple-choice or open-ended (Table S1 and Figure S1 in Multimedia Appendix 1). This software would not allow for the restriction of numeric-only values. Conditional display of questions was not possible with the text survey platform, so all patients saw all questions. As a result, we added the leading text “If you stopped” to the question “How old were you when you stopped smoking?” We also evaluated response rates by message framing (Figure 1).

As in the portal questionnaire, we deployed the text survey using a 2-round phased approach to support iterative optimization (Figure 1). We randomly assigned patients to receive 1 of 3
messages: “gain,” “loss,” or “helpfulness” (Table 1). Patients were randomized in Excel (Microsoft Corporation) using the RAND function to assign each participant a random number and the RANK and ROUNDUP functions to evenly distribute participants in each of the 3 message groups. We sent an initial SMS text message on Tuesdays at 10:20 AM EDT, consistent with the portal questionnaire. Participants could either respond, not respond, or unsubscribe. We then sent a nudge or second message to all nonresponders who had not unsubscribed, such that 50% of the nonresponders received the same message as the index message, while 50% received a different message, split evenly among the other 2 framing options (Figure S3 in Multimedia Appendix 1 depicts the message trial schema). We sent the nudge message 2 days after the initial message on Thursday at 10:20 AM EDT.

Statistical Approach

All statistical analyses were performed using R (version 4.1.0; The R Project for Statistical Computing). For analyses including 2 variables (portal vs text survey and same vs different second push messages), Fisher exact test was used. For comparison of framing, we performed a random effects logistic regression model for outcome of response and exposure of survey with random intercept for patients’ to account for repeated measures.

The primary outcome measure was the proportion of surveyed patients who responded based on survey modality (portal vs text survey). As a secondary outcome, we assessed response rates for the text survey based on framing and repeated pushes (first or second). Odds ratios (ORs) were calculated for each of these comparisons.

As an additional secondary outcome, we also compared the data obtained from survey responses to those already existing in the smoking history captured in EPIC. Using Fisher exact test, we compared the number of patients with complete smoking histories, defined as adequate information to determine LCS eligibility (pack-years and time since quitting). We also analyzed the concordance between EPIC data and the data gathered from completed surveys for LCS eligibility, smoking status, and pack-years reported. We used the Cohen κ coefficient to compare LCS eligibility and smoking status. We used a 2-way random effects intraclass correlation coefficient to compare agreement in reported pack-years between the EMR and completed surveys [25]. A level of significance of $\alpha=.05$ was used.

Results

Survey Response Rates

Overall, the characteristics of responders and nonresponders for both survey modalities were similar, except that responders to the text survey were more likely to identify as White and to have stopped smoking compared with text nonresponders (Table 2).

<table>
<thead>
<tr>
<th>Table 2. Characteristics of responders and nonresponders to the portal questionnaire and text survey.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race or Ethnicity, n (%)</td>
</tr>
<tr>
<td>Asian</td>
</tr>
<tr>
<td>Black</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Declined</td>
</tr>
<tr>
<td>Male, n (%)</td>
</tr>
<tr>
<td>Individuals who reported current tobacco use (as recorded in EPIC), n (%)</td>
</tr>
<tr>
<td>Portal questionnaire responders (n=35)</td>
</tr>
<tr>
<td>Portal questionnaire nonresponders (n=469)</td>
</tr>
<tr>
<td>Text survey responders (n=191)</td>
</tr>
<tr>
<td>Text survey nonresponders (n=809)</td>
</tr>
</tbody>
</table>

The response rate for the portal questionnaire was 6.9% (35/504) and the response rate for the SMS text message–based survey was 19.1% (191/1000) with an OR of 3.18 (95% CI 2.16-4.79; $P<.05$) (Figure 2). Across all survey rounds, patients were less responsive to the “helpfulness” message compared with the “gain” message (OR 0.29, 95% CI 0.08-0.99; $P<.05$) and compared with the “loss” message (OR 0.32, 95% CI 0.09-0.91; $P<.05$); however, there was no difference in responses between the “gain” and “loss” messages (OR 0.89, 95% CI 0.31-2.55, $P=.82$) (Figure 2). There was no significant difference in response rates to different message frames when comparing responses from only the first push survey round or responses from only the second push survey round. In reference to the first push message frame, there was also no difference in response rate if the same message framing or a different message framing was used in the second push (OR 1.3, 95% CI 0.74-2.17; $P=.44$). The overall unsubscribe rate for the text survey was 5.5% (55/1000). There was no significant difference in unsubscribe rates depending on the message framing.
Completed Smoking History Data Analysis
Both the portal questionnaire and text survey were significantly more likely to obtain complete data compared to the available data in the medical chart (Table 3).
Of the responses that did not provide completed data, patients reported “do not remember” (n=0 in the portal and n=3 in the text), submitted nonnumeric answers such as “only tried briefly” (n=0 in the portal and n=7 in the text), or submitted answers that were extreme outliers (n=4 in the portal and n=5 in the text), leading to exclusion. Furthermore, 6 individuals who reported current smoking and responded to the text survey reported gaps in their smoking history. Since we could not discern whether these “gaps” represented periods where patients had stopped smoking versus incomplete data, we instead used current age to calculate total pack-years.

The portal questionnaire generated 24 newly complete smoking histories to determine LCS eligibility for those whose EPIC data were not complete. The number of patients who had complete data for both the existing information in EPIC and the new data obtained from the portal questionnaire was low (7 out of 504). This small sample size limited our statistical analysis of the concordance for LCS eligibility and current smoking status between the medical chart data and the data gathered in the portal questionnaire. However, our raw data demonstrates relative agreement, with 6 of 7 responses in agreement for LCS eligibility (eligible or ineligible) and 7 of 7 responses in agreement for smoking status (current or former). The average number of pack-years recorded in EPIC for this group was 10.82, and the average number of pack-years recorded by the portal questionnaire was 9.27, with a good correlation between the 2 sets of data (intraclass correlation [ICC] 0.81, 95% CI 0.28-0.96).

The text survey generated newly complete data to determine LCS eligibility for 89 patients, whose EPIC data were incomplete. Complete data to determine LCS eligibility in both the medical chart and the text survey were available for 87 patients. However, there was poor agreement between the existing data in the medical chart and those collected by the text survey. The 2 sets of data were discordant in identifying whether patients were eligible for LCS (Cohen \(\kappa \) 0.32, 95% CI 0.029-0.62) and in identifying current smoking status (Cohen \(\kappa \) 0.008, 95% CI –0.0077 to 0.024). The average number of pack-years for this group recorded in the medical chart was 14.83, and the average number of pack-years recorded by the text survey was 9.81, with a poor correlation between the 2 data sets (ICC 0.27, 95% CI 0.04-0.48).

Discussion

Improving our health systems’ ability to capture accurate and complete smoking histories could have significant implications for the delivery of care, specifically for LCS and smoking cessation counseling. We found that a PGHD approach using patient-generated survey data is a feasible way to engage patients and collect smoking histories. Our trial provides a model for robust, pragmatic evaluation of digital interventions for quality improvement. We were able to test 2 types of survey delivery methods and 3 different survey message framings, all with significant equipoise in the literature. Overall, the portal questionnaire was less effective in generating responses compared to the text survey, and the “helpfulness” framing was less effective in generating responses compared to the “gain” and “loss” framings. A major finding was that both the text survey and the portal questionnaire generated more complete smoking histories to determine LCS eligibility when compared to the existing information available in the EMR.

Previous studies report a wide range of response rates to web-based surveys, with multiple factors contributing to decisions to respond, such as type of information collected, framing, number of reminders, and patients’ health care use [5,26-30]. Our SMS text message survey generated a response rate of 19.1% (191/1000), which is within the range reported in previous studies evaluating web-based surveys and significantly higher than that generated by the portal questionnaire [5,26-30]. The lower response rate to the portal questionnaire may have been influenced by the inability to test framing or deliver nudge messages. However, if we maintain the assumption of an equivalent increase in response rate due to framing (1.8%) and separately due to nudging (6.3%), then we can infer a response rate of 15% (compared to the actual response rate of 35/504, 6.9%). This demonstrates that while framing and a lack of nudge likely had a significant impact, other factors also contributed. One possible explanation is that while the text survey used an interruptive design of direct messaging that could be accessed immediately, the configuration of the portal messaging required access to an app or email and a separate login into the portal, making it less accessible.

Our findings demonstrated improved engagement with “gain” and “loss” framing as opposed to “helpfulness” framing. It is well documented that “gain” and “loss” framing improves patient engagement, attitudes, and motivation [31-36], which, based on our data, likely extends to patient engagement to report smoking history data. However, direct comparisons to “helpfulness” messaging are limited. In fact, the use of “helpfulness” messaging is better documented in nonmedical survey methodology [24]. One potential explanation for the superior performance of “gain” and “loss” framing compared with “helpfulness” framing is that the messages used for the “gain” and “loss” framing center on the implications of responding for the patient, while the “helpfulness” framing centers on the implications of responding for the health care provider. User-centered design has been shown to improve patient engagement [37-39]. Further evaluation of the reasons underlying differential engagement based on message framing, for example, with qualitative analysis, is needed in future studies.

Table 3. Comparison of smoking history completeness to determine lung cancer screening (LCS) eligibility.

<table>
<thead>
<tr>
<th></th>
<th>EPIC data, n/N (%)</th>
<th>Survey data, n/N (%)</th>
<th>OR(^a) (CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal questionnaire</td>
<td>93/504 (18%)</td>
<td>31/35 (88%)</td>
<td>34.2 (11.8-99.4)</td>
<td><.05</td>
</tr>
<tr>
<td>Text survey</td>
<td>431/1000 (43.1%)</td>
<td>176/191 (89%)</td>
<td>6.8 (3.8-11.1)</td>
<td><.05</td>
</tr>
</tbody>
</table>

\(^a\)OR: odds ratio.
As in this study, where the PGHD generated more complete smoking histories compared to the EMR, other studies have highlighted how dedicated structured data fields are missing key information needed to assess eligibility, such as packs per day, pack-years, and years since quitting [3-6,8,40]. In our health system, some individuals, such as medical assistants and tobacco treatment specialists, may update smoking history in structured fields, but many clinicians are more likely to document smoking history in unstructured notes. As a result, the structured data fields may be more vulnerable to becoming outdated over time and more likely to underreport smoking histories [4]. Survey instruments, in contrast, can be designed to force complete data entry and can be clarified with the patient in the context of a shared decision-making conversation. This could further alleviate completeness issues.

While the data generated from the surveys were more complete than the EMR, it is difficult to ascertain which history is most accurate. Previous research has found substantial agreement between self-reported smoking history comparing a baseline survey and a 1-month follow-up, with a higher likelihood of inconsistent reporting from individuals currently smoking as compared with individuals who have stopped smoking [41]. This reproducibility could be considered a proxy for accuracy. Other studies have treated the history obtained from shared decision-making as the source of truth. Modin et al [6] found a high degree of underreporting in the health record compared to the history obtained in a shared decision-making discussion. It is difficult to know whether the robustness of a nuanced history elicited by a trained clinician could produce a more true result or if other factors, such as time from the last history ascertainment, may influence accuracy. Which of the tobacco use histories is most accurate is particularly salient for the text survey, which demonstrated significant disagreement with the data in the EMR. While the portal questionnaire data suggested closer agreement with the EMR, this is likely an effect of the very small sample size of patients who had complete portal questionnaire data and EMR data. Future studies might use larger sample sizes and repeated measures to better ascertain the connection between completeness and accuracy.

The feasibility of web-based surveys to engage patients and obtain medical data has important implications for a LHS system, some individuals, such as medical assistants and tobacco treatment specialists, may update smoking history in structured fields, but many clinicians are more likely to document smoking history in unstructured notes. As a result, the structured data fields may be more vulnerable to becoming outdated over time and more likely to underreport smoking histories [4]. Survey instruments, in contrast, can be designed to force complete data entry and can be clarified with the patient in the context of a shared decision-making conversation. This could further alleviate completeness issues.

While the data generated from the surveys were more complete than the EMR, it is difficult to ascertain which history is most accurate. Previous research has found substantial agreement between self-reported smoking history comparing a baseline survey and a 1-month follow-up, with a higher likelihood of inconsistent reporting from individuals currently smoking as compared with individuals who have stopped smoking [41]. This reproducibility could be considered a proxy for accuracy. Other studies have treated the history obtained from shared decision-making as the source of truth. Modin et al [6] found a high degree of underreporting in the health record compared to the history obtained in a shared decision-making discussion. It is difficult to know whether the robustness of a nuanced history elicited by a trained clinician could produce a more true result or if other factors, such as time from the last history ascertainment, may influence accuracy. Which of the tobacco use histories is most accurate is particularly salient for the text survey, which demonstrated significant disagreement with the data in the EMR. While the portal questionnaire data suggested closer agreement with the EMR, this is likely an effect of the very small sample size of patients who had complete portal questionnaire data and EMR data. Future studies might use larger sample sizes and repeated measures to better ascertain the connection between completeness and accuracy.

The feasibility of web-based surveys to engage patients and obtain medical data has important implications for a LHS beyond tobacco use history. Consistent, easily accessible structured medical data can be used to target interventions in preventive and follow-up care, for example, the use of web-based symptom checkers to remotely triage patient concerns [42,43]. While innovations such as artificial intelligence and large language models are being proposed as a way to better use unstructured data, these technologies are not yet commercially available or integrated into the EMR and may be costly [44]. Using existing infrastructure, such as portal questionnaires and text surveys, is a low-cost, readily available way to asynchronously engage with patients and gather more structured data for clinical use.

This study was strengthened by testing multiple modalities and multiple message frames to determine the most effective method for engaging patients to self-report tobacco use history. However, this study has some limitations. The use of specific web-based technologies to obtain smoking history data and only English-language data may limit generalizability. Judgment sampling may introduce selection bias, which larger sample sizes would mitigate. However, the cohort characteristics would suggest a diverse cohort that was balanced across intervention groups. Furthermore, obtaining information on smoking history, regardless of modality, can be impacted by social desirability bias, recall bias, and recency bias, all of which may have contributed to the data obtained in this trial [4,45]. We were unable to test message frames in the MyChart Questionnaire portal system due to the unmodifiable global configuration of the initial email message. Also, the CareTour texting platform is designed for appointment reminder functionality. As we were using it for an alternate purpose, we were limited by the lack of conditional display and the inability to restrict data entry on field types, leading to the collection of unusable data. While this modality was able to capture dynamic histories of starting and stopping smoking, it was unclear how to easily translate this into a functionally detailed history. In fact, it remains unclear whether open-ended, “yes” or “no” questions would be most effective in capturing enough of a detailed smoking history to identify patients for interventions such as LCS [46]. Identifying the optimal questions and technology to navigate these limitations should be prioritized in future projects.

This study demonstrates that patients are likely to engage with a text-based survey using “gain” or “loss” framing to report detailed and complete smoking histories. Optimizing web-based surveys to collect tobacco use history and other medical data directly from patients is an appealing approach to improving health care delivery, especially if fully integrated into the EMR, as this could allow health care providers to proactively engage patients in LCS shared decision-making or smoking cessation counseling. Future work should focus on the validation of patient-generated history and the patient experience with receiving and completing a self-reported smoking history survey to allow for further optimization and implementation.

Acknowledgments
The authors would like to thank Corey Dolan, Philips Implementation Manager, for help developing and deploying the text-based survey, David Meter, EpicCare Ambulatory Analyst, for help developing and deploying the portal questionnaire, and all participants who engaged with our surveys.

Conflicts of Interest
None declared.
Multimedia Appendix 1
Images outlining the survey questions as they appeared to participants and trial schema.

References

https://formative.jmir.org/2024/1/e50465

JMR Form Res 2024 | vol. 8 | e50465 | p.1724
(page number not for citation purposes)

Abbreviations

EHR: electronic health record
EMR: electronic medical record
LCS: lung cancer screening
LHS: learning health system
PGHD: patient-generated health data

©Lauren E Kearney, Emily Jansen, Hasmeena Kathuria, Katrina Steiling, Kayla C Jones, Allan Walkey, Nicholas Cordella. Originally published in JMIR Formative Research (https://formative.jmir.org), 09.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

mHealth App Usability Questionnaire for Stand-Alone mHealth Apps Used by Health Care Providers: Canadian French Translation, Cross-Cultural Adaptation, and Validation (Part 1)

Julie Gagnon¹,², MSc, NSWOC; Sebastian Probst³,⁴,⁵, DClinPrac; Julie Chartrand¹,⁶, PhD; Michelle Lalonde¹,⁷, PhD

¹School of Nursing, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
²Département des sciences de la santé, Université du Québec à Rimouski, Rimouski, QC, Canada
³Haute École Spécialisée de Suisse occidentale, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
⁴Care Directorate, University Hospital Geneva, Geneva, Switzerland
⁵College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
⁶Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
⁷Institut du Savoir Montfort, Montfort Hospital, Ottawa, ON, Canada

Corresponding Author:
Julie Gagnon, MSc, NSWOC
School of Nursing
Faculty of Health Sciences
University of Ottawa
451 Smyth Road
Ottawa, ON, K1H 8L1
Canada
Phone: 1 613 562 5700
Email: jgagn156@uottawa.ca

Abstract

Background: An increasing number of health care professionals are using mobile apps. The mHealth App Usability Questionnaire (MAUQ) was designed to evaluate the usability of mobile health apps by patients and providers. However, this questionnaire is not available in French.

Objective: This study aims to translate (from English to Canadian French), cross-culturally adapt, and initiate the validation of the original version of MAUQ for stand-alone mobile health apps used by French-speaking health care providers.

Methods: A cross-cultural research study using a well-established method was conducted to translate MAUQ to Canadian French by certified translators and subsequently review it with a translation committee. It was then back translated to English. The back translations were compared with the original by the members of the committee to reach consensus regarding the prefinal version. A pilot test of the prefinal version was conducted with a sample of 49 potential users and 10 experts for content validation.

Results: The statements are considered clear, with interrater agreement of 99.14% among potential users and 90% among experts. Of 21 statements, 5 (24%) did not exceed the 80% interrater agreement of the experts regarding clarity. Following the revisions, interrater agreement exceeded 80%. The content validity index of the items varied from 0.90 to 1, and the overall content validity index was 0.981. Individual Fleiss multirater κ of each item was between 0.89 and 1, showing excellent agreement and increasing confidence in the questionnaire’s content validity.

Conclusions: This process of translation and cultural adaptation produced a new version of MAUQ that was validated for later use among the Canadian French-speaking population. An upcoming separate study will investigate the psychometric properties of the adapted questionnaire.

(JMIR Form Res 2024;8:e50839) doi:10.2196/50839

KEYWORDS

cross-cultural adaptation; French language; mHealth App Usability Questionnaire; MAUQ; mobile health; mHealth; mobile app; questionnaire translation; usability; validation; health care providers; French translation
Introduction

Background

Mobile health (mHealth) is increasingly used in health care systems, and this fast-growing technology has immeasurable potential to improve the quality and accessibility of health care worldwide [1]. There is no exact figure for the number of mHealth apps available worldwide, as this number is constantly changing owing to the launch of new apps and the removal of existing ones. Globally, the number of mHealth apps for patients and health care providers exceeded 350,000 in 2021 [2]. For care providers, mHealth apps are a fast and effective way to improve communication between patients and interdisciplinary teams. They also enable more accurate data collection at patients’ bedside, facilitate documentation, and increase the availability of care for people living in rural or remote areas [1]. The effectiveness and efficacy of mHealth apps must be guaranteed to optimize the use of this limitless resource, improve user experience, and benefit from the subsequent reduction in health care system costs [3].

Ensuring the usability of mHealth apps is an important step in their development and evaluation. However, literature indicates a lack of evidence regarding the quality of mHealth apps and no legal framework at the national policy level [4,5]. In mHealth, usability refers to the ease and efficiency with which users will use a tool to satisfactorily accomplish a specific task [6]. This includes aspects such as ease of use, operability, clarity of instructions, risk of errors and possibility of correcting them, and user-friendliness of the interface [7].

Currently, several questionnaires are available for evaluating mobile apps. The Mobile Application Rating Scale (MARS) and the user version of MARS for evaluating the quality of mHealth apps in the broadest sense are among the most widely used measures [8,9]. A systematic review, including 87 studies published between 2000 and 2018 [10], highlighted that the usability scales used to evaluate mHealth apps were all initially created to obtain the perspective of developers and researchers. Questionnaires for assessing the usability of mHealth apps by different users have since been created but not yet validated. One of these questionnaires is the multidimensional App Quality Assessment Tool for Health-Related Apps that can be used by experts and users to quickly determine the quality of health-related and mental health–related apps [11]. The mHealth App Usability Questionnaire (MAUQ) is the only questionnaire specifically validated for stand-alone mHealth apps used by health care providers [12]. It is originally available in English, and MAUQ for stand-alone mHealth apps for patients was translated to Malay and validated by a Malaysian research team [13].

The Need for a Canadian French Questionnaire

It is well known that cultural differences can influence how participants respond to questions associated to the measurement tools owing to dissimilarities in language and social and professional norms [14]. Therefore, cultural bias can creep into study results and influence their interpretation [15]. Ensuring the translation, cross-cultural adaptation, and validation of measurement tools beforehand is a recognized process for minimizing this bias and ensuring the validity of study results [16,17].

With 321 million speakers, French is the fifth most spoken language in the world [18]. As a member state of Francophonie, Canada has a vast territory that is rich in linguistic diversity. Spanning 5514 km between the Pacific and Atlantic oceans, Canada has 2 official languages: English and French. The proportion of Canadians with French as their mother tongue is 20.9% [19], and the number of French-speaking researchers is 63,455 [20]. Although both languages are spoken across the country, French remains as the majority language in the province of Quebec, which accounts for 85.5% of Canadians with French as their mother tongue [19]. Francophone Canadian researchers are also interested in the contribution of mobile technologies to health but have access to very few reliable and valid instruments in French. Clearly, the lack of valid measurement tools in French affects the ability to study this population [20]. This puts francophone health care providers at a disadvantage, as they are often left out of studies available exclusively to anglophone participants. Thus, their experiences are less represented in literature [21].

Currently, there are only few measurement tools available in French such as MARS [22] or Unified Theory of Acceptance and Use of Technology 2 [23,24]. So far, there is no French version of MAUQ. Consequently, there is a necessity for a measurement tool that is translated, cross-culturally adapted, and validated for use with Canadian French health care providers.

This study was the first of 2 phases of a methodological study. The aims of the first phase were the Canadian French translation and cross-cultural adaptation of MAUQ and the initiation of its validation to allow Canadian French health care providers to eventually evaluate the usability of mHealth apps.

Methods

This paper has described the Canadian French translation, cross-cultural adaptation, and validation of the original version of MAUQ. The second step in the assessment of the psychometric properties of the translated version will be described in a later publication.

Instrument

The original version of MAUQ was developed to quantitatively measure the usability of mHealth apps by patients and health care providers regarding ease of use, interface design, user satisfaction, and usefulness, before their launch to the general public [12]. Originally in English, MAUQ was created and validated by health informatics professor Lening Zhou and his colleagues at the University of Pittsburgh [12]. The authors point out that there are no licensing fees for using the questionnaire, and it is not necessary to request permission before using it. The questionnaire is freely accessible on the website [25] and is available in 4 versions, according to app type (interactive or stand-alone) and target population (patients or health care providers). This study was conducted using MAUQ for stand-alone mHealth apps used by health care providers.
MAUQ for stand-alone mHealth apps used by health care providers consists of a short guideline for completing the questionnaire, followed by 18 statements and an open question for comments. The statements address 3 domains: ease of use (questions 1-5), interface and satisfaction (questions 6-12), and usefulness of the mobile app (questions 13-18). The statements were developed based on a systematic literature review of 312 unique questionnaire statements from 38 questionnaires. People completing MAUQ are asked to rate their level of agreement on a Likert scale ranging from 1 (disagree) to 7 (agree). App usability is determined by the total average of all scored items for each participant: the higher the average, the better the app’s usability. It is also possible to evaluate the responses to each item to assess a specific component of usability and compare the averages.

The validity study conducted by MAUQ authors used only the 2 patient versions [12]. The authors report that the differences between the patient and health care provider versions are negligible. Initially conducted with 128 participants from the University of Pittsburgh’s academic community, the validity study of MAUQ designed for stand-alone mHealth apps demonstrated strong internal reliability, with an overall Cronbach α value of .914 for the entire questionnaire and .847, .908, and .717 for ease of use, interface and satisfaction, and usefulness, respectively [12].

Translation, Adaptation, and Validation Processes

The accepted method of instrument translation and cultural adaptation suggested by Sousa and Rojjanasrirat [17] was retained for this study (Table 1). This 7-step sequential method incorporates the recommendations of the most established methodological approaches in a clear and detailed guideline. Moreover, it aims to provide a symmetrical translation, which is the most recommended because it remains true to the intended meaning and linguistic expression in equal measure between the 2 languages (that of the source instrument and the target instrument) [17,26,27]. Ultimately, the objective of this method was to achieve equivalence between the original and translated versions of the questionnaire. The cross-cultural equivalence is broken down by Flaherty et al [28] into 5 mutually exclusive equivalences of semantic, technical, conceptual, content, and criterion origin (defined inTextbox 1).

Table 1. The 7-step guideline for translation, cross-cultural adaptation, and validation according to Sousa and Rojjanasrirat [17] and the respective equivalences achieved.

<table>
<thead>
<tr>
<th>Steps</th>
<th>Equivalences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed in full in this study</td>
<td>Content</td>
</tr>
<tr>
<td>Obtaining authorization to translate the tool; independent, double translation from English to French</td>
<td>✓</td>
</tr>
<tr>
<td>Comparison of the 2 translated versions, discussion, and consensus regarding a preliminary French version</td>
<td>✓</td>
</tr>
<tr>
<td>Independent double back translation from French to English</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>Comparison of the 2 back-translated versions with the original; discussion and consensus regarding the prefinal French version</td>
<td>✓</td>
</tr>
<tr>
<td>Pilot study to test the prefinal French version</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>Separate studies (upcoming)</td>
<td>Content</td>
</tr>
<tr>
<td>Preliminary psychometric test with a bilingual sample (French-English)</td>
<td>✓</td>
</tr>
<tr>
<td>Complete psychometric test</td>
<td>✓</td>
</tr>
</tbody>
</table>
Content
- The content of each questionnaire statement is relevant to each culture.

Semantic
- The meaning of each statement is the same in each culture after translation.

Technical
- The data collection method (in this case, a questionnaire) is comparable in each culture in terms of the data it reports.

Criterion
- The interpretation of the measurement of each variable and of the results is the same when compared between the 2 cultures.

Conceptual
- The theoretical constructs evaluated and the concepts used are the same in both cultures.

Step 1
Step 1 consisted of the independent and anonymous forward translation of the original MAUQ from English to French by 2 professional translators with French as their mother tongue. One of the 2 translators was familiar with digital health terminology, and the other was familiar with the cultural and linguistic nuances of French.

Step 2
In step 2, a comparison of the 2 translated versions with the original was performed by a team comprising the 2 translators, a nurse (JG; member of the research team), and a third-party translator to assess the degree of equivalence of the translation. Ambiguities and differences between words, phrases, grammar, and meanings were discussed in a virtual meeting to reach consensus regarding the first version of the translated MAUQ.

Step 3
Step 3 involved the independent and anonymous back translation of the translated version to English by 2 other certified translators with English as their mother tongue and no previous knowledge about the original MAUQ. They had to consider the French version as the original.

Step 4
In step 4, a committee (n=6) compared these 2 back-translated versions with the original MAUQ version to assess the degree of equivalence of the back translations. This committee, which included all 4 bilingual and bicultural translators who worked in steps 1 and 3, a nurse (JG; member of the research team), and a health care provider (an experienced acute care nurse), was formed to discuss ambiguities and differences between words, phrases, grammar, and meanings. Consensus for each of the statements was established during a virtual meeting, ensuring consistency and clarity of formulation according to the Canadian French language and culture. The prefinal version of the translated and adapted questionnaire was consolidated and named MAUQ en français (MAUQ-FR).

At each of these first 4 steps, 1 of the 2 certified translators was familiar with digital health terminology, ensuring that the constructs of the tool were understood. All the involved individuals were bilingual experts.

Step 5
Step 5 consisted of pilot-testing MAUQ-FR with target users and a panel of unilingual experts. For the target population, Sousa and Rojjanasrirat [17] define participants as people whose language is the target language of the instrument and who should be recruited from the target population in which the instrument will be used. A group of 49 registered nurses with French as their mother tongue completed a 5-minute SurveyMonkey (Symphony Technology Group) questionnaire asking them to rate the clarity of the instructions and each translated MAUQ statement dichotomously (clear or unclear) [17,29]. If they selected unclear, a textbox appeared, so that they could indicate how to rewrite the statement to make it clear. Recruitment with voluntary sampling was conducted among graduate nurses from a Quebec university.

The same approach was used with an expert panel, in addition to rating the relevance of each statement regarding their experience with Canadian health care. To achieve this, a Likert scale ranging from 1 (not relevant) to 4 (very relevant) was used to avoid a neutral position [30,31]. Sousa and Rojjanasrirat [17] indicate that the panel should consist of experts “who are knowledgeable about the content areas of the construct of the instrument and the target population in which the instrument will be used and whose mother language is the target language of the instrument.” A search was conducted across Canada to find experts who are using mobile technology at work and with French as their mother tongue. Following the target number of 6 to 10 experts [30,32], the 10 people who assessed content validity were 2 (20%) professors in nursing, 1 (10%) person in public health who works on the evaluation of information and communication technologies and its specific terminology, 3 (30%) doctoral candidates and professors in nursing, 1 (10%) physician and clinical professor in medicine, 1 (10%) mobile app developer, and 2 (20%) health-related practitioners who use mHealth (1 nurse manager and 1 medical specialist). Experts were recruited from the Canadian provinces of Manitoba, Ontario, Quebec, and New Brunswick through networking
(colleagues and contacts). Participation in this study was entirely voluntary.

As recommended by Sousa and Rojjanasrirat [17], this first study only covered steps 1 to 5. Steps 6 and 7 involving the evaluation of the psychometric properties (Cronbach α) and the measurement of the internal consistency reliability (Lin concordance correlation coefficient) of MAUQ-FR with a bilingual, French-English sample (target n=90) and the target population (target n=180) will be conducted in 2 subsequent studies.

Analyses for the Validation of the Instrument

The quantitative data obtained during the pilot test were extracted directly from the SurveyMonkey website and analyzed using descriptive statistics presented as frequencies and percentages, including interrater agreement. The minimum interrater agreement was set at 80% [17]. The research team revised and reevaluated the statements rated as unclear by at least 20% (2/10) of the sample, in addition to considering all feedback obtained from unclear responses to improve MAUQ-FR.

Data collected from the expert panel made it possible to assess content validity with the content validity index (CVI): CVI at item level (I-CVI) and CVI at scale level (S-CVI). Relevance scores were previously dichotomized: scores of 1 and 2 were coded as 0 (not relevant) and scores of 3 and 4 were coded as 1 (relevant) [30]. With 10 experts, the minimum thresholds to reach were at least 0.79 for I-CVI [30] and at least 0.80 for the averaging calculation at S-CVI [32,33]. Considered as the average of the proportion of items deemed relevant across the various judges, S-CVI was calculated by adding I-CVIs and dividing by the number of items [33].

Members of the research team considered and discussed the statements with a relevance score of 1 (not relevant) or 2 (unable to assess relevance). Items that failed to meet the previously indicated I-CVI thresholds were revised and reevaluated by the expert panel. New validity indices were then calculated until acceptable I-CVIs were reached. The modified κ coefficient of agreement (Fleiss multirater κ) was also calculated to determine interrater agreement among experts [34,35]. A κ of 0.60 is considered as the minimum acceptable coefficient to determine good agreement, whereas a value ≥0.75 is considered as excellent [34,36]. All statistical analyses were performed using Microsoft Excel.

Table 2. Grammatical changes between the step-2 and step-4 consensuses of the translation and cross-cultural adaptation process.

<table>
<thead>
<tr>
<th>Item number</th>
<th>Step-2 statement</th>
<th>Step-4 statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>“Je suis à l’aise d’utiliser l’application dans un contexte de soins communautaires” (I am comfortable using the application in a community care setting)</td>
<td>“Je suis à l’aise d’utiliser l’application dans un endroit public” (I am comfortable using the application in a public place)</td>
</tr>
<tr>
<td>10</td>
<td>“temps nécessaire” (time needed)</td>
<td>“temps requis” (time required)</td>
</tr>
<tr>
<td>Items 14 and 18</td>
<td>“services de soins de santé” (health-care services)</td>
<td>“services de soins” (care services)</td>
</tr>
</tbody>
</table>

Step 5: Pilot Test (Target Population)

For face validation, the French-speaking registered nurses (n=49) considered the statements to be clear, with interrater agreement of 99.14% (Table 3). In total, 5 comments were collected and considered to improve the questionnaire. This pilot test provided additional support for conceptual equivalence.

Ethical Considerations

After submission to the research ethics board at University of Ottawa, an approval from the research ethics board will be required only for subsequent stages (psychometric testing), since this study is regarded as a quality improvement study. All participants received the information about the objectives of the study, procedures involved, and confidentiality of the data. Informed consent was obtained from all participants. In accordance with the chosen methodology, the completed questionnaires were entirely anonymous and did not collect sociodemographic data. Authorization to translate MAUQ was obtained in advance from the authors.

Results

Steps 1 to 4: Translation

Steps 1 to 4 helped to achieve conceptual, semantic, and content equivalence. The translated version includes the 3 domains of the original version of MAUQ, which have been similarly broken down into 18 statements. In more detail, the step-2 consensus phase made it possible to work on semantic equivalence, ensuring that there was no change in the meaning of the words used in the original questionnaire. The committee met virtually for 1 hour. As there was hesitation in choosing the right terms, the translators were encouraged to indicate all possible options for certain words to clarify their connotations and jointly make the best decision (eg, user-friendliness vs use vs usability).

The step-3, independent, double back translation clarified the words and sentences used in the translation to determine the accuracy of the translation by identifying the differences between the 2 English versions (semantic equivalence). In a 2-hour virtual meeting, the step-4 committee discussion validated each statement and established conceptual, semantic, and content equivalences. Professor Zhou, author of the original questionnaire [12], was contacted to clarify the intended meaning of the term “social settings” in the ninth statement. Then, 4 statements were modified between the step-2 and step-4 consensuses (Table 2). Following these modifications, the committee unanimously reached consensus that the words and concepts used complied with the language and each cultural perspective.
(clarity) and content equivalence (relevance) in the Canadian French cultural context.

Table 3. Interrater agreement on statement clarity among the target population and the expert panel during the pilot test.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Target population (n=49), n (%)</th>
<th>Round-1 experts (n=10), n (%)</th>
<th>Round-2 experts (n=9), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>45 (92) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Directives</td>
<td>49 (100) 10 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 1</td>
<td>48 (98) 10 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 2</td>
<td>49 (100) 10 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 3</td>
<td>46 (94) 8 (80) 9 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 4</td>
<td>49 (100) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 5</td>
<td>49 (100) 10 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 6</td>
<td>49 (100) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 7</td>
<td>49 (100) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 8</td>
<td>49 (100) 8 (80) 9 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 9</td>
<td>49 (100) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 10</td>
<td>49 (100) 10 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 11</td>
<td>49 (100) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 12</td>
<td>49 (100) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 13</td>
<td>49 (100) 10 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 14</td>
<td>49 (100) 8 (80) 9 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 15</td>
<td>49 (100) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 16</td>
<td>48 (98) 9 (90)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 17</td>
<td>49 (100) 10 (100)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Item 18</td>
<td>49 (100) 8 (80) 8 (89)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td>49 (100) 6 (60) 9 (100)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

aInterrater agreement within the target population=99.14.
bInterrater agreement among round-1 experts=90.
cInterrater agreement among round-2 experts=93.
dN/A: not applicable.

Step 5: Expert Panel

The experts (n=10) considered the statements to be clear, with interrater agreement of 90% (Table 3). The 5 statements that did not exceed 80% interrater agreement were revised by the research team and reevaluated by the expert panel (9/10, 90%) to achieve content-related validity. Interrater agreement for the modified statements was 93%.

I-CVI for each statement ranged from 0.90 to 1, and S-CVI was 0.981 (Table 4). Individual Fleiss multirater \(\kappa \) for each item ranged from 0.89 to 1, increasing confidence in the questionnaire’s content validity [35]. There were 32 comments, which improved the accuracy of the statements.

Step 5 helped to reinforce the conceptual, semantic, and content equivalence and prepare a translated and adapted version. The sample sizes required were achieved and even exceeded for the pilot test with the target population.

In short, all the items and the title, instructions, and conclusion met the thresholds for psychometric testing. The example in Table 5 illustrates the entire process of steps 1 to 5.
Table 4. Content validity index (CVI) of item relevancy and Fleiss κ agreement by the expert panel during the pilot test.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Rating of 1 or 2 (n=10), n (%)</th>
<th>Rating of 3 or 4 (n=10), n (%)</th>
<th>Item-level CVI</th>
<th>Fleiss κ</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Directives</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 1</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 2</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 3</td>
<td>1 (10)</td>
<td>9 (90)</td>
<td>0.90</td>
<td>0.89</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 4</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 5</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 6</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 7</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 8</td>
<td>1 (10)</td>
<td>9 (90)</td>
<td>0.90</td>
<td>0.89</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 9</td>
<td>1 (10)</td>
<td>9 (90)</td>
<td>0.90</td>
<td>0.89</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 10</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 11</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 12</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 13</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 14</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 15</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 16</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 17</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Item 18</td>
<td>0 (0)</td>
<td>10 (100)</td>
<td>1.00</td>
<td>1.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>Conclusion</td>
<td>1 (10)</td>
<td>9 (90)</td>
<td>0.90</td>
<td>0.89</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Overall scale CVI=0.981.

Table 5. Translation process: example (item 16).

<table>
<thead>
<tr>
<th>Original English version</th>
<th>Forward translation (English to French)</th>
<th>Consensus</th>
<th>Back translation (French to English)</th>
<th>Consensus</th>
<th>Pilot test</th>
</tr>
</thead>
<tbody>
<tr>
<td>This app has all the functions and capabilities I expected it to have.</td>
<td>Translator 1: L’application possède toutes les fonctions et capacités auxquelles je m’attendais.</td>
<td>L’application comportait toutes les fonctions et capacités auxquelles je m’attendais.</td>
<td>Translator 3: The app had all the features and functions I was expecting.</td>
<td>L’application comportait toutes les fonctions et capacités auxquelles je m’attendais.</td>
<td>L’application comportait toutes les fonctionnalités auxquelles je m’attendais.</td>
</tr>
<tr>
<td></td>
<td>Translator 2: Cette application comporte toutes les fonctions et capacités auxquelles je m’attendais.</td>
<td></td>
<td>Translator 4: The app had all of the features and capabilities I was expecting.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

This study made it possible to translate, cross-culturally adapt, and initiate the validation of the original, English MAUQ in Canadian French. Study results indicate that MAUQ-FR has high content validity. CVI is high for all individual items (>0.90) and for the overall scale (0.981), exceeding the minimum thresholds of 0.79 and 0.80, respectively [30,32]. These results are comparable with I-CVIs of the version translated to Malay, which varied between 0.9 and 1, and the overall S-CVI of 0.983 [13]. It is important to distinguish between item-level (I-CVI) and scale-level (S-CVI) content validity as it helps to identify specific elements of the scale that do not effectively measure the desired construct. The κ statistic showed excellent interexpert agreement. These results suggest that MAUQ-FR has been accurately translated and adapted for future francophone users in Canada.

A renowned, systematic method was used to ensure linguistic and cultural equivalence [28,29,37]. The guideline by Sousa and Rojjanasrirat [17] for achieving the objectives provided a clear and precise approach. Translation and cross-cultural adaptation studies must follow a rigorous process, as instruments simply translated from one language to another may lose their validity and no longer measure what they intended to measure, in addition to jeopardizing safety and research ethics [38]. As
Sperber [39] points out in his methodological paper, the translation, cross-cultural adaptation, and validation processes are often treated as afterthoughts in research protocols. Forward translation by uncertified translators is also a commonly used methodological approach [17]. Nevertheless, it is not only essential to translate words in the literary sense but they must, most importantly, also be closely related to the context [40]. This premise is especially critical here, considering that idiomatic expressions vary in each French-speaking region of the vast Canadian territory. Being aware of possible variations involving colloquialisms and jargon, the certified translators, consensus committee members, and experts involved in this study sought to use the most common and neutral vocabulary possible, while paying close attention to cultural nuances (hence the importance of involving translators who come from both cultures or who are bilingual). Beck et al [41] used the same qualitative approach for their cross-cultural study, in which the authors highlighted the need to go beyond the search for equivalence in the denotative meaning of words. Rather, there is a great need to grasp their meaning and connotation within the cultural context they are used. All things considered, the approach was a success, and the results were validated by the group of experts from different French-speaking regions of Canada.

Despite the methodological process, the adaptation of measuring instruments between 2 cultures rarely results in perfect transposition [28]. Some equivalences are more strongly achieved than others. In this study, combining the expertise of translators, researchers, IT specialists, and health care providers favorably contributed to the thorough evaluation of semantic and conceptual equivalences [42]. Choosing qualified and certified translators and having a second independent team for back translation enabled the development of a high-quality instrument by minimizing idiosyncratic bias. Moreover, back translation has long been recognized as a key method for achieving semantic equivalence by ensuring that the translation matches the characteristics of the original instrument [26]. It also allowed the research team to verify the quality of the translation by comparing the 2 English versions of MAUQ (the original and retranslated versions). Few errors were found, attesting to the quality of the previously completed translation and consensus work.

The sequential form of the study allowed for the progressive improvement of MAUQ-FR by identifying ambiguities or terminological imprecision that had not been raised by the translation team. For example, the translation of the item, “The navigation was consistent when moving between screens,” did not exceed the 80% threshold of agreement between the experts, highlighting a lack of clarity in the translated version. Corrections were made by the research team based, among other things, on the feedback received. I-CVI of the revised version of this item finally reached 100%, ensuring conceptual equivalence. An essential element in the process was the outstanding collaboration with the principal author of the original questionnaire, which enabled fluid communication and clarification of the original meaning of certain items. Finally, the equivalences were deemed to have been satisfactorily achieved, making it possible to proceed to the evaluation of the psychometric properties of MAUQ-FR.

Once the cross-cultural validation process is completed, it will be possible to use MAUQ-FR in a comparable way in different cultures while ensuring data comparability. This will ultimately make it possible to distinguish significant differences between cultures. MAUQ-FR will enable even unilingual anglophone researchers to collect data from francophone Canadians, a population that is currently understudied [20]. Given that French is the world’s fifth most spoken language [18], MAUQ’s French translation can help to create opportunities for other cultural adaptations.

Limitations
This study has its limitations. First, the sociodemographic data of the participants were not collected, as they are not required by the chosen method [17]. However, this prevents certain factors from being considered during the validation process, such as professional experience, age, sex, and gender. Another limitation is that the pilot test in the target population was conducted exclusively by nurses, whereas the questionnaire could be used by other health care providers. This excluded other potential participants, such as physicians, physiotherapists, respiratory therapists, and other health care providers. In addition, the target population sample was drawn from a university in Quebec (Canada), the province with the largest number of French speakers in the country [19]. These 2 constraints make it impossible to generalize the results to all French-Canadian health care providers. The same applies to the experts surveyed. Although they come from different Canadian provinces, it would be essential to eventually include participants from other French-speaking minority regions such as the Yukon Territory and British Columbia [19]. In addition, the recruitment of experts through networking may have induced a selection bias within the panel. The participants selected were nonetheless representative of the majority of mHealth app users and able to provide a reliable evaluation of the questionnaire.

Although the pilot test allowed for the assessment of conceptual equivalence, question comprehension, and content validity, it does not guarantee construct validity, internal consistency reliability, or fidelity [17,29]. Additional studies must be conducted with full psychometric testing of a large sample of health care providers to establish Cronbach α, internal consistency reliability (Lin concordance correlation coefficient), stability reliability (test-retest), homogeneity, construct-related validity with scale and item analysis, Pearson correlations, and exploratory and confirmatory factor analysis.

Conclusions
In summary, this study is based on the domains of equivalence by Flaherty et al [28] and was conducted in accordance with the methodology by Sousa and Rojjanasrirat [17] to achieve the translation from English to Canadian French, cross-cultural adaptation, and initiation of the validation of MAUQ. Initial tests performed with MAUQ-FR show excellent validity. As part of a doctoral research project, this adaptation was necessary to meet the specific circumstances of the population to be studied, and to ensure the methodological rigor of future studies.
Finally, this study was the first phase of a methodological study and will enable the continuation of work with the psychometric evaluation of MAUQ-FR. The data collected will be shared with the authors of the original MAUQ to undertake further analyses and improve the use of the questionnaire.

Acknowledgments
The authors would like to thank Dr. Leming Zhou for granting the permission to translate the mHealth App Usability Questionnaire from English to French. The authors would also like to thank all the participants and experts involved in this study. Finally, the authors would like to thank Lucie Charbonneau, research officer at Université du Québec, for her feedback following the expert panel’s modifications. This study is a part of a PhD project funded by the Canadian Institutes of Health Research Doctoral Research Award (202111FBD-476880-67262), Fonds de recherche du Québec Santé (2022-2023-BF2-319284), and University of Ottawa.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

References
25. PITT usability questionnaire. Health and Rehabilitation Informatics Lab. URL: https://ux.hari.pitt.edu/v2/portal/#/ [accessed 2022-10-18]

Abbreviations

CVI: content validity index
I-CVI: content validity index at item level
MARS: Mobile Application Rating Scale
MAUQ: mHealth App Usability Questionnaire
MAUQ-FR: mHealth App Usability Questionnaire en français
mHealth: mobile health
S-CVI: content validity index at scale level

©Julie Gagnon, Sebastian Probst, Julie Chartrand, Michelle Lalonde. Originally published in JMIR Formative Research (https://formative.jmir.org), 13.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

Predictive Criterion Validity of the Parsley Symptom Index Against the Patient-Reported Outcomes Measurement Information System-10 in a Chronic Disease Cohort: Retrospective Cohort Study

Hants Williams1*, RN, PhD; Sarah Steinberg2*, MD, PhD; Kendall Leon3, PhD; Ryan Vingum1, MA; Mengyao Hu1, PhD; Robin Berzin2, MD; Heather Hagg2, PhD; Patrick Hanaway4, MD

1Applied Health Informatics, School of Health Professions, Stony Brook University, Stony Brook, NY, United States
2Parsley Health, New York, NY, United States
3Untold Content, Cincinnati, OH, United States
4Family to Family, Weaverville, NC, United States
*these authors contributed equally

Corresponding Author:
Hants Williams, RN, PhD
Applied Health Informatics
School of Health Professions
Stony Brook University
101 Nicolls Road
Stony Brook, NY, 11794
United States
Phone: 1 631 444 2252
Email: hantsawilliams@gmail.com

Abstract

Background: Approximately 60% of US adults live with chronic disease, imposing a significant burden on patients and the health care system. With the rise of telehealth, patient-reported outcomes measures (PROMs) have emerged as pivotal tools for managing chronic disease. While numerous PROMs exist, few have been designed explicitly for telehealth settings. The Parsley Symptom Index (PSI) is an electronic patient-reported outcome measure (ePROM) developed specifically for telehealth environments.

Objective: Our aim is to determine whether the PSI predicts changes in the established Patient-Reported Outcomes Measurement Information System-10 (PROMIS-10) Global Health, a 10-question short form.

Methods: We conducted a retrospective cohort study using data from 367 unique patients, amassing 1170 observations between August 30, 2017, and January 30, 2023. Patients completed the PSI and the PROMIS-10 multiple times throughout the study period. Using univariate regression models, we assess the predictive criterion validity of the PSI against PROMIS-10 scores.

Results: This study revealed significant relationships between the PSI and PROMIS-10 physical and mental health scores through comprehensive univariate analyses, thus establishing support for the criterion validity of the PSI. These analyses highlighted the PSI’s potential as an insightful tool for understanding and predicting both mental and physical health dimensions.

Conclusions: Our findings emphasize the importance of the PSI in capturing the nuanced interactions between symptomatology and health outcomes. These insights reinforce the value of the PSI in clinical contexts and support its potential as a versatile tool in both research and practice.

(JMIR Form Res 2024;8:e53316) doi:10.2196/53316

KEYWORDS
chronic disease; eHealth; ePROM; mHealth; Parsley Symptom Index; patient-reported outcome measure; PROM; PSI; telehealth; telemedicine; validation; web-based
Introduction

Approximately 60% of US adults live with one or more chronic diseases [1]. Due to the growing population of adults aged 65 years or older and increased risk factors, chronic disease is expected to impact over 221 million people in the United States by 2050 [2]. Developing tools and strategies to promote health is increasingly important as a way to alleviate the enormous burden that chronic disease places on patients, providers, and health care systems [3]. Compared with people without chronic disease, people with chronic conditions have higher health care costs and require more time to manage their care than primary care providers have available [4]. Many new care models, such as the Chronic Care Model, have been implemented [5-7] to overcome these challenges; however, more work is needed to increase access to effective chronic disease care that reduces resource constraints and improves patients’ health.

Emerging telehealth tools, which have become increasingly popular and widespread since the COVID-19 pandemic [8], are proving capable of creating meaningful changes in chronic disease management [9]. Care provided through telehealth has been shown to alleviate many of the burdens of chronic diseases, such as lowering health care costs, reducing missed appointments, and increasing access to timely care [10]. Telehealth tools have also been shown to encourage collaborative disease management, incentivizing patients to participate in their care [11,12].

Patient-reported outcomes measures (PROMs) are patient-oriented, self-reporting tools that can be implemented in a range of settings to improve care processes and track outcomes [13]. PROMs have been found to help facilitate patient-clinician communication [14] and save valuable time and resources for both patients and providers [15], making them a crucial tool in chronic disease management.

Several powerful PROMS exist to capture patients’ perceptions of their health and well-being, such as the Patient Reported Outcomes Measurement Information System (PROMIS) [16,17], the 36-Item Short Form Health Survey [18,19], and the Medical Symptom Toxicity Questionnaire [20]. However, few validated PROMS were designed for telehealth settings first, as opposed to paper and pen PROMs retrofitted for a telehealth environment.

In response to a need for a validated, digital-first electronic patient-reported outcome measure (ePROM), Parsley Health—a subscription-based, holistic medical practice—designed the Parsley Symptom Index (PSI) [21]. To our knowledge, the PSI is the only multi-item ePROM designed for and within a telehealth environment with internal validity. The Medical Symptom Toxicity Questionnaire, a conceptually similar functional medicine tool created over 20 years ago, was initially designed for a telehealth setting [22]. While there was a moderate level of association and agreement between the PSI and the SRH and the 2 instruments had conceptual similarities, the PSI captured additional granular changes in symptoms with treatment over time compared to the SRH measure, which remained relatively static [22]. This difference was expected, as the PSI is a 45-item ePROM and the SRH is a single question with a 5-item Likert scale response. As such, there is a need to compare it to a PROM that is closer in design and concept to the PSI, as well as to externally validate the PSI to determine its generalizability for use with different patient populations with chronic disease [23].

The primary objective of this study was to assess the criterion validity of the PSI against a validated, conceptually aligned, multi-item PROM (ie, the Patient-Reported Outcomes Measurement Information System–10 [PROMIS-10]) [24]. We aimed to ascertain whether the PSI could predict alterations in the widely accepted PROMIS-10 tool.

Methods

Ethical Considerations

This study used patient-reported survey data that were recorded so that participants were unidentifiable to the researchers. The institutional review board at Stony Brook University considered this study exempt (IRB2020-00429) from the Code of Federal Regulations Title 45 requirements.

Study Design

This retrospective cohort study took place at the “Family to Family” medical clinic in the Southeast region of the United States between August 30, 2017, and January 30, 2023, among a sample of 367 participants with a range of chronic diseases. Additionally, for the purpose of PSI to PROMIS T-score calibration, an independent data set consisting of 122,591 assessments from 29,353 customers of Parsley Health was used to establish the PSI T-score conversion table detailed in Multimedia Appendix 1.

The PSI

The PSI is a 45-item ePROM, similar to a Review of Symptoms, focusing on bodily domains and the most commonly reported symptoms associated with chronic diseases for each domain. The PSI assesses a patient’s perception of symptom burden. The PSI was developed using the Federal Drug Agency’s guidance for PROM development [24]. Items are grouped into 9 systems and ranked on a scale from 0 (asymptomatic) to 10 (extremely symptomatic). A total score is calculated with the following 4 cutoff ranges: “well” (0-24), “symptomatic” (25-43), “very symptomatic” (44-71), and “sick” (≥71). The PSI has shown clinical validity for use in clinical practice [22].

The PROMIS-10

The PROMIS-10 is a single, generalizable, and validated PROM that can be used for various diseases and conditions. It is a shortened version of PROMIS that was developed to minimize respondent burden. This version is a 10-item, patient-reported questionnaire that was created as a general health assessment tool. Nine out of 10 questions on the PROMIS-10 are answered...
using a 5-point Likert scale, with the tenth question answered using a numeric rating scale. Results can be tracked in three different ways: (1) answers to each of the 10 questions can be evaluated separately, (2) answers can be grouped together to provide a global summary score, or (3) answers can be split into 2 groups to provide a global physical health score and a global mental health score.

We compared the PSI to the PROMIS-10, as it is similar to other general health short-form surveys and is widely adopted due to its ease of use. The PROMIS-10 has been shown to be valid and reliable in clinical settings for patients from the general population [16] and those living with chronic diseases [25,26]. Similar to its more extensive counterpart, the PROMIS-10 has undergone rigorous testing and validation across diverse age groups, including younger and older adults [27,28], and has proven to be reliable across a variety of clinical populations [29-31].

Study Setting and Population

Family to Family is a hybrid (remote and in-person) functional and holistic medicine clinic for adults and children located in the Asheville, North Carolina, metropolitan area. The average patient age was 53.7 years old, and patients predominantly identified as female (73%). While race data were not available, the 2 clinicians at this practice report that their patients are predominantly White.

Procedure

Patients and their caregivers were prompted to complete both the PSI and the PROMIS-10 through a password-protected electronic medical record web-based portal before each clinical visit. The PSI was added as a PROM to complete along with the PROMIS-10 because the clinicians believed it provided different insight as a Review of Symptoms to capture a more comprehensive view of patients’ symptomatology and progress over time.

Patients were required to complete the PSI and PROMIS before their first clinical visit. If both ePROMs were not completed before a patient’s first clinical visit at Family to Family, the visit was postponed or rescheduled. For all subsequent visits, completing the ePROMs was optional but encouraged. Participants were not compensated for completing the ePROMs. When preparing for the patient’s visit, Family to Family clinicians could view responses to both ePROMs in a patient’s electronic health record and use these responses to guide a clinical encounter. Clinicians were able to ask targeted questions about a patient’s symptoms and identify triggers that might contribute to the symptoms.

Data Analysis Software

The data analyses were conducted using Python (version 3.10; Python Software Foundation) [32].

Statistical Methods

We conducted an analysis to explore the relationship between the PSI and the PROMIS-10. Initially, the raw scores of the PSI and the PROMIS-10 were transformed into T-scores [33,34]. The approach for PSI T-score conversion is detailed in Multimedia Appendix 1. Following T-score conversions, the underlying distribution characteristics of PSI T-scores, PROMIS physical T-scores, and PROMIS mental T-scores were evaluated for normality and distribution. D’Agostino and Pearson normality test were applied to each set of scores to assess the normality. Measures of skewness and kurtosis were calculated for each set of scores to provide insights into the distribution’s symmetry. Histograms with overlaid box plots were created for each set of scores to visually inspect their distributions.

Univariate Regressions

We performed 2 univariate regression models to assess the predictive criterion validity of the PSI T-scores on the PROMIS physical and mental T-scores. Due to the observed nonnormal distribution of the PSI T-scores ($\chi^2_{1169}=183.324; \ P<.001$), generalized linear models with a Gaussian family and identity link function were chosen as the appropriate modeling approach. This choice accommodates the nonnormal distribution of the PSI T-scores by allowing for a linear relationship between the predictors and response without assuming that the residuals are normally distributed. The flexibility in the Gaussian family made it suitable for modeling the specific distributional properties of the PSI T-scores.

Our first univariate model examined the relationship between PSI T-scores (an independent variable) and PROMIS mental T-scores (a dependent variable), aiming to understand how the PSI is predictive of mental health as quantified by the PROMIS scale. The second univariate model focused on the relationship between PSI T-scores (an independent variable) and PROMIS physical T-scores (a dependent variable), aiming to understand how the PSI is predictive of physical health as quantified by the PROMIS scale. This approach provides insights into the effects of PSI on mental and physical health that are robust to distributional assumptions. Coefficients, SEs, and significance levels were reported to highlight the specific relationships.

Tables

Pivot tables were used to summarize the mean (SD) of the PSI T-scores, PROMIS physical T-scores, and PROMIS mental T-scores. The data were stratified by time order, reflecting different periods of assessment. Multiple pivot tables were generated to encapsulate the mean (SD) for each measurement, organized by the time period.

Results

Overview

In our data set, we analyzed a total of 1170 observations from 367 unique patients recorded between August 30, 2017, and January 30, 2023, from Family to Family. On average, participants completed the PSI 3.2 times and the PROMIS 3.4 times during the study period. Adhering to the guidelines for good reporting practices, the CHERRIES (Checklist for Reporting Results of Internet E-Surveys) [35] is included in Multimedia Appendix 2. Detailed patient demographics and general descriptions of the sample are delineated in Table 1. On average, participants reported experiencing 8 distinct symptoms or conditions. Excluding nutrient deficiencies, the most commonly reported diseases and health problems, as classified
by International Statistical Classification of Diseases, Tenth Revision (ICD-10) codes, were other fatigue (82/367, 22.3%), anxiety disorder (81/367, 22.1%), hypothyroidism (81/367, 22.1%), and chronic fatigue (65/367, 17.7%), as outlined in Table 2.

The mean value for the PSI T-score is 40.808 (SD 7.00), with a minimum and maximum range of values between 25 and 56, indicating a broad spectrum of reported symptom states within the sample. Since the expected average for a typical population is 50, this lower mean suggests that the sample population exhibits a higher level of symptoms or less optimal health than the general population. The mean value for the PROMIS physical score is 47.952 (SD 8.114), which is slightly below the expected average of 50. This result also implies that the physical health of the sample population is somewhat below average. The minimum and maximum values for the physical T-scores range from 19.9 to 67.7, indicating a broad spectrum of physical health states within the sample. The mean value for the PROMIS mental score is 46.638 (SD 8.551), which is also below the expected average of 50. This suggests that the mental health of the sample population is also somewhat lower compared to the general population. The PROMIS mental ranges from a minimum of 21.2 to a maximum of 67.6, further indicating variation in mental health states within the sample. Additional descriptives for PSI and PROMIS T-scores across time are provided in Table 3.

Table 1. Patient descriptives.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Total, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>53.7 (17.1)</td>
<td>367</td>
</tr>
<tr>
<td>Annual income (US $), median (IQR)</td>
<td>70,344 (54,597-72,575)</td>
<td>360</td>
</tr>
<tr>
<td>Annual income (US $), mean (SD)</td>
<td>98,849 (40,259)</td>
<td>361</td>
</tr>
<tr>
<td>Number of symptoms and conditions, mean (SD)</td>
<td>8.1 (5.4)</td>
<td>367</td>
</tr>
<tr>
<td>Number of PROMIS surveys completed, mean (SD)</td>
<td>3.4 (3.1)</td>
<td>367</td>
</tr>
<tr>
<td>Number of PSI surveys completed, mean (SD)</td>
<td>3.2 (3.1)</td>
<td>367</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex, n (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>99 (27)</td>
</tr>
<tr>
<td>Female</td>
<td>268 (73)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insurance, n (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>325 (97.9)</td>
</tr>
<tr>
<td>No</td>
<td>7 (2.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relationship to the insured, n (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td>302 (91)</td>
</tr>
<tr>
<td>Spouse</td>
<td>26 (7.8)</td>
</tr>
<tr>
<td>Dependent</td>
<td>4 (1.2)</td>
</tr>
</tbody>
</table>

PSI: Parsley Symptom Index.

Relationship to the insured refers to the participant’s status as the primary beneficiary of the insurance policy. “Self” indicates the participant holds the policy in their own name. “Spouse” denotes the participant is covered under a policy held by their married partner. “Dependent” means the participant is covered under a policy due to their status as a dependent, typically a family member without independent coverage.
<table>
<thead>
<tr>
<th>Name</th>
<th>ICD<sup>a</sup> code type</th>
<th>Frequency, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Deficiency of multiple nutrient elements</td>
<td>E</td>
<td>139 (37.9)</td>
</tr>
<tr>
<td>2 Vitamin D deficiency, unspecified</td>
<td>E</td>
<td>93 (25.3)</td>
</tr>
<tr>
<td>3 Other fatigue</td>
<td>R</td>
<td>82 (22.3)</td>
</tr>
<tr>
<td>4 Anxiety disorder, unspecified</td>
<td>F</td>
<td>81 (22.1)</td>
</tr>
<tr>
<td>5 Hypothyroidism, unspecified</td>
<td>E</td>
<td>81 (22.1)</td>
</tr>
<tr>
<td>6 Chronic fatigue, unspecified</td>
<td>R</td>
<td>65 (17.7)</td>
</tr>
<tr>
<td>7 Essential fatty acid deficiency</td>
<td>E</td>
<td>64 (17.4)</td>
</tr>
<tr>
<td>8 Pure hypercholesterolemia, unspecified</td>
<td>E</td>
<td>62 (16.9)</td>
</tr>
<tr>
<td>9 Other abnormal glucose</td>
<td>R</td>
<td>52 (14.2)</td>
</tr>
<tr>
<td>10 Irritable bowel syndrome with diarrhea</td>
<td>K</td>
<td>51 (13.9)</td>
</tr>
<tr>
<td>11 Autoimmune thyroiditis</td>
<td>E</td>
<td>50 (13.6)</td>
</tr>
<tr>
<td>12 Mixed irritable bowel syndrome</td>
<td>K</td>
<td>50 (13.6)</td>
</tr>
<tr>
<td>13 Abnormal level of hormones in specimens from other organ or tissue</td>
<td>R</td>
<td>47 (12.8)</td>
</tr>
<tr>
<td>14 Other disorders involving the immune mechanism, Not elsewhere classified.</td>
<td>D</td>
<td>45 (12.3)</td>
</tr>
<tr>
<td>15 Gastroesophageal reflux disease without esophagitis</td>
<td>K</td>
<td>41 (11.2)</td>
</tr>
<tr>
<td>16 Essential (primary) hypertension</td>
<td>I</td>
<td>39 (10.6)</td>
</tr>
<tr>
<td>17 Major depressive disorder, recurrent, unspecified</td>
<td>F</td>
<td>39 (9.3)</td>
</tr>
<tr>
<td>18 Disorder involving the immune mechanism, unspecified</td>
<td>D</td>
<td>36 (9.8)</td>
</tr>
<tr>
<td>19 Irritable bowel syndrome with constipation</td>
<td>K</td>
<td>34 (9.3)</td>
</tr>
<tr>
<td>20 Impaired glucose tolerance (oral)</td>
<td>R</td>
<td>32 (8.7)</td>
</tr>
</tbody>
</table>

^aICD: International Classification of Diseases.
Table 3. Descriptive statistics by time order.

<table>
<thead>
<tr>
<th>Time point</th>
<th>Sample size, n</th>
<th>PSI (a) T-score, mean (SD)</th>
<th>PROMIS (b) physical T-score, mean (SD)</th>
<th>PROMIS mental T-score, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>362(^c)</td>
<td>39.1 (6.7)</td>
<td>46.8 (8.3)</td>
<td>45.7 (8.6)</td>
</tr>
<tr>
<td>2</td>
<td>221</td>
<td>41.4 (7.0)</td>
<td>48.7 (8.1)</td>
<td>46.8 (8.7)</td>
</tr>
<tr>
<td>3</td>
<td>144</td>
<td>40.9 (7.2)</td>
<td>47.8 (8.4)</td>
<td>46.4 (8.5)</td>
</tr>
<tr>
<td>4</td>
<td>109</td>
<td>41.3 (6.7)</td>
<td>48.1 (8.2)</td>
<td>46.6 (9.0)</td>
</tr>
<tr>
<td>5</td>
<td>92</td>
<td>41.2 (6.7)</td>
<td>48.7 (7.2)</td>
<td>47.8 (8.3)</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>41.0 (6.5)</td>
<td>48.4 (6.7)</td>
<td>46.6 (8.0)</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>41.2 (6.0)</td>
<td>47.3 (7.5)</td>
<td>47.8 (8.1)</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>43.0 (7.4)</td>
<td>47.9 (8.7)</td>
<td>46.8 (7.5)</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>41.7 (7.2)</td>
<td>48.2 (8.5)</td>
<td>46.5 (7.8)</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>42.6 (7.1)</td>
<td>49.2 (7.7)</td>
<td>47.8 (8.1)</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>42.9 (7.9)</td>
<td>48.7 (7.8)</td>
<td>47.4 (9.3)</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>43.2 (9.5)</td>
<td>47.7 (6.5)</td>
<td>48.3 (9.4)</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>47.8 (8.4)</td>
<td>54.8 (7.1)</td>
<td>53.5 (9.3)</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>45.8 (6.9)</td>
<td>50.5 (11.8)</td>
<td>49.6 (6.2)</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>48.9 (6.0)</td>
<td>57.9 (3.2)</td>
<td>53.6 (6.9)</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>51.5 (3.5)</td>
<td>59.8 (3.0)</td>
<td>55.4 (10.0)</td>
</tr>
</tbody>
</table>

\(a \) PSI: Parsley Symptom Index.

\(b \) PROMIS: Patient-Reported Outcomes Measurement Information System.

\(c \) Of the 367 unique participants, 5 were excluded from time point 1 due to corrupted data files for the PSI or PROMIS assessments. This resulted in a sample size of 362 for the initial time point.

Distributions And Normality

The distribution characteristics of the PSI and PROMIS T-scores were assessed for normality. The PSI T-scores were found to follow a non-normal distribution \(\chi^2_{1169}=183.324; P<.001 \). The skewness of 0.577 in the PSI T-scores indicates a distribution with a longer right tail and a concentration of scores on the left, reflecting a higher frequency of lower scores and thus a less healthy population. The negative kurtosis of \(-0.858\) signifies a platykurtic kurtosis and that extreme outliers (very high or low) are less frequent in this data set than they would be in a normally distributed data set. In contrast, the PROMIS physical and mental T-scores were found to follow a normal distribution \((P=.10 \text{ and } P=.46) \), with a minor skewness of \(-0.145\) and a kurtosis of 0.100 for the physical, while an almost perfect skewness of \(-0.015\) and a slight platykurtic kurtosis of \(-0.173\) for the mental.

Univariate Regressions

Model 1: PSI T-Scores Predicting PROMIS Mental T-Scores

The first generalized linear regression model was fit using the Gaussian family with an identity link function, revealing a significant positive association between the PSI T-scores and PROMIS mental T-scores (Table 4). Specifically, a 1-unit increase in the PSI T-score corresponded to a 0.627-unit increase in the PROMIS mental T-score (95% CI 0.567-0.687; \(z=20.462; P<.001 \)). The intercept was estimated at 21.0487 (95% CI 18.562-23.536). The model’s pseudo \(R^2 \) value (CS) was 0.3008, indicating that it explained approximately 30.08% of the variability in the PROMIS mental T-scores. The deviance statistic, which measures the goodness of fit, was 62,925, and the Pearson chi-square value was approximately 62,900, further supporting the model’s fit to the data.

Model 2: PSI T-Scores Predicting PROMIS Physical T-Scores

The second generalized linear regression model was fit using the Gaussian family with an identity link function, revealing a significant positive association between the PSI T-scores and PROMIS physical T-scores (Table 4). Specifically, a 1-unit increase in the PSI T-score corresponded to a 0.6479 unit increase in the PROMIS physical T-score (95% CI 0.593-0.703; \(z=23.064; P<.001 \)). The intercept was estimated at 21.0487 (95% CI 18.562-23.536). The model’s pseudo \(R^2 \) value (CS) was 0.3008, indicating that it explained approximately 30.08% of the variability in the PROMIS physical T-scores. The deviance statistic, which measures the goodness of fit, was 62,925, and the Pearson chi-square value was approximately 62,900, further supporting the model’s fit to the data.
Discussion

Overview

Previous studies found the PSI to be a valid tool that can be deployed, completed, and helpful to both patients and clinicians [21,22,36]. This study examined differences in use between the PSI as compared to the PROMIS-10 short form when used in clinical settings with patients with chronic disease. The PSI and PROMIS-10 were chosen for this retrospective study because the clinicians believed it was useful for patients to complete both forms as they provide slightly different insights into how patients perceive their health status. While the differences between the PSI and PROMIS-10 reveal ways that each has its place in clinical practice, they overlap enough to demonstrate moderate correlation to support validation of the PSI when compared to the PROMIS-10.

The overall mean (SD) statistics for the PSI and PROMIS-10 paint a picture of a sample population that is generally less healthy than the average population, both in terms of physical and mental well-being, as well as symptomatology. The lower PSI score, in particular, stands out, indicating a higher level of chronic conditions. This study revealed significant relationships between functional medicine clinic for patients with a range of chronic conditions. This study revealed significant relationships between the PSI and PROMIS physical and mental health scores through comprehensive univariate analyses, thus establishing support for the criterion validity of the PSI. These analyses highlighted the PSI’s potential as an insightful tool for understanding and predicting both mental and physical health dimensions. Our sample size was not large enough to support a robust longitudinal analysis, thereby limiting the depth of insights we could derive. It is imperative for future validation studies to explore the PSI’s use within a more diverse demographic profile and over a more extended time frame. Such studies would not only deepen the understanding of symptom trajectories but also facilitate the evaluation of patient outcomes across a wider demographic landscape.

In terms of the PSI questionnaire itself, the Family to Family participants engaged with an earlier iteration. Based on patient feedback, Parsley Health implemented minor revisions to this version to enhance readability. Consequently, we made retrospective adjustments to ensure alignment with the updated version of the PSI, which encompassed an additional item but was more concise in terms of completion time since responses were no longer categorized as “resolved” or “ongoing.” Additionally, the nature of this being a retrospective cohort study meant that the PSI and PROMIS-10 items were not presented to participants in a randomized manner, which could have potentially mitigated response biases. We advocate for the implementation of randomization, or A/B testing, in subsequent studies.

Univariate Regression Analysis: Generalized Linear Model

The univariate generalized linear regression analyses conducted in this study used the Gaussian family with an identity link function to explore the relationship between the PSI T-scores and both mental and physical health as measured by the PROMIS scales. The consistency in the direction and significance of the relationships between the PSI across both mental and physical health domains defined by the PROMIS, as revealed in the univariate analyses, lends credibility to the models and provides a robust foundation for further exploration. The positive associations demonstrate the criterion validity of the PSI, illustrating its potential to predict changes in both mental and physical health as measured by the PROMIS scales.

The substantial explanatory power of the models, as evidenced by the pseudo R^2 values and supported by the deviance statistics and Pearson chi-square values, adds to the robustness of the findings and their potential implications for the PSI as a validated health assessment. This validation underscores the use of the PSI and its capability of offering insights into overall well-being. Future research may benefit from examining these relationships in different populations or contexts, potentially extending the applicability of the PSI.

Limitations

This study bears several notable limitations. First, our data emanate from a single clinic where a significant majority of Family to Family participants identified as female (73%), with an average age of 53 years. Although race and ethnicity data were not available, the clinic reported that the patient population was predominantly White. Such skewness constrains the ecological validity of our findings. Our sample size was not large enough to support a robust longitudinal analysis, thereby limiting the depth of insights we could derive. It is imperative for future validation studies to explore the PSI’s use within a more diverse demographic profile and over a more extended time frame. Such studies would not only deepen the understanding of symptom trajectories but also facilitate the evaluation of patient outcomes across a wider demographic landscape.

In terms of the PSI questionnaire itself, the Family to Family participants engaged with an earlier iteration. Based on patient feedback, Parsley Health implemented minor revisions to this version to enhance readability. Consequently, we made retrospective adjustments to ensure alignment with the updated version of the PSI, which encompassed an additional item but was more concise in terms of completion time since responses were no longer categorized as “resolved” or “ongoing.” Additionally, the nature of this being a retrospective cohort study meant that the PSI and PROMIS-10 items were not presented to participants in a randomized manner, which could have potentially mitigated response biases. We advocate for the implementation of randomization, or A/B testing, in subsequent studies.

Conclusions

Although we know that telehealth tools can be used to deliver effective care to patients with chronic conditions, few—if any—tools exist that are designed as digital-first ePROMS. This predictive criterion study compared the PSI—a digital-first ePROM—to the PROMIS-10, a traditional PROM, in a functional medicine clinic for patients with a range of chronic conditions. This study revealed significant relationships between the PSI and PROMIS physical and mental health scores through comprehensive univariate analyses, thus establishing support for the criterion validity of the PSI. These analyses highlighted the PSI’s potential as an insightful tool for understanding and predicting both mental and physical health dimensions.

Overall, the findings of this study emphasize the importance of the PSI as a versatile clinical instrument. Future research is warranted to further dissect these relationships and enhance our understanding of the PSI’s applicability in various health contexts.

Table 4. Summary of generalized linear model regression models predicting Patient-Reported Outcomes Measurement Information System (PROMIS) mental and physical T-scores from Parsley Symptom Index (PSI) T-scores.

<table>
<thead>
<tr>
<th>Model</th>
<th>Dependent variable</th>
<th>Coefficient</th>
<th>95% CI</th>
<th>P value</th>
<th>Pseudo R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>PROMIS mental</td>
<td>0.6270</td>
<td>0.567-0.687</td>
<td><.001</td>
<td>0.3008</td>
</tr>
<tr>
<td>Model 2</td>
<td>PROMIS physical</td>
<td>0.6479</td>
<td>0.593-0.703</td>
<td><.001</td>
<td>0.3653</td>
</tr>
</tbody>
</table>

https://formative.jmir.org/2024/1/e53316

JMIR Form Res 2024 | vol. 8 | e53316 | p.1744

(page number not for citation purposes)
Acknowledgments
This study was fully supported by Parsley Health. The funder had the following involvement with the study: study design, research, and preparation of the manuscript.

Authors’ Contributions
HW, SS, RB, and HH contributed to the conception of the study design, manuscript preparation, and data collection. KL and RV contributed to the manuscript preparation. All authors read and approved the final version of the manuscript. This statement confirms that this manuscript has been submitted solely to this journal and is not published, in press, or submitted elsewhere.

Conflicts of Interest
All authors are either employees or consultants to Parsley Health at the time of analysis. All authors declare no other competing interests.

Multimedia Appendix 1
Parsley Symptom Index (PSI) reverse coding guide.
[DOCX File, 42 KB - formative_v8i1e53316_app1.docx]

Multimedia Appendix 2
CHERRIES (Checklist for Reporting Results of Internet E-Surveys) checklist.
[PDF File (Adobe PDF File), 66 KB - formative_v8i1e53316_app2.pdf]

References

35. Eysenbach G. Improving the quality of web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J Med Internet Res 2004;6(3):e34 [FREE Full text] [doi: 10.2196/jmir.6.3.e34] [Medline: 15471760]

Abbreviations

CHERRIES: Checklist for Reporting Results of Internet E-Surveys
ePROM: electronic patient-reported outcome measure
ICD-10: International Statistical Classification of Diseases, Tenth Revision
PROM: patient-reported outcome measure
PROMIS: Patient-Reported Outcomes Measurement Information System
PSI: Parsley Symptom Index
SRH: single-rated health

©Hants Williams, Sarah Steinberg, Kendall Leon, Ryan Vingum, Mengyao Hu, Robin Berzin, Heather Hagg, Patrick Hanaway. Originally published in JMIR Formative Research (https://formative.jmir.org), 16.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Abstract

Background: Globally, heart failure (HF) affects more than 64 million people, and attempts to reduce its social and economic burden are a public health priority. Interventions to support people with HF to self-manage have been shown to reduce hospitalizations, improve quality of life, and reduce mortality rates. Understanding how people self-manage is imperative to improve future interventions; however, most approaches to date, have used self-report methods to achieve this. Wearable cameras provide a unique tool to understand the lived experiences of people with HF and the daily activities they undertake, which could lead to more effective interventions. However, their potential for understanding chronic conditions such as HF is unclear.

Objective: This study aimed to determine the potential utility of wearable cameras to better understand the activities of daily living in people living with HF.

Methods: The “Seeing is Believing (SIB)” study involved 30 patients with HF who wore wearable cameras for a maximum of 30 days. We used the E-Myscéal web-based lifelog retrieval system to process and analyze the wearable camera image data set. Search terms for 7 daily activities (physical activity, gardening, shopping, screen time, drinking, eating, and medication intake) were developed and used for image retrieval. Sensitivity analysis was conducted to compare the number of images retrieved using different search terms. Temporal patterns in daily activities were examined, and differences before and after hospitalization were assessed.

Results: E-Myscéal exhibited sensitivity to specific search terms, leading to significant variations in the number of images retrieved for each activity. The highest number of images returned were related to eating and drinking, with fewer images for physical activity, screen time, and taking medication. The majority of captured activities occurred before midday. Notably, temporal differences in daily activity patterns were observed for participants hospitalized during this study. The number of medication images increased after hospital discharge, while screen time images decreased.

Conclusions: Wearable cameras offer valuable insights into daily activities and self-management in people living with HF. E-Myscéal efficiently retrieves relevant images, but search term sensitivity underscores the need for careful selection.

Keywords

heart failure; self-management; lifelogs; daily activity; wearable camera; E-Myscéal; activities of daily living; ADL; intervention; self-report method; wearable; chronic condition
premature death [3]. People with HF are encouraged to engage in a range of daily self-care activities to help manage their condition and prevent deterioration of their condition, collectively referred to as self-management. Those strategies typically include taking prescribed medication, making lifestyle changes, self-weighing, and monitoring signs and symptoms, and responding accordingly [4].

Methods

Study Design

The Seeing is Believing (SIB) study was a large prospective observational pilot study that evaluated the feasibility and acceptability of using wearable cameras and point-of-care testing for self-care in patients with HF [21,26]. As a pilot study, no formal power calculations were performed to determine the optimum sample size. It involved 30 patients with HF in Melbourne, Victoria, Australia, who wore wearable cameras for a month and conducted regular self-assessments. However, in this study, we analyzed the wearable camera image data.

Study Population, Recruitment, and Setting

Participants, aged 18 years or older, were recruited from a single-center HF outpatient clinic in Melbourne if they had a documented HF diagnosis, had previous HF hospitalization, were on maximum tolerated medication, and were able to read and understand English. Exclusion criteria included severe HF symptoms (New York Heart Association class IV), advanced malignancy, cognitive impairment, and end-of-life care. Recruitment occurred during outpatient HF clinic visits by a cardiologist or researcher, followed by screening for eligibility by a Deakin University researcher. Eligible individuals underwent a baseline assessment and provided written consent.

Study Procedures

Participants were asked to attach the “Narrative Clip” wearable camera to their shirt or blouse during waking hours for a maximum of 30 days. The camera captured images every 30 seconds, resulting in a data set of approximately 2.2 million images. Baseline assessment included medical history, demographics, and physical measurements. A research assistant collected point-of-care test data, hospitalization information, and other variables twice a week during the 30-day study [26]. At the end of this study, participants underwent a brief interview about their camera usage experience. In the original SIB study, 10 individuals were hospitalized [26].

Wearable Camera Image-Processing and Retrieval

The wearable camera image data were processed and retrieved using the E-Myscéal web-based lifelog retrieval system. The E-Myscéal system uses deep learning algorithms to create embeddings (vector representations) of various lifelog data types such as images, text, and audio, enabling intuitive and web-based cross-media querying [22]. E-Myscéal uses the CLIP model to retrieve images similar in content to descriptive textural search terms, allowing users to search through lifelog data with great flexibility [27]. E-Myscéal was ranked as the top retrieval system at the Lifelog Search Challenge (LSC’22 challenge), outperforming others in terms of finding the highest number of relevant items in the shortest time across various retrieval tasks [28].

With E-Myscéal, users can enter any search terms, leading to a list of related images along with date or time and location metadata [22]. For instance, when “eating” was used as a search term, E-Myscéal retrieved all food-related camera images, enabling researchers to assess the frequency of the wearer’s
Before applying the E-Myscéal system to our wearable camera data, we evaluated its capability to detect ADLs using a publicly available data set [29]. The results indicated a high precision in detecting ADLs such as physical activity, screen time, and shopping, with precision ranging from 0.8 to 1.0 [28]. Given these results, we decided to use the system with our data set. Detailed information on how E-Myscéal determined image counts can be found in Multimedia Appendix 1.

Figure 1. E-Myscéal user interface and event view window. Cam: camera.

Search Terms

Wearable camera images from the SIB study were uploaded to the E-Myscéal system [22]. Based on expert knowledge we developed search terms for each of the 7 daily activities (physical activity, gardening, shopping, screen time, drinking, eating, and taking medication), which were entered into E-Myscéal. Different search terms were used for each activity to identify the most appropriate ones for use. For example, for physical activity, search terms included “running,” “walking,” “yoga,” or “exercise,” which are common terms used to describe physical activity. Similarly, for gardening, search terms included “horticulture,” “cultivation,” “planting,” or “watering,” which are commonly used terms in gardening. This study assessed the relevance of search terms for each activity by analyzing the number and relevance of images returned.

Data Analysis

We performed a sensitivity analysis using the Wilcoxon test to evaluate E-Myscéal’s effectiveness in retrieving relevant images with different search terms. The analysis involved comparing the number of images retrieved for 7 daily activities, both with and without outliers. For each activity, we tested the following search terms: physical activity (physical activity vs exercise), gardening (gardening vs horticulture), shopping (shopping vs retail therapy), screen time (screen time vs screen viewing), taking medication (taking medication vs medication intake), eating (food intake vs food consumption), and drinking (fluid intake vs hydrating). We assessed the normality assumption of each search term using the Shapiro-Wilk test and then used the Wilcoxon test to examine significant differences in the number of images retrieved for both searches (with and without outliers).

Following the sensitivity analysis, descriptive statistics were performed for ADLs using the most sensitive search terms. The results are presented in tables and figure. Furthermore, we used the Wilcoxon test to determine if there were significant temporal differences in daily activity patterns (ie, before and after midday). Further, we examined the ADLs of the 10 participants who were hospitalized during the 30-day study period. We compared their ADLs before they were admitted to the hospital and after they were discharged and returned home.

Ethical Considerations

Ethical approval was granted by the Deakin University Human Research Ethics Committee (HREC/16/MH/55) and the Western Health Human Research Ethics Committee (2016.071). Participants were provided with study information through an information sheet and verbal explanation, with the option to withdraw at any time while retaining data collected to that point. All participants had an opportunity to ask questions about this study before they gave written informed consent. Participants could delete images from their wearable camera during this study. Upon completion, participants received an Aus $40 (US $28) voucher.

Results

Characteristics of Study Participants

In total, 30 adults (18 men) with HF agreed to participate and wore the wearable camera for up to 30 days. The median age...
of participants was 84 years, with a range of 47-96 years. Out of 30 participants, 20 were in New York Heart Association class III, and 10 were in class II. Among the 30 participants, 18 were diagnosed with HF within 5 years, and 10 were readmitted to the hospital due to HF exacerbation. For additional sample details, please refer to our previous publications [21,26]. No serious adverse events were reported with the use of the wearable camera.

E-Mycéal Sensitivity to Search Terms

For each search term, the E-Mycéal system yielded varying numbers of images for each daily activity (Table 1). For example, the difference in the number of images for each daily activity ranged from 362 for screen time to 7015 for gardening. The Wilcoxon test confirmed a significant difference in the number of images retrieved using these search terms (Table 1). Based on the sensitivity analysis, the final search terms selected for each daily activity were as follows: physical activity, gardening, retail therapy, screen viewing, fluid intake, food intake, and taking medication.

Table 1. Sensitivity of the E-Mycéal system to search terms related to daily activities in a wearable camera pilot study on people with HF.

<table>
<thead>
<tr>
<th>Daily activities and search terms</th>
<th>Images retrieved, n</th>
<th>Wilcoxon test P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity</td>
<td></td>
<td>> .05</td>
</tr>
<tr>
<td>Physical activity</td>
<td>12,575</td>
<td></td>
</tr>
<tr>
<td>Exercise</td>
<td>11,083</td>
<td></td>
</tr>
<tr>
<td>Screen time</td>
<td></td>
<td>> .05</td>
</tr>
<tr>
<td>Screen viewing</td>
<td>16,968</td>
<td></td>
</tr>
<tr>
<td>Screen time</td>
<td>16,606</td>
<td></td>
</tr>
<tr>
<td>Taking medication</td>
<td></td>
<td>< .05</td>
</tr>
<tr>
<td>Taking medication</td>
<td>21,750</td>
<td></td>
</tr>
<tr>
<td>Medication intake</td>
<td>16,985</td>
<td></td>
</tr>
<tr>
<td>Shopping</td>
<td></td>
<td>< .05</td>
</tr>
<tr>
<td>Retail therapy</td>
<td>23,318</td>
<td></td>
</tr>
<tr>
<td>Shopping</td>
<td>21,221</td>
<td></td>
</tr>
<tr>
<td>Drinking</td>
<td></td>
<td>> .05</td>
</tr>
<tr>
<td>Fluid intake</td>
<td>23,773</td>
<td></td>
</tr>
<tr>
<td>Hydrating</td>
<td>19,020</td>
<td></td>
</tr>
<tr>
<td>Gardening</td>
<td></td>
<td>< .05</td>
</tr>
<tr>
<td>Gardening</td>
<td>25,585</td>
<td></td>
</tr>
<tr>
<td>Horticulture</td>
<td>18,570</td>
<td></td>
</tr>
<tr>
<td>Eating</td>
<td></td>
<td>> .05</td>
</tr>
<tr>
<td>Food intake</td>
<td>26,812</td>
<td></td>
</tr>
<tr>
<td>Food consumption</td>
<td>24,672</td>
<td></td>
</tr>
</tbody>
</table>

aHF: heart failure.

Activity Identification

For each of the 7 daily activities, the number of images returned ranged from 12,575 to 26,812. Eating had the highest number of images returned at 26,812, followed by gardening with 25,583 images, drinking with 23,773 images, and shopping with 23,318 images (Table 2).
Table 2. Daily activities of people living with HFa in a wearable camera pilot study (N=30).

<table>
<thead>
<tr>
<th>Daily activity</th>
<th>Images retrieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity</td>
<td>12,575</td>
</tr>
<tr>
<td>Screen time</td>
<td>16,968</td>
</tr>
<tr>
<td>Taking medication</td>
<td>21,750</td>
</tr>
<tr>
<td>Shopping</td>
<td>23,318</td>
</tr>
<tr>
<td>Drinking</td>
<td>23,773</td>
</tr>
<tr>
<td>Gardening</td>
<td>25,583</td>
</tr>
<tr>
<td>Eating</td>
<td>26,812</td>
</tr>
</tbody>
</table>

aHF: heart failure.

Activity Patterns During the Day

Most of the activities were observed before midday (Table 3). For example, 17,980 (67.1\%) of images returned using search terms related to “eating” activity were captured before midday. Similarly, 17,065 (66.7\%) gardening images, 15,245 (65.4\%) shopping, and 15,219 (64\%) drinking images were captured before midday. Additionally, there were statistically significant differences between daily activity patterns pre- and postmidday.

Table 3. Daily activities of people living with HFa based on time of day in a wearable camera pilot study (N=30).

<table>
<thead>
<tr>
<th>Daily activities</th>
<th>Before midday, n (%)</th>
<th>After midday, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity</td>
<td>7572 (60.2)</td>
<td>5003 (39.8)</td>
</tr>
<tr>
<td>Screen time</td>
<td>10,383 (61.2)</td>
<td>6585 (38.8)</td>
</tr>
<tr>
<td>Taking medication</td>
<td>13,299 (61.1)</td>
<td>8451 (38.9)</td>
</tr>
<tr>
<td>Shopping</td>
<td>15,245 (65.4)</td>
<td>8073 (34.6)</td>
</tr>
<tr>
<td>Drinking</td>
<td>15,219 (64)</td>
<td>8554 (36)</td>
</tr>
<tr>
<td>Gardening</td>
<td>17,065 (66.7)</td>
<td>8518 (33.3)</td>
</tr>
<tr>
<td>Eating</td>
<td>17,980 (67.1)</td>
<td>8832 (32.9)</td>
</tr>
</tbody>
</table>

aHF: heart failure.

Activity Patterns Before and After Hospitalization

For the 10 participants that were hospitalized, there were marked differences in the percentage of ADLs images captured by a wearable camera pre- and posthospitalization, except for physical activity (Table 4). To illustrate, a total of 10,144 medication images were identified using E-Myscéal. Of those, 3827 (37.7\%) were observed before hospital admission, while 6317 (62.3\%) were observed posthospital discharge. In contrast, there was a decrease in screen time images after hospital discharge 946 (32.1\%), compared to before admission 2003 (67.9\%).

Table 4. Activities of daily living in patients with HFa before and after hospitalization in a wearable camera pilot study (N=10).

<table>
<thead>
<tr>
<th>Daily activities</th>
<th>Before hospital admission, n (%)</th>
<th>After hospital discharge, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity</td>
<td>2709 (50.5)</td>
<td>2659 (49.5)</td>
</tr>
<tr>
<td>Screen time</td>
<td>2003 (67.9)</td>
<td>946 (32.1)</td>
</tr>
<tr>
<td>Taking medication</td>
<td>3827 (37.7)</td>
<td>6317 (62.3)</td>
</tr>
<tr>
<td>Shopping</td>
<td>4161 (42.5)</td>
<td>5633 (37.5)</td>
</tr>
<tr>
<td>Drinking</td>
<td>3958 (35.4)</td>
<td>7211 (64.6)</td>
</tr>
<tr>
<td>Gardening</td>
<td>3142 (23.8)</td>
<td>10,061 (76.2)</td>
</tr>
<tr>
<td>Eating</td>
<td>5516 (40.7)</td>
<td>8038 (59.3)</td>
</tr>
</tbody>
</table>

aHF: heart failure.
Discussion

Principal Findings

This study aimed to determine the potential utility of wearable cameras to better understand ADLs in people living with HF. Overall, we showed that wearable cameras can be used to capture specific daily activities, which could be used to help identify areas where interventions may be targeted to improve people’s overall health and well-being. The E-Myscéal search engine was critical to the potential utility of this technology by rapidly retrieving images of relevance. Beyond, these general observations, specific issues are discussed below.

Typically, the use of wearable cameras results in large data sets, which means we have to retrieve, process, and analyze images of relevance for these data to be useful. The most common approach to organizing, retrieving, and analyzing data from wearable cameras involves assigning semantic contexts to images, like visual descriptions, time, and location [13,14]. Various computer vision models are employed to extract visual information from the images, including object detection, activity recognition, optical character recognition [13,15], and embedding models [16,17]. A typical retrieval system would also incorporate different techniques, namely, query enhancement [13], visual similarity search [16], and temporal search [16]. We previously reviewed the SIB image data manually to determine the feasibility and acceptability of wearable cameras to assess self-care in people living with HF [21]. Other studies have also manually reviewed camera images [18-20], which is time-consuming and laborious. In this study, we used the E-Myscéal system [22] to rapidly retrieve and review images of relevance. The E-Myscéal system eliminated the need for manual image review, enabled cross-media querying, supported temporal queries, allowed data filtering and clustering, and provided fast retrieval of the most relevant images.

E-Myscéal was the top-ranked retrieval system at the LSC’22 challenge [28], achieving the highest number of relevant items in the shortest time, and represents the current state-of-the-art in lifelog inquiry and retrieval systems. E-Myscéal exhibits a heightened sensitivity toward certain search terms. For instance, the search term “taking medication” generated considerably higher scores compared to “medication intake,” leading to a significant difference in the number of images retrieved. Hence, the user needs to consider what search terms will work well for any category or daily activities. The flexibility of the E-Myscéal system allowed a wide range of search terms to be tested and evaluated for any category, which the user needs to consider in future research.

Using the E-Myscéal system, the most frequently observed activities were eating, drinking, and screen time. These findings suggest that people living with HF are sedentary and spend considerable time in the presence of some form of screen (eg, television and computer). However, it was not possible to determine from the images whether the person was watching the television. As highlighted above, the Narrative Clip used in this study captured images every 30 seconds and captured the presence of objects in front of the person (eg, television, book, or dinner plate), as well as the context (eg, sitting at a table, being inside or outside, or seated in a car); however, unless the camera captured the person lifting a cup to their mouth it was difficult to determine whether they actually performed the behavior. Thus, while the technology offers a potential for capturing potential activities, a process for confirming what the person was doing is needed. In previous studies [18-20], wearable cameras have been used to support traditional self-report methods or to provide a primary record of dietary intake, however, no studies have used wearable cameras as the primary method of data collection; future research is needed to address this.

If the recorded images do represent a fair reflection of what people with HF were doing throughout the day, then they highlight some interesting patterns. For example, excessive screen or sedentary time might highlight people’s preferences (eg, sitting and watching television) [30-32] or could indicate fatigue, a common symptom of HF. Further, the high number of recorded images of eating and drinking could give some indication of what people with HF were eating (eg, foods high in sodium) [33], and the frequency of drinking fluids, which may be an issue for people with HF who are on fluid restriction [4,33]. Despite the importance of taking prescribed medications and engaging in physical activities such as gardening and shopping, the number of images recorded by wearable cameras for these activities was low. The lower number of medication-taking images may have resulted from people not wearing their cameras first thing in the morning or later in the evening when medications were taken. However, it is more likely that the sensitivity of E-Myscéal for detecting medication taking was lower than for other ADLs used in this study. In terms of physical activities, it is plausible that participants removed the camera when shopping or doing physical activity. However, this is unlikely. In the original SIB study, adherence to wearing the camera was high [26]. Moreover, previous research has shown that people wear these types of wearable cameras when undertaking physical activity and they are useful for providing contextual information on activity and sedentary behavior [34,35].

We also found that most images of ADLs were observed before midday. Further, I possible reason is that participants did not wear the camera in the afternoon—they may have removed the camera or forgotten [36] to put it back on, which would result in a lower number of images captured during this time. Another possibility is that the camera battery might not have been fully charged during the previous night, which resulted in the device turning off [37] in the afternoon and fewer images being captured. Additionally, it is possible that participants were spending their afternoons sleeping by taking naps or resting [38-40], which would result in fewer activities [41] being captured during this time. Lastly, issues with the wearable camera time set-up, which may have led to inaccurate time stamps on the images captured, could also have contributed to the observed differences in activity patterns.

Furthermore, there were observed changes in the participants’ daily activities both before hospital admission and after discharge, which could be attributed to the time participants wore the device or differences in performed ADLs. If the latter,
these findings suggest that participants in specific ADLs may have been influenced by their health condition or recovery process. For instance, if they were less active before hospitalization or had mobility limitations, it could result in fewer captured images during that period. The increase in medication images after discharge suggests a heightened focus on medication management and adherence during recovery. Conversely, the decrease in screen time images implies a shift in attention or engagement with electronic devices, possibly due to increased social interaction or involvement in other activities. These findings provide insights into potential changes in participants’ daily routines and behaviors, but further analysis, interpretation, and context are needed to fully understand the reasons behind these variations and their impact on overall well-being.

The temporal differences in the number of images recorded might have implications for managing HF in older adults, as health care professionals could use this information to optimize future self-care strategies such as designing customized interventions to promote medication taking, physical activity, minimizing sedentary behavior, and promoting a healthy diet [4,33]. The use of wearable cameras to augment self-care interventions was highlighted in a previous scoping review [42]. In that review, the authors suggested that people with a new diagnosis of HF could wear a camera for several days. On their return to an outpatient clinic, a nurse specialist or other health professional could review images alongside the individual to identify specific activities and use that as an opportunity to question them about self-care practices and offer tailored suggestions for improvement. The E-Myscéal platform would permit such rapid review.

A strength of this study was the use of wearable cameras to record first-person perspectives of real-life experiences and associated contexts for people living with HF. This approach provides a rich source of data to better understand people’s lived experiences and context for self-management and could be used to enhance patient outcomes by enabling health care providers to access more personalized and precise information about a person’s condition, which could ultimately lead to better care and treatment. This study is also the first to use the E-Myscéal system, a flexible and efficient solution for processing large volumes of images in a short time, addressing image preprocessing and classification challenges. However, a limitation of this approach is the sensitivity of E-Myscéal to specific search terms, which may influence the number and types of images retrieved, which could affect interpretation. It is important to consider these factors when interpreting this study’s findings and drawing conclusions about the daily activity patterns of individuals living with HF. Future research is needed to investigate the reasons behind these differences and develop strategies to improve the accuracy and reliability of wearable camera data collection.

Conclusions
Wearable cameras are a valuable tool for understanding daily activities and self-management in people living with HF. E-Myscéal efficiently retrieves images, emphasizing the need for careful search term selection. These findings suggest a potential for tailored HF interventions based on temporal activity patterns, despite challenges in confirming specific behaviors from images. Further research is needed to address observed activity variations and enhance data accuracy.

Acknowledgments
The National Heart Foundation of Australia (Vanguard Grant #101348) provided funding for this study. However, the funding agency did not play a part in the design, execution, analysis, or interpretation of this study. The authors would like to express their gratitude to the recruitment staff at Western Health, as well as all the participants who took part in this study.

Data Availability
The data sets generated and analyzed during this study are not publicly available as the camera images include identifiable information. However, other data are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
The method by which E-Myscéal determines the number of images for a given query.

References

Abbreviations

- ADL: activity of daily living
- HF: heart failure
- LSC’22: Lifelog Search Challenge
- SIB: Seeing is Believing

©Teketo Kassaw Tegegne, Ly-Duyen Tran, Rebecca Nourse, Cathal Gurrin, Ralph Maddison. Originally published in JMIR Formative Research (https://formative.jmir.org), 21.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

Designing and Validating a Novel Method for Assessing Delay Discounting Associated With Health Behaviors: Ecological Momentary Assessment Study

Amanda Luken1, MHS; Jill A Rabinowitz1, PhD; Jonathan L Wells2, MHS; David W Sosnowski1, PhD; Justin C Strickland3, PhD; Johannes Thrul1,4,5, PhD; Gregory D Kirk6,7, MPH, MD, PhD; Brion S Maher1, PhD

1Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
2Department of Epidemiology, School of Population Health, Virginia Commonwealth University, Richmond, VA, United States
3Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
4Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
5Centre for Alcohol Policy Research, La Trobe University, Melbourne, Australia
6Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
7School of Medicine, Johns Hopkins University, Baltimore, MD, United States

Corresponding Author:
Brion S Maher, PhD
Department of Mental Health
Bloomberg School of Public Health
Johns Hopkins University
624 N Broadway
Baltimore, MD, 21205
United States
Phone: 1 4432878287
Email: brion@jhu.edu

Abstract

Background: Delay discounting quantifies an individual’s preference for smaller, short-term rewards over larger, long-term rewards and represents a transdiagnostic factor associated with numerous adverse health outcomes. Rather than a fixed trait, delay discounting may vary over time and place, influenced by individual and contextual factors. Continuous, real-time measurement could inform adaptive interventions for various health conditions.

Objective: The goals of this paper are 2-fold. First, we present and validate a novel, short, ecological momentary assessment (EMA)–based delay discounting scale we developed. Second, we assess this tool’s ability to reproduce known associations between delay discounting and health behaviors (ie, substance use and craving) using a convenience-based sample.

Methods: Participants (N=97) were adults (age range 18-71 years), recruited on social media. In phase 1, data were collected on participant sociodemographic characteristics, and delay discounting was evaluated via the traditional Monetary Choice Questionnaire (MCQ) and our novel method (ie, 7-item time-selection and 7-item monetary-selection scales). During phase 2 (approximately 6 months later), participants completed the MCQ, our novel delay discounting measures, and health outcomes questions. The correlations between our method and the traditional MCQ within and across phases were examined. For scale reduction, a random number of items were iteratively selected, and the correlation between the full and random scales was assessed. We then examined the association between our time- and monetary-selection scales assessed during phase 2 and the percentage of assessments that participants endorsed using or craving alcohol, tobacco, or cannabis.

Results: In total, 6 of the 7 individual time-selection items were highly correlated with the full scale (r>0.89). Both time-selection (r=0.71; P<.001) and monetary-selection (r=0.66; P<.001) delay discounting rates had high test-retest reliability across phases 1 and 2. Phase 1 MCQ delay discounting function highly correlated with phase 1 (r=0.76; P<.001) and phase 2 (r=0.45; P<.001) time-selection delay discounting scales. One or more randomly chosen time-selection items were highly correlated with the full scale (r>0.94). Greater delay discounting measured via the time-selection measure (adjusted mean difference=5.89, 95% CI 1.99-9.79), but not the monetary-selection scale (adjusted mean difference=-0.62, 95% CI -3.57 to 2.32), was associated with more past-hour tobacco use endorsement in follow-up surveys.

https://formative.jmir.org/2024/1/e48954

JMIR Form Res 2024 | vol. 8 | e48954 | p.1758
(page number not for citation purposes)
Conclusions: This study evaluated a novel EMA-based scale’s ability to validly and reliably assess delay discounting. By measuring delay discounting with fewer items and in situ via EMA in natural environments, researchers may be better able to identify individuals at risk for poor health outcomes.

(JMIR Form Res 2024;8:e48954) doi: 10.2196/48954

KEYWORDS
delay discounting; measurement; Monetary Choice Questionnaire; ecological momentary assessment; substance use; substance abuse; questionnaire; validity; validation; measurement; monetary; reward; rewards; survey; mobile phone

Introduction

Background

Delay discounting quantifies a subject’s relative preference for more smaller, immediate rewards over larger, delayed rewards. Stated another way, delay discounting can be defined as the perceived value of a reward based on the temporal delay in the receipt of the reward. Greater delay discounting (ie, preference for smaller, short-term rewards over larger, long-term rewards) [1,2] increases the risk for several health conditions, including obesity [3], gambling disorder [4], anxiety, depression [5], substance use disorder [6], and poor substance use disorder treatment response [7-10]. Although some research describes delay discounting as an immutable trait [11], findings from laboratory and clinical studies suggest delay discounting varies by place, time, and other contextual factors [12,13]. Delay discounting’s malleability may represent a promising avenue for interventions or treatment to reduce the risk for myriad negative health outcomes. In this study, we present a novel tool to rapidly assess delay discounting in remote studies and natural environments. Below, we describe traditional methods to measure delay discounting, the potential for ecological momentary assessment (EMA) to improve delay discounting measurement, and this study’s goals.

Traditional Measurement of Delay Discounting

Delay discounting rates quantify consequence devaluation (eg, a monetary reward’s devaluation) by delay [14]. One method to calculate delay discounting rates considers the devaluation process as a hyperbolic decay [15], as shown in equation 1.

\[V = \frac{A}{(1 + kD)} \] (1)

V represents the indifference point or a small immediate reward’s value, A represents the long-term reward value, k represents the delay discounting rate, and D represents the long-term reward’s delay (ie, long-term reward’s waiting time). Short-term reward preference corresponds to a greater delay discounting rate (ie, future rewards’ steeper devaluation by delay), whereas long-term reward preference corresponds to a shallower delay discounting rate.

Researchers often measure delay discounting with the Monetary Choice Questionnaire (MCQ) [16-19]. To obtain the delay discounting rate, the MCQ asks participants to choose between hypothetical smaller, sooner monetary rewards and various larger, later rewards varied by magnitude and delay [16,18]. Researchers often use the 27-item MCQ due to its intuitive administration and straightforward calculations [16]. There are numerous MCQ variations, including a 21-item version [17] and a 9-item version [19].

Although many studies use the MCQ, a continuous indifference point measure may better capture delay discounting rates due to reduced ceiling effects and faster data saturation. The MCQ has been criticized as constraining delay discounting rates, resulting in ceiling effects in populations with high delay discounting rates [18]. For example, although the MCQ was originally tested with people who use heroin, the MCQ’s current versions limit comparisons across or within populations because people who use drugs can reach maximum delay discounting rates (ie, ceiling effects) [18]. Directly measuring indifference points along a continuous measure (eg, how long are you willing to wait to receive US $100 instead of US $30 today?) may prevent ceiling effects. Some studies have implemented a continuous measure for the indifference point [20], but few have used EMA-based continuous measures. A continuous indifference point measure increases the set of possible discounting rate estimates [20] and may capture the delay discounting rate with fewer items than the MCQ. Repeatedly administering the MCQ may fatigue participants [21], but a continuous indifference point measure may allow researchers to quickly reach data saturation (eg, obtaining consistent delay discounting rates over fewer repeated measures) [20].

EMA of Delay Discounting

EMA-based delay discounting research can measure behavior in context, abbreviate delay discounting scales, and minimize bias compared to more traditional data collection methods. First, EMA methods collect repeated measures on participants’ behaviors in situ [22] throughout the day, capturing ephemeral behaviors and moods traditional methods may miss or mismeasure [23]. Indeed, EMA may identify place and time cues that increase the risk for greater delay discounting (ie, preference for sooner, smaller rewards) and increased maladaptive behavior risk [24]. For example, one EMA study identified a relationship between delay discounting and acute substance use withdrawal [25]. The study found constant MCQ scores for the first few hours after substance use, but MCQ scores peaked 4-6 hours after alcohol and cannabis use and after 2 hours for stimulant use [25]. Second, repeated delay discounting assessments may shorten scales with good reliability. Fewer questions varied in presentation may reduce study participation burden and fatigue [21] and straightlining (ie, giving the same answer to all questions) [26]. Other researchers have shortened existing delay discounting assessments to reduce participant burden [18], but EMA-based scales could further abbreviate scales with good reliability. Finally, EMA may have less bias than traditional data collection.
Methods

Participants

We posted study advertisements on Facebook and Instagram via a Facebook profile. Phase 1 study advertisements appeared on mobile and desktop newsfeeds from December 2020 to February 2021. Study advertisements directed participants to “MetricWire” (MetricWire Inc), a digital research platform. Participants were instructed to download MetricWire’s iPhone- and Android-compatible smartphone app. We administered all surveys via MetricWire, a widely used research app designed for in-the-moment, contextual data collection. Study staff verified participants’ email addresses and phone numbers. Then, interested participants created a password-protected account and answered the screener in the app. Throughout the study, participants could anonymously contact study staff with questions or concerns through the app’s instant messaging (IM) system. Researchers emailed and invited phase 1 participants to join phase 2 in July 2021.

US residents aged 18 years or older with smartphones were eligible to participate. Eligible participants read study and consent materials through the MetricWire app. To ensure participants understood the study objectives, participants had 3 attempts to correctly answer 3 multiple-choice questions regarding the study’s purpose, length, and potential risks. Study incentives and anonymous recruitment risked individuals feigning their country of residence and reregistering under fake accounts. As a result, MetricWire removed participants with IP addresses already registered or abroad.

Ethical Considerations

This study received institutional review board approval from Johns Hopkins Bloomberg School of Public Health (IRB00011160). All participants provided informed consent and were informed they would receive US $10 for the completion of phase 1 and a maximum of US $75 for the completion of phase 2. The data analyzed were anonymous and deidentified.

Sample Size

For a diverse sample, we sought to equally recruit participants from 6 categories based on age (ie, 18-30, 31-50, and >50 years) and race (eg, White and non-White). In recruitment, we considered adults identifying as 2 or more races as non-White adults. We as aimed to recruit 33 adults for each quota, or 198 participants in total. These 198 participants would yield approximately 2821 observations (198 participants × [1 baseline survey + (6 days × 3 follow-up surveys)], assuming 75% compliance).

Study Design

We used a 2-phase EMA study via MetricWire’s smartphone app. In phase 1, participants completed the 8-item MCQ, a sociodemographic questionnaire, and our 2 novel 7-item continuous delay discounting surveys. Researchers invited participants who completed phase 1 to participate in phase 2 a few months later. Phase 2 comprised a survey on the first day (baseline) and 3 daily follow-up surveys on their smartphone for 6 consecutive days, amounting to 19 total surveys. Participants received the 3 follow-up surveys on their smartphones at random times between their self-reported wake and sleep times. In phase 2, the baseline survey included the original MCQ, health behavior assessments (eg, substance use and craving), and our 2 novel EMA-based delay discounting measures. At each daily follow-up, participants completed our EMA-based delay discounting tool and a health outcomes questionnaire (eg, past-hour substance use and craving). The phase 2 baseline survey duration approximated 20 minutes, and each follow-up survey approximated 5 minutes.

Participants received compensation based upon adherence. Phase 1 completion renumerated participants with US $10 credit for Tango, a third-party gift card provider. In phase 2, participants received US $20 Tango credit for baseline assessment completion, US $5 credit each day if they completed at least 1 follow-up survey, and US $25 bonus credit for completing at least 75% (14/19) of surveys upon the study’s end. Participants received links to their accrued credit through the app’s IM system. To improve adherence, text in the consent form encouraged participants to enable MetricWire notifications on their smartphones and to request technical support through the app’s IM system. Halfway through phase 2, study staff messaged participants their adherence rate and a reminder about the US $25 bonus credit.

Measures

Time- and Monetary-Selection Measures

We presented participants with 2 continuous delay discounting measures. For the first type, participants chose how long they would wait to receive the long-term reward rather than the short-term reward (eg, D from equation 1), hereafter referred to as time-selection items. In the second type, participants chose how much money they would need to receive today rather than the long-term reward (eg, V from equation 1), hereafter referred to as monetary-selection items. Textbox 1 outlines the time-selection and monetary-selection items.
Textbox 1. Modified ecological momentary assessment (EMA)-based time-selection and monetary-selection delay discounting items for a 2-phase EMA study assessing the validity of a novel delay discounting measure. Items were randomized during the study.

Time-selection items (participants could choose between 0 and 52 weeks)
- How long would you be willing to wait to get US $100 instead of US $50 today?
- How long would you be willing to wait to get US $100 instead of US $70 today?
- How long would you be willing to wait to get US $100 instead of US $10 today?
- How long would you be willing to wait to get US $100 instead of US $80 today?
- How long would you be willing to wait to get US $100 instead of US $40 today?
- How long would you be willing to wait to get US $100 instead of US $30 today?
- How long would you be willing to wait to get US $100 instead of US $99 today?

Monetary-selection items (participants could choose between US $1 and US $99)
- How much money would you take today instead of US $100 in a year?
- How much money would you take today instead of US $100 in 1 month?
- How much money today would you take today instead of US $100 in 6 months?
- How much money would you take today instead of US $100 in 3 months?
- How much money would you take today instead of US $100 in 2 weeks?
- How much money would you take today instead of US $100 in 1 week?
- How much money would you take today instead of US $100 tomorrow?

Figure 1 displays the time- and monetary-selection items’ in-app appearance. Participants used a sliding scale to select their wait time or monetary reward. Our novel measures comprised 7 time-selection and 7 monetary-selection items. Participants answered time- and monetary-selection items at phase 1, phase 2 baseline, and phase 2 follow-up. From the measured indifference point and long-term reward delay, the delay discounting rate (k) was directly calculated via equation 1, since we knew V (the immediate reward’s value), A (the delayed reward’s value), and D (the time delay). The geometric mean across all items was then calculated to determine the average delay discounting rate for the time- and monetary-selection items.

Figure 1. Time-selection item (left) and a monetary-selection item (right) examples for a 2-phase ecological momentary assessment study assessing the validity of a novel delay discounting measure.
Original MCQ

The original MCQ was administered in both phase 1 and 2 baseline surveys to validate our time- and monetary-selection measures. Participants answered 7 “Would you rather receive US $50 today or US $100 in 1 year?” variants. The long-term reward consistently displayed US $100, but the time delay and short-term reward amount varied. The time delay ranged from 2 months to a year, while the short-term reward amount ranged from US $10 to US $99. See Multimedia Appendix 1 for all administered items.

Substance Use

To reproduce established associations between delay discounting and a health condition, we asked participants if they used or craved substances within the last hour during phase 2. Surveyed substances included (1) alcohol; (2) tobacco, cigarettes, cigarillos, cigars, vaping, and nicotine; (3) cannabis, marijuana, pot, grass, and hash; (4) cocaine, coke, and crack; (5) prescription stimulants (eg, Ritalin and Concerta); (6) methamphetamine (eg, speed, crystal meth, and ice); (7) inhalants (eg, nitrous oxide and glue); (8) sedatives of sleeping pills (eg, Valium); (9) hallucinogens (eg, lysergic acid diethylamide and acid); (10) street opioids (eg, heroin); (11) prescription opioids (eg, fentanyl); and (12) others. We created individual-level variables reflecting the total percentage of phase 2 surveys endorsing using or craving alcohol, cannabis, or tobacco. We did not examine other use or craving of any other substance with very low base rates.

Statistical Analysis

Overview

Prior to conducting analyses, we examined the time- and monetary-selection items’ distribution. Participants identified as outliers or who provided invalid responses (ie, always selecting maximum or minimum values) were dropped. Additionally, we examined the delay discounting distributions for violations of normality and the need for log transformations.

The study objectives included identifying noninformative items in our time- and monetary-selection scales, examining scale stability across phase 1 and 2 baselines, validating time- and monetary-selection items with the phase 1 and 2 baseline MCQ, and determining the minimally sufficient set of time- and monetary-selection items required to capture delay discounting. All analyses were performed in R (version 4.0.4; R Foundation for Statistical Computing).

Objective 1: Identify Noninformative Items Within New Measures

We examined Pearson correlations between the phase 1 geometric average delay discounting rate of the 7-item time-selection scale and each time-selection item’s delay discounting rate. This was repeated for the monetary-selection items in phase 1. Then, we repeated the item-scale correlations separately for time- and monetary-selection items in phase 2. Items uncorrelated with the full scale were then dropped from analyses.

Objective 2: Examine New Measures’ Test-Retest Reliability

For the second objective, we compared the delay discounting function from phase 1 baseline to phase 2 baseline via Pearson correlations.

Objective 3: Validate New Measures

For the third goal, we compared time- and monetary-selection scales to the study’s gold standard—the traditional MCQ—via Pearson correlations. The correlation between the delay discounting rate derived from phase 1’s traditional MCQ and the delay discounting rate derived from both the time- and monetary-selection tools at phase 1 and phase 2 was examined. The correlation between the delay discounting rate derived from phase 2’s traditional MCQ and the time- and monetary-selection tools at phase 2 was additionally assessed.

Objective 4: Shorten New Scale

For the fourth goal, we iteratively examined the Pearson correlation between the geometric average delay discounting rate of a randomly chosen set of the informative items and the full 7-item scale using phase 1 data.

Objective 5: Assess the Association Between New Delay Discounting Measures and Substance Use

Finally, we tested the association between delay discounting and substance use to assess our time- and monetary-selection measures’ predictive use. Linear regression analyses were conducted to examine associations between the predictors (ie, phase 2 baseline delay discounting rates calculated from our time- and monetary-selection measures) with 6 outcomes (ie, percentage of assessments participants reported using or craving alcohol, cannabis, or tobacco). Participant’s age, sex, and completed number of surveys were adjusted. We mean-centered continuous predictor variables and conducted analyses with completed surveys only.

Results

Overview

In phase 1, a total of 186 participants were recruited, of whom 111 agreed to participate in phase 2. To identify potential outliers, the delay discounting rate’s SD was calculated at each phase separately for the 7 time- and monetary-selection responses. The 4 resulting plots were then visually inspected. From the phase 1 monetary-selection geometric average delay discounting rate distribution, 6 data points were identified as outliers that were 3 SDs from the standardized mean. For phase 1 time-selection delay discounting items, individuals who consistently selected only the minimum time delay (1 day, n=2) or the maximum time delay (52 days, n=1) were removed. We excluded 8 total participants, noting them as outliers, from our phase 1 analytical sample. For phase 2 time-selection delay discounting items, 3 individuals were identified as outliers that were 3 SDs above the standardized mean—one individual consistently selected the minimum time delay (1 day) and 2 individuals consistently selected the maximum time delay (52 days). For phase 2 monetary-selection delay discounting items, 5 individuals were excluded as outliers that were 3 SDs above
the standardized mean. The phase 2 raw sample included 9 outliers in total. The 8 participants from phase 1 and 9 participants from phase 2 were excluded from the analyses. Our analytic sample included individuals with valid phase 1 and phase 2 data, resulting in a sample of 97 participants (Figure 2).

Figure 2. Analytical sample flowchart for a 2-phase ecological momentary assessment (EMA) study assessing the validity of a novel delay discounting measure. Participants were recruited from Facebook and Instagram to participate in a mobile-based EMA study.

There were some differences in demographic characteristics between those who completed phase 1 only versus those in our analytic sample who completed phases 1 and 2. In particular, there was a greater proportion of individuals who identified as African American or Black who completed phase 1 only (33/89, 37%) compared to those who completed phases 1 and 2 (9/97, 9%; \(\chi^2 = 21.4; P < .001 \)). A greater proportion of individuals identified as White (55/97, 57%), Asian (25/97, 26%), or 2 or more races (33/97, 34%) who completed phases 1 and 2 relative to phase 1 only (White: 39/89, 44%; Asian: 12/86, 14%; 2 or more races: 8/97, 8%). There were no differences in terms of the completion of the study based on participant sex, ethnicity, or income.

Among participants who completed phase 1 and phase 2 (ie, our analytic sample; N=97), most participants identified as female (n=72, 74%) and as White (n=56, 58%). Approximately 80% (n=79) of participants were 50 years and younger of age, and 70% (n=68) reported an annual income below US $75,000 (Table 1). On average, participants completed 16 (SD 4) of 19 surveys. On average, 4% (SD 9%; n=0.8) of a given participant’s surveys endorsed alcohol use, 6% (SD 21%; n=1.22) endorsed tobacco use, 7% (SD 22%; n=0.004) endorsed craving tobacco, and 8% (SD 18%; n=1.60) endorsed craving alcohol.
Table 1. Characteristics of US adults participating in a novel 2-phase ecological momentary assessment–based study assessing the validity of a novel delay discounting tool, 2020-2021 (N=97).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>25 (26)</td>
</tr>
<tr>
<td>Female</td>
<td>72 (74)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>24 (25)</td>
</tr>
<tr>
<td>Black</td>
<td>9 (9)</td>
</tr>
<tr>
<td>White</td>
<td>56 (58)</td>
</tr>
<tr>
<td>2 or more races</td>
<td>8 (8)</td>
</tr>
<tr>
<td>Age group (years), n (%)</td>
<td></td>
</tr>
<tr>
<td>18-25</td>
<td>28 (29)</td>
</tr>
<tr>
<td>26-35</td>
<td>25 (26)</td>
</tr>
<tr>
<td>36-50</td>
<td>26 (27)</td>
</tr>
<tr>
<td>51-70</td>
<td>16 (17)</td>
</tr>
<tr>
<td>>71</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Income (US $), n (%)</td>
<td></td>
</tr>
<tr>
<td><$30,000</td>
<td>30 (31)</td>
</tr>
<tr>
<td>$30,000-$49,999</td>
<td>19 (20)</td>
</tr>
<tr>
<td>$50,000-$74,999</td>
<td>19 (20)</td>
</tr>
<tr>
<td>$75,000-$100,000</td>
<td>19 (20)</td>
</tr>
<tr>
<td>>$100,000</td>
<td>10 (10)</td>
</tr>
<tr>
<td>Number of surveys completed per person</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>16 (4)</td>
</tr>
<tr>
<td>Range</td>
<td>1-19</td>
</tr>
<tr>
<td>Percentage of surveys reflecting substance use or craving</td>
<td></td>
</tr>
<tr>
<td>Alcohol use</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>4 (9)</td>
</tr>
<tr>
<td>Range</td>
<td>0-53</td>
</tr>
<tr>
<td>Cannabis use</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>4 (14)</td>
</tr>
<tr>
<td>Range</td>
<td>0-73</td>
</tr>
<tr>
<td>Tobacco use</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>6 (21)</td>
</tr>
<tr>
<td>Range</td>
<td>0-100</td>
</tr>
<tr>
<td>Alcohol craving</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>8 (18)</td>
</tr>
<tr>
<td>Range</td>
<td>0-100</td>
</tr>
<tr>
<td>Cannabis craving</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>8 (20)</td>
</tr>
<tr>
<td>Range</td>
<td>0-100</td>
</tr>
<tr>
<td>Tobacco craving</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>7 (22)</td>
</tr>
</tbody>
</table>
The delay discounting rate distribution generated from the time- and monetary-selection items and the original MCQ, which manifested a positively skewed distribution, was inspected. Thus, the delay discounting rates were log-transformed to obtain normally distributed variables for analyses examining the relationship between delay discounting and other measured characteristics. Below, we present findings from the study’s 5 objectives.

Objective 1: Identify Noninformative Items Within New Measures

The Pearson correlations between each item’s delay discounting rate and the 7-item scale’s geometric average delay discounting rate were examined. In phase 1, we found high correlations (r range=0.89-0.96) for 6 of the 7 time-selection items (Multimedia Appendix 2). The poorly performing item ($r=0.38$ in phase 1) asked participants to choose between US $99 today or US $100 in the future. The small difference in the immediate versus delayed reward may have yielded poor discrimination between individuals with high versus low discounting. In subsequent analyses, this item was dropped. We reproduced the finding in phase 2 (Multimedia Appendix 3)—6 of the items strongly correlated with the scale (r range=0.88-0.94), and phase 1’s poor-performing item continued to perform poorly in phase 2 ($r=0.35$ in phase 2). In phase 1, a relatively low correlation was found (r range=0.45-0.85) between individual money-selection items and the 7-item scale’s geometric average delay discounting rate (Multimedia Appendix 4). Moreover, the item-to-scale correlations were not consistent between phase 1 and phase 2, and only 3 items were consistently correlated ($r>0.75$) across phases 1 and 2 (Multimedia Appendix 5).

Objective 2: Examine New Measures’ Test-Retest Reliability

Delay discounting rates from phase 1 to phase 2 for both the novel time- and monetary-selection measures were compared. We found moderate to high correlations between phase 1 and phase 2 time-selection ($r=0.66; P<.001$) and money-selection delay discounting ($r=0.41; P<.001$), indicating good and acceptable test-retest reliability, respectively (Table 2).

Table 2. Correlations of log-transformed delay discounting variables across 2 phases of a mobile-based, ecological momentary assessment study assessing the validity of a novel delay discounting tool between 2020 and 2021 (N=97).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Phase 1 MCQ</th>
<th>Phase 1 time-selection delay discounting variable</th>
<th>Phase 1 monetary-selection delay discounting variable</th>
<th>Phase 2 MCQ</th>
<th>Phase 2 time-selection delay discounting variable</th>
<th>Phase 2 monetary-selection delay discounting variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 MCQ</td>
<td>r</td>
<td>1</td>
<td>0.76</td>
<td>0.57</td>
<td>0.51</td>
<td>0.45</td>
</tr>
<tr>
<td>P value</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Phase 1 time-selection delay discounting variable</td>
<td>r</td>
<td>0.76</td>
<td>1</td>
<td>0.66</td>
<td>0.65</td>
<td>0.71</td>
</tr>
<tr>
<td>P value</td>
<td><.001</td>
<td>—</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>Phase 1 monetary-selection delay discounting variable</td>
<td>r</td>
<td>0.57</td>
<td>0.66</td>
<td>1</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>P value</td>
<td><.001</td>
<td><.001</td>
<td>—</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>Phase 2 MCQ</td>
<td>r</td>
<td>0.51</td>
<td>0.65</td>
<td>0.42</td>
<td>1</td>
<td>0.72</td>
</tr>
<tr>
<td>P value</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>Phase 2 time-selection delay discounting variable</td>
<td>r</td>
<td>0.45</td>
<td>0.71</td>
<td>0.49</td>
<td>0.72</td>
<td>1</td>
</tr>
<tr>
<td>P value</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td>—</td>
</tr>
<tr>
<td>Phase 2 monetary-selection delay discounting variable</td>
<td>r</td>
<td>0.22</td>
<td>0.38</td>
<td>0.42</td>
<td>0.50</td>
<td>0.41</td>
</tr>
<tr>
<td>P value</td>
<td>.03</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td>—</td>
</tr>
</tbody>
</table>

aMCQ: Monetary Choice Questionnaire.
bNot available.
Objective 3: Validate New Measures

The correlations between the traditional MCQ and the novel time- and monetary-selection approaches were examined (Table 2). Excellent and acceptable correlations were observed between the phase 1 traditional MCQ–derived delay discounting rate with the phase 1 time-selection delay discounting rate ($r=0.76$; $P<.001$; Table 2 and Figure 3) and the phase 2 time-selection delay discounting rate ($r=0.45$; $P<.001$), respectively. Moderate to small positive correlations were noted between the phase 1 MCQ–derived delay discounting rate with phase 1 monetary-selection delay discounting rate ($r=0.57$; $P<.001$; Figure 4) and phase 2 money-selection delay discounting rate ($r=0.22$; $P=.03$). The phase 2 traditional MCQ delay discounting rate was highly positively associated with the phase 2 time-selection ($r=0.72$; $P<.001$) and moderately positively associated with the monetary-selection delay discounting rate ($r=0.50$; $P<.001$).

Figure 3. Correlations between phase 1 MCQ log(delay discounting rate) and phase 1 six-item time-selection log(delay discounting rate). Data are from a mobile-based ecological momentary assessment study assessing the validity of a novel delay discounting tool across 2 phases between 2020 and 2021. Participants were US adults recruited from social media. An example of a time-selection item is “How long would you be willing to wait to get US $100 instead of US $50 today?” MCQ: Monetary Choice Questionnaire.
Objective 4: Shorten New Scale
We also examined if an abbreviated scale could approximate the full 6-item scale of the time-selection approach. To construct the abbreviated scale, we randomly selected N (between 1 and 5) items across 100 iterations at each N and calculated the correlation between the N item’s geometric average delay discounting rate and the full 7-item time-selection scale’s geometric average delay discounting rate. A high correlation was found between randomly selected 1 ($r=0.94$) or 2 ($r=0.97$) item scales and the full 6-item scale, indicating a relatively small number of items can approximate the full scale (Figure 5). The analyses were repeated with the monetary-selection approach, and a relatively weak correlation was found between randomly selected 1 ($r=0.74$) or 2 ($r=0.86$) item scales and the full 7-item scale (Figure 6).
Objective 5: Assess the Association Between New Delay Discounting Measures and Substance Use

Participants with greater phase 2 baseline delay discounting rates from the MCQ and our time-selection measure had a higher proportion of surveys endorsing tobacco craving and use. There were trend-level significant associations between the original MCQ delay discounting rate (adjusted mean difference=3.46, 95% CI –0.63 to 7.55; \(P=0.10 \)) and the time-selection delay discounting rate with tobacco craving (adjusted mean difference=3.92, 95% CI –0.12 to 7.95; \(P=0.06 \); Table 3). Significant associations were observed between the original
MCQ delay discounting rate (adjusted mean difference=4.32, 95% CI 0.29-8.34; \(P = .04 \)) and time-selection delay discounting rate (adjusted mean difference=5.89, 95% CI 1.99-9.79; \(P = .003 \)) with the percentage of surveys endorsing tobacco use. No significant associations were observed between the phase 2 baseline monetary-selection delay discounting rate and substance use or craving (all \(P > .05 \)). There were no significant differences between alcohol or cannabis use or craving and the delay discounting rate derived from both the MCQ and our novel measures (all \(P > .05 \)).

Table 3. Associations among phase 2 log-transformed delay discounting measures with the percentage of surveys endorsing alcohol, cannabis, or tobacco use or craving (N=97).a

<table>
<thead>
<tr>
<th>Measures and variable</th>
<th>Adjusted mean difference (95% CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 2 baseline MCQ5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of alcohol use</td>
<td>1.00 (–0.75 to 2.75)</td>
<td>.26</td>
</tr>
<tr>
<td>Percentage of cannabis use</td>
<td>0.20 (–2.80 to 3.20)</td>
<td>.89</td>
</tr>
<tr>
<td>Percentage of tobacco use</td>
<td>4.32 (0.29 to 8.34)</td>
<td>.04</td>
</tr>
<tr>
<td>Percentage of alcohol craving</td>
<td>2.73 (–0.84 to 6.31)</td>
<td>.13</td>
</tr>
<tr>
<td>Percentage of cannabis craving</td>
<td>1.02 (–3.16 to 5.20)</td>
<td>.63</td>
</tr>
<tr>
<td>Percentage of tobacco craving</td>
<td>3.46 (–0.63 to 7.55)</td>
<td>.10</td>
</tr>
<tr>
<td>Phase 2 baseline time-selection delay discounting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of alcohol use</td>
<td>0.64 (–1.10 to 2.38)</td>
<td>.47</td>
</tr>
<tr>
<td>Percentage of cannabis use</td>
<td>–1.07 (–4.04 to 1.89)</td>
<td>.47</td>
</tr>
<tr>
<td>Percentage of tobacco use</td>
<td>5.89 (1.99 to 9.79)</td>
<td>.003</td>
</tr>
<tr>
<td>Percentage of alcohol craving</td>
<td>2.65 (–0.89 to 6.20)</td>
<td>.14</td>
</tr>
<tr>
<td>Percentage of cannabis craving</td>
<td>–0.36 (–4.51 to 3.78)</td>
<td>.86</td>
</tr>
<tr>
<td>Percentage of tobacco craving</td>
<td>3.92 (–0.12 to 7.95)</td>
<td>.06</td>
</tr>
<tr>
<td>Phase 2 baseline monetary-selection delay discounting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of alcohol use</td>
<td>0.97 (–0.27 to 2.22)</td>
<td>.13</td>
</tr>
<tr>
<td>Percentage of cannabis use</td>
<td>–1.17 (–3.30 to 0.97)</td>
<td>.28</td>
</tr>
<tr>
<td>Percentage of tobacco use</td>
<td>–0.62 (–3.57 to 2.32)</td>
<td>.68</td>
</tr>
<tr>
<td>Percentage of alcohol craving</td>
<td>1.78 (–0.79 to 4.34)</td>
<td>.17</td>
</tr>
<tr>
<td>Percentage of cannabis craving</td>
<td>–1.29 (–4.27 to 1.69)</td>
<td>.39</td>
</tr>
<tr>
<td>Percentage of tobacco craving</td>
<td>–1.07 (–4.03 to 1.90)</td>
<td>.48</td>
</tr>
</tbody>
</table>

Data are from a mobile-based ecological momentary assessment study assessing the validity of a novel delay discounting tool between 2020 and 2021. Participants were US adults recruited from social media. An example of a time-selection item is “How long would you be willing to wait to get US $100 instead of US $50 today?” An example of a monetary-selection item is “How much money would you take today instead of US $100 in a year?”

Discussion

Principal Findings

In this study, a novel EMA-based tool was developed to overcome the limitations of existing delay discounting measures. In contrast to traditional delay discounting measures captured at a single time point (eg, the MCQ), our EMA-based delay discounting measure used a continuous indifference point to minimize ceiling effects, abbreviate delay discounting scales, capture state-like fluctuations in delay discounting, and reduce measurement error. We showed that a time-selection, EMA-based method could accurately assess delay discounting. In addition, the novel tool successfully reproduced some associations between delay discounting and substance use behaviors observed in the literature, specifically the established association between delay discounting and tobacco use.

To develop the EMA-based scale, we analyzed the scales’ reliability across 2 phases and its validity in comparison to the MCQ. In total, 6 of the 7 time-selection items correlated with the full scale. We dropped the uninformative, 7th time-selection item—“How long would you be willing to wait to get US $100 instead of US $99 today?” The US $1 difference may have failed to provide sufficient response variability, because even short delays (eg, 1 week) would result in devaluing US $100 over US $99 [28]. Overall, the time-selection EMA measure reliably and validly measured delay discounting.

However, the monetary-selection items did not consistently contribute to delay discounting measurement. There are a
number of reasons to explain this lack of performance of this measure. First, we believe participants simply may have struggled to decide which amount they would take today over the longer-term reward. Second, the monetary-selection measure comprised fuzzy units (eg, cost of one’s patience for a specific period), and studies have shown fuzzy units increase short-term reward preferences compared to discrete units (eg, how long one would wait) [29,30]. Participants may not have as much behavioral experience to quantify the abstract monetary cost to wait for an already specified duration. Participants, however, may reliably draw from personal experience and past behaviors to assess their capacity for patience, as conveyed in the time-selection items. Third, framing time as a date (as in the time-selection items) or as days (as in the monetary-selection items) may have influenced participants’ delay discounting rates [30]. Finally, monetary-selection items may have needed a larger, long-term reward to capture variability in long-term reward devaluation. When asked to wait a year to receive US $100, participants choose a short-term reward as close as possible to the long-term reward, but if given a larger, long-term reward, participants may choose a smaller, short-term reward relative to the long-term reward [31].

After assessing the measures’ validity and reliability, we determined that randomly selecting 1 to 2 time-selection items could sufficiently capture delay discounting. Similarly, another study also captured delay discounting with 2 items with no sensitivity loss [32]. An abbreviated EMA-based scale can minimize participant fatigue and sustain participant attention during data collection.

Additionally, our tool successfully reproduced some established associations between delay discounting and substance use or craving. Based on the time-selection items and the original MCQ, tobacco use and cravings often increased with greater delay discounting. Other studies have similarly evidenced a preference for smaller, immediate rewards over larger, long-term rewards (ie, greater delay discounting) when involving nicotine use [33,34]. On the other hand, we found no relationship between delay discounting and alcohol or cannabis use or craving. Other studies have found positive, modest associations between delay discounting and alcohol and cannabis use and craving in other samples [35-37]. Similarly, a recent meta-analysis showed a small association between delay discounting and cannabis use [38].

Limitations
Selection and response biases limit the generalizability of our study’s findings for a number of reasons. First, our study sample differs from our target population with regard to age, race, and sex. We created age and race recruitment quotas to avoid immigrative selection bias, but we ultimately did not meet the quota for older adults identifying as non-White, and we unintentionally oversampled female participants. Other studies similarly had greater ease recruiting White older adults over non-White older adults on social media [39,40]. This study, however, successfully recruited participants across income levels, which may improve generalizability to more socioeconomically diverse populations. Our sample also exceeded other measurement development studies’ sample sizes [41]. Second, few participants endorsed substance use. Our study advertisements did not target individuals who use substances, which likely contributed to low substance use endorsement in our sample and limited ability to identify associations between delay discounting and alcohol and cannabis use and craving. Our advertisement strategy, however, demonstrated our measures’ use for the general population and minimized participant self-selection by substance use frequency. Moreover, we did not incentivize substance use reporting, which may have failed to counter social desirability bias and underreporting, but our strategy improved our confidence in minimal false reports [42]. Finally, our analyses examining the association between delay discounting and substance use and craving did not account for temporality, limiting our ability to draw causal inferences regarding the directionality of effects. Future studies should examine the tool’s use in more specific health populations, such as individuals who use substances to excess or engage in other addictive behaviors, and examine the causal relationship between the new tool and substance use.

Conclusions
We found that 1 or 2 randomly selected items from our novel EMA-based time-selection measure can sufficiently assess delay discounting. Our abbreviated EMA-based scale may overcome data collection barriers related to participants’ attentional capacity and measurement barriers due to ceiling effects [18]. Beyond aiding delay discounting–specific research, our transdiagnostic tool may help with intervention assessment and rapid detection of individuals at risk for specific health conditions. In terms of intervention assessment, delay discounting may serve as an outcome for measuring the effectiveness and efficacy of behavior change interventions. For example, an intervention targeting binge eating may seek to assess the intervention’s momentary effect on how an individual values the immediate reward of binge eating over the long-term health benefits of abstaining from binge eating. In this case, delay discounting may serve as a rapid proxy to assess the intervention’s effect on reward valuation. Additionally, our tool may also help detect individuals at higher risk in a high-risk population associated with greater impulsivity. For example, one study suggested delay discounting tools may be adapted to discern HIV risk among individuals with and without cocaine use disorder [43]. Future studies should test the time-selection measures’ predictive use in clinical, high-risk populations.

Acknowledgments
This work was supported by R01 DA047064 (to GDK and BSM). AL was also supported by a NIDA T32 DA007292.
Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions
GDK and BSM conceptualized the study. GDK, JAR, JT, and BSM designed the time- and monetary-selection items. AL, JAR, and BSM recruited participants and assisted participants with compensation and study questions. JAR, JLW, DWS, and BSM conducted and aided in the interpretation of statistical analyses. AL drafted the initial paper, which all authors reviewed and edited.

Conflicts of Interest
JCS has received research-related funding from Canopy Growth Corporation and DynamiCare Health Inc in the past 3 years.

Multimedia Appendix 1
Monetary Choice Questionnaire–administered items. [DOCX File, 15 KB - formative_v8i1e48954_app1.docx]

Multimedia Appendix 2
Phase 1 time-selection per-item log(delay discounting rate) correlation with full 7-item log(delay discounting rate). [PNG File, 10 KB - formative_v8i1e48954_app2.png]

Multimedia Appendix 3
Phase 2 time-selection per-item log(delay discounting rate) correlation with full 7-item log(delay discounting rate). [PNG File, 10 KB - formative_v8i1e48954_app3.png]

Multimedia Appendix 4
Phase 1 monetary-selection per-item log(delay discounting rate) correlation with full 7-item log(delay discounting rate). [PNG File, 10 KB - formative_v8i1e48954_app4.png]

Multimedia Appendix 5
Phase 2 monetary-selection per-item log(delay discounting rate) correlation with full 7-item log(delay discounting rate). [PNG File, 10 KB - formative_v8i1e48954_app5.png]

References

Abbreviations

EMA: ecological momentary assessment
IM: instant messaging
MCQ: Monetary Choice Questionnaire

© Amanda Luken, Jill A Rabinowitz, Jonathan L Wells, David W Sosnowski, Justin C Strickland, Johannes Thrul, Gregory D Kirk, Brion S Maher. Originally published in JMIR Formative Research (https://formative.jmir.org), 27.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
The Influence of Human Connections and Collaboration on Research Grant Success at Various Career Stages: Regression Analysis

Akiko Hashiguchi¹, PhD; Makoto Asashima², PhD; Satoru Takahashi¹, MD, PhD

¹Institute of Medicine, University of Tsukuba, Tsukuba, Japan
²Advanced Comprehensive Research Organization (ACRO), Teikyo University, Itabashi, Japan

Corresponding Author:
Akiko Hashiguchi, PhD
Institute of Medicine
University of Tsukuba
1-1-1 Tennodai
Tsukuba, 305-8575
Japan
Phone: 81 298537276
Email: hashiguchi.akiko.ge@u.tsukuba.ac.jp

Abstract

Background: Documenting the grant acquisition characteristics of a highly selective group of researchers could provide insights into the research and faculty development of talented individuals, and the insights gained to foster such researchers will help university management strengthen their research capacity.

Objective: This study examines the role of human connections in the success of biomedical researchers in Japanese universities.

Methods: This study used grant data from the Grants-in-Aid for Scientific Research (GIA) program, the largest competitive research funding program in Japan, to collect information on projects and their implementation systems obtained throughout the participants’ careers. Grant success was measured by the number and amounts of the awards obtained while participants occupied the role of principal investigator. Human connections were quantified by the number of projects in which the participants took part as members and were classified by their relationship with the project leader. Data were matched with information on career history, publication performance, and experience of the participants with government-funded programs apart from GIA and were analyzed using univariate and multivariate regression analyses.

Results: Early-career interpersonal relationships, as measured using the h-index value of the researchers who provided the participants with their initial experience as project members, had a positive effect on grant success. The experience of contributing to prestigious research programs led by top researchers dramatically increased the cumulative amount of GIA awards received by the participants over time. Univariate logistic regression analyses revealed that more interactions with upper-level researchers resulted in fewer acquisitions of large programs (odds ratio [OR] 0.67, 95% CI 0.50-0.89). Collaboration with peers increased the success rate of ≥2 research grants in large programs in situations in which both the participant and project leader were professors (OR 1.16, 95% CI 1.06-1.26). Tracking the process of research development, we found that collaboration during the periods of 10 to 14 years and 15 to 19 years after completing a doctorate degree determined the size of the project that the participant would obtain—interactions with peer researchers and subordinates during the 10- to 14-year postdegree period had positive effects on ≥2 large-program acquisitions (OR 1.51, 95% CI 1.09-2.09 and OR 1.31, 95% CI 1.10-1.57, respectively), whereas interactions with subordinates during the 15- to 19-year postdegree period also had positive effects (OR 1.25, 95% CI 1.25-1.07). Furthermore, relationships that remained narrowly focused resulted in limited grant success for small programs.

Conclusions: Human networking is important for improving an individual’s ability to obtain external funding. The results emphasize the importance of having a high-h-indexed collaborator to obtain quality information early in one’s career; working with diverse, nonsupervisory personnel at the midcareer stage; and engaging in synergistic collaborations upon establishing a research area in which one can take more initiatives.

(JMIR Form Res 2024;8:e49905) doi:10.2196/49905
KEYWORDS
biomedical researchers; grant success; human connection; peer researchers; synergistic collaborations; research development

Introduction

Background
The university sector has played a major role in the production of scientific knowledge by facilitating research based on the unique conception of researchers and has supported important societal benefits by helping companies source innovation [1]. As the world becomes increasingly unstable, the university sector will be required to create more knowledge and supply more human resources, leading to breakthrough innovation. However, as knowledge accumulates and science becomes more specialized, fewer remarkable discoveries are made [2]. In addition, conducting research that answers simple but major questions is becoming difficult under the recent system of university performance evaluation, which emphasizes short-term outcomes against a backdrop of the demand for accountability in the allocation of public funds [3,4]. This emphasis on short-term results is significant from the perspective of university management in countries where public funds are the primary source of university revenue. For example, Japanese universities need to equip faculty members with strong research skills to receive more government resource allocation, especially after 2019, when performance-based allocations were introduced [5].

High competitiveness in research is measured by the number and impact of publications and the acquisition of external funding; the latter is particularly important from the perspective of university management. Importantly, in the long run, the ability to draw a vision will influence the future direction of the research field and attract young researchers. This innovative power—that is, creating a common understanding that a research field that did not previously exist will exist in the future—is expected to materialize as large research projects supported by significant funding. Therefore, it is important to understand how personnel are capable of obtaining vast amounts of external funding. By examining the existing funding framework in Japan, this study observed that the larger the funding program, the more broadly the disciplines are grouped to form review committees. Therefore, project leaders must convince reviewers from diverse fields of the significance of a project [6]. Project leaders of a group of researchers spanning multiple disciplines are required to be capable of discussing the worldview that the research can present.

Factors such as the exchange of ideas and expansion of knowledge are important for fostering visionary researchers. Accordingly, the effectiveness of international mobility and academic industry collaboration has been evaluated from the perspectives of higher education, research, and innovation policy [7-9]. In addition, the literature has emphasized the importance of “productive interactions” between researchers and social actors in studies that assess the social impact of scientific research [10,11]. These examples demonstrate that learning from others regarding perspectives beyond the scope of one’s research can lead to innovative ideas. However, few studies have focused on the impact of such “productive exchanges” on the human resource development of individual researchers.

Chan et al [12] analyzed the coauthorship patterns of Nobel laureates and found that encounters of heterogeneous ideas from different researchers, which occur early in the collaboration life cycle, generate the most innovative ideas that emerge from the collaborative relationship. This cross-fertilization of ideas is considered effective not only in the research development process of Nobel laureates but also in the process of cultivating creativity among researchers in general. Studies on creativity have shown that acting as a broker of valuable knowledge (i.e., having a high level of “betweenness centrality” in a network) can facilitate information flow so as to generate new ideas [13]. A study of young researchers in biomedical sciences showed that effective collaboration with “nonsupervisor” peers is important for learning [14]. In the academic community, where the culture of apprenticeship is strong, handing over a research theme between a supervisor and an apprentice and taking over a network of people working on such a theme are effective methods for increasing one’s visibility in the field. In this context, how researchers relate not only to their immediate supervisors but also to their colleagues and researchers in other institutions is key to improving their competitiveness in grant acquisition, as previously demonstrated using selective groups of researchers with high betweenness centrality [15].

Objectives
This study explored the objective metrics of success in grant acquisition using information from Grants-in-Aid for Scientific Research (GIA) projects and focusing on interpersonal relationships. By doing so, we aimed to identify the requirements for developing researchers capable of winning external funding for university management and who, ultimately, can influence research trends through innovative ideas and high-level capabilities in project realization.

Methods

Overview
In Japan, GIA provides fundamental financial assistance for academic research activities that cover all fields with the objective of promoting scholarship and advancing creative research [6]. It is the largest competitive research funding program in Japan, which began in the 1950s. Even after the introduction of government funding programs for various purposes, it continues to account for most funds that support "bottom-up" researcher-led projects [16,17]. GIA includes basic programs (classified according to the amount awarded), innovation programs that take on new challenges, and specially promoted research programs that support outstanding original research that pioneers new scholarship. Other programs are also available to young researchers. Screening of GIA projects through peer review, although the breadth of the reviewers’ fields varies according to the program size [6]. Therefore, GIA award acquisition performance is considered an indicator that
quantifies the academic creativity of researchers who have reached a certain level regardless of external conditions such as top-down policy requirements. This study focused on the implementation structure and member composition of projects supported by GIA.

Data Sources

The grant acquisition history of the participants, that is, the research projects in which they were involved, was obtained from the GIA database, wherein participants’ names can be used as search terms to obtain information on their positive GIA awards (National Institute of Informatics, Japan) [18]. Although the GIA system has undergone several modifications and programs have been established or abolished over time, we focused on programs that most researchers currently in professorial positions are familiar with. Information on rejected projects was not included in this study.

Data on degree types were obtained from the doctoral dissertation database [19]. These data were introduced as an alternate indicator for understanding the effect of age as the exact age of each researcher is not publicly available. This indicator discriminates whether a degree was obtained by either enrolling in a graduate school and submitting a dissertation or submitting a dissertation and passing an examination even if the person was not enrolled in a graduate school (doctorate obtained by thesis). The latter is a unique system in Japan, and the degrees of this type are primarily awarded to people who conducted their research as employees of a company.

The productivity, contributions, and research impact of each researcher, as measured by the citation counts, were calculated from the publication history data obtained from the SciVal database under the license of the University of Tsukuba using the Scopus IDs as the search key (Elsevier) [20]. Factors that could not be determined through the aforementioned indicators were examined using a database that covered most government funding programs by entering the participants’ names (BIOIMPACT, Japan) [21].

Ethical Considerations

This study did not require ethics approval as it did not collect data from human or animal participants. The names of the professors, external funding obtained, and publication records are publicly available. The 2 databases of grants were constructed to ensure transparency in public research funding allocation and allow users to search for the latest research information in Japan—one records the GIA program of the Ministry of Education, Culture, Sports, Science, and Technology of Japan [22] and the other records other government funding programs of the Cabinet Office; Ministry of Internal Affairs and Communications; Ministry of Health, Labour, and Welfare; Ministry of Agriculture, Forestry, and Fisheries; Ministry of Economy, Trade, and Industry; Ministry of Land, Infrastructure, Transport, and Tourism; Ministry of the Environment; and Ministry of Defense [23]. The analysis plan was not preregistered as this was a secondary analysis of open data extracted from public databases.

Researcher Characteristics

This study considered the following characteristics in terms of the researchers’ competitiveness: the sum of the maximum allocated amount of projects obtained as principal investigators, total allocation earned as a principal investigator during the first 10 years after obtaining a PhD, and the number of projects obtained as principal investigators in large programs, such as Grant-in-Aid for Specially Promoted Research and Grant-in-Aid for Scientific Research (S), or small programs, such as Grant-in-Aid for Scientific Research (C). In terms of their personal attributes, we considered the number of years since obtaining a doctoral degree, whether the doctorate was obtained by thesis, sex, experience in nonuniversity institutions, the rankings of the university in which the researcher obtained their doctorate, and where the researcher is currently affiliated. To measure each researcher’s productivity, we considered the number of papers published, first-authored papers, and last-authored papers.

To clarify the effect of human connections, we included the following attributes: the number of coresearchers connected with through GIA projects throughout their career, the betweenness centrality score based on people-to-people connections in GIA projects, the h-index of the researcher with whom the participant researcher first became a member of GIA projects, the number of government-funded programs participated in as a project member, and the total h-indexes of the researchers with whom the participant researcher interacted through other government-funded programs. To measure the researchers’ interpersonal relationships, we considered the number of researchers who designated the participants as their GIA project members (upper level, peer, or subordinate) throughout their careers. We also considered the number of projects a researcher participated in during each period after obtaining a doctorate (10-14 y and 15-19 y after the doctorate), categorized by the relationship of the project leader to the participant (upper level, peer, or subordinate).

Samples and Analysis Method

Analysis 1

This study focused on a single area of biomedical science to obtain detailed microstructural data on the relationship between research conception skills. Biochemistry was selected as the target field as it is the basis of today’s medicine given its focus on molecular mechanisms and as the 54 professors in this field include 5 (9%) awardees of Grant-in-Aid for Specially Promoted Research or Grant-in-Aid for Scientific Research (S) and 16 (30%) awardees of Grant-in-Aid for Scientific Research (A). These numbers exceed those in the field of hematology, with 3% (1/35) of awardees of Grant-in-Aid for Specially Promoted Research or Grant-in-Aid for Scientific Research (S) and 9% (3/35) of awardees of Grant-in-Aid for Scientific Research (A), and dermatology, with 5% (2/39) of awardees of Grant-in-Aid for Specially Promoted Research or Grant-in-Aid for Scientific Research (S) and 18% (7/39) of awardees for Grant-in-Aid for Scientific Research (A). This indicates that biochemistry is a suitable field for analyzing the competitiveness of researchers in Japan.
The names of the researchers who held professorships in biochemistry at the medical schools of Japanese universities between 2020 and 2022 were extracted from the websites of each university. In total, the study identified 54 researchers, including 2 (4%) female researchers, from 11 schools belonging to the top university group and other national universities. Academic and professional histories were obtained from their websites. In terms of education, 72% (39/54) graduated from schools of medicine, 87% (47/54) obtained PhDs in medicine, and 69% (37/54) obtained their bachelor’s and doctorate degrees in the same university. The mean number of years since receiving the degree was 29 (SD 6). We extracted 1473 GIA projects, of which 803 (54.51%) were implemented by the 54 participants as principal investigators (Table 1). For analysis 1, we summed the maximum allocated amount that each researcher won as the principal investigator and used it as the dependent variable. The independent variables were calculated using data obtained from each source. We controlled for sex (female) and experience at nonuniversity institutions (nonuniversity institutions). In this analysis, nonuniversity institutions refers to corporations and their associations. A lagged variable was designated for the total allocation of projects won by the participants as principal investigators for 10 years after each researcher obtained a PhD. Finally, researchers with missing data were excluded, and 52 were included in the analysis. Multiple regression analysis was performed using the XLSTAT statistical software (Addinsoft).

Table 1. Data on the researcher population used in the study and their characteristics.

<table>
<thead>
<tr>
<th>Analysis 1</th>
<th>Analysis 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants, N₁</td>
<td>52</td>
</tr>
<tr>
<td>Female participants, N₁, n (%)</td>
<td>2 (3.8)</td>
</tr>
<tr>
<td>Number of projects obtained by the participants², N₂</td>
<td>1473</td>
</tr>
<tr>
<td>Number of projects obtained by the participants as PI³, N₂, n (%)</td>
<td>803 (54.51)</td>
</tr>
<tr>
<td>Number of projects participated in as project member³, N₂, n (%)</td>
<td>710 (48.20)</td>
</tr>
</tbody>
</table>

²The count includes duplicates because of, for example, changes in principal investigator. N₁ is the number related to participants and N₂ is the number related to acquired projects.
³The analysis includes Grant-in-Aid for Scientific Research (S), (A), (B), or (C); Grant-in-Aid for Specially Promoted Research; and Grant-in-Aid for Young Scientist (S) and (A) for analysis 2.
⁴PI: principal investigator.

Analysis 2

We obtained people-to-people connections up to the third level by counting 54 participants based on the team member list of projects throughout their careers. The researchers extracted in the second tier of connections, that is, those who had primary relationships with the 54 participants, totaled 982 and conducted 11,437 projects, of which 4381 (38.31%) were implemented by the 982 participants as principal investigators (Table 1). The types of colleagues were analyzed using the data of the research members for each project. We categorized the researchers who designated the participants as their project members based on whether they were upper-level or peer researchers of the participants. If they were peer researchers, we further categorized the person according to position rank. Connections with the participant were then classified according to their relationship. Analysis 2 focused not only on the totaled highest amount allocated for each project of the 52 selected researchers on their h-index, which represents the overall competitiveness of a given researcher with respect to publications, we found a positive correlation (Figure 1A). This result suggests that the variable defined previously is consistent with a researcher’s perceived competitiveness. The relationship between the dependent variable and the number of projects in which each researcher participated as a project member is shown in Figure 1B. We analyzed the determinants that contributed to success in obtaining GIA awards as principal investigators and focused on interpersonal relationships in the projects in which they participated as project members (models 1-4 in Table 2).

Results

Analysis 1

Multimedia Appendix 1 presents the descriptive statistics of the variables used in the analysis. When we regressed the totaled highest amount allocated for each project of the 52 selected researchers on their h-index, which represents the overall competitiveness of a given researcher with respect to publications, we found a positive correlation (Figure 1A). This result suggests that the variable defined previously is consistent with a researcher’s perceived competitiveness. The relationship between the dependent variable and the number of projects in which each researcher participated as a project member is shown in Figure 1B. We analyzed the determinants that contributed to success in obtaining GIA awards as principal investigators and focused on interpersonal relationships in the projects in which they participated as project members (models 1-4 in Table 2).
Figure 1. (A) Regression of the h-index value against the amount allocated to each participant as principal investigator (PI; includes Grants-in-Aid for Scientific Research, Grants-in-Aid for Specially Promoted Research, and Grants-in-Aid for Young Scientists). (B) Regression of the amount allocated to each participant as PI against the number of projects in which they participated as project members (N=52).
control variables, the coefficients of not having experience at to be highly influential throughout the analysis. Regarding the university rank at various stages in the researchers' career. to mitigate endogeneity, and model 3 includes variables for the number of papers and last-authored papers published. Model To examine the effects of publication performance, we included connections expressed through the using the value of betweenness centrality and quality of connections was examined using networking level as measured success, and research performance. The effect of human attributes, human connections in the history of GIA grant acquisition (models 1-4). The h-index value of the researcher who first invited the participant to become a project member, unstandardized coefficient (SE) had a significant positive impact on the participant's grant acquisition (models 1-4). The h-index of the researcher with whom the participant first became a project member, unstandardized coefficient (SE) was inconsistent with the correlation coefficients shown collaborative partners tended to win more grants; however, this result is not definitive. Considering research performance, the impact of last authorship was large (models 1-4).

Model 1 is the base model that includes the researchers’ attributes, human connections in the history of GIA grant success, and research performance. The effect of human connections was examined using networking level as measured using the value of betweenness centrality and quality of connections expressed through the h-index of the coresearcher. To examine the effects of publication performance, we included the number of papers and last-authored papers published. Model 2 controls for early career success in obtaining GIA awards to university rank at various stages in the researchers’ career. Model 4 is a simplified model with variables that were found to be highly influential throughout the analysis. Regarding the control variables, the coefficients of not having experience at nonuniversity institutions were significantly negative ($P<.001$). Difference based on sex exhibited no significant effect, but the number of female researchers in the analysis was small; thus, this result is not definitive. Considering research performance, the impact of last authorship was large (models 1-4).

Regarding human connections, researchers with fewer collaborative partners tended to win more grants; however, this trend was inconsistent with the correlation coefficients shown in Multimedia Appendix 1. Betweenness centrality, which indicates the visibility of each researcher within the collaborative network, did not exert a significant effect on lifetime grant acquisition (models 1-4). The h-index value of the researcher who first invited the participant to become a project member had a significant positive impact on the participant’s grant acquisition (models 1-4). The h-index of the researcher with whom the participant first became a project member was examined using networking level as measured using the value of betweenness centrality and quality of connections expressed through the using the value of betweenness centrality and quality of connections expressed through the

Table 2. Probability of grant success (based on a 2-tailed t test; ordinary least squares was used for analysis; N=52)a

<table>
<thead>
<tr>
<th>Model</th>
<th>Probability of grant success (based on a 2-tailed t test; ordinary least squares was used for analysis; N=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.08 (0.10)</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.14 (0.10)</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.08 (0.10)</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.09 (0.10)</td>
</tr>
</tbody>
</table>

aThe dependent variable was the sum of the highest amount allocated for each project number of projects obtained as principal investigator. This included Grant-in-Aid for Scientific Research (S), (A), (B), or (C); Grant-in-Aid for Specially Promoted Research; and Grant-in-Aid for Young Scientists (S) or (A).

bVariables were not included in the model.

cThese variables were quantified based on The Times Higher Education World University Rankings 2023 and have 7 levels of classification, with a higher ranking having a smaller numerical value, that is, 1 for the top 100 ranking, 2 for 201 to 600, a value of 3 for 601 to 1000, a value of 4 for 1001 to 1200, a value of 5 for 1201 to 1500, a value of 6 for 1501 to 2000, and 7 for out of ranking.

dVariables were not included in the model.

eThe total allocation earned as principal investigator during the first 10 years after obtaining a PhD.

fThe Cytoscape software (version 3.4.0; Cytoscape Team) was used to calculate the value using people-to-people connections up to the third level starting from the participant based on the team member lists of all GIA projects throughout their career.

gVariables were not included in the model.

hNonuniversity institutions were significantly negative ($P<.001$).
success (model 1). The effect of these 3 variables remained significant even after incorporating variables related to grant success in the early stages of the researchers’ career (model 2). The correlation between university rank and grant success shows that researchers affiliated with higher-ranked universities tend to be more successful (Multimedia Appendix 1); however, when considering the regression models, the rankings of the universities where a researcher obtained their PhD degree and where they were currently working did not, by themselves, affect grant success. When university ranks were incorporated into the regression model, the effect of the h-index value of the researcher who first invited the participant to become a project member was not significant (model 3). Overall, the result of the h-index value indicates the importance of having a good research guide as the first step but also suggests that a researcher’s grant success can be affected by the new connections established during career development. Finally, model 4, which retains this variable together with last authorship and number of collaborative partners, has the smallest Akaike information criterion value and was considered the best-fit model.

Initially, we assumed that the researchers who first invited the participants to become a project member were laboratory heads and direct superiors, but this was not always the case (Table 3). Only 29.6% (32/108) of the researchers were direct superiors, 5.5% (6/108) were subgroup heads other than professors, and 7.4% (8/108) were peers or subordinates in their own institution. Notably, 8.3% (9/108) were external upper-level professionals (ie, from other institutions; Table 3). The correlation matrix in Multimedia Appendix 1 shows that being a project member of a government-funded program leads to a significant positive correlation with grant success. Therefore, as an in-depth examination of the effect of human resources, we tested whether project experience in a prestigious government-funded program, often led by top researchers, would increase the likelihood of GIA success for the participants using the Japan Science and Technology Agency Strategic Basic Research Program (SBRP) as a case study [17].

Table 3. Relationship with the researcher with whom the participant researcher first became a project membera.

<table>
<thead>
<tr>
<th></th>
<th>Same institution, n (%)</th>
<th>Different institution, n (%)</th>
<th>Total, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper level (n=47)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td>38 (35.1)</td>
<td>9 (8.3)</td>
<td>47 (43.5)</td>
</tr>
<tr>
<td>Other than professor</td>
<td>32 (29.6)</td>
<td>8 (7.4)</td>
<td>40 (37.0)</td>
</tr>
<tr>
<td>Peer (n=7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td>6 (5.6)</td>
<td>1 (0.9)</td>
<td>7 (6.4)</td>
</tr>
<tr>
<td>Other than professor</td>
<td>5 (4.6)</td>
<td>2 (1.9)</td>
<td>7 (6.4)</td>
</tr>
<tr>
<td>Subordinate (n=6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td>3 (2.8)</td>
<td>3 (2.8)</td>
<td>6 (5.6)</td>
</tr>
<tr>
<td>Other than professor</td>
<td>0 (0)</td>
<td>1 (0.9)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>Unidentified (n=1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84 (77.8)</td>
<td>24 (22.2)</td>
<td>108 (100)</td>
</tr>
</tbody>
</table>

aAll the projects won in the year in which each participant obtained projects for the first time were counted.

Figure 2 plots the cumulative average GIA award values obtained as principal investigators over time; the 2 groups are established based on the presence or absence of SBRP experience among the 52 participants. Researchers who had been project members of the Core Research for Evolutional Science and Technology subprogram were selected as the treatment group from a total sample of 52, whereas those who had been PIs of this program were excluded. Researchers with similar h-index values and career lengths as those in the treatment group were then selected as the comparison group. The mean h-index value was 63.7 (SD 40.4) for the treatment group and 61.3 (SD 20.9) for the control group, and the mean career length was 33.4 (SD 5.2) and 25.1 (SD 5.4), respectively. The timeline was anchored on 0 for the start year of the projects in which the treatment researchers participated. For the control group, we fixed the 13th year since obtaining a doctoral degree to 0, which is the average career length at the time participants in the treatment group joined the SBRP projects (n=7 for each group).

The 2 groups begin at the leftmost point with low cumulative grant amounts. In the period leading up to the zero point, we observe no evident difference between the 2 groups, with similar funding gains. However, after participating in the SBRP, the gains of the treatment groups increased dramatically (Figure 2). By the end of the observation period, the treatment group received a higher award amount than the control group.
Figure 2. Cumulative average Grants-in-Aid award values obtained as principal investigators (PIs) before and after participating in projects in the Strategic Basic Research Program (SBRP) as project members.

Analysis 2
To conduct a broader analysis of interpersonal relationships, we included 982 researchers, including 55 (5.6%) female researchers, identified as having collaborated with the researchers in the previous section (Table 1). The relationship between the number of years since obtaining a PhD and the amount earned as a principal investigator peaked at approximately 40 years after receiving the degree (Figure 3A). Using principal component analysis to evaluate each researcher’s grant success in terms of research impact, namely, the number of projects obtained, project acquisition rate for large programs, and project acquisition rate for small programs, we divided the researchers into 3 groups (Figure 3B). The term “%Small” indicates the percentage of projects from the Grant-in-Aid for Scientific Research (C) (either number of projects or amount awarded), which represents the smallest category, in the total number of projects obtained as PI. Similarly, the term “%large” indicates the Grant-in-Aid for Scientific Research (S) and Grant-in-Aid for Specially Promoted Research, which are considered large categories.

We conducted univariate logistic regression analyses to identify the factors that produced researchers with high grant success records in both large- and small-program categories (Table 4). Career length had a positive effect for large programs (odds ratio [OR] 1.07, 95% CI 1.04-1.10 for stratum 1) and a negative effect for small programs (OR 0.95, 95% CI 0.94-0.97 for stratum 1). Conversely, the variable “doctorate obtained by thesis,” which was introduced to observe the effect of age, had no significant effect. However, among the 30.8% (184/597) of researchers who received their PhD later in life, there were prominent researchers who had served as university presidents or on government committees. Earning a degree earlier or later in life did not uniformly affect a researcher’s competitiveness, and individual differences are likely to have a greater impact. Regarding differences based on sex, male researchers exhibited a negative effect on project acquisition of small programs (OR 0.29, 95% CI 0.12-0.70 for stratum 4). This indicates that male researchers are likely to move from small to larger programs.
Figure 3. (A) Regression of the amount allocated to each participant as principal investigator (PI) against years after doctorate; includes Grants-in-Aid for Scientific Research, Grants-in-Aid for Specially Promoted Research, and Grants-in-Aid for Young Scientists. (B) Principal component analysis for the researchers' grant success performance. Researchers were divided into 3 groups according to their performance (N=982). The term %Large indicates % large grants and the term %Small indicates % small grants.

Upon examining the impact of interaction with upper-level and peer researchers on grant success as principal investigators, we observed the following results (Table 4). More interactions with upper-level researchers resulted in fewer acquisitions of large programs (OR 0.67, 95% CI 0.50-0.89 for stratum 1) and more acquisitions of small programs (OR 1.21, 95% CI 1.07-1.36 for stratum 1) compared with the reference stratum. The differences in the ORs among the strata with different numbers of projects awarded indicated that the stronger the relationship with upper-level researchers, the higher the success rate in the smaller programs (OR 1.43, 95% CI 1.27-1.60 for stratum 4; Table 4).

After examining the impact of interaction with peer researchers separately at each stage of their careers, such as professor, associate professor, and assistant professor, we found that, in large programs, professor-professor interaction had a significant impact on the success rate of ≥2 research grants (OR 1.16, 95% CI 1.06-1.26 for stratum 2), which is not the case for the success of only 1 project (Table 4). More professor-professor interactions led to fewer acquisitions of ≥2 projects in the small category (OR 0.85, 95% CI 0.77-0.93 for stratum 2; Table 4). Interaction with peer researchers at the associate professor level and below had no significant effect on either large or small programs.
Table 4. Factors that affect grant success in terms of the relationship with the coresearchers (2-tailed χ² test)a.

<table>
<thead>
<tr>
<th>Variable and stratumb</th>
<th>Odds ratio (95% CI)</th>
<th>Significance of the model, P valuec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of large programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of years since doctoral degree (n=982)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>1.07d (1.04-1.10)</td>
<td><.001d</td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>1.07d (1.03-1.11)</td>
<td></td>
</tr>
<tr>
<td>Doctorate obtained by thesis (n=597)e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=16)</td>
<td>1.35 (0.43-4.23)</td>
<td>.88</td>
</tr>
<tr>
<td>2 (n=13)</td>
<td>1.01 (0.31-3.32)</td>
<td></td>
</tr>
<tr>
<td>Female (no; n=982)</td>
<td></td>
<td>.82</td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>0.77 (0.23-2.58)</td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>1.60 (0.21-12.01)</td>
<td></td>
</tr>
<tr>
<td>Number of upper-level researchers who designated the participants as their project members (n=982)f</td>
<td></td>
<td>.003g</td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>0.67d (0.50-0.89)</td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>0.72b (0.53-0.99)</td>
<td></td>
</tr>
<tr>
<td>Number of peer researchers who designated the participants as their project members (professor; n=982)f</td>
<td></td>
<td>.002g</td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>1.08 (0.98-1.19)</td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>1.16b (1.06-1.26)</td>
<td></td>
</tr>
<tr>
<td>Number of peer researchers who designated the participants as their project members (associate professor; n=982)f</td>
<td></td>
<td>.83</td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>—i</td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>0.69 (0.22-2.22)</td>
<td></td>
</tr>
<tr>
<td>Number of peer researchers who designated the participants as their project members (assistant professor; n=982)f</td>
<td></td>
<td>.80</td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>0.56 (0.10-3.12)</td>
<td></td>
</tr>
<tr>
<td>Number of small programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of years since doctoral degree (n=982)</td>
<td></td>
<td><.001d</td>
</tr>
<tr>
<td>1 (n=219)</td>
<td>0.95d (0.94-0.97)</td>
<td></td>
</tr>
<tr>
<td>2 (n=190)</td>
<td>0.95d (0.93-0.97)</td>
<td></td>
</tr>
<tr>
<td>3 (n=140)</td>
<td>0.96d (0.94-0.98)</td>
<td></td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>0.96d (0.94-0.98)</td>
<td></td>
</tr>
<tr>
<td>Doctorate obtained by thesis (n=597)</td>
<td></td>
<td>.18</td>
</tr>
<tr>
<td>1 (n=133)</td>
<td>1.27 (0.77-2.10)</td>
<td></td>
</tr>
<tr>
<td>2 (n=118)</td>
<td>1.37 (0.81-2.31)</td>
<td></td>
</tr>
<tr>
<td>3 (n=76)</td>
<td>1.64 (0.88-3.06)</td>
<td></td>
</tr>
<tr>
<td>4 (n=113)</td>
<td>0.83 (0.50-1.37)</td>
<td></td>
</tr>
<tr>
<td>Female (no; n=982)</td>
<td></td>
<td>.05h</td>
</tr>
<tr>
<td>1 (n=219)</td>
<td>0.74 (0.28-1.96)</td>
<td></td>
</tr>
<tr>
<td>2 (n=190)</td>
<td>0.47 (0.19-1.18)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Odds Ratio for Designating Participants as Project Members

<table>
<thead>
<tr>
<th>Variable and stratum (^b)</th>
<th>Odds ratio (95% CI)</th>
<th>Significance of the model, (P) value (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (n=140)</td>
<td>0.46 (0.17-1.23)</td>
<td></td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>0.29(^d) (0.12-0.70)</td>
<td><.001(^d)</td>
</tr>
</tbody>
</table>

Number of upper-level researchers who designated the participants as their project members (n=982)

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Odds ratio (95% CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=219)</td>
<td>1.21(^e) (1.07-1.36)</td>
<td><.01</td>
</tr>
<tr>
<td>2 (n=190)</td>
<td>1.30(^d) (1.16-1.47)</td>
<td><.001</td>
</tr>
<tr>
<td>3 (n=140)</td>
<td>1.42(^d) (1.26-1.60)</td>
<td><.001</td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>1.43(^d) (1.27-1.60)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Number of peer researchers who designated the participants as their project members (professor; n=982)

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Odds ratio (95% CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=219)</td>
<td>0.94 (0.88-1.01)</td>
<td>.01</td>
</tr>
<tr>
<td>2 (n=190)</td>
<td>0.85(^d) (0.77-0.93)</td>
<td><.001</td>
</tr>
<tr>
<td>3 (n=140)</td>
<td>0.85(^e) (0.76-0.95)</td>
<td><.01</td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>0.91(^b) (0.84-0.99)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Number of peer researchers who designated the participants as their project members (associate professor; n=982)

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Odds ratio (95% CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=219)</td>
<td>1.75 (0.46-2.00)</td>
<td>.57</td>
</tr>
<tr>
<td>2 (n=190)</td>
<td>1.01 (0.67-1.51)</td>
<td>.57</td>
</tr>
<tr>
<td>3 (n=140)</td>
<td>1.25 (0.85-1.84)</td>
<td>.57</td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>0.93 (0.60-1.44)</td>
<td>.57</td>
</tr>
</tbody>
</table>

Number of peer researchers who designated the participants as their project members (assistant professor; n=982)

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Odds ratio (95% CI)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=219)</td>
<td>1.33 (0.78-2.28)</td>
<td>.57</td>
</tr>
<tr>
<td>2 (n=190)</td>
<td>1.06 (0.57-1.97)</td>
<td>.57</td>
</tr>
<tr>
<td>3 (n=140)</td>
<td>1.22 (0.65-2.27)</td>
<td>.57</td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>1.51 (0.88-2.57)</td>
<td>.57</td>
</tr>
</tbody>
</table>

\(^a\)The number of projects obtained by the participants as principal investigators was used as the dependent variable. The term large indicates projects from the Grant-in-Aid for Scientific Research (S) and Grant-in-Aid for Specially Promoted Research, which are considered large categories. Similarly, the term small indicates the Grant-in-Aid for Scientific Research category (C), which is considered the smallest category.

\(^b\)Number of projects obtained. Cases with no corresponding acquisitions were designated as stratum 0 and used as a reference. Cases with \(\geq 2\) corresponding acquisitions were defined as stratum 2 for large categories, and cases with \(\geq 4\) acquisitions were defined as stratum 4 for the small category.

\(^c\)Wald test (\(P\)<.05).

\(^d\)\(P\)<.001.

\(^e\)Doctoral degree conferred by submitting a doctoral thesis and passing its examination. We used this as a control variable and conducted an analysis by assigning a value of 0 for a regular degree and 1 for a doctorate obtained by thesis.

\(^f\)Interaction among researchers in the same position was expressed as the number of researchers who made the participant a project member.

\(^g\)\(P\)<.01.

\(^h\)\(P\)<.05.

\(^i\)No results were output by XLSTAT software for this stratum.

Figure 4 shows the number of projects in which the researcher participated as a coinvestigator based on the years after obtaining a PhD. The researchers were divided into 3 groups based on their performance level, as shown in Figure 3B. The groups with higher research achievements had a greater number of projects during the 10- to 14-year postdegree period. Group 3, the group with the highest research achievements, had the largest number of projects during the 15- to 19-year postdegree period (Figure 4). Table 5 focuses on these years as key periods and presents the average scores of several indicators of grant success and interpersonal relationships. Although the most active researchers (group 3) obtained large-program grants and interacted with more researchers during the indicated periods, the less active researchers (group 1), who primarily won small-program grants, interacted with fewer researchers during this period, many of whom were upper-level researchers (Table 5).
Figure 4. The average number of projects in which the researcher participated as a coinvestigator by number of years after obtaining a PhD and by research performance.

Table 5. Grant success and interaction with colleagues (2-tailed).

<table>
<thead>
<tr>
<th>Group (performance)</th>
<th>All (n=982), mean (SE)</th>
<th>Group 1 (low; n=436), mean (SD)</th>
<th>Group 2 (moderate; n=476), mean (SD)</th>
<th>Group 3 (high; n=70), mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of years since doctoral degree</td>
<td>31.19 (10.92)</td>
<td>26.32 (10.24)<sup>a</sup></td>
<td>34.57 (9.95)<sup>b</sup></td>
<td>38.51 (8.23)<sup>c</sup></td>
</tr>
<tr>
<td>Number of projects obtained as a PI<sup>d</sup></td>
<td>4.11 (2.55)</td>
<td>2.86 (1.71)<sup>a</sup></td>
<td>4.79 (2.53)<sup>b</sup></td>
<td>7.31 (2.59)<sup>c</sup></td>
</tr>
<tr>
<td>Amount awarded as a PI (million yen, JP ¥)<sup>e</sup></td>
<td>59.73 (109.49)</td>
<td>11.10 (7.71)</td>
<td>59.31 (44.57)</td>
<td>365.45 (215.95)</td>
</tr>
<tr>
<td>Percentage of small grants in total number of acquisitions (projects)</td>
<td>0.55 (0.43)</td>
<td>0.96 (0.14)<sup>a</sup></td>
<td>0.25 (0.28)<sup>b</sup></td>
<td>0.06 (0.10)<sup>c</sup></td>
</tr>
<tr>
<td>Percentage of large grants in total number of acquisitions (projects)</td>
<td>0.02 (0.08)</td>
<td>0 (0)<sup>a</sup></td>
<td>0 (0)<sup>a</sup></td>
<td>0.24 (0.17)<sup>b</sup></td>
</tr>
<tr>
<td>Number of projects participated in 10-14 y after doctorate</td>
<td>1.16 (1.90)</td>
<td>0.85 (1.38)<sup>a</sup></td>
<td>1.40 (2.17)<sup>b</sup></td>
<td>1.46 (2.04)<sup>b</sup></td>
</tr>
<tr>
<td>Number of upper-level researchers who designated the participants as their project members (10-14 y)</td>
<td>0.38 (0.81)</td>
<td>0.40 (0.78)<sup>a</sup></td>
<td>0.39 (0.86)<sup>a,b</sup></td>
<td>0.19 (0.60)<sup>b</sup></td>
</tr>
<tr>
<td>Number of projects participated in 15-19 y after doctorate</td>
<td>0.26 (1.29)</td>
<td>0.20 (0.84)<sup>a</sup></td>
<td>0.24 (0.83)<sup>a</sup></td>
<td>0.67 (3.67)<sup>b</sup></td>
</tr>
<tr>
<td>Number of upper-level researchers who designated the participants as their project members (15-19 y)</td>
<td>0.19 (0.56)</td>
<td>0.27 (0.64)<sup>a</sup></td>
<td>0.14 (0.52)<sup>b</sup></td>
<td>0.03 (0.17)<sup>b</sup></td>
</tr>
</tbody>
</table>

^a^{P<.05} against groups with b and c.

^b^{P<.05} against groups with a and c.

^c^{P<.05} against groups with a and b.

^dPI: principal investigator.

^eA currency exchange rate of JP ¥1=US $.0067 is applicable.

Table 6 presents the results of the univariate logistic regression analyses on the impact of the frequency and quality of connections using the number of project acquisitions in large and small programs as dependent variables. When the frequency of interactions during the periods was categorized by the job relationships between the partner and the participant, the results showed that interactions with peer researchers and subordinates during the 10- to 14-year postdegree period had positive effects on ≥2 large-program acquisitions (OR 1.51, 95% CI 1.09-2.09 and OR 1.31, 95% CI 1.10-1.57, respectively; Table 6). Interactions with subordinates during the 15- to 19-year postdegree period also had positive effects (OR 1.25, 95% CI 1.25-1.07). In contrast, for the small programs, interaction with upper-level researchers was important both in the 10- to 14-year and the 15 to 19-year postdegree periods, with significant positive effects (Table 6). Notably, these results show that the frequency and quality of human interaction had opposite effects on acquisitions of large and small programs.
Table 6. Factors that affect grant success based on the timing of experience as a project member (2-tailed χ^2 test)a.

<table>
<thead>
<tr>
<th>Variable and stratumb</th>
<th>Number of projects participated in 10-14 y after doctorate</th>
<th>Odds ratio (95% CI)</th>
<th>Significance of the model, P valuec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of large programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by upper-level researchers (n=968)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=41)</td>
<td>0.62 (0.34-1.13)</td>
<td>.11</td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>0.58 (0.28-1.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by peer researchers (n=968)</td>
<td></td>
<td></td>
<td>.04d</td>
</tr>
<tr>
<td>1 (n=41)</td>
<td>1.12 (0.75-1.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>1.51d (1.09-2.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by subordinates (n=968)</td>
<td></td>
<td></td>
<td>.007e</td>
</tr>
<tr>
<td>1 (n=41)</td>
<td>1.15 (0.94-1.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>1.31e (1.10-1.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects participated in 15-19 y after doctorate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by upper-level researchers (n=922)</td>
<td></td>
<td></td>
<td>.23</td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>0.32 (0.09-1.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>-f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by peer researchers (n=922)</td>
<td></td>
<td></td>
<td>.06</td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>1.4 (1.00-1.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>1.36 (0.9-2.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by subordinates (n=922)</td>
<td></td>
<td></td>
<td>.02d</td>
</tr>
<tr>
<td>1 (n=42)</td>
<td>1.12 (0.94-1.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n=28)</td>
<td>1.25e (1.06-1.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of small programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by upper-level researchers (n=968)</td>
<td></td>
<td></td>
<td><0.001f</td>
</tr>
<tr>
<td>1 (n=210)</td>
<td>1.20 (0.88-1.62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n=186)</td>
<td>1.48c (1.11-1.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (n=140)</td>
<td>1.88f (1.42-2.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>1.87f (1.42-2.45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by peer researchers (n=968)</td>
<td></td>
<td></td>
<td>.12</td>
</tr>
<tr>
<td>1 (n=210)</td>
<td>0.87 (0.69-1.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n=186)</td>
<td>0.69f (0.52-0.93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (n=140)</td>
<td>0.81 (0.61-1.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>0.80 (0.61-1.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of projects by subordinates (n=968)</td>
<td></td>
<td></td>
<td>.43</td>
</tr>
<tr>
<td>1 (n=210)</td>
<td>1.02 (0.89-1.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n=186)</td>
<td>0.9 (0.75-1.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (n=140)</td>
<td>0.88 (0.72-1.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (n=174)</td>
<td>0.92 (0.78-1.10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aSignificance of the model, P value
bNumber of large programs
cNumber of projects participated in 10-14 y after doctorate
dNumber of projects by upper-level researchers (n=968)
eNumber of projects by peer researchers (n=968)
fNumber of projects by subordinates (n=968)
gNumber of small programs
hNumber of projects participated in 10-14 y after doctorate
iNumber of projects by upper-level researchers (n=968)
jNumber of projects by peer researchers (n=968)
kNumber of projects by subordinates (n=968)
lNumber of projects participated in 15-19 y after doctorate
mNumber of projects by upper-level researchers (n=922)
nNumber of projects by peer researchers (n=922)
oNumber of projects by subordinates (n=922)
pNumber of projects participated in 15-19 y after doctorate
qNumber of projects by upper-level researchers (n=968)
rNumber of projects by peer researchers (n=968)
sNumber of projects by subordinates (n=968)
tNumber of projects participated in 15-19 y after doctorate
uNumber of projects by upper-level researchers (n=968)
vNumber of projects by peer researchers (n=968)
wNumber of projects by subordinates (n=968)
xNumber of projects participated in 15-19 y after doctorate

https://formative.jmir.org/2024/1/e49905
The number of projects obtained by the participants as principal investigators was used as the dependent variable. The term large indicates projects from the Grant-in-Aid for Scientific Research (S) and Grant-in-Aid for Specially Promoted Research, which are considered large categories. Similarly, the term small indicates the Grant-in-Aid for Scientific Research (C), which is considered the smallest category.

Number of projects obtained. Cases with no corresponding acquisitions were designated as stratum 0 and used as a reference. Cases with ≥2 corresponding acquisitions were defined as stratum 2 for the large categories, and cases with ≥4 acquisitions were defined as stratum 4 for the small category.

Wald test (P<.05).

P<.05.

P<.01.

No results were output by XLSTAT software for this stratum.

P<.001.

Discussion

Principal Findings

This study aimed to identify factors that influence researchers’ potential to obtain external research funding by surveying their stage of career development and the types of people they interacted with using the GIA project implementation structure. Early-career interpersonal relationships, as measured using the h-index value of the researcher who provided the participants with their initial experience as project members, had a positive effect on grant success (Table 2). The results revealed the importance of having a good guide. We propose that a good guide can broaden project members’ perspectives by demonstrating the “behind-the-scenes” elements of effective project implementation. A good guide, not necessarily an immediate supervisor, also serves as a channel for informing fellow researchers of the perspectives required to obtain larger funds.

The results based on nonuniversity experiences (Table 2) suggest that creating an attractive proposal based solely on individual research curiosity may be difficult. The breadth of scientific expertise expressed within a research group rarely matches that expressed by an academic committee [24]. Enhancing one’s perspective by participating in large, purpose-driven projects such as those conducted by companies is important. The fact that experiencing the SBRP (a prestigious government program) as a project member facilitated subsequent grant success also confirms this hypothesis (Figure 2). A unique feature of the SBRP is that a star researcher, as the research director, conducts various interventions to modify the proposed research plan [17]. This provides the project members with opportunities to learn not only about the research conception of the principal investigator but also about the overall view of the research field held by the star researcher above the principal investigators and the strategic goals determined by policy objectives.

The effect of human connections varies depending on the career stage at which the research collaboration occurs. We found that the signs of the coefficients for the number of coresearchers were inconsistent between Multimedia Appendix 1 and Table 2. This may be due to the fact that Table 2 shows the actual relevance of the indicator to researchers’ competitiveness at the individual level, whereas Table 2 shows the macro trends. Although a larger number of collaborators indicates a larger number of projects and more grant amounts obtained in general (positive coefficient in Multimedia Appendix 1), it also suggests the importance of implementing a small number of elite projects.
with selected collaborators to obtain large, trend-setting projects (negative coefficient in Table 2).

Our results suggest that greater collaboration among professors increases the number of large projects obtained (Table 4). After establishing one’s specialty and becoming a professor, collaborating with researchers in different fields and leveraging synergies to obtain greater funding is easier than when one is young [25]. It is assumed that highly competitive researchers who become professors early in their careers have more opportunities to conduct collaborative research among professors, and this collaboration and friendly competition with peers may stimulate their motivation to generate new ideas worthy of being supported by large programs. Meanwhile, factors that influence midcareer grant success remain largely unexplored despite challenging expectations regarding human resource development at universities and research institutions. This study did not present significant results regarding the midcareer level (Table 4); this is because collaboration during the earlier period may include protected time until each researcher refines their research and reconciles it with that of other researchers, after which truly meaningful collaboration occurs [26,27]. Tracking the process of research development, we found that interaction with others during the periods of 10 to 14 years and 15 to 19 years after obtaining a PhD determines the size of the project that the participant will obtain (Tables 5 and 6).

This study initially attempted to identify the factors that produce researchers with high grant success records, but as grant success depends on various factors, including the assignment of reviewers and other random factors, and given cases in which initial success may have been leveraged in subsequent years [28], it was difficult to obtain clear results when focusing on large programs alone (Tables 5 and 6). Interpreted in conjunction with the results from the project acquisition rate of small programs (Tables 5 and 6), midcareer relationships that remain narrowly focused, such as immediate supervisors, keep participants’ grant success limited to small programs throughout their careers and do not lead to the acquisition of large programs (Table 6). Liu [29] pointed out that the relationship between scholar productivity and tie strength exhibits an inverted U shape using data from tourism scholars. Researchers who devote their efforts to others’ research cannot concentrate on deepening their own studies. Considering the trade-off in collaboration between acquiring ideas and paying for effort instead of undertaking part of the supervisors’ initiatives, getting involved in diverse projects by peers and subordinates is important. In particular, participating in projects by subordinates is an effective way to be exposed to the fresh ideas of a younger person and look over their projects critically as an experienced person. This will ultimately help researchers become established figures who can conduct large-scale research projects as principal investigators.

Limitations

A limitation of this study is that we experienced some difficulties in obtaining clear data and subsequent results on the factors that influence the most prominent figures, such as those who had ≥3 projects in large programs (8/982, 0.8% in analysis 2), because of their rarity and the particular nature of their careers and research histories. These researchers tended to obtain large projects early in their careers instead of obtaining projects gradually increasing in size, which is related to the fact that they returned after international education pursuits or worked at nonuniversity institutions. Although initial success is likely to be influenced by almost uniform factors that apply to all researchers, such as publication performance relative to age, continued success is likely to be heavily influenced by individual enthusiasm and willingness to acquire large projects. Therefore, contextual analysis, such as interview surveys, will be necessary to identify the factors that produce prominent figures with outstanding achievements.

Another constraint is that the results of this analysis are limited to positive grant awards as, unlike positive awards, information on rejected projects is not publicly available. Under the Japanese grant system, the range of acceptance rates among researchers is not considered to be very large as proposals are submitted only once a year and the number of projects that can be applied for in a given year is limited by the grant system’s restrictions on duplicate applications. However, the differences among researchers with different application rates should be explored in a future study to better clarify the factors affecting researchers’ competitiveness.

Conclusions

This study explored objective measures of success in obtaining GIA with a focus on interpersonal relationships. Our results have several implications for future research. To improve one’s ability to obtain external funding, the following are necessary aspects: developing links with channels enabling access to quality information, gaining experience in collaborative research at the midcareer stage, and developing a research area in which one can take more initiatives in the future. The function of systematically training researchers has not been sufficiently developed in the Japanese medical community, and whether one can grow as a researcher is left entirely up to the individual. Researchers must broaden the scope of their research and increase their visibility in the academic field to actualize innovative ideas. In summary, individuals should understand the power of a collaborative network and strategically choose cooperative partners.

Acknowledgments

The authors would like to thank Exmart Inc for their assistance with data acquisition. This work was supported by a grant from the Watanabe Memorial Foundation for the Advancement of Technology awarded to AH. The authors would like to thank Editage for English-language editing. The authors did not use generative artificial intelligence during the preparation of this work.

https://formative.jmir.org/2024/1/e49905 JMIR Form Res 2024 | vol. 8 | e49905 | p.1788 (page number not for citation purposes)
Data Availability
The data sets generated during and analyzed during this study are available from the corresponding author on reasonable request. Requests to access the data set should be directed to AH.

Authors’ Contributions
AH contributed to conceptualization, data curation, investigation, visualization, and writing—original draft preparation. MA contributed to writing—review and editing. ST contributed to resources and writing—review and editing.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Descriptive statistics and correlation matrix.

References
16. Collecting the data study for evaluating the achievement of the S and T basic plans. National Institute of Science and Technology Policy. URL: https://niste.repo.ni.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=4455&item_no=1&page_id=13&block_id=21 [accessed 2024-01-29]
Hashiguchi A, Asashima M, Takahashi S. The Influence of Human Connections and Collaboration on Research Grant Success at Various Career Stages: Regression Analysis. JMIR Form Res 2024;8:e49905. doi:10.2196/49905
PMID:38416548

©Akiko Hashiguchi, Makoto Asashima, Satoru Takahashi. Originally published in JMIR Formative Research (https://formative.jmir.org), 28.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Identifying Unmet Needs in Major Depressive Disorder Using a Computer-Assisted Alternative to Conventional Thematic Analysis: Qualitative Interview Study With Psychiatrists

Michelle A Worthington¹,², MA, MPhil; Richard H Christie¹, MD, PhD; Aaron J Masino¹,³, PhD; Sarah M Kark¹, PhD

¹AiCure, New York, NY, United States
²Department of Psychology, Yale University, New Haven, CT, United States
³The School of Computing, Clemson University, Clemson, SC, United States

Corresponding Author:
Sarah M Kark, PhD
AiCure
214 Sullivan Street 6C
New York, NY, 10012
United States
Phone: 1 (800) 570 0448
Email: sarah.kark@aicure.com

Abstract

Background: The development of digital health tools that are clinically relevant requires a deep understanding of the unmet needs of stakeholders, such as clinicians and patients. One way to reveal unforeseen stakeholder needs is through qualitative research, including stakeholder interviews. However, conventional qualitative data analytical approaches are time-consuming and resource-intensive, rendering them untenable in many industry settings where digital tools are conceived of and developed. Thus, a more time-efficient process for identifying clinically relevant target needs for digital tool development is needed.

Objective: The objective of this study was to address the need for an accessible, simple, and time-efficient alternative to conventional thematic analysis of qualitative research data through text analysis of semistructured interview transcripts. In addition, we sought to identify important themes across expert psychiatrist advisor interview transcripts to efficiently reveal areas for the development of digital tools that target unmet clinical needs.

Methods: We conducted 10 (1-hour-long) semistructured interviews with US-based psychiatrists treating major depressive disorder. The interviews were conducted using an interview guide that comprised open-ended questions predesigned to (1) understand the clinicians’ experience of the care management process and (2) understand the clinicians’ perceptions of the patients’ experience of the care management process. We then implemented a hybrid analytical approach that combines computer-assisted text analyses with deductive analyses as an alternative to conventional qualitative thematic analysis to identify word combination frequencies, content categories, and broad themes characterizing unmet needs in the care management process.

Results: Using this hybrid computer-assisted analytical approach, we were able to identify several key areas that are of interest to clinicians in the context of major depressive disorder and would be appropriate targets for digital tool development.

Conclusions: A hybrid approach to qualitative research combining computer-assisted techniques with deductive techniques provides a time-efficient approach to identifying unmet needs, targets, and relevant themes to inform digital tool development. This can increase the likelihood that useful and practical tools are built and implemented to ultimately improve health outcomes for patients.

(JMIR Form Res 2024;8:e48894) doi:10.2196/48894

KEYWORDS
consumer health informatics; interview; major depressive disorder; medical informatics applications; needs assessment; psychiatry and psychology
Introduction

Digital health tools have the potential to advance health care efficiency, precision medicine, and patient health outcomes. Yet even the most high-performing digital tools using cutting-edge artificial intelligence and machine learning techniques are likely to be shelved if they do not address shared priorities among stakeholders [1] and their associated real-world unmet needs, leaving the promise of artificial intelligence and machine learning in health care unrealized [2]. There are currently 350,000 digital health apps worldwide that aim to address a range of functions (eg, condition management, wellness and prevention, and patient experience) and health conditions (eg, diabetes [3], neurological conditions [4], and psychiatric illnesses [5,6]). However, most of these apps are not regulated or clinically validated, and most are not widely used or integrated into clinical practice [7,8]. Although evidence suggests digital health tools are acceptable to both patients and clinicians, there are diverging needs, priorities, and attitudes among stakeholder groups within the digital tool ecosystem [1].

Gathering insights from key stakeholders is an essential step to ensure the development of digital tools that meet the needs of both patients and clinicians toward the goal of providing high-quality patient-centered care [9,10]. Using upstream stakeholder engagement methods can reveal actionable—but otherwise unforeseen—needs for targeted design and development of clinically impactful patient-facing digital tools with increased potential for widespread adoption [11,12]. Previous work has shown the benefits of qualitative research to assess hypothetical smartphone apps with content and function designs [13,14]. However, that work does not consider the motivation, or genuine need, for the app. Here we focus on the use of upstream qualitative research to first identify areas of real-world unmet need to serve as the foundation for hypothetical smartphone app ideation, design, and prototyping.

Qualitative research often involves designing and conducting a group of individual interviews and applying thematic analysis to transcripts of the resulting data. Conventional thematic analysis typically involves multiple researchers reviewing a subset of interview transcripts to identify themes [15] and developing a hierarchical system (codebook) of themes and subthemes (codes) to apply to sections of text (segments). The results of a conventional thematic analysis are typically presented in a table with broad summary themes, nested subthemes, and illustrative quotes from interview transcripts. The process of constructing the codebook can be time-consuming (eg, 3–5 times the amount of time taken to collect the data needed to review each interview [16]), subjective, and not always replicable [17,18].

While conventional thematical approaches are powerful for extensive investigations into a particular research area, a more time-efficient, scalable, and reproducible method is needed for digital health tool developers working in industry to swiftly identify key areas for the development of clinically meaningful tools. Indeed, in many settings of the digital health ecosystem, it is not feasible for researchers to dedicate substantial time to complete conventional thematic analysis. In some cases, it might be more appropriate to apply an automated text analysis that can be easily implemented by researchers, developers, and clinician scientists [19] to guide the identification of unmet needs and potential solutions. For example, recent work has applied text analysis to large qualitative research data sets to quickly identify common themes based on word frequency analysis [20-22]. Word combination frequency analysis provides a data-driven and repeatable approach to quickly identify frequently mentioned topics across a set of qualitative interview transcripts and potentially reduce the introduction of personal bias. Such approaches enable a faster and more convenient method to analyze a large amount of qualitative text data obtained from interviews with stakeholders [23]. Further, hybrid approaches that combine conventional thematic analysis with a data-driven inductive approach have the potential to leverage the strengths of both methods [24]. Importantly, such computer-assisted approaches to upstream qualitative research can be applied to engage and research any stakeholder group, including patients, to inform the development of clinically meaningful digital tools.

Given the limitations of conventional qualitative analysis—including the substantial time required for theme development—we demonstrate the utility of a hybrid approach leveraging the simplicity and accessibility of text analysis to identify stakeholder themes to support the initial stage of concept development for digital health tools. Specifically, we applied word combination analysis to a set of semistructured interviews with US-based psychiatrists specializing in treating outpatients with major depressive disorder (MDD) to reduce the amount of text for thematic analysis fivefold to facilitate uncovering common themes and unmet needs of clinicians and patients across advisors. We opted to demonstrate the use of simple text analysis over some of the more advanced natural language processing techniques to increase accessibility to those without advanced backgrounds in coding or computational techniques. We propose that this approach could serve as a straightforward and repeatable framework to identify unmet needs before concept development and implementation. We will discuss our findings around unmet needs in treating MDD and how this might affect digital tool development in psychiatry as an end-to-end demonstration of this method.

Methods

Ethical Considerations

The interviewed psychiatrists were originally recruited for market research purposes using the Guidepoint Expert Network (Guidepoint Global). The BRANY Institutional Review Board determined this study was exempt from review under category 4ii in 45 CFR 46.104(d). Participants were compensated for their time and participation. All reported data were stored in password-protected databases accessible only to approved study personnel.

Recruitment and Data Collection

We used purposive criterion sampling to recruit 10 US-based psychiatrists specializing in treating MDD outpatients in a variety of practice settings, including academic medical centers and teaching hospitals, community-based mental health clinics, health care systems, and independent private practices.
and private practices spanning urban and rural settings in the United States (Table 1). With only 2 exceptions, we recruited and interviewed psychiatrists who spent most of their time (≥50%) on direct MDD outpatient patient care and who had 10 or more years of experience postresidency. The interviewed psychiatrists were originally recruited for market research purposes using the Guidepoint Expert Network (Guidepoint Global).

Table 1. Stakeholder characteristics and treatment settings.

<table>
<thead>
<tr>
<th>Stakeholder setting/US region</th>
<th>Clinic experience (years)</th>
<th>Direct patient care (% time)</th>
<th>Outpatient facing (% time)</th>
<th>MDD(^a) patient load (patients/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic medical center or university teaching hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>25</td>
<td>75</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>West</td>
<td>25</td>
<td>90</td>
<td>80</td>
<td>250</td>
</tr>
<tr>
<td>Southwest</td>
<td>20</td>
<td>30</td>
<td>99</td>
<td>20</td>
</tr>
<tr>
<td>Community hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midwest</td>
<td>25</td>
<td>95</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Southwest</td>
<td>10</td>
<td>98</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>Southwest</td>
<td>7</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Group or private practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>28</td>
<td>95</td>
<td>95</td>
<td>35</td>
</tr>
<tr>
<td>Southwest</td>
<td>13</td>
<td>95</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>Mid-Atlantic</td>
<td>13</td>
<td>90</td>
<td>85</td>
<td>50</td>
</tr>
<tr>
<td>West</td>
<td>12</td>
<td>100</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

\(a\)MDD: major depressive disorder.

Regarding sample size, previous work suggests most qualitative research data sets reach saturation—the point during data collection in which themes begin to repeat, new insights begin to wane, and future data collection becomes redundant—between 9 and 17 interviews [25]. Moreover, our inclusion criteria were designed to recruit a relatively homogenous sample of experienced clinicians specializing in outpatient MDD care, as we did not require any between-subject comparisons.

One researcher conducted individual, 1-hour, single-blinded, semistructured, recorded audio interviews following a predesigned interview guide (Multimedia Appendix 1). The interview guide was designed to include open-ended questions primarily targeted at understanding the clinicians’ experience in care management for MDD as well as the clinicians’ perceptions of patient experience in care management for MDD. We used MAXQDA Analytics Pro 2022 (version 22.1.1; VERBI GmbH) [26] to process and analyze the quality-checked interview transcripts (their official website provides help with using specific features). However, one can use other available software or open-source approaches to execute the simple word combination text analysis steps below.

Data Preparation and Overview

All transcription text segments were auto-coded as either “interviewer” or “advisor,” depending on the speaker. Only “advisor” text was used during the text analysis stage. The data-driven hybrid approach to identifying relevant themes involved a 4-step process (Figure 1): (1) During the computer-assisted stage, use MAXQDA (or other) software to identify the most frequent n-grams (n-word word combinations, n=2+ words) across the interview data set. (2) Extract the sentences containing each of those n-grams, along with the preceding and succeeding sentences relative to the sentence containing each n-gram. (3) During the “hybrid stage,” work iteratively with at least 1 other researcher to read and reread each computer-extracted text segment in order to inductively identify key content categories and assign a content category label to each text segment until 100% agreement is reached among researchers. Discordant content category assignments among researchers can be resolved during discussion. (4) Finally, in the “deductive stage,” manually examine the full list of key content categories to develop overarching themes and nest the key content categories under the broader themes characterizing priorities in the process of care management in treating MDD.
Figure 1. Visual depiction of the hybrid data-driven method to identify key themes and content categories. The dashed lines denote the 2 key differences between conventional thematic analysis and the present approach: a computerized text reduction step and a set of n-grams and their corresponding quotes that provide an organizing layer to assist with manual identification and the development of content categories.

Data Analysis

Identifying Word Combinations

First, we used the “word combination” feature in MAXQDA to identify the most frequently used phrases in the advisor’s responses. We used MAXQDA, but any software capable of word combination analysis can be used. We used n-word combinations instead of single-word frequencies to increase the specificity of theme identification. Within the search parameters, we required the resulting words to be at least 4 characters long. All words were lemmatized in English, and we applied the MAXQDA English language stop list [27] to remove articles, conjunctions, and other words likely to be redundant in the analysis. We additionally added word combinations that co-occurred with our disease state of interest to the stop list (eg, “major depression” and “mental health”), as these were unlikely to yield meaningful insights. Next, we filtered the resulting word combination frequencies to word combinations that also appeared in a majority (at least 60%) of the interviews. We opted for a majority threshold cut-off based on our sample (word combinations that appeared in at least 60% of interviews) to limit the subsequent research steps to a more focused set of word combinations that were not likely spoken just by random chance (ie, ≤50%). Our goal was to maximize the chance of developing a solution that would be impactful for the majority (>50%) of clinicians. However, depending on the goals, users may elect to use different thresholds. For completion, word combinations that appeared in 50% or more of the interviews are shown in the “Identifying Word Combinations” section, but only those that appeared in 60% or more of the interviews were included in the subsequent analysis.

Broadly, this first step served as a data-driven text analysis to identify commonly discussed themes or frequent expressions when discussing the care management process of the disease state of interest. Identifying key phrases used across stakeholders in a sample can give a sense of widely applicable needs and daily experiences. Identifying n-grams or word combinations is the crucial time-saving inductive step; however, to build meaning around the phrases, we recommend identifying key content areas by conducting follow-up deductive analyses of the context surrounding the word combinations.

Identifying Key Content Categories

Next, we extracted the resulting n-grams and their surrounding context for further analysis of the context in which these word combinations were uttered. Specifically, for each n-gram, we extracted the sentence containing the n-gram along with the 2 sentences before and after the appearance of each n-gram to provide context.

Next, 2 researchers systematically read the sentences surrounding each extracted word combination to understand the context in which the word combination was uttered. The researchers then worked iteratively through discussion and multiple independent readings to generate and assign relevant content categories for each n-gram. For expediency, the 2 researchers reconciled discordant labels through discussion until they reached 100% agreement. The researchers aimed to create content category labels for each word combination with definitions that were broad enough to accommodate multiple text segments but specific enough to distinguish among text segments from a given word combination. These researcher-generated content categories ultimately reflected the context surrounding the n-grams and provided a more in-depth understanding beyond the n-grams alone. Extracting and reviewing text around frequent and common n-grams helped to both focus the reading and deductive analysis of the text and substantially reduce the amount of text needed for review.

Next, we selected representative quotations for each content category to provide canonical examples of each of the chosen themes (Table S1 in Multimedia Appendix 2). This step represents a bridge between the text-analytic approach and the conventional deductive approach, in which researchers manually evaluate all the text to determine the appropriate content category represented in the segment. During this state, researchers review the text segments and apply their subject-matter expertise to sort the resulting text into subthemes.
However, the text analytic step saves time and increases process transparency by examining only the segments in each interview where the n-gram appears. This should ultimately limit the scope of the analysis to pertinent segments constrained by the list of word combinations established in the first step.

Researchers may choose to stop at this level of analysis and proceed with the development of digital tool concepts if unmet needs and potential challenges are adequately identified. The word combinations and content categories may be substantial enough to provide sufficient context to understand how to proceed with digital tool development. Here, we further analyzed the word combinations and content categories in order to identify overarching themes, bringing the results of the hybrid method even closer to those yielded from conventional analysis.

Developing Overarching Themes

Once the content categories were identified as described in the previous step, key overarching themes emerged across the content categories and word combinations. At this stage, we also included word combinations that appeared in 50% of interviews to help guide the identification of more robust overarching themes that accommodated more word combinations. During reading and analysis of the resulting n-grams and their corresponding text segments, themes should start to emerge that may have been deduced using the more conventional analysis approach. In essence, the word combinations and key content categories established in the first and second steps are essentially transposed to develop these overarching summary themes, highlighting areas of need. In this approach, the word combinations are reorganized and presented with word combinations nested within broad summary themes. The goal of this final step is to summarize the findings from the first 2 steps into an alternative table structure that may assist in conceptualizing unmet needs for patient-facing digital tool development. By following the first 2 steps, theme identification in this final step becomes a much more efficient and transparent process as compared to a more conventional approach.

Results

Identifying Word Combinations

All word combinations appearing in 50% or more of the interviews are shown in Table 2. Only bigrams resulted from the analyses. There were no word combinations of ≥3 words.

For a full summary of word combinations, content categories, detailed descriptions, and representative quotations, please refer to Table S1 in Multimedia Appendix 2.

Table 2. Frequently used word combinations listed by the percentage of interviews in which they were uttered and the total number of utterances across all interviews. The table elements are listed in descending order by the percentage of interviews in which they were uttered.

<table>
<thead>
<tr>
<th>Word combination</th>
<th>Percentage of the interviews containing the word combination, %</th>
<th>Total utterances of the word combination across all interviews, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side effect</td>
<td>100</td>
<td>49</td>
</tr>
<tr>
<td>Make sure</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>Family history</td>
<td>70</td>
<td>12</td>
</tr>
<tr>
<td>Primary care</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>Substance abuse</td>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>Energy level</td>
<td>60</td>
<td>7</td>
</tr>
<tr>
<td>Really want</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Treatment plan</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>Treatment resistant</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>Come back</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Bipolar depression</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>Facial expression</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>Suicidal thought</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>Family member</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Patient come</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Feel comfortable</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Good thing</td>
<td>50</td>
<td>5</td>
</tr>
</tbody>
</table>

Critically, after extracting the sentences containing the set of word combinations and their preceding and succeeding sentences, we observed that the total advisor text word count to manually review reduced to 21% of the original stakeholder text word count, demonstrating the use of the approach to assist with focusing theme extraction on key areas of text containing n-grams (ie, the highly repeatable text reduction step).

Identifying Key Content Categories

After each researcher completed multiple readings of all word combinations and their surrounding contextual sentences, up to...
5 content categories for each word combination were identified, resulting in a total of 14 unique content categories across phrases (Table S1 in Multimedia Appendix 2): administration, care management, common side effects, conceptualization, desired clinical information, differential diagnosis, medical comorbidities, medical history, medication monitoring and management, patient experience, risk assessment, risk for substance use, side effect monitoring, and treatment planning. The researchers aimed for ≤ 5 content categories for each word combination to balance specificity with generality. However, this target can be changed to accommodate larger or smaller studies that might require a higher or lower threshold to balance these goals. In total, there were 14 unique content categories, as some content category labels emerged under multiple word combinations (e.g., care management emerged as a content category relevant to 2-word combinations, “side effects” and “primary care”).

Developing Overarching Themes

In the final step, we identified overarching summary themes by transposing the word combinations and content categories identified in steps 1 and 2. In this analysis, we included word combinations uttered by 50% of advisors, which returned 11 additional word combinations (e.g., “bipolar depression” and “facial expression”). The full results expanding on these overarching themes can be found in Table 3, with the word combinations listed as relevant word combinations that support content categories and overarching themes. Through this process, we identified four overarching summary themes: (1) evaluation, (2) medication decisions, (3) tracking symptom progression, and (4) factors contributing to treatment adherence.

<table>
<thead>
<tr>
<th>Overarching theme (with definition) and relevant key content categories</th>
<th>Relevant word combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation: Providers expressed day-to-day challenges related to ruling out co-occurring psychiatric disorders (such as bipolar depression) and medical comorbidities and that they would benefit from more data about their patients.</td>
<td>“bipolar depression”, “make sure”, “substance use/abuse”</td>
</tr>
<tr>
<td>Differential diagnosis</td>
<td>“make sure”, “primary care”</td>
</tr>
<tr>
<td>Medical comorbidities</td>
<td>“suicidal thought”, “substance use/abuse”</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>“suicidal thought”, “treatment resistant”, “facial expression”, “family history”, “family member”</td>
</tr>
<tr>
<td>Conceptualization</td>
<td>“substance use/abuse”, “energy level”, “facial expression”</td>
</tr>
<tr>
<td>Desired clinical information</td>
<td></td>
</tr>
</tbody>
</table>

Medication decisions: Providers revealed their treatment planning choices are driven by leveraging known medication side effects to counteract patient symptom profiles (typically based on baseline energy levels).	
Medical history	“patient come”, “primary care”
Medication management and monitoring	“make sure”, “primary care”, “treatment resistant”
Treatment planning	“treatment plan”, “energy level”
Patient experience	“side effect”, “feel comfortable”
Common side effects	“side effect”

Tracking symptom progression: Providers were concerned about their lack of ability to track patient safety, triaging to a higher level of care, and co-occurring substance use outside of the clinic.	
Risk assessment	“suicidal thought”
Risk for substance [ab]use	“substance use/abuse”
Side effect monitoring	“side effect”, “energy level”

Factors contributing to treatment adherence: Providers highlighted the impact of adverse side effects on adherence and the critical role family members play in both patient adherence and providing them with symptom insights.	
Side effects	“side effect”
Patient experience	“feel comfortable”, “side effect”, “come back”
Care management	“family member”, “primary care”
Administrative	“come back”, “make sure”

To create overarching themes, the researchers applied a similar process to the content category labels as they did to the word combinations—identifying a label and definition that would provide an appropriate umbrella term under which to nest multiple of the key content categories. To illustrate how we arrived at these broader themes, we will walk through the development of the “evaluation” theme. Analysis of the retrieved segments in the sentences surrounding the word combinations “bipolar depression,” “make sure,” and “substance [ab]use” converged on a content category best summarized as “differential diagnosis.” Through a similar process, segments surrounding the word combinations “suicidal thought,”
“treatment resistant,” “facial expression,” “family history,” and “family member” converged on a content category best summarized as “conceptualization.” Ultimately, “differential diagnosis” and “conceptualization” fit together with “medical comorbidities,” “risk assessment,” and “desired clinical information” under the broad and overarching theme of “evaluation.”

Discussion

Overview

To ensure the development of clinically meaningful digital tools, developers must address real-world, unmet stakeholder needs. Understanding these needs at the outset of concept ideation and tool development ensures that developers are solving the most urgent challenges. Qualitative research is a powerful tool to understand the daily experiences of patients and clinicians and to better understand how potential digital tools will provide value and integrate seamlessly into a given environment. Here, we presented a hybrid data-driven approach to facilitate time-efficient discovery of unmet clinician needs to inform the direction of digital tool development in health care settings. With this approach, in the context of care management in MDD, we identified several key areas that are of interest to clinicians and would be appropriate targets for digital tool development.

Using Key Content Categories to Inform Digital Tool Development

The key content categories are consistent with challenges identified in the literature, suggesting this approach can highlight real-world problems and point developers to further information in previously unknown areas of research literature. For example, the phrase “side effect” consisted of the following content categories: treatment planning, side effect monitoring, care management, patient experience, and common side effects. Further investigation into the literature encompassing this topic provides additional support for the selection of this area as a target of digital tool development. Burdensome treatment-related side effects are a leading cause of nonadherence and discontinuation of antidepressant medications [28] and have a negative impact on treatment outcomes [29]. Patients frequently experience side effects early in antidepressant treatment [30], but a lack of understanding of side effects [31] and barriers to communicating these side effects to clinicians, especially primary care providers [32], lead to early discontinuation and poor outcomes [29]. Some evidence exists that interventions addressing these early barriers to adherence, which include side effects, could improve adherence, communication between patient and provider, and, ultimately, treatment outcomes [33,34].

In the context of MDD care management, building digital tools that address patient and clinician concerns related to side effects, medication adherence due to side effects, and medication decisions based on side effects might best address one aspect of the current needs of clinicians as expressed through the interviews. The strengths of digital tools that could be leveraged in this context include facilitating side effect monitoring and reporting in between visits using smartphone capabilities, increasing patients’ understanding and expectations around side effects with on-demand psychoeducation through a mobile app or customized website, increasing clinicians’ awareness of the emergence of side effects through smartphone-based remote monitoring, or increasing and enhancing patient-provider communication through digital platforms.

Using a single topic as a guide for concept development may be a reasonable starting point for digital tool development; however, it is important to consider other related content categories that arise from this procedure. Incorporating other themes or content categories may bolster the initial concept and increase the likelihood that patients or clinicians will adopt a tool in clinical practice. In the context of MDD care management, the content category “administration” emerged as an important consideration for clinicians, signaling that workflow and administrative components of care management are also important to keep in mind while developing digital tools to ensure consideration of practical integration into workflows.

Incorporating New Ideas With Existing Best Practices

Overall, the topics identified through the approach outlined in this study should line up with current thinking and best practices around digital tool development in health care. This includes, but is not limited to, prioritizing ethical considerations around data sharing and privacy [35,36], considering the legal implications of digital tool implementation [37], and considering the balance between addressing unmet needs and integrating tools into the current care management workflow [38]. While identifying specific themes and content categories for a given disease state will elucidate current unmet needs for clinicians, established guidelines around digital tool development should be included as well.

Limitations

The approach outlined in this study has the potential to facilitate digital tool development across numerous clinical environments due to its ease of use and relative efficiency. Nevertheless, the comprehensive nature of conventional qualitative analysis may yield more nuanced findings from stakeholder interviews using a more deductive coding process. Moreover, limiting the amount of text for analytical review to those sentences surrounding frequent key word combinations across advisors is both a strength and a limitation of this method. While this approach increases efficiency, there could be a loss of sensitivity to important learnings outside of the extracted text segments, as well as some important one-off learnings uttered by only 1 advisor that could potentially be excluded from the text extracted for deductive analysis. Although the current sample size falls within a reasonable range to reach theme saturation across interviews [25], a more expanded sample size has the potential to reveal even more insights and accommodate analysis by psychiatry subspecialties (eg, addiction, child, adolescent, and geriatric psychiatrists). Furthermore, given that this method seeks to find consensus among spoken terms describing themes and unmet needs among clinicians and patients, it is possible that diverging opinions among stakeholders might be obscured. Finally, although the word combination analysis is 100% repeatable, further work would be needed to determine
confirmability (ie, results confirmed by an independent set of researchers) [39].

Future Directions
Here, we first interviewed clinicians because they are uniquely positioned within the digital health ecosystem to simultaneously identify and communicate patient needs, unmet clinician needs, potential for real-world clinical impact, and influence patient engagement with appropriate apps due to the trust patients place in their clinicians [1,7]. One challenge that blocks patient engagement with relevant digital tools is integration into clinician workflow [1], because clinicians have limited bandwidth to integrate patient-facing digital tools into their workflow. However, to ensure the most clinically relevant tools are created for and with patients, future work is needed to identify overlapping priorities between patients and clinicians. The method outlined here could be applied to patient interviews to reveal common and frequent unmet needs among patients.

The current framework provides a foundation for developers in the technology space to identify concepts that are worthy of further investigation and validation. Researchers following this framework may consider validating findings from this approach through follow-up methods such as: (1) triangulation studies (eg, test for convergence of results from this framework with focus group results or text from other sources, such as peer-reviewed articles about MDD), (2) quantitative survey methods, and (3) member-checking by presenting responses with the results to confirm the interpreted data and identified concept results resonate with their experience (respondent validation) [40] before moving further into conceptualization and prototyping.

Conclusions
We presented a hybrid computer-assisted method for identifying unmet needs expressed in semistructured interviews, which provides an efficient and user-friendly approach to this problem. The presented method offers some of the efficiencies of a purely analytic approach (eg, topic modeling), while the incorporation of manual analysis of the surrounding context sentences offers some of the benefits of finding more interpretable and relevant concerns, as in a traditional qualitative analysis. By contrast, in topic modeling alone, researchers often consider the topics (lists of words) outside of their surrounding context when trying to interpret their meaning. Thus, this hybrid approach falls between these 2 approaches and gives digital health researchers a feasible approach for conducting upstream research to inform ideation and the development of high-impact patient-facing digital tools.

Acknowledgments
The authors would like to thank the participating psychiatrists for their time and insights.

Conflicts of Interest
All authors were employed at and had a financial interest in AiCure, LLC, at the time of the study.

Multimedia Appendix 1
Semistructured interview guide.
[DOCX File , 21 KB - formative_v8i1e48894_app1.docx]

Multimedia Appendix 2
Word combinations, key content categories, descriptions and representative quotations for word combinations appearing in at least 60% of all interviews.
[DOCX File , 20 KB - formative_v8i1e48894_app2.docx]

References

Abbreviations

MDD: major depressive disorder
Risk Identification in Perinatal Health Care Settings via Technology-Based Recruitment Methods: Comparative Study

Jessica R Beatty¹, PhD; Logan Zelenak¹, BA; Spencer Gillon¹, BA; Lucy McGoron¹, PhD; Gregory Goyert², MD; Steven J Ondersma³,4, PhD

¹Merrill Palmer Skillman Institute for Child & Family Development, Wayne State University, Detroit, MI, United States
²Maternal Fetal Medicine, Women's Health Services, Henry Ford Health, Detroit, MI, United States
³Charles Stewart Mott Department of Public Health, College of Human Medicine, Michigan State University, Flint, MI, United States
⁴Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, United States

Corresponding Author:
Steven J Ondersma, PhD
Charles Stewart Mott Department of Public Health
College of Human Medicine
Michigan State University
200 East 1st Street
Room 368
Flint, MI, 48502
United States
Phone: 1 313 444 9797
Email: onders12@msu.edu

Abstract

Background: Digital screening and intervention tools have shown promise in the identification and reduction of substance use in health care settings. However, research in this area is impeded by challenges in integrating recruitment efforts into ongoing clinical workflows or staffing multiple study clinics with full-time research assistants, as well as by the underreporting of substance use.

Objective: The aim of the study is to evaluate pragmatic methods for facilitating study recruitment in health care settings by examining recruitment rates and participant characteristics using in-person–based versus flyer approaches.

Methods: This study compared recruitment rates at a Women’s Health clinic in the Midwest under 2 different recruitment strategies: in person versus via a flyer with a QR code. We also examined the disclosure of substance use and risk screener positivity for the 2 strategies. We also obtained information about the current use of technology and willingness to use it for study participation.

Results: A greater percentage of patients recruited in person participated than those recruited via flyers (57/63, 91% vs 64/377, 17%). However, the final number recruited in each group was roughly equal (n=57 vs n=64). Additionally, participants recruited via flyers were more likely to screen positive for alcohol use risk on the Tolerance, Annoyed, Cut Down, Eye-Opener alcohol screen than those recruited at the clinic (24/64, 38% vs 11/57, 19%; χ²₁=4.9; P=.03). Participants recruited via flyers were also more likely to screen positive for drug use risk on the Wayne Indirect Drug Use Screener than those recruited at the clinic (20/64, 31% vs 9/57, 16%; χ²₁=4.0; P=.05). Furthermore, of the 121 pregnant women, 117 (96.7%) reported owning a smartphone, 111 (91.7%) had an SMS text message plan on their phone, and 94 (77.7%) reported being willing to receive SMS text messages or participate in a study if sent a link to their phone.

Conclusions: The distribution of flyers with a QR code by medical staff appears to be an efficient and cost-effective method of recruitment that also facilitates disclosure while reducing the impact on clinic workflows. This method of recruitment can be useful for data collection at multiple locations and lead to larger samples across and between health systems. Participant recruitment via technology in perinatal health care appears to facilitate disclosure, particularly when participants can learn about the research and complete screening using their own device at a place and time convenient for them. Pregnant women in an urban Midwestern hospital had access to and were comfortable using technology.
Introduction

Screening, brief intervention, and referral for treatment (SBIRT) approaches proactively address substance use in primary care settings and potentially reach those at risk, regardless of willingness to seek treatment. Large proportions of at-risk groups can be reached with SBIRT, particularly in the perinatal period where most pregnant women seek prenatal care. The consequent need for proactive screening, together with the promising efficacy of brief interventions for alcohol use [1], has led to recommendations that SBIRT be a standard element of prenatal care [2]. However, studies comparing self-report of drug use to objective indicators show that underreporting is common [3-5], especially in settings where disclosure can have heightened negative consequences such as during pregnancy [4,6,7]. The disclosure of substance use during pregnancy can be both socially stigmatizing and increase the woman’s risk for potential legal consequences. Currently, 18 states view substance use during pregnancy as child abuse, and 15 states have laws stating that health care workers are mandated reporters for drug abuse during pregnancy. Laws such as these increase the social stigma and the internal shame and guilt women may feel. This in turn limits the proportion of women who are willing to disclose substance use to their providers, suppressing disclosure and impacting the health of them and their unborn child [8-10]. This underreporting is a substantial obstacle to proactive screening efforts that seek to identify at-risk pregnant and postpartum women, the majority of whom do not seek treatment for substance use [11]. Additionally, the implementation of SBIRT approaches has been challenging. First, there are considerable time, financial, and logistic obstacles to integrating screening and brief intervention programs into ongoing medical practice [12,13]. For example, one estimate suggests that conducting all recommended prevention-related activities would take a primary care physician 4.4 hours per working day [14]. This issue is exacerbated by the fact that such services are only recently and not consistently being reimbursed by third-party payers. Second, many medical professionals express discomfort with the screening and intervention process and report doubts about its effectiveness—even when voluntarily participating in a formal demonstration program [13]. This discomfort and skepticism may in part explain findings of very low levels of physician adherence to recommended brief intervention guidelines, even after training [12,14,15]. Training in brief approaches such as motivational interviewing is expensive, time-consuming, and may have modest or transient effects [16]. Technology provides an exciting option. It can be implemented consistently across patients, with minimal staff involvement, and conducted during natural waiting periods, integrating easily within the workflow of the clinic [17-19]. It has also been shown to improve disclosure of substance use in anonymous studies [20]. However, studies involving technology in health care settings often struggle with recruitment, particularly given time constraints on the part of clinic staff who must provide an initial introduction to the study. Typically, clinical trials are addressed via multisite trials using face-to-face recruitment. Despite being a time-tested gold standard, several limitations to this approach exist. First, the combination of a low base rate of substance use during pregnancy with high levels of underreporting makes recruitment lengthy and challenging even across multiple sites. Second, even multisite trials are only able to measure a limited range of participant characteristics specific to only a few geographic locations. Third, well-funded and tightly controlled trials often use methods (eg, a research assistant [RA] or study nurse) that do not readily translate to how the program could be implemented without research funding. Fourth, multisite research can also quickly become impractical if staffing each clinic with a full-time RA is required. There is increasing recognition of the need for highly pragmatic trials that take translational and implementation issues into account [21]. Research is therefore also needed on pragmatic methods for facilitating recruitment in these settings. The provision of flyers describing the study and allowing enrollment on the web is a possible solution, but relative recruitment rate for this approach, as compared to traditional approaches, is not known and is partly dependent on rates of technology ownership.

This study analyzes data exploring how to best leverage technology to identify risk during pregnancy, particularly whether different approaches in recruitment can increase disclosure. The study had 3 goals. The first goal was to obtain current substance use risk levels of women attending their prenatal care intake at a large Midwestern hospital’s outpatient clinic. The second goal was to compare the disclosure of substance use risk under 2 different recruitment strategies, in person versus via flyers, and determine recruitment rates for the 2 approaches. The last goal was to better understand the access and comfort of using smartphones and SMS text messaging for study participation. It was hypothesized that in-person recruitment would have a higher acceptance rate for study enrollment, but that participating in the study on their own device in the privacy of their home would increase disclosure.

Methods

Participants

Participants were 121 pregnant women attending a new pregnancy intake at an outpatient clinic that is part of a large health system in the Midwest. Eligibility criteria included being 18 years or older of age, understanding spoken English, and being pregnant with the intention to carry the pregnancy to term.

Recruitment

Data collection began in September 2018 and concluded in May 2019. An RA was present at the clinic on 2 half days per week;
during this time, willing participants were introduced to the RA by the nurse who was completing the intake with the patient. At all other times, clinic staff gave patients a flyer describing the study and provided a website (via QR code, along with a unique login ID) through which patients could enroll in and complete the study. The flyer was provided by intake nurses at the end of the appointment, and participants used their own device to complete the study.

Procedures
Participants who enrolled in the study completed a series of screening questions regarding substance use before and during pregnancy, as well as questions related to demographics, general health, and technology access. Those recruited by the RA were given a tablet to complete the study at the clinic following their intake appointment. Those enrolling in the study via the flyer used their own device and completed screening at a time and place convenient for them. In addition, those who screened positive for any substance were offered within the app to participate in a subsequent extended assessment (duration of 10 to 20 minutes) with separate consent. The app would link participants to the next screening if they agreed to participate.

Ethical Considerations
All procedures for the study were approved by both the university (#085518B3A) and health system (#12267) institutional review boards. The app used for data collection read aloud the consent form that explained to participants that the study has 2 parts. Electronic information sheets were used for the study. Participants agreed to participate in the study in the computerized questionnaire by clicking a box and then answering the questions. There were no physical copies of the consent form. Part I included content regarding broad health behaviors such as nutrition and sleep, as well as brief questions on smoking, alcohol, and marijuana use during the month before they became pregnant. For part II, patients who screened positive for smoking, alcohol, or marijuana use in the month before becoming pregnant were invited to complete a 15- to 20-minute survey asking additional questions about risk factors. This assessment included more sensitive information regarding substance use, traumatic experiences, partner violence, depression, and anxiety. Participants who completed part I received a US $10 Target gift card, and those who were eligible and completed part II received an additional US $20 Target gift card. No identifying information was collected until after participants completed the assessment items. Once participants completed the portions of the study they were eligible for, they were linked (within the survey) to a separate survey, where they entered their email or phone number to receive their gift cards and a copy of the consent form. The data participants gave in order to send the gift cards were kept in a separate password-protected spreadsheet from the rest of the data and were destroyed once the study was complete. Participants who completed the survey in the clinic received the consent form and gift card directly from the RA.

Measures
All participants were asked to complete 47 items regarding alcohol, marijuana, and tobacco use before pregnancy and during the past month, as well as questions about pregnancy and general health. These items included, but are not limited to, the following:

1. The Tolerance, Annoyed, Cut Down, Eye-Opener (T-ACE) alcohol screen [22] is a 4-item alcohol risk screening questionnaire that asks about the amount of drinks to feel high, if people have annoyed you by criticizing your drinking, if you have ever thought you should cut down, or if you need to have a drink first thing in the morning. Scores of 2 or higher result in a positive screen.
2. The Wayne Indirect Drug Use Screener (WIDUS) [23] is a 6-item screening instrument that identifies risk for drug use in the perinatal period by asking about correlates of drug use without directly asking about use. Scores above 3 are considered positive. Examples of true or false questions include “most of my friends smoke cigarettes” and “I get mad easily and feel the need to blow off steam.”
3. The National Institute on Drug Abuse (NIDA) Quick Screen [24] consists of 4 questions asking respondents to indicate the frequency with which they had 4 or more drinks in a day, use of illegal drugs, use of prescription drugs for nonmedical reasons, or use of tobacco products in the past year. The alcohol and drug use items have been validated as single-item questionnaires [25,26]. These items were adapted to evaluate use in the past month rather than the past year and to include a separate item for cannabis use.
4. Participants were also given 4 technology questions regarding technology access and use (smartphone ownership, having an SMS text messaging plan, willingness to receive SMS text messages, and willingness to participate in research via a link sent to their phone).

Statistical Analysis
Chi-square analyses compared differences between in-person– and flyer-based recruitment as well as differences in disclosure on the T-ACE, WIDUS, and each item of NIDA Quick Screen. Chi-square analyses used all available screening information from each participant. However, participants with missing items were dropped from that specific analysis. Two individuals had missing data for the NIDA Quick Screen binge drinking and tobacco questions. One person had missing data for the NIDA Quick Screen prescription drug and illegal drug use questions. There were no missing data for the T-ACE or WIDUS.

Results
Participant Characteristics
Study participants were primarily Black and African American (92/121, 76%) and had a mean age of 27.7 (SD 4.9) years (Table 1). Approximately half (66/121, 54.5%) of the participants had completed some education beyond high school.
Table 1. Participant race, ethnicity, and important demographic characteristics (N=121).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>27.7 (4.9)</td>
</tr>
<tr>
<td>Race and ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Arabic</td>
<td>2 (1.7)</td>
</tr>
<tr>
<td>Asian</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Black and African American</td>
<td>92 (76)</td>
</tr>
<tr>
<td>Hispanic and Latino</td>
<td>5 (4.1)</td>
</tr>
<tr>
<td>White</td>
<td>10 (8.3)</td>
</tr>
<tr>
<td>Multiracial</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Chose not to answer</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>High school or General Educational Development test or higher, n (%)</td>
<td>66 (54.5)</td>
</tr>
<tr>
<td>Planned pregnancy, n (%)</td>
<td>45 (37.2)</td>
</tr>
<tr>
<td>First pregnancy, n (%)</td>
<td>34 (28.1)</td>
</tr>
<tr>
<td>Legally married, n (%)</td>
<td>31 (25.6)</td>
</tr>
</tbody>
</table>

Risk Screen Positivity

Between-group differences in positivity rates were examined for 2 validated screening tools, the WIDUS and the T-ACE. A total of 20 (31%) out of 64 participants recruited through flyers screened positive for drug use risk on the WIDUS versus 9 (16%) out of 57 participants recruited at the clinic ($\chi^2=4.0; P=.05$). Additionally, a total of 24 (38%) out of 64 women recruited through flyers screened positive for alcohol risk on the T-ACE versus 11 (19%) out of 57 participants recruited at the clinic ($\chi^2=4.9; P=.03$; Table 2).

Table 2. Disclosure rates for substance risk indicators for in-person– and flyer-based recruitment methods.

<table>
<thead>
<tr>
<th>Substance risk indicator</th>
<th>In person (n=57), n (%)</th>
<th>Flyer (n=64), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDUSa</td>
<td>9 (16)</td>
<td>20 (31)</td>
</tr>
<tr>
<td>T-ACEb</td>
<td>11 (19)</td>
<td>24 (38)</td>
</tr>
<tr>
<td>Past month alcohol binge</td>
<td>2 (4)</td>
<td>3 (5)c</td>
</tr>
<tr>
<td>Past month tobacco</td>
<td>8 (14)</td>
<td>11 (18)c</td>
</tr>
<tr>
<td>Past month opioid painkiller use</td>
<td>3 (5)</td>
<td>1 (2)d</td>
</tr>
<tr>
<td>Past month other drugs</td>
<td>14 (25)</td>
<td>9 (14)d</td>
</tr>
</tbody>
</table>

\(a\)WIDUS: Wayne Indirect Drug-Use Screener.
\(b\)T-ACE: Tolerance, Annoyed, Cut Down, Eye-Opener.
\(c\)n=62.
\(d\)n=63.

Disclosure of Past Month Substance Use

Chi-square analyses compared the disclosure of substance use (on the NIDA Quick Screen) for participants recruited in person versus via the flyer. Questions included the frequency of binge drinking (4 or more drinks per day), tobacco use, prescription drugs for nonmedical purposes, and illegal drugs in the past month. Each NIDA Quick Screen item was treated as dichotomous reflecting either any or no reported use (Figure 1). There were no significant differences across groups in binge drinking ($\chi^2=0.1; P=.72$), tobacco use ($\chi^2=0.3; P=.58$), prescription drug use for nonmedical reasons ($\chi^2=2.0; P=.26$), or illegal drugs ($\chi^2=2.0; P=.15$).
Figure 1. Recruitment rate comparison for the in-person and flyer clinic recruitment methods for patients attending prenatal care between September 2018 and May 2019.

Recruitment Rates for Each Method of Recruitment
Of the 121 participants recruited overall, 57 were recruited directly by the RA, and 64 responded to the flyer. Nurses handed out 377 flyers resulting in 64 participants, representing 17% of those given the flyer. In contrast, of 109 patients completing a new pregnancy intake when the RA was in the clinic, 63 (57.8%) were introduced to the RA by the intake nurse, and 57 (91%) of the 63 agreed to participate and completed the screener (57/109, 52.3% of all available patients). Notably, flyer recruitment showed a stable increase over the course of the study (Table 2). This increase occurred following the introduction of a new approach, in which the RA and project coordinator began attending monthly staff meetings and updating nurses on the study progress, bringing in snacks, and building upon the relationships with the intake nurses in the clinic. This change in approach started in January, with an increase in nurse engagement and enthusiasm for the study happening in the next few months, resulting in an increase in flyer recruitment because many more were handed out. During the winter months of February and March, there were fewer intakes overall because of the weather. This decrease corresponds with an expected decrease in in-person recruitment during those months.

Technology Accessibility and Willingness to Use for Participation
Of the 57 participants who were recruited in the clinic and used the tablet provided by the RA, 56 (98%) reported owning a smartphone, and 55 (96%) reported having an SMS text message plan on their phone. In total, 44 (77%) of these participants said that they would be willing to receive SMS text messages as part of a research study, and these participants also said that they would be willing to participate in additional surveys or programs if sent a link on their phone.

Discussion
Principal Findings
This study was set up to obtain substance use risk levels for women attending prenatal care at a large Midwestern hospital’s outpatient clinic, compare 2 different recruitment methods to examine which had higher recruitment rates and disclosure rates, and document participants’ access and comfort using smartphones and SMS text messaging for study participation. Recruitment via flyers distributed by health care staff was less efficient than when those same staff introduced patients to an on-site RA (57/109, 52.3% vs 64/377, 17% enrollment). However, participants in the flyer group were more likely to report substance use risk than those in the on-site RA group (20/64, 31% vs 9/57, 16% for the WIDUS and 24/64, 38% vs 11/57, 19% for the T-ACE). Most study participants owned a smartphone (56/57, 98%) and had an SMS text message package on their phone (55/57, 96%). Additionally, of the 121 participants, 94 (77.7%) were willing to receive SMS text messages or a link to further study participation on their devices. Despite the lower overall enrollment compared to the on-site RA, the flyer approach requires less effort for medical staff and removes the need for a full-time RA at each study clinic. The flyer approach was also associated with greater disclosure on some measures of substance use. As is often the case, maintaining regular communication with clinic staff was particularly important in the flyer-based recruitment approach. These findings suggest that eligibility determination for substance use studies may be more successful and more representative (because of the wider possible reach with the same level of staffing) when using electronic screening with flyers rather than relying on full-time staff in the clinic. Flyer-driven recruitment appears to be a practical approach, given the high levels of access to technology among the pregnant urban participants and their willingness to use their personal
devices for research. These latter findings are consistent with national survey data suggesting that smartphone ownership rates are high [27], and research suggesting that low-income patients are willing to use their own smartphone to participate in research [28].

Limitations

The sample size, homogeneity of the sample, and preliminary nature of this research all contribute to clear limits in the generalizability of these findings. In addition, our sample size limited the ability to understand what variables may contribute to higher disclosure within the flyer recruitment group (ie, maternal age, parity, past substance use, or socioeconomic status).

Conclusions

Using electronic methods for eligibility determination appears to facilitate disclosure and, thus, recruitment efficiency. Although flyer-based approaches are less efficient than in-person recruitment with an on-site RA, they may also facilitate disclosure and can allow cost-effective recruitment at multiple sites. Even low-income patients in perinatal settings are very likely to own a smartphone and be willing to use their own device to participate in research. This method can allow for larger study samples by decreasing the amount of money needed to support full-time RAs in each recruitment site. Instead, 1 RA could be used across multiple sites, which can free up funds for a larger number of site locations. This can allow for a wider variety of participants across the country and could be more translatable and easier to replicate or continue once funding ends.

Acknowledgments

This research was supported by internal funds from the Office of Vice President of Research at Wayne State University, who were not involved in the review and approval of the paper for publication. The authors wish to gratefully acknowledge the invaluable assistance of the women who participated in this study, Ms Edith Combs, and the medical staff from the Henry Ford Health New Center One Women’s Health clinic.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest

None declared.

References

Abbreviations

NIDA: National Institute on Drug Abuse
RA: research assistant
SBIRT: screening, brief intervention, and referral for treatment
T-ACE: Tolerance, Annoyed, Cut Down, Eye-Opener
WIDUS: Wayne Indirect Drug Use Screener

https://formative.jmir.org/2024/1/e48823

Beatty et al

JMIR FORMATIVE RESEARCH

Vol 8 · Iss 4 · Article 823

(page number not for citation purposes)
©Jessica R Beatty, Logan Zelenak, Spencer Gillon, Lucy McGregor, Gregory Goyert, Steven J Ondersma. Originally published in JMIR Formative Research (https://formative.jmir.org), 04.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Machine Learning–Based Approach for Identifying Research Gaps: COVID-19 as a Case Study

Alaa Abd-alrazaq1*, PhD; Abdulqadir J Nashwan2*, MSc; Zubair Shah1, PhD; Ahmad Abujaber4, PhD; Dari Alhuwaili5,6, PhD; Jens Schneider3, PhD; Rawan AlSaad1, PhD; Hazrat Ali7, PhD; Waleed Alomoush8, PhD; Afan Ahmed1, PhD; Sarah Aziz1, MSc

1AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
2Department of Nursing, Hamad Medical Corporation, Doha, Qatar
3Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
4Nursing Department, Hamad Medical Corporation, Doha, Qatar
5Information Science Department, College of Life Sciences, Kuwait University, Kuwait, Kuwait
6Health Informatics Unit, Dasman Diabetes Institute, Kuwait, Kuwait
7Faculty of Computing and Information Technology, Sohar University, Sohar, Oman
8School of Information Technology, Skyline University College, Sharjah, United Arab Emirates
*these authors contributed equally

Corresponding Author:
Alaa Abd-alrazaq, PhD
AI Center for Precision Health
Weill Cornell Medicine-Qatar
A031, Weill Cornell Medicine-Qatar, Education City
Al Luqta St
Doha, 23435
Qatar
Phone: 974 55708599
Email: aaa4027@qatar-med.cornell.edu

Abstract

Background: Research gaps refer to unanswered questions in the existing body of knowledge, either due to a lack of studies or inconclusive results. Research gaps are essential starting points and motivation in scientific research. Traditional methods for identifying research gaps, such as literature reviews and expert opinions, can be time consuming, labor intensive, and prone to bias. They may also fall short when dealing with rapidly evolving or time-sensitive subjects. Thus, innovative scalable approaches are needed to identify research gaps, systematically assess the literature, and prioritize areas for further study in the topic of interest.

Objective: In this paper, we propose a machine learning–based approach for identifying research gaps through the analysis of scientific literature. We used the COVID-19 pandemic as a case study.

Methods: We conducted an analysis to identify research gaps in COVID-19 literature using the COVID-19 Open Research (CORD-19) data set, which comprises 1,121,433 papers related to the COVID-19 pandemic. Our approach is based on the BERTopic topic modeling technique, which leverages transformers and class-based term frequency-inverse document frequency to create dense clusters allowing for easily interpretable topics. Our BERTopic-based approach involves 3 stages: embedding documents, clustering documents (dimension reduction and clustering), and representing topics (generating candidates and maximizing candidate relevance).

Results: After applying the study selection criteria, we included 33,206 abstracts in the analysis of this study. The final list of research gaps identified 21 different areas, which were grouped into 6 principal topics. These topics were: “virus of COVID-19,” “risk factors of COVID-19,” “prevention of COVID-19,” “treatment of COVID-19,” “health care delivery during COVID-19,” and “impact of COVID-19.” The most prominent topic, observed in over half of the analyzed studies, was “the impact of COVID-19.”

Conclusions: The proposed machine learning–based approach has the potential to identify research gaps in scientific literature. This study is not intended to replace individual literature research within a selected topic. Instead, it can serve as a guide to...
formulate precise literature search queries in specific areas associated with research questions that previous publications have earmarked for future exploration. Future research should leverage an up-to-date list of studies that are retrieved from the most common databases in the target area. When feasible, full texts or, at minimum, discussion sections should be analyzed rather than limiting their analysis to abstracts. Furthermore, future studies could evaluate more efficient modeling algorithms, especially those combining topic modeling with statistical uncertainty quantification, such as conformal prediction.

(JMIR Form Res 2024;8:e49411) doi: 10.2196/49411

KEYWORDS
research gaps; research gap; research topic; research topics; scientific literature; literature review; machine learning; COVID-19; BERTopic; topic clustering; text analysis; BERT; NLP; natural language processing; review methods; review methodology; SARS-CoV-2; coronavirus; COVID

Introduction

Background
Scientific research relies on applying systematic scientific methods and actions to increase knowledge in fields or specific topics [1]. One essential first step in engaging in scientific research is identifying research gaps [2], where insufficient data, knowledge, or understanding limit our ability to draw conclusions in a given field or topic [3]. Research gaps can also be referred to as unanswered questions that have not yet been addressed or are undere xplored in the existing body of knowledge, either due to a lack of studies or inconclusive results [4,5]. Research gaps can also serve as a starting point for research as well as motivate further research [6]. Researchers have classified research gaps into seven categories [3,6,7]: (1) evidence gaps—where contradictions in the findings of the previous research exist; (2) knowledge gaps—where knowledge may either not exist in the literature or the results deviated from what was expected; (3) practical-knowledge conflict gaps—where the goal is to discover the reasons and scope of differences between professionals’ behaviors versus their advocated behavior; (4) empirical gaps—where there is a need to empirically evaluate and verify research findings or propositions; (5) methodological gaps—where shortcomings may arise due to having a single methodology influencing the research results; (6) theoretical gaps—related to examining gaps that exist in theories and their models and compare them with prior research; and (7) population gaps—where a population is not adequately represented or underresearched in prior studies.

The sheer volume and accelerated pace of scientific research output present both opportunities and challenges. Identifying potential interventions, best practices, and policy recommendations, all backed up by evidence is made easier by the wealth of information available. However, researchers face challenges with staying up-to-date with the latest findings, identifying redundancies in research, and objectively identifying research gaps that need to be addressed. Therefore, it becomes paramount to accurately identify the research gaps to advance our understanding of the issue or topic, better use the allocation of resources, and better inform evidence-based policy making.

Traditionally, several methods are used to identify research gaps, including literature reviews, systematic reviews, expert opinions, and consensus-building activities (eg, developing guidelines). Yet, such methods require an intensive time commitment, are prone to bias, and can be labor intensive. Additionally, such methods may not be suitable to address issues, where the evidence or research subject is rapidly increasing in volume and pace or is time sensitive (eg, COVID-19). Consequently, there is a need for innovative and scalable approaches to systematically assess existing literature, identify research gaps, and prioritize areas for further study in the topic or field of interest.

Machine learning (ML) techniques have demonstrated great potential applications of scientific insights and discoveries by addressing challenges related to information retrieval, knowledge discovery, and natural language processing [8]. ML is a branch of computational science and a subset of artificial intelligence (AI); it focuses on the development of algorithms that enable machines to learn from [9-12] and make predictions or decisions based on data, without being directly programmed [13]. Broadly, ML algorithms can “learn” through supervised learning, unsupervised learning (eg, reinforcement learning), or a mixture thereof, referred to as semisupervised learning [14,15].

Research Problem and Aim
In the context of identifying research gaps, ML techniques may facilitate the discovery of research gaps by analyzing large volumes of scientific evidence in a systematic, scalable, and efficient manner. To understand the current status quo of scientific evidence available, several studies leveraged ML to perform natural language processing, bibliometric analysis, and text mining, which have yielded promising results in several domains, including health care [9-12], social sciences [16-19], and environmental sciences [20]. However, the application of ML and its potential for identifying research gaps in rapidly evolving fields remains underexplored. To the best of our knowledge, there are no previous studies that leveraged ML-based techniques for identifying research gaps.

This paper aims to propose an ML-based approach to detect research gaps in the literature. In this work, we use the novel COVID-19 pandemic, caused by the SARS-CoV-2 virus, as a case study due to the fast and time-critical pace it evolved, along with the urgent need to comprehend this global pandemic. Since its emergence in late 2019, COVID-19 has had a profound global impact which not only halted many activities, triggered economic fallouts, and caused significant hardships, but it also claimed more than 6.8 million lives. In turn, the scientific community united to address the various challenges presented by the global spread of the virus.

https://formative.jmir.org/2024/1/e49411 JMIR Form Res 2024 | vol. 8 | e49411 | p.1810
(page number not for citation purposes)
Through unprecedented levels of scientific activities, researchers generated a vast amount of research output, with thousands of research papers being published each month, which discuss various aspects of the virus, its transmission, diagnosis, treatment, and prevention strategies [9,21,22]. However, with the rapid pace of information generation and dissemination, there is an increased risk of overlooking research gaps or underexplored areas that may be critical to understanding and mitigating the virus’s impact. Thus, this aims to propose an ML-based approach to detect research gaps in the literature using COVID-19 as a case study.

Methods

Study Data Selection
We used the COVID-19 Open Research (CORD-19) data set, produced by the Allen Institute for AI and made available on the Kaggle platform [23]. It was updated every week until June 2, 2022, to include the most recently published COVID-19 papers. We used the final version, which contains 1,121,433 entries. The search terms used by Allen Institute for AI to retrieve these studies were “Coronavirus” OR “Corona virus” OR “COVID-19” OR “2019-nCoV” OR “SARS-CoV” OR “Severe Acute Respiratory Syndrome” OR “MERS-CoV” OR “Middle East Respiratory Syndrome” [24]. The sources of studies in the CORD-19 data set were PubMed Central, PubMed, the World Health Organization’s (WHO) COVID-19 Database, arXiv, bioRxiv, and medRxiv [24]. The data set includes a CSV file containing meta-information about all the papers, such as article DOI, CORD UID, PMCID, PUBMED ID, title, abstract, journal, authors, and publication date. We removed duplicate papers, entries with empty and non-English abstracts, and papers published before January 1, 2020. We selected abstracts containing the keywords “novel coronavirus,” “coronavirus 2019,” “2019-nCov,” “COVID-19,” “COVID 2019,” “severe acute respiratory syndrome coronavirus 2,” and “SARS-COV-2” to include only COVID-19–related papers.

Data Preprocessing
We cleaned the abstracts and removed nonalphanumeric characters, punctuations, and sectioning keywords “BACKGROUND,” “OBJECTIVE,” “METHOD,” “RESULT,” “CONCLUSION.” We used the Python programming language in a Jupyter Notebook environment and Python libraries such as pandas, NumPy, langdetect, re, string, and TextBlob. We then searched abstracts that mentioned any term related to research gap: “unknown,” “not known,” “little is known,” “unrevealed,” “uncertain,” “undetermined,” “understudied,” “unexplored,” “not fully understood,” “literature gap,” “research gap,” “knowledge gap,” “future studies,” “future research,” “research problem,” “more studies,” “more research,” “further studies,” and “further research.” We decided to use these terms in an abstract search rather than a full-text search for 2 reasons. First, using these terms in a full-text search may lead to the inclusion of a significant number of unrelated studies, increasing the likelihood of inaccurately identifying research gaps that are not pertinent to the subject of interest. Second, the CORD-19 data set that we used in this study does not contain the full text of the studies. With this process, we identified 33,206 abstracts of scholarly papers published after January 1, 2020, related to COVID-19 and containing the gap words. We analyzed these abstracts, and from each abstract, we extracted 3 sentences: 1 sentence that includes the gap word, 1 sentence before, and 1 sentence after the sentence containing the gap word. We used a full stop (“.”) as a sentence marker. We converted the selected sentences to lowercase text. Next, we used the Python NLTK library to remove the stop words and tokenize the sentences. Finally, we used the clean sentences after the preprocessing steps for clustering.

Analysis

Overview
For clustering the sentences into semantically similar topics, we used the BERTopic algorithm [25]. The BERTopic algorithm is an unsupervised learning algorithm for topic modeling. It uses the Bidirectional Encoder Representations from Transformers (BERT). BERTopic does not require labeled data as it extracts topics from an input text in a supervised way [26]. BERTopic gained popularity due to its potential to capture context-aware information in a given input text and does not rely on a predefined number of topics [26]. Besides topic modeling, BERTopic is also useful in the clustering of documents and text summarization [26]. The BERTopic topic modeling method produces dense clusters by combining class-based term frequency-inverse document frequency (TF-IDF) and transformers (BERT embeddings). In addition, it makes it simple to comprehend and visualize the generated topics. The 3 stages in the BERTopic algorithm are presented in Figure 1 and discussed in the next subsections.
Figure 1. Stages of the BerTopic modeling algorithm. c-TF-IDF: class-based term frequency-inverse document frequency; MMR: maximum marginal relevance; HDBSCAN: hierarchical density-based spatial clustering of applications with noise; UMAP: uniform manifold approximation and projection.

Embedding Documents

In this stage, the BERTopic algorithm extracts document embeddings using BERT sentence transformers. Each document embedding is generated using word embeddings, which represent each word in the document in multidimensional space. It ensures that words with related meanings have comparable representations. This way, words are represented by numbers in a vector space, where vectors are defined by TF-IDF weights. TF-IDF describes the importance of a term relative to a document in a corpus. Neural networks are the primary foundation of embedding models. Typically, word embeddings are used to compute document embedding into 2 phases. The word embedding is first applied to every word in the text and then the word embeddings are aggregated by averaging over each dimension to produce document embeddings.

Clustering Documents

Documents embeddings produced in the previous step are usually very sparse. Therefore, our first stage of the analysis uses uniform manifold approximation and projection to decrease the dimensionality of the embeddings [27]. Then, we use the hierarchical density-based spatial clustering of applications with a noise approach to cluster reduced embeddings and produce clusters of texts with comparable semantic properties.

Representing Topics

In this stage, class-based TF-IDF weights are used to extract topics. These topics are reduced and further improved by finding the coherence of words using maximum marginal relevance. We used BERTopic to cluster the extracted sentences and found 191 clusters. Then, we applied the topics reduction technique of BERTopic and found a total of 50 clusters. We assigned labels to each cluster by checking their representative words. When it was challenging to assign labels to a cluster based on its representative words, we reviewed sentences containing the specified research gap terms, along with the sentence before and after in most studies within that cluster. After that, we merged clusters that had similar labels to identify 21 unique labels (research gaps). Finally, we grouped these clusters into 6 broader categories. Multimedia Appendix 1 shows the code used for the analysis of bibliographic data to identify research gaps.

Results

Search Results

By June 2, 2022, the CORD-19 data set contained 1,121,433 papers (Figure 2). Of those, we excluded 1,088,227 papers for the following reasons: (1) abstracts were unavailable (n=300,540); (2) the papers were published before January 1, 2020 (n=225,964); (3) the papers were written in a language other than English (n=6499); (4) papers did not contain search terms related to COVID-19 (n=195,498); and (5) papers did not contain search terms related to research gap (n=359,726). Consequently, we included 33,206 papers in the analysis of this study.
Results of Gap Identification

Overview

As mentioned earlier, 191 clusters of the 33,206 papers were generated by our analysis. Then, the number of clusters was reduced to 50 when we applied a topics reduction technique. We deleted 6 clusters as we could not identify the research gap from them. Further, 23 clusters were merged with other clusters as the same research gaps were identified in these clusters. Overall, we identified 21 different research gaps from 4646 papers. As shown in Table 1, these research gaps were grouped into 6 topics, which are discussed in the next subsections.
Table 1. Topics and the corresponding subtopics identified in this study (N=4646).

<table>
<thead>
<tr>
<th>Topics and subtopics</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 1: virus of COVID-19</td>
<td></td>
</tr>
<tr>
<td>Origin of COVID-19</td>
<td>318 (6.8)</td>
</tr>
<tr>
<td>Emerging variants</td>
<td>202 (4.3)</td>
</tr>
<tr>
<td>Transmission of COVID-19</td>
<td>75 (1.6)</td>
</tr>
<tr>
<td>Role of the immune system</td>
<td>52 (1.1)</td>
</tr>
<tr>
<td>Topic 2: risk factors of COVID-19</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td>77 (1.7)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>65 (1.4)</td>
</tr>
<tr>
<td>Topic 3: prevention of COVID-19</td>
<td></td>
</tr>
<tr>
<td>Vaccination</td>
<td>447 (9.6)</td>
</tr>
<tr>
<td>Precautionary measures</td>
<td>124 (2.7)</td>
</tr>
<tr>
<td>Wastewater surveillance</td>
<td>60 (1.3)</td>
</tr>
<tr>
<td>Topic 4: treatment of COVID-19</td>
<td></td>
</tr>
<tr>
<td>Medications of COVID-19</td>
<td>170 (3.7)</td>
</tr>
<tr>
<td>Herbal medicine</td>
<td>66 (1.4)</td>
</tr>
<tr>
<td>Support system</td>
<td>55 (1.2)</td>
</tr>
<tr>
<td>Topic 5: health care delivery during COVID-19</td>
<td></td>
</tr>
<tr>
<td>Telehealth</td>
<td>305 (6.6)</td>
</tr>
<tr>
<td>Surgeries</td>
<td>158 (3.4)</td>
</tr>
<tr>
<td>Organ transplantation</td>
<td>92 (2)</td>
</tr>
<tr>
<td>Topic 6: impact of COVID-19</td>
<td></td>
</tr>
<tr>
<td>Health complications</td>
<td>1552 (33.4)</td>
</tr>
<tr>
<td>Special groups</td>
<td>434 (9.3)</td>
</tr>
<tr>
<td>Education</td>
<td>136 (2.9)</td>
</tr>
<tr>
<td>Media and communication</td>
<td>109 (2.3)</td>
</tr>
<tr>
<td>Mortality</td>
<td>87 (1.9)</td>
</tr>
<tr>
<td>Food security</td>
<td>62 (1.3)</td>
</tr>
</tbody>
</table>

Topic 1: Virus of COVID-19 (n=647, 13.9%)

Origin of COVID-19
There are 318 studies related to the origin of COVID-19. Despite various theories and pieces of evidence, the exact source of SARS-CoV-2 remains unknown according to the majority of studies on this topic.

Emerging Variants
According to the 202 studies on this topic, the full extent of the impact of new variants on the course of the pandemic and the effectiveness of current prevention and treatment strategies on the new variants are still not known. Furthermore, it is uncertain how the emergence of new variants may affect the duration of immunity after recovery. In addition, it is not clear how accurate the prediction models are in predicting the emergence of new variants and their impact.

Transmission of COVID-19
A total of 75 studies have revealed several unknown aspects of the virus such as the role of asymptomatic carriers in the spread of the virus, the true level of global spread, and the extent to which COVID-19 may be circulating undetected in some areas, and the influence of environmental factors (e.g., temperature and humidity) on the transmission of COVID-19.

Role of the Immune System
In 52 studies related to this topic, several research gaps were identified. Specifically, while it is known that the virus elicits an immune response, it is still unclear the specifics of how the immune system responds, the duration of immunity after recovery, the relationship between the severity of illness and the strength of the immune response, and how the immune response may differ between individuals.
Topic 2: Risk Factors of COVID-19 (n=142, 3.1%)

Obesity
From 77 studies related to this topic, we found that the relationship between obesity and COVID-19 is still largely a mystery. While some studies have suggested that obesity may increase the risk of severe COVID-19 outcomes, the exact mechanisms behind this are still unknown. Additionally, it is unclear whether weight loss can reduce the risk of severe illness and death from COVID-19 in individuals with obesity. Furthermore, there is no consensus on the optimal BMI cut-off for identifying individuals with obesity who are at increased risk of severe illness and death from COVID-19.

Ethnicity
A total of 65 studies identified a significant research gap in understanding the relationship between ethnicity and COVID-19. Despite the numerous studies conducted, the reasons for these disparities remain largely unknown.

Topic 3: Prevention of COVID-19 (n=631, 13.6%)

Vaccination
A total of 447 studies have revealed that the long-term efficacy and safety of COVID-19 vaccines remain largely unknown. Although initial clinical trials have demonstrated promising results, it is uncertain how long the protection provided by the vaccines will last and what potential long-term side effects may be. Further, vaccine hesitancy and the factors that contribute to it are not fully understood. Moreover, the safety of COVID-19 vaccines in patients with chronic diseases (eg, chronic hepatitis, diabetes, heart failure, renal failure, and epilepsy) remains unknown.

Precautionary Measures
A total of 124 studies were related to precautionary measures implemented to prevent the spread of the virus. According to these studies, the effectiveness of many precautionary measures such as social distancing, wearing masks, hand hygiene, respiratory etiquette (eg, covering mouth and nose when coughing and sneezing), and ventilation systems is still unknown. Further, the duration of quarantine or isolation for individuals with COVID-19 remains uncertain.

Wastewater Surveillance
In total, 60 studies were related to using wastewater surveillance to detect the presence of the virus in communities. According to these studies, it is unclear how accurately wastewater surveillance can predict or track COVID-19 outbreaks and what the potential false-positive or false-negative rates may be.

Topic 4: Treatment of COVID-19 (n=291, 6.3%)

Medications of COVID-19
The role of medications (eg, remdesivir and corticosteroids) in managing severe cases of COVID-19 was discussed in 170 studies. According to these studies, there are still many unknowns about the medication for COVID-19, including the potential for long-term effects on the heart, lungs, and other organs; the optimal treatment protocol (eg, timing, dose, and duration) for different stages of the disease and age groups; the effectiveness of existing medications against new variants and new medications against multiple variants; the safety and efficacy of a combination of medications; the best combinations and dosages; the safety and efficacy of medication in children; and the effect of the combination of medication and dietary supplements.

Herbal Medicine
Herbal medicine was the main topic in 66 studies. According to these studies, much remains unknown about the effectiveness, safety, standardization, dosage, and potential interactions with other treatment regimens.

Support System
A total of 55 studies were related to support systems that provide several services (eg, social support, mental health, and financial assistance) to individuals affected by COVID-19. According to these studies, the effectiveness and long-term impacts of support systems on patients with COVID-19 remain largely unknown.

Topic 5: Health Care Delivery During COVID-19 (n=555, 11.9%)

Telehealth
The COVID-19 pandemic has seen a dramatic surge in the use of telehealth; yet, a total of 305 studies have revealed that there are still many unknowns about its effectiveness and accessibility. These unknowns have the potential to create new privacy and security risks, as well as to impact health care disparities.

Surgeries
According to the 158 studies discussing this topic, there is still no consensus on planning to maintain surgical care preparedness in ongoing and future pandemics. This includes understanding the risk of transmission, perioperative testing criteria, postoperative outcomes in specific populations, and effective strategies for resource allocation.

Organ Transplantation
A total of 92 studies have revealed that there is still much to be discovered about the best way to manage organ transplantation during the COVID-19 pandemic. Specifically, there is still much to be uncovered about COVID-19 in relation to organ transplant recipients, including identifying risk factors, developing strategies to minimize transmission, understanding outcomes for transplant recipients who contract COVID-19, and determining the best treatment for COVID-19 in organ transplant recipients considering their immunocompromised status.

Topic 6: Impact of COVID-19 (n=2380, 51.2%)

Health Complications
From 1552 studies, we found that the long-term health complications of COVID-19 remain largely a mystery. To be more precise, there is a lack of evidence on the long-term impact of COVID-19 on the respiratory system (eg, asthma and chronic obstructive pulmonary disease), cardiovascular system (eg, hypertension, deep vein thrombosis, and pulmonary embolism), neurological system (eg, confusion, dizziness, and headache), endocrine system (eg, diabetes, hepatic system (eg, liver injury),
olfactory system (loss of smell and taste), and mental health (eg, anxiety, depression, and posttraumatic stress disorder).

Special Groups

According to 434 studies, the impact of COVID-19 on special groups is still largely unknown. Specifically, there are still many unanswered questions related to the impact of COVID-19 on pregnancy. For example, what is its impact on the risk of preterm birth and respiratory distress? What is the long-term effect on fetuses and babies? And how is the virus transmitted from mother to baby during pregnancy, labor, or delivery? Further, there is still much to learn about the impacts of the virus on pediatric populations and patients with cancer in terms of diagnosis, treatment, and complications. The long-term effects of COVID-19 on health care workers remain uncovered.

Education

The COVID-19 pandemic has profoundly impacted education, with schools and universities shutting down or moving to web-based learning to slow the spread of the virus. A total of 136 studies on this subtopic revealed that there is still much unknown about the impact of COVID-19 on education.

Media and Communication

The COVID-19 pandemic has had a profound impact on media and communication, and while much research and analysis have been conducted, there are still many unknowns. A total of 109 studies explored this topic. From these studies, we found that there are still many unanswered questions related to media and communication. For example, Will the increased media consumption habits that have emerged during the pandemic persist in the long term, or will people revert to their prepandemic habits? How will media organizations adapt to the financial challenges posed by the pandemic, and will it lead to long-term changes in the media landscape? What will be the long-term effects of social media on the spread of misinformation and society as a whole? How will the increased reliance on digital communication tools, such as video conferencing and messaging apps, impact our relationships and social dynamics in the long term?

Mortality

A total of 87 studies were related to the mortality of COVID-19. According to these studies, there is a lack of evidence on factors affecting mortality rates over time and on whether new strains of the virus are more deadly or have different mortality rates than the original strain.

Food Security

In total, 62 studies have revealed that the impacts of COVID-19 on food security remain largely unknown. While some studies have suggested that the pandemic may worsen food insecurity in certain populations, the true extent of the problem is still unclear. In addition, the long-term effects of food insecurity during the pandemic on health and well-being are yet to be determined.

Discussion

Principal Findings

This study proposed an ML-based method to identify research gaps in the literature. We used COVID-19 literature as a case study. Our proposed method enabled us to identify research gaps in 21 subtopics that were grouped into 6 topics. The largest topic that was identified in more than half of the analyzed studies is the “impact of COVID-19” (topic 6). This is hardly surprising, since we, as a society, are still struggling to come to terms with the long-lasting impact of the pandemic, which continues to affect many aspects of our lives. Long-term health complications are still poorly understood, given the relatively short time since the initial outbreak, which is less than 4 years. In addition, understanding the precise impact of the disease on body systems and organs proves challenging given that it is a complex disease that affects multiple organs, there is a lack of data about the virus, and its impact may vary among different populations.

The second largest topic identified in this study is the “virus of COVID-19” (topic 1). The lack of knowledge about the COVID-19 virus is attributed to its novelty as a new strain of coronavirus not previously identified in humans. Further, tracing the origins of zoonotic diseases can be difficult as they may pass through multiple animal hosts before reaching humans. Moreover, due to its rapid evolution into new variants, studying each variation of the COVID-19 virus within a short timeframe poses a significant challenge.

Topic 3 (ie, prevention of COVID-19) was the third largest topic in this paper. The lack of knowledge in this area may be attributed to the limited long-term data on vaccine safety and efficacy. Additionally, the emergence of new variants may impact vaccine efficacy, raising concerns about the effectiveness of the current vaccines against these new variants. Further, a significant challenge in assessing the long-term effects of the COVID-19 vaccine is vaccine hesitancy, which is not fully understood and can hinder data gathering on long-term effects.

The COVID-19 pandemic has impacted health care delivery, and this was topic 5 in this study. One of the subtopics in this topic is telehealth, which has seen a significant surge. Telehealth is a relatively new technology that has only recently become widely available. As a result, there may not yet be enough data available to fully evaluate its effectiveness. Telehealth is often used in conjunction with other health care interventions, such as in-person visits or medications, which can make it difficult to separate the impact of telehealth from other factors. Importantly, there may be biases in the types of patients who are most likely to use telehealth. Thus, it is difficult to generalize findings to the broader population. Another subtopic in this topic is organ transplantation. Research gaps related to this subtopic may be attributed to the following reasons: (1) while there have been some studies on the impact of COVID-19 on organ transplant patients, the number of patients in these studies is often relatively small. These limited data can make it difficult to draw definitive conclusions about the impact of COVID-19 on this population; (2) organ transplant patients are a heterogeneous population, and the impact of COVID-19 may vary depending on factors such as age, comorbidities, and the
type of organ transplant; (3) organ transplant patients may be at increased risk of complications from COVID-19 due to their underlying health conditions and the immunosuppressant drugs they take to prevent organ rejection. Therefore, it can be difficult to isolate the impact of COVID-19 from these other factors.

We found that there are research gaps related to the treatment of COVID-19 (topic 4). This may be due to several factors. First, addressing research gaps related to this topic needs many rigorous clinical trials, which usually take several years to complete all 3 phases before the licensing stage. Second, such clinical trials are very expensive, and therefore only researchers with large funds can carry out these trials.

Critical gaps in our understanding of the relationship among obesity, ethnicity, and severe COVID-19 outcomes exist (topic 2). The relationship among obesity, ethnicity, and COVID-19 outcomes is likely influenced by a complex interplay of biological, behavioral, and environmental factors, making it difficult to determine the precise nature and extent of these relationships. Disentangling the effects of these different factors on health outcomes can be challenging, and limitations in the quality and availability of data on obesity and ethnicity in certain populations can make it difficult to accurately measure the relationship between these factors. Moreover, known statistical challenges are related to controlling confounding factors such as age, sex, and comorbidities that affect the nature, behavior, and interpretation of the relationship among these factors.

In February 2020, a 2-day meeting organized by the WHO brought together more than 400 participants worldwide [28]. The objective was to develop a research road map that would facilitate and expedite global research efforts aimed at controlling the transmission of COVID-19 [28]. The research road map identified many knowledge gaps and grouped them into 8 areas. All research gaps identified in this review were mentioned in the road map except for topic 6 (impact of COVID-19). This may be attributed to the fact that this topic was less important at that stage of the pandemic (2 months after the onset of COVID-19).

After 3 months of the WHO research road map, a mixed methods study was conducted on 4087 participants (researchers, policy makers, health care workers, etc) to check which of the early WHO road map priorities are still most pressing and identify any newly emerging priorities that warrant attention [29]. The study revealed that the WHO research road map is still globally applicable. However, it identified a number of new research priorities that align with the evolving nature of the pandemic and provide insights into areas where knowledge gaps exist. One of these new research priorities is the impact of COVID-19, which aligns with topic 6 in our study.

About 10 months after the onset of COVID-19, a team from the WHO Southeast Asia Region conducted a web-based survey of 48 experts to identify COVID-19 research priorities in the Southeast Asia Region [30]. The study identified 27 research priorities, which include all 6 research topics identified in this study.

Our findings are also in agreement with previous work [31] that similarly used the CORD-19 data set to determine research priorities during the COVID-19 pandemic. The earlier study identified 10 hotspots, 4 of which overlap with our identified research gaps: virus of COVID-19, risk factors of COVID-19, prevention of COVID-19, and treatment of COVID-19. Notably, our analysis further includes 2 additional topics, which are health care delivery during COVID-19 and the impact of COVID-19. The earlier study also identified additional areas: nursing and health care, diagnosis and testing, drugs and vaccines, social psychology, infection process, and clinical characteristics. The discrepancy between the 2 sets of findings may be attributed to the period when the studies were conducted. The prior study was conducted during the initial phase of COVID-19–related research (January to September 2020), during which the emphasis was predominantly on diagnosis, testing, infection processes, and clinical characteristics. At that early stage, the short- and long-term impacts of COVID-19 were less clear, as was its effect on health care delivery.

Limitations
This study has several limitations that need to be considered when interpreting the results. First, clusters generated by the BERTopic modeling algorithm were subject to noise. In other words, we noticed that several studies in a cluster are not relevant to that cluster. Therefore, not all studies on a topic reported a research gap related to that topic.

Second, the studies included in our analysis were limited to those published up to June 2022, given the Allen Institute for AI stopped updating the data set, and new research has been published since then. Therefore, it is likely that several research gaps identified in this review have been addressed and new research gaps have emerged.

Third, it is likely that this study missed other important research gaps for several reasons: (1) studies in the CORD-19 data set were retrieved from only 5 databases; therefore, the CORD-19 data set did not include studies from other common databases such as Scopus, Web of Science, Embase, and PsycoloQ; (2) our analysis relied on abstracts rather than full texts, in which especially introduction and discussion sections commonly identify research gaps; (3) this study only considers papers in English. Consequently, potential insights from studies published in other languages may have been overlooked; and (4) we cannot rule out that we missed some terms relevant to research gaps; therefore, it is likely that many studies relevant to this work were not included in the analysis.

Fourth, we do not attempt a trend analysis in favor of a compact and concise overview, and we do not yet provide automated means to analyze original research gaps that have been addressed since the publication of a given paper. However, we believe that the presented analysis is still useful as we observe clear “hot topics” that resonate with earlier thematic research areas defined by the WHO which are extremely unlikely to have been researched fully since formulating the gap.

Practical and Research Implications
This study’s aim is not to generate research topics automatically that, when worked on, guarantee impact or publication. Instead, we scope the landscape of research gaps outlined in the literature. This study should therefore be taken as a help to
identify and prioritize “hot” topics that need addressing. This study also does not seek to replace individual literature research in a chosen topic, but it can serve as a guide to formulate specific literature search queries in specific areas related to research questions left as future work by prior publications. Therefore, literature reviews or scoping reviews are still required. Nevertheless, we anticipate that with the advent of more advanced techniques like Large Language Models, the performance of such approaches will enhance in the foreseeable future, subsequently reducing the necessity for literature reviews or scoping reviews to identify research gaps.

To overcome the above-mentioned limitations of our approach, thereby improving the identification of gaps, future research should use an up-to-date list of studies that are retrieved from the most common databases in the target area (eg, MEDLINE, Scopus, Web of Science, Embase, PsycINFO, IEEE Xplore, and ACM Digital Library). If practical, researchers should also analyze full texts, or at least discussion sections, rather than only abstracts. Moreover, additional terms related to research gaps (eg, limited evidence, inconclusive findings, and insufficient evidence) should be used to identify the relevant studies and sentences appropriate for analysis. Further, there is a need to improve the performance of the BERTopic modeling algorithm in clustering studies, specifically with respect to removing outliers from the clustering. From a technical perspective, this may require further research to combine topic modeling with statistical uncertainty quantification, such as conformal prediction [32,33].

The process of clustering text documents is an essential technique used in the text mining area, as well as in a variety of applications including ML and pattern recognition. Since clustering text documents is an optimization problem, several meta-heuristics (MH) optimization algorithms have been presented as possible solutions to this nondeterministic polynomial-time hard problem. However, while obtaining the best solution, individual optimization MH algorithms may run into serious problems including poor convergence and being stuck in local optima. To address these issues, the hybridization concept was applied to combine the strengths of 2 hybrid search methods (ie, MH algorithms) and so avoid their weaknesses.

From the dominance of topic 6, we see that most research is needed to understand the long-term effects of the pandemic. Especially where COVID-19 “temporary” solutions have become established practice (telehealth, hybrid education, the logistics of resilient food supply, etc), more research is needed to answer questions regarding the efficacy and sustainability of such solutions. Long-term health complications will continue to be a topic for quite some time in the future, given that COVID-19 has only been studied for less than 4 years. As new complications and variants emerge, this subtopic arguably has the highest potential to serve humanity and create a real impact.

Conclusions

This paper showed that ML has the potential to identify research gaps in scientific literature. Our proposed method identified research gaps in 21 subtopics that were grouped into 6 topics: virus of COVID-19, risk factors of COVID-19, prevention of COVID-19, treatment of COVID-19, health care delivery during COVID-19, and impact of COVID-19. This study is not intended to replace individual literature research within a selected topic. Instead, it can serve as a guide to formulate precise literature search queries in specific areas associated with research questions that previous publications have earmarked for future exploration. Future research should leverage an up-to-date list of studies that are retrieved from the most common databases in the target area. When feasible, full texts or, at minimum, discussion sections should be analyzed, rather than limiting their analysis to abstracts. Moreover, additional terms related to research gaps should be used to identify the relevant studies and sentences appropriate for analysis. Furthermore, future studies could evaluate more efficient modeling algorithms, especially those combining topic modeling with statistical uncertainty quantification such as conformal prediction.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Authors’ Contributions

AA-A, AJN, and ZS developed the protocol for this paper. Data collection and preprocessing were carried out by ZS. Data analysis was performed by AA-A, AJN, and ZN. DA and WA wrote the introduction. The Methods section was written by ZS and HA. The Results section was written by AA-A and AJN. The Discussion and Conclusion sections were written by all authors. The paper was revised critically for important intellectual content by all authors. All authors approved the manuscript for publication and agree to be accountable for all aspects of the work.

Conflicts of Interest

None declared.

Multimedia Appendix 1

The code used for analysis of bibliographic data to identify research gaps.

[DOCX File, 12 KB - formative_v8i1e49411_app1.docx]

References

https://formative.jmir.org/2024/1/e49411

JMIR Form Res 2024 | vol. 8 | e49411 | p.1818
(page number not for citation purposes)

32. Angelopoulos AN, Bates S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. ArXiv. Preprint posted online on December 07 2022 [FREE Full text]

Abbreviations

AI: artificial intelligence
BERT: Bidirectional Encoder Representations from Transformers
CORD-19: COVID-19 Open Research Data Set
MH: meta-heuristics
ML: machine learning
TF-IDF: term frequency-inverse document frequency
WHO: World Health Organization
Original Paper

Feasibility and Acceptability of Web-Based Structured Oral Examinations for Postgraduate Certification: Mixed Methods Preliminary Evaluation

Vanessa Burch¹,², MD, PhD; Jessica McGuire², MD; Eric Buch¹,³, MSc, MD; Mike Sathekge¹,³, MD, PhD; Francis M'bouaffou¹, MSc; Flavia Senkubuge¹,³, MD, PhD; Johannes Fagan¹,², MD

¹The Colleges of Medicine of South Africa, Cape Town, South Africa
²The University of Cape Town, Cape Town, South Africa
³University of Pretoria, Pretoria, South Africa

Corresponding Author:
Vanessa Burch, MD, PhD
The Colleges of Medicine of South Africa
17 Milner Rd
Cape Town, 7700
South Africa
Phone: 27 216899533
Email: vanessa.burch@cmsa.co.za

Abstract

Background: The COVID-19 pandemic disrupted postgraduate certification examinations globally. The Colleges of Medicine of South Africa continued hosting certification examinations through the pandemic. This was achieved by effecting a rapid transition from in-person to web-based certification examinations.

Objective: This formative evaluation explored candidates’ acceptability of web-based structured oral examinations (SOEs) hosted via Zoom (Zoom Communications Inc). We also reported the audiovisual quality and technical challenges encountered while using Zoom and candidates’ overall experience with these examinations conducted during the early part of the COVID-19 pandemic. Additionally, performance in web-based certification examinations was compared with previous in-person certification examinations.

Methods: This mixed methods, single-arm evaluation anonymously gathered candidates’ perceptions of web-based SOE acceptability, audiovisual quality, and overall experience with Zoom using a web-based survey. Pass rates of web-based and previous in-person certification examinations were compared using chi-square tests, with a Yates correction. A thematic analysis approach was adopted for qualitative data.

Results: Between June 2020 and June 2021, 3105 candidates registered for certification examinations, 293 (9.4%) withdrew, 2812 (90.6%) wrote, and 2799 (99.9%) passed, and 1525 (54.2%) were invited to a further web-based SOE. Examination participation was 96.2% (n=1467). During the first web-based examination cycle (2020), 542 (87.1%) of 622 web-based SOE candidates completed the web-based survey. They reported web-based SOEs as fair (374/542, 69%) and adequately testing their clinical reasoning and insight (396/542, 73.1%). Few would have preferred real patient encounters (173/542, 31.9%) or in-person oral examinations (152/542, 28%). Most found Zoom acceptable (434/542, 80%) and fair (396/542, 73.1%) for hosting web-based SOEs. SOEs resulted in financial (434/542, 80%) and time (428/542, 79%) savings for candidates. Many (336/542, 62%) supported the ongoing use of web-based certification examinations. Only 169 technical challenges in using Zoom were reported, which included connectivity-related issues, poor audio quality, and poor image quality. The thematic analysis identified 4 themes of positive and negative experiences related to web-based SOE station design and content, examination station environment, examiner-candidate interactions, and personal benefits for candidates. Our qualitative analysis identified 10 improvements for future web-based SOEs. Candidates achieved high pass rates in web-based certification examinations in 2020 (1583/1732, 91.39%) and 2021 (850/1067, 79.66%). These were significantly higher (2020: N=8635; χ²₁=667; P<.001; 2021: N=7988; χ²₁=178; P<.001) than the previous in-person certification examination pass rate of 58.23% (4030/6921; 2017-2019).

Conclusions: Web-based SOEs conducted by the Colleges of Medicine of South Africa during the COVID-19 pandemic were well received by candidates, and few technical difficulties were encountered while using Zoom. Better performance was observed.
in web-based examinations than in previous in-person certification examinations. These early findings support the ongoing use of this assessment method.

(JMIR Form Res 2024;8:e40868) doi:10.2196/40868

KEYWORDS
web-based certification examinations; web-based structured oral examinations; medical education; specialist and subspecialist examinations; structured oral examinations; Colleges of Medicine of South Africa

Introduction

Background
The COVID-19 pandemic severely disrupted the postgraduate specialty and subspecialty certification examinations globally [1-5]. The Colleges of Medicine of South Africa (CMSA) continued hosting postgraduate certification examinations during the pandemic [6]. This decision ensured that the national pipeline of specialist workforce would not be disrupted and that the careers of international medical graduates completing postgraduate training in South Africa would not be unduly delayed. Hosting these examinations during the pandemic was achieved by effecting a transition from in-person to web-based written and oral examinations within a period of 8 weeks.

Prepandemic Certification Examinations
CMSA, a nonprofit organization founded in 1954, comprises 29 constituent member colleges, each representing a primary specialty practiced in South Africa, such as College of Pediatricians, College of Surgeons, College of Physicians, College of Family Physicians, College of Obstetricians and Gynecologists, College of Anesthesiologists, and so on [6]. CMSA conducts certification examinations at the beginning (entry level) and end of postgraduate training (exit level) for all specialties and subspecialties registered with the South African statutory medical licensing authority, the Health Professions Council of South Africa [7]. Currently, there are 65 specialties (pediatrics, internal medicine, general surgery, ophthalmology, otorhinolaryngology, anesthetics, etc) and 30 subspecialties (pediatric pulmonology in the specialty of pediatrics, trauma surgery in the specialty of general surgery, gynecological oncology in the specialty of obstetrics and gynecology, etc) practiced in South Africa. For the purposes of this paper, the term, postgraduate certification examinations, denotes all postgraduate certification examinations conducted by CMSA for all specialties and subspecialties practiced in South Africa. These examinations are similar to other international postgraduate certification examinations such as board certification examinations offered by the American Board of Medical Specialties [8] or membership examinations offered by Royal Colleges in the United Kingdom [9]. Before the COVID-19 pandemic, CMSA certification included handwritten examinations, and successful candidates were invited for in-person, patient-based, clinical examinations and in-person, unstructured oral examinations (viva voce).

Transition to Virtual Certification Examinations
The transition occurred during the first 8-week hard lockdown phase of the pandemic, which included closure of all public facilities except for emergency care, food, and health care; complete ban on in-person meetings and any form of intercity travel; and national curfew from 9 PM to 6 AM [10]. Weekly web-based meetings were used to provide staff with information updates and training, supplemented by digital information manuals and web-based training sessions for all examiners and candidates learning to use Zoom (Zoom Communications Inc), an interactive web-based software meeting platform.

Handwritten examinations were replaced by web-based written examinations (short-answer questions and single, best-answer questions) using commercially available software. In-person, patient-based examinations were largely discontinued, except where geographically decentralized in-person clinical examinations could be offered in COVID-19–compliant settings. For all member colleges, a new emphasis was placed on developing web-based structured oral examinations (SOEs) to assess diagnostic reasoning, clinical decision-making, and patient management, which were previously assessed during real patient encounters. It was acknowledged that web-based SOEs could not assess bedside clinical skills (history taking and physical examination), as was previously done. This compromise, accepted as an emergency measure during the pandemic, was predicated on an agreement that implementation of workplace-based assessment in South African postgraduate training would be prioritized after the pandemic [10-12].

Design of Web-Based SOE
Web-based SOEs were designed as case scenarios, each comprising a case description with supplementary information including laboratory test results, photographs, video clips, and radiographic and histopathological images, where appropriate. The case scenarios were prepared by national panels of examiners working remotely via Zoom. Each scenario was prepared as a Microsoft PowerPoint presentation, which was screen shared with candidates during the oral examination hosted via Zoom. Candidates answered the standardized questions posed by examiners working alone or in pairs. Zoom calls were also attended by moderators and trainee examiners (observers). Examiners scored the candidates’ responses independently during Zoom calls using downloaded and printed memoranda, and examiners’ handwritten notes were digitally transcribed and submitted with final examination scores to conveners at the conclusion of the examination proceedings. All Zoom calls were booked and collated on timetables with embedded hyperlinks for individual calls, which were shared with the examiner panels 1 week before the examination events. Individual Zoom calls varied in length from 15 to 60 minutes, depending on the number of case scenarios discussed per call. Candidates undertaking a web-based SOE were typically...
exami ned on 4 to 12 case scenarios, depending on the specialty or subspecialty.

Conducting Virtual Certification Examinations

CMSA set up 14 examination venues (8 in South Africa and 6 elsewhere in southern Africa) equipped with 12-inch laptop computers; 24-inch high-resolution monitors; and internet connectivity using wireless, microwave, and fiber technology. Owing to electrical power supply interruptions (load shedding) in South Africa, all examination venues were equipped with dual power supply arrangements. On-site IT support and on-site proctoring by trained staff were provided at all venues.

Candidates undertook all web-based examinations (written and oral) at an examination venue closest to their home (<3 h travel by road). Overnight accommodation was not permitted. National occupational health and safety COVID-19 protocols were observed at all examination venues [13]. Examiners joined the Zoom calls from their home or place of work, whichever was more convenient and had better bandwidth and a stable electricity supply.

Process of Evaluation

When CMSA implemented web-based SOEs for postgraduate certification examinations in early 2020, there were few reports in the literature. There was little reference to their use for high-stakes postgraduate specialist certification processes [14-17]. Most referred to in-person SOEs for undergraduate students [18-21]. Given the paucity of data, we set up a preliminary evaluation during the initial period of implementation to obtain early insights into candidates’ perceptions about the acceptability of this assessment method and their performance in web-based examinations as compared with in-person certification examinations. Despite its known limitations, we structured our evaluation process on the Kirkpatrick model of program evaluation (reaction, learning, behavior, and results) using four questions to address level 1 (reaction) and level 4 (results) of the model [22-25]:

1. Are web-based SOEs acceptable to examination candidates?
2. What technical challenges did examination candidates encounter while using Zoom?
3. On the basis of candidates’ experiences, how could we improve the web-based SOE experience?
4. Are pass rates for web-based and in-person certification examinations different?

Methods

Design

The evaluation was conducted as a cross-sectional observational study using a mixed methods design.

Participants

The study population included all postgraduate certification examination candidates who were invited to undertake web-based SOEs after successfully completing the written component of the national certification examinations in 2020 and 2021.

Procedure

The first cohort of examination candidates who undertook a web-based SOE between June 1, 2020, and November 15, 2020, was invited to complete the web-based survey immediately after completing their web-based SOE at one of the examination venues. A web-based study information leaflet was provided to potential participants before recruitment. The web-based questionnaire was administered on laptop computers at the examination venues. Participants were recruited to the study before releasing any examination results.

Survey Design

The survey, designed as a Google Form, consisted of 28 items (Multimedia Appendix 1). A total of 23 closed-ended questions focused on candidates’ perceptions of the adequacy, fairness, and quality of web-based SOEs and the technical adequacy and personal time and cost savings of using Zoom to host SOEs. Closed-ended questions required either a binary (yes or no) response or a 5-point Likert-scale response (completely disagree, disagree, neutral, agree, or completely agree). Candidates’ acceptability of web-based SOEs was defined as candidates’ perceptions of the adequacy of the web-based assessment process, overall fairness, and quality of examination material used. Parameters used to determine the adequacy of the assessment process included the following: adequate assessment of clinical reasoning, judgment, insight, and decision-making; appropriate complexity of case scenarios and questions; appropriate duration of examination; appropriate time allocation per case scenario; and preference for in-person patient encounter or in-person examiner. Fairness was explored in terms of perceived overall fairness and the use of more case scenarios than previously during in-person examinations.

Quality of examination material referred to clarity of material presented during the Zoom call. Candidates’ acceptability of Zoom as the hosting platform was defined in terms of perceptions of (1) overall acceptability and fairness of the web-based assessment process, (2) audiovisual quality of Zoom, and (3) personal benefits of web-based SOEs to examination candidates (time and financial savings). The survey also included 5 open-ended questions, which required a typed text response. These questions explored candidates’ overall positive and negative experiences regarding the web-based examination process. The survey was administered immediately after the examination proceedings, and we chose to anonymize all the information so as to allay candidate concerns about possible bias when deciding whether to participate in the survey. They only reported about the examination venue attended and certification examination undertaken.

Quantitative Data Analysis

Quantitative data from the web-based questionnaire were exported into a Microsoft Excel spreadsheet before analysis. For questions using a Likert-scale response, answers were reported in 3 categories: agree (strongly agree and agree responses), neutral (neutral responses), and disagree (strongly disagree and disagree responses). Percentages were calculated and rounded to 1 decimal point.
The respective pass rates for the first 2 cycles of web-based certification examinations, 2020 and 2021, were compared with the overall pass rate for the preceding 6 cycles of in-person certification examinations conducted between 2017 and 2019 using the chi-square test for independence with a Yates correction. *P*<.01 was taken as the level for significance.

Qualitative Data Analysis

Qualitative data from the open-ended questions were captured on the web using Google Forms, exported into an Excel spreadsheet, and subjected to thematic analysis using the 6-step approach to thematic analysis by Braun and Clarke [26]. The qualitative responses were read with the stated question in mind, after which a set of themes was developed by members of the research team (FM and JKM). The responses were reread and assigned to themes, which were further refined as more themes emerged. The responses were reread a third time (JKM), and the themes were reviewed. Discrepancies were presented to a third author (VB) and discussed until consensus was reached.

Ethical Considerations

The study was approved by the human research ethics committee of the University of Cape Town (HREC 280/2020), CMSA, South African Committee of Medical Deans, and Health Professions Council of South Africa. Participation was voluntary, and informed consent was obtained before inclusion in the study. This study, which involved human participants, was performed in accordance with the Declaration of Helsinki. All examination candidates gave signed informed consent before participation in the study. All methods were conducted in accordance with relevant guidelines and regulations. Declared consent for publication is not applicable as no identifying images or information was used in the paper.

Results

Participants

Table 1 shows that during the first 12 months of the COVID-19 pandemic, from June 2020 to June 2021, a total of 3105 candidates registered for postgraduate certification examinations conducted by CMSA. After announcing a transition to web-based examinations, of the 3105 candidates, 351 (11.3%) candidates withdrew (written: 293/351, 83.5%; oral: 58/351, 16.5%); overall participation was 88.7% (2754/3105) during the pandemic. Of the 2754 entrants, 1912 (69.43%) passed the written components of the certification examinations, and 1525 (55.37%) were invited to a web-based SOE, of which 1467 (53.27%) attended the SOE (1467/1525, 96.2% participation).

Table 1. Candidates undertaking the web-based certification examinations hosted by the Colleges of Medicine of South Africa.\(^a\)\(^b\).

<table>
<thead>
<tr>
<th>Category</th>
<th>Total, n (%)</th>
<th>2020, n (%)</th>
<th>2021, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates who registered for certification examinations</td>
<td>3105 (100)</td>
<td>2005 (64.57)</td>
<td>1100 (35.43)</td>
</tr>
<tr>
<td>Candidates who withdrew from the online written examinations</td>
<td>293 (100)</td>
<td>266 (90.78)</td>
<td>27 (9.22)</td>
</tr>
<tr>
<td>Candidates who passed the online written examinations</td>
<td>2799 (100)</td>
<td>1732 (61.88)</td>
<td>1067 (38.12)</td>
</tr>
<tr>
<td>Candidates who were invited to the web-based SOE(^c)(^d)</td>
<td>1525 (100)</td>
<td>646 (42.36)</td>
<td>879 (57.64)</td>
</tr>
<tr>
<td>Candidates who withdrew from the web-based SOE</td>
<td>58 (100)</td>
<td>24 (41.38)</td>
<td>34 (58.62)</td>
</tr>
<tr>
<td>Candidates who participated in the web-based SOE</td>
<td>1467 (100)</td>
<td>622 (42.39)</td>
<td>845 (57.6)</td>
</tr>
<tr>
<td>Candidates who passed the web-based SOE</td>
<td>1159 (100)</td>
<td>497 (42.88)</td>
<td>662 (57.12)</td>
</tr>
<tr>
<td>Candidates who were admitted (passed the online written and web-based SOEs)</td>
<td>1159 (100)</td>
<td>497 (42.88)</td>
<td>662 (57.12)</td>
</tr>
</tbody>
</table>

\(^a\)Pass rate of virtual SOE: total=79% (1159/1467), year 2020=79.9% (497/622), year 2021=78.3% (662/845).

\(^b\)Overall pass rate: total=86.5% (2433/2812, year 2020=91% (1583/1739), year 2021=79.2% (850/1073).

\(^c\)SOE: structured oral examination.

\(^d\)Only exit-level certification examinations include virtual SOEs.

Questionnaire Completion

The web-based survey was administered to the first cohort of candidates who participated in web-based SOEs between June 1, 2020, and November 15, 2020. Of the 622 potential participants, 542 (87.1%) completed the web-based survey.

Are Web-Based SOEs Acceptable to Candidates?

Candidates’ Perceptions of Web-Based SOEs

Table 2 shows that, broadly speaking, candidates expressed a positive opinions about web-based SOEs. They considered web-based SOEs to be a fair method of examination (374/542, 69%), which tested their clinical reasoning and insight appropriately (364/542, 67.2%), more cases better displayed their knowledge (369/542, 68.1%). Less than one-third (173/542, 31.9%) felt that real patient encounters would have been preferred, and a small minority (152/542, 28%) would have preferred an in-person oral examination.
Table 2. Candidates’ perceptions of web-based structured oral examinations (SOEs).

<table>
<thead>
<tr>
<th>Adequate method of assessment</th>
<th>Level of agreement (n=542), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate method of assessment</td>
<td>Agree</td>
</tr>
<tr>
<td>The exam adequately tested my clinical reasoning, judgement, insight, and decision-making</td>
<td>396 (73.1)</td>
</tr>
<tr>
<td>The case scenarios (examination questions) were appropriate to assess an entry-level specialist or subspecialist</td>
<td>417 (76.9)</td>
</tr>
<tr>
<td>The total length of the examination was appropriate</td>
<td>364 (67.2)</td>
</tr>
<tr>
<td>The average time for each station/case was appropriate</td>
<td>364 (67.2)</td>
</tr>
<tr>
<td>Having real patients would have improved the quality of the examination</td>
<td>173 (31.9)</td>
</tr>
<tr>
<td>It would have been preferable to have a local examiner present with me to ask the questions</td>
<td>152 (28)</td>
</tr>
</tbody>
</table>

Fair method of assessment

- The use of a larger number of case scenarios rather than the historically smaller number of cases gave me a better chance to show my capability
- In my opinion, this was a fair examination

Quality of the examination material

- The examination material was clearly presented

Table 3. Candidates’ perceptions of the use of Zoom for hosting web-based structured oral examinations (SOEs).

<table>
<thead>
<tr>
<th>Adequate for hosting web-based SOEs</th>
<th>Level of agreement (n=542), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I found it acceptable to have examiners conduct the examination using Zoom</td>
<td>Agree</td>
</tr>
<tr>
<td>Conducting oral examinations using Zoom is a fair examination technique</td>
<td>434 (80.1)</td>
</tr>
<tr>
<td>The CMSA(^a) should continue to run the exams using Zoom as opposed to a face-to-face process (preferable)</td>
<td>396 (73.1)</td>
</tr>
<tr>
<td>Audiovisual quality</td>
<td>Agree</td>
</tr>
<tr>
<td>I could see the examiners clearly on the computer screen</td>
<td>434 (80.1)</td>
</tr>
<tr>
<td>I could hear the examiners clearly on the Zoom call</td>
<td>437 (80.6)</td>
</tr>
<tr>
<td>Images and videos used were of adequate definition or quality to be considered a fair examination</td>
<td>374 (69)</td>
</tr>
<tr>
<td>Personal benefits</td>
<td>Agree</td>
</tr>
<tr>
<td>The personal cost saving of having the exam locally using Zoom was worth it</td>
<td>434 (80.1)</td>
</tr>
<tr>
<td>The time saved by being able to participate in the exam locally was worth it</td>
<td>428 (78.9)</td>
</tr>
</tbody>
</table>

\(^a\)CMSA: Colleges of Medicine of South Africa.
What Technical Challenges Did Candidates Encounter While Using Zoom?
The first 2 cycles of virtual SOEs required 6258 Zoom calls, all of which were successfully completed on the appointed examination day. All candidates were able to complete their web-based SOE using Zoom. Altogether, 173 technical challenges were reported during the first examination cycle (2020). All (173/173, 100%) were successfully resolved. Of the 173 challenges, a total of 164 (94.8%) were specifically described in the open-ended section of the survey. Overall, 3 major themes were identified: connectivity-related issues with poor-quality connection, disconnection, and laptop battery failure; poor audio quality of Zoom call with sound delay, poor quality or interruption, and low sound intensity from examiners sitting very far from the microphone; and poor image quality on Zoom call with video or photograph either very small or unclear:

Some issues with connectivity in one station. [It] was quickly resolved and another examiner took over [the] questions so I don’t feel disadvantaged due to it. [Candidate 383]

Electricity load-shedding occurred with the generator being switched on at the venue. The volume of the speaker was low and the invigilator increased the volume. [Candidate 263]

Sometimes it would appear as though an examiner had frozen on the screen where their broadband signal had become temporarily weak. This did not disturb the call entirely given that we had the buffer 5 minutes in case of technical glitches. [Candidate 128]

Some audio disturbance, and can hear the exam next door is a bit distraction. [Candidate 414]

On the Basis of Candidates’ Experiences, How Could We Enhance the SOE Experience?

Overview
Thematic analysis of the open-ended questions allowed us to better understand the positive and negative experiences of candidates undertaking web-based SOEs using Zoom. We identified 27 themes, which we categorized into 4 overarching themes, as shown in Table 4.

Table 4. Themes from qualitative analysis of candidates’ responses.

<table>
<thead>
<tr>
<th>Themes</th>
<th>Subthemes</th>
<th>Positive experiences</th>
<th>Negative experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination design and content</td>
<td>• No home-ground advantage</td>
<td></td>
<td>• No preparation time</td>
</tr>
<tr>
<td></td>
<td>• Standardized scenarios and questions</td>
<td></td>
<td>• No station preview</td>
</tr>
<tr>
<td></td>
<td>• Fair questions</td>
<td></td>
<td>• Limited media engagement</td>
</tr>
<tr>
<td></td>
<td>• Expanded case number</td>
<td></td>
<td>• Limited case discussion</td>
</tr>
<tr>
<td></td>
<td>• Less intimidating</td>
<td></td>
<td>• Long examination waiting times</td>
</tr>
<tr>
<td></td>
<td>• Helpful mock examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Less examiner-examiner interaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination environment</td>
<td>• Helpful and friendly proctoring staff</td>
<td></td>
<td>• Variable audiovisual quality</td>
</tr>
<tr>
<td></td>
<td>• On-site IT support</td>
<td></td>
<td>• Obtaining assistance</td>
</tr>
<tr>
<td></td>
<td>• More examiner interaction without patients</td>
<td></td>
<td>• Lack of earphones</td>
</tr>
<tr>
<td></td>
<td>• Travel convenience</td>
<td></td>
<td>• Lack of screen share control</td>
</tr>
<tr>
<td></td>
<td>• Financial saving</td>
<td></td>
<td>• No hard copies of case scenarios</td>
</tr>
<tr>
<td></td>
<td>• Home comforts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Less interruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal benefits for candidates</td>
<td>• Travel convenience</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Financial saving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Home comforts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Less interruption</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*No negative personal benefits reported.

Examination Design and Content
Candidates endorsed the lack of a home-ground advantage:

The fact that all candidates are on the same footing. The home candidates have a clear advantage when it comes to clinical OSCE with patients. Those travelling to other provinces do so at great cost and emotional stress. The examination as it was done now should be the way forward. [Candidate 257]

Candidates appreciated the standardization of case scenarios and examination questions:

Excellent standardisation. All candidates had the same examiners, same questions, same experience. Removed all bias from exam. [Candidate 22]

A great number of case scenarios also contributed to a fair examination in the virtual context than in previous in-person oral examinations:
I really enjoyed that the number of cases in the examination was increased as I think that one is able to get a good impression of a candidate if they are examined over broader spectrum rather than certain cases as depicted by the examiners, so that if a candidate does badly in one case they still have a shot at redemption. [Candidate 238]

It was good to have a wider range of cases including paediatric and emergency cases that we normally would not be examined on. I found the experience of virtual presence of the examiners less intimidating. [Candidate 33]

Candidates also felt that virtual oral examinations were fair and more transparent because there was limited examiner-to-examiner interaction:

I think it was also great that examiners where not in the same room and each examiner examined the candidate independently [examiner not aware what another examiner scored for a particular candidate] and that they did not discuss what mark should be given to a particular candidate. Think this brings fairness and transparency. [Candidate 238]

Mock examinations were also perceived favorably. However, the long waiting times before and after the examination were negatively received:

The Zoom Mock exam was reassuring, thank you for giving us clarity. Though it was unpleasant to wait for 2 hours before exams start, I did appreciate the session slots. It was very organized, I commend the team. [Candidate 487]

Unfortunately the duration of the examination process is tedious. If this platform goes ahead it would be preferable to have wrapped up the exams in a shortest time frame. [Candidate 485]

Negative experiences that candidates felt could be improved included an overview of the station before it begins:

Ask examiners to provide a brief overview of the length of the station/number of questions in order to plan answers/timing accordingly. [Candidate 167]

Participants also wanted to add preparation time to each station:

Inadequate time to review slides and prep, many stations required you time to grasp the concepts and integrate the information. It was difficult to do in the time frame provided. Difficult to read the slides and process information and feedback [to examiners]. [Candidate 63]

Candidates wanted better control of the media included in the case scenarios, for example, scrolling through computed tomography imaging studies:

Inability to interact with images and unavailability of dynamic acquisitions. [Candidate 222]

Unable to control imaging myself to make an assessment. [Candidate 386]

They also wanted the option of viewing video clips more than once:

For the video station, to have an option of watching the video twice if you would like to do so because in a real case scenario when examining a patient, you can repeatedly ask the person to do something. Some of the stations should be made realistic, like the emergency station, in a real-life situation, the patient comes in, you don’t get history first the ask to see the patient. [Candidate 481]

Although the candidates enjoyed the breadth of knowledge that was assessed, they wanted an additional way to portray their clinical maturity and insight:

Feeling unable to give a proper account of my knowledge. There is no room for clinical discussion or arguments when answering against a rubric all the time. Maybe one or two stations would be valuable where there’s no rubric and just a discussion around a topic or a case etc. [Candidate 90]

Other negative experiences included a reflection of case scenario design and highlighted the importance of designing appropriate questions for a virtual examination environment:

The examination should have either a model or a device with which the candidate could demonstrate their skills [if the candidate is being asked to demonstrate use of such device]. Adequate resolution of images is also a necessity. [Candidate 70]

Participants suggested administering the case scenarios in a more authentic way to better reflect a real patient encounter:

Because there are no real patients perhaps show pictures of not only the positive findings that the examiner needs to candidate to comment on, but also important negative clinical findings. For example, if the main pathology is in the external ear, it would be helpful to show a picture of a normal TM [tympanic membrane]. When the candidate now interprets the scan, it helps to know that the middle ear was normal. [Candidate 33]

Examination Environment

Candidates really appreciated the helpful, compassionate, on-site proctoring staff:

Invigilators were very supportive and accommodating, they gave us 5-star treatment, Thank you very much. Examiners were very empathetic. [Candidate 487]

Moreover, they specified that efficient troubleshooting and reliable technical support were important:

Well organized, flowed well with on-the-spot problem solving, excellently managed. [Candidate 421]

Having an efficient way to call for rapid technical assistance was identified as a possible improvement:

...Have a buzzer or bell in the exam room to enable you to ask for assistance if signal is lost. Or having
Inform the candidates how the examination will be conducted. [Candidate 443]

...Explain the role of the technician prior to examination... [Candidate 44]

Clear instruction about the conduct of the examination was also considered important:

I felt that the examiners engaged with you more during the zoom meeting because there were no patients. [Candidate 226]

However, the virtual environment required more examiner engagement with candidates to reassure them that they were being heard:

Due to lack of in person examiners, examiners need to be engaging and acknowledge the participants response. Not guide or prompt, but make it clear to the participant that they could be heard. [Candidate 123]

Furthermore, candidates did not approve of examiners being distracted during virtual examinations conducted in their homes:

Examiners should have their phones off and not be distracted by other factors if examining from home. [Candidate 130]

Examiners’ visibility on the screen was viewed both positively and negatively:

I wasn’t actually told I had to have the examiners’ video visible, so I switched it off and found this a much more pleasant experience than what I had been expecting based on colleagues’ related experiences of previous examinations. [Candidate 251]

Candidates noted that there was less “positive” examiner cueing because it was not possible to read the examiners’ body language:

Lacking positive reassurance from visual cues given by examiner in a normal setting. Although it is not a given that you would receive that even in a face to face oral. [Candidate 352]

Lack of examiners’ eye contact with the camera was specifically mentioned: [Candidate 125]

Candidates found the examination design to be overwhelmingly positive. It was associated with financial savings, reduced levels of anxiety, travel convenience, and availability of home comforts:

No travel. No need to adjust to unknown environment and clinical setting. Costs saved. [Candidate 349]

To be based locally in a huge relief. It alleviates a lot of the stress during an already very stressful time. [Candidate 365]
I liked that it started later, reduced anxiety of traffic and allowed me to sleep better. [Candidate 431]

Home, familiar surroundings, and staff very helpful. [Candidate 373]

Textbox 1. Suggestions from candidates for enhancing the web-based structured oral examination (SOE) experience.

Suggestions from candidates
- Provide candidates with an overview of time allocation per station or desk timer in station
- Allocate preparation time before station begins
- Design case scenarios such that strong candidates can demonstrate their clinical maturity
- Provide paper for candidates to make notes during virtual SOEs
- Allow candidates to control media content, including scrolling and screen share capability
- Allow candidates to use headphones or headsets to improve audio quality
- Provide dual screen capabilities when additional examination material needs to be viewed
- Allow candidates the option of not seeing their examiners (examiners have their video off)
- Train examiners the option of not seeing their examiners (examiners have their video off)
- Minimize the duration of digital isolation while maintaining examination integrity

Are Pass Rates of Web-Based and In-Person Certification Examinations Comparable?

Most candidates (1159/1467, 79%) who undertook web-based SOEs were ultimately successful in passing their certification examinations and gained admission to the respective member colleges of CMSA. The pass rates for 2020 and 2021 were 91.4% (1583/1732) and 79.7% (850/1067), respectively. The average pass rate for postgraduate in-person certification examinations conducted by CMSA 3 years before the pandemic (2017-2019) was 58.23% (4030/6921). This was significantly lower than the pass rate for the first 2 cycles that included web-based certification examinations (2020: N=8635; χ²=667; P<.001; 2021: N=7988; χ²=178; P<.001).

Discussion

Principal Findings

This paper reports about >1500 candidates’ experiences of web-based SOEs conducted via Zoom as part of postgraduate specialty and subspecialty certification examinations hosted by CMSA during the early part of the COVID-19 pandemic. Despite the short time frame in which this transition to web-based examinations was executed, the initiative was well received by candidates. Overall, they perceived web-based SOEs to be a fair and appropriate assessment method, were generally satisfied with the use of Zoom for hosting the examination proceedings, and reported surprisingly few technical challenges. The qualitative data provided a rich analysis of their positive and negative experiences and provided constructive suggestions that could further improve the web-based SOE experience.

An important finding of our study was the observation that candidates undertaking web-based certification examinations performed better than candidates previously undertaking in-person certification examinations. This study did not set out to explore the possible reasons for this observation, but some qualitative observations from candidates may be of interest in this regard. First, candidates reported feeling less intimated by examiners during web-based oral examinations. Second, improved standardization of the examination process using identical case scenarios and standardized questions with marking memoranda may have contributed to fair examination conditions supporting better overall candidate performance. Third, candidates found the overall web-based examination experience to be less stressful, and this may have positively influenced their performance. Fourth, examiners were required to score candidates’ performance independently without conferring before awarding a final score. This limited examiner-examiner interaction may have limited examiner coercion and had a positive impact on the final scores awarded.

Important Improvement Considerations

On the basis of the findings of the thematic analysis, we compiled 10 suggestions that could possibly further improve the web-based SOE experience for candidates. They are listed in Textbox 1.

On the basis of the findings of the thematic analysis, we compiled 10 suggestions that could possibly further improve the web-based SOE experience for candidates. They are listed in Textbox 1.
verbal engagement with candidates to ensure a more authentic experience for candidates.

Findings of Other Studies

There are several pre-pandemic papers reporting favorably about the use of in-person SOEs in medical education [14-21]. Although these reports were encouraging and supported the use of SOEs for assessment, they did not speak in the context of web-based oral examinations for high-stakes postgraduate certification purposes, which is the topic of this paper. When looking specifically at this context, it is apparent that this is an emerging field that has gained momentum during the pandemic. Currently, there are a few recent reports directly relevant to the key findings of this study. Before the pandemic, McGrath et al [27] reported a study comparing web-based oral examinations with in-person oral examinations for anesthesiology residents. The study randomized 35 residents to testing conditions using an immersive learning environment. Although an immersive learning environment is not the same as a web-based oral examination conducted via Zoom, the paper broadly contributes to the conversation about moving postgraduate oral examinations into a web-based setting. It is worth noting that the authors reported similar academic performance in both groups, which is consistent with our findings of the noninferior performance of candidates undertaking web-based oral examinations. In the study, as also seen in our study, most examination candidates preferred the web-based experience, found it to be less intimidating than in-person oral examinations, and commented about the cost saved by not traveling to testing sites.

Recently, Chaurasia et al [5] conducted a small pilot study of 8 radiation oncology postgraduate trainees and 8 examiners testing the use of web-based oral examinations conducted via Zoom. Candidates were engaged in 8 stations of 25 minutes each, using breakout rooms. Similar to us, they found Zoom to be easy to use, adequate for examination purposes, and free of serious technical difficulties and described it as a fairly seamless experience. They used screen share and annotate for anatomy review, contouring, and treatment plan evaluation for virtual radiation oncology cases. Users described the web-based experiences easier or the same for ease of understanding of the cases and reported preparation to be the same or less time consuming than for in-person oral exams. The authors concluded that a move to web-based oral examinations for postgraduate certification examinations in radiation oncology should be considered as a feasible alternative.

In 2021, a total of 44 senior vascular surgery postgraduate trainees from 17 US training institutions undertook web-based mock oral examinations with 2 remote examiners via Zoom [28]. For each candidate, examiners selected 4 cases from a book of 30 vascular scenarios, and candidate performance was assessed using a standardized scoring sheet. Consistent with our findings, the authors reported no difference in how well the knowledge base of candidates could be examined compared with in-person oral examinations. They also reported that candidates could adequately express their confidence in the web-based setting and concluded that web-based oral examinations are a viable option to consider for examination purposes. They also mentioned the cost saved by remote examinations. The most important considerations highlighted in that paper was the fairness of test grading achieved by using a standardized marking sheet and the equity of test questions achieved by using a standardized set of case scenarios. This speaks to factors that may contribute to favorable candidate performance as already mentioned by us.

In 2022, the Vascular Surgery Board reported about the successful implementation of web-based certification examinations [29]. They reported about the findings of 356 successful candidates who each undertook three 30-minute virtual oral examinations hosted via Zoom. Similar to the findings of our study, the examination process was well received by candidates and found to be technically adequate. Similar to our candidates, they raised concerns about image quality and time constraints to answer all questions but expressed appreciation for good planning and execution, convenience of local examination conditions, and avoidance of travel costs. Overall, candidates were significantly more in favor of continuing web-based examinations as compared with examiners (87% vs 32%; P < .001). The authors make a case for the feasibility and convenience of continuing web-based certification examinations beyond the COVID-19 pandemic. Questions about IT support costs and the cost of remote proctoring are also raised in the paper.

The American Board of Obstetrics and Gynecology also recently published the outcome of their web-based oral certification examinations that were also conducted via Zoom [30]. Between 2021 and 2022, a total of 1491 specialty and 830 subspecialty candidates undertook three 1-hour oral examinations using 3 pairs of examiners per candidate. They found that candidates performed similarly in the web-based certification examinations as compared with previous in-person oral certification examinations. Similar to our findings, they experienced few technical difficulties, and candidate satisfaction with the remote examination was high; however, they expressed anxiety about the use of technology (remotely at home or elsewhere). Despite the success of these remote oral examinations, the issues of remote proctoring and the technical burden placed on candidates being examined in their homes have resulted in a decision to return to testing center–based in-person examinations.

The American Board of Surgery also recently published the findings of their first web-based certification examination for general surgery candidates conducted in 2021 [31]. They report about 306 successful candidates who also completed a web-based satisfaction survey after the examination. They also found that the pass rates for web-based oral examinations were no different from those of in-person oral examinations and that the new examination format was well received by candidates. Audio and video quality were adequate, and 78% of the survey respondents indicated that web-based certification examinations were preferred. The authors argue that the findings support the expanded use of this method of assessment.

The American Board of Ophthalmology has also reported about their success in conducting web-based oral examinations via Zoom for >1000 candidates over the past 12 months. Similar to our study, they took the opportunity to improve the standardization of the examination process and used 2
independent examiners. They described the inordinate preparation and planning required to effect a rapid transition from in-person to web-based certification examinations. They also found that the examination was very well received by both candidates and examiners who felt that the ability to assess knowledge, insight, and judgment using web-based oral examinations was the same as in-person examinations. Positive opinions regarding the use of the assessment method after the pandemic were expressed by a range of stakeholders. However, they did express some ambivalence over the continued use of web-based oral examinations.

Strengths and Limitations
Most current reports in the literature focus on small numbers of candidates. At the time of writing, this was one of the largest published studies reporting about web-based SOEs for postgraduate certification purposes. There are, however, important limitations in this study. We only reported about the initial 12 months of implementation, and a follow-up report is needed. Candidates may have viewed web-based oral examinations more favorably during the pandemic, and this opinion needs to be reviewed. The most significant limitation of the study is that the opinion of examiners was not captured. This was not possible during the pandemic because examiners were overburdened with additional clinical responsibilities and were setting up a new examination method with very little preparation time before the web-based examinations process began. Clearly, their opinion is needed, and after 36 months of implementation, it will contain a wealth of important considerations. Finally, this is a single-country study, and reports from elsewhere are needed.

Future Directions
Internationally, the move from in-person to web-based oral examinations, as part of postgraduate specialty certification examination processes, has gathered momentum [2,3,29-32]. There are, however, lively debates about the ongoing use of web-based oral examinations in the postpandemic era, and it seems that opinions are currently divided on the matter [29-32]. Cost and time savings and convenience of arranging and attending are significant factors in favor of remote oral examinations. Major disadvantages of web-based oral examinations include the cost of IT support and remote proctoring [33] and the inability of examiners to assess bedside skills (history taking and physical examination). Increased uptake of workplace-based assessment in postgraduate training programs should effectively address the ongoing concerns about clinical competence. More cost-efficient delivery of IT support and the challenges of remote proctoring require further studies.

Conclusions
This study highlights the value of conducting formative research about the use of web-based SOEs as part of postgraduate certification processes. We found that this method of assessment was well received by examination candidates, could be conducted via Zoom with surprisingly few technical challenges, and did not have a negative impact on candidates’ academic performance. Our encouraging findings are consistent with early reports from elsewhere that provide positive preliminary evidence supporting the ongoing use of this novel web-based assessment method in postgraduate medical education.

Acknowledgments
The authors wish to thank the candidates for participating in the study, and they extend a special thank you to Bianca van der Westhuizen and Riefda Thomson for the time they spent in assisting the authors with data extraction. No funding was obtained for this study.

Authors’ Contributions
VB was involved in the conceptualization of the study, proposal design, study implementation, data analysis, and manuscript preparation and review. JM contributed to literature review, data analysis, and manuscript preparation and review. EB was involved in the conceptualization of the study, proposal design, study implementation, and data analysis. FM was involved in study implementation, data capture, data analysis, and manuscript review. MS contributed to the proposal design and manuscript review. FS contributed to the proposal design and manuscript review. JF was involved in the conceptualization of the study, proposal design and submission, and manuscript preparation and review.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Survey.
[DOCX File, 66 KB - formative_v8i1e40868_app1.docx]

References

6. The Colleges of Medicine of South Africa. URL: https://www.comsa.co.za [accessed 2023-12-12]

8. American Board of Medical Specialties. URL: https://www.abms.org/ [accessed 2023-11-20]

9. College of Anaesthesiologists of Ireland. URL: https://www.anaaesthesia.ie/ [accessed 2023-11-20]

Abbreviations

CMSA: Colleges of Medicine of South Africa
SOE: structured oral examination

©Vanessa Burch, Jessica McGuire, Eric Buch, Mike Sathekge, Francis M'bouaffou, Flavia Senkubuge, Johannes Fagan. Originally published in JMIR Formative Research (https://formative.jmir.org), 06.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Development of a Social Risk Score in the Electronic Health Record to Identify Social Needs Among Underserved Populations: Retrospective Study

Elham Hatef, MPH, MD; Hsien-Yen Chang, PhD; Thomas M Richards, MS; Christopher Kitchen, MS, MA; Janya Budaraju, BS; Iman Foroughmand, MD; Elyse C Lasser, DrPH; Jonathan P Weiner, DrPH

1Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
2Center for Population Health Information Technology, Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States

Corresponding Author:
Elham Hatef, MPH, MD
Division of General Internal Medicine
Department of Medicine
Johns Hopkins School of Medicine
624 N Broadway
Room 502
Baltimore, MD, 21205
United States
Phone: 1 4109788006
Email: ehatef1@jhu.edu

Abstract

Background: Patients with unmet social needs and social determinants of health (SDOH) challenges continue to face a disproportionate risk of increased prevalence of disease, health care use, higher health care costs, and worse outcomes. Some existing predictive models have used the available data on social needs and SDOH challenges to predict health-related social needs or the need for various social service referrals. Despite these one-off efforts, the work to date suggests that many technical and organizational challenges must be surmounted before SDOH-integrated solutions can be implemented on an ongoing, wide-scale basis within most US-based health care organizations.

Objective: We aimed to retrieve available information in the electronic health record (EHR) relevant to the identification of persons with social needs and to develop a social risk score for use within clinical practice to better identify patients at risk of having future social needs.

Methods: We conducted a retrospective study using EHR data (2016-2021) and data from the US Census American Community Survey. We developed a prospective model using current year-1 risk factors to predict future year-2 outcomes within four 2-year cohorts. Predictors of interest included demographics, previous health care use, comorbidity, previously identified social needs, and neighborhood characteristics as reflected by the area deprivation index. The outcome variable was a binary indicator reflecting the likelihood of the presence of a patient with social needs. We applied a generalized estimating equation approach, adjusting for patient-level risk factors, the possible effect of geographically clustered data, and the effect of multiple visits for each patient.

Results: The study population of 1,852,228 patients included middle-aged (mean age range 53.76-55.95 years), White (range 324,279/510,770, 63.49% to 290,688/488,666, 64.79%), and female (range 314,741/510,770, 61.62% to 278,488/448,666, 62.07%) patients from neighborhoods with high socioeconomic status (mean area deprivation index percentile range 28.76-30.31). Between 8.28% (37,137/448,666) and 11.55% (52,037/450,426) of patients across the study cohorts had at least 1 social need documented in their EHR, with safety issues and economic challenges (ie, financial resource strain, employment, and food insecurity) being the most common documented social needs (87,152/1,852,228, 4.71% and 58,242/1,852,228, 3.14% of overall patients, respectively). The model had an area under the curve of 0.702 (95% CI 0.699-0.705) in predicting prospective social needs in the overall study population. Previous social needs (odds ratio 3.285, 95% CI 3.237-3.335) and emergency department visits (odds ratio 1.659, 95% CI 1.634-1.684) were the strongest predictors of future social needs.

Conclusions: Our model provides an opportunity to make use of available EHR data to help identify patients with high social needs. Our proposed social risk score could help identify the subset of patients who would most benefit from further social needs
screening and data collection to avoid potentially more burdensome primary data collection on all patients in a target population of interest.

(JMIR Form Res 2024;8:e54732) doi: 10.2196/54732

KEYWORDS
AI; algorithms; artificial intelligence; community health; deep learning; EHR; electronic health record; machine learning; ML; population demographics; population health; practical models; predictive analytics; predictive modeling; predictive modelling; predictive models; predictive system; public health; public surveillance; SDOH; social determinants of health; social needs; social risks

Introduction

Addressing social needs and social determinants of health (SDOH) challenges in the health care system has emerged as a key component of addressing health disparities [1]. Patients with unmet social needs continue to face a disproportionate risk of increased prevalence of disease, health care use, higher health care costs, and worse outcomes across a range of health-related domains [2-5]. Thus, health disparities cannot be resolved through traditional clinical interventions in the health care system. Targeted interventions to address social needs and SDOH challenges, especially among minority populations, are necessary to overcome widespread disparities [6].

The use of coding systems such as International Classification of Diseases, Tenth Revision (ICD-10) codes for social needs (ie, Z-codes) has increased in recent years, suggesting that clinicians and provider organizations are increasingly aware of social needs and SDOH challenges and the importance of screening for and documenting such needs [7]. Social needs are also extensively documented in unstructured electronic health records (EHRs), such as free-text provider notes [8-12]. Moreover, the rapid adoption of EHRs nationwide and the creation of associated health information technology tools have made it possible to use this growing body of data on social needs and SDOH challenges in risk prediction and adjustment models [13-21].

Some existing predictive models use EHR and administrative claims data on social needs to predict patterns of health care use, cost, and health outcomes [16,18-20,22]. Population-level data on community characteristics is a key component of understanding and addressing SDOH challenges and their impact on health care use, cost, and outcomes [23,24]. Therefore, some EHR-based models have developed linkages to these population-level data to better account for community-level information in their risk predictions [17,21,25-27]. Some existing models have also used the available data on social needs and SDOH challenges to predict health-related social needs [14,15] or the need for various social service referrals [13]. Despite these one-off research and pilot efforts, the work to date suggests that many technical and organizational challenges must be surmounted before SDOH-integrated health information technology solutions can be implemented on an ongoing, wide-scale basis within most US-based health care organizations.

Using both patient- and population-level data, we sought to develop a social predictive risk score based entirely on electronic information readily available within most health care delivery systems. Predictive models such as this could help providers to systematically identify patients at risk of having future social needs, who represent likely targets for further in-depth assessment of their social needs and ultimately potential referral to community-based organizations to address such needs. Using a systematic electronic case-finding screening approach such as this would help the health care system avoid burdensome and inefficient social needs assessment (eg, primary data collection from every patient at every visit).

Methods

Data Sources

This was a retrospective study using the Johns Hopkins Health System (JHHS) Corporation’s EPIC-based EHR structured data from July 2016 to June 2021. Based on the patient’s home address during the in-scope study periods, we linked community-level data (at the census block group level) from the US Census American Community Survey, 2018 five-year cohort [28]. We developed a prospective model (using current year-1 risk factors to predict future year-2 outcomes) within four such 2-year cohorts (ie, 2016-2017, 2017-2018, 2018-2019, and 2019-2020). Each cohort contained model predictors in the first year (2016 in the first, 2017 in the second, 2018 in the third, and 2019 in the fourth cohort) and model outcomes in the second year (2017 in the first, 2018 in the second, 2019 in the third, and 2020 in the fourth cohort). The overall data were randomly split into training and validation data sets (80% of the data were used for model development while the remaining 20% were used for validation). The final model was applied to the 2020-2021 cohort to evaluate its accuracy.

Study Population

Adult patients aged 18 years or older at the time of entering the observation period who were alive at the end of the observation, had at least 1 eligible encounter in the first and second years of each study cohort, and had a valid address for linkage to population-level data were included in this study.

Variable Selection

We identified variables with the highest potential impact on the health and social well-being of minority populations through a review of the literature and consultation with minority health, population health, and social needs and SDOH experts at JHHS. We also sought input from primary care providers and frontline workers, such as social workers and care managers,
representatives of community-based organizations, and patients and their caregivers.

We identified a comprehensive list of predictors of interest available within the EHR’s structured data, including various patient- and community-level characteristics as well as health care use measures (Table 1) [29,30].

To develop the variable on previous social needs, we obtained any ICD-10 codes presenting social needs using the “Compendium of Medical Terminology Codes for Social Risk Factors” developed by the Social Interventions Research and Evaluation Network [31] or any information on social needs available in the JHHS-EHR Wellness Registry, a data mart table in EPIC storing information related to general patient health, consolidated from many subject areas including social history and risk scores. After reviewing the classification of the ICD-10 codes by Social Interventions Research and Evaluation Network, we developed 13 subdomains and 5 domains of social needs (Figure 1).

Table 1. Predictors of interest available within the electronic health record (EHR) structured data for inclusion in the generalized estimating equation model predicting prospective social needs for patients at Johns Hopkins Health System between 2016 and 2021.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>Using the date of birth calculated at the time of entering the study cohort</td>
</tr>
<tr>
<td>Gender</td>
<td>Self-identified and reported at the time of entering the study cohorts</td>
</tr>
<tr>
<td>Race</td>
<td>Self-identified and reported at the time of entering the study cohorts</td>
</tr>
<tr>
<td>Preferred language</td>
<td>N/Aa</td>
</tr>
<tr>
<td>Need for an interpreter</td>
<td>N/A</td>
</tr>
<tr>
<td>Previous health care use</td>
<td></td>
</tr>
<tr>
<td>In-patient admissions</td>
<td>N/A</td>
</tr>
<tr>
<td>Emergency department visits</td>
<td>N/A</td>
</tr>
<tr>
<td>Previous social needs</td>
<td></td>
</tr>
<tr>
<td>ICD-10b codes</td>
<td>Documented using relevant ICD-10 codes</td>
</tr>
<tr>
<td>EPIC Wellness Registry</td>
<td>Documented in other structured social needs assessment fields, presented in the Wellness Registry Table</td>
</tr>
<tr>
<td>Clinical characteristics (derived from the Johns Hopkins ACGc System version 12.0 [29], a widely used population-based predictive modeling and case-finding methodology)</td>
<td></td>
</tr>
<tr>
<td>Number of chronic conditions</td>
<td>N/A</td>
</tr>
<tr>
<td>Medication active ingredients</td>
<td>N/A</td>
</tr>
<tr>
<td>Resource Utilization Band</td>
<td>Represents expected future use based on current morbidities</td>
</tr>
<tr>
<td>Neighborhood characteristics (associated with the person’s residence of longest duration)</td>
<td></td>
</tr>
<tr>
<td>Area deprivation index</td>
<td>A composite measure allowing for the ranking of neighborhoods across the country by their socioeconomic disadvantage, reported at the census block group level [30]</td>
</tr>
</tbody>
</table>

aN/A: not applicable.
bICD-10: International Classification of Diseases, Tenth Revision.
cACG: Adjusted Clinical Group.
The Adjusted Clinical Group (ACG) System Resource Utilization Band represent a simplified population segmentation system based on the overall morbidity burden of each patient. Representing expected future use based on current morbidities, the measure is calculated using all available ICD-10 codes for a person in the EHR during year 1, ranked from low to high according to the expectations of resources used during year 2.

Statistical Analysis

We used a generalized estimating equation (GEE) model to predict prospective social needs, adjusting for the effect of the geographically clustered data as well as the effect of multiple visits for each patient (the records were clustered at the patient and 5-digit zip code level). The model selection was based on the goodness of fit test for GEE modeling, and the final risk score was composed using the variables identified as having the highest impact in the GEE model. We also validated the model using multiple denominators to ensure generalizability and retrained and tested the model for each subpopulation of interest (eg, individuals aged 65 years or older, racial and ethnic minority populations, and those living in the most and least disadvantaged neighborhoods).

Ethical Considerations

The institutional review board of the Johns Hopkins Bloomberg School of Public Health reviewed and approved this study as exempt. The board approved the EHR data extraction for the secondary analysis of deidentified data.

Results

Demographics

The final study population included 1,852,228 patients in total. To be included in the sample, the patients had to be in at least 1 of four 2-year study cohorts (Table 2). The characteristics of patients across the study cohorts were comparable. Study cohorts included mostly middle-aged (mean age range 53.76-55.95 years across study cohorts), White (range 324,279/510,770, 63.49% to 290,688/488,666, 64.79%), and female (range 314,741/510,770, 61.62% to 278,488/448,666, 62.07%) patients from neighborhoods with high socioeconomic status (mean area deprivation index [ADI] percentile range 28.76-30.31). Between 8.28% (37,137/448,666) and 11.55% (52,037/450,426) of patients across the study cohorts had at least 1 social need documented in the ICD-10 codes or EPIC Wellness Registry, with safety issues and economic challenges (ie, financial resource strain, employment, and food insecurity) being the most common documented social needs (87,152/1,852,228, 4.71% and 58,242/1,852,228, 3.14% of overall patients, respectively; Table S1 in Multimedia Appendix 1 provides details on the social needs domains across study cohorts). Between 18.67% (95,350/510,770) and 21.18% (95,393/450,426) of patients across the study cohorts had high or very high Resource Utilization Band, indicative of having a high disease burden, as reflected by many serious comorbidities.
Table 2. Characteristics of the study population for the development of the social risk score using electronic health record data at Johns Hopkins Health System between 2016 and 2021: overall and by 2-year enrollment cohorts (all characteristics are reported based on the first year of each cohort unless otherwise indicated).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Study cohort</th>
<th>Overall (N=1,852,228)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016-2017 (n=448,666)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017-2018 (n=442,366)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018-2019 (n=450,426)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019-2020 (n=510,770)</td>
<td></td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>53.76 (17.65)</td>
<td>54.63 (17.43)</td>
</tr>
<tr>
<td></td>
<td>55.18 (17.25)</td>
<td>55.95 (17.34)</td>
</tr>
<tr>
<td></td>
<td>54.63 (17.43)</td>
<td>54.92 (17.43)</td>
</tr>
<tr>
<td>Gender (female), n (%)</td>
<td>278,488 (62.07)</td>
<td>274,330 (62.01)</td>
</tr>
<tr>
<td></td>
<td>278,574 (61.85)</td>
<td>314,741 (61.62)</td>
</tr>
<tr>
<td></td>
<td>1,146,133 (61.88)</td>
<td>1,146,133 (61.88)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>290,688 (64.79)</td>
<td>285,558 (64.55)</td>
</tr>
<tr>
<td></td>
<td>289,611 (64.30)</td>
<td>324,279 (63.49)</td>
</tr>
<tr>
<td></td>
<td>1,190,136 (64.25)</td>
<td>1,190,136 (64.25)</td>
</tr>
<tr>
<td>Black</td>
<td>105,746 (23.57)</td>
<td>103,879 (23.48)</td>
</tr>
<tr>
<td></td>
<td>105,156 (23.35)</td>
<td>118,989 (23.3)</td>
</tr>
<tr>
<td></td>
<td>433,770 (23.42)</td>
<td>433,770 (23.42)</td>
</tr>
<tr>
<td>Other</td>
<td>52,232 (11.64)</td>
<td>52,929 (11.97)</td>
</tr>
<tr>
<td></td>
<td>55,659 (12.35)</td>
<td>67,502 (12.31)</td>
</tr>
<tr>
<td></td>
<td>228,322 (12.33)</td>
<td>228,322 (12.33)</td>
</tr>
<tr>
<td>Preferred language (English), n (%)</td>
<td>430,331 (95.91)</td>
<td>423,396 (95.71)</td>
</tr>
<tr>
<td></td>
<td>430,024 (95.47)</td>
<td>465,173 (91.07)</td>
</tr>
<tr>
<td></td>
<td>1,748,924 (94.42)</td>
<td>1,748,924 (94.42)</td>
</tr>
<tr>
<td>Interpreter needed (yes), n (%)</td>
<td>9,356 (2.09)</td>
<td>9,715 (2.20)</td>
</tr>
<tr>
<td></td>
<td>10,632 (2.36)</td>
<td>12,928 (2.53)</td>
</tr>
<tr>
<td></td>
<td>46,432 (2.30)</td>
<td>46,432 (2.30)</td>
</tr>
<tr>
<td>Area deprivation index national rank, mean (SD)(^a)</td>
<td>30.31 (23.6)</td>
<td>29.93 (23.46)</td>
</tr>
<tr>
<td></td>
<td>29.65 (23.24)</td>
<td>28.76 (22.81)</td>
</tr>
<tr>
<td></td>
<td>29.63 (23.27)</td>
<td></td>
</tr>
<tr>
<td>Health care use, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any in-patient admission</td>
<td>39,364 (8.77)</td>
<td>37,154 (8.4)</td>
</tr>
<tr>
<td></td>
<td>38,407 (8.53)</td>
<td>41,149 (8.06)</td>
</tr>
<tr>
<td></td>
<td>156,074 (8.43)</td>
<td>156,074 (8.43)</td>
</tr>
<tr>
<td>Any emergency department visits</td>
<td>71,737 (15.99)</td>
<td>69,436 (15.70)</td>
</tr>
<tr>
<td></td>
<td>69,649 (15.46)</td>
<td>77,308 (15.14)</td>
</tr>
<tr>
<td></td>
<td>288,130 (15.56)</td>
<td>288,130 (15.56)</td>
</tr>
<tr>
<td>Previous social needs, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1: ICD-10(^b) codes</td>
<td>37,137 (8.28)</td>
<td>50,332 (11.38)</td>
</tr>
<tr>
<td></td>
<td>52,037 (11.55)</td>
<td>57,170 (10.21)</td>
</tr>
<tr>
<td></td>
<td>191,693 (10.35)</td>
<td>191,693 (10.35)</td>
</tr>
<tr>
<td>Year 1: EPIC Wellness Registry</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>2 (0)</td>
<td>6,663 (1.3)</td>
</tr>
<tr>
<td></td>
<td>6,665 (0.36)</td>
<td></td>
</tr>
<tr>
<td>Year 2: ICD-10 codes</td>
<td>45,272 (10.09)</td>
<td>46,587 (10.53)</td>
</tr>
<tr>
<td></td>
<td>42,475 (9.43)</td>
<td>42,902 (8.40)</td>
</tr>
<tr>
<td></td>
<td>177,236 (9.57)</td>
<td>177,236 (9.57)</td>
</tr>
<tr>
<td>Year 2: EPIC Wellness Registry</td>
<td>0 (0)</td>
<td>3 (0)</td>
</tr>
<tr>
<td></td>
<td>5,596 (1.24)</td>
<td>11,079 (2.17)</td>
</tr>
<tr>
<td></td>
<td>16,678 (0.90)</td>
<td></td>
</tr>
<tr>
<td>Clinical characteristics, mean (SD)(^c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Chronic Conditions</td>
<td>2.3 (2.7)</td>
<td>2.4 (2.8)</td>
</tr>
<tr>
<td></td>
<td>2.4 (2.8)</td>
<td>2.2 (2.7)</td>
</tr>
<tr>
<td></td>
<td>2.3 (2.7)</td>
<td></td>
</tr>
<tr>
<td>Number of Medication Active Ingredients</td>
<td>2.2 (6.1)</td>
<td>2.2 (6.1)</td>
</tr>
<tr>
<td></td>
<td>2.3 (6.3)</td>
<td>2.1 (5.9)</td>
</tr>
<tr>
<td></td>
<td>2.2 (6.1)</td>
<td></td>
</tr>
<tr>
<td>Resource Utilization Band, n (%)(^d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No or only invalid diagnosis</td>
<td>2,2507 (5.02)</td>
<td>20,273 (4.58)</td>
</tr>
<tr>
<td></td>
<td>16,897 (3.75)</td>
<td>35,288 (6.91)</td>
</tr>
<tr>
<td></td>
<td>94,965 (5.13)</td>
<td></td>
</tr>
<tr>
<td>Healthy users</td>
<td>44,731 (9.97)</td>
<td>43,408 (9.81)</td>
</tr>
<tr>
<td></td>
<td>40,996 (9.1)</td>
<td>53,142 (10.4)</td>
</tr>
<tr>
<td></td>
<td>182,277 (9.84)</td>
<td></td>
</tr>
<tr>
<td>Low resource use</td>
<td>59,400 (13.24)</td>
<td>55,221 (12.48)</td>
</tr>
<tr>
<td></td>
<td>57,667 (12.8)</td>
<td>69,566 (13.62)</td>
</tr>
<tr>
<td></td>
<td>241,854 (13.06)</td>
<td></td>
</tr>
<tr>
<td>Moderate resource use</td>
<td>232,748 (58.8)</td>
<td>231,680 (52.37)</td>
</tr>
<tr>
<td></td>
<td>239,473 (53.17)</td>
<td>257,424 (50.4)</td>
</tr>
<tr>
<td></td>
<td>961,325 (51.9)</td>
<td></td>
</tr>
<tr>
<td>High resource use</td>
<td>59,979 (13.37)</td>
<td>60,841 (13.75)</td>
</tr>
<tr>
<td></td>
<td>62,740 (13.93)</td>
<td>63,338 (13.24)</td>
</tr>
<tr>
<td></td>
<td>246,898 (13.33)</td>
<td></td>
</tr>
<tr>
<td>Very high resource use</td>
<td>29,301 (6.53)</td>
<td>30,943 (6.99)</td>
</tr>
<tr>
<td></td>
<td>32,653 (7.25)</td>
<td>32,012 (6.27)</td>
</tr>
<tr>
<td></td>
<td>124,909 (6.74)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Neighborhood characteristics for the person’s residence of the longest duration are reported as a percentile of national rank [30].

\(^b\)ICD-10: International Classification of Diseases, Tenth Revision.

\(^c\)These clinical measures are derived from the Johns Hopkins Adjusted Clinical Group (ACG) System version 12.0. The Resource Utilization Band represents expected future use based on current morbidities [29].

GEE Modeling

Details of the GEE models are presented in Table 3. The GEE model had an area under the curve (AUC) of 0.702 (95% CI 0.699-0.705) in predicting prospective social needs in the overall study population. The strongest predictors of future social needs in the whole population in descending order were social needs documented in the EHR during the previous year period (odds ratio [OR] 3.285, 95% CI 3.237-3.335), ≥1 emergency department visit in the previous periods (OR 1.659, 95% CI 1.634-1.684), and a very high Resource Utilization Band measure indicative of a significant morbidity burden (OR 1.371, 95% CI 1.317-1.427).
Table 3. Generalized estimating equation model predicting prospective social needs for patients at Johns Hopkins Health System using electronic health record data between 2016 and 2021: overall model and models for selected subpopulations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall Population</th>
<th>Population aged ≥65 years</th>
<th>Racial groups</th>
<th>Neighborhood characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>An area under the curve (95% CI)</td>
<td>0.702 (0.699-0.705)</td>
<td>0.701 (0.696-0.706)</td>
<td>0.689 (0.685-0.693)</td>
<td>0.711 (0.706-0.716)</td>
</tr>
<tr>
<td>Age (years), OR^a (95% CI)</td>
<td>0.994 (0.993-0.994)</td>
<td>1.002 (1.001-1.004)</td>
<td>0.994 (0.994-0.995)</td>
<td>0.993 (0.992-0.994)</td>
</tr>
<tr>
<td>Gender (male; reference: female), OR (95% CI)</td>
<td>0.993 (0.981-1.004)</td>
<td>0.922 (0.903-0.941)</td>
<td>0.964 (0.95-0.979)</td>
<td>1.068 (1.046-1.092)</td>
</tr>
<tr>
<td>Race (Black; reference: White), OR (95% CI)</td>
<td>1.125 (1.11-1.141)</td>
<td>1.149 (1.118-1.182)</td>
<td>b</td>
<td>—</td>
</tr>
<tr>
<td>Preferred language (English; reference: missing, others, or sign language), OR (95% CI)</td>
<td>1.061 (1.026-1.097)</td>
<td>1.293 (1.221-1.371)</td>
<td>1.034 (0.991-1.08)</td>
<td>1.112 (1.043-1.187)</td>
</tr>
<tr>
<td>Interpreter needed (yes; reference: no or missing), OR (95% CI)</td>
<td>1.179 (1.12-1.238)</td>
<td>1.266 (1.156-1.386)</td>
<td>1.006 (0.908-1.114)</td>
<td>0.816 (0.679-0.981)</td>
</tr>
<tr>
<td>Area deprivation index national rank (percentile), OR (95% CI)^c</td>
<td>1.005 (1.005-1.005)</td>
<td>1.001 (1.001-1.002)</td>
<td>1.003 (1.003-1.004)</td>
<td>1.007 (1.006-1.007)</td>
</tr>
</tbody>
</table>

Health care use, OR (95% CI)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall Population</th>
<th>Population aged ≥65 years</th>
<th>Racial groups</th>
<th>Neighborhood characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any in-patient admission</td>
<td>1.017 (0.993-1.042)</td>
<td>1.077 (1.03-1.126)</td>
<td>1.064 (1.03-1.1)</td>
<td>0.987 (0.947-1.029)</td>
</tr>
<tr>
<td>Any emergency department visits</td>
<td>1.659 (1.634-1.684)</td>
<td>1.539 (1.495-1.584)</td>
<td>1.691 (1.656-1.728)</td>
<td>1.627 (1.587-1.668)</td>
</tr>
<tr>
<td>Previous social needs, OR (95% CI)^d</td>
<td>3.285 (3.237-3.335)</td>
<td>3.043 (2.96-3.128)</td>
<td>3.459 (3.391-3.529)</td>
<td>2.9 (3.282-2.977)</td>
</tr>
</tbody>
</table>

Clinical characteristics, OR (95% CI)^d

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall Population</th>
<th>Population aged ≥65 years</th>
<th>Racial groups</th>
<th>Neighborhood characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of chronic conditions</td>
<td>1.066 (1.064-1.069)</td>
<td>1.08 (1.07-1.08)</td>
<td>1.070 (1.067-1.074)</td>
<td>1.063 (1.058-1.068)</td>
</tr>
<tr>
<td>Number of medication active ingredients</td>
<td>0.997 (0.996-0.998)</td>
<td>0.99 (0.99-1.00)</td>
<td>0.997 (0.995-0.998)</td>
<td>0.997 (0.995-0.999)</td>
</tr>
</tbody>
</table>

Resource Utilization Band (reference: no or only invalid diagnosis), OR (95% CI)^d

<table>
<thead>
<tr>
<th>Variable</th>
<th>Healthy users</th>
<th>Low resource use</th>
<th>Moderate resource use</th>
<th>High resource use</th>
<th>Very high resource use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy users</td>
<td>0.838 (0.808-0.869)</td>
<td>0.792 (0.734-0.854)</td>
<td>0.836 (0.798-0.886)</td>
<td>0.785 (0.729-0.844)</td>
<td>0.837 (0.802-0.872)</td>
</tr>
<tr>
<td>Low resource use</td>
<td>0.855 (0.826-0.885)</td>
<td>0.837 (0.778-0.89)</td>
<td>0.856 (0.819-0.895)</td>
<td>0.846 (0.792-0.904)</td>
<td>0.849 (0.816-0.882)</td>
</tr>
<tr>
<td>Moderate resource use</td>
<td>0.964 (0.935-0.994)</td>
<td>0.935 (0.876-0.997)</td>
<td>0.942 (0.906-0.981)</td>
<td>1.008 (0.952-1.069)</td>
<td>0.978 (0.945-1.012)</td>
</tr>
<tr>
<td>High resource use</td>
<td>1.259 (1.217-1.302)</td>
<td>1.226 (1.144-1.314)</td>
<td>1.238 (1.184-1.294)</td>
<td>1.328 (1.246-1.415)</td>
<td>1.285 (1.238-1.335)</td>
</tr>
<tr>
<td>Very high resource use</td>
<td>1.371 (1.317-1.427)</td>
<td>1.218 (1.128-1.315)</td>
<td>1.291 (1.225-1.361)</td>
<td>1.514 (1.408-1.629)</td>
<td>1.420 (1.359-1.485)</td>
</tr>
</tbody>
</table>

^aOR: odds ratio.

^bNot available.

^cNeighborhood characteristics for the person’s residence of longest duration are reported as a percentile of national rank [30].

^dThese clinical measures are derived from the Johns Hopkins Adjusted Clinical Group (ACG) System version 12.0. The Resource Utilization Band represents expected future use based on current morbidities [29].

To help assess bias and applicability to various subpopulations, we identified comparable performance for models of select subgroups, with AUCs of 0.701 (95% CI 0.696-0.706), 0.711 (95% CI 0.706-0.716), and 0.711 (95% CI 0.708-0.714), respectively, for individuals aged 65 years or older, Black patients, and those living in the most disadvantaged.
neighboring. The strongest predictor of future social needs in the study subpopulations remained the previous social needs, with ORs of 3.043 (95% CI 2.96-3.128), 2.9 (95% CI 2.82-2.977), and 3.390 (95% CI 3.334-3.447) among individuals aged 65 years or older, Black patients, and those living in the most disadvantaged neighborhoods, respectively.

To ensure that the most common social needs (ie, safety and economic challenges) were not the main drivers of the model's performance, we performed a sensitivity analysis and ran the model after excluding patients with any social needs in subdomains of safety and economic challenges. This resulted in a slightly better-performing model with an AUC of 0.768 (95% CI 0.763-0.773). In this instance, previous social needs were by far the most significant predictor (OR 11.857, 95% CI 11.521-12.202), followed by emergency department visits (OR 1.916, 95% CI 1.865-1.969), need for an interpreter (OR 1.528, 95% CI 1.397-1.672), and Black race (OR 1.307, 95% CI 1.273-1.342). Contrary to the analyses performed with all social needs included, patients with higher Resource Utilization Band had slightly less risk of increased social needs, and lower Resource Utilization Band had slightly greater protective value regarding social needs (Table S2 in Multimedia Appendix 1 provides details of the GEE model).

Discussion

Overview

Achieving a comprehensive assessment of a person’s health and addressing health disparities goes beyond just documenting clinical diseases and medical interventions. We must also capture, standardize, analyze, and report reliable information on social needs and SDOH challenges within operational clinical decision support systems that are built into EHRs. Moreover, the rapid change toward “value-based” health care models [32] in the United States has required the incorporation of social needs and SDOH contexts and frameworks to ensure that the health care systems and health plans equitably address the needs of minority and disadvantaged communities [33,34]. For these value-based models to perform well, it is critical that clinical and social interventions are aligned and that no financial disincentives are imposed on providers who disproportionately serve minority and disadvantaged patients [33,34].

To achieve these goals, applied research is needed to identify optimal solutions for the effective collection and application of social needs and SDOH information within EHRs, link provider-based data to community-level data describing the characteristics of patients’ neighborhoods, and anchor such information to the providers’ digital workflow. This approach will provide the vehicle for harnessing social needs and SDOH data to target interventions at the point of care (eg, referrals of an individual); the health delivery system level (eg, hiring a social worker in the clinic); or the community (eg, building or strengthening community-based initiatives) [35]. To avoid burdensome and inefficient social needs assessment and data collection, it is essential to develop automated screening tools using EHR or community-based data to help identify the subset of patients who would most benefit from social needs assessment and data collection.

Several EHR-based screening tools for social needs assessment have been piloted in recent years, and results have shown these tools to be effective in determining social needs and SDOH challenges [36,37]. However, the feasibility of such tools remains unclear, with health care systems needing to dedicate considerable time and budget to train and educate staff and manage workloads [21]. Our proposed social risk score aimed to reduce the burden of this process and increase its accuracy by identifying patients at high risk of having any social needs for more efficient screening.

Comparison With Previous Evidence

Our proposed model was based on a large and diverse data set of patients in the JHHS-EHR. The AUC of our model in predicting prospective social needs was 0.702 (95% CI 0.699-0.705) in the overall study population. This AUC may be the result of many instances of false negatives related to the documentation of social needs in structured EHR data. At the time of completing this study, social needs screening and referral were not common practices at our institutions. Thus, we expect many patients with social needs did not get a proper screening and documentation of such needs. The new mandate established by the Centers for Medicare and Medicaid Services requires hospitals to report to the Inpatient Quality Reporting Program 2 brand new measures of social needs (ie, the number of patients screened for social needs and the number of patients identified with selected social needs) [38]. We expect the health care system to establish more systematic and uniform processes for screening and documentation of social needs. This effort will increase the volume of data on social needs in the EHR, which will result in better performance of our models in the future.

Our findings were comparable with those in the study by Holcomb et al [14], where they predicted health-related social needs using EHR and community-level data and machine learning modeling for Medicare and Medicaid beneficiaries participating in the Accountable Health Communities project. Their models performed relatively well, with AUCs ranging from 0.59 to 0.68 for patients with different domains of social needs. Another notable mention was the study by Byrne et al [15], where they used EHR data, including responses to the Veterans Health Administration’s Homelessness Screening Clinical Reminder Survey, to develop and test predictive models of housing instability and homelessness. All their models performed well, with the random forest models performing better than the logistic regression models for both the housing instability (85.4 vs 78.3) and homeless (91.6 vs 87.1) outcomes. Lastly, Kasthuriratne et al [13] built random forest decision models to predict the need for social work referrals using clinical and population-level data on SDOH challenges. The performance of the model ranged from an AUC of 0.713 for the model using both clinical and SDOH data to 0.731 for the model using clinical data.

Moreover, our results demonstrated that the most significant predictive factor for having prospective social needs was the documentation of previous social needs. This study also found associations between prospective social needs with previous ED visits and morbidity-related high resource use presented in Resource Utilization Band. Lastly, our model showed a
minimally increased risk of social needs in association with characteristics of the neighborhood of residence, presented as the ADI measure. This finding was similar to the results of the study by Nguyen et al [39], where they identified a small statistically significant association between the ADI and total score on social needs from the Health Leads Social Needs Survey among pediatric patients’ families receiving primary care at a large academic institution. A review by Chen et al [21] also indicated the low success of the integration of population-level data for predictive modeling and risk stratification purposes, including the prediction of social-related service referrals [13], in contrast to the performance of models using individual-level data in referrals to a social worker [40]. Overall, these findings indicated that individual characteristics played a more crucial role in predicting future social needs than neighborhood characteristics.

Clinical Implications
The implementation of an EHR-based social risk score such as the one we developed would have many implications for clinicians and practice organizations. At the point of care, our social risk score could be integrated directly with EHR-derived data warehouses; thus, the proposed risk score could be leveraged to allow clinicians to tailor more personalized care and modulate care coordination efforts. This personalized social risk score could also help support tools tailored to the needs of patients, which would empower the navigation of available social services [35]. At the health delivery system level, the linkages of geo-derived databases could improve the assessment of social needs and SDOH challenges for health systems and provide opportunities for longer-term plans to address those factors in current and future care management programs. Additionally, the merged clinical and nonclinical databases could enable providers to follow patients with social needs and SDOH challenges over time through their interaction with the health system. At the community level, the social risk score and the social needs or SDOH data could enhance care coordination efforts by integrating community-level data into clinical decision support tools and coordinated interventions [41].

Limitations
Several limitations existed for this study. First, EPIC Wellness Registry data were essentially nonexistent between the years 2016 and 2018, which, in addition to the possibility of ICD-10 codes being underused by providers, might lead to an underrepresentation of social needs in this study’s population. Second, Latino and Hispanic patients were underrepresented in this study’s population, which may have impacted the generalizability of the proposed model. Furthermore, data on racial and ethnic minority groups such as American Indian and Alaskan Native, Native Hawaiian, Other Pacific Islander, and multiracial individuals were limited in our data set. Another important factor that might have affected our results was the potential for more frequent screening of social needs in female individuals, ethnic and racial minority populations, those with higher disease burdens, and superusers of health care services [42], leading to biased results for these individuals. Misclassification and inconsistency in documenting social needs in the EHRs could influence our results.

Moreover, the use of EHR data as the sole source of information limited our data to services provided to patients across the JHHS facilities and did not include other services outside JHHS. Also, we used the patient’s home address to link the EHR data to the American Community Survey community-level data. Thus, we did not include patients with a missed or invalid home address. This may have resulted in missing some patients with social needs, such as residential instability. Finally, our final model was applied to the 2020-2021 cohort to evaluate its accuracy, which included patient encounters during the first peak of the COVID-19 pandemic. While some subpopulations of patients experienced more social needs during the pandemic, the challenges that the health care systems faced during this period impacted the screening and documentation of social needs and may have resulted in missed data on social needs for this cohort.

Conclusion
Screening for social needs and SDOH challenges using available secondary EHR data represents an important step toward addressing health disparities more efficiently and improving patient care and population health. Our proposed model integrates community-level data with patient-level data to arrive at a social risk score that can be used to systematically identify patients at increased risk of having future social needs and is thus appropriate for in-depth assessment of their social needs and potential referral to community-based organizations to address these needs. Our model identified previous social needs and high morbidity levels as the strongest predictors of future social needs. Missing data in the EHR reflecting past clinician documentation of social needs may have impacted the performance of our proposed model, and the predictive accuracy of models like ours will likely increase as the capture of such information becomes more commonplace. Future studies should focus on developing EHR-integrated clinical decision support tools to make this information available in the providers’ digital workflow and at the point of care.

Acknowledgments
This study was supported by a grant from the National Institute on Minority Health and Health Disparities (NIMHD; grant R01MD015844-01). Its contents are solely the responsibility of the authors and do not necessarily represent official NIMHD views.

Data Availability
The data sets generated and analyzed during this study are not publicly available due to concerns regarding the privacy of individuals whose electronic health records information were used.
Conflicts of Interest

Johns Hopkins University (JHU) holds the copyright to the ACG System and receives royalties from the global distribution of the ACG System. This revenue supports a portion of the authors’ salaries. The authors are members of a group of researchers who develop and maintain the ACG System with support from JHU. After the completion of his involvement in this work, H-YC joined Janssen Scientific Affairs, LLC (a Johnson & Johnson company) as a full-time employee and holds stock in Johnson & Johnson.

Multimedia Appendix 1

Social needs domains across study cohorts and sensitivity analysis.

[DOCX File, 31 KB - formative_v8i1e54732_app1.docx]

References

10. Thornton RLJ, Glover CM, Cen Johnson.
12. Johns Hopkins University (JHU) holds the copyright to the ACG System and receives royalties from the global distribution of the ACG System. This revenue supports a portion of the authors’ salaries. The authors are members of a group of researchers who develop and maintain the ACG System with support from JHU. After the completion of his involvement in this work, H-YC joined Janssen Scientific Affairs, LLC (a Johnson & Johnson company) as a full-time employee and holds stock in Johnson & Johnson.

Multimedia Appendix 1

Social needs domains across study cohorts and sensitivity analysis.

[DOCX File, 31 KB - formative_v8i1e54732_app1.docx]

30. Area Deprivation Index. University of Wisconsin School of Medicine and Public Health. URL: https://neighborhoodatlas.medicine.wisc.edu/ [accessed 2023-05-09]

38. Medicare Program; hospital inpatient prospective payment systems for acute care hospitals and the long-term care hospital prospective payment system and policy changes and fiscal year 2023 rates; Quality Programs and Medicare Promoting Interoperability Program requirements for eligible hospitals and critical access hospitals; costs incurred for qualified and

Abbreviations

ACG: Adjusted Clinical Group
ADI: area deprivation index
AUC: area under the curve
EHR: electronic health record
GEE: generalized estimating equation
ICD-10: International Classification of Diseases, Tenth Revision
JHHS: Johns Hopkins Health System
OR: odds ratio
SDOH: social determinants of health

©Elham Hatef, Hsien-Yen Chang, Thomas M Richards, Christopher Kitchen, Janya Budaraju, Iman Foroughmand, Elyse C Lasser, Jonathan P Weiner. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Patient-Centered Approaches for Designing Destigmatizing Sexual Pain-Related Web-Based Platforms: Qualitative Study

Abdul-Fatawu Abdulai1, PhD; Hasti Naghdali1, BSN; Heather Noga2, MA; Paul J Yong3, MD, PhD

1School of Nursing, University of British Columbia, Vancouver, BC, Canada
2Women's Health Research Institute, Vancouver, BC, Canada
3Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada

Corresponding Author:
Abdul-Fatawu Abdulai, PhD
School of Nursing
University of British Columbia
T201-2211 Wesbrook Mall
Vancouver, BC, V6T 2B5
Canada
Phone: 1 604 822 7214
Email: fatawu.abdulai@ubc.ca

Abstract

Background: Sexual pain is a common but neglected disorder that affects approximately 3% to 18% of women and an unmeasured number of gender-diverse people worldwide. Despite its wide prevalence, many people feel reluctant to visit conventional health care services or disclose their symptoms due to the fear of stigmatization. To alleviate this stigma, various web-based interventions have been developed to complement and, in some cases, replace conventional sexual health interventions. However, the way these web-based interventions are developed could inadvertently reproduce, perpetuate, or exacerbate stigma among end user patients.

Objective: The purpose of this study was to understand patients’ perspectives on how sexual pain–related web platforms can be designed to alleviate stigma or prevent the unintended effects of stigma among patients who use web-based interventions.

Methods: Individual semistructured interviews were conducted among 16 participants with lived experiences of painful sex in a large urban city in Western Canada. Participants were recruited via social media platforms, newsletters, and a provincial health volunteer website. Using a sample sexual pain website to provide context, participants were interviewed about their experiences of stigma and how they think web platforms could be designed to address stigma. The interviews were conducted via Zoom (Zoom Technologies Inc) and analyzed using thematic analysis.

Results: The findings revealed 4 overarching themes that represented participants’ perspectives on designing web platforms that may alleviate or prevent the unintended effects of stigma. These findings suggested the design of inclusive web platforms, having a nonprovocative and calming user interface, having features that facilitate connections among users and between users and providers, and displaying personal testimonials and experiences of sexual pain.

Conclusions: This study highlighted patient-centered design approaches that could serve as a reference guide in developing web platforms that alleviate or prevent the unintended effects of stigma, particularly among nonheterosexual and gender-diverse people. While this study was conducted in the context of sexual pain, the results might also apply to web platforms on other potentially stigmatizing health-related disorders or conditions.

(JMIR Form Res 2024;8:e53742) doi:10.2196/53742

KEYWORDS

stigma; digital health; sexual pain; destigmatizing; end user patients

Introduction

Sexual pain is a common but neglected problem, predominantly experienced by females, that is estimated to affect approximately 3% to 18% of women globally [1]. The disorder affects multiple aspects of one’s life including absenteeism from work, poor interpersonal relationships, and impaired social functioning with a profound impact on the quality of life [1]. Despite the
negative effects of sexual pain, many women feel reluctant to visit service providers or disclose their symptoms to family and friends due to the fear of stigma [2]. Stigma is defined as an attribute and dynamic social process characterized by widespread social disapproval, blame, rejection, devaluation, and segregation [3]. The extent to which people with sexual pain are affected by stigma depends on the nature of the disorder and whether it is concealed or exposed. According to Tyler and Slater [4], people with invisible conditions or disorders are more likely to be affected by internalized stigma, while those with visible conditions or disorders may be predisposed to public stigma. Public stigma refers to the overt discriminatory practices that are directed at someone, while internalized stigma refers to the acceptance of negative attributes and a reduced sense of self-worth as a result of possessing a supposedly stigmatizing attribute [2]. While hidden disorders like sexual pain may not immediately provoke public stigma, people with such disorders may still be concerned about an impending negative reaction from the public or even stigma from present and future intimate partners if their pain status is eventually revealed [4]. The fear of disclosing a condition can be classified as anticipated stigma, and this is quite common among people with sexual health–related disorders [5]. Therefore, people with sexual pain may face both internalized and public stigma of various proportions at the personal, interpersonal, and societal levels. As stigma becomes more of a dynamic social process [3], the modalities of managing this issue are becoming increasingly complex and challenging, especially for people with hidden disorders like sexual pain.

In response to the negative impact of stigma on people with sexual pain, various web-based platforms have been developed to complement, and in some cases, replace conventional care services [2,6,7]. Web-based platforms on painful sex could range from educational resources, decision support systems, web-based social support platforms, and therapy-based platforms [8-12]. Even though web-based platforms are increasingly used as resources inquiring about and managing sexual pain [13,14], available evidence suggests that sexual health–related web-based platforms could inadvertently foment stigma among end users [15]. Other studies revealed that merely using a sexual health platform in public spaces could be interpreted as having a disorder and could lead to stigma in what is termed stigma by association [6]. Notably, people who use sexual health–related web platforms may likely link the appearance of certain images and content to an existing social stigma, thereby resulting in technology-mediated experiences of stigma [7]. Furthermore, the replacement of face-to-face conversations with web-based tools may further emphasize the feeling of discomfort or stigma associated with in-person interactions as it gives an indication that sexual pain is not something to be discussed but self-discovered using web-based tools.

The likelihood of web-based platforms resulting in technology-mediated experiences of stigma may be attributed to the general lack of attention to the issues of stigma when developing sexual health–related digital platforms [16]. Even though patients’ views and opinions are usually sought when developing sexual health–related digital technologies [17,18], their perspectives on how web-based platforms can be designed to alleviate stigma are usually not considered when developing such interventions. The apparent lack of attention to stigma may not only lead to a mismatch between people’s expectations and web-based platforms but could inadvertently reproduce and perpetuate stigma among patients who may find such platforms undesirable [7].

We attempted to address this gap in our prior studies by developing a set of destigmatizing design guidelines to provide a reference guide for developers of sexual health–related web-based platforms [16,19]. However, these guidelines were based on expert opinions and did not address the salient concerns of patients regarding stigma. With a disorder like sexual pain, patients often withhold sharing their diagnosis publicly, and we believe that many of the stigma-related considerations for designing web-based platforms could only be obtained from people with lived experiences of the disorder. The purpose of this research was thus to examine the perspectives of people with sexual pain on how web platforms could be designed to alleviate stigma or prevent digital platforms from inadvertently fomenting stigma among end user patients. The findings of this study are expected to produce user-interface design recommendations not just for sexual pain digital platforms but for web-based platforms on other stigmatized conditions or disorders in sexual health and mental health.

Methods

Study Design
A semistructured interview was conducted among 16 people with lived experiences of sexual pain in a large urban city in Western Canada. Participants were recruited via (1) social media platforms, (2) newsletters, and (3) a provincial health volunteer research website. To be eligible, potential participants must have been at least 18 years old, experienced or self-reported sexual pain (alone or partnered), and reported previous or current use of a health-related web-based platform. Due to the limited involvement of male partners in prior sexual health–related studies [8], we decided to recruit people who also identify as biological males and report experiences of painful sex.

Interview Guide
A semistructured interview guide (Multimedia Appendix 1) was developed based on the person-centered care model by focusing on the participants’ emotional needs and preferences about how digital health technologies can be developed to be less stigmatizing and emotionally safe. The interview guide was developed to address key areas including demographic information, participants’ experiences with stigma, and their perspectives on how web-based platforms can be designed to alleviate stigma or prevent the unintended effects of stigma. The interview guide was reviewed by our patient advisory team, pretested on 3 patients outside of this study sample, and was revised accordingly.

Data Collection
The interviews were conducted by the first author (AFA), with assistance from the second author (HN). Since different web-based platforms exist, we decided to contextualize our study by providing participants with a sample website that we developed in a previous study [10]. A link to this website was
sent to participants at least 3 days before the interviews. Participants, particularly those who have never used a sexual pain web platform, were asked to explore the sample website before the interviews. The interviews were conducted via Zoom with participants’ videos turned off to protect their confidentiality. Participants were asked questions related to the design of web-based content, interactive features, images, colors, sex, gender, and class representations on digital platforms that can help alleviate the stigma of painful sex. Depending on participants’ backgrounds and prior experiences of stigma, probing questions were asked regarding how web platforms can be designed to address the experiences of stigma related to their identity. Data collection occurred from April to July 2023, and each interview lasted approximately 1 hour. All interviews were recorded onto the University of British Columbia’s accredited Zoom Cloud and transcribed using TEMI web-based transcription services (Temi Inc).

Data Analysis

The transcribed data were imported into the NVivo software (version 11; QSR International). Data were analyzed using a thematic analysis approach [20]. The data analysis occurred alongside data collection. The first and second authors familiarized themselves by reading over the first 4 transcripts multiple times. The 2 authors independently developed a coding framework inductively from the first 4 transcripts. We compared the 2 coding frameworks and arrived at a common coding scheme at the end of the fourth interview. Any differences between the coders were resolved by discussing with other members of the research team. We then applied the unified coding scheme to the rest of the data as they emerged from subsequent interviews. As the data analysis proceeded, the coding scheme was revised as new data emerged. The coded data were sorted and organized into categories, and themes were then generated from the categories depending on their overall importance to the research questions. We compared data from people in different age groups, sex, and gender identities to understand if such identities reflected specific preferences on how web platforms can be designed to alleviate stigma.

Ethical Considerations

The study was approved by the University of British Columbia behavioral research ethics board (REB # H23-00273). All participants provided written informed consent before the data collection. All data were anonymous because participants were informed not to state or mention any identifying information during the interview. Each participant was provided with CAD $50, which was equivalent to US $35 honoraria in appreciation of the time spent on the study.

Results

Demographic Characteristics

A total of 16 participants were interviewed. Data saturation occurred after the 14th participant, and we decided to interview an additional 2 participants. Regarding gender identity, 12 participants identified as women, 2 identified as men, and 2 identified as two-spirit. Regarding racial identity, 8 participants identified as White, 3 identified as a person of color, and 2 identified as Indigenous. Participants’ ages ranged from 25 to 63 years, with the majority of them younger than 30 years old. Even though all participants had used health-related websites, 6 of them had additional experiences using sexual pain–related websites. While we did not specifically ask people about their sexual identity, 3 of them openly stated their sexual identity as nonheterosexual. Seven participants stated they are marginalized by being identified as a woman, nonheterosexual, and Indigenous. On one hand, participants who indicated a marginalized identity also reported feeling stigmatized at some point in their lives or a feeling of impending stigma from their experiences of sexual pain. On the other hand, participants who did not express any marginalized identities were not very concerned about stigma, with 1 participant indicating that they do not associate sexual pain with stigma.

Participants’ Perspective on Design Approaches to Alleviate Stigma

The analysis generated 4 main overarching themes that reflected participants’ perspectives on how sexual pain–related web platforms can be designed to alleviate stigma or prevent such platforms from inadvertently fomenting stigma. Some of the broader thematic areas contain subthemes that come together to define each overarching theme.

Theme 1: Inclusive Design of User Interfaces

Overview

Inclusive design emerged as a major theme that reflected participants’ perspectives on how digital platforms could be developed to prevent the unintended effects of stigma. Participants recognized the diversity of people who may have direct or indirect experiences of sexual pain and the need to design digital platforms that satisfy the experiences of people with different racial or cultural backgrounds and sexual and gender identities. Three subthemes emerged under the overarching theme of inclusive design.

Subtheme 1: Design to Include Diverse Sexual Experiences

The participants indicated that web platforms on sexual pain should not just be limited to information on penis-vagina sex but include other forms of sexual experiences. According to the participants, other forms of sexual experiences like anal sex and the use of sex toys could equally elicit pain and therefore must be captured on web platforms. Participant 3 stated saying:

> Sex is not just penis to vagina interaction. There’s also sex toys and different ways in which people partake in sex. And so being very inclusive of that sense so that everyone feels safe in that website environment. And touching on the fact that there are different toys and people who are trans, for example, use dilators which can also bring pain.

The participants stated that these other forms of sexual experiences are already stigmatized by society and excluding them from digital platforms could worsen the stigma associated with such sexual experiences. The desire for inclusion of information on diverse sexual experiences was common among younger people. In fact, 2 participants who were older than 60
years were not open to the idea of other sexual experiences beyond penis-vagina sex.

Subtheme 2: Design to Include Diverse Sexual and Gender Identities

The participants also recognized that people may have different gender identities apart from being a woman and still experience painful sex. They specifically stated that not all people who identify as a woman may have a vagina and not all people that identify as a man may have a penis. To accommodate gender-diverse people in web-based platforms, participants suggested having inclusive pronouns by having drop-down menus or subsections on websites that account for people with different gender identities. Other participants argued that including pronouns of all gender-diverse people on web platforms may be difficult or impossible to achieve. Thus, they suggested the use of gender-neutral terms as a way of reducing the stigma associated with other stigmatized sexual identities. Participant 8 stated the need for gender-neutral terms by stating:

> Oh my god, my ovaries are partially removed because I had a tumor. And I think that using less gendered language would be very, very, very, destigmatizing for people like me and for people who are trans. Because I love when people actually think of us and it shows that we are not as bad as some people think. I would probably stick with non-gendered wording, like people with uteruses or just like talking about the specific parts that may show pains.

While participants argued for designs to include diverse gender identities, they agreed that painful sex may be more common among cisgendered people. In addition to the gender-diverse pronouns, participants suggested that web platforms on painful sex should include male partners who may not directly experience pain but may be part of the activity that produces sexual pain. Participant 6 noted the need to include male partners by stating:

> But honing in on the partners aspect, I think is really to make sure that there are resources for partners as well who aren't actively dealing with the pain. Okay. It's something that I've noticed is missing a lot.

Subtheme 3: Design to Reflect Cultural, Religious, and Ethnic Diversities

The participants also indicated their preference for designs that include people with different cultural, religious, and ethnic identities. This theme occurred across participants who identified as Indigenous or other marginalized identities. Participants expressed the need to see their culture or ethnicity represented when visiting web-based platforms regarding painful sex. Participant 14 specifically stated:

> I was talking to one of my friends and she's a black woman and she said when she was looking up sexual pain, she only saw white women on the websites. And so, she didn't think the information applied to her. She didn't see anyone who looked like herself. So, I think if images are used, it has to be intersectional so people can see themselves on the website.

According to participants, these minority groups are already marginalized and stigmatized in society, and such stigma may only intensify if their cultural and racial identities are not represented on web platforms. Some participants with religious backgrounds also noted the importance of religious sensitivity and how that can alleviate stigma, particularly stigma relating to traumatic sexual experiences. Participant 7 stated:

> I think that having that cultural sensitivity aspect embodied in a digital platform is important. Whether that be having individuals who have religious trauma associated with sex and who have gone through this experience give a testimonial or talk about it on a video or having religious supports or access to resources on the website, whether it be clickable links, phone numbers, whatever it might be on there.

Theme 2: Nonprovocative and Calming User Interfaces

Overview

Participants also reiterated the use of nonprovocative and what they termed “calming user interfaces” as an approach to alleviating stigma via web interfaces. According to participants, people with experiences of painful sex may already be overwhelmed by some form of hidden trauma and stigmatized feelings associated with the disorder. Thus, they suggested that calming and uncluttered interfaces could be an appropriate design approach to alleviating such stigmatized feelings. They specifically argued for the content on the landing pages to provide comfort to website users before they dive into the actual content of the website. The use of (1) nonprovocative and nonexplicit images and (2) subtle and calming colors emerged as subthemes that together defined the overarching theme of uncluttered and calming user interfaces.

Subtheme 1: Nonprovocative and Nonexplicit Images

Many participants argued for the use of nonexplicit images. Participants with a health science background thought explicitly displaying anatomical images of sexual organs might help in educating patients on the specific location of pain. Participant 2 stated:

> For me personally, I feel like the more graphic and anatomical images, the better because when I was younger, I literally didn't know anything about sexual anatomy. it's probably not allowed on the internet, but I think having those images would be helpful.

However, the majority thought that such images could be uncomfortable and might inadvertently foment stigmatized feelings. Participant 1 stated her abhorrence for seeing explicit content on sexual health–related web platforms and indicated how that made her feel uncomfortable:

> I read on one medium where they have provocative pictures of people, you know, in the lovemaking act. It wasn't pornographic but certainly explicit and personally, I am uncomfortable with that.

Subtheme 2: Subtle and Calming Colors

Participants’ views on addressing stigma via web platforms extended beyond the use of nonexplicit images to include the...
color of the images and the general color scheme of websites. There was unanimity in participants’ preference for colors like blue, green, dark, purple, soft greens, turquoise, and so forth. These colors were perceived to be calming and comforting for an already distressed user population of people with painful sex experiences. On the contrary, participants were generally unfavorable to bright colors like red and pink as such colors were thought to symbolize pain. Participant 9 indicated his desire for calming colors by stating:

so probably not like bright pink and that kind of thing. You know painful sex comes with its own trauma and having all these bright colors may be a put-off. I liked the one I saw in this interview, it was like really calm colors, and they weren’t too noisy, so you really focused on the information on the site and it was like, I think calming colors are maybe a good idea too.

Apart from indicating how these calming colors may be comforting to the eyes, participants were not explicit on how these color schemes could help address stigma when probed further.

Theme 3: Interpersonal Connection via Web Platforms

Overview

As a way of addressing stigma, participants indicated a preference for integrating interactive features on web-based platforms that allow the creation of interpersonal connections among people with similar experiences or with health care professionals. According to participants, being connected to others will be crucial in addressing stigma for a hidden disorder like sexual pain. Two subthemes emerged under this overarching theme.

Subtheme 1: Creating Forums to Connect People With Similar Pain Experiences

There was a strong preference for forums, discussion boards, and messaging boards that would enable people with similar sexual disorders to connect, interact, and share experiences with each other while remaining anonymous. Participant 9 compared this to Reddit, and how a Reddit-like function on web platforms can offer a free, easy, and anonymous forum for people to discuss sensitive topics.

I think in that sense; the forums open up the isolation. The experiences and stories of strangers who have the same condition and you know such varied experiences will tell me that I am not alone in this and should not harbor any negative feelings. You know the internet gives us this fantastic gift of connection without obligation.

While participants acknowledged the importance of forum posts in addressing stigma, they also recognized the security and privacy risks associated with forum posts and how they can inadvertently perpetuate stigma. One participant noted how such forums can be used as avenues for harassment, bullying, and other risky behaviors. To prevent digital health platforms from inadvertently fomenting stigma, the participants suggested developing rules and regulations that govern forum posts, the use of pseudonyms and having designated professionals who would moderate web-based platforms.

Subtheme 2: Creating Avenues to Connect With Health Care Professionals

In addition to creating avenues on web platforms for people to connect, participants also reiterated the importance of creating avenues to connect with health care professionals, especially if it is a local website. According to participants, connecting with health care professionals via web platforms can “serve as a shield” from being exposed to the public stigma—a situation that participants found helpful during the COVID-19 pandemic. Participant 13 noted the importance of connecting to professionals by stating:

speaking to a medical professional is more easily accessible and then having kind of the barrier of the screen in between, like not having to talk to someone face to face about it, but be able to type, I think could be helpful and, and perhaps start as a way to reduce the stigma.

According to participants, these forms of web-based interactions via web platforms can facilitate web-based consultations, thereby reducing the stigma people encounter by visiting onsite services.

Theme 4: Displaying Personal Accounts and Experiences of Painful Sex

The data revealed that displaying personal experiences on web platforms could help alleviate the stigma of painful sex among web users. The participants stated that seeing or hearing what others have gone through can help them relate to other people’s personal accounts of sexual pain while validating their own experiences. Participant 2 stated:

When you find websites like this sharing information, it makes you feel like, I’m really not that strange. I’m not weird. Like there are a lot of other people who experience this too and that’s why they’re putting forward this information on this platform. So, it kind of makes people realize that it’s more common than they think. And that also helps to alleviate fear surrounding it.

Some participants suggested the use of video testimonials to convey experiences, while others suggested a combination of text and video testimonials but from different sources. According to participants, reading about people’s stories; hearing their voices; and understanding what they went through, how they discovered their diagnosis, and how it was treated will help others learn and understand their situation and clarify myths and misconceptions that often fuel stigma. Some participants also suggested the use of comic images and videos to convey their experiences of painful sex as a way of addressing stigma. Participant 3 stated:

I like the comic thing. Like having people talking about these sorts of things in a comical style and that can make it less terrifying. By making it comical, you make it more entertaining, and people are more likely to pay attention to these sorts of things.
Discussion

Principal Findings

This study examined the perspectives of people with lived experiences of sexual pain on how web-based platforms can be designed to alleviate the unintended effects of stigma. While we acknowledge current practices of involving end users in developing sexual health–related digital interventions [21,22], no study has specifically investigated how such technologies can be designed to address the unintended effects of stigma. To the best of our knowledge, this is the first study that examined patients’ perspectives on how to address stigma through the design of digital health web platforms. Our study identified 4 broad categories that represented patient-centered strategies on how sexual health–related web platforms can be designed to address stigma. These categories include the design of inclusive web technologies, having a nonprovocative and calming user interface, having features that facilitate connections between users, and displaying personal accounts and experiences of sexual pain on web interfaces. Our sample revealed varying demographic information that ranged from marginalized populations including Indigenous, nonbinary, and people of color to White or Western populations. Participants’ indication of a marginalized identity suggests that the stigma of sexual pain may not exist in isolation but may intersect with multiple stigmatized identities to produce what is known as intersectional stigma [23].

These findings may help provide a conceptual or practical user-interface design guide for service providers to design digital health intervention that lessens or avoids the potential of fomenting stigma among people using sexual pain–related web platforms. We believe that these findings are not just applicable to sexual pain web platforms but could be applied to web-based platforms on other stigmatized conditions or disorders. By including male participants, this study also adds another dimension to sexual pain research in what is generally considered to be a woman’s health problem. The inclusion of people who identify as men male partners might have addressed the general lack of men’s involvement in sexual health research [24]. Even though participants who identified as men were not necessarily partners of those who identified as women as suggested in our prior study [10], they nevertheless illuminated the aspects of sexual pain that are specific to men yet often overlooked (eg, pain resulting from men who have sex with men).

Strategies to Addressing Stigma in Web Design

The themes identified from this study reflect patients’ perspectives on how web-based platforms can be designed to alleviate the stigma of sexual pain. The findings highlight the importance of inclusive user interfaces for people with diverse sexual pain experiences; gender-diverse people; and people with different cultural, ethnic, and religious identities. The findings of this study thus extend the idea of inclusive design beyond addressing the usual age, physical, mental, language, and accessibility limitations [25-27] to include specific stigma-related concerns that are often associated with people of diverse sexual and gender identities (two-spirit, lesbian, gay, bisexual, transgender, queer, and questioning, intersex, asexual) as well as diverse sexual preferences (anal sex and sex toys).

It is worthwhile to note that sexual pain is often discussed in relation to heterosexual encounters, people who engage in anal sex or sex using vibrators or sex toys may experience worse pain that, unfortunately, often ends up ignored in sexual pain–related platforms [28]. Designing to include these sexual perspectives is critical to foster inclusivity and may eventually help address some of the myths and misconceptions that often fuel stigma related to nonheterosexual forms of sexual encounters. On the contrary, user-interface design practices that exclude such groups from web platforms could be considered a form of marginalization through design [29]—a practice that may not only places people with nonheterosexual experiences into isolation but also amplifies the stigma associated with such sexual encounters.

The use of nonprovocative images was seen as a good design strategy for addressing stigma. We understand that intervention developers may want to display anatomical images of sexual organs on web platforms for enhanced comprehension and clarity of the information presented [30]. While useful, such practices may need to be reconsidered in sexual health web platforms as they may inadvertently reproduce, perpetuate, or exacerbate stigmatized feelings among people who find such explicit content undesirable. Participants’ suggestion for the display of nonprovocative images supports our previous assertion that provocative and explicit sexual images on web platforms could inadvertently foment stigma among end users [7,15,22]. It further confirms the assertion that the stigma of sexual health issues may be amplified through digital content, particularly digital images [31]. Furthermore, even though there was a general desire for inclusive images of nonheterosexual encounters and gender-diverse people, care should be taken to ensure that such images are not provocatively displayed on digital platforms that may end up stigmatizing an already stigmatized group. A possible solution may involve user testing of such content among the different user populations before they are displayed on web platforms.

Participants did not only recommend the use of nonprovocative images but also expressed a desire for the colors of such images, and the general color schemes of web platforms, to be calming and nondistress ing to users. The differences in color preferences might be a reflection of the diverse cultural backgrounds of the participants. Participants’ position on the use of calming colors like green, yellow, and blue confirms Goethe’s theory of colors where he associated certain color categories (eg, yellow and green) with positive emotional responses of warmth and excitement, while other categories (eg, red) were associated with negative arousal [32,33]. Even though participants were not explicit on how the choice of colors can address stigma, the current theories on colors suggest that less distressful color schemes like green and yellow could have a healing effect on people who have experienced the trauma of painful sex [33]. While we identified what is considered as calming colors, the differences in these colors might also pose a new challenge in determining a unified color scheme that is considered calming to a significant majority of web users. Thus, further research is needed to examine how the visual effects and different
combinations of colors on user interfaces could alleviate the stigma of sexual pain.

Interpersonal communication features have been shown to provide informational support, instrumental support, belonging support, self-esteem, and emotional support to people with similar health conditions [34]. Participants’ recommendation for the integration of anonymous and interpersonal communication features (chat rooms, forum posts, and messaging boards) confirms the use of these interventions for people with other stigmatized conditions like HIV and AIDS [35]. The recommendations for networking functions in web platforms also support the use of social networking sites as an effective educational strategy for reaching out to people with diverse sexual experiences who often experience stigma [35]. With the increasing use of digital health technologies, such interpersonal connection features might move a significant part of sexual health services onto web-based platforms (eg, consultation, testing, and prescription). Beyond that, such interaction features could also foster new friendships for isolated individuals while providing opportunities for people to share and validate their personal experiences that are often internalized as negative feelings. These opportunities for interpersonal connection might not only make people feel less isolated but may also normalize their sexual pain experiences, thereby alleviating stigma [36].

Forums could have more effect on stigma reduction when people with internalized negative feelings can read personal accounts and testimonials from other people with the same disorder. Such testimonials may not just be limited to forums or messaging boards but could be displayed on landing pages, particularly if they are coming from popular personalities. Text or video testimonials from “famous” personalities have been shown to be very persuasive and might help elicit healthy emotions and memory [37]. Testimonials from famous personalities are especially important given the significant role of power and power dynamics in stigma formation [38]. Web-based video testimonials have shown effectiveness in alleviating explicit and implied stigma of mental illness among students [39], thus suggesting their usefulness for other stigmatized disorders in sexual health. Despite the importance of interpersonal connections on web platforms, it is important to be aware of the inherent security and privacy risks that could inadvertently expose people to further stigma or restigmatization [40]. The use of anonymous chat rooms and forum posts and moderation of web-based platforms by trained personnel is recommended to prevent the privacy risk associated with such platforms [41].

Strengths and Limitations

Our study relied on web-based data collection methods, which provided some degree of anonymity and might have boosted the confidence of participants to discuss a sensitive topic like painful sex. We believe that the diversity of our sample may have enriched our findings by bringing a nuanced perspective of gender-diverse and nonheterosexual experiences of painful sex and their associated stigmatized feelings. Males engaging in nonheterosexual sexual acts like anal sex or females using sex toys may experience worse forms of stigma and sexual pain, yet are often ignored on web platforms.

Despite these strengths, this study was not without limitations. Even though we included participants who identified as men, two-spirit, and nonheterosexual people, their involvement was limited to 2 and 3 participants, respectively. The relatively lower participation rate could not have allowed us to delve deeper into the unique perspective of two-spirit and people who identify as men on how to address stigma via web-based platforms. Thus, further studies are needed to examine sexual pain stigma specific to each minority group (men, two-spirit, and nonheterosexual people) and highlight ways to incorporate the findings into web-based platforms. By just showing participants only our sample website, we also believed their responses might have been limited to a single website. It is possible that participants’ responses might have differed if they had been shown other websites on sexual pain. Despite this limitation, using a single website helped participants, particularly those who might not have used sexual pain-related websites before to be more articulate on how to develop websites to alleviate stigma.

Conclusions

Web-based platforms on sexual pain have the potential to empower people, promote the development of new web-based friendships, and promote the sharing of personal experiences, thus reducing feelings of isolation. However, the manner in which these platforms are developed has implications by either alleviating or exacerbating the stigma of sexual pain. This study highlighted patient-centered design approaches that could serve as a reference guide in developing destigmatizing web platforms for people with sexual pain, particularly for those who feel stigmatized by their gender, racial, and sexual identity. While this study was conducted in the context of sexual pain, we believe that the results may also be applicable to web platforms on other stigmatized sexual health–related disorders or conditions and to stigmatized issues in mental health. As a next step, intervention studies may be needed to investigate how these guidelines might be applied in practice and whether web platforms resulting from these findings would indeed be less stigmatizing compared to websites that did not adopt such destigmatizing approaches.

Acknowledgments

The funding for this project was received from the UBC Hampton New Faculty Grant Competition (grant GR025485). The funding source has not been involved in the study design, data collection, analysis, writing of the report, or the decision to publish this manuscript.
Conflicts of Interest

None declared.

Multimedia Appendix 1

Interview guide.

[DOCX File, 48 KB - formative_v8i1e53742_app1.docx]

References

© Abdul-Fatawu Abdulai, Hasti Naghdali, Heather Noga, Paul J Yong. Originally published in JMIR Formative Research (https://formative.jmir.org), 15.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

Jinyoung Baek1, MA; Jonathan Lawson1, CSPO; Vasiliki Rahimzadeh2, MSc, PhD

1Broad Institute, Cambridge, MA, United States
2Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States

Corresponding Author:
Vasiliki Rahimzadeh, MSc, PhD
Center for Medical Ethics and Health Policy
Baylor College of Medicine
1 Baylor Plaza
Suite 310DF
Houston, TX, 77030
United States
Phone: 1 (713) 798 3500
Email: vasiliki.rahimzadeh@bcm.edu

Abstract

Background: New federal policies along with rapid growth in data generation, storage, and analysis tools are together driving scientific data sharing in the United States. At the same, triangulating human research data from diverse sources can also create situations where data are used for future research in ways that individuals and communities may consider objectionable. Institutional gatekeepers, namely, signing officials (SOs), are therefore at the helm of compliant management and sharing of human data for research. Of those with data governance responsibilities, SOs most often serve as signatories for investigators who deposit, access, and share research data between institutions. Although SOs play important leadership roles in compliant data sharing, we know surprisingly little about their scope of work, roles, and oversight responsibilities.

Objective: The purpose of this study was to describe existing institutional policies and practices of US SOs who manage human genomic data access, as well as how these may change in the wake of new Data Management and Sharing requirements for National Institutes of Health–funded research in the United States.

Methods: We administered an anonymous survey to institutional SOs recruited from biomedical research institutions across the United States. Survey items probed where data generated from extramurally funded research are deposited, how researchers outside the institution access these data, and what happens to these data after extramural funding ends.

Results: In total, 56 institutional SOs participated in the survey. We found that SOs frequently approve duplicate data deposits and impose stricter access controls when data use limitations are unclear or unspecified. In addition, 21% (n=12) of SOs knew where data from federally funded projects are deposited after project funding sunsets. As a consequence, most investigators deposit their scientific data into “a National Institutes of Health–funded repository” to meet the Data Management and Sharing requirements but also within the “institution’s own repository” or a third-party repository.

Conclusions: Our findings inform 5 policy recommendations and best practices for US SOs to improve coordination and develop comprehensive and consistent data governance policies that balance the need for scientific progress with effective human data protections.

(JMIR Form Res 2024;8:e49822) doi:10.2196/49822

KEYWORDS
biomedical research; survey; surveys; data sharing; data management; secondary use; National Institutes of Health; signing official; information sharing; exchange; access; data science; accessibility; policy; policies
Introduction

The rapid growth in human research data, storage, and analysis tools and skilled researchers combined with the declining costs and new federal policies are creating an immense drive for research data sharing [1]. At the same time, triangulating human research data of diverse types can accentuate the risks of reidentification when used for secondary research purposes. It also invites the potential for group and other individual dignitary harms that institutional ethics review committees may be underequipped to properly protect participants against [2] or prevented from considering outright based on statutory interpretation of the US Common Rule [3,4].

The lack of standardized methods for accurately tracking the provenance of data and their permitted uses further complicates the problem [5-7]. Most institutional oversight bodies (eg, institutional review boards [IRBs], privacy boards, and data access committees [DACs]) are also ill-equipped to audit whether and how well secondary data uses align with the terms outlined in participants’ initial consent. These inabilities hinder opportunities for transparency, recourse, or accountability if uses are maligned, and gaps in policy as well as tool development leave the research community vulnerable to unintentional data misuse.

The responsibility for overseeing the ethical conduct of research involving human subjects traditionally lies with IRBs. However, the sensitivity and complex nature of data governance in genomics research present a new challenge that can exceed the review capacities and expertise of traditional IRB oversight [2,8-10]. While DACs have emerged as potential solutions to this issue [11], they are not yet widely implemented in many research institutions and are still in the early stages of growth and practice [12].

Despite these challenges, the expectation to share data has broadened [13] under new federal policies (eg, National Institutes of Health [NIH] Data Management and Sharing [DMS] [14]) and is aided considerably by cloud storage and analysis platforms [15]. The new NIH DMS policy came into effect in January 2023. It requires, among other things, that scientific data stemming from NIH-supported projects must be made publicly accessible without delay and with few exceptions. The final DMS policy defines scientific data as “The recorded factual material commonly accepted in the scientific community as of sufficient quality to validate and replicate research findings, regardless of whether the data are used to support scholarly publications. Scientific data do not include laboratory notebooks, preliminary analyses, completed case report forms, drafts of scientific papers, plans for future research, peer reviews, communications with colleagues, or physical objects, such as laboratory specimens” [14]. Emerging cloud computing environments afford new opportunities for tracking, auditing, and enforcing granular permissions [15] for scientific data in ways that were largely impracticable just several years ago. Yet, the broad use of provenance tracking tools continues to lag, creating situations where data stewards impose stricter barriers for access to data once up front, only to loosely permit the secondary use of these same data later in the research data lifecycle [16]. This situation is analogous to a house with a vaulted front door but a wide-open back door.

A clear example is the rigorous process of both a researcher and signing official (SO) agreeing to terms and conditions for the initial secondary access request. Subsequent sharing and use of consented data that transgress the consent, however, would likely go unmonitored by both the DAC approving access and the data recipient’s institution. This reality perversely incentivizes researchers to engage in informal data sharing to sidestep institutional data access review, which risks participants’ rights to privacy and the reputation of the research community. It is our view that limiting informal sharing pathways is consequential for both participant data protection and for maintaining trustworthy data governance practices. Investing resources into optimizing compliant pathways that are easier and more expedient for data requestors without sacrificing participant terms of use should therefore be a high institutional priority.

Research institutions and repository managers could also confront increased liability burdens from inaccurate, inconsistent, or unspecified data use permissions and restrictions [17]. Misattributing use restrictions can result in regulatory noncompliance and instill a lack of confidence among prospective and current research participants that institutions will respect the terms of their data contributions. SOs, who often serve as signatories on data submission and access request agreements, bear significant responsibility for ensuring the appropriate transfer and use of research data within their institutions in this regard [17].

According to the NIH, SOs have the authority to “legally bind the institution in grant-administration matters by providing signature approval on grant application submissions” [18]. A graphical diagram of where SOs intervene on the data sharing and management processes is depicted in Figure 1. SOs further monitor “grant-related activities within the extramural organization” to ensure compliance with all grant requirements. Although SOs play a leadership role in research compliance, we know very little about the ways in which new data sharing requirements for researchers affect their scope of work and data governance responsibilities in the wake of new agency policies.
This descriptive survey addresses a significant knowledge gap about the roles of US SOs, their knowledge about where research data from extramurally funded projects are deposited, how these data are accessed, and where data can be found after grant funding sunsets. Better understanding the roles and capabilities of SOs is important for identifying where institutional gatekeepers can intervene along the research data lifecycle to improve data provenance tracking and ethical data reuse in light of new NIH data sharing requirements [14]. We explore issues surrounding data sensitivity, consent tracking, institutional responsibilities, and liability considerations of SOs. As such, we seek to underscore the urgency of improving the distribution and coordination of institutional oversight bodies responsible for research data governance involving humans.

Methods

Study Design

We designed an anonymous survey of institutional SOs (Multimedia Appendix 1). The purpose of this survey study was to establish a baseline of existing institutional policies and practices as well as how these may change in light of new data sharing and management requirements for federally funded research in the United States. Survey items probed where data generated from extramurally funded research are deposited, how researchers outside the institution access these data, and what happens to these data after extramural funding ends.

Recruitment

Survey respondents were recruited from the websites of numerous institutions in the United States that receive funding from the NIH. We identified active SOs and used publicly available email addresses to contact them. Links to participate in the web-based survey were sent via email to each identified contact, and we used the software platform Qualtrics to administer the survey.

Ethical Considerations

This study was exempted by the Broad Institute of MIT and Harvard Office of Research Subject Protection. All survey responses were anonymized. Before advancing to the survey itself, respondents were presented with a detailed description of the study, its purpose, realistic risks and benefits of completing the survey, as well as information regarding the investigators and the funders before advancing to the survey itself. Consent to participate was indicated if respondents proceeded to complete the survey after reviewing the above study information. Respondents were not compensated for their participation.
The survey took approximately 5 minutes to complete and probed SOs about the impacts of the new DMS policy on their institutional tasks and responsibilities. The survey response rate was 19%: a total of 56 participants (of 287 prospective participants who were contacted) completed the survey between February 6 and April 12, 2023.

The 56 respondents represented institutions including academic-affiliated research institutes (n=43, 77%), academic institutions (n=10, 18%), nonprofit research institutes (n=2, 4%), and a health care or hospital system (n=1, 2%; Table 1). Of the 56 respondents, 52% (n=29) indicated that they will submit more than 250 grants in the next calendar year (Table 2).

Table 1. Institutional types represented by survey respondents.

<table>
<thead>
<tr>
<th>Institution type</th>
<th>Values (n=56), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic-affiliated research institute</td>
<td>43 (77)</td>
</tr>
<tr>
<td>Academic institution</td>
<td>10 (18)</td>
</tr>
<tr>
<td>Nonprofit research institute</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Health care hospital system</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

Table 2. Estimation of how many NIH\(^a\) grants will be impacted by new DMS\(^b\) policy.

<table>
<thead>
<tr>
<th>Question and response</th>
<th>Values (n=56), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many data-generating NIH grants submitted this year would you estimate will be impacted by the DMS policy at your institution?</td>
<td></td>
</tr>
<tr>
<td>1-19</td>
<td>6 (11)</td>
</tr>
<tr>
<td>20-99</td>
<td>7 (13)</td>
</tr>
<tr>
<td>100-249</td>
<td>8 (14)</td>
</tr>
<tr>
<td>Over 250</td>
<td>29 (52)</td>
</tr>
<tr>
<td>I do not know</td>
<td>6 (11)</td>
</tr>
</tbody>
</table>

\(^a\)NIH: National Institutes of Health.
\(^b\)DMS: Data Management and Sharing.

Two-thirds (37/56, 66%) of respondents reported that less than 50% of scientific data generated by NIH funding will be controlled access data. When asked about the percentage of controlled access data generated by NIH funding, 46% (n=26) answered “less than 25%,” 20% (n=11) answered “25% to 49%,” 11% (n=6) answered “50% to 74%,” and 5% (n=3) answered “75% to 100%.” However, there is the potential for additional data sets to be categorized as controlled access data. We found that respondents defaulted to controlled access for data sets when a research participant’s preferences for “open access” versus “controlled access” were unclear in the original consent forms. In total, 27% (13/48) responded that they “always” default to controlled access sharing when the terms of access were unknown, while 52% (25/48) responded they “sometimes” do (Table 3).

Table 3. Nearly 80% (48/56) of survey respondents reported they default to controlled access for data where participant terms of use are unknown or ambiguous.

<table>
<thead>
<tr>
<th>Question and response</th>
<th>Values (n=48), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>When research participants’ preferences for open access versus controlled access are unclear in the consent, does your institution default to sharing under controlled access guidelines?</td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>13 (27)</td>
</tr>
<tr>
<td>Sometimes</td>
<td>25 (52)</td>
</tr>
<tr>
<td>Rarely</td>
<td>9 (19)</td>
</tr>
<tr>
<td>Never</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

The respondents reported that most investigators will not only deposit data into “an NIH-funded repository (eg, dbGaP, AnVIL, and BioDataCatalyst)” to meet the DMS requirements but also within the “institution’s own repository” as well as “a third-party repository (eg, Generalist Repository Ecosystem Initiative repositories, Terra, and Data Use Oversight System).” For respondents who reported depositing in an institutional repository, a combined 62% (22/35) reported there was no process for researchers external to the institution to view, request, or access data or that they did not know whether such a process existed (Table 4). Moreover, 77% (10/13) responded that they were unaware if data needed to be downloaded for

aXSL•FO

RenderX
analysis as opposed to in an analytic sandbox with a security perimeter, in the cloud, or some other secured analytics platform.

Table 4
Survey respondents reported whether they knew of a clear process for how external parties request access to data managed by the institution.

<table>
<thead>
<tr>
<th>Question and response</th>
<th>Values (n=35), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a clear process for researchers from other institutions to view, request, and access data (if approved)?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13 (37)</td>
</tr>
<tr>
<td>No</td>
<td>7 (20)</td>
</tr>
<tr>
<td>I do not know</td>
<td>15 (43)</td>
</tr>
</tbody>
</table>

For respondents who reported data deposits into a third-party repository, nearly 69% (20/29) said that their institution will keep a copy of the data (Table 5). In total, 31% (9/29) of the respondents who selected “a third-party repository” as a chosen platform (Table 6) reported that they are unsure about what will happen to the data at the end of the funded storage period paid for by the DMS allocated costs in each grant. The results suggest that there is a lack of clarity on the management and sharing of the data after the funded period for storage ends. This lack of clarity could mean a significant divergence in the life span and accessibility of publicly funded research data beyond the limited funded periods of storage made possible by DMS funding.

Table 5
Signing officials reported that their institution keeps a copy of research data in addition to other data submissions to external repositories.

<table>
<thead>
<tr>
<th>Question and response</th>
<th>Values (n=29), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will your institution keep a copy of the data?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>20 (69)</td>
</tr>
<tr>
<td>No</td>
<td>2 (7)</td>
</tr>
<tr>
<td>I do not know</td>
<td>7 (24)</td>
</tr>
</tbody>
</table>

Table 6
US signing official perspectives on the types of repositories into which investigators deposit research data to comply with the new DMS\(^a\) policy.

<table>
<thead>
<tr>
<th>Question and response</th>
<th>Values (n=115), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>What types of repositories will investigators in your institution deposit into to meet DMS policy requirements?</td>
<td></td>
</tr>
<tr>
<td>Your own institution’s data repository</td>
<td>36 (31)</td>
</tr>
<tr>
<td>An NIH(^b) repository (eg, dbGaP, AnVIL, and BioDataCatalyst)</td>
<td>48 (42)</td>
</tr>
<tr>
<td>A third-party repository (eg, GREI(^c) repositories, Terra, and DUOS(^d))</td>
<td>29 (25)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (2)</td>
</tr>
</tbody>
</table>

\(^a\)DMS: Data Management and Sharing.
\(^b\)NIH: National Institutes of Health.
\(^c\)GREI: Generalist Repository Ecosystem Initiative.
\(^d\)DUOS: Data Use Oversight System.

Respondents felt that principal investigators (PIs) were best positioned to determine where data should be stored to comply with the DMS policy (Table 7). Nearly 58% (38/66) reported that “individual investigators” should decide on which repositories to submit data, while other parties included “chief compliance officer,” “SOs,” “chief information or technology officer,” and “librarians.” Few mentioned that the decision-making should be a shared responsibility among various stakeholders including PIs, IT officers, and SOs.
Table 7. Signing officials predominately felt that the project principal investigator was best positioned to decide where research data should be deposited.

<table>
<thead>
<tr>
<th>Question and response</th>
<th>Values (n=66), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who will decide where data are deposited to meet Data Management and Sharing policy requirements?</td>
<td></td>
</tr>
<tr>
<td>Individual investigators</td>
<td>38 (58)</td>
</tr>
<tr>
<td>Chief compliance officer</td>
<td>5 (8)</td>
</tr>
<tr>
<td>Signing officials</td>
<td>5 (8)</td>
</tr>
<tr>
<td>Chief information or technology officer</td>
<td>7 (11)</td>
</tr>
<tr>
<td>Librarians</td>
<td>6 (9)</td>
</tr>
<tr>
<td>Shared responsibilities among various stakeholders</td>
<td>2 (3)</td>
</tr>
<tr>
<td>I do not know</td>
<td>2 (5)</td>
</tr>
</tbody>
</table>

When asked about who will oversee DMS policy compliance, 33% (19/56) reported that “SOs” should primarily serve that role, while 17% (10/56) mentioned “chief information or technology officer.” 16% (9/56) said “chief compliance officer,” and 9% (5/56) said “PIs.” Approximately 10% (6/56) noted that DMS policy compliance is responsible for multiple institutional offices.

Only 23% (12/52) reported that their institutions track where data from federally funded projects would be deposited, and nearly 37% (19/52) reported they are unaware whether such a tracking system exists. For respondents who reported a lack of a tracking system, 29% (n=6) reported their institutions plan to set up such a system. These data suggest nearly 77% (n=15) of institutions do not have a searchable method for determining where scientific data have been stored to track compliance with the new DMS policies (Table 8).

Table 8. Results from 52 survey respondents indicating that more than 77% (n=15) do not track where research data are deposited or are unaware of such tracking at their institution.

<table>
<thead>
<tr>
<th>Question and response</th>
<th>Values (n=52), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does your institution have a way of tracking into which repositories investigators have deposited data to meet Data Management and Sharing policy requirements?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12 (23)</td>
</tr>
<tr>
<td>No</td>
<td>21 (40)</td>
</tr>
<tr>
<td>I do not know</td>
<td>19 (37)</td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

Our survey data suggest that SOs approve data deposit into various repositories to comply with the DMS policy but may be unclear about how data stored within the institution are accessed or analyzed by researchers outside the institution. SOs report that many investigators will deposit data into both an NIH-funded repository to meet the DMS requirements and in their institution’s own repository, as well as sometimes in a third-party repository. Such duplicitious deposit has consequences for data storage, security, and costs, which are underacknowledged in the literature.

Investigators may store data in an institutionally controlled repository to comply with new DMS requirements and institutional data retention policies. However, these data may be more difficult for external investigators working in similar fields to find, access, and share in practice and thus could conflict with the FAIR (findability, accessibility, interoperability, and reusability) principles [19]. Storing the same data set in more than 1 repository or database effectively doubles the storage space and costs without the added benefit of improved ease or efficiency of access insofar as institutions rely on commercial companies to provide storage services.

While storage costs are typically reimbursed only once as a dedicated line item in grant budgets, commercial service providers profit twice: once for services rendered to store data in NIH-controlled repositories and also for storing these same data on institutional servers or in institutionally controlled databases.

This double storage problem also leads to inconsistent standards for data access management. Access requests for data hosted within NIH repositories and knowledge bases undergo more standardized processing by dedicated staff who review applications and verify authorized users. Data hosted on local institutional servers, in contrast, tend to be more liberally distributed to nonauthenticated users and governed post facto, if at all.

Few SOs know what happens to research data at the end of the contract or storage period for data stemming from federally funded research under the new DMS budget allocations. The most frequently cited reason was that legal or contractual obligations for different data types preclude any one uniform procedure for data handling. Sunsetting projects also threaten the availability of data in perpetuity when allowed costs for data management end. The lack of familiarity or knowledge of access processes outside the institution impedes SO’s abilities to promote sustained use of the data resource longer term.

https://formative.jmir.org/2024/1/e49822
Less than a quarter (12/25, 23%) of SOs work at institutions that track where data from federally funded projects have been deposited to meet DMS policy requirements. Tracking where data are deposited is critical to verifying compliance with the DMS policy as well as ensuring the repository meets participant-defined terms of use. Without knowing where data end up, SOs are unable to communicate to funders about the state of data availability or provide an accurate accounting of institutional resources needed to steward that data.

As a result, SOs defaulted to imposing greater access controls for data where consent was unclear or unspecified. In total, 27% (13/48) of SOs always defaulted to controlled access for data sets where participant consents were unclear or unspecified, which can translate to downstream issues for authorized data access. A precautionary default approach is advantageous for sensitive data sets where access controls are justified and should have been applied in the first place. Applying controlled access defaults for data that should otherwise be open, however, places undue access barriers that hinder compliant research.

SOs are prone to overcontrolling data when there is ambiguity in consent. Data from this survey suggest that more data will undergo controlled access even if permissioned broadly for general research use. Institutional data stewards, including SOs and DACs, will therefore need to manage increased demands for data. Our prior work with DACs showed they see value in testing automated decision support tools and software to improve the efficiency of access requests without sacrificing consistency or quality [16]. SOs participating in this survey were unaware of such tools, creating clear opportunities for targeted outreach and training.

Textbox 1. Recommendations for institutional signing officials to promote data provenance tracking, data stewardship, and improved observance of secondary data use permissions.

- Investigators should be encouraged to store data in a centralized location that can be accessible to authorized users at a distance.
- Recognize privileged access rights for original submitters of data for secondary use, provided they comply with data use terms and, where applicable, are approved by an institutional review board.
- Allow principal investigators to negotiate with National Institutes of Health program officers and committees about how research stemming from the use of private data sets should be publicly disseminated.
- Retain a master list of where all research data stemming from funded projects have been deposited.

To prevent paying double for data storage and management costs, investigators should be encouraged to store data in a centralized location that can be accessible to authorized users at a distance. Public-private partnerships with large commercial cloud service providers, including Amazon Web Services and Microsoft Azure, accentuate the immediacy of this problem, considering they are poised to host some of the nation’s largest research data sets in the coming years [23]. This practice would be highly beneficial for cloud-based repositories, for researchers whose preferred repository to deposit data is cloud-based, and for institutions that support researchers who rely on data sets managed in the cloud to secure future research grants. It is said that centralized storage could reduce the risk of data loss if the original files are corrupted. Data storage is also a growing environmental concern, favoring options that lessen the carbon footprint [24].

Facilitating data access in perpetuity is a reasonable benefit to offer researchers who contributed these data in the first place and could, in turn, incentivize more sharing. However, recognizing this privilege also assumes they will always use the data in ethical ways. While researchers could preserve a private copy of the data, a policy that recognizes special rights of access to original submitters of research data could still be considered insofar, as the proposed research uses accords with consent permissions and, where applicable, has been approved by an IRB.

There are many compelling reasons why researchers prefer to use private data sets [25]. Companies protect their proprietary
interests in the data sets they generate by not sharing them freely with the research community. NIH-funded researchers who nevertheless opt to use private data sets in their work do so with full knowledge of company policies against broad data sharing but should not be absolved of their responsibilities to comply with the DMS policy. The NIH could consider enforcement alternatives that help to close this loophole, possibly suspending funds for investigators who are noncompliant or negotiating the sharing of summary-level data to the extent feasible and possible. The government should be reimbursed for data management and storage costs in cases where the benefits of research knowledge using private data sets cannot be recovered. Research funding agencies, as well as individual institutions, should have a master list of where all data stemming from funded projects have been deposited. Researchers should easily be able to see where data generated from funded projects have been deposited, with accessible links to those repositories to directly request access. For example, a widget on the existing NIH Research Portfolio Online Reporting Tool could facilitate this.

Conclusions
The new NIH DMS policy is a significant step toward responsible data sharing, which will lead to accelerated scientific discoveries and innovation. However, it leaves the details of data sharing and management practices to be determined by individual investigators and their respective institutions. This could create inconsistencies and inefficiencies in data governance, as witnessed in the genomic data sharing ecosystem.

Our survey of institutional SOs in the United States demonstrates a lack of clarity in terms of the location and duration of data storage, costs, and data security. Respondents suggested that scientific data generated by NIH funding are stored at multiple locations, including their institutions’ own data repositories, and are often unsure how external researchers gain access. Additionally, our survey shows that there is a pressing need for the development of proper tracking mechanisms to maintain and ensure the integrity of data sets, as many institutions currently do not keep track of where scientific data are stored once funded projects sunset. While more than half of the respondents suggested that PIs would be the sole decision makers on where to deposit data, respondents also acknowledged that compliance with the DMS policy will require institutional support and facilitate coordination between multiple offices.

Acknowledgments
This work was funded by the National Human Genome Research Institute (U24HG011025). The authors wish to thank the respondents for their time and willingness to participate in the study as well as anonymous peer reviewers who significantly helped strengthen earlier versions of this paper. During the preparation of this work, the authors used ChatGPT-4 available through OpenAI [26] to refine the grammatical structure of the text in the abstract and introduction of the paper. The authors take full responsibility for the content and accuracy of the data reported in this publication.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
JB has no competing interests to declare. JL is the senior software engineer for the data use ontology and a member of the Data Use and Research Identities Work Stream of the Global Alliance for Genomics and Health. VR’s work has been funded by the National Institutes of Health and is a member of the Regulatory and Ethics Work Stream of the Global Alliance for Genomics and Health. VR has received compensation for serving on the Ethical, Legal, and Social Issues working group of the Human Pangenome Reference Consortium and on the Bioethics Advisory Panel for the National Aeronautics and Space Administration. VR has also received fees from consulting on bioethics issues for the Coalition Against Childhood Cancer.

Multimedia Appendix 1
Anonymous signing official survey.

[DOCX File, 16 KB - formative_v81e49822_app1.docx]

References

10. Shabani M, Borry P. "You want the right amount of oversight": interviews with data access committee members and experts on genomic data access. Genet Med 2016;18(9):892-897 [FREE Full text] [doi: 10.1038/gim.2015.189] [Medline: 26795589]

Abbreviations

DAC: data access committee
DMS: Data Management and Sharing
FAIR: findability, accessibility, interoperability, and reusability
IRB: institutional review board
NIH: National Institutes of Health
Autonomous Category and Trend Analysis of Scientific Articles on Ophthalmology Using Large Language Models: Development and Usability Study

Hina Raja¹, PhD; Asim Munawar², PhD; Nikolaos Mylonas³, MS; Mohammad Delsoz¹, MBBS; Yeganeh Madadi¹, PhD; Muhammad Elahi⁴, BS; Amr Hassan⁵, MD; Hashem Abu Serhan⁶, MD; Onur Inam⁷,⁸, PhD; Luis Hernandez⁹, MD; Hao Chen¹,¹⁰, PhD; Sang Tran¹¹, MD; Wuqaas Munir¹¹, MD; Alaa Abd-Alrazaq¹², PhD; Siamak Yousefi¹, PhD

¹Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States
²Watson Research Center, IBM Research, New York, NY, United States
³School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
⁴Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
⁵Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, CA, United States
⁶Department of Ophthalmology, Hamad Medical Corporation, Doha, Qatar
⁷Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
⁸Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
⁹Association to Prevent Blindness in Mexico, Ciudad, Mexico
¹⁰Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
¹¹Department of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD, United States
¹²AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar

Corresponding Author:
Hina Raja, PhD
Department of Ophthalmology, University of Tennessee Health Science Center
930 Madison Avenue, Ste. 468
Memphis, TN, 38111
United States
Phone: 1 9016595035
Email: hinaraja65@gmail.com

Abstract

Background: In this paper, we present an automated method for article classification, leveraging the power of large language models (LLMs).

Objective: The aim of this study is to evaluate the applicability of various LLMs based on textual content of scientific ophthalmology papers.

Methods: We developed a model based on natural language processing techniques, including advanced LLMs, to process and analyze the textual content of scientific papers. Specifically, we used zero-shot learning LLMs and compared Bidirectional and Auto-Regressive Transformers (BART) and its variants with Bidirectional Encoder Representations from Transformers (BERT) and its variants, such as distilBERT, SciBERT, PubmedBERT, and BioBERT. To evaluate the LLMs, we compiled a data set (retinal diseases [RenD]) of 1000 ocular disease–related articles, which were expertly annotated by a panel of 6 specialists into 19 distinct categories. In addition to the classification of articles, we also performed analysis on different classified groups to find the patterns and trends in the field.

Results: The classification results demonstrate the effectiveness of LLMs in categorizing a large number of ophthalmology papers without human intervention. The model achieved a mean accuracy of 0.86 and a mean F₁-score of 0.85 based on the RenD data set.

Conclusions: The proposed framework achieves notable improvements in both accuracy and efficiency. Its application in the domain of ophthalmology showcases its potential for knowledge organization and retrieval. We performed a trend analysis that enables researchers and clinicians to easily categorize and retrieve relevant papers, saving time and effort in literature review and...
information gathering as well as identification of emerging scientific trends within different disciplines. Moreover, the extendibility of the model to other scientific fields broadens its impact in facilitating research and trend analysis across diverse disciplines.

KEYWORDS

Bidirectional and Auto-Regressive Transformers; BART; bidirectional encoder representations from transformers; BERT; ophthalmology; text classification; large language model; LLM; trend analysis

Introduction

Background

A literature review is an integral component of the research process that involves systematically reviewing, evaluating, and synthesizing existing scholarly publications from databases such as MEDLINE (PubMed), Embase, and Google Scholar. The standard approach for a literature review involves using a bibliographic search engine to conduct an initial comprehensive search. Researchers use relevant keywords and filters, including clinical query filters, to retrieve a wide range of articles. The next steps include manually screening the retrieved articles by reviewing titles; abstracts; and, in most cases, full texts to assess their relevance and inclusion criteria. This combination of automated search and manual screening ensures a thorough review while targeting specific research objectives.

However, a literature review can be a challenging and time-consuming task for researchers, requiring meticulous examination of numerous sources and a critical analysis of their findings. The process demands substantial time and effort to effectively navigate through the vast expanse of scholarly literature from different databases and extract meaningful insights. Artificial intelligence tools have been used to facilitate this search process [1].

Classical Methods

Machine learning models have been applied to perform the text classification task based on feature engineering [2-4]. A semi-automated model was proposed for article classification in systemic review articles based on mechanistic pathways [5]. A total of 24,737 abstracts from both the PubMed and Web of Science databases and 861 references were found to be relevant. They evaluated the Naive Bayes, support vector machines, regularized logistic regressions, neural networks, random forest, LogitBoost, and XGBoost models. The best-performing model achieved a sensitivity and specificity of approximately 70% and 60%, respectively. Kanegasaki et al [6] used long short-term memory networks for the classification of abstracts. They used 2 data sets with 1307 and 1023 articles and achieved 73% and 77% respectively. These machine learning approaches were primarily based on feature engineering, which requires domain expertise.

Supervised Natural Language Processing Models

Natural language processing (NLP) applications have significantly advanced in recent years and gained tremendous popularity due to their wide range of applications across various domains. With the increasing availability of large data sets and advancements in computational power, NLP has made remarkable progress, revolutionizing the way we interact with technology [7-10]. In particular, NLP has gained interest in the field of information retrieval. NLP techniques, such as keyword extraction, document clustering, and semantic search, have improved the accuracy and relevance of the search results.

Hasny et al [11] used the Bidirectional Encoder Representations from Transformers (BERT) model for classifying articles into human, animal, and in vivo groups. Ambalavanan and Devarakonda [12] used SciBERT to classify scientific articles into 4 major categories, including format, human health care, purpose, and rigor. The format category included original studies, reviews, case reports, and general articles. The human health care category encompassed all articles discussing human health. The purpose category included articles discussing etiology, diagnosis, prognosis, treatment, costs, economics, and disease-related prediction. Rigor class included the studies that presented design criteria specific to a class purpose. The model achieved an F1-score of 0.753 on the publicly available Clinical Hedges data set. Devlin et al [13] used the BERT model for the classification of scientific articles on randomized controlled trials. The BioBERT variant, trained on titles and abstracts, showed the highest performance of 0.90 in terms of the F1-score.

Another study [14] fine-tuned variants of the BERT model, including BERTBASE, BlueBERT, PubMedBERT, and BioBERT, for the classification of human health studies. They used the abstracts and titles of 160,000 articles from the PubMed database. BioBERT showed the best results and achieved a specificity of 60% to 70% and a recall of >90%. The study [15] proposed a weakly supervised classification of biomedical articles. The model was trained on a weakly labeled subset of the biomedical semantic indexing and question answering 2018 data set based on MeSH (Medical Subject Headings) descriptors. BioBERT was used to generate the embedding for words and sentences, and then the cosine similarity was used to assign labels. The proposed model achieved an F1-score of 0.564 for the BioASQ 2020 data set. BERT and its variant models have shown better performance for the text classification.

Zero-Shot Learning Methods

Conventional approaches to text classification have traditionally relied on the assumption that there is a fixed set of predefined labels to which a given article can be assigned. However, this assumption is violated when dealing with real-world applications, where the label space for describing a text is unlimited and the potential labels that can be associated with a text span an infinite spectrum, reflecting the diverse and nuanced nature of textual content. Such complexity challenges the conventional methods and calls for innovative strategies to navigate the expansive and unbounded label space.

https://formative.jmir.org/2024/1/e52462

JMIR FORMATIVE RESEARCH

Raja et al

KEYWORDS

Bidirectional and Auto-Regressive Transformers; BART; bidirectional encoder representations from transformers; BERT; ophthalmology; text classification; large language model; LLM; trend analysis

Introduction

Background

A literature review is an integral component of the research process that involves systematically reviewing, evaluating, and synthesizing existing scholarly publications from databases such as MEDLINE (PubMed), Embase, and Google Scholar. The standard approach for a literature review involves using a bibliographic search engine to conduct an initial comprehensive search. Researchers use relevant keywords and filters, including clinical query filters, to retrieve a wide range of articles. The next steps include manually screening the retrieved articles by reviewing titles; abstracts; and, in most cases, full texts to assess their relevance and inclusion criteria. This combination of automated search and manual screening ensures a thorough review while targeting specific research objectives.

However, a literature review can be a challenging and time-consuming task for researchers, requiring meticulous examination of numerous sources and a critical analysis of their findings. The process demands substantial time and effort to effectively navigate through the vast expanse of scholarly literature from different databases and extract meaningful insights. Artificial intelligence tools have been used to facilitate this search process [1].

Classical Methods

Machine learning models have been applied to perform the text classification task based on feature engineering [2-4]. A semi-automated model was proposed for article classification in systemic review articles based on mechanistic pathways [5]. A total of 24,737 abstracts from both the PubMed and Web of Science databases and 861 references were found to be relevant. They evaluated the Naive Bayes, support vector machines, regularized logistic regressions, neural networks, random forest, LogitBoost, and XGBoost models. The best-performing model achieved a sensitivity and specificity of approximately 70% and 60%, respectively. Kanegasaki et al [6] used long short-term memory networks for the classification of abstracts. They used 2 data sets with 1307 and 1023 articles and achieved 73% and 77% respectively. These machine learning approaches were primarily based on feature engineering, which requires domain expertise.

Supervised Natural Language Processing Models

Natural language processing (NLP) applications have significantly advanced in recent years and gained tremendous popularity due to their wide range of applications across various domains. With the increasing availability of large data sets and advancements in computational power, NLP has made remarkable progress, revolutionizing the way we interact with technology [7-10]. In particular, NLP has gained interest in the field of information retrieval. NLP techniques, such as keyword extraction, document clustering, and semantic search, have improved the accuracy and relevance of the search results.

Hasny et al [11] used the Bidirectional Encoder Representations from Transformers (BERT) model for classifying articles into human, animal, and in vivo groups. Ambalavanan and Devarakonda [12] used SciBERT to classify scientific articles into 4 major categories, including format, human health care, purpose, and rigor. The format category included original studies, reviews, case reports, and general articles. The human health care category encompassed all articles discussing human health. The purpose category included articles discussing etiology, diagnosis, prognosis, treatment, costs, economics, and disease-related prediction. Rigor class included the studies that presented design criteria specific to a class purpose. The model achieved an F1-score of 0.753 on the publicly available Clinical Hedges data set. Devlin et al [13] used the BERT model for the classification of scientific articles on randomized controlled trials. The BioBERT variant, trained on titles and abstracts, showed the highest performance of 0.90 in terms of the F1-score.

Another study [14] fine-tuned variants of the BERT model, including BERTBASE, BlueBERT, PubMedBERT, and BioBERT, for the classification of human health studies. They used the abstracts and titles of 160,000 articles from the PubMed database. BioBERT showed the best results and achieved a specificity of 60% to 70% and a recall of >90%. The study [15] proposed a weakly supervised classification of biomedical articles. The model was trained on a weakly labeled subset of the biomedical semantic indexing and question answering 2018 data set based on MeSH (Medical Subject Headings) descriptors. BioBERT was used to generate the embedding for words and sentences, and then the cosine similarity was used to assign labels. The proposed model achieved an F1-score of 0.564 for the BioASQ 2020 data set. BERT and its variant models have shown better performance for the text classification.

Zero-Shot Learning Methods

Conventional approaches to text classification have traditionally relied on the assumption that there is a fixed set of predefined labels to which a given article can be assigned. However, this assumption is violated when dealing with real-world applications, where the label space for describing a text is unlimited and the potential labels that can be associated with a text span an infinite spectrum, reflecting the diverse and nuanced nature of textual content. Such complexity challenges the conventional methods and calls for innovative strategies to navigate the expansive and unbounded label space.
these issues, zero-shot techniques [16-18] have been developed and are gaining popularity. Zero-shot learning (ZSL) involves classifying instances into categories without any labeled training data [19]. It leverages auxiliary information such as semantic embeddings or textual descriptions to bridge the gap between known and unknown categories. This enables the models to generalize to novel classes and make predictions for unseen categories. Mylonas et al [20] used zero-shot model for classifying PubMed articles into emerging MeSH descriptors. Instead of using the standard n-grams approach, the method exploited BioBERT embeddings at the sentence level to turn textual input into a new semantic space for the Clinical Hedges data set [21]. Unlike traditional models, the ZSL model does not explicitly require the labeled data; however, these models performed well on downstream tasks.

In this study, we have used large language models (LLMs) that include ZSL for categorizing the ophthalmology articles extracted from the PubMed database into different categories based on title and abstract. We fine-tuned the BERT model and its variants BERTBASE, SciBERT, PubmedBERT, and BioBERT for those categories that did not show good results from the ZSL model. Several powerful models, including Decoding-enhanced BERT with Disentangled Attention (mDeBERTa), Bidirectional and Auto-Regressive Transformers (BART), and the recently introduced Llama 2, present competitive alternatives to ChatGPT. However, Llama 2, despite its potential, imposes significant demands on graphics processing unit and memory resources. Even its smaller variant, with 7 billion parameters, requires substantial computational power, posing challenges for users with limited access to high-performance computing resources. To ensure broader accessibility, we prioritized a model with lower resource requirements. Accordingly, we selected the open-source BART model that is executable on central processing unit, thus providing both acceptable performance and enhanced accessibility to broader users. In addition, we performed a trend analysis based on the classified results, providing researchers with insights into emerging trends in the field to stay updated on the latest developments and identifying key areas of interest. Overall, we provide a method that enhances the efficiency, relevance, and interdisciplinary potential of the literature review process.

The rest of the study is organized as follows: the Methods section presents the materials and methods of the proposed framework for text classification and trend analysis. The Results section discusses the results of the different experiments performed for the evaluation of the proposed model. The Discussion section includes the principal findings and concludes the proposed work.

Contributions

Various classification models have been proposed in the literature for biomedical articles to retrieve relevant information [1-21]. Fine-tuned BERT and its variants have been used for text classification. Following are the main contributions of the studies:

- We have explored the ZSL models for the classification of biomedical articles.
- We have developed different use cases targeting the field of ophthalmology.
- To evaluate the model, we have generated a data set that includes 1000 articles related to ocular diseases. The articles were manually annotated by 6 experts into 15 categories.
- The ZSL model BART achieved a mean accuracy of 0.86 and an F_1-score of 0.85.
- In addition to the classification of articles, we also performed a trend analysis on different classified groups.
- The model is adaptable to other biomedical disciplines without explicit fine-tuning or training.

Methods

Data Set

There are several annotated data sets available for various NLP tasks in the biomedical domain. However, in the field of ophthalmology, there is a scarcity of publicly accessible data sets for performing NLP tasks. To address this gap, we have taken the initiative to curate a data set focused on ocular diseases. Our retinal diseases (RenD) data set comprises 1000 articles sourced from PubMed, covering various conditions such as diabetic retinopathy (DR), glaucoma, diabetic macular edema, age-related macular degeneration, cataract, dry eye, retinal detachment, and central serous retinopathy. To ensure accurate categorization, we enlisted the expertise of 6 domain specialists who meticulously annotated the articles based on abstracts. To ensure accuracy and reliability in the annotation process, each article in our data set is reviewed and annotated by at least 3 individual annotators (refer to Table S1 in Multimedia Appendix 1 for the guidelines for data annotation). This multiple-annotator approach helps mitigate potential biases and inconsistencies that could arise from a single annotator’s perspective. Once the annotation is completed, the final label for each article is determined based on majority voting. Each article was annotated against 28 labels (Table S1 in Multimedia Appendix 1), and due to not having enough samples in some categories, we dropped those in further classification tasks. Thus, we selected 19 categories and grouped them into 4 categories (Table 1).

We will make this data set publicly accessible to the community for advancing research, facilitating comprehensive analysis, enabling more targeted investigations into ocular diseases, and promoting open science.
Table 1. Description of the data sets.

<table>
<thead>
<tr>
<th>Data set and group</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinal disease (N\textsubscript{T}=1000 and N\textsubscript{C}=19)</td>
<td>Clinical, experimental, and automated model</td>
</tr>
<tr>
<td>Ocular diseases</td>
<td>DRc, DMEd, AMDe, glaucoma, dry eye, cataract, CSRf, and retinal detachment</td>
</tr>
<tr>
<td>Clinical studies subclass</td>
<td>Screening, diagnosis, prognosis, etiology, and management</td>
</tr>
<tr>
<td>Automated studies subclass</td>
<td>Image processing techniques, machine learning models, and deep learning model</td>
</tr>
<tr>
<td>Dry eye (N\textsubscript{T}=67 and N\textsubscript{C}=6)</td>
<td>Tear film break up time, infrared thermography, lipid layer interface pattern, meibomian gland study, blink study, tear film assessment, and tear meniscus assessment</td>
</tr>
<tr>
<td>Glaucoma (DemL; N\textsubscript{T}=115 and N\textsubscript{C}=2)</td>
<td>Machine learning model and deep learning model</td>
</tr>
</tbody>
</table>

aN\textsubscript{T}: the total number of articles in each data set.
bN\textsubscript{C}: the total number of categories in each data set.
cDR: diabetic retinopathy.
dDME: diabetic macular edema.
eAMD: age-related macular degeneration.
fCSR: central serous retinopathy.

Study Design

Our framework automates the entire literature review process in the ophthalmology domain (Figure 1). More specifically, by incorporating user-defined criteria, including keywords, the number of articles, inclusion criteria, and categories for classification. Our framework performs a systematic retrieval and analysis of relevant articles automatically. Initially, a keyword is fed into PubMed, and the related articles are fetched, including the abstract, title, publication year, and link. The preprocessing step in this context involves the selection of a specific subset of articles from a larger corpus of fetched articles. This selection process is contingent upon the application of predefined inclusion criteria, with a specific temporal constraint. In this study, articles falling within the temporal range spanning from 2015 to 2022 are considered for inclusion in the subsequent analyses. This temporal delimitation serves as a crucial preprocessing measure, narrowing down the data set to a more focused and relevant time frame for the research objectives. The selected articles are then fed into the LLM for classification based on user-defined categories. For LLM, first we targeted using the ZSL models that can classify the text without explicit training. If the ZSL model is unable to achieve better performance, then we fine-tune the BERT model. Finally, after the article classification by LLM, we have performed 2 types of trend analysis.
Figure 1. Flow diagram of the proposed framework. The model takes input (keyword, inclusion criteria, and categories for classification), and articles are fetched from PubMed based on keyword. The inclusion criteria are fed into the preprocessing module to select the desired articles from the fetched data. A large language model classifies the articles based on the predefined categories. Finally, trend analysis is performed on classified categories.

Zero-Shot Classification

Zero-shot classification is an approach to predict the class of instances for categories they have never seen during training, using auxiliary information or semantic embeddings. It enables generalization to unseen classes and expands the classification capabilities beyond the limitations of labeled training data. We have used BART [22], which is pretrained based on a sequence-to-sequence model that combines bidirectional and autoregressive techniques for improved text generation and comprehension. BART has 12 transformer layers with a hidden size of 1024 that was initially trained on Wikipedia and the BookCorpus data set and fine-tuned on Multi-Genre Natural Language Inference tasks. BART is an amalgamation of the bidirectional encoder found in BERT and the autoregressive decoder used in Generative Pretrained Transformer (GPT) (details of architecture can be found in Figure S1 in Multimedia Appendix 1). While BERT comprises approximately 110 million trainable parameters and GPT-3 consists of 117 million parameters, BART, being a combination of the 2, has approximately 140 to 400 million parameters. This larger parameter count in BART accommodates its sequenced structure, which incorporates both encoding and decoding capabilities for a wide range of NLP tasks. The model receives the title and abstract of an article as input and generates probabilities for each class, and if the probability for a specific category is higher than a threshold value, the article is assigned the label corresponding to that category.

Trend Analysis

In addition to the classification of articles, we performed 2 additional analyses as well. More specifically, we performed a technology trend analysis to obtain valuable insights into the distribution of research across different classes, highlighting classes with higher or lower publication frequencies. This information aids in understanding the emphasis and focus of research efforts, enabling resource allocation, and identifying areas that may require further attention or investigation. We also performed an interest trend analysis to provide a comprehensive view of publication trends over specific periods. By identifying the popularity of techniques or topics over time,
this analysis facilitates the detection of emerging trends and the evaluation of long-term patterns. These trend analyses, applicable to all levels of classification categories, contribute to an enhanced understanding of the dynamic nature and evolving landscape of research in the field.

Ethical Considerations
We have not included any human and animals in our study.

Results
This section presents the experiments we have performed to evaluate the LLMs for classification.

Experimental Details
We evaluated our models based on the RenD data set that we annotated. In addition, we evaluated the models to classify categories based on 2 review studies related to dry eye disease and glaucoma (Table 1). We present the results in terms of accuracy, area under the curve (AUC; F_1-score, precision, and recall for each data set. For multilabel classification, we evaluated the model in terms of F_1 micro, Pv micro, Re micro, and AUC.

Ablation Study
Overview
Our study encompasses both multiclass and multilabel classification tasks. To accomplish this, we used the ZSL model and fine-tuned the model for which the ZSL was not performing well. Through a series of ablation experiments, we systematically investigated the impact of different settings (refer to the subsequent sections) on the performance of the model. By modifying and assessing various settings, we gained insights into the individual contributions and effects of each setting, allowing us to refine and optimize our approach accordingly.

ZSL Model Selection
In our study, we conducted an evaluation of the ZSL state-of-the-art models and multiple variants of the BART model. On the basis of a comprehensive analysis, we identified the model variant that exhibited the most favorable performance in our specific context (Table 2).

We selected the BART model that showed the best performance. In addition, we performed experiments using different keywords for the different categories. It was observed that for the ZSL model, the prompts should be more descriptive and provide some information about related categories to improve the accuracy (Table 3).

For the category “Clinical, Experimental, and Automated Model,” we have tested various keywords and found that “Clinical finding based on humans,” “Experimental study based on animals,” and “Technical study based on automated model” keywords showed the best results with an accuracy of 0.91 and an F_1-score of 0.92. During our evaluation, we investigated the potential of using abstracts and titles for classification across various categories. We discovered that classification solely based on titles closely approximates the results obtained from using abstracts for most of the categories. However, the abstract and title together enhance the efficacy of the classification.

| Table 2. Evaluation of the zero-shot learning classification models for category 1 from the retinal disease (RenD) data set. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Abstract | Time (minutes) | Accuracy | F_1-score | AUCa | Precision | Recall | Time (minutes) | Accuracy | F_1-score | AUC | Precision | Recall |
| BARTb-base | 34.34 | 0.08 | 0.03 | 0.42 | 0.86 | 0.08 | 3.5 | 0.01 | 0.005 | 0.5 | 0.006 | 0.01 |
| Bart-large | 104.5 | 0.11 | 0.03 | 0.46 | 0.17 | 0.115 | 12.24 | 0.5 | 0.57 | 0.39 | 0.68 | 0.50 |
| Bart-large-CNNc | 37.63 | 0.08 | 0.03 | 0.42 | 0.86 | 0.08 | 4.2 | 0.36 | 0.50 | 0.58 | 0.84 | 0.36 |
| Bart-mnlid-CNN | 231.42 | 0.74 | 0.78 | 0.65 | 0.84 | 0.74 | 17.76 | 0.09 | 0.06 | 0.42 | 0.2 | 0.09 |
| mDe-BERTe-a-v3-base | 79.28 | 0.87 | 0.85 | 0.74 | 0.88 | 0.87 | 31.06 | 0.76 | 0.82 | 0.80 | 0.91 | 0.76 |
| Bart-large-mnli | 141.50 | 0.91 | 0.92 | 0.91 | 0.93 | 0.91 | 15.21 | 0.91 | 0.82 | 0.93 | 0.94 | 0.91 |

aAUC: area under the curve.
bBART: Bidirectional and Auto-Regressive Transformers.
cCNN: convolution neural network
dMulti-Genre Natural Language Inference.
eBERT: Bidirectional Encoder Representations from Transformers.
Table 3. Investigation of prompts for classifying the retinal diseases data set using the Bidirectional and Auto-Regressive Transformers (BART) zero-shot learning model. Articles are explicitly categorized using abstract.

<table>
<thead>
<tr>
<th>Category and prompt</th>
<th>Abstract</th>
<th>(F_1)-score</th>
<th>AUC(^a)</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>(F_1)-score</th>
<th>AUC</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical study, experimental study, and automated model</td>
<td></td>
</tr>
<tr>
<td>“Clinical Study,” “Experimental Study,” and “Automated Studies”</td>
<td>0.80</td>
<td>0.82</td>
<td>0.70</td>
<td>0.85</td>
<td>0.80</td>
<td>0.67</td>
<td>0.76</td>
<td>0.76</td>
<td>0.89</td>
<td>0.67</td>
</tr>
<tr>
<td>“Clinical Study,” “Experimental Study,” and “Automated Model”</td>
<td>0.80</td>
<td>0.83</td>
<td>0.74</td>
<td>0.86</td>
<td>0.80</td>
<td>0.68</td>
<td>0.77</td>
<td>0.80</td>
<td>0.91</td>
<td>0.68</td>
</tr>
<tr>
<td>“Clinical Study,” “Experimental Study based on animals,” and “Technical study based on Automated Model”</td>
<td>0.85</td>
<td>0.87</td>
<td>0.91</td>
<td>0.92</td>
<td>0.85</td>
<td>0.85</td>
<td>0.87</td>
<td>0.91</td>
<td>0.92</td>
<td>0.85</td>
</tr>
<tr>
<td>“Clinical Finding based on humans,” “Experimental Study based on animals,” and “Technical study based on Automated Model”</td>
<td>0.91</td>
<td>0.92</td>
<td>0.91</td>
<td>0.93</td>
<td>0.91</td>
<td>0.92</td>
<td>0.93</td>
<td>0.94</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Image processing techniques, machine learning models, and deep learning models</td>
<td></td>
</tr>
<tr>
<td>“Deep learning Model,” “Image processing technique,” and “ONLY Machine learning”</td>
<td>0.65</td>
<td>0.54</td>
<td>0.12</td>
<td>0.47</td>
<td>0.65</td>
<td>0.68</td>
<td>0.55</td>
<td>0.05</td>
<td>0.47</td>
<td>0.68</td>
</tr>
<tr>
<td>“Deep learning Model,” “Image processing technique,” and “Classic Machine learning”</td>
<td>0.66</td>
<td>0.57</td>
<td>0.74</td>
<td>0.79</td>
<td>0.66</td>
<td>0.69</td>
<td>0.60</td>
<td>0.73</td>
<td>0.71</td>
<td>0.69</td>
</tr>
<tr>
<td>“Deep learning Model,” “Digital Image processing technique,” and “Classic Machine learning”</td>
<td>0.65</td>
<td>0.58</td>
<td>0.68</td>
<td>0.61</td>
<td>0.65</td>
<td>0.66</td>
<td>0.56</td>
<td>0.71</td>
<td>0.76</td>
<td>0.66</td>
</tr>
<tr>
<td>“Deep learning Model,” “Digital Image processing technique,” and “Machine learning Model”</td>
<td>0.82</td>
<td>0.82</td>
<td>0.87</td>
<td>0.86</td>
<td>0.82</td>
<td>0.92</td>
<td>0.92</td>
<td>0.95</td>
<td>0.94</td>
<td>0.92</td>
</tr>
</tbody>
</table>

\(^a\)AUC: area under the curve.

Italicized prompts show the best results for that particular category.

Hyperparameters for Fine-Tuning BERT

For the categories in which the ZSL model (BART) provided poor results, we fine-tuned the BERT model and its variants to perform categorization. We conducted hyperparameter tuning based on this to enhance the model’s reliability and significance. By carefully selecting and fine-tuning hyperparameters such as the learning rates, batch sizes, and regularization strengths, we aimed to achieve accurate and meaningful results (Table S2 in Multimedia Appendix 1). For the BioBERT model, we selected a learning rate of 1e-05, a batch size of 8, a maximum length of 400, and a number of epochs of 20.

Evaluation Results

Article Classification Evaluation

This section presents the results based on the metrics that were selected in the ablation experiments. On the basis of the evaluation, BART demonstrated the best performance among...
the tested models. Therefore, further classification tasks were conducted using the BART model to capitalize on its superior performance. Table 4 shows the classification results using BART for the RenD data set for the categories of article type, ocular diseases, clinical studies subclass, and automated studies subclass.

The article type group was classified into 3 subcategories: clinical, experimental, and automated studies. The BART model demonstrated promising performance for the article type group, with an accuracy of 0.91, an F_1-score of 0.92, an AUC of 0.91, a precision of 0.93, and a recall of 0.91. For the article group type, classification based on only abstract and only title and combination of both are performing consistent. The automated model group is further categorized into image processing techniques, machine learning models, and deep learning models. For the automated study subclass group, the ZSL model achieved the best performance for title-based classification, with accuracy, F_1-score, AUC, precision, and recall of 0.92, 0.95, 0.94, and 0.92, respectively. However, the second-best scores were achieved by classification based on abstract and title.

The clinical studies are further categorized into screening, diagnosis, prognosis, etiology, and management, constituting a multilabel classification scenario. However, ZSL achieved the best score of F1 micro of 0.52, AUC of 0.68, precision micro of 0.49, and recall micro of 0.61. The ocular group is classified into DR, diabetic macular edema, age-related macular degeneration, glaucoma, dry eye, cataract, central serous retinopathy, and retinal detachment. In terms of accuracy, F_1-score, AUC, precision, and recall, the classification based on titles yielded the most favorable outcomes. Specifically, the results for the title-based classification were 0.85 accuracy, 0.85 F_1-score, 0.92 AUC, 0.89 precision, and 0.86 recall. Following closely were the results for the abstract-based classification, with values of 0.85 accuracy, 0.83 F_1-score, 0.91 AUC, 0.87 precision, and 0.85 recall.
<table>
<thead>
<tr>
<th></th>
<th>Article type (MC)</th>
<th>Ocular diseases (MC)</th>
<th>Clinical studies subclass (ML)</th>
<th>Automated studies subclass (MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.91<sup>c</sup></td>
<td>0.85<sup>d</sup></td>
<td>---</td>
<td>0.82</td>
</tr>
<tr>
<td>F<sub>1</sub>-score</td>
<td>0.92</td>
<td>0.83<sup>d</sup></td>
<td>0.49</td>
<td>0.82</td>
</tr>
<tr>
<td>AUC (95% CI)</td>
<td>0.91 (0.89-0.92)</td>
<td>0.91<sup>d</sup>(0.85-0.92)</td>
<td>0.67 (0.64-0.70)</td>
<td>0.87 (0.85-0.90)</td>
</tr>
<tr>
<td>Precision</td>
<td>0.93</td>
<td>0.87<sup>d</sup></td>
<td>0.33</td>
<td>0.86</td>
</tr>
<tr>
<td>Recall</td>
<td>0.91</td>
<td>0.85<sup>d</sup></td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.91</td>
<td>0.85</td>
<td>---</td>
<td>0.92<sup>d</sup></td>
</tr>
<tr>
<td>F<sub>1</sub>-score</td>
<td>0.92</td>
<td>0.85</td>
<td>0.50</td>
<td>0.92<sup>d</sup></td>
</tr>
<tr>
<td>AUC (95% CI)</td>
<td>0.91 (0.87-0.93)</td>
<td>0.92 (0.86-0.94)</td>
<td>0.67 (0.64-0.71)</td>
<td>0.95<sup>d</sup>(0.79-0.88)</td>
</tr>
<tr>
<td>Precision</td>
<td>0.93</td>
<td>0.89</td>
<td>0.42</td>
<td>0.94<sup>d</sup></td>
</tr>
<tr>
<td>Recall</td>
<td>0.91</td>
<td>0.86</td>
<td>0.61</td>
<td>0.92<sup>d</sup></td>
</tr>
<tr>
<td>Probability (abstract+title)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.85</td>
<td>0.78</td>
<td>---</td>
<td>0.90<sup>e</sup></td>
</tr>
<tr>
<td>F<sub>1</sub>-score</td>
<td>0.87</td>
<td>0.73</td>
<td>0.51</td>
<td>0.89<sup>g</sup></td>
</tr>
<tr>
<td>AUC (95% CI)</td>
<td>0.91 (0.87-0.94)</td>
<td>0.86 (0.79-0.88)</td>
<td>0.67 (0.79-0.88)</td>
<td>0.93<sup>f</sup>(0.89-0.94)</td>
</tr>
<tr>
<td>Precision</td>
<td>0.92</td>
<td>0.73</td>
<td>0.42</td>
<td>0.91<sup>e</sup></td>
</tr>
<tr>
<td>Recall</td>
<td>0.85</td>
<td>0.78</td>
<td>0.61</td>
<td>0.90<sup>e</sup></td>
</tr>
<tr>
<td>Appending title to abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.91<sup>d</sup></td>
<td>0.84</td>
<td>---</td>
<td>0.90<sup>f</sup></td>
</tr>
<tr>
<td>F<sub>1</sub>-score</td>
<td>0.91<sup>d</sup></td>
<td>0.82</td>
<td>0.52</td>
<td>0.89<sup>g</sup></td>
</tr>
<tr>
<td>AUC (95% CI)</td>
<td>0.91<sup>d</sup>(0.86-0.92)</td>
<td>0.90 (0.86-0.92)</td>
<td>0.68 (0.62-0.71)</td>
<td>0.93<sup>f</sup>(0.90-0.95)</td>
</tr>
<tr>
<td>Precision</td>
<td>0.93<sup>d</sup></td>
<td>0.86</td>
<td>0.49</td>
<td>0.91<sup>e</sup></td>
</tr>
<tr>
<td>Recall</td>
<td>0.91<sup>d</sup></td>
<td>0.84</td>
<td>0.61</td>
<td>0.90<sup>e</sup></td>
</tr>
</tbody>
</table>

^aMC: multiclass classification.
^bML: multilabel classification.
^cThe best results are italicized.
^dThe second-best scores.
^eNot available.
^fAUC: area under the curve.

Trend Analysis

A category-wise analysis was performed for the article type and ocular disease groups based on the RenD data set (Figure 2). Some other results are also reported in Figure S2 in Multimedia Appendix 1.

Category-wise analysis showed more frequent papers on clinical studies compared to experimental- and automated-based studies. For ocular diseases, more studies have discussed DR and glaucoma compared to other ocular diseases. A timewise analysis was conducted for the subgroup of automated studies from 2015 to 2022. The trends indicated that, in the initial years, these studies primarily relied on image processing techniques. However, as time progressed, machine learning gained traction, and eventually, deep learning models became increasingly popular in this field, reflecting how technology is evolving in ophthalmology. For the time-wise analysis of diseases, refer to Multimedia Appendix 1.
Figure 2. Trend analysis of classified articles: (A) and (B) category-wise analysis for article type and ocular diseases group, respectively, and (C) timewise analysis for automated studies subclass group: image processing techniques, machine, and deep learning models. AMD: age-related macular degeneration; CSR: central serous retinopathy; DME: diabetic macular edema; DR: diabetic retinopathy.

Discussion

Principal Findings

We have proposed a framework aimed at streamlining the literature review process. This framework entails an automated system that operates by taking user-specified keywords as input. By leveraging these keywords, the system retrieves relevant articles from the PubMed database. In addition, the user specifies the desired categorization for these articles. This approach aims to simplify and expedite the traditionally time-consuming task of conducting literature reviews. We investigated the efficacy of using the LLM model to perform article classification.

LLMs, particularly ChatGPT, have gained huge popularity due to their versatility in performing various tasks, including
question answering and trend analysis within specific fields. Moreover, these models demonstrate the capability to generate research papers, letters, and other written content, showcasing their potential for creative text generation. However, the generated content is not always entirely authentic, as it can occasionally produce fake references and links, raising concerns about the reliability and accuracy of the information presented. Therefore, we proposed a framework for automating the literature review process and finding different trends in various disciplines. However, a limitation of ChatGPT-3.5 is the fact that it is not equipped with information beyond September 2021; therefore, it may not provide facts or knowledge beyond this date. We target using open-source LLMs for article classification and then performing category-wise and timewise analysis. Other open-source LLMs have become available recently. For instance, mDeBERTa, BART, and the recently released Llama 2 and its variants may outperform ChatGPT. However, using Llama 2 requires significant graphics processing unit and memory resources. Even the small variant of the model, with 7 billion parameters, demands substantial computational power to function effectively. These resource requirements can pose challenges for users with limited access to high-performance hardware.

Hence, our primary goal is to select a model that not only delivers robust performance but also requires fewer computational resources, thereby enhancing accessibility for a broader user base. The BART model aligns with these criteria as it is open source, allowing seamless execution on central processing unit. This choice ensures a balance between efficiency and performance, making advanced NLP capabilities accessible to a wider community. In a direct comparison with alternative models, BART stands out, showcasing superior overall performance across various evaluation metrics and in terms of computational resources.

Categorization, Classification, and Trend Analysis

We used BART as the ZSL classifier, and we used the abstract and title separately for article classification. After obtaining the probabilities from each model, we combined the probabilities and performed classification. In addition, we also appended the title to the abstract and added it to the models.

The BART model showed compromising results for the categories article type, ocular diseases, and automated studies subclass of the RenD data set. The classifications based on abstract and title are nearly similar in performance. For clinical studies subclass grouping, the BART achieved an F1 micro score of 0.52 and an AUC of 0.68. To improve the performance for this class, we fine-tuned BERT and its variant, BioBERT, which performed best with an F1 micro score of 0.67 and an AUC of 0.70. The lower performance in this class is likely due to the class imbalance, which typically affects the model’s ability to generalize and accurately predict instances of the minority class.

We also evaluated the performance of the BART model to classify the articles into different categories for 2 undergoing review studies including DEye and DemL. The articles in both the review studies were annotated by reviewing the entire article. However, we just used the abstract and title, and for DEye, our model achieved an AUC of 0.79 and an F_1-score of 0.63. To improve the performance of the BART model, we performed a hierarchical analysis in which the multilabel task is divided into a binary classification. Classification was performed across different thresholds for each class, and the optimal value was chosen based on the best results achieved (Table S3 in Multimedia Appendix 1). The results showed that converting the multilabel problem into binary classification improves the performance of the BART model. In addition to this, we also observed that abstract-based classification and whole article–based annotation provided comparable results for each class (Table 5).

On the basis of the DemL data set, the BART model’s classification is based on the abstract, and the title is as accurate as the whole article–based annotation for the DemL data set.
Table 5. Bidirectional and Auto-Regressive Transformers (BART) model evaluation for classification of the Dry eye and DemL data sets.

<table>
<thead>
<tr>
<th>Data set and category</th>
<th>Classification type</th>
<th>Abstract</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>F1-score</td>
<td>AUC</td>
</tr>
<tr>
<td>Dry eye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tear film break up time, infrared thermography, lipid layer interface pattern, meibomian gland study, tear film assessment, and tear meniscus assessment</td>
<td>MC<sup>b</sup></td>
<td>0.63</td>
<td>0.79</td>
</tr>
<tr>
<td>Infrared thermography</td>
<td>BC<sup>c</sup></td>
<td>0.91</td>
<td>0.73</td>
</tr>
<tr>
<td>Lipid layer interface pattern</td>
<td>BC</td>
<td>0.94<sup>d</sup></td>
<td>0.77<sup>d</sup></td>
</tr>
<tr>
<td>Meibomian gland study</td>
<td>BC</td>
<td>0.91</td>
<td>0.54</td>
</tr>
<tr>
<td>Tear film assessment</td>
<td>BC</td>
<td>0.92</td>
<td>0.87</td>
</tr>
<tr>
<td>Tear meniscus assessment</td>
<td>BC</td>
<td>0.80</td>
<td>0.64</td>
</tr>
<tr>
<td>Glaucoma (DemL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine learning model and deep learning model</td>
<td>MC<sup>f</sup></td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

^aAUC: area under the curve.
^bMC: multiclass classification.
^cBC: binary classification.
^dSecond best score.
^eBest scores are italicized.
^fMC: multilabel classification.

Comparative Analysis of Computational Time

We have performed a comparative analysis of the processing time between the LLM and human annotators, which has unveiled intriguing insights. This analysis delves into the time required for classification based on the abstract, the title, and both the title and abstract of scientific articles. Manually annotating articles is a time-consuming task, as human annotators require a significant amount of time to label each article. The overall process can span over several weeks, depending on the number of articles and the number of categories for annotations. For instance, annotating the abstract of 1 article with 2 categories may take, on average, 4 to 5 minutes. However, automated models take notably less time to complete similar tasks (Table 6).

Notably, using both title and abstract as input led to a slightly increased processing time for the BART model, although it remained significantly faster than human annotation. We conducted 2 types of trend analysis: category wise and timewise. These analyses can be applied to any classified category and can highlight different trends in a concise and quick manner. A report is generated at the end, encompassing user-specified inclusion criteria and other relevant aspects to aid researchers (Figure S3 in Multimedia Appendix 1).
Table 6. Comparative analysis of processing time by large language model (Bidirectional and Auto-Regressive Transformers [BART]) and human annotator.

<table>
<thead>
<tr>
<th>Data set and category</th>
<th>Articles, n (%)</th>
<th>Abstract (minutes)</th>
<th>Title (minutes)</th>
<th>Title and abstract (minutes)</th>
<th>Annotation by human (minutes [approximately])</th>
<th>Timeline (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinal disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical, experimental, and automated model</td>
<td>1000 (100)</td>
<td>141.50</td>
<td>15.21</td>
<td>194.2</td>
<td>3000</td>
<td>4</td>
</tr>
<tr>
<td>DR(^a), DME(^b), AMD(^c), glaucoma, dry eye, cataract, CSR(^d), and retinal detachment</td>
<td>1000 (100)</td>
<td>274.06</td>
<td>27.30</td>
<td>283.43</td>
<td>4000</td>
<td>4</td>
</tr>
<tr>
<td>Screening, diagnosis, prognosis, etiology, and management</td>
<td>464 (59)</td>
<td>118.71</td>
<td>13.11</td>
<td>102.45</td>
<td>1600</td>
<td>4</td>
</tr>
<tr>
<td>Image processing techniques, machine learning model, and deep learning model</td>
<td>156 (15.6)</td>
<td>21.23</td>
<td>2.45</td>
<td>23.78</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>Dry eye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tear film break up time, infrared thermography, lipid layer interface pattern, meibomian gland study, tear film assessment, and tear meniscus assessment</td>
<td>67 (100)</td>
<td>36.45</td>
<td>6.45</td>
<td>37.12</td>
<td>2800</td>
<td>2</td>
</tr>
<tr>
<td>Glaucoma (DemL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep learning model and machine learning model</td>
<td>115 (100)</td>
<td>19.30</td>
<td>1.83</td>
<td>21.13</td>
<td>1000</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\)DR: diabetic retinopathy.
\(^b\)DME: diabetic macular edema.
\(^c\)AMD: age-related macular degeneration.
\(^d\)CSR: central serous retinopathy.

Limitations

The limitation of this study is that we have included articles from the PubMed database, which may have resulted in the exclusion of relevant articles related to the chosen keyword. However, future plans involve the integration of additional databases such as Google Scholar, IEEE Xplore, and Springer to address this limitation and ensure a more comprehensive coverage of relevant literature. Articles from various databases can unveil trends and patterns that transcend specific domains, increasing the applicability of the findings.

We used the ZSL model for text classification. As the model is not specifically trained for downstream tasks, there are several potential biases and challenges to consider. The model may not fully comprehend the semantics or nuances of the new task, leading to biases in predictions or misinterpretations. Downstream tasks have different data distributions compared to the original ZSL task, causing the model to struggle with new patterns or biases.

We selected BART as the ZSL model, as it is the latest open-source model. BART pretraining results in the creation of semantic embeddings that capture various linguistic nuances. These embeddings enable the model to understand the semantics of different tasks, even for those tasks it has not been explicitly trained on. Its task-agnostic pretraining allows it to be adapted for various other fields by providing task-specific prompts during inference. Leveraging BART for zero-shot tasks often involves careful prompt engineering. By formulating prompts that guide the model to perform specific tasks or make predictions for unseen classes, users can harness the model’s prelearned linguistic capabilities. This can be addressed by carefully designing the prompt and adding a little description instead of using 1 word for each category, and then the model will perform better (Table 3). A limitation of the ZSL is its potential to exacerbate inequality. If the categories are not carefully designed, ZSL models may unintentionally reinforce inequalities by favoring certain classes or groups. This can also be addressed by prompt engineering. Another limitation we found is that the ZSL model will face difficulties in performing multilabel classification when categories are closely related. This issue can be resolved by dividing the multilabel classification into binary classification for each class.

The computational demands and knowledge cutoff limitations in LLM are also constraints that can be addressed by leveraging reinforcement learning techniques. The implementation of adaptive learning, active learning strategies, and exploration-exploitation balancing is being explored to address computational challenges while minimizing the impact of the knowledge cutoff. In addition, user-driven reinforcement and collaborative efforts within the research community are being incorporated to refine the models. These reinforcement learning strategies are expected to enhance the adaptability, efficiency, and overall performance of LLM, ensuring its continued relevance and effectiveness.
Conclusions

We developed a framework based on BART ZSL for the categorization and trend analysis of articles and demonstrated a proof-of-concept scenario in the field of ophthalmology. We used the ZSL model for the categorization of articles in the field of ophthalmology, but it is extendable to other categories and fields without requiring any additional training. The model can generalize to new classes it has not observed during training, making it adaptable to different domains and applications.

The results demonstrated that the model achieved promising outcomes across most categories. In addition to article classification, trend analysis highlighted the evolution of technology in ophthalmology. Accurate and quick classification of scientific papers enables efficient information retrieval, allowing researchers to access relevant studies more quickly and obtain insights into the trend of technology and future directions. Future research directions include exploring more specialized LLMs for further improvement. In addition to this, we also have plans to develop an automated literature review tool. This tool aims to streamline and enhance the literature review process by incorporating advanced algorithms to efficiently analyze and summarize relevant research findings.

Acknowledgments

This work was supported by National Institutes of Health (NIH) Grants R01EY033005 (SY) and R21EY031725 (SY) and Challenge Grant from Research to Prevent Blindness, New York (SY). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data Availability

The data set (RenD) generated during this study is available in the Mendeley Data repository [23].

Conflicts of Interest

None declared.

Multimedia Appendix 1

Supplementary dataset, tables, and figures.

References

Abbreviations

- **AUC**: area under the curve
- **BART**: Bidirectional and Auto-Regressive Transformers
- **BERT**: Bidirectional Encoder Representations from Transformers
- **DR**: diabetic retinopathy
- **GPT**: Generative Pretrained Transformer
- **LLM**: large language model
- **mDeBERTa**: Decoding-enhanced Bidirectional Encoder Representations from Transformers with Disentangled Attention
- **MeSH**: Medical Subject Headings
- **NLP**: natural language processing
- **RenD**: retinal diseases
- **ZSL**: zero-shot learning
Acceptance of Medical Artificial Intelligence in Skin Cancer Screening: Choice-Based Conjoint Survey

Inga Jagemann1, MSc; Ole Wensing1, BSc; Manuel Stegemann1, Prof Dr; Gerrit Hirschfeld1, Prof Dr
School of Business, University of Applied Sciences and Arts Bielefeld, Bielefeld, Germany

Corresponding Author:
Inga Jagemann, MSc
School of Business
University of Applied Sciences and Arts Bielefeld
Interaktion 1
Bielefeld, 33619
Germany
Phone: 49 521106 ext 70508
Email: inga.jagemann@hsbi.de

Abstract

Background: There is great interest in using artificial intelligence (AI) to screen for skin cancer. This is fueled by a rising incidence of skin cancer and an increasing scarcity of trained dermatologists. AI systems capable of identifying melanoma could save lives, enable immediate access to screenings, and reduce unnecessary care and health care costs. While such AI-based systems are useful from a public health perspective, past research has shown that individual patients are very hesitant about being examined by an AI system.

Objective: The aim of this study was two-fold: (1) to determine the relative importance of the provider (in-person physician, physician via teledermatology, AI, personalized AI), costs of screening (free, 10€, 25€, 40€; 1€=US $1.09), and waiting time (immediate, 1 day, 1 week, 4 weeks) as attributes contributing to patients’ choices of a particular mode of skin cancer screening; and (2) to investigate whether sociodemographic characteristics, especially age, were systematically related to participants’ individual choices.

Methods: A choice-based conjoint analysis was used to examine the acceptance of medical AI for a skin cancer screening from the patient’s perspective. Participants responded to 12 choice sets, each containing three screening variants, where each variant was described through the attributes of provider, costs, and waiting time. Furthermore, the impacts of sociodemographic characteristics (age, gender, income, job status, and educational background) on the choices were assessed.

Results: Among the 383 clicks on the survey link, a total of 126 (32.9%) respondents completed the online survey. The conjoint analysis showed that the three attributes had more or less equal importance in contributing to the participants’ choices, with provider being the most important attribute. Inspecting the individual part-worths of conjoint attributes showed that treatment by a physician was the most preferred modality, followed by electronic consultation with a physician and personalized AI; the lowest scores were found for the three AI levels. Concerning the relationship between sociodemographic characteristics and relative importance, only age showed a significant positive association to the importance of the attribute provider ($r=0.21$, $P=.02$), in which younger participants put less importance on the provider than older participants. All other correlations were not significant.

Conclusions: This study adds to the growing body of research using choice-based experiments to investigate the acceptance of AI in health contexts. Future studies are needed to explore the reasons why AI is accepted or rejected and whether sociodemographic characteristics are associated with this decision.

(JMIR Form Res 2024;8:e46402) doi: 10.2196/46402

KEYWORDS

artificial intelligence; skin cancer screening; choice experiment; melanoma; conjoint analysis, technology acceptance; adoption; technology use; dermatology; skin cancer; oncology; screening; choice based; trust
Skin cancers are the most common groups of cancers diagnosed worldwide, with more than 1.5 million new cases estimated in 2020 [1]. Melanoma is the deadliest form of skin cancer. Based on demographic changes, it is estimated that more than 500,000 new cases of melanoma and almost 100,000 deaths from melanoma should be expected worldwide by 2040 [1]. As melanoma case numbers are expected to increase in the future, high-cost treatments will continue to put a strain on the already overburdened health care budgets. To combat the rising mortality rate of melanoma, early detection is critical. Currently, the German national treatment guidelines [2] recommend skin cancer screening as a standardized full-body skin examination performed by dermatologists who have completed specialized training in the early detection of skin cancer. In addition, dermatologists should use dermoscopy to diagnose suspected skin cancer. Given the rising number of cases as well as increasing scarcity of trained dermatologists [3-5], there has been substantial research into the feasibility of artificial intelligence (AI) to augment or replace traditional skin cancer screening regimens [6].

AI describes machines (or computers) that mimic the cognitive functions associated with human thought, such as learning and problem-solving. These systems observe their surroundings and adopt action to reach their targets directly [7]. Further, AI has the ability to learn from images and subsequently provide an image-based diagnosis. Dermatology, as an image-based field of medicine, retains a dominant position in the AI evolution with the ability to classify skin lesions [8].

Research into the technical quality of AI-based skin cancer screening technologies has shown that these systems achieve detection rates that are on par or better than those of highly trained clinicians [9-13]. This highlights the great potential of AI for future skin cancer screening in the general population. As part of apps, AI systems offer immediate access to dermatological screening for all patients with mobile digital devices, enabling health care and treatment to be provided regardless of time and place and close to everyday life [6]. Thus, AI systems capable of detecting melanoma and nonmelanoma skin cancer could avoid unnecessary care, reduce health care costs, offer solutions to the increasing scarcity of clinicians, and reduce the waiting times for an appointment and for a diagnosis [3-5]. However, there is a risk that some melanomas will be missed and treatment delayed if the apps incorrectly reassure the user that their lesion is of low risk [14].

Although the technical quality has improved, there is also a growing awareness that patients do not generally accept the use of AI-based systems in health care settings. There is still no consistent definition of technology acceptance in the literature. Terms such as “acceptability,” “acceptance,” and “adoption” are often employed in this context, sometimes interchangeably. Dillon and Morris [15] defined user acceptance “as the demonstrable willingness within a user group to employ IT [information technology] for the tasks it is designed to support.”

Khullar et al [16] conducted an online survey to examine patients’ perspectives about applications of AI in health care, showing that 31% of respondents reported being very uncomfortable and 40.5% were somewhat uncomfortable with receiving a diagnosis from an AI algorithm that was accurate 90% of the time but incapable of explaining its rationale. Longoni et al [17] demonstrated that consumers are very hesitant about being examined by an AI system and consumers’ willingness to pay decreases when an equivalent service is performed by an AI system. Additionally, they concluded that patients’ perceived neglect of uniqueness leads to more resistance to medical AI [17].

Past research has also identified several factors that might impact patients’ preferences to use AI-based health care services. The European Commission [18] interviewed citizens of the 28 member states of the European Union (N=27,900) and concluded that younger participants with a high educational level are more likely to use online health care services. This finding was also replicated in oncology patients, where younger patients indicated higher acceptance of and a greater intention to use digital tools and apps to manage their cancer [19]. The European Commission [18] also found that the opinion on AI strongly depends on exposure to related information and knowledge. This relationship is also supported by a series of experiments showing that resistance to the utilization of medical AI is driven by the subjective difficulty of understanding algorithms [13].

Concerning skin cancer, previous research has shown that patients were generally reluctant to use AI-based systems in the field of dermatology. Snoswell et al [6] examined the consumer preference and willingness to pay for mobile teledermoscopy services in Australia using a discrete-choice experiment (N=199). They found that patients prefer a trained medical professional to be involved in their skin cancer screening and that patients are less willing to pay money for teledermatology [6]. However, Snoswell et al [6] did not take into account sociodemographic factors that may have had an impact on the patients’ decisions. In a multicenter clinical study assessing the performance of automated diagnosis of melanoma with a self-completion questionnaire (N=65), Fink et al [20] found that most patients agreed that computer-assisted diagnoses are trustworthy and may generally improve the diagnostic performance of physicians. However, participants rejected the idea of AI-based systems completely replacing physicians and instead strongly favored hybrid solutions in which diagnoses by a physician are supported by automated systems [20].

To date, only three studies have directly addressed the question of which factors are associated with patients’ preferences regarding AI-based skin cancer screening [21-23]. Ghanie et al [22] studied public interest in teledermatology, which was found to be positively associated with a younger age, higher educational attainment, and higher household income. Chang et al [21] examined sociodemographic differences in teledermatology acceptability with a cross-sectional survey (N=13,996), showing that respondents who were interested in teledermatology were more frequently 18–39 years of age, men, college graduates, and tablet or smartphone users. Similarly, young age, male gender, a previous history of melanoma, and higher educational level were significantly associated with a more positive attitude toward skin cancer–related apps [23]. However, it is unclear whether these results from questionnaires
can be replicated in choice-based experiments that rely to a lesser degree on introspection and are thus one step closer to actual behavior [24].

As described above, provider and costs for a skin cancer screening have high relevance for the user [6,16,17,20]. For this choice-based conjoint analysis, we further added the attribute waiting time for a diagnosis, because studies have shown a strong negative correlation between patient satisfaction and waiting time [25,26]. AI provides the opportunity to get a skin cancer screening immediately, without any waiting time [3]. Due to the shortage of medical professionals, waiting time for a skin cancer diagnosis is also an important attribute for the user [5,7].

The aim of this study was two-fold based on the following two research questions: (1) How important are the attributes provider, costs for screening, and waiting time for diagnosis for participants’ preference for skin cancer screening? (2) Are sociodemographic characteristics, especially age, systematically related to the relative importance scores of participants to the various attributes?

Methods

Study Design

This cross-sectional study used a choice-based conjoint analysis to examine the acceptance of medical AI for a skin cancer screening from the user perspective. Conjoint analysis is a quantitative marketing research method that quantifies the value consumers place on the attributes of a product [27]. Respondents are asked to make a choice between 2 or more different choice sets, where each set is described in terms of several predefined attributes, each with different levels. Given a sufficient number of choices per respondent, it is then possible to statistically estimate the importance of each attribute and level for the choice in terms of part-worth utilities. This method offers a behavioral approach and is less susceptible to social desirability and other biases [28].

This study systematically manipulated three attributes (provider, cost, and waiting time) for a hypothetical skin cancer screening. Participants were presented with 12 different choice sets one after another, each consisting of three different modes of skin cancer screenings that were generated by combining different levels of the three attributes (see Figure 1 for an example). The choice sets were generated by the conjointly algorithm using default settings [29].

Figure 1. Example choice set (1€ = US $1.09).

Which of the following health care services would you choose?

- **Physician treatment**
 - Immediate diagnosis
 - 40€ copayment

- **Personalized artificial intelligence**
 - 4 weeks waiting time
 - 10€ copayment

- **Artificial intelligence**
 - 1 week waiting time
 - 0€ covered by health insurance

Survey

Before the survey was conducted, it was tested with the “think-aloud” method by three volunteers to find out if there were any comprehensibility problems. For this purpose, the pretest participants had to speak their thoughts aloud while completing the survey [30].

The questionnaire started with informed consent, where participants were informed about the nature and scope of the survey and about the protection of their data. Before starting the questionnaire, participants completed the consent form and agreed to participate in the anonymous study. The participants then moved on to the choice-based conjoint task, which consisted of 12 different choice sets. The participant’s task for each choice set was to indicate the skin cancer screening that they most prefer (ie, they selected one of the three options as their preferred choice). After responding to the choice sets, participants were asked whether they had undergone a skin cancer screening in the last year and at which type of provider.

Finally, the sociodemographic characteristics (age, gender, education, status, income) were assessed. Finally, the survey asked again whether the data could be used for analysis in anonymized form in case respondents changed their minds during the course of the survey and to filter out people who just wanted to “click through” without seriously answering the questions.

Participants

Recruitment was based on a convenience sample through the social environment; individuals were asked to participate in the open voluntary survey shared with contacts via WhatsApp and Instagram. Standard procedures for conducting and reporting online surveys [31] were followed. Furthermore, conjointly’s default methods were used to identify and bar potential duplicate entries from the same user. Data were collected during the time period of September 29, 2022, through October 20, 2022.

The link to the survey was clicked 383 times by unique site visitors. Of these potential respondents, 126 (32.9%) people
filled out the conjoint survey completely and gave their agreement for processing their data. In total, 220 (57.4%) respondents opened the link but did not complete the survey and another 33 (8.6%) people were disqualified from the study because they answered the survey several times. Three people (0.8%) did not give their agreement to process their data and a single respondent (0.3%) was excluded because the survey was answered too quickly. Respondents took an average of 4.7 minutes to complete the survey. Table 1 provides an overview of the respondents’ sociodemographic characteristics. There was a relatively equal proportion of participants identifying as male and female. The average age of the participants was 37.6 years and the median age was 29 years.

Table 1. Sociodemographic characteristics of participants sampled from September 29, 2022, to October 20, 2022 in Germany (N=126).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>58 (46.0)</td>
</tr>
<tr>
<td>Female</td>
<td>67 (53.2)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Still a student</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>School-leaving qualification</td>
<td>25 (19.8)</td>
</tr>
<tr>
<td>Vocational qualification</td>
<td>34 (27)</td>
</tr>
<tr>
<td>University degree</td>
<td>58 (46)</td>
</tr>
<tr>
<td>Doctorate</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>Other degree</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>Not specified</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
</tr>
<tr>
<td>Elementary/high school student</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>University student</td>
<td>29 (23)</td>
</tr>
<tr>
<td>Apprentice</td>
<td>11 (8.7)</td>
</tr>
<tr>
<td>Employee</td>
<td>58 (46)</td>
</tr>
<tr>
<td>Civil servant</td>
<td>6 (4.8)</td>
</tr>
<tr>
<td>Self-employed</td>
<td>8 (6.3)</td>
</tr>
<tr>
<td>Not employed</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Retired without income</td>
<td>9 (7.1)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Not specified</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Monthly income (Euro; 1€=US $1.09)</td>
<td></td>
</tr>
<tr>
<td><250</td>
<td>5 (4.0)</td>
</tr>
<tr>
<td>250-499</td>
<td>8 (6.3)</td>
</tr>
<tr>
<td>500-999</td>
<td>17 (13.5)</td>
</tr>
<tr>
<td>1000-1499</td>
<td>12 (9.5)</td>
</tr>
<tr>
<td>1500-1999</td>
<td>13 (10.3)</td>
</tr>
<tr>
<td>2000-2999</td>
<td>26 (20.6)</td>
</tr>
<tr>
<td>3000-3999</td>
<td>16 (12.7)</td>
</tr>
<tr>
<td>4000-4999</td>
<td>6 (4.8)</td>
</tr>
<tr>
<td>>5000</td>
<td>13 (10.3)</td>
</tr>
<tr>
<td>Not specified</td>
<td>10 (7.9)</td>
</tr>
</tbody>
</table>
Ethical Considerations

Our online study was conducted in accordance with the American Psychological Association’s Ethical Principles of Psychologists and Code of Conduct. In particular, data collection was anonymous; harmless to participants; and did not involve deception, injury, or place participants under high levels of physical or emotional stress. In line with 2023 guidelines of the German Research Foundation, formal ethical approval was not required because our study did not include aspects that would necessitate a statement, per subsection two of the “Information on proposals in the field of psychology” [32]. Informed consent was obtained from all participants after the purpose of the study and the data collection were outlined in the survey introduction. Participants indicated their consent by clicking a button. Study data and identifiers were anonymized during the data collection and data analysis to maintain confidentiality. No compensation was awarded to participants.

Results

Table 2 provides an overview of the relative importance values of the attributes and part-worth values of each level for each attribute as determined by conjointly to answer the first research question [29]. A treatment by a physician that is completely compensated by insurance and has no waiting time emerged as the most preferred mode of treatment. Overall, provider was the most important attribute, followed by costs and waiting time. For all attributes, we found two levels with part worths around zero and one positive and negative level. For provider, the physician had a positive part worth and the AI system had a negative part worth, while both the personalized AI and teledermatology had near-zero part worths. For waiting time, immediate results had a positive part worth and a 4-week wait had a negative part worth, while a 1-day and 1-week wait had similar near-zero part worths.

Table 2. Part-worth and relative importance values of the attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Part worth (95% CI)</th>
<th>Relative importance, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider</td>
<td></td>
<td>38.6 (35.3 to 41.6)</td>
</tr>
<tr>
<td>AI</td>
<td>−0.15 (−0.17 to −0.13)</td>
<td></td>
</tr>
<tr>
<td>Personalized AI</td>
<td>−0.06 (−0.08 to −0.04)</td>
<td></td>
</tr>
<tr>
<td>Physician treatment</td>
<td>0.21 (0.19 to 0.24)</td>
<td></td>
</tr>
<tr>
<td>Electronic consultation with physician (teledermatology)</td>
<td>0.005 (−0.01 to 0.02)</td>
<td></td>
</tr>
<tr>
<td>Costs for screening</td>
<td></td>
<td>31.6 (29.0 to 34.0)</td>
</tr>
<tr>
<td>0¢ (completely covered by health insurance)</td>
<td>0.15 (0.13 to 0.16)</td>
<td></td>
</tr>
<tr>
<td>10¢ copayment</td>
<td>0.06 (0.06 to 0.07)</td>
<td></td>
</tr>
<tr>
<td>25¢ copayment</td>
<td>−0.03 (−0.04 to −0.03)</td>
<td></td>
</tr>
<tr>
<td>40¢ copayment</td>
<td>−0.18 (−0.19 to −0.16)</td>
<td></td>
</tr>
<tr>
<td>Waiting time for diagnosis</td>
<td></td>
<td>29.8 (27.2 to 32.3)</td>
</tr>
<tr>
<td>Immediate</td>
<td>0.10 (0.09 to 0.11)</td>
<td></td>
</tr>
<tr>
<td>1 day</td>
<td>0.082 (0.07 to 0.09)</td>
<td></td>
</tr>
<tr>
<td>1 week</td>
<td>−0.004 (−0.01 to 0.003)</td>
<td></td>
</tr>
<tr>
<td>4 weeks</td>
<td>−0.18 (−0.20 to −0.17)</td>
<td></td>
</tr>
</tbody>
</table>

aAI: artificial intelligence.
b1¢=US $1.09.

c

Figure 2 shows an overview of the relationships between sociodemographic characteristics and the relative importances to answer the second research question. We found a medium-sized positive relationship between age and provider. In addition, there were two nonsignificant trends. The first indicated an inverse relationship between age and the importance of costs and the second indicated an inverse relationship between income and the importance for costs. All other importances were not systematically related to sociodemographic variables (Table 3).
Figure 2. Relationship between relative importances and sociodemographic characteristics: (A) age, (B) gender, (C) education, (D) income, (E) employment status.
Table 3. Correlation coefficients (Spearman ρ) for the importance values.

<table>
<thead>
<tr>
<th>Sociodemographic characteristics</th>
<th>Relative importance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provider</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Coefficient</td>
<td>0.21^a</td>
</tr>
<tr>
<td>P value</td>
<td>.02</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Coefficient</td>
<td>-0.003</td>
</tr>
<tr>
<td>P value</td>
<td>.97</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Coefficient</td>
<td>-0.04</td>
</tr>
<tr>
<td>P value</td>
<td>.64</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
</tr>
<tr>
<td>Coefficient</td>
<td>0.05</td>
</tr>
<tr>
<td>P value</td>
<td>.53</td>
</tr>
<tr>
<td>Income</td>
<td></td>
</tr>
<tr>
<td>Coefficient</td>
<td>0.02</td>
</tr>
<tr>
<td>P value</td>
<td>.81</td>
</tr>
</tbody>
</table>

aPearson correlation coefficient.

Discussion

The aim of this study was to determine how important the attributes provider, costs, and waiting time are for users’ preference for skin cancer screening and to investigate whether sociodemographic characteristics, especially age, are systematically related to participants’ individual importances. We found that provider was as equally important a factor for participants’ decisions as cost and waiting time. While a physician was the most preferred level of this attribute, AI-based treatment was disliked and a personalized AI had the same value for participants as teledermatology.

Concerning the relationship between sociodemographic characteristics and relative importances, we found that only age showed a reliable positive association to provider, in which younger participants place less importance on the provider than older participants. In the following, we discuss these findings in turn before discussing the limitations of the study and providing a general outlook.

Regarding the role of the provider in users’ decisions, other studies underline our results that patients exhibit hesitant behavior toward medical AI. Patients would rather not have a treatment than be examined by an AI system, even if the AI system shows the same or better accuracy as a physician [17]. However, the same study also found that patients prefer personalized AI over nonpersonalized AI. Similarly, earlier discrete-choice experiments [6] as well as surveys [33] found that patients prefer a trained medical professional to be involved in their skin cancer screening; 41% of respondents were open to using AI as a standalone system for skin cancer screening and 94% were open to using it as a support system for physicians [33]. Together, existing studies indicate that personalized AI and teledermatology are generally more accepted than nonpersonalized AI for skin cancer screening, while the physician remains the most preferred option.

Regarding income and educational factors, our findings do not align with those of previous studies. Ghani et al [22] concluded that higher education attainment and a higher household income increased the interest in using teledermatology. Chang et al [21] came to similar conclusions, indicating that college graduates showed the greatest interest in teledermatology. In addition, Steeb et al [23] showed that a high educational level was associated with a positive attitude toward skin cancer-related apps. While we were not able to show significant relationships to income and educational background, the smaller sample size in this study compared to those of earlier studies might explain this inconsistency.

Previous studies also identified gender differences in the acceptance of AI in skin cancer screening. Chang et al [21] came to the conclusion that men are more likely to use teledermatology than women. Steeb at al [23] found similar results in which male gender was significantly associated with a positive attitude toward skin cancer-related apps. However, the gender difference that was reported in earlier studies was not visible in our data. Again, this might be a factor of sample size.
size, but it also might also be that these gender differences reported in earlier questionnaire studies reflect differences in the technology self-concept [34] rather than actual preferences.

Several aspects must be considered in interpretation of our findings. First, the sample was not randomly selected but was based on a convenience sample. While a wide range of recruitment means were used, the results are likely not generalizable to the general public but rather more specific to highly educated young adults. Further research is needed with the target group. Although the sample size may not seem particularly large, sensitivity analysis showed that this sample size was in fact sufficient to detect a medium-sized correlation ($r=0.28$) with a power of 90% and error rate of 5%. Second, some participants contacted us about the meaning of the attribute waiting time because they were unsure whether this pertained to the waiting time for a diagnosis or the waiting time for an appointment. Future studies should make this distinction more explicit to study possible differential effects of these two types of waiting times.

Taken together, we believe that this study adds to the growing body of research using choice-based experiments to investigate the acceptance of AI in health contexts. This approach offers additional insights and is less susceptible to social desirability and other biases [35]. However, the choice-based conjoint analysis only allows studying a small number of potential attributes at a time [24]. Because we included personalized AI as a level for the attribute provider, our study adopted the findings of Longoni et al [17] that personalized AI increases patient acceptance. In addition, we examined factors that may have an impact on patients’ decision-making following the study of Snoswell et al [6].

For the future, it could be interesting to add “AI as a physician support system” to the choice set [33]. It might also be interesting to find out whether patients who perceived themselves as more individualized are less accepting of AI [17]. Additionally, it could be interesting to explore whether specialized knowledge about AI systems would increase patient acceptance [13] and which other factors might have an influence on patients’ acceptance. Ideally, this would not only rely on correlational evidence as used here but also on experimental evidence that shows how preferences and importances may be altered. The variables such as income and educational background cannot be manipulated easily. Nevertheless, we believe that the magnitude of these effects provides some benchmarks for future studies that aim to use experimental methods to alter preferences.

In summary, while there have been technological advances in the effectiveness of AI for supporting skin cancer screening and health care more generally, we believe that the true potential of AI systems can only be realized if patients’ needs and demands are taken into account.

Acknowledgments
This research was conducted within the framework of the project “SAIL: SustAInable Lifecycle of Intelligent Socio-Technical Systems,” funded by the Ministry of Culture and Science of the State of North Rhine-Westphalia under grant NW21-059B. The sole responsibility for the content of this publication lies with the authors. Publication was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under grant 490988677 and the University of Applied Sciences Bielefeld. Generative artificial intelligence was not used in any portion of the manuscript writing.

Data Availability
The data sets generated and analyzed during this study are available in the zenodo repository [36].

Authors’ Contributions
IJ: study conceptualization, analysis, writing first draft, approval of final manuscript; MS: study conceptualization, analysis, approval of final manuscript; OW: study conceptualization, data collection, approval of final manuscript; GH: study conceptualization, data collection, analysis, approval of final manuscript.

Conflicts of Interest
None declared.

References

28. Orme B. Interpreting the results of conjoint analysis 2010. Sawtooth Software. 2010. URL: https://content.sawtoothsoftware.com/assets/3501e79f-3a9f-4d99-a0f5-1522525e7f3f [accessed 2023-08-08]

31. Eysenbach G. Improving the quality of web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J Med Internet Res 2004 Sep 29;6(3):e34 [FREE Full text] [doi: 10.2196/jmir.6.3.e34] [Medline: 15471760]

Abbreviations

AI: artificial intelligence

© Inga Jagemann, Ole Wensing, Manuel Stegemann, Gerrit Hirschfeld. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Digital Health Needs and Preferences During Pregnancy and the Postpartum Period: Mixed Methods Study

Natalie Henrich1, MPH, PhD; Alison Brinson1,2, MSPH; Alyssa Arnold1, MPH; Hannah R Jahnke1, PhD

1Maven Clinic, New York, NY, United States
2Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Corresponding Author:
Natalie Henrich, MPH, PhD
Maven Clinic
160 Varick St
New York, NY, 10013
United States
Phone: 1 212 457 1790
Email: natalie.henrich@mavenclinic.com

Abstract

Background: Digital health is increasingly used to meet the needs of perinatal people, with estimates of pregnancy-related internet use ranging from 90% to 97% of pregnant people. As digital health takes on greater importance during the perinatal period, it is essential that providers and developers of digital health content understand why perinatal people use these resources and the features that enhance their experience. However, gaps remain in understanding the content that is most helpful and how the platforms are navigated. Learning directly from perinatal people about their needs will help ensure alignment between perinatal needs and available content.

Objective: This formative study aims to identify the reasons why perinatal people use digital health resources; the features of the digital health platforms that are of greatest importance to them; and how these differ by perinatal stage (pregnancy vs postpartum), mental health conditions, parity, and demographics (race and ethnicity).

Methods: This mixed methods study used interviews; surveys; and secondary data on demographic, health, and pregnancy characteristics to identify the digital health needs and preferences of pregnant and postpartum people who used the Maven digital health platform in the United States during their pregnancy or postpartum period. The interviews informed the content of the surveys and provided additional insights and examples for interpreting the survey results. The surveys were used to collect data from a sample of Maven users, and the results were linked to the secondary data set. The interviews were thematically analyzed, and survey data were analyzed using descriptive statistics and stratified by parity, race, and mental health status.

Results: Overall, 13 people were interviewed (including n=4, 31% pilot interviews), and 147 pregnancy and 110 postpartum survey respondents completed the surveys and had linkable secondary data. Top reasons for using digital health resources during pregnancy were to (1) know what is normal or typical during pregnancy, (2) have access to a health care provider when needed, and (3) know how the baby is developing. Top reasons for postpartum use were to (1) help with breastfeeding, (2) know what normal baby development is, and (3) help with the baby’s health issues. Top platform features during pregnancy and the postpartum period were (1) credible and trustworthy information and providers, (2) nonjudgmental information and support, and (3) no cost to the user. In general, more reasons for using digital resources were identified as extremely important during pregnancy compared with postpartum. The results showed minor variations across strata.

Conclusions: This formative research found minor differences in digital resource needs and preferences across user characteristics among perinatal people in the United States. Future work should examine whether there are variations in interests within topics by user characteristics, which may provide additional opportunities to better meet user needs.

(JMIR Form Res 2024;8:e48960) doi:10.2196/48960

KEYWORDS
digital health; perinatal; pregnancy; postpartum; interviews; survey; user needs; patient centered; mixed methods
Introduction

Background

Digital health, which refers to digital health applications, ecosystems, and platforms [1-4], is increasingly used to meet the needs of perinatal people [5-8], with estimates of pregnancy-related internet use ranging from 90% to 97% of pregnant people [9-13]. Digital health is expected to have growing importance because of its potential to provide health prevention, consultation, treatment, and management while simultaneously providing an opportunity to reduce costs and improve access to care and patient satisfaction, which together may lead to better informed and more engaged patients [1,4,14,15].

To date, research on perinatal digital health needs falls into 2 categories: self-report via surveys or qualitative data collection (interviews and focus groups) and content analysis of perinatal digital forums. Previous research has shown that access to perinatal digital health information provides reassurance and support [5,16,17]. Both types of studies have found that most people use digital resources during pregnancy to access information on maternal health (eg, pregnancy ailments, pain and complications, and health and nutrition during pregnancy) and during the postpartum period to access information on baby-related topics such as infant sleep and feeding (especially breastfeeding) [18,19]. Self-report studies have also indicated interest in childbirth, fetal and infant development, and infant illnesses, and studies of web-based forums have revealed interest in people and relationships [5,10,11,18-21]. The relative interest in these topics and the specific content within them vary throughout the perinatal period [17,19,20]. Research has also found that a positive experience using digital health resources is characterized by being easy to access and navigate, providing trustworthy and unbiased information, and being customized (eg, trackers and localized information) [4,22,23]. Perinatal digital health users specifically value an experience that provides information that is proactively delivered; offers immediate access; and provides information that is practical and concise, entertaining, and reassuring [5,24,25].

As digital health takes on greater importance during the perinatal period, it is essential that providers and developers of digital health content understand why perinatal people use these resources and what contributes to a positive user experience [26]. The information sought by perinatal people differs from the information that health care providers prioritize and offer. For example, postpartum people seek information on sleep, emotional changes, and breastfeeding, whereas providers focus on medical issues such as bleeding and infection [27,28]. Although there is a growing body of literature, there remain gaps in understanding of the content that is most helpful and how the resources are navigated [5]. There is a demand for more detailed analyses, including which digital resources are most helpful [16], with a particular need to understand what is valued during the postpartum period [18]. Research is needed on digital health needs and experience among perinatal people with mental health conditions, especially pre- and postpartum anxiety [20], and more insights are needed on barriers to and facilitators of using digital health, especially with newer technologies such as apps [4,20]. Learning directly from perinatal people about their needs will help ensure alignment between perinatal needs and available content [18,29]. The design of digital health content should be directly informed by individuals and their experiences. However, the research on patients’ user experience of digital health is limited, especially during the perinatal period [4].

Objectives

This mixed methods study, which used formative interviews and surveys, investigated the reasons why pregnant and postpartum people use digital health resources and what contributes to a positive user experience. Using a national sample of pregnant and postpartum users of Maven [30], a comprehensive reproductive and family digital health platform that includes patient education, care coordination, and provider services, this formative study identified how needs and preferences differ by perinatal stage (ie, pregnancy vs postpartum), mental health conditions, parity, and demographics (race and ethnicity). The results from this study can be used to inform a user-centered approach to developing the content and design of digital health resources and improve the alignment between resources and users. In recognition of the fact that patients have diverse gender identities, we have used gender-inclusive language throughout this paper. If a participant described themselves using gendered language (ie, “as a working mother...”), we used their terminology. When describing the results of previous research, we used the terminology used by the study investigators.

Methods

Study Design

In this mixed methods study, we identified the digital health needs and preferences of pregnant and postpartum people who used the Maven digital health platform during their pregnancy or postpartum period. The study used formative interviews to inform the content of surveys and provide additional insights and examples for interpreting the survey results. Surveys were used to collect data from a sample of Maven users that could be linked to a secondary data set of demographic, pregnancy, and health characteristics in the Maven platform (Figure 1).
Digital Platform Background

Maven was developed in 2014 as a digital platform to support perinatal people and their families. Users have a primary point of contact called a care advocate, an allied health professional (e.g., social worker or nurse) who works with the user to navigate the services and resources on the platform. Services and resources include web-based classes; educational materials; and internet-based appointments with a diverse team of health care providers, including obstetrician-gynecologists, mental health professionals, midwives, and doulas. Access to Maven is a sponsored benefit through an employer or the health plan of the user or their partner. The study investigators are Maven employees of the Maven clinical research team. When activating their Maven accounts, users consent to the use of their contact information by Maven for various reasons, including research. The investigators only have direct contact with Maven users or access to identifiable data within the scope of specific research projects, in accordance with institutional review board (IRB) approvals, and in concordance with Health Insurance Portability and Accountability Act regulations. Access to user data is minimized by requesting recruitment lists and platform-based data from the Maven product analytics team, which deidentifies the information before sharing it with the research team. To recruit Maven users for interviews and the survey, the recruitment parameters were sent to the product analytics team, which generated a list of deidentified IDs of users who met the parameters. This list of deidentified IDs was sent to the Maven team responsible for direct communication with users, which sent out recruitment emails (using email addresses linked to the deidentified IDs).

Formative Interviews

In September 2022 and October 2022, semistructured interviews with postpartum people were conducted virtually via Zoom (Zoom Video Communications) to identify the reasons why perinatal people use any digital health resources, not just Maven. To help encourage participants to think about digital use broadly, at the start of the interview, they were asked to list all the digital resources used during their pregnancy and the postpartum period, and throughout the interview, they were reminded to think about digital resources in general. The first part of the interview was open-ended, and participants were prompted not only to describe the reasons why they used digital resources but also to identify additional reasons for which they would like to use them. In the second part of the interview, participants were shown (via screen sharing on Zoom videoconferencing) a list of reasons why digital resources could be helpful during the perinatal period. Participants were asked whether they had used a digital resource for each individual reason or whether they would like to use a digital resource for each individual reason in the future. Finally, participants were asked about the importance of digital health resources being inclusive of their entire identity, which was explained as including anything that the participant considered part of their identity, such as race, gender, sexual identity, geography, social or economic status, and mental and physical health conditions, and to describe their experience with (lack of) inclusion.

Pilot interviews were conducted with 4 postpartum Maven staff members who had used Maven during pregnancy and the postpartum period and were post partum at the time of the interview. The interview guide was modified based on their feedback and the interviewer’s learnings from conducting the pilot interviews. Following piloting, interviews were conducted with 9 Maven users, all of whom were post partum so that they could speak to their digital needs and preferences throughout the perinatal period. Participants were recruited with an emphasis on including people from a range of ethnicities and races, health conditions, and parity. Participants were recruited via email. Interviews lasted approximately 1 hour, were conducted via Zoom, and were recorded. An interviewer and a notetaker were present, and transcripts were autogenerated on Zoom. Participants (Maven staff and nonstaff) consented to the interview, had the option of having the video on or off, and could decline to have the interview recorded (one participant...
declined, and we relied on detailed notes for that interview. The consent form was included in the recruitment email and reviewed at the start of the interview, and consent was provided verbally. Participants were given a US $50 Amazon gift card as a thank you for their participation.

The prevalence of each reason for using digital resources was calculated by counting the number of interviews (Maven staff and nonstaff) in which the reason was mentioned as important. The reasons that were mentioned as important in the most interviews were included in the survey.

Survey Development
In addition to the semistructured interviews, separate quantitative surveys were developed to inquire about digital resource use during pregnancy and the postpartum period. Through the qualitative analysis, it emerged that participants were describing 2 aspects of digital resource use: the information or support they were seeking and features of the digital health platforms. Consequently, the survey contained 2 sections, each addressing one of these aspects. To focus on common needs and remove outliers that were mentioned by only 1 or 2 participants, reasons for using digital resources and features affecting experience were excluded from the surveys if they were cited by less than one-third of the interview participants. In each section of the survey, participants indicated the importance of each item on a Likert scale that included a description of each option (a little important or doesn’t matter to me—I don’t care much about this, important—I would like to have this but I’m OK without it, very important—I care about this a lot but it’s not absolutely necessary, and extremely important—a “must have”) and subsequently picked the 5 most important items (not ranked). We opted to allow participants to select up to 5 items as a means to balance the tension between the high number of reasons why pregnant and postpartum people are turning to digital resources and the need to prioritize to inform actionable decisions about what content to provide in these resources. To reduce the potential bias of basing responses on their use of Maven, the instructions in the survey reminded respondents to think holistically about digital health resources. The following is an example of the instructions from a section of the pregnancy version of the survey: “Thinking about the reasons you might use any digital resource during pregnancy, rate how much each of these reasons matter to you. Digital resources include websites, apps, videos, blogs, search engines, etc.”

The surveys were piloted with 4 Maven staff members who had used Maven during pregnancy and the postpartum period and were post partum at the time of piloting. The wording and format were modified based on their feedback. The revised surveys were piloted with 4 Maven nonstaff users. During piloting, we identified that nearly all items were selected as very important. To minimize ceiling effects, the response options were revised to provide more response options that reflected higher levels of importance and add definitions (eg, extremely important: a must have). We also opted to reverse the order of the options (with a little important or not important to me as the first option rather than the last). In addition, we included a section for selecting the 5 most important reasons for use and platform features, which would provide information on the relative importance of the items if we continued to have a ceiling effect.

On the basis of feedback from the staff and nonstaff member pilots, we added 2 items that had not emerged in the interviews: using digital resources to help with formula feeding and feeding solid foods. These were added as participants felt that the survey was not inclusive or relevant to the entire postpartum period if it only asked about breastfeeding.

The survey was built in SurveyMonkey (SurveyMonkey Inc) using a Health Insurance Portability and Accountability Act–compliant account.

Survey Administration
Survey respondents were recruited from current Maven users. To be eligible for the pregnancy survey, users had to be between 0 and 6 months post partum and have had a Maven account during pregnancy. To be eligible for the postpartum survey, users had to be 3 to 12 months post partum and have a Maven account during the postpartum period. Recruitment was via email, which included a link to the survey. Each survey link was associated with the user’s unique Maven identifier to link the survey responses to user demographic characteristics previously recorded on the Maven platform (described in the Secondary Data section). A reminder email was sent 1 week after the initial email to anyone who had not clicked through to the survey. The survey remained open for 2 weeks from the time of the initial email. A consent form appeared before the start of the survey, and consent had to be provided digitally to access the survey. Participants were entered into a draw for a chance to win 1 of 5 US $100 Amazon gift cards per survey (5 for the pregnancy survey and 5 for the postpartum survey). Data were collected from January 18 to 29, 2023.

Secondary Data
Maven users are encouraged but not required to fill out a questionnaire when they activate their account. The Maven pregnancy questionnaire collects data on physical and mental health, pregnancy conditions, demographics, and parity. The Maven postpartum questionnaire collects information on demographics, mode of delivery, and previous pregnancy conditions. For survey participants who completed the Maven questionnaires, we linked their survey responses with their Maven questionnaire data using their unique Maven identifier. Maven users consent to the use of their Maven questionnaires for research when they activate their accounts, and the research team does not have access to any identifying information.

Analyses
Survey Analysis
Respondents who completed the survey and a Maven questionnaire were included in the survey analysis. Figure 2 shows the pathway for inclusion in the analysis, from eligibility to be recruited to starting and completing the survey and completing a Maven questionnaire. The quantitative data from both the pregnancy and postpartum surveys were assessed primarily through the evaluation of descriptive statistics. Chi-square and Fisher exact tests were used to assess differences among pregnancy items, postpartum items, and user experience...
features by parity, presence of any mental health conditions, and race and ethnicity. A user was considered to have a mental health condition if they reported any of the following: a history of anxiety, depression, perinatal mood disorder, or high pregnancy-related anxiety. A history of anxiety or depression was assessed in the Maven questionnaires using the following question—“Do any of these conditions apply to you or did they in the past?”—with the selection of Anxiety or depression from a list of conditions. Experience of perinatal mood disorder was assessed using the following question—“Have you experienced any of the following during this pregnancy?”—with a selection of Perinatal mood disorder. Pregnancy-related anxiety was assessed on a 5-item Likert scale in response to the following question—“On a scale of 1-5, how anxious are you feeling about your pregnancy?”—with responses of 4 (very) or 5 (extremely) indicating the presence of pregnancy-related anxiety. For analyses stratified by race and ethnicity, we recategorized individuals who identified as Hispanic, Black, Asian or Pacific Islander, or multiracial into 1 category labeled non-White because of our small sample of people of racial and ethnic minorities. Consistent with the study’s aim of identifying differences in needs and preferences between respondents with these characteristics, P values were calculated to determine whether the differences were statistically significant (with results considered to be statistically significant if the P value was <.05). Statistical analyses were conducted using RStudio (Posit Software, PBC).

Figure 2. Flowchart of the pregnancy survey respondents (A) and postpartum survey respondents (B) included in the survey analysis.

Interview Analysis

The interviews were analyzed thematically using a framework analysis [31-36]. Themes were identified deductively based on the interview guide and inductively based on the messages that emerged from the interviews. Themes and their definitions were reviewed by all team members who participated in the interviews (as interviewers or notetakers) and were modified based on group discussion and consensus. The analysis table was populated based on the notes taken during the interviews and subsequent analysis discussions. Audio recordings and transcripts were referenced if the notes were unclear or lacked sufficient details to populate the analysis table. All entries in the analysis table were reviewed by NH, who attended all but one of the interviews. Any information that was missing or potentially miscategorized in the table was flagged for review by the person who entered the information and, if necessary, discussed to reach a consensus. To better understand the experiences and perspectives associated with the topic of each of the items in the quantitative surveys, the corresponding interview themes were summarized, and representative anecdotes or quotes were selected. All quotes were verified using the audio recordings. Quotes and anecdotes are cited using the interview participant number (eg, P1 refers to participant 1), and it is specified whether the participant was from the pilot interviews (eg, Pilot P1 refers to the first interview among the pilot participants).

Ethics Approval

The study protocol was approved by the WCG IRB (study 1338443). The use of secondary data was deemed exempt by the WCG IRB under 45 Code of Federal Regulations § 46.104(d)(4).

Results

Survey Sample Characteristics

In total, we had 147 pregnancy survey respondents and 110 postpartum survey respondents with complete Maven questionnaires (Table 1 and Figure 2). All survey responses
were collected within 48 hours of sending the initial recruitment email. The average age of the respondents was 32.8 (SD 4.6) years and 32.7 (SD 3.5) years for pregnancy and postpartum survey respondents, respectively. On the basis of those who reported their race and ethnicity, our sample was comparable with the overall US population in terms of the percentage of people identifying as non-Hispanic White (134/257, 52.1%) and multiracial (5/257, 1.9%), with an overrepresentation of people identifying as Asian (31/257, 12.1%) and an underrepresentation of people identifying as Black (4/257, 1.6%) or Hispanic (16/257, 6.2%) [37]. A total of 44.9% (66/147; pregnancy survey) and 51.8% (57/110; postpartum survey) of the respondents had household incomes of $>100,000. Approximately 28% (72/257) of the sample reported a history of a mental health condition (Table 1).

Table 1. Characteristics of respondents who took the pregnancy survey and the postpartum survey.

<table>
<thead>
<tr>
<th>Demographic characteristics</th>
<th>Pregnancy survey respondents (n=147)</th>
<th>Postpartum survey respondents (n=110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean (SD)</td>
<td>32.8 (4.6)</td>
<td>32.7 (3.5)</td>
</tr>
<tr>
<td>Race and ethnicity, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>8 (5.4)</td>
<td>8 (7.3)</td>
</tr>
<tr>
<td>Non-Hispanic Asian</td>
<td>21 (14.3)</td>
<td>10 (9.1)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>3 (2)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>Non-Hispanic multiracial or American Indian</td>
<td>3 (2)</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>77 (52.4)</td>
<td>57 (51.8)</td>
</tr>
<tr>
<td>I prefer not to say</td>
<td>35 (23.8)</td>
<td>17 (15.5)</td>
</tr>
<tr>
<td>BMI (kg/m(^2)), n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤18.5</td>
<td>4 (2.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>18.5 to 24.9</td>
<td>76 (51.7)</td>
<td>49 (44.5)</td>
</tr>
<tr>
<td>25 to 29.9</td>
<td>30 (20.4)</td>
<td>15 (13.6)</td>
</tr>
<tr>
<td>≥30</td>
<td>29 (19.7)</td>
<td>15 (13.6)</td>
</tr>
<tr>
<td>Social Vulnerability Index(^b) (high), n (%)</td>
<td>10 (6.8)</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>Household income (US $), n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20,000-34,999</td>
<td>1 (0.7)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>35,000-49,999</td>
<td>3 (2)</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>50,000-74,999</td>
<td>7 (4.8)</td>
<td>3 (2.7)</td>
</tr>
<tr>
<td>75,000-99,999</td>
<td>18 (12.2)</td>
<td>9 (8.2)</td>
</tr>
<tr>
<td>≥100,000</td>
<td>66 (44.9)</td>
<td>57 (51.8)</td>
</tr>
<tr>
<td>I prefer not to say</td>
<td>27 (18.4)</td>
<td>10 (9.1)</td>
</tr>
<tr>
<td>Nulliparous (yes), n (%)(^c)</td>
<td>97 (66)</td>
<td>58 (80.6)</td>
</tr>
<tr>
<td>Mental health history, n (%)(^c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>33 (22.4)</td>
<td>18 (25)</td>
</tr>
<tr>
<td>Depression</td>
<td>14 (9.5)</td>
<td>4 (5.6)</td>
</tr>
<tr>
<td>Perinatal mood disorder</td>
<td>1 (0.7)</td>
<td>2 (2.8)</td>
</tr>
</tbody>
</table>

\(a\)Variables with <15% of missing data: age, race, social vulnerability, BMI (pregnancy survey respondents), mental health history (pregnancy survey respondents), and parity (pregnancy survey respondents). Variables with 15% to 30% of missing data: household income and BMI (postpartum survey respondents). Variables with 30% to 40% of missing data: parity (postpartum survey respondents) and mental health history (postpartum survey respondents).

\(b\)Measured using the Centers for Disease Control and Prevention Social Vulnerability Index.

\(c\)A total of 65.5% (72/110) of postpartum survey respondents provided parity or mental health data. Therefore, the sample size for those variables is 72.

Reasons for Use of Digital Resources During Pregnancy

On the basis of the survey responses, the most important reasons for using digital resources during pregnancy were to know what is normal or typical during pregnancy, have access to a health care provider when needed, and know how the baby is changing and developing during pregnancy (Table 2).
Table 2. Reasons identified as extremely important when using digital health resources during pregnancy by parity, mental health status, and race and ethnicity (N=147).

<table>
<thead>
<tr>
<th>Reasons for using digital health resources during pregnancy</th>
<th>Overall, n (%)</th>
<th>Parity</th>
<th>Mental health</th>
<th>Race and ethnicity<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Parous (n=50), n (%)</td>
<td>Nulliparous (n=97), n (%)</td>
<td>P value</td>
</tr>
<tr>
<td>To know what is normal or typical during pregnancy</td>
<td>95 (64.6)</td>
<td>24 (48)</td>
<td>71 (73.2)</td>
<td>.004</td>
</tr>
<tr>
<td>To have access to a health care provider when I need them</td>
<td>84 (57.1)</td>
<td>26 (52)</td>
<td>58 (59.8)</td>
<td>.49</td>
</tr>
<tr>
<td>To know how my baby is changing and developing during pregnancy</td>
<td>76 (51.7)</td>
<td>20 (40)</td>
<td>56 (57.7)</td>
<td>.06</td>
</tr>
<tr>
<td>To help me manage discomfort during pregnancy</td>
<td>61 (41.5)</td>
<td>19 (38)</td>
<td>42 (43.3)</td>
<td>.69</td>
</tr>
<tr>
<td>To become more empowered to speak up for myself during pregnancy and labor</td>
<td>56 (38.1)</td>
<td>16 (32)</td>
<td>40 (41.2)</td>
<td>.38</td>
</tr>
<tr>
<td>To explore my options for labor and delivery</td>
<td>55 (37.4)</td>
<td>14 (28)</td>
<td>41 (42.3)</td>
<td>.14</td>
</tr>
<tr>
<td>To help me manage anxiety or depression</td>
<td>55 (37.4)</td>
<td>19 (38)</td>
<td>36 (37.1)</td>
<td>>.99</td>
</tr>
<tr>
<td>To help me manage my health problems (chronic, ongoing, or related to pregnancy)</td>
<td>45 (30.6)</td>
<td>17 (34)</td>
<td>28 (28.9)</td>
<td>.62</td>
</tr>
<tr>
<td>To get additional information or clarification on things my doctor tells me</td>
<td>44 (29.9)</td>
<td>15 (30)</td>
<td>29 (29.9)</td>
<td>>.99</td>
</tr>
<tr>
<td>To know the size of my baby throughout pregnancy</td>
<td>35 (23.8)</td>
<td>14 (28)</td>
<td>21 (21.6)</td>
<td>.49</td>
</tr>
<tr>
<td>To help me with healthy eating during pregnancy</td>
<td>32 (21.8)</td>
<td>7 (14)</td>
<td>25 (25.8)</td>
<td>.16</td>
</tr>
<tr>
<td>To help me with being physically active during pregnancy</td>
<td>30 (20.4)</td>
<td>9 (18)</td>
<td>21 (21.6)</td>
<td>.78</td>
</tr>
<tr>
<td>To get recommendations of things to buy to care for my baby or myself</td>
<td>25 (17)</td>
<td>7 (14)</td>
<td>18 (18.6)</td>
<td>.66</td>
</tr>
<tr>
<td>To connect with a community of people who are in the same stage of pregnancy as me</td>
<td>17 (11.6)</td>
<td>6 (12)</td>
<td>11 (11.3)</td>
<td>>.99</td>
</tr>
</tbody>
</table>

^aRespondents who selected I prefer not to say for race and ethnicity were not included in this comparison.

In interviews, participants described the role that digital resources play in meeting these needs (Table 3), and they emphasized the importance of these resources during their first pregnancy (Pilot P1 and P2). Among the information they sought about what is normal, participants wanted to know what they would encounter during each phase of labor and delivery and were looking for information such as how long to expect to push. A participant described learning about the phases during a digital birth-planning appointment:

[The digital appointment with the birth planning specialist] was very helpful to know what to expect at the hospital during birth, and actually I feel like they were more helpful than the in person doula that I hired...I remember them stepping through the birth process. You know, active labor and transition, the pushing and talking about the ring of fire. [P5]
Table 3. Illustrative quotes for using digital resources (pregnancy and postpartum interviews).

<table>
<thead>
<tr>
<th>Reasons for using digital health resources</th>
<th>Illustrative quote</th>
</tr>
</thead>
<tbody>
<tr>
<td>During pregnancy</td>
<td></td>
</tr>
<tr>
<td>To know the size of my baby throughout pregnancy</td>
<td>“What is baby now today? Let’s see. I will also open the app up and see. So that was a good thing as well. So this is like ‘What vegetable is your baby right now?’” (P2)</td>
</tr>
<tr>
<td>To help me manage discomfort during pregnancy or postpartum</td>
<td>“[The digital resource helped with] cracked and bleeding nipples” (P9).</td>
</tr>
<tr>
<td>To become more empowered to speak up for myself during pregnancy and labor</td>
<td>“I read a ton of articles [online] because I felt like otherwise it was like the blind leading the blind. My husband had never done that before. I’m an only child like my mom was going to be there, but she hadn’t done it in thirty years. So it was kind of like, Okay, Who in this room knows what they’re doing? The answer was going to be nobody...So I read a lot just to know these are all the possible outcomes. This is how it might go. These are the things that I’m going to be asked, and I wanted to know, while I’m in a calm and sound state of mind, like is my answer Yes? Is my answer No? What are the implications if I say yes or no. And then [I can] communicate that to my partner and my mother. So if they needed to advocate for me [they could]” (P4).</td>
</tr>
<tr>
<td>To explore my options for labor and delivery</td>
<td>“[Exploring my labor and delivery options] I would say [getting support on Maven] helped a little but that was more so because of me, and I didn’t look into it as much as I should have...Because, I thought I would have a natural birth. But I ended up having a C section, but just not knowing what to expect, and more so it was on the process of like what an induction is, and like how your body would look like afterwards, because I didn’t get to in my entire pregnancy. But all the drugs they pumped into you to induce you caused me to blow up after, and I just didn't expect that, no one tells you, right? They just tell you to consent, and you say yes, so like all that, I wish I knew. But I don't think that I looked into it as much, because I just didn't know” (P8).</td>
</tr>
<tr>
<td>During the postpartum period</td>
<td></td>
</tr>
<tr>
<td>To help me with feeding my baby breast milk</td>
<td>“I didn’t see lactation consulting in person until after birth, which was at the pediatrics office. So it’s nice to have that, to be able to talk to one [online] beforehand, to know what to prepare for. And then also I talked to one after as well, after giving birth. That was super helpful” (P5).</td>
</tr>
<tr>
<td>To help me with my baby’s health issues</td>
<td>“[My baby] was very colicky, I took an [online] appointment and showed the doctor what was happening, so they also gave me a hint she might have a milk allergy, [and said to] check with your doctor and check the stools and all” (P2).</td>
</tr>
<tr>
<td>During pregnancy or the postpartum period</td>
<td></td>
</tr>
<tr>
<td>To know what is normal or typical during pregnancy or postpartum</td>
<td>“[Getting digital help on my baby’s sleep] helped a lot, because I had a lot of questions about what’s normal, what’s not normal and they answered everything. It made me feel like I wasn’t doing something bad” (P8).</td>
</tr>
<tr>
<td>To know how my baby is changing and developing during or after pregnancy</td>
<td>“I had like three apps on my phone to track [how my baby was changing] like every week” (P4).</td>
</tr>
<tr>
<td>To have access to a health care provider when I need them</td>
<td>“It wasn’t just 8 to 5 that I could access someone...The sleep consultant was like you can just message me any time, and I’ll respond and help you real time with what you need. That’s something that you can’t get with any in person care provider” (P3).</td>
</tr>
<tr>
<td>To help me with being physically active during pregnancy or the postpartum period</td>
<td>“I was trying to be physically active during pregnancy but then there were times where I stopped because of the spotting. They didn’t know what was going on. Then I found out it was okay. But then the last trimester it got tougher since I was tired a lot and having pain...It would have been nice to see what I could do, like modifications and exercises I could do around the pain I was having” (P5).</td>
</tr>
<tr>
<td>To help me with healthy eating during pregnancy or the postpartum period</td>
<td>“Just offering ideas of foods, more nutritious foods to eat, healthier options, because you can look around on the Internet but just talking to a person who is, you know, that’s their specialty, and you can give them personal information about yourself so they can help you” (P9).</td>
</tr>
<tr>
<td>To help me manage anxiety or depression</td>
<td>“I was in so much pain and I thought maybe [the baby will] be also in pain, or somehow it will affect the baby, because I’m not happy. So then I talked to [an online] doctor, and one of the doctors was very good and she talked to me more than the time of appointment, and she was very kind, and she said, I know how you are feeling, but she gave me so much support, emotional support, and she said, ‘You can come to talk to me anytime.’...So she then she assured me, ‘Everything is fine, and you don’t need to worry’” (P2).</td>
</tr>
<tr>
<td>To help me manage my health problems (chronic, ongoing, or related to pregnancy or postpartum)</td>
<td>“I have arthritis and Hashimoto. So two autoimmune diseases. So when I got pregnant, I had a lot of concerns about that, and how that would affect my pregnancy, or vice versa” (P8).</td>
</tr>
<tr>
<td>To get recommendations of things to buy to care for my baby or myself</td>
<td>“I’m a working mother. At the time, you know, working while pregnant, and so I didn’t have time to spend hours and hours going down the rabbit hole of like, this stroller versus that stroller. Like just like, tell me what you recommend, and we’re moving on. So it felt like the research had been done for you” (P4).</td>
</tr>
</tbody>
</table>
In interviews, participants talked about being able “to count on” accessing health care providers on the internet for urgent situations, such as a participant (P1) who used a digital health care provider when she did not feel her baby kick for a while and wanted to know whether she should go to the emergency room.

Almost all the participants talked about the importance of knowing how their baby was growing and developing during pregnancy. They described wanting to know about the development week by week and found that digital resources could easily provide this information.

In the survey, nulliparous respondents were more likely than parous respondents to find knowing what was normal (P=.004) and how their baby was developing (P=.06) to be extremely important (Table 2). Compared with non-Hispanic White respondents, respondents identifying as Hispanic or people of racial and ethnic minorities were more likely to report that digital health resources were extremely important for the management of anxiety or depression (P=.003) and chronic health problems (P=.002). Compared with respondents without a mental health history, respondents with a mental health history were more likely to find it important to receive web-based help with healthy eating during pregnancy (P=.04; Table 2).

Reasons for Use of Digital Resources During the Postpartum Period

On the basis of survey responses, during the postpartum period, the most important reasons for using digital resources were to help with feeding the baby breast milk, know what is normal baby development (eg, developmental milestones), help with the baby’s health issues, and help with feeding the baby solid foods (Table 4).

The reasons for using digital resources during the postpartum period were described in interviews (Table 3). When asked specifically about the use of digital health resources for help with feeding, interview participants primarily spoke about support for breastfeeding. In particular, participants found it valuable to connect with a lactation consultant during pregnancy to prepare for breastfeeding and during the postpartum period for tips that facilitated feeding:

I didn’t see lactation consulting in person until after birth, which was at the pediatrician’s office. So it’s nice to have that, to be able to talk to one [online] beforehand, to know what to prepare for. And then also I talked to one after as well, after giving birth. That was super helpful. Just things I could do for milk supply. And then the one major helpful thing that I learned is about the pump parts where I can just store them in the fridge, and I don’t have to wash it after every time, because it was a hassle, too. [P5]

In interviews, participants described using digital resources to know what to expect about life with a baby and to find out whether the things they encountered were normal, such as struggling with the baby’s sleep schedule, and what it is really like to breastfeed. Participants voiced frustration that this type of information was not provided by in-person providers, so they looked for answers on the internet:

They don’t tell you anything [at the hospital]. A big one for me was breastfeeding, like just how complex it is. There’s just so many things in the hospital they don’t tell you anything, either. They just ask you like, “Are you going to breastfeed, yes or no,” and you have to decide on the spot, and, like you don’t know anything about this. After that, coming home, I definitely did research on [a digital platform] and the resources that they had for help. [P8]

Participants also wanted digital resources to provide information on what is normal for babies as they grow, including what developmental milestones to expect at each age. A participant described using an app to know what to expect as her baby changed:

[There] is an app that when you put in the baby’s due date, this helps you to see your baby’s development, like milestone-wise. So week by week, you know some of the things to look for. And mainly I use it to see like, when are one of the cranky times coming up because they’re going through a milestone leap where they’re learning, you know lots of new things. [P9]

In interviews, participants provided anecdotes about the value of digital resources for helping with the baby’s health issues, especially the ability to access support when it is needed. A new parent described meeting with a digital sleep coach in the middle of the night when her baby would not sleep, a service she said she could not obtain from her in-person providers as they only handled emergencies after hours:

It wasn’t just 8 to 5 that I could access someone...The sleep consultant was like you can just message me any time, and I’ll respond and help you real time with
what you need. That’s something that you can’t get with any in-person care provider. If you call their after-hours number it’s because it’s an emergency right? Not because you are just, like, wondering why your baby is fussy, or awake window, or, you know whatever. [P3]

In the survey, nulliparous respondents were more likely than parous respondents to find it extremely important that digital resources help with feeding their baby solid food (P = .01) and with their own health problems (P = .06; Table 4). Respondents identifying as Hispanic or people of racial and ethnic minorities were more likely than non-Hispanic White respondents to report that it is extremely important that digital resources can be used to connect them with a community of people who have a baby of the same age (P = .02) and to obtain recommendations of things to buy to care for their baby or themselves (P = .08). Respondents with a mental health history were more likely than those without a mental health history to find it important to obtain web-based help with breastfeeding their baby (P = .01; Table 4).

Table 4. Reasons identified as extremely important when using digital health resources during the postpartum period by parity, mental health status, and race and ethnicity (N=110)a.

<table>
<thead>
<tr>
<th>Reasons for using digital health resources during the postpartum period</th>
<th>Overall, n (%)</th>
<th>Parity</th>
<th>Mental health</th>
<th>Race and ethnicityb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parous (n=14), n (%)</td>
<td>Nulliparous (n=58), n (%)</td>
<td>P value</td>
<td>No mental health history (n=49), n (%)</td>
</tr>
<tr>
<td>To help me with feeding my baby breast milk</td>
<td>64 (58.2)</td>
<td>6 (42.9)</td>
<td>37 (63.8)</td>
<td>.12</td>
</tr>
<tr>
<td>To know what is normal baby development (milestones)</td>
<td>54 (49.1)</td>
<td>7 (50)</td>
<td>30 (51.7)</td>
<td>.89</td>
</tr>
<tr>
<td>To help me with my baby’s health issues</td>
<td>54 (49.1)</td>
<td>6 (42.9)</td>
<td>32 (55.2)</td>
<td>.38</td>
</tr>
<tr>
<td>To help me with feeding my baby solid foods</td>
<td>53 (48.2)</td>
<td>4 (28.6)</td>
<td>36 (62.1)</td>
<td>.01</td>
</tr>
<tr>
<td>To help me manage anxiety or depression</td>
<td>45 (40.9)</td>
<td>5 (35.7)</td>
<td>22 (37.9)</td>
<td>.77</td>
</tr>
<tr>
<td>To help me with feeding my baby formula</td>
<td>30 (27.3)</td>
<td>2 (14.3)</td>
<td>18 (31)</td>
<td>.20</td>
</tr>
<tr>
<td>To get additional information or clarification on things my physician or pediatrician tells me</td>
<td>29 (26.4)</td>
<td>4 (28.6)</td>
<td>14 (24.1)</td>
<td>>.99</td>
</tr>
<tr>
<td>To help me with my health problems (chronic, ongoing, or related to pregnancy or postpartum)</td>
<td>22 (20)</td>
<td>0 (0)</td>
<td>12 (20.7)</td>
<td>.06</td>
</tr>
<tr>
<td>To help me with being physically active after my baby is born (postpartum exercise)</td>
<td>18 (16.4)</td>
<td>4 (28.6)</td>
<td>10 (17.2)</td>
<td>.47</td>
</tr>
<tr>
<td>To help me with healthy eating after my baby is born</td>
<td>16 (14.5)</td>
<td>2 (14.3)</td>
<td>10 (17.2)</td>
<td>>.99</td>
</tr>
<tr>
<td>To help me with losing weight after my baby is born</td>
<td>12 (10.9)</td>
<td>1 (7.1)</td>
<td>7 (12.1)</td>
<td>>.99</td>
</tr>
<tr>
<td>To obtain recommendations of things to buy to care for my baby or myself</td>
<td>11 (10)</td>
<td>1 (7.1)</td>
<td>9 (15.5)</td>
<td>.67</td>
</tr>
<tr>
<td>To connect with a community of people who have a baby the same age as mine</td>
<td>9 (8.2)</td>
<td>0 (0)</td>
<td>6 (10.3)</td>
<td>.33</td>
</tr>
</tbody>
</table>

a A total of 65.5% (72/110) of postpartum survey respondents provided parity or mental health data.

b Respondents who selected “I prefer not to say” for race and ethnicity were not included in this comparison.
The reasons for using digital resources that the fewest survey respondents selected as extremely important during the perinatal period were uses related to general wellness (ie, healthy eating, exercise, and losing weight), connecting with a community in the same perinatal stage, and obtaining recommendations of things to buy to care for their baby or themselves. Notably, these lowest-ranked reasons were still selected by 8.2% (9/110) to 22% (32/147) of the respondents (Tables 2 and 4).

In contrast to the surveys, help with healthy eating was one of the topics that the most interview participants identified as a reason for using digital resources, although it was usually in response to specifically being asked about it in the structured part of the interview. When discussing the use of digital resources for healthy eating, participants tended to refer to access to personalized information such as food recommendations that fit with their dietary restrictions. A participant described why tailored information would be helpful to her on a digital health platform:

> Because if I had dietary restrictions I’m going to have to go searching more for that information on my own. [P9]

Importance of Digital Health Platform Features During Pregnancy and the Postpartum Period

The 3 most important features of digital health platforms identified through both the pregnancy and postpartum surveys were credible and trustworthy information and providers, digital resources that are free to the user, and nonjudgmental information and support. Although access to appointments (ie, fast access and access at convenient times) was not among the top 3 most important features, approximately half of the respondents felt that it was extremely important (Table 5). See Multimedia Appendices 1 and 2 for digital health platform features identified as extremely important by parity, mental health status, and race and ethnicity during pregnancy and the postpartum period, respectively.

Table 5. Digital health user experience features identified as extremely important during pregnancy and the postpartum period.

<table>
<thead>
<tr>
<th>Digital health platform features</th>
<th>Pregnancy survey respondents (n=147), n (%)</th>
<th>Postpartum survey respondents (n=110), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credible and trustworthy information and providers</td>
<td>117 (79.6)</td>
<td>82 (74.5)</td>
</tr>
<tr>
<td>Nonjudgmental information and support</td>
<td>97 (66)</td>
<td>58 (52.7)</td>
</tr>
<tr>
<td>Digital resources that are free to me</td>
<td>89 (60.5)</td>
<td>60 (54.5)</td>
</tr>
<tr>
<td>Fast access to appointments</td>
<td>75 (51)</td>
<td>52 (47.3)</td>
</tr>
<tr>
<td>Easy to find information; easy to navigate</td>
<td>74 (50.3)</td>
<td>53 (48.2)</td>
</tr>
<tr>
<td>Access to appointments at convenient times</td>
<td>72 (49)</td>
<td>50 (45.5)</td>
</tr>
<tr>
<td>Information that is actionable (specific recommendations for what to do)</td>
<td>64 (43.5)</td>
<td>57 (51.8)</td>
</tr>
<tr>
<td>Receive fast responses to my digital messages</td>
<td>59 (40.1)</td>
<td>40 (36.4)</td>
</tr>
<tr>
<td>Resources that are specific to my needs (personalized)</td>
<td>49 (33.3)</td>
<td>33 (30)</td>
</tr>
<tr>
<td>Access to a lot of information on each topic (depth of information)</td>
<td>36 (24.5)</td>
<td>22 (20)</td>
</tr>
<tr>
<td>Access to information on a lot of topics (breadth of topics)</td>
<td>35 (23.8)</td>
<td>22 (20)</td>
</tr>
<tr>
<td>Consistent care or support from the same people over time on the digital platform</td>
<td>31 (21.1)</td>
<td>33 (30)</td>
</tr>
<tr>
<td>Proactive outreach from the digital resource (pushes content to me; provider reaches out to me)</td>
<td>26 (17.7)</td>
<td>12 (10.9)</td>
</tr>
<tr>
<td>Care or content that fits with my culture and identity</td>
<td>26 (17.7)</td>
<td>14 (12.7)</td>
</tr>
</tbody>
</table>

Interview participants described why the features of digital health resources were important (Textbox 1). When looking to interact with content that was trustworthy, participants mentioned a range of ways in which they determined whether digital content was credible. A couple of participants explained that they trusted the content if it was consistent with the information they received from their in-person providers. This was done by taking the information from the digital content to the in-person provider for verification or by seeing that the content was consistent with what they had already been told:

> Whatever I heard from the [web-based] doctor, it was matching with my experience and my other doctor as well...it builds trust since my doctor is saying the same thing. [P2]

> So it was like things that the [web-based] practitioner might have suggested or recommended that I would then mention at my doctor’s appointment...kind of to get a check box from my regular doctor, but it was always like, she agreed with what had been communicated. [P4]
Textbox 1. Illustrative quotes regarding features of digital health resources (pregnancy and postpartum interviews).

Credible and trustworthy information and providers
- “Sleep schedules, again, with so much information online, you get really caught up in, like, ‘Am I doing the right thing?’ especially in the beginning. I remember one thing, I was struggling with my baby’s sleep schedule. And so I went to this sleep expert from [my digital platform]. And they said that’s normal, like, a baby shouldn’t really have a sleep schedule until six months. They’ll never have one, and it’s like everything online, says the opposite! So just like having information that is accurate and like coming from experts [really helped]” (P8).

Digital resources that are free to me
- “But because this service was free to me I felt like ‘well, it’s there, and I might as well use it,’ so I’ve taken advantage of it” (P3).

Nonjudgmental information and support
- “And these platforms really help because, one, you’re able to speak to someone different that may not even have your medical history. They don’t have your medical history in front of you. So maybe it’s the medical system, health care system thinking or judging you based on your history, right, rather than just listening to this specific one time incident. So maybe they’re less biased ‘cause they just have the one thing they’re looking at” (P8).

Fast access to appointments
- “If I’m struggling with a situation that I think is super important with the baby like the baby has a cold and has a runny nose, fever, I’m gonna want whoever is available next” (P9).

Easy to find information; easy to navigate
- “[My app] did not help [for finding information on baby’s development] because the information, I guess I didn’t seek it out, but I also didn’t see it readily available” (P9).

Access to appointments at convenient times
- “Especially for a new mom, if you’re trying to work around is my baby napping or not, and that’s not always predictable, just to be able to quickly touch base with someone. I used it during pregnancy as well, so I feel it kind of rounds out the care you are receiving from your in person doctor” (P4).

Information that is actionable (specific recommendations for what to do)
- “In my state it is legal to end the pregnancy, right? So [the online provider] gave me the support that if you want to go for this, this will happen, or if you go, these are the steps you need to follow, and all...She was telling me all the steps, what I need to do, and what I not to do, and she gave me a support for keeping this pregnancy” (P2).

Receive fast responses to my digital messages
- “When I messaged, it wasn’t always [the same person] that responded, it was someone else. But it’s nice to have that, too. Like, someone quickly getting back to me. So I didn’t mind that” (P5).

Resources that are specific to my needs (personalized)
- “Because if I had dietary restrictions I’m going to have to go searching more for that information on my own. [And it would be helpful to] come up with a list of foods that would be specific to me, because we didn’t do that. I realized that may be asking a lot of someone. But that's just what I see would be super helpful” (P9).

Access to a lot of information on each topic (depth of information)
- “I like the options when I went in, and I would read through an article. It’s like, Oh, here’s some other related stuff to this. If you’re still interested, I really like that because there was a couple of times with a few articles where, like I want to know more about this, and so I would keep clicking and read a little bit more” (P6).

Access to information on a lot of topics (breadth of topics)
- “[It would help if the platform had], like, a more robust portfolio of different like classes and articles” (P4).

Consistent care or support from the same people over time on the digital platform
- “The sleep coach that I am talking to now. She’s the same one I’ve talked to every single time...[It’s important to have continuity], especially just like to not have to answer the same questions over and over again, like they just kind of know who I am, looking for me, my style, and just more get to the care rather than have to do the basic information each session” (P3).

Proactive outreach from the digital resource (pushes content to me; provider reaches out to me)
- “One thing I like about the Baby Center or a lot of the articles I get from other providers is that they’re just in the email, and I don’t have to go anywhere” (P7).
Others said that they trusted digital content that was reviewed by medical professionals (Pilot P3) or had a “provider stamp of approval” (P9). A couple of participants were looking for digital resources that provided information from the people who conducted the research (P8) and that included “the latest research and peer reviewed evaluation” (P3).

In interviews, participants explained that access to free digital health services enables users to consume more health resources and spend more time interacting with health care providers than during in-person appointments:

> [When there are] no limit on appointments...suppose I forgot something and I want another appointment and I can do it today. I don’t have to wait for another appointment. [P2]

They also accessed types of resources that they valued but would not use if there was an out-of-pocket cost:

> So I think I just wouldn’t have gotten what I needed [in-person] because I have two other children, and I didn’t [get what I needed] with them. Just, like you know, Google things or Pinterest, or talk to friends, and that’s it. But because this service was free to me I felt like “well, it’s there, and I might as well use it,” so I’ve taken advantage of it. And so things like a sleep consultant I probably wouldn’t have paid for. But it was just so nice to have a sounding board...So yeah, I think just having services there that I wouldn’t have made the effort to use before, but because they’re just sitting there on my phone, I might as well, and it’s free to me. [P3]

Participants highlighted that free digital resources are particularly important as the cost of in-person services is very high and they were looking for a cheaper alternative:

> Free resources—that’s big, since in person visits are so expensive. [P5]

Interview participants also wanted to interact with digital health content and people who provided information and support without judgment. A participant explained that it is easier to receive nonjudgmental care from a digital health care provider as the person only knows the information that is being shared in the moment and cannot be biased by previous interactions or conditions. Another participant explained that she did not want to discuss her baby’s sleep issues with her in-person pediatrician as she was worried that the physician would judge her as a bad mother. It felt safer to explore the problem with the web-based provider, with whom she did not have an ongoing relationship (Pilot P4).

Interview participants shared anecdotes illustrating the accessibility of web-based providers and described connecting with these providers at night and on weekends or around their work or family schedules:

> Whereas in person, they’re always busy. So there’s some waiting time...If I had concerns, I want to consult with somebody...[it’s] very helpful where I can just find someone to talk to within the week, sometimes even the same day...Being able to get in touch with someone quickly during pregnancy and even postpartum has been super helpful. [P5]

> There was one time where I had a concern and it was 2AM and I reached out to a practitioner over the phone, it might have been with Maven or it might have been with Telehealth, and [I had] flexibility with getting help at abnormal times of day. [P8]

In general, the importance of digital health platform features was consistent by race, parity, and mental health. Differences emerged for free resources, which were more important to respondents without a mental health history compared with those with a mental health history (\(P=.02\)), and consistent care from the same people over time on the digital platform (\(P=.01\)) and access to information on a lot of topics (\(P=.02\)) were more important for Hispanic and people of racial and ethnic minorities respondents than for non-Hispanic White respondents.

For both pregnant and postpartum survey respondents, the 2 least important features were care or content that fit with their culture and identity and proactive outreach from the digital resources. These features were selected as extremely important by less than 20% of respondents. In interviews, participants described experiences on digital health platforms that were enhanced by resources and support that were respectful of and relevant to their culture or identity. When specifically asked about the importance of digital health resources that “take their whole identity into account,” participants consistently interpreted this to be about race, ethnicity, and gender or sexual identity, and participants from non–historically marginalized populations tended to report that inclusion was not relevant for them. This emerged in comments such as “Personally, I’m a woman, heterosexual, so I fit in fine, more than fine” (Pilot P1) and “[Health care is] not hard for me to navigate as a straight, White woman” (Pilot P3). However, as they shared anecdotes about their use of digital health platforms, they described experiences that were meaningfully inclusive (or noninclusive) related to other characteristics, such as their lifestyle (eg, family structure, work choices, and how they cared for their child) or religious practices. A participant appreciated that a nutritionist took the time to accommodate the fact that she kept kosher and “went above and beyond to research kosher supplements and make sure they were appropriate” for her to take (Pilot P2), and a working mother described her appreciation for resources that recognized her more limited availability to be with her children:

> "The [online doctor] knew Indian culture. So they knew Indian body like how our body reacts after [giving birth]. We are different than other people. So by giving specific things or a suggestion to Indians that is specific to my body, like after delivery, Indians don’t drink too much water. They understand, but my [in-person] doctor will say, drink four litre five litre today. I know so but one of the doctor on Maven when I talk, she said, I know the Indian people don’t drink too much water just after delivery, so I understand that. So if you want to have less water, so you can have a coconut water instead of normal water that will increase the hydration. So that kind of suggestion I don’t get from normal doctor” (P2).
I’m probably in the majority, for most of the like, you know, bubbles you would fill in of race, gender, like I’m not a minority in any of those, but I think that everyone was just very respectful...maybe because they got to just like learn a little bit about me. [P3]

People of racial and ethnic minorities participants appreciated when there were racially diverse providers on the platform. Even though the participants did not necessarily choose to interact with a member of their ethnicity or race, they valued the presence of diversity:

I felt included throughout the process. I think even seeing the diversity of the people you can choose for a specific topic also helps just, like, feel more included, like just her background. I am Mexican American. So I was born in the US but Mexican background. And so just seeing the diversity on the team was important to me. [P8]

Discussion

Principal Findings in Relation to Prior Research

This mixed methods study found that the reasons why perinatal people use digital resources are consistent with previous research. During pregnancy, our survey and interview participants were highly interested in fetal development [10,11,16,18,20,21], reassurance about what is normal [5,16,17,38], and childbirth [10,11,20,21,39], although in our study, the latter topic was not among the top reasons for use. Unlike other studies, we found less interest in health and nutrition during pregnancy. During the postpartum period, our results were concordant with those of previous research with regard to users having a high interest in feeding, especially breastfeeding; developmental milestones; and the baby’s health [18,19,21]. Although interest in infant sleep is also common in the literature [18,19], we did not explicitly ask about this. However, this need is consistent with our overall finding that respondents were looking for information about caring for their baby and with anecdotes in our interviews that centered on infant sleep when participants discussed wanting to know what is normal, reaching out to digital providers at night, and receiving nonjudgmental support. We found an especially high interest in using digital resources for breastfeeding help among respondents with a mental health history (17/20, 85%), which is consistent with studies showing an association between maternal anxiety and breastfeeding outcomes [40-42]. Aligning with findings from content analyses of perinatal forums, top interests included baby-related topics and pain during pregnancy [17,19], but we found less interest in using digital resources for the health of the birthing person, and we did not ask about relationships (a common topic in web-based perinatal forums [17,19]) as this did not emerge as a key interest during the formative interviews. In addition to finding many of the same known reasons for using digital resources, we found that using these resources to help manage anxiety or depression was commonly selected as extremely important (55/147, 37.4% during pregnancy and 45/110, 40.9% during the postpartum period), especially for people of racial and ethnic minorities during pregnancy (21/35, 60%).

Our survey identified that, during the postpartum period, reasons for using digital resources related to the health of the birthing person were ranked lower than reasons related to obtaining information or help about the baby. This aligns with findings that mothers tend to focus on their babies and deprioritize their own needs [43]. However, there are physical and emotional challenges during the fourth trimester that often go unaddressed and can negatively affect maternal and child outcomes [44,45]. Contributing to underuse is a misalignment between the issues being addressed by providers and the birthing person’s needs, discomfort with discussing “embarrassing” issues with providers and feeling judged by them, and not knowing where to access information [43,46,47]. Digital health resources provide an opportunity for birthing people to be more in control of when, how, and for which needs they access self-care resources. Even though self-care may not be the primary priority for using digital health resources, making these supports available is valuable for those times when the birthing person is ready and interested in using them.

Emerging from both our surveys and interviews was the preference for using digital health resources to access providers. The characteristics that make digitally based providers helpful are differentiators from in-person care, with providers on platforms being reported as spending more time, focusing on issues and questions that matter to the user, and providing support quickly and conveniently [48-50]. Although study participants were explicitly asked about what is important to them when using digital health resources in general, they all had access to Maven, which offers access to a wide range of provider services. Study participants may have been more likely to express the importance of digitally based providers as they had the opportunity to use them during their perinatal stage. Users of digital health services who do not have access to digitally based providers may not identify them as important as they have not had the opportunity to experience their value. Although our results may not replicate those among digital health users who have not had access to these providers, this does not mean that digitally based providers are not an important part of what should be offered in digital health. Rather, it is an opportunity to meet a need that people may not realize they have.

Generally, the needs and preferences for perinatal digital resource use did not show much variation by perinatal phase (pregnancy vs postpartum), parity, demographics, or health characteristics. The least important reasons for use were the same during pregnancy and the postpartum period: help with healthy eating and being physically active (and, for the postpartum period, help with losing weight), connecting with a community of people in the same perinatal stage, and obtaining recommendations of things to buy to care for the birthing person or baby. Platform features were ranked in generally the same order during pregnancy and the postpartum period. However, there seems to be a difference in the overall importance of information during pregnancy versus the postpartum period, with reasons for using digital resources being selected as extremely important by a greater percentage of respondents during pregnancy than post partum. During pregnancy, the only reasons for using digital resources that differed by race were...

https://formative.jmir.org/2024/1/e48960

Jmir Form Res 2024 | vol. 8 | e48960 | p.1904

(page number not for citation purposes)
non–pregnancy-related (help with managing mental health and physical health problems), which may reflect gaps in in-person care for people of racial and ethnic minorities [51,52]. In interviews, we found a difference in participants who said that care or content that fits with their cultural, racial, or ethnic identity was important to them, with people of racial and ethnic minorities describing the value of being able to access providers with a shared identity or who provided culturally relevant support, whereas non-Hispanic White participants tended to say that this was not relevant to them. We were surprised that we did not find this difference in the surveys. A possible reason for this discrepancy is that our survey analysis focused on “extremely important” responses, and it may be that culturally relevant support is important but not extremely important. This would align with comments in the interviews about liking that providers of the same race were available even if they did not choose to use these providers.

This study included a national sample from the United States. Although our sample underrepresented people who identify as Black and Hispanic and lower-income people, it includes a significant portion of sustained users of digital resources (based on their completion of questionnaires on the Maven platform at multiple time points throughout pregnancy and the postpartum period), which is valuable as they represent people who will often use digital resources and have the potential to be significantly helped and supported by them. However, future research should also explore these topics among lower-frequency users to identify and understand barriers or deficiencies in the resources that may be contributing to reduced use.

This study adds to existing research by linking survey responses to other pregnancy, health, and demographic data about the respondents. Psychological states and mental health, especially perinatal anxiety, in relation to digital use are understudied [20], as are race and ethnicity. This formative research found only minor differences in digital resource needs and preferences across several user characteristics, including perinatal phase, parity, demographics, and mental and chronic health conditions. If this finding holds up in additional research, it has implications for the design of digital resources as it suggests that it may be appropriate to cover the same high-level perinatal topics for users across these groups. However, additional research is needed to better understand whether the content within these topics needs to be tailored to different populations. For example, future research could find that, although it is appropriate to include resources on childbirth for all users, there may be a need for more information about birthing centers in resources targeting Black pregnant people. Additional insights that are needed to improve the relevance and impact of these resources include understanding the use of the internet by nonbirthing partners [20] and the impact of use on clinical outcomes and user satisfaction [51]. There is also an opportunity to develop a standardized set of methods and metrics for assessing perinatal digital resources [4].

Limitations
This study has some limitations. First, the generalizability of these results is limited as all survey and interview participants had access to private insurance, the sample had a relatively high income, and Hispanic and Black respondents were underrepresented. Second, there was a high amount of missingness within our race and ethnicity data from respondents selecting that they prefer not to provide this information (17/110, 15.5% and 35/147, 23.8% for postpartum and pregnancy survey respondents, respectively). This missingness may limit the reliability of our results regarding differences in digital needs by race. Finally, not all survey respondents completed the Maven questionnaires, and those who did not complete at least one Maven questionnaire were excluded from the analyses of the survey. This potentially biased the sample toward heavier users of digital resources, although this creates an opportunity to understand use needs among this segment of users.

Data Availability
Owing to the sensitive nature of the questions asked in this study, respondents were assured that raw data would remain confidential but may be shared upon request.

Conflicts of Interest
NH, AB, AA, and HRJ are employed by Maven Clinic. NH, AA, and HRJ have equity in Maven Clinic.

Multimedia Appendix 1
Digital health platform features identified as extremely important during pregnancy by parity, mental health status, race, and ethnicity (N=147).
[PDF File (Adobe PDF File), 50 KB - formative_v8i1e48960_app1.pdf]

Multimedia Appendix 2
Digital health platform features identified as extremely important during the postpartum period by parity, mental health status, race, and ethnicity (N=110).
[PDF File (Adobe PDF File), 49 KB - formative_v8i1e48960_app2.pdf]

References

Abbreviations

IRB: institutional review board

©Natalie Henrich, Alison Brinson, Alyssa Arnold, Hannah R Jahnke. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Acceptability and Feasibility of a Smartphone-Based Real-Time Assessment of Suicide Among Black Men: Mixed Methods Pilot Study

Leslie B Adams1, MPH, PhD; Thomasina Watts1, MSPH; Aubrey Devinney1, BA; Emily E Haroz1, PhD; Johannes Thrul1,2, PhD; Jasmin Brooks Stephens3, MA, LPA; Mia N Campbell1, MHS; Denis Antoine4, MD; Benjamin Lê Cook5, PhD; Sean Joe6, PhD; Roland J Thorpe Jr7, PhD

1Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
2Centre for Alcohol Policy Research, La Trobe University, Melbourne, Australia
3Department of Psychology, University of Houston, Houston, TX, United States
4Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
5Department of Psychiatry, Cambridge Health Alliance, Cambridge, MA, United States
6George Warren Brown School of Social Work, Washington University at St. Louis, St. Louis, MO, United States
7Department of Health, Behavior, and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States

Corresponding Author:
Leslie B Adams, MPH, PhD
Department of Mental Health
Johns Hopkins Bloomberg School of Public Health
624 N. Broadway
Baltimore, MD, 21205
United States
Phone: 1 410 955 1906
Email: ladams36@jhu.edu

Abstract

Background: Suicide rates in the United States have increased recently among Black men. To address this public health crisis, smartphone-based ecological momentary assessment (EMA) platforms are a promising way to collect dynamic, real-time data that can help improve suicide prevention efforts. Despite the promise of this methodology, little is known about its suitability in detecting experiences related to suicidal thoughts and behavior (STB) among Black men.

Objective: This study aims to clarify the acceptability and feasibility of using smartphone-based EMA through a pilot study that assesses the user experience among Black men.

Methods: We recruited Black men aged 18 years and older using the MyChart patient portal messaging (the patient-facing side of the Epic electronic medical record system) or outpatient provider referrals. Eligible participants self-identified as Black men with a previous history of STB and ownership of an Android or iOS smartphone. Eligible participants completed a 7-day smartphone-based EMA study. They received a prompt 4 times per day to complete a brief survey detailing their STB, as well as proximal risk factors, such as depression, social isolation, and feeling like a burden to others. At the conclusion of each day, participants also received a daily diary survey detailing their sleep quality and their daily experiences of everyday discrimination. Participants completed a semistructured exit interview of 60-90 minutes at the study’s conclusion.

Results: In total, 10 participants completed 166 EMA surveys and 39 daily diary entries. A total of 4 of the 10 participants completed 75% (21/28) or more of the EMA surveys, while 9 (90%) out of 10 completed 25% (7/28) or more. The average completion rate of all surveys was 58% (20.3/35), with a minimum of 17% (6/35) and maximum of 100% (35/35). A total of 4 (40%) out of 10 participants completed daily diary entries for the full pilot study. No safety-related incidents were reported. On average, participants took 2.08 minutes to complete EMA prompts and 2.72 minutes for daily diary surveys. Our qualitative results generally affirm the acceptability and feasibility of the study procedures, but the participants noted difficulties with the technology and the redundancy of the survey questions. Emerging themes also addressed issues such as reduced EMA survey compliance and diminished mood related to deficit-framed questions related to suicide.
Conclusions: Findings from this study will be used to clarify the suitability of EMA for Black men. Overall, our EMA pilot study demonstrated mixed feasibility and acceptability when delivered through smartphone-based apps to Black men. Specific recommendations are provided for managing safety within these study designs and for refinements in future intervention and implementation science research.

International Registered Report Identifier (IRRID): RR2-10.2196/31241

(JMIR Form Res 2024;8:e48992) doi:10.2196/48992

KEYWORDS
Black men; suicide; ecological momentary assessment; feasibility; acceptability; mixed methods; smartphone; real-time assessment; suicide prevention; user experience; behavior; implementation; intervention; mobile phone

Introduction
Suicide among Black Americans is a critical public health priority that requires immediate attention. Studies have shown that suicide rates among this population are increasing and that Black men, in particular, are at a higher risk of suicide-related mortality [1,2]. It is crucial for public health efforts to prioritize suicide prevention in the Black community and address the systemic issues that contribute to mental health disparities [1,2]. Epidemiological data reveal that Black men die by suicide at rates 4 to 6 times greater than Black women and that suicide is the third leading cause of death for young Black men [2,3]. While nationwide suicide rates provide a broader perspective on this alarming public health issue, delving into state-specific data, such as in Maryland between 2016 and 2020, reveal a localized increase in suicide death for Black Americans, compared to their White counterparts and highlights the urgent need for tailored research priorities [4]. The COVID-19 pandemic further exacerbated these alarming trends, with Black Marylanders experiencing an uptick in suicide deaths during the initial lockdown periods in the United States [5]. These national and state-specific trends highlight the pressing need to address more robust approaches to suicide prevention, emphasizing the importance of ensuring equitable access to support and resources for all communities.

Mental health disorders, such as depression and substance use, are known risk factors for suicide among Black Americans [6,7], but recent research also highlights racism and associated contextual stressors as important, but underresearched, explanatory risk factors for suicidal thoughts and behaviors (STB) among Black adults [8-10]. Previous studies have demonstrated the significant impact of racism and associated daily stressors on mental health outcomes, including depression, anxiety, sleep disturbances, and posttraumatic stress disorder (PTSD), among Black individuals [11-15]. However, the emerging research highlights the need to examine the specific ways in which racism contributes to STB among this population. Further research in this area is crucial to identify effective prevention strategies that can reduce the impact of racism and mitigate the rising trend of suicide completion among Black adults.

Black Americans also face significant barriers in accessing mental health care due to stigma, systemic lack of access to services, and cultural mistrust [16-19]. Although Black men are approximately 30% more likely to report having a mental health condition compared to non-Hispanic White individuals [20], they also have significantly lower percentages of mental health-related visits prior to a suicide attempt than men of other racial and ethnic backgrounds and Black women [21,22]. In addition, traditional clinical records used to assess suicide risk and prevention often rely on distal and static measures of risk, such as prior diagnoses and family history, which may overlook the dynamic interplay of proximal factors that contribute to STB and patient-provider synergy. Consequentially, while Black Americans face considerable obstacles in accessing mental health care, these disparities are particularly pronounced among Black men, highlighting the urgency of addressing these disparities and adopting approaches to assess more proximal aspects of suicide risk and prevention.

Smartphone-based ecological momentary assessment (EMA) platforms are one such approach to collect dynamic, real-time data and encompass a range of different active and passive information, including, but not limited to, spatial trajectories (via GPS), physical mobility patterns (via accelerometer), social networks and social dynamics (via call and text logs and Bluetooth), and EMA surveys [23-25]. Understanding dynamic risk in suicide prevention efforts is important since decades of previous research have shown that single, static risk factors often add little to our understanding of who is at elevated risk and when [26]. More real-time data on STB may also provide key information about when to intervene with potential just-in-time interventions.

Although participant burden, noncompliance, and reactivity to the protocol measures have been cited as potential limitations to EMA approaches, studies using this methodology to assess STB demonstrate a favorable median response rate of 70%, suggesting feasibility [25,27-30]. These studies highlight the potential of EMA as a tool for capturing the complexity and variability of STB, ultimately aiding efforts to improve mental health outcomes. Specifically, one systematic review of EMA studies found suicidality fluctuates considerably over short periods of time and that those with higher levels of overall suicidality also have more fluctuations [27]. This review also noted risk factors such as negative affect, hopelessness, burdensomeness, and sleep characteristics that impacted suicidality [27]. In a sample of psychiatric inpatients, a separate study discovered that the use of real-time data collections significantly enhanced the accuracy of predictions for suicide attempts post-discharge [31]. Despite the promise of this methodology for the study and prevention of suicide [25,29,32], there has been no study, to date, that uses this approach to assess experiences among Black men at critical periods for early
intervention [26]. Black men face daily societal and cultural stressors that may contribute to their heightened risk of suicide, including but not limited to, systemic and interpersonal racism, economic disparities, and limited access to mental health resources [8,33,34]. To address this gap, additional research is needed to clarify the efficacy of EMA monitoring as a suicide prevention tool for this at-risk population.

Methods

Eligibility and Recruitment Procedures

We recruited adult Black or African American men (18 years of age or older) with a lifetime history of suicidal ideation or attempt residing in Maryland counties where mobile crisis support was available. To be eligible, participants had to (1) own a smartphone and (2) not be present with active psychosis or cognitive deficits. We used two recruitment approaches: (1) providing recruitment information to eligible, active patients via the Johns Hopkins Health MyChart, the web-based patient portal of the Epic electronic medical record system that allows for health communication between patients and health care providers and (2) clinician referral. Participants who met the eligibility criteria through either of these approaches were referred to the study coordinator and were required to complete a screening survey to confirm their interest and eligibility.

Ethical Considerations

The study was approved by the institutional review boards of Johns Hopkins Bloomberg School of Public Health (IRB 00013672). All participants were provided detailed information about the study procedures and expectations, risks, and benefits as part of the informed consent process conducted by a research coordinator.

Baseline Survey

We asked enrolled participants to complete a brief baseline assessment including demographics and psychosocial measures associated with affective, gender, and race-specific factors associated with STB, such as anger, sadness, attributional style, and racial identity. A complete list of baseline measures is described elsewhere. During the informed consent process, participants received an overview of the MetricWire smartphone app from the study coordinator. The study coordinator also determined the county in which the participant resided, in order to align our safety protocol with mobile health crisis units in their area. After completion of the baseline survey, we asked participants to download the MetricWire app onto their personal smartphones for the duration of the study. The MetricWire app is available for both iOS and Android smartphone platforms at no cost in the Apple App Store (Apple Inc) or Google Play Store (Google), respectively. Examples of the user interface of the MetricWire app are presented in Figure 1.

Figure 1. Screenshot of suicidal ideation and intensity questions on the ecological momentary assessment user interface. CSSR: Columbia Suicide Severity Rating Scale.

EMA and Daily Diary Data Collection Procedures

This study used the MetricWire app to deliver daily EMA surveys to participants at 4 time points between 10 AM and 6 PM. Each of the prompts was designed to occur at least 2 hours after the previous prompt and included 3 push notification reminders at 20, 40, and 55 minutes after the initial prompt. If the participant did not complete the EMA survey within 60 minutes, it was marked as incomplete. The EMA surveys were designed to be brief and take no more than 3 minutes to complete to reduce respondent burden. To capture instances of racism-related stressors occurring outside of the random EMA survey prompts, participants were allowed to record event-driven entries detailing their daily experiences (see Figure 2).
We administered a brief daily diary survey via the MetricWire app once per day to assess participants’ everyday experiences, including sleep-related impairment and quality, as well as their daily experiences with racism-related stress. The daily diary was prompted each day at 8 PM. This survey was not designed to capture momentary instances but rather to provide a more comprehensive picture of participants’ daily experiences.

Exit Interview

After the 7-day data collection period, each participant underwent a qualitative semistructured exit interview conducted by the study team. The interviews probed participants on issues such as question difficulty and clarity, potential revisions to question prompts, and overall satisfaction with the study protocol and EMA surveys. Verbatim transcripts of the recorded interviews were produced and analyzed to evaluate the feasibility and effectiveness of the study protocol.

Participant Incentives

To encourage higher EMA survey completion rates, participants were eligible to receive up to US $110 throughout the study duration. The incentive was incrementally phased, with participants receiving US $10 after completing the baseline survey, US $20 for completing 20% (7/35) of all surveys, US $50 for completing 50% (17.5/35) of all surveys, and US $80 for completing 80% (28/35) of all surveys. We offered an additional US $20 for the completion of the exit interview.

Safety Protocols

Upon enrollment, we provided participants with a document containing information about local and national mental health resources, including suicide crisis hotlines, to support their well-being throughout the study. To ensure participant safety during the data collection period, we implemented a 3-tiered safety protocol. Moderate risk, which is defined as any suicidal ideations (“Have you had thoughts of killing yourself?”), since the last assessment, but without any plan or intent, resulted in a notification to the participant guiding them to the online support groups and community-based mental health services and urging them to seek support. Elevated risk, defined as suicidal ideation with intent or a plan within the last 24 hours (“Have you planned out how you would do it?” or “When you thought about making yourself not alive anymore, did you think that this was something you might actually do?”), resulted in the same notification that was given to participants with moderate risk and participants will be asked if they would like to handle the matter themselves or if they would like us to contact a mobile crisis response unit in their area on their behalf. Acute risk, defined as suicidal ideation with an action since the last assessment ("Did you do anything to make yourself not alive anymore or kill yourself?"), resulted in a call to the participant’s closest mobile crisis response unit made by a member of the study team on the participant’s behalf. To protect participant privacy, data were not stored on their smartphones. Instead, survey response data were automatically synced to the MetricWire servers when participants were connected to the internet.
internet, and encrypted response data were stored until the next connection. These servers were continuously backed up.

To provide additional support, all research personnel interacting with participants received training in psychological first aid to assist with identifying any mental health needs. EMA responses were closely monitored by the study coordinator and regular updates were provided during biweekly research team meetings between January 2022 and May 2023.

Quantitative and Qualitative Data Analysis

To measure the acceptability and feasibility of the EMA method, we tracked four key metrics using Excel (Microsoft): (1) the proportion of eligible patients who enrolled in the study, (2) the percentage of completed EMA sessions out of the total number of scheduled sessions, (3) the number of safety-related incidents reported to mobile health crisis support teams, and (4) the average time taken to complete the EMA surveys.

Semistructured exit interviews were audio recorded and transcribed verbatim by the research team. The transcripts were then imported into Dedoose (version 8; Sociocultural Research Consultants, LLC) qualitative data analysis software for analysis. A deductive coding framework was used based on previous conceptual definitions related to implementation science. The research team independently reviewed the transcripts and generated a preliminary codebook based on a priori concepts. These concepts focused on prevailing definitions of acceptability, feasibility, adoption, and fidelity to the EMA methodology.

Results

Demographics

Participants ranged from 18 to 34 years of age, with an average age of 27 (SD 5.31) years. The majority (4/10, 40%) of our sample had completed a high school degree, followed by an associate or bachelor’s degree (n=2, 20%), while some completed high school (n=1, 10%), college (n=2, 20%), and a master’s degree (n=1, 10%). Participants lived across 3 counties in Maryland, including Baltimore, Anne Arundel, and Howard. Furthermore, participants identified as a spectrum of sexual orientations, including heterosexual (n=3, 30%), gay (n=2, 20%), bisexual (n=1, 10%), pansexual (n=2, 20%), and questioning (n=1, 10%). One participant chose not to disclose his sexual orientation.

Feasibility of EMA and Daily Diary

The MyChart recruitment service identified and sent study information to 744 active patients residing in Maryland. A total of 58 individuals completed our interest survey. Of those, 53 (91%) were attributed to the MyChart recruitment service. Three submissions were from clinician referrals and 2 were from community outreach events. Out of the 58 individuals completing the interest survey, 10 (17%) participants were enrolled in the EMA study. The primary reasons for exclusion after completing the interest survey were active psychosis (n=19) and no history of suicidal thoughts or behavior (n=10). A total of 7 individuals were excluded because they reported having no mental health care provider.

The 10 enrolled participants completed 166 EMA surveys and 39 daily diary entries. A total of 4 (40%) out of 10 participants completed 75% (21/28) or more of the EMA surveys. The average completion rate of all surveys was 58% (20.3/35), with a minimum of 17% (6/35), and maximum of 100% (35/35). A total of 4 (40%) out of 10 participants completed at least 5 out of 7 daily diary entries. The response rate for each day of the week ranged from 64% (3.2 surveys submitted on average; day 1) to 54% (2.7 surveys submitted on average; days 6 and 7). All 10 participants completed qualitative exit interviews at the conclusion of the study. There were no safety-related incidents that required mobile health crisis service response teams. On average, participants took 2 minutes and 5 seconds to complete EMA surveys and 2 minutes and 43 seconds to complete daily diary surveys.

Qualitative Findings From Exit Interviews

After coding, several key themes arose, including the study implementation, the iatrogenic effects of repeated suicidality assessments, and strategies to improve usability and effectiveness in suicide-related smartphone app development for Black men. We present key details and findings on these themes as follows.

Study Implementation

Table 1 shows representative quotes that illustrate participant perspectives on adoption, acceptability, and feasibility to the study protocol.
Table 1. Qualitative codes and selected quotations related to implementation of smartphone-based ecological momentary assessment study.

<table>
<thead>
<tr>
<th>Code</th>
<th>Key quotes</th>
<th>Key critiques or recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptability</td>
<td>• “They’re good questions. It makes sense. It’s exactly the information that you’d be looking for.” [Participant 1]</td>
<td>• “The only thing that I can really think of as far as that is the hours...Maybe they’re asleep, maybe they’re working etc., etc.” [Participant 1]</td>
</tr>
<tr>
<td></td>
<td>• “I like how it did call my therapist, because I finally set up a meeting with her. But she, you know, was like, ‘Hey, um, you know, come in contact with me, because I know you’re not doing well.’ And I was like, ‘Yeah, that’s fair.’” [Participant 2]</td>
<td>• “I thought it shouldn’t have been the same questions. It got boring and repetitive and seemed like more of a hassle than something that was going to help me, because it’s annoying now, because it’s the same questions.” [Participant 5]</td>
</tr>
<tr>
<td></td>
<td>• “I thought the questions were pretty straightforward.” [Participant 4]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “I think for the most part, it was good, it was self-explanatory. It was easy to get to.” [Participant 5]</td>
<td></td>
</tr>
<tr>
<td>Feasibility</td>
<td>• “What were your opinions regarding you know, how many surveys you got per day?” [Moderator]</td>
<td>• “The wording was, yeah, as I was saying before, it was very, extremely clinical, which I mean, you’re not really supposed to be beating around the bush as far as the stuff is concerned.” [Participant 1]</td>
</tr>
<tr>
<td></td>
<td>• “Um, that was fine. I was. I’m not sure if you remember, but I was a bit wary beforehand. I was worried that it might be a little bit too many, but no, it was fine. The amount was perfectly okay. The timing was fine too. Yeah, the timing was definitely fine as well.” [Participant 1]</td>
<td>• Regarding racial stress record: “I really don’t like the sound of my voice...like, ugh, don’t like that, and eventually just stopped doing them. Because it’s just like, it’s easier to like, write things down. I guess.” [Participant 2]</td>
</tr>
<tr>
<td></td>
<td>• “The only thing that I can really think of as far as that is the hours but as I had mentioned, before we even started this, anyone who’s downloading this resource is probably doing it with the intention on actually utilizing it. So I can’t really see someone actively like disregarding the surveys, unless they either don’t notice them or, well, yeah, unless they don’t notice them or somehow it slips past their schedule. Maybe they’re asleep, maybe they’re working etc., etc.” [Participant 1]</td>
<td>• “Sometimes you miss an alert and yeah and that would be like, all day, that was my main focus, like oh my God, I got to remember my survey or whatever.” [Participant 5]</td>
</tr>
<tr>
<td>Fidelity</td>
<td>• Prompts to complete surveys: “It was good, because some days I will remember, I have to take the survey so such and such time but other days, I wouldn’t to remember. I’m glad they, the prompts you know, were there.” [Participant 6]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fidelity</td>
<td>• Timing of prompts: “I’m not sure if you remember, but I was a bit wary beforehand. I was worried that it might be a little bit too many, but no, it was fine. The amount was perfectly okay. The timing was fine too. Yeah, the timing was definitely fine as well.” [Participant 1]</td>
<td>“One of the things that was a little annoying was like oh, it would crash on me a lot. So I would have to re-open it, but when I would re-open it, it would take me right back to the question that it crashed on me on. So, I was like, ‘Oh, okay, that was convenient.’” [Participant 4]</td>
</tr>
<tr>
<td></td>
<td>• Completing racial stress record in a predominantly Black neighborhood: “I normally don’t go through racial stuff, like I’m in a neighborhood is predominately Black. I see one White person a day, maybe.” [Participant 5]</td>
<td>• “it seemed like every time I tried to open the app, it wouldn’t even open, like sometimes it...ugh like it was so frustrating, so I just wouldn’t try to do it for a while.” [Participant 6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of use due to app issues: “I didn’t always have like issues as far as that’s concerned, I didn’t really use it very often, explicitly, because around the time that I was doing the, well, around the time that I was, you know, taking part in this study, it was out of work.” [Participant 1]</td>
</tr>
<tr>
<td>Appropriateness</td>
<td>• Intention influenced by number of prompts: “It’s not like, something like a text or the person will later call me and be like, ‘Hey, did you see my text?’ I’ll probably completely forget it exists, which I think is what I did for like a lot of the surveys.” [Participant 2]</td>
<td>N/A</td>
</tr>
<tr>
<td>Adoption</td>
<td>• “I found myself being very, at least the first or second time, I felt myself being very, how am I supposed to answer this? It’s, it just felt strange that, well, yeah.” [Participant 1]</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>• “I think that the first couple of questions are pretty intense ones. So, what was interesting for me at first—which I was having like a very good week, so the questions were a little bit jarring almost, if you’re like, in the middle of a good day, and then you get those questions.” [Participant 8]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: N/A: not applicable.
Overall, participants found the frequency and timing of the EMA survey prompts to be appropriate. One participant commented that the questions provided “exactly the information needed,” while another appreciated the reminder to contact their therapist. Participants generally found the questions straightforward and easy to understand, and the survey itself was considered self-explanatory and easy to access. Participant I noted that they were initially concerned about the number of prompts, but ultimately found them to be manageable:

I’m not sure if you remember, but I was a bit wary beforehand. I was worried that it might be a little bit too many, but no, it was fine. The amount was perfectly okay. The timing was fine too.

However, some participants reported feeling that the racial stress record and daily diary questions regarding discrimination may not have been relevant to their daily experiences.

I normally don’t go through racial stuff, like I’m in a neighborhood that is predominantly Black. I see one White person a day, maybe. [Participant 5]

Our study identified some challenges related to technology issues that impacted the fidelity of our study implementation and, ultimately, participants’ ability to complete the surveys in a timely manner. Participants identified app crashes as a significant issue, which led to frustration and difficulty in completing the surveys.

One of the things that was a little annoying was like oh, it would crash on me a lot. So I would have to re-open it, but when I would re-open it, it would take me right back to the question that it crashed on me on. So, I was like, “Oh, okay, that was convenient.” [Participant 4]

This issue not only caused inconvenience but also resulted in participants potentially losing progress on their survey responses. Consequently, this problem may have discouraged some participants from continuing with the study.

Influence of Mood on EMA Compliance

The narratives shared by the participants highlighted the possibility of diminished effect resulting from frequent evaluations of suicidality, which could potentially exacerbate negative mental health outcomes. Participants’ accounts of their study experience suggest that depressed mood prior to a notification to complete a survey may impact compliance with suicide-related assessments. Overall, as stated by I participant, “during moments where I already wasn’t feeling too great, it exacerbated things a bit.” Further, another participant in the study described how their survey compliance can be influenced by their mood:

It’s sort of like a reflex for like, whenever something bounces on my phone, and I’m like, not in a good mood, I immediately, like, swipe it [get rid of the notification]

Participant 2 noted that repeated assessments of suicidality could increase their awareness of passive suicidal thoughts, stating, “Not really trigger me, but be like, oh, yeah, I am, like, passively suicidal 99% of the time.” Another participant noted in his interview that he did not complete the last day of the trial due to an anniversary of a loved one’s death:

It was an emotional day and I didn’t want to continue because my responses would have changed drastically. I didn’t want nobody to look at me differently...I didn’t want to put myself in an uncomfortable position.

This response further cements the idea that response rates may be influenced by low mood. Several participants provided feedback on the survey questions, suggesting that shorter surveys may be more effective in assessing suicidality. They noted that if they responded with a positive mood score, assessed by the Patient Health Questionnaire-2 item measure (PHQ-2), it likely indicated they were doing well and not feeling suicidal. Multiple participants suggested that gauging mood before asking directly about suicide may improve the effectiveness of the survey.

Those questions are pretty good. But I would probably, like I’d probably try and, like keep the survey shorter...So maybe like gauge the mood before asking like, “Hey, are you going to kill yourself?”

Because if I’m at like, 3, then the answer is like, it’s no, it’s, it’s gonna be no, you know, because I’m in like, a pretty good place. [Participant 2]

Given our study’s focus on suicide risk assessment, a significant portion of the survey questions pertained to assessing proximal or momentary risk for self-harm. Unfortunately, these questions were predominantly framed from a negative or deficit-oriented perspective, such as “Have you thought about killing yourself since the last prompt?” Several participants pointed out that this focus on negative experiences was contributing to their mood states and recommended that the survey be balanced with more positive questions.

It seems like everything was about if I have a terrible day...there should have been some questions that show record of your good days, too. [Participant 5]

Recommendations to Improve Usability and Effectiveness

As part of the qualitative exit interview, participants were asked to provide feedback and suggestions for the future use of the app. In relation to the app’s accessibility, several participants suggested incorporating features that would promote ease of use. Specifically, participants mentioned that a dark mode would be beneficial, as the bright white background of the app was uncomfortable for some. In addition, participants suggested incorporating a text-to-speech feature that would read the survey questions aloud to make it easier for individuals with visual impairments or reading difficulties.

To encourage better participation and compliance, some participants suggested that a more flexible schedule would better align with their daily routines and lifestyles. Some participants pointed out that they are less inclined to fill out surveys when they are occupied with other social activities. As a result, participants suggested a schedule that can be customized according to their personal needs and circumstances.
I guess, maybe if I could like, sort of choose my own schedule...like put it at times where I know that I'm going to be like, on my phone, or like, in my bed...I'm probably going to be in my bed not doing anything else, like probably playing a game on my phone. So I'll tell myself, “Hey, you have no excuse, fill this out so that they know you haven't, like died.” But, if it’s like, in the middle of me, like going to the mall with my friends, I'm most definitely not going to stop and be like, “Hold on everybody, I have to fill this out” I'm just gonna forget about it. [Participant 2]

Participants provided various suggestions for enhancing the interactivity of the smartphone-based app, including incorporating a journaling component to allow them to document their thoughts in written form. Participant 2 described the potential benefit of such a feature, stating that it could provide a private space for them to express their emotions and thoughts more freely, without the fear of judgment or negative consequences.

I was thinking, maybe something where, you know, if you're not feeling that bad, you can just write down something...And knowing that it's going to medical professionals, I probably will be as kind of open as I am in my journal.

Additionally, other participants expressed interest in in-app features that would allow for personalized coping strategies, such as guided breathing exercises or links to mental health resources. These in-app features were seen as potential tools to promote engagement with the app and ultimately improve mental health outcomes. Finally, participants recommended that the survey include questions that allow for a more comprehensive and nuanced picture of their mood and well-being, and that these questions should be presented before questions pertaining to suicide risk to “ease into the heavier stuff,” as suggested by participant 1.

Discussion

Principal Findings

Our study aimed to assess the feasibility of using smartphone-based EMA to evaluate suicidality in real time among individuals in a high-risk sample of Black men. During the interviews, most participants generally reported that the frequency and timing of the prompts and reminders were suitable for the project and their daily lives. The results indicate that this approach shows promise for future research in this population. The results also suggested that while suicide-related smartphone apps have the potential to be effective tools for suicide prevention, they need to be developed and implemented with care. Even though the completion rate for EMA surveys was not optimal, we are encouraged by the high level of compliance with the daily diary entries. The study also did not pose any safety concerns, and the completion time for the surveys was found to be relatively short. Participants reported that the questions were generally relevant to their daily experiences and easy to understand. Additionally, the user feature that allowed for open-ended audio recordings was found to be useful in capturing daily experiences of racism, which is an important factor that could contribute to suicidality in this population. Finally, the qualitative findings from exit interviews suggest that the study procedures were perceived by participants to be acceptable and feasible.

Despite the promising results, the study revealed that the compliance rate was lower than in other studies not focused on Black men that leveraged EMA approaches to assess suicide risk [25,28]. One possible reason for this finding is that participants encountered technological issues and cited them as reasons for disengagement from the study. Participants noted redundancy in survey questions, which can lead to survey fatigue and reduced engagement. This redundancy might have contributed to the lower completion rates observed in the study. Moreover, the frequency of prompts may have contributed to the overall low compliance rate. The participants recommended fewer prompts and more flexibility in timing to enhance compliance.

Our findings also highlight the need for careful consideration of the potential harms of repeated assessments of suicidality, which focuses on a negative framing of mental well-being, and the need for the development of personalized interventions to mitigate any negative effects. Specifically, participant narratives from our qualitative exit interviews suggest that individuals experiencing negative moods may be less likely to engage with suicide-related assessments delivered via smartphone app notifications. Additionally, respondents felt that the EMA survey questionnaire could be more balanced by including both questions that assessed suicide risk and positive emotions as protective factors. One such measure, the Reasons for Living Inventory (RLI), was developed to identify factors that serve as deterrents against suicidal behavior. This inventory assesses positive emotions that support an individual’s decision to avoid death by suicide, should such thoughts emerge. Including measures, such as the RLI, that ground Black men to life is vital for addressing mental health challenges and fostering well-being for this demographic. By understanding how to balance the benefits of suicide-related assessments with their potentially harmful impact, scholars will be more equipped to identify protective factors and develop tailored interventions that are more likely to be used by Black men.

Our findings have important implications for the use of EMA among Black men. Smartphone-based methods, such as EMA and daily diaries, offer a unique opportunity to assess and evaluate suicide risk in real time. This approach represents a significant advancement in capturing momentary phenomena that could aid in suicide prevention, such as (1) characterizing dynamic mood changes over a short time span, (2) untangling stressful and racialized daily experiences, and (3) transmitting critical health information to health care providers to support care management. By using this approach, researchers can gain a more nuanced understanding of the experiences of high-risk populations and provide timely culturally relevant interventions to prevent suicide [23,24,32,33].

Moreover, researchers should be aware of certain populations that may be cautious to participate in research, such as Black men, particularly when it involves the explicit tracking and reporting of their daily experiences. This hesitancy can be
ration, given the history of systemic exploitation of Black communities in biomedical research [36]. Therefore, it is important for researchers to acknowledge and address these historical injustices to build trust and facilitate participation among these populations. Only by taking these steps can researchers ensure that their work is ethical, respectful, and ultimately beneficial to the communities they seek to serve [19,37,38].

Smartphone-based suicide prevention is also increasingly becoming a viable approach for combating rising suicide rates, especially among young adults. The prevalence of health-related internet searches via smartphones, as evidenced by the high percentage of people who are 18-29 and 30-49 years of age and who use their phones for medical information, suggests that smartphones can be effective tools for suicide prevention. Additionally, the fact that Black and Hispanic Americans use their phones for medical information more frequently than White non-Hispanic Americans suggests that smartphone-based interventions may be especially important in addressing suicide risk in communities that experience higher levels of stigma and barriers to accessing traditional health care resources [39]. By leveraging the widespread use of smartphones, suicide prevention efforts can reach a larger and more diverse population, potentially reducing the burden of suicide on individuals, families, and communities.

Limitations
There are several potential limitations to our study that should be noted. First, our primary recruitment method was through MyChart messaging, which may have limited the pool of potential participants to those who are more likely to have additional physical comorbidities. The recruitment approach may have influenced the response rate, since participants may not have had the same motivation to respond to an interest survey, compared to a direct referral from a medical professional. Second, all participants were required to own a smartphone, which may have excluded individuals who did not have access to this technology. Additionally, we excluded Black men with active psychosis, which may have further limited the diversity of our sample. Given the potential for overdiagnosis of psychosis in underserved communities [40], it is possible that we also excluded potentially eligible individuals. Our study was also geographically restricted to Black men receiving health care in Baltimore, Maryland, and its surrounding counties. Future studies should consider additional venues and settings to recruit Black men who are not engaged in psychiatric care, including but not limited to social media, advocacy groups, and peer-led and community-based organizations. Finally, our study involved a relatively small number of participants, with 9 eligible participants completing the EMA surveys. This limited sample size may not fully represent the diversity and complexity of experiences among Black men and can affect the generalizability of findings to a larger population. Future studies should expand from our preliminary findings with a sufficient sample size to statistically investigate predictors of low compliance and user uptake.

Conclusions
This study is the first to our knowledge to address critical gaps in suicide research by incorporating EMA to improve the care for Black men who are at risk of suicide. Using EMA may be an important tool to help stem challenges to the timely assessment of suicide among Black men, who comprise the largest percentage of deaths by suicide (81%) within the Black community [4]. Our findings highlight how acceptable and feasible this method is for this high-priority population, as well as potential approaches to improve its fit.

Our study provides critical insights into the use of smartphones to capture real-time data for assessing the mental and emotional health of individuals in high-risk clinical samples of Black men. Our results highlight the suitability of EMA using smartphone-based approaches for studying sensitive topics related to suicide in vulnerable populations. Furthermore, the findings shed light on the next steps for creating more equitable suicide prevention approaches, including identifying areas of missing data and the cultural acceptability of smartphone-based tools for health promotion. However, further research is necessary to expand these tools to assess structural racism and other racialized factors that influence Black men’s daily lives.

Acknowledgments
LBA was supported by a grant from the Bloomberg American Health Initiative at Johns Hopkins Bloomberg School of Public Health, from the National Institutes on Mental Health (K01MH127310) and the American Foundation on Suicide Prevention (YIG-0-001-19). RJTJ was supported by grants National Institutes of Health (K02AG059140) and (U54MD000214). EEH was supported through the National Institutes on Mental Health (K01MH226335). The MyChart Recruitment Service is a service supported by the Johns Hopkins Institute for Clinical and Translation Research. The Johns Hopkins Institute for Clinical and Translation Research is funded by the National Center for Advancing Translational Sciences through the Clinical & Translational Science Awards Program.

Data Availability
The data set generated and analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.
References

Abbreviations

EMA: Ecological momentary assessment
PHQ-2: Patient Health Questionnaire-2
PTSD: posttraumatic stress disorder
RLI: Reasons for Living Inventory
STB: suicidal thoughts and behavior
An Initial Validation of Community-Based Air-Conduction Audiometry in Adults With Simulated Hearing Impairment Using a New Web App, DigiBel: Validation Study

Anna Sienko, BA; Arun James Thirunavukarasu, BA, MBBChir; Tanya Kuzmich, BSc; Louise Allen, MBBS, MA, MD

1School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
2Oxford University Clinical Academic Graduate School, University of Oxford, Oxford, United Kingdom
3Department of Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
4Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom

Corresponding Author:
Anna Sienko, BA
School of Clinical Medicine
University of Cambridge
Hills Road
Cambridge, CB2 0SP
United Kingdom
Phone: 44 1223 336700
Email: as2866@cam.ac.uk

Abstract

Background: Approximately 80% of primary school children in the United States and Europe experience glue ear, which may impair hearing at a critical time for speech acquisition and social development. A web-based app, DigiBel, has been developed primarily to identify individuals with conductive hearing impairment who may benefit from the temporary use of bone-conduction assistive technology in the community.

Objective: This preliminary study aims to determine the screening accuracy and usability of DigiBel self-assessed air-conduction (AC) pure tone audiometry in adult volunteers with simulated hearing impairment prior to formal clinical validation.

Methods: Healthy adults, each with 1 ear plugged, underwent automated AC pure tone audiometry (reference test) and DigiBel audiometry in quiet community settings. Threshold measurements were compared across 6 tone frequencies and DigiBel test-retest reliability was calculated. The accuracy of DigiBel for detecting more than 20 dB of hearing impairment was assessed. A total of 30 adults (30 unplugged ears and 30 plugged ears) completed both audiometry tests.

Results: DigiBel had 100% sensitivity (95% CI 87.23-100) and 72.73% (95% CI 54.48-86.70) specificity in detecting hearing impairment. Threshold mean bias was insignificant except at 4000 and 8000 Hz where a small but significant overestimation of threshold measurement was identified. All 24 participants completing feedback rated the DigiBel test as good or excellent and 21 (88%) participants agreed or strongly agreed that they would be able to do the test at home without help.

Conclusions: This study supports the potential use of DigiBel as a screening tool for hearing impairment. The findings will be used to improve the software further prior to undertaking a formal clinical trial of AC and bone-conduction audiometry in individuals with suspected conductive hearing impairment.

(JMIR Form Res 2024;8:e51770) doi:10.2196/51770

KEYWORDS
audiology; audiometry; hearing test; eHealth; mobile application; automated audiometry; hearing loss; hearing impairment; web-app; web-apps; web-application; digital health; hearing; adult; adults; mobile health; mhealth; community-based; home-based; assistive technology; screening; usability; ears; ear
Introduction

Over 5% of the world’s population, approximately 430 million people worldwide, have disabling hearing loss; 34 million of these are children [1]. The main causes of hearing loss in adulthood are age-related hearing loss, noise-related hearing loss, and hearing loss due to chronic otitis media. In children, the most common cause of hearing impairment is otitis media with effusion, also known as “glue ear”. Approximately 80% of primary school children in the United States and Europe experience glue ear [2]. In contrast to most forms of adult hearing loss, hearing impairment in children with glue ear fluctuates. Serial testing is often required to detect and manage the condition to mitigate its adverse impact on social development. Children in low- and middle-income countries, families experiencing socioeconomic deprivation, and disadvantaged populations are disproportionately affected by conductive hearing loss caused by glue ear and its complications, or from damage to the eardrum as seen in chronic tympanic perforations or chronic serous otitis media [3,4]. Since delayed recognition and management of childhood hearing impairment have long-term consequences for socialization and educational attainment, screening audiometry is recommended in primary school [5]. However, population screening programs are hindered by cost, standardization, requirement for staff training, false-positive referrals, and poor data capture [6,7]. Even where available, school screening may miss children with fluctuating hearing loss due to glue ears. Additionally, several year groups have missed screening during the COVID pandemic [8]. These children may face months of impaired hearing before diagnosis and management due to backlogs in audiology and specialist services.

Hearing thresholds are assessed using pure tone audiometry (PTA) with air-conduction (AC) headphones and bone-conduction (BC) transducers. This usually requires specialist equipment and trained clinicians. Automated audiometry and, more recently, validated self-testing hearing software apps, may improve the accessibility of screening and threshold audiometry testing, particularly in rural areas. The DigiBel web app is a recently developed Class 1 CE marked medical device that enables self-testing of AC and BC hearing levels. Like some other audiometry apps, it is suitable for community use in adults and children without clinical support. DigiBel has the novel facility to undertake BC audiometry with the same transducer used in a BC hearing assistance kit (BC headphones with Bluetooth-connected microphone, Raspberry Pi, Cambridge, United Kingdom). This could identify children who may benefit from this assistive technology while waiting for diagnosis, spontaneous resolution, or definitive management of their glue ear [9].

The purpose of this study of DigiBel audiometry is to determine the app’s sensitivity and specificity for detecting simulated conductive hearing impairment of more than 20 dB and to identify software modifications required prior to formal trials in a clinical population. Given the long protocol of testing or retesting and the requirement for usability feedback to inform improvement in the app design, this preliminary study involved healthy adult volunteers rather than children.

Methods

Overview

Healthy adult volunteers from the community without a previous history of hearing impairment were invited to participate in this comparative study of automated PTA and DigiBel audiometry. After receiving an explanation of the study, participants provided verbal consent to proceed to audiometry testing. Each participant was assigned a unique study identification number; no personal identifiable information was recorded.

Testing was undertaken in community settings such as participants’ homes and classrooms by nonaudiologist technicians. Prior to testing, each volunteer was instructed to place a foam earplug firmly into their left auditory canal and requested not to adjust it until testing was complete. This simulated a conductive hearing loss in the plugged ear, making each ear an independent entity for the purpose of statistical analysis and providing a range of hearing levels.

The reference automated AC PTA and the index DigiBel audiometry test were undertaken sequentially in random order. DigiBel audiometry for 4 frequencies was repeated immediately after the initial test, to assess within-session test-retest (TRT) reliability. After completing both audiometry tests, each volunteer was asked to complete a feedback questionnaire covering test preference and usability (Multimedia Appendix 1).

Automated Pure Tone Audiometry—The Gold-Standard Reference Test

Automated PTA was undertaken using an Oscilla (Oscilla A/S Aarhus Denmark) USB300 audiometer with TDH-39 headphones. The modified Hughson-Westlake algorithm was used for determining the reference AC audiometric threshold [10]. After an initial explanation by the technician and a conditioning test at 1000 Hz, thresholds were recorded at 2000, 4000, 8000, 1000, 500, and 250 Hz in accordance with British Society of Audiology recommendations [11]. The hearing threshold criterion for each frequency was determined as the lowest intensity at which participants accurately signaled 2 confirmations out of 3 presentations. The number of false positive responses was manually recorded.

The DigiBel Index Test

DigiBel has been laboratory and biologically calibrated (Institute of Sound and Vibration Research, University of Southampton, United Kingdom; and Chears-audiology, Royston, United Kingdom) to run specifically on any model iPad tablet (Apple) with Sennheiser HD 400S AC headphones (Wedemark, Germany).

A pretest embedded video provides instructions for use and a checklist ensures that the iPad volume is on maximum and the headphones are fitted correctly. Noise sampling, using the inbuilt Sennheiser headphone microphone, ensures that the ambient noise level is less than 40 dB prior to testing. Testing can be paused and restarted at any stage if the ambient noise level changes unexpectedly or interruptions occur. Configurable
settings include a choice of warble or pure tone, test frequencies, ambient noise setting, and child or adult version of the test.

The user taps a central animated button on the iPad display when they hear the tone (Figure 1A). A conditioning step requires the user to accurately tap the button on hearing a random onset suprathreshold tone at 1000 Hz before testing can begin. During testing, the onset of the tone is randomized from 0 to 3 seconds after the appearance of the response button to avoid a predictable response pattern. The tone stops in response to the tap and a psychophysical staircase algorithm starting from 60 dB (10 dB down, 5 dB up) is followed in a 2 down, 1 up rule, requiring 5 reversals dependent on the user’s input. The final threshold is calculated as the mean of the final 3 reversal thresholds. Once completed, a standard audiometry graph and the number of false positive responses are displayed (Figure 1B). The user can choose to repeat testing or undertake BC testing to determine the functional effect on hearing levels.

Figure 1. (A) DigiBel test interface and (B) DigiBel audiometry graph.

For this study, DigiBel AC PTA was undertaken in the sequence 2000, 4000, 8000, 1000, 500, and 250 Hz and retested in the sequence 2000, 4000, 8000, and 500 Hz using the adult test version.

Statistics
Data were analyzed in R (version 4.1.2; R Foundation for Statistical Computing) [12,13]. Accuracy and TRT reliability were assessed through Bland-Altman analysis, a statistical approach enabling analysis of the agreement between 2 measurement methods by assessing their mean differences (mean bias) and upper and lower limits of agreement (SD 1.96). Qualitative appraisal of mixed effects model 2-way intraclass correlation coefficients (ICCs) between the threshold measurements from each device was based on conventional standards with moderate, good, and excellent agreement indicated by an ICC of ≥0.50, ≥0.75, and ≥0.90, respectively [14]. The correlation between calculated bias and mean threshold values was analyzed using Pearson correlation coefficients (PCCs). The percentages of DigiBel threshold measurements lying within 10 dB of both the reference test and the repeated DigiBel test were calculated [15,16]. Statistical significance was calculated for the mean bias where confidence intervals did not cross zero, and for ICC and PCCs where \(P < 0.05 \). To assess diagnostic efficacy, sensitivity and specificity for detection of hearing thresholds above 20 Hz were calculated, using automated PTA as the reference. The Student t test was used to compare the number of false positive responses for each test. Throughout, magnitudes were reported as the mean (SD) unless otherwise stated.

Ethical Considerations
The study adhered to the tenets of the Declaration of Helsinki and the protocol was approved by the Quality and Safety Committee of Cambridge University Hospitals National Health Service Foundation Trust as part of a service improvement project. The Quality and Safety Committee at Cambridge University Hospitals considered that formal ethics committee approval was not required for this no-risk service improvement study in a healthy, adult population and opined that verbal consent was sufficient in these circumstances to prevent the collection of patient identifiable information (approval for
Service Evaluation Project – PRN9288; dated April 11, 2023). No other demographic information other than age was recorded to maintain anonymity for this service improvement study. No compensation was offered for participating in the study.

Results

Participant Characteristics

A total of 32 healthy participants agreed to take part, but 2 participants were excluded due to malfunction of the reference automated PTA test. The 30 participants who completed both the reference and index tests were 21-66 (mean 27.9, SD 10.3) years. TRT data were collected from 29 participants (one volunteer left early due to time constraints). Feedback forms were completed by 24 participants (Figure 2).

Figure 2. Participant flow diagram.

Accuracy and Reliability of DigiBel

Across the 6 tested frequencies, threshold hearing levels of DigiBel compared with automated PTA gave an ICC of above 0.75 (good or excellent agreement) and \(P < .001 \) in every trial (Table 1; Multimedia Appendices 2 and 3). The mean lower limit of agreement (LOA) was –17.04 dB (SD 2.12 dB) and the mean upper LOA was 20.39 dB (SD 3.41 dB). No significant bias was apparent except at 4000 and 8000 Hz where a small but statistically significant bias was apparent (2.62 and 4.60 dB, respectively), with DigiBel providing systematically higher threshold results at those frequencies (Figure 3). An agreeable level of threshold difference in audiometry assessments has previously been defined as 10 dB; 263 out of 360 (73%) of DigiBel threshold measurements were within this standard [16]. There was a significant positive PCC between the measurement bias and mean at 500 (\(P < .001 \)), 1000 (\(P = .005 \)), 2000 (\(P < .001 \)), and 4000 Hz (\(P < .001 \)) test frequencies.
Table 1. Comparison of threshold values (in dB) using Bland-Altman statistics and intraclass correlation coefficients.

<table>
<thead>
<tr>
<th>Comparison and frequency (Hz)</th>
<th>Number of ears tested</th>
<th>Bias (dB), 95% CI</th>
<th>LLoA (^a) (dB), 95% CI</th>
<th>ULoA (^b) (dB), 95% CI</th>
<th>ICC (^c), 95% CI</th>
<th>PCC (^d) (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigiBel compared with standard automated audiometry (^e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>1.72 (–0.32 to 3.76)</td>
<td>–13.75 (–17.25 to –10.25)</td>
<td>17.18 (13.68 to 20.69)</td>
<td>0.85 (0.77 to 0.91)</td>
<td>0.16</td>
</tr>
<tr>
<td>500</td>
<td>60</td>
<td>–1.55 (–3.93 to 0.83)</td>
<td>–19.62 (–23.71 to –15.52)</td>
<td>16.52 (12.42 to 20.61)</td>
<td>0.87 (0.80 to 0.92)</td>
<td>0.48</td>
</tr>
<tr>
<td>1000</td>
<td>60</td>
<td>0.23 (–2.30 to 2.77)</td>
<td>–19.01 (–23.36 to –14.65)</td>
<td>19.47 (15.11 to 23.83)</td>
<td>0.88 (0.80 to 0.92)</td>
<td>0.36</td>
</tr>
<tr>
<td>2000</td>
<td>60</td>
<td>2.43 (–0.15 to 5.02)</td>
<td>–17.18 (–21.62 to –12.74)</td>
<td>22.05 (17.61 to 26.49)</td>
<td>0.88 (0.81 to 0.93)</td>
<td>0.64</td>
</tr>
<tr>
<td>4000</td>
<td>60</td>
<td>2.62 (0.14 to 5.10)</td>
<td>–16.19 (–20.45 to –11.93)</td>
<td>21.42 (17.16 to 25.68)</td>
<td>0.89 (0.83 to 0.94)</td>
<td>0.48</td>
</tr>
<tr>
<td>8000</td>
<td>60</td>
<td>4.60 (1.82 to 7.38)</td>
<td>–16.51 (–21.29 to –11.73)</td>
<td>25.71 (20.93 to 30.49)</td>
<td>0.91 (0.82 to 0.95)</td>
<td>0.13</td>
</tr>
<tr>
<td>DigiBel test-retest comparison (^f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>58</td>
<td>0.26 (–1.91 to 2.43)</td>
<td>–15.90 (–19.62 to –12.17)</td>
<td>16.42 (12.69 to 20.14)</td>
<td>0.92 (0.87 to 0.95)</td>
<td>N/A</td>
</tr>
<tr>
<td>2000</td>
<td>58</td>
<td>1.40 (–0.65 to 3.44)</td>
<td>–13.84 (–17.36 to –10.33)</td>
<td>16.64 (13.12 to 20.15)</td>
<td>0.95 (0.91 to 0.97)</td>
<td>N/A</td>
</tr>
<tr>
<td>4000</td>
<td>58</td>
<td>0.90 (–0.66 to 2.46)</td>
<td>–10.74 (–13.42 to –8.06)</td>
<td>12.53 (9.85 to 15.22)</td>
<td>0.97 (0.94 to 0.98)</td>
<td>N/A</td>
</tr>
<tr>
<td>8000</td>
<td>58</td>
<td>0.98 (–1.23 to 3.19)</td>
<td>–15.48 (–19.28 to –11.68)</td>
<td>17.44 (13.65 to 21.24)</td>
<td>0.95 (0.92 to 0.97)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

\(^a\)LLoA: lower limit of agreement.
\(^b\)ULoA: upper limit of agreement.
\(^c\)ICC: intraclass correlation coefficient.
\(^d\)PCC: Pearson correlation coefficient (calculated for the relationship between measurement bias and mean for each frequency).
\(^e\)Comparison of threshold values (in dB) using Bland-Altman statistics and ICCs between DigiBel and standard automated PTA and DigiBel test and retest.
\(^f\)N/A: not applicable.

In TRT comparisons, ICC was above 0.90 (excellent) at all tested frequencies: 500, 2000, 4000, and 8000 Hz (Table 1). No statistically significant mean bias was exhibited at any frequency. The mean lower LOA was –13.99 dB (SD 2.34 dB); the mean upper LOA was 15.76 dB (SD 2.20 dB). Overall, 85% of TRT thresholds were within 10 dB of each other.

A mean of 3.57 (SD 4.68) false positive responses were recorded during reference testing and 11.43 (SD 7.12) during the first DigiBel test \((P<.001)\).
Sensitivity and Specificity

The sensitivity and specificity of DigiBel for detecting 20 dB hearing loss at each frequency are shown in Table 2. When applied to the 4 frequencies used for screening (250, 1000, 2000, and 4000 Hz), DigiBel had 100% sensitivity (95% CI 87.23-100) and 72.73% (95% CI 54.48-86.70) specificity for detecting 20 dB hearing loss in adults in a quiet setting.

Table 2. Screening accuracy of DigiBel for hearing threshold >20 dB identified by automated pure tone audiometry.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Sensitivity (%)</th>
<th>95% CI</th>
<th>Specificity (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>95.00</td>
<td>75.13 to 99.87</td>
<td>85.00</td>
<td>70.16 to 94.29</td>
</tr>
<tr>
<td>500</td>
<td>91.30</td>
<td>71.96 to 98.93</td>
<td>89.19</td>
<td>74.58 to 96.97</td>
</tr>
<tr>
<td>1000</td>
<td>100.00</td>
<td>86.28 to 100.00</td>
<td>85.71</td>
<td>69.74 to 95.19</td>
</tr>
<tr>
<td>2000</td>
<td>100.00</td>
<td>86.77 to 100.00</td>
<td>79.41</td>
<td>62.10 to 91.30</td>
</tr>
<tr>
<td>4000</td>
<td>100.00</td>
<td>86.28 to 100.00</td>
<td>88.57</td>
<td>73.26 to 96.80</td>
</tr>
<tr>
<td>8000</td>
<td>100.00</td>
<td>86.28 to 100.00</td>
<td>88.57</td>
<td>73.26 to 96.80</td>
</tr>
</tbody>
</table>

Screening frequencies (250, 1000, 2000, and 4000)

100.00 (87.23 to 100.00) | 72.73 (54.48 to 86.70)

Usability

Out of the 24 participants, 21 (88%) participants, while completing the questionnaire, did not regularly use digital health apps. All 24 participants rated DigiBel either good (15/24, 63% of participants) or excellent (9/24, 38% of participants); (7/24, 29% participants preferred the DigiBel test; 6/24, 25% participants preferred the standard test; and 11/24, 46% participants gave no test preference). A total of 21 (88%) participants agreed or strongly agreed that they would be confident to use DigiBel at home without help. The most common qualitative feedback given to the question “what is the best thing about the app?” was that it was easy or intuitive to use (17/24, 71% of participants). Answering “what is the worst thing about the app?” the commonest complaint was that the test was too long or boring (10/24, 42% of participants). One participant commented on environmental noise leaks through the headphones (Multimedia Appendix 1).

Discussion

Principal Findings

In 30 healthy adults with simulated unilateral conductive hearing impairment, DigiBel’s screening sensitivity and specificity were 100% (95% CI 87.2-100) and 72.73% (95% CI 54.45-86.7), respectively. The hearing threshold measurement mean bias between DigiBel and automated AC PTA was not significant except at 4000 and 8000 Hz, where it reached statistical significance (2.62 and 4.60 dB higher than the reference, respectively).

At least 5 validated downloadable apps enable automated AC audiometry, several of which support self-testing without clinician involvement [17]. Two apps, uHear (Unitron Ltd) and ShoeBOX (SHOEBOX Ltd) for iOS, include a BC audiometry facility [18,19]. uHear has been calibrated for use with commercial in-ear Apple headphones and ShoeBOX uses purpose-built audiometry headphones. DigiBel is not yet commercialized but its potential advantage is its calibration to purpose-built audiometry headphones. DigiBel is not yet commercial in-ear Apple headphones and ShoeBOX uses facility [18,19]. uHear has been calibrated for use with ShoeBOX (SHOEBOX Ltd) for iOS, include a BC audiometry facility [17]. Two apps, uHear (Unitron Ltd) and ShoeBOX (SHOEBOX Ltd) for iOS, include a BC audiometry facility [18,19]. uHear has been calibrated for use with commercial in-ear Apple headphones and ShoeBOX uses purpose-built audiometry headphones. DigiBel is not yet commercialized but its potential advantage is its calibration to purpose-built audiometry headphones. DigiBel is not yet commercial in-ear Apple headphones and ShoeBOX uses facility [18,19]. uHear has been calibrated for use with ShoeBOX (SHOEBOX Ltd) for iOS, include a BC audiometry facility [17]. Two apps, uHear (Unitron Ltd) and ShoeBOX (SHOEBOX Ltd) for iOS, include a BC audiometry facility [18,19]. uHear has been calibrated for use with comm

Table 2. Screening accuracy of DigiBel for hearing threshold >20 dB identified by automated pure tone audiometry.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Sensitivity (%)</th>
<th>95% CI</th>
<th>Specificity (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>95.00</td>
<td>75.13 to 99.87</td>
<td>85.00</td>
<td>70.16 to 94.29</td>
</tr>
<tr>
<td>500</td>
<td>91.30</td>
<td>71.96 to 98.93</td>
<td>89.19</td>
<td>74.58 to 96.97</td>
</tr>
<tr>
<td>1000</td>
<td>100.00</td>
<td>86.28 to 100.00</td>
<td>85.71</td>
<td>69.74 to 95.19</td>
</tr>
<tr>
<td>2000</td>
<td>100.00</td>
<td>86.77 to 100.00</td>
<td>79.41</td>
<td>62.10 to 91.30</td>
</tr>
<tr>
<td>4000</td>
<td>100.00</td>
<td>86.28 to 100.00</td>
<td>88.57</td>
<td>73.26 to 96.80</td>
</tr>
<tr>
<td>8000</td>
<td>100.00</td>
<td>86.28 to 100.00</td>
<td>88.57</td>
<td>73.26 to 96.80</td>
</tr>
</tbody>
</table>

Screening frequencies (250, 1000, 2000, and 4000)

100.00 (87.23 to 100.00) | 72.73 (54.48 to 86.70)

Usability

Out of the 24 participants, 21 (88%) participants, while completing the questionnaire, did not regularly use digital health apps. All 24 participants rated DigiBel either good (15/24, 63% of participants) or excellent (9/24, 38% of participants); (7/24, 29% participants preferred the DigiBel test; 6/24, 25% participants preferred the standard test; and 11/24, 46% participants gave no test preference). A total of 21 (88%) participants agreed or strongly agreed that they would be confident to use DigiBel at home without help. The most common qualitative feedback given to the question “what is the best thing about the app?” was that it was easy or intuitive to use (17/24, 71% of participants). Answering “what is the worst thing about the app?” the commonest complaint was that the test was too long or boring (10/24, 42% of participants). One participant commented on environmental noise leaks through the headphones (Multimedia Appendix 1).

Discussion

Principal Findings

In 30 healthy adults with simulated unilateral conductive hearing impairment, DigiBel’s screening sensitivity and specificity were 100% (95% CI 87.2-100) and 72.73% (95% CI 54.45-86.7), respectively. The hearing threshold measurement mean bias between DigiBel and automated AC PTA was not significant except at 4000 and 8000 Hz, where it reached statistical significance (2.62 and 4.60 dB higher than the reference, respectively).

At least 5 validated downloadable apps enable automated AC audiometry, several of which support self-testing without clinician involvement [17]. Two apps, uHear (Unitron Ltd) and ShoeBOX (SHOEBOX Ltd) for iOS, include a BC audiometry facility [18,19]. uHear has been calibrated for use with commercial in-ear Apple headphones and ShoeBOX uses purpose-built audiometry headphones. DigiBel is not yet commercialized but its potential advantage is its calibration to use affordable (retail price US $41, equivalent to €39), lightweight, and wipe-clean Sennheiser HD 400S AC headphones. DigiBel supports the use of Raspberry Pi BC headphones (retail price US $28, equivalent to €26) for BC audiometry which may quantify the potential benefit from their use (with a paired microphone) as an assistive technology.

DigiBel’s screening sensitivity and specificity for hearing impairment (more than 20 dB) is comparable to previous studies of both uHear (98.2%–100% sensitivity and 60.0–82.1 specificity) and ShoeBOX (91.2%–93.3% and specificity of 57.8%–94.5%) [18–22]. In this study comparing the threshold measurements of DigiBel to automated AC PTA in 30 individuals, there was a significant positive correlation between the mean bias and the mean threshold measurement at 500, 1000, 2000, and 4000 Hz frequencies, resulting in an overestimation of hearing ability at normal hearing levels and an underestimation of hearing ability in ears with subnormal hearing. This was particularly evident at 2000 Hz testing and may have resulted in the lower specificity demonstrated at this frequency. This is likely to reflect the sound output characteristic of the AC headphones and will require software corrections prior to future clinical studies. Overall, 73% of threshold measurements with DigiBel were within 10 dB of standard PTA; previous studies of ShoeBOX have found over 90% of measurements were within this range [23]. The comparatively poor performance of DigiBel for this metric may be due to environmental noise leakage through the Sennheiser headphones, a disadvantage of their comfort.

Masking of the unplugged ear was not used for either automated PTA or DigiBel because this facility is unlikely to be used by nontrained observers in community settings. A minority of participants in this study had a simulated intra-aural threshold difference exceeding 40 dB. It is possible that intra-aural transmission may have affected threshold values in these individuals, but this would be expected to affect both tests similarly.

The Hughson-Westlake algorithm and other adaptive methods are widely used to assess audiometric threshold, more recently, machine learning techniques have been developed [24]. To our knowledge, DigiBel is the only app to apply a staircase-reversal technique to audiometry, although it is commonly used for visual threshold testing [25]. In this study, the number of false positive participant responses was substantially higher with

https://formative.jmir.org/2024/1/e51770
DigiBel than standard testing. This may be due to the higher number of stimulus presentations compared with the ascending method used in standard automated PTA. The sensitivity of the iPad screen to a tap compared with the standard audiometer’s hand-held responder may be an additional factor. There was no evidence in this study that the higher false positive rate translated into a systematic overestimation of hearing ability.

All participants rated DigiBel as good or excellent, but 42% (n=10) of participants complained that the test took too long or was boring. Test duration was not measured during this study, but threshold testing for 6 frequencies is expected to take approximately 13 minutes with DigiBel, several minutes longer than standard automated PTA, primarily due to its staircase-reversal algorithm. Study participants had performed retesting which may have contributed to the perceived length of testing. The children’s version of the app has cartoons designed to increase interest but, even so, the test duration of threshold audiometry may limit its usability in young children. The DigiBel screening test of 4 frequencies takes approximately 3 minutes and may prove more feasible in this, its target population.

To simulate a range of hearing thresholds in the participant cohort, an earplug was used. This is a major limitation of the study because the effectiveness of the earplug may have altered during testing and earplugs may not accurately mimic genuine hearing impairment. Although this study indicates that DigiBel has acceptable accuracy for detecting simulated hearing impairment in healthy adult volunteers, these results are not generalizable and software corrections are required prior to clinical use.

This preliminary study confirms that the DigiBel app is an acceptable and easy-to-use self-testing web-based tool that accurately detects more than 20 dB of simulated hearing impairment in adults. Minor modifications to the 1000, 2000, and 4000 Hz frequency-specific normalization factors used in the software algorithm which converts sound pressure levels to hearing level are required to ensure uniformity of sound output and accuracy across the range of hearing abilities. A study, conducted in primary school children attending a hospital audiology clinic, is underway to assess the accuracy of DigiBel in identifying conductive hearing impairment. Additionally, the innovative concept behind DigiBel will be tested: its ability to identify those children who could benefit from the temporary use of a BC hearing assistance kit for use at school and home, and the impact this has on quality of life (using a parent- or patient-reported outcome measure questionnaire) while waiting for specialist care.

Conclusions
The World Health Organization identifies hearing loss as a major global health issue, with two-thirds of people with severe hearing loss living in low and middle countries with poor access both to hearing testing (audiometry) or conventional hearing aids. It can affect many aspects of life such as education, employment, and communication, and result in social isolation.

Several software apps like DigiBel, studied here, have been developed to enable individuals to test their own hearing in the community. Uniquely, DigiBel has the additional potential to identify individuals with hearing loss who could derive immediate hearing support from an affordable and rechargeable bone-conduction hearing assistance kit while waiting for specialist care.

This initial study of DigiBel provides confirmation that the app is easy to use and accurate at detecting simulated hearing impairment. It identifies some software corrections that may improve its accuracy and lays the groundwork for future clinical studies to assess DigiBel’s performance in children and adults with hearing impairment.

Acknowledgments
The authors thank Josephine Marriage and Martha Mann at Chears-audiology, Royston, Cambridge for their support with the biologic calibration of the DigiBel app and Tamsin Holland-Brown for improving the manuscript. This research was supported by the National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre (NIHR203312). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

Conflicts of Interest
AS, AJT, and TK have declared that no competing interests exist. LA declares nonfinancial competing interests as the inventor of DigiBel, which was developed with funding from a Medical Research Council Confidence in Concepts Grant.

Multimedia Appendix 1
Feedback questionnaire.
[DOCX File, 14 KB - formative_v8i1e51770_app1.docx]

Multimedia Appendix 2
Feedback data.
[XLSX File (Microsoft Excel File), 11 KB - formative_v8i1e51770_app2.xlsx]

Multimedia Appendix 3
References

10.1177/0194599816683663] [Medline: 28025906]

of hearing: scoping review. J Med Internet Res 2022;24(2):e32581 [FREE Full text] [doi: 10.2196/32581] [Medline:
34919056]

remote assessment of distance visual acuity. Eye (Lond) 2022;36(10):2057-2061 [FREE Full text] [doi:
10.1038/s41433-021-01760-2] [Medline: 34462579]

Abbreviations
AC: air-conduction
BC: bone-conduction
ICC: Intraclass correlation coefficient
LOA: limit of agreement
PCC: Pearson correlation coefficient
PTA: pure tone audiometry
TRT: test-retest
Sleep Patterns of Premedical Undergraduate Students: Pilot Study and Protocol Evaluation

Gargi Rajput¹,², BS; Andy Gao¹,²; Tzu-Chun Wu¹, PhD; Ching-Tzu Tsai¹,³, MDes; Jennifer Molano⁴, MD; Danny T Y Wu¹,²,³, PhD

¹Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
²Medical Sciences Baccalaureate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
³School of Design, University of Cincinnati, Cincinnati, OH, United States
⁴Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States

Corresponding Author:
Danny T Y Wu, PhD
Department of Biomedical Informatics
College of Medicine
University of Cincinnati
231 Albert Sabin Way, ML0840
Cincinnati, OH, 45267
United States
Phone: 1 5135586464
Email: wutz@ucmail.uc.edu

Abstract

Background: Poor sleep hygiene persists in college students today, despite its heavy implications on adolescent development and academic performance. Although sleep patterns in undergraduates have been broadly investigated, no study has exclusively assessed the sleep patterns of premedical undergraduate students. A gap also exists in the knowledge of how students perceive their sleep patterns compared to their actual sleep patterns.

Objective: This study aims to address 2 research questions: What are the sleep patterns of premedical undergraduate students? Would the proposed study protocol be feasible to examine the perception of sleep quality and promote sleep behavioral changes in premedical undergraduate students?

Methods: An anonymous survey was conducted with premedical students in the Medical Science Baccalaureate program at an R1: doctoral university in the Midwest United States to investigate their sleep habits and understand their demographics. The survey consisted of both Pittsburg Sleep Quality Index (PSQI) questionnaire items (1-9) and participant demographic questions. To examine the proposed protocol feasibility, we recruited 5 students from the survey pool for addressing the perception of sleep quality and changes. These participants followed a 2-week protocol wearing Fitbit Inspire 2 watches and underwent preassessments, midassessments, and postassessments. Participants completed daily reflections and semistructured interviews along with PSQI questionnaires during assessments.

Results: According to 103 survey responses, premedical students slept an average of 7.1 hours per night. Only a quarter (26/103) of the participants experienced good sleep quality (PSQI<5), although there was no significant difference (P=.11) in the proportions of good (PSQI<5) versus poor sleepers (PSQI≥5) across cohorts. When students perceived no problem at all in their sleep quality, 50% (14/28) of them actually had poor sleep quality. Among the larger proportion of students who perceived sleep quality as only a slight problem, 26% (11/43) of them presented poor sleep quality. High stress levels were associated with poor sleep quality. This study reveals Fitbit as a beneficial tool in raising sleep awareness. Participants highlighted Fitbit elements that aid in comprehension such as being able to visualize their sleep stage breakdown and receive an overview of their sleep pattern by simply looking at their Fitbit sleep scores. In terms of protocol evaluation, participants believed that assessments were conducted within the expected duration, and they did not have a strong opinion about the frequency of survey administration. However, Fitbit was found to provide notable variation daily, leading to missing data. Moreover, the Fitbit app’s feature description was vague and could lead to confusion.
Conclusions: Poor sleep quality experienced by unaware premedical students points to a need for raising sleep awareness and developing effective interventions. Future work should refine our study protocol based on lessons learned and health behavior theories and use Fitbit as an informatics solution to promote healthy sleep behaviors.

KEYWORDS
patient-generated health data; Fitbit wearables; sleep quality; premedical college students; sleep; sleep hygiene; student; colleges; university; postsecondary; higher education; survey; sleep pattern; medical student; adolescence; behavior change

Introduction
Sleep health has been recognized as an unresolved public health concern since 2006 [1]. Although sleep plays a vital role in adolescent health and development, poor sleep patterns continue to be associated with college students. A 2015 study showed that 70%-96% of college students sleep less than the recommended 8 hours on weeknights [2,3]. With the heavy prevalence of sleep deprivation, it is important to recognize the detrimental effects it can have. Starting with cognitive processing, poor sleep has been shown to have negative effects on working memory, attention span, and speed of processing [4]. With poor sleep, our bodies can also experience impaired immune function, more susceptibility to illnesses, increased risk of stress, and decreased physical functions [5]. In addition, emotional dysregulation and lower levels of subjective well-being can be observed [6]. As a result, students experience a consequential effect on their academic performance [7]. It is therefore imperative to understand and discuss the sleep patterns of adolescents, especially college students, in order to aid them with tools that can help avoid these consequences.

Additionally, it is possible that students who may appear to receive an adequate amount of sleep can experience poor sleep due to bad sleep quality. Sleep quality refers to both quantitative aspects of sleep such as duration, sleep latency, and number of arousals, and qualitative aspects such as depth and restfulness of sleep according to a 1998 Psychiatry and Research publication [8]. Poor sleep quality refers to the struggle of falling asleep or maintaining sleep. A recent 2022 study clarifies this definition by adding the component of individuals’ self-satisfaction with their sleep as another part of sleep quality [9]. A previous survey on college undergraduates found that only 34.1% of students displayed good sleep quality based on Pittsburg Sleep Quality Index (PSQI) scores [10]. The PSQI is a self-rated questionnaire that serves as a standard tool for measuring sleep quality [8]. The responses to questionnaire items allow researchers to determine a global PSQI score, which helps distinguish between good-quality and poor-quality sleepers. A PSQI score smaller than 5 (<5) signifies good sleep quality, whereas a PSQI score equal to or larger than 5 (≥5) indicates poor sleep quality. However, to diagnostically study sleep, polysomnography (PSG) can be conducted, which involves recording brainwaves, oxygen level in the blood, respiration rate, and physical movements to diagnose sleep disorders [11]. PSG is used to understand the sleep patterns of patients and why there might be disruptions [12].

A recent study on the sleep quality of college students explored the determinants of sleep quality [13], interventions for improving sleep quality, overall demographics of sleep patterns, and associations of poor sleep quality with health problems. Some studies [7,14] have approached the understanding of sleep through a comparison of different college majors. One such major or a group of students that is of interest to us are students who are premedicine (premedical) majors or undergraduate students on the prehealth track. However, there is limited exploration looking specifically at the sleep patterns of premedical undergraduate students (premedical students hereafter). Previous research in this area has largely been centered on the sleep quality of students who are in a medical school or graduate medical education program and focused on sleep-related disorders among them [15-19]. Numerous studies have measured the sleep patterns of medical students but have not focused on understanding the patterns [20-33]. To date, only 1 study has tested medical students on their sleep knowledge and has found a disconnect between their understanding of sleep facts and actual sleep quality [34]. This led to the focus of our study on the sleep quality perception of premedical students.

A student’s perception of his or her sleep habits can give us insights into whether perception influences sleep behaviors and quality. Many prior studies [35-38] have looked at sleep state misperception. This concept discusses how there is a disconnect between the amount of sleep people think they get versus their actual duration of sleep. Research on sleep state misperception has primarily been conducted on people dealing with varying mental health conditions or sleep disorders [35-38]. In this manner, our research focused on the effect of sleep quality perception on sleep patterns, which considers overall sleep quality rather than just duration, in a relatively healthy population comprised of premedical students. Literature shows that in medical students, perception of stress can have an impact on their well-being [39], while another study has confirmed that there is a positive effect of education on sleep in undergraduates [40]. However, there is a gap in the literature in terms of understanding how premedical students perceive their sleep versus their actual sleep patterns. Although one study comes close to answering this question by examining the beliefs of sleep hygiene in medical students compared to their actual sleep practices [41], the behavior of premedical undergraduates is yet to be explored and understood.

Current validation studies suggest that while PSG remains the gold standard, Fitbit is capable of monitoring various sleep parameters that do not significantly deviate from PSG measurements [42-44]. The overall objective of our research was to understand the sleep patterns of premedical students and create interventions to promote positive behavioral changes. Our pilot study focuses on answering the following 2 research
questions (RQs). What are the sleep patterns of premedical undergraduate students (RQ1)? Would the study protocol be feasible to examine the perception of sleep quality and promote sleep behavioral changes in premedical undergraduate students (RQ2)?

Methods

Setting

This study was conducted with premedical students from a Medical Sciences Baccalaureate Program (MSBP) at the University of Cincinnati, an R1: doctoral university and an undergraduate College of Medicine in the Midwest United States. The MSBP is a program designed to help premedical students prepare for professional graduate schools in the health care field. The 4-year program consists of 376 students as of October 2022.

Study Design

To address RQ1, a “Well-being and Sleep Survey” (the well-being survey hereafter) was distributed to collect subjective sleep patterns. To address RQ2, a small group of participants (MSBP premedical students) were recruited to evaluate whether the study protocol (Figure 1) was feasible and could generate valid data for analysis. Specifically, the participants put on the Fitbit Inspire 2 wearable watch to monitor their sleep patterns. These participants were then invited to a semistructured interview to understand their Fitbit app experience. As shown in Figure 1, during the 2-week pilot study period, participants progressed through preassessment (week 0), midassessment (week 1), and postassessment (week 2) periods. The well-being survey was filled out by participants at all 3 fixed time points. During week 0, a semistructured interview was conducted assessing participants about their typical sleep habits and their previous experience with wearable devices. Participants at this point were also prompted to fill out a form daily, reflecting their thoughts regarding the Fitbit sleep score they received the night before. On week 1, a midassessment was performed in which the participants were asked to speak about their previous week’s experience with the aid of the daily reflections they had previously filled for days 1-7. In order to prompt the participants, researchers displayed a line chart of the 7 responses gathered from participants’ daily forms to project their sleep score trends over the week. Researchers also listed all participants’ free-text responses so that they could elaborate specifically about their sleep corresponding to certain dates. Lastly, in week 2, participants reviewed the daily reflections for days 8-14, which was followed by a semistructured interview.
Figure 1. Flowchart of the study protocol tested on 5 premedical participants during the 2-week pilot study with Fitbit Inspire 2. Week 0 started with preassessment, conducted in person at the University of Cincinnati Medical Sciences building. Week 1 midassessment and Week 2 postassessment were conducted virtually through Microsoft Teams meeting. The data collection was conducted in 2 cycles. Participants 1, 2, and 3 began the 2-week protocol in the last week of July 2022 and finished in the second week of August 2022. Participants 4 and 5 began the 2-week protocol in the first week of September 2022 and finished in the third week of September 2022. All of the participants had varying start dates during this time frame, but each participant was available for 10 weekdays and 4 weekend days during the duration of the 2-week data collection. PGHD: patient-generated health data; PSQI: Pittsburgh Sleep Quality Index.

Ethics Approval

This study was reviewed and approved by the University of Cincinnati Institutional Review Board (approval 2021-1119) and determined as not human subject research due to its collection on de-identified data and the focus on quality improvement. This institutional review board determination resulted in the avoidance of collecting detailed student demographics such as sex and age and the deidentification of all participant information in the data.
Participant Recruitment
The survey participants were recruited on a voluntary basis via email and GroupMe messages through the research team’s professional and personal network. The small group of participants for the protocol evaluation was selected from the survey participants as a convenience sample. This study was expected to target 100 survey participants and 5 protocol evaluation participants.

Data Collection
The well-being survey was distributed among all cohorts (years 1, 2, 3, and 4 students) of the MSBP program (N=376). The survey consisted of PSQI items (1-9) adjusted to items (1-11) to accommodate the web-based survey format due to some combined line items in the original paper format, requiring different lines in the web-based survey. The response components combined to calculate a global PSQI score (with a Cronbach α of .83) [8], which suggests a high degree of internal consistency. These items were followed by a few questions assessing students’ demographics and their perception of their sleep quality. The well-being survey was created in Microsoft forms with survey questions as listed in Table 1. For the protocol evaluation, 5 students were selected from the well-being survey pool. In addition to the sleep patterns collected from the self-reported PSQI survey and the objective Fitbit wearables, these 5 participants’ feedback on the protocol was collected through semistructured interviews. The interview was recorded and conducted on a virtual platform and further analyzed thematically [45]. For the Fitbit data collection, 5 Fitbit Inspire 2 watches were deployed—one for each participant. Fitbit data were collected by linking the watch to the participant’s Fitbit web account. During the semistructured interview in the midassessment, the participants were instructed to log into their account on Fitbit.com. Next, they were asked to navigate to “Settings,” select “Data Export,” and then click on “Request Data.” This generated an email request to the participant to “Confirm Export Request.” Finally, after confirmation, the participant received a downloaded data zip file with JSON files containing complete archive data. The participants were then prompted to email the zip file to the researcher. This process was again repeated during the postassessment. Table 1 identifies each question sequentially, as it was presented in the web-based Microsoft form, as well as categorizes it as either a PSQI question or a demographic question. PSQI questions are directly derived from PSQI questionnaire items (1-9), which are adjusted to items 1-11 in our survey to accommodate the web-based format as compared to the original PSQI questionnaire paper format. The description lists exactly how the questions were asked to premedical MSBP students. The response type specifies whether survey participants responded to the question by inputting free text or selecting their answers on the Likert scale or multiple choice.
Table 1. Well-being survey questions that were administered to 376 students in the Medical Sciences Baccalaureate program at the University of Cincinnati.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Category</th>
<th>Description</th>
<th>Response type/scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PSQIa</td>
<td>During Week 01, when have you usually gone to bed at night?</td>
<td>Free text</td>
</tr>
<tr>
<td>2</td>
<td>PSQI</td>
<td>During Week 01, how long (in minutes) has it usually taken you to fall asleep each night?</td>
<td>Free text</td>
</tr>
<tr>
<td>3</td>
<td>PSQI</td>
<td>During Week 01, when have you usually gotten up in the morning?</td>
<td>Free text</td>
</tr>
<tr>
<td>4</td>
<td>PSQI</td>
<td>During Week 01, how many hours of actual sleep did you get at night? (This may be different from the number of hours you spend in bed)</td>
<td>Free text</td>
</tr>
<tr>
<td>5</td>
<td>PSQI</td>
<td>During Week 01, how often have you had trouble sleeping because you...</td>
<td>Likert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a...cannot get to sleep within 30 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b...wake up in the middle of the night or early morning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c...have to get up to use the bathroom</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d...cannot breathe comfortably</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e...cough or snore loudly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f...feel too cold</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>g...feel too hot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h...had bad dreams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i...have pain</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PSQI</td>
<td>If you have other reasons for having trouble sleeping, please describe...</td>
<td>Free text</td>
</tr>
<tr>
<td>7</td>
<td>PSQI</td>
<td>How often during Week 01 have you had trouble sleeping because of Q6?</td>
<td>Likert</td>
</tr>
<tr>
<td>8</td>
<td>PSQI</td>
<td>How often during Week 01 have you had trouble sleeping because of this?</td>
<td>Likert</td>
</tr>
<tr>
<td>9</td>
<td>PSQI</td>
<td>During Week 01, how often have you taken medicine (prescribed or “over the counter”) to help you sleep?</td>
<td>Likert</td>
</tr>
<tr>
<td>10</td>
<td>PSQI</td>
<td>During Week 01, how often have you had trouble staying awake while driving, eating meals, or engaging in social activity?</td>
<td>Likert</td>
</tr>
<tr>
<td>11</td>
<td>PSQI</td>
<td>During Week 01, how much of a problem has it been for you to keep up enough enthusiasm to get things done?</td>
<td>Likert</td>
</tr>
<tr>
<td>12</td>
<td>Demographics</td>
<td>Year in MSBPb program?</td>
<td>Multiple choice</td>
</tr>
<tr>
<td>13</td>
<td>Demographics</td>
<td>Sleep quality: Do you have concerns about your sleep quality?</td>
<td>Likert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How much role does stress play in your sleep quality?</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Demographics</td>
<td>Have you ever seen a sleep specialist for sleep problems?</td>
<td>Likert</td>
</tr>
<tr>
<td>15</td>
<td>Demographics</td>
<td>Have you ever worn a wearable device to track your sleep?</td>
<td>Multiple choice</td>
</tr>
<tr>
<td>16</td>
<td>Demographics</td>
<td>Are you interested in joining a Fitbit usability study?</td>
<td>Multiple choice</td>
</tr>
<tr>
<td>17</td>
<td>Demographics</td>
<td>If yes to Q16, then enter your email.</td>
<td>Free text</td>
</tr>
</tbody>
</table>

aPSQI: Pittsburg Sleep Quality Index.
bMSBP: Medical Sciences Baccalaureate Program.

Survey Data Analysis

After MSBP premedical students completed the well-being survey, the responses were analyzed as follows. First, the PSQI items (questions 1-11) were scored based on PSQI scoring guidelines. Then, a global PSQI score was assigned to each survey participant. Next, 3 analyses were made: (1) comparing student distributions with good PSQI scores (<5) versus poor PSQI scores (≥5) categorized by each cohort, (2) detecting the consistency between the perception of sleep quality and the PSQI score levels, and (3) finding the PSQI score differences on the perception of stress effect levels. Statistical analyses were performed to test the distribution homogeneity of each cohort using the chi-square test. The consistency between the perception of sleep quality and PSQI score will be tested using Cohen κ by grouping PSQI scores into corresponding sleep quality levels. For comparing the global PSQI score differences between stress effect levels, global PSQI scores were first treated as a continuous variable and the equality of medians on each group was tested using the Kruskal-Wallis test (nonparametric equivalent test of 1-way analysis of variance) to show any statistical difference. Furthermore, the post hoc Dwass-Steel-Critchlow-Fligner multiple comparisons test was applied to show the pairwise comparisons if at least one group median was significantly different from others.
Protocol Evaluation

The protocol evaluation was 2-fold. First, each assessment had an expected duration to avoid overwhelming the participants. The expected durations of the preassessments, midassessments, and postassessments were 30 minutes, 30 minutes, and 60 minutes, respectively. The postassessment was longer due to the semistructured interview. Second, the semistructured interview collected the participants’ feedback on the study protocol in 4 areas: (1) duration of the 3 (pre, mid, and post) assessments, (2) frequency of administering the well-being surveys, (3) completeness of Fitbit data, and (4) other suggestions. An additional analysis was conducted to assess the degree to which Fitbit data aligns with the self-reported data obtained through surveys by using Pearson correlation coefficients where $>|0.7|$ is strong correlation, $[0.3]-[0.7]$ is moderate correlation, and $<[0.7]$ is poor correlation (of note, the vertical lines present the absolute value sign).

Results

Survey Responses and Analysis Results

The survey responses ($n=103$) demonstrated that premedical MSBP students sleep an average of 7.1 hours each night with 81.3% habitual sleep efficiency (average hours slept versus hours spent in bed, as defined in PSQI). Those who experienced trouble sleeping commonly expressed reasons such as not being able to sleep within 30 minutes, waking up in the middle of the night or early morning, anxiety, stress, and a restless mind. Among the cohorts (Figure 2), no significant difference was found in the median PSQI scores as indicated by the Kruskal-Wallis test at a .05 significant level ($P=.11$). Similarly, the proportion of students who had good versus poor sleep was not significantly different as indicated by the chi-square test ($P=.48$). This concludes that the distributions have no significant differences in the good or bad PSQI scores among the student cohorts. It is worth noting that the response rates of the survey for the first-, second-, third-, and fourth-year cohorts were 38% (33/88), 23.4% (25/107), 23% (20/86), and 26% (25/95), respectively. Further, the same analysis was applied to the categorical variables collected in the survey data (Multimedia Appendix 1), including 2 non-PSQI variables (perceived sleep quality and perceived stress). The only significant difference was that the first-year students tended to take medicines to help themselves to sleep unlike the other cohorts ($P=.03$). However, there was no significant difference between the low frequency group (less than once a week and no medicine) and the high frequency group (once a week or more). To demonstrate the consistency between the perceived sleep quality and the PSQI scores, we assumed that students who perceived “no problem at all” will receive PSQI global scores <5, those who perceived “only a very slight problem” will receive PSQI global scores of 5-7, those who perceived “somewhat of a problem” will receive PSQI global scores of 8-10, and those who perceived “a very big problem” will receive PSQI global scores ≥11. The Cohen κ (with 1 being a perfect consistency) showed that participants’ perceived sleep quality only had a slight consistency with the PSQI scores ($\kappa=0.19$). Table 2 shows the contingency of these 2 variables with an overpositive tendency from participants, that is, the bigger the problem the participants perceived in their sleep quality, the poorer the PSQI score they would receive. However, the table shows some inconsistencies. When participants perceived no problem at all in their sleep quality, 50% (14/28) of them actually had a nonoptimal PSQI score. When the participants thought there was only a very slight problem in their sleep, about a quarter of them (11/43, 26%) had a poor PSQI score. When the participants appeared to recognize that they had somewhat of a problem (or a big one) in their sleep, the majority of them had nonoptimal PSQI scores. Finally, the comparisons between perceived stress impact and median global PSQI scores in each perceived stress level were analyzed (Figure 3). The Kruskal-Wallis test shows there is at least one median that is significantly different ($P<.001$) from others at the .05 significant level. The post hoc Dwass-Steel-Critchlow-Fligner multiple comparisons was applied and showed that the students who perceived “a very big problem” on the stress effect had significantly greater PSQI scores than the students who perceived “no problem at all” ($P=.048$) and “only a very slight problem” ($P<.001$). Similarly, for the students who perceived “somewhat of a problem,” the stress effect was significantly greater than that in students who perceived “only a very slight problem” ($P=.001$) but not significantly different from the “no problem at all” stress level (Table 3). This indicates that participants’ perceived stress effects have high correlation with their PSQI scores, but it may not be the only effect at play.
Figure 2. Stacked bar chart display of premedical student responses based on good sleep (global PSQI<5) and poor sleep (global PSQI≥5) with percentages within different medical sciences baccalaureate program cohorts. PSQI: Pittsburg Sleep Quality Index.

Table 2. The contingency table of Medical Sciences Baccalaureate program premedical students' perceived sleep quality by their actual global Pittsburg Sleep Quality Index score categories.

<table>
<thead>
<tr>
<th>Pittsburg Sleep Quality Index score (perceived sleep quality)</th>
<th>Optimal (<5)</th>
<th>Slightly poor (5-7)</th>
<th>Borderline poor (8-10)</th>
<th>Poor (11+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No problem at all (total score=28)</td>
<td>14 (13.6)</td>
<td>9 (8.7)</td>
<td>4 (3.9)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Only a very slight problem (total score=43)</td>
<td>11 (10.7)</td>
<td>21 (20.4)</td>
<td>9 (8.7)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Somewhat of a problem (total score=28)</td>
<td>1 (1)</td>
<td>13 (12.6)</td>
<td>7 (6.8)</td>
<td>7 (7)</td>
</tr>
<tr>
<td>A very big problem (total score=4)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>3 (3)</td>
</tr>
</tbody>
</table>

*a*0-4 (<5)=optimal sleep; 5-7=slightly poor; 8-10=borderline poor; 11+=poor with overall percentages.

*b*Inconsistency between the perceived sleep quality and Pittsburg Sleep Quality Index scores.

Figure 3. Boxplot of perceived stress effect on sleep by students compared to their global Pittsburg Sleep Quality Index scores. PSQI: Pittsburg Sleep Quality Index.
Process Evaluation and Participant Feedback

Overall, the participants reported the Fitbit app as a helpful tool in understanding their sleep. They were especially excited to visualize their sleep stage breakdown and obtain an overview of their sleep by simply looking at their Fitbit sleep score. The participants' feedback on the study protocol was summarized in the following 4 areas.

First, all assessments were conducted in the expected duration, that is, 30 minutes for the preassessment and midassessment and 60 minutes for the postassessment. The web-based mode of midassessments and postassessments did not create any barriers to the data collection. The feedback also revealed that the interview component in all 3 assessments was effective and served different purposes. Specifically, the interview in the preassessment made the participants think about their previous experiences regarding sleep and patient-generated health data devices. The midassessment interview, which reviewed daily reflections at a glance, invoked awareness among participants. The interview in the postassessment was the most comprehensive as it gathered thoughts on daily reflections and assessed Fitbit data comprehension. The administered questionnaires in preassessments, midassessments, and postassessments, as shown in Figure 1, had a 100% response rate because participants were required to complete it during the semistructured interview. The global PSQI scores for 5 participants across the 2 weeks are shown in Figure S1 in Multimedia Appendix 2. The daily reflections also had a 100% response rate, as several reminder emails were sent out to ensure data collection.

Second, the participants did not have a strong opinion about the frequency of the well-being survey administration (3 times over a 2-week period in this study). However, the survey scores did not display much variation or clear trends. Although this can be due to the small group of participants (n=5), it may be more ideal to conduct the survey with more spaced durations.

Third, the Fitbit data provided notable variation daily and was able to grasp all 14 days well for the most part. Some participants experienced cases during which Fitbit would sense bed and wake time but would not be able to provide detailed analytics on the sleep stages or on the sleep score. For these participants, some of the issues included wearing the Fitbit too snug or loose or wearing the Fitbit only right before going to bed. In other cases, participants simply appeared to forget to put on their Fitbit watch after removing it for charging, leading to a void of data points. The participants were fairly adherent to completing daily reflections on time and found that a daily email reminder from the research team helped greatly with this task.

Lastly, the participants identified that the Fitbit app tends to provide vague descriptions. For example, the biggest concern raised was not being able to understand how the sleep score was calculated. This made participants question the score’s reliability and accuracy. Similarly, some participants highlighted redundancy of information (sleep stage condensed cycling), whereas others suggested presenting information in a more visually appealing manner (pie chart to see sleep stage breakdown), individualized manner (suggesting sleep recommendations based on score trends), and sleep score explainability (being specific as to why a score may have dropped/raised on a day-by-day basis).

Finally, the degree to which Fitbit data aligns with the PSQI self-reported data obtained through surveys was assessed. Overall, across the 2-week period, there was a moderately negative correlation (r=−0.598) calculated from the data shown in Table S1 of Multimedia Appendix 2. In context, this means high Fitbit scores, indicating good sleep, were correlated with low global PSQI scores, also indicating good quality of sleep. Week 1 had a strong negative correlation (r=−0.87) compared to Week 2, which had a moderate negative correlation (r=−0.648).

Discussion

Principal Findings

This study presents the sleep patterns of premedical students through a sleep and well-being survey and evaluates a study protocol in preparation for a large-scale study. The survey showed that although the participants did have an average of 7 hours of sleep in general, only a quarter of them had good sleep quality. There was no difference in sleep quality among the student cohorts. Furthermore, there was an inconsistency between the perceived sleep quality by the students versus what their PSQI scores reflected. The poor sleep quality experienced by unaware students points to the need for self-monitoring through wearables such as Fitbit devices to increase sleep quality awareness. Lastly, a comparison of stress effect on sleep with PSQI scores establishes that sleep is not the only dominant factor in PSQI. The participants who perceived stress to play no role in their sleep still displayed a wide range of PSQI scores. Our findings show that the study protocol is highly feasible in terms of assessment durations and interview effectiveness. The usage of Fitbit devices did increase participants’ awareness.
regarding their sleep based on the qualitative feedback, along with their overall understanding of sleep factors. Participants keeping track of their sleep via daily reflections also aided in their cognizance. Based on the feedback, the study protocol can be improved by extending the duration, educating individuals about the Fitbit-wearing behaviors, and increasing the sleep score interpretability.

In assessing how the Fitbit sleep score data align with the global PSQI scores, we found a moderate negative correlation. This makes sense because higher Fitbit scores, suggesting good sleep, aligned with lower global PSQI scores, which indicates good sleep quality. Therefore, achieving moderate to high correlation displays a good potential for Fitbit sleep scores to serve as a proxy for PSQI global scores. Although week 1 gathered a stronger correlation than week 2, we believe that this result may be due to greater missing data in week 2, either from fatigue or nonadherence.

Implications

Our study shows that only 25.2% (26/103) of the participating premedical students had good sleep quality, as indicated by the PSQI scores. This proportion is lower than that (34.1%) previously reported among college students in general [10]. This leads us to a possible inference that premedical students may have sleep patterns different from those of college students overall. Our study also introduces a new direction, in which sleep patterns are not only measured but further analyzed to determine discrepancies between perception versus actual sleep quality. Prior studies [17,46] looking at sleep patterns in medical school students or undergraduate college students in general could also benefit from this approach and take their sleep analysis to the next step. For example, a 2016 study conducted on undergraduates at the University of California explored relations between sleep and mental health in individuals with healthy sleep habits [17]. Hence, further understanding the sleep perceptions of these healthy students could be used to create a benchmark to which other types of sleepers can be measured relatively. Another application could include a longitudinal study, similar to the one proposed by the University of South Wales in Australia [46]. This 5-year study provides insights into the mental health of medical students, with sleep being one of the factors measured via Fitbit. By incorporating the concept of sleep and well-being perceptions, the longitudinal approach may provide a better understanding of whether perceptions stay consistent or change over time.

The increase in awareness regarding sleep due to Fitbit usage mentioned by the participants also opens an area for possible interventions. As previous literature has reported, when individuals are educated in a personally relevant manner, their awareness leads to behavior change [47-49]. An important component of behavior change is self-efficacy, which is the perception of one’s ability to achieve certain outcomes [50-52]. Hence, interventions can begin with Fitbit usage to increase participant awareness regarding why they need to make a change, establish how certain health behaviors will lead to expected outcomes, and then provide ways for participants to reach those outcomes [53,54]. Conversely, I study has tested a habit loop model, which is based on cue, routine, and reward [55]. The Fitbit usage behavior in terms of the habit loop model can be as follows: trust in Fitbit accuracy of physical and sleep data (cue), intensity of Fitbit use (routine), and adjustment of physical and sleep behaviors (reward). Although this study shows that trust in Fitbit produced little changes in sleep and health behaviors, future studies should be built upon this foundation to examine the potential behavioral change through the supplementation of educational information to participants.

In the evaluation of the protocol itself, there were inconsistencies in obtaining sleep scores from Fitbit at times. A pre-existing measure during this study was placing instructions in the daily reflection reminder email to contact the research team immediately if they received no score in order for the research team to troubleshoot. Some other troubleshooting measures could help ensure participants wear their Fitbit at all times. For example, the study team can propose a standardized charging time that prompts participants to remove and charge their Fitbits during our week 1 midassessment session and wear the Fitbit again at the conclusion of the meeting. This can prevent participants from forgetting to wear their Fitbits during the study period. Not all participants explored all the features of Fitbit’s sleep interface. This points to the need to give participants a tutorial about the various types of analytical information available that participants can browse through to understand their sleep patterns. Finally, for the Fitbit data retrieval process, researchers asked the participants to download their data from the Fitbit.com website in week 1 and week 2 assessments. This proved to be a time-consuming process; therefore, the protocol was updated to begin data download at the beginning of the assessment meeting, which allowed the download to be finished by the end of the meeting. These lessons learned help to refine our study protocol and will lead to higher data quality in our large-scale study.

Limitations

This study is limited in several ways. First, the assessment was conducted with premedical students from a single program in a single institution. Hence, it is possible that the findings were limited to the student demographics in our institution. Additionally, the well-being survey administered in this study did not ask for their sex, race, or age due to the constraints in the institutional review board protocol. Thus, this analysis does not demonstrate whether demographic factors are linked with certain sleep patterns. Moreover, this study did not consider the academic performance of the participants and its relationship with sleep patterns. Demographic information and academic performance will be collected in our future studies with an updated institutional review board protocol. Next, we only recruited 5 students via convenience sampling for protocol evaluation. Small sample sizes introduce the possibility of skewed opinions. However, it should be noted that the goal of this study was to test the protocol rather than any hypothesis. Additionally, the Fitbit usage habits demonstrated by the pilot study group point to the need to improve the Fitbit usage protocol. For example, students were advised to always wear their Fitbits except while charging. However, some students after charging their Fitbit forgot to wear it overnight, thereby leading to nonadherence. Another instance involved a participant using the “sleep now” function offered by the watch to track their cognizance. Based on the feedback, the study protocol can be improved by extending the duration, educating individuals about the Fitbit-wearing behaviors, and increasing the sleep score interpretability.
sleep, even though the participants were not instructed on that feature’s use. Using that function did dysregulate the visualization data, which returned to normal once the participant was asked to terminate the function’s usage.

Future Work

With the findings gathered from this pilot study, we hope to expand to a larger experiment within the MSBP and expand to premedical programs at other institutions. We hope to address sleep quality discrepancies and determine a feasible solution for sleep hygiene improvement in premedical students. Another future work involves the calculation of Fitbit sleep scores especially when the sleep data are collected but the sleep score is missing. In this study, we tried to explore how the Fitbit score was calculated and attempted to assess trends. Fitbit informs everyone that their sleep score is devised from 3 pieces of information: time asleep and awake, deep and rapid eye movement sleep, and sleeping heart rate and restlessness. However, it is unclear how exactly the sleep score values are formed. Therefore, it was difficult to generate actionable information. Hence, this topic should be further explored to determine whether sleep scores are indeed valid measures of sleep.

Conclusions

We conducted a pilot study to understand the sleep patterns of premedical undergraduate students and evaluated the study protocol. The survey results showed a generally lower sleep quality for this student population and posited a gap between the perceived sleep quality versus PSQI-measured sleep quality. This gap may be solved by the awareness raised by Fitbit usage. We will revise the study protocol based on the lessons learned and health behavior theories and conduct a large-scale experiment to use Fitbit as an informatics solution to promote healthy sleep behaviors.

Acknowledgments

This research did not receive any funding. We thank Dr Anil Menon, Director of the Medical Sciences Baccalaureate Program at the University of Cincinnati College of Medicine, for supporting the implementation of this study along with the student tribunal for the recruitment efforts. In addition, we thank Dr Claudia Rebola, Co-Principal Investigator of the WorkWell project, for providing Fitbit watches for data collection.

Data Availability

All data generated or analyzed during this study are included in this paper and multimedia appendices.

Conflicts of Interest

None declared.

References

Acceptability and Utility of a Digital Group Intervention to Prevent Perinatal Depression in Youths via Interactive Maternal Group for Information and Emotional Support (IMAGINE): Pilot Cohort Study

Keshet Ronen¹, MPH, PhD; Anupa Gewali¹, MPH, MSW; Kristin Dachelet¹, MSW; Erica White¹, MPH; Marimirca Jean-Baptiste¹; Yolanda N Evans², MPH, MD; Jennifer A Unger³, MPH, MD; S Darius Tandon⁴,⁵, PhD; Amritha Bhat⁶, MPH, MBBS, MD

¹Department of Global Health, University of Washington, Seattle, WA, United States
²Division of Adolescent Medicine, Seattle Children’s Hospital, Seattle, WA, United States
³Department of Obstetrics and Gynecology, Warren Alpert Medical School at Brown University, Providence, RI, United States
⁴Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, United States
⁵Center for Community Health, Northwestern Feinberg School of Medicine, Chicago, IL, United States
⁶Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States

Corresponding Author:
Keshet Ronen, MPH, PhD
Department of Global Health
University of Washington
3980 15th Avenue North East
Seattle, WA, 98195
United States
Phone: 1 2066854363
Email: keshet@uw.edu

Background: Perinatal depression (depression during pregnancy or the first year postpartum) affects 10%-25% of perinatal individuals, with a higher risk among youths aged <25 years. The Mothers and Babies Course (MB) is an evidence-based intervention for the prevention of perinatal depression, grounded in cognitive behavioral therapy, attachment theory, and psychoeducation.

Objective: We developed a digital adaptation of MB (Interactive Maternal Group for Information and Emotional Support [IMAGINE]) and evaluated it in a pre-post mixed methods pilot among young perinatal people in the United States.

Methods: IMAGINE was a structured digital group of up to 7 participants, with scheduled MB content and open discussion for 12 weeks, facilitated by a social worker. Scheduled content included asynchronous SMS text messages, graphics, prerecorded videos, mood polls, and optional weekly synchronous video calls. Eligible participants were pregnant or ≤80 days postpartum, aged 16 to 24 years, had access to a smartphone, spoke English, and had a Patient Health Questionnaire score <10. Participants were recruited throughout the United States from August 2020 to January 2021 through paid social media ads, in-person outreach at clinics, and respondent-driven sampling. Participants completed quantitative questionnaires at enrollment and 3 months, and qualitative interviews at 3 months. We determined uptake, acceptability (by Acceptability of Intervention Measure score), and utility (by use of cognitive behavioral therapy skills). We compared depression symptoms (by Patient Health Questionnaire score), social support (by abbreviated Social Support Behavior score), and perceived stress (by Perceived Stress Score) between enrollment and follow-up by paired 2-tailed t test.

Results: Among 68 individuals who contacted this study, 22 were screened, 13 were eligible, and 10 enrolled, for an uptake of 76.9%. Furthermore, 4 (40%) participants were pregnant at enrollment. Participants had a median age of 17.9 (IQR 17.4-21.7) years, 6 (67%) identified as Black, 5 (56%) Latinx, and 6 (67%) using Medicaid health insurance. Further, 9 (90%) participants completed follow-up. Among these, the mean acceptability score was 4.3 out of 5 (SD 0.6) and all participants said they would recommend IMAGINE to a friend. Participants reported using a median of 7 of 11 skills (IQR 5-7 skills) at least half the days. We found no significant changes in depression symptoms, perceived stress, or social support. Qualitatively, participants reported one-to-one support from the facilitator, connection with other parents, and regular mood reflection were especially helpful aspects
of the intervention. Additionally, participants reported that the intervention normalized their mental health challenges, improved their ability to manage their mood, and increased their openness to mental health care.

Conclusions: This pilot study provides promising evidence of the acceptability and utility of IMAGINE among perinatal youths. Our study’s small sample size did not detect changes in clinical outcomes; our findings suggest IMAGINE warrants larger-scale evaluation.

KEYWORDS
perinatal depression; youth; mHealth; digital health; acceptability; utility; depression; pilot study; pregnancy; postpartum; prevention; cognitive behavioral therapy; psychoeducation; mixed methods; manage; mood; mobile phone

Introduction
Perinatal depression, defined as depression during pregnancy or up to 1 year after childbirth, affects an estimated 10%-25% of birthing people in the United States [1,2]. Untreated, perinatal depression can have long-term negative impacts on birthing parents and newborns, including elevated risk of suicide [3], preterm birth [4], low birth weight [5], and impaired infant attachment [6]. Young parents (aged 15 to 24 years), those with low income, and people of color experience elevated risks of perinatal depression [7,8].

Despite many programs aimed at reducing the incidence of adolescent pregnancy in the United States, nearly 23% of all pregnancies occurred in people aged 15 to 24 years in 2020 [9]. Young parents are more likely to have risk factors that place them at greater risk for perinatal depression, including unplanned pregnancy, social isolation, and intersecting social determinants of health [10,11]. Many barriers to mental health care exist for perinatal youths, including lack of financial resources to pay for treatment, lack of access to or money for transportation, and difficulty finding childcare and missing work to attend appointments [8]. Young parents are therefore a key group needing innovative and tailored perinatal mental health support.

Evidence-based interventions have been developed to prevent and treat perinatal depression. The Mothers and Babies Course (MB) is a cognitive behavioral therapy (CBT) program developed for low-income racial minority women in the United States [12]. MB can be delivered to individuals or groups and is focused on building participants’ skills in modifying their thoughts, social contact, and pleasant activities. Further, 4 randomized controlled trials of the MB program found it reduced depressive symptoms in the perinatal period, and it has been rolled out at scale in the United States through home visiting programs [13-18]. MB has been recognized by the US Preventive Services Task Force as an evidence-based intervention that should be recommended for individuals at high risk of perinatal depression [19]. Despite these advances, there are barriers to accessing interventions such as MB, due to regional provider shortages, lack of transportation and childcare, clients’ difficulty committing to a prespecified time to attend sessions, and experienced or internalized stigma of seeking mental health care [20]. These barriers may be higher among those at the highest risk of perinatal depression, and barriers were further exacerbated by the COVID-19 pandemic and consequent physical distancing protocols [21-24].

Mobile phones can be used to offer more accessible mental health support to young parents (known as mobile health [mHealth]). mHealth interventions have shown promising results in improving perinatal mental health [25-30], and young people in the United States are an ideal audience for such programs: nearly all Americans aged 18 to 29 years own a phone, and 96% own a smartphone [31]. mHealth can eliminate the need to travel to appointments, and asynchronous mHealth programs allow patients to access care within their schedules, which can be especially helpful to parents [32]. Group mHealth interventions allow new parents to connect with and share ideas with peers, which can lower feelings of social isolation and increase social support and mental well-being [33].

We developed a digital adaptation of MB for the prevention of perinatal depression in youths, named Interactive Maternal Group for Information and Emotional Support (IMAGINE) [34]. In this paper, we present a mixed methods evaluation of a pilot study of the IMAGINE intervention, assessing the uptake, acceptability, and utility of IMAGINE.

Methods

Study Design
We conducted a single-arm pilot study with pre-post mixed methods evaluation.

Study Population and Recruitment
Participants were eligible to participate in the IMAGINE pilot if they were: pregnant or ≤180 days postpartum, aged 16 to 24 years during pregnancy, had daily access to a smartphone, and were comfortable conducting study visits and reading and responding to social media messages in English. Individuals who exhibited elevated depression symptoms at screening (Patient Health Questionnaire [PHQ-9] score ≥10 [35]) were excluded and referred to individual clinical care.

Participants were recruited between August 2020 and January 2021, through 3 main methods. First, study information was shared through paid, targeted advertisements on Instagram and Facebook throughout the United States. Specific parameters used to target participants were: female sex, aged 16 to 25 years, located anywhere in the United States. Second, this study’s team identified health care providers and community-based organizations in several cities in the United States (Seattle, WA; Olympia, WA; Philadelphia, PA; and Temple, TX) and provided materials for staff at these organizations to promote this study by distributing flyers. Finally, we used respondent-driven
sampling [36] to encourage participants who enrolled in this study to invite their peers to participate; a financial incentive of US $20 was offered to the referring participant if their referred peer enrolled.

Potential participants who learned about this study through any method contacted this study by phone call, text message, email, Instagram message, or by sending a message through this study’s website. Study staff then contacted potential participants to conduct eligibility screening by phone or video call. If participants were ineligible due to elevated depression symptoms at screening, study staff shared the National Crisis Line phone number and offered support to find treatment near their location. This study’s team psychiatrist was available to support linkage with resources.

Informed Consent
Informed consent was obtained by study staff for screening and enrollment. Participants provided verbal consent to participate in eligibility screening. Eligible participants provided written consent for study enrollment, using a web-based consent form on REDCap (Research Electronic Data Capture; Vanderbilt University) [37].

Study Visit Schedule
Participants enrolling in the IMAGINE pilot attended 2 study visits by video call: enrollment and 3-month follow-up after completion of the intervention. Quantitative data were collected at enrollment and follow-up using a REDCap web-based questionnaire. Qualitative interviews were additionally conducted at follow-up.

Intervention
The IMAGINE intervention was a facilitated digital group adaptation of the evidence-based MB program [12], developed through a human-centered design process described elsewhere [34]. MB content focuses on engagement in pleasant activities, healthy thinking, and social support, and is grounded in CBT, attachment theory, and psychoeducation. IMAGINE was delivered using the messaging platform, Slack (Slack Technologies, Salesforce Inc.), to groups of up to 10 participants, facilitated by a member of this study’s team with Master’s-level training as a social worker. Groups ran for approximately 12 weeks. Participants were grouped based on the timing of enrollment: groups were filled sequentially as participants enrolled. Guided by our formative work [34], the intervention consisted of multimedia adaptation of MB content, delivered through 5 components. First, MB session content was delivered asynchronously, through short SMS text messages, summary graphics, and prerecorded videos sent approximately 4 times per week. Messages were designed to promote group discussion or personal reflection. Participants were encouraged, but not required, to participate in group discussions by sending messages and reacting to other participants’ messages, at a time that was convenient for them. Second, an automated “mood poll” was sent to each participant individually 3 times per week, prompting the participant to reflect on their mood, activities, thoughts, and social contacts. Third, the facilitator was available for individual messaging through Slack. This was used for the facilitator to answer questions and send messages when a participant showed low engagement in other parts of the intervention. Fourth, participants could send messages on topics beyond the MB curriculum, through separate Slack “channels” (parallel conversations all members had access to): “ask an expert,” where participants could send questions for members of this study’s team with expertise in obstetrics and psychiatry; “random,” where participants could share any content; and “references,” where the facilitator posted graphics summarizing intervention content and links to resources. Fifth, in addition to asynchronous messaging content, the facilitator held a weekly 1-hour synchronous group video call, using the videoconferencing platform, Zoom (Zoom Video Communications, Qumu Corporation). Participation in the call was optional, to reduce barriers to participation due to scheduling and attendance challenges. No new content was delivered on the call, but participants could ask questions, share experiences, and receive support from the facilitator and other group members. Intervention content was developed in advance of the intervention and manually sent by the facilitator, except for mood polls, which were automatically scheduled within Slack. The facilitator could exercise discretion in message pacing based on participant feedback and questions during the intervention period. All 5 elements of the intervention were considered to be active components in engaging MB’s mechanism of action.

Quantitative Data Collection
Recruitment Log
A spreadsheet was used by study staff to record participants who contacted the IMAGINE study and their completion of eligibility screening.

Screening Questionnaire
Screening was completed verbally by phone or video call and responses were entered by study staff into an electronic questionnaire using REDCap, hosted at the University of Washington [37]. The screening questionnaire ascertained pregnancy status, age, access to a smartphone, comfort in English, and depression symptoms by PHQ9.

Enrollment Questionnaire
Enrollment of eligible participants was conducted either immediately following consent or at a separate scheduled visit, based on participant preference. The enrollment questionnaire was administered using REDCap by study staff through Zoom or phone calls. If conducted by video call, study staff screen-shared the REDCap questionnaire and read each question aloud so the participant could see and hear the questions and responses; data were entered by study staff. The enrollment questionnaire ascertained demographic characteristics and technology access. It also included an abbreviated 12-item version of the Social Support Behavior (SSB) instrument [38] to ascertain social support (score range 5-60). We used an abbreviated version of SSB to reduce the burden of data collection on participants. This version of the SSB has not been psychometrically validated. We used the Perceived Stress Score (PSS-4) instrument [39] to ascertain perceived stress (score range of 0-16). This instrument has previously been used in MB studies and is recommended for comparability [40,41].
Instrument reliability was previously reported as Cronbach α .72 [39].

Follow-Up Questionnaire

A follow-up visit was conducted at 3 months. The week after the completion of the IMAGINE intervention, a member of this study’s team other than the group facilitator contacted participants and arranged a follow-up study visit, conducted via Zoom video conference. The follow-up electronic questionnaire was administered using REDCap and assessed pregnancy status, PHQ9, abbreviated 12-item SSB, PSS-4, and acceptability of IMAGINE via the Acceptability of Intervention Measure (AIM) [42]. The AIM scale is a Likert scale questions with possible responses scored 1-5: completely disagree, disagree, neither agree nor disagree, agree, and strongly agree. The score is calculated as the mean numerical value of the responses across the 4 items. Instrument internal consistency and validity were previously reported as Cronbach α.85 and confirmatory factor analysis loadings 0.75-0.89 [42]. Participants were also asked how often they had used key CBT skills over the past month, using a Likert scale with possible responses: not at all, a few times, half the days, most of the days, and every day. The following questions were asked about mood tracking, engaging in pleasant activities, overcoming obstacles to engage in pleasant activities, thought interruption to reduce harmful thoughts, designated worry time to reduce harmful thoughts, time projection to imagine a better time in the future, self-instruction, positive contact with others, soliciting positive support from others, and using assertive communication. These questions were modeled on the core CBT components of the MB program [17]. If a participant reported the use of a skill, they were asked how helpful the skill was, using a Likert scale with possible responses: not helpful at all, somewhat helpful, or very helpful. Study staff screen-shared the REDCap questionnaire, as in the enrollment visit.

Engagement data

We quantitatively assessed engagement in the different components of IMAGINE. Messaging data from all Slack channels was exported as an HTML file. Message counts for each group member were determined by searching for each member’s username and counting the number of occurrences in the file. Completion of automated mood polls was determined based on reports from the Polly tool within Slack that was used to send polls. Attendance of each group member in Zoom calls was recorded by the facilitator.

Quantitative Data Analysis

We calculated descriptive measures of uptake, acceptability, and utility. Uptake was defined as the percentage of screened, eligible participants who enrolled in the intervention. Acceptability was determined based on self-report responses to the AIM. Utility was defined as the percentage of participants who reported using each CBT skill discussed in MB at least half the time. Additionally, among those who used each skill at least half the time, the percentage of participants who found it to be helpful was calculated.

We determined pre-post change in indicators of mental wellness. Depression symptoms were determined by PHQ9 score, calculated according to instrument guidelines, with a possible range of 0-27. Social support was calculated using the abbreviated SSB, as the sum score over all questions referring to family support and separately those referring to friend support. The mean and SD for each score were summarized for each time point. Scores at the 2 time-points were compared by paired 2-tailed t test. RStudio (version 2023.06.0+421; Posit) was used for all data analysis.

Qualitative Data Collection

Qualitative In-Depth Interviews (IDIs) were conducted with all study participants at the 3-month follow-up visit. IDIs were conducted virtually over Zoom using a semistructured interview guide designed by this study’s team. The guide explored participants’ experience in the intervention, utility and potential improvements to each component of the intervention, level of engagement with intervention content, barriers to participation, and recommended improvements for future intervention implementations.

Qualitative Data Analysis

We conducted a thematic analysis of IDIs using a mixture of inductive coding driven by themes emerging from the transcripts and deductive coding based on themes from the interview guide. Qualitative analysis focused on the perceived acceptability and mental health impact of the IMAGINE intervention as well as recommendations for future iterations. First, 3 members of this study’s team (KR, EW, and AG) read all transcripts and separately developed initial codebooks based on themes that emerged from the transcripts and were explored in the interview guide. Initial codebooks were compared and discussed to create an agreed-upon combined codebook. Transcripts were then coded by 2 analysts (EW and AG) using Dedoose (Sociocultural Research Consultants, LLC) software [43]. Disagreements between analysts were resolved through discussion.

Ethical Considerations

The IMAGINE study was approved by the University of Washington Institutional Review Board (STUDY00008278). All participants provided informed consent for eligibility screening, exposure to the intervention, and data collection. Waivers were obtained for written documentation of informed consent and parental consent for adolescents younger than 18 years.

Results

Participant Flow and Intervention Uptake

Figure 1 summarizes participant flow from contacting this study to completing screening, enrolling in this study, and completing follow-up. In total, 68 individuals contacted this study between October 16, 2020, and January 29, 2021. Of these, 22 were assessed for eligibility, while 46 individuals did not complete screening due to challenges scheduling screening calls or participants declining to complete screening. Of the 22 who were assessed, 13 were eligible and 9 were ineligible, most (n=7, 77.8%) due to elevated depression scores warranted referral to individual care. In total, 3 eligible participants declined participation and 10 eligible participants were enrolled
in the pilot, for an uptake of 76.9% (10/13 eligible participants). Participants were divided into 2 intervention groups: 7 in group 1 (active December 2020 to February 2021) and 3 in group 2 (active February to May 2021). While groups could be up to 10 participants, we elected to initiate the first group when 7 participants had been enrolled to minimize participants’ wait, while recruitment of the remaining participants continued. Of the 10 study participants, 9 completed the 3-month follow-up questionnaire and IDI.

Figure 1. Participant flow. PHQ-9: Patient Health Questionnaire.

Participant Demographic Characteristics

Demographic characteristics of enrolled participants are summarized in Table 1. All participants identified as female, and the median age was 17.9 (IQR 17.4-21.7) years. Of 9 participants who provided their race or ethnicity, 6 (67%) identified as Black, 5 (56%) identified as Latinx, 1 identified as an unlisted category, and 2 (22%) identified as White. Further, 4 (40%) participants were bilingual and 5 (50%) had completed at least a high school diploma or general education development. In total, 4 (40%) participants were pregnant at the time of this study and 6 (67%) used Medicaid health insurance. All but one of the participants reported that they were stably housed.
Table 1. Participant baseline characteristics.

<table>
<thead>
<tr>
<th>Participant characteristic</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y; N=10), median (IQR)</td>
<td>17.9 (17.4-21.7)</td>
</tr>
<tr>
<td>Sex (N=10), n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10 (100)</td>
</tr>
<tr>
<td>Race or ethnicity<sup>a</sup> (n=9), n (%)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>6 (66.7)</td>
</tr>
<tr>
<td>Latinx</td>
<td>5 (55.6)</td>
</tr>
<tr>
<td>Not listed</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td>White</td>
<td>2 (22.2)</td>
</tr>
<tr>
<td>Pregnancy status (N=10), n (%)</td>
<td></td>
</tr>
<tr>
<td>Pregnant at the time of enrollment</td>
<td>4 (40)</td>
</tr>
<tr>
<td>English proficiency (N=10), n (%)</td>
<td></td>
</tr>
<tr>
<td>Fluent</td>
<td>10 (100)</td>
</tr>
<tr>
<td>Bilingual (N=10), n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Education level (N=10), n (%)</td>
<td></td>
</tr>
<tr>
<td>9-12th grade</td>
<td>5 (50)</td>
</tr>
<tr>
<td>High school diploma or GED<sup>b</sup></td>
<td>1 (10)</td>
</tr>
<tr>
<td>>High school</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Employment (N=10), n (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>8 (80)</td>
</tr>
<tr>
<td>Part-time (<40h/wk)</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Full-time (40h/wk)</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Health insurance status (N=10), n (%)</td>
<td></td>
</tr>
<tr>
<td>Medicaid</td>
<td>7 (70)</td>
</tr>
<tr>
<td>Employer-provided private</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Housing status (N=10), n (%)</td>
<td></td>
</tr>
<tr>
<td>Stably</td>
<td>9 (90)</td>
</tr>
<tr>
<td>Unstably</td>
<td>1 (10)</td>
</tr>
</tbody>
</table>

^aRace or ethnicity categories are not mutually exclusive.

^bGED: general education development.

Intervention Acceptability and Utility

Quantitative Assessment

Among the 9 participants who completed follow-up, we found a mean acceptability score of 4.3 out of 5 (SD 0.6) on the AIM questionnaire. All participants reported that they would recommend IMAGINE to a friend. When asked about the use of core CBT skills covered in MB, all participants reported engaging in “playing with baby,” “contact with others,” and “talking to/contacting someone who has been a positive support for self and baby” skills during at least half the days in the prior month (Table 2). The majority reported using the following skills at least half the days: “mood tracking” (n=6, 66.7%), “engaging in pleasant activities” (n=6, 66.7%), “overcoming obstacles to doing pleasant activities” (n=6, 66.7%), “thought interruption to reduce harmful thoughts” (n=5, 55.6%), “using time projection to imagine a better time in the future” (n=6, 66.7%), and “using self-instruction to give oneself helpful directions” (n=7, 77.8%). When asked about the helpfulness of each skill, 100% of participants who used them (n=9) reported they were helpful (Table 2). Of the 11 skills we asked about, participants reported using a median of 7 (IQR 5-7) skills at least half the days.

We also analyzed participant engagement in the intervention. Figure 2 summarizes 3 measures of engagement: the number of SMS text messages sent on all Slack channels over the course of the intervention, the proportion of video calls attended, and the proportion of mood polls completed. Participants sent a median of 12 (IQR 11-15.8) messages during the 12-week intervention period, attended a median of 9.7% (IQR 0%-45.8%)
of the weekly video calls, and responded to a median of 32% (IQR 14.5%-47%) of the mood polls. Levels of engagement, particularly messaging, generally decreased over time but increased at intervention close (Multimedia Appendix 1).

Table 2. Frequency and helpfulness of MBa skill use.

<table>
<thead>
<tr>
<th>Skill</th>
<th>Participants who used skill for half of the time or more (n=9), n (%)</th>
<th>Participants who found skill helpfulb, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kept track of mood</td>
<td>6 (66.7)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>Engaged in pleasant activities</td>
<td>6 (66.7)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>Overcame obstacles to engage in pleasant activities</td>
<td>6 (66.7)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>Used thought interruption to reduce harmful thoughts</td>
<td>5 (55.6)</td>
<td>5 (100)</td>
</tr>
<tr>
<td>Used worry time to reduce harmful thoughts</td>
<td>1 (11.1)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Used time projection to imagine a better time in the future</td>
<td>6 (66.7)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>Use self-instruction to give yourself helpful directions</td>
<td>7 (77.8)</td>
<td>7 (100)</td>
</tr>
<tr>
<td>Played with baby</td>
<td>9 (100)</td>
<td>9 (100)</td>
</tr>
<tr>
<td>Had positive contact with others</td>
<td>9 (100)</td>
<td>9 (100)</td>
</tr>
<tr>
<td>Talked to or contacted someone who has been a positive support to yourself or baby</td>
<td>9 (100)</td>
<td>4 (100)</td>
</tr>
<tr>
<td>Made a request using assertive communication</td>
<td>3 (33.3)</td>
<td>3 (100)</td>
</tr>
<tr>
<td>Met a new person who can provide support for you and your babyc</td>
<td>4 (44.4)</td>
<td>4 (100)</td>
</tr>
</tbody>
</table>

aMB: Mothers and Babies Course.

bAmong those who reported using the skill; includes “somewhat helpful” and “very helpful” responses.

cResponses to this question asked for the number of new people who met who can provide support. This n represents the number of those who met at least 1 new support person.

Figure 2. Participant engagement in the intervention.

Qualitative Assessment

IDIs explored the acceptability and perceived utility of IMAGINE. Participants highlighted several aspects of the intervention that were especially well-received (Textbox 1). Support from both the facilitator and other participants was viewed as beneficial. Most participants (n=8) reported valuing the connection with the facilitator and feeling that they could go to them for guidance and support. Participants (n=7) highlighted that support from other young parents in the program normalized and validated their experiences; several participants spoke about the value of connecting with others in similar situations to them. Mood polls were mentioned by all 9 participants as an impactful component of the intervention, with participants valuing the opportunity to reflect on their emotional state. In total, 2 participants highlighted the value of the intervention’s flexibility, both that the asynchronous design allowed them to access content at a time and pace that worked best for them, and that the facilitator made adaptations to respond to participant needs during intervention delivery.
In-Depth Interview themes related to intervention acceptability.

Support from the study facilitator

- When I had something come up or just anything, like, I would just talk to her, or if I had a question, I would talk to her. I asked her the question, and she would like answer the best way that she could or stuff. And I was just like, that's really helpful.
 [Participant 5, aged 21 y, postpartum]
- I had a kind of Facetime with her one time, just us, because the other girls weren’t able to make it. But that was very - I really appreciated that. It was kind of something that I didn't know that I needed, but she willing to like, hear me out and ask the right questions for me. So I think that was pretty awesome of her.
 [Participant 7, aged 23 y, pregnant]

Connection with other participants

- Seeing other women, not necessarily the facilitator, but being around the women that are going through the same things that you're going through, like that are also pregnant and just had babies, that makes a difference. That allows the connections that you form are a lot stronger and a lot tighter
 [Participant 9, aged 23 y, postpartum]
- We all went through this together and I felt like we all kind of grew together and, you know, they could, we could all relate to each other. And I didn't really have many mom friends I guess before this.
 [Participant 17, aged 17 y, pregnant]

Mood polls

- Normally you don't really reflect on your day unless you have a bad day. So I just like the way how it got me thinking. ‘Oh, well, I did have a good day but I didn't notice it because it wasn't a bad day’ if that makes sense.
 [Participant 12, aged 23 y, postpartum]
- I think they were helpful just because it was like a second to self-reflect, maybe look in the real world. Sometimes they ask you how you doing but it's kind of difficult to explain to someone, but when you're doing it for yourself, I think it can be a little bit more honest.
 [Participant 7, aged 23 y, pregnant]

Intervention flexibility

- At the beginning I think it started off slow and then she was sending a lot of messages, every day, so I wouldn't get time to read them. I'd have to go back a lot, and then that's something that I told her, and so she slowed down on the number of messages, so she sent them every other day, instead of every single day.
 [Participant 17, aged 17 y, pregnant]
- Having lots of interactions in written form gave everyone an opportunity to share their perspective and their experiences and what works for them, and we didn't all have to be right then and there, like I could look at it at two o'clock in the morning and another girl could look at it at two o'clock in the afternoon.
 [Participant 9, aged 23 y, postpartum]

Mental Wellness

Quantitative Assessment

Summary statistics for mental wellness outcomes are presented in Table 3 and individual participant trajectories are displayed in Multimedia Appendix 2. We compared depression symptoms (by PHQ-9), perceived stress (by PSS-4), and social support (by abbreviated SSB) between enrollment and follow-up. No significant changes in scores were found. At enrollment, the median PHQ-9 score was 4.0 out of 27 (IQR 2.0-5.0), compared with 2.0 (IQR 2.0-3.0) at follow-up ($P=.25$); 6 of 9 participants demonstrated reductions in PHQ-9 scores from baseline to follow-up. Median PSS-4 at enrollment was 8.0 out of 16 (IQR 8.0-10.0) and 9.0 out of 16 (IQR 8.0-10.0) at follow-up ($P=.46$). The median social support score related to participants’ family was 50.0 out of 100 (IQR 42.0-53.0) at enrollment, and 48.5 out of 100 (IQR 47.5-50.5) at follow-up ($P=.11$). The median social support score for friends was 51.0 out of 100 (IQR 47.0-54.0) at enrollment and 50.0 out of 100 (IQR 46.0-53.0) at follow up ($P=.88$).
Table 3. Change in participant mental wellness from baseline to follow-up.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Enrollment, median (IQR)</th>
<th>Follow-up, median (IQR)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression (PHQ-9<sup>a</sup>)</td>
<td>4.0 (2.0-5.0)</td>
<td>2.0 (2.0-3.0)</td>
<td>.25</td>
</tr>
<tr>
<td>Perceived Stress Score (PSS-4)</td>
<td>8.0 (8.0-10.0)</td>
<td>9.0 (8.0-10.0)</td>
<td>.46</td>
</tr>
<tr>
<td>Social support</td>
<td>Family: 50.0 (42.0-53.0); friends: 51.0 (47.0-54.0)</td>
<td>Family: 48.5 (47.5-50.5); friends: 50.0 (46.0-53.0)</td>
<td>.11; friends: .88</td>
</tr>
</tbody>
</table>

^aPHQ-9: Patient Health Questionnaire.

Qualitative Assessment

In IDIs, participants highlighted 3 ways they perceived participating in IMAGINE benefited their mental health (Textbox 2). First, participants (n=5) expressed that being in a group with other young parents normalized and validated their experiences, which helped them feel more connected with others and strengthened their belief that they could make changes to improve their mood. Second, several participants (n=5) noted that they had gained skills in regulating their emotions. Some stated that they still used some of the mood monitoring and management techniques discussed in the program after it had ended. Participants highlighted that they had few opportunities in their day-to-day lives to reflect on their mood and that there was value and ease in reflecting “for yourself” through the digital platform, rather than to another person who may not understand their feelings. Participants also commented that they learned to pay closer attention to emotions in the middle of the spectrum (ie, not crisis or elation), and that helped them monitor when and why their mood changed. Third, several participants (n=6) stated that they would be more open to mental health services in the future after they completed IMAGINE. Some common feedback from participants related to this was that it helped them realize they needed to return to psychotherapy if they had sought it in the past, or for those without prior experience, IMAGINE helped normalize some of the unknown or off-putting aspects of mental health care. It became more familiar to discuss moods and feelings with others, which increased their openness to seeking care.
Textbox 2. In-Depth Interview themes related to mental health impact.

Normalized experiences

- It helped me, like, open up a little more, and realize that I’m not the only person suffering, and that there’s more people like me that I can talk about it with. I don’t have to, you know, suffer by myself.
 [Participant 17, aged 17 y, pregnant]
- [IMAGINE helped me] understand… my emotions right now were normal… Before, I felt like I was broken or I needed to be fixed or there’s something wrong with me and now… there’s nothing wrong with me. [I’m] normal.
 [Participant 9, aged 23 y, postpartum]

Gained emotional regulation tools

- I had a pregnancy before that and it was also a preterm birth. And so, that baby passed away. And so it was really hard for me. I was really depressed, and so I know that if I would have had like the Imagine group it like it would help it would have helped me to manage my, my emotions and stuff.
 [Participant 5, aged 21 y, postpartum]
- I definitely added a handful more tools to my arsenal to be able to calm myself down, stay calm, or not become overwhelmed with everything that’s going on… I’ve been using these - to me they’re like lower tier ways of coping. So it’s like when I’m not at a ten, I’m at like a five, I can use these.
 [Participant 9, aged 23 y, postpartum]
- Reading the mood tree… identifying the stressors… how to regulate it, different forms of communication, just all these different things for your mood and focusing on that. It just helped me to realize taking myself is a priority. And not just my baby and making sure she’s okay but making sure I’m okay as well.
 [Participant 17, aged 17 y, pregnant]

Open to mental health services in the future

- I like to bottle up my anger or my problems and they explode on the wrong person at the wrong time so that being in a group kind of made me realize like I need to go back to counseling. I was already in counseling but I don’t feel like I was taking it as serious but when I sat back and realized… No, I do need to get it together, that’s when I was like, I’mma just go back to counseling.
 [Participant 14, aged 18 y, pregnant]
- When you talk to [my family] about… feeling depressed and you’re not mentally okay they’re, like, “oh that’s not real, it’s fake, it’s all in your head”… And so, [IMAGINE] just helped me to think that there is help, and it is real, and that it’s not just in your head.
 [Participant 5, aged 20 y, postpartum]

Recommended Improvements

IDIs explored participants’ barriers to intervention participation and recommended improvements to IMAGINE. Frequently identified barriers to participation included being too busy, introversion, and low engagement from other members (Textbox 3). Participants (n=7) mentioned being unable to read all the messages or join Zoom meetings because they were working, in school, or busy with parenting responsibilities. Introversion was mentioned by a few participants (n=3), and 1 participant stated that a reason she did not participate in more Zoom calls was the thought that she was expected to be on camera, which she found uncomfortable. Limited engagement from other group members was discussed as a deterrent to engagement: participants (n=6) felt they would have engaged more and benefited more if synchronous and asynchronous conversations had included more voices. In total, 2 participants also reported technology challenges, both of which were resolved.

Participants shared recommendations to address their barriers to engagement (Textbox 3). Several participants (n=8) recommended changes to the frequency and timing of the synchronous Zoom calls to facilitate their attendance. Calls were scheduled each week based on polls with the group to identify the optimal time. Participants suggested that offering calls in the evenings, during the weekends, or announcing the schedule for all calls at the start of the program rather than scheduling them week-by-week could improve attendance. A few participants suggested offering multiple call times each week. Some participants (n=3) also requested more onboarding at the start of the group, including more orientation to the Slack platform and more icebreakers and rapport-building activities with other group members to encourage greater comfort and collective engagement in the group. While IMAGINE was designed to be virtual and COVID-19 restrictions meant in-person contact was not possible at the time, a common piece of feedback (n=7 participants) was to have at least one in-person meeting or offer a hybrid version of IMAGINE to deepen relationship-building with other group members.
Textbox 3. In-Depth Interview themes related to barriers to participation and recommended improvements.

Barriers
- **Being busy**
 - I couldn't read or join in on the calls, because I had started back working. [Participant 24, aged 16 y, pregnant]
 - I started working like right after I got into [the study], and I didn't know when I was actually going to be available… Some of the polls or some of the Zooms I wasn’t even able to join, because I work. [Participant 18, aged 19 y, pregnant]
- **Introversion**
 - I’m a shy person. So that’s what, I just want to push myself more to be able to, you know, do more things like this because this is like out of my comfort zone. [Participant 17, aged 17 y, pregnant]
 - Being on video is just not for me. I’m just not gonna keep with this. [Participant 12, aged 23 y, postpartum]
- **Low engagement from other study participants**
 - It would have been better if everybody, you know, responded in and reacted. But it was a good thing to still be able to have somebody there talking to us, even though we weren’t always responding. [Participant 20, aged 18 y, postpartum]
 - I just wish more people participated, because even in the zoom calls like sometimes I would be the only person that would join, or it would just be one or two other moms. [Participant 17, aged 17 y, pregnant]
- **Issues with technology**
 - My phone like we started and it kind of deleted the app so I was just like, whoa. Okay. [Participant 5, aged 21 y, postpartum]
 - I had to switch [cell phones], so I had turned in a phone that I was leasing for Sprint and then I had an old phone, but I couldn’t do certain things on it. Like I couldn’t download a lot of apps because I didn’t have the latest iOS and then, when I got the new phone, I had to wait to switch carriers. It was a lot going on, when I was trying to get a new phone. [Participant 12, aged 23 y, postpartum]

Recommended improvements
- **More flexibility for Zoom calls**
 - I didn’t really get to join any of the zoom meetings because I was usually busy… I wish I could have. [Participant 5, aged 21 y, postpartum]
 - If we had more zoom calls like twice a week, that would be really great for me. [Participant 7, aged 23 y, pregnant]
- **Hybrid or in-person meetings**
 - I think that if we have more in person, it would have been better because it's more something that you can engage in more than just being online. [Participant 20, aged 18 y, postpartum]
 - I feel if you were to go in person and meet everyone, I think that’d be great. You get to interact. [Participant 5, aged 21 y, postpartum]
- **More onboarding**
 - At the very end, it was really nice because we were kind of more comfortable with each other, but at the beginning it was, understandably, a little bit awkward. We don’t know each other, but I think we could have benefited with some more icebreakers or some more like getting to know each other, rather than just kind of jumping in and expecting [us] to be open to each other. Because not everybody is willing to, you know, put themselves in that situation where they kind of have to be vulnerable. [Participant 7, aged 23 y, pregnant]
 - Me personally I didn't like the Slack platform just because I'm not really tech savvy I guess you could say, and it was a lot of different components to the app, so it's kinda like I'm still trying to learn how to use it. [Participant 14, aged 18 y, postpartum]
- **Low engagement from other study participants**
 - It would have been better if everybody, you know, responded and reacted. But it was a good thing to still be able to have somebody there talking to us, even though we weren’t always responding. [Participant 20, aged 18 y, postpartum]
 - I just wish more people participated, because even in the zoom calls like sometimes I would be the only person that would join, or it would just be one or two other moms. [Participant 17, aged 17 y, pregnant]

Discussion

Principal Results

In this mixed methods pilot study, we found that IMAGINE, a novel digital adaptation of the evidence-based MB course, had high acceptability and perceived utility. Uptake of IMAGINE, defined as the proportion of eligible participants who enrolled, was high. However, many individuals who initially contacted this study did not complete the screening process, suggesting these screening procedures presented barriers. These barriers may include the need to arrange a call with study staff to...
complete screening; it is possible the reach would be higher in a lower-barrier delivery model where clients could self-register in the group without arranging a screening call. We also found that a substantial proportion of screened participants were ineligible, most commonly due to elevated PHQ-9 scores. While our study’s focus was on the prevention of perinatal depression, this observation suggests that IMAGINE may also be appealing to individuals who are already experiencing elevated symptoms of depression; this observation is important in considering potential future applications of IMAGINE.

Acceptability scores were high and all participants stated they would recommend IMAGINE to a friend. Quantitative measures of engagement in the intervention, such as frequency of messaging and attendance of video calls, demonstrated low-moderate engagement. Nevertheless, most CBT approaches discussed in the IMAGINE intervention were used frequently and reported to be useful by the majority of participants. Qualitatively, participants reported one-to-one support from the facilitator, connection with other parents, and regular opportunities to reflect on their mood through mood polls were especially helpful aspects of the intervention. Additionally, participants reported that the intervention normalized their mental health challenges, improved their ability to manage their mood, and increased their openness to mental health care. We found no significant changes in depression scores, perceived stress, or perceived social support, although our study’s small sample size was not powered to detect changes in these outcomes.

Participants also made recommendations for improvements to the IMAGINE intervention in future iterations, including more opportunities for synchronous connection with other group members, additional rapport-building activities, and further simplification of message content.

Comparison With Prior Work

Our findings add to a small but growing body of literature on the use of digital interventions to prevent perinatal depression. While several studies have found that internet-delivered CBT is effective in the treatment of depression, including in the perinatal period [28,44-49], digital interventions for the prevention of perinatal depression have been less well studied [30,50].

Our findings are consistent with data from in-person MB. The levels of CBT skill use that IMAGINE participants reported were similar to that reported in a cluster randomized trial of in-person MB [51]: 66% (n=6) of IMAGINE participants reported that they engaged in pleasant activities and 100% (N=9) talked to or contacted someone who has been a positive support, compared with 78% and 80% respectively in Tandon et al’s [51] study previously adapted MB to a self-guided web-based format with informational pages, audio and video clips, and worksheets that follow MB modules in English and Spanish. A pilot randomized trial of the intervention, named Mothers and Babies Online Course, found nonsignificant improvement in depression symptoms; this study’s power was limited by sample size and the authors commented that facilitator guidance may improve uptake and efficacy [25,52]. The IMAGINE intervention differs from the Mothers and Babies Online Course in its inclusion of a facilitator and group delivery format, both of which were viewed as helpful components by participants in our pilot. Our findings of high acceptability, low-moderate engagement in intervention content, and high perceived utility are consistent with those of Barrera et al [25], suggesting digital delivery of MB with and without facilitation is a promising strategy that warrants further evaluation.

Strengths and Limitations

Our study has several strengths. The IMAGINE intervention was developed through systematic adaptation of the evidence-based MB course that prioritized fidelity to core MB components while adapting to participants’ design recommendations [34]. Our recruitment strategy feasibly reached potential participants across the country. Our evaluation is strengthened by including measures of CBT skill use that align with the mechanism of MB and were used in previous MB studies, allowing comparison of our findings with other MB studies. Furthermore, our study explored the experiences of young perinatal people, whose often marginalized perspectives are critical to developing responsive interventions. Guided by the principles of human-centered design [53], we collected in-depth insights from users before and after our pilot to drive future iteration and improvement of the intervention.

The primary limitations of our study are its small sample size and nonrandomized design. This study was not powered to evaluate the intervention’s effect on mental health outcomes, and pre-post comparisons are susceptible to confounding by changes over time that are not attributable to the intervention. Additionally, recruitment was primarily through Facebook and Instagram, which were selected for participants who were already using social media platforms and may be more open to a digital intervention. Due to resource constraints for this pilot study, our eligibility criteria included the ability to read and write in English, which systematically excluded non-English speakers, whose needs may differ. Future evaluations should address the limitations of this study by achieving a larger sample size, employing a randomized design, recruiting from nonsocial media sources, and developing translations in additional languages, particularly Spanish, in which MB materials already exist.

Conclusions

This pilot study provides promising evidence of the acceptability and utility of a digital group adaptation of MB among perinatal youths. These findings support further development and evaluation of the IMAGINE intervention to increase access to evidence-based interventions for the prevention of perinatal depression. Future iterations of IMAGINE will incorporate user recommendations from this study and use randomized powered evaluations to test clinical impact.
Acknowledgments

The authors gratefully acknowledge IMAGINE study participants and recruitment partners. This study was funded by a grant from the Technology and Adolescent Mental Wellness program at the University of Wisconsin-Madison. This study was also supported by the National Institutes of Health (grant K18MH122978) and the University of Washington Behavioral Research Center for HIV (BIRCH), a National Institute of Mental Health–funded program (P30 MH123248). Research support was provided by the University of Washington Global Center for Integrated Health of Women, Adolescents, and Children (Global WACH). REDCap access was provided by the University of Washington Institute of Translational Health Science (grants UL1TR002319 and KL2TR002317) and the National Center for Advancing Translational Sciences of the National Institutes of Health (TL1TR002318). The sponsor was not involved in the review and approval of this paper for publication.

Data Availability

The data sets analyzed during this study are available on GitHub [54].

Authors’ Contributions

KR designed this study, conceptualized this paper, guided the analysis, supported this paper’s writing, and obtained funding. AG, EW, and KR conducted the data analyses. AG, KD, MJ-B, YNE, AB, and KR contributed to participant recruitment, intervention delivery, and data collection. All authors contributed to the development of the intervention and reviewed and approved this paper for submission.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Participant interaction over time (group 1 and 2 combined).

Multimedia Appendix 2

Participant trajectories of mental wellness outcomes.

References

Abbreviations

AIM: Acceptability of Intervention Measure
CBT: cognitive behavioral therapy
IDI: In-Depth Interview
IMAGINE: Interactive Maternal Group for Information and Emotional Support
MB: Mothers and Babies Course
mHealth: mobile health
PHQ9: Patient Health Questionnaire
PSS-4: Perceived Stress Score
REDCap: Research Electronic Data Capture
SSB: Social Support Behavior

©Keshet Ronen, Anupa Gewali, Kristin Dachelet, Erica White, Marimirca Jean-Baptiste, Yolanda N Evans, Jennifer A Unger, S Darius Tandon, Amritha Bhat. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Benefits, Recruitment, Dropout, and Acceptability of the Strength Back Digital Health Intervention for Patients Undergoing Spinal Surgery: Nonrandomized, Qualitative, and Quantitative Pilot Feasibility Study

Abstract

Background: Patients undergoing spinal surgery report high levels of insecurity, pain, stress, and anxiety before and after surgery. Unfortunately, there is no guarantee that surgery will resolve all issues; postsurgical recovery often entails moderate to severe postoperative pain, and some patients undergoing spinal surgery do not experience (long-term) pain relief after surgery. Therefore, focusing on sustainable coping skills and resilience is crucial for these patients. A digital health intervention based on acceptance and commitment therapy (ACT) and positive psychology (PP) was developed to enhance psychological flexibility and well-being and reduce postsurgical pain.

Objective: The objective of this study was 3-fold: to explore the potential benefits for patients undergoing spinal surgery of the digital ACT and PP intervention Strength Back (research question [RQ] 1), explore the feasibility of a future randomized controlled trial in terms of recruitment and dropout (RQ 2), and assess the acceptability of Strength Back by patients undergoing spinal surgery (RQ 3).

Methods: We used a nonrandomized experimental design with an intervention group (n=17) and a control group (n=20). To explore the potential benefits of the intervention, participants in both groups filled out questionnaires before and after surgery. These questionnaires included measurements of pain intensity (Numeric Pain Rating Scale), pain interference (Multidimensional Pain Inventory), anxiety and depression (Hospital Anxiety and Depression Scale), valued living (Engaged Living Scale), psychological flexibility (Psychological Inflexibility in Pain Scale), and mental well-being (Mental Health Continuum–Short Form). Semistructured interviews combined with log data and scores on the Twente Engagement With eHealth Technologies Scale were used to assess the acceptability of the intervention.

Results: A significant improvement over time in emotional (V=99; P=.03) and overall (V=55; P=.004) well-being (Mental Health Continuum–Short Form) was observed only in the intervention group. In addition, the intervention group showed a significantly larger decline in pain intensity (Numeric Pain Rating Scale) than did the control group (U=75; P=.003). Of the available weekly modules on average 80% (12/15) was completed by patients undergoing spinal fusion and 67% (6/9) was completed by patients undergoing decompression surgery. A total of 68% (17/25) of the participants used the intervention until the final interview. Most participants (15/17, 88%) in the intervention group would recommend the intervention to future patients.
Conclusions: This pilot feasibility study showed that combining ACT and PP in a digital health intervention is promising for patients undergoing spinal surgery as the content was accepted by most of the participants and (larger) improvements in pain intensity and well-being were observed in the intervention group. A digital intervention for patients undergoing (spinal) surgery can use teachable moments, when patients are open to learning more about the surgery and rehabilitation afterward. A larger randomized controlled trial is now warranted.

(JMIR Form Res 2024;8:e54600) doi: 10.2196/54600

KEYWORDS
pilot feasibility study; spinal surgery; digital health intervention; positive psychology; acceptance and commitment therapy; mobile phone

Introduction

Background

Patients undergoing spinal surgery report high levels of physical complaints as well as insecurity, pain, low well-being, stress, and anxiety before and after surgery [1-3]. Postsurgical recovery often entails moderate to severe postoperative pain, and approximately 20% to 30% of patients undergoing spinal surgery do not experience (long-term) pain relief after surgery [3,4]. This results in a longer hospital stay, higher health care costs, longer physical and mental recovery, delayed return to work, and the potential development of chronic pain. The potential transition from postoperative pain to chronic pain is a major issue as chronic pain affects many aspects of a patient’s life, such as work; physical, emotional, and social well-being; and quality of life [5,6].

Mental factors such as cognition, emotions, and expectations play a significant role in the experience of pain [7]. The fear-avoidance model explains the trajectory from acute to chronic pain through fear and catastrophizing, which is the tendency to enlarge the threat of pain and a feeling of helplessness, leading to an increase in pain avoidance as a dominant coping strategy [8]. Pain avoidance then leads to a less active lifestyle, thereby worsening rather than relieving pain. High levels of catastrophizing and fear have been found to predict higher levels of (postoperative) pain and pain chronicity and a lower quality of life in patients who undergo surgery [4,9-11]. In addition, realistic expectation management is key as unrealistic or unfulfilled expectations about surgery and preoperative stress may lead to the experience of higher levels of postoperative pain [12-18]. This link between mental factors and expectation management with postoperative outcomes shows that psychological preparation before surgery is essential to improve recovery after surgery.

Although the potential benefits of psychological preparation before surgery have long been known [19], a more recent meta-analysis of psychological preparation techniques before surgery could not find strong evidence from high-quality research to verify these claims [20]. Potentially, interventions that focus on promoting adaptive coping skills and reducing maladaptive emotion regulation skills are more promising. Smith and Zautra [21] and Sturgeon and Zautra [22] found, for example, evidence that coping strategies such as (pain) acceptance, engaging in beneficial social interactions, and experiencing a value-based purpose in life have the potential to improve mental well-being and promote resilience in the face of (chronic) pain. Sustainable resilience to (chronic) pain requires skills promoting adaptation and mental health in the long term [22]. In other words, adaptation to different contexts and circumstances requires (psychological) flexibility and a long-term focus. In the context of pain, psychological flexibility implies that painful sensations, feelings, and thoughts are accepted as opposed to avoided and that attention shifts toward personally valued goals [23]. For patients undergoing spinal surgery, psychological flexibility enables them to cope with the fluctuating circumstances surrounding surgery (eg, insecurity, fear, and pain) in a flexible rather than rigid manner. Being able to accept negative emotions or sensations such as pain and insecurity in the face of surgery might prevent catastrophizing, fear, and avoidance behavior.

Psychological flexibility is the aim of acceptance and commitment therapy (ACT) [24]. ACT is based on the relational frame theory and focuses on performing value-based activities in life even in the face of insecurity and adversity [24]. In a similar way, positive psychology (PP) is the scientific study of well-being and optimal functioning, focusing on human flourishing instead of reducing the risk factors for psychopathology and malfunctioning. PP involves topics such as strengths, virtues, meaning, happiness, gratitude, compassion, resilience, and flourishing [25]. ACT and PP can help experience a value-based purpose in life, promote resilience, and improve mental well-being. Mental well-being comprises positive emotional, psychological, and social functioning [26]. The presence of higher levels of these 3 dimensions of well-being is an indicator of flourishing [26-28]. Promoting positive resources and skills that contribute to successful adaptation and (mental) health are the aims of PP interventions (PPIs) [25,29]. PPIs and ACT have been found to be effective in the treatment of chronic pain [30-35], improving affect and functional ability after knee surgery [21], and quicker cessation of pain and opioid use in veterans after orthopedic surgery [36]. In summary, PP and ACT could potentially benefit patients undergoing spinal surgery in terms of physical (eg, pain) and psychological (eg, well-being) factors.

In the context of surgery, digital health interventions can be used to aid patients during their recovery process [37]. These interventions can be used to improve postoperative outcomes by supporting healthy lifestyle behavior change before and after surgery [38,39] and to improve medication adherence [40,41]. Digital health interventions can also better prepare patients for surgery or shorten postoperative recovery through behavioral modification, patient monitoring, or protocol adherence [42-45].
Behavioral modification can also be applied to promote a healthy lifestyle. This is important as healthy lifestyle behavior changes before and after orthopedic surgery, such as increased preoperative physical activity or smoking cessation, have been associated with improved postoperative bone healing [46] and wound healing [47], quicker recovery times, and reduced pain scores [48]. Moreover, patients undergoing surgery who engage with digital health interventions show better medication adherence, better adherence to discharge instructions, greater patient satisfaction, improved clinic attendance, lower readmission, and less emergency department visits after surgery [49]. van der Meij et al [50] found in their review that, in most studies, perioperative digital health interventions improved clinical patient-related outcomes compared with face-to-face perioperative care alone for patients who had undergone various forms of surgery. This shows the potential of digital health interventions to improve perioperative care in addition to face-to-face meetings with professionals.

Despite the clear potential of ACT and PPIs for mental well-being and long-term resilience, they have not yet been used to develop interventions targeting psychological flexibility in patients undergoing spinal surgery. In addition, seeing the potential of digital health interventions in the context of surgery, this form also seems promising for patients undergoing spinal surgery. For this reason, a digital health intervention called Strength Back [51] was developed. Strength Back aims to increase psychological flexibility and well-being and improve postoperative recovery in patients undergoing spinal surgery. This intervention, developed through cocreation with different stakeholders, contains procedural information, pain education, and PPI and ACT exercises.

Objectives

Although the intervention is based on a scientific, theoretical framework, the effects and impact of the intervention need to be proven to be able to implement it in an evidence-based health care setting. This requires a collection of evidence, such as through a randomized controlled trial (RCT). As an RCT is complex and expensive, preparation and insights in advance into the required parameters, such as measures, recruitment, and dropout numbers, are essential to perform a thorough RCT. In light of the aforementioned research on PP and ACT in other target populations, several outcome measures covering physical and psychological factors need to be explored as potential benefits of this intervention. In addition, in an RCT, the best possible version of the intervention needs to be tested. This is in line with the recommendation of the Medical Research Council of first testing and refining an intervention to ensure it is acceptable to successfully evaluate whether it is effective [52]. In addition, to reduce psychological and practical barriers and maximize acceptability, it is important to understand and accommodate patients’ views [53]. As of yet, it is unknown how patients undergoing spinal surgery value the intervention Strength Back in terms of acceptability, potential benefits, and feasibility in a real-life setting and what the required parameters for a future RCT would be. Therefore, the objective of this study was 3-fold: to explore the potential benefits for patients undergoing spinal surgery of the digital ACT and PPI Strength Back (research question [RQ] 1), explore the feasibility of a future RCT in terms of recruitment and dropout (RQ 2), and assess the acceptability of Strength Back by patients undergoing spinal surgery (RQ 3).

Methods

Study Design

This was a nonrandomized pilot study, a subset of feasibility studies as described by Eldridge et al [54]. Our study design included an intervention group and a historic control group (Figure 1). We used a historic control group as the development of the intervention was still ongoing and the target population was small. The participants in the control group received care as usual. In addition to receiving care as usual, the participants in the intervention group were given access to the digital health intervention Strength Back. To test the acceptability of the intervention, individual interviews were conducted with the participants in the intervention group. Both groups filled out a questionnaire before (pretest time point) and after (posttest time point) surgery.

![Figure 1. Study design and timeline for individual participants (patients undergoing spinal surgery) in the control and intervention groups of this pilot feasibility study.](https://formative.jmir.org/2024/1/e54600/figure1.png)
As suggested by Orsmond and Cohn [55], we used a combination of qualitative and quantitative measures in this feasibility study. We aimed to include 20 participants in our control group and 20 participants in our intervention group, which is in line with the study by Billingham et al [56], who found a median sample size of 36 in their review of feasibility studies.

Participants

Patients undergoing decompression or spinal fusion surgery were eligible for inclusion in either the control or intervention group of this study. Patients undergoing spinal surgery other than decompression or spinal fusion surgery (e.g., patients with hernias or patients of oncology) were excluded. Other inclusion criteria were age of >18 years, proficiency in Dutch, and an email address. Participants in the intervention group needed an Android or iOS smartphone or tablet at home and had to be willing to use a digital health intervention both before and after surgery.

All participants in this study were recruited through purposive sampling at an orthopedic center in the Netherlands. The participants in the historic control group were recruited between February 2020 and July 2020. The participants in the intervention group were recruited between September 2020 and February 2021.

Conditions

Care as Usual

The historic control group received care as usual. They were provided with brochures containing information about their diagnosis, surgical procedure, surgery preparation, physical guidelines during recovery, contact information, and possible complications. In addition, usual care consisted of several appointments besides the surgery itself: an intake and a preoperative screening before surgery, a consultation by phone 10 days after surgery, and a physical checkup at the orthopedic center 6 weeks (both surgery types) and 12 weeks (spinal fusion surgery) after surgery.

Strength Back Digital Health Intervention

In addition to care as usual, participants in the intervention group were given access to the *Strength Back* digital health intervention (see Figure 2 for screenshots). The content of this app was developed through a process of cocreation. The stakeholders involved in this process were patients who had undergone spinal surgery, orthopedic surgeons, a physical therapist, a nurse practitioner, a research coordinator, and several nurses. The content of the intervention was based on the results of interviews and focus group sessions with the aforementioned stakeholders (patients and health care professionals) combined with ACT and PP exercises. Multimedia Appendices 1 to 3 of this publication and our previous publication on the cocreation of *Strength Back* [51] provide more details on the developmental process.
The intervention consisted of 13 information modules, which were continuously available, and 6 to 12 weekly modules. Participants did not receive personal messages from a health care professional. The contact information of the orthopedic clinic was provided in the intervention, making sure participants could contact a health care professional in case of any questions.

The information modules of the intervention were based on existing brochures and leaflets of the orthopedic center (Multimedia Appendix 1).

In addition, to support them during recovery, intervention participants received 6 to 12 weekly modules. These modules were timed: participants received 3 modules in the 4 weeks before surgery and 6 or 12 weekly modules after surgery depending on the type of surgery they had undergone. In total, 6 weekly modules were provided for patients undergoing decompression surgery, and 12 weekly modules were provided for patients undergoing spinal fusion, matching the expected recovery time after surgery as suggested by the orthopedic center (Multimedia Appendices 2 and 3).

During the intervention, participants received automated reminders every time a new weekly module was available. This was voluntary and could be turned on or off by the participants.

The digital health intervention was downloaded by the participants themselves using a step-by-step guide provided by the researcher.

Procedure of Data Collection

For both conditions, patients received a leaflet from their personal health care professional (ie, orthopedic surgeon, specialized physical therapist, or advanced nurse practitioner) explaining this study during their visit to the orthopedic center and were subsequently contacted by phone by the researcher. When patients agreed to take part in the study, their email address was collected, after which they received an information email with a link to the first web-based questionnaire (through Qualtrics [Qualtrics International Inc]; pretest assessment). We chose this specific moment for the pretest assessment to clarify the current and most up-to-date picture of the preoperative situation. In the questionnaire, the participants first had to
provide active informed consent to continue. Participants in both the control and intervention groups filled out this questionnaire (pretest assessment; Figure 1).

A total of 3 months after surgery, participants in both groups received an invitation by email to fill in the posttest questionnaire. At this time, it was expected that (nearly) all participants were in the final phase of their recovery process. We chose this specific moment to collect the data, when the recovery situation had stabilized. At this point, the participants in the intervention group were contacted by the principal investigator (AH) to make an appointment for an interview to assess how they valued the intervention. These semistructured interviews were conducted between January 2021 and June 2021 by 2 researchers (AH and LM). Owing to the COVID-19 pandemic, interviews were conducted via telephone. The interviews were audio recorded and lasted between 30 and 60 minutes.

The recruitment and dropout numbers in the intervention group were explored in this study to provide insights into what is needed for the recruitment process of a future RCT to reach the desired power.

Materials

Regarding RQ 1 (potential benefits), the questionnaires contained several outcome measures (ie, pain intensity and interference, anxiety, depression, psychological inflexibility, valued living, and mental well-being). These potential benefits were measured at the pre- and posttest time points for both the control and intervention groups.

Pain intensity was measured using the Numeric Pain Rating Scale (NRS). For the NRS, participants were asked to circle the number (0-10) that best described their experience of pain in the last week in general and in the last week at worst. The questions asked were as follows: “Please indicate the average intensity of your pain in the last week” and “Please indicate the intensity of your pain at the worst moments in the last week.” A higher score indicates a higher intensity of pain. The NRS is considered a valid, reliable, and appropriate pain rating scale for use in clinical practice, with good sensitivity [57].

Pain interference was measured using the pain interference subscale of the Multidimensional Pain Inventory (MPI) [58]. This subscale consists of 11 items measuring to what degree pain influences the daily life of a respondent, with total mean scores ranging from 0 to 6. A higher score indicates a higher degree of pain interference. The subscale showed good reliability in our study population, with a Cronbach α of .874.

Anxiety and depression were measured using the Hospital Anxiety and Depression Scale (HADS) [59]. Both the anxiety and depression subscales consist of 7 items with scores ranging from 0 to 21. A higher score indicates a higher degree of anxiety or depression. Both subscales showed good reliability, with a Cronbach α of .874 for the anxiety subscale and .789 for the depression subscale.

Psychological inflexibility was measured using the Psychological Inflexibility in Pain Scale (PIPS) [60]. The 2 subscales measure avoidance and cognitive fusion, concepts derived from the theoretical framework of ACT [24]. As the cognitive fusion subscale showed low reliability in our study population with a Cronbach α of .524, only the total score of the PIPS was used in this study. This total score had good reliability, with a Cronbach α of .893. A higher score indicates more inflexibility with pain (ie, lower acceptance and higher cognitive fusion).

Value-based living was measured using the “Valued living” subscale of the Engaged Living Scale (ELS; Trompetter et al [61]), which covers the concept of “valued living”—recognizing personal values and undertaking committed actions that are congruent with these values. The “Valued living” subscale consists of 10 items and uses a 5-point scale, with scores ranging from 10 to 50. A higher score indicates a higher degree of valued living. This subscale of the ELS showed high reliability, with a Cronbach α of .917.

Mental well-being was measured using the Mental Health Continuum–Short Form [62] on three dimensions: (1) emotional well-being, defined as positive feelings (3 items); (2) psychological well-being, described as individual functioning (eg, environmental mastery and purpose in life; 6 items); and (3) social well-being, measuring functioning in community life (eg, social contribution and social acceptance; 5 items). The mean scores per subscale range from 0 to 5, with a higher score indicating a higher degree of emotional, psychological, or social well-being. The total score (Cronbach α=.930) as well as that of the different subscales (emotional: Cronbach α=.930; psychological: Cronbach α=.874; social: Cronbach α=.799) showed good reliability, with a high Cronbach α in our study population.

Regarding RQ 2 (recruitment and dropout), we kept an overview in Microsoft Excel (Microsoft Corp) of the recruitment and dropout numbers in the intervention group in this study.

Regarding RQ 3 (acceptability), the scheme used for the interviews consisted of 2 parts. The first part of the interview started with questions on the intervention in general (eg, topics on layout and user-friendliness based on the Mobile App Rating Scale [63]). The second part continued by discussing the content of the modules (Multimedia Appendix 1) followed by the exercises in the weekly modules (Multimedia Appendix 2) as topics. Engagement with the intervention was measured using the Twente Engagement With eHealth Technologies Scale (TWEETS) [64]. This scale of 9 items comprises 3 subscales: behavioral, cognitive, and affective engagement. In this study, the total score, with a Cronbach α of .883, was used. In addition, the automated logs from the system were analyzed to see when participants opened which weekly module. The information modules were continuously available (before and after surgery), and activity in these modules was not recorded in the automated logs.

Data Analysis

All statistical analyses were conducted using SPSS (version 26.0; IBM Corp). For the exploratory aim of this study, full cases provide the most valuable information. Therefore, only full-case analyses were conducted. In addition, as the quantitative data were used to generate a general picture of
between-group differences, no imputation techniques were used. When participants filled out the pre- or posttest assessment more than once, the first completed test was used for the analysis.

For RQ 1 (potential benefits), between-group differences were assessed using nonparametric Mann-Whitney U tests because of the small sample size and nonnormal distribution of the data. First, between-group differences were analyzed at baseline using the Mann-Whitney U test. Second, within-group differences were analyzed for both groups between the pre- and posttest assessment using a Wilcoxon signed rank test. The effect sizes were calculated using the Cohen d: \(\frac{\text{mean at the posttest assessment} - \text{mean at the pretest assessment}}{\text{SD}} \). When the SD of both moments differed, the mean SD of the pre- and posttest assessments was calculated and used. Values for the Cohen d of 0.2 were considered a small effect size, 0.5 was considered a medium effect size, and values of ≥ 0.8 were considered a large effect size.

Third, between-group differences were analyzed by comparing the pre- and posttest difference scores of both groups (Mann-Whitney U test). All statistical tests were 2 sided. P values of $<.05$ were considered statistically significant. As this was a feasibility pilot study, the results were considered exploratory, and no correction for multiple testing was performed.

For RQ 2 (recruitment and dropout), we analyzed the recruitment and dropout numbers of the intervention group in this study. For the analysis, we looked at the number of approached patients, the number of patients who consented to participate in the study, and the time span in which all these patients were approached. Dropout was defined as agreeing to participate in the study but not downloading the intervention, not filling out the pretest questionnaire, or not filling out the posttest questionnaire.

For RQ 3 (acceptability), interview data were collected, and the audio recordings were transcribed verbatim. For the analysis, the transcripts of all interviews were read and reread by 2 researchers (AH and LM) to familiarize themselves with the data. Subsequently, the transcripts were open coded by both researchers independently, followed by a discussion to reach a consensus regarding the coding. As a next step, both researchers sorted the codes into several groups. A deductive coding approach was used based on the topics on the interview scheme combined with an inductive approach for important content within these topics. For the coding and analysis process, the ATLAS.ti software (version 9.0; ATLAS.ti Scientific Software Development GmbH) was used.

Ethical Considerations

Ethics approval was granted by the Medical Ethical Committee of the Radboud University Medical Centre in Nijmegen (2019-5608) and the Ethics Committee of the Faculty of Behavioural, Management, and Social Sciences of the University of Twente (191080). The study is registered at the repository of the University of Twente for processing of personal data (AVG Register; WBP18ME0048).

Participants in both the control group and the intervention group filled out a questionnaire before and after surgery. When patients agreed to take part in the study, they received a link to the first questionnaire, in which they had to provide active informed consent to continue.

All human participant data were deidentified before analysis. Study participants received no compensation for their inclusion in the study.

Results

Sample

Figure 3 shows an overview of the inclusion of participants in the intervention and control groups. A total of 25 patients agreed to participate in the intervention group, of whom 3 (12%) participants did not fill out the pretest questionnaire; the reason for this is unknown. Therefore, a total of 22 participants filled out the pretest questionnaire. After filling out the pretest questionnaire, 9% (2/22) of the participants failed to download the intervention to their phones. Therefore, a total of 20 participants started using the intervention (20/35, 57% of the approached patients). Before the posttest questionnaire, 15% (3/20) of the patients discontinued their participation. This resulted in a total of 17 participants filling out the pre- and posttest questionnaires. All these participants (17/17, 100%) also took part in a telephone interview.
A total of 31 patients were approached by phone to participate in the control group. This resulted in 71% (22/31) of these participants completing the pretest questionnaire. A total of 9% (2/22) of these participants did not complete the posttest questionnaire without giving a reason. In total, 9% (2/22) of the participants started the posttest questionnaire but only partially completed it. This resulted in a control group of 20 participants, of whom 18 (90%) completed the entire pre- and posttest questionnaires.

The participant characteristics at baseline are presented in Table 1. The Mann-Whitney U test revealed no substantial differences between the intervention and control groups in terms of these characteristics.
Table 1. Participant characteristics at baseline by group.

<table>
<thead>
<tr>
<th></th>
<th>Intervention group (n=17)</th>
<th>Control group (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>6 (35)</td>
<td>12 (60)</td>
</tr>
<tr>
<td>Male</td>
<td>11 (65)</td>
<td>8 (40)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>62 (12)</td>
<td>66 (14)</td>
</tr>
<tr>
<td>Surgery type, n, (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decompression</td>
<td>11 (65)</td>
<td>10 (50)</td>
</tr>
<tr>
<td>Spinal fusion</td>
<td>6 (35)</td>
<td>10 (50)</td>
</tr>
<tr>
<td>Educational levela, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>4 (24)</td>
<td>9 (45)</td>
</tr>
<tr>
<td>Middle</td>
<td>8 (47)</td>
<td>4 (20)</td>
</tr>
<tr>
<td>High</td>
<td>5 (29)</td>
<td>7 (35)</td>
</tr>
<tr>
<td>Occupational status, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paid work</td>
<td>6 (35)</td>
<td>8 (40)</td>
</tr>
<tr>
<td>Retired</td>
<td>8 (47)</td>
<td>10 (50)</td>
</tr>
<tr>
<td>Housewife or househusband</td>
<td>1 (6)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Incapacitated</td>
<td>1 (6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Self-employed</td>
<td>1 (6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married or living together</td>
<td>15 (88)</td>
<td>18 (90)</td>
</tr>
<tr>
<td>In a relationship; living apart</td>
<td>1 (6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Widowed</td>
<td>1 (6)</td>
<td>2 (10)</td>
</tr>
</tbody>
</table>

aLow: primary and lower secondary education; middle: upper secondary education; high: higher vocational training and university.

RQ 1: What Are the Potential Benefits for Patients Undergoing Spinal Surgery of a Digital ACT and PPI?

First, between-group differences were analyzed at baseline (Mann-Whitney *U* test). The total score on the PIPS was significantly higher in the control group (*U*=262.5; *P*=.004). Other measures did not differ significantly between both groups at baseline.

Second, within-group differences were analyzed for both groups between the pre- and posttest assessments (Wilcoxon signed rank test; see Table 2 for the results). When looking at the differences between the pre- and posttest assessment, it should be taken into account that both groups had undergone surgery, which is an intervention by itself. Both groups showed significant improvement in the NRS (pain intensity week average and week worst), HADS anxiety subscale, HADS depression subscale, pain interference subscale of the MPI, and total score on the PIPS between the pre- and posttest time points. The score on the valued living scale of the ELS did not significantly change over time in either of the 2 groups. In the control group, the subscores as well as the total score on the Mental Health Continuum–Short Form did not differ significantly between the pre- and posttest time points. In the intervention group, the total score (*V*=99; *P*=.03 as well as the score on emotional well-being (*V*=55; *P*=.004) increased significantly over time.
<table>
<thead>
<tr>
<th></th>
<th>Pretest assessment, mean (SD)</th>
<th>Posttest assessment, mean (SD)</th>
<th>Pretest-posttest difference, V</th>
<th>Pretest-posttest difference, P value</th>
<th>Pretest-posttest effect size, Cohen d</th>
<th>Pretest-posttest mean difference—full sample (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPS<sup>a</sup>—total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−13.34 (−19.19 to −7.50)</td>
</tr>
<tr>
<td>Control group (n=18)</td>
<td>62.2 (9.8)</td>
<td>49.7 (11.2)</td>
<td>19</td>
<td>.004</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>52.5 (11.6)</td>
<td>43.8 (11.7)</td>
<td>24.5</td>
<td>.01</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>NRS<sup>b</sup>—week average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−3.80 (−4.57 to −3.03)</td>
</tr>
<tr>
<td>Control group (n=20)</td>
<td>6.7 (2.3)</td>
<td>3.8 (2.6)</td>
<td>0</td>
<td><.001</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>7.1 (1.1)</td>
<td>2.0 (1.6)</td>
<td>0</td>
<td><.001</td>
<td>3.71</td>
<td></td>
</tr>
<tr>
<td>NRS—week at worst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−4.09 (−4.94 to −3.23)</td>
</tr>
<tr>
<td>Control group (n=20)</td>
<td>8.5 (1.5)</td>
<td>5.0 (3.1)</td>
<td>0</td>
<td><.001</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>8.3 (1.2)</td>
<td>3.3 (2.5)</td>
<td>0</td>
<td><.001</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>HADS<sup>c</sup>—anxiety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−1.89 (−2.92 to −0.86)</td>
</tr>
<tr>
<td>Control group (n=20)</td>
<td>7.3 (3.8)</td>
<td>5.2 (3.8)</td>
<td>14</td>
<td>.008</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>4.6 (3.2)</td>
<td>2.8 (2.2)</td>
<td>13.5</td>
<td>.02</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>HADS—depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−3.46 (−4.62 to −2.29)</td>
</tr>
<tr>
<td>Control group (n=20)</td>
<td>7.0 (3.8)</td>
<td>4.3 (3.4)</td>
<td>26.5</td>
<td>.006</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>5.8 (3.3)</td>
<td>1.9 (1.8)</td>
<td>4.5</td>
<td><.001</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>ELS<sup>d</sup>—valued living</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−0.60 (−2.28 to 1.08)</td>
</tr>
<tr>
<td>Control group (n=18)</td>
<td>37.8 (4.9)</td>
<td>36.5 (5.9)</td>
<td>50</td>
<td>.57</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>40.4 (5.5)</td>
<td>40.2 (5.8)</td>
<td>57.5</td>
<td>.89</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>MHC-SF<sup>e</sup>—emotional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.46 (0.12 to 0.80)</td>
</tr>
<tr>
<td>Control group (n=18)</td>
<td>3.4 (1.2)</td>
<td>3.8 (0.7)</td>
<td>73.5</td>
<td>.44</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>3.7 (1.2)</td>
<td>4.2 (0.7)</td>
<td>55</td>
<td>.004</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>MHC-SF—social</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12 (−0.14 to 0.38)</td>
</tr>
<tr>
<td>Control group (n=18)</td>
<td>2.7 (1.1)</td>
<td>2.7 (1.1)</td>
<td>89</td>
<td>.55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>2.8 (1.0)</td>
<td>2.9 (1.2)</td>
<td>63</td>
<td>.21</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>MHC-SF—psychological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.21 (−0.14 to 0.57)</td>
</tr>
<tr>
<td>Control group (n=18)</td>
<td>3.1 (1.1)</td>
<td>3.3 (1.0)</td>
<td>86</td>
<td>.35</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>3.6 (1.0)</td>
<td>3.7 (1.0)</td>
<td>80</td>
<td>.08</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>MHC-SF total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23 (−0.04 to 0.50)</td>
</tr>
<tr>
<td>Control group (n=18)</td>
<td>3.0 (1.1)</td>
<td>3.2 (0.9)</td>
<td>106.5</td>
<td>.36</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>3.3 (0.9)</td>
<td>3.5 (0.9)</td>
<td>99</td>
<td>.03</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>MPI<sup>f</sup>—pain Interference scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−2.07 (−2.59 to −1.55)</td>
</tr>
<tr>
<td>Control group (n=19)</td>
<td>4.4 (0.9)</td>
<td>2.6 (1.4)</td>
<td>9.5</td>
<td><.001</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=17)</td>
<td>4.1 (0.9)</td>
<td>1.6 (1.1)</td>
<td>0</td>
<td><.001</td>
<td>2.49</td>
<td></td>
</tr>
</tbody>
</table>

^aPIPS: Psychological Inflexibility in Pain Scale.
^bNRS: Numeric Pain Rating Scale.
^cHADS: Hospital Anxiety and Depression Scale.
^dELS: Engaged Living Scale.
^eMHC-SF: Mental Health Continuum–Short Form.
^fMPI: Multidimensional Pain Inventory.
Third, between-group differences were analyzed by comparing the pre- and posttest difference scores of both groups (Mann-Whitney U test). A significant difference was found in the weekly average NRS score between the intervention and control groups (U=75; P=.003), showing a significantly larger decline in pain intensity in the intervention group.

RQ 2: What Is the Feasibility of a Future RCT in Terms of Recruitment and Dropout Rates?

To determine the feasibility of a future RCT, recruitment, dropout rates, and dropout characteristics were examined. Over a period of 5 months, a total of 35 patients were approached by phone to participate in the intervention group (Figure 3). In total, 51% (18/35) of the approached patients did not want to participate and did not start with or dropped out of the intervention. Of these 18 patients, 14 (78%) were female and 14 (78%) underwent decompression surgery. Most of the dropouts did so before the intervention started as they did not want to participate in the study (10/18, 56%, of whom 9/10, 90% were female; age range 19-79 years). Most of the additional 44% (8/18) of dropouts did so at the pretest (3/8, 38%) or posttest (3/8, 38%) time points, and only 25% (2/8) of these participants dropped out because of nonadherence as they did fill out the pretest questionnaire but did not download the intervention. Of these 2 nonadherers, 1 (50%) was male and 1 (50%) was female; both underwent decompression surgery, and both were aged >65 years.

RQ 3: What Is the Acceptability of a Digital ACT and PPI Called “Strength Back” by Patients Undergoing Spinal Surgery?

Overview

Individual semistructured interviews were conducted with all 17 participants in the intervention group. The results of these interviews are described in 3 sections: general impression of the intervention, content of the intervention, and suggestions for improvement. Subsequently, engagement with the intervention is discussed by combining input from the interviews, log data, and the scores on the TWEETS [64].

General Impression of the Intervention

The general impression of the intervention can be described in terms of added value, recommendation, ease of use, repeated answers, feedback, and notifications.

Most of the participants (15/17, 88%) felt that the intervention had at least some added value in terms of support and as a source of information. PT3 stated the following:

It did make me realize that the surgery was not a thing to take too lightly, that I could experience a relapse, so it did comfort me to know that in advance [PT8]

Of the 17 participants who were interviewed, 2 (12%; PT4 and PT5) stated that the intervention did not have any added value for them. For instance, PT5 stated the following:

The information from the physician was enough for me, but it might be helpful for other patients [PT5]

A total of 12% (2/17) of the participants (PT4 and PT8) stated that they found the intervention to be too fluffy or vague and not suitable for them as they did not experience any pain or ups and downs.

When comparing the intervention with the paper brochure that patients normally receive from the hospital, some participants stated that either one would have been fine (eg, PT1 and PT9), whereas others stated that they preferred the intervention as the information was always nearby and, therefore, more accessible than a paper brochure that might get lost (eg, PT2, PT5, and PT6). Some participants stated that they had looked on the internet for information as well but preferred the information in the intervention as this was tailored to their own hospital and, therefore, also more reliable.

Similarly, 88% (15/17) of the participants stated that they would recommend the intervention; one participant (PT4) would not recommend it as it did not offer him anything additional to a paper brochure, and with another participant (PT12), this topic was not discussed. Participants mainly stated that they would recommend the intervention as it helped them prepare for surgery and enabled them to read and reread important information.

Participants indicated that the intervention was easy to use. A total of 12% (2/17) of the participants (PT5 and PT18) mentioned some minor layout suggestions, but the main consensus was that the intervention was easy to download and use, had a nice layout, and contained text in clear language. The functionality of previous answers (eg, preoperative answers on valuable activities to do after surgery) being repeated in later modules was appreciated by the participants:

Nice to read what I had filled in previously and to see, on a later date that I was doing better when I answered a similar question [PT3]

As the intervention only provided general information and no personal feedback from a professional, participants were asked whether they had missed this. Several participants (5/17, 29%) indicated that they did miss this personal feedback during the intervention or in general during recovery. This preferred feedback ranged from the ability to click on a help button (PT15) or the possibility of contacting someone for more information (PT1) to reaching out to someone guiding the intervention to reduce the amount of psychological content (PT11 and PT16) or feeling insecure and missing a contact person to consult (PT7).

Owing to an error, participants did not correctly receive a notification every time a new weekly module was available. Participants (6/17, 35%) indicated that receiving a notification
made them use the intervention more. They would have liked to receive the reminder every week, stating that they would have used the intervention more if they had.

Content of the Intervention
During the interview, all separate components of the intervention (Multimedia Appendices 1 and 2) were discussed with the participants. These elements were clustered as preparation and peer support, hospital information, and positive psychology and ACT content.

Preparation and Peer Support
Almost all participants (14/17, 82%) appreciated the videos of the nursing ward and the surgery room. These participants stated that they found watching the videos informative and comforting. One of the participants who did not appreciate the videos (PT11) stated the following:

It might be comforting for little children, but as an adult you know what a hospital looks like and what will happen. [PT11]

The practical tips from previous patients were valued by most participants (11/17, 65%). In total, 24% (4/17) of the participants did not see or remember this element, and 12% (2/17) of the participants would have liked to see more tips. The module describing the fluctuating recovery process was not remembered by several participants (8/17, 47%) but was valued greatly by those who did remember it:

I could really recognize myself in the text, having had pain for so long myself. [PT14]

It really resembled the reality. [PT18]

Participants reacted with mixed feelings to the quotes of previous patients. In total, 12% (2/17) of the participants (PT1 and PT16) stated that it might benefit other people but it was not for them. Several participants (7/17, 41%) could not remember the module (PT2, PT8, and PT15) or did not find it interesting (PT4, PT9, PT11, and PT13). These participants stated that they wanted to do things their own way and were not interested in the stories of other patients. Other participants (8/17, 47%) found the quotes valuable, recognizable, and comforting.

Hospital Information
The information on the spinal condition and on the surgical procedure was appreciated by the participants. Some stated that it was clearer than what the physician had told them or that it was nice to be able to read and reread it in the intervention, whereas other participants stated that it had no added value to them as the information resembled that of the paper brochure. The information on physical therapy did not match reality for some participants (3/17, 18%), but the discharge criteria were useful to see before surgery. In total, 18% (3/17) of the participants (PT1, PT4, and PT9) thought that the physical guidelines in the intervention had no added value as they were also available in the paper brochure. Another 18% (3/17) of the participants (PT11, PT15, and PT18) liked the fact that the physical guidelines were in the intervention but would have preferred them to be more specific or elaborate. The other participants (11/17, 65%) found the physical guidelines in the intervention pleasant, useful, and supportive. Most participants (11/17, 65%) appreciated the pain medication module. The other participants (6/17, 35%) liked the fact that the physical guidelines were in the intervention but would have preferred them to be more specific or elaborate. The other participants (11/17, 65%) found the physical guidelines in the intervention pleasant, useful, and supportive.

PP and ACT Content
The PP and ACT content in the intervention evoked the strongest opinions in the participants (Table 3). Several participants (5/17, 29%) stated that the amount of psychological content in the intervention was too high and made them less engaged with the intervention (like or use it less):

The amount of psychological content was too much for me. I wasn’t raised that way and it doesn’t appeal to me. It almost made me stop using the intervention all together. [PT17]
Table 3. Participants’ opinions on the positive psychology and acceptance and commitment therapy content of the intervention ranked in order of most to least appreciated exercise (n=17).

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Appreciated, n (%)</th>
<th>Not appreciated, n (%)</th>
<th>Not remembered, n (%)</th>
<th>Quote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emotion quadrant</td>
<td>13 (76)</td>
<td>4 (24)</td>
<td>0 (0)</td>
<td>“It was good to be made aware of how I was feeling at that moment.” [PT5]</td>
</tr>
<tr>
<td>What makes the surgery worthwhile?</td>
<td>13 (76)</td>
<td>4 (24)</td>
<td>0 (0)</td>
<td>“A really good question. A question I would have liked to have asked myself two years ago, because this is what it is really about, in the end. Why to choose for surgery or not.” [PT12]</td>
</tr>
<tr>
<td>Formulating positive statements</td>
<td>12 (71)</td>
<td>5 (29)</td>
<td>0 (0)</td>
<td>“It made me start a conversation with my spouse about my recovery process.” [PT6]</td>
</tr>
<tr>
<td>Mindful enjoying</td>
<td>11 (65)</td>
<td>3 (18)</td>
<td>3 (18)</td>
<td>“Walking is something you do without thinking about it. And before surgery it was terrible, walking. So becoming aware of the fact that walking is possible without pain...It’s good to become aware of these things.” [PT6]</td>
</tr>
<tr>
<td>What do you desire to do (again) after surgery?</td>
<td>11 (65)</td>
<td>4 (24)</td>
<td>2 (12)</td>
<td>“It made me melancholic or sad, because it were things that I had not been able to do for a very long time.” [PT7]</td>
</tr>
<tr>
<td>3 positive things</td>
<td>9 (53)</td>
<td>5 (29)</td>
<td>3 (18)</td>
<td>“Yes, I absolutely loved it. I was busy in the kitchen, cooking. I was able to do that all by myself again. It was really a great day.” [PT11]</td>
</tr>
<tr>
<td>Wish question</td>
<td>8 (47)</td>
<td>7 (41)</td>
<td>2 (12)</td>
<td>“It got me out of the moment when I was in pain and helped me to see what made it worthwhile.” [PT7]</td>
</tr>
<tr>
<td>Mindfulness exercises</td>
<td>6 (35)</td>
<td>5 (29)</td>
<td>0 (0)</td>
<td>“It has really helped me, especially in the beginning. Further along during recovery I didn’t need it anymore.” [PT7]</td>
</tr>
<tr>
<td>Uploading a valuable picture</td>
<td>6 (35)</td>
<td>5 (29)</td>
<td>6 (35)</td>
<td>“I could upload a picture of my grandchildren, but I don’t see the use or need for such an exercise.” [PT5]</td>
</tr>
<tr>
<td>Video of how pain works</td>
<td>4 (24)</td>
<td>5 (29)</td>
<td>8 (47)</td>
<td>“That really was an eye-opener for me. It all fell into place.” [PT12]</td>
</tr>
<tr>
<td>Write a letter to yourself</td>
<td>2 (12)</td>
<td>15 (88)</td>
<td>0 (0)</td>
<td>“I really did not see the use of this exercise.” [PT9]</td>
</tr>
</tbody>
</table>

The potential relaxing effect of the mindfulness exercises was not experienced by 12% (2/17) of the participants (PT3 and PT9) even though they did do the exercises. Other participants (4/17, 24%) stated that the exercises were not for them as they already knew the techniques (eg, from yoga) but suggested that they might benefit other patients. The least appreciated exercise was writing a letter to themselves to support themselves in difficult times during recovery. Exercises focusing on values and positive statements were the most appreciated by the participants. Table 3 provides a more detailed overview.

Suggestions for Improvement

Overview

The participants also gave some suggestions for improvement. For instance, PT1, PT2, PT6, and PT15 stated that the information in the intervention was sometimes too elaborate and could have been more concise. Some suggestions about the usability of the intervention were mentioned (eg, on where to position the menu of the intervention or to enlarge the font size for older participants). Several participants would have liked the intervention to have less psychological content (eg, PT4, PT12, and PT15) or at least have the option to influence the amount of these exercises or content while using the intervention (eg, PT17). Other points of interest were the need for more specific physical guidelines (eg, PT11), more physical (therapy) exercises (PT18), and information about returning to work (PT17).

Engagement With the Intervention

Engagement with the intervention is described through the topics usage, reasons for not using, and number of modules, as discussed in the interviews, together with scores on the TWEETS and log data.

In the interviews, some participants (3/17, 18%) mentioned that they mainly used the intervention before surgery, and PT1 even used it almost daily before surgery. Other participants primarily used the intervention after surgery (eg, “almost daily to check the physical guidelines” [PT2 and PT11]), especially the first few weeks after surgery, when they were more restricted in movements and were in bed for most of the day (eg, PT9, PT12, PT14, and PT17). These participants stated that, as their recovery—and, therefore, their mobility—progressed, their use of the intervention declined.
I noticed that the more I recovered, the less I used the app. [PT9]

Other participants used the intervention both before and after surgery (eg, PT18 and PT3):

I must have read the entire app at least 10 times, I only missed one weekly module because I got COVID. [PT3]

Interestingly, all participants stated that the fact that they received a new module every week helped them use the intervention more often, as did viewing the other content of the intervention while filling out the weekly module.

Reasons for not using the intervention (more) were the lack of automatic notifications or reminders (eg, PT16), feeling no pain postoperatively, feeling that pain management was the main focus of the intervention (PT11), or lack of interest in the (large amount of) psychological content (eg, PT9, PT11, PT16, and PT17).

Most participants (12/17, 71%) felt that the number of modules was correct. The other 29% (5/17) of the participants stated that fewer modules would have sufficed, especially in the later weeks after surgery.

The mean total score of all participants in the intervention group on the TWEETS was 2.6 out of a possible 4 (SD 0.7), which is more than the average answering option of the scale (65% of the maximum score). The highest-scoring items on the TWEETS were “Strength Back is easy to use” and “Strength Back helps me to get more insight into my preparation before surgery and recovery after surgery” with an average score of 2.9 and 3.1, respectively. The lowest-scoring items on the TWEETS were “Strength Back is part of my daily routine” with an average score of 1.9 and “Strength Back fits me as a person” with an average score of 2.1.

A total of 15 weekly modules were offered to the patients undergoing spinal fusion (6/17, 35%). Log data of these patients showed that the average number of weekly modules completed was 10.2 out of 15 (SD 3.9; Table 4). The least completed weekly modules were POST-6, POST-7, and POST-12 (2/6, 33% in all cases). All patients undergoing spinal fusion completed the weekly POST-2 and POST-3 modules.

Table 4. Overview of completed weekly modules per participant—patients undergoing spinal fusion (N=6).

<table>
<thead>
<tr>
<th>Participant number</th>
<th>PRE</th>
<th>POST</th>
<th>Total, n (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>PT3</td>
<td>✓</td>
<td>✓</td>
<td>11 (73)</td>
</tr>
<tr>
<td>PT5</td>
<td>✓</td>
<td>✓</td>
<td>15 (100)</td>
</tr>
<tr>
<td>PT8</td>
<td>✓</td>
<td>✓</td>
<td>5 (33)</td>
</tr>
<tr>
<td>PT9</td>
<td>✓</td>
<td>✓</td>
<td>12 (80)</td>
</tr>
<tr>
<td>PT12</td>
<td>✓</td>
<td>✓</td>
<td>12 (80)</td>
</tr>
<tr>
<td>PT17</td>
<td>✓</td>
<td>✓</td>
<td>6 (40)</td>
</tr>
<tr>
<td>Total, n (%)<sup>b</sup></td>
<td>5 (83)</td>
<td>4 (67)</td>
<td>4 (67)</td>
</tr>
</tbody>
</table>

^aTotal number of completed modules; maximum of 15 modules.

^bTotal number of participant completing a specific module; maximum of 6 participants.

^cN/A: not applicable.

Several participants kept using the intervention until the last weekly module. The least completed weekly modules for patients undergoing decompression surgery were the PRE-module 3 (5/11, 45%) and POST-module 5 (4/11, 36%), whereas the PRE-module 1 was completed by almost all participants (10/11, 91%; Table 5).
Table 5. Overview of completed weekly modules per participant—patients undergoing decompression surgery (N=11).

<table>
<thead>
<tr>
<th>Participant number</th>
<th>PRE</th>
<th>POST</th>
<th>Total completed, n (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>PT1</td>
<td>✓</td>
<td>✓</td>
<td>9 (100)</td>
</tr>
<tr>
<td>PT2</td>
<td>✓</td>
<td>✓</td>
<td>4 (44)</td>
</tr>
<tr>
<td>PT4</td>
<td>✓</td>
<td>✓</td>
<td>8 (89)</td>
</tr>
<tr>
<td>PT6</td>
<td>✓</td>
<td>✓</td>
<td>3 (33)</td>
</tr>
<tr>
<td>PT7</td>
<td>✓</td>
<td>✓</td>
<td>7 (78)</td>
</tr>
<tr>
<td>PT10</td>
<td>✓</td>
<td>✓</td>
<td>6 (67)</td>
</tr>
<tr>
<td>PT11</td>
<td>✓</td>
<td>✓</td>
<td>8 (89)</td>
</tr>
<tr>
<td>PT13</td>
<td>✓</td>
<td>✓</td>
<td>4 (44)</td>
</tr>
<tr>
<td>PT14</td>
<td>✓</td>
<td>✓</td>
<td>8 (89)</td>
</tr>
<tr>
<td>PT15</td>
<td>✓</td>
<td>✓</td>
<td>2 (22)</td>
</tr>
<tr>
<td>PT16</td>
<td>✓</td>
<td>✓</td>
<td>4 (44)</td>
</tr>
<tr>
<td>Total respondents, n (%)<sup>b</sup></td>
<td>10 (91)</td>
<td>9 (82)</td>
<td>5 (45)</td>
</tr>
</tbody>
</table>

^aTotal number of completed modules; maximum of 9 modules.

^bTotal number of participant completing a specific module; maximum of 11 participants.

^cN/A: not applicable.

Discussion

Principal Findings

The objective of this study was 3-fold: to explore the potential benefits for patients undergoing spinal surgery of the digital ACT and PPI Strength Back (RQ 1), explore the feasibility of a future RCT in terms of recruitment and dropout (RQ 2), and assess the acceptability of Strength Back by patients undergoing spinal surgery (RQ 3).

The focus of this study was to explore the potential benefits of the intervention and not to determine its effectiveness. The latter should be the focus of a future RCT including more participants and allowing for more robust statements. Nonetheless, this study does show that Strength Back seems promising as pain intensity decreased more in the intervention group than in the control group and emotional well-being as well as overall well-being improved in the intervention group but not in the control group (RQ 1). This is in line with research in patients with chronic pain showing beneficial effects of ACT and PPIs compared with a control group on pain intensity and emotional functioning [65,66], in the treatment of chronic pain [30-35], in improving affect and functional ability after knee surgery [21], and in quicker cessation of pain and opioid use in veterans after orthopedic surgery [36].

Contrary to our expectations, no differences between the groups were observed in improvement in pain interference and psychological flexibility. Possibly, the effect of the ACT and PPI content shows through in the significantly larger decline in pain intensity in the intervention group. It is reasonable to suppose that a decline in pain intensity also helps prevent pain interference with daily activities and improve psychological flexibility. However, the sample size may have been too small, or the effect of surgery may have been so massive that these effects did not appear in this study. Moreover, in the intervention group as well as the control group, valued living and psychological and social well-being were almost the same at the pre- and posttest time points. The amount of ACT and PPI content may have been too small to influence valued living or psychological and social well-being. It is also possible that these effects only occur in the longer term. Living more accordingly to one’s values, resulting in enhanced psychological and social well-being, may only start later in the recovery process and not immediately after surgery.

In terms of recruitment and dropout rates, a future RCT seems feasible (RQ 2). A large proportion of the approached patients wanted to participate in the study, and once they started with the intervention, almost all participants used it until the posttest assessment and final interview. The willingness to use a digital health intervention seemed quite high in our study compared with in previous studies [67,68]. It seems that, once participants started the intervention in this study, they saw its value and kept using it over a longer period. In line with other research [69], patients stated that receiving notifications improved their use of the intervention. The dropout numbers found in this study were low and correspond to those of a recent RCT on PP exercises for patients with chronic pain [66]. However, to recruit a larger number of participants for an RCT, multiple hospitals or orthopedic centers should be included as there are a limited number of potential participants in a single facility. Interestingly, almost all the patients who were approached and did not want to participate in our study were female. Perhaps this group needs more attention during recruitment to explore their reasons for not wanting to participate.

The vast majority of participants in the intervention group were positive about the digital health intervention and would recommend it to future patients (RQ 3). The scores on the
TWEETS indicated a moderate to above-moderate engagement with the intervention, which was in line with log data showing that participants completed on average approximately 75% of the available weekly modules. The information modules containing videos of the surgery room and nursing ward, practical tips from previous patients, physical activity guidelines, and pain medication were the most appreciated by participants. The PP and ACT content evoked the strongest opinions in the participants, with a small minority indicating that they preferred no psychological content at all, whereas most of the participants saw added value in a number of specific exercises. Although the development of the intervention was based on a participatory design process and most participants appreciated the content, others felt that the focus was too much on mental health, whereas they experienced their issues as physical. At the same time, to increase the effectiveness of the intervention on the ACT- and PP-related outcomes, even more psychoeducation and exercises might be needed. In addition, the current version of Strength Back focuses on certain elements of ACT, whereas it may be necessary to address all ACT processes to achieve optimal benefits for patients undergoing spinal surgery. Indeed, Carr et al [29] found in their meta-analysis of PPIs that interventions were more effective when they contained multiple PPIs, were of longer duration, and contained more sessions. This poses a dilemma for the further development of this intervention. Information on the psychological content of the intervention before inclusion and tailoring the content and dose of the intervention to individual patients might further improve acceptance of the PP exercises, as suggested by previous research [70-72]. In a future version of Strength Back, patients could be introduced with a few of the most appreciated ACT and PP exercises and from there on be given the possibility to determine the amount of ACT and PP content themselves. This might reduce the potential effect on some patients who opt for a lower amount of ACT and PP content but might increase overall adherence to and acceptance of the intervention.

Our results question what the most appropriate primary outcome is for a subsequent RCT. As the intervention is based on ACT and PP, it makes sense to choose a measure corresponding to this content, such as well-being or pain interference. However, our feasibility study shows that the intervention and control groups particularly differed in improvement in pain intensity, which is an outcome that is important to patients but not directly targeted within the intervention. Perhaps targeting both pain intensity and increasing well-being might be the best option for sustainable resilience in patients undergoing spinal surgery. This is in line with previous research proposing a balanced, complaint and strength-oriented approach to reach sustainable mental health [73].

Second, attention should be paid to what the appropriate process measurements in a subsequent RCT would have to be. On the basis of the content and assumed working mechanism of this intervention, we propose psychological flexibility as a process measure in a future RCT. Nonetheless, we would not advise using the PIPS to measure this concept as we found low reliability in our study. Other studies have found similar issues with this scale and have recommended only interpreting it as a whole [74] or only using the avoidance subscale [75]. In addition, the PIPS measures inflexibility and not flexibility, which does not fit as well with the focus of ACT and PP. Perhaps the Personalized Psychological Flexibility Index [76] is a suitable alternative measure of psychological flexibility for a future RCT. In addition, we propose pain interference as a process measure in a future RCT, measured using the MPI subscale of pain interference. In addition, the ELS might be used in a future RCT to measure engaged living, including valued living.

The final discussion point relates to the length and timing of the intervention. The current intervention starts before surgery and lasts 6 to 12 weeks after surgery (for decompression and spinal fusion surgery, respectively). This was regarded positively by most participants, and from both the interviews and log data, we learned that most participants were already active in the intervention before surgery. This focus on pre- and postoperative timing is supported by a recent systematic review on perioperative psychological interventions that found that interventions (also) delivered after surgery tended to be more effective for postsurgical pain and disability than interventions delivered (only) before surgery [77]. It seems that, while waiting for surgery, patients are quite eager to learn more about the surgery and rehabilitation afterward. An intervention such as Strength Back can take advantage of these “teachable moments” [39] by providing content that participants may not have found or chosen themselves but that is known to help them in the recovery process. The duration of our intervention is in line with a recent review on perioperative psychological interventions for patients undergoing spinal fusion showing a reduction in pain and disability starting from immediately after surgery up to 3 months [78].

Strengths of This Study

The high recruitment and relatively low dropout rates were a strength of this study. In addition, qualitative data were collected through individual interviews with almost all the users of the intervention. This yielded crucial information on the value of the intervention and the reasons behind participants’ use of the intervention. Using multiple methods combining qualitative data with log data and quantitative data retrieved through the questionnaires provided a complete picture of the value of the intervention. Therefore, this research design is close to a convergent parallel mixed methods design [79]. Another strength of this study is the underlying theoretical framework of the intervention. As this is lacking for many digital health interventions, there are calls for further research to enhance the scope and use of this technology [80,81]. The design of digital interventions should be anchored in behavior change theories to optimally engage patients in the intervention and behavior change [82,83]. In a review of 85 studies using the Behavior Change Support Systems by Oinas-Kukkonen and Harjumaa [82], less than half referred to theories of behavior change, but those that did were uniformly successful [84]. Clearly, a sound theoretical base for digital health interventions is warranted for optimal behavior change and effectiveness.

Limitations of This Study

As all participants underwent surgery, which is an intervention by itself, we wanted to see in this study what the digital health
intervention might add to the effect of the surgery. An exploratory design regarding outcome measures was used to see which potential benefits could be achieved for patients undergoing spinal surgery. Owing to this exploratory design and the small sample size, more and larger effects of the intervention were not expected to be found in this study. In addition, no correction for multiple testing was performed in this study, and thus, conclusions can only be drawn with caution. Therefore, the preliminary findings of this study need to be replicated in a future larger study.

This study used a historic control group. A future RCT should use a design in which the intervention group and the control group run parallel in time and participants are assigned to them randomly.

In this study, log data were gathered on modules in which participants answered questions. For a future study, we would recommend registering every log-in and activity of users instead of only activities in which participants provide answers. We now see certain patterns in the use of participants, but more data are needed to further investigate use of and engagement with the intervention.

Previous hospital experience, preexisting comorbidities, patient technology readiness, health literacy, and ward factors such as staffing were not measured in this study. As these factors may influence how prepared patients are and what their capability is to engage with the intervention, they should be considered in a future RCT.

Conclusions
This study shows that combining ACT and PP in a digital health intervention is promising for patients undergoing spinal surgery as the content was accepted by most of the participants and (larger) improvements in pain intensity and well-being were found in the intervention group. A digital intervention for patients undergoing (spinal) surgery can use teachable moments, when patients are open to learning more about the surgery and rehabilitation afterward, to also provide patients with content that they may not have found or chosen themselves but that is known to help them in the recovery process.

Acknowledgments
The authors would like to thank all the participating patients as well as Leonie Olde Keizer-Spanjer, Leid de Vries-Gerritsen, Mark Havinga, and their colleagues at (Orthopedic Centre Oost Nederland) OCON for their help and contribution during this study. This work was supported by an educational grant from the Dutch Ministry of Education, Culture, and Science provided by the Saxion University of Applied Sciences. The funding body had no role in the study design; collection, analysis, or interpretation of the data; writing of the report; or the decision to submit the paper for publication.

Data Availability
The data sets analyzed during this study are not publicly available because of the exploratory and mixed methods nature of the study, but they are available from the corresponding author upon reasonable request.

Authors' Contributions
AVDH was responsible for conceptualization, methodology, validation, formal analysis (qualitative and quantitative data), investigation, data curation, visualization, writing—original draft, project administration, and funding acquisition. LM was responsible for validation, formal analysis (qualitative data), investigation, and writing—review and editing. HVOM was responsible for validation, formal analysis (quantitative data), and writing—review and editing. JSJ was responsible for conceptualization, methodology, writing—review and editing, and supervision. EB was responsible for conceptualization, methodology, validation, writing—review and editing, supervision, and funding acquisition. KMGS was responsible for conceptualization, methodology, validation, writing—review and editing, supervision, and funding acquisition. SK was responsible for conceptualization, methodology, validation, formal analysis, writing—original draft, writing—review and editing, and supervision.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Content of the Strength Back digital health intervention for patients undergoing spinal surgery.
[DOCX File, 21 KB - formative_v81e54600_app1.docx]

Multimedia Appendix 2
Overview of positive psychology and acceptance and commitment therapy exercises in the weekly modules of the Strength Back digital health intervention for patients undergoing spinal surgery.
[DOCX File, 22 KB - formative_v81e54600_app2.docx]

Multimedia Appendix 3
Overview of the timing of the positive psychological acceptance and commitment therapy exercises in the weekly modules of the Strength Back digital health intervention for patients undergoing spinal surgery.

References

75. Barke A, Riecke J, Rief W, Glombiewski JA. The Psychological Inflexibility in Pain Scale (PIPS) - validation, factor structure and comparison to the Chronic Pain Acceptance Questionnaire (CPAQ) and other validated measures in German chronic back pain patients. BMC Musculoskelet Disord 2015 Jul 28;16:171 [FREE Full text] [doi: 10.1186/s12891-015-0641-z] [Medline: 26215038]

Abbreviations

ACT: acceptance and commitment therapy
ELS: Engaged Living Scale
HADS: Hospital Anxiety and Depression Scale
MPI: Multidimensional Pain Inventory
NRS: Numeric Pain Rating Scale
PIPS: Psychological Inflexibility in Pain Scale
Web-Based Screening, Brief Intervention, and Referral to Treatment for Traumatic Stress and Alcohol Misuse Among Survivors of Sexual Assault and Intimate Partner Violence: Usability and Acceptability Study

Christine Hahn¹, PhD; Emily Tilstra-Ferrell¹, PhD; Selime Salim¹, PhD; Nada Goodrum², PhD; Alyssa Rheingold³, PhD; Amanda K Gilmore³, PhD; Sara Barber⁴, MA; Angela Moreland¹, PhD

¹Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
²Department of Psychology, University of South Carolina, Charleston, SC, United States
³Department of Health Policy & Behavioral Sciences, Georgia State University, Atlanta, GA, United States
⁴South Carolina Coalition Against Domestic Violence and Sexual Assault, Columbia, SC, United States

Abstract

Background: Recent survivors of intimate partner violence (IPV) and sexual assault (SA) are at a high risk for traumatic stress and alcohol misuse. IPV and SA survivors face barriers to services for traumatic stress and alcohol misuse and have low service utilization rates. One way to increase access to services for this population is the use of web-based screening, brief intervention, and referral to treatment (SBIRT), an evidence-informed approach for early identification of traumatic stress and alcohol and drug misuse and connecting individuals to treatment.

Objective: This study aims to assess the usability and acceptability of a web-based SBIRT called CHAT (Choices For Your Health After Trauma) tailored to address traumatic stress and alcohol misuse following past-year IPV, SA, or both.

Methods: Phase 1 involved gathering feedback about usability and acceptability from focus groups with victim service professionals (22/52, 42%) and interviews with past-year survivors of IPV, SA, or both (13/52, 25%). Phase 2 involved gathering feedback about the acceptability of an adapted version of CHAT in an additional sample of recent survivors (17/52, 33%). Survey data on history of IPV and SA, posttraumatic stress disorder symptoms, alcohol and drug use, and service use were collected from survivors in both phases to characterize the samples. Qualitative content and thematic analyses of the interviews and focus group data were conducted using a coding template analysis comprising 6 a priori themes (usability, visual design, user engagement, content, therapeutic persuasiveness, and therapeutic alliance).

Results: Six themes emerged during the focus groups and interviews related to CHAT: usability, visual design, user engagement, content, therapeutic persuasiveness, and therapeutic alliance. Phase 1 providers and survivors viewed CHAT as acceptable, easy to understand, and helpful. Participants reported that the intervention could facilitate higher engagement in this population as the web-based modality is anonymous, easily accessible, and brief. Participants offered helpful suggestions for improving CHAT by updating images, increasing content personalization, reducing text, and making users aware that the intervention is confidential. The recommendations of phase 1 participants were incorporated into CHAT. Phase 2 survivors viewed the revised intervention and found it highly acceptable (mean 4.1 out of 5, SD 1.29). A total of 4 themes encapsulated participant’s favorite aspects of CHAT: (1) content and features, (2) accessible and easy to use, (3) education, and (4) personalization. Six survivors denied disliking any aspect. The themes on recommended changes included content and features, brevity, personalization, and language access. Participants provided dissemination recommendations.
Conclusions: Overall, CHAT was acceptable among victim service professionals and survivors. Positive reactions to CHAT show promise for future research investigating the efficacy and potential benefit of CHAT when integrated into services for people with traumatic stress and alcohol misuse after recent IPV and SA.

KEYWORDS
screening, brief intervention, and referral to treatment; brief intervention; intimate partner violence; sexual assault; substance use; alcohol use; mobile phone

Introduction

Background

Sexual assault (SA) and intimate partner violence (IPV) remain major public health concerns for both women and men. In the United States, an estimated 43.6% of women and 24.8% of men experience some form of contact sexual violence in their lifetime, and 21.3% of women and 2.6% of men report being a survivor of attempted or completed rape [1]. Furthermore, more than one-third of women (36.4%) and men (33.6%) in the United States have experienced contact sexual violence, physical violence, or stalking by an intimate partner [1]. Individuals whose gender identity is transgender, gender queer, or nonbinary experience higher rates of SA and IPV compared with cisgender individuals [2,3]. Survivors of IPV and SA are at high risk for traumatic stress symptoms and alcohol misuse (ie, >4 drinks per day or 14 drinks per week for men and >3 drinks per day or 7 drinks per week for women) [4-6]. Although evidence-based treatments for traumatic stress and alcohol misuse exist, survivors of recent IPV and SA receive related services at low rates [7-9] and face many barriers to engaging in treatment [10]. Screening, brief intervention, and referral to treatment (SBIRT) is an evidence-based approach for identifying and reducing alcohol misuse, and web-based delivery shows promise in decreasing alcohol use, addressing barriers, and increasing treatment engagement among survivors of IPV and SA [11,12]. This study examined the usability of a web-based SBIRT intervention for traumatic stress and alcohol misuse tailored to recent survivors of IPV and SA.

Traumatic Stress and Related Alcohol Misuse Among Survivors of IPV and SA

Survivors of IPV and SA are at a high risk for traumatic stress and alcohol misuse [4-6]. A nationally representative study revealed that, when accounting for sociodemographic factors such as age, ethnicity, marital status, income, and education, people who experienced IPV in the past year were more likely to have problematic use of alcohol in the past year [13]. The effect of recent IPV remained for alcohol use even when accounting for past-year mood and anxiety disorders, lifetime personality disorders, and IPV perpetration. Among a national sample of lifetime female survivors of SA, the current prevalence of alcohol use disorder (AUD) ranged from 5% to 20% depending on the type of rape (ie, forced rape, incapacitated rape, or combined type) [6], and more than half of the people who receive an SA medical forensic examination report alcohol misuse [14]. Symptoms of traumatic stress are also high after recent IPV and SA, with 57% of the lifetime survivors of IPV [15] and 74% of the past-month survivors of SA [5] reporting traumatic stress symptoms.

Self-medication or using alcohol to cope with trauma-related distress is theorized to account for high rates of alcohol misuse among survivors of IPV and SA [16-18]. Existing research supports the self-medication hypothesis among survivors of IPV and SA. The negative sequelae of exposure to IPV and SA, including posttraumatic stress disorder (PTSD), depression, and other mental health difficulties, serve as mediating factors linking IPV and SA to increased alcohol use, consistent with the self-medication hypothesis [16,17]. Qualitative data also point to alcohol use as means to cope with the emotional distress of IPV [19]. Similarly, longitudinal evidence suggests that traumatic stress symptoms predict subsequent increase in alcohol use [16].

Aligned with the self-medication hypothesis, the motivational model of alcohol use suggests that people make decisions about drinking based on the expected positive consequences (eg, avoid negative affect) and negative consequences (eg, approach positive affect) [20]. Among people with SA or IPV histories, negative affect from trauma-related distress increases the likelihood of using alcohol to cope [21,22]. Thus, increasing motivation to reduce alcohol use and teaching alternative coping strategies to use during periods of negative affect, particularly in response to trauma-related distress, recently after exposure to IPV and SA could have a substantial impact on decreasing the development and sustainment of alcohol misuse. In addition, the empowerment model, which is often applied to interventions for survivors of SA, highlights the importance of aligning a survivor’s long-term goals with their behaviors in trauma recovery [23]. Therefore, aligned with the empowerment process model, empowering survivors by giving power and control over choices about their health [24] and helping survivors to identify how their values align with their current alcohol use could enhance the likelihood of reducing use after IPV and SA.

Mental Health Service Use for Traumatic Stress and Alcohol Misuse Among Survivors of IPV and SA

Interventions that are effective at addressing traumatic stress and co-occurring alcohol misuse are available. For example, COPE (Concurrent Treatment of PTSD and Substance Use Disorders Using Prolonged Exposure) [25] and Seeking Safety [26] are effective integrated treatments for addressing traumatic stress and alcohol misuse simultaneously. In addition, traumatic stress treatment alone (ie, Cognitive Processing Therapy) has been shown to reduce alcohol and other substance use among survivors of SA [27]. Finally, a psychoeducational video shown to survivors of recent SA during a forensic examination was...
found to be an effective early intervention to reduce the risk of alcohol misuse among recent survivors with a previous history of exposure to SA [28]. Although numerous treatment options for traumatic stress and alcohol misuse are available, survivors of IPV and SA face barriers to accessing treatment for these conditions. Despite high rates of alcohol misuse among survivors, it is estimated that only 20%-35% of survivors seek medical, psychiatric, or mental health services [29,30], with an even smaller subset seeking treatment for substance use disorders. People in abusive partner relationships may be hindered by their partner from seeking treatment, may not have independent financial resources, or may be subject to exacerbated violence or retribution for seeking treatment [31]. Furthermore, survivors of IPV and SA may not disclose their alcohol misuse to service providers as active substance use can be an exclusion criterion for accessing safe housing in zero-tolerance IPV shelters [19].

Additional barriers to treatment engagement include the lack of available mental health and substance use resources in the community, limited transportation particularly for rural residents, stigma associated with behavioral health service utilization, immigration status for undocumented survivors, and a lack of culturally sensitive services [19,31]. Stigma and discrimination associated with intersecting racial, ethnic, gender, and sexual identities can create additional obstacles to receiving care [32,33]. Furthermore, research highlights the potential for further harm when survivors seek services owing to limited training and awareness of IPV and SA-related issues among staff, which may increase fears that survivors will not be believed or will be blamed for the IPV or SA [10]. Staff in substance use disorder treatment settings report feeling ill-equipped to identify and address IPV [30]. In addition, even for survivors who access victim-related services, treatment services for alcohol misuse are typically not integrated within these settings [34], leaving a critical care gap for survivors of IPV and SA with alcohol misuse.

Use of SBIRT for Alcohol and Drug Misuse

SBIRT is a public health–based approach to screening for alcohol misuse, assessing the level of risk, and providing an appropriate intervention that can include no intervention, brief motivational interviewing, or referral to AUD treatment [35]. SBIRT has been effectively extended to address the screening, intervention, and referral to treatment needs of survivors of trauma with alcohol misuse, known as T-SBIRT. This approach has shown promise in elevating the rates of referrals for survivors of trauma experiencing alcohol misuse to specialized mental health services [36]. SBIRT has shown efficacy in reducing alcohol use and has been applied across a range of clinical and community settings, including primary care clinics, emergency departments, outpatient medical settings, and employee assistance programs [37].

In recent years, there has been an increase in efforts to adapt SBIRT to electronic health technologies (eg, computer, web, and phone based) because it may increase disclosure of alcohol misuse owing to increased comfort and decrease provider barriers to screening and providing brief interventions [38]. However, limited research has examined web-based SBIRT as an early intervention among survivors of IPV and SA. A randomized controlled trial of a web-based SBIRT intervention for identifying and addressing IPV among women who used substances, Women Initiating New Goals of Safety, was developed and increased survivors’ likelihood of seeking follow-up care for IPV and reduced drug use at a 3-month follow-up [12]. Similarly, Brief Spousal Assault Form for the Evaluation of Risk [11], a web-based intervention for co-occurring substance use and IPV was feasible and acceptable among a sample of women presenting to the emergency department. Safe and Healthy Experiences is another computerized SBIRT intervention specific for alcohol misuse delivered on an iPad tailored for female Veterans who have lifetime experiences of SA seeking services in primary care [39]. Results from these studies support that SBIRT delivered via eHealth is feasible and acceptable; however, preliminary efficacy results on substance use outcomes were mixed.

These existing interventions are limited because they are not specific to recent IPV, SA, alcohol misuse, or traumatic stress. SBIRT may be advantageous in the months after IPV and SA because this is a period when there is a risk for patterns of alcohol misuse to intensify because of elevated trauma-related stress [5]. SBIRT was developed for use in medical settings, such as emergency care centers, clinics, and primary care, with the intention of reaching people who are at a high risk for alcohol misuse. However, most recent survivors, who would be appropriate for SBIRT given the high-risk period for alcohol misuse, do not receive related medical care [14,40,41]. Although some limited studies have identified early interventions for survivors of recent IPV and SA, there is no consensus on the best approach to early intervention following recent SA and IPV [42]. To address gaps in service provision and research, we developed a web-based SBIRT called CHAT (Choices For Your Health After Trauma), which is compatible for use on a smartphone and, therefore, has the potential to be disseminated in a variety of community settings and on social media, increasing reach. CHAT is tailored for recent survivors of IPV and SA and provides SBIRT primarily for alcohol misuse, while also screening and offering psychoeducation about traumatic stress and drug use, which commonly co-occur with alcohol misuse among survivors of SA [14,41]. The SBIRT intervention is based on the motivational model of alcohol use [20], self-medication theory [16], and the empowerment model [23] and applies principles of motivational interviewing to reduce motives to drink alcohol and increase valued living, particularly when experiencing negative affect, which are theoretical and empirically supported intervention targets for alcohol misuse. CHAT follows the core SBIRT model components. First, the intervention provides psychoeducation about alcohol use specific to IPV and SA. Next, screening and assessment of alcohol misuse, drug use, and traumatic stress symptoms are completed by administering brief validated, standardized measures (ie, Alcohol Use Disorder Identification Test–Concise, AUDIT-C [43], item 2 from the National Institute of Drug Abuse–Modified Assist [44], and the Primary Care PTSD Screen for DSM-5 [45]). Next, participants receive personalized feedback about trauma symptoms, coping with traumatic stress symptoms (eg, self-blame and nightmares), drinking quantity, recommended drinking limits, money spent on alcohol and drugs, and the
impact of drinking and drugs on recovery from IPV and SA adapted from the National Institute on Alcohol Abuse and Alcoholism Rethinking Drinking [46]. In addition, brief exercises aimed at increasing motivation and healthy alternatives to alcohol use, including value identification, readiness to change ruler, goal setting, identification of coping skills, and social support adapted from Brief Spousal Assault Form for the Evaluation of Risk [11]. Finally, a personalized printable plan with all psychoeducational information and personalized goals created when using the intervention is provided with numerous referrals in the local community for traumatic stress or alcohol or drug-related services. Throughout the intervention, users are provided feedback on their responses and provided tailored recommendations for care (eg, “Your reactions are common and natural responses to violence. If these reactions are bothering you, it might be time to try therapy or other services. We will provide you with a list of providers at the end.”).

Empowerment is an essential component of recovery after IPV and SA as increased agency and control over one’s choices is associated with improved mental health outcomes [47]. Therefore, throughout the intervention, empowering imagery and themes are integrated. For example, aligned with the empowerment process model, the intervention emphasizes the importance of personal choice and autonomy and places survivors in control by providing options (eg, choices for personal goals that range from abstinence to a smaller reduction amount or choosing to not set a goal). Furthermore, by providing the intervention in a web-based format, the intervention is survivor led and self-paced, which is intended to enhance feelings of agency and choice throughout the intervention.

This Study

IPV and SA remain highly prevalent [1-3]. Unfortunately, there is a strong bidirectional association of IPV and SA with traumatic stress and alcohol misuse [4-6]. However, many survivors of IPV and SA do not engage in the services needed for traumatic stress and alcohol misuse because of several access barriers. One avenue for addressing barriers and increasing access for this population is the use of web-based SBIRT for traumatic stress and alcohol misuse, which incorporates tailored IPV and SA content. The purpose of this study was to examine the usability and acceptability of a web-based SBIRT intervention (CHAT) designed for recent survivors of IPV and SA, adapted from previous web-based SBIRT applications [11], among a sample of victim service professionals (VSPs) within IPV and SA advocacy centers and survivors of IPV and SA. Usability testing for web-based interventions refers to formal evaluation for use within the population of interest to identify methods to receive feedback that improves the design and addresses errors in the application [48]. Testing usability of eHealth interventions using a combination of quantitative and qualitative methods is crucial for obtaining adequate feedback to improve and tailor web-based interventions for use in specific populations [48].

This study had 2 phases. The first phase involved refining CHAT by making iterative adaptations based on feedback about usability and acceptability gathered from VSPs in focus groups and people who have experienced recent IPV and SA in individual interviews. After making iterative adaptations to the intervention, the second phase was to gather feedback about the acceptability of the adapted version of CHAT in an additional sample of people who have experienced recent IPV and SA.

Methods

Ethical Considerations

The institutional review board (IRB) at the Medical University of South Carolina (Pro00080368) approved this study. Informed consent was obtained from all survivors before their participation in the study. A Waiver of Consent was issued by the IRB for VSPs, and all VSPs were made aware of the risk to loss of confidentiality before participating in focus groups. The provider and survivor participants in both phases were assigned a random ID to protect their anonymity. Providers were compensated with US $25 Amazon gift cards for participation in focus groups. Phase 1 survivors received US $75 Amazon gift cards as compensation. Phase 2 survivors received US $50 Amazon gift cards as compensation. Transcriptions of focus groups were deidentified and stored in a secure location.

SBIRT Development and Design

CHAT was created on REDCap (Research Electronic Data Capture; Vanderbilt University) [49], a secure application for creating and managing surveys, that is hosted on the Medical University of South Carolina server. We chose to create CHAT on REDCap for several reasons, including low cost, accessibility among several institutions, ability to limit privileges to potential future providers and agencies interested in the intervention to help maintain the confidentiality of users, interventions that allow for personalizing intervention content such as branching and piping logic, ability to embed videos and photos into content, and available distribution methods (eg, links, URL codes, and email). We also selected REDCap because it is compatible with use on smartphones, which is a promising approach for reaching survivors of IPV and SA given the numerous barriers to accessing formal services [50].

CHAT was based on previous SBIRT interventions for survivors of traumatic events, including an SBIRT intervention for IPV and alcohol use (Brief Spousal Assault Form for the Evaluation of Risk [11] and National Institute on Alcohol Abuse and Alcoholism Rethinking Drinking [46]). The SBIRT intervention is based on the motivational model of alcohol use [20], self-medication theory [16], and the empowerment model [23] and applies principles of motivational interviewing to reduce motives to drink alcohol and increase valued living, particularly when experiencing negative affect, which are theoretical and empirically supported intervention targets for alcohol misuse. The SBIRT intervention, “CHAT” involves (1) psychoeducation about alcohol and drug use specific to IPV and SA; (2) screening and assessment for alcohol misuse, AUD, drug use, and traumatic stress symptoms using standardized measures; (3) personalized feedback about drinking quantity, recommended drinking limits, impact of drinking and drugs on recovery from SA, and money spent on alcohol and drugs; and (4) brief exercises aimed at increasing motivation and healthy alternatives to alcohol use, including value identification, readiness to change ruler, goal setting, identification of coping skills, and...
social support. The intervention concludes with a personalized plan and lists national and local referrals to IPV, SA, and substance use agencies. It takes approximately 20 minutes to complete. At the beginning of CHAT, users select whether they would like to view female, male, or gender nonbinary content, and branching logic provides images and drinking recommendations tailored to their preference. Piping logic is also used to personalize the intervention in several ways, including providing feedback about the quantity of the user’s alcohol use compared with recommended limits, relating the user’s reasons for drinking to potential long-term consequences (eg, “Making healthy choices about alcohol use helps me to take good care of my children”; response options range from strongly disagree to strongly agree), integrating the top values the user initially selects into motivational exercises at the end of the intervention, and providing them with a plan at the end that summarizes their selections throughout the intervention.

Phase 1: Refinement

Participants

Phase 1 included 2 samples. The first sample comprised adult VSPs (22/52, 42%) who were employed at 1 of 2 local nonprofit agencies that serve people who have experienced IPV and SA and completed semistructured focus groups. The VSPs included master-level clinical providers (9/22, 41%) and victim advocates who did not have a degree in counseling (12/22, 55%); educational level of 1 participant was unknown. The average experience of working with survivors of IPV and SA was 6.95 (SD 8.4) years and ranged from 4 months to 30 years. The second sample included adult survivors of past-year SA or physical IPV who drank alcohol (13/52, 25%).

Alcohol use was selected as an inclusion criterion because it is the most common substance used among survivors of IPV and SA and is the primary focus of intervention; however, participants could also use drugs as CHAT includes content on drug use after IPV and SA. Participants who used drugs were also permitted to be included in the sample; however, this was not required. The survivors were asked to complete a web-based screener to determine study eligibility. There were no exclusion criteria other than inability or unwillingness of the participant to provide informed consent.

Procedure

For phase 1, a total of 3 focus groups with 7 to 8 VSPs in each group took place at the agencies. Study flyers and email invitations to participate in the study were sent to all staff at an SA advocacy program and a nonprofit for IPV. VSPs completed a paper-based survey before the interview about demographics and experiences of treating survivors as well as an additional survey completed after the interview focused on assessing perceptions of CHAT. Survey data were entered into REDCap by 2 research assistants and checked for accuracy. Overall, 69.2% (9/13) of the survivors were recruited from the community using social media advertisements and flyers to participate. Four participants were recruited from an outpatient mental health clinic that served survivors of crime. After obtaining informed consent, interviews with survivors (13/52, 25%) were conducted in person in an outpatient clinic that served survivors of crime or over a secure web-based video platform. Baseline surveys administered on REDCap were completed before conducting the interview, and a brief second survey was administered after the interview to assess perceptions of CHAT. The interviewers and focus group moderators included 1 clinical psychologist and 2 master-level service providers.

Quantitative Measures

Demographics and Background Information

Self-report surveys were used to collect demographic and background variables from survivors and VSPs. VSPs were asked to indicate the percentage of time per week they provided services related to alcohol misuse and the type of evidence-based treatment they provided (ie, “Do you provide any of the following evidence-based treatments for PTSD and/or alcohol use in your agency?”).

Mental Health Self-Report Measures

Phase 1 survivors were administered measures of exposure to IPV and SA, traumatic stress symptoms, alcohol and drug use, and treatment utilization.

SA Victimization and IPV

SA exposure among phase 1 survivors was assessed using 2 items adapted from the Trauma History Questionnaire [50]: “Has anyone ever made you have intercourse or oral or anal sex against your will?” and “Has anyone ever touched private parts of your body, or made you touch theirs, under force or threat?” Physical IPV exposure among phase 1 and 2 survivors was assessed using an item from the HITS (Hurt, Insult, Threaten, Scream Measure; eg, Has a partner ever physically hurt you?) [51]. Survivors were asked to indicate if the IPV and SA events occurred in the lifetime or the past year.

1. PTSD Checklist for DSM-5 (PCL-5) [52]: The traumatic stress symptoms associated with the most distressing incident of IPV or SA among phase 1 survivors were assessed using the 20-item PCL-5. Items are rated on a 5-point scale ranging from 0 (not at all) to 4 (extremely), and a total score is created with higher scores indicating greater traumatic stress symptoms. PCL-5 scores >31 indicated clinically relevant traumatic stress symptoms [43]. Internal consistency was excellent for the PCL-5 for the phase 1 sample (Cronbach α=.92).

2. AUDIT-C [43]: The 3-item AUDIT-C was used to identify alcohol misuse. Survivors responded to 3-items about alcohol use (eg, How often do you have a drink containing alcohol?), with response options ranging from 0 (ie, never/no) to 4 (ie, ≥4 times a week/daily or almost daily). Responses were summed, and scores of ≥3 for women and ≥4 for men were used to indicate alcohol misuse. Internal consistency was good for the AUDIT-C for the phase 1 sample (Cronbach α=.91).

Qualitative Measures

To assess factors related to perceptions of the intervention created to address substance misuse, a semistructured focus group discussion and qualitative interview was developed. The term interpersonal violence was defined (ie, “Interpersonal violence included physical, sexual, and emotional abuse.”)
violence means physical or sexual violence such as sexual assault or domestic violence.”) for survivors and VSP participants at the start of the interview. Next, the web-based SBIRT intervention was described to survivors and VSP participants as a self-help intervention for substance use after IPV and SA.

The interview consisted of asking survivors and VSP participants up to 4 questions as they looked at each content area of the intervention, including “What are you thinking about as you look at this page?,” “What do you like about this page?,” “What don’t you like about this page?,” and “How can we make this more interesting?” Issues related to errors in branching, options, or presentation of content were noted by the interviewer. Follow-up probes were used to clarify information provided whenever necessary. After viewing CHAT, survivors and VSP participants were asked about usefulness (eg, “Do you think this would be useful, why or why not?”; “Do you think other people with use it, why or why not?”; and “Is this something that you think people should be told about shortly after they speak to a provider about experiencing interpersonal violence, why or why not?”).

Data Analysis

Descriptive statistics were computed (ie, mean and SD) for participant age, PCL-5 scores, and AUDIT-C scores. Rates of past-year and lifetime exposure to IPV and SA, race, gender, and previous service use were aggregated. Clinical psychologists with expertise in qualitative methods conducted qualitative analyses.

The interviews and focus group discussions were audio-recorded and transcribed verbatim by an IRB-approved third party. Data from qualitative interviews were organized using coding template analysis [53], applying thematic and content analysis approaches using 6 themes outlined by Baumel et al [54] to examine the quality and usability of mobile apps, including usability, visual design, user engagement, content, therapeutic persuasiveness, and therapeutic alliance. Using a deductive coding strategy not only allowed for examination of themes proposed in existing usability literature but also allowed for the development of inductive categories that emerged through coding [55].

A clinical psychologist with expertise in substance use intervention development and qualitative analysis examined each line of the transcripts and mapped participant’s responses to the coding template [55,56]. More than 1 code could be applied. A second coder, who was also a clinical psychologist with expertise in interpersonal violence and substance use, reviewed responses against the coding template. Interrater discrepancies were discussed and resolved by 2 independent coders. NVivo software (version 11.1; QSR International) was used for data management and analysis. Demographics and background variables were computed using SPSS (version 27; IBM Corp [57]).

Results from formative usability trials have shown that 80% of usability issues can be identified with a sample of at least 5 people involved in usability testing [58,59]. Thus, this study was suitably powered to assess usability.

Phase 2: Acceptability

Participants

The phase 2 sample included adult survivors of past-year SA, physical IPV, or both who drank alcohol (17/52, 33%). The inclusion criteria for the survivor sample of phase 2 mirrored the inclusion criteria for survivors in phase 1.

Procedures

For phase 2, survivors were recruited through Facebook advertisements (14/17, 82%), through Craigslist advertisements (1/17, 6%), and from an outpatient clinic that served survivors of crime (2/17, 12%). Phase 2 survivors completed the study remotely using their own devices to complete study surveys and CHAT. They completed a baseline survey on REDCap comprising questions about demographics, IPV and SA exposure, and alcohol use. Next, the survivors completed CHAT and a survey on acceptability of the intervention.

Measures

Demographics, descriptive characteristics, exposure to IPV and SA, alcohol misuse, and traumatic stress were gathered from phase 2 survivors using the same validated measures as in phase 1 (PCL-5, AUDIT-C, HITS, and Trauma History Questionnaire items). Internal consistency was fair for the AUDIT-C (Cronbach α=.70) and PTSD Checklist (Cronbach α=.80) in the phase 2 sample. Phase 2 survivors were also asked whether they needed care for past-year SA, IPV, alcohol use, or drug use (eg, In the past year, did you ever want or need help with any alcohol use concerns?). The following additional measures were collected from phase 2 participants:

1. **Daily Drinking Questionnaire** [60]: The Daily Drinking Questionnaire was used to assess the number of standard drinks consumed per week by phase 2 survivors (eg, “On a typical Monday, I had _ drinks.”). The mean weekly drinks were calculated.

2. **Acceptability of Intervention Measure** [61]: After viewing the web-based SBIRT intervention, phase 2 survivors completed the 4-item Acceptability of Intervention Measure. Items were rated on a 5-point scale (1=completely disagree to 5=completely agree) and averaged. Phase 2 survivors were also asked open-ended survey questions about most-liked aspects of the intervention, least-liked aspects of the intervention, and dissemination recommendations (ie, What would be the best way to inform people about the tool?).

Analyses

Descriptive statistics were computed in the same way as in phase 1. Participant’s brief responses to open-ended questions were coded into representative themes and subthemes. Previous research indicates that a sample size of at least 10 should suffice for acceptability testing [62]. Therefore, the phase 2 sample size had sufficient power to assess acceptability.
Results

Phase 1: Refinement Qualitative Results

Participant Demographics

VSPs (22/52, 42%) experience working with survivors ranged from 4 months to 30 years, and the average experience of working with survivors was 6.95 (SD 8.4) years. Two-thirds (13/22, 59%) of the participants had experience providing services to individuals engaging in alcohol misuse. Table 1 shows the demographics of the VSPs. Overall, 85% (11/13) of the phase 1 survivors reported lifetime exposure to both SA and physical IPV, and 31% (4/13) of the survivors reported both types of exposure in the past year. Phase 1 survivors reported a high prevalence of alcohol misuse, traumatic stress symptoms, and previous substance use and mental health service use (Table 1).

| Table 1. Demographics, trauma history, and mental health information for phase 1 victim service professionals (VSPs), phase 1 survivors, and phase 2 survivors (N=52). |
|---|---|---|
| **Age (y), mean (SD)** | 42 (14.8) | 33 (10.6) | 28 (9.2) |
| **Gender, n (%)** | | | |
| Women | _b | 11 (85) | 16 (94) |
| Men | — | 2 (15) | 1 (6) |
| Unknown | — | 0 | 0 |
| **Race, n (%)** | | | |
| Black | 7 (32) | 2 (15) | 3 (18) |
| Hispanic | 1 (4) | 4 (31) | 2 (12) |
| White | 14 (64) | 11 (85) | 13 (76) |
| Did not disclose | 0 | 0 | 1 (6) |
| **PCL-5d, mean (SD)** | | | |
| Above cutoff, n (%) | — | 10 (76.9) | 17 (100) |
| **AUDIT-C5, mean (SD)** | | | |
| Above cutoff, n (%) | — | 11 (84.6) | 15 (88) |
| **Drug use endorsed, n (%)** | | | |
| Marijuana use endorsed | — | 6 (46.3) | — |
| Previous SUD6 service use | — | 4 (30.8) | — |
| Previous trauma-focused service use | — | 8 (61.5) | — |
| Past-year SUD service use | — | — | 6 (35.29) |
| Past-year mental health service use | — | — | 14 (82.35) |

aSurvivors: Survivors of intimate partner violence, sexual assault, or both.

bnot available.

cSome individuals identified as both Hispanic and White.

dPCL-5: Posttraumatic Stress Disorder Checklist for DSM-5.

eAUDIT-C: Alcohol Use Disorder Identification Test–Concise.

fAUDIT-C data was missing for 1 participant in phase 2.

gSUD: substance use disorder.

In the qualitative analysis, content from the focus groups and interviews was organized according to the evaluation categories for usability testing proposed by Baumel et al [48]. Results from survivors and providers are described within each theme (Table 2) and revised components of the intervention following these results are presented inTextbox 1.
Table 2. Themes and number of survivors and focus groups that discussed each theme (N=35).

<table>
<thead>
<tr>
<th>Theme</th>
<th>Survivors (n=13), n (%)</th>
<th>Focus groups (out of 3 groups; n=22), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability</td>
<td>11 (85)</td>
<td>2 (67)</td>
</tr>
<tr>
<td>Visual design</td>
<td>13 (100)</td>
<td>3 (100)</td>
</tr>
<tr>
<td>User engagement</td>
<td>10 (77)</td>
<td>3 (100)</td>
</tr>
<tr>
<td>Content</td>
<td>12 (92)</td>
<td>3 (100)</td>
</tr>
<tr>
<td>Therapeutic persuasiveness</td>
<td>11 (85)</td>
<td>3 (100)</td>
</tr>
<tr>
<td>Therapeutic alliance</td>
<td>10 (77)</td>
<td>3 (100)</td>
</tr>
</tbody>
</table>

Textbox 1. Revised intervention components.

<table>
<thead>
<tr>
<th>Intervention component and contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychoeducation</td>
</tr>
<tr>
<td>• Rates of sexual assault (SA) and alcohol misuse</td>
</tr>
<tr>
<td>• Destigmatizing alcohol-involved SA</td>
</tr>
<tr>
<td>• Breathing exercise</td>
</tr>
<tr>
<td>Assessment</td>
</tr>
<tr>
<td>• Values identification</td>
</tr>
<tr>
<td>• Alcohol use screener (Alcohol Use Disorder Identification Test–Concise)</td>
</tr>
<tr>
<td>• Past 3-month Drug Use Screener (National Institute of Drug Abuse Assist)</td>
</tr>
<tr>
<td>• Weekly money spent on alcohol and drugs</td>
</tr>
<tr>
<td>• Posttraumatic stress disorder primary care screener</td>
</tr>
<tr>
<td>• Identifying reasons for not drinking</td>
</tr>
<tr>
<td>Personalized feedback</td>
</tr>
<tr>
<td>• Link between drinking to cope and alcohol-related problems</td>
</tr>
<tr>
<td>• Recommended drinking limits</td>
</tr>
<tr>
<td>• Comparison of money spent on alcohol and drugs with cost of common items</td>
</tr>
<tr>
<td>Motivational interviewing</td>
</tr>
<tr>
<td>• Readiness rulers with value exercise</td>
</tr>
<tr>
<td>• Goal setting</td>
</tr>
<tr>
<td>• Coping skills identification</td>
</tr>
<tr>
<td>• Identifying how values relate to alcohol use</td>
</tr>
<tr>
<td>• Identify social support and coping strategies to use when having urges to drink</td>
</tr>
<tr>
<td>Summary and plan</td>
</tr>
<tr>
<td>• Summary of feedback and recommended treatment referrals as indicated</td>
</tr>
</tbody>
</table>

Theme 1: Usability

Both survivors and providers rated the usability of CHAT very positively overall. VSPs and survivors reported that the intervention was easy to use and self-explanatory, stating it was “straight to the point,” “short, sweet, and user friendly,” and “clear and concise.” A survivor specifically mentioned the following:

It's easy to navigate, easy to understand, and it's pretty much just a self-analysis.

VSPs provided similar feedback about the usability of CHAT, with VSPs from 2 of the 3 focus groups stating positive comments. Specifically, VSPs made comments that CHAT was “very easy to understand.”
Theme 2: Visual Design

This theme describes the appearance of CHAT, including observations about the text, font size, pictures, colors, and look and feel of the activities within the application. Survivors discussed visual design slightly more than the providers, as visual design was the most discussed topic for survivors and the second most discussed topic (after content) for providers. Survivors made comments about visual design such as follows:

> I like this. It kinda breaks down everything and gives you visual points to look at. Like you immediately go to what you are experiencing.

> I really like the diagram because it shows what you are doing...Drinking more than the single day limit.

Another survivor described the follows:

> Picture is good too. Shows people drinking, gathering like it’s fun in a way, but reading those kind of wake up calls. Like it’s not really fun.

In all VSP focus groups, the visual design of the intervention was discussed, with most comments about visual design being positive and only a few constructive recommendations about changes to visual design. Specifically, some comments that VSPs made on visual design included “I think the graphic is good,” “I like the colors,” and “I like this whole visual.” Recommendations about visual design included changing font sizes or adding pictures.

Theme 3: User Engagement

The theme, user engagement, describes how well the participant was able to engage with the application including how interactive and personalized the VSP and survivor participants felt that the intervention was. This included the users’ ability to engage in the activities embedded within the intervention and how often they felt that they would engage. More than half of the survivors commented on their potential engagement in the intervention, stating that they would be very willing to engage and that they would engage in the intervention often. Specifically, 1 survivor noted, “I would definitely use it. It’s easier.” Survivors also mentioned that they would be more likely to engage with the intervention than with people personally, as 1 survivor stated the following:

> I feel like people would use it because it’d help. You may not even want to talk to your close people who are close to you. You may just want to be anonymous, and you probably would feel more comfortable with this.

Another survivor said the following:

> I guess it would be the ideal thing for somebody who didn’t want to come in and talk to anybody, and just wanna do it on...just looking for information on their own, looking for help on their own.

In all the focus groups of VSPs, it was discussed that the survivors they worked with, as well as themselves, would engage with the intervention very frequently and that the intervention was easy to use. Specifically, 1 provider stated the following:

> Wow! You can pull it up on any device. I would literally use this all the time [with different clients]

Another provider stated the following:

> It’s so great that the whole thing takes about 15 minutes. That’s nice.

In describing ways that a patient might engage, a provider stated the following:

> That’s really cool that you are able to print this off and put it on your fridge.

Theme 4: Content

This theme described the quality and appropriateness of the content presented during the intervention. All survivors and VSPs in each focus group made positive statements about the intervention, stating that it was rooted in evidence, appropriate for themselves or their patients, and contained information that was often relevant to patients. Specifically, 1 survivor stated the following:

> I think it really hits all the points. It even has God in here which is really something people don’t mention.

Another survivor stated the following:

> I actually wouldn’t add anything. I love this information.

Throughout the interviews, survivors made comments about specific content that they found relevant or that they thought was important to include. In addition, VSPs discussed mostly positive comments about the content, with just a few suggestions or examples to add. For example, 1 VSP noted the strength in content by stating the following:

> I love how there are so many short snippets. I thought those were all pretty powerful points.

Another VSP discussed the comprehensive nature of the content by mentioning the following:

> I like that it is fairly all-encompassing. I like that there are positive reasons and then neutral reasons.

Theme 5: Therapeutic Persuasiveness

Therapeutic persuasiveness included comments regarding the suitability of the content provided by the intervention and whether the provider or survivor would see the content as useful in addressing substance use or trauma. All survivors described therapeutic persuasiveness and noted that the intervention would be useful in addressing these topics among survivors. Specifically, 1 survivor noted the following:

> It makes you evaluate your life and see things that you maybe didn’t see while you were drinking or why you were drinking. It makes you really think about what you are doing.

Another survivor described the following:

> It helps you realize how much you really are drinking. I like it because it lets you know that [values] are important and can be accomplished by changing your substance use problem. This helps you put things into
All VSP focus groups included positive comments about the therapeutic persuasiveness of the intervention. One provider described the therapeutic persuasiveness of the intervention by stating the following:

I really like the statistics. They kind of make you feel like you’re not the only one experiencing this. It’s okay that this is happening, it’s not something to be ashamed of, it’s something to deal with. It speaks to a lot of people.

Theme 6: Therapeutic Alliance

This theme describes whether users thought that the intervention provided support that could mirror, support, and take the place of human contact provided by an actual provider as well as whether they saw it as a resource to bolster ongoing therapy. Approximately half of the survivors discussed the therapeutic alliance gained by the intervention, with 1 survivor stating the following:

I love that the tool is helpful but also shows the places you can go to for actual, real help with your problems. Both are good.

VSPs in all 3 focus groups discussed this theme and described that the intervention would support the concepts taught in therapy and would serve as a useful addition to therapy. Specifically, 1 provider mentioned the following:

They can share the information without anybody knowing their situation. Because most times they really don’t want to share. So to be able to use this, versus verbalize it and have somebody judge them, that is much easier.

In addition, each VSP focus group discussed information on how to integrate the intervention into practice. For example, 1 VSP mentioned the following:

We get so many clients that have alcohol and drug histories. It’ll take several sessions for me to really get them to a point where they realize they are drinking/using drugs too much. But I feel like this [intervention] can get them to that point a lot quicker, where they’re more likely to at least think about [substance use] earlier on.

VSPs in each focus group also reported that this intervention would be helpful throughout treatment and potentially at different points for different clients. For example, 1 VSP described the following:

Honestly, it depends on what stage of change the client is in. Like, if they’re like “I’m not an addict or an alcoholic, I’m not going to listen to anything you say.”

Another VSP stated the following:

This [intervention] could be part of the assessment process. They come in for their mental health assessment, ask them to get there 20 minutes early to fill this out just to screen, then give them the tool to use if needed.

Revised Intervention Content Aligned With Results

Iterative changes to CHAT were made based on user experience during usability testing including fixing errors noted with logic branching, piping, spelling, grammar, increasing font size, and changing images based on participant suggestions. In addition, a page encouraging user to take 5 slow breaths was added based on VSPs’ suggestion that content may increase stress and adding breathing could help users engage with the intervention. Furthermore, options for gender-based content and language around recommended drinking limits and sex were adapted based on VSP recommendations. Gender-based content options were to view images of women, men, or nonbinary content. Drinking limits were explained based on biological sex because current recommended drinking limits are based on sex assigned at birth owing to physiological differences that change the way alcohol affects the body (eg, For people assigned female sex at birth, drinking more than 3 drinks on any day or 7 drinks per week is “at risk” or “heavy drinking.”).

Phase 2: Demographics and Qualitative Results Regarding Acceptability

Overview

Phase 2 survivors also reported high levels of alcohol use, traumatic stress symptoms, and previous substance use and mental health services use. In phase 2, 59% (10/17) of the survivors reported both types of exposure in their lifetime, and one quarter (4/17, 23%) of the survivors endorsed past-year SA and physical IPV. Phase 2 survivors endorsed high levels of alcohol use with an average AUDIT-C score of 6.88. More than one-third (6/17, 35%) of phase 2 survivors self-reported needing care for alcohol misuse, and one-quarter (4/17, 23%) self-reported needing care for drug use. A total of 17 survivors recruited through social media and the community viewed the web-based intervention and completed surveys. On a 5-point scale (1=completely disagree to 5=completely agree), survivor participants agreed that the intervention was, on average, acceptable (mean 4.1, SD 1.29).

Qualitative Results

Phase 2 participants’ (17/52, 32%) favorite aspects of the intervention were encapsulated by 4 themes: content and features (6/17, 35%) such as encouraging messages, focus on reduction rather than abstinence, and ability to download a personal plan; accessibility and ease of use (6/17, 35%); psychosocial education (3/17, 18%) about alcohol, IPV, and SA; and personalization (4/17, 23%). For example, 1 survivor wrote the following:

I liked that it made a personalized plan just for me whereas in a group setting it’s geared more towards everyone.

Approximately one-third (6/17, 35%) of the survivors denied disliking any aspect of the intervention. The aspects of CHAT that could be improved were encapsulated by 3 themes: content and features (6/17, 35%), including increased focus on broader mental health, describing prevalence of IPV and SA in a more sensitive manner, increased brevity, and increased...
personalization; connection to immediate services (4/17, 23%); and language access (1/17, 6%). Survivors suggested 5 dissemination methods: calls, emails, and texts (2/17, 12%), podcasts (1/17, 6%), posters and flyers (1/17, 6%), social media advertisements (10/17, 58%), websites (2/17, 12%), and referrals when seeking help for IPV, SA, or substance use (3/17, 18%). For example, 1 participant offered the following suggestion for dissemination:

If anyone entering a behavioral center, drug rehabilitation center, or any mental health office showing signs of sexual trauma or substance use, the tool could be suggested to them by a medical health provider and implemented through a computer at home or cell phone. If they don’t have a cellphone or computer at home, hopefully counties can provide the computer for them to complete the tool. Social media is always a good way to promote tools to help mental health, advertisements are how I found Better Help. I have found a lot of online counseling through Google as well.

Revised Intervention Content Based on Phase 2 Results

Iterative changes were made to the web-based intervention in response to participants’ suggestions (Figure 1). Images of the intervention were also updated, and images that were displayed were updated to match the preferred gender-based content selected by users at the beginning of the intervention. To improve brevity, we removed assessment of AUD symptoms and focused solely on alcohol misuse with the 3-item AUDIT-C [55]. In traditional SBIRT, the full AUDIT is used and people who report risky alcohol misuse receive brief intervention focused on reducing use and people who report more severe levels of alcohol misuse are referred to treatment. We decided to provide brief intervention and referral options based on alcohol misuse (rather than the full AUDIT) because the time after recent IPV and SA is a high-risk time for the escalation of substance use, and this minimizes the chance that we fail to provide treatment options to someone who could benefit from AUD treatment. In addition, to further personalize the intervention content to users’ drinking goals, additional content on harm reduction skills was added. Increased personalized feedback based on symptoms endorsed on the Primary Care PTSD Screen for DSM-5 was increased in the revised intervention to further interweave education about self-medication and links between alcohol misuse and traumatic stress. Finally, additional piping was used to incorporate more information about the users’ values as they relate to alcohol use. Words were also reduced for length and increased readability.

Figure 1. Final images of CHAT (Choices For Your Health After Trauma).
Discussion

Primary Findings

Survivors of IPV and SA report elevated rates of traumatic stress and alcohol misuse [4-6]. However, <35% recent survivors of IPV and SA seek services for mental health [29,30]. Higher levels of substance use are related to lower service use among survivors of recent trauma [7], which points to the importance of providing services for alcohol use recently after trauma exposure. This is especially important among recent survivors of IPV and SA given their uniquely high risk for alcohol misuse and drug use in this acute period [14,41]. We conducted an investigation of the usability and acceptability of a web-based SBIRT intervention for traumatic stress and alcohol misuse following an IPV and SA. Focus groups were conducted with IPV and SA service providers, and interviews were conducted with recent survivors of with the aim of gathering recommendations to improve the usability of the intervention. Following adaptation of the intervention based on this feedback, we examined the acceptability of the adapted SBIRT intervention in a second sample of recent survivors. Overall, our results suggested that service providers and recent survivors viewed the intervention as acceptable (as indicated by high ratings on the acceptability of intervention measure) and beneficial to integrate into services (as indicated by the qualitative feedback provided by VSPs and survivors). In this study, both providers and survivors commented that the intervention content was useful in addressing traumatic stress and alcohol misuse, including evaluating one’s alcohol use patterns in the context of trauma. It may be important to address the link between IPV and SA-related distress and alcohol use [16]. Although historically IPV and SA and alcohol use services have operated independently, our findings are in line with recommendations for integrated approaches that address trauma and alcohol misuse simultaneously [36,63,64].

Individuals with greater alcohol misuse may be less likely to seek care following IPV and SA [65], indicating the importance of addressing substance use–related barriers to service access. Some survivors in this study indicated that they would be more likely to engage with the intervention (rather than speak with another person) given the anonymity. This suggests that delivery of a self-directed, web-based SBIRT intervention may help circumvent common service barriers among survivors of IPV and SA related to shame, fear of the consequences of disclosure, and anticipatory stigma [10,66]. In addition, web-based delivery of SBIRT may help with barriers in clinical settings related to time constraints and staff availability [67] given the ease of access (ie, ability to use on any device), empowering content (eg, self-paced and power to decide what goals to select), and brevity (<20 minutes to complete) of the intervention. It will be important for future research to determine whether web-based SBIRT can help address some of these barriers to care if adopted into practice and to determine the most effective way of integrating this intervention into existing clinical practice.

It is imperative that the SBIRT intervention is delivered in a nonstigmatizing manner given the highly stigmatized nature of IPV, SA [68], and alcohol misuse [69]. Indeed, several survivors and providers in this study discussed the importance of ensuring that the content of the intervention is nonjudgmental and culturally sensitive. The high acceptability ratings of CHAT and previous SBIRT research [11] indicate that integrated interventions for trauma and substance misuse following recent IPV and SA can be delivered in a sensitive manner to address the important treatment needs of this population. It is crucial for future researchers developing interventions for survivors of IPV and SA to be mindful of using inclusive and nonjudgmental language. This may include explicit statements that the survivor is not to blame for the violence they have experienced, destigmatizing alcohol-involved SA by sharing statistics about the common nature of this type of assault, etc. Useful suggestions regarding design and content were made by the service providers and survivors that inform preferences for the web-based SBIRT intervention following IPV and SA focused on alcohol misuse. The intervention was modified in accordance with this feedback. The results underscored the significance of conducting usability testing with both providers and survivors. Neglecting to consider user perspectives and preferences is a key factor contributing to the low utilization of mobile mental health interventions [70,71]. Consistent with previous research indicating that privacy is an important concern for users of mobile health interventions [71], several providers and survivors in this study also discussed the need to ensure confidentiality. Therefore, interventions developed for this population may benefit from explicitly addressing issues of confidentiality. Finally, we examined the acceptability of the revised version of CHAT in a sample of recent survivors in phase 2 of this study. Research supports the effectiveness of early interventions in reducing trauma-related symptoms [72]; however, accessing health care in the weeks following assault is uncommon [73]. The current web-based SBIRT intervention was developed to address gaps in service provision after recent IPV and SA when risk for alcohol misuse and drug use is heightened owing to trauma-related distress. Survivors found the revised intervention to be acceptable and noted the personalization of the intervention as being important. Personalized care and delivery of individualized treatments is a priority for mental health care to improve the effectiveness of evidence-based interventions [74]. CHAT is an example of how a web-based SBIRT intervention can be personalized, and future research is needed to evaluate the effectiveness of this intervention in addressing needs related to substance use following IPV and SA. Taken together, our results support that, in general, recent survivors find it acceptable to be provided web-based SBIRT.

Strengths and Limitations

The strengths of this investigation include gathering feedback from both VSPs and survivors that informed revisions of the web-based SBIRT intervention. Furthermore, the intervention included multiple substances, and the motivational content of the SBIRT intervention was personalized to refer to the substances reported by survivors (ie, alcohol use, drug use, or substance use for use of both alcohol and drugs). The high acceptability of the web-based SBIRT intervention in this study encourages examination of its efficacy in future research trials. However, the sample sizes across the 2 study phases were small, and future research with larger sample sizes is needed to test
the feasibility of the web-based intervention. Inclusion criteria for survivors in this study were based on reporting of alcohol misuse. Overall, 69% (9/13) of phase 1 survivors reported drug use, with the most common drug used being marijuana (6/13, 46%). Thus, it is possible that the findings would differ if survivors were recruited based on reporting drug use. Future research should compare the acceptability, feasibility, and efficacy of the interventions among survivors reporting various types of substance use. In addition, future research may test whether allowing people who use multiple substances to select a specific substance for the motivational interventions as in the Brief Spousal Assault Form for the Evaluation of Risk intervention in the study by Choo et al [11] would improve outcomes. It is also important to note that SBIRT is most effective for people who report alcohol misuse but do not yet meet the criteria for AUD. As many recent survivors of IPV and SA may already meet the AUD or PTSD criteria before the recent trauma, the SBIRT intervention may have limited utility as an early intervention for those individuals.

It should be noted that most survivors included in this study identified as female individuals, White, and not Hispanic, and sexual orientation information was not collected. Individuals with marginalized identities based on race, ethnicity, sexual orientation, gender, and immigration status experience additional barriers to accessing services following IPV and SA [10,33,73]. In addition, experiences of identity-based stigma and discrimination may contribute to substance use [75] and exacerbate trauma-related distress following interpersonal violence [76]. Thus, it is imperative for future research to examine the usability, acceptability, and efficacy of the SBIRT intervention among survivors with diverse intersecting identities and consider experiences of stigma and marginalization. Furthermore, given the gender differences in female and male exposure to IPV and SA as well as barriers to service engagement, this study should be replicated with greater male representation in the sample. Participation was also limited to English-speaking individuals as the intervention was only available in English, and future revisions of the intervention should address language as a barrier.

All service professionals included in this study provided services within IPV and SA advocacy centers, and therefore, future evaluation of the intervention should be conducted with providers in other types of settings (eg, primary care, emergency department, and law enforcement). Furthermore, although the intervention was not designed for a single outlet for dissemination, a strength of the intervention is its flexible nature and ability to be disseminated in a wide range of settings (ie, advocacy centers, web-based forums, and emergency departments). This may increase the reach of the intervention to survivors of IPV and SA in the community who do not seek formal services. The findings in phase 2 provided crucial data to inform better ways to reach survivors and disseminate the SBIRT intervention broadly on social media and should be tested for effectiveness in reaching survivors with lower levels of service use in future research. Further implementation research is needed to understand how to integrate CHAT into specific settings (eg, rape advocacy centers). Although SBIRT is intended to be an early intervention that addresses traumatic stress symptoms and alcohol misuse and prevents the development of AUD or PTSD (because the recent months following IPV and SA are a heightened period of risk for AUD and PTSD to develop), it is possible that CHAT could also benefit nonrecent survivors. Future research should expand to apply the SBIRT model to nonrecent survivors and examine whether a broader application is beneficial. In addition, the web-based intervention had limitations in terms of referral and treatment owing to its brevity. Moreover, it lacked a follow-up mechanism to assist individuals in overcoming barriers to accessing referrals. This is a weakness of the current SBIRT intervention. Future research should focus on increasing the robustness of the referral to treatment component. Adding a support person to follow-up with intervention users might be an important component for future development [77]. For example, 1 survivor participant recommended, “Definitely follow ups, like a call, would help.”

In conclusion, results from this study among VSPs and survivors support the usability and acceptability of a web-based SBIRT intervention designed for traumatic stress and alcohol misuse among recent survivors of IPV and SA. Future research should include samples with greater diversity and address the barriers related to English language proficiency. Overall, the findings encourage future examinations of the efficacy of web-based SBIRT for co-occurring traumatic stress and alcohol misuse among recent survivors.

Data Availability
Deidentified quantitative data sets generated or analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

References

https://formative.jmir.org/2024/1/e49557 Jmir Form Res 2024 | vol. 8 | e49557 | p.1994 (page number not for citation purposes)

47. Gillmore AK, Leone RM, Hahn CK, Oesterle DW, Davidson TM. Barriers to accessing mental health care after a sexual assault medical forensic examination. J Forensic Nurs 2021;17(2):84-92 [FREE Full text] [Medline: 33756526]

Abbreviations

AUD: alcohol use disorder
AUDIT-C: Alcohol Use Disorder Identification Test–Concise
CHAT: Choices For Your Health After Trauma
COPE: Concurrent Treatment of PTSD and Substance Use Disorders Using Prolonged Exposure
HITS: Hurt, Insult, Threaten, Scream Measure
IPV: intimate partner violence
IRB: institutional review board
PCL-5: Posttraumatic Stress Disorder Checklist for DSM-5
PTSD: posttraumatic stress disorder
SBIRT: Research Electronic Data Capture
SA: sexual assault
VSP: victim service professional
Web-Based Screening, Brief Intervention, and Referral to Treatment for Traumatic Stress and Alcohol Misuse Among Survivors of Sexual Assault and Intimate Partner Violence: Usability and Acceptability Study

JMIR Form Res 2024;8:e49557
URL: https://formative.jmir.org/2024/1/e49557
doi:10.2196/49557
PMID:38358791

©Christine Hahn, Emily Tilstra-Ferrell, Selime Salim, Nada Goodrum, Alyssa Rheingold, Amanda K Gilmore, Sara Barber, Angela Moreland. Originally published in JMIR Formative Research (https://formative.jmir.org), 15.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Sodium Intake Estimation in Hospital Patients Using AI-Based Imaging: Prospective Pilot Study

Jiwon Ryu1,2*, MD, MSc; Sejoong Kim2,3,4*, MD, PhD; Yejee Lim1,2, MD, PhD; Jung Hun Ohn1,2, MD, PhD; Sun-wook Kim1,2, MD, MSc; Jae Ho Cho1,2, MD, MSc; Hae Sun Park1,2, MD, MSc; Jongchan Lee1,2, MD, MSc; Eun Sun Kim1,2, MD, PhD; Nak-Hyun Kim1,2, MD, PhD; Ji Eun Song5, MSN; Su Hwan Kim6, PhD; Eui-Chang Suh7, MD; Doniyorjon Mukhtarov8, MSc; Jung Hyun Park8, MSc; Sung Kweon Kim8, MSc; Hye Won Kim1,2, MD, PhD

1Hospital Medicine Center, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
2Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
3Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
4Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
5Department of Nursing, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
6Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
7Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
8LOAPI-Healthcare, AltheNutrigene, Seongnam-si, Republic of Korea

*these authors contributed equally

Corresponding Author:
Hye Won Kim, MD, PhD
Hospital Medicine Center
Seoul National University Bundang Hospital
Gumi-ro 173 Beon-gil 82, Bundang-gu
Seongnam-si, 13620
Republic of Korea
Phone: 82 7877638
Email: kimhwhw@gmail.com

Abstract

Background: Measurement of sodium intake in hospitalized patients is critical for their care. In this study, artificial intelligence (AI)–based imaging was performed to determine sodium intake in these patients.

Objective: The applicability of a diet management system was evaluated using AI-based imaging to assess the sodium content of diets prescribed for hospitalized patients.

Methods: Based on the information on the already investigated nutrients and quantity of food, consumed sodium was analyzed through photographs obtained before and after a meal. We used a hybrid model that first leveraged the capabilities of the You Only Look Once, version 4 (YOLOv4) architecture for the detection of food and dish areas in images. Following this initial detection, 2 distinct approaches were adopted for further classification: a custom ResNet-101 model and a hyperspectral imaging-based technique. These methodologies focused on accurate classification and estimation of the food quantity and sodium amount, respectively. The 24-hour urine sodium (UNa) value was measured as a reference for evaluating the sodium intake.

Results: Results were analyzed using complete data from 25 participants out of the total 54 enrolled individuals. The median sodium intake calculated by the AI algorithm (AI-Na) was determined to be 2022.7 mg per day/person (adjusted by administered fluids). A significant correlation was observed between AI-Na and 24-hour UNa, while there was a notable disparity between them. A regression analysis, considering patient characteristics (eg, gender, age, renal function, the use of diuretics, and administered fluids) yielded a formula accounting for the interaction between AI-Na and 24-hour UNa. Consequently, it was concluded that AI-Na holds clinical significance in estimating salt intake for hospitalized patients using images without the need for 24-hour UNa measurements. The degree of correlation between AI-Na and 24-hour UNa was found to vary depending on the use of diuretics.

Conclusions: This study highlights the potential of AI-based imaging for determining sodium intake in hospitalized patients.

https://formative.jmir.org/2024/1/e48690

JMIR Form Res 2024 | vol. 8 | e48690 | p.2000
(page number not for citation purposes)
Introduction

Overview
A low-salt diet is prescribed for patients with cardiovascular, kidney, or liver diseases. In these patients, sodium intake regulation is essential. High salt intake is a key modifiable risk factor for these diseases. Thus, monitoring the dietary salt intake of patients provides patients and clinicians with valuable information on dietary salt reduction advice [1].

For therapeutic purposes, the salt intake of hospitalized patients is assessed either indirectly by the prescription order of diet and food consumption questionnaires or directly from repeated 24-hour urinary sodium (UNa) excretion collections [2]. However, these methods have several limitations. Discrepancy with the prescribed diet order, the actual food intake of patients may vary because of poor compliance. Inaccurate answers provided during questionnaire surveys may result in biased results. Direct access to repeated 24-hour UNa collection, which is the standard method of salt intake marking, is an inconvenient and costly process because samples are to be sent to a laboratory, and flame photometry is typically required [3]. Furthermore, this method is inherently impractical because of the dependence on patient compliance and variability between collections.

For inpatients, a quick evaluation of salt intake would enable real-time advice and subsequent application to the next diet regimen. Therefore, a tool to objectively quantify a patient’s dietary intake and repetitively evaluate the sodium content of the diet of hospitalized patients is required.

Artificial intelligence (AI) technology has enabled image-based analyses of nutrition and ingredients. Picture-to-Amount, a deep learning architecture using a cross-modal image-to-text retrieval system, can predict the number of ingredients in a given food image [4]. Technology-assisted dietary assessment relies on AI to accurately group food pictures and measure food credit by assessing a cellphone food record [5]. AI models for dietary assessment have been verified for reproducibility and validity. A large-scale population survey verified the accuracy of one such AI model for nutrient analysis [6]. Carter et al [7] conducted a study to compare the nutritional intake recorded in the smartphone app called “My Meal Mate” and the nutritional intake using the 24-hour recall method. Ahmed et al [8] divided participants of their study into 2 groups, namely a meal diary group and a tablet application use, and compared their nutrient intakes [8]. A fully automatic monitoring system of nutrient intake by hospitalized patients was presented for medical use by processing Red Green Blue (RGB) depth image pairs before and after meal consumption using AI-based estimation [9]. However, most studies have focused on classifying food or identifying the content of protein, fats, and carbohydrates, whereas studies on specific nutrients such as salt are scarce. To further improve the assessment and monitoring of the salt content of inpatients’ diets, the validation of accurate estimation of the diet and consumption of salt by patients is still required.

Objectives
We evaluated whether sodium intake could be determined through AI methods using food photographs and known nutrition information in hospitalized patients. We also determined if it is significant to compare sodium intake with 24-hour UNa, which is the gold standard for measuring sodium intake.

Methods
Study Design and Population
This single-center prospective study was conducted from August to November 2021 and involved 54 hospitalized patients, recruited from the hospitalist-run acute care unit as well as nephrology and urology departments. The following criteria were used for inclusion: (1) adult patients aged 19 years or older, (2) patients who agreed to take photographs before and after meals, and (3) patients who were prescribed 10 g of salt (4 g of sodium) in their diet. Patients who were unable to eat because of conditions such as respiratory arrest requiring tracheal intubation, cardiac arrest, acute coronary syndrome or life-threatening arrhythmias, failure of more than 2 organs, recent trauma, or burns of the neck and face were excluded. People with alcohol addiction and pregnant patients were also excluded. Previous medical history, demographics, and laboratory data were retrieved from electronic medical records.

Nutrient Information and Acquisition of Food Images
A novel and dedicated image database was developed because models pretrained using the data of different regions and countries could not be used. Hence, curating a local food data set was necessary, particularly for measuring sodium intake in hospitalized patients. A 3-month diet was predetermined before the study was initiated. The Seoul National University Bundang Hospital Nutrition Department provided all the meals and laboratory data were retrieved from electronic medical records.

https://formative.jmir.org/2024/1/e48690
Food Image Analysis—Sodium Intake Measurement with AI (AI-Na)

We used the hybrid model for sodium intake measurement based on food image analysis. This model incorporates the You Only Look Once, version 4 (YOLOv4) model’s detection of the image areas and uses 2 classification approaches—Custom-101 and Hyperspectral imaging—to predict the food quantity estimation for sodium amount (Figure 3A and 3B). YOLOv4 has been used in several previous studies to detect and classify the food and dish areas in the images [10,11]. Multidish images were generated by cropped images using the boundary-box area to create a data set containing images with different sizes. Figure 3 shows data generated after converting single images into multidish images. A data set for a convolutional neural network with one kind of food was placed in dishes of different shapes. Then, all the food images were rotated to different angles, and the light and sharpness of these images were adjusted (Figure 3B). For the estimation of food quantity from the images, we predominantly used convolutional neural networks, with ResNet-101 being our primary model of choice. In our pursuit to select the optimal classification model, several alternative architectures were also evaluated. This included experimenting with models such as MobileNetV2, ResNet-18, Wide-ResNet-50, and InceptionV3. After rigorous testing and evaluation, ResNet-101 demonstrated superior performance, affirming its selection for our research objectives. The amount of food remaining was estimated, and the calorie and nutrition contents were estimated [12,13]. The food photographs were color-based images, and a hyperspectral image was used to clarify the differences between colors and improve image quality. Hyperspectral images have rich information and show superior performance when used for feature identification based on pixel intensity [14,15]. In our study, we used Custom-MST++ to facilitate the conversion of standard RGB images into hyperspectral images. Although a conventional RGB image is composed of 3 channels (ie, red, green, and blue), the reconstructed hyperspectral image boasts an enhanced structure, encompassing 31 distinct bands. This transition from a trichannel format to a multiband representation allows for a more nuanced and detailed analysis, critical for our research objectives. The following steps must be performed when using hyperspectral analysis...
images for estimating food quantity: (1) reconstruction of the hyperspectral image from the RGB image, (2) preprocessing of the hyperspectral image thus obtained, (3) calculation of the pixel intensity per spectral band, and (4) classification with of the food quantity using random-forest regression of food quantity. Therefore, by using the aforementioned method and procedures, the types and quantities of food that the patients consumed were classified and estimated from the food images. In our research, our foremost goal was to devise an algorithm capable of estimating sodium intake solely from images. Initially, our challenge was to accurately discern the volume or weight of the food items depicted in these images. Leveraging cutting-edge AI methodologies, we crafted a model adept at both recognizing and quantifying various food items. As part of this implementation process, we used information regarding the selected menu’s nutrients, type of food, and amount of food based on the protocol of the hospital nutrition department. Once we established the food quantity, we cross-referenced it with the nutritional data pertinent to the identified items. By combining this food quantity data with the nutritional profiles, our algorithm adeptly calculated the sodium proportion in the given dishes, ultimately yielding the sodium intake value, which we have denoted as AI-Na (unadjusted). Subsequent adjustments were made to the algorithm by subtracting sodium content from administered fluids, resulting in a refined AI-Na (adjusted; Figure 2).

Figure 3. Sodium intake measurement using the artificial intelligence–based method. (A) Data generated after converting single images into multidish images; (B) Dataset for the convolutional neural network. ’Q’ denotes quantity in the classification of food classes by portion size.

The 24-Hour UNa Collection as a Reference Value for Sodium Intake

The gold standard for estimating dietary sodium intake is the 24-hour UNa value [16]. Participants were asked to collect all urine during a 24-hour period, starting with the first urine sample on the morning of the day when they took the food photos and concluding with the second urine sample on the following morning. The urine aliquots were stored at –20 °C before transportation to the certified laboratory. An ion-selective electrode method (Modular DPE chemistry; Roche Diagnostics) was used to measure urinary sodium and potassium levels. The urinary creatinine (UCr) level was measured using the Jaffe reaction (kinetic colorimetric assay; Roche Diagnostics). The urine samples were excluded if any of the following were observed: (1) total volume of urine during the 24-hour period was <500 cc, (2) UCr was <0.6 g/day in men and <0.4 g/day in women, and (3) the self-reported spillage was more than 30 cc [17,18].

Statistical Analysis

The Mann-Whitney test and Brand–Altman method were performed to determine the extent to which the AI-Na values matched the 24-hour UNa as reference values. However, because diuretics affect the 24-hour UNa, we divided the participants into diuretic and nondiuretic groups for the analysis. As kidney function can also affect the 24-hour UNa, a regression equation using sodium intake, 24-hour UNa, and estimated glomerular filtration rate (eGFR) was developed, and an interaction term was used to evaluate the role of diuretics. The interaction term was used rather than the dose, depending on the use of diuretics, as the sample was too small to evaluate the relationship between diuretic dose and 24-hour UNa. In the baseline characteristics of the study population, continuous variables were expressed as median values, and categorical variables were described as frequencies and percentages. We considered 2-sided P values <.05 to be statistically significant. Statistical analyses were performed using the R 4.1.0 (R foundation for Statistical Computing).

Ethical Considerations

The study followed the general treatment policy for the underlying disease, and patients did not go beyond the scope of the standard treatment, except for capturing photographs of the prescribed meal. The study protocol complied with the Declaration of Helsinki and was approved by the Institutional Review Board of the Seoul National University Bundang Hospital (B2108-701-302). Written informed consent was obtained from all the patients.
Results

Estimating Sodium Intake From Food Images—Quantifying Results of Food Quantity Estimation

We collected 20,000 images for food quantity estimation and 1500 hospital images with sodium amount metadata. Table 1 and Table 2 show the results of food area detection and classification. In the context of our research, when we refer to YOLO versions, such as YOLOv3, YOLOv3-tiny, YOLOv3-tiny3l, YOLOv4, and YOLOv4-tiny, an important part of the highlight is that our choice of YOLOv4 signifies our preference for the best training and testing mean average precision among these versions. The decision was made after rigorous evaluation and comparative analysis, ensuring optimal performance for our specific use case. Moreover, similar to choosing the ResNet-101 architecture for its distinct advantages in certain applications, we used 5 alternative CNN models to get the best accuracy of classification. ResNet-101 got the highest \(F_1 \)-score and a lower train and validation loss in 50 epochs. Training and validation losses quantify the model’s prediction error. Lower values indicate higher accuracy and better generalization to new data. These losses are measured as dimensionless quantities derived from the chosen loss function, such as cross-entropy for classification tasks. Epoch count, such as the 50 used in our experiments, represents the total number of times the learning algorithm processes the entire data set, a critical factor in optimizing the model’s learning curve and preventing overfitting or underfitting.

Of the 54 participants enrolled in this study, 11 withdrew their consent because they could not wait for the photographs to be taken before the meal and because their general health deteriorated. Seven participants were excluded due to incomplete urine collection, and 11 were excluded due to inaccurate urine collection based on the 24-hour UCr value. Finally, the data of the 25 selected participants were analyzed (Figure 4).

The median age was 64 (IQR 53-74) years, and 68% (n=17) were men. The median values of serum creatinine and serum sodium were 1.0 (IQR 0.8-1.6) mg/dl and 138 (IQR 135.0-140.0) mEq/ml, respectively. The baseline characteristics of the study participants are presented in Table 3. Because the use of diuretics affects 24-hour UNa—the standard of sodium intake evaluation—the baseline characteristics were classified accordingly (Table 3). A total of 10 participants were treated with saline and parenteral nutrients. Because sodium in these fluids affects the 24-hour UNa, total intake was calculated by adding the amount of sodium administered (AI-Na [adjusted]).

The median sodium intake (AI-Na [unadjusted]) was estimated to be 1756.5 (IQR 1266.6-2273.2) mg when using the AI algorithm; further, the sodium in the fluids was included, resulting in a total sodium intake of 2227.2 (IQR 1936.2-2564.4) mg (Table 3). The 24-hour UNa was determined to be 2783.0 (IQR 1955.0-4922.0) mg. Depending on the effect of the diuretics, the value of 24-hour UNa varied and was 2599.0 (IQR 1771.0-4922.0) mg and 2921.0 (IQR 2231.0-4059.5) mg for the nondiuretic and diuretic groups, respectively (Table 4).

We compared the AI-estimated sodium intake values with those of 24-hour UNa and analyzed the degree of concordance and difference between the two.

Table 1. Results of food area detection.

<table>
<thead>
<tr>
<th>Model name</th>
<th>Training mAP (%)</th>
<th>Testing mAP (%)</th>
<th>Weight size (MB)</th>
<th>Training time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YOLOv3</td>
<td>81.1</td>
<td>74</td>
<td>236</td>
<td>178</td>
</tr>
<tr>
<td>YOLOv3-tiny</td>
<td>90</td>
<td>85</td>
<td>33.7</td>
<td>65</td>
</tr>
<tr>
<td>YOLOv3-tiny3l</td>
<td>87.6</td>
<td>77</td>
<td>33.7</td>
<td>65</td>
</tr>
<tr>
<td>YOLOv4</td>
<td>98.9</td>
<td>95</td>
<td>245</td>
<td>207</td>
</tr>
<tr>
<td>YOLOv4-tiny</td>
<td>70</td>
<td>74</td>
<td>23</td>
<td>64.9</td>
</tr>
<tr>
<td>YOLOv4-tiny3l</td>
<td>85.1</td>
<td>75</td>
<td>23</td>
<td>64.3</td>
</tr>
</tbody>
</table>

*a mAP: mean average precision. Input size was 608x608, and iteration numbers were 50,000.

**YOLOv3: You Only Look Once, version 3.

*YOLOv4 was selected from multiple models listed in the Table.
Table 2. Classification of food quantity estimation.

<table>
<thead>
<tr>
<th>Model name</th>
<th>Training F_1-score (%)</th>
<th>Training loss</th>
<th>Validation F_1-score (%)</th>
<th>Validation loss</th>
<th>Epoch</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MobileNetv2</td>
<td>95</td>
<td>0.15</td>
<td>93</td>
<td>0.7</td>
<td>50</td>
<td>0.8</td>
</tr>
<tr>
<td>ResNet-18</td>
<td>96</td>
<td>0.12</td>
<td>92</td>
<td>0.1</td>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td>Wide-ResNet-50</td>
<td>96</td>
<td>0.2</td>
<td>94</td>
<td>0.1</td>
<td>50</td>
<td>1.3</td>
</tr>
<tr>
<td>ResNet-101(^a)</td>
<td>98</td>
<td>0.11</td>
<td>95.5</td>
<td>0.03</td>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td>Inceptionv3</td>
<td>96</td>
<td>0.17</td>
<td>93</td>
<td>0.12</td>
<td>50</td>
<td>1.4</td>
</tr>
</tbody>
</table>

\(^a\)ResNet-101 was selected from multiple models listed in the Table.

Figure 4. Flow diagram of the study population.

Table 3. Comparison of the characteristics between the diuretic and nondiuretic groups.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total (N=25)</th>
<th>Non-diuretics (n=14)</th>
<th>Diuretics (n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR)</td>
<td>64 (53-74)</td>
<td>64.5 (43.0-72.0)</td>
<td>62.0 (56.5-79.5)</td>
</tr>
<tr>
<td>Sex (male), n (%)</td>
<td>17 (68)</td>
<td>12 (86)</td>
<td>5 (46)</td>
</tr>
<tr>
<td>BMI (kg/m(^2)), median (IQR)</td>
<td>25.8 (23.7-28.8)</td>
<td>24.3 (23.7-26.3)</td>
<td>27.4 (26.1-29.1)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>16 (64)</td>
<td>8 (57.1)</td>
<td>8 (73)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>12 (48)</td>
<td>6 (43)</td>
<td>6 (55)</td>
</tr>
<tr>
<td>Liver cirrhosis, n (%)</td>
<td>7 (28)</td>
<td>4 (29)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Congestive heart failure, n (%)</td>
<td>4 (16)</td>
<td>0 (0)</td>
<td>4 (36)</td>
</tr>
<tr>
<td>Coronary artery disease, n (%)</td>
<td>3 (12)</td>
<td>2 (14)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Cerebrovascular disease, n (%)</td>
<td>3 (12)</td>
<td>1 (7)</td>
<td>2 (18)</td>
</tr>
<tr>
<td>Cancer, n (%)</td>
<td>5 (20)</td>
<td>4 (29)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Chronic kidney disease, n (%)</td>
<td>6 (24)</td>
<td>4 (29)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Hemoglobin (mg/dl), median (IQR)</td>
<td>11.1 (10.0-13.3)</td>
<td>11.6 (10.0-13.3)</td>
<td>10.5 (9.7-13.2)</td>
</tr>
<tr>
<td>Sodium (mEq/L), median (IQR)</td>
<td>138.0 (135.0-140.0)</td>
<td>138.0 (133.0-140.0)</td>
<td>138.0 (135.0-140.0)</td>
</tr>
<tr>
<td>Potassium (mEq/L), median (IQR)</td>
<td>4.0 (3.7-4.4)</td>
<td>4.0 (3.9-4.3)</td>
<td>4.0 (3.6-4.4)</td>
</tr>
<tr>
<td>Serum creatinine (mg/dl), median (IQR)</td>
<td>1.0 (0.8-1.6)</td>
<td>1.0 (0.7-1.4)</td>
<td>1.3 (0.9-1.8)</td>
</tr>
<tr>
<td>Albumin (mg/dl), median (IQR)</td>
<td>3.6 (3.3-4.1)</td>
<td>3.6 (3.3-4.0)</td>
<td>3.4 (3.1-4.2)</td>
</tr>
<tr>
<td>eGFR(^b) (ml/1.73m(^2)), median (IQR)</td>
<td>70.41 (42.57-89.55)</td>
<td>83.82 (52.04-98.38)</td>
<td>54.06 (27.77-74.43)</td>
</tr>
</tbody>
</table>

\(^b\)eGFR: estimated glomerular filtration rate.
Table 4. Sodium input calculated with AI (AI-Na) and 24-hour urine sodium (UNa) excretion.

<table>
<thead>
<tr>
<th>Sodium and urine output metrics</th>
<th>Participants, median (IQR)</th>
<th>Nondiuretic (n=14)</th>
<th>Diuretic (n=11)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI-Na (mg; unadjusted)</td>
<td>1756.5 (1266.6-2273.2)</td>
<td>1646.4 (1162.4-2244.9)</td>
<td>1756.5 (1620.9-2418.8)</td>
<td>.37</td>
</tr>
<tr>
<td>Sodium in the fluids (mg)</td>
<td>0 (0.0-177.1)</td>
<td>177.1 (0.0-190.8)</td>
<td>0 (0.0-0.0)</td>
<td>.98</td>
</tr>
<tr>
<td>AI-Na (mg; adjusted)</td>
<td>2030.0 (1396.2-2564.4)</td>
<td>2034.2 (1266.6-2748.9)</td>
<td>2022.7 (1620.9-2418.8)</td>
<td>.98</td>
</tr>
<tr>
<td>Total urine output (ml/day)</td>
<td>1170.0 (1120.0-2210.0)</td>
<td>1750.0 (916.0-2468.0)</td>
<td>1650.0 (1210.0-1984.0)</td>
<td>.99</td>
</tr>
<tr>
<td>24-hour UNa (mg/day)</td>
<td>2783.0 (1955.0-4922.0)</td>
<td>2599.0 (1771.0-4922.0)</td>
<td>2921.0 (2231.0-4059.5)</td>
<td>.81</td>
</tr>
<tr>
<td>24-hour UCr (g/day)</td>
<td>0.9 (0.7-1.1)</td>
<td>1 (0.9-1.2)</td>
<td>0.8 (0.6-0.9)</td>
<td>.06</td>
</tr>
</tbody>
</table>

a Unadjusted with the amount of sodium in the administered fluids.

b Adjusted with the amount of sodium in the administered fluids.

c UCr: urine creatinine.

The Disparity and Accordance Analysis Between Sodium Intake by Image-Sodium and 24-Hour UNa

The sodium intake was measured using the 2 aforementioned methods, and it was 2022.7 mg in AI-Na (adjusted) and 2783.0 mg in 24-hour UNa, and the statistical significance was 0.02, indicating a statistically significant difference. Considering the effect of diuretics on UNa, the participants were divided into 2 groups: diuretic and nondiuretic, and no significant difference was noted between the 2 groups (Table 5).

Table 5. Differences between the total sodium input values using an artificial intelligence (AI)–based method (adjusted by fluids) and 24-hour urine sodium (UNa) excretion.

<table>
<thead>
<tr>
<th>Sodium intake</th>
<th>Difference testa, median (IQR)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total participants</td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>AI-Na (adjustedb; mg)</td>
<td>2022.7 (1369.2-2564.4)</td>
<td></td>
</tr>
<tr>
<td>24-hour UNa (mg)</td>
<td>2783.0 (1955.0-4922.0)</td>
<td></td>
</tr>
<tr>
<td>Participants with nondiuretics</td>
<td></td>
<td>.14</td>
</tr>
<tr>
<td>AI-Na (adjustedb; mg)</td>
<td>2034.2 (1282.1-2689.0)</td>
<td></td>
</tr>
<tr>
<td>24-hour UNa (mg)</td>
<td>2599.0 (1817.0-4566.0)</td>
<td></td>
</tr>
<tr>
<td>Participants with diuretics</td>
<td></td>
<td>.10</td>
</tr>
<tr>
<td>AI-Na (adjustedb; mg)</td>
<td>2023.0 (1621.0-2419.0)</td>
<td></td>
</tr>
<tr>
<td>24-hour UNa (mg)</td>
<td>2921.0 (2231.0-4060.0)</td>
<td></td>
</tr>
</tbody>
</table>

a Mann-Whiney test.

b AI-Na: AI-estimated sodium intake.

c Adjusted with the amount of sodium in the administered fluids.

Interaction Model Using Regression Analysis

The difference between the 2 test values could be attributed to factors that affect 24-hour UNa excretion in a real-world setting, such as the use of diuretics as well as the patient’s gender, age, and renal function; this prompted us to derive a formula considering the aforementioned factors. The eGFR value using the Chronic Kidney Disease Epidemiology Collaboration equation was used as a variable, and the following regression equation was obtained using the interaction term for diuretics because gender, age, and renal function can all be calculated using eGFR (Table 6).

24h-UNa = 0.535 * AI-Na [adjusted] - 2292.009 * I (diuretics) + 1.280 * AI-Na [adjusted] * I (diuretics) + 22.102 * eGFR

24h-UNa = 2.355 * AI-Na [adjusted] + 22.102 * eGFR - 2292.009 (diuretic group)

24h-UNa = 0.535 * AI-Na [adjusted] + 22.102 * eGFR (nondiuretic group)

In this equation, “I” is the interaction term.
In this regression equation, the AI-Na (adjusted) and 24-hour UNa exhibited a strong relationship. Additionally, eGFR was significantly related to 24-hour UNa. Because the impact of the eGFR value on the 24-hour UNa is the same regardless of the use of diuretics, which was negligible in this equation, it can be assumed that 2.355 times the total sodium input (AI-Na [adjusted]) corresponds to 24-hour UNa in the diuretic group, and 0.535 of the AI-Na corresponds to the measured 24-hour UNa in the nondiuretic group.

Table 6. Linear regression with the interaction term between sodium intake calculated by the artificial intelligence algorithm (AI-Na; adjusted) and 24-hour urine sodium (UNa) excretion (adjusted $R^2=0.739$; $F=18.7$; $P<0.001$).

<table>
<thead>
<tr>
<th>Linear regression with interaction term</th>
<th>Regression coefficients</th>
<th>SE</th>
<th>P valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI-Na (mg; adjustedb)</td>
<td>0.535</td>
<td>0.232</td>
<td>.03</td>
</tr>
<tr>
<td>Furosemide dose (mg)</td>
<td>-2292.009</td>
<td>2259.709</td>
<td>.32</td>
</tr>
<tr>
<td>eGFRc (ml/min/1.73m2)</td>
<td>22.102</td>
<td>8.361</td>
<td>.02</td>
</tr>
<tr>
<td>AI-Na (furosemide dose; adjusted)</td>
<td>1.820</td>
<td>1.076</td>
<td>.11</td>
</tr>
</tbody>
</table>

aP value for the interaction term in the relationship.

bAdjusted with the amount of sodium in the administered fluids.

ceGFR; estimated glomerular filtration rate.

Discussion

Principal Findings

Our study may be the first study that compared an AI-based method with 24-hour UNa for measuring sodium intake in a real clinical field. Although the AI-Na and 24-hour UNa values were not the same, the various factors that affect the 24-hour UNa value, such as age, sex, renal function, diuretics, and even the underlying disease, cannot be ignored when using real-world data. Therefore, the 2 methods were worth evaluating using regression. The AI-Na values can be clinically considered as a significant indicator of sodium intake, although there were differences based on whether diuretics were used. Therefore, food images can be used to measure sodium intake to some extent, but this method is still inaccurate.

We calculated the sodium amounts in each test image as ground truth and used them for the AI sodium amount prediction model. Food amount served as one of the input values for Sodium amount prediction, as we used a multi-input fixture to predict sodium amount prediction and 24-hour UNa amount prediction using the collected data set from the hospital. As we collected metadata, it included food quantity, sodium amount, food classes, food intake, and patient information. The AI-based method predicted salt or sodium amount in food based on our multitask method.

Concerns regarding sodium intake have led to the development of several sodium measurement methods [16,19,20]. Numerous methods for measuring sodium intakes are available, ranging from 24-hour UNa, the most objective method, to single or multitask method.

Table 6. Linear regression with the interaction term between sodium intake calculated by the artificial intelligence algorithm (AI-Na; adjusted) and 24-hour urine sodium (UNa) excretion (adjusted $R^2=0.739$; $F=18.7$; $P<0.001$).

<table>
<thead>
<tr>
<th>Linear regression with interaction term</th>
<th>Regression coefficients</th>
<th>SE</th>
<th>P valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI-Na (mg; adjustedb)</td>
<td>0.535</td>
<td>0.232</td>
<td>.03</td>
</tr>
<tr>
<td>Furosemide dose (mg)</td>
<td>-2292.009</td>
<td>2259.709</td>
<td>.32</td>
</tr>
<tr>
<td>eGFRc (ml/min/1.73m2)</td>
<td>22.102</td>
<td>8.361</td>
<td>.02</td>
</tr>
<tr>
<td>AI-Na (furosemide dose; adjusted)</td>
<td>1.820</td>
<td>1.076</td>
<td>.11</td>
</tr>
</tbody>
</table>

aP value for the interaction term in the relationship.

bAdjusted with the amount of sodium in the administered fluids.

ceGFR; estimated glomerular filtration rate.
reference. Additionally, because the aforementioned study focused on the method of analyzing food photos, the experimental setting of this study did not reflect that of a real-world clinical one. Our study, on the other hand, considered several variables of an actual clinical environment and showed that salt intake measured by a photo-based AI algorithm had a significant relationship with the gold standard of sodium intake (ie, 24-hour UNa), thereby demonstrating that AI-Na value establishes the foundation for clinical use.

Accurately measuring food intake in hospitalized patients is crucial for determining their nutritional status, disease progression, or treatment option selection. However, traditional methods for evaluating food intake, such as visual estimation of the entire or 75% of the amount and patients’ subjective evaluations, often result in inaccuracies and an overestimation of up to 15% [23,24]. Therefore, a convenient and semiautomated digital method for food intake evaluation is required, and AI-based food photographs are expected to fulfill this need.

Strengths and Limitations
Our study’s strength lies in its evaluation of sodium intake in actual inpatients using cutting-edge technologies, food photos, and AI-based techniques as well as a comparison with established standards. Various variables of a real clinical setting were considered in this study, demonstrating the potential clinical usefulness of using AI in this domain. This study had some limitations. First, the sample size considered in this study was small. If more patients were enrolled, it would be possible to derive a more accurate formula using different variables. The second limitation was the inaccurate estimation of the food amount during food intake measurement. In addition to considering 24-hour UNa, it would have been useful if the food’s weight was considered both before and after consumption along with the corresponding nutrients. Third, the method proposed in this study failed to account for the potential loss of sodium during cooking and trimming processes, which may have further impacted the accuracy of the results.

Although we presented hyperspectral image reconstruction and employed a machine learning model for estimating food quantity, it is important to note that our approach did not directly detect sodium amounts from food images. Instead, it demonstrated a robust correlation between hyperspectral images and sodium amount estimation. This correlation provides a promising foundation for future research focused on refining methods for predicting sodium content.

In summary, our study aimed to incorporate AI into the clinical field; however, owing to limitations associated with AI, incomplete nutritional information, and the diversity of real-world treatments, comprehensive research planning is necessary for clinical use.

Conclusions
The method of measuring sodium intake using food photos was found to be inconsistent as compared with 24-hour UNa, which is widely used in clinical settings. However, the study results have clinical significance because variables of a real-world clinical setting, such as gender, age, diuretics, and fluid treatment, were considered. The findings also suggest that the formula derived in this study may not provide accurate estimates of the absolute sodium intake. However, if additional data are collected, it may be possible to develop a more useful formula in the future.

Acknowledgments
This study was supported by Seoul National Bundang University Hospital (grant 14-2021-0052).

Data Availability
The data set used in this research consists of food images and nutrition information. The data set is publicly available on AI Hub, a repository for AI-related data sets, maintained by the National AI Research and Development Agency of Korea. The data set can be accessed on AI Hub [25].

Authors' Contributions
SK designed the study. JR and SK contributed to the conceptualization and methodology. YL, JHO, SK, JHC, HSP, JL, ESK, NHK, and JES contributed to data collection and validation. JR, HWK, SHK, ECS, JHP, SKK, and DM contributed to the formal statistical analysis. JR and HWK drafted and edited the manuscript. JHK, SKK, and DM contributed to the visualization. All authors read and agreed to the final version of the manuscript.

Conflicts of Interest
None declared.

References

25. AI Hub. URL: https://aihub.or.kr/aihubdata/data/view.do?dataSetSn=74 [accessed 2024-02-02]

Abbreviations

AI: artificial intelligence
AI-Na: sodium intake calculated by the AI algorithm
eGFR: estimated glomerular filtration rate
Human-Written vs AI-Generated Texts in Orthopedic Academic Literature: Comparative Qualitative Analysis

Hassan Tarek Hakam1,2, BSc, MD; Robert Prill2,3, PhD; Lisa Korte4, PhD; Bruno Lovreković5, MD; Marko Ostojić6, MD; Nikolai Ramadanov1,2, MD; Felix Muehlensiepen3,4, PhD

1Center of Orthopaedics and Trauma Surgery, University Clinic of Brandenburg, Brandenburg Medical School, Brandenburg an der Havel, Germany
2Faculty of Health Sciences, University Clinic of Brandenburg, Brandenburg an der Havel, Germany
3Center of Evidence Based Practice in Brandenburg, a JBI Affiliated Group, Brandenburg an der Havel, Germany
4Center of Health Services Research, Faculty of Health Sciences, University Clinic of Brandenburg, Rüdersdorf bei Berlin, Germany
5Faculty of Orthopaedics, University Hospital Merkur, Zagreb, Croatia
6Department of Orthopaedics, University Hospital Mostar, Mostar, Bosnia and Herzegovina

Corresponding Author:
Hassan Tarek Hakam, BSc, MD
Center of Orthopaedics and Trauma Surgery
University Clinic of Brandenburg
Brandenburg Medical School
Hochstr 29
Brandenburg an der Havel, 14770
Germany
Phone: 49 03381 411940
Email: hassantarek.hakam@mhb-fontane.de

Abstract

Background: As large language models (LLMs) are becoming increasingly integrated into different aspects of health care, questions about the implications for medical academic literature have begun to emerge. Key aspects such as authenticity in academic writing are at stake with artificial intelligence (AI) generating highly linguistically accurate and grammatically sound texts.

Objective: The objective of this study is to compare human-written with AI-generated scientific literature in orthopedics and sports medicine.

Methods: Five original abstracts were selected from the PubMed database. These abstracts were subsequently rewritten with the assistance of 2 LLMs with different degrees of proficiency. Subsequently, researchers with varying degrees of expertise and with different areas of specialization were asked to rank the abstracts according to linguistic and methodological parameters. Finally, researchers had to classify the articles as AI generated or human written.

Results: Neither the researchers nor the AI-detection software could successfully identify the AI-generated texts. Furthermore, the criteria previously suggested in the literature did not correlate with whether the researchers deemed a text to be AI generated or whether they judged the article correctly based on these parameters.

Conclusions: The primary finding of this study was that researchers were unable to distinguish between LLM-generated and human-written texts. However, due to the small sample size, it is not possible to generalize the results of this study. As is the case with any tool used in academic research, the potential to cause harm can be mitigated by relying on the transparency and integrity of the researchers. With scientific integrity at stake, further research with a similar study design should be conducted to determine the magnitude of this issue.

(JMIR Form Res 2024;8:e52164) doi:10.2196/52164

KEYWORDS
artificial intelligence; AI; large language model; LLM; research; orthopedic surgery; sports medicine; orthopedics; surgery; orthopedic; qualitative study; medical database; feedback; detection; tool; scientific integrity; study design
Introduction

Artificial intelligence (AI) is perhaps best defined as an algorithmic mechanism applied to machines, whereby solving challenges requires little to no human interaction [1]. Differentiating human-made and AI-generated work is becoming increasingly difficult with the rapid technological advancement of deep learning [2]. Deep learning is based on the replication of human thinking and the brain’s structure [3]. With the vast potential benefit that AI might bring to the table, extensive research has been conducted in the last decade with the purpose of finding potential solutions for health care–related problems [4]. The field of orthopedics, for example, might greatly benefit from AI image recognition capabilities to assist in the diagnosis of fractures or skin lesions. Other benefits can be drawn from AI’s capacity to analyze massive amounts of clinical information, which in turn presents benefits in clinical decision-making, risk assessment, and the generation of individualized care plans [5]. That is why an exponential increase in research on the topic of AI in the field of orthopedics has been noted, which has led to a subsequent increase in reviews trying to summarize the findings and give out recommendations [4].

Orthopedic sports medicine is the subspecialty of orthopedics that deals with pathologic conditions of the musculoskeletal system that arise from the practice of sports. This includes the prevention, diagnosis, and treatment of diseases. A particular challenge of sports medicine lies in the willingness of athletes to return to performance in a timely manner [4]. Through the use of deep neural networks, AI can assist specialists in various aspects of management. AI has shown to be especially advantageous for the diagnosis of fractures based on plain radiographs and computed tomography, with reviews reporting high accuracy, sensitivity, and specificity for the evaluation of plain radiographs [6] and computed tomography images [7]. With the evolution of convolutional neural networks and the increased capacity to integrate large amounts of written information, the patient’s medical records could serve as a basis for determining an individualized care plan as well as for making predictions for the best future course of treatment [8].

The influence of large language models (LLMs) on research in the field of orthopedics and sports medicine has not yet been well studied. AI is commonly used by researchers to help organize thought processes, obtain feedback, edit their work, and present their citations in the requested format. Consequently, AI has made academic work much more efficient [9]. However, considering that some of the most impactful journals allow the use of AI in composing or editing scientific texts, there are some ethical reservations regarding the authenticity and credibility of academic work [2]. Furthermore, some journals are actively involved in the development of tools to spot AI-generated texts [10]. In the light of this, the line where scientific research becomes fraudulent with regards to the use of AI must be determined. Different journals have adopted different guidelines for the use of AI.

The aim of this qualitative analysis is to determine the possibility that human researchers and AI-detection platforms can detect AI-generated texts. For this purpose, 4 researchers were recruited to participate in this study. As well as this, an AI-detection platform was used to assist in this endeavor.

Methods

This study adopted a similar method to previously conducted research on the matter [10].

Recruitment

For the purposes of the study, 4 participants were recruited. Two senior researchers in the fields of orthopedics and qualitative research, as well as 2 junior researchers in the same fields, expressed their interest in the subject at hand. All researchers were informed about the study’s objectives. The inclusion criteria for senior researchers were more than 10 years of research experience and having a doctoral degree in their field. Junior researchers were defined as students or physicians who had commenced their first project in the last 2 years.

Ethical Considerations

Due to the noninterventional nature of this study, as well as the anonymization of the included participants, local institutional and regulatory bodies did not require ethical approval. The methodology of the study and data collection were in line with the Geneva conventions. Informed consent was obtained from all participants involved in this study. The privacy and confidentiality of the involved participants has been protected by anonymizing their responses. No compensation was given to the participating individuals.

Selection of Literature

After searching PubMed for relevant material, 5 abstracts about meniscal injuries were selected for inclusion in the study [11-15]. The search strategy included the word “meniscus.” Subsequently, the first 5 articles published in reputable first quartile (Q1) or second quartile (Q2) journals were chosen to ensure the high quality of the articles. Abstracts that did not meet the criteria were excluded. This choice was made based on the fact that abstracts usually present a general overview of the topic at hand and communicate the main objectives of the paper. Although some treatment modalities are commonly applied to meniscal injuries, it is often impossible to completely restore the meniscal architecture, especially when the injury occurs in the middle, less vascularized portion [16]. Selecting meniscal injuries as a topic was, therefore, agreed upon by the research team as it is a common pathologic condition [17] and an area of extensive research [18].

Involving AI

Abstracts selected in the previous step were then rewritten by 2 AI platforms. One platform was the commonly used and extensively developed ChatGPT 3.4 (OpenAI) and the other was You.com. Using the instruction “rewrite the following in perfect academic English,” 5 new abstracts were generated by each AI. In the subsequent step, the command “write five abstracts on meniscal injuries” was used and 10 further abstracts were generated.
Randomization
The 25 resulting abstracts included the 5 original versions that were written by humans, the 5 rewritten versions that were generated by each AI, and the 5 newly generated versions that were composed by each AI platform. The abstracts were numbered from 1 to 25. These numbers were subsequently randomized using Microsoft Excel and the assigned abstracts were presented as a sheaf in the resulting order.

Evaluation
Evaluation of the abstracts was carried out using 2 methods. The first method of evaluation involved researchers with varying specialties and at different stages of their academic careers, while the second was based on the use of AI-detection software.

Participants were then asked to evaluate all the resulting abstracts using parameters that are commonly used for peer review. Suggested criteria that might aid in differentiating human-written from AI-generated literature included nuance, style, and originality [10]. Subtle phrasing and word choice might also be giveaways. A rating scale from 1 (very bad) to 5 (very good) was used for each parameter.

Participants were additionally asked whether they thought that the abstract was generated by a newer-generation AI, a more-developed AI, or a human. A short explanation was provided by each participant.

User Statistics
Descriptive statistics were used to investigate the correlation between the degree of academic experience and the number of correctly identified abstracts on one hand and between the previously mentioned parameters (eg, originality, grammatical soundness) and the correct identification of abstracts on the other. Furthermore, the correlation between the parameters and a researcher’s classification of an abstract was investigated. Interrater reliability was assessed by comparing the assessment of different articles by the same researcher, on the levels of both correct identification and assessed parameters. Intrarater reliability was assessed by comparing the assessments of different evaluators for both previously mentioned parameters.

The Mann-Whitney U test, the Wilcoxon W test, the Z test, and the asymptotic significance (2-tailed) P value were determined.

Results
The results of the analysis are presented in Tables 1-3. Further descriptive statistics are presented in Multimedia Appendix 1.

Table 1. The number of human-written and artificial intelligence (AI)–generated texts that were correctly or incorrectly identified by academics with different levels of academic expertise.

<table>
<thead>
<tr>
<th>Identified role of evaluator</th>
<th>Evaluations of original texts (n=5), n</th>
<th>Evaluations of texts rewritten by AI (n=20), n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human written (correctly identified)</td>
<td>AI–generated</td>
</tr>
<tr>
<td></td>
<td>human written</td>
<td>AI–generated (correctly identified)</td>
</tr>
<tr>
<td>Junior orthopedic surgeon</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Senior orthopedic surgeon</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Junior qualitative researcher</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Senior qualitative researcher</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. This table details how authors judged manuscripts with artificial intelligence (AI)–generated abstracts with respect to whether an advanced large language model or a newer large language model was used.

<table>
<thead>
<tr>
<th>Identified role of evaluator</th>
<th>Evaluations of advanced AI-generated abstracts (n=10), n</th>
<th>Evaluations of newer unadvanced AI-generated abstracts (n=10), n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advanced AI (correctly identified)</td>
<td>Newer unadvanced AI</td>
</tr>
<tr>
<td></td>
<td>Advanced AI</td>
<td>Newer unadvanced AI (correctly identified)</td>
</tr>
<tr>
<td>Junior orthopedic surgeon</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Senior orthopedic surgeon</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Junior qualitative researcher</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Senior qualitative researcher</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 3. This table represents how artificial intelligence (AI)–detector software judged the articles.

<table>
<thead>
<tr>
<th>Abstracts</th>
<th>Predicted to be human written, n</th>
<th>Predicted to be AI generated, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written by humans</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Rewritten by advanced AI</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Rewritten by newer unadvanced AI</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Completely generated by advanced AI</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Completely generated by newer unadvanced AI</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Discussion

Principal Results

The primary results of the study indicate that neither AI-detection software nor human critical appraisal can reliably distinguish AI-generated texts from human-written work. Regarding human detection of AI-generated texts, neither clinical experience nor area of expertise played a role in the evaluation of the presented material. The secondary results of the study indicate that criteria suggested by prior research, such as originality, style, and nuance, did not correlate with whether the researchers identified a text correctly or not. Furthermore, none of the criteria correlated with whether researchers judged a text as human written or AI generated. The qualitative analysis of the written answers did not provide any new insights on the subject in question. However, the junior orthopedic researcher was able to correctly identify texts according to the objectivity parameter. Whether this was due to correct interpretation or chance is unclear. Perhaps future studies with larger sample sizes can help in shedding light on this matter. Selecting the evaluators might have impacted the results of the study. Although the researchers were proficient published authors, English was not their primary language and this might have led to the inability to correctly identify the abstracts. However, the impact of this study is not reduced, as one might argue that scientific literature consumption is not restricted to researchers with English as their mother tongue. Furthermore, reading and publishing in English is becoming common practice, especially if research is considered to be relevant on the international level.

Comparison With Prior Work

Although AI is an evolutionary technology that presents an enormous potential for future research applications, the results of this study and previous studies with similar methodologies are alarming. AI seems to have reached human-level writing skills, which in combination with its easy accessibility is able to threaten academic integrity. The findings of this analysis contradict previous claims for the ability to detect manuscripts generated by AI through model-agnostic and distribution-agnostic features. Even though nonmalicious applications of AI, including grammatical corrections, reference style adjustment, and thought-process organization, represent plausible uses of AI models, potential fraudulent uses include the generation of complete texts from a simple command. Examples of malicious AI use might also include the rewriting of entire texts, as shown in this study. AI-generated texts can also be passed through AI-detection software by malicious users, who would then use the texts that passed the examination, making it even more difficult to subsequently detect fraudulent use.

Besides the ability to falsify results, AI presents researchers with the capacity to present false results in a plausible manner. This also applies to inaccurate findings being reported confidently, which may be a misrepresentation that could lead to confusion, especially if the results are presented to unexperienced peers. Therefore, fact-checking the AI-generated statements and references will be essential when relying on such tools. AI also the capacity to generate images that can be used in the presentation of results. In the area of orthopedic surgery, AI has already been proven to recognize patterns associated with multiple types of fractures. Combined with its image-generation capacity, AI models will be able to create radiographic representations of fractures that are of no true scientific value but can be used to alter the results of a study.

Additionally, with the ever-increasing human inability to distinguish AI- and human-generated work, new rules must be written to ensure the scientific integrity of every published paper. Suggestions have included an increase in transparency in the design of AI models, as well as complete transparency in the use of AI by authors. This includes where and how LLMs were used in scientific projects.

Understanding the algorithms of these programs might aid in conceiving new and better programs to counteract fraud in its many forms. In an article in the journal Nature, the company Turnitin was reported to have incorporate AI-detection software.

Finally, and perhaps most importantly, the integrity of research is the most important aspect of the evolving discussion around the use of AI. Many previously conducted cross-examinations of academic publications revealed that research data obtained from prestigious academic institutions and published in equally prestigious academic journals were falsified. Whether these findings were intentionally corrupted or were errors of data collection is of little significance compared to the effects they might have on clinical and academic work. Thus, one can say that AI is just a tool, and its potential to cause good or harm is derived from individual motivations, experience level, and integrity. Calls to completely ban AI from academic endeavors are, in the eyes of the authors, exaggerated, and future fraud can be minimized by optimizing self-regulatory mechanisms and AI-detection models. As well as this, the authors of this paper agree that detection of academic fraud is a responsibility of editors and journals, as a letter to Nature previously suggested. However, the central role of researchers cannot be overemphasized.

Limitations

Limitations of this study include the inability to trace AI use in the original articles included in this study. However, we assumed that if AI were used, it would have been reported in the methodology or declarations sections. A second limitation of this study is that English is not the native language of the assessors. However, all the involved researchers have deep levels of proficiency, having published prior research in English. A third limitation is the small sample size of examined individuals and AI-recognition software, which does not allow us to draw definite conclusions on the matter at hand. However, as LLMs in the field of AI become more sophisticated, the recommendations that were made by previous authors and mentioned in this paper will still hold. The final limitation of this study is that a subset of articles dealing with meniscal injuries was chosen from the immense field of orthopedics. This is particularly important when considering the “hot topic” subset.
Conclusions
The statistical and qualitative analysis of the presented material showed that researchers were unable to differentiate human-written from AI-generated texts. Furthermore, the secondary finding of this study was that previously suggested criteria, such as originality and comprehension, did not aid in the differentiation of human-written and LLM-generated texts. Both findings show that humans and AI-detection software currently fail to properly identify the use of LLMs in the academic literature.

Furthermore, one can only speculate about the amount of undisclosed AI use in the academic literature. However, with the ever-increasing sophistication of LLMs, the integrity of future projects will be entirely dependent on scientists’ attitudes, as AI can serve as a facilitator and accelerator in publishing but can also be used with malicious intent. With regard to replicating this study, the authors strongly recommend that a larger sample size of articles with a larger number of researchers should be considered.

Data Availability
Data will be made available by the corresponding author upon request.

Authors’ Contributions
HTH was the main author of the manuscript and the principal investigator. RP, FM, and LK contributed to the design of the study. MO reviewed the scientific soundness of the included literature. BL and NR curated and analyzed the data.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplemental tables providing details of the statistical analysis.
[DOCX File, 17 KB - formative_v8i1e52164_app1.docx]

References
9. Tools such as ChatGPT threaten transparent science; here are our ground rules for their use. Nature 2023 Jan;613(7945):612. [doi: 10.1038/s41586-023-00191-1] [Medline: 36694020]

Abbreviations

AI: artificial intelligence
LLM: large language model
Investigating the Feasibility of Using a Wearable Device to Measure Physiologic Health Data in Emergency Nurses and Residents: Observational Cohort Study

Anish K Agarwal¹²³, MD, MPH, MS; Rachel Gonzales¹²³, MPH; Kevin Scott¹², MD, MSEd; Raina Merchant¹²³, MD, MSHP

¹Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
²Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, United States
³Center for Health Care Transformation and Innovation, Penn Medicine, Philadelphia, PA, United States

Corresponding Author:
Anish K Agarwal, MD, MPH, MS
Perelman School of Medicine
University of Pennsylvania
423 Guardian Drive
410 Blockley Hall
Philadelphia, PA, 19104
United States
Phone: 1 2157465610
Email: anish.agarwal@pennmedicine.upenn.edu

Abstract

Background: Emergency departments play a pivotal role in the US health care system, with high use rates and inherent stress placed on patients, patient care, and clinicians. The impact of the emergency department environment on the health and well-being of emergency residents and nurses can be seen in worsening rates of burnout and cardiovascular health. Research on clinician health has historically been completed outside of clinical areas and not personalized to the individual. The expansion of digital technology, specifically wearable devices, may enhance the ability to understand how health care environments impact clinicians.

Objective: The primary objective of this pilot study was to assess the feasibility and acceptability of using wearable devices to measure and record physiologic data from emergency nurses and resident physicians. Understanding strategies that are accepted and used by clinicians is critical prior to launching larger investigations aimed at improving outcomes.

Methods: This was a longitudinal pilot study conducted at an academic, urban, level 1 trauma center. A total of 20 participants, including emergency medicine resident physicians and nurses, were equipped with a wearable device (WHOOP band) and access to a mobile health platform for 6 weeks. Baseline surveys assessed burnout, mental health, and expectations of the device and experience. Participants provided open-ended feedback on the device and platform, contributing to the assessment of acceptance, adoption, and use of the wearable device. Secondary measures explored early signs and variations in heart rate variability, sleep, recovery, burnout, and mental health assessments.

Results: Of the 20 participants, 10 consistently used the wearable device. Feedback highlighted varying experiences with the device, with a preference for more common wearables like the Apple Watch or Fitbit. Resident physicians demonstrated higher engagement with the device and platform as compared with nurses. Baseline mental health assessments indicated mild anxiety and depressive symptoms among participants. The Professional Fulfillment Index revealed low professional fulfillment, moderate workplace exhaustion, and interpersonal disengagement.

Conclusions: This pilot study underscores the potential of wearable devices in monitoring emergency clinicians’ physiologic data but reveals challenges related to device preferences and engagement. The key takeaway is the necessity to optimize device and platform design for clinician use. Larger, randomized trials are recommended to further explore and refine strategies for leveraging wearable technology to support the well-being of the emergency workforce.

(JMIR Form Res 2024;8:e51569) doi:10.2196/51569

https://formative.jmir.org/2024/1/e51569
Introduction

Emergency departments (EDs) are a critical and frequently used resource within the US health care infrastructure (1 in 5 adults are treated in an ED annually) [1,2]. EDs are stressful environments [3-6]. Research has demonstrated the negative impact of the physical ED environment on patients [7-10], yet less is known about the effects on the health and well-being of the clinicians working within these EDs. Burnout and cardiovascular (CV) health remain threats to ED clinicians, their careers, and patient care [11-14]. Research on clinician health and burnout has historically been limited by retrospective studies which are often conducted outside of work. The rapid growth of digital technology, such as wearable devices and remote monitoring [15-17], offers new opportunities and challenges to investigate clinician health within health care environments and spaces.

Multiple occupational hazards have been attributed to the practice of emergency medicine (EM) [18], EM clinicians have a 20% higher morbidity due to coronary artery disease, motor vehicle accidents, and impaired reproductive health [19-22]. Clinicians working night shifts, an essential practice in EM, have less restorative sleep, elevated blood pressure, and lower heart rate variability (HRV) [19,23-26]. Before the pandemic, the prevalence of stress, exhaustion, and burnout was alarmingly high in EM [27,28]. COVID-19 worsened these factors, resulting in workforce depletion, and making this an urgent and critical area of focus underscored by the Surgeon General and National Academy of Medicine [14,29].

A gap exists in understanding how clinicians identify and prioritize their health within the workplace. High-performance athletics provides a potential analogous framework whereby athletes track physiologic data (HRV, physical activity, and sleep) to guide their daily performance. There is an unrealized opportunity space for clinicians to understand and enhance care delivery and career longevity (reduce burnout and CV disease). Technological advancements provide a potentially unobtrusive and personalized method to collect individual data using wearable devices. Wearable device use has grown in popularity, with over 30% of Americans reporting they can obtain device ownership [30]. These wearable devices are typically wrist-worn and provide methods to measure health data such as step count, heart rate, and sleep [15]. What is less known, is if these devices and associated platforms are appealing to clinicians and can provide actionable insights to help inform strategies to support the workforce.

The objective of this study was to pilot test and evaluate the feasibility and acceptability of a wearable device and associated platform to measure and record emergency nurse and resident physician physiologic measures while they provide emergency care. This was a pilot study, investigating early barriers and facilitators to using these devices within health care settings for emergency nurses and residents.

Methods

Overview

Eligible EM resident physicians and emergency nurses included those providing 20 or more hours of patient care per week, having regular access to a smartphone, and providing consent to where a wrist-worn wearable device (WHOOP band [31]). Participants were recruited via email, completed informed consent, and were given a wrist-worn wearable device. Consenting participants completed a baseline survey assessing burnout and mental health (depression and anxiety), asked about their expectations of the study, and followed for 6 weeks. Validated instruments included the Patient Health Questionnaire (PHQ-8), General Anxiety Disorder (GAD-7), and the Professional Fulfillment Index (PFI) [32-36]. Over the 6 weeks, patients were also given access to a web-based platform that allowed participants to see their own physiologic data, access basic coaching videos, and connect to other users on the platform (Arena Strive [37]). At the completion of 6 weeks, participants were asked to complete a final survey exploring the feasibility and acceptability of the approach. Participants were also asked to provide free text commentary on the general approach and the specific device. The primary outcomes were use of the wearable device, acceptance of the device, and adoption of the device. Secondary measures included burnout, mental health symptoms, and physiologic measures recorded by the device including HRV and sleep.

Ethical Considerations

This was a longitudinal pilot feasibility study conducted at an urban, academic, level 1 trauma center in the northeastern United States. This study was reviewed and approved by the University of Pennsylvania Institutional Review Board (850371). All eligible participants completed informed consent forms and were informed that all data would be deidentified and aggregated for analysis. Participants received the wearable device at no cost and could keep the device following the completion of the study.

Data Analysis

Analysis was conducted using Stata SE (version 18; StataCorp). Descriptive statistics were used to summarize participant demographics and well-being survey results which included the PHQ-8, GAD-7, and the PFI. Single-sample 2-tailed t tests were used to investigate exploratory differences in physiologic measures.

Results

This was a pilot feasibility study and thus was not powered to detect individual health outcomes. A total of 20 participants were enrolled (13/20, 65% were female), 12 were EM resident physicians and 8 were emergency nurses. Of the 20 participants, 10 participants routinely wore the wearable device (6 resident physicians and 4 nurses).
Participants completing baseline mental health assessments reported mild anxiety as measured by the GAD-7 (mean score 5.07, SD 3.7), with 85% (n=17) reporting minimal or mild anxiety. Participants also reported mild depressive symptoms as measured by the PHQ-8 (mean 5.73, SD 2.9), with half reporting mild depressive symptoms. Participants completed the PFI to evaluate burnout and fulfillment. Individuals reported low professional fulfillment (mean 49.4, SD 16.9) moderate workplace exhaustion (mean 57.1, SD 24.4), and moderate interpersonal disengagement (mean 44.7, SD 20.1). Participants were asked via survey to comment on their early thoughts and goals with the pilot and the device. Notable themes emerged reflecting (1) technological features (eg, seeking a device with a watch face), (2) ways to integrate data into their personal lives and clinical roles, and (3) increasing self-awareness of the objective measures of stress related to clinical care.

Among participants who used the band consistently for 6 weeks, variation existed in their experience with the wearable and the data it generated. None of the participants were very likely to recommend the device to others. Two participants found the data interaction helpful and useful and overall, none commented on the platform being easy to use. When asked specifically, participants noted the band to be obtrusive given its lack of daily use features (eg, watch face and activity data) and odd charging mechanics. Several participants did comment positively that the data output and data generated was useful and empowering but needed to be collected using a more user-friendly design such as the more commonly used Apple Watch or FitBit. Participants sought the same application using these devices and expressed enthusiasm for those.

Of the 10 users who routinely used the device, we saw early variation in physiologic measures related to HRV, stress, and sleep (Table 1; Figures 1 and 2). While statistically significant differences are identified here, this remained a pilot study in feasibility, user input, and data collection methods. Early insights from these data suggest differences across roles between resident physicians and nurses, as well as across sex.

Table 1. Participant wearable device data.

<table>
<thead>
<tr>
<th></th>
<th>Overall (n=10); mean (SD)</th>
<th>Residents (n=6); mean (SD)</th>
<th>Nurses (n=4); mean (SD)</th>
<th>P value</th>
<th>Women (n=4); mean (SD)</th>
<th>Men (n=6); mean (SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days used</td>
<td>72.6 (49.7)</td>
<td>72.8 (46.9)</td>
<td>72.3 (61.1)</td>
<td>.99</td>
<td>50.5 (38.7)</td>
<td>87.3 (53.8)</td>
<td>.28</td>
</tr>
<tr>
<td>Recovery score</td>
<td>59.5 (22.9)</td>
<td>60.7 (22.6)</td>
<td>57.7 (23.1)</td>
<td>.08</td>
<td>55.7 (25.7)</td>
<td>61.0 (21.5)</td>
<td>.01</td>
</tr>
<tr>
<td>Resting heart rate</td>
<td>58.8 (7.4)</td>
<td>58.5 (5.6)</td>
<td>59.3 (9.4)</td>
<td>.16</td>
<td>63.3 (7.2)</td>
<td>57.1 (6.7)</td>
<td><.001</td>
</tr>
<tr>
<td>Heart rate variability</td>
<td>50.4 (17.8)</td>
<td>47.3 (12.8)</td>
<td>55.1 (22.8)</td>
<td><.001</td>
<td>55.8 (29.1)</td>
<td>48.3 (10.0)</td>
<td><.001</td>
</tr>
<tr>
<td>(ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep performance score</td>
<td>77.1 (19.1)</td>
<td>78.3 (19.4)</td>
<td>75.1 (18.6)</td>
<td>.03</td>
<td>78.2 (21.2)</td>
<td>76.6 (18.3)</td>
<td>.30</td>
</tr>
<tr>
<td>Sleep disturbances</td>
<td>10.1 (5.8)</td>
<td>10.1 (5.5)</td>
<td>10.0 (6.3)</td>
<td>.82</td>
<td>13.1 (6.1)</td>
<td>8.9 (5.3)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Figure 1. An example, exploratory data synopsis at the participant level of heart rate variability (HRV) over the study period. The top pane depicts the HRV variation for an emergency nurse and the bottom for an emergency resident. This example snapshot can be viewed by participants on the mobile platform.
Figure 2. An example, exploratory data synopsis at the participant level of sleep performance over the study period. The top pane depicts sleep performance variation for an emergency nurse and the bottom for an emergency resident. This example snapshot can be viewed by participants on the mobile platform. The sleep performance indicator is a composite measure proprietary to the device platform.

Discussion

Principal Findings

The physical and mental toll facing clinicians working in the ED continues to grow. Emergency nurses and resident physicians face a number of challenges impacting their health including, but not limited to, ED crowding, boarding, workplace violence, shifting schedules, and rising patient acuity. In the wake of the COVID-19 pandemic, an emphasis on supporting the workforce remains a priority. The evolving landscape of digital technology, including wearable devices, offers new opportunities for individuals to monitor their own health and potentially proactively identify physical or mental strain. This pilot study begins to examine if and how wearable devices can be used for emergency clinicians.

First, we found mixed enthusiasm for this approach given low interest in completing exit surveys and ongoing data interaction. It appears from this early feasibility study that resident physicians may be more engaged with this strategy and data collection method. Nurses in this pilot tended to be less engaged with the data tracking and follow-up mechanisms. Resident physicians were, in general, more enthusiastic before, during, and after the period ended. Though small in size, this pilot study does shed some initial interest from emergency clinicians and understanding key physiologic metrics such as sleep and physical activity. Key data insights remain physical activity as measured by step count, amount and quality of sleep, and HRV, which is an established physiologic measure relating to CV health [38]. The next steps to build on this pilot study included bringing it to a larger scale and designing it for nurse and physician preferences which we have learned to date.

The key finding of this pilot study is that the type of device and platform must be optimized for clinician use. In this study, we used a high-performance athletics device, which is designed primarily for physiologic measures [39]. This device does not have some traditional features that the average person may be accustomed to including a clock and the ability to send or receive messages. More traditional and popular bands such as the Apple Watch or Fitbit offer participants data tracking with features such as message-sending capability and a watch. These features are important when designing for scale, but were not previously known until we pilot-tested it, as other studies in more controlled environments have used the same device [39,40], underscoring the need to optimize design over technological capacity. The high-performance athletic band used in this pilot study offered a longer battery life and the ability to charge while wearing the device, which seemed less important to participants in this study. Future work needs to leverage the existing devices that clinicians wear in their everyday lives and incorporate those devices into this approach.

Finally, these devices and remote surveys highlight the persistent and real variation in professional disengagement, exhaustion, and burnout. In this small cohort, we do not identify significant amounts of anxiety or depression in screening assessments. We do note some variation and physiologic measures across resin physicians and nurses as well as differences across individuals who identify as male vs female. These differences though statistically significant, represent only a small sample size, and follow-up studies need to be scaled at larger populations. Specific interests should investigate physiologic measures such as heart rate, HRV, and sleep.

Limitations

This study has several limitations. This was a single-center pilot study and had a small sample size, which was intentional by design. We see glimpses toward mechanisms to optimize digtal technology and workforce sustainment. The signals identified
Here represent only early pilot findings, and inherently there is also selection bias in individuals who opted to wear the band and complete surveys. Less is known about individuals who do not want to be part of this pilot, and future studies will need to be larger, randomized, and for a longer duration. Nonetheless, the study is among the first to begin to investigate the feasibility of using digital technology to support emergency physicians and nurses by helping them identify physiologic variations in their own health. The study represents the pilot beginnings to help identify proactive and much-needed new methods to mitigate strain that is related to physical and mental health.

Conclusion

This pilot study of emergency nurses and resident physicians investigating wearable devices to capture physiologic data from a cohort represents early signals toward feasible and acceptable programs. This pilot study identifies opportunities and interest in these mechanisms and a need to leverage more consumer-facing and potentially less sophisticated wearable devices for emergency clinicians. These methods can be further explored and larger, randomized trials can be conducted to investigate these strategies and how we support the workforce.

Acknowledgments

The authors would like to acknowledge the staff of the University of Pennsylvania Department of Emergency Medicine. This study was funded by the Emergency Medicine Foundation.

Data Availability

The deidentified data sets generated or analyzed during this study are available from the corresponding author on reasonable request.

Conflicts of Interest

None declared.

References

31. Your personal digital fitness and health coach. WHOOP. URL: https://www.whoop.com/ [accessed 2023-08-03]

37. Pioneering the field of high performance medicine. Arena Labs. URL: https://arenalabs.co/ [accessed 2023-08-03]

Abbreviations

CV: cardiovascular
ED: emergency department
EM: emergency medicine
GAD-7: General Anxiety Disorder
HRV: heart rate variability
PFI: Professional Fulfillment Index
PHQ-8: Patient Health Questionnaire
Feasibility of Guided Internet-Based Cognitive Behavioral Therapy for Panic Disorder and Social Anxiety Disorder in Japan: Pilot Single-Arm Trial

Seina Shinno1*, MMSc; Kazuki Matsumoto2,3*, PhD; Sayo Hamatani3,4, PhD; Yosuke Inaba5, PhD; Yoshihito Ozawa5, BSc; Yohei Kawasaki5, PhD; Tomoki Ikai6, MD, PhD; Chihiro Sutoh3, MD, PhD; Hiroyuki Hayashi1,7, MD, PhD; Eiji Shimizu3,8, MD, PhD

1Department of Integrated Medical Sciences, Graduate School of Medicine, University of Fukui, Fukui, Japan
2Division of Clinical Psychology, Kagoshima University Medical and Dental Hospital, Kagoshima, Japan
3Research Center for Child Mental Development, Chiba University, Chiba, Japan
4Research Center for Child Mental Development, University of Fukui, Fukui, Japan
5Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
6Faculty of Medical Sciences, Division of Medicine Primary Health Care, University of Fukui, Fukui, Japan
7Department of Emergency and General Medicine, Fukui University Hospital, Fukui, Japan
8Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan

*these authors contributed equally

Corresponding Author:
Kazuki Matsumoto, PhD
Division of Clinical Psychology
Kagoshima University Medical and Dental Hospital
1-35-8 Sakuragaoka
Kagoshima, 8908520
Japan
Phone: 81 099 275 5707
Email: k2782199@kadai.jp

Abstract

Background: Cognitive behavioral therapy (CBT) is effective in treating anxiety disorders. Accessibility to CBT has been limited in Japan due to the shortage of therapists. While an open-source e-learning system can be used to create a simple internet-based cognitive behavioral therapy (ICBT) program, the safety and outpatient acceptance of this treatment approach have not been explored in Japan.

Objective: The aim of this study was to investigate whether outpatients with anxiety disorders could accept and successfully complete the ICBT program with guidance by CBT therapists when implementing therapeutic modules and CBT tasks. Due to being in the initial phase of a novel treatment in Japan, this study was intended for verification with a small sample size.

Methods: In total, 6 adults, including 4 male participants and 2 female participants, were enrolled in a single-arm trial. The intervention involved guided ICBT comprising 12 sessions, including CBT text, comprehension confirmation tests, and explanatory videos about cognitive behavioral models, accessible through a website. The therapist guided the participants in accessing the ICBT program and answering their questions using a chat tool. The primary outcome was anxiety severity assessed using the State-Trait Anxiety Inventory-Trait. Secondary outcomes included the Panic Disorder Severity Scale, Liebowitz Social Anxiety Scale (LSAS), Beck Anxiety Inventory (BAI), Patient Health Questionnaire–9, Generalized Anxiety Disorder–7, and Working Alliance Inventory–Short Form (WAI-SF). Statistical analyses were performed using paired 2-tailed \(t \) tests to assess the changes in clinical symptoms. The total WAI-SF score at the final session was used to evaluate the therapeutic alliance. For statistical analyses, mean changes for total State-Trait Anxiety Inventory-Trait, BAI, Panic Disorder Severity Scale, LSAS, Patient Health Questionnaire–9, and Generalized Anxiety Disorder–7 scores were analyzed using the paired 2-tailed \(t \) test. The 2-sided significance level for hypothesis testing was set at 5%, and 2-sided 95% CIs were calculated.

Results: Most participants diligently engaged with the ICBT program. No adverse events were reported. The mean total scores for the primary outcome decreased by 11.0 (SD 9.6) points (95% CI –22.2 to 0.20; Hedges \(g = 0.95 \)), but it was not statistically significant.
Introduction

Anxiety disorders such as social anxiety disorder (SAD) and panic disorder (PD) involve prolonged and significant anxiety, leading to substantial impairment in daily functioning. In Japan, the 12-month prevalence of anxiety disorders is 5.3%, making them the most commonly diagnosed mental disorders [1]. Cognitive behavioral therapy (CBT) has been proven to be effective in treating anxiety disorders, particularly SAD and PD [2,3]. As per the clinical guidelines [4,5], CBT is the primary treatment option for patients with SAD or PD. However, CBT has rarely been integrated into the Japanese psychiatric clinical practice. The limited availability of CBT therapists and high implementation costs have been major obstacles significantly impacting the accessibility of CBT [6,7]. According to a 2018 report, the implementation rate of CBT in Japanese psychiatric clinics was 6.2% [7]. When CBT is applied, it is rarely based on an evidence-based cognitive behavioral model. In most CBT practices, therapists independently select and combine CBT techniques [7].

Since the latter half of the 1990s, self-help CBT programs have been provided in rural areas via the internet. CBT delivered through the internet is known as internet-based cognitive behavioral therapy (ICBT) [8]. In the ICBT approach, therapists guide patients via phone or email to enhance their treatment experience. Previous studies of guided ICBT have demonstrated significant therapeutic effects on anxiety disorders. According to 2 systematic reviews with meta-analyses, guided ICBT is likely as effective as face-to-face CBT [9,10]. Most studies of guided ICBT in these reviews were conducted in Europe, particularly, Northern Europe [10-13]. Due to the varying internet infrastructure and ICT literacy across different countries, evidence from clinical trials in Eastern countries is crucial.

Recently, several studies on ICBT with treatment programs adapted to specific cultures have been conducted in China, Korea, and Pakistan, yielding results supporting the effectiveness of ICBT [14-16]. Although some culturally adapted ICBT programs for mental disorders have begun to emerge in Japan [17-20], there is a lack of evidence of clinical trials that specifically target anxiety disorders [21]. A previous single-arm study in Japan demonstrated the feasibility of CBT via videoconference as another remote format for 20 adults with SAD or PD [22]. In this study, remote therapists provided individual CBT in real time. The results indicated that Japanese individuals with anxiety disorders find remote interventions preferable and readily acceptable. However, in the guided ICBT format, the absence of face-to-face interaction with the therapist is fundamental, and it is anticipated that the treatment experience may qualitatively differ, potentially leading to less favorable patient acceptance and treatment responses.

To carefully assess the feasibility of guided ICBT, a novel treatment in Japan, we conducted a rigorously controlled clinical trial with a small sample size, monitoring for the risk of deterioration and unexpected adverse events. The participants’ guided ICBT experiences were also summarized in a brief case series included as Multimedia Appendix 1.

Methods

Study Design

This prospective single-arm open trial was conducted between September 2019 and March 2020 at 2 university hospitals and a psychiatric clinic in Japan. Patients with PD or SAD were recruited between September and November 2019 through posters and leaflets placed at medical institutions in the 2 prefectures and on the university’s home page. The participants continued to receive treatment from general medical practitioners during the study period, and their authorization was obtained before enrollment. Personal IDs and passwords to the treatment program and chat tools were provided to participants.

Ethical Considerations

This study project and the present clinical trial protocol adhered to the Ethical Guidelines for Medical and Biological Research Involving Human Subjects in Japan [23]. This study was approved by the institutional review board of Chiba University Hospital (G2019004). Written informed consent was obtained from all participants after they were thoroughly informed of the study protocol. No compensation was provided for participating in the research, although the guided ICBT was provided for...
free. This pilot single-arm trial was registered at the University Hospital Medical Information Network Clinical Trials Registry (UMIN0000038118).

Recruitment

Figure 1 illustrates the flow of participants throughout the study. Initially, 8 patients were recruited in the study. The screening through psychological assessments was conducted by 3 clinical psychologists (SS, KM, and SH), and it was ultimately confirmed by 2 physicians (HI and ES) whether the participants met the diagnostic criteria of the *Diagnostic and Statistical Manual of Mental Disorder, Fifth Edition* [24]. After the screening, 2 patients were excluded either because they did not meet the inclusion criteria or because of pending cancellations as part of the participant management process. In total, 6 patients underwent a baseline assessment and were subsequently enrolled in the study. Following enrollment, 1 patient disagreed with the exposure in session 6 during the intervention. Notably, there were no dropouts in this trial, and no adverse events were reported during treatment. Of the 6 patients, 5 (83%) successfully completed the treatment modules and participated in the telephonic posttreatment assessment conducted by an independent assessor. One patient with PD who could not be assessed over the phone received all symptom rating scales via mail except for the Panic Disorder Severity Scale (PDSS).

Figure 1. Participant flow.

Inclusion Criteria

Inclusion criteria were (1) age between 18 and 65 years, (2) a primary diagnosis of PD or SAD according to the Mini-International Neuropsychiatric Interview [25], (3) moderate symptoms of PD or SAD: PDSS total score >9 or Liebowitz Social Anxiety Scale (LSAS) total score >70 [26-29], and (4) the ability to send emails and access the e-learning system.

Exclusion Criteria

Exclusion criteria were (1) psychosis and bipolar disorder, (2) current high risk of suicide, (3) substance abuse or dependence diagnosed within the past 12 months (antisocial personality disorder), and (4) IQ<80 measured by the Japanese Adult Rating Test [30].

Primary Outcome Measure

The primary outcome was a change in anxiety symptoms assessed using the Japanese version of the State-Trait Anxiety Inventory-Trait (STAI-T) [31]. The STAI-T is a self-reported scale comprising 40 items that quantitatively measures anxiety and can be evaluated using 2 scales [32]. The STAI-T comprises 20 items rated on a 4-point scale, and the total score ranges from 20 to 80, divided into 5 levels (I=very low, II=low, III=normal, IV=high, and V=very high). The validity and reliability of the Japanese version of the STAI-T have been demonstrated [33].

Secondary Outcome Measures

In addition to the primary outcome, several secondary outcomes with established reliability and validity were selected based on the research objectives. The Beck Anxiety Inventory (BAI) was
used to quantify comprehensive anxiety symptoms [34]. The BAI is a 21-question multiple-choice self-report inventory used to assess anxiety severity [34,35]. Other secondary outcome measures included the PDSS for participants with a primary PD diagnosis [26,27] and the LSAS for those with a primary SAD diagnosis [28,29].

The PDSS is a 7-item clinical interview rating scale that evaluates the core PD characteristics and demonstrates good psychometric properties [36]. As the PDSS is meant to be administered by professionals knowledgeable of the clinical manifestations of PD, an independent assessor (SH) was used to conduct and interpret this scale. The treatment response and remission rates were calculated using the LSAS and PDSS. For SAD, treatment response was defined as a 31% or greater reduction in the total LSAS score, and remission was defined as a final LSAS score of ≤36 [29]. For PD, treatment response was defined as a 40% or greater reduction in the total PDSS score, and remission was defined as a final PDSS score of ≤5 [37].

The participants also assessed the psychological bond between therapists and participants using the Working Alliance Inventory–Short Form (WAI-SF) [38], depressive symptoms using the Patient Health Questionnaire–9 (PHQ-9) [39,40], and generalized anxiety symptoms using the Generalized Anxiety Disorder–7 (GAD-7) [39,41]. The WAI-SF assesses the strength of the therapeutic alliance between the therapist and patient through 12 items rated on a scale of 1 (never) to 7 (always). The total score ranges from 12 to 84, reflecting the overall strength of the therapeutic bond between the therapist and patient.

Both the PHQ-9 and GAD-7 were scored on a 4-point scale (0=none, 1=a few days, 2=more than half, and 3=almost daily). The PHQ-9 scores range from 0 to 27, with the cutoff value for clinically significant depressive symptoms set at 10. Symptomatological was categorized as follows: 0–4=none, 5–9=mild, 10–14=moderate, 15–19=moderate to severe, and 20–27=severe depressive state. The Japanese version of the PHQ-9 has demonstrated adequate validity [40]. GAD-7 scores range from 0 to 21, with a cutoff value for clinically significant generalized anxiety set at 10. Symptomatological was defined as follows: 0–4=none, 5–9=mild, 10–14=moderate, and 15–21=severe general anxiety. The GAD-7 has demonstrated good reliability and validity [42].

Intervention

We developed ICBT programs based on the Clark and Wells [43] model for SAD and Seki and Shimizu’s model for PD [44]. Each ICBT program consisted of 12 modules. Therapeutic guidance was provided by a clinical psychologist (KM) with extensive experience in face-to-face CBT for patients with PD and SAD. The therapist, a clinical psychologist with a PhD, had completed the CBT training course [45]. After each session, the therapist conducted peer supervision with the third author. The intervention involved guided ICBT comprising 12 sessions, including CBT text, comprehension confirmation tests, and explanatory videos about cognitive behavioral models, accessible through a website. The therapist guided the participants in accessing the ICBT program and answering their questions using a chat tool.

The ICBT program for PD included the following modules: guidance for ICBT program (session 0), psychological education and case conceptualization (week 1), review of safe behaviors (week 2), modification of self-image (week 3), attention shift training (week 4), behavioral experiments with internal sensory exposure (week 5), staged exposure (week 6 and 7), intervention on memory of the first panic attack (week 8), examination of others’ interpretations of panic attacks (week 9), stop dwelling on the panic attacks (week 10), reconstruction of remaining beliefs (schema work; week 11), and relapse prevention (week 12).

The ICBT program for SAD included the following modules: guidance for ICBT program (session 0), psychological education and case conceptualization (week 1), examination of safety behavior (week 2), video feedback (week 3), attention shift training (week 4), behavioral experiment 1 (week 5), behavioral experiment 2 (week 6), creation of anxiety hierarchy form and graded exposure (week 7), validating negatively rated expectations (week 8), stop dwelling on things (week 9), rewriting the meaning of memories linked to self-image (week 10), reconstruction of remaining beliefs (schema work; week 11), and relapse prevention (week 12).

The participants in this study were generally instructed not to initiate, discontinue, or modify their pharmacotherapy after the intervention. The participants were required to inform the research team if there were any changes to their medication regimen.

Hardware and Software

The participants used personal PCs, tablet PCs, or smartphones. The software used included LearningBox (Tatsuno Information System Co) and MediLine (ShareMedical Co), a medical chat service for delivering ICBT. LearningBox is an e-learning system enabling administrators to create and manage educational materials, handle member groups, and record and assess grades. Although e-learning systems store and manage user results, they do not include personal or sensitive information. MediLine is a medical chat service (medical social networking service) designed to replace email and phone calls. It incorporates robust encryption to prevent military-level information leaks and operates in a double-encrypted state, following the Japanese government guidelines. End-to-end encryption is performed in real time on the server during communication, and temporary memory is used in the terminal. The lectures for each CBT session were recorded as video footage, uploaded to YouTube [46,47], and shared with the participants.

Data Setting

SH was responsible for collecting outcomes at baseline (week 1) and postintervention (week 12). The collected data were registered on a server and managed by the Data Management Office of Chiba University Hospital.

Statistical Analysis

Statistical analyses were conducted according to the intention-to-treat principle by a team of statistical analysts (YI, YO, and YK). For screening assessments at baseline, summary
statistics were generated, including proportions for categorical data and means and SDs for continuous variables. All outcomes that could be expressed as continuous variables were analyzed using paired 2-tailed t tests before and after the intervention. Specifically, total STAI-T, BAI, PDSS, LSAS, PHQ-9, and GAD-7 scores were analyzed. The 2-sided significance level for hypothesis testing was set at 5%, and 2-sided 95% CIs were calculated. The total WAI-SF score, which measures the strength of the therapeutic alliance, was submitted as a raw score after the completion of ICBT. One male participant with PD did not submit PDSS data after the intervention. Imputation of missing values was not performed.

Results

Demographic Data and Clinical Characteristics

In total, 6 participants (4 male participants and 2 female participants) with a mean age of 41 (SD 8.2; range 26-51) years were enrolled in the clinical trial. Table 1 shows the demographic data and the participants’ clinical characteristics. All participants continued their pharmacotherapy during the trial with specific medications such as paroxetine hydrochloride hydrate (n=3), venlafaxine hydrochloride (n=1), sertraline hydrochloride (n=1), and a combination of sertraline hydrochloride and ezilam (n=1). The participants’ estimated IQs tended to be higher than the mean (110, SD 4.2).

<table>
<thead>
<tr>
<th>Participant</th>
<th>Participant 2</th>
<th>Participant 3</th>
<th>Participant 4</th>
<th>Participant 5</th>
<th>Participant 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Age (years)</td>
<td>37</td>
<td>44</td>
<td>26</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>Education (years)</td>
<td>16</td>
<td>12</td>
<td>9</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Employment status</td>
<td>Full time</td>
<td>Full time</td>
<td>Unemployed</td>
<td>Full time</td>
<td>Unemployed</td>
</tr>
<tr>
<td>Age at onset (years)</td>
<td>16</td>
<td>20</td>
<td>12</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>Primary diagnosis</td>
<td>SADa</td>
<td>SAD</td>
<td>SAD</td>
<td>PDb</td>
<td>PD</td>
</tr>
<tr>
<td>Comorbidity</td>
<td>None</td>
<td>None</td>
<td>MDDc</td>
<td>APd</td>
<td>AP</td>
</tr>
<tr>
<td>Estimated IQ</td>
<td>110</td>
<td>104</td>
<td>108</td>
<td>110</td>
<td>112</td>
</tr>
</tbody>
</table>

*a*SAD: social anxiety disorder.

*b*PD: panic disorder.

*c*MDD: major depressive disorder.

*d*AP: agoraphobia.

Adverse Events

No mental or physical adverse events were reported after the intervention.

Evaluation Outcomes

Table 2 provides a detailed overview of the outcomes. In the primary outcome, the mean total score on the STAI-T decreased by 11.0 (SD 9.6) points, although this did not reach statistical significance (95% CI –22.2 to 0.20; P=.05; Hedges g=0.95). However, several secondary outcomes demonstrated significant improvements. The mean total BAI score significantly decreased by 15.7 (SD 12.1) points (95% CI –28.4 to –3.0; P=.03; Hedges g=1.24). The mean total PDSS score also decreased significantly, by 12.0 (SD 4.2) points (95% CI –50.1 to 26.1; P=.16; Hedges g=1.79). Furthermore, the mean total LSAS score significantly decreased by 32.0 (SD 11.1) points (95% CI –59.7 to –4.3; P=.04; Hedges g=1.38).
Table 2. Outcomes from pre- to postintervention (N=6).

<table>
<thead>
<tr>
<th>Scale</th>
<th>Preintervention, mean (SD)</th>
<th>Postintervention, mean (SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAI-T*a</td>
<td>56.8 (12.5)</td>
<td>45.8 (10.5)</td>
<td>.05</td>
</tr>
<tr>
<td>BAI*b</td>
<td>34.2 (13.9)</td>
<td>18.5 (11.1)</td>
<td>.03</td>
</tr>
<tr>
<td>PDSS* (n=3)</td>
<td>15.3 (6.03)</td>
<td>3.0 (4.24)</td>
<td>.16</td>
</tr>
<tr>
<td>LSAS* (n=3)</td>
<td>88.3 (17.0)</td>
<td>56.2 (28.2)</td>
<td>.40</td>
</tr>
<tr>
<td>PHQ-9*e</td>
<td>12.5 (5.61)</td>
<td>8.7 (5.61)</td>
<td>.16</td>
</tr>
<tr>
<td>GAD-7*f</td>
<td>9.17 (6.85)</td>
<td>6.0 (4.5)</td>
<td>.27</td>
</tr>
</tbody>
</table>

*aSTAI-T: State-Trait Anxiety Inventory-Trait.

*bBAI: Beck Anxiety Inventory.

*cPDSS: Panic Disorder Severity Scale.

*dLSAS: Liebowitz Social Anxiety Scale.

*ePHQ-9: Patient Health Questionnaire–9.

*fGAD-7: Generalized Anxiety Disorder–7.

Regarding depressive symptoms, the mean total PHQ-9 score decreased from 12.5 (SD 5.61) to 8.7 (SD 4.47) points, but the reduction was not statistically significant (95% CI –9.3 to 1.6; \(P = .13; \) Hedges \(g = 0.68 \)). Similarly, for generalized anxiety symptoms, the mean total GAD-7 score decreased from 9.17 (SD 6.85) to 6.0 (SD 4.74) points, but the reduction was not statistically significant (95% CI –9.8 to 3.5; \(P = .27; \) Hedges \(g = 0.55 \)).

At the postintervention assessment (week 12), the treatment response rates were 67% (n=2) for PD and 67% (n=2) for SAD. The remission rates were 67% (n=2) for PD and 33% (n=1) for SAD.

Acceptance of Guided ICBT

Of the 4 male participants, 3 completed all treatment modules. These 3 participants completed the treatment without asking questions to the therapist and were able to understand the content and execute therapeutic tasks independently. A female participant with SAD avoided even minimal communication with therapists through chat tools due to severe social anxiety symptoms. While she accepted the self-help format of CBT, the chat with the therapist itself became burdensome rather than beneficial. A female participant with PD and fear of panic attack reported being encouraged by the therapist’s empathy and encouragement. A male participant with PD self-discontinued the treatment module and subsequently lost contact with the therapist. He frequently struggled to control his emotions, making it challenging to address his concerns effectively. For a brief case series of guided ICBT, please refer to Multimedia Appendix 1.

Discussion

Principal Results

This study explored the feasibility of guided ICBT in outpatients with PD and SAD in Japan. In total, 5 of the 6 participants successfully completed all modules, and no adverse events were reported throughout the study period. While anxiety symptoms decreased in most patients after the intervention, with a substantial effect size, the primary outcome (STAI-T) did not show a significant difference. However, significant improvements were observed in the secondary outcome, as measured by the BAI. Our results suggest that guided ICBT has a positive impact on anxiety symptoms, as evidenced by the notable changes in BAI scores. Most participants diligently engaged with the ICBT programs. Meanwhile, patients who considered themselves to have enough understood the materials understood the materials hardly contacted the therapists.

Limitations

When interpreting our study, it is important to consider the following limitations. First, the small sample size prevented us from determining whether the findings were due to a type II (\(\beta \)) error. Second, this was a single-arm trial without a control group. More robust and statistically rigorous results could be obtained through a clinical randomized controlled trial in which the sample size is determined based on the effect sizes observed in our study. A randomized controlled trial in Japan would allow for better investigation of the effectiveness of ICBT in Japanese patients with anxiety disorders.

Additionally, we did not assess the extent to which the participants implemented ICBT program strategies in their daily lives. While the therapist encourages participants to practice what they learned through chat tools, phone calls, and in-person interactions, patients might face challenges in implementing these changes or coping with symptoms [48]. In this study, patients with PD had difficulty applying learned techniques in daily life. Future studies should evaluate the impact of practice on symptom improvement to gain a more comprehensive understanding of the therapeutic processes.

Comparison With Prior Work

Our results showed that participants engaged in video lectures explaining the treatment modules, potentially enhancing their understanding and motivation for treatment. Despite the small sample size, guided ICBT with these lecture videos showed significant effectiveness as reflected in a treatment response rate of 67% (n=4) and a remission rate of 50% (n=3). These
results are consistent with a representative meta-analysis examining treatment response predictors in 1162 patients undergoing ICBT [9]. The reduction in the total score on the primary symptom rating scales before and after the trial, along with the effect size, underscored the efficacy of guided ICBT that incorporated lecture videos. Notably, the within-group effect sizes for the primary symptoms in this study (Hedges g=1.38 for LSAS and 1.79 for PDSS) were as substantial as those observed in previous representative studies [49-51].

In this study, the dropout rate was 17% (1 of 6 participants), which is comparable to face-to-face CBT (26%) [52]. In contrast, another study of guided ICBT reported an average dropout rate of 32% for depression [53]. Notably, one dropout from our trial was a male patient with a significantly lower therapeutic alliance score (12 points on the WAI-SF total score). Consistent with previous studies on dropout predictors, patients with low therapeutic alliance scores tended to drop out [54]. When the therapeutic alliance is weak, therapists and patients should engage in discussions regarding treatment goals and tasks. However, rebuilding therapeutic alliances in guided ICBT contexts may be more challenging than in face-to-face contexts.

Participants with anxiety disorders might willingly participate in CBT programs but may not always practice cognitive behavioral skills [8]. For instance, one participant with PD (participant 5) experienced severe panic symptoms related to employment status. Conversely, some patients demonstrate independent therapeutic progress without extensive therapist interactions. Overall, our findings align with the existing research, indicating that severe anxiety, coexisting depression, and low socioeconomic status are associated with poor outcomes [55]. Please refer to Multimedia Appendix 1 for details regarding each participant’s treatment course.

In the case of SAD, all 3 participants successfully applied the acquired skills to their daily lives. However, none of the participants with SAD used a communication tool with their therapist. This suggests that using a chat tool may be burdensome for individuals with social anxiety, potentially reducing the accessibility of ICBT, as these patients often dislike high-intensity communication. However, the therapists’ guidance may have encouraged them to engage in self-help activities [56]. For patients with social anxiety who find it challenging to ask questions or express their thoughts, therapists could consider expressing their ability to provide answers as needed instead of engaging in routine email interactions.

It is worth noting that even patients with social anxiety who avoid chatting may still be willing to receive treatment, as indicated by a guided ICBT trial conducted in China, in which patients with SAD completed more modules of the treatment program than the nonclinical group [15]. However, if the symptoms are severe, patients may struggle to practice cognitive behavioral skills independently in their daily lives. Participants who showed symptom improvement had relatively high social functioning, continued employment, and direct community involvement (participants 1, 2, 4, and 6).

Conversely, patients with severe disorders (participant 3) and those resistant to exposure-mediated interventions (participant 5) may require a significant amount of therapeutic attention. For instance, individual face-to-face CBT might be a more suitable option for someone like participant 3, who has SAD. Similarly, for participant 5, a personalized face-to-face CBT approach in which the therapist helps analyze the gains and losses of exposure and safety behaviors and demonstrates internal sensory exposure techniques could be beneficial. Clinicians and therapists who are going to conduct CBT should consider disclosing treatment modules to patients and assess the level of support required before providing ICBT.

Conclusions
Guided ICBT may be a feasibility treatment approach for patients with PD and SAD in Japan. If the patients have high motivation and the ability to understand and practice treatment modules, supports might not be strictly necessary during the treatment from the CBT therapist. The empathetic words from the therapist and encouragement for program implementation may assist some patients in overcoming fear and engaging in the assigned tasks.

Acknowledgments
This study was funded by the Japan Society for the Promotion of Science KAKENHI Grant-in-Aid for Scientific Research (grant 18K03130).

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions
SS played a significant role in study design, recruitment, and paper writing. KM contributed to all aspects of the research process. KM, SH, and ES were involved in the development and implementation of the cognitive behavioral therapy course. TI, HH, and ES contributed to the study design, participant recruitment, and the overall administration of the clinical trial. YI, YO, and YK were responsible for conducting the statistical analyses. All authors thoroughly reviewed the paper before submission and granted their approval for publication.
Conflicts of Interest

None declared.

Multimedia Appendix 1

Case series of the 6 participants.

[DOCX File, 23 KB - formative_v8i1e53659_app1.docx]

References

Abbreviations

- **BAI**: Beck Anxiety Inventory
- **CBT**: cognitive behavioral therapy
- **GAD-7**: Generalized Anxiety Disorder–7
- **ICBT**: internet-based cognitive behavioral therapy
- **LSAS**: Liebowitz Social Anxiety Scale
- **PD**: panic disorder
- **PDSS**: Panic Disorder Severity Scale
- **PHQ-9**: Patient Health Questionnaire–9
- **SAD**: social anxiety disorder
- **STAI-T**: State-Trait Anxiety Inventory-Trait
- **WAI-SF**: Working Alliance Inventory-Short Form
Original Paper

Six-Month Pilot Testing of a Digital Health Tool to Support Effective Self-Care in People With Heart Failure: Mixed Methods Study

Alison Keogh1,2, BSc, MSc, PhD; Carol Brennan3, BSc, MSc; William Johnston1, BSc, PhD; Jane Dickson4,5, BSc; Stephen J Leslie6, BSc, PhD; David Burke5,7, BSc, MSc; Peter Megyesi1,3, BSc; Brian Caulfield1,3, BSc, MSc, PhD

1Insight Centre Data Analytics, University College Dublin, Dublin, Ireland
2School of Medicine, Trinity College Dublin, Dublin, Ireland
3School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
4Physiotherapy Department, Beacon Hospital, Dublin, Ireland
5Cardiology, Beacon Hospital, Dublin, Ireland
6Cardiac Unit, Raigmore, Inverness, United Kingdom
7School of Medicine, University College Dublin, Dublin, Ireland

Corresponding Author:
Alison Keogh, BSc, MSc, PhD
Insight Centre Data Analytics
University College Dublin
Belfield
Dublin, D04V1W8
Ireland
Phone: 353 17167777
Email: Alison.keogh@ucd.ie

Abstract

Background: Digital tools may support people to self-manage their heart failure (HF). Having previously outlined the human-centered design development of a digital tool to support self-care of HF, the next step was to pilot the tool over a period of time to establish people’s acceptance of it in practice.

Objective: This study aims to conduct an observational pilot study to examine the usability, adherence, and feasibility of a digital health tool for HF within the Irish health care system.

Methods: A total of 19 participants with HF were provided with a digital tool comprising a mobile app and the Fitbit Charge 4 and Aria Air smart scales for a period of 6 months. Changes to their self-care were assessed before and after the study with the 9-item European HF Self-care Behavior Scale (EHFScBS) and the Minnesota Living with HF Questionnaire (MLwHFQ) using a Wilcoxon signed rank test. After the study, 3 usability questionnaires were implemented and descriptively analyzed: the System Usability Scale (SUS), Wearable Technology Motivation Scale (WTMS), and Comfort Rating Scale (CRS). Participants also undertook a semistructured interview regarding their experiences with the digital tool. Interviews were analyzed deductively using the Theoretical Domains Framework.

Results: Participants wore their devices for an average of 86.2% of the days in the 6-month testing period ranging from 40.6% to 98%. Although improvements in the EHFScBS and MLwHFQ were seen, these changes were not significant (P=.10 and P=.70, respectively, where P>.03, after a Bonferroni correction). SUS results suggest that the usability of this system was not acceptable with a median score of 58.8 (IQR 55.0-60.0; range 45.0-67.5). Participants demonstrated a strong motivation to use the system according to the WTMS (median 6.0, IQR 5.0-7.0; range 1.0-7.0), whereas the Fitbit was considered very comfortable as demonstrated by the low CRS results (median 0.0, IQR 0.0-0.0; range 0.0-2.0). According to participant interviews, the digital tool supported self-management through increased knowledge, improved awareness, decision-making, and confidence in their own data, and improving their social support through a feeling of comfort in being watched.

Conclusions: The digital health tool demonstrated high levels of adherence and acceptance among participants. Although the SUS results suggest low usability, this may be explained by participants uncertainty that they were using it fully, rather than it being unusable, especially given the experiences documented in their interviews. The digital tool targeted key self-management behaviors and feelings of social support. However, a number of changes to the tool, and the health service, are required before it
can be implemented at scale. A full-scale feasibility trial conducted at a wider level is required to fully determine its potential effectiveness and wider implementation needs.

(JMIR Form Res 2024;8:e52442) doi: 10.2196/52442

KEYWORDS
digital health; heart failure; cardiology; self-care; behavior change; eHealth; mHealth; mobile health; mobile app; mobile phone; elderly; self-care; self-management; digital tools; digital tool; human-centered design; app; apps; applications; wearables; wearable; Fitbit; usability; adherence; feasibility; congestive heart failure; cardiac failure; myocardial failure; heart decompensation

Introduction

Heart failure (HF) is a major global cause of disability associated with high morbidity and mortality, frequent hospitalization, high health care costs, impaired functional status, and poor quality of life [1-3]. Defined as “a clinical syndrome with symptoms and/or signs caused by a structural and/or functional cardiac abnormality and corroborated by elevated natriuretic peptide levels and/or objective evidence of pulmonary or systemic congestion” [4], symptoms include shortness of breath (dyspnea), fatigue, pulmonary edema, and a reduced ability to complete activities of daily living [2]. Self-care behaviors are critical components of the long-term management of HF [3,5-8]. Self-care is an overarching concept formed of the key concepts of (1) self-care maintenance (eg, taking or adjusting medication as prescribed, engaging in physical activity, and adhering to a healthy diet), (2) self-care monitoring (eg, regular weighing), and (3) self-care management (eg, changing diuretic dose in response to symptoms) [5]. Adequate self-care requires patients to understand what they need to do, have the skills to implement advice given to them, and adjust their behaviors according to how they feel and their symptoms. This is a complex, multicomponent set of behaviors that is constantly evolving, which can result in patients finding it difficult to successfully undertake [2,3,9,10].

Consequently, recent years have seen growing interest in the development of new and novel ways to support patients in their self-care behaviors. In particular, digital health options have begun to be widely used as the ubiquitous use of smartphone apps, and wearable devices appear to be adopted to support health care [3,11]. Used independently, or in combination, such digital health tools (DHTs) may support patients to monitor key behaviors, support improved autonomy in their own care, and provide pathways for patients and health care professionals (HCPs) to communicate [2,9]. However, despite the promise of DHTs in the management of HF, results regarding its potential effectiveness are mixed [3,12,13]. The pace of development of digital tools has resulted in them only being tested in small numbers or over a short duration, and critically, these tools are rarely developed with clear clinical or patient perspectives embedded within them [3]. Recently, the use of human-centered design approaches has led to the successful development of digital health technologies designed to support chronic disease management [14]. As such, implementing a human-centered design approach to the development of DHTs designed to promote self-care behaviors in patients with HF may positively influence the impact their condition has on their quality of life.

Therefore, we used a human-centered design process, as described in the International Organization for Standardization 9241-210:2019 regulations [15], to design and develop a DHT to support effective self-care behaviors in people with HF over a medium-term duration of 6 months to test for the potential of participant fatigue with the DHT (ie, reduced usage over time, poor acceptability, etc). The full process and approach taken were previously outlined in detail elsewhere and pilot-tested over a 2 week period [16]. Specifically, a consumer grade device was used to understand whether such ubiquitous tools can be used to empower people with HF to self-monitor their condition, bridging the gap between them and their clinicians. However, this tool required a more robust assessment of the longitudinal impact on self-care behaviors. Additionally, we wished to get an initial indication of its potential use from the perspective of the HCPs. Therefore, the aim of this study was to conduct a 6-month observational pilot test of this DHT in practice to examine its usability and the participant’s adherence to the system.

Methods

Recruitment

Participants were recruited from a private hospital in Dublin, Ireland, between July and October 2021 and had previously been diagnosed with HF. Purposive sampling was used using the patient lists of Beacon Hospital Cardiology to facilitate the assessment of the acceptability and usability of the DHT. Participants were deemed eligible if they could provide written informed consent; were previously diagnosed with HF; were under the care of Beacon Hospital Cardiology (aged ≥18 years); were under New York Heart Association classification 1-3; were open to the use of technology in the promotion of HF self-care; had access to an internet connection or mobile data; and were intellectually, visually, and auditorily capable of communicating with the investigator and understanding and complying with the requirements of the study. Participants were deemed ineligible if they were medically unstable or undergoing medical treatment judged not to be medically compatible by the investigator (eg, undergoing treatment for cancer), or if they had any skin condition that may affect the integrity of their skin when wearing the activity tracker. Participants (n=43) were approached directly by the members of the cardiology team to determine their interest and eligibility in the study.

Ethical Considerations

The study received ethical approval from the Beacon Hospital Research Ethics Committee (BEA0114 and BEA0151), and written informed consent was obtained from all participants.
before commencing the study. No financial compensation was provided to participants taking part.

Digital Health Tool

The DHT used in this study was designed using human-centered design steps and included behavior change techniques, as previously outlined in detail by Johnston et al [16]. Briefly, the system was designed to comprise a cross-platform (iOS or Android) mobile app capable of linking to a consumer activity tracker and smart scales, specifically, the Fitbit Charge 4 and Aria Air smart scales (information also available in [17]). The mobile app was broadly divided into five sections: (1) advice, (2) symptom reporting, (3) activity tracker and scale data (exercise, weight, heart rate, and sleep), (4) medication reminders, and (5) other vital sign tracking—all targeted through the inclusion of specific behavior change techniques (Figure 1) [16,17]. During the design of this DHT, an initial prototype was trialed with participants with HF for a period of 2 weeks, where positive feedback and adherence were seen [16]. The system was considered easy to use, positively affected their motivation to engage in key self-care behaviors, provided them with skills and perceived knowledge that made them more aware of the importance of self-care behaviors, positively influenced their confidence, and facilitated help seeking. After this, aspects of the system that needed to be improved were identified. These changes were implemented before deployment in this longer study. Specifically, the scaling in the app was adjusted to support larger fonts, the ability to input decimal points for vital signs was inputted, screens were not allowed to take a time-out while videos were playing, the information button was made more visible, technical issues surrounding daily data were addressed, and the ability to visualize within day heart rate data was implemented [16].

Figure 1. Screenshots from the mobile app detailing the main menu, advice section, symptom report, and screens [16].

Study Methods

The recruited participants were invited to an initial setup session at the hospital (Figure 2). Demographic data such as age, sex, and the highest level of education were collected at the beginning of the session. The participants then completed the 9-item European HF Self-care Behavior Scale (EHFScBS) [18,19] and the Minnesota Living with HF Questionnaire (MLwHFQ) [20,21] to evaluate self-care behaviors in patients with HF and the effect of HF treatments on the quality of life. Following a setup and familiarization session with WJ (approximately 40 minutes), participants were asked to use the system as part of their usual daily routine for the following 6 months. Depending on their recruitment date, participants were using the DHT for a 6-month period between July 2021 and April 2022. During this period, patients were asked to wear the Fitbit Charge 4 activity tracker on their wrist, take their weight every morning using the Fitbit Aria Air scales, and interact with the developed mobile app. A check-in symptom questionnaire was completed once a month [16]. This same questionnaire was also triggered to be sent to participants once any of their monitored components (ie, heart rate, sleep, weight, or physical activity) changed by 2 SDs from their baseline level in the previous 7 days. In the event that a trigger occurred, the
A questionnaire was sent to participants as an alert in the app, informing them of a change and asking them to complete the questionnaire. The questionnaire was then sent, along with a trigger, to the cardiology team of the Beacon Hospital who would telephone the participant to determine whether any further medical action or intervention was required.

At the end of the 6-month period, individual semistructured interviews were completed over the phone and recorded with each participant. Open-ended questions were used to explore their perceptions of the acceptability, usability, and practicality of the DHT; understand their experiences pertaining to the impact of the DHT on their self-care behaviors; identify usability and user experience issues; and identify aspects that could improve the DHT (Multimedia Appendix 1). Participants also completed 3 usability questionnaires: System Usability Scale (SUS), a questionnaire designed to measure system usability [22]; Wearable Technology Motivation Scale (WTMS), a questionnaire based on the intrinsic needs listed within self-determination theory [23]; and the Comfort Rating Scale (CRS), a questionnaire designed to assess the comfort of wearable devices across the dimensions of emotion, attachment, harm, perceived change, movement, and anxiety [24]. They also repeated the EHFS/CS and MLwHFQ to indicate whether a change in their behaviors or quality of life occurred.

After the completion of the study, semistructured interviews were also conducted with 2 members of the clinical team in Beacon Hospital Cardiology to explore their perceptions of the DHT (Multimedia Appendix 2).

Data Analysis
The recorded interviews were transcribed verbatim and anonymized. The coding of participants’ experiences with the DHT over the 6-month period was done using the Theoretical Domains Framework (TDF). The TDF was used within the development study to map the target behaviors of the tool; thus, it was used as a lens through which to view the usability, adherence, and potential behavior changes noted during this 6-month study. A deductive content analysis was undertaken whereby transcripts were coded according to the components of TDF [25,26] using a critical realist approach. This approach posits that a reality exists independent of our construction of it, while maintaining that our knowledge of it is interpretive, partial, and fallible [27]. In taking this approach, we recognize that our own experiences influence our insights but that we maintain our objective to view the situation as it occurs. To elaborate on our experiences, AK is a research physiotherapist with over 5 years of experience in digital health research and a PhD in behavior change. CB is undertaking a PhD in behavior change, with expertise in the use of the TDF and publications using the same. Together, these experiences influence and enrich their interpretation of the data.

AK coded all transcripts. First, they familiarized themselves with the data by reading and rereading all transcripts and generating initial notes on the data. Meaningful phrases were highlighted and assigned codes according to the domains of the TDF [25,26]. CB then acted as a critical friend to the coding, reviewing 20% of transcripts and providing critical feedback to improve the interpretation of findings and discussion of codes. How these barriers and facilitators align to each of the key skills of self-management was considered to identify areas for further development. Finally, given that only 2 HCPs were interviewed regarding their experiences, information from their transcripts was summarized narratively.

Questionnaire data were analyzed using SPSS Statistics for Mac (version 27; IBM Corp). The questionnaire data were scored using the appropriate standardized procedure for each
questionnaire. The MLwHFQ is scored by summing each of the components, resulting in a score ranging from 0 to 105 (whereby higher scores indicate higher impairment) [20]. The EHFScBS 9-item is scored by reversing the responses to the questionnaire and standardizing them [30]. This results in a score ranging from 0 to 100 (where a higher score indicates good self-care, and <30 is deemed as inadequate) [18]. Changes in results before and after the study were measured using a Wilcoxon signed rank test. The \(P \) value was set at .05; however, this was adjusted with a Bonferroni adjustment whereby \(P < .03 \) was significant. The SUS is scored out of 40 but converted to a 0-100 scale as per the standard procedure, with >68 deemed acceptable and >80 considered excellent [31]. Each item of the CRS is scored from 0 to 20 (where higher scores equate to worse comfort) [24]. The median of the 6-item questionnaire was calculated. Finally, the WTMS is scored by calculating the average score across the different components for each participant, resulting in a score ranging from 0 to 7 (whereby 7 indicates higher intrinsic motivation) [23]. In addition, adherence was determined by identifying the number of days a user wore the Fitbit device throughout the day and recorded their weight.

Results

Participants

A total of 43 people were contacted by the clinicians in the Beacon Hospital to invite them to participate. Of these, 10 (23%) were not contactable, 1 (2%) did not satisfy the inclusion or exclusion criteria, 6 (14%) declined, and 7 (16%) did not use a smartphone. A total of 19 (44%) participants were recruited, of whom 17 completed the poststudy follow-up session (Table 1). One participant withdrew in the middle of the study because of increased health concerns, and 1 participant was unable to be contacted at the end of the study. Results regarding participants acceptability and changes to their self-care routines are based on the 17 who completed the entire study. Participants wore their devices for an average of 86.2% of the days in the testing period ranging from 40.6% to 98% (average of 157 days out of a possible 184 days). Furthermore, participants weighed themselves for an average of 73.7% of the potential testing days, ranging from 4.9% to 100% (average of 134 days out of a possible 184 days).

Table 1. Participant demographics (N=17).

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11 (65)</td>
</tr>
<tr>
<td>Female</td>
<td>6 (35)</td>
</tr>
<tr>
<td>Age (years), mean (SD; minimum-maximum)</td>
<td>72 (9.9; 54-81)</td>
</tr>
<tr>
<td>BMI, mean (SD; minimum-maximum)</td>
<td>28.3 (6.1; 19.3-40.4)</td>
</tr>
<tr>
<td>Education level, n (%)</td>
<td></td>
</tr>
<tr>
<td>Did not complete second level</td>
<td>2 (12)</td>
</tr>
<tr>
<td>Completed second level</td>
<td>4 (24)</td>
</tr>
<tr>
<td>Third level education (any)</td>
<td>7 (41)</td>
</tr>
<tr>
<td>Not reported</td>
<td>4 (24)</td>
</tr>
</tbody>
</table>

Patient-Reported Outcomes

Although improvements in the EHFScBS were seen between baseline and the completion of the study, these changes were not significant \((P > .03) \; \text{Table 2, Figures 3 and 4}. \) No participants were deemed to have inadequate self-care according to this scale. Similarly, although improvements were seen in the MLwHFQ results, these were not significant. Nonetheless, the median score suggests moderate quality of life, with 7 participants demonstrating good quality scores (41%) and 5 listing poor scores (29%) [32].

Table 2. Changes in participants’ reported self-care of their heart failure (HF).

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>Median prestudy results (IQR; minimum-maximum)</th>
<th>Median poststudy results (IQR; minimum-maximum)</th>
<th>Z score</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-item European HF Self-care Behavior Scale (0-100)</td>
<td>52.8 (38.0-47.0; 22-89)</td>
<td>72.2 (41.0-52.0; 42-94)</td>
<td>1.61</td>
<td>.11</td>
</tr>
<tr>
<td>Minnesota Living with HF Questionnaire (0-100)</td>
<td>31.0 (10.0-40.0; 0-77)</td>
<td>26.0 (15.0-53.0; 2-97)</td>
<td>0.39</td>
<td>.70</td>
</tr>
</tbody>
</table>
Figure 3. Pre- and post-results per participant for the European Heart Failure Self-care Behavior Scale.

Figure 4. Pre- and post-results per participant for the Minnesota Living with Heart Failure Questionnaire.
Table 3. Participant reported acceptability of the digital health tool.

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>Median results (IQR; minimum-maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Usability Questionnaire (0-100)</td>
<td>58.8 (55-60; 45.0-67.5)</td>
</tr>
<tr>
<td>Wearable Technology Motivation Scale (0-7)</td>
<td>6.0 (5-7; 1.0-7.0)</td>
</tr>
<tr>
<td>Comfort Rating Scale (0-20)</td>
<td>0.0 (0.0-0.0; 0.0-2.0)</td>
</tr>
</tbody>
</table>

Participant Interviews

A total of 13 of the TDF domains were viewed as barriers or facilitators to the self-management of HF, whereas just 1 domain of the TDF did not match data (“optimism”). However, alongside “goals” this domain was not originally mapped to the key behaviors of self-management during the development of the mobile app [16]. A limited number of codes were noted for “goals” and “reinforcement,” suggesting that neither domain plays an important role in the facilitation of self-management in HF; therefore, they were excluded from the analysis. Of the remaining domains, 5 were generally viewed as facilitators of self-management (knowledge; social role and identity; memory, attention, and decision processes; social influences; and behavioral regulation). One (environmental context) was a barrier to self-management, whereas 5 were neither (skills, beliefs about capabilities, beliefs about consequences, intentions, and emotions; Figure 5).

Figure 5. Demonstrated impact of each Theoretical Domains Framework component on self-management of heart failure (green = facilitator, orange = unclear, red = barrier).

Knowledge

Participants noted that the information provided in the mobile app was simple to understand and provided them with a greater general awareness of important elements to them and the management of their heart condition, specifically heart rate and weight. Indeed, people noted that, if anything, the information was too simple and they would have liked more personalized information, information about dietary requirements and blood pressure. Thus, overall, the knowledge provided by the app was considered useful in the management and awareness of their HF.

Well it was very simple to work. It kept me up to date. I kept an eye on my weight every morning which I usedn’t do. And then I would check the heart rate as well and then of course what I found very helpful was the questionnaire that you sent on every month. [P10, male, 80]

From my own personal point of view, blood pressure, since I had open heart surgery, my blood pressure has been very low, so I suffer on a daily basis with light-headedness and all of that. So, I suppose I would have found it useful to know blood pressure readings. [P17, female, 67]

Well, like as I said, it wouldn’t give me what the problem was with me, like the blood flow through the heart, it wasn’t doing that. It’s just monitoring the heart. [P2, male, 74]

Memory, Attention, and Decision Processes

This domain is a complex element that included participants’ memory of completing self-management behaviors and their awareness and understanding of the data provided to them. For
some, they were unclear as to what the green area within the graphs of the mobile app represented; thus, they paid little attention to it. Furthermore, participants remarked that they sometimes forgot to look at the app and thus were passively monitoring themselves. However, participants were positive about the fact that the app provided them with a way to become more aware of their daily patterns. This, they believed, supported their self-management as it helped them to know they were remaining consistent. Specifically, they were comfortable if they went outside of their normal range for 1 or 2 days but knew to contact someone if that became persistent. This suggests that people did not explicitly change their behavior, but simply being aware that everything was “normal” was sufficient for them to feel confident in themselves.

I knew that I would be contacted if there were discrepancies or going outside the zone, so I knew that, but I mean if for example my weight had started to increase, I would have been very aware of checking up on fluid retention and all that sort of thing, yeah. It was good to be able to see that, I wouldn’t, honestly, have been aware, unless my ankles, I’ve never had particular puffiness or anything like that or similar, so, but, I think there was a slight bit of that whenever I was in hospital in October, although it wasn’t obvious, it wasn’t visible but obviously it would have been obvious from a daily weight reading. [P17, female, 67]

Behavioral Regulation
The use of the digital tool facilitated participants to weigh themselves (daily, weekly, or biweekly). This was the most active behavior change that appeared to occur as a result of the system. Some reported being motivated to go for a short walk if they felt that they had not reached enough steps according to what their DHT was; however, overall, people reported not changing anything substantially. As previously mentioned, an awareness of their normal appeared to be the greatest benefit to them. This may be because other features such as monitoring their sleep and heart rate were mostly passive in nature. The components that required the most active engagements (ie, medication adherence and other methods of monitoring) were not used by any participant as they felt that they already had a method to track their medication that worked for them. Essentially, the digital tool appeared to integrate easily into their existing methods of regulating their HF, supporting their ability to monitor their key metrics without requiring too much additional effort on their part.

I’ll certainly keep the Fitbit up…wearing the Fitbit, I will keep that going definitely, so that I can keep an eye on things. I won’t say you can become obsessed with it but it gives you a good handle, I wouldn’t be checking my heart rate every couple of hours or anything like that but every couple of days I would do or if I did something strenuous I would just have a look and see how am I and what I am doing or anything else like that. [P3, male, 68]

Social Influences
Participants continue to rely on HCPs to lead the management of their condition and initiate topics of discussion. Furthermore, they were motivated to join the study as a result of their doctor asking if they were interested in it. Their perception was that if the doctor felt that it might be useful or interesting, then they were happy to participate. Despite this deference to HCPs, some felt that the information from the DHTs would empower them to talk to their doctors about their progress. However, the strongest element of support that they received from the tool was the comfort they gained in knowing they were “being watched.” Participants appreciated the calls that they received from HCPs if the system was triggered. Far from feeling intruded on, they instead felt supported and “minded” from afar, and had no privacy concerns regarding these triggers.

I have to say, I really appreciated it very, very much. I can’t really think of a particular negative. It really helped me and really reassured me because I had two episodes last year where I went into atrial fibrillation and you know I think it was good to know that, you know, if I did go off the baseline and someone contacted me, that they would then offer that I could speak to someone on the cardiac team, because sometimes it’s very difficult to access even your cardiologist, you know? Even getting past the secretary can be very difficult, so that was, yeah, I really liked that. I just felt that, you know, if something did go drastically wrong that someone was there picking up on it. [P17, female, 67]

I think it’s nice the idea that if something goes badly wrong that somebody rings up like a few times my heartbeat has changed and I’ve got phone calls to ask am I ok and trying to figure out why. [P4, male, 64]

Social Role and Identity
Participants perception of themselves and their own identity appeared to facilitate their self-management behaviors. This was closely linked to knowledge and memory, attention, and decision processes. Specifically, being aware of their data and their patterns of behavior sparked participants to reflect on “how lazy I am one day and how much I am doing the next day type of thing.” This suggests that they saw it as important to understand what they can do to help themselves, which was facilitated by the DHT. Furthermore, participants described being diligent about going to the doctor regularly and “doing everything they were saying I should do,” in order to help themselves manage their condition. Thus, they recognized the role that they had to play in their own condition, even if that is being led by the cardiologist.

Skills
Although skills were related to participants’ ability to self-manage, in this study, they were also required to interact with the digital tool in order to do so. Indeed, the biggest barrier to them being able to self-manage with technology was the technology itself. Specifically, for those less familiar with technology, it took them a while to settle into its use. Some
faced issues with syncing and connectivity, for which they required support from family members or members of the study team to overcome. However, as they got used to it, and as problems were solved, they then found that the DHT was an enabler to their self-management as it became one place for them to see all of their information.

Technology, you know it was always a bit beyond me a little bit. So, I thought it worked out fine ….I became a little more comfortable with it. There were a few times alright….and again with the weighing scales, there was a problem and I made contact with one of your colleagues. And simple things like for example on the tablet, I tend to just ….just press the on/off button until the screen goes out you see. [P16, male, 81]

Beliefs About Consequences

The key for this was whether participants believed that there was a link between their self-management behaviors and their HF. For example, 1 participant did not see the relevance of weighing themselves as they could not see how it impacted their HF. In contrast, others were using the app to help support their perception for how they were feeling. In general, people were able to look at their data and explain any discrepancies as a result of their recent behavior; thus, the system appeared to support building this belief. However, it was not always clear how this linked explicitly to their heart condition, as opposed to their overall health.

Well I’ll tell you once or twice it went down [their weight] and I said ‘Oh my God am I not well’ and then the next day is would come back up. Now I am only talking about a pound here or a pound there but if it did go up oh I would, I’d certainly have to watch, cut out maybe eating a bar of chocolate which I eat every so often or a sweet or whatever. I would be aware of it. [P8, female, 81]

Beliefs About Capabilities

Some participants felt they did not possess the skills to get the most out of the DHT. However, their uncertainty was also related to their ability to self-manage themselves in general. One person was wary about traveling in case something went wrong; another simply listed being unmotivated to self-manage.

One person was wary about traveling in case something went wrong; another simply listed being unmotivated to self-manage. However, their uncertainty was also related to other barriers to self-management were typically related to life events, for example, other illness, bereavement, the weather, relaxing their diet while on holidays, and the area where they live. In contrast, others were using the app to help support their perception for how they were feeling. In general, people were able to look at their data and explain any discrepancies as a result of their recent behavior; thus, the system appeared to support building this belief. However, it was not always clear how this linked explicitly to their heart condition, as opposed to their overall health.

Beliefs About Consequences

The key for this was whether participants believed that there was a link between their self-management behaviors and their HF. For example, 1 participant did not see the relevance of weighing themselves as they could not see how it impacted their HF. In contrast, others were using the app to help support their perception for how they were feeling. In general, people were able to look at their data and explain any discrepancies as a result of their recent behavior; thus, the system appeared to support building this belief. However, it was not always clear how this linked explicitly to their heart condition, as opposed to their overall health.

Well I’ll tell you once or twice it went down [their weight] and I said ‘Oh my God am I not well’ and then the next day is would come back up. Now I am only talking about a pound here or a pound there but if it did go up oh I would, I’d certainly have to watch, cut out maybe eating a bar of chocolate which I eat every so often or a sweet or whatever. I would be aware of it. [P8, female, 81]

Beliefs About Capabilities

Some participants felt they did not possess the skills to get the most out of the DHT. However, their uncertainty was also related to their ability to self-manage themselves in general. One person was wary about traveling in case something went wrong; another simply listed being unmotivated to self-manage.

I probably am not tech-savvy enough to have gotten everything I needed to get from both of those or everything they could give me, and I’m also going to, in the early part of the interview, put my hands up and say that I didn’t probably put enough effort into that. [P18, male, 68]

I feel good at the minute, I feel ok, and everything’s going well, and I’m going swimming, I’m going walking, I don’t feel any different up in the heart. …..I wouldn’t have known all this stuff if I hadn’t of had the monitor on me and the whole lot, so I think with all this it’s good. [P14, male, 64]

Emotion

The biggest change in emotions reported by participants was the confidence they had in managing themselves as a result of the DHT, and the reassurance they received knowing that they were being monitored. A feeling of safety was reported as a result of this. Despite this, some participants reported moments of anxiety or alarm if the DHT sent them a trigger unexpectedly, or if their data were outside of their normal. For one person, it simply took them some time to realize that a certain amount of change was considered normal; thus, it ultimately led to them feeling reassured once they learnt this. Others though would feel guilty if their activity levels were low, or if they were not losing weight.

Well, I am not as fretful now as it was at the beginning and I do think that wearing the Fitbit has been part of that – knowing that there is something there and also the fact that I was contacted on several occasions that my baselines had changed in a few things. [P7, male 54]

It made me anxious because I looked back on a night like that and say well, I can’t see anything that that’s gone terribly astray here. I would like to have known what triggered it. [P9, female, 71]

Environmental Context and Resources

The focus of this domain was on factors within the environment that either supported or hindered participants’ self-management. In relation to the DHT, having to charge the Fitbit was a downside, but not a burden. Issues connecting the scales were a greater burden as it may result in incorrect readings and were difficult for participants to fix. Other elements that acted as barriers to self-management were typically related to life events, for example, other illness, bereavement, the weather, relaxing their diet while on holidays, and the area where they live. In addition, participants’ medication was noted as negatively impacting their sleep or weight. It was unclear whether this was medication specific to their HF or whether it was related to other comorbidities, but regardless, it influenced elements of their self-management behaviors that they were tracking.

I suppose it was a bad time of the year in the sense, by the time I’d get home from work in the evening, it was pitch dark. So, I wasn’t getting out for a walk and that. We only get kind of a half an hour lunch break. So, you didn’t even have time [to exercise]. [P15, female, 55]

Well, weather wise and then, you know; we had an awful lot to do after the funeral, you know… things had to be sorted, well they are not even sorted yet but anyway, you know, things had to be done. [P1, female, 81]

HCP Experiences

The 2 HCPs (1 consultant cardiologist and 1 physiotherapist) were broadly positive around the potential for this DHT to support HF management; however, they felt that this would require a number of changes both to the system itself and to how it is implemented before its utility is realized.
Both HCPs were surprised at the level of “hands-on” work required to manage the DHT and the triggers sent through it. Essentially, they expected that the trigger system would reduce the work of clinicians, whereas, in reality, it simply transferred some of the work to behind the scenes data management, or even increased their work. Specifically, the system of triggers required them to spend a number of hours each week calling participants and following up on those who did not answer. However, as the purpose of this study was to explore the participant perspective, the HCP did not monitor the number of triggers received or the number that resulted in a hospital visit. Nonetheless, it was felt that future iterations of this tool need to set different criteria for when a participant was called or not.

They felt that it was only feasible to recruit participants with greater health and digital literacy, and those who were based locally to support them in the initial setup of the DHT. However, neither of these elements were explicitly listed as inclusion or exclusion criteria within this study. Recruitment was undertaken using a purposive, pragmatic approach whereby participants were recruited from the existing patient list of cardiologists within the Beacon Hospital. The HCPs acknowledged that their perceptions of a person’s awareness of their condition and their ability to use technology were born out of their interactions with these patients and not from objectively measured assessments. In general, they did not approach patients who they considered to be more frail and older, who appeared to have greater anxieties around technology, and who were less aware of their condition.

Ultimately, it was felt that the DHT has great potential, but that it would require significant changes within the health care service if it were to be implemented into practice. Specifically, adjusting the trigger thresholds, altering the protocol for calling people, and ensuring that the HCPs have dedicated time in their schedules to manage these digital data are critical for its progress.

Discussion

Principal Findings

This 6-month observational study assessed the feasibility and utility of our human-centered designed DHT to evaluate user engagement and observationally evaluate whether it may affect end points such as quality of life and self-care behaviors. Similar to the results of our development paper [16], participants demonstrated high adherence to the DHT and reported increased awareness of their behaviors and increased confidence in themselves. Questionnaires demonstrated that it was a comfortable device and that their motivation to wear the Fitbit was high, although the usability of the DHT was considered poor. However, interviews suggest that this result may be linked to their low confidence regarding the use of technology. Participants were most impressed at the trigger function of the DHT, which provided them with a great sense of safety and comfort.

Comparison With Previous Research

Self-care refers to “performing the daily activities that serve to maintain or restore health and well-being, prevent illness, and manage chronic illness” [33] and includes the knowledge, skills, self-efficacy, and attitudes required to effectively manage signs and symptoms as they arise [10]. Similar to previous research, participants in this study reported that they take their medication as prescribed, have lower levels of physical activity than desired, and monitor their weight regularly but not daily [6]. Notably, their awareness of their sleep, weight, activity, and heart rate increased; however, they felt that they did not change anything substantially as the result of this information, while their EHFScBS and MLwHFQ results remain unchanged. This may be because the included participants were not considered adequate in their self-management at the start of the study; thus, it should be questioned whether they needed to change their behavior unless they began feeling unwell. Furthermore, although changes were not significant, this may be the result of the small sample size, and nonetheless, positive changes in both outcome measures were noted. However, it should also be considered whether no changes occurred because participants were not clear as to why they were assessing certain elements. For example, many seemed to feel that monitoring weight was necessary because they needed to lose it, not because they were monitoring water retention, a finding similar to previous research [34]. Furthermore, skill building requires more than information alone and instead should focus on deficits and managing unique situations as they arise [34]. It should be considered whether, by relying on a trigger system, we are removing this skill rather than building it. However, given the complexity of such decisions [34,35], and the relief provided to participants as a result of the triggers, further thought should be given as to how skills can be developed alongside the support provided by triggers.

When we mapped the participant experiences to the elements of the TDF, the domains of knowledge, social influences, and social identity appear to be particularly strong in facilitating self-management. Although the study was meant to improve participants’ own abilities and motivation to integrate behaviors into daily living, according to the results of “social influences,” it is possible that they took part in the study and remained so adherent because of their desire to follow doctors’ wishes. This brings up a persistent issue with self-management and the motivation to complete it. Theories such as self-determination theory posit that people will initiate and maintain a behavior if it supports intrinsic motivation [36]. Participants began to note that they were able to keep an eye on themselves and that it was up to them to manage what they could control, suggesting that there is certain amount of intrinsic motivation generated as a result of being able to monitor themselves, and this is further supported by the results of the WTMS. However, relying on doctors’ advice to participate and adhere to an intervention is externally motivated behavior that risks poor engagement over time [36]. There is a fine balance between following advice in a partnership and following instructions [37,38]. Ultimately, the most effective and valued element of the intervention was the link that participants had with their HCP. Future studies should consider how to train participants to lead conversations.
in this area with their clinicians, so that they are more empowered to conduct effective self-care, rather than simply rely on triggers being sent to them. Furthermore, the emotive elements of self-management appear to have played a strong role in participants’ experience of the study. Specifically, the benefits were confidence and reassurance, whereas guilt and anxiety also prevailed. Previous research has suggested that emotional reactions such as fear or anxiety, which tend to be viewed as maladaptive coping strategies, may also have a positive influence on self-care [39]. Many patients describe action-based strategies such as learning how to “pace” their activities or “listen to their bodies” to help optimize their ability to maintain physical activity [39]. Seeking guidance and advice from trusted sources is an integral component of self-care, and knowing when to ask for help is considered to be a tactical skill [34]. Thus, there is a need to also emphasize other domains such as skills and emotion further so that the identified barriers are targeted for reduction in a future clinical trial.

Important aspects regarding the feasibility of this system were shown in this study. A promising result was the acceptability of the system to participants. Specifically, they noted no issue with comfort, a high motivation to wear it. However, they also noted poor usability according to the SUS. This is likely to be the result of their concern regarding the system and their ability to use it. Nonetheless, they demonstrated high levels of adherence and engagement with the tool compared with other research in HF or the population in general where abandonment is high [40-44], and importantly, they felt great comfort and reassurance that someone was looking out for them. Additionally, almost 50% of those contacted to take part in the study agreed to participate in it, suggesting that there was interest and acceptability in the idea. However, because of the purposive sampling method, it is unclear whether people with lower levels of literacy or higher levels of disease severity will demonstrate the same levels of acceptability. Among a sample of patients with HF, 96% owned a mobile phone and 32% relied on the mobile phone for internet access, searched health information, and reported moderate self-confidence in using mobile apps [3]; thus, the DHT should be tested in a wider population. However, in the future, when expanding this tool for use within multiple settings, the impact on HCPs needs to be considered. Specifically, the requirement for HCPs to monitor the triggers themselves, and follow up with patients, was perceived as an increased burden. In the future, HCPs whose role is to manage patient-driven data insights will be needed, but this will require additional funding and training to be implemented successfully. The volume of data required to train such models effectively was a surprise to the HCPs who had expected the system to be “smarter” than it was, demonstrating that there is a need to set expectations with HCPs in any future feasibility studies. This study was not powered or intended to assess the predictive capacity of the trigger system. Indeed, if comparing it with the Medical Research Council guidelines, this was the test phase required before evaluation [35]. However for future studies, models need to be refined until the thresholds per person are identified. Adjusting the threshold to become more manageable to HCPs should be considered, but within the context that participants valued feeling safe.

Limitations

A key limitation of this study was that no objective assessment of participants’ behavior change (or lack thereof) was assessed. As a pilot study, the objective of this study was not to evaluate participants’ objective behavior change, and indeed, the study was not powered for that. Nonetheless, it limits our assessment of the potential for this DHT to patient perceptions only. Another limiting factor of this work is the recruitment methods employed, which are likely to have limited the generalizability of the findings with regard to representativeness of the sample. Specifically, purposive sampling was used whereby the HCPs contacted those on their list who they believed would be interested and capable of participating. Consequently, without objectively testing for health and digital literacy, the result of this is likely to be a bias toward people who were most likely to be able to use it. For DHTs to be evaluated fully, it must be offered to all, irrespective of their perceived suitability or not. Thus, future iterations of this tool should be trialed in as wide a range of participants as possible to test its ability to respond to patient needs and abilities. Finally, future studies need to assess feasibility more from the perspective of the health care service. Outcomes such as the number of trigger calls sent to the hospital, the time spent managing the data, the time spent by clinicians setting up the DHT with participants, and the number of visits to the clinic compared with the calls logged should be evaluated to better understand the impact of the DHT on the service.

Conclusions

The DHT demonstrated high levels of adherence and acceptance among participants. The DHT targeted key self-management behaviors and feelings of social support. However, a number of changes to the DHT, and the health service, are required before it can be implemented at scale. A full-scale feasibility trial conducted at a wider level is required to fully determine its potential effectiveness and wider implementation needs.

Acknowledgments

The authors would like to thank the participants of this study for their time and commitment to this body of work. This paper was produced as part of IVA5034 ECME research project and supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB).

Data Availability

The data sets generated or analyzed during this study are not publicly available as we do not have ethical approval to share them. The anonymized questionnaires are available from the corresponding author on reasonable request.

https://formative.jmir.org/2024/1/e52442

Keogh et al
Conflicts of Interest
None declared.

Multimedia Appendix 1
Interview protocol—participant.
[DOCX File, 18 KB - formative_v8i1e52442_app1.docx]

Multimedia Appendix 2
Interview protocol—HCP. HCP: health care professional.
[DOCX File, 17 KB - formative_v8i1e52442_app2.docx]

References

https://formative.jmir.org/2024/1/e52442 JMIR Form Res 2024 | vol. 8 | e52442 | p.2047 (page number not for citation purposes)

30. EHPScB scale—scoring. Linköping University. Sweden URL: http://tinyurl.com/xx2cnx5 [accessed 2023-12-28]

Abbreviations

CRS: Comfort Rating Scale
DHT: digital health tool
EHFScBS: European Heart Failure Self-care Behavior Scale
HCP: health care professional
HF: heart failure
MLwHFQ: Minnesota Living with Heart Failure Questionnaire
SUS: System Usability Scale
TDF: Theoretical Domains Framework
WTMS: Wearable Technology Motivation Scale
Pharmacy Students’ Attitudes Toward Distance Learning After the COVID-19 Pandemic: Cross-Sectional Study From Saudi Arabia

Saud Alsahali1*, PhD; Salman Almutairi1*, PharmD; Salem Almutairi1*, PharmD; Saleh Almofadhi1*, PharmD; Mohammed Anaami1*, PhD; Mohammed Alshammari1*, PhD; Suhaj Abdulsalim1*, PhD; Yasser Almogbel1*, PhD

Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia

* all authors contributed equally

Corresponding Author:
Saud Alsahali, PhD
Department of Pharmacy Practice
College of Pharmacy, Qassim University
Madinah Road
Unaizah, Qassim
Buraydah, 56219
Saudi Arabia
Phone: 966 163011503
Email: s.alsahali@qu.edu.sa

Abstract

Background: Electronic learning refers to the use of assistive tools in offline and distance learning environments. It allows students to access learning tools and materials anytime and anywhere. However, distance learning courses depend on several factors that affect the quality of learning, which consequently affect students’ preferences in the settings and tools used to deliver educational materials.

Objective: This study aimed to evaluate students’ preferences for continuing distance learning after the pandemic and to assess the distance educational environment after the pandemic. It also aimed to identify the factors affecting distance learning and evaluate students’ preferences regarding modes of communication with instructors.

Methods: A web-based survey was used to conduct this cross-sectional study. The target participants of this study were students in the doctor of pharmacy program at Unaizah College of Pharmacy, Qassim, Saudi Arabia. All students enrolled from December 2022 to January 2023 received an invitation with a link to the web-based survey.

Results: The survey was completed by 141 students (58 female students and 83 male students). The research results showed that most students (102/141, 72.3%) did not wish to continue distance education for laboratory courses, and 60.3% (85/141) did not wish to continue taking distance team-based learning after the pandemic. Additionally, 83.7% (118/141) of the students indicated that distance courses were simple. More than half of the participants (79/141, 56%) stated that having a camera on during class negatively impacted their learning, and only 29.1% (41/141) of the students stated that nonvisual communication with their fellow students impacted their learning. A large proportion of students (83/141, 58.9%) reported impairment of social engagement on campus, 44% (62/141) in-person interactions during classes, and 73.7% (104/141) were relieved that their classes were not disrupted.

Conclusions: Similar to all types of education, distance learning is characterized by advantages and disadvantages, as reported by students. Students felt that the course material was intelligible, and the distance course was uncomplicated. Moreover, they expressed relief that their studies were not disrupted. However, they also reported the loss of face-to-face contact during courses as the most significant drawback of distance learning versus face-to-face learning, followed by a lack of social connection on campus.

doi:10.2196/54500

KEYWORDS
distance learning; e-learning; pharmacy education; team based learning; educational experience.
Introduction

In December 2019, unexpected cases of severe respiratory illness were found in Wuhan, the capital city of China’s Hubei province [1]. The World Health Organization recognized a new coronavirus, termed SARS-CoV-2, which caused the outbreak of COVID-19 [2]. The initial COVID-19 instance in Saudi Arabia was detected on March 3, 2020. Consequently, Saudi Arabia placed most of its public and private facilities under lockdown and instituted statewide limits on population movement. Due to the widespread mitigation efforts implemented by several nations, the COVID-19 pandemic disrupted the daily lives of millions of people [3]. On March 8, 2020, the Saudi Arabian government announced a conversion from regular classroom education to distance education. In the following days, all Saudi Arabian colleges and institutions implemented this approach. Saudi Arabia was among the first nations in the Middle East to enforce full quarantine and the urgent switch to distance learning [4].

The use of assistive tools in both offline and distance learning environments is referred to as e-learning [5] and includes synchronous and asynchronous modes. Synchronous distance learning permits live interactions between educators and students through chat and video conferences, while asynchronous distance learning is based on emails and recorded videos [6]. Distance learning can be used in place of, or in addition to, traditional education [5]. Before the pandemic, some colleges had used distance education using learning management systems such as Blackboard (Anthology Inc) and Zoom (Zoom Video Communications, Qumu Corporation). Distance education delivery abruptly and entirely replaced traditional classroom education, resulting in problems such as incomplete examinations and difficulties with courses requiring hands-on training or laboratory activities [4]. After the COVID-19 outbreak forced the closure of universities in Saudi Arabia, the Saudi Ministry of Education created an alternative policy to support distance education and provided public universities with resources to aid distance learning and virtual classrooms. This was done to prevent interruptions in the educational process. Blackboard is a web-based distance learning tool used by universities and other higher education institutions that enables students to continue their studies [7]. It is one of the most widely used web-based platforms and is currently used by all Saudi Arabian universities [8].

Most telecommunications firms in Saudi Arabia (eg, Saudi Telecom Company, Mobily, and Zain Saudi Arabia) aided in efficiently delivering distance learning and health care during the pandemic. These companies offered free data services to the most widely used telehealth and health applications, as well as educational platforms [3]. In addition, the Saudi Ministry of Education introduced distance learning programs to safely and effectively continue the educational process. Within days, all universities, including medical schools, switched to distance mode of education delivery. Medical schools altered their teaching approach as a result of this tremendous, unforeseen shift from traditional learning to an exclusively distance learning environment [9].

The components of distance learning delivery include ease of information access, material distribution, updating, and standardization. Distance learning allows for rapid and easy content revision to achieve learning objectives [10]. Furthermore, it provides several opportunities for students to improve their autonomous learning and enables students to access learning through distance learning tools and materials anytime and anywhere. Moreover, distance education provides excellent opportunities for students to enhance their connection with instructors [11]. Nevertheless, the appropriate conditions are necessary for the creation of a productive learning atmosphere. In addition, the development of technical infrastructure, the purchase and maintenance of tools and equipment, the instruction of human resources, and the production of distance content are costly and time-consuming processes. The institution, administrators, teachers, and students require information technology resources and skills. Poor time management and a lack of self-control have been reported as the 2 major factors affecting students’ perception of distance learning [12].

A lack of in-person, face-to-face interactions in the classroom or workplace characterizes distance learning classes. Interpersonal communication is vital for numerous students and organizations. For instance, in-person interaction with lecturers and group discussions are crucial motivational activities and learning techniques [6]. Team-based learning (TBL) is a small-group, active learning method that incorporates rapid feedback, teamwork, and solo work to help students apply conceptual knowledge [13]. These activities significantly affect students’ class behavior and comprehension of lectures. However, the effectiveness of distance learning courses depends on individual factors, such as the student’s home setting, socioeconomic factors, and the educational level of their parents [6].

Most universities effectively transitioned their teaching operations from traditional to distance learning in response to the pandemic. However, several problems emerged, including poor teaching quality, work overload, lack of accessibility, student nervousness and dissatisfaction, fundamental questions concerning the use of distance education in the future, the requirement for suitable educational staff support and education to handle the inescapable adjustments required for implementing contemporary educational methods in a distance learning setting, and appropriate teacher preparation. Students expressed concern about the ability of distance education to replace human interaction in terms of emotion [14].

COVID-19 affected the reception and delivery of education at all levels [15], with educational authorities in most countries implementing distance learning strategies [11]. However, the sudden conversion to distance learning affected the performance of students and teachers in all learning environments, potentially influencing the efficacy of distance learning. Many academic staff members had no previous experience teaching using distance learning. Students may have been more anxious than usual due to worries regarding infection, timely graduation, finances, and employment, which could have had a detrimental effect on their academic achievement [16]. Synchronized technology enables teachers and pupils to interact “live.”
Particularly under uncertain global conditions, such as pandemics, distance learning can result in more efficient and straightforward access to knowledge [9]. Distance education can also serve as a tool to mitigate social isolation and assist in outbreak control. It also provides a flexibility that allows for learning regardless of location or time, which is essential for education during periods of crisis. In addition, the success of the technical infrastructure at schools and colleges depends on adequate maintenance [17]. This study aims to assess pharmacy students’ perceptions of distance learning and to evaluate the postpandemic distance learning environment. We also try to identify the factors affecting distance learning and to assess the emotions experienced by students during their period of distance education.

Methods

Study Design and Setting

A web-based survey was used to conduct this cross-sectional study. This study’s intended participants were students enrolled in the doctor of pharmacy (PharmD) program at Unaizah College of Pharmacy, Qassim University, Saudi Arabia, during the 2022-2023 academic year. PharmD students and interns who completed 1 year of distance learning during the COVID-19 pandemic using distance learning platforms provided by Qassim University were eligible for this study. The research did not include students who were attending other colleges. In addition, we excluded students who had not completed 1 year of distance learning at the university, similar to first-year students in the PharmD program, since they were not enrolled in the university during the COVID-19 pandemic.

Sample Size

The target population in this study comprised male and female third-year to sixth-year (internship year) PharmD students from Unaizah College of Pharmacy, Qassim University. According to the college’s students’ academic affairs office, the number of enrolled students was 327. Raosoft (Sample Size Calculator; Raosoft, Inc) was used to compute the sample size. With a 50% response rate, a 5% margin of error, and a CI level of 95%, the sample size should not be fewer than 141 students [18].

Study Tool

The questionnaire used in this study was created based on a prior study by Kedraka et al [14], and the authors obtained permission to use the questionnaire. A survey composed of multiple-choice questions was created using a web-based survey creator. That survey consisted of 34 questions assessing attitudes toward distance learning [14]. We slightly modified some questions to comply with the teaching methods used at Unaizah College of Pharmacy. Subject experts validated this modified questionnaire for clarity, understandability, and applicability. The final survey had 6 sections. The first section included 5 questions to assess the necessary abilities of students in meeting learning objectives and measuring progress. Student preferences also play a crucial role in the learning process. The second section comprised 9 questions that could serve as recommendations for developing a distance learning environment and measuring student performance in distance classrooms. Performance is greatly influenced by technical knowledge, comfort level, and attitudes toward using the internet for learning. Using a 5-point scale (1: not at all to 5: very much), we evaluated the opinions of the participants regarding the effectiveness of remote learning in terms of meeting the needs of the course, satisfaction with communication with the instructor, level of interest in the new method of teaching, level of course participation, interactions between students and teachers, and interactions between students. These factors may provide insight into the perceptions of students regarding the distance learning environment.

The third section, which included 4 questions, aimed to assess remote learning quality by identifying influential factors and motivating elements. The fourth section included 4 questions used to assess successful communication between students and teachers in distance courses, recommend steps to enhance interaction, and lessen the isolation associated with distance courses. The fifth section consisted of 6 questions intended to identify elements lost due to the shift from face-to-face interaction to distance learning, improve course delivery, and understand the factors that constitute a successful distance learning experience. Distance learning requires a critical understanding of the effects of interactions on student engagement. The sixth section consisted of 6 questions focusing on the motives and sentiments of the students toward their participation in the educational program. All eligible students were asked to participate in this study, and the questionnaire was disseminated web-based using WhatsApp (WhatsApp LLC).

Ethical Considerations

The ethics permission for this study was granted by Qassim University’s Health Research Ethics Committee in Saudi Arabia (22-17-11). The participation in this study was voluntary and informed consent to take part in this study was obtained at the beginning of the survey and the statements on the anonymity of responses or confidentiality of data were maintained throughout this study. No compensation or reward was offered to this study’s participants.

Statistical Analysis

The data were analyzed and student replies were compiled using SPSS (version 20.0; IBM Corp). The survey results were compiled using descriptive statistics comprising frequencies and percentages. Further reported were the mean scores for male and female students.

Results

Demographic Data

The survey was completed by 141 students (female: n=58, 41%; male: n=83, 58.9%) from the Unaizah College of Pharmacy. The greatest number of participants were recruited from the fifth year (51/141, 36.2%), followed by the third year (36/141, 25.5%), fourth year (30/141, 21.3 %), and sixth year (24/141, 17%).
Preference for Continuing Distance Education After the Pandemic

As shown in Table 1, most of the students (102/141, 72.3%) were unwilling to continue distance education (male: 50/83, 60.2%; female: 52/58, 89.6%; not at all or a little) after the pandemic for courses that included laboratory activities. In contrast, the majority of the students, 68% (96/141), had a favorable view regarding the continuation of distance education for elective courses (male: 53/83, 63.8%; female: 43/58, 74.1%; much or very much). Regarding TBL examinations, the majority of students, 60.3% (85/141), did not wish to continue taking distance examinations after the pandemic (male: 38/83, 45.8%; female: 47/58, 81%).

Regarding lectures, less than half of the students (63/141, 44.6%) did not wish to continue taking the lectures via distance platforms (male: 36/83, 43.4%; female: 27/58, 46.5%). Approximately 46.8% (66/141) of students wished to continue receiving their education distance for seminars (male: 41/83, 49.4%; female: 25/58, 43.1%).

Table 1. Pharmacy students’ preference for continuing distance education after the pandemic.

<table>
<thead>
<tr>
<th>Type of course and sex</th>
<th>Not at all, n (%)</th>
<th>A little, n (%)</th>
<th>Quite, n (%)</th>
<th>Much, n (%)</th>
<th>Very much, n (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>20 (24)</td>
<td>16 (19.3)</td>
<td>11 (13.3)</td>
<td>16 (19.3)</td>
<td>20 (24.1)</td>
<td>3.0 (1.5)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>10 (17.2)</td>
<td>17 (29.3)</td>
<td>8 (13.9)</td>
<td>14 (24.1)</td>
<td>9 (15.5)</td>
<td>2.9 (1.4)</td>
</tr>
<tr>
<td>Elective courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>11 (13.3)</td>
<td>7 (8.4)</td>
<td>12 (14.4)</td>
<td>13 (15.7)</td>
<td>40 (48.2)</td>
<td>3.8 (1.5)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>4 (6.9)</td>
<td>3 (5.2)</td>
<td>8 (13.8)</td>
<td>14 (24.1)</td>
<td>29 (50)</td>
<td>4.1 (1.2)</td>
</tr>
<tr>
<td>Laboratory courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>41 (49.4)</td>
<td>9 (10.8)</td>
<td>8 (9.7)</td>
<td>6 (7.2)</td>
<td>19 (22.9)</td>
<td>2.4 (1.7)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>40 (69)</td>
<td>12 (20.7)</td>
<td>2 (3.4)</td>
<td>2 (3.4)</td>
<td>2 (3.4)</td>
<td>1.5 (1.0)</td>
</tr>
<tr>
<td>Team-based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>28 (33.7)</td>
<td>10 (12)</td>
<td>13 (15.7)</td>
<td>14 (16.9)</td>
<td>18 (21.7)</td>
<td>2.8 (1.6)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>33 (56.9)</td>
<td>14 (24.1)</td>
<td>4 (7)</td>
<td>2 (3.4)</td>
<td>5 (8.6)</td>
<td>1.8 (1.2)</td>
</tr>
<tr>
<td>Seminars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>19 (22.9)</td>
<td>6 (7.2)</td>
<td>17 (20.5)</td>
<td>6 (7.2)</td>
<td>35 (42.2)</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>20 (34.5)</td>
<td>8 (13.8)</td>
<td>5 (8.6)</td>
<td>12 (20.7)</td>
<td>13 (22.4)</td>
<td>2.8 (1.6)</td>
</tr>
</tbody>
</table>

Assessment of the Distance Educational Environment

As shown in Table 2, most participants had positive opinions regarding the former’s educational potential of the distance versus the conventional learning environment. Male students exhibited a more favorable attitude (higher average) compared with female students in all statements that assessed the distance learning environment compared to conventional learning on campus. Using a 5-point scale (1: not at all to 5: very much), we evaluated the opinions of the participants regarding the effectiveness of remote learning in terms of meeting the needs of the course (male: 3.5; female: 2.9), satisfaction with communication with the instructor (male: 3.6; female: 3.1), level of interest in the new method of teaching (male: 3.5; female: 2.6), level of course participation (male: 3; female: 2.9), interactions between students and teachers (male: 3.2; female: 2.7), and interactions between students (male: 3; female: 2.8).

Less than half of the students (61/141, 43.3%; male: 39/83, 47%; female: 22/58, 37.9%) believed that the course content was understandable. Additionally, 83.7% (118/141) of the students indicated that taking the course online was simple (male: 70/83, 84.3%; female: 48/58, 82.7%; much or very much). As for developing new skills, 38.3% (54/141) of the students thought that they developed new skills related to distance education (male: 40/83, 48.2%; female: 14/58, 24%).
Table 2. Pharmacy students’ attitudes about the remote learning environment.

<table>
<thead>
<tr>
<th>Assessment and sex</th>
<th>Not at all, n (%)</th>
<th>A little, n (%)</th>
<th>Quite, n (%)</th>
<th>Much, n (%)</th>
<th>Very much, n (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The content of the course is comprehensible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>5 (6)</td>
<td>7 (8.4)</td>
<td>32 (38.6)</td>
<td>20 (24.1)</td>
<td>19 (22.9)</td>
<td>3.5 (1.1)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>6 (10.3)</td>
<td>11 (19)</td>
<td>19 (32.8)</td>
<td>14 (24.1)</td>
<td>8 (13.8)</td>
<td>3.1 (1.2)</td>
</tr>
<tr>
<td>New skills related to distance education are being developed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>6 (7.2)</td>
<td>12 (14.5)</td>
<td>25 (30.1)</td>
<td>23 (27.7)</td>
<td>17 (20.5)</td>
<td>3.4 (1.2)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>13 (22.4)</td>
<td>11 (19)</td>
<td>20 (34.5)</td>
<td>12 (20.7)</td>
<td>2 (3.4)</td>
<td>2.6 (1.2)</td>
</tr>
<tr>
<td>The teaching method of distance learning covers the prerequisites of the course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>10 (12)</td>
<td>7 (8.4)</td>
<td>19 (23)</td>
<td>26 (31.3)</td>
<td>21 (25.3)</td>
<td>3.5 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>13 (22.4)</td>
<td>11 (19)</td>
<td>9 (15.5)</td>
<td>18 (31)</td>
<td>7 (12.1)</td>
<td>2.9 (1.4)</td>
</tr>
<tr>
<td>The new mode of teaching is interesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>8 (9.6)</td>
<td>9 (10.8)</td>
<td>20 (24.2)</td>
<td>24 (28.9)</td>
<td>22 (26.5)</td>
<td>3.5 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>16 (27.6)</td>
<td>10 (17.2)</td>
<td>15 (25.9)</td>
<td>14 (24.1)</td>
<td>3 (5.2)</td>
<td>2.6 (1.3)</td>
</tr>
<tr>
<td>Communication with the teacher is satisfactory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>6 (7.2)</td>
<td>11 (13.3)</td>
<td>18 (21.7)</td>
<td>22 (26.5)</td>
<td>26 (31.3)</td>
<td>3.6 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>9 (15.5)</td>
<td>13 (22.4)</td>
<td>8 (13.8)</td>
<td>19 (32.8)</td>
<td>9 (15.5)</td>
<td>3.1 (1.3)</td>
</tr>
<tr>
<td>Participation in class is great</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>8 (9.6)</td>
<td>16 (19.3)</td>
<td>18 (21.7)</td>
<td>18 (21.7)</td>
<td>23 (27.7)</td>
<td>3.4 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>13 (22.4)</td>
<td>13 (22.4)</td>
<td>10 (17.3)</td>
<td>13 (22.4)</td>
<td>9 (15.5)</td>
<td>2.9 (1.4)</td>
</tr>
<tr>
<td>Attendance is easy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>5 (6)</td>
<td>3 (3.6)</td>
<td>5 (6.1)</td>
<td>19 (22.9)</td>
<td>51 (61.4)</td>
<td>4.3 (1.1)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>1 (1.7)</td>
<td>3 (5.2)</td>
<td>6 (10.4)</td>
<td>18 (31)</td>
<td>30 (51.7)</td>
<td>4.3 (1.0)</td>
</tr>
<tr>
<td>Interaction between teacher and students is great</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>13 (15.7)</td>
<td>9 (10.8)</td>
<td>29 (34.9)</td>
<td>13 (15.7)</td>
<td>19 (22.9)</td>
<td>3.2 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>16 (27.6)</td>
<td>10 (17.2)</td>
<td>16 (27.6)</td>
<td>9 (15.5)</td>
<td>7 (12.1)</td>
<td>2.7 (1.4)</td>
</tr>
<tr>
<td>Interaction among students is great</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>17 (20.5)</td>
<td>9 (10.8)</td>
<td>10 (12.1)</td>
<td>19 (22.9)</td>
<td>28 (33.7)</td>
<td>3.4 (1.5)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>13 (22.4)</td>
<td>13 (22.4)</td>
<td>12 (20.7)</td>
<td>13 (22.4)</td>
<td>7 (12.1)</td>
<td>2.8 (1.3)</td>
</tr>
</tbody>
</table>

Factors Affecting e-Learning

As shown in Table 3, more than half of the participants (79/141, 56%) reported that having the camera on during class impacted their learning (male: 49/83, 59%; female: 30/58, 51.7%). Further, only 29.1% (41/141) of the students indicated that nonvisual communication with their fellow students would impact their learning (male: 22/83, 26.5%; female: 19/58, 32.7%). About 29.7% (42/141) of the students reported that the teacher’s insufficient knowledge concerning the handling of the platform impacted distance learning (male: 30/83, 36.1%; female: 12/58, 21%), while 44.6% (63/141) indicated that the inability to cooperate with their fellow students would affect distance learning (male: 44/83, 53%; female: 19/58, 32.7%).
Table 3. Factors affecting e-learning.

<table>
<thead>
<tr>
<th>Factors and sex</th>
<th>Not at all, n (%)</th>
<th>A little, n (%)</th>
<th>Quite, n (%)</th>
<th>Much, n (%)</th>
<th>Very much, n (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The teacher's camera should be turned on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>12 (14.5)</td>
<td>9 (10.8)</td>
<td>13 (15.7)</td>
<td>18 (21.7)</td>
<td>31 (37.3)</td>
<td>3.56 (1.4)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>1 (1.7)</td>
<td>12 (20.7)</td>
<td>15 (25.9)</td>
<td>18 (31)</td>
<td>12 (20.7)</td>
<td>3.48 (1.1)</td>
</tr>
<tr>
<td>Teacher's deficiencies in knowledge of handling the platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>15 (18.1)</td>
<td>11 (13.3)</td>
<td>27 (32.4)</td>
<td>14 (16.9)</td>
<td>16 (19.3)</td>
<td>3.06 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>8 (13.8)</td>
<td>20 (34.5)</td>
<td>18 (31)</td>
<td>7 (12.1)</td>
<td>5 (8.6)</td>
<td>2.67 (1.1)</td>
</tr>
<tr>
<td>Nonvisual communication with my fellow students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>24 (28.9)</td>
<td>12 (14.5)</td>
<td>25 (30.1)</td>
<td>9 (10.8)</td>
<td>13 (15.7)</td>
<td>2.69 (1.4)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>10 (17.2)</td>
<td>18 (31)</td>
<td>11 (19.1)</td>
<td>9 (15.5)</td>
<td>10 (17.2)</td>
<td>2.84 (1.4)</td>
</tr>
<tr>
<td>Noncooperation with my fellow students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>9 (10.8)</td>
<td>9 (10.8)</td>
<td>21 (25.4)</td>
<td>22 (26.5)</td>
<td>22 (26.5)</td>
<td>3.46 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>17 (29.3)</td>
<td>9 (15.5)</td>
<td>13 (22.4)</td>
<td>12 (20.7)</td>
<td>7 (12.1)</td>
<td>2.70 (1.4)</td>
</tr>
</tbody>
</table>

Preferred Modes of Communication With Instructors

As shown in Table 4, the participants’ preferred method of communication was the course chat (96/141, 68%; male: 59/83, 71.1%; female: 37/58, 63.8%). The second preferred method of communication for male students was a microphone (47/83, 56.6%), followed by face-to-face communication in the classroom (47/83, 56.6%) and groups on Zoom (37/83, 44.6%) throughout the course. The second preferred method of communication for female students was face-to-face communication in the classroom (36/58, 62%), followed by groups on Blackboard or Zoom (26/58, 44.8%). The least preferred option was a microphone (25/58, 43.1%).

Table 4. Pharmacy students’ preferred mode of communication with the instructor.

<table>
<thead>
<tr>
<th>Ways of communication and sex</th>
<th>Not at all, n (%)</th>
<th>A little, n (%)</th>
<th>Quite, n (%)</th>
<th>Much, n (%)</th>
<th>Very much, n (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On chat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>5 (6)</td>
<td>5 (6)</td>
<td>14 (16.9)</td>
<td>26 (31.3)</td>
<td>33 (39.8)</td>
<td>3.9 (1.2)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>9 (15.5)</td>
<td>8 (13.8)</td>
<td>4 (6.9)</td>
<td>22 (37.9)</td>
<td>15 (25.9)</td>
<td>3.4 (1.4)</td>
</tr>
<tr>
<td>Speaking on the internet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>6 (7.2)</td>
<td>9 (10.8)</td>
<td>21 (25.4)</td>
<td>22 (26.5)</td>
<td>25 (30.1)</td>
<td>3.6 (1.2)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>8 (13.8)</td>
<td>9 (15.5)</td>
<td>16 (27.6)</td>
<td>17 (29.3)</td>
<td>8 (13.8)</td>
<td>3.1 (1.2)</td>
</tr>
<tr>
<td>Internet-based room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>8 (9.6)</td>
<td>12 (14.5)</td>
<td>26 (31.3)</td>
<td>14 (16.9)</td>
<td>23 (27.7)</td>
<td>3.4 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>8 (13.8)</td>
<td>8 (13.8)</td>
<td>16 (27.6)</td>
<td>17 (29.3)</td>
<td>9 (15.5)</td>
<td>3.2 (1.3)</td>
</tr>
<tr>
<td>In the classroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>9 (10.8)</td>
<td>9 (10.8)</td>
<td>18 (21.8)</td>
<td>22 (26.5)</td>
<td>25 (30.1)</td>
<td>3.5 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>4 (6.9)</td>
<td>9 (15.5)</td>
<td>9 (15.6)</td>
<td>22 (37.9)</td>
<td>14 (24.1)</td>
<td>3.6 (1.2)</td>
</tr>
</tbody>
</table>

Traditional Education Components not Present in Distance Learning

As shown in Table 5, a large proportion of students, 58.9% (83/141), reported impaired social engagement around the campus (male: 45/83, 54.2%; female: 38/58, 65.5%), while 45.4% (64/141) of the students reported that they missed their classmates (male: 36/83, 43%; female: 28/58, 48.3%), in-person interactions during classes (62/141, 44%; male: 33/83, 39.8%; female: 29/58, 50%), and interactions in the classroom (60/141, 42.5%; male: 31/83, 37.3%; female: 29/58, 50%). Only 31.2% (44/141) of students stated that they missed their professors (male: 27/83, 32.5%; female: 17/58, 29.3%), while 37.5% (53/141) of the students stated that they missed being able to visit the library (male: 21/83, 25.3%; female: 32/58, 55.2%).
Table 5. Components of traditional learning that are currently missing from remote education.

<table>
<thead>
<tr>
<th>Element and sex</th>
<th>Not all, n (%)</th>
<th>A little, n (%)</th>
<th>Quite, n (%)</th>
<th>Much, n (%)</th>
<th>Very much, n (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>14 (16.9)</td>
<td>11 (13.3)</td>
<td>31 (37.3)</td>
<td>17 (20.5)</td>
<td>10 (12)</td>
<td>3.0 (1.2)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>9 (15.5)</td>
<td>19 (32.8)</td>
<td>13 (22.4)</td>
<td>15 (25.9)</td>
<td>2 (3.4)</td>
<td>2.7 (1.1)</td>
</tr>
<tr>
<td>Fellow students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>10 (12)</td>
<td>7 (8.4)</td>
<td>30 (36.2)</td>
<td>16 (19.3)</td>
<td>20 (24.1)</td>
<td>3.3 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>6 (10.3)</td>
<td>16 (27.6)</td>
<td>8 (13.8)</td>
<td>15 (25.9)</td>
<td>13 (22.4)</td>
<td>3.2 (1.4)</td>
</tr>
<tr>
<td>Library</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>30 (36.1)</td>
<td>10 (12)</td>
<td>22 (26.6)</td>
<td>11 (13.3)</td>
<td>10 (12)</td>
<td>2.5 (1.4)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>7 (12.1)</td>
<td>10 (17.2)</td>
<td>9 (15.5)</td>
<td>15 (25.9)</td>
<td>17 (29.3)</td>
<td>3.4 (1.4)</td>
</tr>
<tr>
<td>Classrooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>18 (21.7)</td>
<td>12 (14.5)</td>
<td>22 (26.4)</td>
<td>19 (22.9)</td>
<td>12 (14.5)</td>
<td>2.9 (1.4)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>9 (15.5)</td>
<td>11 (19)</td>
<td>9 (15.5)</td>
<td>10 (17.2)</td>
<td>19 (32.8)</td>
<td>3.3 (1.5)</td>
</tr>
<tr>
<td>In-person communication during lessons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>10 (12)</td>
<td>12 (14.5)</td>
<td>28 (33.7)</td>
<td>17 (20.5)</td>
<td>16 (19.3)</td>
<td>3.2 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>10 (17.2)</td>
<td>5 (8.6)</td>
<td>14 (24.2)</td>
<td>14 (24.1)</td>
<td>15 (25.9)</td>
<td>3.3 (1.4)</td>
</tr>
<tr>
<td>Social interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>9 (10.8)</td>
<td>4 (4.8)</td>
<td>25 (30.2)</td>
<td>22 (26.5)</td>
<td>23 (27.7)</td>
<td>3.6 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>4 (6.9)</td>
<td>7 (12.1)</td>
<td>9 (15.5)</td>
<td>17 (29.3)</td>
<td>21 (36.2)</td>
<td>3.8 (1.3)</td>
</tr>
</tbody>
</table>

Emotions Experienced During Distance Education

As shown in Table 6, a significant majority of the students, 73.7% (104/141), expressed relief that their classes had not been disrupted (male: 59/83, 71.1%; female: 45/58, 77.6%). However, there was still much interest (74/141, 52.5%) in how the studies would go (male: 50/83, 60.2%; female: 24/58, 41.3%), and much enthusiasm among students for their first distance learning experiences (82/141, 58.1%; male: 50/83, 60.2%; female: 32/58, 55.2%). Additionally, the majority of students, 80.1% (113/141; male: 67/83, 80.7%; female: 46/58, 79.3%), liked not having to go to their lessons, whereas only 40.4% (57/141) of students were satisfied that the distance courses would continue (male: 34/83, 40.9%; female: 23/58, 39.6%).
Table 6. Emotions experienced by students during distance education.

<table>
<thead>
<tr>
<th>Emotion and sex</th>
<th>Not at all, n (%)</th>
<th>A little, n (%)</th>
<th>Quite, n (%)</th>
<th>Much, n (%)</th>
<th>Very much, n (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joy at classes not being held</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>14.0 (16.9)</td>
<td>9.0 (10.8)</td>
<td>26.0 (31.3)</td>
<td>19.0 (22.9)</td>
<td>15.0 (18.1)</td>
<td>3.1 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>9.0 (15.5)</td>
<td>9.0 (15.5)</td>
<td>17.0 (29.3)</td>
<td>12.0 (20.7)</td>
<td>11.0 (19)</td>
<td>3.1 (1.3)</td>
</tr>
<tr>
<td>Pleasure at not having to commute to attend classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>2.0 (2.4)</td>
<td>3.0 (3.6)</td>
<td>11.0 (13.3)</td>
<td>17.0 (20.5)</td>
<td>50.0 (60.2)</td>
<td>4.3 (1.0)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>2.0 (3.4)</td>
<td>5.0 (8.6)</td>
<td>5.0 (8.7)</td>
<td>12.0 (20.7)</td>
<td>34.0 (58.6)</td>
<td>4.2 (1.1)</td>
</tr>
<tr>
<td>Relief at not losing the semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>1.0 (1.2)</td>
<td>5.0 (6)</td>
<td>18.0 (21.7)</td>
<td>21.0 (25.3)</td>
<td>38.0 (45.8)</td>
<td>4.1 (1.0)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>2.0 (3.4)</td>
<td>4.0 (6.9)</td>
<td>7.0 (12.2)</td>
<td>14.0 (24.1)</td>
<td>31.0 (53.4)</td>
<td>4.2 (1.1)</td>
</tr>
<tr>
<td>Enthusiasm for the new experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>7.0 (8.4)</td>
<td>6.0 (7.2)</td>
<td>20.0 (24.2)</td>
<td>19.0 (22.9)</td>
<td>31.0 (37.3)</td>
<td>3.7 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>8.0 (13.8)</td>
<td>11.0 (19)</td>
<td>7.0 (12)</td>
<td>12.0 (20.7)</td>
<td>20.0 (34.5)</td>
<td>3.4 (1.5)</td>
</tr>
<tr>
<td>Disappointment because the new educational environment does not work for me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>15.0 (18.1)</td>
<td>6.0 (7.2)</td>
<td>30.0 (36.1)</td>
<td>15.0 (18.1)</td>
<td>17.0 (20.5)</td>
<td>3.2 (1.3)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>9.0 (15.5)</td>
<td>9.0 (15.5)</td>
<td>16.0 (27.6)</td>
<td>15.0 (25.9)</td>
<td>9.0 (15.5)</td>
<td>3.1 (1.3)</td>
</tr>
<tr>
<td>Curiosity regarding the mood of studies in the future</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n=83)</td>
<td>1.0 (1.2)</td>
<td>5.0 (6)</td>
<td>27.0 (32.5)</td>
<td>32.0 (38.6)</td>
<td>18.0 (21.7)</td>
<td>3.7 (0.9)</td>
</tr>
<tr>
<td>Female (n=58)</td>
<td>5.0 (8.6)</td>
<td>7.0 (12.1)</td>
<td>22.0 (37.9)</td>
<td>13.0 (22.4)</td>
<td>11.0 (19)</td>
<td>3.3 (1.2)</td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

In this study, we attempted to comprehend student opinions, attitudes, and worries regarding distance learning and the barriers and difficulties they faced. Data were gathered through a web-based survey questionnaire between December 2022 and January 2023. The results of our study demonstrate that the participants showed good attitudes to the continued delivery of lectures and elective courses via distance learning. These findings support previous research showing that 63% of students preferred distance learning for the lectures compared to 29% for offline lectures [19]. In contrast, most had negative attitudes toward distance learning for laboratory courses and TBL examinations. These findings support previous research showing that students had negative perceptions of distance learning in many ways of teaching. According to Kedraka et al [14], most of the students at 2 participating universities (University of Patras: 84.1%; Democritus University of Thrace: 98%) did not wish to continue their education for laboratory courses distance beyond the epidemic. A study conducted by Stoian et al [20] reported that 38.8% preferred using face-to-face education, which seemed the most beneficial for their professional development, followed by a distance education rate of 34.3%, then both (face-to-face and distance education) at 27%.

Students’ perceptions of the distance learning environment were positive, with 83.7% (118/141) of the students stating that taking a course through distance learning was easy and 43.3% (61/141) finding the course content understandable. Our findings are in agreement with Bani Hani et al [10], who revealed that more than half of the students participating in the study (615/999) stated they gained the same or even better knowledge than what they gained before the pandemic and around half (458/999) of all the students recognize the university’s e-learning website as available for easy access. A Saudi study [21] showed that 49.2% of students exhibited positive attitudes toward the provided distance learning, and 34% of students identified some barriers to the provision of distance learning.

The majority of participants, 56% (79/141), felt that having a camera on during class had a detrimental influence on their learning. In a survey conducted by Gherheş et al [22], more than half of students claimed that they were unwilling to have their cameras on during distance sessions. Furthermore, 76.5% of participants stated that they did not use webcams when communicating via social media [23]. In contrast, in a study performed by Pullan et al [24], 51% of participants reported that having a camera turned on did not change their ability to engage, while 38% thought that having a camera on improved their engagement.

More than half of the students, 58.9% (83/141), claimed to have impaired social contacts on and around campus, and 44% (62/141) reported having impaired in-person interactions with teachers during class, with 42.5% (60/141) reporting poor interactions in the classroom. These findings support previous research. Muthuprasad et al [25] reported that 60% of respondents agreed with the assertion that contact with the instructor is less effective in distance classrooms as compared to face-to-face classes. Another study [26] revealed that a lack of live communication reduces the effectiveness of distance learning (52.1%). Furthermore, a study by Dodd et al [27]...
revealed that 84.6% of the students found it difficult to interact with other students, teachers 74.6%, and 74.7% reported more difficulty in distance learning than face-to-face.

The preferred method of communication (96/141, 68%) for the students in our study was the course chat, a result that supports earlier studies. Coman et al [28] found that 52.4% of students preferred to communicate with teachers through writing on chat. A study [29] revealed that most students (87.4%) preferred synchronized learning sessions for group discussions. In addition, 61.7% of students disagreed that distance learning provides similar learning satisfaction to classroom learning.

As for feelings, 73.7% (104/141) of students were relieved that their courses had not been interrupted and 58.1% (82/141) had enthusiasm for the new experience. However, there was still much interest, 52.5% (74/141), in how the studies would go in the future. Murphy et al [30] reported that their participants expressed uncertainty (59.5%), anxiety (50.7%), and nervousness (41.2%) regarding the switch to distance courses. In addition, Guse et al [31] revealed in a survey conducted in May 2020 on students that 45.5% of dental students noticed a decline in their excitement to study compared to 30.7% of medical students. Worsening mental health was reported by 36.4% (16/44) and 29.5% (26/88) of dental and medical students, respectively.

As this study was conducted in a single institution, its conclusions may not apply to other Saudi Arabian or global academic institutions. The findings of this study may be used to design a more effective and user-friendly distance course. As the study design is cross-sectional, the results only reflect the situation of distance learning during the data collection.

Conclusions
Similar to all types of education, distance learning is, as reported by the students, characterized by advantages and disadvantages, an understanding of which will aid educational institutions in developing plans for the more effective distribution of instructional materials to students. According to the results, the students felt that the course material was intelligible and that the distance courses were uncomplicated. Moreover, they expressed relief that their studies were not disrupted. These benefits facilitate the design of courses that meet the requirements of students and may lead to advancements in distance learning techniques.

Students in this study identified loss of face-to-face contact during their courses as the greatest drawback of remote education, followed by a lack of social connection on campus. This lack of peer interaction is particularly notable, for it is crucial to understand the importance of peer connection for students. Therefore, these variables should be considered for the improvement of e-learning. In summary, face-to-face communication is an indispensable part of the educational process.

Acknowledgments
The authors gratefully acknowledge the authors of Katerina Kedraka et al [14] for permission to reuse their survey in this study.

Data Availability
The data sets used for this study are available upon reasonable request.

Conflicts of Interest
None declared.

References
7. Prasetyo YT, Tumanan SAR, Yarte LAF, Ogoy MCC, Ong AKS. Blackboard E-learning system acceptance and satisfaction among Filipino high school students: an extended Technology Acceptance Model (TAM) approach. : IEEE; 2020 Presented...

Abbreviations

TBL: team-based learning
Nurse-Led Brief Intervention for Enhancing Safe Sex Practice Among Emerging Adults in Hong Kong Using Instant Messaging: Feasibility Study

Sharon Hoi Lam Pak, MPhil; Man Ping Wang, PhD; Anne M Teitelman, PhD; Janet Yuen Ha Wong, PhD; Daniel Yee Tak Fong, PhD; Edmond Pui Hang Choi, PhD

1School of Nursing, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China (Hong Kong)
2School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
3College of Nursing, Thomas Jefferson University, Philadelphia, PA, United States
4School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China (Hong Kong)

Corresponding Author:
Janet Yuen Ha Wong, PhD
School of Nursing and Health Studies
Hong Kong Metropolitan University
1/F, 1 Sheung Shing Street, Homantin, Kowloon
Hong Kong
China (Hong Kong)
Phone: 852 39702988
Fax: 852 24062375
Email: jyhwong@hkmu.edu.hk

Abstract

Background: The incidence of sexually transmitted infections has been increasing throughout the world. Additionally, substantial changes in emerging adults’ attitudes toward sex and the popularization of premarital sex could further affect the diagnosis and treatment of sexually transmitted infections. With the high acceptability and effectiveness of instant messaging (IM) interventions for health promotion, there is potential for such interventions to improve condom use knowledge and promote safer sex practice.

Objective: The study evaluates the feasibility of a nurse-led IM intervention to promote safer sex practices in emerging adults.

Methods: A 30-minute adaptive IM intervention and a 5-day booster dose of daily messages after 2 weeks through WhatsApp (Meta Platforms, Inc) were conducted with emerging adults in local universities in Hong Kong aged between 18 and 29 years with previous sexual experience. A questionnaire was distributed 1 week after the intervention that measured the consistency in condom use, the change in condom use knowledge and attitudes, and the acceptability of the intervention. The feasibility of the intervention was assessed by Bowen’s feasibility framework.

Results: A total of 20 participants completed the intervention and questionnaire. Results showed (1) high satisfaction level (mean satisfaction score: 9.10/10), (2) high demand of the intervention (retention rate: 95%), (3) smooth implementation of the intervention, (4) high practicality (13/20, 65% of the participants viewed IM to be an effective means of intervention), (5) potential integration of the intervention, and (6) significant mean increase in condom use knowledge and attitudes (mean increase 9.05; \(t_{19}=3.727; 95\%\) CI 3.97-14.13; \(P=.001\)).

Conclusions: The IM intervention was feasible, acceptable, and had potential impacts on improving safer sex practices. These findings will support the future development of IM interventions in the arena of sexual health promotion.

(JMIR Form Res 2024;8:e52695) doi:10.2196/52695

KEYWORDS

condom use; emerging adults; HIV prevention; IM intervention; mHealth; nurse-led intervention; safer sex practice; sexual health; sexually transmitted infections; text-messaging

Introduction

Reducing sexually transmitted infections (STIs) has been identified as a global health sector strategy by the World Health Organization (WHO) [1]. The WHO reported that there are more than 1 million STIs acquired every day and that estimated that there are around 374 million new cases each year [2]. Globally, almost 57 million disability-adjusted life years are lost to STIs [2]. Among all STIs, human papillomavirus (HPV) is the most common infection. In severe cases, this will further lead to invasive cervical cancer [3].

In Hong Kong, there was nearly a 3-fold increase in the incidence of diagnosed HIV from 250 cases in 2011 to 725 cases in 2015 [4]. After reaching its peak in 2015, the number of cases gradually decreased to 505 in 2020. A sharp decline in STI cases was noted from 2020 to the third quarter of 2021. However, the decrease could be due to reduced screening or testing during the COVID-19 pandemic. Although no specific data were found in the context of Hong Kong, studies in the United States and Europe showed a relationship between COVID-19 cases and STI-reported cases. Results reflected that the reported cases were much lower than the expected cases in both countries [5,6]. Hence, the situation is still alarming, as the pandemic could have concealed the real size of the population with STI infection.

In addition, the asymptomatic nature of STIs and a substantial change in Hong Kong people’s attitudes toward sex may further delay the diagnosis and treatment of STIs [7]. For instance, premarital sex and high-risk sexual behaviors are becoming more common. According to the Youth Sexuality Study by the Family Planning Association of Hong Kong, the proportion of youth practicing safe sex (use of condoms during sexual intercourse) decreased from 1996 to 2011 [8]. Among male respondents, the number decreased significantly, from 66.4% in 1996 to 21.5% in 2011, while among female respondents, the number decreased gradually from 55.2% in 1996 to 45.4% in 2011 [8]. The AIDS Concern conducted a survey from 2016 to 2017 and also reported that only 16%, 22%, and 29% of young women who had sex with their boyfriends, regular sex partners, and irregular sex partners, respectively, used condoms every time during sex in the past 6 months [9]. The WHO reported a positive relationship between unsafe sex practices and the incidence of STIs [10]. Hence, the burden caused by STIs is avoidable by minimizing unsafe sex, such as having consistent condom use.

A few systematic reviews have demonstrated that mobile health (mHealth) interventions through interactive instant messaging (IM) are effective for improving health behaviors, for example, smoking cessation [11], medication adherence [12], weight management [13], and blood pressure control [14,15]. In the sexual health arena, to the best of our knowledge, no study has yet evaluated the effectiveness of a personalized and brief intervention delivered through IM for enhancing condom use knowledge and attitude, leading to the primary prevention of STIs. In addition, from our experience in evaluating an interactive computer-based intervention in female university students by a multisite randomized controlled trial, the study implementation led us to understand that a specific, personalized, and tailored intervention to cater to sexual activity recommendations and relationship problems is needed [16]. In the Chinese cultural context of pervasive sexual conservatism, it is unclear whether an IM-delivered brief intervention to promote condom use would be acceptable and welcomed by university students. Therefore, the research question of this study is whether an IM-delivered brief intervention by nurses is feasible to educate about safer sex practice among sexually active university students in Hong Kong.

The study aims to investigate the feasibility of an IM-delivered brief intervention to promote safer sex practices among sexually active university students in Hong Kong. The objectives of the study are to design a nurse-led brief intervention based on Information, Motivation, and Behavioral skills (IMB) model of Fisher and Fisher [17] and to investigate the feasibility of an IM intervention for improving safer sex practices using the feasibility framework reported by Bowen et al [18].

Methods

Study Design

The CONSORT (Consolidated Standards of Reporting Trials) eHealth checklist was followed as a reporting guideline to report and appraise the IM-based intervention [19]. Implementation and results of the web-based questionnaire were reported according to the Checklist for Reporting Results of Internet E-Surveys (CHERRIES) checklist [20]. The feasibility study was conducted from August to October 2021.

Recruitment

Subjects were recruited through snowball sampling at local universities between September and November 2021. An electronic flyer was sent through IM (ie, WhatsApp; Meta Platforms, Inc) to inform potential participants about the purpose of the study, participation eligibility, time commitment, and incentives for study participation. The inclusion criteria were being an emerging Chinese adult aged between 18 and 29 years, being able to read Chinese, having a smartphone with WhatsApp installed, and having had sexual activities in the past 12 months. The exclusion criteria were being pregnant, having a psychiatric illness, and having received information related to contraceptives and STIs from universities, hospitals, clinics, or nongovernmental organizations in the past 12 months. The sample selection process is shown in Figure 1. Eligible participants were asked to sign a web-based consent form for study enrollment and were invited to provide 3 available time slots for receiving the 30-minute nurse-led brief intervention.
Figure 1. The flow of participants through the study.

Nurse-Led IM Intervention

Intervention Development

The development of the intervention was done by our team, who are experts in the field of sexual health and the development of IM-based interventions. Our nurse-led brief intervention was designed based on the Fisher and Fisher [17] IMB model. A systematic review found that brief interventions designed according to the IMB model were successful in increasing condom use [21]. The model consists of 3 constructs that influence behavioral adherence: that are information, motivation, and behavioral skills [17]. A total of 3 goals were developed accordingly: (1) provide information about STIs and condom use; (2) motivate participants to use condoms with motivational interviewing techniques; and (3) facilitate behavioral skill acquisition to increase condom use, lubricant application, and their purchase.

Regarding the intervention content, we addressed favorable and unfavorable views, including condom use reliability and effectiveness; the pleasure or excitement of condom use; the stigma of condom use; the embarrassment of condom negotiation; condom purchasing; and sexual coercion prevention related to condom use.

Implementation Process

A registered nurse who is an expert in sexual health promotion oversaw the intervention delivery throughout the study. The IM conversations were first initiated by providing personalized feedback on the participant’s consistency in condom use, as reported on the baseline survey. Second, further IM engagement explored their reasons for condom use and emphasized their decision to protect themselves by using a condom for the prevention of STIs and pregnancy. Third, the nurse identified the underlying reasons for their consistent and inconsistent condom use and then provided personalized advice, myth clarification, and further motivated participants by emphasizing the importance of condom use at every sex, even with a stable partner. Fourth, continued IM exchanges provided a menu of strategies and conversation techniques to use in condom use negotiations or in verbalizing delaying sex whenever unwanted. Finally, further IM prompts provided support on final tips about safe sex and enhancing self-efficacy for condom use, lubricant use, and its purchase. Overall, the IM messages were phrased in a way to communicate a sense of optimism to use condoms for safety and comfort in the dating relationship. It was conducted in an empathetic, respectful, and nonjudgmental manner. The whole real-time conversation lasted for around 30 minutes through WhatsApp. They were reminded to text the nurse again for any inquiries. A standardized guideline was developed as a reference for the nurse to derive the intervention under the IMB model (Multimedia Appendix 1).

IM was considered for intervention delivery because of its real-time, private, and persuasive nature [22]. IM allows real-time interactions, the use of stickers and emojis, and the delivery of URL links as resources. Also, the personalization of IM conversations is suitable to the needs of those participants, who are passive and sensitive when it comes to sex education. In addition, we provided flexibility for participants to receive the intervention at the most suitable moment; that the intervention time was scheduled after the completion of the baseline questionnaire.

Apart from the 30-minute brief intervention conversations, a booster dose of 5 daily messages was also provided 2 weeks after the brief intervention delivery to further reinforce safer sex knowledge and positive sexual health attitudes. An example of an interaction between the nurse and a participant on WhatsApp is provided in Multimedia Appendix 2.
In order to protect the privacy and confidentiality of the participants during the IM intervention, the messages should not reveal personal identification or other sensitive information, such as HIV status. Only the principal investigator and personnel for data analysis were permitted to access the raw data and study content. All the downloaded messages were stored with passcode protection and will be destroyed after a set period.

Data Collection

A baseline questionnaire containing the number of sexual intercourses, the number of protected sexual intercourses in the past 12 months, and the Multidimensional Condom Attitudes Scale (MCAS) was given on the entry of the study (T0). Another questionnaire with the same set of measurements at baseline and questions evaluating acceptability, demand, implementation, practicality, integration, and limited efficacy was distributed 1 week after the completion of the IM intervention (T1). The first author downloaded all the WhatsApp chat data for feasibility evaluation. Incentives of US $18 cash were given for compensating participants for their time and efforts in the study evaluation.

Demographic Data

Individual characteristics such as age, sexual orientation, relationship status, and gender of the sex partner were obtained at baseline. A history of childhood sexual abuse experience and sexual health were also asked at baseline to ensure personalized conversation and advice could be made during the intervention. The telephone numbers of the participants were collected to facilitate the delivery of the IM intervention.

Feasibility Evaluation Criteria

The feasibility of the brief intervention was investigated according to the recommendations of Bowen et al’s [18] feasibility framework, which includes the focal areas of (1) acceptability, (2) demand, (3) implementation, (4) practicality, (5) integration, and (6) limited efficacy.

Acceptability

We examined participants’ perceived appropriateness and satisfaction level with the intervention. Questions included “What is your satisfaction with the intervention on a scale of 1-10?” “Do you think the intervention is appropriate for young adults aged between 18 and 29 years?” “Do you find it embarrassing when discussing sexual health issues during the intervention?” “Do you have any disagreement with the contents?” and “Whether you would recommend the intervention to friends?” Participants could also voice out recommendations for improvement.

Demand

We examined the actual use of the intervention, which was reflected in the number of subjects who consented to join the study and its retention rate. All the text messages downloaded were also reviewed for content classification. Participants’ views on their interest in and intention to use were also considered. Questions included “Have you ever asked any questions via the IM app? If yes, is the information useful for you?” and “Will you use the intervention again in the future?”

Implementation

We investigated the extent of the intervention that can be successfully delivered to the participants. The number of messages delivered and received was measured. We would be interested to know if the information is appropriate to be understood. Questions such as “Do you have more understanding of condom use?” and “Have you tried to communicate with a sexual partner about condom use?” were asked. In addition, participants’ thoughts on using the intervention through an IM app were also asked to obtain qualitative information. For example, “What do you remember the most?”

Practicality

We examined the extent to which the intervention could be carried out by using existing resources. The total number of hours for the whole intervention, including the booster dose, was calculated to estimate the resources needed for implementation. In addition, participants were asked to choose the most effective means of promoting sexual health information to emerging adults.

Integration

We investigated the extent to which participants were using the intervention and whether the intervention could be integrated into the current system. The perceived fit with infrastructure, perceived sustainability, and costs to the organization and policy bodies were considered. Questions included “Will you use the intervention again if you come up with any questions about sexual health?” and “What do you think about using IM intervention for sexual health promotion?”

Limited Efficacy

We examined whether the intervention could result in a potentially promising outcome and its intended effects. The outcome evaluation was conducted by assessing (1) consistency in condom use and (2) condom use knowledge and attitudes. We compared both outcomes by measuring them before and after the intervention.

Consistency in condom use was measured by the percentage of unprotected sexual intercourse with all partners in the past month. Condom use knowledge and attitudes were measured by the 25-item MCAS. A previous study has shown acceptable validity and reliability in the Chinese population [23]. The Cronbach α of the study was >.7 [23]. It contained 5 domains, including the reliability and effectiveness of condoms, the sexual pleasure associated with condom use, the stigma associated with people proposing or using condoms, embarrassment about negotiating and using condoms, and embarrassment about purchasing condoms [24]. The items were answered on a 7-point Likert-scale, with a total score ranging from 7 to 175. The higher the score, the more positive were knowledge, attitude, norms, and self-efficacy related to condom use.

Data Analysis

Descriptive statistics were used to determine the participants’ characteristics. Due to the small sample size of the study, a quantile-quantile plot was used to assess the normality of the distribution. A 2-tailed paired sample t test was done to compare pre- and postintervention performances for outcome measures.
with a normal distribution, while the Wilcoxon signed rank test was used for outcome measures without a normal distribution. The content of all the downloaded messages was screened by the first author, and important data were noted. Another member of the team counterchecked all content extracted from WhatsApp to ensure treatment fidelity [25]. Statistical analysis was conducted using SPSS Statistics (IBM Corp).

Ethical Considerations

The study was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster (UW-20-299). Web-based informed consent forms were sent and completed by eligible participants. All messages collected should not reveal personal identification or other sensitive information to protect the privacy and confidentiality of the participants during the IM intervention.

Results

Demographics

Among the 21 participants who completed the baseline questionnaire, 20 (retention rate=95%) of them completed the T0 and T1 questionnaires. The age of the participants ranged from 18 to 25 years, with a mean age of 22 years. All the participants were university students. In terms of sexual orientation, 16/21 (76%) were heterosexual, and 5/21 (23%) were either bisexual or homosexual. The participants’ characteristics can be seen in Table 1.
Table 1. Characteristics of the participants (n=21).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>22 (2.02)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4 (19)</td>
</tr>
<tr>
<td>Female</td>
<td>17 (81)</td>
</tr>
<tr>
<td>Sexual orientation, n (%)</td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>16 (76)</td>
</tr>
<tr>
<td>Bisexual or homosexual</td>
<td>5 (24)</td>
</tr>
<tr>
<td>Relationships, n (%)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>3 (14)</td>
</tr>
<tr>
<td>In a relationship</td>
<td>13 (62)</td>
</tr>
<tr>
<td>Cohabitation</td>
<td>5 (24)</td>
</tr>
<tr>
<td>Sex of sexual partner, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16 (76)</td>
</tr>
<tr>
<td>Female</td>
<td>5 (24)</td>
</tr>
<tr>
<td>Sexual health history, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Number of sex partners in the past 3 months</td>
<td>1.2 (0.95)</td>
</tr>
<tr>
<td>Number of times sex happened in the past 3 months</td>
<td>9.9 (8.16)</td>
</tr>
<tr>
<td>Number of condoms used in the past 3 months</td>
<td>6.45 (7.07)</td>
</tr>
<tr>
<td>History of childhood sexual coercion, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1 (5)</td>
</tr>
<tr>
<td>No</td>
<td>20 (95)</td>
</tr>
<tr>
<td>History of pregnancy, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td>No</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Diagnosed with STIs, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td>No</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Ever had an STI test or pap smear test, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1 (5)</td>
</tr>
<tr>
<td>No</td>
<td>20 (9)</td>
</tr>
</tbody>
</table>

*STI: sexually transmitted infection.

Feasibility Evaluation Criteria

Acceptability

Among the 20 participants, the level of satisfaction was high (mean 9.10, SD 1.25). All of them considered that the intervention was appropriate for emerging adults aged between 18 and 29 years. A total of 19/20 (95%) participants did not feel embarrassed when discussing sexual health issues during the intervention. Participants claimed that through the use of emoji and stickers in WhatsApp, they were able to express their emotions and opinions dynamically, which made them feel more comfortable and casual during the chatting session. No participants disagreed with the content in the chat sessions, and all participants would recommend the intervention to friends. Some of the participants also provided practical recommendations. First, participants suggested the provision of more information on the myths about condom and contraceptive use, condom use decision-making and communication with partners, and the availability of condoms in Hong Kong. In fact, during the booster dose, we received messages to ask further questions related to condom use, STIs, and HPV vaccination, which could be included in the content of future interventions. Second, it was suggested to have a mutual sharing personal sexual health information between participants and the nurse. For instance, sharing of personal experiences and problems encountered in dating relationships or during sexual intercourses. The nurse can further ask about...
individual sexual activities, preferences, and habits. These could make the participants more relatable to the nurse during the intervention and enhance personalized information.

Demand

During the recruitment, 39 potential participants were approached, and 21 consented after screening for eligibility and willingness to join the study, with a response rate of 54%. Around 20 of them were retained in the intervention and completed the posttest questionnaire (ie, retention rate of 95%), with only 1 participant lost to follow-up. Among all downloaded messages, the chat session content covered condom use, STIs, HPV vaccination, relationship issues, same-sex activities, refusal of sexual activities, and women’s health checkups. All of them found the message content useful and would use it in the future.

Implementation

The chat sessions sent 75 instant messages to each participant on average and received 41 messages from each participant on average with content on lubricant use, contraceptives, STIs, HPV vaccination, and refusal of sexual activities. All participants had a greater understanding of condom use, as reflected in the significant improvement in the MCAS scores. Additionally, 19/20 (95%) tried to communicate with their partners about the use of condoms after the intervention. For qualitative information, we asked participants about the most memorable content. Participants indicated that they particularly remembered the messages about condom use (8/20, 40%) and STIs (7/20, 35%).

Practicality

In this study, we had 1 nurse manage all chat sessions, including the 30-minute brief intervention, and 5 daily messages as a booster dose 2 weeks after the brief intervention. The total number of hours spent was around 10 hours. A participant reflected that the response speed during the chat session varied, which might be due to the fact that a nurse had to handle 2 participants at the same time. Nevertheless, 13/20 (65%) of the participants suggested that smartphone apps are an effective way to promote sexual health information, while all of them indicated that mass media (ie, Instagram and Facebook) could be an effective way for promotion.

Integration

All participants indicated that they would use the IM intervention again if they came up with any sexual health questions in the future. Participants also claimed that mobile phones are a convenient and comfortable way to receive information about sexual health issues.

Limited Efficacy

Due to the small sample size of the study, a quantile-quantile plot was used to assess whether the data set followed a normal distribution (Multimedia Appendix 3). The primary outcome of MCAS showed a normal distribution, and the results of the paired-samples t test showed a significant increase in the total mean score of condoms use knowledge and attitudes measured by MCAS from 124 (SD 10.32) to 133 (SD 11.90; $t_{11}=3.727; P=.001$). The Cohen effect size was large ($d=.81$). The mean increase in the MCAS score was 9.05 (95% CI 3.97-14.13). A total of 3 MCAS subscales showed significant results. There was a mean increase in reliability and effectiveness of condoms ($P=.003$), sexual pleasure associated with condom use ($P<.001$), and embarrassment about purchasing condoms ($P=.03$). On the contrary, stigma associated with people proposing or using condoms and embarrassment about negotiating and using condom were not significant.

Table 2. The change on condom use knowledge and attitudes by Multidimensional Condom Attitudes Scale (MCAS).

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Pretest, mean (SD)</th>
<th>Posttest, mean (SD)</th>
<th>t test (df)</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condom use knowledge and attitudes (total MCAS score)</td>
<td>124.05 (2.31)</td>
<td>133.10 (2.66)</td>
<td>3.73 (19)</td>
<td>3.97 to 14.13</td>
<td>.001</td>
</tr>
<tr>
<td>Reliability and effectiveness of condoms</td>
<td>26.85 (1.01)</td>
<td>29.55 (1.01)</td>
<td>3.38 (19)</td>
<td>1.03 to 4.37</td>
<td>.003</td>
</tr>
<tr>
<td>Sexual pleasure associated with condom use</td>
<td>17.80 (0.76)</td>
<td>21.05 (0.76)</td>
<td>4.56 (19)</td>
<td>1.76 to 4.74</td>
<td><.001</td>
</tr>
<tr>
<td>Stigma associated with people proposing or using condoms</td>
<td>31.30 (0.83)</td>
<td>32.05 (0.83)</td>
<td>0.66 (19)</td>
<td>–1.62 to 3.12</td>
<td>.52</td>
</tr>
<tr>
<td>Embarrassment about negotiating and using condoms</td>
<td>29.10 (1.06)</td>
<td>29.05 (1.06)</td>
<td>–0.06 (19)</td>
<td>–1.81 to 1.71</td>
<td>.95</td>
</tr>
<tr>
<td>Embarrassment about purchasing condoms</td>
<td>19.00 (1.80)</td>
<td>21.40 (1.80)</td>
<td>2.42 (19)</td>
<td>0.32 to 4.48</td>
<td>.03</td>
</tr>
</tbody>
</table>

On the other hand, condom use consistency did not show a normal distribution in the normality testing. Therefore, nonparametric testing could be a better representation of the results. The Wilcoxon signed rank test was used to compare the condom use consistency before and after the IM intervention. The increase in the mean score of the condom use consistency was not significant ($Z=-1.41; P=.16$), indicating that the intervention was not effective in improving condom use consistency in the study.

Discussion

Principal Findings

This study demonstrated that a nurse-led IM-delivered brief intervention is feasible, content-relevant, and acceptable to
sexually active Chinese emerging adults for promoting sexual health. In addition, this study demonstrated preliminary efficacy in promoting greater condom knowledge and more favorable attitudes about condoms. These findings are encouraging since, according to the IMB model, improvements in knowledge and attitude are important precursors to behavior changes [17].

This study is the first to use smartphone IM apps for delivering sex education in Hong Kong. The rapid rise in smartphone use provides an opportunity to use such mHealth technology for important health promotion interventions. The IM-delivered intervention has been reported to be highly acceptable in young people aged between 16 and 29 years in Australia, as it is more personal and informal [26]. It can also engage a larger number of individuals personally for a low cost [26]. Another qualitative study, targeting young people aged between 16 and 24 years in the United Kingdom, found consistent results that the delivery of knowledge through IM is friendly and convenient [27]. The findings are in line with our data that the nurse-delivered text messages were able to engage this particular age group regarding sexual health topics in a comfortable and private manner.

Although there are findings that suggest potential benefits of such interventions, many mHealth interventions were found to have low certainty in the evidence [28]. Also, studies evaluating IM-delivered intervention for improving contraceptive-related outcomes have had mixed results when implemented for primary prevention [29]. A total of 2 studies provided inconceivable effects on sexual health outcomes, such as the percentage of protected sex acts and use of effective contraception, after the delivery of the IM-delivered intervention [30,31]. Another 2 studies showed significant improvements in both reproductive health knowledge and the odds of using condoms in young adults after receiving the IM-delivered intervention [32,33]. Differences in the results could be due to the design and duration of the intervention. In terms of the intervention design, a 2-way interactive component can be more effective in promoting sexual health outcomes [33]. In terms of the intervention duration, it can range from weeks to months [27]. A study suggested that the participants identified redundancies when receiving messages over a long intervention period (ie, 2 years) [30]. Around 20% of the participants in another study in Australia found the 12-weekly messages annoying [26]. Hence, future research on evaluating the IM-delivered interventions in terms of appropriateness of design, optimal intervention length, message delivery frequency, and effectiveness in promoting sexual health knowledge and safe sex practice is necessary.

Our results were analyzed using Bowen et al’s [18] systematic feasibility framework. Condom use knowledge and attitudes were significantly increased. In addition, the results regarding the acceptability of the intervention were perceived to be appropriate according to participants’ needs. Participants were satisfied with the intervention and content. We achieved a retention rate of 95.2%. Most participants showed interest in the intervention, with an average satisfactory score of 9. Also, all of them would recommend the intervention to others. Furthermore, the intervention did not create embarrassment in the discussion due to its private nature. With reflection on the implementation process and results of this feasibility study, we recognized that (1) the IM-delivered intervention was feasible and created no embarrassment during discussions, (2) discussing sexual health issues directly helped to clarify myths, (3) screening for condom use consistency and sexual orientation helped tailor conversations, (4) condom use inconsistency was primarily due to the displeasure of using a condom and alternative contraceptives being used for pregnancy prevention, which also suggested a lack of awareness of STI prevention, and (5) most conversations could use such gender-neutral terms as “they or them” and “partner,” except for discussions of condom or protective barrier practical use tips to fit both heterosexual and lesbian, gay, bisexual, transgender, queer, plus (LGBTQ+) relationships, and (6) using WhatsApp stickers in a conversation helped to create a comfortable atmosphere and establish rapport to facilitate further discussions. This study highlighted the usefulness of using Bowen et al’s [18] framework for systematically evaluating the feasibility of an innovation.

The booster dose stimulated participants’ interest in asking further questions about sexual health-related issues. The booster can not only provide new information to participants but also deliver similar intervention message content to refresh participants’ memories. This helps maintain behavioral changes over time [34]. Previous studies containing booster interventions indicated that participants were able to revisit the content and reinforce their knowledge in these sessions [21,35]. In our booster session, diverse topics such as sexual needs, frequency of sexual activities, delay of sexual intercourse, and STIs were covered. Some participants also raised personal and private questions related to STIs during the booster session. This may indicate that participants needed time to digest the information received initially, which fostered the trust and courage needed to further ask personal questions. Therefore, booster intervention is essential for some participants to assimilate information and share their information at their own pace [27].

Implications

Sex education is essential as a primary prevention strategy for emerging adults due to the underestimation of the risk of unprotected sex [9]. A survey from AIDS Concern found that nearly 40% of surveyed young women underestimated their risk of STIs, while 80% of them were assessed as the high-risk population [9]. Although Hong Kong has a relatively low level of youth sexual activity, recent studies have brought up concerns about the inadequacies of sex education in Hong Kong [36]. Conventional sex education programs or school-based sex education are some common means of promoting condom use in Hong Kong, however, they are still not mandatory. In addition, the teaching hours are largely insufficient. Half of the schools in Hong Kong offered 5 hours or less of sex education in a school year [37]. The conservative culture on sexual health issues also shaped Hong Kong people’s views and attitudes [36]. Although Hong Kong is an internationalized city that accepts cultural diversity and open-mindedness, the general public is still reserved and implicit when it comes to sex education [36]. This study supports the idea that an IM-delivered intervention is potentially effective in filling the gap due to its personalized and proactive delivery mode.

https://formative.jmir.org/2024/1/e52695

JMIK Form Res 2024 | vol. 8 | e52695 | p.2068
(page number not for citation purposes)
Further efforts should be made to scale up the implementation of the intervention in the community. In total, 1494 messages were sent and received between the nurse and 20 participants during the 30-minute brief intervention and a 5-day booster dose of daily messages 2 weeks later. Also, a participant reflected that the response speed during the chat session varied. The reduced instantaneity may affect the intervention effect. Compared with face-to-face talk and counseling, this intervention was delivered with mHealth technology through free smartphone apps, which were more cost-effective in terms of delivery. We did not conduct a cost-effectiveness analysis in this feasibility study. Previous studies have been done to evaluate the cost-effectiveness of IM interventions targeting smoking cessation [38] and weight management [39]. Smartphone-based interventions using SMS text messaging or IM have demonstrated good cost-effectiveness due to their low cost and scalability. However, a cost-effectiveness assessment on this specific topic has not been done. The main concern of a nurse-led IM intervention could be the requirement of more manpower if it is conducted on a large scale. Having said that, we would suggest developing an intervention manual and training a group of sexual health counselors for implementation efficiency at a large scale. In addition, with the advancement of technology, the training manual can be used for the further development of chatbots, which can assist in intervention delivery automatically. A systematic review reported a significant effect of a chatbot intervention in reducing depression [40]. While a randomized controlled trial also found chatbot intervention to be effective in promoting fertility awareness and preconception health [41]. An intervention protocol with standard answers should be well-designed to maintain a high standard of IM chat session content.

Strengths and Limitations
The strength of the study was in providing a realistic assumption on the feasibility of an IM-delivered brief intervention on promoting safer sex practices in the community. Our evaluation was conducted systematically based on Bowen et al’s [18] framework. The intervention was able to create a friendly, comfortable, nonjudgemental atmosphere that allowed participants to think and ask any questions about sexual health. The participants were also able to gain knowledge and more favorable attitudes about condom use.

The limitation of this study was the small sample size, which might affect the generalizability of the results. In addition, a comparison group was not established, so caution is needed when interpreting its findings. However, it is appropriate to have a small sample size to determine whether the intervention is feasible before carrying out a large-scale study [18]. Additionally, it could be cost-ineffective to increase the sample size without conducting a feasibility study. Another limitation was the short follow-up period. It is very likely to take longer than 2 weeks postintervention to see changes in behavior [21]. Future research with a longer time frame would be able to more fully assess the outcome of this intervention.

Conclusion
An IM-delivered brief intervention was feasible and acceptable. The intervention was also demonstrated to be practical and effective in enhancing participants’ general knowledge and attitudes toward condom use. The intervention was able to minimize embarrassment when discussing sensitive topics. Although intervention implementation can be time-consuming and labor-intensive, the study findings informed IM-based sexual health intervention development or modifications to enhance sexual health promotion among sexually active university students. More research is needed to evaluate the effectiveness and cost-effectiveness of such an intervention at a larger scale with trained counselors and evaluate its long-term effects by using a rigorous design, such as a randomized controlled trial.

Acknowledgments
The authors thank the study participants for their participation. This study is not supported by grants or funding.

Authors’ Contributions
SHLP, AMT, and JYHW conceived the study. JYHW delivered the intervention. SHLP and JYHW analyzed the data. JYHW, AMT, MPW, DYTF, and EPHC provided guidance throughout the study. SHLP wrote the first draft of the manuscript. All authors reviewed the final manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
A guideline for the nurse to derive the intervention under the Information, Motivation, and Behavioral skills model during the intervention.
[DOCX File , 18 KB - formative_v8i1e52695_app1.docx]

Multimedia Appendix 2
Examples of the interaction between participants and the nurse during the brief intervention on WhatsApp. Multimedia content (blue, right) and answers from participants (orange, left) are shown.
Multimedia Appendix 3
QQ plots for Multidimensional Condom Attitudes Scale total score and condom use consistency.

References

9. Low condom use rate among young women leads to higher rate of sexually transmitted diseases. AIDS Concern. 2023. [URL: https://tinyurl.com/4d2v9h7y]

15. Tam HL, Wong EML, Cheung K, Chung SF. Effectiveness of text messaging interventions on blood pressure control among patients with hypertension: systematic review of randomized controlled trials. JMIR Mhealth Uhealth 2021;9(9):e24527 [FREE Full text] [doi: 10.2196/24527] [Medline: 34550078]

Abbreviations
- **CHERRIES**: Checklist for Reporting Results of Internet E-Surveys
- **CONSORT**: Consolidated Standards of Reporting Trials
- **HPV**: human papillomavirus
- **IM**: instant messaging
- **IMB**: Information, Motivation, and Behavioral skills
- **LGBTQ+**: lesbian, gay, bisexual, transgender, queer, plus
- **MCAS**: Multidimensional Condom Attitudes Scale
- **mHealth**: mobile health
- **STI**: sexually transmitted infection
- **WHO**: World Health Organization

©Sharon Hoi Lam Pak, Man Ping Wang, Anne M Teitelman, Janet Yuen Ha Wong, Daniel Yee Tak Fong, Edmond Pui Hang Choi. Originally published in JMIR Formative Research (https://formative.jmir.org), 20.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Changepoint Detection in Heart Rate Variability Indices in Older Patients Without Cancer at End of Life Using Ballistocardiography Signals: Preliminary Retrospective Study

Naotake Yanagisawa¹, PhD; Yuji Nishizaki², MD, MPH, PhD; Bingwei Yao³, BSE; Jianting Zhang⁴, MS; Takatoshi Kasai⁵, MD, PhD

¹Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
²Division of Medical Education, Juntendo University School of Medicine, Tokyo, Japan
³E3 Enterprise, Tokyo, Japan
⁴Zhejiang Huiyang Technology, Huzhou, China
⁵Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan

Corresponding Author:
Takatoshi Kasai, MD, PhD
Department of Cardiovascular Biology and Medicine
Juntendo University Graduate School of Medicine
3-1-3 Hongo
Bunkyo-ku
Tokyo, 113-8421
Japan
Phone: 81 338133111
Email: kasai-t@mx6.nisiq.net

Abstract

Background: In an aging society such as Japan, where the number of older people continues to increase, providing in-hospital end-of-life care for all deaths, and end-of-life care outside of hospitals, such as at home or in nursing homes, will be difficult. In end-of-life care, monitoring patients is important to understand their condition and predict survival time; this information gives family members and caregivers time to prepare for the end of life. However, with no clear indicators, health care providers must subjectively decide if an older patient is in the end-of-life stage, considering factors such as condition changes and decreased food intake. This complicates decisions for family members, especially during home-based care.

Objective: The purpose of this preliminary retrospective study was to determine whether and how changes in heart rate variability (HRV) indices estimated from ballistocardiography (BCG) occur before the date of death in terminally ill older patients, and ultimately to predict the date of death from the changepoint.

Methods: This retrospective pilot study assessed the medical records of 15 older patients admitted to a special nursing home between August 2019 and December 2021. Patient characteristics and time-domain HRV indices such as the average normal-to-normal (ANN) interval, SD of the normal-to-normal (SDNN) interval, and root mean square of successive differences (RMSSD) from at least 2 months before the date of death were collected. Overall trends of indices were examined by drawing a restricted cubic spline curve. A repeated measures ANOVA was performed to evaluate changes in the indices over the observation period. To explore more detailed changes in HRV, a piecewise regression analysis was conducted to estimate the changepoint of HRV indices.

Results: The 15 patients included 8 men and 7 women with a median age of 93 (IQR 91-96) years. The cubic spline curve showed a gradual decline of indices from approximately 30 days before the patients’ deaths. The repeated measures ANOVA showed that when compared with 8 weeks before death, the ratio of the geometric mean of ANN (0.90, 95% CI 0.84-0.98; P=.005) and RMSSD (0.83, 95% CI 0.70-0.99; P=.03) began to decrease 3 weeks before death. The piecewise regression analysis estimated the changepoints for ANN, SDNN, and RMSSD at –34.5 (95% CI –42.5 to –26.5; P<.001), –33.0 (95% CI –40.9 to –25.1; P<.001), and –35.0 (95% CI –42.3 to –27.7; P<.001) days, respectively, before death.

Conclusions: This preliminary study identified the changepoint of HRV indices before death in older patients at end of life. Although few data were examined, our findings indicated that HRV indices from BCG can be useful for monitoring and predicting
survival time in older patients at end of life. The study and results suggest the potential for more objective and accurate prognostic tools in predicting end-of-life outcomes.

KEYWORDS
ballistocardiography; BCG; noninvasive monitoring; heart rate variability; end-of-life care; prognosis prediction

Introduction

Background

The population of Japan was estimated to be 125 million as of October 1, 2020, and has been declining for 11 consecutive years since 2011 [1]. Meanwhile, the aging rate is increasing, and the number of people aged 65 years and older is estimated at 36 million, accounting for 28.8% of the total population. As the total population declines further, this percentage is expected to continue to increase, reaching approximately 33.3% in 2036 and 38.4% in 2065 [2].

The number of deaths has also increased over the years, exceeding 1 million in 2003 and 1.37 million in 2020. Malignant neoplasms are the leading cause of death, accounting for 27.6% of all deaths, followed by heart disease (15%) and senility (9.6%) [3]. Notably, in 2018, deaths due to senility surpassed cerebrovascular disease and became the third leading cause of death [4], possibly due to the growing number of people aged 90 years and older. The increasing number of deaths among older people creates difficulty in caring for all deaths in hospitals. Therefore, it is expected that end-of-life care outside hospitals will increasingly be provided in nursing homes and at home. In end-of-life care, it is important to monitor patients to understand their condition and predict survival time; this information helps patients anticipate what is to come and gives family members and caregivers time to prepare for the end of life [5,6].

However, this process may be very difficult under conditions when resources are limited, such that medical staff may not be available immediately at home. Furthermore, the physical, spiritual, and psychosocial conditions of older patients at end of life vary [7]. Unnecessary monitoring is also burdensome to patients and should be discouraged. To reduce the burden on patients and families, noninvasive and nonintrusive monitoring systems have been increasingly important, and several studies have demonstrated their usefulness in palliative care [8-10]. While tools to predict the survival of patients with terminal cancer have been developed and many studies have shown their usefulness [11-13], the reliability of these tools in predicting survival time for end-of-life patients without cancer has been questionable, and the tools are considered difficult to use [14,15]. Therefore, we focused on continuous and unobtrusive monitoring of patients using heart rate variability (HRV) indices estimated from ballistocardiography (BCG) obtained from a sheet-type device as a means of monitoring their condition. BCG is a measurement of the vibration signals generated by the ejection of the blood at each cardiac cycle [16], which has been used frequently in recent years to acquire biological signals [17-20]. The advantages of this method are that BCG signals can be obtained by placing a device under a patient’s mattress, making long-term, around-the-clock monitoring possible without attaching electrodes to the patient. The device could also reduce the burden on nurses by allowing them to monitor patients remotely. For example, many recent applied studies have been conducted using BCG to detect hypertension and apnea using HRV indices estimated from BCG signals [21-26]. HRV is a measure of the variation in time between heartbeats, usually recorded by an electrocardiogram (ECG). This variation is related to the autonomic nervous system and reflects a person’s health status [27]. A decrease in HRV generally results in a higher mortality rate [28,29] in patients with myocardial infarction, and HRV has also been demonstrated to be associated with a variety of diseases [30-33]. If the prognosis, including the patient’s survival, can be accurately estimated by HRV indices through noninvasive and noncontact monitoring, this would be beneficial for end-of-life patients, as well as their clinicians, caregivers, and family members, to plan future care and prepare for the end of life.

Objectives

The aim of this preliminary retrospective study was to investigate whether there is a changepoint in HRV indices obtained from BCG signals prior to death to predict the survival time in older patients without cancer at end of life.

Methods

Study Design and Patients

This was a single-center, retrospective pilot study in which all medical records of end-of-life patients (median age 93, IQR 91-96 years) were extracted from one nursing hospital in China. The study included data from 15 patients who were admitted to the facility and died between August 1, 2019, and December 31, 2021. All patients were without cancer. Patients with implanted pacemakers and patients with chronic atrial fibrillation or frequent extrasystoles were excluded. In addition, patients with less than 2 months of data from the date of death were excluded.

Measurements

Age and sex were collected as patient characteristics, and the following classical time-domain HRV indices were obtained from a medical database and used for analyses: average normal-to-normal (ANN) interval for each 5-minute segment of HRV recording; SD of all normal-to-normal (SDNN) intervals; and root mean square of successive differences (RMSSD). These HRV indices were collected up to 2 months before the patients’ deaths and used for data analyses.
BCG Sensing Device

The BCG device used in this study is made by Zhejiang Huiyang Technology Co, Ltd; it is a sheet-type device equipped with a highly sensitive motion detection sensor that is placed under pillows or mattresses to continuously measure the patient’s body movements. In addition to HRV indices, this device can measure arousal, sleep, respiratory rate, and bed-withdrawal time. HRV parameters were processed from continuously recorded raw BCG signals at 133 Hz. The BCG signal was preprocessed through filtering and detection of the BCG wave (the J-wave) based on proprietary algorithms. The typical wave form of BCG signals is shown in Figure 1. After detection of J-J wave intervals, ectopic intervals were excluded in time series and formed normal-to-normal intervals. These intervals were used as an alternative to the RR interval (RRI) obtained from ordinary ECGs.

Figure 1. Typical wave form of ballistocardiography signal.

Statistical Analysis

Data are summarized as mean (SD) for continuous variables if the data followed normal distribution and as median (IQR) otherwise. Categorical variables are expressed as numbers and percentages. The time-course changes of HRV indices were examined by drawing a spline chart with a restricted cubic spline model and 3 internal knots fitting each HRV index as a function of time. A repeated measures ANOVA model was conducted to evaluate the within-subject effect, that is, the average of an individual trend of HRV indices over the period for which data were obtained. Since multiple analyses were performed with the reference and the values at each time point, multiplicity was adjusted using the Dunnett-Hsu method. Before analysis, data were natural-log transformed to reduce the right-skewness of the original data, and then daily or weekly averages were calculated for each patient. After analysis, estimates were back-transformed. The results at each time point represent the ratio of the geometric mean of values to reference values. To explore the location of the changepoint of HRV indices over the observation period, a piecewise regression model was used. The regression coefficients were back-transformed; the regression coefficients represent the fold-change for every 10-unit change in the independent variables. The statistical 2-sided significance level was set at .05, and \(P<.05 \) was considered statistically significant. All statistical analyses were conducted using SAS (version 9.4; SAS Institute).

Ethical Considerations

The study was conducted in accordance with the Declaration of Helsinki (revised in 2013) and the Ethical Guidelines for Medical and Health Research Involving Human Subjects in Japan (revised in 2017). The study received approval from the Research Ethics Committee, Faculty of Medicine, Juntendo University (M19-0287). The committee waived the requirement for informed consent for this retrospective study, as it involved the analysis of existing data. All study data were anonymized, and any identifying information was removed to ensure the complete confidentiality of patients. Only authorized research personnel had access to the collected data, and any publication or presentation of the results strictly maintained the anonymity of the study. Patients were not offered any compensation for their participation in this study.

Results

Patient Characteristics

A summary of patient demographic characteristics is presented in Table 1. The data were obtained from 15 patients aged 90 to 100 years, including 8 men and 7 women. The median age for the entire group was 93 (IQR 91-96) years, and by sex, the median age was 94 (IQR 90-97) years for women and 93 (IQR 91.5-94.5) years for men. The other underlying cardiac diseases of the patients were not a concern; however, only cases with no change in medication during the period were included, resulting in a final study total of 15 patients.
Table 1. Characteristics of end-of-life older patients (N=15).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median (IQR)</td>
<td>93 (91-96)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>7 (47)</td>
</tr>
<tr>
<td>Male</td>
<td>8 (53)</td>
</tr>
</tbody>
</table>

Time-Course Changes of HRV Indices

Time-course changes in HRV indices were plotted by spline charts (Figure 2). The x-axis in this figure represents the date of the event as 0 and proceeds backwards from there. As shown in Figure 2, the value for ANN gradually decreased from approximately –60 days to approximately –30 days, but the degree of the trend slightly increased after approximately –30 days until the patients’ deaths. A similar trend was observed in RMSSD and SDNN; however, for SDNN, the values seemed to be constant between –60 days to approximately –30 days. After –30 days, a decreasing trend was observed.
Repeated Measures ANOVA
The results of the repeated measures ANOVA are shown in Table 2. In this analysis, the average of the log-transformed data at 8 weeks before the patients’ deaths was used as a reference and compared to each averaged log-transformed result from 7 weeks to 1 week before death. Then, the estimates were back-transformed in order to represent the results as the ratios to reference. At 3, 2, and 1 week before the patients’ deaths, there were significant decreases in ANN (3 w: 0.90, 95% CI 0.84-0.98; P=.005; 2 w: 0.90, 95% CI 0.84-0.98; P=.004; 1 w: 0.86, 95% CI 0.80-0.93; P<.001) and RMSSD (3 w: 0.83, 95% CI 0.70-0.99; P=.03; 2 w: 0.83, 95% CI 0.70-1.00; P=.04; 1 w: 0.78, 95% CI 0.66-0.93; P=.002) compared to the reference. Although not statistically significant, SDNN began to decrease from 4 weeks, and a statistically significant decrease was observed at 1 week (0.81, 95% CI 0.67-0.97; P=.02) compared to the reference.
Table 2. Repeated measures ANOVA for heart rate variability indices. The values represent ratios of each week’s value to the reference and their corresponding 95% CIs.

<table>
<thead>
<tr>
<th>Weeks before the patients’ deaths</th>
<th>Average normal-to-normal interval (95% CI)</th>
<th>P value<sup>a</sup></th>
<th>SD of all normal-to-normal intervals (95% CI)</th>
<th>P value<sup>a</sup></th>
<th>Root mean square of successive differences (95% CI)</th>
<th>P value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Reference</td>
<td>>.99</td>
<td>Reference</td>
<td>>.99</td>
<td>Reference</td>
<td>>.99</td>
</tr>
<tr>
<td>7</td>
<td>1.00 (0.93-1.08)</td>
<td>>.99</td>
<td>0.99 (0.83-1.19)</td>
<td>.99</td>
<td>0.99 (0.83-1.18)</td>
<td>>.99</td>
</tr>
<tr>
<td>6</td>
<td>1.00 (0.92-1.08)</td>
<td>>.99</td>
<td>1.00 (0.83-1.21)</td>
<td>>.99</td>
<td>0.99 (0.83-1.18)</td>
<td>>.99</td>
</tr>
<tr>
<td>5</td>
<td>0.98 (0.91-1.06)</td>
<td>.99</td>
<td>1.01 (0.84-1.22)</td>
<td>>.99</td>
<td>0.90 (0.76-1.07)</td>
<td>>.99</td>
</tr>
<tr>
<td>4</td>
<td>0.94 (0.87-1.02)</td>
<td>.21</td>
<td>0.96 (0.80-1.16)</td>
<td>.99</td>
<td>0.90 (0.76-1.07)</td>
<td>.43</td>
</tr>
<tr>
<td>3</td>
<td>0.90 (0.84-0.98)</td>
<td>.005</td>
<td>0.88 (0.73-1.05)</td>
<td>.26</td>
<td>0.83 (0.70-0.99)</td>
<td>.03</td>
</tr>
<tr>
<td>2</td>
<td>0.90 (0.84-0.98)</td>
<td>.004</td>
<td>0.85 (0.70-1.02)</td>
<td>.09</td>
<td>0.83 (0.70-1.00)</td>
<td>.04</td>
</tr>
<tr>
<td>1</td>
<td>0.86 (0.80-0.93)</td>
<td><.001</td>
<td>0.81 (0.67-0.97)</td>
<td>.02</td>
<td>0.78 (0.66-0.93)</td>
<td>.002</td>
</tr>
</tbody>
</table>

^aThese P values represent the results at each time point relative to the reference, that is, the Dunnett-Hsu–adjusted P value.

^bThese P values represent the results for the change in the heart rate variability indices over the entire observation period.

Changepoint Estimation

The changepoints in HRV indices were explored by using a piecewise regression model. Results are shown in Table 3. The changepoints for ANN, SDNN, and RMSSD were estimated as occurring at –34.5 (95% CI –42.5 to –26.5), –33.0 (95% CI –40.9 to –25.1), and –35.0 (95% CI –42.3 to –27.7) days, respectively, before the date of the patient’s death at 0. The regression coefficients of the slope for the HRV indices before the changepoint were not statistically significantly different from 0; however, after the changepoint, the coefficients indicated that HRV indices were significantly decreased by a factor of the coefficients for every 10 units of increase in days (ANN: 0.959, 95% CI 0.950-0.968; P<.001; SDNN: 0.930, 95% CI 0.908-0.953; P<.001; RMSSD: 0.925, 95% CI 0.905-0.946; P<.001).
Table 3. Changepoint analysis in heart rate variability indices.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Estimates (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average normal-to-normal interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept before changepoint</td>
<td>793.9 (717.7 to 878.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Slope(^{a}) before changepoint</td>
<td>0.993 (0.980 to 1.006)</td>
<td>.25</td>
</tr>
<tr>
<td>Intercept after changepoint</td>
<td>705.1 (650.9 to 763.8)</td>
<td><.001</td>
</tr>
<tr>
<td>Slope(^{a}) after changepoint</td>
<td>0.959 (0.950 to 0.968)</td>
<td><.001</td>
</tr>
<tr>
<td>Changepoint (days)(^{b})</td>
<td>–34.5 (–42.5 to –26.5)</td>
<td><.001</td>
</tr>
<tr>
<td>SD of all normal-to-normal intervals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept before changepoint</td>
<td>51.8 (37.4 to 71.7)</td>
<td>< .001</td>
</tr>
<tr>
<td>Slope(^{a}) before changepoint</td>
<td>1.020 (0.986 to 1.055)</td>
<td>.23</td>
</tr>
<tr>
<td>Intercept after changepoint</td>
<td>38.2 (28.8 to 50.9)</td>
<td><.001</td>
</tr>
<tr>
<td>Slope(^{a}) after changepoint</td>
<td>0.930 (0.908 to 0.953)</td>
<td><.001</td>
</tr>
<tr>
<td>Changepoint (days)(^{b})</td>
<td>–33.0 (–40.9 to –25.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Root mean square of successive differences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept before changepoint</td>
<td>51.4 (37.9 to 69.6)</td>
<td>< .001</td>
</tr>
<tr>
<td>Slope(^{a}) before changepoint</td>
<td>1.011 (0.980 to 1.043)</td>
<td>.45</td>
</tr>
<tr>
<td>Intercept after changepoint</td>
<td>37.6 (28.9 to 49.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Slope(^{a}) after changepoint</td>
<td>0.925 (0.905 to 0.946)</td>
<td><.001</td>
</tr>
<tr>
<td>Changepoint (days)(^{b})</td>
<td>–35.0 (–42.3 to –27.7)</td>
<td><.001</td>
</tr>
</tbody>
</table>

\(^{a}\)The regression coefficient of slope indicates that for every 10-unit increase in days, heart rate variability indices increase or decrease by the value multiplied by the regression coefficient.

\(^{b}\)Values for changepoint represent days before the date of the patient’s death at 0.

Discussion

Principal Findings

This preliminary retrospective study aimed to explore the changepoint of HRV indices based on estimates from BCG signals measured over a period of time in older patients at end of life who were residents in a nursing home. Our analysis, conducted by plotting a spline curve, revealed a gradual decline in HRV indices from approximately 30 days before the patients’ deaths. To assess whether this change could be detected statistically, we compared the HRV indices 8 weeks before the date of death with the HRV indices from each week, starting from 7 weeks to 1 week before death, with a repeated measures ANOVA. This analysis found that the ANN and RMSSD values decreased from 3 weeks before the date of death. Furthermore, for a more precise estimation of when the changepoint occurred, we conducted a piecewise regression analysis. This analysis revealed the changepoints for the indices in days before the patients’ deaths for ANN (–34.5, 95% CI –42.5 to –26.5 days), SDNN (–33.0, 95% CI –40.9 to –25.1 days), and RMSSD (–35.0, 95% CI –42.3 to –27.7 days). The results indicate that if the changepoint can be detected during BCG monitoring, it may be possible to predict the survival time from that changepoint: approximately 1 month later. Accurate estimation of the time of death approximately 1 month in advance by continuously monitoring HRV indices obtained from BCG could provide families or health care providers with more time to prepare for end-of-life care. Although our results are from a retrospective study and the sample size was small, to our knowledge, this is the first study to analyze data from long-term monitoring of older patients without cancer at end of life using HRV indices estimated from BCG.

HRV measures the time interval between adjacent heartbeats, that is, the variation in the time interval from R wave to R wave (ie, RRI) on the ECG. HRV indices are a useful noninvasive means of assessing autonomic function. The gold standard for evaluation of HRV indices is to evaluate the RRI on an ECG. However, in recent years, other systems have been developed to acquire BCG signals, most of which come in the form of a mattress or chair [34], and BCG is considered to be a potential substitute for HRV indices [35,36]. Martín-Yebra et al [36] evaluated the JJ, II, KK, and HH intervals of the BCG signal as an alternative to the ECG’s RRI and showed that the JJ interval was almost consistent with the RRI measured simultaneously with BCG. We also analyzed the HRV indices estimated from the JJ intervals of the BCG signal in our study.

The rapid aging of the world’s population and the widespread use of HRV have increased interest in the prognostic value of HRV in older patients, even outside the specific field of cardiology [37]. Kurita et al [38] examined the survival of...
patients based on HRV and blood tests such as serum albumin and C-reactive protein levels at admission among older Japanese individuals in special nursing homes. They reported that there was no statistically significant difference between the death and survival groups in terms of blood test values. However, the SDNN and coefficient of variables of RRI values, which have been suggested to be related to parasympathetic activity, were statistically higher in the survivor group. In another study, which used HRV to predict survival time for terminally ill patients with cancer [39], the length of survival time was shorter in groups with lower SDNN (21.3 ms or less) or higher heart rates (100 or more beats per minute) measured at baseline. Another prospective study using HRV to evaluate the prognostic values for discharge from the hospital in cancer patients compared the high-frequency (HF) and low-frequency components of HRV at admission between patients who were discharged and those who died. In the study, none of the HRV indices were statistically different, but the estimated value of the HF components of HRV as an index reflecting parasympathetic nerve activity (vagal activity), tended to be higher in the discharged group [40]. Since our study also showed a decrease in ANN, which represents an increase in heart rate, and a decrease in SDNN and RMSSD, which reflect parasympathetic function, it may be appropriate to use HRV indices related to parasympathetic function to make prognoses at end of life in older patients.

Our results showed a change in HRV indices approximately 35 days before patients’ deaths. A previous study of signs of mortality and the timing of their appearance in end-of-life patients in Japan [41] was based on the subjective perceptions of nurses working at a special nursing home for older people; it reported that the signs of mortality were divided into 19 categories and classified them according to the time they appeared. The study found that some signs appeared approximately 1 month before death and others appeared 2 days before. Signs that appeared 1 month prior to death included lack of eyepath, paleness, lack of vitality, somnolence, and decreased food intake compared to previous stable daily activities. Notably, the changepoint of the HRV indices was observed approximately 1 month before death in our study, and there may be some relationship between the signs recognized by the nurses and the change in HRV indices, that is, they may run in parallel. Therefore, in the future, it may be possible to construct a more accurate model that can predict the survival time of patients by combining more objective changes in HRV with the subjective symptoms identified by nurses.

Strength

The strength of this study lies in the analysis of data collected continuously from patients for more than 2 months. For example, the Palliative Performance Scale (PPS) and Palliative Prognostic Index (PPI) scores at admission are commonly used as prognostic tools for terminal cancer patients [42]. However, many studies rely solely on values at admission to assess prognoses. In contrast, Kao et al [43] postulated that using only the PPI score on the first day may be limited because it does not consider subsequent changes in the patient’s condition. They showed that combining PPI scores from day 1 and 1 week later improved prognostic accuracy. In addition, Chan et al [44] examined changes in PPS scores at admission, week 1, and week 2 in terminally ill patients to predict patient survival. They found that all of these changes were independent predictors, with the greater the change, the higher the hazard ratio. These studies underscore the importance of analyzing changes over time. Although it is relatively convenient to measure the items needed to calculate PPS and PPI in a clinical setting, it is burdensome to observe these items daily. Therefore, if the sheet-type device used in this study can be used to measure HRV indices without inconvenience to the individual and facilitate making prognoses in end-of-life patients, it could be a very useful approach.

Limitations

There are several limitations in this study. First, it was retrospective and used existing data from a single institution; therefore, selection bias was unavoidable. Second, the study used a small amount of data from 15 patients, which could have affected the statistical validity. Third, the patients’ detailed background information was not available, and the study included patients with a variety of underlying diseases. Therefore, the results of this study may have been influenced by chance or by confounding factors, such as the patients’ medical histories and medical conditions while they still survived.

Conclusions

To our knowledge, this is the first study to assess HRV changepoints estimated from BCG signals in older patients at end of life. We found changepoints occurred approximately 1 month before a patient’s death, indicating that these changes could be used to predict patients’ deaths. This study also suggests the possibility of developing more objective and accurate predictive tools and offers valuable insights for future research. Such tools could be created by integrating BCG data with the subjective judgments of nurses, caregivers, and other health professionals, as well as established tools like the PPS, to make prognoses in cancer patients. However, since the findings were obtained in a retrospective study, future research is needed to determine how to detect these changes when observed prospectively.

Acknowledgments

This work was supported by a grant from JSPS KAKENHI Grants-in-Aid (JP21K12800), partly supported by other grants from JSPS KAKENHI Grants-in-Aid (JP17K09527, JP18K15904, JP21K16034), and supported by the Intractable Respiratory Diseases and Pulmonary Hypertension Research Group of the Ministry of Health, Labor and Welfare of Japan (20FC1027) and a research grant from the Japanese Center for Research on Women in Sport at Juntendo University. The funding agency had no role in the study design, any aspects of data analysis or interpretation, or manuscript publication.
Data Availability
The data sets generated during and/or analyzed during this study are not publicly available due to the confidential nature of the information, and consent to share data with outside parties has not been obtained from the patients.

Conflicts of Interest
TK is affiliated with departments endowed by Philips, ResMed, and Fukuda Denshi, as well as with Paramount Bed. The other authors have no conflicts of interest to declare.

References

Abbreviations
ANN: average of normal-to-normal interval
BCG: ballistocardiography
ECG: electrocardiogram
HF: high frequency
HRV: heart rate variability
PPS: Palliative Performance Scale
PPI: Palliative Prognostic Index
RMSSD: root mean square of successive differences
RRI: RR interval
SDNN: SD of normal-to-normal interval

Please cite as:
Yanagisawa N, Nishizaki Y, Yao B, Zhang J, Kasai T
Changepoint Detection in Heart Rate Variability Indices in Older Patients Without Cancer at End of Life Using Ballistocardiography Signals: Preliminary Retrospective Study
JMIR Form Res 2024;8:e53453
URL: https://formative.jmir.org/2024/1/e53453
doi:10.2196/53453
PMID:38345857

©Naotake Yanagisawa, Yuji Nishizaki, Bingwei Yao, Jianting Zhang, Takatoshi Kasai. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Engaging Cancer Care Physicians in Off-Label Drug Clinical Trials: Human-Centered Design Approach

Maren C Parsell1,2, MBA; Morgan N Greenleaf1,2,3, MS; Greeshma G Kombara2,4, MPH; Vikas P Sukhatme2,4,5, MD, SCD; Wilbur A Lam1,2,3,6, MD, PhD

1Georgia Clinical and Translational Science Alliance, Emory University School of Medicine, Emory University, Atlanta, GA, United States
2Emory School of Medicine, Emory University, Atlanta, GA, United States
3Center for the Advancement of Diagnostics for a Just Society (ADJUST), Emory University, Atlanta, GA, United States
4The Morningside Center for Innovative and Affordable Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States
5Departments of Medicine and Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
6Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States

Corresponding Author:
Maren C Parsell, MBA
Georgia Clinical and Translational Science Alliance
Emory University School of Medicine
Emory University
1440 Clifton Road
Atlanta, GA, 30322
United States
Phone: 1 404896149
Email: maren.parsell@emory.edu

Abstract

Background: Using a human-centered design (HCD) approach can provide clinical trial design teams with a better understanding of the needs, preferences, and attitudes of clinical trial stakeholders. It can also be used to understand the challenges and barriers physician stakeholders face in initiating and completing clinical trials, especially for using off-label drugs (OLDs) to treat unmet clinical needs in cancer treatment. However, the HCD approach is not commonly taught in the context of clinical trial design, and few step-by-step guides similar to this study are available to demonstrate its application.

Objective: This study aims to demonstrate the feasibility and process of applying an HCD approach to creating clinical trial support resources for physician stakeholders to overcome barriers to pursuing clinical trials for OLDs to treat cancer.

Methods: An HCD approach was used to develop OLD clinical trial support concepts. In total, 45 cancer care physicians were contacted, of which 15 participated in semistructured interviews to identify barriers to prescribing OLDs or participating in cancer OLD clinical trials. Design research is qualitative—it seeks to answer “why” and “how” questions; thus, a sample size of 15 was sufficient to provide insight saturation to address the design problem. The team used affinity mapping and thematic analysis of qualitative data gathered from the interviews to inform subsequent web-based co-design sessions, which included creative matrix exercises and voting to refine and prioritize the ideas used in the final 3 recommended concepts.

Results: The findings demonstrate the potential of HCD methods to uncover important insights into the barriers physicians face in participating in OLD clinical trials or prescribing OLDs, such as recruitment challenges, low willingness to prescribe without clinical data, and stigma. Notably, only palliative care participants self-identified as “frequent prescribers” of OLDs, despite high national OLD prescription rates among patients with cancer. Participants found the HCD approach engaging, with 60\% (9/15) completing this study; scheduling conflicts caused most of the dropouts. Over 150 ideas were generated in 3 co-design sessions, with the groups voting on 15 priority ideas that the design team then refined into 3 final recommendations, especially focused on increasing the participation of physicians in OLD clinical trials.

Conclusions: Using participatory HCD methods, we delivered 3 concepts for clinical trial support resources to help physician stakeholders overcome barriers to pursuing clinical trials for OLDs to treat cancer. Overall, integrating the HCD approach can aid in identifying important stakeholders, such as prescribing physicians; facilitating their engagement; and incorporating their
perspectives and needs into the solution design process. This paper highlights the process, methods, and potential of HCD to improve cancer clinical trial design. Future work is needed to train clinical trial designers in the HCD approach and encourage adoption in the field.

(JMIR Form Res 2024;8:e51604) doi: 10.2196/51604

KEYWORDS
human-centered design; clinical trial design; design methods; clinical trial methodology; barriers; off-label drugs; stakeholders; cancer; medications

Introduction

Project Goals
Cancer clinical trials involve the coordination of many stakeholders but frequently fail to meet enrollment goals, prespecified end points, and timelines [1,2]. Effective stakeholder engagement can be essential to cancer clinical trial design, conduct, and reporting of clinical research [3]. However, traditional design approaches often lack consideration of stakeholders’ needs, preferences, and experiences, which can lead to recruitment and retention challenges or to study results that are less generalizable or applicable to real-world settings. Trial stakeholders include physicians who face unique barriers, especially when designing trials for off-label drugs (OLDs) to treat unmet clinical needs in cancer treatment [4]. Assumptions that stakeholders will be willing to participate in a trial may not adequately factor in the unique challenges and barriers that patients with cancer and stakeholders face. In addition, underrepresented and marginalized populations’ needs can also be missed because their perspective is rarely represented by clinical trial designers, which can lead to a lack of diversity in clinical trial participants and potential disparities in treatment outcomes [1].

To overcome these limitations, a human-centered design (HCD) approach offers both a process to learn about the needs of the trial stakeholders as well as flexible tools to test assumptions, uncover barriers, and work collaboratively with study stakeholders to optimize the clinical trial design. An emerging body of literature on HCD for health care innovation yields many HCD methods to choose from [5], making it difficult for novice innovators to know where to start and which methods to use. The purpose of this paper is to demonstrate HCD methods through a case study, where cancer care physicians were invited to share their perspectives and needs into the solution design process. This paper highlights the process, methods, and potential of HCD to improve cancer clinical trial design. Future work is needed to train clinical trial designers in the HCD approach and encourage adoption in the field.

(JMIR Form Res 2024;8:e51604) doi: 10.2196/51604

KEYWORDS
human-centered design; clinical trial design; design methods; clinical trial methodology; barriers; off-label drugs; stakeholders; cancer; medications

Introduction

Project Goals
Cancer clinical trials involve the coordination of many stakeholders but frequently fail to meet enrollment goals, prespecified end points, and timelines [1,2]. Effective stakeholder engagement can be essential to cancer clinical trial design, conduct, and reporting of clinical research [3]. However, traditional design approaches often lack consideration of stakeholders’ needs, preferences, and experiences, which can lead to recruitment and retention challenges or to study results that are less generalizable or applicable to real-world settings. Trial stakeholders include physicians who face unique barriers, especially when designing trials for off-label drugs (OLDs) to treat unmet clinical needs in cancer treatment [4]. Assumptions that stakeholders will be willing to participate in a trial may not adequately factor in the unique challenges and barriers that patients with cancer and stakeholders face. In addition, underrepresented and marginalized populations’ needs can also be missed because their perspective is rarely represented by clinical trial designers, which can lead to a lack of diversity in clinical trial participants and potential disparities in treatment outcomes [1].

To overcome these limitations, a human-centered design (HCD) approach offers both a process to learn about the needs of the trial stakeholders as well as flexible tools to test assumptions, uncover barriers, and work collaboratively with study stakeholders to optimize the clinical trial design. An emerging body of literature on HCD for health care innovation yields many HCD methods to choose from [5], making it difficult for novice innovators to know where to start and which methods to use. The purpose of this paper is to demonstrate HCD methods through a case study, where cancer care physicians were invited to share their perspectives and needs into the solution design process. This paper highlights the process, methods, and potential of HCD to improve cancer clinical trial design. Future work is needed to train clinical trial designers in the HCD approach and encourage adoption in the field.

(JMIR Form Res 2024;8:e51604) doi: 10.2196/51604

KEYWORDS
human-centered design; clinical trial design; design methods; clinical trial methodology; barriers; off-label drugs; stakeholders; cancer; medications

Introduction

Project Goals
Cancer clinical trials involve the coordination of many stakeholders but frequently fail to meet enrollment goals, prespecified end points, and timelines [1,2]. Effective stakeholder engagement can be essential to cancer clinical trial design, conduct, and reporting of clinical research [3]. However, traditional design approaches often lack consideration of stakeholders’ needs, preferences, and experiences, which can lead to recruitment and retention challenges or to study results that are less generalizable or applicable to real-world settings. Trial stakeholders include physicians who face unique barriers, especially when designing trials for off-label drugs (OLDs) to treat unmet clinical needs in cancer treatment [4]. Assumptions that stakeholders will be willing to participate in a trial may not adequately factor in the unique challenges and barriers that patients with cancer and stakeholders face. In addition, underrepresented and marginalized populations’ needs can also be missed because their perspective is rarely represented by clinical trial designers, which can lead to a lack of diversity in clinical trial participants and potential disparities in treatment outcomes [1].

To overcome these limitations, a human-centered design (HCD) approach offers both a process to learn about the needs of the trial stakeholders as well as flexible tools to test assumptions, uncover barriers, and work collaboratively with study stakeholders to optimize the clinical trial design. An emerging body of literature on HCD for health care innovation yields many HCD methods to choose from [5], making it difficult for novice innovators to know where to start and which methods to use. The purpose of this paper is to demonstrate HCD methods through a case study, where cancer care physicians were invited to share their perspectives and needs into the solution design process. This paper highlights the process, methods, and potential of HCD to improve cancer clinical trial design. Future work is needed to train clinical trial designers in the HCD approach and encourage adoption in the field.

Background
HCD is a problem-solving methodology that focuses on discovering needs and developing solutions for individuals within a system; it is increasingly being used in cancer care settings [6-8]. HCD is particularly well-suited for uncovering and understanding the complex attitudes and barriers contributing to physician off-label prescribing behavior for a variety of Food and Drug Administration--approved drugs with strong safety profiles such as aspirin that may have anticancer properties [9]. These medications have shown early evidence when prescribed off-label, in reducing the risk of developing certain types of cancer such as colorectal cancer, or in improving patient outcomes. However, due to low financial incentives and resources, and the lack of further clinical testing to provide definitive prospective data, physician awareness is low, and prescription adoption has been minimal [10]. To help build incentives and engage physicians to consider repurposed OLD options, the Morningside Center for Innovative and Affordable Medicine (Morningside Center) [11] based at Emory University worked with staff trained in HCD methods from the Innovation Catalyst program within the Georgia Clinical and Translational Science Alliance (CTSA) [12]. The Georgia CTSA team set out to first learn more about the barriers to these types of prescriptions and then work together with physicians to propose support programs to increase the consideration of repurposed OLD treatment options for their patients. We explored the implications of these findings for physician receptiveness to conducting clinical trials with repurposed OLDs.

Methods

Study Design
HCD is an iterative and flexible process for generating solutions to problems that typically includes 3 phases: learning about the humans involved in the situation, coming up with and refining concepts, and implementation. Additional steps can be added to address the specific needs of the project, and the CTSA research team emphasized stakeholder analysis because many stakeholders influence prescription decisions, so understanding who had the greatest influence was important to forming the guiding questions for the ideation activity. Thus, the team followed four steps with each step matched with an appropriate HCD method: (1) collect, sort, and analyze insights using semistructured interviews and affinity mapping; (2) identify influences using a stakeholder power-interest grid; (3) generate and prioritize ideas using a co-design activity called a “creative matrix” [13]; and (4) produce concepts to prototype by refining and ranking ideas generated from the co-design activity (Figure 1). The team identified 45 physicians who met the cancer care inclusion criteria within the Emory academic medical center ecosystem or community practice setting. From this pool, 15 agreed to participate in semistructured interviews. Of the 15 physicians interviewed, 8 were oncologists, 3 were palliative care specialists, 2 were urologists, 1 was an anesthesiologist, and 1 was a family medicine physician (Multimedia Appendix 1). Although this sample size is small, it was adequate to achieve insight saturation, or the point where participants were providing similarly themed insights.
Collect Insights

Within the HCD approach, qualitative research methods such as interviews, focus groups, or ethnography are typically used to gain insights about the situation, influencing factors, as well as the needs and wants of the stakeholders involved. The Georgia CTSA research team conducted semistructured interviews, which involve asking open-ended questions that allow for more free-flowing conversation than in structured interviews. A set of predetermined questions or topics guided the conversation, but there was also flexibility to follow-up on interesting or unexpected responses and to explore topics in more detail. Some of the key questions the team sought to answer were:

- Have you prescribed OLDs? Why or why not?
- What level of information or data do you need to prescribe?
- Where do you find information on OLDs?
- Who influences your OLD prescription decisions?
- What influences your decision to participate in OLD clinical trials?

The interviews produced dozens of pages of transcribed data, which the team reduced to key points on Post-it notes in preparation for a thematic analysis process called affinity mapping. Concepts that are related to each other were grouped, and a theme was coded for each group (Figure 2). In addition, stakeholders who influenced prescription decisions were also noted.
Identify Influencers

To validate assumptions about who ultimately makes OLD prescribing decisions and to verify decision-making impact, the Georgia CTSA research team identified stakeholders based on the insights collected from the interviews and affinity mapping process (Multimedia Appendix 2). This list of stakeholders was then mapped to a power-interest grid, which involves plotting stakeholders on a 3D grid based on their level of power or influence over the situation and their level of interest in outcomes (Figure 3). Stakeholders with high levels of power and high levels of interest are considered key players and require the most engagement while high-interest and lower-power stakeholders should be kept updated.
Generate Ideas

Co-design activities include the end users of a solution in the ideation of that solution. Co-design is an effective way to increase stakeholder engagement, which is essential to project success, particularly in cancer care delivery research [3]. There are many methods to collaboratively come up with ideas, such as rapid ideation, brainwriting, mind mapping, thumbnail sketching, and many others. Which method to select depends on the goals of the session, the time allotted, and who is participating. The Georgia CTSA team selected the creative matrix method (Figure 4), which concentrates ideation on a particular topic using a visual grid with 2 questions and up to 4 categories. This method can generate a high volume of ideas in a short time and within a specific context. The research team selected salient topics that arose from the affinity mapping exercise to create the context for 2 creative matrix exercises used in three 1-hour co-design sessions with 9 physicians. Participants were allotted 6 minutes to generate ideas and 3 minutes to select 2 concepts that they believed had the most valuable to help support the consideration of repurposed OLDs for prescription. These “best ideas” were subsequently mapped on a grid for impact versus effort to identify which ideas would have the most impact and lowest effort.
Vote and Produce Prototypes
Involving co-design participants in the idea evaluation process is important for getting feedback on the feasibility, desirability, and viability of the ideas [14]. It can increase participants’ sense of ownership and investment in the final solution, potentially leading to greater adoption and success. While co-design sessions can generate a high volume of ideas quickly, further refinement to create workable prototypes for testing is sometimes necessary, and this study’s team distilled concepts that were well-received by physicians during the co-design sessions into 3 prototype-ready directions.

Ethical Considerations
This study was reviewed by an ethics committee to ensure the protection of research participants, and it was approved by Emory University Institutional Review Board (STUDY00004025). Each participant provided consent to be interviewed and that their responses could be used in our design study without additional consent. The privacy and confidentiality of participants and their responses were ensured by removing names and any other fact that might point to participants’ identity in this study; also, research records are kept private to the extent required by law. The compensation for participation in this study was a US $50 gift card.

![Diagram of creative matrix method of guided ideation](image-url)
Results

Thematic Analysis
Of the 45 physicians we contacted, 15 agreed to be interviewed and share their experiences and opinions on OLD prescribing for cancer care. Key themes that emerged from the interviews showed that, in contrast to documented high off-label prescription rates in cancer [15-17], the interviewed physicians were less likely to self-identify as “frequent prescribers,” citing a range of barriers. A lack of clinical trial evidence to support the prescription was most frequently expressed as a barrier to prescription, as well as cost and reimbursement concerns and the lack of knowledge of off-label options. A notable exception to off-label prescription hesitancy was seen in palliative care specialists who expressed few barriers to prescribing off-label but emphasized that their focus was on easing symptoms and not providing treatment. To learn about OLDS, physicians described a variety of sources but most often relied on professional social networks to discover and deepen knowledge; however, they struggled to find information on specific OLDS when they needed it.

On the power-influence grid, cancer care physicians were identified as the stakeholders having the highest power and interest in patient prescriptions, validating the assumption that they are the primary prescription decision makers who require the most engagement. Patients and their families were mapped to the high-interest but less power quadrant and were sometimes the source of OLD prescription requests that did not always lead to prescriptions.

Concept Generation
The Georgia CTSA research team synthesized insights from the interviews into 2 brainstorming themes used during 3 co-design sessions with 9 physician participants. The first context explored types of support needed for physicians to consider OLDS as concurrent treatment, which generated 70 concepts. The second context focused on what support was needed to make it easier to start and complete an OLD clinical trial, which produced 95 concepts. Of the 165 total concepts, participants voted for 14 of the ideas that they felt best supported their needs, which the physicians mapped to identify which were high impact or lower effort. The selected concepts included providing dedicated clinical research coordinators, protected research time for clinical trials, electronic medical record prompts or reminders, incentive programs, an OLD reference database or app, and endorsements for OLD trials at team meetings to support recruiting efforts (Multimedia Appendix 3).

The research team further synthesized these concepts into 3 prototype-ready directions listed inTextbox 1.

Textbox 1. Recommended concepts delivered to the Morningside Center after this study.

<table>
<thead>
<tr>
<th>Concept and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Off-label drug (OLD) fellowship program</td>
</tr>
<tr>
<td>• An invitation-only program for physicians initiating OLD clinical trials that emphasizes promotional communications for the principal investigator (PI) to promote the study and offers protected research time.</td>
</tr>
<tr>
<td>• OLD clinical trial support package</td>
</tr>
<tr>
<td>• Sponsored package of select administrative resources including a clinical resource coordinator to facilitate OLD trials.</td>
</tr>
<tr>
<td>• OLD searchable database</td>
</tr>
<tr>
<td>• On-demand digital tool to provide national repurposed OLD updates, identify center-wide OLD trials and PIs, and look up available clinical trial resources.</td>
</tr>
</tbody>
</table>

In a web-based survey, all 15 physician participants were asked to force rank the concepts that they felt was the most impactful to supporting repurposed OLD prescription decisions; we received 7 responses (Multimedia Appendix 4). The fellowship program concept surfaced as the leading idea with a mean of 2.0 (SD 0.93; Figure 5). Overall, concepts that resonated most either supported clinical trial development or bolstered social interfaces from which they could learn about OLDS from other physicians.
Discussion

Principal Findings

Using this case study, we have demonstrated the flexible nature of HCD as it relates to accommodating unique characteristics of the project, selecting from a wide range of ideation techniques, and adapting to participant ideas and preferences. The findings also demonstrate the potential of HCD methods to uncover important insights into physician decision-making processes that can lead to improving OLD prescription and clinical trial practices. Clinical trial designers can similarly use these methods to gain a deeper understanding of the target audience’s needs, preferences, and attitudes toward a potential trial. Insights can help overcome barriers to participation, such as language or cultural differences, and inform more effective trial protocols that lead to greater participant engagement and retention. Without using the grounded approach of first synthesizing stakeholder insights, ideation sessions may not be as productive.

A notable feature of HCD is high engagement among participants, also demonstrated in this study with 60% (9/15) of physicians participating from the initial interviews to the ideation and final voting exercises. Further, I participant said, “I really appreciate being listened to and would be willing to volunteer to test these ideas.” HCD can be used to increase patient engagement by incorporating the needs, preferences, and attitudes of potential trial participants [18]. Participants who did not participate in all activities of this study either did not respond to the invitations or declined because of scheduling conflicts.

HCD’s participatory nature contrasts with the traditional clinical trial design, which often does not engage the participants for which the trial is designed. This can lead to important perspectives or data being missed and result in low patient engagement and incomplete or biased research outcomes. The high failure rate of clinical trials has led to increasing interest in using stakeholder and patient engagement to support clinical trial design [3,19]. In the context of clinical trial design, a co-design activity could involve collaborating with patients, health care providers, and other stakeholders to co-design trial materials, such as patient education materials or data collection forms to ensure that they are acceptable and feasible.

While HCD offers a flexible process and many methods to choose from, it is very different from the linear thinking and hierarchical norms associated with traditional scientific approaches [20], which may thwart the adoption or effective implementation of the HCD process. Additional challenges can include the potential for interviewer bias and the time- and resource-intensive nature of conducting interviews and co-design workshops. While HCD is becoming an increasingly familiar term, access to training remains low as few institutions have internal design teams, usually found in innovation centers [21], to consult with or to run projects. Thus, acquiring and building HCD expertise can be expensive, and it remains to be seen how future clinical innovation funding or such services will be allocated.

Conclusions

Although a relatively new problem-solving approach in health care, HCD can provide tangible, flexible, and reproducible methods that include stakeholders in the ideation and problem-solving process [22]. HCD can help identify and engage
important stakeholders such as physicians and patients in the design process and then integrate their perspectives and needs into the subsequent solutions, which is increasingly seen as an important contributor to cancer clinical trial success. This case study provides a step-by-step guide on how to apply the HCD process and selected methods to generate stakeholder-centered solutions. HCD has the potential to be an important tool to increase success rates of clinical trials, but increased institutional support and researcher training will be needed for HCD to provide its fullest benefit.

Acknowledgments
This work was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1TR002378) and the Emory Morningside Center for Innovative and Affordable Medicine.

Data Availability
All data generated or analyzed during this study are included in this published paper and its supplementary information files.

Conflicts of Interest
None declared.

Multimedia Appendix 1
List of physicians who participated in the study, their specialties, and co-design session attendance status.

Multimedia Appendix 2
Brainstorm activity to record all stakeholders who influence the prescription of off-label drugs, used as the first step in the stakeholder mapping exercise.

Multimedia Appendix 3
Co-design activity concepts organized by innovation question.

Multimedia Appendix 4
Descriptions of prototype concepts with survey results from physician participants.

References

5. Göttgens I, Oertelt-Prigione S. The application of human-centered design approaches in health research and innovation: a narrative review of current practices. JMIR mHealth uHealth 2021;9(12):e28102 [FREE Full text] [doi: 10.2196/28102] [Medline: 34874893]

Abbreviations

CTSA: Clinical and Translational Science Alliance
HCD: human-centered design
OLD: off-label drug

©Maren C Parsell, Morgan N Greenleaf, Greeshma G Kombara, Vikas P Sukhatme, Wilbur A Lam. Originally published in JMIR Formative Research (https://formative.jmir.org), 15.02.2024. This is an open-access article distributed under the terms of

Edited by A Mavragani; submitted 04.08.23; peer-reviewed by E Vashishtha; comments to author 14.09.23; revised version received 20.10.23; accepted 22.11.23; published 15.02.24.

Please cite as:

Parsell MC, Greenleaf MN, Kombara GG, Sukhatme VP, Lam WA. Engaging Cancer Care Physicians in Off-Label Drug Clinical Trials: Human-Centered Design Approach. JMIR Form Res 2024;8:e51604 [FREE Full text] [doi: 10.2196/51604] [PMID:38358789]

https://formative.jmir.org/2024/1/e51604
the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Implementation Documentation and Process Assessment of the PharmNet Intervention: Observational Report

Lori Ann Eldridge¹, PhD; Beth E Meyerson²,³, PhD; Jon Agley⁴, MPH, PhD

¹Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, United States
²Harm Reduction Research Lab, Family and Community Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States
³Comprehensive Center for Pain and Addiction, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, United States
⁴Prevention Insights, Department of Applied Health Science, School of Public Health Bloomington, Indiana University Bloomington, Bloomington, IN, United States

Corresponding Author:
Jon Agley, MPH, PhD
Prevention Insights, Department of Applied Health Science
School of Public Health Bloomington
Indiana University Bloomington
809 E 9th Street
Bloomington, IN, 47405
United States
Phone: 1 812 855 3123
Email: jagley@indiana.edu

Abstract

Background: The number of overdose deaths in the United States involving opioids continues to exceed 100,000 per year. This has precipitated ongoing declarations of a public health emergency. Harm reduction approaches, such as promoting awareness of, ensuring access to, and fostering willingness to use naloxone to reverse opioid overdose, are a key component of a larger national strategy to address the crisis. In addition, overdose reversal with naloxone directly and immediately saves lives. Because of pharmacies’ ubiquity and pharmacists’ extensive clinical training, community pharmacies are well-positioned, in principle, to facilitate naloxone access and education.

Objective: In 2022, a single-site pilot study of PharmNet, a community pharmacy intervention incorporating naloxone distribution, awareness building, and referral, showed promising outcomes for both naloxone and resource distribution in the community. As a next step, this study was intended to be a pilot randomized controlled trial of PharmNet in 7 pharmacies. However, due to circumstances outside of the study team’s control, data collection was unable to be fully completed as planned. In keeping with open research standards, we transparently report all available data from the study and discuss trial barriers and processes. We do so both to provide insights that may inform similar studies and to avoid the “file-drawer” (publication bias) problem, which can skew the aggregated scholarly literature through nonpublication of registered trial results or selective publication of findings affirming authors’ hypotheses.

Methods: This paper reports an in-depth implementation study assessment, provides the available observational data, and discusses implementation considerations for similar studies in independent (eg, nonchain) community pharmacies.

Results: Retrospective assessment of study outcomes and fidelity data provided for robust discussion around how resource differences in independent community pharmacies (vs well-resourced chain pharmacies), as well as high demands on staff, can affect intervention implementation, even when leadership is highly supportive.

Conclusions: Community pharmacies, particularly independent community pharmacies, may require more support than anticipated to be successful when implementing a new intervention into practice, even if it might affect estimates of real-world effectiveness. Further implementation science research is needed specific to independent community pharmacies. All study elements are outlined in the International Registered Report Identifier (IRRID) PRR1-10.2196/42373. Although this paper reports results associated with that registration, results and conclusions should not be given the weight assigned to findings from a preregistered study.

International Registered Report Identifier (IRRID): RR2-10.2196/42373

(JMIR Form Res 2024;8:e54077) doi: 10.2196/54077
Introduction

Introduction

Background

In the last decade, hundreds of thousands of lives have been lost in the United States due to fatal opioid-involved overdoses [1], and annual overdose death rates (computed as 12-month year-over-year incidence) have remained over 100,000 in recent reports from the Centers for Disease Control and Prevention [2]. Additionally, overdose deaths represent one-third of all accidental deaths in the United States [3], with the majority involving illicitly manufactured fentanyl, a synthetic opioid [4]. In the state of Indiana, where this study was conducted, preliminary data indicate 2250 overdose deaths in 2022 [5], around 71% of which involved fentanyl or other synthetic opioids [5].

Naloxone, an opioid antagonist, works by blocking the effects of opioids and can allow persons who have overdosed to resume normal breathing [6]. It is a safe and effective way to rapidly reverse the effects of opioid overdose and can prevent death [6,7]. Research has shown that overdose deaths decline when overdose education and naloxone distribution (OEND) efforts are undertaken in communities [8], and that OEND programs are both an effective [9,10] and cost-effective [11] strategy to address overdose fatality.

In 2018, the US Surgeon General issued an official recommendation that all US citizens carry naloxone [12]. By 2021, most US states, including Indiana, had begun to address the overdose epidemic using combinations of policies that generally included “Good Samaritan” laws and standing orders for naloxone at pharmacies [13]. More recently, the declaration of an opioid public health emergency was renewed in September 2023 [14], approximately a year after the release of the US National Drug Control Strategy, which outlines goals that include the expansion of access to evidence-based harm reduction practices, including naloxone [15].

Beyond the impact in terms of lives saved, individuals who are revived with naloxone and who also have opioid use disorder (OUD) have an opportunity to engage with an “Opioid Cascade of Care” [16], such as through treatment initiation with medications for opioid use disorder (MOUD) in the emergency department [17]. For these benefits to accrue, however, naloxone must be easily accessible by those who can use it to reverse an opioid overdose. In the United States, naloxone was recently approved for over-the-counter sale [18], following a unanimous vote by Food and Drug Administration advisors [19]. While this change might in principle increase the number of people carrying naloxone, data from Australia suggest that it may be a helpful but not sufficient step to increase access [20].

Even as additional means of obtaining naloxone are developed (eg, naloxone vending machines [21]), community pharmacies will likely remain an important component of supporting naloxone access and education. In some populations, patients interact with their pharmacists more often than with their primary care physicians [22], and pharmacists have been identified as some of the most accessible health care providers in the United States [23,24]. Studies show that community pharmacists generally acknowledge their role in assisting in harm reduction [25-27], and an Arizona study found that community pharmacists were typically comfortable providing consultation around and dispensing naloxone, even when they were uncomfortable with other harm reduction approaches such as syringe dispensing without a prescription [28]. As such, community pharmacists are theoretically well-positioned to improve harm reduction education and accessibility of related supplies. At the same time, recent studies also continue to suggest that naloxone remains unavailable for purchase in some community pharmacies and may be less likely to be available in independent pharmacies compared to chain pharmacies [29].

The PharmNet Intervention

To better understand the dynamics and potential of community pharmacy harm reduction practice, we completed multiple preliminary studies [26,28,30-35]. Our work examined naloxone access, pharmacist comfort with harm reduction, pharmacy-based research approaches, and the “fit” of the pharmacy environment for harm reduction–related services. The studies were conducted from 2016 through 2022, and many of them engaged community and academic pharmacists as part of the research team.

By the end of the process, we had determined that our initial conceptualization of a “short” or “minimally demanding” intervention (eg, the first draft of PharmNet, a 10- to 15-minute screening and brief intervention-style intervention) would likely be perceived as useful but not necessarily feasible without a substantive added support system (eg, financial and personnel). Further, there was variability in the a priori intervention components that would be available at different pharmacy types. For example, a systematic review [36] in addition to our own earlier research in Indiana [33] and a recent study in North Carolina [29] identified independent pharmacies as being significantly less likely to stock or dispense naloxone compared to chain pharmacies (eg, ability to dispense naloxone, even at cost, could not be assumed). While independent pharmacies are, in theory, more likely to be able to participate in a small intervention implementation program (eg, they do not need to seek approval from a large bureaucracy associated with a national or international chain), they also lack the financial and systemic resources that are available to chain pharmacies, which can have implications for stocking and dispensing of products, as well as pharmacists’ availability to undertake additional work.

Thus, the PharmNet intervention was modified with the goal “to study procedures that have as minimal an impact as possible on pharmacy costs and operational functioning while maximally facilitating harm reduction from opioid overdose—in other words, to find an optimal intersection point of those concerns” [37]. The overall goals of the finalized PharmNet intervention are outlined in a previous paper, which reported the results of
our initial single-site pilot study [37]. For clarity, we excerpt them here verbatim:

1. Building awareness of naloxone availability at the site among patients (eg, the use of yard signs and scrolling messages on television screens).
2. Supporting awareness among pharmacists and pharmacy technicians about proactively offering naloxone (eg, customized post-it notes).
3. Facilitating service provision by conducting a priori negotiations and establishing written agreements with local nonprofits to facilitate a pipeline of no-cost naloxone for the pharmacy.
4. Emphasizing bidirectional naloxone provision (eg, pharmacist- and pharmacy technician–initiated offers in addition to patient-initiated requests), and
5. Facilitating referral by providing a physical, durable, and curated list of community resources that can be used by pharmacists, handed to patients, and placed into pharmaceutical bags.

Interestingly, these goals are generally aligned with the intervention approaches described in a scoping review of opioid counseling and naloxone services published after our study concluded [38]. The review found that “all studies incorporated naloxone recommendations into their pharmacy-based opioid counseling and naloxone services,” and that most programs focused mostly on OEND [38]. Further, most of our awareness and communication strategies were similar to those in the review, though only one study in the review used outdoor yard signs, and none appear to have established pathways for pharmacies to receive no-cost naloxone [38].

Our first implementation of PharmNet was in a single independent pharmacy in the Midwestern United States. In that 3-month single-site pilot study, naloxone dispensing by any means (paid or no cost) nearly doubled, increasing by 96.48% (+9.33 doses per month); this included both distribution of no-cost doses (+6 doses per month) and an increase in the monthly rate of naloxone sold (+3.33 doses per month) compared to the 3 months before the intervention [37]. An average of 2.85 referral and resource cards (1/4 page in size) customized to the local area were distributed to patients each day. The initial pilot study also allowed us to further adjust the procedures based on feedback from community pharmacists [37]. The most substantive change was a drop from 3 sets of different post-it reminders to one, because only one type was regularly used by the pharmacy staff members in practice.

To better understand the results, and to begin assessing the intervention’s scalability, we then developed and published a study protocol for a pilot randomized controlled trial (RCT) of PharmNet [39]. Our stated goal was “to facilitate an improved understanding of whether it is reasonable to believe that the PharmNet intervention causes increased dispensing of naloxone ...” and we proposed to test the hypothesis that, “Monthly naloxone dispensing (combined sales and no-cost distribution) will be significantly increased in the pharmacies implementing PharmNet compared to those in the control arm” [39].

This Report
This paper was originally planned to describe the results from a small RCT of PharmNet based on our protocol paper that also served as a registered report (International Registered Report Identifier: PRR1-10.2196/42373) [39]. However, several events and circumstances beyond the control of the study team (eg, a COVID-19 outbreak among pharmacists) resulted in substantial deviations from the proposed approach and outcome measures. The conceptual magnitude of these differences and the resultant effects on data and procedures mean that it would be inappropriate to attempt to assert that the information reported in this paper serves as answers to our original research questions.

At the same time, it is important for us to provide a complete description of the study and any resultant observations and lessons learned. In doing so, we avoid contributing to the “file drawer” (publication bias) problem, wherein studies that are perceived to be unsuccessful or that have nonsignificant results are never published to the detriment of the scientific enterprise and those affected by it [40-42]. Publication bias has been described as being conceptually similar to the practice of p-hacking [43]; it can skew the perception of a field of study in a particular direction through suppression (either deliberate or inadvertent) of results that do not align with the scientists’ goals. This can happen in at least 2 ways. First, results from registered trials may never be published at all (a recent study of RCTs in New Zealand found that 27% of results had not been published more than a decade after the study registration date) [44]. This can produce the mistaken impression that not much is known about a particular approach. Second, a “failed” study may be repeated with some minor modifications, and the resultant data reported as though it was the originally registered trial. This can lead to overestimation of the intervention’s likely outcomes as well as reducing the likelihood that procedural and implementation considerations—some of which may be important—are fully and transparently addressed.

Therefore, we share the results of this study in the form of an observational report that includes (1) the findings that we were able to collect, (2) the methods to collect that information, as well as (3) specific information related to deviations from planned data collection and analysis. Then, we provide a detailed written record of fidelity or process checks and the results of those checks. Finally, the implications of the external issues leading to these events, including discourse around the role that implementation fidelity checks may play in the conduct of intervention studies, and of the unique nature of independent pharmacies, are discussed.

Methods
Study Design
We planned to conduct a pilot cluster RCT with 7 independent community pharmacies consisting of 2 parallel groups. In total, 4 pharmacies were allocated to the intervention arm, and 3 pharmacies were allocated to the control arm. The original project flow diagram is provided as Figure 1 [39,45], along with colored marks added after the study to indicate the degree of completion for that step.
Detailed implementation notes were collected from the 4 pharmacies randomly assigned to the intervention arm. We also obtained data on naloxone sales and no-cost distribution for the 3 months prior to the study period as well as for a period of 3 or more months after the intervention began (more details on this timeframe are provided subsequently). Some preintervention staff data are provided and discussed.

No data were collected from control pharmacies, no posttest data were able to be collected from pharmacy staff members, and no counts of referral cards were able to be obtained from any pharmacy.

Figure 1. Original study protocol diagram for the PharmNet pilot trial, modified with indicators of completion status (adapted from Eldridge et al [39], which is published under the terms of the Creative Commons Attribution License 4.0 [45]).

Sources of the Data

There were 2 types of participants in this study, pharmacies and pharmacy staff members.

- The 7 participating pharmacies were part of a single independent pharmacy organization. They were allocated simultaneously to a study arm using a web-based random sequence generator with a 4:3 ratio.
- These pharmacies all operate in the Midwestern United States and have a shared leadership structure (eg, there are individuals who oversee operations at all 7 pharmacies). In addition, each pharmacy has a managing pharmacist (which we call “lead pharmacists” in this paper to avoid conflating their management role with those of pharmacists overseeing the whole organization).
- Lead pharmacists manage day-to-day pharmacy operations at single sites.
- Pharmacists and pharmacy staff members at each of the 7 sites (both the intervention and control arms) were asked to participate in the study by providing individual-level data at pretest. Posttest data collection was planned but not completed (as described in the Results section).

Intervention Description

The development of this intervention was described in detail in prior papers [37,39], and a structured table outlining the sequential steps of PharmNet was included in the published protocol paper [39]. The specific steps involved in the intervention are included in Tables 1 and 2, which describe each planned step (excerpted verbatim or paraphrased from the protocol paper, as appropriate, for clarity) as well as the actual outcome.
<table>
<thead>
<tr>
<th>Intervention stage and planned steps</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the study (prior to the start date)</td>
<td></td>
</tr>
<tr>
<td>1. Digital video (.mp4) describing the intervention is distributed to the pharmacy manager.</td>
<td>An email was sent to the pharmacy organization management team, and they responded with an indication that they had received the video.</td>
</tr>
<tr>
<td>2. Pharmacy manager disseminates the video.</td>
<td>The managing pharmacist reported they would show it to all 4 intervention pharmacies prior to the start date at their monthly employee meetings.</td>
</tr>
<tr>
<td>3. All staff members view the video.</td>
<td>As far as we can determine, staff members viewed the video (based on phone conversations).</td>
</tr>
<tr>
<td>4. Lead pharmacists are asked by the managing pharmacist to include the video in the orientation package for new pharmacists and pharmacy technicians who missed the initial meeting.</td>
<td>We were unable to verify whether this occurred.</td>
</tr>
<tr>
<td>Early implementation (prior to the start date)</td>
<td></td>
</tr>
<tr>
<td>1. Confirm with the managing pharmacist that all intervention pharmacies have viewed the video at the “all hands” staff meeting.</td>
<td>LAE spoke with the managing pharmacist on the phone on the start date to confirm this.</td>
</tr>
<tr>
<td>2. Deliver the following supplies for each participating pharmacy:</td>
<td>JA verified all materials and personally delivered them to organizational management approximately 1 month prior to the start date. On the start date, LAE verified with the managing pharmacist that all 4 intervention pharmacies had received the supplies and that the intervention pharmacies were “live” with the intervention as of November 1, 2022.</td>
</tr>
<tr>
<td>• A set of 30 doses of naloxone (individually packaged Narcan nasal spray) to each pharmacy in numerically marked bags imprinted with “Not for Sale.”</td>
<td></td>
</tr>
<tr>
<td>• Deliver a set of 500 consecutively numbered harm reduction referral slips to each pharmacy (customized for each pharmacy location).</td>
<td></td>
</tr>
<tr>
<td>• Deliver sets of reminder post-it notes to pharmacies.</td>
<td></td>
</tr>
<tr>
<td>• Deliver the requested number of yard signs to each pharmacy.</td>
<td></td>
</tr>
<tr>
<td>3. Ensure the pharmacy’s in-store television has access to the scrolling reminder text.</td>
<td>In principle, this was made available. As we note below, we cannot verify that it was used.</td>
</tr>
</tbody>
</table>
Table 2. Planned implementation steps and observed outcomes concurrent with the PharmNet study start date.

<table>
<thead>
<tr>
<th>Intervention stage and planned steps</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch (on the start date)</td>
<td>Launch verification calls were made by LAE to the intervention pharmacies on November 2, 2022 (the day after launch).</td>
</tr>
<tr>
<td>1. Verify the intervention has launched.</td>
<td>Pharmacy 1: The pharmacist who was working that day was a floating pharmacist and transferred LAE to the managing pharmacist. The managing pharmacist reported that the pharmacy "has the supplies and is ready to go."</td>
</tr>
<tr>
<td>• Reminder post-its are placed in visible areas on the interior of the dispensing location (eg, staff side rather than patient side).</td>
<td>Pharmacy 2: The pharmacist who was working that day said they had just returned from leave and did not know where the PharmNet intervention materials were in the pharmacy. They reported they would contact the managing pharmacist to find out where the materials were. The pharmacist stated they had watched the training video and were aware of the PharmNet intervention.</td>
</tr>
<tr>
<td>• Harm reduction referral cards are placed at each checkout for easy access.</td>
<td>Pharmacy 3: The pharmacist who was working that day reported they were not aware of receiving the PharmNet materials. They put LAE on hold to check if the supplies were in the pharmacy. They reported to LAE that they could not locate any supplies.</td>
</tr>
<tr>
<td>• Yard signs are placed outside the building in visible locations where traffic (vehicle or foot) is common.</td>
<td>Pharmacy 4: The pharmacist who was working that day reported that they had watched the training video and were aware of the PharmNet intervention. They reported that the pharmacy had not received any PharmNet supplies.</td>
</tr>
<tr>
<td>• Scrolling television banner will be enabled to run continuously through the intervention, reading "76.7% of overdoses happen at home. Bystanders who witness an overdose can be effective in reducing overdose mortality. Ask us about how you can save a life with naloxone today!"</td>
<td></td>
</tr>
<tr>
<td>2. Obtain additional details about the launch.</td>
<td>On day 4 of the intervention, LAE called the organizational management team. The primary purpose of the call was to request that they contact intervention pharmacies 2-4 to inform the pharmacists where the PharmNet materials were. LAE asked the managing pharmacist to inform the lead pharmacists at the intervention pharmacies to begin PharmNet if they had not already done so.</td>
</tr>
<tr>
<td></td>
<td>The managing pharmacist informed the researcher that they would contact the pharmacists over the next few days. Unfortunately, soon after that call, we learned that the managing pharmacist had COVID-19 and was on sick leave. In addition, at least 1 additional lead pharmacist was also on sick leave for COVID-19, and pharmacists from other sites, and (when possible) the managing pharmacist, were often required to staff those roles when no additional staff members were available to do so.</td>
</tr>
</tbody>
</table>

Data
The primary data points that we report include preimplementation naloxone sale data from intervention pharmacies (August 1, 2022, through October 31, 2022), postimplementation naloxone sale data from the same pharmacies (November 1, 2022, through January 31, 2023), and doses of no-cost naloxone distributed between the receipt of the doses at the end of May 2023. These data were obtained through objective pharmacy record extraction and physical (manual) counts of remaining naloxone doses by the lead pharmacist at each intervention pharmacy.

Data from individual staff members were collected via a survey administered prior to the implementation start date for PharmNet. The questionnaire was built in Qualtrics (Qualtrics), a secure web-based survey and data collection tool. The organizational pharmacy manager was provided with a link to distribute to pharmacists and pharmacy technicians at all independent community pharmacies in the study (both the intervention and control pharmacies). Measures included sociodemographic information, questions about pharmacy practice, comfort with harm reduction practices, and belief-based measures about people who use drugs. The wording for each item is provided in Multimedia Appendix 1. Completion of the survey was specifically not required for any individual pharmacist or staff member, but they were encouraged to participate. A copy of the full survey instrument is available as an appendix to the published protocol [39].

Finally, we also originally intended to have a single in-person fidelity check for each intervention pharmacy around 1 month into the project’s launch. For the reasons we describe in the Results section, multiple additional checks were added, and the modality was switched to telephonic and email correspondence to facilitate the increased frequency.

Ethical Considerations
This study received ethics reviews prior to being initiated. Participation by pharmacies was designated as not human subjects research by the Indiana University institutional review board (document 12339). Participating pharmacy sites in the intervention arm were each offered an institutional incentive of US $1000 for their participation. Pharmacy employees completed a study information sheet prior to participating in the individual-level data collection and were compensated with a US $5 digital gift card for completing the pretest survey. Individual-level procedures were reviewed separately by the...
Indiana University institutional review board and received a designation of “exempt” (document 13956). Due to the small number of individual participants, data are reported only in aggregate and without cross-sectional tabulation.

Results

Pharmacy-Level Outcomes

On February 1, 2023, the intervention was concluded. From February through the first week of April 2023, we attempted to obtain pharmacy-level outcome data via phone calls, voicemails, in-person visits, and physical notes. However, these processes were unsuccessful. Our subjective observation is that a combination of illness and staffing complexity made it extremely difficult to collect the outcome data as originally planned in the protocol.

Although they were not originally involved in data collection, we were able to collaborate with the lead pharmacists at intervention pharmacies, who had participated in fidelity checking processes and were familiar with our team, to obtain the limited data set described in the Data section in May 2023. Importantly, we do not know the exact date when each pharmacy began offering no-cost naloxone doses, and the numbers of doses of no-cost naloxone dispensed were obtained several months after the intervention technically ended. As a result, we cannot compare naloxone distribution prior to and during the intervention period. However, we can still provide raw numbers (Table 3).

Table 3. Pharmacy-level naloxone sale and dispensing data, August 2022 through May 2023.

<table>
<thead>
<tr>
<th>Pharmacy</th>
<th>Preimplementation naloxone sale data (August 1, 2022-October 31, 2022)</th>
<th>Implementation naloxone sale data (November 1, 2022-January 31, 2023)</th>
<th>Doses of no-cost naloxone dispensed (of 30) as of May 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacy 1</td>
<td>19</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Pharmacy 2</td>
<td>45</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>Pharmacy 3</td>
<td>9</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Pharmacy 4</td>
<td>11</td>
<td>10</td>
<td>24</td>
</tr>
</tbody>
</table>

Pharmacy Staff Preintervention Data

A total of 8 staff members at least partly completed the study pretest during the period prior to the intervention, including 3 pharmacists and 5 pharmacy technicians. Pharmacy 4 was well-represented with 5 respondents, and there were 2 from pharmacy 3 and 1 from pharmacy 1. No staff members from pharmacy 2 or the control pharmacies participated.

All but 1 respondent who provided demographics (n=6) were female, and all were White, non-Hispanic, and heterosexual. Staff ages ranged from 32 to 52 years (n=5). Staff members who responded were comfortable with most harm reduction approaches, but fewer were comfortable with consulting with patients about pre-exposure prophylaxis for HIV prevention or dispensing syringes for nonprescription drug use. No participants indicated they were uncomfortable dispensing naloxone for overdose reversal or making referrals to community services. Further, staff member attitudes toward patients who use drugs or have OUD were not typically stigmatizing, though they expected that others (“most people”) might blame persons with OUD or believe that they are dangerous. A table of these data is provided in Multimedia Appendix 1.

Fidelity Data

We also collected a full written accounting of the 9 distinct fidelity checkpoints during the intervention period. This information helped to contextualize some of the implementation issues around which we provide interpretation and discussion in the next section. Although not all study processes were in place at the time of the final fidelity check at week 10 of the 12-week intervention, by the time we collected outcome data, the intervention was apparently functioning at all sites (even though the technical “intervention period” was over). All documentation is available in Tables 4 and 5.
Table 4. Implementation fidelity checkpoint documentation for the PharmNet study through day 22.

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| **Day 10—Calls to all intervention pharmacies** | • Pharmacy 1: The pharmacist who answered the phone reported that they were not the usual pharmacist and only work 1 day a week, but that the pharmacy did have the yard signs and the no-cost naloxone. However, they reported that the yard signs were not placed outside the store. They also indicated that the managing pharmacist was on leave and that they recommend calling when they returned the following week to follow-up about the yard signs.
• Pharmacy 2: The pharmacist reported they were not the usual pharmacist and only work at the pharmacy 2 times a month, and that the regular pharmacist who works at that store would be back the following week. They did not know about PharmNet or about the no-cost naloxone, yard signs, or harm reduction referral sheets.
• Pharmacy 3: LAE spoke with the same pharmacist as previously (the startup verification). The pharmacist reported that they did not think they had received PharmNet supplies, but that they were ready to start the intervention as soon as they received the supplies.
• Pharmacy 4: We spoke with the same pharmacist as previously (the startup verification). The pharmacist reported that they did not think they had received PharmNet supplies. |
| **Day 14—Attempt to coordinate with the pharmacies** | • LAE attempted to reach the managing pharmacist at 2 separate pharmacies. A pharmacy technician called an additional 5 pharmacies but was unable to locate them. We left a voicemail at their office. We later learned that they were on leave during this period. |
| **Days 16, 17, and 21—Follow-up calls, after which we learned about illnesses or leaves among the pharmacists** | • We called the original pilot pharmacy attempting to contact the leadership team. LAE left a voicemail and sent them an email on each of the 3 days. |
| **Day 22—Calls to all intervention pharmacies** | • LAE learned that the managing pharmacist had returned to the office, but they were in a meeting when we called. A pharmacy technician took a message. Calls were also made to each of the pharmacies in the intervention arm.
• Pharmacy 1: When LAE called and requested to speak to a pharmacist, the pharmacy technician transferred her to the original pilot pharmacy location (which was not part of the study). LAE spoke with a pharmacist at this location, and this pharmacist reported they were unaware of the status of PharmNet at pharmacy 1 as they never worked at that site. They transferred the researcher back to pharmacy 1, where the pharmacy technician forwarded the researcher to voicemail. LAE left a message.
• Pharmacy 2: We spoke with a pharmacist who confirmed that the supplies had been received and that the intervention had begun.
• Pharmacy 3: The pharmacist reported that they still were not aware of having received the PharmNet supplies.
• Pharmacy 4: The pharmacist reported that they still had not received the PharmNet supplies. The pharmacist reported they had reached out to their leadership about the supplies and were informed that their supplies were located at pharmacy 1 and would be delivered after Thanksgiving. |
Table 5. Implementation fidelity checkpoint documentation for the PharmNet study, week 4 through week 10.

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| Week 4—Additional verification calls to intervention pharmacies to determine status and if any additional supplies were needed | - LAE made calls to each of the pharmacies in the intervention arm (1) to determine if pharmacy 1 and 2 needed supplies and were following PharmNet protocols and (2) to assess if supplies were received and that PharmNet started at pharmacy 3 and 4.
- Pharmacy 1: We spoke to an on-call pharmacist who confirmed that they were following PharmNet’s protocol and that they had enough supplies (eg, harm reduction referral cards and no-cost naloxone).
- Pharmacy 2: The pharmacist confirmed that they were following PharmNet’s protocol and that they had enough supplies (eg, harm reduction referral cards and naloxone).
- Pharmacy 3: The pharmacist reported that they still were not aware of having received the PharmNet supplies.
- Pharmacy 4: The pharmacist reported that they still were not aware of having received the PharmNet supplies. |
| Week 6—Additional verification calls to intervention pharmacies to determine status and if any additional supplies were needed | - LAE made calls to each of the pharmacies in the intervention arm (1) to determine if pharmacy 1 and 2 needed supplies and were following PharmNet protocols and (2) to assess if supplies were received and that PharmNet started at pharmacy 3 and 4.
- Pharmacy 1: The pharmacist confirmed that they were following PharmNet’s protocol and that they had enough supplies (eg, harm reduction referral cards and naloxone).
- Pharmacy 2: The pharmacist confirmed that they were following PharmNet’s protocol and that they had enough supplies (eg, harm reduction referral cards and naloxone).
- Pharmacy 3: The pharmacist reported that they still were not aware of having received the PharmNet supplies.
- Pharmacy 4: The pharmacist reported that they had not received all of the PharmNet supplies, but they had received the referral cards in the mail. |
| Week 10—Additional verification calls to intervention pharmacies to determine status and if any additional supplies were needed | - LAE made calls to each of the pharmacies in the intervention arm (1) to determine if pharmacy 1 and 2 needed supplies and were following PharmNet protocols, (2) to assess if supplies were received and if PharmNet had started at pharmacy 3, and (3) to check if pharmacy 4 received the remaining supplies and started the intervention.
- Pharmacy 1: The pharmacist confirmed that they were following PharmNet’s protocol and that they had enough supplies (eg, harm reduction referral cards and naloxone).
- Pharmacy 2: The pharmacist confirmed that they were following PharmNet’s and that they had enough supplies (eg, harm reduction referral cards and naloxone).
- Pharmacy 3: There was no pharmacist available. We left a message requesting a callback, but it was never received.
- Pharmacy 4: The pharmacist reported that they had not received all of the PharmNet supplies, but that they were currently using the referral cards. |

Discussion

Context of the Report

PharmNet was developed with independent community pharmacies in mind as a core implementation venue. This was partly because of trends around naloxone stocking and dispensing, as described in the Background section, which suggested that independent pharmacies might especially benefit from intervention support. In addition, there is a large segment of the US population, typically older, rural, and with lower income levels, for whom independent pharmacies are the primary point of pharmacy access (recent estimates place the number of individuals at over 15 million) [46]. Thus, it is particularly important to know whether interventions can operate effectively in independent pharmacy venues.

As we have previously indicated, our single-site pilot, which preceded this study, was successful [37], whereas this study encountered multiple barriers, even though they were conducted within the same small, independent pharmacy group. Our subjective qualitative assessment is that these were meta-structural barriers—perhaps common to independent pharmacies or related to the implementation decisions—and not a function of the individuals in the independent pharmacy group. Further, many of the barriers we encountered did not appear to be especially related to the program’s focal area (ie, naloxone distribution).

Barriers Specific to Pharmacy Naloxone Distribution

The research literature has identified several barriers that can occur when implementing pharmacy-based OEND programs, but interestingly, this study of the PharmNet intervention never encountered most of these barriers (though it encountered others). In some cases, this may have been due to the intervention’s design, as we spent considerable time in the development phase determining how we might obviate frequently discussed implementation issues. For example, multiple publications have identified that reimbursement for products and services can be an implementation barrier (eg, for the costs of naloxone, pharmacist time, or other program features) [38,47]. In certain program structures (eg, where free or reduced cost naloxone doses are unavailable), patients’ out-of-pocket costs to purchase naloxone can also be a concern [48]. However, PharmNet included a planning step where the research team negotiated with nonprofit organizations to procure sources of no-cost naloxone. This meant that pharmacies could continue selling naloxone where appropriate, but that they also had the ability to provide free doses when indicated (eg, to patients who could not afford it) without needing to find a source of reimbursement.
Similarly, while pharmacy-based counseling is sometimes included in pharmacy OEND interventions, we were concerned about its feasibility in low-resource pharmacies, especially after COVID-19. Thus, for PharmNet, we opted to provide referral and resource cards in prescription bags that were tailored to each unique geographic location. In doing so, we attempted to avoid common barriers reported by similar studies such as lack of time or space for counseling [48]. Another larger study in 2 pharmacy chains also reported adaptations resulting from COVID-19, such as “streamlined counseling and drive-thru provision adaptations ...” [49].

Further, while a study of opioid overdose prevention programs in pharmacies identified barriers related to pharmacy leadership support [48], our perception is that the leadership team and pharmacy management in place at this independent pharmacy group were incredibly motivated, competent, and willing to support this intervention to the best of their ability—and it appeared that they were primarily limited by factors of raw capacity. In addition, though our pharmacist and pharmacy technician data were not collected from all intervention pharmacies, the limited data set that we procured did not identify any substantive concerns around comfort with dispensing naloxone.

Barriers Related to Independent Pharmacies as Scalable Intervention Sites

We intentionally designed this pilot trial to be pragmatic, meaning that the implementation environment would mirror real-world practice [39]. Our primary concern was that the resources provided as part of an intensive trial support system would introduce a kind of heterogeneity of treatment effect [50], where pharmacies working to conduct the intervention outside of the context of the RCT would be systematically different by virtue of not having the same startup support. This would potentially inflate the effect size of the intervention within the study relative to its true effectiveness. Therefore, for individuals working in single pharmacies (eg, lead pharmacists, pharmacy technicians, and other staff members), we did not plan any direct face-to-face interaction with our team. Instead, the intervention materials themselves—introductory videos, instructions to the overall leadership of the organization, and materials, along with a planned fidelity check—were the primary means of dissemination.

However, the pharmacy practice environment is also experiencing a variety of substantive external pressures. For example, a 2022 survey from the National Community Pharmacists Association found nearly one-quarter of responding pharmacy owners or managers had difficulty filling pharmacist roles, and 88.8% had similar difficulty filling pharmacy technician positions [51]. A 2019 survey of full-time pharmacists found that even though independent pharmacists had higher job satisfaction, organizational commitment, and perceived control technician positions [51]. A 2019 survey of full-time pharmacists found that even though independent pharmacists had higher job satisfaction, organizational commitment, and perceived control.

We suspect that these or similar external stressors played a meaningful role in the outcomes of this trial. Lessons from remote decentralized clinical trials, for example, highlight how reducing the research burden on some elements of a team or partnership may inadvertently shift the burden onto others working in the field [54]. In other words, eventually, someone must do the work, and when staffing levels are low and exogenous stressors (eg, a COVID-19 outbreak) occur, an unreasonably large volume of responsibility may accrue to a small number of people. This is a particular concern due to the prevalence of pharmacist burnout, which a systematic review recently estimated to exceed 50% [55], though a slightly older review reported a lower mean percentage [56] (both reviews indicated heterogeneity among included studies). In this case, while we do not have (nor are intending to imply) any direct evidence of burnout, per se, we noted that there was not a “deep bench” of staff and that when illnesses or similar issues occurred in these independent pharmacies, the work was often covered by others who already had full-time (or greater) workloads.

In contrast, in one well-conducted, harm reduction–focused, pragmatic RCT of 175 community chain pharmacies, the researchers encountered both COVID-19 and wildfires [57]. Their study team conducted the majority of their fidelity checks face-to-face and had regular phone contact with the pharmacies. Their published protocol states the research team maintained a “close collaboration and regular meetings with the pharmacy corporate leadership.” Unexpected circumstances that arose were sometimes able to be mitigated by pharmacy corporate leadership (eg, the provision of additional pharmacists to relieve pharmacists from their regular work duties so that the onsite “academic detailing” could be conducted). These types of resources and supports may not be accessible to most independent pharmacies.

Do Fidelity Checks Contribute to Intervention Effectiveness?

The major differences between our single-site pilot study (which was completed successfully and which produced positive outcome data) [37] and this follow-up study remain of interest to our team. One of our working theories relates to the nature of implementation fidelity checking that occurred. Implementation fidelity checking has long been understood as an important component of implementation science [58], though community pharmacy intervention studies do not always report implementation fidelity tools or processes [59].

Our single-site pilot study incorporated face-to-face fidelity checks on a regular basis [37]. This involved a study investigator regularly visiting the pharmacy in person, speaking with staff members and pharmacists, obtaining interim information, and identifying necessary points of action. In designing this follow-up study, we did not consider the effects that regular in-person fidelity checking might have had on intervention effectiveness in our single-site pilot. In other words, we do not know how much of the implementation effectiveness in the original study was a direct or indirect result of the routine physical presence of a researcher in the pharmacy. It is not
necessarily the case that a single-site pilot is an insufficient first step to prepare for a larger-scale study, but rather, it seems that researchers might benefit from carefully examining the ways in which intensive fidelity procedures may actively contribute to successful implementation rather than merely documenting what happened.

Limitations
As noted throughout this paper, there were numerous limitations that resulted in our reporting of fidelity encounter data and limited outcome measures. Even though this study was preregistered, due to the differences in the data collected from what was planned, we could not test the planned hypotheses. This study should therefore be considered exploratory. In addition, while we carefully consider the context of the study in our Discussion section, the ideas presented therein are hypotheses only and should not be interpreted as definitive statements of fact.

Conclusions
Independent pharmacies, especially in rural areas, will likely continue to be key parts of US health care teams. For example, in April 2023, the Express Scripts business of Evernorth, a subsidiary of The Cigna Group, announced that they are extending their efforts to expand health care in rural communities via independent pharmacies [60]. As the prevalence of fatal opioid overdose remains high, multiple avenues to prevent fatality are warranted. Even though nasal formulations of naloxone are now available over the counter, pharmacies have a role in creating awareness and fostering accessibility for patients for whom the cost is prohibitive. As one peer reviewer aptly noted, “the optimal means of naloxone community distribution remains to be determined.”

In terms of broader program implementation considerations for pharmacies, it may be the case—especially for independent pharmacies—that the start of a new initiative needs to be accompanied by more substantive support in the current pharmacy practice environment. If a trial is conducted over a longer period, support could in theory be withdrawn, and effectiveness measured longitudinally. However, we could not, with the data obtained from this study, disentangle issues around fidelity checking and externalities from those related to the overall pharmacist workload and burden and the intervention mechanics.

The strength of this paper is its detailed process description and transparent disclosure of the issues that affected the intervention. Given the likely importance of independent pharmacies to the national overdose response effort, we encourage further implementation science research that is specific to independent community pharmacies, which are often collapsed with other types of pharmacies but that have unique facilitators and barriers to intervention uptake.

Acknowledgments
This paper was funded by the Indiana University Grand Challenge: Responding to the Addictions Crisis. The funder did not have a role in the preparation of this paper, and the opinions and information expressed herein do not necessarily reflect the views or opinions of the funder.

Data Availability
All data generated or analyzed during this study are included in this published paper (Multimedia Appendix 1), except for the raw data for the small sample (N=8) of staff members who completed the pretest, which are reported in aggregate but not at the individual level due to privacy concerns.

Authors' Contributions
All authors conceptualized the study, conducted the investigation, worked on the methodology, administered the project, contributed resources toward the project, and validated the information presented herein. LAE and JA provided data curation and wrote the original draft. BEM and JA obtained funding for the study. JA managed visualization. All authors reviewed the final paper.

Conflicts of Interest
The authors have no conflicts of interest related to the content of this paper but note that they participate in ongoing research (as cited herein) related to this project and similar projects through grants awarded to their institutions and have served as grant peer reviewers on harm reduction funding streams for federal agencies and foundations.

Multimedia Appendix 1
Staff-level preintervention data.
[DOCX File, 16 KB - formative_v8i1e54077_app1.docx]

References

45. Attribution 4.0 International (CC BY 4.0 Degree). Creative Commons. URL: https://creativecommons.org/licenses/by/4.0/ [accessed 2024-02-23]

Abbreviations

MOUD: medications for opioid use disorder
OEND: opioid education and naloxone distribution
OUD: opioid use disorder
RCT: randomized controlled trial

Edited by A Mavragani; submitted 28.10.23; peer-reviewed by D Carpenter; comments to author 24.11.23; revised version received 28.11.23; accepted 19.02.24; published 18.03.24.

Please cite as:

Eldridge LA, Meyerson BE, Agley J
Implementation Documentation and Process Assessment of the PharmNet Intervention: Observational Report
JMIR Form Res 2024;8:e54077
URL: https://formative.jmir.org/2024/1/e54077
doi:10.2196/54077
PMID:38498037
Privacy Concerns About Sharing General and Specific Health Information on Twitter: Quantitative Study

Pouyan Esmaeilzadeh, PhD
Department of Information Systems and Business Analytics, College of Business, Florida International University, Miami, FL, United States

Corresponding Author:
Pouyan Esmaeilzadeh, PhD
Department of Information Systems and Business Analytics, College of Business
Florida International University
Modesto A. Maidique Campus 11200 S.W. 8th St
RB 261 B
Miami, FL, 33199
United States
Phone: 1 3053483302
Email: pesmaeil@fiu.edu

Abstract

Background: Twitter is a common platform for people to share opinions, discuss health-related topics, and engage in conversations with a wide audience. Twitter users frequently share health information related to chronic diseases, mental health, and general wellness topics. However, sharing health information on Twitter raises privacy concerns as it involves sharing personal and sensitive data on a web-based platform.

Objective: This study aims to adopt an interactive approach and develop a model consisting of privacy concerns related to web-based vendors and web-based peers. The research model integrates the 4 dimensions of concern for information privacy that express concerns related to the practices of companies and the 4 dimensions of peer privacy concern that reflect concerns related to web-based interactions with peers. This study examined how this interaction may affect individuals' information-sharing behavior on Twitter.

Methods: Data were collected from 329 Twitter users in the United States using a web-based survey.

Results: Results suggest that privacy concerns related to company practices might not significantly influence the sharing of general health information, such as details about hospitals and medications. However, privacy concerns related to companies and third parties can negatively shape the disclosure of specific health information, such as personal medical issues ($\beta=-.43; P<.001$). Findings show that peer-related privacy concerns significantly predict sharing patterns associated with general ($\beta=-.38; P<.001$) and specific health information ($\beta=-.72; P<.001$). In addition, results suggest that people may disclose more general health information than specific health information owing to peer-related privacy concerns ($t_{165}=4.72; P<.001$). The model explains 41% of the variance in general health information disclosure and 67% in specific health information sharing on Twitter.

Conclusions: The results can contribute to privacy research and propose some practical implications. The findings provide insights for developers, policy makers, and health communication professionals about mitigating privacy concerns in web-based health information sharing. It particularly underlines the importance of addressing peer-related privacy concerns. The study underscores the need to build a secure and trustworthy web-based environment, emphasizing the significance of peer interactions and highlighting the need for improved regulations, clear data handling policies, and users’ control over their own data.

(JMIR Form Res 2024;8:e45573) doi:10.2196/45573

KEYWORDS
care and general information; CFIP; peer privacy concern; PrPC; health information disclosure; Twitter; empirical study

https://formative.jmir.org/2024/1/e45573
Introduction

Background

Reports and analyses highlight that approximately 60% of health-related tweets contain links to health-related websites [1]. Twitter users frequently share health information related to chronic diseases, mental health, and general wellness topics [2]. Twitter is a popular platform for health-related conversations because it allows users to share their thoughts, experiences, and information in real time [3]. This platform can be particularly useful for sharing information about health events, such as disease outbreaks or public health campaigns. In addition, Twitter can be used to connect with others with similar health concerns or interests and to access information from health care professionals and organizations [4]. Twitter is a social media platform with a character limit, which makes sharing detailed information about health issues difficult. Moreover, the information shared on Twitter may not always be accurate or reliable, as it is not always fact-checked or verified. However, Twitter is a common platform for people to share opinions, discuss health-related topics, and converse with a wide audience. According to a survey conducted by the Pew Research Center, 21% of Twitter users have used the platform to share information about a health condition [5]. The survey also found that 20% of Twitter users have followed a health organization or medical professional on the platform, and 15% have searched for information about a health condition on Twitter. Users often express their views about health policies, medical breakthroughs, health care services, and public health issues [6]. Health professionals, researchers, advocacy groups, and patients actively participate in these discussions, contributing diverse perspectives and sharing evidence-based information. This open and rapid exchange of ideas allows health information dissemination and facilitates conversations that can influence public opinion and policy decisions [7].

Sharing health information on Twitter raises privacy concerns as it involves sharing personal and sensitive data on a public platform [8]. Information privacy refers to individuals’ control over collecting, using, and disclosing their personal information. Regarding sharing personal health information, web-based information privacy refers to protecting sensitive health data from unauthorized access, secondary use, or disclosure [9]. It involves ensuring that individuals can make informed decisions about how their health information is shared and used and that appropriate safeguards are in place to protect the confidentiality and security of this information. The potential privacy risks associated with sharing health information on Twitter can be grouped into 3 reasons. First, potential identification and disclosure of personal information—sharing health information on Twitter can inadvertently lead to disclosing personally identifiable information. A study found that anonymized data from health-related tweets could be reidentified to reveal the identity of users [10]. Researchers were able to reconstruct personal health stories and connect them to specific individuals, highlighting the potential privacy risks involved. Second, data mining and analytics— third parties can analyze and use health-related tweets for various purposes, including targeted advertising or creating consumer profiles. Researchers analyzed tweets related to mental health and found that the content could be used to predict users’ self-reported diagnoses, medication use, and other personal information [11]. This demonstrates the potential for extracting sensitive health-related data from Twitter. In addition, a study used deep neural networks to identify personal health experience tweets, highlighting the potential for using Twitter as a data source for health surveillance studies [12]. Third, public disclosure of sensitive health information—sharing health information on Twitter might inadvertently expose individuals to public scrutiny and judgment. A study examined tweets related to mental health and found that users often disclosed personal experiences, symptoms, and treatments [13]. Although this sharing can provide support, it can also expose individuals to potential stigma, discrimination, or unwanted attention.

Previous studies suggest that individuals may be comfortable with sharing general information that is not sensitive on social media [14]. However, people may not be likely to share personal information, especially health-related data, owing to privacy concerns [15]. According to previous studies, privacy concerns can arise from companies’ information collection and use policies in the age of medical big data [16] and web-based social interactions that may threaten information privacy [17]. Twitter is reported as an important data set for vendors, researchers, and medical companies to collect health-related information [18]. Many medical companies collect health information and patient experiences from Twitter for big data analysis to find patterns for public health management [19]. Although big data collection and data mining techniques could help generate intelligence for monitoring public health issues, they can cause privacy concerns. Reports highlight that many Twitter users have experienced invasion of privacy owing to companies’ collection, sharing, and analytics practices that use information from their tweets, including private health information [20].

Although there are various studies of vendor-related privacy concerns [21] and peer-related privacy concerns [22], little is known about whether these 2 aspects of privacy concerns may collectively influence information-sharing behaviors. As privacy violations can be related to peers (such as inappropriate comments and unauthorized retweeting) and companies (sharing personal information with third parties), more studies are required to examine whether information-sharing disclosure can be affected equally by vendor-related and peer-related privacy concerns. In this study, we aimed to determine whether both aspects of privacy concerns (ie, concern for information privacy [CFIP] and peer privacy concern [PrPC]) can mutually affect both aspects of privacy concerns (ie, concern for information privacy [CFIP] and peer privacy concern [PrPC]) can mutually affect
public and private health information on Twitter would be the main contribution that makes this study different from others.

This argument is built based on 4 reasons. First, although the main interactions on social media are mainly peer oriented, vendors can still collect a lot of personal data (such as health information) without authorization and use it for unconsented purposes [23]. There have been instances of social media platforms, including Twitter, being used by organizations for health-related data mining and analysis [24]. Twitter data can provide valuable insights into health-related trends for health care organizations through analytics [25]. Researchers and companies (such as pharmaceutical manufacturers) have used Twitter data to track and analyze health-related trends, including disease outbreaks, medication use, and public health concerns [26]. For example, a study found that Twitter data could be used to track the spread of influenza and predict outbreaks [27]. Another study uncovered that Twitter data could be used to monitor adverse drug reactions and identify potential safety concerns [28]. Pharmaceutical companies have also used Twitter data to monitor medication use and patient experiences. For example, a study reported that Twitter data could be used to monitor patient experiences with antidepressant medications [29]. Moreover, it is common for organizations and vendors, including those in the health care industry, to monitor social media platforms to gather insights about consumer opinions, preferences, and trends [30]. Twitter, as a popular social media platform, has been used for these purposes [31]. Health care organizations and vendors may collect health-related information, such as discussions about medical conditions, treatment experiences, and patient preferences, from public Twitter profiles [19]. These insights can be valuable for marketing and market research purposes.

Second, although the primary purpose of peer-to-peer (P2P) interactions on social media is to maintain social connections with peers and there are no explicit business-to-consumer interactions, companies can still use social media analytics to investigate published health information. Companies can leverage various analytics tools to gather and find meaning and patterns in data collected from social channels to support business decisions (such as predicting the risk factors to manage public health) [32]. Third, individuals share a variety of information (such as about lifestyle, health status, chronic issues, and medication) on social media, which can be more sensitive than conventional e-commerce information (such as transaction records). Disclosing a wide range of information across social media platforms could raise concerns about whether companies and peers misuse the shared data (eg, health information). Fourth, Web 2.0, a fundamental technology supporting social media, mainly focuses on bilateral relationships between peers. However, it does not remove traffic between companies and social media users. Thus, peers can comment on conversations about a user’s health condition and share others’ personal health information on their own channels. In contrast, companies can use big data analytical tools to collect, use, or share users’ personal health data with third parties.

Study Objectives
The main objective of this study was to investigate the concept of information privacy concerns in the context of social media based on both vendor-related and peer-related aspects. To do so, we used the survey research methodology and Twitter as the empirical context. We also relied on theories discussing 2 dimensions of information privacy (ie, CFIP and PrPC) as the theoretical foundation of our proposed model. In this study, CFIP, emphasizing both consumer perspectives and company responsibilities, represented privacy concerns related to web-based practices of companies and vendors (such as collection and sharing of self-shared information), and PrPC referred to privacy concerns about losing control over digital communications and web-based interactions with peers. Thus, we suggest that information privacy on social media can be multidimensional, focusing on privacy violations associated with companies’ (vendors’) practices and sharing behaviors of peers. The integration of CFIP and PrPC can comprehensively present the entirety of privacy concerns about web-based health information. This study contributes to both theory and practice. We shed more light on information privacy conceptualization in the context of social media. This study also provides an interactive outlook and practical recommendations for handling privacy issues by explaining how web-based vendors and peers may cause privacy violations when dealing with health information (general and specific) shared over the web.

Variable Conceptualization, Theoretical Foundation, and Research Hypotheses

General and Specific Health Information
Individuals can use web-based channels to share general health information, such as information about treatments, medications, side effects, hospitals, medical costs, and healthy behaviors [33]. For instance, people are likely to tweet about general obesity-related topics, such as the relationship between fast food and weight gain [34]. Another study identifies general tobacco-related tweets (such as information about smoking, cigarette risks, and quitting) as the primary conversational data sets for health-related topics on Twitter [35]. Moreover, people can use tools such as Twitter to share specific health-related information, including past medical history, allergies, personal medications, private health issues, and signs and symptoms. For example, a study indicates that people disseminate information about diagnoses, advice based on personal experience, use of specific medications, side effects, negative reactions, and treatments on Twitter [31]. Another study highlights that people use Twitter to share their COVID-19-related symptoms and personal health issues during the early stages of the pandemic [36]. Sharing public and private health information can be valuable for web-based peers and affect their health-related decisions. General information can enable web-based users to find some facts about hospitals, physicians, and diseases. Disseminating specific information can share important insights and advice based on personal health conditions, medical treatments, care planning, and medical experiences with chronic diseases. General health information can be publicly available regardless of personal experiences. However, specific health information...
can be unpleasant to share because it may contain more private information. As health information dissemination has 2 sides, questions still remain as to what dimensions of information privacy may strongly affect sharing behaviors on Twitter.

CFIP Constructs

There is evidence suggesting that companies use tweets to collect health information. For example, reports show that public health researchers use Twitter data to study the world’s health. A recent study indicates that the amount of textual health-related data, which could be personal, collected by various organizations is growing (especially during the COVID-19 pandemic) [37]. Another study argues that health care researchers and research companies have used social media data sources such as Twitter to study public health [19]. Owing to the importance of the Twitter database, the Centers for Disease Control and Prevention (CDC) designed a document to guide employees and contractors on using Twitter to disseminate health information and engage with individuals and partners [38]. A study indicates that companies increasingly use Twitter to share public health information and collect real-time health data using crowdsourcing methods [39]. Information privacy, which refers to people’s ability to control their information, is essential in e-commerce and social media [40]. Several studies explain the privacy concerns specific to the mobility data collection context [41]. Thanks to emerging technology (such as Web 2.0), protecting personal information has become a growing concern for web-based users. CFIP is a general concern about how organizations can use and protect consumers’ information [21]. CFIP explains concerns about organizations’ information collection practices, use policies, and access to consumers’ personal information [42]. Previous studies indicate that examining consumers’ concerns about how companies (vendors) may use their personal information significantly affects their willingness to engage in web-based transactions actively [43].

In this study, following most previous studies, CFIP is posited as a multidimensional construct with 4 dimensions to measure individuals’ concerns about organizations’ information privacy practices [44]. Collection pertains to individuals’ concerns about what web-based information is collected and whether such information is stored properly. Unauthorized secondary use explains individuals’ concerns about whether the information collected for a consented purpose may be unethically and illegally used for other purposes without obtaining authorization. Improper access implies individuals’ concerns about whether unauthorized people (entities) can access, view, and share their information. Finally, concerns about errors reflect whether individuals’ information is appropriately protected to minimize accidental or intentional errors [44]. Therefore, the multidimensional scale of CFIP reflects the complexity of individuals’ privacy concerns [21]. According to Stewart and Segars [40], CFIP is developed as a second-order construct with 4 reflective first-order factors. In this study, we also considered CFIP as a high-order construct with reflective factors. The logic behind conceptualizing this construct as reflective was that the privacy concerns related to companies are reflective of the 4 dimensions (i.e., collection, unauthorized access, errors, and secondary use) and the expected interactions among them. Therefore, these dimensions can reflect the same theme and may covary.

Although sharing information on Twitter is more oriented toward interactions with web-based peers, privacy concerns about the collection and misuse of digitized health information by vendors and companies still remain significant. Previous studies provide strong evidence suggesting that web-based users of Twitter are concerned about several aspects of their information privacy, from collection of a lot of data to misuse [45]. Our study focused on individuals’ perceptions about general CFIP owing to policies and practices of vendors and organizations that may collect, access, and use health information shared on Twitter rather than concerns about a particular vendor. According to the four dimensions of the CFIP construct, individuals who demonstrate high privacy concerns believe that (1) a lot of health information is collected by organizations from users’ Twitter accounts, (2) such health information is not appropriately protected against possible errors, (3) various organizations may use health-related information on Twitter for other purposes without authorization (such as data mining, surveillance, research, and business intelligence), and (4) there is lack of visibility into accurate security measures to control who can access and use health information from tweets.

Thus, the CFIP construct can be extended to privacy concerns about a wide range of vendors and companies accessing and using tweets containing health information. This concern is not the same as privacy issues owing to interactions with a specific vendor in the context of e-commerce (such as retail platforms). In these conventional interactions, privacy concerns may focus on personal, factual information shared in web-based transactions and services (such as demographic information). However, CFIP in the social media domain deals with concerns associated with the following uncertainty: which organizations collect personal posts, which unauthorized entities can view and share information, why and how the information is used (for instance, data mining), and how the information is protected from internal and external errors and misuse. Therefore, we argue that CFIP cannot be ignored in examining information privacy in social media because users may not have direct relationships with organizations on these digital platforms, but they are still concerned about how their posts can be collected and misused by various companies.

Sharing general health information could indicate a user’s rich medical information and wealth of medical knowledge. In contrast, sharing specific health information can show that the user may want to contribute or seek informational and emotional support by disseminating personal experiences and medical history. However, when privacy concerns about the collection and misuse of shared data by organizations are not addressed, users are not likely to disseminate general or specific health information on Twitter. Moreover, we can expect that because specific health information is more sensitive and private, web-based users may generally become more cautious about sharing it. Therefore, we hypothesized the following:

- **Hypothesis 1A (H1A):** CFIP negatively influences general health information dissemination on Twitter.
• Hypothesis 1B (H1B): CFIP negatively influences specific health information dissemination on Twitter.
• Hypothesis 1C (H1C): CFIP has a more negative effect on specific health information dissemination than on general health information sharing on Twitter.

PrPC Constructs

Owing to the nature of Web 2.0, users can communicate, create content, and share it via communities, social networks, and virtual worlds [46]. Web-based users can share a wide range of information and experiences on social media. The information can be objective (based on factual data) or subjective (based on personal interpretation, feelings, tastes, or opinions) [47]. The range can start with demographic information (eg, age, gender, and race); continue with political views, humanitarian opinions, and health information; and end with comments on others’ posts [48]. People can use different formats, such as text, pictures, and videos, to disseminate information. Peers are important components of social networks; however, they can threaten information privacy through inappropriate sharing behaviors and unintended consequences of web-based interactions [49].

Web-based transactions with peers on social media affect users’ decisions about whether they want to reveal their personal information (such as feelings and likes) and create an image consistent with their personal identity [50]. In this study, peers could be web-based friends who may have long-lasting and affect-laden connections with a user and any web-based users who interact through social media channels. Previous studies highlight the importance of PrPCs in the context of web-based interpersonal relationships where other peers can access and view a user’s web-based information [51]. Peer-related privacy refers to possible risks of privacy invasion because of direct and indirect web-based interactions with peers [17]. Social bots and fake and spam accounts can also raise privacy violation risks by potentially exposing several peers to a focal user’s posts using machine learning algorithms [52]. Previous studies indicate the threat of using social bots on social networks, increasing the likelihood of privacy breaches where even more private user data are exposed [53]. Understanding who can access web-based information (such as a post related to signs and symptoms of depression) and with whom such information is shared can significantly raise privacy concerns. For example, a study shows that sharing information with only selected friends in social networking services perceived higher control than sharing information with all friends [54].

Thus, information-sharing behaviors on social media may erode the ability of users to control their virtual space and personal boundaries. Leaving an inappropriate comment for a user who posted about seeking ways to lose weight, can increase privacy concerns about lack of control to maintain the privacy of their Twitter space. A study posits that managing the privacy of virtual territory refers to defining the level of access to and interaction others can have within a user’s territory (eg, allowing peers to see or comment on the post) [55]. Peers can also play a bilateral role in web-based social interactions. They can intentionally or unintentionally share a user’s personal health information with others and expose the user to others’ personal information that they might not like to view. The user may think that if others’ personal health information has been shared with me, my posts can also be revealed to others. Thus, communication privacy can significantly affect how individuals and relational parties share private information on social media [56].

A recent study defines PrPC as the sense of inability to control personal boundaries in web-based interactions owing to web-based peers’ behaviors [22]. They describe this term using 4 reflective dimensions: peer-related information privacy, psychological privacy, virtual territory privacy, and communication privacy. Peer-related information privacy denotes concerns about who can see what type of information and when and how such information is disclosed to other web-based peers. For posts shared by a user, the main concern is unauthorized access and secondary use of data by other peers. On Twitter, this can happen through retweeting and commenting. Peers can also initiate posts or conversation threads to disclose a user’s personal information without authorization. A privacy concern is about the accuracy of personal information shared by peers. Thus, peers’ sharing can be a source of private information leaks.

Psychological privacy explains the control over input information coming from others to shape feelings, opinions, and beliefs. Information sharing is 2-way traffic in social media (ie, from a user to peers and from peers to a user) [57]. As people are exposed to posts shared by celebrities, business magnates, politicians, and other web-based users, their behaviors and opinions are increasingly affected by input information from peers. Peers on social media can influence users’ behavior by applying social influence through public comments on posts [58]. Privacy concerns become more intense when users’ opinions and psychological independence are intentionally manipulated by social bots [59]. In this situation, users are not able to make a decision independent of other web-based peers’ ideas. Moreover, receiving a lot of unwanted information from peers may influence value systems, attitudes, identities, and choices.

Virtual territory privacy represents concerns about an individual’s inability to achieve control over other peers’ interactions with their virtual properties (such as Twitter accounts) and shared conversations (postings). Previous studies suggest that the sense of ownership and emotional attachment to personal territory can be generalized to the social media domain [60]. Similar to other personal belongings, virtual properties are seen as private. Thus, any unwanted addition to or revision of personal information can be considered as an intrusion, which may increase privacy violation risks [45]. Finally, communication privacy reflects an individual’s lack of control over how and when other peers can make direct web-based conversations. For example, peers may use various communication tools to engage individuals in a group conversation about potentially embarrassing or stigmatic health-related topics. Then, users may feel pressured by being involved in such undesirable conversations with unfamiliar people.

Individuals may become more likely to share general or specific health information on Twitter when they think it is useful for...
other web-based peers (eg, they can make better medical decisions). However, peer-related concerns may prevent them from disseminating such information. Peers are participants in social media and can freely collect and share information that is sometimes considered as unwanted interference. For instance, if peers retweet a post containing personal information about postsurgery recovery plans without authorization or tag a user who posted general educational content about HIV, these web-based interactions may violate privacy needs and raise privacy concerns. In return, users may change the pattern of health information dissemination and become more cautious in sharing medical facts or personal experiences. Thus, we formulated the following hypotheses:

- **Hypothesis 2A (H2A):** PrPC negatively influences general health information dissemination on Twitter.
- **Hypothesis 2B (H2B):** PrPC negatively influences specific health information dissemination on Twitter.
- **Hypothesis 2C (H2C):** PrPC has a more negative effect on specific health information dissemination than on general health information sharing on Twitter.

CFIP and PrPC Are Privacy Concerns for Twitter Users

Although tweets are publicly accessible by default, users likely expect some degree of privacy and control over their personal health information shared on the platform. Previous literature has found that even when posting content publicly on social media, individuals still have privacy interests and concerns about how their data might be used or accessed [61]. General health information shared publicly on Twitter, such as mentions of hospitals, physicians, and common diseases, is not considered protected or private. However, more specific personal health details, such as past medical history, allergies, medications, and current symptoms, could reveal private information about an individual’s health status. Although these details may be shared publicly by default on Twitter, users likely still have privacy concerns about this content being widely disseminated or used without their consent.

The concepts of CFIP and PrPC capture these types of privacy concerns. Although users are voluntarily sharing health information publicly on Twitter, they may still desire control over how this data are accessed and used. CFIP reflects concerns about using or sharing personal health data by third parties such as researchers or companies without the user’s knowledge or permission. Even if users willingly post health information publicly, they may still desire control over how that data are collected, analyzed, or shared by entities such as researchers, pharmacies, insurance companies, and so on. PrPC represents concerns about controlling boundaries around health disclosures and limiting exposure to certain audiences, such as employers or insurers, who could misuse the information. Users must balance sharing personal details with managing social risks if the information reaches unintended viewers such as employers, family members, or friends. Thus, although Twitter data are technically public, users are likely to have nuanced privacy interests surrounding their health disclosures. Therefore, concepts such as CFIP and PrPC are useful for quantifying expectations regarding control, anonymity, and audience boundaries that persist even when posting health care–related content openly over the web.

Difference Between the Conceptualization of CFIP and PrPC

Overview

We used an interactive approach to provide a holistic view of information privacy in the context of sharing health information on Twitter. Using this approach, this study actively engaged with the 2 aspects of privacy concerns (CFIP and PrPC) in a dynamic way, considering the interplay between them, as opposed to treating them as isolated, independent factors. Therefore, we examined how these 2 aspects of privacy concerns interact with each other and how this interaction affects individuals’ behavior on Twitter. It should be mentioned that the dimensions used for CFIP and PrPC may differ because of the different nature of the relationships and contexts involved. Although the underlying concept of privacy concerns remains the same, the specific dimensions or factors that contribute to CFIP and PrPC may vary owing to the distinct characteristics of vendors and peers as information trustees.

Role and Control

Vendors typically have a professional or business relationship with individuals, where they are entrusted with handling personal information for specific purposes (eg, health care providers and web-based retailers). In this context, individuals may be concerned about vendors’ control over their information; how it is collected, used, and shared; and the potential for data breaches or unauthorized access.

Trust and Reputation

CFIP dimensions often include factors related to trust and reputation, such as trustworthiness, perceived reliability, and credibility of vendors. As individuals rely on vendors to handle their personal information responsibly, dimensions related to trust and reputation become important for CFIP measurement.

Legal and Ethical Considerations

CFIP dimensions may also include factors related to legal and ethical considerations, such as compliance with privacy laws, informed consent, and transparency in data practices. Individuals may be concerned about whether vendors meet the legal requirements and ethical standards in protecting their health information.

In contrast, peers, who are individuals within an individual’s social network or community, may have different dimensions of privacy concerns. Social interactions, trust, reciprocity, and the potential for social consequences typically characterize peer relationship dynamics. Some factors that could influence PrPC dimensions include the following.

Social Norms and Expectations

PrPC dimensions may reflect concerns about social norms and expectations related to privacy within the peer group. Individuals may worry about how their health information might be perceived, shared, or used by their peers and the potential impact on their social relationships or reputation.
Social Influence and Peer Pressure
PrPC dimensions may capture the influence of peer pressure or the fear of negative social consequences. Individuals may be concerned about potential judgment, stigma, or discrimination based on their health information within their peer group.

Personal Boundaries and Intimacy
PrPC dimensions may include factors related to personal boundaries and the level of intimacy within peer relationships. Individuals may be concerned about the extent to which personal health information should be shared with peers and the potential impact on their privacy, autonomy, and self-disclosure.

Although the underlying concept of privacy concerns is present in both CFIP and PrPC, the dimensions may differ owing to the distinct characteristics and dynamics of the relationships involved. Thus, considering these differences when developing measurement instruments is important to accurately capture individuals’ concerns regarding privacy in different trust relationships.

Research Model
The model focuses on health information and Twitter (as the research context). There are a few critical differences in the privacy concerns around health information compared with other types of information. First, health information is considered to be very sensitive and private. It can reveal details about medical conditions, treatments, prescriptions, family history, and so on. Other types of information, such as social media posts or shopping habits, are generally not as sensitive. Second, health information has strict legal protections such as Health Insurance Portability and Accountability Act in the United States and General Data Protection Regulation in the European Union. These laws place restrictions on how health data can be collected, shared, and used. Other information does not have the same level of legal safeguards. Third, health information could potentially be used to discriminate against people in areas such as employment, insurance, and so on. This type of discrimination is legally prohibited, but the risk remains owing to the sensitive nature of the data. Other data, such as social media posts, have less potential for this type of discrimination. Finally, breach of health information is considered very serious, given the sensitivity of the data. Strong security protections are needed, and breaches can carry heavy penalties. Breaches of other types of data may not have the same level of severity.

Regarding privacy on social media, there are some key characteristics of the concerns around Twitter compared with other platforms. First, most Twitter content is public by default, whereas other platforms such as Facebook allow more privacy controls. This can raise concerns about a lack of control over dissemination. Second, tweets are often archived and searchable indefinitely; therefore, there are concerns about permanent availability even for “deleted” content. Other platforms may have more ephemeral sharing. Third, the open nature of Twitter makes it easy for tweets to spread rapidly and become viral compared with platforms such as Instagram, where sharing can be more controlled. This raises concerns about loss of context and lack of containment. Finally, the ability to create anonymous accounts on Twitter is greater than that on platforms such as Facebook that require real identities. This raises concerns about harmful speech, misinformation, and so on.

We proposed the following research framework for disclosing general and specific health information on Twitter by integrating 2 aspects of information privacy concerns (Figure 1). As several studies may have found empirical evidence for the hypotheses proposed in this study, we need to clarify what is new in our study. First, this study integrated both aspects of privacy concerns for the first time in a model. Previous studies examined either privacy concerns related to companies’ practices with web-based information (CFIP) [62] or concerns related to the web-based behaviors of peers (PrPC) [63]. However, as mentioned in the previous section, individuals may be concerned about disseminating their health information on Twitter because companies’ collection practices and web-based peers’ behaviors could violate their privacy. In this study, we wanted to examine whether both aspects of privacy concerns (ie, CFIP and PrPC) can collectively change health-related information-sharing decisions or whether one can dominate the other. For instance, whether the nature of the relationships and contexts with 2 different information trustees (ie, vendors and peers) can shape information dissemination behavior. Second, as Twitter is considered as a rich database for collecting individual health-related information to examine sentiments and manage public health [64] and reports highlight that individuals may be concerned about web-based interactions with peers [65], Twitter would be the best research context to meet the goals of this study. Third, this study distinguished between general and specific health information. Thus, we could offer more insights about privacy concern levels and disclosure behaviors related to the 2 types of health information on Twitter. These 3 reasons can make our study different from previous studies in the privacy literature.

In addition, we controlled for several variables such as age, gender, education, Twitter experience, privacy violation experience, and misrepresentation of identity on Twitter. According to previous studies in the privacy concern domain, some demographics, such as age [66], gender [67], and education level [68], can affect people’s intention to disclose information on social media. Moreover, the impacts of these variables have been examined in previous studies investigating individuals’ perceptions about sharing eHealth-related information [69,70]. The effects of these variables are often controlled in previous studies in the field of information privacy threats [71]. Thus, we assumed that individuals of different ages, genders, and educational levels engage in various disclosure behaviors because they have diverse backgrounds, individual characteristics, and personal differences. Therefore, we considered these demographics to be control variables in the proposed research model.

Moreover, the effects of misrepresentation of identity, experience with technology, and privacy violation experiences are controlled in previous studies examining relationships between privacy concerns and self-disclosure [22,42]. Thus, it is believed that individuals with different privacy violation experiences, previous identity misrepresentation, and experiences with Twitter are more likely to demonstrate various
disclosure behaviors. Therefore, we treated these experience-related variables as control variables in our model.

Figure 1. Research model. 1A: hypothesis 1A; 1B: hypothesis 1B; 2A: hypothesis 2A; 2B: hypothesis 2B.

Methods

Research Approach and Survey Development

We administered a web-based survey questionnaire to achieve the defined objectives and test the proposed model and research hypotheses. The survey consists of 4 sections. In the first part, the purpose of the study is described clearly, and a qualifying question is used to select respondents. The question for filtering respondents attempts to screen individuals with a Twitter account. Thus, individuals without a Twitter account are excluded from data collection and analysis. In the second section, respondents are asked to express their perceptions about privacy concerns associated with companies and third parties, peer-related privacy concerns, and health information dissemination behaviors. In the third section, demographic questions (ie, age, gender, education, income, and race) are asked. Finally, the last section focuses on personal privacy experiences (ie, Twitter experience, privacy violation experience, and misrepresentation of identity).

Questions to measure each construct were adapted from validated instruments available in the existing literature. Slight changes in the wording were made to fit the context of this study. We adapted items to measure CFIP (as a second-order construct with 4 dimensions) from the study by Stewart and Segars [40]. Following Zhang et al [22], we also conceptualized and measured PrPC as a second-order reflective construct with 4 dimensions. Previously defined scales to measure general and specific health information disclosure were adapted from the study by Hsu et al [72]. Respondents rated all the measuring items included in the survey using a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). Multimedia Appendix 1 shows the questions used in the web-based survey.

Data Collection and Data Analysis

Data were collected in April 2022 by uploading the questionnaire to Amazon’s Mechanical Turk (MTurk). MTurk is a crowdsourcing platform that enables researchers to access data from potential target samples to conduct a study. MTurk has been recognized as an acceptable web-based means for collecting individual-level data. Literature about health care analytics shows a growing number of studies using MTurk for health-related research [73]. Previous studies highlight that MTurk can measure individual perceptions in various domains, such as social media [74]. As the target population of this study was US citizens who use Twitter for web-based interactions, we limited the respondents’ location to the United States. Moreover, 2 attention-check questions were used to remove participants who chose answers without correctly replying to reverse-coded filler items [75]. The filtering questions were as
follows: (1) It does not bother me that my peers may try to influence me through comments on my health-related postings on Twitter and (2) I am not concerned that I have little control over who can start a health-related conversation with me on Twitter. We received 364 questionnaires and excluded 35 (9.6%) that were either incomplete or failed the response quality questions, resulting in 329 (90.4%) valid and usable responses. The average response time to complete the questionnaire was 12 minutes. The descriptive statistics for demographics were performed using SPSS (version 26; IBM). The research model was tested using AMOS (version 26; IBM) within the structural equation model framework.

Ethical Considerations
The institutional review board of Florida International University reviewed and approved the study (approval 112755). According to the institutional review board approval, written informed consent to participate in the study was obtained from all participants. Moreover, the data collected in this study were anonymous. We considered US $1 as an incentive for each respondent to participate in the study.

Results

Instrument Validation
We used confirmatory factor analysis to assess convergent and discriminant validity. Table 1 shows the results of the convergent validity test. The standardized factor loadings for all constructs exceeded 0.7, which is the acceptable range for factor loadings [76]. The composite reliability values and Cronbach α values were above the recommended value of .7, demonstrating the adequate reliability of the constructs [77]. All the values of average variance extracted (AVE) exceeded 0.5, which is the cutoff value [78]. These measures indicated the acceptability of the measurement model’s convergent validity.

Table 2 shows the discriminant validity of the constructs. All diagonal values (square roots of the AVEs) were >0.7 and greater than off-diagonal values (correlations) between any pair of constructs [79]. Thus, the discriminant validity requirements were satisfied for the research model.

Moreover, we checked the convergent and discriminant validity of the second-order constructs. The composite reliability, Cronbach α, and AVE values for CFIP were 0.91, .88, and 0.64, respectively, and these measures for PrPC were 0.94, .89, and 0.72, respectively. The correlation between the second-order variables (eg, CFIP and PrPC) was 0.58. Finally, the square roots of the AVEs for both constructs were >0.7 and higher than the correlations between the constructs. These results confirm an acceptable convergent and discriminant validity for both second-order constructs in the model.
Table 1. Results of the convergent validity test.

<table>
<thead>
<tr>
<th>Constructs, subdimensions, and items</th>
<th>Standardized factor loading (>0.7)</th>
<th>Composite reliability (>0.7)</th>
<th>Cronbach α (>0.7)</th>
<th>AVE^2 (>0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concern for information privacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLL^b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLL1</td>
<td>0.89</td>
<td>.75</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>COLL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLL3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLL4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USU^c</td>
<td>0.90</td>
<td>.79</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>USU1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USU2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USU3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USU4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAC^d</td>
<td>0.86</td>
<td>.79</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>IAC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERR^e</td>
<td>0.89</td>
<td>.84</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>ERR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERR3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERR4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer privacy concern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPC^f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPC1</td>
<td>0.88</td>
<td>.84</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>PPC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPC4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPC^g</td>
<td>0.89</td>
<td>.88</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>CPC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPC4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTPC^h</td>
<td>0.89</td>
<td>.87</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>VTPC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTPC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTPC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTPC4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer-related information privacy concern–SSIPC^i</td>
<td>0.87</td>
<td>.82</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>SSIPC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSIPC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSIPC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constructs, subdimensions, and items</td>
<td>Standardized factor loading (>0.7)</td>
<td>Composite reliability (>0.7)</td>
<td>Cronbach α (>0.7)</td>
<td>AVEa (>0.5)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SSIPC4</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer-related information privacy concern – PSIPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIPC5</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIPC6</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIPC7</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIPC8</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHID</td>
<td>0.87</td>
<td>0.84</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>GHID1</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHID2</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHID3</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHID4</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHID</td>
<td>0.90</td>
<td>0.88</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>SHID1</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHID2</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHID3</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHID4</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aAVE: average variance extracted.
bCOLL: collection.
cUSU: unauthorized secondary use.
dIAC: improper access.
eERR: error.
fPPC: psychological privacy concern.
gCPC: communication privacy concern.
hVTPC: virtual territory privacy concern.
iSSIPC: self-shared information privacy concern.
jPSIPC: peer-shared information privacy concern.
kGHID: general health information disclosure.
lN/A: not applicable.
mSHID: specific health information disclosure.
Table 2. Results of the discriminant validity test.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Score, mean (SD)</th>
<th>CFIP-COLLa</th>
<th>CFIP-USUb</th>
<th>CFIP-IACc</th>
<th>CFIP-ERRd</th>
<th>PrPC-PPCe</th>
<th>PrPC-CPCf</th>
<th>PrPC-VTPCg</th>
<th>PrPC-PRIPCh</th>
<th>GHIDi</th>
<th>SHIDj</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFIP-COLL</td>
<td>4.03 (0.66)</td>
<td>0.81^k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFIP-USU</td>
<td>4.01 (0.67)</td>
<td></td>
<td>0.83^l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFIP-IAC</td>
<td>3.94 (0.77)</td>
<td></td>
<td>0.62</td>
<td>0.81^l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFIP-ERR</td>
<td>3.85 (0.82)</td>
<td>0.67</td>
<td>0.69</td>
<td>0.75</td>
<td>0.81^l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrPC-PPC</td>
<td>3.92 (0.78)</td>
<td>0.32</td>
<td>0.35</td>
<td>0.17</td>
<td>0.43</td>
<td>0.81^l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrPC-CPC</td>
<td>3.86 (0.88)</td>
<td>0.24</td>
<td>0.39</td>
<td>0.33</td>
<td>0.36</td>
<td>0.68</td>
<td>0.81^l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrPC-VTPC</td>
<td>3.83 (0.86)</td>
<td>0.30</td>
<td>0.28</td>
<td>0.32</td>
<td>0.31</td>
<td>0.33</td>
<td>0.69</td>
<td>0.70</td>
<td>0.74</td>
<td>0.80^l</td>
<td></td>
</tr>
<tr>
<td>PrPC-PRIPC</td>
<td>3.87 (0.81)</td>
<td>0.19</td>
<td>0.36</td>
<td>0.31</td>
<td>0.33</td>
<td>0.69</td>
<td>0.70</td>
<td>0.74</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHID</td>
<td>3.84 (0.85)</td>
<td>0.34</td>
<td>0.32</td>
<td>0.42</td>
<td>0.36</td>
<td>0.35</td>
<td>0.42</td>
<td>0.30</td>
<td>0.49</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>SHID</td>
<td>3.81 (0.91)</td>
<td>0.30</td>
<td>0.30</td>
<td>0.38</td>
<td>0.31</td>
<td>0.37</td>
<td>0.38</td>
<td>0.41</td>
<td>0.41</td>
<td>0.53</td>
<td>0.83</td>
</tr>
</tbody>
</table>

aCFIP-COLL: concern for information privacy–collection.
bCFIP-USU: concern for information privacy–unauthorized secondary use.
cCFIP-IAC: concern for information privacy–improper access.
dCFIP-ERR: concern for information privacy–error.
ePrPC-PPC: peer privacy concern–psychological privacy concern.
fPrPC-CPC: peer privacy concern–communication privacy concern.
gPrPC-VTPC: peer privacy concern–virtual territory privacy concern.
hPrPC-PRIPC: peer privacy concern–peer-related information privacy concern.
iGHID: general health information disclosure.
jSHID: specific health information disclosure.
kItalicization represents the square roots of the average variance extracted.
lNot applicable.

Respondents’ Characteristics

Table 3 shows the participants’ characteristics. The descriptive statistics demonstrate that respondents were fairly distributed across gender, where 52.9% (174/329) were men and 47.1% (155/329) were women. The age range was positively skewed, indicating that most participants were young, with a range between 25 and 34 years (155/329, 47.1%) being high, followed by the range between 35 and 44 years (102/329, 31%). Approximately half (178/329, 54.1%) of the respondents had undergraduate or graduate education levels, which aligns with previous studies highlighting that people with high education levels tend to search more often for web-based health information [80]. The annual income was fairly distributed, with income between US $60,000 and US $79,999 showing a high range (135/329, 41%) among the provided categories. Most respondents were White (174/329, 52.9%), followed by Hispanic and African American individuals. Approximately half (174/329, 52.9%) of the respondents reported using Twitter for 4 to 6 years. Overall, 52% (171/329) of the respondents indicated that they had a privacy violation experience at least once (for instance, their account was hacked), and 38.9% (128/329) mentioned that they tried to use a fake account on Twitter (at least once).
Table 3. Descriptive statistics (N=329).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Participants, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>174 (52.9)</td>
</tr>
<tr>
<td>Women</td>
<td>155 (47.1)</td>
</tr>
<tr>
<td>Age group (y)</td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>13 (4)</td>
</tr>
<tr>
<td>25-34</td>
<td>155 (47.1)</td>
</tr>
<tr>
<td>35-44</td>
<td>102 (31)</td>
</tr>
<tr>
<td>45-54</td>
<td>33 (10)</td>
</tr>
<tr>
<td>55-64</td>
<td>20 (6.1)</td>
</tr>
<tr>
<td>≥65</td>
<td>7 (2.1)</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
</tr>
<tr>
<td>Elementary</td>
<td>10 (3)</td>
</tr>
<tr>
<td>High school</td>
<td>66 (20.1)</td>
</tr>
<tr>
<td>College</td>
<td>76 (23.1)</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>105 (31.9)</td>
</tr>
<tr>
<td>Graduate</td>
<td>72 (21.9)</td>
</tr>
<tr>
<td>Annual income (US $)</td>
<td></td>
</tr>
<tr>
<td><20,000</td>
<td>23 (7)</td>
</tr>
<tr>
<td>20,000-39,999</td>
<td>59 (17.9)</td>
</tr>
<tr>
<td>40,000-59,999</td>
<td>49 (14.9)</td>
</tr>
<tr>
<td>60,000-79,999</td>
<td>135 (41)</td>
</tr>
<tr>
<td>80,000-99,999</td>
<td>46 (14)</td>
</tr>
<tr>
<td>≥100,000</td>
<td>16 (4.9)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>36 (10.9)</td>
</tr>
<tr>
<td>Asian</td>
<td>23 (7)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>66 (20.1)</td>
</tr>
<tr>
<td>Native American</td>
<td>13 (4)</td>
</tr>
<tr>
<td>White</td>
<td>174 (52.9)</td>
</tr>
<tr>
<td>Mixed</td>
<td>16 (4.9)</td>
</tr>
<tr>
<td>Twitter experience (y)</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>63 (19.1)</td>
</tr>
<tr>
<td>4-6</td>
<td>174 (52.9)</td>
</tr>
<tr>
<td>7-9</td>
<td>66 (20.1)</td>
</tr>
<tr>
<td>10-12</td>
<td>20 (6.1)</td>
</tr>
<tr>
<td>>12</td>
<td>7 (2.1)</td>
</tr>
<tr>
<td>Privacy violation experience (eg, being hacked)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>171 (52)</td>
</tr>
<tr>
<td>No</td>
<td>158 (48)</td>
</tr>
<tr>
<td>Identity misrepresentation (eg, using fake accounts)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>201 (61.1)</td>
</tr>
<tr>
<td>No</td>
<td>128 (38.9)</td>
</tr>
</tbody>
</table>
Analysis of the Dimensions

When implementing second-order variables in a measurement model, there are 2 common approaches: the repeated items approach and the 2-step approach [81]. This study used a repeated items approach to measure reflective second-order constructs. In the repeated items approach, the indicators used to measure the second-order construct are included in the measurement model twice: once as indicators of the second-order construct and once as indicators of the corresponding first-order constructs [82]. This approach allows for a direct assessment of both the second-order and underlying first-order constructs in a single measurement model. The repeated items approach provides a holistic view of the measurement model by simultaneously assessing the second-order construct and its underlying dimensions [83]. Using the repeated items approach provides a more integrated perspective about how CFIP and PrPC are influenced by their respective first-order constructs. It allows for a direct examination of the relationships between the second-order construct and its underlying factors.

Both CFIP and PrPC are conceptualized as second-order reflective constructs, consistent with existing literature. A reflectively measured construct shares a common theme across subdimensions; the dimensions are expected to be highly correlated [84]. Table 2 shows that, consistent with reflective measurement, the 4 dimensions of CFIP (ie, collection, unauthorized secondary use, improper access, and errors) are highly correlated with each other. As expected, the 4 dimensions of PrPC (ie, psychological, communication, virtual territory, and peer-related information privacy concerns) are also highly correlated. Results show that the 4 dimensions of CFIP, as first-order factors, load significantly on the second-order construct. The loadings were 0.91 for collection, 0.80 for unauthorized secondary use, 0.95 for improper access, and 0.88 for errors. Therefore, the interaction among 4 dimensions reflects CFIP, which shares a common theme of losing control over information privacy owing to companies’ sharing behaviors. Furthermore, the 4 dimensions of PrPC also load significantly on the second-order construct. The loadings were 0.90 for psychological privacy concerns, 0.92 for communication privacy concerns, 0.86 for virtual territory privacy concerns, and 0.95 for peer-related information privacy concerns. Thus, interactions among these 4 dimensions represent PrPC, which exhibits a shared theme of privacy concerns about losing personal control owing to web-based peer behaviors.

Structural Model and Path Analysis

Consistent with privacy literature, we controlled variables such as age, gender, education, years of experience, privacy violation experience, and misrepresentation of identity in the structural model [42]. Findings demonstrate that when the control variables are present, the coefficients and R^2 change significantly. Specifically, when age ($\beta=-.12; \ p=.01$), education ($\beta=.19; \ p=.003$), and privacy violation experience ($\beta=-.58; \ p=.008$) are present in the model, they significantly influence health information disclosure. Thus, the findings confirm that young people with high education levels who have not experienced privacy violations are more likely to disclose health information on Twitter. However, no effects of gender, years of experience, and misrepresentation of identity were found on health information–sharing behaviors. We used the structural equation model technique to analyze the factors affecting health information disclosure on Twitter. The results of model fit indexes exhibit a good fit with the goodness-of-fit indexes ($\chi^2_{353}=2.2; \ \text{goodness-of-fit index}=0.84; \ \text{adjusted goodness-of-fit index}=0.81; \ \text{comparative fit index}=0.90; \ \text{normed fit index}=0.91; \ \text{incremental fit index}=0.90; \ \text{standardized root mean square residual}=0.03; \ \text{and root mean square error of approximation}=0.04$) where all indexes meet their recommended cutoff values [85]. Table 4 depicts the summary of path analysis for 4 hypotheses (ie, H1A, H1B, H2A, and H2B).

Figure 2 shows the standardized path coefficients of the structural model. Support is not found for H1A, which proposes that CFIP significantly influences general health information disclosure on Twitter ($\beta=-.07; \ p=0.16$). In contrast, the findings support H1B by confirming that CFIP significantly attenuates sharing behaviors when disclosing specific health information on Twitter ($\beta=-.43; \ p<.001$). H2A, which posits that PrPC would directly affect the disclosure of general health information on Twitter, is supported ($\beta=-.38; \ p<.001$). The analysis also exhibits that PrPC negatively shapes the sharing of specific health information on Twitter ($\beta=-.72; \ p<.001$), and this significant relationship supports H2B.

Regarding H1C and H2C, an alternative model was created for each hypothesis, and the 2 relationships in that hypothesis were constrained [86]. Next, a 2-tailed t test was used to compare the difference between the alternative and the original model. H1C posits a significant difference between the impact of CFIP on general and specific information–sharing behaviors. As the t value was significant ($t_{165}=3.45; \ p<.001$), we confirm that CFIP imposes a more negative effect on specific health information dissemination than on sharing general health information on Twitter. In addition, H2C posits that people may disclose more general health information than specific health information owing to peer-related privacy concerns. The t value was significant ($t_{165}=4.72; \ p<.001$); thus, the effect of PrPC was more prominent in specific health information sharing than in disclosing general health information on Twitter.

Finally, the model explains 41% of the variance in general health information disclosure and 67% in specific health information sharing on Twitter. The R^2 scores suggest that the 2 aspects of information privacy concerns (ie, concerns about the web-based practices of companies and peers’ behaviors) can provide reliable explanatory power to predict the variance in sharing general and specific health information.
Table 4. Path analysis.

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Path</th>
<th>Standardized coefficient, β</th>
<th>SE</th>
<th>Critical ratio</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>CFIP—a—general health information disclosure</td>
<td>−.07</td>
<td>0.04</td>
<td>1.54</td>
<td>Not supported</td>
</tr>
<tr>
<td>1B</td>
<td>CFIP—specific health information disclosure</td>
<td>−.43<sup>b</sup></td>
<td>0.03</td>
<td>4.21</td>
<td>Supported</td>
</tr>
<tr>
<td>2A</td>
<td>PrPC—a—general health information disclosure</td>
<td>−.38<sup>b</sup></td>
<td>0.05</td>
<td>5.37</td>
<td>Supported</td>
</tr>
<tr>
<td>2B</td>
<td>PrPC—specific health information disclosure</td>
<td>−.72<sup>b</sup></td>
<td>0.05</td>
<td>7.12</td>
<td>Supported</td>
</tr>
</tbody>
</table>

^aCFIP: concern for information privacy.
^bSignificance level, P<.001.
^cPrPC: peer privacy concern.

Figure 2. Model paths. H1A: hypothesis 1A; H1B: hypothesis 1B; H2A: hypothesis 2A; H2B: hypothesis 2B; *P<.001.

Discussion

Principal Findings

Information sharing is one of the most important objectives of social media. People use Twitter for conversation, and information sharing can initiate a web-based exchange of ideas about an issue. As health information is more sensitive than other types of personal information, disclosing such data can raise privacy concerns. Most previous studies have mainly focused on privacy concerns related to companies and vendors as they may collect and use individuals’ personal information for other purposes or may not properly protect the collected information [87]. Few studies have also explained privacy concerns related to the web-based behaviors of peers [22]. However, previous literature did not consider both sides of information privacy concerns in a model in the context of social media. Moreover, disclosure behaviors on social media can be contingent upon the type of health information owing to sensitivity levels. Few studies have examined the sharing
behaviors based on the unique characteristics of general and specific health information [86].

Although both antecedents (CFIP and PrPC) have been examined separately in previous studies, this study’s findings could propose scientific novelty. The study differs from previous research in this field because we integrated 2 aspects of privacy concerns (eg, related to companies and peers) to investigate the disclosure of general and specific health information on Twitter. In this study, we examined whether both aspects of information privacy concerns can jointly influence sharing decisions related to health-related information or whether the effect of one aspect can be overshadowed by the other; for instance, whether the nature of the relationships and contexts with 2 different information trustees (ie, vendors and peers) can influence people to share their health information on Twitter. The findings indicate that privacy concerns related to companies play a more significant role in predicting specific health information than in predicting general health information. Privacy concerns related to companies’ practices reflect the collection and misuse of health information by vendors, such as concerns about using health information for data mining and research purposes [88].

Our findings demonstrate that Twitter users are more concerned about vendors and companies using or sharing their personal health information than general health information. Thus, the dimensions of CFIP (ie, collection, unauthorized secondary use, improper access, and errors) become salient only when people want to disclose specific health information (such as information about their chronic diseases, signs, and symptoms or personal health status). Sharing public health information about hospitals, medical costs, and medications is not significantly affected by concerns about how companies may use such information. A plausible justification is that general health information cannot reflect any personal information associated with an individual, and even if it is used for data mining or big data analysis, it will not violate the user’s privacy needs. Consistent with previous studies [89], individuals may deliberately want to share general health information on social media to increase public awareness and knowledge about a medical situation, such as COVID-19 symptoms and vaccination. Regardless of information accuracy or misinformation, users may engage in sharing their general medical knowledge and public information about treatment options with almost no or minor privacy concerns related to companies and vendors’ collection and use practices.

Our results also show that peer-related privacy concerns can significantly shape both general and specific health information sharing on Twitter. Although Twitter is not the same as web-based health communities designed to share health information, many individuals use tweets to share personal and public health information [90]. Web-based interactions with peers may affect their sharing behaviors as they may feel unable to control who can see, comment on, or exchange the health information they share on Twitter. The dimensions of PrPC (ie, psychological, communication, virtual territory, and peer-related information privacy concerns) are important factors in predicting how users may disclose public and personal health information. However, peer-related privacy concerns are more intense for sharing personal than general health information. This finding indicates that when a user wants to share public information about a disease (for instance, cancer, COVID-19, or HIV), they are still concerned about how peers relate such general information to their profile. This concern becomes more salient when the user decides to reveal personal health information about that disease, such as what treatments or medications they are using daily or what medical procedures they will undergo in the future. Previous studies associate sharing personal health information related to physical health problems or mental disorders on web-based P2P networks with stigma [91]. The more sensitive the health information, the more stigma is attached to sharing such information with peers. Thus, being judged by peers (close friends and other web-based users) because of sharing personal health information may prevent them from disclosing that content on Twitter.

Although results show significant impacts of both aspects of privacy concerns on sharing specific health information on Twitter, peer-related privacy concerns are leading factors in shaping personal health information disclosure, more so than privacy concerns associated with companies and third parties. This result confirms the importance of web-based interactions with peers on social media and how to deal with their sharing behaviors, such as commenting or tagging [60]. This finding implies the critical effects of Twitter friends and the circle of people who can see and share tweets about private health information. Individuals may be first concerned about the Twitter circle and how peers would react to the shared personal information about health status and then become worried about how many companies may access such data and how they would use or share them. Thus, secondary dissemination of personal health information by web-based peers through liking, reposting, retweeting, or commenting on posts is more challenging to the maintenance of privacy controls than secondary use of data or unauthorized access to such private information by companies and vendors. Our finding that peer-related privacy concerns have a strong impact on health information sharing compared with privacy concerns associated with companies and third parties offers a counternarrative to prevalent assumptions in digital privacy research. This could be attributed to Twitter’s highly interactive and public nature, which might accentuate peer-related concerns. Previous studies, mainly those conducted in the context of web-based shopping or general social media use, might have overestimated the role of concerns associated with companies and third parties owing to the commercial and private nature of these web-based activities.

Theoretical Implications

This study may offer some theoretical contributions. First, our findings have implications for information privacy research in social media by integrating the existing privacy concern perspectives. This study can open up the discussions through which privacy needs related to companies, third parties, and peer-related aspects can be addressed. Then, this comprehensive mechanism may strongly affect users’ sharing behavior patterns. Second, this study distinguishes the differences between sharing private and public health information on Twitter. Although disclosing specific health information may help share personal experiences related to various medical situations that could be useful for peers, it is more challenging than disseminating general health information. The findings demonstrate how...
company-related and peer-related privacy concerns could shape the 2 types of information-sharing behaviors. Third, this study investigates the effects of information privacy mechanisms on health information sharing in the context of Twitter. The findings can promote discussions about health information disclosure in other P2P networks such as other social media platforms, virtual worlds, or Metaverse. Fourth, exploring the determinants of information sharing regarding different types of privacy concerns can expand our current understanding of knowledge acquisition. As sharing both general and specific health information on social media can contribute to people’s medical knowledge, addressing the barriers to specific health information sharing and removing the privacy challenges can significantly help the procedures of medical knowledge acquisition from web-based interactions with peers.

The study contributes significantly to the theoretical understanding of privacy concerns in web-based health information sharing. The evidence that peer-related privacy concerns influence more strongly than those related to companies and third parties highlights a potential oversight in theoretical perspectives. Current theories largely view companies as the predominant source of digital privacy concerns, and this may need re-evaluation. The results extend existing theories by emphasizing the role of peer interactions in privacy concerns, particularly in public and highly interactive web-based environments such as Twitter. This recognition of the social dimension of privacy concerns could be integrated into existing theoretical models to provide a more comprehensive framework for web-based privacy behavior. Furthermore, although our study is specific to Twitter and health information, the insights gained may have broad applicability. The potential role of peer-related privacy concerns could be a valuable area of exploration in other social media contexts and in sharing other types of sensitive information. Thus, our findings open up new avenues for theoretical exploration and suggest a need for further studies to fully understand the complexities of privacy behavior in the digital age.

Unlike other research approaches, such as experiments, observational data, or qualitative interviews to assess privacy concerns and information sharing, our study used a quantitative survey approach. This allowed us to capture data from a large and more diverse sample, providing a more robust and generalizable understanding of privacy concerns in web-based health information sharing. The strength of our quantitative approach lies in its ability to establish clear patterns and relationships among various factors influencing privacy concerns. This enabled us to derive a more comprehensive and systematic understanding of the factors that significantly influence privacy concerns and health information sharing on Twitter. In terms of comparison, our findings offer a novel perspective about the role of peer-related privacy concerns in shaping web-based health information–sharing behaviors. Previous studies have predominantly focused on company-related and third party–related privacy concerns. However, our study highlighted the paramount influence of peer-related privacy concerns, thus suggesting a reorientation of focus in subsequent research efforts in this area. Our study also provides quantifiable evidence about the relative influence of peer-related privacy concerns and such privacy concerns associated with companies and third parties on Twitter users’ health information–sharing behaviors. Such quantifiable insights could serve as valuable benchmarks for future studies seeking to measure and compare similar variables in different contexts or on different platforms. Our survey methodology, coupled with a comparative analysis of the findings, underscores the contribution of our study to the field, offering both nuanced insights and broad trends that enrich our understanding of privacy concerns and health information sharing on social media platforms.

Practical Contributions

This study also provides several practical and technical implications for promoting privacy protection on Twitter. To promote the sharing of specific health information, it is essential to address privacy concerns related to both companies and peers. However, addressing peer-related privacy concerns is vital to encourage the disclosure of general health information. This is because concerns related to companies and third parties do not significantly predict general health information sharing. Thus, a robust privacy policy cannot be developed regardless of information type. As the 2 types of health information require different ways of satisfying privacy needs, mechanisms and regulations facilitating general and specific health information sharing cannot be the same. Depending on the type of health information, it is essential to customize the ability of Twitter users to control their self-concept and meet different privacy protection requirements. General procedures and privacy policies to regulate the dissemination and use of personal posts are not sufficient to address the information privacy concerns. Twitter should allay users’ privacy concerns about sharing specific health information using advanced technology and management mechanisms. For example, Twitter can enable individuals to restrict access to their shared personal health information. Punitive regulations can be established for inappropriate behaviors (such as retweeting without consent) that may discourage sharing specific health information. All controlling mechanisms and privacy protection functionalities should be easy to understand and use and should not be an additional burden on the users.

As the 2 aspects (company-related and peer-related aspects) of privacy concerns manifest in several dimensions, different features can be developed to address the need for effective protection mechanisms. Twitter can add a new feature to tweets, enabling users to identify the sensitivity of posts related to health information. The content will be recognized as a private post if the sensitivity score (eg, calculated based on a scale ranging from 1 to 10) is more than average. Then, that post is automatically restricted from exposure to everyone, and users can share their thoughts and experiences only with a small crowd. Users can also define terms and conditions for peers or on different platforms. Our survey methodology, coupled with a comparative analysis of the findings, underscores the contribution of our study to the field, offering both nuanced insights and broad trends that enrich our understanding of privacy concerns and health information sharing on social media platforms.
applies high privacy settings for tweets marked as health related. In addition, given the significant role of knowledge in shaping privacy concerns, Twitter should consider educational campaigns or prompts to inform users about these features and the importance of privacy when sharing health information.

In May 2022, Elon Musk called for further investigation into the accuracy of spam and fake account estimates, which Twitter announced to be <5%. Fake and spam accounts could lead to undesirable social interactions with peers, unwanted peer-shared information, and an unpleasant web-based social environment. Twitter needs to use new procedures to detect spam and fake accounts and better control the functionality of Twitter bots to provide a more appropriate web-based social platform. This new mechanism could automatically limit the visibility of private posts containing highly sensitive health information to everyone, even to people who users follow. On the basis of the current Twitter privacy policy, people can mention who can reply to a specific tweet. However, it is hard to confirm who can actually see the posts because of bots and recommendation agents.

Social bots use computer algorithms to artificially create content and interact with people on social media [92]. Twitter bots can be manipulative and purposely change people’s attitudes and opinions about a topic [93]. For instance, bots can share posts with peers who are not following a user but usually read posts with health information content. The existence of bots may be useful for sharing general information but can be very harmful because it can increase exposure to private posts with sensitive health information. A plausible recommendation is to add new categories for sensitive content (such as specific health information) besides the photo, graphics interchange format (GIF), and poll categories. Then, users can create a new circle of people who are allowed to see, reply to, or share these sensitive posts. Users can also customize the configuration and limit the possible unwanted interactions by selecting who can see the posts but cannot share them. This small crowd can be saved for future use and can be easily modified later. The advantage of this new category is that people are notified to customize their Twitter circle depending on different content (eg, highly sensitive, semi-sensitive, and non-sensitive). For instance, a user can select everyone to see and comment on posts containing information about cryptocurrency, high-technology companies, or humanitarian issues. In contrast, the user can select a group of followers to see their thoughts about general health information and choose only a few close friends to see and comment on posts with sensitive health information.

Stringent privacy policies are required to enable Twitter users to limit who (ie, peers) can view, comment on, and share web-based content. People should be able to easily edit with whom they can share health information to exercise control over their personal digital information. Spambots on Twitter should also be controlled, modified, or filtered because they can involve potentially deceptive, harmful, or annoying activities. A more transparent policy is required to detect and deactivate invasive Twitter bots that can automatically like or retweet users’ postings without consent.

Finally, the insights from our study are not only limited to Twitter but also have implications for other social media platforms where users might share health information. Such platforms should recognize the significant role of peer-related privacy concerns and consider introducing similar audience control features. Health professionals and health-related organizations using social media for patient engagement should also be aware of these concerns and take steps to ensure that their communication respects patient privacy. Policy makers should consider our findings when developing regulations for health information sharing on social media to ensure that they address the most significant privacy concerns.

Limitations and Future Studies

Our study also has some limitations that can be considered as opportunities for future studies. First, a web-based survey through MTurk was used to collect data, which may be biased toward people familiar with crowdsourcing platforms. Future studies can use other data collection and sampling strategies, such as collecting data directly from Twitter. Second, we collected data from 329 Twitter users, which may not be a good representative of Twitter users. Next, studies can increase the sample size to reduce sampling bias and improve the generalizability of the findings. Third, we did not consider the effects of cultural dimensions (such as individualism, uncertainty avoidance, etc) on sharing health information on Twitter. It can be interesting for future studies to explore the effect of culture on disclosing different types of health information on social media. Fourth, our study tests a model to analyze health information sharing from the perspective of privacy concerns. However, there may be other essential variables. More studies are required to examine other factors inhibiting and promoting sharing behaviors on social media, such as reputation, incentives, trust, stigma, and social support. Fifth, this study did not examine the accuracy of the health information shared on Twitter or the risks of misinformation because it is not within the scope of this study. Future studies could expand upon our results to investigate the role of misinformation risks in information-sharing behaviors. Finally, our study focused on Twitter as a study context. We encourage future studies to extend the proposed model to other social media platforms (eg, Facebook, TikTok, and Instagram) where web-based interactions with peers are essential.

Conclusions

This study provides insights into health information sharing on Twitter from a privacy perspective. The findings suggest that including CFIP and PrPC constructs can help in better conceptualization of information privacy concerns in the context of social media. The integration of these 2 aspects of information privacy can expand the discussion about internet privacy by addressing the privacy needs associated with the practices of companies, such as collection, unauthorized secondary use, improper access, and errors. It also considers psychological privacy concerns, communication privacy concerns, peers’ sharing behaviors, and territory privacy concerns related to peers in such interpersonal interactions. This interactive approach can provide a more comprehensive analysis of information privacy (related to web-based vendors and web-based peers) and adds...
a more substantial explanation of privacy needs on social media channels (such as Twitter). Privacy concerns may not always prohibit disclosure behaviors on Twitter; it depends on the type of health information. The findings demonstrate that peer-related privacy concerns are more salient to predicting general and specific health information sharing on Twitter than privacy concerns related to companies and third parties. The results could propose practical contributions by shedding more light on the negative impacts of web-based peer behaviors on losing personal control over digital communications and information access. Privacy policies should focus on companies’ practices, such as sharing users’ information with third parties for big data analytics. We suggest mitigating privacy concerns and promoting health information sharing on Twitter by creating policies that tailor privacy needs to the type of health information shared (ie, general or specific).

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Web-based survey—measuring items.
[DOCX File, 15 KB - formative_v8i1e45573_app1.docx]

References

Abbreviations

AVE: average variance extracted

https://formative.jmir.org/2024/1/e45573

JMIR FORMATIVE RESEARCH

Esmailzadeh
CDC: Centers for Disease Control and Prevention
CFIP: concern for information privacy
GIF: graphics interchange format
H1A: hypothesis 1A
H1B: hypothesis 1B
H1C: hypothesis 1C
H2A: hypothesis 2A
H2B: hypothesis 2B
H2C: hypothesis 2C
MTurk: Mechanical Turk
P2P: peer-to-peer
PrPC: peer privacy concern
Evaluation of the Effectiveness of Suicide.ca, Quebec’s Digital Suicide Prevention Strategy Platform: Cross-Sectional Descriptive Study

Louis-Philippe Côté¹, PhD; Julie Lane², PhD

¹Centre for Research and Intervention on Suicide, Ethical Issues and End-of-life practices, Université du Québec à Montréal, Montreal, QC, Canada
²Centre RBC d’expertise universitaire en santé mentale, Université de Sherbrooke, Sherbrooke, QC, Canada

Corresponding Author:
Louis-Philippe Côté, PhD
Centre for Research and Intervention on Suicide, Ethical Issues and End-of-life practices
Université du Québec à Montréal
100 rue Sherbrooke Ouest
Montreal, QC, H2X 3P2
Canada
Phone: 1 (514) 987 4832
Email: cote.louis-philippe.3@courrier.uqam.ca

Abstract

Background: In 2017, the Quebec government assigned the Association québécoise de prévention du suicide (AQPS) to develop a digital suicide prevention strategy (DSPS). The AQPS responded by creating a centralized website that provides information on suicide and mental health, identifies at-risk individuals on the internet, and offers direct crisis intervention support via chat and text.

Objective: This study aims to evaluate the effectiveness of suicide.ca, Quebec’s DSPS platform.

Methods: This study used a cross-sectional descriptive design. The study population comprised internet users from Quebec, Canada, who visited the suicide.ca platform between October 2020 and October 2021. Various data sources, such as Google Analytics, Firebase Console, and Customer Relation Management data, were analyzed to document the use of the platform. To understand the profile of suicide.ca users, frequency analyses were conducted using data from the self-assessment module questionnaires, the intervention service’s triage questionnaire, and the counselors’ intervention reports. The effectiveness of the platform’s promotional activities on social media was assessed by examining traffic peaks. Google Analytics was used to evaluate the effectiveness of AQPS’ strategy for identifying at-risk internet users. The impact of the intervention service was evaluated through an analysis of counselors’ intervention reports and postintervention survey results.

Results: The platform received traffic from a diverse range of sources, with promotional efforts on social media directly contributing to the increased traffic. The requirement of a user account posed a barrier to the use of the mobile app, and a triage question that involved personal information led to a substantial number of dropouts during the intervention service triage. AdWords campaigns and fact sheets addressing suicide risk factors played a crucial role in driving traffic to the platform. With regard to the profile of suicide.ca users, the findings revealed that the platform engaged individuals with diverse levels of suicidal risk. Notably, users of the chat service displayed a higher suicide risk than those who used the self-assessment module. Crisis chat counselors reported a positive impact on approximately half of the contacts, and overall, intervention service users expressed satisfaction with the support they received.

Conclusions: A centralized digital platform can be used to implement a DSPS, effectively reaching the general population, individuals with risk factors for suicide, and those facing suicidal issues.

(JMIR Form Res 2024;8:e46195) doi:10.2196/46195

KEYWORDS

suicide prevention; public health; information and communication technology; digital mental health; helpline; digital strategy; communication technology; information technology; suicide; psychoeducation; mobile app; suicide risk; risk factor; users; mental health; text; website; prevention strategy; prevention; Google Analytics; Canada; Quebec; questionnaire; mobile phone
Introduction

Overview

Information and communication technologies (ICTs) are increasingly used for suicide prevention. As demonstrated in a scoping study by Rassy et al [1], ICTs are used in a multitude of universal, selective, and indicated suicide prevention strategies.

As defined by the World Health Organization (WHO) [2], universal prevention strategies are designed to reach a whole population. They aim to optimize health for all and minimize the risk of suicide by removing barriers to care, expanding access to support services, and strengthening protective factors. Universal suicide prevention strategies using ICTs typically aim to promote mental health literacy, health behaviors, and help seeking [1]. They often take the form of psychoeducational websites and web-based awareness campaigns. Selective prevention strategies, in contrast, are aimed at specific groups or communities [2]. They can be developed based on sociodemographic or geographic characteristics or according to the prevalence of risk factors [3]. They may target individuals who do not exhibit suicidal behaviors but who are at risk for suicide [2]. Selective suicide prevention strategies using ICTs focus on identifying suicidal internet users, offering mental health self-management programs, and providing web-based training [1]. These strategies are, for the most part, included in broader programs involving direct contact between distressed individuals and health professionals. Finally, indicated prevention strategies focus on individuals who have suicidal ideation or who have previously attempted suicide [2]. Indicated suicide prevention strategies using ICTs include web-based suicide risk assessment and triage systems, web-based psychotherapy, chat- or text-based crisis interventions, and digital tools to support face-to-face interventions [1].

Despite the vast body of scientific literature discussing the application of ICT in suicide prevention, few studies have addressed how multiple ICT-based interventions can be combined and articulated together in the development of a digital suicide prevention platform [3] or, more broadly, as part of a digital suicide prevention strategy (DSPS). In a context where an increasing number of countries are developing digital health strategies [4], guidelines must be developed to guide organizations that wish to develop a DSPS. To deploy the 3 levels of prevention defined by the WHO (universal, selective, and indicated), it is crucial that these guidelines contain information on the best strategies for reaching the general population, identifying people with risk factors for suicide on the internet, and providing direct support to people struggling with suicidal issues.

Rassy et al [1] discussed ICT-based interventions aimed at a broad audience, including educational websites, web-based awareness campaigns, and social media platforms. They spotlighted the It Gets Better campaign launched in 2010, primarily directed at bullied teenagers, especially those identifying as gay, to prevent suicide. The campaign involved videos created by gay adults that conveyed the message that these teens’ lives would improve over time. These videos were hosted on an educational website and YouTube channel and extensively shared on social media, accumulating >50 million views [5]. Despite the limited evaluation of the effects of educational websites, web-based awareness campaigns, and social media initiatives, studies have demonstrated promising outcomes in terms of reducing suicidal ideation and behavior as well as enhancing knowledge, attitudes, and help-seeking behavior [1].

As highlighted by Rassy et al [1], further research is required to determine the specific characteristics of these interventions that are associated with positive outcomes. In addition, there is a need to develop effective methods for identifying beneficial websites and social media posts and to inform users about or guide them toward internet content that may be of help to them.

Using Google searches holds promise in identifying individuals at risk of suicide on the internet and guiding them toward beneficial web-based content, as individuals with suicidal ideations tend to search for suicide-related information on the internet [6-8]. Indeed, multiple studies have established a correlation between suicide-related Google searches and suicide rates across diverse populations [9-11]. The findings from these studies suggest that suicide-related Google searches can be used to identify individuals at risk of suicide on the internet, recognize intervention opportunities, and facilitate real-time monitoring of suicide risk at a population level. However, it is important to acknowledge that only a small number of real-world interventions based on Google searches have been developed to date.

An example of such an intervention is the study conducted by Sueki et al [12], in which they implemented a web-based gatekeeping intervention in Japan. This intervention involved targeted web-based advertisements directed at individuals searching for suicide-related terms on the web, redirecting them to an email-based consultation. The results of the study indicated a significant reduction in users’ suicidal ideation 4 weeks after being identified on the internet and redirected to the email-based intervention. Furthermore, Onie et al [13] conducted 2 studies to assess engagement levels with 2 advertisement campaigns on Google targeting individuals contemplating suicide. The researchers noted significant engagement with both campaigns, as evidenced by high click-through and conversion rates. Similarly, Google displays crisis helpline numbers at the top of the search results when a user performs a suicide-related search. To our knowledge, no empirical data on the actual impact of Google initiative on helplines use worldwide have been published to date. In addition, data on the characteristics of individuals who were identified by Google and directed to help services are also unavailable.

Regarding ICT-based interventions aimed at providing direct support to individuals facing suicidal issues, crisis lines that offer text- and chat-based services are likely to be the primary source of assistance for those seeking help on the internet. Research on the use and effectiveness of crisis text- and chat-based services is limited. Studies so far have shown that they seem effective in reducing users’ distress [14-18]. However, they reported quite different results regarding the suicidality of users. For example, evaluation of the Netherlands’ 1130Online chat service [16] and the US Lifeline Crisis Chat [16] suggested that >80% of their users were experiencing suicidal thoughts.
In contrast, evaluation of crisis text lines in the United States and Australia [17,18] indicated that the proportion of users experiencing suicidality was <30%.

In addition, studies suggest that conducting suicide risk assessments during chat- and text-based interactions poses challenges, resulting in fewer assessments completed by counselors [14,19]. These gaps in suicide risk assessments can impact the identification of callers at risk of suicide and potentially bias the reported statistics on suicidal callers by these services. Consequently, providing an accurate description of suicidality among users of these services becomes challenging. Therefore, it is imperative for crisis lines offering text- and chat-based interventions to establish strategies that enable a precise depiction of service users and an assessment of their level of suicidality, rather than solely relying on intervention reports completed by counselors.

In a similar vein, Zabelski et al [20] emphasized the need to investigate the accessibility of chat and text services for high-risk populations in their policy focus review of suicide prevention research on crisis lines. They suggested that if the effectiveness of these services is established, additional studies should be conducted to better understand the demographics and risk profiles of service users as well as to develop effective strategies to promote these services among high-risk populations.

This brief overview of ICT-based interventions highlights the potential of ICTs in the field of suicide prevention. However, it also underscores the existence of significant knowledge gaps that can have important implications for the development of DSPSs. Moreover, essential information required by mental health resources seeking to incorporate ICT-based interventions into their clinical practices is frequently absent from scholarly articles. For example, the technical aspects of developing, maintaining, and operating digital interventions have rarely been discussed [21,22]. Furthermore, there is a dearth of comprehensive research that adequately examines the implementation characteristics of ICT-based interventions in real-world settings, encompassing both the obstacles and factors that aid their implementation [23,24]. Ultimately, to support well-informed decision-making regarding the development of DSPSs, it is vital to establish whether ICT-based suicide prevention strategies are effectively reaching various target audiences or whether they are reaching the same individuals through different means. Therefore, research is necessary to explore digital platforms that incorporate a variety of ICT-based interventions, evaluate the presence of diverse user profiles on these platforms, and analyze the specific interventions they use.

Background
In 2017, the Quebec government asked the Association québécoise de prévention du suicide (AQPS) to set up a DSPS. This DSPS was intended to inform the population about suicide and mental health resources, identify people at risk for suicide on the internet, and offer web-based intervention to people who rarely use traditional help services.

The AQPS then launched a broad consultation process with Quebec suicide prevention stakeholders [7]. The objective of this consultation was to paint a picture of the current practices and needs regarding the use of digital technologies in suicide prevention in Quebec. In general, the consultation participants stressed the importance of developing new digital services by building on the programs, services, and intervention practices already in place in Quebec and of using a centralized website that would make it possible to meet several objectives (inform, identify, and intervene).

In this context, the AQPS, in partnership with its technology partner (the Montreal-based technology firm Nventive), developed the suicide.ca digital platform [25]. Suicide.ca is the official digital platform of the Quebec’s DSPS. Through this platform, a multitude of universal, selective, and indicated suicide prevention strategies are deployed.

Objectives
This study illustrates, through the example of suicide.ca, how a single digital platform can be used to reach the general population, identify people with risk factors for suicide on the internet, and provide direct support to people dealing with suicidal issues. Specifically, this study aims to document the use of the suicide.ca platform; describe the profile of users of the suicide.ca platform; and estimate the effectiveness of universal, selective, and indicated prevention strategies deployed via the suicide.ca platform.

Methods
Suicide.ca Platform
This section describes the universal, selective, and indicated suicide prevention strategies implemented through the suicide.ca platform.

Suicide.ca’s Universal Prevention Strategies
The components of the suicide.ca platform that enable the deployment of universal prevention strategies are its search engine optimization (SEO), the psychoeducation pages, the blog pages, and the promotion of the platform on social media.

SEO Strategy
To fulfill its mission, a digital suicide prevention platform must be known to the public and easily found on the internet. This is why positioning itself favorably in search engine results is at the heart of the suicide.ca platform’s promotional strategy. To do so, an SEO strategy was developed. SEO refers to all the strategies implemented to improve the natural referencing of a website on search engines. For example, all the content on the platform was carefully crafted with the explicit objective of prioritizing search engine ranking.

Psychoeducation Pages
When the user arrives at the platform’s home page, they are prompted to choose one of the following sections: I am thinking about suicide, I’m worried about someone with suicidal thoughts, or I’m grieving a loss by suicide. The section for suicidal people is presented as a guide to getting better. The content of the psychoeducation pages can be found on the platform [26].
Blog Pages
The suicide.ca platform includes a blog. The blog facilitates the regular generation of fresh content, thereby aiding the enhancement of the platform’s natural search engine rankings. It also provides a great deal of flexibility in terms of the topics covered. Content is sometimes developed based on frequent searches by suicide.ca users on search engines.

Promotion of the Platform on Social Media
The AQPS promotes the platform via posts on social media. These posts are generally aimed at promoting the intervention service and communicating information found on the platform. Content from the psychoeducation pages and blog pages is regularly used to create new posts.

Suicide.ca’s Selective Prevention Strategies
The components of the suicide.ca platform that enable the deployment of selective prevention strategies are the fact sheets on suicide risk factors, AdWords campaigns, the self-assessment module, the self-management tools, and the mobile app.

Fact Sheets on Risk Factors Associated With Suicide
The suicide.ca platform includes a section with numerous fact sheets on the risk factors associated with suicide. These fact sheets address mental health problems (eg, depression, anxiety, and schizophrenia) and difficult life situations (eg, relationship problems, money problems, and isolation). These fact sheets have a dual function: to help users cope with their situation and to identify the internet users who present risk factors for suicide on the web.

AdWords Campaigns
AdWords is a paid referencing system developed by Google. This allows organizations to promote their services using paid advertisements. These advertisements appear when internet users perform searches with keywords or expressions that are associated with the services offered. The AQPS frequently uses AdWords campaigns to identify internet users who are conducting research related to suicide, depression, or anxiety.

Self-Assessment Module
A self-assessment module consisting of French-validated questionnaires (refer to the details in the Data Collection Methods and Tools section) is available to users on the Taking Stock of Your Mental Health page.

The self-assessment is performed in 2 stages. During the first stage, users are invited to answer questionnaires allowing them to take stock of their suicidal thoughts, to identify the presence of signs of psychological distress, and to evaluate their positive mental health. If the result of this first evaluation reveals that the user is experiencing suicidal ideation, they are invited to contact the platform’s intervention service via a redirection button. If the user is not referred to the intervention service and the results indicate that they may have a mental health disorder (Kessler Psychological Distress Scale [K10] score [27]), additional questionnaires are offered to identify the presence of symptoms related to various mental health disorders.

Self-Management Tools and Mobile App
The platform contains a section called My Tools, which includes a safety plan and various mental health self-management tools. To make the various self-management tools accessible to people who do not have a smartphone, they have been developed in the web-mobile format. Therefore, users can access their information via the web or the platform’s mobile app (eg, like on Facebook or Twitter). Consequently, the user must open an account to access the tools. However, a user account is not required to access the intervention service and the self-assessment module.

Suicide.ca’s Indicated Prevention Strategies
The components of the suicide.ca platform that enable the deployment of indicated prevention strategies are the chat and text intervention service, the triage system, the suicide risk assessment tools, and the follow-up emails.

Intervention Service by Chat and Text Messaging
Suicide.ca is a digital intervention service that operates 24 hours a day, 7 days a week. It is operated by the AQPS and 3 suicide prevention centers. The service can be accessed via the web, the mobile app, or by SMS text messaging.

Triage
The intervention service triage system assigns a priority rating to contact requests. The first questions ask about age, gender, and reason for contact. Individuals at the risk of suicide are then asked, Are you planning to attempt suicide in the coming minutes or hours? If the user answers yes, the triage ends, and they are sent to the queue with a priority rating. If the user answers no or unsure, they are prompted to complete the Suicidal Ideation Attributes Scale—French version (SIDAS-FR [28]). Finally, the user may, if they wish, specify in a few words the reason for contacting the service.

Follow-Up Emails
At the end of the exchange, the counselors can ask users if they would like to receive a follow-up email. These follow-up emails are generally used when the user anticipates a difficult event that could lead to a suicidal crisis (eg, court appearance and meeting with an ex-spouse).

Suicide.ca Prevention Model
Using the classification proposed by Rassy et al [1], Textbox 1 illustrates how the different components of the platform are complementary and how they deploy universal, selective, and indicated prevention strategies.
Textbox 1. Suicide.ca prevention model.

<table>
<thead>
<tr>
<th>Universal prevention strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Search engine optimization</td>
</tr>
<tr>
<td>• Psychoeducation pages</td>
</tr>
<tr>
<td>• Active promotion of the platform on social media</td>
</tr>
<tr>
<td>• Blog pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selective prevention strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fact sheets on suicide risk factors</td>
</tr>
<tr>
<td>• AdWords campaigns</td>
</tr>
<tr>
<td>• Self-assessment</td>
</tr>
<tr>
<td>• Self-management tools and mobile app</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicated prevention strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Intervention service by chat and text</td>
</tr>
<tr>
<td>• Triage</td>
</tr>
<tr>
<td>• Follow-up email</td>
</tr>
</tbody>
</table>

Study Design

The evaluation of the suicide.ca platform used a cross-sectional design to document the use of the suicide.ca platform; to describe the profile of users; and to estimate the effectiveness of universal, selective, and indicated prevention strategies deployed through the platform.

Population

The population under study in the evaluation of the suicide.ca platform were the internet users who visited the suicide.ca platform.

Recruitment

This study was based on the analysis of secondary data collected by AQPS. Data were collected from internet users from Quebec, Canada, who visited the suicide.ca platform between October 2020 and October 2021.

Data Collection Methods and Tools

Overview

The evaluation of the suicide.ca platform was carefully considered during its development. The questionnaires integrated into the platform’s various components made it possible to measure the platform’s impact. The platform collects various types of data.

Google Analytics

Google Analytics is a statistical tool offered by Google. It allows website administrators to analyze the behavior of their users. The analytics used in this study are the number of times different pages of the platform were visited, the number of visitors (notwithstanding the number of visits), the sources of traffic acquisition on the platform (eg, search engines, social networks, and hyperlinks on other websites), and the landing pages (the first pages visited by users).

Firebase Console

The Firebase Console platform is a mobile app design tool supported by Google. It was used to count the number of times the My Tools app was downloaded and the number of user accounts created.

Self-Assessment Module Questionnaires

The self-assessment module consists of a series of validated questionnaires in French (Table 1). The results of the self-assessments are recorded in the platform’s Customer Relationship Management (CRM).
Table 1. Self-assessment questionnaires.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Screening questionnaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive mental health</td>
<td>MHC-SF<sup>a</sup> [29]</td>
</tr>
<tr>
<td>Psychological distress</td>
<td>K10<sup>b</sup> [27]</td>
</tr>
<tr>
<td>Suicidal ideation</td>
<td>SIDAS-FR<sup>c</sup> [28]</td>
</tr>
<tr>
<td>Depression</td>
<td>PHQ-9<sup>d</sup> [30]</td>
</tr>
<tr>
<td>Bipolarity</td>
<td>MDQ<sup>e</sup> [31,32]</td>
</tr>
<tr>
<td>Social phobia</td>
<td>SPIN<sup>f</sup> [33]</td>
</tr>
<tr>
<td>Generalized anxiety</td>
<td>PSWQ<sup>g</sup> [34,35]</td>
</tr>
<tr>
<td>Addiction: alcohol</td>
<td>DÉBAA<sup>h</sup> [36]</td>
</tr>
<tr>
<td>Addiction: drugs</td>
<td>DÉBAD<sup>i</sup> [36]</td>
</tr>
<tr>
<td>Addiction: gambling</td>
<td>DÉBA-Jeu<sup>j</sup> [36]</td>
</tr>
<tr>
<td>Dependency: screens</td>
<td>DÉBA-internet<sup>k</sup> [37]</td>
</tr>
<tr>
<td>Posttraumatic stress</td>
<td>PCL-5<sup>l</sup> [38]</td>
</tr>
<tr>
<td>Social support</td>
<td>SPS<sup>m</sup> [39,40]</td>
</tr>
<tr>
<td>Reasons to live</td>
<td>RFL<sup>n</sup> [41,42]</td>
</tr>
</tbody>
</table>

^aMHC-SF: Mental Health Continuum Short Form.
^bK10: Kessler Psychological Distress Scale.
^cSIDAS-FR: Suicidal Ideation Attributes Scale—French version.
^dPHQ-9: Patient Health Questionnaire-9.
^eMDQ: Mood Disorder Questionnaire.
^fSPIN: Spin Phobia Inventory.
^gPSWQ: Penn State Worry Questionnaire.
^hDÉBAA: Dépistage et Évaluation du Besoin d’Aide—Alcool.
ⁱDÉBAD: Dépistage et Évaluation du Besoin d’Aide—Drogues.
^jDÉBA-Jeu: Dépistage et Évaluation du Besoin d’Aide—Jeu.
^kDEBA-internet: Dépistage et Évaluation du Besoin d’Aide—internet.
^lPCL-5: PTSD Checklist for DSM-5.
^mSPS: Social Provisions Scale.
ⁿRFL: Reasons for Living Inventory.

Triage Questionnaire

The triage questionnaire includes inquiries about age, gender, reason for contact, whether the individual is planning to attempt suicide in the near future, and the SIDAS-FR. The results of the triage questionnaire are recorded in the platform’s CRM.

Intervention Reports

In this study, the data used from the intervention reports were the reasons for contact, the needs and issues discussed with the users, and the users’ suicide risk ratings assigned by the counselors (suicide risk ratings: no foreseeable risk for a suicide attempt in the near future, low foreseeable risk for a suicide attempt in the near future, high foreseeable risk for a suicide attempt in the near future, and imminent danger of suicide attempt or attempt in progress). The categories of needs and issues discussed are not mutually exclusive. The intervention report also contains a section where the counselor is asked to indicate whether they think the user feels better and is more able to cope with their difficulties as a result of the intervention (response choice=yes, unsure, and no). These intervention reports are recorded in the platform’s CRM.

Postintervention Questionnaire

This questionnaire includes 9 items in the form of 4-point Likert scales (1=strongly agree to 4=strongly disagree). The items focus on users’ perceptions of the quality of interventions and their impact on distress, feeling of being able to cope with the situation, and suicidal ideation. The items are illustrated in detail in the Results section.

Analysis Methods

For each objective, several data sources were consulted, and different types of analyses were performed.
Objective 1: To Document the Use of the Suicide.ca Platform

To document platform use, Google Analytics data from the suicide.ca website [26] were analyzed to describe platform traffic and the number of visits to the psychoeducation pages. The Firebase Console data from the My Tools mobile app were analyzed to document the number of downloads of the mobile app and the number of user accounts created. CRM data were analyzed to describe the number of people who completed the self-assessment, the number of people who accessed the triage of the intervention service, and the number of interventions provided.

Objective 2: To Describe the Profile of Users of the Suicide.ca Platform

To describe the profile of platform users, frequency analyses were conducted using data from the self-assessment questionnaires, the triage questionnaire, and the reasons for contact recorded in the intervention reports.

Objective 3: To Describe the Impact of Universal, Selective, and Indicated Prevention Strategies Deployed Through the Suicide.ca Platform

The impact of the platform’s promotional activities on social media was investigated through an analysis of the platform’s traffic peaks. First, a visual inspection of the traffic curve was performed using Google Analytics. It was then decided to define the traffic peaks as days with >600 visits. This threshold corresponded to twice the average traffic and days when the increase in traffic was evident in the Google Analytics graph. AQPS internal documentation was then inspected to determine if these dates corresponded to dates when AQPS conducted promotional activities on social media or traditional media (eg, web-based publications, radio, or television interviews). The data analyzed to assess the impact of AQPS promotional activities cover the period from October 15, 2020, to October 17, 2021.

With respect to the AdWords campaigns and the suicide risk factor fact sheets, 2 analytical strategies were used to estimate their effectiveness. The first strategy was to use Google Analytics to describe the traffic acquisition sources of suicide.ca. In digital marketing, traffic acquisition sources identify how visitors to a website accessed a site (eg, via search engine queries, social media posts, AdWord advertisements [43]). Thus, traffic acquisition sources were used to describe the number and proportion of users who arrived at the site through an AdWords campaign. The second strategy was to use Google Analytics to identify the top landing pages on the platform. A landing page is the first page a user views when they arrive on the platform (eg, risk factor information page, psychoeducation page, and resource information page). In digital marketing, landing pages are used to better understand what users were looking for on the internet before they arrived at a site or what caught their attention [43]. For example, landing pages were used to describe the number and proportion of users who began their site visit by viewing a suicide risk factor fact sheet. The conversion rate for the AdWords campaigns was calculated based on the number of individuals who clicked on the advertisement and initiated the crisis chat triage. The analytical data on AdWords campaigns and fact sheets cover the period from December 31, 2020, to October 31, 2021.

The impact of the intervention service was assessed via an analysis of counselors’ Perceptions of the impact of their interventions (recorded in intervention reports) and the postintervention survey results. Approximately 3473 interventions were provided between the postintervention survey going live in late January 2021 and October 2021. Therefore, we estimated the response rate to the postintervention survey to be approximately 10%. As the SMS text messaging intervention service was in development at the time of data collection, only the data for the chat-based intervention are presented.

Ethical Considerations

This study is based on the secondary analysis of anonymous data collected by AQPS. Consent for primary data collection was obtained through a waiver form in suicide.ca’s self-assessment module and a consent form in the postintervention questionnaire of the intervention service. These forms specify that data collection is for the purpose of continuous service improvement and that any data shared with third parties will be anonymized and subjected to ethics approval by an institutional research ethics committee. The participants were not offered any compensation for their involvement in the study. Ethics approval for the secondary analysis of all data presented in this study was obtained from the institutional review board of the Centre intégré universitaire de santé et de services sociaux de l’Estrie—Centre hospitalier universitaire de Sherbrooke (project 2021-4016).

Results

In this section, the results concerning platform use; the profile of platform users; and the effectiveness of universal, selective, and indicated prevention strategies deployed through the suicide.ca platform are presented.

Use of the Suicide.ca Platform

Overview

A total of 127,495 visits were made to the suicide.ca platform from October 15, 2020, to October 17, 2021. The average number of visits per day was 346.45 (median 313.5, IQR 257-389). The least busy day had 123 visits, and the busiest day had 1774 visits.

Visits to Psychoeducation Pages

The number of visits to the psychoeducation pages of the 3 main sections of suicide.ca were much lower than the total number of visits to the site. Moreover, the number of page views dropped significantly after the title pages of all 3 sections were visited (Table 2).
Table 2. Suicide.ca’s psychoeducation pages.

<table>
<thead>
<tr>
<th>Psychoeducation pages</th>
<th>Visits to the page or website (n=127,495), n (%)</th>
<th>Users who visited the page or website (n=100,114), n (%)</th>
<th>Average visit duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“I’m thinking about suicide” (title page)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taking stock of your mental health</td>
<td>14,206 (11.55)</td>
<td>10,063 (10.05)</td>
<td>45.37</td>
</tr>
<tr>
<td>Taking care of yourself</td>
<td>5312 (4.17)</td>
<td>4478 (4.47)</td>
<td>124.66</td>
</tr>
<tr>
<td>Finding support services</td>
<td>3148 (2.47)</td>
<td>2642 (2.64)</td>
<td>106.90</td>
</tr>
<tr>
<td>Talking about it with your loved ones</td>
<td>2051 (1.6)</td>
<td>1778 (1.78)</td>
<td>153.31</td>
</tr>
<tr>
<td></td>
<td>1238 (0.97)</td>
<td>1098 (1.09)</td>
<td>120.84</td>
</tr>
<tr>
<td>“I’m worried about someone with suicidal thoughts” (title page)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recognizing signs of distress</td>
<td>9155 (7.18)</td>
<td>7331 (7.32)</td>
<td>54.52</td>
</tr>
<tr>
<td>Supporting someone in difficulty</td>
<td>5546 (4.35)</td>
<td>4306 (4.30)</td>
<td>105.44</td>
</tr>
<tr>
<td>Talking about suicide with someone</td>
<td>1788 (1.40)</td>
<td>1573 (1.58)</td>
<td>161.44</td>
</tr>
<tr>
<td>Respecting your limits and taking care of yourself</td>
<td>1544 (1.21)</td>
<td>1344 (1.34)</td>
<td>161.06</td>
</tr>
<tr>
<td>Helping someone recover</td>
<td>1056 (0.83)</td>
<td>955 (0.95)</td>
<td>124.29</td>
</tr>
<tr>
<td></td>
<td>1012 (0.79)</td>
<td>872 (0.87)</td>
<td>150.34</td>
</tr>
<tr>
<td>“I’m grieving a loss by suicide” (title page)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning about a death by suicide</td>
<td>3414 (2.67)</td>
<td>2695 (2.69)</td>
<td>64.80</td>
</tr>
<tr>
<td>Understanding suicide grief</td>
<td>857 (0.67)</td>
<td>695 (0.69)</td>
<td>77.92</td>
</tr>
<tr>
<td>Suicide grief and children</td>
<td>812 (0.63)</td>
<td>653 (0.65)</td>
<td>90.88</td>
</tr>
<tr>
<td>When to seek professional help</td>
<td>591 (0.46)</td>
<td>441 (0.44)</td>
<td>28.77</td>
</tr>
<tr>
<td>Resuming your life after grieving a death by suicide</td>
<td>538 (0.42)</td>
<td>423 (0.42)</td>
<td>113.32</td>
</tr>
<tr>
<td>Talking about it with family and friends</td>
<td>451 (0.35)</td>
<td>377 (0.37)</td>
<td>129.43</td>
</tr>
<tr>
<td></td>
<td>269 (0.21)</td>
<td>250 (0.25)</td>
<td>154.20</td>
</tr>
</tbody>
</table>

Number of People Who Completed the Self-Assessment Module

With regard to self-assessment, 2488 users completed the SIDAS-FR. Moreover, 3100 users completed the K10 questionnaire, and 2644 users completed the Mental Health Continuum Short Form questionnaire. Overall, 1471 users completed phase 2 of the self-assessment module.

Number of Downloads of the Mobile App Versus Number of User Accounts Created

The analysis of downloads of the mobile app and the creation of user accounts was carried out for the period from November 23, 2020, to October 17, 2021. During this period, there were 5159 downloads of the mobile app, and 2178 user accounts were created.

Number of Crisis Interventions Provided and Triage Dropout Rate

From October 15, 2020, to October 17, 2021, suicide.ca’s intervention service received 6152 intervention requests. Of these 6152 requests, 1540 (25.02%) did not result in an intervention. The intervention reports provided reasons for not being able to intervene in 1321 of these cases. The most common explanation was the lack of response from the users at the beginning of the contact (840/1321, 63.59%).

Analysis of the intervention service triage data was conducted for the period October 15, 2020, through July 25, 2021 (Figure 1). As the gender question was optional, it was not included in the analysis. Of the 6300 users who responded to the first question, only 2711 (42.86%) completed the triage. The last question, which asked for the user’s first name or alias, resulted in a significant dropout rate. Specifically, only 46.54% (2711/5825) of the users who were presented with the question actually provided a response. As for the questions about suicidality, they resulted in few dropouts. Age, reason for contact, and plan to attempt suicide in the coming minutes or hours were not associated with the probability of abandonment during triage.
Profile of Users of the Suicide.ca Platform

To describe the profile of platform users, frequency analyses were conducted using data from the self-assessment questionnaires, the triage questionnaire, and the reasons for contact recorded in the intervention reports.

Characteristics of Individuals Using the Self-Assessment Module

Table 3 indicates the results of the users who undertaken a self-assessment. With regard to suicidality, the average score of the 2488 users who completed the SIDAS-FR questionnaire was 13.47 (SD 14.04; median 10). Among them, 868 (34.89%) reported no suicidal ideation in the last 30 days, whereas 825 (33.16%) reported severe suicidal ideation. In terms of psychological distress, of the 3100 users who completed the K10 questionnaire, 2721 (87.78%) obtained a score indicating the presence of a mental health disorder. With regard to positive mental health, of the 2644 users who completed the Mental Health Continuum Short Form questionnaire, 1024 (38.73%) exhibited languishing mental health.

In the 1471 users who completed phase 2 of the self-assessment, depressive and anxiety disorders were the most prevalent. Specifically, 62.2% (915/1471) of the users obtained a Patient Health Questionnaire-9 score indicating the presence of depression, 61.73% (908/1471) of the users obtained a Penn State Worry Questionnaire score indicating the presence of generalized anxiety disorder, and 53.2% (451/847) of the users obtained a Spin Phobia Inventory score indicating the presence of social phobia disorder.
Table 3. Results of the completed self-assessments.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Self-assessment, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity of suicidal ideation (SIDAS-FR(^a); n=2488)</td>
<td></td>
</tr>
<tr>
<td>Absence of suicidal ideation (0)</td>
<td>868 (34.89)</td>
</tr>
<tr>
<td>Low severity (1-12)</td>
<td>482 (19.37)</td>
</tr>
<tr>
<td>Medium severity (13-19)</td>
<td>313 (12.58)</td>
</tr>
<tr>
<td>High severity (>20)</td>
<td>825 (33.16)</td>
</tr>
<tr>
<td>Psychological distress (K10(^b); n=3100)</td>
<td></td>
</tr>
<tr>
<td>Probable presence of a mental health problem</td>
<td>2721 (87.77)</td>
</tr>
<tr>
<td>Positive mental health (MHC-SF(^c); n=2644)</td>
<td></td>
</tr>
<tr>
<td>Flourishing mental health</td>
<td>256 (9.68)</td>
</tr>
<tr>
<td>Moderate mental health</td>
<td>1364 (51.59)</td>
</tr>
<tr>
<td>Languishing mental health</td>
<td>1024 (38.73)</td>
</tr>
<tr>
<td>Psychological disorders (n=1471)</td>
<td></td>
</tr>
<tr>
<td>Depression (PHQ-9(^d))</td>
<td>915 (62.2)</td>
</tr>
<tr>
<td>Bipolarity (MDQ(^e))</td>
<td>89 (6.05)</td>
</tr>
<tr>
<td>Social phobia (SPIN(^f); n=847)</td>
<td>451 (53.2)</td>
</tr>
<tr>
<td>Generalized anxiety (PSWQ(^g))</td>
<td>908 (61.73)</td>
</tr>
<tr>
<td>Addiction: alcohol (DÉBBAA(^h))</td>
<td>149 (10.13)</td>
</tr>
<tr>
<td>Addiction: drugs (DÉBAD(^i))</td>
<td>246 (16.72)</td>
</tr>
<tr>
<td>Addiction: gambling (DÉBAJeu)</td>
<td>30 (2.04)</td>
</tr>
<tr>
<td>Addiction: screens (DÉBA-internet(^k))</td>
<td>320 (21.75)</td>
</tr>
<tr>
<td>Posttraumatic disorder (PCL-5(^l))</td>
<td>414 (28.14)</td>
</tr>
</tbody>
</table>

\(^a\)SIDAS-FR: Suicidal Ideation Attributes Scale—French version.
\(^b\)K10: Kessler Psychological Distress Scale.
\(^c\)MHC-SF: Mental Health Continuum Short Form.
\(^d\)PHQ-9: Patient Health Questionnaire.
\(^e\)MDQ: Mood Disorder Questionnaire.
\(^f\)SPIN: Spin Phobia Inventory.
\(^g\)PSWQ: Penn State Worry Questionnaire.
\(^h\)DÉBBAA: Dépistage et Évaluation du Besoin d’Aide—Alcool.
\(^i\)DÉBAD: Dépistage et Évaluation du Besoin d’Aide—Drogues.
\(^j\)DÉBA: Dépistage et Évaluation du Besoin d’Aide—Jeu.
\(^l\)PCL-5: PTSD Checklist for DSM-5.

Characteristics of Individuals Using the Intervention Service

Table 4 presents information on the age and gender of intervention service users. Information on user age was available for 4000 interventions. Most users were aged between 18 and 40 years (2829/4000, 70.73%). Information on the gender identity of users was available for 3569 interventions. Most users identified as woman (2555/3569, 71.59%). Users who identified as transgender, nonbinary, or listed other were generally young people aged ≤25 years (235/280, 83.9%). Information on the reason for contact was available for 4000 interventions (Table 5): 84.48% (3379/4000) of the users indicated I am thinking about suicide in the triage questionnaire and 10.1% (404/4000) of the users indicated I am worried about a loved one, and 5.43% (217/4000) indicated I am bereaved by suicide.
Table 4. Sociodemographic profile of the intervention service users.

<table>
<thead>
<tr>
<th>Age group (y)</th>
<th>Gender identity, n (%)</th>
<th>Man (n=734)</th>
<th>Transgender, nonbinary, or other (n=280)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Woman (n=2555)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤17</td>
<td>211 (8.26)</td>
<td>106 (14.4)</td>
<td>76 (27.1)</td>
</tr>
<tr>
<td>18-25</td>
<td>1002 (39.22)</td>
<td>232 (31.6)</td>
<td>159 (56.8)</td>
</tr>
<tr>
<td>26-40</td>
<td>1017 (39.8)</td>
<td>213 (29)</td>
<td>43 (15.4)</td>
</tr>
<tr>
<td>≥41</td>
<td>325 (12.72)</td>
<td>183 (24.9)</td>
<td>2 (0.7)</td>
</tr>
</tbody>
</table>

Table 5. Reason for contact of the intervention service users.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reason for contact</th>
<th>Worried about someone</th>
<th>Grieving a loss by suicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age groups (y), n (%)</td>
<td>Thinking about suicide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤17</td>
<td>580 (17.16)</td>
<td>52 (12.9)</td>
<td>21 (9.7)</td>
</tr>
<tr>
<td>18-25</td>
<td>1251 (37.02)</td>
<td>119 (29.5)</td>
<td>95 (43.8)</td>
</tr>
<tr>
<td>26-40</td>
<td>1196 (35.39)</td>
<td>127 (31.4)</td>
<td>39 (18)</td>
</tr>
<tr>
<td>≥41</td>
<td>352 (10.42)</td>
<td>106 (26.2)</td>
<td>62 (28.6)</td>
</tr>
<tr>
<td>Total</td>
<td>3379 (100)</td>
<td>404 (100)</td>
<td>217 (100)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender identity, n (%)</th>
<th>Thinking about suicide</th>
<th>Worried about someone</th>
<th>Grieving a loss by suicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woman</td>
<td>2178 (73.06)</td>
<td>250 (64.8)</td>
<td>127 (62.9)</td>
</tr>
<tr>
<td>Man</td>
<td>555 (18.62)</td>
<td>119 (30.8)</td>
<td>60 (29.7)</td>
</tr>
<tr>
<td>Transgender, nonbinary, or other</td>
<td>248 (8.32)</td>
<td>17 (4.4)</td>
<td>15 (7.4)</td>
</tr>
<tr>
<td>Total</td>
<td>2981 (100)</td>
<td>386 (100)</td>
<td>202 (100)</td>
</tr>
</tbody>
</table>

With regard to the suicidal risk of the users of the intervention service, 3490 answered the question (Table 6), Are you planning to attempt suicide in the coming minutes or hours? Of the 3490 users, 1800 (51.58%) answered no, 972 (27.79%) answered unsure, and 718 (20.57%) answered yes. A total of 2606 users completed the SIDAS-FR at triage. The mean score was 26.69 (SD 12.79; median 29). Overall, 75.56% (1969/2606) of the users had suicidal ideation of high severity.

Information on the needs expressed by the users was available for 3254 interventions (Table 6). Overall, 75.29% (2450/3254) of the users expressed a need to ventilate. The most frequently discussed issues were suicide (3033/3475, 87.28%), mental health problems (765/3475, 22.01%), emotional problems (657/3475, 18.91%), family problems (455/3475, 13.09%), self-harm (413/3475, 11.88%), loneliness (407/3475, 11.71%), and problems with peers or relatives (361/3475, 10.39%). Information on the counselors’ suicide risk assessments was available for 1783 interventions (Table 6). The most common assessments were “Low foreseeable risk for a suicide attempt in the near future” (955/1783, 53.56%) and “High foreseeable risk for a suicide attempt in the near future” (602/1783, 33.76%).
Table 6. Intervention service users’ suicide risk and presenting problems.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Suicidal users, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan to attempt suicide in the coming minutes or hours? (n=3490)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1800 (51.57)</td>
</tr>
<tr>
<td>Unsure</td>
<td>972 (27.85)</td>
</tr>
<tr>
<td>Yes</td>
<td>718 (20.57)</td>
</tr>
<tr>
<td>Severity of suicidal ideation (SIDAS-FR(^a); n=2606)</td>
<td></td>
</tr>
<tr>
<td>Absence of suicidal ideation (0)</td>
<td>267 (10.24)</td>
</tr>
<tr>
<td>Low severity (1-12)</td>
<td>120 (4.6)</td>
</tr>
<tr>
<td>Medium severity (13-19)</td>
<td>250 (9.59)</td>
</tr>
<tr>
<td>High severity (>20)</td>
<td>1969 (75.56)</td>
</tr>
<tr>
<td>Expressed needs (n=3254)</td>
<td></td>
</tr>
<tr>
<td>Need to ventilate</td>
<td>2450 (75.29)</td>
</tr>
<tr>
<td>Support for a crisis situation</td>
<td>1093 (33.59)</td>
</tr>
<tr>
<td>Help to ensure safety</td>
<td>870 (26.74)</td>
</tr>
<tr>
<td>Ask for advice</td>
<td>741 (22.77)</td>
</tr>
<tr>
<td>Ask for information</td>
<td>317 (9.74)</td>
</tr>
<tr>
<td>Issues discussed (n=3475)</td>
<td></td>
</tr>
<tr>
<td>Suicide</td>
<td>3033 (87.28)</td>
</tr>
<tr>
<td>Mental health</td>
<td>767 (22.07)</td>
</tr>
<tr>
<td>Emotional problems</td>
<td>657 (18.91)</td>
</tr>
<tr>
<td>Family problems</td>
<td>455 (13.09)</td>
</tr>
<tr>
<td>Self-harm</td>
<td>413 (11.88)</td>
</tr>
<tr>
<td>Loneliness</td>
<td>407 (11.71)</td>
</tr>
<tr>
<td>Problems with peers or relatives</td>
<td>361 (10.39)</td>
</tr>
<tr>
<td>School problems</td>
<td>294 (8.46)</td>
</tr>
<tr>
<td>Death of a loved one</td>
<td>293 (8.43)</td>
</tr>
<tr>
<td>Physical health</td>
<td>179 (5.15)</td>
</tr>
<tr>
<td>Alcohol or substance abuse</td>
<td>165 (4.75)</td>
</tr>
<tr>
<td>Verbal abuse survivor</td>
<td>95 (2.73)</td>
</tr>
<tr>
<td>Perpetrator of physical or verbal abuse</td>
<td>70 (2.01)</td>
</tr>
<tr>
<td>Bullying at school</td>
<td>68 (1.96)</td>
</tr>
<tr>
<td>Problems with the law</td>
<td>44 (1.27)</td>
</tr>
<tr>
<td>Bullying in the workplace</td>
<td>39 (1.12)</td>
</tr>
<tr>
<td>Pregnancy or abortion</td>
<td>34 (0.98)</td>
</tr>
<tr>
<td>Other types of problems</td>
<td>357 (10.27)</td>
</tr>
<tr>
<td>Counselors’ suicide risk assessment (n=1783)</td>
<td></td>
</tr>
<tr>
<td>No foreseeable risk for a suicide attempt in the near future</td>
<td>123 (6.89)</td>
</tr>
<tr>
<td>Low foreseeable risk for a suicide attempt in the near future</td>
<td>955 (53.56)</td>
</tr>
<tr>
<td>High foreseeable risk for a suicide attempt in the near future</td>
<td>602 (33.76)</td>
</tr>
<tr>
<td>Imminent danger of suicide attempt or attempt in progress</td>
<td>103 (5.77)</td>
</tr>
</tbody>
</table>

\(^a\)SIDAS-FR: Suicidal Ideation Attributes Scale—French version.
Effectiveness of Universal, Selective, and Indicated Prevention Strategies Deployed Through the Suicide.ca Platform

Impact of Promotional Activities on the Platform’s Traffic

Analysis of peak traffic (days with >600 visits) for the period from October 15, 2020, to October 17, 2021, indicated that they were primarily associated with promotion of the platform in traditional media and on social media (Figure 2; Table 7). Traffic tended to remain high for 1 or 2 days following these spikes and then returned to its average trend afterward.

Figure 2. Impact of the promotional activities on the platform’s traffic.

Table 7: Promotional activities associated with traffic peaks.

<table>
<thead>
<tr>
<th>Date</th>
<th>Visits to the website, n</th>
<th>Activities or events</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 15, 2020</td>
<td>667</td>
<td>Publication on social media</td>
</tr>
<tr>
<td>October 22, 2020</td>
<td>734</td>
<td>Publication on social media</td>
</tr>
<tr>
<td>November 2, 2020</td>
<td>828</td>
<td>Unknown event (traffic mostly acquired via social media)</td>
</tr>
<tr>
<td>November 4, 2020</td>
<td>1188</td>
<td>Unknown event (traffic mostly acquired via direct acquisition)</td>
</tr>
<tr>
<td>November 26, 2020</td>
<td>1774</td>
<td>Several publications and interviews about suicide.ca on traditional media</td>
</tr>
<tr>
<td>February 1, 2021</td>
<td>722</td>
<td>Suicide Prevention Week</td>
</tr>
<tr>
<td>February 3, 2021</td>
<td>708</td>
<td>Suicide Prevention Week</td>
</tr>
<tr>
<td>May 3, 2021</td>
<td>928</td>
<td>Publication on social media</td>
</tr>
<tr>
<td>June 30, 2021</td>
<td>984</td>
<td>Publication on social media</td>
</tr>
<tr>
<td>July 15, 2021</td>
<td>722</td>
<td>Mass emailing to organizations to promote suicide.ca</td>
</tr>
<tr>
<td>July 26, 2021</td>
<td>1082</td>
<td>Publication on social media</td>
</tr>
<tr>
<td>September 10, 2021</td>
<td>663</td>
<td>World Suicide Prevention Day</td>
</tr>
<tr>
<td>September 23, 2021</td>
<td>1308</td>
<td>Publication on social media</td>
</tr>
</tbody>
</table>

Impact of AdWords Campaigns and Suicide Risk Factors Fact Sheets on the Platform’s Traffic

Table 8 shows the source of traffic and the top landing pages on the platform for the period from December 31, 2020, to October 31, 2021. The source of traffic to the platform was very diverse. AdWords campaigns on suicide risk factors were the second-largest source of traffic acquisition on the platform.
Table 8. Sources of traffic acquisition and landing pages for suicide.ca.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Website visits attributed to traffic acquisition and landing pages, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main sources of traffic acquisition (n=103,402)</td>
<td></td>
</tr>
<tr>
<td>Suicide.ca entered directly in the search bar</td>
<td>33,635 (32.53)</td>
</tr>
<tr>
<td>Targeted advertising on search engines (AdWords)(^a)</td>
<td>25,251 (24.42)</td>
</tr>
<tr>
<td>Social media</td>
<td>16,775 (16.22)</td>
</tr>
<tr>
<td>Search engines (excluding targeted advertisements)</td>
<td>11,760 (11.37)</td>
</tr>
<tr>
<td>Hyperlink on another website</td>
<td>9899 (9.57)</td>
</tr>
<tr>
<td>Landing pages (n=125,677)</td>
<td></td>
</tr>
<tr>
<td>Home page</td>
<td>50,271 (40)</td>
</tr>
<tr>
<td>Suicide risk factor fact sheets(^a)</td>
<td>20,497 (16.30)</td>
</tr>
<tr>
<td>My Tools (web and mobile app)</td>
<td>13,717 (11)</td>
</tr>
<tr>
<td>Blog pages</td>
<td>12,124 (10.91)</td>
</tr>
<tr>
<td>Pages for contacting the intervention service</td>
<td>9892 (7.87)</td>
</tr>
<tr>
<td>Other</td>
<td>9922 (7.87)</td>
</tr>
<tr>
<td>Section for people who are worried about a loved one</td>
<td>3860 (3.07)</td>
</tr>
<tr>
<td>Section for suicidal people</td>
<td>3056 (2.43)</td>
</tr>
<tr>
<td>Section for people bereaved by suicide</td>
<td>670 (0.53)</td>
</tr>
<tr>
<td>Directory of resources</td>
<td>656 (0.52)</td>
</tr>
</tbody>
</table>

\(^a\)Pages designed to identify internet users at risk for suicide.

The AdWords campaign targeting anxiety and depression was displayed 72,713 times and received 9576 clicks, resulting in a click rate of 13.7%. This campaign also led to 36 crisis chat interventions, representing a conversion rate of 0.38%. Similarly, the AdWords campaign with suicide-specific keywords was displayed 27,961 times and received 2647 clicks, resulting in a click rate of 9.47%. This campaign resulted in 55 crisis chat interventions, with a conversion rate of 1.93%.

As for the first pages consulted by users (Table 8), 40% (4704/11,760) of the visits from search engine queries, excluding AdWords ads, began with a visit to a suicide risk factor fact sheet. Therefore, suicide risk factor fact sheets were an important source of traffic to the platform.

Effectiveness of the Intervention Service

Table 9 presents the counselors’ perception of the impact of their interventions. Counselors indicated that the users felt better after the intervention in 56.09% (2565/4573) of the interventions. They also reported that the users felt more able to overcome their difficulties in 51.08% (2336/4573) of the interventions.

Table 9. Counselors’ perception of the impact of their interventions (n=4573).

<table>
<thead>
<tr>
<th>Response</th>
<th>The user feels better, n (%)</th>
<th>The user feels more able to overcome their difficulties, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>449 (9.82)</td>
<td>446 (9.75)</td>
</tr>
<tr>
<td>Not sure</td>
<td>1559 (34.09)</td>
<td>1771 (38.73)</td>
</tr>
<tr>
<td>Yes</td>
<td>2565 (56.09)</td>
<td>2336 (51.08)</td>
</tr>
</tbody>
</table>

Table 10 shows the results of the postintervention survey for 259 suicidal users and 91 users worried for a loved one or bereaved by suicide. Overall, 91.5% (237/259) of the suicidal users indicated that the counselor seemed warm and caring, and 89.5% (232/259) of the users indicated that they felt listened to, understood, and respected. In terms of the effectiveness of the interventions, 82.6% (214/259) of the suicidal users indicated that they felt better, calmer, or more relaxed following the intervention; 76.8% (199/259) of the users indicated that they felt more in control of their suicidal thoughts; and 72.5% (188/259) of the users indicated that they felt more able to overcome their difficulties.
Table 10. Respondents who answered somewhat agree or strongly agree to the satisfaction survey.

<table>
<thead>
<tr>
<th>Satisfaction survey items</th>
<th>Suicidal users (n=259), n (%)</th>
<th>Worried or bereaved users (n=91), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The counselor seemed warm and caring.</td>
<td>237 (91.5)</td>
<td>87 (95.6)</td>
</tr>
<tr>
<td>You felt heard, understood, and respected.</td>
<td>232 (89.5)</td>
<td>87 (95.6)</td>
</tr>
<tr>
<td>You were able to express your feelings.</td>
<td>229 (88.4)</td>
<td>86 (94.5)</td>
</tr>
<tr>
<td>You talked about what you wanted to talk about.</td>
<td>221 (85.3)</td>
<td>85 (93.4)</td>
</tr>
<tr>
<td>You found ways to deal with a particular situation or problem.</td>
<td>200 (77.2)</td>
<td>80 (87.9)</td>
</tr>
<tr>
<td>You found that the conversation with the counselor helped you.</td>
<td>217 (83.7)</td>
<td>83 (91.2)</td>
</tr>
<tr>
<td>You feel better, calmer, or more relaxed?</td>
<td>214 (82.6)</td>
<td>85 (93.4)</td>
</tr>
<tr>
<td>You feel more in control of your suicidal thoughts?</td>
<td>199 (76.8)</td>
<td>...</td>
</tr>
<tr>
<td>You feel more able to overcome your difficulties?</td>
<td>188 (72.5)</td>
<td>80 (87.9)</td>
</tr>
</tbody>
</table>

*Not available.

Discussion

Principal Findings

The objectives of this study were to document the use of the suicide.ca platform; to describe the profile of its users; and to estimate the impact of the universal, selective, and indicated prevention strategies deployed via the platform.

The results for universal prevention strategies indicated that there was a wide range of sources for acquiring traffic to the platform, that actions to promote the platform on social media were directly associated with increased traffic, and that there was little traffic to psychoeducation pages.

The results for selective prevention strategies indicated that AdWords campaigns and fact sheets on suicide risk factors are important sources of traffic acquisition on the platform, that the platform reaches people with varying degrees of suicidal risk, and that the user account was a barrier to the use of mental health self-management tools.

The results for the indicated prevention strategies indicated that triage questions involving personal information result in a significant number of dropouts, that counselors feel that their interventions have a positive impact on the user in half of the contacts, and that intervention service users are generally satisfied with the service they received.

Universal Prevention Strategies

The sources of traffic acquisition on suicide.ca were very diversified, and only 40% (50,271/125,677) of the users started their visit on the home page. Moreover, the platform’s social media promotion was directly associated with traffic peaks. These results highlight the importance of being proactive in promoting the platform and using a wide variety of promotional strategies (eg, SEO strategy, social media posts, AdWords campaigns, and referral links on other websites). They also highlighted the importance of collaborating with digital experts to adapt traditional digital marketing strategies to suicide prevention.

The number of visits to the psychoeducation pages was far less than the total number of visits to the site. For example, the first page of the psychoeducation section for people with suicidal risk was visited only 5312 times in the first year. This number is far less than the 127,495 visits that were recorded on the site for this period. This result suggests that the vast majority of users do little exploration of the platform after viewing the content that brings them to the site. These results highlight the importance of looking beyond the total number of visits to a digital suicide prevention platform to describe its use and of dissecting its analytics data in detail to fully understand the content that is consulted.

Selective Prevention Strategies

AdWords campaigns and suicide risk factor fact sheets were important sources of traffic acquisition on the platform. For example, 40% (4704/11,760) of the visits from search engines, excluding AdWords advertisements, began with a suicide risk factor fact sheet. Although it is challenging to determine from the analytical data whether the individuals who accessed the fact sheets or clicked on the advertisements were at risk for suicide, it is evident that they conducted a Google search related to suicide or suicide risk factors and landed on the suicide.ca platform. Furthermore, the AdWords campaigns targeting anxiety and depression achieved click rates of 13.7% and 9.47%, respectively, which are significantly higher than the average Google Ads benchmarks of 3.17% observed in e-marketing [44] and the click rates of 4% and 5% reported in the study by Onie et al [13]. However, despite the high click rates, the conversion rates for crisis chat interventions were relatively low, with 0.38% for the anxiety and depression campaign and 1.93% for the suicide-specific campaign. It is challenging to interpret why these clicks did not result in more crisis interventions. Although the average conversion rate in e-marketing is 3.75% [44], there are currently no established benchmarks for conversion rates in suicide prevention. Although our findings should be interpreted with caution, they offer initial support for suicide.ca’s strategy of using AdWords campaigns and fact sheets as tools to identify internet users presenting suicide risk factors through search engine platforms.

Previous research has predominantly focused on how Google can enhance support for suicide prevention, paying limited attention to how suicide prevention actors can leverage Google to identify individuals at risk (eg, [12,13,45,46]). More research is required to discover optimal methods for using Google search.
to identify internet users at risk of suicide and to guide them toward support resources.

A major finding of this study is that the platform reaches users with different degrees of suicidal risk. The proportion of users with severe suicidal ideation on the SIDAS-FR was 33.16% (825/2488) for the self-assessment module and 75.56% (1969/2606) for the intervention service. Although the self-assessment module users presented less severe suicidal ideations than the intervention service users, 87.77% (2721/3100) of them obtained a K10 score, indicating the probable presence of a mental health problem. Furthermore, 62.2% (915/1471) of the self-assessment module users obtained a Patient Health Questionnaire-9 score indicating the presence of depression, 61.73% (908/1471) obtained a Penn State Worry Questionnaire score indicating the presence of generalized anxiety disorder, and 53.2% (451/847) obtained a Spin Phobia Inventory score indicating the presence of social phobia disorder.

Our best point of comparison is the 113Online chat service in the Netherlands, which also provides users with access to a self-assessment module and crisis interventions via chat. According to the evaluation of their first 3 years of operation [3], 78.36% (4741/6050) of the users who used the self-assessment module scored positively for depression and anxiety on the Depression and Anxiety Stress Scale. The module also included the Beck Scale for Suicidal Ideation, with results indicating that 7.22% (533/7381) of the users were not suicidal, 1.75% (129/7381) were mildly suicidal, 39.29% (2900/7381) were suicidal, and 51.74% (3819/7381) were severely suicidal. When comparing the results of this study with the observations on the 113Online platform, it appears that the suicide.ca self-assessment module is being used by individuals with lower levels of suicidality. These differences may, in part, be explained by the fact that the 2 platforms used different questionnaires to measure suicidality, depression, and anxiety. In addition, it may be explained in part by the identification strategy of the suicide.ca platform, which aims to reach individuals who have risk factors for suicide but may not be actively suicidal.

With regard to the self-management tools, between 22.99% (1186/5159) and 58% (2992/5159) of the users who downloaded the mobile app did not create a user account. It should be noted that a user can download the app to use the intervention service only and that doing so does not require the creation of an account. Technical problems experienced by users when creating their account could also contribute to this discrepancy [47]. Nevertheless, the discrepancy between the number of downloads and the number of accounts created is so large that it seems to indicate that setting up a user account is a practice that should be avoided as it seems to represent the first barrier to use. This finding highlights an important dilemma for digital suicide prevention interventions. Several studies indicate that users of digital interventions have concerns about the security and privacy of their data [48]. However, although the presence of a user account enhances data security and privacy, it is a barrier to use for some users [49]. These findings highlight the importance of identifying technologies that ensure the security of users' data while preserving their sense of anonymity.

Indicated Prevention Strategies

To our knowledge, this study is the first to report on the impacts of triage on the accessibility of a web-based intervention service. Our results indicate that the last question (What is your first name or alias?) was associated with a significant number of dropouts; only 46.54% (2711/5825) of the users who were asked the question answered it. Studies on crisis intervention through chat and text indicate that users prefer to use these services over phone helplines because of the sense of anonymity provided by these mediums [3,50,51]. It is possible that even asking for personal information or requesting an alias could discourage users, emphasizing the importance of maintaining their sense of anonymity.

With regard to the questions about suicidality, it is surprising to observe the low dropout rates they have caused. The requirement to complete the 5 questions of the SIDAS-FR during the triage resulted in a dropout rate of 4%. Web-based crisis service providers are sometimes concerned about implementing a triage. This study provides an estimate of the dropout rate that triage can lead to.

With regard to the profile of the intervention service users, most users (2019/3569, 56.57%) were women aged between 18 and 40 years. The most frequently discussed issues were mental health, emotional problems, relationship problems, self-harm, and isolation. These findings are consistent with those typically observed in digital intervention services [14-17].

It is also interesting to note that 7.85% (280/3569) of the users were from gender minority groups and 83.9% (235/280) of them were young people aged ≤25 years. This percentage is similar to that observed in the Canada Suicide Prevention Service (7.5%) and Lifeline Crisis Chat (7.5%) [14,15]. The age of these users likely reflects the high level of adversity experienced at this time for many gender minority youth [52]. These findings also highlight the relevance of digital intervention services for these youth.

This study provides valuable insights into the suicidality of users of chat intervention services, as multiple sources of information were used to evaluate the risk of suicide. These include data derived from a standardized suicide questionnaire (SIDAS-FR), risk assessments conducted by counselors, and a specific question regarding the risk of suicide attempts in the near future. Approximately half of the users (1690/3490, 48.42%) answered yes or uncertain to the question, Are you planning to attempt suicide in the coming minutes or hours? Moreover, 75.56% (1969/2606) of the users who answered no or uncertain to the question obtained a SIDAS-FR score indicating severe suicidal ideations. Therefore, the intervention service reaches its target population, that is, people at a high risk for suicide. These findings are consistent with those observed in the 113Online crisis chat evaluation [17], where a content analysis of intervention transcripts revealed that 61.1% (320/524) of the users expressed suicidal intentions, 21.2% (111/524) of the users reported both suicidal intentions and a suicide plan, and 3.8% (20/524) of the users were actively attempting suicide at the time of contact.
In terms of the impact of the intervention service, counselors reported that the user felt better after the intervention in 56.09% (2565/4573) of contacts and reported that the user did not feel better in only 9.81% (449/4573) of contacts. The response rate to the postintervention questionnaire was low. Nonetheless, the scores on the various satisfaction indicators were all very high, and 3 (199/259, 76.8%) out of 4 respondents felt that their suicidal ideation had decreased following the intervention. Again, these results are consistent with those typically observed in digital intervention services [15,16,18,53].

Limitations of the Study

This study had several limitations. First, the results on site traffic, traffic acquisition sources, page views, and app downloads were based on an analysis of the platform’s analytics data. However, analytical data do not allow us to understand the needs and motivations behind users’ browsing behavior on the platform. It is therefore important to complement this type of quantitative data in digital platform evaluations with other observational methods, such as qualitative interviews with users, or by directly observing their browsing and help-seeking behavior on the internet [22].

Similarly, analytical data are often inaccurate. For example, the traffic on the platform was analyzed according to the number of sessions. However, a session is the period during which a user was active on the site. If a user is inactive for ≥30 minutes, Google Analytics will attribute any subsequent activity to a new session. Therefore, the number of sessions is not exactly the same as the number of visits, but it is the closest indicator to it.

With respect to the analysis of app downloads, it was difficult to estimate the number of people who downloaded the app but did not create a user account. Therefore, it was impossible to provide an accurate estimate for this important issue. Moreover, it would be important to understand the needs and motivations that explain why so many people downloaded the app but did not open a user account. We explain this phenomenon by the users’ need for anonymity, but it would be important to validate this hypothesis with empirical evidence.

The results on the needs expressed by the intervention service users and the topics discussed during the contacts were based on the analysis of the intervention reports. The completeness of these reports may vary from one counselor to another, which may explain in part why the numbers on issues discussed were low. Furthermore, data on user-identified needs reflect the perceptions of counselors. Therefore, there is most likely a gap between these perceptions and the actual needs of the users. Therefore, it would be important to conduct qualitative interviews with users to understand their needs and motivations for using the intervention service.

An important limitation of this study was the absence of questions on gender and age in the self-assessment module. Therefore, we were unable to compare users of the self-assessment with users of the intervention service based on these characteristics. This information is crucial to understanding who is and is not being reached by suicide.ca and, consequently, by the Quebec DSPS. This highlights the importance of anticipating how the data collected by the various tools offered on a platform will compare with their users.

Conclusions

The results of this study indicate that it is possible to use the same platform to conduct universal, selective, and indicated suicide prevention. They also highlighted the importance of being strategic in the development of a digital platform to anticipate how different target populations will be identified, how different intervention modalities will be offered to them, and how the data collected by the platform will allow for the measurement of its impact.

Finally, the evaluation of suicide.ca produced several important results and was the source of a considerable amount of learning. We hope that sharing these learnings will help guide organizations interested in developing a digital suicide prevention platform and contribute to the development of guidance for the development of DSPSs (eg, the WHO [54]).

Acknowledgments

The authors would like to thank the Association québécoise de prévention du suicide (AQPS) for their valuable and constructive suggestions during the planning and development of this evaluation. A grant was awarded for the publication of the study to LPC and JL by the Centre for Research and Intervention on Suicide, Ethical Issues and End-of-Life Practices and the Fonds de recherche du Québec—Société et culture.

Data Availability

The data sets generated during and analyzed during this study are not publicly available due to confidentiality agreement with the Association québécoise de prévention du suicide (AQPS) but are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors of this study participated in the development of Quebec’s digital suicide prevention strategy.

References

https://formative.jmir.org/2024/1/e46195

26. suicide.ca home page. suicide.ca. URL: https://suicide.ca/ [accessed 2024-02-21]

Abbreviations

AQPS: Association québécoise de prévention du suicide
CRM: Customer Relationship Management
DSPS: digital suicide prevention strategy
ICT: information and communication technology
K10: Kessler Psychological Distress Scale
SEO: search engine optimization
SIDAS-FR: Suicidal Ideation Attributes Scale—French version
WHO: World Health Organization

©Louis-Philippe Côté, Julie Lane. Originally published in JMIR Formative Research (https://formative.jmir.org), 06.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Viewpoint

Architecture and Development Framework for a Web-Based Risk Assessment and Management Platform Developed on WordPress to Address Opioid Overdose

Alireza Kazemi¹, MD, PhD; Marisha Boyd¹, BSc; Fiona Choi¹, PhD; Andy Man Yeung Tai¹, MSc; Vivian WL Tsang¹, MPH, MD; Tam To¹, BA; Jane Kim¹, MSc; Kerry Jang¹, PhD; Farhud Shams¹, MSc; Stefanie Schreiter², MD; Maurice Cabanis³, MA, MD; Reinhard Michael Krausz¹, MD, PhD

¹Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
²Department of Psychiatry and Neurosciences, Charité Campus Mitte, Institution: Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
³Hospital for Addiction and Addictive Behavior, Center of Mental Health, Klinikum Stuttgart, Esttutgarth, Germany

Corresponding Author:
Alireza Kazemi, MD, PhD
Institute of Mental Health
Department of Psychiatry
University of British Columbia
4th Floor, Room 430, David Strangway Building
5950 University Blvd
Vancouver, BC, V6T 1Z3
Canada
Phone: 1 236 888 8330
Fax: 1 604 822 7756
Email: alireza.kazemi@ubc.ca

Abstract

The number of overdose-related fatalities continues to reach historic levels across Canada, despite ongoing efforts by authorities. To reduce mortality, a clinical trajectory ranging from preventative measures to crisis intervention, skill training to treatment, and risk assessment to risk management needs to be supported. The web-based Risk Assessment and Management Platform (RAMP) was developed to realize this concept and to empower people who use drugs through an integrated tool that allows them to better understand and manage their risk of overdose. This paper outlines the architecture and development of RAMP, which is built on the WordPress platform. WordPress components are mapped onto a 3-tier architecture that consists of presentation, application, and database layers. The architecture facilitates the development of a modular software that includes several features that are independent in functionality but interact with each other in an integrated platform. The relatively low coupling and high coherence of the features may reduce the cost of maintenance and increase flexibility of future developments. RAMP’s architecture comprises a user interface, conceptual framework, and backend layers. The RAMP front end effectively uses some of the WordPress’ features such as HTML5, CSS, and JavaScript to create a mobile, friendly, and scalable user interface. The RAMP backend uses several standard and custom WordPress plug-ins to support risk assessment and monitoring, with the goal of mitigating the impacts and eliminating risks together. A rule-based decision support system has been hard-coded to suggest relevant modules and goals to complement each user’s lifestyle and goals based on their risk assessment. Finally, the backend uses the MySQL database management system and communicates with the RAMP framework layer via the data access layer to facilitate a timely and secure handling of information. Overall, RAMP is a modular system developed to identify and manage the risk of opioid overdose in the population of people who use drugs. Its modular design uses the WordPress architecture to efficiently communicate between layers and provide a base for external plug-ins. There is potential for the current system to adopt and address other related fields such as suicide, anxiety, and trauma. Broader implementation will support this concept and lead to the next level of functionality.

(JMIR Form Res 2024;8:e49759) doi:10.2196/49759

https://formative.jmir.org/2024/1/e49759

JMIR Form Res 2024 | vol. 8 | e49759 | p.2153
(page number not for citation purposes)
Introduction

The Clinical Problem

In 2016, the British Columbia government declared a state of emergency in response to the increasing number of drug-related overdose fatalities [1]. Despite this measure, more than 14,000 British Columbians have since died due to high potent opioids, and the province has seen a >2-fold increase in the number of overdose deaths, from 20.5 per 100,000 individuals in 2016 to 46 per 100,000 individuals in 2023 [2]. High-risk substance use and overdose risk is often a reflection of complex concurrent mental and physical conditions, which are critical for understanding the risk constellation as well as overdose risk management [3,4]. Integration of informed approaches to address severe and early traumatic experiences, suicidality, and mental illness is necessary for a solution aimed at increasing the chance of survival and recovery among people who use drugs [5]. Web-based interventions have demonstrated effectiveness in improving health outcomes and reducing barriers for people who use drugs who are seeking support [6,7].

A Modular Architecture

Modular architecture is a model of designing web-based psychotherapy platforms and interventions [8,9]. A modular design implies that the content presented can be divided into multiple smaller pieces that can be completed independently or as a set [9]. The strengths of modular systems include the ability for users to focus on 1 area at a time and ease in replicating modules following a common structure. Therefore, this approach allows for the inclusion of new clinical trajectories beyond substance use and overdose for a significantly lower price. It will also reduce the cost of maintenance. This architecture lends itself well to web-based interventions for substance use because sections, topics, and features can work both independently and together to provide care to a unique population with diverse needs. Chronic conditions such as substance use disorder need to be seen as a long-term trajectory—a dynamic and often changing process, which requires a range of tools to adapt to the needs of users.

An ideal web-based platform addressing substance use would create an environment that provides tools to assess risks, gain deeper knowledge of risks, prevent deterioration and crises, and manage specific behavioral factors and symptoms. The tasks for the development team would be to add content and functionalities to make the system engaging and interactive. Our vision is a platform that can become a long-term tool providing an engaging learning environment where user choices and outcomes influence the trajectory and functionality of the platform. Tools such as machine learning and embedded trials would allow for a systematic internal evaluation of user choices as well as better referrals and decision support tools. Users can adapt the content and functionalities to their needs, add content and their own experiences, and provide feedback to become active drivers of the system.

Risk Assessment and Management Platform

The Risk Assessment and Management Platform (RAMP) was developed by the Addictions and Concurrent Disorders Research Group at the University of British Columbia, supported by funding from Health Canada. The goal of this web-based platform is to provide a low-barrier tool that educates and empowers users to make informed decisions for their own recovery journey. The platform consists of self-assessments, educational and therapeutic modules, and tools to help users plan and monitor their risk of overdose, for example, “Goal setting” and “Lifechart.” Interactions among RAMP features to identify and manage the risk of overdose are shown in Figure 1.
Users must create a free account in order to use the full functionalities of RAMP, including having their scores and data tracked over time. New users have the option to explore some selected features, such as modules and “Art with a Meaning” before they register. This allows users to better understand the system and feel comfortable with it enough to create an account. It also enables public access to modules, which, on its own, will have significant psychotherapeutic benefits for users.

Upon registration, the High-Risk Assessment (HRA) is proposed to the user. The HRA is a screening tool developed by the Addictions and Concurrent Disorders Research Group to identify the risk of overdose among people who use drugs through a rule-based algorithm. Development of the HRA will be explained in a separate publication.

Based on the results of each user’s HRA score, a clinical decision support system suggests the most relevant modules and goals to the user. The user may comply with the recommendations or choose to work on additional or substitute modules of their choice. The modules will help the user to gain knowledge about their risky behaviors and how to prevent or mitigate those risks. The Goals setting function will allow the user to make their risk mitigation plan and monitor their progress through the Lifechart feature. An email notification is sent to the user to inform them about their progress and to encourage them to continue interacting with the software by reminding them about their recent usage and how they can resume.

The core concepts and theoretical frameworks of RAMP will be presented in a series of publications. Topics will include the clinical concept underlying RAMP, development of the HRA, development of modules, and user interface evaluation. This paper is focused on the design and architecture of RAMP. The modular architecture of RAMP uses WordPress’ multilayer architecture, which lends itself well to the dynamic and customizable application design.

Design of RAMP

Overview

RAMP is a web application developed using the WordPress content management system (CMS). Therefore, description of the architecture of WordPress is essential to describe RAMP’s design and architecture.

WordPress is built on a PHP and MySQL architecture [10]. It uses a multilayer architecture to provide a flexible platform for building and customizing websites [11]. The purpose of a layered architecture is to organize the components of an application into horizontal logical layers and physical tiers. A layer is a logical unit that separates a specific role and responsibility within an application. Each layer manages its own software dependencies. A tier is a physical unit where the code runs, for example, a web server or a database. Scalability, maintainability, and resiliency are increased when tiers are physically separated; however, latency increases due to additional network communication.

Though WordPress does not strictly follow the traditional 3-tier architecture to separate the presentation, application, and database tiers, the WordPress components that are used to develop web applications can be mapped on a 3-tier design model [12,13].

Figure 1. Interaction among different features of the Risk Assessment and Management Platform to identify and manage the risk of overdose. HRA: High-Risk Assessment.
Presentation Tier
The presentation tier is responsible for showing the content and functionality to the user, using HTML, CSS, and JavaScript. HTML provides a way to create and structure the elements of a web page, such as headings, paragraphs, images, links, etc. CSS is a powerful tool for customizing the appearance and layout of WordPress websites. JavaScript is a scripting language that is used to add interactivity, dynamic behaviors, and effects such as animations, interactive forms, and user interface elements such as sliders and pop-up menus to web pages.

WordPress Themes
Themes control the appearance of a WordPress website. They include templates, CSS files, and other components that determine how the site is displayed.

Application Tier
Overview
The application tier in WordPress refers to the core PHP code that provides the underlying functionality and controls the flow of data between the presentation and database tiers. The application tier includes the WordPress core, plug-ins, and custom code that interacts with the database to store and retrieve data.

Plug-ins are add-ons that extend the functionality of WordPress. They can provide additional features such as contact forms, e-commerce functionality, etc.

The application tier is responsible for implementing the business logic as well as accessing the data stored in the database through the data access layer.

Business Logic Layer
The business layer in WordPress architecture refers to the layer that handles the business logic and processes in a WordPress website. This layer is responsible for performing tasks such as data validation, calculations, and decision-making.

In the context of WordPress, the business layer can be implemented in a number of ways, including custom plug-ins, custom code within the theme, or through the use of third-party plug-ins that provide specific functionality.

The business layer acts as the intermediary between the presentation and database tiers. It takes input from the presentation layer, performs the necessary business logic, and then communicates with the database tier to retrieve or store data. This architecture allows for greater flexibility and maintainability of WordPress products, as well as the ability to easily modify and extend the functionality of the website without affecting other tiers.

Data Access Layer
The data access layer in WordPress architecture refers to the layer responsible for accessing and manipulating data stored in the database. This layer is responsible for retrieving data from the database, performing operations on the data, and storing the results back in the database.

In WordPress, the data access layer is typically implemented using the WordPress database application programing interface (API), which provides a set of functions and methods for interacting with the database. These functions and methods allow developers to perform common database operations, such as inserting, updating, and retrieving data, in a consistent and efficient manner.

Database Tier
The database tier in WordPress is where all the data are stored, including posts, pages, users, and metadata. WordPress uses a Relational Database Management System, MySQL, to store this information, and it is accessed by the application tier to retrieve and manipulate data.

The database layer in WordPress works by creating tables and storing data in those tables. Each table contains rows and columns that represent the different data types stored in the database. For example, WordPress has separate tables for posts, users, comments, etc.

When a user interacts with a WordPress site, the database layer retrieves data from the appropriate table and returns it to the application tier. The data can then be displayed on the user interface of the site or being used to perform various operations in the backend.

In conclusion, the database layer in WordPress applications is a critical component that provides a structured way to store and retrieve data and plays an important role in the overall architecture of a WordPress site.

Overall, the architecture of WordPress promotes modularity. This modular design approach allows for easier customization, scalability, and maintainability of software products built on the WordPress platform. Developers can create independent modules that can be combined or modified without significant impact on other components, facilitating the creation of flexible and extensible software systems.

RAMP software design architecture follows the WordPress multilayer architecture.

Ethical Considerations
The RAMP HRA pilot project has undergone research ethics review and received ethics approval from the University of British Columbia Behavioural Research Ethics Board (H19-02231). Collection of data on RAMP is limited to only those necessary for the research objectives. Participant identities are kept confidential, and the research protocol is aligned with the Tri-Council Policy Statement on Ethical Conduct for Research Involving Humans (TCPS2). Informed consent forms include information about data storage, data security, data sharing, privacy protections, legal limits to confidentiality, and contact information of the University of British Columbia Behavioural Research Ethics Board. It clearly delineates how the data will be used and shared, and the process to report participant concerns.

Upon registration, the system stores their registered email IDs, names, last names, usernames, passwords (encrypted), login times, and IP addresses. Data are stored on secure cloud servers,
and security features such as reCAPTCHA and temporary login blocks are used to minimize the risk of brute force attacks. Upon login, their interactions with the system are stored and tracked. This includes assessments results, symptoms check, completed modules, goals, journal diaries, and achievements. Data are not shared with third parties unless for maintenance, software improvements, or legal obligations. The overall data governance plan of the project is modeled after the highest local, federal, and international standards of privacy, data management, and data sharing.

Figure 2. Mapping RAMP features on a 3-tier software architecture model that uses WordPress components. RAMP: Risk Assessment and Management Platform.

System Description

Overview

RAMP is designed as an engaging, learning, and open access web application that empowers users to manage their risk of overdose and concurrent mental health disorders. RAMP is a modular software that includes several features and functionalities.

The architecture and design of RAMP features is mapped on a 3-tier architecture model that uses WordPress components. Figure 2 demonstrates the mapping.
The Data Tier uses relational databases on the MYSQL 5.7.30 database management system. RAMP stores and retrieves various types of data including text, video, audio, and images, which can become bulky over time. The data layer is managed by the WordPress database tier, which provides secure and efficient methods to store, retrieve, and organize data. It uses indexing, caching, lazy loading, query optimization, and other techniques to improve its efficiency.

The Backend

The backend uses the WordPress 5.4 development framework. The system is a web application software compatible with most of the standard browsers such as Chrome, Safari, and Edge, and is responsive to mobile apps. The system’s administrative panel allows the administrator to add new reports, reorganize some user interface elements, and define new assessments (Figure 3). This panel also allows the administrator to monitor users’ activities and progresses and add new modules and other content. Certain key performance indicators can be found on the administrative panel.

Figure 3. RAMP’s administrative panel on WordPress (accessible to administrators only).

The RAMP backend also uses some standard and custom plug-ins. Some examples of the plug-ins that RAMP is using are listed below:

- Disable XML-RPC-API: a lightweight plug-in to disable XML-RPC API, Pingbacks, and Trackbacks for faster and more secure browsing of a website.
- Duplicate Page: a plug-in to duplicate posts, pages, and custom posts with a single click.
- LoginWP: a plug-in to redirect users to different URLs based on their role, capability, and more.
- Quform: a plug-in to create powerful and engaging quizzes, tests, and examinations within minutes, and to build an unlimited number of quizzes and questions.
- WP File Manager: a plug-in that manages WP files.
- WP SMTP: a plug-in that helps developers to send emails via SMTP instead of the PHP mail function. This plug-in...
is particularly useful to send email reminders to the user, which would less likely end up in junk mail; support superior authentication and encryption methods; and is more compatible with other WordPress plug-ins.

There are custom-built plug-ins created for different RAMP features such as Achievements, Assessments, Symptom Diary Forms, Journal, and Lifechart to enhance user experience.

The inference engine of a rule-based decision support system is custom-coded in the business layer. User responses to the HRA are used to determine relevant modules and goals, and to suggest them via the user interface.

Figure 4. Risk management process.

The Front End

RAMP front end uses WordPress presentation layer components such as themes, HTML5, CSS, and JavaScript to communicate with the user and provide a pleasant experience when showing content.

RAMP uses BuddyBoss as its core theme. However, a subtheme was derived and customized from BuddyBoss to enhance user experience and use consistent visual themes across RAMP’s branding.

Using HTML5 in RAMP has created more modern and effective web pages for the system with better accessibility, improved search engine optimization, higher performance, and mobile friendliness. Additionally, pages have been further fine-tuned by the developers for a better mobile experience. HTML5 has also allowed the developers to embed audio and video content directly into the web pages, eliminating the need to rely on third-party plug-ins such as Adobe Flash. RAMP is also using native lazy loading of images and script execution in parallel, which can improve the performance of web pages and reduce their load times.

RAMP uses CSS effectively to create websites that are visually appealing, flexible, responsive to mobile devices, and easy to use.

Interaction With External Systems

RAMP uses different WordPress plug-ins and features to interact with different external systems. YouTube videos in the modules are embedded into Elementor, a popular visual page builder plug-in for WordPress that allows users to create custom designs for their website and ensures the correct publication of the videos.

The mental health resource map is another example of an external system that is integrated into RAMP. The development team used Google My Maps to pin the location of mental health services, including clinics, youth services, and urgent care centers, onto a Google map. This software enables users to view services and facilities in their area, find their locations, hours of operation, contact information, and more on a Google map in a layered format. The system embeds this software using a simple script method by adding its link to RAMP.

The development team has also been working on a parallel project to create a machine learning model that would predict the risk of fatal overdose based on a comprehensive data set called the British Columbia Provincial Overdose Cohort curated by the British Columbia Centre for Disease Control. The model will subsequently be embedded into an API, which allows the predictive model to be used as a stand-alone tool. The aim is to use the developed predictive model in RAMP using a service-oriented architecture, where RAMP calls upon the predictive model’s API using WordPress REST API plug-in to send user-specific risk factors to the model. The model will then process the overall risk of fatal overdose based on user inputs, determine the likelihood of overdose, and send the results back to RAMP. The RAMP interface will display the results and provide tailored recommendations based on each individual’s risk factors.
Discussion

Background

The aim of RAMP is to empower people who use drugs to become more aware of their overdose risk and to provide a tool that promotes agency in helping them manage their risk factors. Although risk management is broad and may include several activities, the core concepts include key steps to identify, plan, and monitor risks, as well as tools to execute the plan to eliminate or mitigate the impact of these risks [14].

RAMP is a web application. In contrast to native apps, web applications have certain advantages that RAMP benefits from:

- Cross-platform compatibility and being installation-free: RAMP can run on any device with a web browser, which means that it is platform-independent and can be accessed from a wide range of devices, including desktops, laptops, tablets, and smartphones without the need to install the software on the device. In contrast, native apps are developed for a specific platform, such as iOS or Android, and need to be downloaded and installed on the user's device. This is helpful when considering the population of people who use drugs, who might not have consistent access to a smartphone but can access public or shared computers [15].
- Easier maintenance: RAMP maintenance and updating is easier and less costly than native apps, as changes can be made on the server side, and users are not required to download updates. This can save time and resources for developers and ensure that all users are using the most up-to-date version of RAMP.
- Lower development costs: developing a web application typically requires fewer resources than developing a native app, as there is no need to develop separate versions for different platforms such as iOS and Android. This can result in lower development costs and less time to deploy the application.

While web applications offer certain benefits, native apps offer advantages such as better performance, native features, push notifications, and access to device-specific capabilities. Web applications always need an active internet connection to the server, but native apps may not need constant access to the internet if there is no need to communicate with a centralized server on a continuous basis.

RAMP features effectively use the WordPress components and their multilayer architecture to support the user to make informed decisions. One example is the design of HRA, a 29-question screening tool that helps users identify several overdose risk factors across different domains.

The integration of a dynamic color-coded heat map on the user interface of the presentation tier, featuring a sliding score bar that slides as the questions are answered, assists the user in comprehending the relative significance of individual factors and whether they represent risks or protective factors. Upon responding to each question, the inference engine of a rule-based decision support system will use the responses that are stored in the RAMP database layer to determine and suggest the most relevant modules and goals that are critical to the management of the most pressing risks. The use of these features across layers empowers the user to accurately identify their risks, gain knowledge of such risks, establish relevant goals, and monitor progress—all through the use of RAMP.

RAMP’s modular design allows novice users to follow the decision support system recommendations and create relevant goals and educational plans, while providing more freedom to experienced users to focus on specific areas that are most related to their personal risk of overdose and lifestyle. This design is important for the risk planning phase. When the user executes the plan and performs the given tasks, the system provides rewards to further engage the user.

Strategies to Enhance User Engagement

Reward systems are one of the most common gamification strategies designed to encourage users. The system awards badges as the user makes progress. This provides reinforcement as an individual continues their recovery journey. There is broad interest in the use of digital badges to enhance learners’ motivation [16]. These web-enabled tokens of learning and accomplishment have the potential to induce excitement and elicit powerful forms of engagement and learning. Badges are one of the most powerful gaming elements that are widely used in digital health products to motivate users to keep interacting with the system [17]. This strategy is particularly important for the population of substance users where retention and long-term interaction might be difficult [18,19].

RAMP does not support on-screen or push notifications. Instead, the system uses reliable SMTP email notifications regularly to inform users about their progress and motivate them to continue their interaction with the system. Notifications are an important gamification tool to promote engagement with the platform [20]. The frequency and content of RAMP notifications is different for active and inactive users. Active users receive more frequent notifications with suggestions regarding next steps they might benefit from based on their current patterns of use, while inactive users may receive positive reinforcement notifications and encouragements to start interacting with the system or continue where they have stopped. Previous studies have shown that tailoring notifications to each user is an effective way of boosting the use of web-based health tools [21].

Application of RAMP to Other Disorders and Diseases

RAMP content is currently developed to support those struggling with substance use and who are at risk of overdose. However, the tool can also be used to empower patients in other related domains such as navigating trauma, managing anxiety, and preventing self-harm and suicide by adding relevant assessments, modules, and goals. Through the development of proper content, the same logic can be applied to other mental health domains without a need to customize or redevelop the features, which maximizes the reusability of the developed system. Furthermore, RAMP features are fairly independent but interact with each other based on the business logic and through interfaces. This is in line with the principles of software...
engineering in which subsystems of a modular software should have high internal cohesion and low coupling [22].

Limitations
The knowledge of the authors about the application of WordPress plug-ins and add-ons is limited to RAMP. RAMP is a web application; therefore, general limitations of web applications such as requiring continuous internet connection, etc., are also applicable to the present software.

RAMP is developed on the WordPress CMS. Security and performance of the software are limited to the WordPress development framework. Although many successful and secure applications are developed on the same CMS platform, there is news about possible security exploitations of the websites developed on WordPress such as being infected by malwares, backdoors, or being hacked [23,24]. The RAMP development team has attempted to use security best practices such as using a secure host and server, security protocols, reCAPTCHA, reducing log-in attempts, disabling XML RPC, and many more features to create a safe and secure environment for the users.

RAMP is developed with a limited number of users willing to share their ideas. Wider use of RAMP may reveal other limitations.

RAMP neither substitutes or replaces medical advice by professionals nor provides emergency services during times of crisis. RAMP is designed for adults and is not yet adapted for adolescents and young adults.

Conclusions
Web-based platforms such as RAMP can be powerful assets to address significant gaps in the mental health and substance use care systems and can address a major public health crisis. It can integrate different settings of care from prevention to crisis management, all on one accessible platform. In terms of its architecture, RAMP uses a modular design that allows for maximal personalization and integration of user engagement strategies. WordPress components that are used to develop RAMP are mapped onto a 3-tier architecture, where the presentation, application, and database layers communicate to ensure proper functionality for users.

Although web applications seem to be an appropriate development technology for the current and future developments of RAMP, users may also benefit from having certain features such as “Assessments” and “Goals” on a mobile app. This would allow users to access these features even without a reliable internet connection and to receive on-screen notifications as appropriate.

RAMP is currently focused on substance use disorders and specifically reducing overdose, but the tool is flexible enough to include many more domains such as suicide, anxiety, self-harm, and trauma. Broader implementation will support this concept and lead to the next level of functionality. RAMP’s modular design makes it a promising tool for addressing a breadth of mental health conditions among vulnerable populations, increasing the capacity of clinical settings and reducing barriers to care. Further research will need to investigate whether this architecture style is appropriate for eHealth tools addressing different populations and appropriate implementation strategies for eHealth tools addressing people who use drugs.

Acknowledgments
The authors appreciate and recognize Health Canada for funding the RAMP project and its publications (1819-HQ-000122). We also appreciate TelusHealth for their cooperation on providing detailed information on the design and development technologies of RAMP.

Data Availability
Data sharing is not applicable to this article as no data sets were generated or analyzed during this study.

Conflicts of Interest
None declared.

References

<table>
<thead>
<tr>
<th>Edited by A Mavragani; submitted 12.06.23; peer-reviewed by J Walsh, R Rabiei, R Rahimi; comments to author 01.11.23; revised version received 18.12.23; accepted 29.12.23; published 11.03.24.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please cite as: Kazemi A, Boyd M, Choi F, Tai AMY, Tsang VWL, To T, Kim J, Jang K, Shams F, Schreiter S, Cabanis M, Krausz RM</td>
</tr>
<tr>
<td>Architecture and Development Framework for a Web-Based Risk Assessment and Management Platform Developed on WordPress to Address Opioid Overdose</td>
</tr>
<tr>
<td>JMIR Form Res 2024;8:e49759</td>
</tr>
<tr>
<td>URL: https://formative.jmir.org/2024/1/e49759</td>
</tr>
<tr>
<td>doi: 10.2196/49759</td>
</tr>
<tr>
<td>PMID: 38466977</td>
</tr>
</tbody>
</table>

©Alireza Kazemi, Marisha Boyd, Fiona Choi, Andy Man Yeung Tai, Vivian WL Tsang, Tam To, Jane Kim, Kerry Jang, Farhud Shams, Stefanie Schreiter, Maurice Cabanis, Reinhard Michael Krausz. Originally published in JMIR Formative Research (https://formative.jmir.org), 11.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Assessment of Qatar’s Health Care Community Call Center Efficacy in Addressing COVID-19 Pandemic Health Care Challenges: Cross-Sectional Study

Muhammad Atif Waheed, MBBS, MRCS, MRCGP, DPD, MBA; Lolwa Al Mannai, MD, ABCM; Hanan Khudadad, MPH; Jamil Alenbawi, PhD; Mariama Aminata Mansaray, LLB, MA; Samya Al Abdulla, MBBCh, ABFM

Primary Healthcare Corporation, Qatar, Doha, Qatar

Corresponding Author: Muhammad Atif Waheed, MBBS, MRCS, MRCGP, DPD, MBA
Primary Healthcare Corporation, Qatar
Al Mina Street
Doha, 40000
Qatar
Phone: 974 33015895
Email: dratifwaheed@gmail.com

Abstract

Background: The global COVID-19 pandemic caused by SARS-CoV-2 created many unprecedented challenges for health care organizations worldwide, placing a great deal of strain on the health care systems, especially access to health care services. To address these challenges, Qatar established a centralized digital platform as a community call center, initially offering digital consultations via its hotline (number: 16000) and later expanding to include a COVID-19 vaccination hotline (number: 7077) for mass immunization.

Objective: This study aims to comprehensively examine the community call center’s operations and their significant role during the COVID-19 pandemic.

Methods: Retrospective data were collected from the Health Information and Technology Department of the Primary Healthcare Corporation, Qatar, from March 29, 2020, to January 27, 2022. Data analysis for the hotline (number: 16000) focused on telephone and video call volumes, call response rates, abandonment rates, and call classification. In addition, data from the COVID-19 vaccination hotline (number: 7077) were analyzed for call volumes, call response rates, abandonment rates, appointment booking rates, confirmations, rescheduling, and cancellations.

Results: The hotline (number: 16000) received a substantial total of 429,212 calls, with 284,849 (66.37%) calls effectively answered. The average number of calls received per day during the study period was 640.61 (SD 470.53), and the average number of calls answered per day was 425.14 (SD 206.64). Notably, of the total 128,468 consultations, video consultations were conducted for 3810 (2.96%). Among the diverse call categories, diabetes mellitus (6284/84,299, 7.45%), prescriptions and medications (4709/84,299, 5.59%), hypertension (3874/84,299, 4.6%), vitamin D-related issues (3770/84,299, 4.47%), upper respiratory tract infections (2690/84,299, 3.19%), and COVID-19–related inquiries (2590/84,299, 3.07%) were most frequently addressed. For the COVID-19 vaccination hotline (number: 7077), an impressive total of 1,512,354 calls were received, with a 58.27% (n=881,305) call response rate. The average number of calls per day during the study period was 3828.74 (SD 2931.94), and the average number of calls answered per day was 2231.15 (SD 1496.02). Appointment booking accounted for 26.37% (265,721/1,007,596), appointment confirmation accounted for 10.24% (103,136/1,007,596), rescheduling accounted for 7.95% (80,124/1,007,596), and cancellations accounted for 1.6% (16,128/1,007,596) of the calls.

Conclusions: The findings of this research highlight the crucial significance of the community call center hotline (number: 16000) and the COVID-19 vaccination hotline (number: 7077) in effectively addressing the multifaceted challenges posed by the global COVID-19 pandemic. In Qatar, the community call center emerged as an indispensable and accessible centralized resource, facilitating streamlined digital consultations and vaccination appointments. The impressive call response rate highlights its operational efficiency, adeptly managing a diverse range of health-related issues. This study emphasizes the critical role of community call centers in health care emergency response, signaling their potential as invaluable assets for future preparedness and effective mitigation strategies during similar public health crises.
Introduction

Background
SARS-CoV-2, an enveloped single-stranded RNA virus with an epicenter in the Hubei province of China, has caused the current COVID-19 pandemic [1]. It initially appeared as an outbreak of an unknown cause of pneumonia and marked the seventh coronavirus outbreak [2]. Following its emergence, it rapidly spread globally, resulting in significantly high morbidity and mortality rates. At the time of writing this paper, on August 18, 2022, there were 589,680,368 confirmed cases of COVID-19 globally, with 6,436,519 deaths and a fully vaccinated population of 4,857,273,828 [3]. In Qatar, 7,355,038 doses of COVID-19 vaccination were administered until the date of writing this paper.

The COVID-19 pandemic poses many challenges to health care systems worldwide and places considerable strain on them. One of the main challenges is to respond to the crisis and simultaneously maintain the provision of essential health care services, which is crucial for a high-quality and resilient health care system. During the COVID-19 pandemic, many essential health care services were disrupted, including cancer screening, tuberculosis screening, HIV testing, outpatient services, and maternal and child health services [4]. The lack of health care workers, diversion of health care staff to COVID-19 management, cancellation of planned treatments, and risk of viral transmission during on-site patient visits have disrupted health care services [5]. It is essential to take necessary steps to curtail the spread of COVID-19 using available resources and the best use of digital technologies [6]. Different countries have responded differently to the COVID-19 crisis. In the United Kingdom, the National Health Services established a COVID Response Service, accessible via 111 phone lines, with the recruitment of 5000 call handlers and 1500 retired clinicians [7]. The Gulf Cooperation Council (GCC) countries implemented various measures in response to the pandemic, including lockdowns of major cities, airline suspensions, school and university closures, restrictions on social gatherings and sporting events, free health care provision, and active screening for COVID-19 [8]. In Saudi Arabia, the Umrah pilgrimage was suspended, and travel restrictions were placed on GCC citizens who had visited COVID-19–affected countries [9]. To protect public health as a national health strategy in Qatar, the Ministry of Public Health has provided digital solutions by providing remote access channels to health care services at the Primary Health Care Corporation (PHCC) and Hamad Medical Corporation in collaboration with the TASMU Smart Program Qatar, Ministry of Transport and Communication, Hukoomi, and Qatar Post, along with notable digital solution providers [10]. A hotline (number: 16000) was set up to provide 24/7 service to patients’ inquiries regarding COVID-19. In addition, the PHCC established an inbound community call center on March 29, 2020, accessible via the hotline (number: 16000), to provide digital virtual primary care consultations as an alternative to face-to-face health center visits. Physicians and nurses working in health centers who were deemed to be at a high risk for COVID-19, such as those with chronic conditions (hypertension, diabetes, ischemic heart disease, chronic kidney disease, pregnancy, immunocompromised state, etc), were given the option of working in the community call center. On January 5, 2021, the community call center added a COVID-19 vaccination hotline (number: 7077) for booking, cancelling, and rescheduling COVID-19 vaccination appointments [11].

The community call center hotline (number: 16000) provides telephone and video consultation services to all registered patients from 28 health centers in Qatar. Individuals can access the call center through hotline (number: 16000) and book appointments for telephone or video consultation with physicians, dentists, and ophthalmologists from 7 AM to 11 PM. Initially, the calls were triaged by the nurses. For patients who are not registered with the health centers, such as visitors and single workers, the triage nurses direct them to the appropriate service. In cases of emergencies requiring immediate medical attention, patients are guided to dial 999 for ambulance services as appropriate. For nonemergency situations, visitors are directed to local health centers, whereas single male workers are referred to worker’s health centers (HC-21), which are operated by the Qatar Red Crescent Society (QRCS). A nurse-led telephone triage service is available from 11 PM to 7 AM, which signposts patients to appropriate services [12]. Although primarily established for the COVID-19 pandemic, it provided all types of consultations, whether urgent or nonurgent. There were 7 physicians and 9 nurse stations. There was 1 ophthalmology station, whereas for the COVID-19 vaccination hotline (number: 7077), there were 22 stations. The staffing level of the community call center varied according to its operational needs during the study period.

Digital consultations offer several advantages for patients, providers, and health care systems [13]. Patients benefit from avoiding waiting in queues, reducing travel burdens [14], convenience, cost efficiency [15], accessibility [16], and high levels of satisfaction in primary care settings [17]. Satisfaction levels are particularly high in digital consultations, which include communicating with physicians, addressing patients’ concerns and queries, developing treatment plans, improving illness comprehension, and offering usefulness and reliability [5]. During pandemics, digital consultations provide an excellent alternative to traditional face-to-face consultations for patients [18]. Providers also experience advantages, including flexible working hours, the ability to work from anywhere; a reduced risk of infection; increased job satisfaction [13,19,20]; and less psychological distress, burnout [13], and sickness, which can be a burden on the organization. From an organizational perspective, digital consultations provide centralized operations with weekly statistics and demand forecasting, eliminating unnecessary patient visits to health centers and resulting in...
smooth operations and reduced clinic congestion [13]. Moreover, they enable health care services in remote areas and offer an opportunity for service expansion whenever possible. In addition, they contribute to lower CO₂ emissions and cost savings [20].

Call centers can serve as central hubs to respond to public health emergencies by providing rapid information transfer to health care providers [21]. During the COVID-19 pandemic, telehealth call centers played a significant role in supporting rural community health workers in Uganda, facilitating prompt identification and referral of COVID-19 cases for appropriate care [22]. In South Korea, the telehealth system provided up-to-date information to callers, helping them protect themselves and others from COVID-19 effectively [23]. Similarly, China established psychological support hotlines to offer mental health assistance during the pandemic [24], and in Paris, France, health care workers benefited from psychological support services [25].

Objective

Despite the importance of call centers during the pandemic, there is limited information available on their operations and outcomes, especially in relation to the COVID-19 pandemic and the vaccination hotline. Existing literature does not include reports from GCC countries detailing the role and impact of community call centers during the pandemic. This study aims to fill this gap by examining call center operations; documenting their contributions; and analyzing call volumes, patterns, response rates, categories of calls, priorities, and problems or diagnoses. By investigating the effectiveness of community call centers in Qatar during the COVID-19 pandemic, this research seeks to provide valuable insights into their performance during public health emergencies.

Methods

Study Design

A cross-sectional study design was used to assess the community call center hotline operations and performance during the study period.

Disease and Study Population

This research mainly evaluated community call center services to handle the COVID-19 pandemic health care challenges, specifically focusing on their utilization and effectiveness. The study population consisted of patients seeking routine and urgent consultations and advice regarding COVID-19 and its vaccination.

Location

Data were retrospectively collected from the Health Information and Technology Department of the PHCC, Qatar headquarters, where the community call center is located.

Time Frame

Data for the community call center hotline (number: 16000) were collected from March 29, 2020, to January 27, 2022. Similarly, data for the community call center vaccination hotline (number: 7077) were collected from December 29, 2021, to January 27, 2022. This time frame encompassed critical phases of the COVID-19 pandemic and the subsequent mass vaccination campaign.

Data Collection and Analysis

This study involved meticulous analysis of 2 separate data sets: one pertaining to the hotline service (number: 16000) and the other concerning the COVID-19 vaccination hotline (number: 7077). The hotline service (number: 16000) data set was analyzed for various essential metrics, including call volume, percentage of calls answered or abandoned, call patterns, categories of calls, and specific health concerns addressed. Similarly, the COVID-19 vaccination hotline (number: 7077) data set was thoroughly scrutinized, considering call volume; call response rates; call patterns; and appointment-related information such as bookings, rescheduling, confirmations, and cancellations.

Data Cleaning

To ensure utmost data quality and reliability, a robust data cleaning process was meticulously executed. The 3-step approach encompassed vigilant screening of the databases to detect and address any suspicious features, precise diagnosis of faulty data to ensure accurate results, and appropriate treatment of identified discrepancies. Moreover, a separate copy of the original data was meticulously created in a new file to maintain data integrity during the cleaning process.

Data Reporting

Conforming to the highest standards of scientific reporting, this study adhered to the RECORD statement, an extension of the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement checklist. This ensured accurate and transparent reporting of the secondary data analysis, further enhancing the credibility of the study findings [26].

Ethical Considerations

This study obtained ethical approval from the PHCC Research Subcommittee, adhering to research ethics and ensuring participant protection (PHCC/DCR/2021/11/068). As the study used existing deidentified data, informed consent was waived in accordance with the approved protocol. Stringent privacy and confidentiality measures were implemented to safeguard the data. The study strictly complied with data protection regulations to maintain the confidentiality of sensitive information. No compensation was provided to human participants, as the study involved secondary analysis of deidentified data and did not involve direct interaction with participants. The research team took utmost care to handle the data responsibly and ethically throughout the study.

Results

Community Call Center Hotline (Number: 16000)

Table 1 shows the quarterly performance of the community call center hotline (number: 16000). During the study period, 66.37% (284,849/429,212) of the calls were handled, with the highest being handled in the third quarter (33,395/34,376, 97.15%), followed by the fourth quarter (34,543/35,885, 96.26%) of 2021.
The average number of calls per day during the study period was 640.61 (SD 470.53), and the average number of calls answered per day was 425.14 (SD 206.64).

Figure 1 shows the hotline (number: 16000) call volume patterns during the study period. The peak of calls occurred on April 19, 2020; April 7, 2021; and January 5, 2022.

Figure 2 shows the volume and pattern of the video consultations conducted during the study period. Video consultations accounted for 2.96% (3810/128,468) of the total consultations conducted. The number of video consultations conducted was highest in the beginning of the COVID-19 pandemic reaching its peak in the first week of July 2020 and then gradually declined.

Figure 3 illustrates problem-based summary of consultations over hotline (number: 16000). The highest number of calls was related to diabetes mellitus (6284/84,299, 7.45%), prescriptions or medications (4709/84,299, 5.59%), hypertension (3874/84,299, 4.6%), vitamin D-related issues (3770/84,299, 4.47%), upper respiratory tract infection (2690/84,299, 3.19%), COVID-19 (2590/84,299, 3.07%), thyroid-related problems (2237/84,299, 2.65%), dermatological problems (1807/84,299, 2.14%), dyslipidemia (1358/84,299, 1.61%), pregnancy (1320/84,299, 1.57%), back pain (1216/84,299, 1.44%), fever (1089/84,299, 1.29%), cough (1060/84,299, 1.26%), dry eyes (1004/84,299, 1.19%), gastritis (984/84,299, 1.17%), and many other problems or diagnoses.

Table 1. Quarterly (Q) performance of community call center hotline (number: 16000).

<table>
<thead>
<tr>
<th>Time period</th>
<th>Total calls, n (%)</th>
<th>Total calls answered, n (%)</th>
<th>Total calls abandoned, n (%)</th>
<th>Calls/d, mean (SD)</th>
<th>Calls answered/d, mean (SD)</th>
<th>Calls abandoned/d, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1<sup>a</sup> (n=3146)</td>
<td>3146 (100)</td>
<td>1906 (60.58)</td>
<td>1240 (39.42)</td>
<td>1048.67 (125.43)</td>
<td>635.33 (75.74)</td>
<td>413.33 (200.97)</td>
</tr>
<tr>
<td>Q2 (n=57,628)</td>
<td>57,628 (100)</td>
<td>37,732 (65.48)</td>
<td>19,896 (34.52)</td>
<td>633.27 (365.44)</td>
<td>414.64 (159.40)</td>
<td>218.64 (223.79)</td>
</tr>
<tr>
<td>Q3 (n=64,172)</td>
<td>64,172 (100)</td>
<td>37,224 (58.01)</td>
<td>26,948 (41.99)</td>
<td>697.52 (318.96)</td>
<td>404.61 (127.12)</td>
<td>292.91 (218.14)</td>
</tr>
<tr>
<td>Q4 (n=43,642)</td>
<td>43,642 (100)</td>
<td>27,834 (63.78)</td>
<td>15,808 (36.22)</td>
<td>474.37 (214.21)</td>
<td>302.54 (98.53)</td>
<td>171.83 (137.15)</td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1 (n=68,364)</td>
<td>68,364 (100)</td>
<td>35,070 (51.3)</td>
<td>33,294 (48.7)</td>
<td>759.60 (386.49)</td>
<td>389.67 (138.61)</td>
<td>369.93 (283.37)</td>
</tr>
<tr>
<td>Q2 (n=70,255)</td>
<td>70,255 (100)</td>
<td>49,831 (70.93)</td>
<td>20,424 (29.07)</td>
<td>772.03 (421.53)</td>
<td>547.59 (164.05)</td>
<td>224.44 (304.45)</td>
</tr>
<tr>
<td>Q3 (n=34,376)</td>
<td>34,376 (100)</td>
<td>33,395 (97.15)</td>
<td>981 (2.85)</td>
<td>373.65 (133.23)</td>
<td>362.99 (128.06)</td>
<td>10.66 (10.31)</td>
</tr>
<tr>
<td>Q4 (n=35,885)</td>
<td>35,885 (100)</td>
<td>34,543 (96.26)</td>
<td>1342 (3.74)</td>
<td>390.05 (258.57)</td>
<td>375.47 (212.67)</td>
<td>14.59 (59.67)</td>
</tr>
<tr>
<td>Q1 2022<sup>b</sup> (n=51,744)</td>
<td>51,744 (100)</td>
<td>27,314 (52.79)</td>
<td>24,430 (47.21)</td>
<td>1916.44 (944.09)</td>
<td>1011.63 (220.61)</td>
<td>904.81 (764.96)</td>
</tr>
<tr>
<td>Total (n=429,212)</td>
<td>429,212 (100)</td>
<td>284,849 (66.37)</td>
<td>144,363 (33.63)</td>
<td>640.61 (470.53)</td>
<td>425.14 (206.64)</td>
<td>215.46 (311.91)</td>
</tr>
</tbody>
</table>

^aMarch 29 until March 31, 2020.

^bJanuary 1 until January 27, 2022.
Figure 1. Call volume patterns of hotline (number: 16000).

Figure 2. Volume and pattern of video consultations over the hotline (number: 16000).

Figure 3. Problem-based summary of consultations over hotline (number: 16000). GERD: gastroesophageal reflux disease; URTI: upper respiratory tract infection; UTI: urinary tract infection.
Community Call Center Vaccination Hotline (Number: 7077)

Table 2 shows the quarterly performance of the COVID-19 vaccination hotline (number: 7077). The COVID-19 hotline (number: 7077) handled approximately 58.27% (881,305/1,512,354) of the total calls, whereas 41.73% (631,049/1,512,354) were abandoned during the study period. The average number of calls per day during the study period was 3828.74 (SD 2931.94), whereas the average number of calls answered per day was 2231.15 (SD 1496.02). The highest percentage of calls answered was during the third quarter of 2021 (112,445/118,372, 94.99%), while the lowest number of calls answered was during the first quarter of 2021 (180,205/311,364, 42.12%).

Figure 4 shows the volumes of calls and the pattern received by the COVID-19 vaccination hotline (number: 7077) during the study period. The highest number of calls was received around mid-May and November and the last week of December 2021.

Table 3 displays the quarterly call categories for the COVID-19 vaccination hotline (number: 7077). The highest number of appointments booked occurred in the fourth quarter of 2021 (86,924/1,007,596, 8.63%), followed by that in the second quarter (81,331/1,007,596, 8.07%). Similarly, the highest number of confirmed appointments occurred during the second (51,122/1,007,596, 5.07%) and fourth quarter (16,735/1,007,596, 1.66%) of 2021. The highest number of appointment cancellations occurred in the second (7028/1,007,596, 0.7%) and third quarter (2072/1,007,596, 0.21%) of 2021. Notably, the highest call volume identified for the workers’ health centers (HC-21) operated by QRCS occurred during the second quarter of 2021 (62,208/1,007,596, 6.17%), followed by the fourth quarter of 2021 (43,735/1,007,596, 4.34%). Calls from patients who did not meet the age vaccination criteria, as announced by the Ministry of Public Health of Qatar, were the highest in the second quarter of 2021 (57,081/1,007,596, 5.67%), followed by the third quarter of 2021 (8337/1,007,596, 0.83%).

Table 4 illustrates the distribution of call categories for the COVID-19 vaccination hotline (number: 7077) during the study period. Among the incoming calls, approximately 26.37% (265,721/1,007,596) were associated with appointment bookings, 10.24% (103,136/1,007,596) were for confirming existing appointments, 7.95% (80,124/1,007,596) involved rescheduling appointments, and 1.6% (16,128/1,007,596) were calls to cancel previously scheduled appointments. In addition, 14.8% (149,117/1,007,596) of the calls were identified as related to the workers’ health centers (HC-21) operated by QRCS, while 7.11% (71,600/1,007,596) of the calls received did not meet the age criteria for vaccination.

Table 2. Quarterly (Q) performance of COVID-19 vaccination hotline (number: 7077).

<table>
<thead>
<tr>
<th>Time period</th>
<th>Total calls, n (%)</th>
<th>Calls answered, n (%)</th>
<th>Calls abandoned, n (%)</th>
<th>Calls/d, mean (SD)</th>
<th>Calls answered/d, mean (SD)</th>
<th>Calls abandoned/d, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2020b (n=852)</td>
<td>852 (100)</td>
<td>297 (34.86)</td>
<td>555 (65.14)</td>
<td>284 (36.01)</td>
<td>99 (21.52)</td>
<td>185 (57.42)</td>
</tr>
<tr>
<td>2021</td>
<td>Q1 (n=310,842)</td>
<td>310,842 (100)</td>
<td>131,159 (42.19)</td>
<td>179,683 (57.88)</td>
<td>3453.80 (1735.19)</td>
<td>1457.32 (849.34)</td>
</tr>
<tr>
<td>Q2 (n=555,336)</td>
<td>555,336 (100)</td>
<td>356,259 (64.15)</td>
<td>199,077 (35.85)</td>
<td>6102.59 (2315.49)</td>
<td>3914.93 (885.59)</td>
<td>2187.66 (1788.70)</td>
</tr>
<tr>
<td>Q3 (n=118,372)</td>
<td>118,372 (100)</td>
<td>112,445 (94.99)</td>
<td>5927 (5.01)</td>
<td>1286.65 (887.29)</td>
<td>1222.23 (836.57)</td>
<td>64.42 (52.90)</td>
</tr>
<tr>
<td>Q4 (n=361,461)</td>
<td>361,461 (100)</td>
<td>190,959 (52.83)</td>
<td>170,502 (47.17)</td>
<td>3928.92 (3627.34)</td>
<td>2075.64 (1546.77)</td>
<td>1853.28 (2217.60)</td>
</tr>
<tr>
<td>Q1 2022b (n=165,491)</td>
<td>165,491 (100)</td>
<td>90,186 (54.5)</td>
<td>75,305 (45.5)</td>
<td>6129.30 (2040.44)</td>
<td>3340.22 (650.37)</td>
<td>2789.07 (1792.58)</td>
</tr>
<tr>
<td>Total (n=1,512,354)</td>
<td>1,512,354 (100)</td>
<td>881,305 (58.27)</td>
<td>631,049 (41.73)</td>
<td>3828.74 (2931.94)</td>
<td>2231.15 (1496.02)</td>
<td>1597.59 (1790.57)</td>
</tr>
</tbody>
</table>

aDecember 29 until December 31, 2020.
bJanuary 1 until January 27, 2022.
Figure 4. Volume and pattern of calls received by COVID-19 vaccination hotline (number: 7077).

Table 3. Quarterly (Q) call categories of COVID-19 vaccination hotline (number: 7077; n=1,007,596).

<table>
<thead>
<tr>
<th>Time period</th>
<th>Rescheduled, n (%)</th>
<th>Cancelled, n (%)</th>
<th>Booked, n (%)</th>
<th>Confirmed, n (%)</th>
<th>>1 appointment, n (%)</th>
<th>Worker’s health centers (HC-21), n (%)</th>
<th>Unmet vaccination age criteria, n (%)</th>
<th>Other n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2020a</td>
<td>81 (0.01)</td>
<td>14 (0)</td>
<td>78 (0.01)</td>
<td>13 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>68 (0.01)</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>17,164 (1.7)</td>
<td>3514 (0.35)</td>
<td>42,559 (4.22)</td>
<td>13,195 (1.31)</td>
<td>823 (0.08)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>62,762 (6.23)</td>
</tr>
<tr>
<td>Q2</td>
<td>24,306 (2.41)</td>
<td>7028 (0.70)</td>
<td>81,331 (8.07)</td>
<td>51,122 (5.07)</td>
<td>1349 (0.13)</td>
<td>62,208 (6.17)</td>
<td>57,081 (5.67)</td>
<td>121,467 (12.06)</td>
</tr>
<tr>
<td>Q3</td>
<td>11,856 (1.18)</td>
<td>2072 (0.21)</td>
<td>20,442 (2.03)</td>
<td>14,737 (1.46)</td>
<td>656 (0.07)</td>
<td>16,006 (1.59)</td>
<td>8337 (0.83)</td>
<td>50,256 (4.99)</td>
</tr>
<tr>
<td>Q4</td>
<td>17,815 (1.77)</td>
<td>1943 (0.19)</td>
<td>86,924 (8.63)</td>
<td>16,735 (1.66)</td>
<td>240 (0.02)</td>
<td>43,735 (4.34)</td>
<td>4132 (0.41)</td>
<td>60,223 (5.98)</td>
</tr>
<tr>
<td>Q1 2022b</td>
<td>8902 (0.88)</td>
<td>1557 (0.15)</td>
<td>34,465 (3.42)</td>
<td>7269 (0.72)</td>
<td>221 (0.02)</td>
<td>27,168 (2.7)</td>
<td>2050 (0.2)</td>
<td>23,692 (2.35)</td>
</tr>
<tr>
<td>Total</td>
<td>80,124 (7.95)</td>
<td>16,128 (1.6)</td>
<td>265,721 (26.37)</td>
<td>103,136 (10.24)</td>
<td>3302 (0.33)</td>
<td>149,117 (14.80)</td>
<td>71,600 (7.11)</td>
<td>318,468 (31.61)</td>
</tr>
</tbody>
</table>

aDecember 29 until December 31, 2020.
bJanuary 1 until January 27, 2022.

Table 4. Distribution of call categories for COVID-19 vaccination hotline (number: 7077).

<table>
<thead>
<tr>
<th>Call category</th>
<th>Values (n=1,007,596), n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booked</td>
<td>265,721 (26.37)</td>
</tr>
<tr>
<td>Confirmed</td>
<td>103,136 (10.24)</td>
</tr>
<tr>
<td>Rescheduled</td>
<td>80,124 (7.95)</td>
</tr>
<tr>
<td>Cancelled</td>
<td>16,128 (1.6)</td>
</tr>
<tr>
<td>Worker’s health centers (HC-21)</td>
<td>149,117 (14.8)</td>
</tr>
<tr>
<td>Unmet vaccination age criteria</td>
<td>71,600 (7.11)</td>
</tr>
<tr>
<td>Other</td>
<td>318,468 (31.61)</td>
</tr>
</tbody>
</table>
Discussion

Principal Findings

According to the findings of this study, the community call center hotline (number: 16000) and the COVID-19 vaccination hotline (number: 7077) have played a pivotal role during the ongoing COVID-19 pandemic. These hotlines effectively answered 66.37% (284,849/429,212) of the calls for urgent consultation requests and 58.27% (881,305/1,512,354) of the calls for COVID-19 vaccination appointment inquiries. Notably, the community call center serves as a centralized and versatile resource for citizens and residents of Qatar, offering consultations for a wide range of cases, whether they are emergencies, urgent, or nonurgent, and enabling centralized operations for the mass vaccination program against COVID-19. It has provided a hub during challenging times when health care organizations have witnessed a rapid shift from face-to-face to virtual consultations.

The results of this study showed that after 4 weeks of the first COVID-19 case in Qatar, which was announced on February 29, 2020, the community call center was fully operating. The trajectory of the call volumes received is in line with the peaks of COVID-19 cases, with the first one occurring on May 30, 2020, the second occurring in the middle of April 2021, and the third occurring in the middle of January 2022. As a result, during the COVID-19 pandemic including the lockdown phases, the people of Qatar were able to receive the best medical care. This has also prevented the spread of COVID-19 while providing alternative solutions for patients to access primary health care services [27]. With the community call center, patients have been empowered in terms of flexibility and convenience to use virtual consultations as an alternative to traditional health care services.

The community call center’s diagnostic categories revealed its capacity to handle a diverse array of medical concerns, encompassing inquiries related to COVID-19; vaccination inquiries; acute problems; chronic diseases; medication and repeat prescription requests; requests for laboratory investigations; and various medical conditions related to ear, nose and throat, ophthalmology, dermatology, psychiatry, gynecology, gastrointestinal, neurology, cardiovascular, orthopedics, hematology, pediatrics, and endocrine and metabolic conditions. Interestingly, patients with diabetes mellitus accounted for the highest number of consultations, and virtual consultations have proved effective for managing type 2 diabetes with outcomes comparable with face-to-face consultations, as demonstrated in primary care settings in Australia [28]. Similarly, the management of hypertension via virtual consultations during the COVID-19 pandemic has offered a holistic approach to achieve hypertension control in the United States [29].

It is intriguing to note that video consultations experienced a significant surge in demand during the early phase of the COVID-19 pandemic, especially in the first week of July 2020, reaching a peak of 30 video consultations per day. However, following this peak, the use of video consultation gradually declined over time. Although there is some evidence indicating that video consultations were more sought-after during periods of higher COVID-19 cases, such as in early July 2020 and mid-April 2021, it is essential to highlight that this correlation is not consistently observed throughout the data set. Notably, there were instances of relatively low video consultation counts during times of higher COVID-19 cases, such as in mid-January 2022. The lower use of video consultations can be attributed to various factors, including patients’ preferences influenced by cultural and language barriers, their comfort or inclination toward telephone or face-to-face consultations, privacy and security concerns, and technical limitations. Cultural reasons play a role in shaping patient preferences; some individuals may feel more at ease and familiar with consultation methods such as telephone calls. The content, duration, and quality of video consultations might resemble those of telephone consultations, which could affect patient choices [30], aligning with the findings reported in existing literature. Interestingly, in the United Kingdom, video consultations constitute <1% of consultations in general practice [31]. This preference for other consultation methods, including telephone and face-to-face consultations, might be influenced by physicians’ perceptions that video consultations offer minimal advantages compared with the alternatives.

The COVID-19 vaccination hotline (number: 7077) played a crucial role in Qatar’s mass immunization program, facilitating services for booking, cancellations, and rescheduling initially based on professional group and age criteria. The program was launched on December 21, 2020, introducing the BNT162b2 (Pfizer-BioNTech) messenger RNA vaccine initially, followed by the mRNA-1273 (Moderna) vaccine 3 months later. Initially, priority was given to vaccinating frontline health care workers, individuals with severe or multiple chronic diseases, and those aged ≥70 years. Subsequently, the program was extended gradually by 1 age group at a time, along with selected professional groups, using age as the primary eligibility criterion throughout the rollout [32]. The data from the vaccination hotline revealed noteworthy call volume spikes during mid-May, mid-November, and the last week of December 2021, coinciding with new announcements related to the vaccination program’s expansion. However, the percentage of vaccination hotline’s answers was observed to be lower than that of digital consultation phones. This disparity in the response rates can be attributed to multiple factors. Periods of high demand, such as vaccination eligibility expansions or public announcements about vaccination campaigns, led to a surge in hotline calls, potentially affecting response times due to the increased call volume. Specific eligibility criteria for vaccination appointments also played a role, as some callers may not have met these criteria, resulting in redirection or absence of appointments. Technical issues, waiting times, and call congestion further influenced the hotline’s response rate. Notably, the third quarter of 2021 demonstrated a higher response rate for the vaccination hotline. This could be attributed to a relatively lower volume of calls received during this period, possibly influenced by factors such as expats traveling during summer vacations and the vaccination hotline’s capacity to meet the demand effectively. Understanding these dynamics is crucial for optimizing hotline performance and enhancing vaccination service accessibility. Both vaccines in Qatar have been found...
to elicit strong protection against COVID-19, prevent hospital admission, and reduce mortality [33]. Due to mass vaccination supported by the community call center and other measures taken by the Ministry of Public Health, Qatar’s mortality remained very low at 0.0016%, whereas globally, it was 1% at the time of writing this paper.

One of the most significant outcomes of the COVID-19 pandemic is that many outpatient appointments can now be managed efficiently via telemedicine without affecting patient care [34]. The COVID-19 pandemic has shown that health care workers can swiftly adjust to the new technologies required to use telemedicine [13]. In a study involving 23 primary care providers and 1692 patients, both providers and patients reported a desire to continue telemedicine visits after the pandemic in primary care settings in the United States [17]. Even before the COVID-19 pandemic, the telehealth business flourished, with a market value of >US $50 billion in 2019 and an anticipated growth rate of more than 9-fold over the next decade [35]. Virtual consultant jobs have also been advertised [36].

The significance of the community call center and vaccination hotline in providing consultations, vaccinations, and health care services during a challenging period demonstrates the potential and value of telehealth solutions in health care systems worldwide. By sharing the successful experiences and best practices of the community call center hotlines, this study can contribute to the enhancement of telehealth services and call centers globally. The lessons learned from operating the hotline can be invaluable for improving crisis response strategies and optimizing health care delivery during public health emergencies. By leveraging digital technologies, health care systems can enhance access to services, improve patient satisfaction, and manage public health emergencies effectively. Integrating call centers and telehealth into routine health care services and emergency response strategies can provide long-term benefits beyond the pandemic.

Limitations

This study has several limitations. The data presented in this study involved 3 peaks of COVID-19 that affected the overall percentage of calls answered by the hotline (number: 16000). The hotline answered 100% of all calls on several days of the week during the study period. Perhaps, the percentage of calls answered improved to 71.71% at the time of writing this paper. Similarily, for the COVID-19 vaccination hotline (number: 7077), a surge in the volume of calls due to a new announcement of rolling out of the vaccination program affected the overall percentage of the calls answered. COVID-19 vaccination hotline (number: 7077) also answered >97% of the calls on many days of the week during the study period. The percentage of calls handled by the COVID-19 vaccination hotline (number: 7077) improved to 62.17% by the date of writing this paper.

It is important to acknowledge that although this study provides valuable insights into the role of community call center during the COVID-19 pandemic in Qatar, the applicability of these findings to low- and middle-income countries (LMIC) may be subject to limitations. LMIC often face unique challenges, including resource constraints, technological disparities, and varied health care infrastructures. The digital divide prevalent in many LMIC could significantly exacerbate the access-to-technology gap, hindering the establishment and effectiveness of call centers. Moreover, the lack of access to robust health systems or timely responses in LMIC might impact the feasibility and sustainability of implementing similar call center solutions. The success of such initiatives in Qatar, being one of the richest countries globally, may not necessarily translate seamlessly to LMIC because of the nuanced economic, infrastructural, and health care disparities prevalent in those regions. Therefore, although call centers can be a valuable tool, particularly in health care emergencies, their feasibility and effectiveness must be carefully evaluated in the context of LMIC’s unique challenges and constraints.

Conclusions

This study highlights the significant role played by the community call center hotline (number: 16000) and the COVID-19 vaccination hotline (number: 7077) in effectively managing the challenges caused by the COVID-19 pandemic in Qatar. The community call center responded well to these challenges in Qatar by providing patients with an accessible, centralized resource as an alternative platform for telephone and video consultations and for managing a mass vaccination program. The findings demonstrate the call center’s operational efficiency to handle high call volumes and offer diverse consultations, effectively addressing a wide range of health concerns throughout different waves of the COVID-19 pandemic. Virtual consultations have emerged as a practical solution to empower patients with flexibility and convenience. Although video consultations experienced a temporary surge, their overall use gradually declined during the specified study period, reflecting patients’ preference for other consultation methods. Nevertheless, the community call center remained instrumental in managing various health care aspects, including chronic disease management and COVID-19–related queries. Moreover, the COVID-19 vaccination hotline played a major role in executing a successful mass immunization program. Prioritizing frontline health care workers and susceptible groups initially, the vaccination drive significantly contributed to reducing mortality rates in Qatar. This accomplishment can be attributed to the coordinated efforts of the community call center and other strategic measures implemented by the Ministry of Public Health of Qatar. As the COVID-19 pandemic recedes, it will be essential to adapt the community call center’s capacity and its services to address future health care challenges. Expanding community call center services to encompass specialized health services such as dermatology, counseling, health education, and psychological support could further enhance Qatar’s health care infrastructure. Our study emphasizes the critical significance of telemedicine and digital solutions in crisis response and health care delivery. The insights gained from the community call center in Qatar during the pandemic will provide valuable lessons for improving health care accessibility and emergency response strategies in the future. As health care systems transition to postpandemic norms, leveraging the knowledge and experience gained will foster resilience and efficacy in addressing upcoming challenges, ensuring the well-being of the population.
Acknowledgments
Publication fees was provided by Primary Health Care Corporation, Qatar. The authors received no specific funding for this work.

Data Availability
All data generated or analyzed during this study are included in this published paper.

Conflicts of Interest
None declared.

References

https://formative.jmir.org/2024/1/e42753
Abbreviations

GCC: Gulf Cooperation Council
LMIC: low- and middle-income countries
PHCC: Primary Health Care Corporation
QRCS: Qatar Red Crescent Society
STROBE: Strengthening the Reporting of Observational Studies in Epidemiology

https://formative.jmir.org/2024/1/e42753

Jim Swift1, BA, MSc; Noel O'Kelly1, MB BCh; Chris Barker1, BSc; Alex Woodward2, BSc, MSc; Sudip Ghosh2,3, MD, PhD

1Spirit Health, Leicester, United Kingdom
2Leicestershire Partnership NHS Trust, Leicester, United Kingdom
3Department of Allied Health Sciences, De Montford University, Leicester, United Kingdom

Corresponding Author:
Jim Swift, BA, MSc
Spirit Health
Spirit House, Saffron Way
Leicester, LE2 6UP
United Kingdom
Phone: 44 1162865000
Email: jim.swift@spirit-health.com

Abstract

Background: The COVID-19 pandemic stressed global health care systems’ acute capacity and caused a diversion of resources from elective care to the treatment of acute respiratory disease. In preparing for a second wave of COVID-19 infections, England’s National Health Service (NHS) in Leicester, Leicestershire, and Rutland sought to protect acute capacity in the winter of 2020-2021. Their plans included the introduction of a digital ward where patients were discharged home early and supported remotely by community-based respiratory specialists, who were informed about patient health status by a digital patient monitoring system.

Objective: The objective of the digital ward was to maintain acute capacity through safe, early discharge of patients with COVID-19 respiratory disease. The study objective was to establish what impact this digital ward had on overall NHS resource use.

Methods: There were no expected differences in patient outcomes. A cost minimization was performed to demonstrate the impact on the NHS resource use from discharging patients into a digital COVID-19 respiratory ward, compared to acute care length of stay (LOS). This evaluation included all 310 patients enrolled in the service from November 2020 (service commencement) to November 2021. Two primary methods, along with sensitivity analyses, were used to help overcome the uncertainty associated with the estimated comparators for the observational data on COVID-19 respiratory acute LOS, compared with the actual LOS of the 279 (90%) patients who were not discharged on oxygen nor were in critical care. Historic comparative LOS and an ordinary least squares model based on local monthly COVID-19 respiratory median LOS were used as comparators. Actual comparator data were sourced for the 31 (10%) patients who were discharged home and into the digital ward for oxygen weaning. Resource use associated with delivering care in the digital ward was sourced from the digital system and respiratory specialists.

Results: In the base case, the digital ward delivered estimated health care system savings of 846.5 bed-days and US $504,197 in net financial savings across the 2 key groups of patients—those on oxygen and those not on oxygen at acute discharge (both P<.001). The mean gross and net savings per patient were US $1850 and US $1626 in the base case, respectively, without including any savings associated with a potential reduction in readmissions. The 30-day readmission rate was 2.9%, which was below comparative data. The mean cost of the intervention was US $223.53 per patient, 12.1% of the estimated gross savings. It was not until the costs were increased and the effect reduced simultaneously by 78.4% in the sensitivity analysis that the intervention was no longer cost saving.

Conclusions: The digital ward delivered increased capacity and substantial financial savings and did so with a high degree of confidence, at a very low absolute and relative cost.
Introduction
Overview
The COVID-19 pandemic stressed global health care systems, diverting resources from elective care and prioritizing the care of people with acute respiratory disease [1].

The introduction of a digital ward that commenced enrolling patients in November 2020 in Leicester, Leicestershire, and Rutland (LLR) was a key part of National Health Service (NHS) preparations for an expected surge in COVID-19 infections in the winter of 2020-2021.

The background to this decision was the impact of the first wave on LLR acute bed availability and the use of digital technology to remotely monitor patients to support their chronic conditions, both at the start of the COVID-19 pandemic and previously [2,3]. There was evidence to support the care of people after discharge with a high risk of readmission [2-4], and digitally supported patients with infectious respiratory disease had a reduced length of stay (LOS) [5-7].

The primary objectives for the COVID-19 digital ward were to maintain acute bed capacity through safe, early acute discharge and step-down into a specialist respiratory–managed service in the patients’ homes. Patients with COVID-19 respiratory infections were discharged into the care of the Leicester Partnership Trust (LPT) specialist respiratory team who were supported by digital technology (Clinitouch, Spirit Health), which electronically conveyed clinical observations and health status information to clinicians in an algorithm-based, traffic light (red, amber, and green)–prioritized basis. The standard operating procedures (service description), inclusion and exclusion criteria, objectives, and outcome measures for the digital ward are displayed on the internet [8], and more detail related to the intervention can be found in a study that regarded the first 65 patients that accessed the digital ward [9].

Paper-based, phone-based, digitally-based, and wearable device–based digital wards were used during COVID-19 as vehicles for admission avoidance and for stepping down patients who had been acutely admitted. There were mixed results [10].

The findings could have implications for future pandemics and how health systems allocate resources to better recover from the pandemic.

Objective
The objective of this study was to demonstrate the impact of a digital COVID-19 ward on NHS resource use. Specifically, the study aimed to establish if the digital ward achieved its primary goal of freeing up beds and the extent to which it reduced or increased overall NHS resource use.

Methods
Participants
There were 310 patients admitted to the University Hospitals Leicester (UHL) NHS Trust with COVID-19 respiratory disease; they were either discharged home between November 2020 and November 2021 into a digital ward to support their oxygen weaning (31/310, 10%) or had not required oxygen at discharge and needed additional support to recover (279/310, 90%). The patients’ mean age was 55.0 (SD 13.7; median 56; range 22-86) years, 3.2% (n=10) of patients were 80 years or older, and 40.6% (n=143) of patients were female. No ethnicity, comorbidity, or socioeconomic status information was collected. Patients were given the option to go home early and be supported digitally when they met the inclusion criteria [8].

Resource Use, Perspective, and Time Horizon
This study was based on observational data and represents a cost minimization of a service evaluation. All patients discharged into the digital ward had confirmed COVID-19–related respiratory disease. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 2022 guidelines for economic evaluations were followed [11] (see Multimedia Appendix 1). This cost minimization analysis only evaluated NHS resource use and the outcomes of interest were acute bed-days saved, their costs offset, and the costs of the digital ward. It was considered that the digital ward would not deliver any change in patients’ long-term, health-related quality of life or health outcomes.

The perspective taken was that of the English NHS. Any savings would have been in the acute sector and additional costs in the intermediate care sector. The resource use only considered the digital ward costs and the costs of its comparator, acute hospital care.

The time horizon was slightly more than over 12 months, and no discounting of costs was conducted. All costs were in 2020-2021 pounds sterling and converted to US dollars.

Resource Use Data Sources
Comparator data for patients not on oxygen with acute LOS were sourced from patients discharged immediately prior to the introduction of the digital ward in November 2020 and a published NHS data set [12]. The difference between the duration of the LOS for patients discharged into the digital ward for oxygen weaning and those discharged routinely were acquired from UHL by LPT and NHS X (now part of the NHS Transformation Directorate). Mean clinical consultation durations and staff seniority were sourced from LPT (both correspondence: JS). Individual acute LOS, readmissions data, and the cost of a day in a respiratory ward were sourced from
UHL (correspondence: SG). Staff unit costs were sourced from the Personal Social Services Research Unit (PSSRU) data set for 2020-2021 [13].

There were 2 principal costs associated with participants’ stay in the digital ward: the duration of patients’ digital ward LOS, which influenced the costs of the digital technology and was calculated on a per diem basis; and the number and duration of respiratory specialist–patient digital contacts. The duration of the digital ward stays and the number of contacts were sourced from the digital technology database. The method for estimating the mean duration of a clinical contact was described in the paragraph above.

Resource use data in both units and costs can be found in Multimedia Appendix 1.

Comparison of Acute Ward LOS Versus Actual and Imputed Comparators

There were 2 different populations discharged into the digital ward; those on oxygen at discharge and those who were not.

Those on oxygen were subjected to an analysis conducted by NHS X and LPT. They were discharged from the hospital, on average, 9.9 days earlier than similar patients who had not accessed the digital ward.

The first 65 patients not on oxygen discharged into the digital ward left acute care in 3.3 days, 2.2 days (40% relative reduction in LOS) earlier than controls who did not have the potential to access the digital ward [9]. The information on controls’ LOS (5.5 days) was sourced immediately prior to the digital ward’s introduction. This is an analysis of all patients admitted into the LLR COVID-19 digital ward prior to the end of November 2021 and prior to the availability of disease-modifying medicines that reduced acute COVID-19 illness severity. This study includes the first 65 patients.

Data Used to Estimate LOS, Patients Not on Oxygen—Comparators

The LOS in UHL was reported alongside the median and mean monthly LOS for COVID-19 discharges between March 20 and December 21 [12]. The linear relationship between UHL discharges and median acute LOS is illustrated in Figure 1. The red line displays the result of pulling the data on the median LOS (gray hashed line) 1 month back in time. In doing so, the r^2 improved from 0.31 to 0.75 in an ordinary least squares (OLS) model.

Mean LOS included a minority of patients with intensive resource use and very long LOS, skewing the LOS upward (see Figure 2 for differences between mean and median LOS for England and UHL). The estimated comparator LOS was calculated for patients who were discharged without requiring oxygen. The authors considered that the median LOS better reflected patients’ estimated LOS.

Figure 2 shows the mean and median LOS for England and for UHL [12]. The solid blue and orange lines show the mean and median English LOS. The hashed gray and yellow lines show the mean and median UHL LOS.

Figure 1. The relationship between median acute LOS and number of acute discharges in COVID-19 patients in UHL, March 2020-November 2021 ordinary least square model. LOS: length of stay; UHL: University Hospitals Leicester.
Patients Discharged Acutely Into the Digital Ward Not on Oxygen—Comparators

The 4 comparators below were then used to populate 2 simple simulations, creating 1000 random iterations for each of the 279 patients in both uniform and normal distributions, and the mean of both was taken as the base case.

1. An OLS regression was used to establish the quality of the relationship between monthly median LOS with the number of monthly acute discharges as the independent variable ($r^2=0.31$; see Figure 1).

2. A regression similar to method 1 was used, but it used the better-fitted median data (1 month in arrears, $r^2=0.75$). This improved relationship reflected that the data observed acute discharges instead of admissions in calendar months (see Figure 1).

3. The LOS in the comparator group in November 2020 was 5.5 days. This comparator assumed that LOS in November 2020 remained constant.

4. The comparator LOS data (5.5 days, prior to the introduction of the service) was 10% (5.0 days) longer than the median LOS for November 2020. This relative margin was continued in this median monthly LOS-based OLS comparator.

The data model used the 4 comparators and was conducted in Microsoft Excel. The RANDBETWEEN function was used to create a uniform model with 1000 iterations between the lowest and highest values of the 4 comparators for each patient’s LOS and the mean of the 1000 iterations was taken for all 279 patients. The same process was conducted to create a normal distribution of those data using the NORMINV and RAND functions, using the mean of the 4 comparators and their SD to develop 1000 iterations, from which the mean was taken. The final mean was taken from the 2 mean parameters and provided the base case.

Patients Treated With Oxygen—Comparator

The NHS X and LPT analysis was used as the basis of the comparator for all patients treated with oxygen discharged into the digital ward.

Sensitivity Analysis

A deterministic 1-way analysis was conducted to establish the extent to which varying the parameters influenced the savings. A 2-way analysis was developed to establish the extent to which the acute LOS and savings would have to be varied to reach the net savings threshold value of 0.

Statistical Methods

The data sets were not normally distributed for both study subgroups (patients on and not on oxygen) on acute discharge. To evaluate the data, 2-tailed Wilcoxon signed-ranks tests for paired samples were used. Individual patients’ LOS was compared with their comparators. Normal approximation and ties correction were used, and α was set to .05. These methods were used consistently to compare paired data.

Study Size

A total of 55 pairs were required for a 90% power to establish a difference between the 5.5-day LOS (the lowest comparator) for patients not on oxygen. The scale of the difference between the patients who were oxygen weaning meant that the number of pairs required was only 4. There were 310 patients in the study: 279 (90%) patients who were not discharged on oxygen and 31 (10%) patients who were discharged home and into the digital ward for oxygen weaning.

Resource Use in the Digital Ward

Patients in the digital ward were monitored against a range of clinical criteria and classified by an algorithm into red, amber, and green ratings, which were highlighted on the LPT specialist respiratory clinicians’ dashboards. Red alerts provoked clinical contact within 24 hours throughout the patients’ stay in the digital ward; amber alerted the same, but in the first week only; and green rated patients who had not been contacted previously but were contacted in their second week in the digital ward. Patients were monitored using digital technology, which was billed on a per diem basis.

Ethical Considerations

The study was evaluated by the Institutional Ethics Review body of DeMontfort University, with a decision reference of HLS FREC Ref: 2091/22. Approval was waived for the protocol.
as it was an economic analysis of a service that eligible patients routinely accessed as part of standard care. All analyzed data were deidentified. All patients accessed usual care. No payments were made to authors or patients. Patients or the public were not involved in the design, conduct, reporting, or dissemination plans of our research.

Software Used for Analyses
All analyses were conducted in Microsoft Office Excel, Excel Analysis Toolpak, and The R Foundation’s R Studio.

Results
Overview
The 2 different patient populations had differing acute LOS. For patients not on oxygen when discharged, the mean acute LOS was 4.2 (SD 2.1; median 4.2) days. For patients treated with oxygen, the mean acute LOS was 13.3 (SD 4.5; median 12.4) days. Overall, the mean acute LOS was 4.3 (SD 2.1; median 4.4) days.

The phasing of patients discharged into the digital ward reflected demand in UHL [14]. The number of discharges into the COVID-19 ward (bars in Figure 3) corresponded with key system stressors (lines in Figure 3) rising and falling. The 3 key stressors reported were the ratios of COVID-19–related absences divided by all absences, total COVID-19–related beds occupied divided by all beds occupied, and COVID-19–related mechanically ventilated beds divided by all mechanically ventilated beds occupied [14].

Patients Discharged Not on Oxygen—Acute LOS
Table 1 demonstrates the difference in acute LOS versus the imputed non–oxygen weaning LOS comparators.

The mean of the normal and uniform distributions from 1000 random iterations of the above data in each of the 279 non–oxygen weaning comparators were 6.31 and 5.95, respectively. The mean of both, 6.13, was used as the base case.

Table 1. Comparison of estimated comparators with acute University Hospitals Leicester length of stay prior to discharge into the COVID-19 digital ward in patients not weaning on oxygen between November 2020 and November 2021.

<table>
<thead>
<tr>
<th>Estimated LOS of comparator</th>
<th>Acute LOS prior to discharge to digital ward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median LOS</td>
<td>7192</td>
</tr>
<tr>
<td>5.5 days LOS</td>
<td>6552.5</td>
</tr>
<tr>
<td>Modified median LOS</td>
<td>7355.5</td>
</tr>
<tr>
<td>Median +10% LOS</td>
<td>5424.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W\text{\textsubscript{min}} b</th>
<th>N/Ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (95% region of acceptance)</td>
<td>16,886.34-22,173.66</td>
</tr>
<tr>
<td>Z-statistic (\textit{z}\textsubscript{c}=1.96)</td>
<td>-9.146816</td>
</tr>
<tr>
<td>Test P value</td>
<td><.001</td>
</tr>
<tr>
<td>Mean</td>
<td>4.2</td>
</tr>
</tbody>
</table>

aLOS: length of stay.\nbW\text{\textsubscript{min}}: Wilcoxon signed rank test statistic.\ncN/A: not applicable.
A UK study of patients with COVID-19 not admitted to an intensive care unit estimated the acute LOS as 8.0 to 9.1 days [15]. All acute LOS comparators in the non–oxygen weaning group fell below this range, with the base case being almost 2 days beneath the lower value [15], supporting the conservatism of the model. The mean digital ward LOS was 14.2 days (SD 4.9; median 15) for patients not on oxygen.

Patients Discharged on Oxygen—Acute LOS

The mean acute LOS for patients discharged into the digital ward on oxygen was 13.3 days, and the difference was 9.9 days (42.7%) between the actual LOS and the comparator LOS (P<.001). The mean digital ward LOS for patients on oxygen was 24.5 (SD 12.6; median 23) days.

Digital Ward Resource Use

Digital ward resource use was driven by 2 elements: the number of clinical contacts and the LOS; the details are shown in Table 2. Multimedia Appendix 2 contains a breakdown of unit costs. How they were calculated is outlined in the Methods section.

Table 2. Total and per-patient costs of specialist respiratory consultations and digital technology in the COVID-19 digital ward between November 2020 and November 2021.

<table>
<thead>
<tr>
<th>Specialist respiratory nurse or physiotherapist calls (n=310)</th>
<th>Contacts or days</th>
<th>Cost (US $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reds (total duration)</td>
<td>852</td>
<td>32,326</td>
</tr>
<tr>
<td>Ambers (week 1 only)</td>
<td>442</td>
<td>16,770</td>
</tr>
<tr>
<td>Greens (not previously contacted in week 1)</td>
<td>58</td>
<td>2201</td>
</tr>
<tr>
<td>Total consultations (at US $37.94 per contact)</td>
<td>1352</td>
<td>51,294</td>
</tr>
<tr>
<td>Number of digital ward days<sup>a</sup></td>
<td>4711</td>
<td>17,999</td>
</tr>
<tr>
<td>Cost of clinical consultations per patient</td>
<td>N/A<sup>b</sup></td>
<td>165.47</td>
</tr>
<tr>
<td>Monitoring costs per patient</td>
<td>N/A</td>
<td>58.06</td>
</tr>
<tr>
<td>Total patient contact and monitoring costs per patient</td>
<td>N/A</td>
<td>223.53</td>
</tr>
</tbody>
</table>

^aCosts of Clinitouch per diem=US $3.82.

^bN/A: not applicable.

Estimated Resource Use and Savings

- The range of estimated bed-days saved in the 279 patients not on oxygen varied from 363.8 (constant 5.5 days) to 749.9 (median OLS+10%); the comparison of digital ward patients versus all imputed controls was significant (P<.001). The base case was estimated to have saved 490.3 bed-days in the patients not on oxygen (P<.001). The estimated bed-days saved in the 31 patients on oxygen was 306.9, with which there was greater certainty (P<.001). The total estimated bed-days saved were between 670.7 and 1056.8 (2.2-3.4 days per patient). The base case estimate was 846 bed-days saved.
- The cost of a bed day in a UHL acute respiratory ward in November 2020 was US $678.
- Estimated implications on costs are summarized below:
 - The total estimated gross savings related to bed-days were between US $454,404 and US $715,991 (US $1466-US $2310 per patient). The base case was US $573,490 (US $1850 per patient).
 - Health care professional interventions were made to address patient symptoms. There were 1355 digital specialist respiratory consultations costing US $51,294 (US $165.47 per patient).
 - The digital technology costs of the digital ward were US $17,999 (US $58.06 per patient).
 - The total costs of the digital ward were US $69,293 (US $223.53 per patient).
 - The total net savings were between US $385,411 and US $646,697 (US $1242-US $2086 per patient). The net savings in the base case were US $504,197 (US $1626 per patient).
 - The intervention was cost saving in all scenarios. The costs of US $54,420 were between 9.7% (US $715,991) and 15.2% (US $454,404) of the estimated gross savings.

Readmissions

There were 9 hospital readmissions (9/310, 2.9% of digital ward admissions) within 30 days. All readmissions were in the non–oxygen weaning cohort. In a systematic review, 10.3% (n=265,590) of those admitted with COVID-19 respiratory infections had a 30-day readmission [16]. Of the included English studies, 3 reported on 30-day readmission rates but included patients who had accessed critical care or had a high percentage of older adult patients [17-19] and reported readmission rates of 10.2% to 17.1%.

A total of 7.1% (n=154) of patients with mild or moderate COVID-19 disease, similar to the digital ward patients not on oxygen, discharged from a Turkish tertiary center were readmitted within 30 days [20]. Another systematic review [21] found that readmissions ranged from 4.2% [22] to 19.9% [23]. Evidence suggested that there was no difference between the rates of 30-day readmissions between the first and second COVID-19 waves [24]. If it was assumed the readmission rate for a comparator was 7.1% [20], the costs of readmissions would have been US $69,050 or 99.6% (US $69,293) of the total costs of running the digital ward. Using the lowest plausible comparator of 4.2% [22] would have offset 30.8% (US $21,342).
of the costs of the digital ward. Any potential savings associated with readmissions were excluded from the results of the analysis because of the uncertainty associated with any potential comparator and to aid in the overall conservatism of this study.

Estimated Carbon Dioxide Emissions

The carbon footprint associated with acutely hospitalized patients has been described as the most carbon-intensive care pathway and contributed 125 kg of carbon dioxide equivalent per day [25]. The gross reduction in 2019 carbon dioxide equivalent was 341 kg per patient in the base case and totaled 105.75 metric tonnes.

Deterministic Sensitivity Analysis

There were 8 variables in this analysis; the differences in acute LOS for those who were on the digital ward versus comparators, the cost of an acute bed-day, the number of clinical contacts, the clinical contact duration, the cost per hour of clinicians, the digital ward LOS, and the digital technology costs.

A 1-way sensitivity analysis demonstrated that the 2 variables that changed more than the relative input parameters were the LOS of patients who were and were not oxygen weaning. There was a linear 3.18% and 2.34% increase or decrease in the savings or costs for every 1% change in the value for the patients who did or did not access oxygen, respectively. All other resource-use variables increased or decreased at the same rate as the input variable. The parameter with the greatest uncertainty was the one that had the greatest impact on potential savings.

The cost of clinical consultations (respiratory specialists, LPT) and the cost of digital technology (Clinitouch, Spirit Health) were the 2 components of the digital ward costs. When the costs of both were simultaneously increased in a 2-way sensitivity analysis in the 279 patients not on oxygen by the same percentage as the LOS was reduced, it required a 75.4% change to reach the 0-threshold value. Performing the same for patients who accessed remote oxygen weaning, the threshold value was reached by simultaneously increasing costs and reducing the LOS cost offset by 87.5%. Overall, it took a reduction in effect and increase in costs of 78.4% (savings reduced from their estimated base case value of US $573,490 to 21.6% of that US $123,874 and costs to rise from US $69,293 to US $123,618) to reach a 0-threshold value.

Discussion

Resource use in the digital ward was lower than all of the potential comparators. The net savings were estimated to have been between US $385,111 and US $646,697, with an estimated saving of US $1850 per patient in the base case. The digital ward costs were relatively low compared with the estimated gross savings (9.7% to 15.2%). The risk to health care systems of the digital ward not being cost saving was low. The UHL mean and median acute LOS were tracked at or below the England overall mean and median LOS between November 2020 and November 2021 (see Figure 2) [12]. The gap was largest after times of peak acute COVID-19 bed demand, which is also when the digital ward was used most to reduce pressure on UHL beds (see Figure 3). Both lend face validity to the findings. The COVID-19 digital ward intervention achieved its primary goal of increasing acute capacity. It also reduced overall NHS resource use, had a very low rate of readmissions, and reduced carbon dioxide emissions. Patients were released from acute wards earlier but clinically monitored for longer in the digital ward, which may have accounted for a plausible reduction in 30-day readmissions.

The main limitations associated with this analysis were the observational nature of the data and the associated use of imputed indirect comparators for 90% (279/310) of patients. The findings were most influenced by the parameter around which there was the greatest uncertainty. This renders a degree of uncertainty around the savings. Leicester City has a greater population of South Asian ethnicity than those of White ethnicity [26]. It is documented that people of South Asian ethnicity were at a higher risk of hospitalization from COVID-19 than their White counterparts [27]. The lack of socioeconomic status, comorbidities, and ethnicity data made the representativeness of the results difficult to interpret for wider settings.

The United Kingdom has a crisis in demand for elective care driven by an aging population [28]. It also had a shortfall in elective health care supply during the COVID-19 pandemic [1]. The supply-side constraint has been exacerbated by the lowest number of hospital beds per capita of all G7 countries [29] and social care’s inability to accommodate patients medically fit for discharge [30].

Specialist community respiratory teams exist widely across the United Kingdom. In addition, 82% and 99% of people older and younger than 55 years, respectively, owned a smartphone in the United Kingdom in 2022 [31]. The low financial and safety risk to health systems, digital scalability, widespread digital literacy, and high access to smartphones has meant there is an opportunity to be better prepared for future pandemics and enable wider digital diffusion into health care to support patients with other diseases, especially when there is continued capacity constraint. The findings were broadly consistent with other evaluations of digital wards where reductions in LOS were observed [32,33], and cost savings were found [32].

Acknowledgments

The authors would like to thank Irene Valero-Sanchez, respiratory consultant from University Hospitals Leicester National Health Service (NHS) Trust, for help in developing and steering the project. The authors would also like to thank Zoe Harris from NHS England’s Transformation Directorate, who helped develop the project and shared resource use analysis while at the Leicester Partnership Trust and NHS X. NHS Leicester City Clinical Commissioning Group (CCG), NHS East Leicestershire and Rutland CCG, NHS West Leicestershire CCG and Ageing Well funded the intervention.

https://formative.jmir.org/2024/1/e47441

Swift et al
Data Availability

All data analyzed during this study are included in this published article and its supplementary information files. An anonymized data set is included in Multimedia Appendix 3.

Conflicts of Interest

JS, NOK, and CB work for Spirit Health, the manufacturers of Clinitouch, the digital tool used in the intervention. AW and SG have no competing interests.

Multimedia Appendix 1
Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 22 guidelines table.

Multimedia Appendix 2
Resource use unit tables.

Multimedia Appendix 3
Anonymized raw data file with original and comparator data.

References

28. Voices of our ageing population: living longer lives. Office for National Statistics. 2022. URL: [https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/ageing/articles/voicesofouragingpopulation/livinglongerlives#:~:text=The%20population%20of%20England%20and%20the%20previous%20census%20in%202011%20between%202022-12-21]

Abbreviations

CHEERS: consolidated health economic evaluation reporting standards
LLR: Leicester, Leicestershire, and Rutland
LOS: length of stay
LPT: Leicester Partnership Trust
NHS: National Health Service
OLS: ordinary least squares
PSSRU: Personal Social Services Research Unit
UHL: University Hospitals Leicester

©Jim Swift, Noel O’Kelly, Chris Barker, Alex Woodward, Sudip Ghosh. Originally published in JMIR Formative Research (https://formative.jmir.org), 13.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
User-Friendly Chatbot to Mitigate the Psychological Stress of Older Adults During the COVID-19 Pandemic: Development and Usability Study

Ya-Hsin Chou1; Chemin Lin2,3,4, MD; Shwu-Hua Lee3,5, MD; Yen-Fen Lee6, PhD; Li-Chen Cheng6, Prof Dr

1Department of Psychiatry, Taoyuan Chang Gung Memorial Hospital, Taoyuan County, Taiwan
2Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan
3College of Medicine, Chang Gung University, Taoyuan County, Taiwan
4Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
5Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan County, Taiwan
6Department of Information and Finance Management, National Taipei University of Technology, Taipei, Taiwan

Corresponding Author:
Li-Chen Cheng, Prof Dr
Department of Information and Finance Management
National Taipei University of Technology
1, Sec 3, Zhongxiao E Rd
Taipei, 10608
Taiwan
Phone: 886 2771 2171
Email: lijen.cheng@gmail.com

Abstract

Background: To safeguard the most vulnerable individuals during the COVID-19 pandemic, numerous governments enforced measures such as stay-at-home orders, social distancing, and self-isolation. These social restrictions had a particularly negative effect on older adults, as they are more vulnerable and experience increased loneliness, which has various adverse effects, including increasing the risk of mental health problems and mortality. Chatbots can potentially reduce loneliness and provide companionship during a pandemic. However, existing chatbots do not cater to the specific needs of older adult populations.

Objective: We aimed to develop a user-friendly chatbot tailored to the specific needs of older adults with anxiety or depressive disorders during the COVID-19 pandemic and to examine their perspectives on mental health chatbot use. The primary research objective was to investigate whether chatbots can mitigate the psychological stress of older adults during COVID-19.

Methods: Participants were older adults belonging to two age groups (≥65 years and <65 years) from a psychiatric outpatient department who had been diagnosed with depressive or anxiety disorders by certified psychiatrists according to the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (DSM-5) criteria. The participants were required to use mobile phones, have internet access, and possess literacy skills. The chatbot’s content includes monitoring and tracking health data and providing health information. Participants had access to the chatbot for at least 4 weeks. Self-report questionnaires for loneliness, depression, and anxiety were administered before and after chatbot use. The participants also rated their attitudes toward the chatbot.

Results: A total of 35 participants (mean age 65.21, SD 7.51 years) were enrolled in the trial, comprising 74% (n=26) female and 26% (n=9) male participants. The participants demonstrated a high utilization rate during the intervention, with over 82% engaging with the chatbot daily. Loneliness significantly improved in the older group ≥65 years. This group also responded positively to the chatbot, as evidenced by changes in University of California Los Angeles Loneliness Scale scores, suggesting that this demographic can derive benefits from chatbot interaction. Conversely, the younger group, <65 years, exhibited no significant changes in loneliness after the intervention. Both the older and younger age groups provided good scores in relation to chatbot design with respect to usability (mean scores of 6.33 and 6.05, respectively) and satisfaction (mean scores of 5.33 and 5.15, respectively), rated on a 7-point Likert scale.

Conclusions: The chatbot interface was found to be user-friendly and demonstrated promising results among participants 65 years and older who were receiving care at psychiatric outpatient clinics and experiencing relatively stable symptoms of depression and anxiety. The chatbot not only provided caring companionship but also showed the potential to alleviate loneliness during the challenging circumstances of a pandemic.
Introduction

As COVID-19 spread worldwide, many governments implemented stay-at-home, social distancing, and self-isolation measures to protect the most vulnerable people, including older adults, for whom deteriorating physical health could result in both physical and mental challenges [1,2]. As one of the most vulnerable groups to experience negative outcomes of COVID-19, older adults were instructed to self-quarantine and isolate themselves from others to mitigate the risk of infection. Consequently, they missed out on their standard interactions with others and spent substantial amounts of time in isolation. Limited contact with other people can lead to loss of social support, which is especially important for older adults [1,2]. Indeed, older adults who experienced social isolation during the pandemic have been negatively impacted by feelings of increased loneliness and reduced quality of life. Furthermore, the risks faced by individuals living alone, including older adults, are particularly pronounced with more challenging economic conditions [3,4]. Loneliness is defined as a subjective feeling manifesting as uneasiness and unhappiness linked to a lack of connection or inclusiveness with others, whereas social isolation describes the objective state of an individual’s social environment and interactional patterns [5]. Growing evidence shows that “loneliness” is closely related to physical and mental health in older adults; stronger feelings of loneliness can lead to the development of unhealthy lifestyle habits (eg, smoking and drinking) and a reduction in engagement with health-positive behaviors (eg, exercise and a nutritious diet) [6,7]. Loneliness is also associated with decreased sleep and sleep efficiency and poor subjective sleep quality in middle-aged and older adults, along with correlations to cognitive dysfunction, disability, cardiovascular disease, increased mortality, and even suicide [8-10]. Loneliness is also associated with negative emotion processing in the brain [11] and is a significant risk factor for anxiety and depression in older adults [12,13].

The prevalence of anxiety disorders and depression among older adults is high. Approximately 2% of adults older than 55 years are diagnosed with major depression, and 10%–15% of older adults have depressive symptoms [14]. Anxiety disorders are the most common psychiatric diseases, with a lifetime prevalence of up to 30%. Treatment of depressive and anxiety disorders in older adults is difficult and common challenges include poor drug efficacy, adverse drug reactions, and common drug interactions caused by polypharmacy. Coping with loneliness among older adults has potential benefits for depression and anxiety, as loneliness can affect older people’s physical and mental health, triggering psychological vulnerability, causing brain alterations beyond those associated with normal aging, and reducing intellectual or psychological flexibility caused by discrete and chronic stress [15]. Given the serious impact of social isolation and loneliness on older adults’ mental and physical health, researchers must investigate ways to mitigate these adverse health outcomes. As an assistive technology, chatbots and conversational agents may provide companionship and reduce the loneliness experienced because of the social restrictions imposed during a pandemic [7].

In recent years, there have been breakthroughs in the application of deep-learning techniques for natural language processing, allowing a variety of applications to be used in medical communication, disease detection, and treatment. For instance, chatbots have been developed to assist patients with autism and to provide social-skill training for specific fields such as mental health [16]. There is also a publicly listed application that provides cognitive behavioral therapy to improve anxiety and depression symptoms. Chatbots are also used for veterans as a screening tool for posttraumatic stress syndrome, and users of such applications have compared its use to interacting with real people, highlighting the chatbot’s ability to more freely and accurately reflect their own symptoms [17]. Additionally, chatbots used for mental illness discharge preparation can offer time-saving benefits for nurses and allow users to repeat questions without time pressure [18]. Upon reviewing previous research, it is evident that most chatbot users are relatively young, with limited availability of chatbots specifically developed for older adults in psychiatric clinics. While an overwhelming number of mental health apps are available to the public, these apps seldom focus on the needs of the older adult population. Furthermore, older adults can be apprehensive about using apps containing too many complex functions. This situation highlights the need to design and develop an older adult–user-friendly chatbot geared toward the specific interests of this population, while promoting their physical and mental health.

To address this gap, this study investigated the perspectives of geriatric psychiatric outpatient users of a mental health chatbot during the COVID-19 pandemic and sought to develop a chatbot for older adult users with anxiety and depressive disorders. This chatbot aims to offer companionship and promote self-awareness regarding emotions, sleep patterns, and physical activity to improve overall health. Therefore, our primary research objective was to examine whether chatbots can mitigate the psychological stress that older adults experienced during COVID-19.

Methods

Ethical Considerations

Ethical approval was granted by the Institutional Review Board of Chang Gung Memorial Hospital (202001915BO). The participants were recruited from the psychiatric outpatient...
department of the hospital between September 2021 and March 2022. Informed consent was obtained from each participant before study initiation. Data were deidentified by assigning a unique identifier code to each participant; only the study moderator has access to the file linking the code to the personal information, which is stored in a locked cabinet. Participants were provided with a travel compensation of ~US $15 for completing the postintervention questionnaires; no other compensation was provided for participation in the study.

Participants
Participants comprised two groups of individuals aged either 65 years and older or younger than 65 years who were diagnosed with depressive or anxiety disorders, including persistent depressive disorder, major depressive disorder, generalized anxiety disorder, panic disorder, or adjustment disorder with anxiety or depression. Certified psychiatrists made diagnoses according to Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (DSM-5) criteria.

During the time of the study, none of the participants had experienced suicidal ideation or had an increase in medication 3 months prior to the beginning of the study. Participants included in the study were literate, active mobile phone users with internet access, who had used the chatbot regularly for at least 4 weeks. We excluded patients who were not literate, those with severe physical illness, and those diagnosed with a major neurocognitive illness (eg, schizophrenia, bipolar disorder, brain injury, substance abuse, stroke history, and dementia). During the case referral period, only one patient was excluded due to a diagnosis of bipolar disorder. All participants completed a questionnaire regarding their demographic characteristics.

Health Promotion Chatbot
Chatbot Design
The LINE Official Account Manager was used to build the “Health Promotion” chatbot. LINE was used as it is currently the most popular chatbot for older adults in Taiwan. Previous research found that some older adults have difficulty keeping pencil-and-paper sleep diaries [19]. This difficulty can be ameliorated using mobile technologies; thus, we designed a user-friendly interface for older adults using buttons in the chatbot app. The proposed chatbot is multifunctional and includes health diary data collection and hygiene education functions. Figures 1-4 provide screenshots of the Health Promotion chatbot functions translated into English.

Figure 1. Mood tracking function of the Health Promotion chatbot.
Figure 2. Sleep tracking function of the Health Promotion chatbot.

Figure 3. Daily activity tracking function of the Health Promotion chatbot.
Monitoring and Recording Health Data

The Health Promotion chatbot sent daily messages to all participants and collected their health diary responses. The diaries tracked three key response areas, including mood, sleep, and daily activity. Figure 1 depicts the participants’ rating of their mood using five status terms: great, not bad, indifferent, sad, and angry. Sleep quality was rated as good, not bad, or sleepless (Figure 2). In addition to keeping an activity diary, the chatbot sent messages such as “Did you go out today?” or “Did you do some exercise? What kind of exercise?” (Figure 3). These messages helped guide older adult users to complete their activity information in the formatted “Message buttons.”

Providing Health Information and Advice

The main health promotion education program consisted of three topics: sleep hygiene education, food education, and exercise videos. The educational videos were provided to help the older adults practice good sleep hygiene and exercise habits. The sleep hygiene education video helped users practice “abdominal breathing” for relaxation. The exercise videos were recorded by a professional rehabilitator to guide older adults in performing different types of body movements. Overall, the app proved to be an effective tool to help the users perform training courses at home. The health promotion education programs are shown in Figure 4.

Measures

Self-Assessments

Self-assessment scales for loneliness, depression, and anxiety were administered before and after chatbot use. Using a 7-point Likert scale, we also assessed individuals’ attitudes toward the chatbot post intervention.

Loneliness was measured using the University of California Los Angeles Loneliness Scale (UCLA-LS), which has demonstrated good reliability and validity for all ethnic groups as well as for older adults [20]. Participants rated themselves on a 1-4 scale for the 20 items, with a possible total score ranging from 20 to 80. As a one-dimensional measure, higher scores indicate greater loneliness.

Depression was measured using the Geriatric Depression Scale (GDS) 15-item short form; a cutoff score of 15 indicates clinical depression [21].

Anxiety was assessed using the Hospital Anxiety and Depression Scale anxiety subscale (HADS-A), which consists of 7 items. The depression subscale, also comprising 7 items, was not used in this study owing to the duplication of targets measured by the GDS [22].

Attitudes Toward the Chatbot

Based on the measure proposed by Bickmore et al [23], the questionnaire was modified to evaluate users’ attitudes toward the chatbot. The questionnaire covered four dimensions regarding satisfaction, usability, willingness to continue use, and adherence. All participants were asked to rate a series of
attitude statements using a 7-point Likert rating scale, ranging from 1 (strongly disagree) to 7 (strongly agree), to assess their attitudes toward the chatbot’s features, such as “I was satisfied with the chatbot,” “It was easy to use the chatbot,” “I would like to continue using the chatbot,” “I will follow the chatbot’s recommendations,” and others [23-26].

Utilization Rate
The participant utilization rate was determined according to the frequency of interactions with the chatbot, specifically measured as the ratio of the number of interaction days to the total test days for each participant. This score encompasses the percentage of responses to inquiries regarding emotions, sleep quality, sport participation, and daily outings. For example, if a participant responded to emotional inquiries 15 times (with only one interaction per day counted) during a 30-day testing period, their emotional inquiry response rate would be 50%.

Statistical Analysis
We compared the effectiveness of the chatbot between the age groups of ≥65 and <65 years. In Taiwan, individuals 65 years and older can enjoy old-age benefits (such as old-age pensions and bus discounts). Therefore, the division of participants into these two age groups allowed for a comparison of the effects of the chatbot on anxiety and depression in individuals who have already reached the age of eligibility for old-age benefits and those who have not. This distinction is important as it enables researchers to explore differences in psychological well-being between the two groups considering the impact of access to benefits and associated social support networks.

All statistical analyses were performed using SPSS for Windows 20.0 (IBM Corp). The Fisher exact test, Wilcoxon signed rank test, analysis of covariance, and Spearman rank correlations were applied as appropriate.

Results
Sample Characteristics
The age of the participants ranged from 55 to 82 years, with a mean age of 65.21 (SD 7.51) years; the study sample comprised 74% (n=26) female participants and 26% (n=9) male participants. There were no significant differences in the demographic variables between the groups, except that a greater percentage of participants in the older age group (≥65 years) were living alone (Table 1).
Table 1. Demographic characteristics of the participants in each group.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Entire cohort (N=35)</th>
<th>Aged ≥65 years (n=15)</th>
<th>Aged <65 years (n=20)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>65.2 (7.4)</td>
<td>72.3 (4.9)</td>
<td>59.9 (3.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.24</td>
</tr>
<tr>
<td>Female</td>
<td>26 (74)</td>
<td>13 (87)</td>
<td>13 (65)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>9 (26)</td>
<td>2 (13)</td>
<td>7 (35)</td>
<td></td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.38</td>
</tr>
<tr>
<td>Married</td>
<td>20 (57)</td>
<td>6 (40)</td>
<td>14 (70)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>5 (14)</td>
<td>3 (20)</td>
<td>2 (10)</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>5 (14)</td>
<td>3 (20)</td>
<td>2 (10)</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>5 (14)</td>
<td>3 (20)</td>
<td>2 (10)</td>
<td></td>
</tr>
<tr>
<td>Living situation, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>Living alone</td>
<td>8 (23)</td>
<td>7 (47)</td>
<td>1 (5)</td>
<td></td>
</tr>
<tr>
<td>Accompanied by family occasionally</td>
<td>4 (11)</td>
<td>1 (7)</td>
<td>3 (15)</td>
<td></td>
</tr>
<tr>
<td>Accompanied by family mostly</td>
<td>23 (66)</td>
<td>7 (47)</td>
<td>16 (80)</td>
<td></td>
</tr>
<tr>
<td>Current employment status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.12</td>
</tr>
<tr>
<td>Employed</td>
<td>5 (14)</td>
<td>0 (0)</td>
<td>5 (25)</td>
<td></td>
</tr>
<tr>
<td>Unemployed/retired</td>
<td>25 (71)</td>
<td>12 (80)</td>
<td>13 (65)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>5 (14.3)</td>
<td>3 (20)</td>
<td>2 (10)</td>
<td></td>
</tr>
<tr>
<td>Systemic disease, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>.73</td>
</tr>
<tr>
<td>Any systemic disease</td>
<td>19 (54)</td>
<td>9 (60)</td>
<td>10 (50)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>5 (14)</td>
<td>1 (7)</td>
<td>4 (20)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>13 (37)</td>
<td>8 (53)</td>
<td>5 (25)</td>
<td></td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>10 (29)</td>
<td>5 (33)</td>
<td>5 (25)</td>
<td></td>
</tr>
<tr>
<td>Psychiatric diagnosis, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Major depressive disorder</td>
<td>9 (26)</td>
<td>4 (27)</td>
<td>5 (25)</td>
<td></td>
</tr>
<tr>
<td>General anxiety disorder</td>
<td>6 (17)</td>
<td>2 (13)</td>
<td>4 (20)</td>
<td></td>
</tr>
<tr>
<td>Other anxiety disorder</td>
<td>20 (57)</td>
<td>9 (60)</td>
<td>11 (55)</td>
<td></td>
</tr>
<tr>
<td>Persistent depressive disorder</td>
<td>3 (9)</td>
<td>0 (0)</td>
<td>3 (15)</td>
<td></td>
</tr>
</tbody>
</table>

aN/A: not applicable.
bOne participant had comorbid major depressive and anxiety disorders.
cStatistical analysis was not applicable in this case since a single participant may have multiple psychiatric diagnoses.

Attitude Toward the Chatbot

In the postintervention assessment, we collected the participants’ attitudes toward the chatbot using a 7-point Likert scale. The mean scores for satisfaction, usability, willingness to continue using, and adherence were 5.33, 6.33, 4.87, and 5.07, respectively, in the ≥65 years age group; the corresponding mean scores in the <65 years age group were 5.15, 6.05, 4.7, and 4.95, respectively. There were no group differences in satisfaction, usability, willingness to continue using, and adherence scores.

Use and Response Rates

The use rate was determined by the frequency of a patient’s interaction with the chatbot, specifically measured as the ratio of interacting days to the total testing days for each participant. This included the rate of response to the inquiries for mood, sleep quality, and participation, as well as the “I went out today” inquiry.

There was no significant difference in the response rate between the two age groups. However, the response rate to the sport participation inquiry was less than 50%. Furthermore, during the 1-month intervention, the participants had a high use rate, with over 82% of the participants reporting being active daily (Table 2).
Table 2. Use and response rates in each group.

<table>
<thead>
<tr>
<th>Use and response rates</th>
<th>Aged ≥65 years (n=15)</th>
<th>Aged <65 years (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatbot use, %</td>
<td>82.55</td>
<td>83.38</td>
</tr>
<tr>
<td>Emotional inquiry response, %</td>
<td>84.19</td>
<td>80.88</td>
</tr>
<tr>
<td>Sleep quality response, %</td>
<td>82.55</td>
<td>83.37</td>
</tr>
<tr>
<td>Sport participation response, %</td>
<td>46.95</td>
<td>48.16</td>
</tr>
<tr>
<td>“I went out today” response, %</td>
<td>78.25</td>
<td>66.33</td>
</tr>
</tbody>
</table>

\(^a \text{Calculated as the ratio of interacting days to the total testing days for each participant.} \)

Self-Assessment Scales

The improvement in the UCLA-LS score post intervention was not significant in the <65 age group \((P=0.98)\) but was significant in the ≥65 age group \((P=0.006)\). HADS-A and GDS scores showed no significant improvements in either group (Table 3). Figures 5-7 show the changed trends in the scales before and after the intervention. The slopes flattened after the intervention.

Table 3. Comparison of outcome measures at baseline and post intervention.

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Entire cohort (N=35), mean (SD)</th>
<th>Aged ≥65 years (n=15), mean (SD)</th>
<th>Aged <65 years (n=20), mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCLA-LS(^a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>40.4 (10.1)</td>
<td>38.9 (7.7)</td>
<td>41.5 (11.7)</td>
</tr>
<tr>
<td>Postintervention</td>
<td>38.1 (12)</td>
<td>34.9 (9.2)</td>
<td>40.4 (13.5)</td>
</tr>
<tr>
<td>(P) value</td>
<td>.12</td>
<td>.006</td>
<td>.98</td>
</tr>
<tr>
<td>GDS(^b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>4.9 (3.4)</td>
<td>3.6 (2.8)</td>
<td>5.8 (3.6)</td>
</tr>
<tr>
<td>Postintervention</td>
<td>4.1 (4.1)</td>
<td>2.5 (1.8)</td>
<td>5.4 (4.9)</td>
</tr>
<tr>
<td>(P) value</td>
<td>.07</td>
<td>.13</td>
<td>.30</td>
</tr>
<tr>
<td>HADS-A(^c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>6.3 (4.2)</td>
<td>4.3 (2.7)</td>
<td>7.8 (4.6)</td>
</tr>
<tr>
<td>Postintervention</td>
<td>6.0 (4.5)</td>
<td>3.7 (2.1)</td>
<td>7.8 (5.0)</td>
</tr>
<tr>
<td>(P) value</td>
<td>.61</td>
<td>.32</td>
<td>.92</td>
</tr>
</tbody>
</table>

\(^a\)UCLA-LS: University of California Los Angeles Loneliness Scale.
\(^b\)GDS: Geriatric Depression Scale.
\(^c\)HADS-A: Hospital Anxiety and Depression Scale anxiety subscale.
Figure 5. UCLA-LS scores post intervention versus baseline with LOESS fit and 95% confidence bands. UCLA-LS: University of California Los Angeles Loneliness Scale.

Figure 6. GDS-15 scores post intervention versus baseline with LOESS fit and 95% confidence bands. GDS-15: Geriatric Depression Scale 15-item short form.
Discussion

Principal Findings

Usability and User Satisfaction of the Health Promotion Chatbot Among Older Adults During the COVID-19 Pandemic

This study took place during the COVID-19 pandemic, which greatly impacted people’s daily lives and led to notable reductions in interpersonal interactions and outdoor activities [27]. The pandemic also substantially affected the economy, impacting employment and raising anxiety for many who experienced both the disease itself and the protocols set in place to counter the spread of the virus [28,29].

The results of this study indicate that both age groups, ≥65 and <65 years, were equally satisfied with the chatbot. Its design was rated highly for usability and user satisfaction by both groups. The ≥65 age group provided a mean satisfaction rating of 5.33 and a mean usability rating of 6.33, whereas the corresponding scores for the <65 age group were slightly lower at 5.15 and 6.05, respectively. These high satisfaction ratings reflect the chatbot’s effectiveness in catering to a wide range of users and their positive reception of the user-friendly interface.

The use rate among the older adults was remarkably positive. Previous studies have suggested that systems that are not user-friendly for older adults are often met with resistance and ineffectiveness [30]. However, this system, which was specifically designed for older adults, features a simple and user-friendly interface to target the barriers that older adult users might face in terms of digital literacy and technical assistance [31,32]. Our Health Promotion chatbot was designed to have concise functions, aiming to provide companionship and support even to those who are less familiar with technological products. Additionally, the use and response rates showed that age did not affect the willingness to use the chatbot, further suggesting that the content and interface of the chatbot are well-received and accessible for older adult users.

Therefore, the findings of this investigation on chatbot applicability in geriatric psychiatric outpatient clinics indicate that the chatbot interface is user-friendly and meets the desired criteria.

Chatbots Mitigate Loneliness in Older Adults

Some studies have explored the potential of assistive technology in addressing social isolation and loneliness among older adults. For example, one prospective cohort study reported that humanoid robots improve patient outcomes by providing companionship and entertainment in acute hospital settings and may be an acceptable outlet for socialization among older adults [33,34]. In a systematic review, Chen and Schulz [7] found that information and communication technology interventions can effectively reduce social isolation among older adults and potentially improve their quality of life by enhancing social support, promoting social engagement, and reducing feelings of loneliness and depression. However, a cross-sectional study also showed that problematic social media use was positively
associated with perceived social isolation among older adults [35].

Four possible mechanisms by which information technology alleviates social isolation and loneliness have been proposed in the literature [7,36]: connection to the outside world, gaining social support, engaging in interesting activities, and boosting self-confidence. Boosting self-confidence was interpreted based on reports of older adults feeling younger and more equipped with new skills when taught how to use communication technologies. In our study, the chatbot greeted older adults daily and encouraged them to stay active. Some participants reported benefitting from the chatbot’s exercise videos; engaging with the chatbot and performing daily exercises made them feel rejuvenated and more purposeful.

Overall, our results suggest that the chatbot helped to reduce feelings of loneliness; the average UCLA-LS score of the total cohort at baseline was 40.4, which decreased to 38.1 post intervention. For the ≥65 age group, the average baseline score was 38.9, which decreased to 34.9 post intervention, representing a statistically significant difference (P=.006). However, the <65 age group had an average baseline score of 41.5, which remained stable post intervention with a nonsignificant difference (P=.98). Therefore, although the participants had decreased UCLA-LS scores post intervention on the whole, only the older participants (≥65 years) showed a significant improvement in loneliness.

Generally, the ≥65 age group responded well to the chatbot, as reflected in the UCLA-LS score changes, indicating that this age group can benefit from chatbots. Some potential reasons to explain the lack of an effect on loneliness for the <65 age group may be related to this group experiencing elevated stress in their daily lives [4,37] due to financial burdens and concerns about the future. Evidently, the effectiveness of chatbots in alleviating such stress is limited. Moreover, the <65 age group likely also had more opportunities for interpersonal interaction, even during the pandemic. Members of this group tend to not live alone and have more avenues (eg, different types of social media) to access information. Consequently, the influence of chatbot interventions on their lives was comparatively less pronounced.

Our study demonstrates the positive impact of chatbot interventions on older adults enrolled in psychiatric outpatient departments and with relatively stable symptoms during the pandemic. Previous studies have mentioned the importance of using technology to reduce the impact of loneliness on older adults, particularly in the context of pandemic-related restrictions [2,38,39]. Although this study was conducted during a period when the pandemic was more severe, it offers valuable insights into older adult care. To enhance the generalizability and applicability of future trials, we recommend expanding the participant pool to include older adults outside of clinical settings.

Limitations

This pilot study has some limitations. When assessing loneliness and depression, it is important to include in-depth interviews to understand users’ thoughts. However, due to the pandemic, interviews could not be conducted during the study period. We therefore aim to further enhance this aspect by including interviews in future research. In addition, given that the study was conducted during the COVID-19 pandemic, it was challenging to enroll participants, as many patients were unwilling to visit the hospital, resulting in a limited sample size. The improvement in loneliness may be due in part to the placebo effect. Additionally, the study sample was derived solely from the psychiatric outpatient department of a single medical center, potentially introducing bias in the referral process and limiting the generalizability of the findings to a broader population. Finally, the follow-up period was relatively short (within half a year); thus, determining the long-term effect of the intervention requires further research.

Conclusions

The chatbot interface developed in this study was simple and easy to use. The results demonstrated that older adults in psychiatric outpatient clinics with relatively stable depressive and anxiety symptoms could benefit from the chatbot’s care, companionship, and potential reduction in loneliness, particularly during a pandemic. Simultaneously, the accessibility and user satisfaction of chatbots, which are crucial for promoting the health of older adults through using such apps, enabled the participants to easily access health information and advice, thereby enhancing their health awareness and quality of life.

Future research can explore how more personalized mental health support can be provided by expanding on the functionality of chatbots to effectively manage depression and anxiety among older adults. Simultaneously, there should be in-depth exploration of how chatbots can be integrated with traditional health care services to establish a more comprehensive medical support system. Qualitative investigations through individual or group interviews could add further insights into their use and adaptation.

Acknowledgments

The authors would like to thank Tzu-Tao Huang, Chen-Ju Lu, and Tzu-Yun Tseng for their assistance in developing the chatbot. The authors are also grateful to Wei-Yang Chang and the Clinical Trial Center of Chang Gung Memorial Hospital for assistance with the statistical analysis. This study was supported by the Ministry of Science and Technology of Taiwan under grants MOST 109-2511-H-216-001-MY3 (to LCC), 109-2314-B-182A-107-MY3 (to CL), 06-2314-B-182A-084-MY2, and 110-2314-B-182A-042 (to SHL). The study was supported in part by the National Taipei University of Technology and Chang Gung Memorial Hospital Joint Research Program (grant NTUT-CGHM-110-07), Chang Gung Memorial Hospital Research Program (grant CORPG3L0131), and Chang Gung Memorial Hospital Medical Research Grant (CRRPG2K0021, 22, 23).
Data Availability
All data generated or analyzed during this study are included in the published article.

Conflicts of Interest
None declared.

References

39. Chou et alJMIR FORMATIVE RESEARCH

Abbreviations

DSM-5: Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition)

GDS: Geriatric Depression Scale

HADS-A: Hospital Anxiety and Depression Scale anxiety subscale

UCLA-LS: University of California Los Angeles Loneliness Scale
Edited by A Mavragani; submitted 01.06.23; peer-reviewed by N Mohamad Ali, D Hilty; comments to author 03.10.23; revised version received 19.11.23; accepted 13.02.24; published 13.03.24.

Please cite as:
Chou YH, Lin C, Lee SH, Lee YF, Cheng LC
User-Friendly Chatbot to Mitigate the Psychological Stress of Older Adults During the COVID-19 Pandemic: Development and Usability Study
JMIR Form Res 2024;8:e49462
URL: https://formative.jmir.org/2024/1/e49462
doi:10.2196/49462
PMID:38477965

©Ya-Hsin Chou, Chemin Lin, Shwu-Hua Lee, Yen-Fen Lee, Li-Chen Cheng. Originally published in JMIR Formative Research (https://formative.jmir.org), 13.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Original Paper

Novel Web-Based Drop-In Mindfulness Sessions (Pause-4-Providers) to Enhance Well-Being Among Health Care Workers During the COVID-19 Pandemic: Descriptive and Qualitative Study

Mary Elliott1,2, MD; Camille Khallouf3, BA; Jennifer Hirsch2,3, MD; Diane de Camps Meschino2,4, MD; Orit Zamir2,3,5,6, MD; Paula Ravitz2,3,7, MD

1Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
2Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
3Department of Psychiatry, Sinai Health System, Toronto, ON, Canada
4Women's College Hospital, Toronto, ON, Canada
5Toronto Academic Pain Medicine Institute, Women's College Hospital, Toronto, ON, Canada
6Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
7Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada

Corresponding Author:
Mary Elliott, MD
Department of Supportive Care
Princess Margaret Cancer Centre
University Health Network
610 University Ave
Toronto, ON, M5G 2C1
Canada
Phone: 1 416 946 2000
Email: mary.elliott@uhn.ca

Abstract

Background: The COVID-19 pandemic exerted extraordinary pressure on health care workers (HCWs), imperiling their well-being and mental health. In response to the urgent demand to provide barrier-free support for the health care workforce, Pause-4-Providers implemented 30-minute live web-based drop-in mindfulness sessions for HCWs.

Objective: This study aims to evaluate the use, feasibility, satisfaction, and acceptability of a novel mindfulness program aimed at enhancing the well-being of HCWs during the COVID-19 pandemic.

Methods: Accrual for the study continued throughout the first 3 pandemic waves, and attendees of ≥1 session were invited to participate. The evaluation framework included descriptive characteristics, including participant demographics, resilience at work, and single-item burnout scores; feedback questionnaires on reasons attended, benefits, and satisfaction; qualitative interviews to further understand participant experience, satisfaction, benefits, enablers, and barriers; and the number of participants in each session summarized according to the pandemic wave.

Results: We collected descriptive statistics from 50 consenting HCWs. Approximately half of the participants (24/50, 48\%) attended >1 session. The study participants were predominantly female individuals (40/50, 80\%) and comprised physicians (17/50, 34\%), nurses (9/50, 18\%), and other HCWs (24/50, 48\%), who were largely from Ontario (41/50, 82\%). Of 50 attendees, 26 (52\%) endorsed feeling burned out. The highest attendance was in May 2020 and January 2021, corresponding to the first and second pandemic waves. The participants endorsed high levels of satisfaction (43/47, 92\%). The most cited reasons for attending the program were to relax (38/48, 79\%), manage stress or anxiety (36/48, 75\%), wish for loving kindness or self-compassion (30/48, 64\%), learn mindfulness (30/48, 64\%), and seek help with emotional reactivity (25/48, 53\%). Qualitative interviews with 15 out of 50 (30\%) participants identified positive personal and professional impacts. Personal impacts revealed that participation helped HCWs to relax, manage stress, care for themselves, sleep better, reduce isolation, and feel recognized. Professional impacts included having a toolbox of mindfulness techniques, using mindfulness moments, and being calmer at work. Some participants

https://formative.jmir.org/2024/1/e43875

JMI R Form Res 2024 | vol. 8 | e43875 | p.2200
(page number not for citation purposes)
noted that they shared techniques with their colleagues. The reported barriers included participants’ needing time to prioritize themselves, fatigue, forgetting to apply skills on the job, and finding a private place to participate.

Conclusions: The Pause-4-Providers participants reported that the web-based groups were accessible; appreciated the format, content, and faculty; and had high levels of satisfaction with the program. Both novel format (eg, drop-in, live, web-based, anonymous, brief, and shared activity with other HCWs) and content (eg, themed mindfulness practices including micropractices, with workplace applications) were enablers to participation. This study of HCW support sessions was limited by the low number of consenting participants and the rolling enrollment project design; however, the findings suggest that a drop-in web-based mindfulness program has the potential to support the well-being of HCWs.

(JMIR Form Res 2024;8:e43875) doi:10.2196/43875

KEYWORDS
COVID-19; pandemic; health care worker; resilience; mental health; burnout; well-being; mindfulness meditation; web-based group; drop-in; mindfulness; health care staff; meditation; worker; job; occupational health

Introduction

Background

The COVID-19 pandemic has jeopardized the mental health and well-being of health care workers (HCWs). Rapidly shifting public health guidelines have been implemented in response to the emergent scientific findings. The uncertain landscape of this pandemic has produced a sense of uncertainty, fear, and psychological distress in HCWs [1]. This was compounded by the realities HCWs faced, including inequitable access to rationed resources such as personal protective equipment and needed acute care beds [2]. Changes in procedural guidelines and service priorities, ramping down of nonessential services, and shifting standards of care have contributed to moral distress [3-5]. Risk factors for HCWs’ burnout included heavy workload, shifting roles, need for additional training, redeployment, and hybrid models of web-based care with feeling disconnected from their usual support and community of practice [6,7]. Greater COVID-19 exposure risks forced many HCWs into isolation owing to fears of infecting family members [1,8,9]. Early in the pandemic, significant levels of fatigue, insomnia, anxiety, depression, and psychological distress among HCWs were reported [8,10-15]. Informed by the literature on previous pandemics, it was anticipated that as the pandemic endured, moral distress, posttraumatic stress, and burnout would become problematic [16]. All combined, the COVID-19 pandemic amplified the challenges faced by HCWs within an already-strained workforce and was thus critically important to address [1,3,9,17-22].

Before the pandemic, evidence-based mindfulness interventions for HCWs were found to enhance stress management, awareness, emotion regulation, connection, self-compassion, empathy, and resilience [23-27]. Research demonstrates that mindfulness training for HCWs can improve well-being by promoting self-care and cultivating self-compassion [28]. The term “mindfulness” is defined as the “awareness that arises through paying attention, on purpose, in the present moment, and nonjudgmentally” and implies the cultivating of compassion [29]. Most interventions for HCWs evolved from manualized formats of mindfulness-based stress reduction, mindfulness-based cognitive therapy, and mindful self-compassion, which require a large time commitment [29-31].

“Pause-4-Providers” was created during the first wave of the COVID-19 pandemic to support HCWs and be accessible using a web-based drop-in platform. This extended the program’s reach to underserved areas and those in quarantine, with adherence to physical distancing requirements [17,21,32-34]. To establish a safe space for weary HCWs, no registration was required, and anonymity was allowed as we did not require participants to turn on their cameras or introduce or disclose information about themselves [35]. Unique to this program was the flexible curriculum, making it adaptable to the varied and changing needs of HCWs with time [36]. We implemented Pause-4-Providers drop-in sessions at the beginning of the COVID-19 pandemic to provide momentary refuge and respite from the intensity associated with working in health care during the pandemic.

Objective

The objective of this study was to evaluate the implementation of Pause-4-Providers, a 30-minute evening web-based drop-in mindfulness program for HCWs during the COVID-19 pandemic. We designed a descriptive and qualitative study to examine the feasibility, satisfaction, and experiences of the participants. The research questions for the descriptive study were as follows:

1. What is the feasibility and acceptability of the web-based drop-in mindfulness program?
2. What is the level of burnout and resilience among the consenting participants?

Research questions for the qualitative study included the following: What were the experiences, enablers, and barriers to participating in the Pause-4-Providers program?

Methods

Program Development and Format

Within the first weeks of the COVID-19 pandemic in Canada, our team of university-affiliated psychiatrists (ME, JH, DdCM, and OZ) with expertise in mindfulness met and collaboratively decided to offer free, 30-minute live web-based drop-in mindfulness sessions for HCWs with the objective of supporting their well-being. We defined HCWs as anyone working in a health care or social care setting, including those providing direct patient-facing services and those performing indirect...
roles. Along with health care providers and trainees, the sessions were open to those providing administrative facilities, those working in support services, and research staff. Our sessions used a secure, privacy-compliant Zoom (Zoom Video Communication, Inc) platform multiple times per week, starting on March 24, 2020. We e-blasted Pause-4-Providers program announcements to >400 health care institutions, hospitals, long-term care homes, shelters, university departments, and associations (eg, Ontario Medical Association, Royal College of Physicians and Surgeons of Canada, Canadian Mental Health Association, and Registered Practical Nurses Association of Ontario) for distribution of session links to their HCWs.

Our group of faculty facilitators had extensive mindfulness training and clinical experience in leading manualized mindfulness group interventions in health care settings for HCWs and patients in an oncology health setting (ME) [21,35,37], patients with pain disorders (OZ), women with mental health concerns (DdCM and JH), and hospital-based health leaders and policy makers (DdCM). As mental health professionals working in hospital settings, we were also attuned to the psychological impacts the unfolding public health crisis had on HCWs. Notably, because we used the term “facilitators” when referring to the faculty who led the web-based drop-in sessions, we chose to use the term “enablers” when referring to factors in the qualitative analysis that facilitated or promoted participation. The themed agenda for each drop-in session was based on mindfulness, compassion, or resiliency skills to fit the emerging needs of HCWs, distressing local and global events and the time of the year or holidays. An evolving curriculum allowed for flexibility and responsiveness to the changing needs of HCWs [36]. We canvassed attendees using a situational needs assessment with routine quick check-ins at the start of each session to tailor the agenda accordingly. Given the time pressures and competing demands placed on HCWs, the sessions were intentionally designed to be of short duration. Each 30-minute session followed a semistructured agenda as presented in Figure 1 and Multimedia Appendix 1 [27,28,38,39]. The session themes evolved to reflect the immediate needs of HCWs, with a curricular structure of the sessions that was maintained. This structure included 2 short practices, including a micropractice and a closing. Maintaining a consistent format, the sessions introduced different practices and themes that were aligned with the objectives and principles of mindfulness and self-compassion. In small doses, with time, during the prolonged pandemic, faculty facilitators introduced a wide variety of mindfulness practices based on HCW attendees’ needs and levels of emotions (eg, hyperarousal vs emotional numbing). Drawing from positive psychology and resilience factors [40-45], the faculty facilitators used mindfulness techniques to promote positive emotions, compassion, and coping in the midst of challenges. Sessions included at least 1 guided micropractice (ie, a practice that was distilled into ≤1 minute meant for integration by participants throughout their workday) to emphasize how participants could apply aspects of the practices for self-care moments in the workplace [35,44,46,47]. Many sessions concluded with poems, followed by invited reflections and feedback. To support the program, we also created a website for Pause-4-Providers, where HCWs could find the schedule and session links, and access 4 prerecorded mindfulness practices for use at any time and participate in the research study.

Figure 1. Sample agenda for Pause-4-Providers sessions.

<table>
<thead>
<tr>
<th>Suggested agenda</th>
<th>Sample content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session theme</td>
<td>Grounding</td>
</tr>
<tr>
<td>Welcome, brief check-in and assess needs</td>
<td>Being present with kindness and without judgment</td>
</tr>
<tr>
<td>Introduce the theme</td>
<td>Use of breath to ground and reset</td>
</tr>
<tr>
<td>Short practice 1</td>
<td>3-Minute Breathing Space</td>
</tr>
<tr>
<td>Short practice 2</td>
<td>Mindfulness of Breath</td>
</tr>
<tr>
<td>Micropractice (≤1 minute)</td>
<td>Loving Kindness Meditation</td>
</tr>
<tr>
<td>Reflection prompts (examples)</td>
<td>3-5 breaths</td>
</tr>
<tr>
<td>Encouraging use of practices on-the-go at work</td>
<td>Self-Compassion Break</td>
</tr>
<tr>
<td>Closings (eg, poem, sharing, comments, and feedback)</td>
<td>Walk Slowly by Dana Faulds</td>
</tr>
</tbody>
</table>

Ethical Considerations

This study was approved by the Sinai Health Research Ethics Board (20-0158-E). On the project website, participants were given a complete description of the study, and informed consent was obtained. The research assistant emailed the respondents who consented to be contacted for participation in a semistructured interview and obtained consent before the start of the interview. Participation in the study was voluntary and anonymous. The interviews were transcribed and deidentified to protect the identity of the study participants. The participants did not receive any compensation.

Research Methods

This study aimed to evaluate the feasibility and acceptability of a web-based drop-in mindfulness program. We assessed feasibility quantitatively with attendance and qualitatively by exploring participants’ experiences of barriers and facilitators or enablers of attending such a program. We assessed acceptability using a brief satisfaction questionnaire and
semistructured interviews with a subset of participants to explore their experiences of the program sessions. The burnout and resilience measures characterized the sample to learn about the potential suitability or appropriateness of the Pause-4-Providers program [48].

The study was open to all HCWs who attended ≥ 1 Pause-4-Providers session. Faculty facilitators informed HCW attendees in the sessions that they could visit the project website if they wished to participate or learn more about the research study. On the website, a banner informed HCWs of the research study with a link to a consent form and the confidential questionnaire package. Study participants could choose to participate in the descriptive portion of the study or both the descriptive and qualitative studies. The descriptive measures were collected once at study enrollment and included a questionnaire package consisting of demographics (eg, profession, age, sex, province or country of origin, and primary care setting), burnout and resilience measures, and a self-report feedback questionnaire focused on the participants’ reasons for attending, satisfaction, and utility of the sessions. At the end of the questionnaire, respondents could consent to be contacted for participation in a semistructured interview about their experiences of the program. There were no exclusion criteria for this study.

Descriptive Measures

The Single-Item Burnout Measure [49] instructed respondents to define burnout for themselves with the following question: “Overall, based on your definition of burnout, how would you rate your level of burnout?” Participants scored their responses on a 5-category ordinal scale. The self-defined burnout measure has been useful as an abbreviated burnout assessment tool in medical professionals [50, 51]. The self-defined burnout item correlates with the emotional exhaustion subscale of the Maslach Burnout Inventory (r=0.64; P<.001), defining burnout as a score of ≥ 23, with a correlation of 0.79, sensitivity of 83.2%, specificity of 87.4%, and an area under the curve of 0.93 (SE 0.004) [49].

The Resilience at Work Scale consists of 25 items measuring 7 aspects of workplace resilience, focusing on everyday behaviors. Participants rated their responses on a Likert scale, ranging from 0 (strongly disagree) to 6 (strongly agree) [52]. The scale is a validated tool for measuring and developing resilience among HCWs, with 67% of variance and an acceptable confirmatory factor analysis model fit (goodness of fit 0.97, Tucker-Lewis Index 0.98).

The Participant Self-Report Feedback Questionnaire was developed by us and asked about the number of sessions attended, reasons and motivation to attend (eg, to relax, improve sleep, be in a community, and learn mindfulness), benefits of attending (eg, increased awareness of emotional states, enhanced coping skills, and improved capacity to work with your team on a day-to-day basis), and overall satisfaction with the web-based mindfulness sessions. There were several open-text questions where respondents could describe how Pause-4-Providers influenced their coping (eg, positive or negative), describe the impact the pandemic had on their role and job, and provide feedback on the Pause-4-Providers program as presented in Multimedia Appendix 2.

Qualitative Methodology

Overview

To explore the participants’ experiences and views of the Pause-4-Providers program, we used a qualitative research design, which does not test or generate theory but instead gathers explicit insight into clinical or behavioral interventions [53, 54]. Qualitative methods are able to gather detailed insights into what does and does not work well to reveal the impacts, enablers, and barriers of program participation [55]. This is widely used in health service research to evaluate the determinants and impacts of interventions. The study complied with the standards for reporting qualitative research in accordance with COREQ (Consolidated Criteria for Reporting Qualitative Research) [54]. All participants consented before the interviews. There was no prior relationship between the qualitative researcher (Anna R Gagliardi) and the participants.

Sampling and Recruitment

At the end of the web-based questionnaire, respondents were asked if they were willing to be contacted for subsequent participation in an interview. Using a convenience sampling technique, all interested participants were emailed and invited to be interviewed by the research assistant (CK). The study and recruitment continued until June 2021, coinciding with the first 3 waves of the COVID-19 pandemic as defined by Public Health Ontario and presented in Multimedia Appendix 3. We sampled across 3 time frames corresponding to waves 1, 2, and 3 of the COVID-19 pandemic in Canada, with equal numbers of participants in each wave. We sampled concurrently with data collection and qualitative analysis and ceased when thematic saturation was achieved.

Data Collection

The audio-recorded (17-38 min), telephone-based, transcribed interviews conducted by the research assistant (CK) included questions about expectations, impacts, enablers, barriers, and recommendations to improve the program (Multimedia Appendix 4). Participants were asked about their motivation to attend the program, their experience of the program sessions, associated benefits or challenges, and feedback or suggestions for the future. Interview transcripts were independently analyzed by Anna R Gagliardi (a PhD-trained consultant with expertise in qualitative research), following which the findings were reviewed by all members of the research team.

Data Analysis

Descriptive Analysis

The total weekly attendees at drop-in sessions were tallied from April 20, 2020, to June 21, 2021, as shown in Multimedia Appendix 3; a single participant would count multiple times in these tallies if multiple sessions were attended. These totals were plotted against time, with the ends of the first 3 pandemic waves on August 14, 2020; April 1, 2021; and July 6, 2021, respectively. The remaining analyses pertained only to survey respondents. Counts and percentages were used to summarize their demographic characteristics. Responses to questions on burnout, motivation, and experience were summarized, and the motivation and experience scales were collapsed into 3 levels.
The 7 Resilience at Work subscale scores and the total score were each calculated according to the scoring guide, a 2-tailed t test was used to compare the mean overall score to that from a study on the psychological impact of COVID-19 on >500 hospital workers by Maunder et al [56] (email, August 13, 2021), and a 95% CI for the mean difference in overall scores was calculated. The relationship between the number of sessions attended (1 vs ≥ 2) and respondents’ feedback on the benefits of attending was assessed by cross-tabulating the 2 variables and calculating the P value using a Fisher exact test. Participants with a missing value for a variable were omitted from the analyses of that variable.

Qualitative Analysis

We used content analysis to identify themes for inductive coding in the qualitative interviews. This was done through constant comparison to develop a preliminary codebook of themes and exemplar quotes (first-level coding) [53]. We shared themes for discussion with all members of the research team to verify them. For subsequent interview transcripts, the qualitative expert researcher (Anna R Gagliardi) performed coding to expand or merge themes (second-level coding), tabulated participant characteristics and data (eg, themes and quotes), and examined similarities or differences by participant sampling characteristics. The research team reviewed and discussed the findings and further grouped them into categories related to motivation and facilitators, which we refer to as enablers, barriers, and impacts associated with participation. The qualitative findings were triangulated using descriptive findings.

Results

Descriptive Results

Between April 20, 2020, and June 27, 2021, there were 1333 attendance entries at the drop-in sessions. Consent was obtained from 88 respondents, most of whom (66/88, 75%) were enrolled during the second wave of the pandemic. Of 88 respondents, we excluded 38 (43%) from the analysis because they did not submit the questionnaire, were not HCWs, or completed the questionnaire a second time to arrive at a total sample of 50 (57%) participants, as presented in Figure 2. At the time of survey completion, 50% (25/50) had attended 1 session, 24% (12/50) 2 to 5 sessions, 8% (4/50) 6 to 10 sessions, and 16% (8/50) ≥ 11 sessions. If the participants indicated at the start of the questionnaire that they were completing it a second time, they were automatically taken to the end of the survey and only their first set of responses was included in the analysis.

Of 88 participants, the demographics were similar between the 50 (57%) included and 38 (43%) excluded participants. There were 5 sections in the survey on motivation, experience, satisfaction, burnout, and resilience. Overall, 90% (45/50) of the participants filled out all 5 sections, 10% (5/50) did not report on their prior experiences with mindfulness, and 6% (3/50) did not report on satisfaction. Of the 50 participants who submitted the survey, not all items or sections of the survey were completed. We included participants in the analysis if they provided data on ≥ 1 section of the questions we examined. Of the 50 HCWs, 24 (48%) had participated in ≥ 1 session; 17 (34%) were physicians, 9 (18%) were nurses, and the remaining 24 (48%) were other HCWs (eg, administrative or education assistant, occupational therapist, pharmacist, physiotherapist, psychotherapist, social worker, and others). Most respondents (40/50, 80%) were female individuals, 43% (21/50) were aged 20 to 39 years, 45% (22/50) 40 to 59 years, and 12% (6/50) >60 years, with participation primarily from the province of Ontario (41/50, 82%) and other Canadian provinces (eg, Alberta, British Columbia, New Brunswick, Quebec, and Saskatchewan).

Half of the HCWs (26/50, 52%) endorsed feeling burned out (score ≥ 3). Regarding Resilience at Work scores, participants scored highly (mean score >70) on the subscales of “finding your calling” (mean score 78, SD 17), “building networks” (mean score 78, SD 17), “living authentically” (mean score 76, SD 12), and “interacting cooperatively” (mean score 75, SD 15). Participants also scored moderately (mean score 50-69) on the workplace resilience subscale items of “staying healthy” (mean score 73, SD 22) and “managing stress” (mean score 65,
SD 19) and reported difficulty with the subscale item “maintaining perspective” (mean score 48, SD 17). The overall mean resilience score was 69.4 (SD 12.6) [56].

In the self-report feedback questionnaire, participants’ most frequently reported motivations to attend the program included relaxing, managing stress or anxiety, wishing for loving kindness or self-compassion, and learning mindfulness, as presented in Table 1.

The most frequently endorsed benefits of attending included increased self-awareness of emotional states and reduced stress, as presented in Table 2. Participants who attended ≥2 sessions reported more positive benefits with coping skills (Fisher exact test \(P<.001 \)) and managing stress (Fisher exact test \(P=.008 \)) than participants who only attended 1 session. Of the 47 participants who reported their overall program satisfaction, 92% (43/47) rated it with a score of ≥4 on a 5-point Likert scale, with a mean score of 4.6 (SD 0.7).

Table 1. Self-reported motivation for attending the Pause-4-Providers sessions (N=48).

<table>
<thead>
<tr>
<th>Motivation for attending the program</th>
<th>Very much or definitely motivated, n (%)</th>
<th>Moderately motivated, n (%)</th>
<th>Not at all or a bit motivated, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To relax</td>
<td>38 (79)</td>
<td>6 (13)</td>
<td>4 (8)</td>
</tr>
<tr>
<td>To manage stress or anxiety</td>
<td>36 (75)</td>
<td>9 (19)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Wish for loving kindness or self-compassion</td>
<td>30 (64)</td>
<td>9 (19)</td>
<td>8 (17)</td>
</tr>
<tr>
<td>To learn mindfulness</td>
<td>30 (64)</td>
<td>11 (23)</td>
<td>6 (13)</td>
</tr>
<tr>
<td>To seek help with emotional reactivity</td>
<td>25 (53)</td>
<td>9 (19)</td>
<td>13 (28)</td>
</tr>
<tr>
<td>To improve sleep</td>
<td>22 (47)</td>
<td>10 (21)</td>
<td>15 (32)</td>
</tr>
<tr>
<td>To gain energy</td>
<td>21 (45)</td>
<td>7 (15)</td>
<td>19 (40)</td>
</tr>
<tr>
<td>To learn tips to cope with work</td>
<td>20 (42)</td>
<td>12 (25)</td>
<td>16 (33)</td>
</tr>
<tr>
<td>To cope at home</td>
<td>19 (40)</td>
<td>12 (26)</td>
<td>16 (34)</td>
</tr>
<tr>
<td>To be in a community</td>
<td>14 (30)</td>
<td>12 (26)</td>
<td>21 (45)</td>
</tr>
<tr>
<td>To feel less isolated</td>
<td>10 (21)</td>
<td>9 (19)</td>
<td>28 (60)</td>
</tr>
</tbody>
</table>

Table 2. Self-reported benefits of attending the Pause-4-Providers sessions (N=45).

<table>
<thead>
<tr>
<th>Benefits of attending the program</th>
<th>Very much or significantly benefited, n (%)</th>
<th>Somewhat benefited, n (%)</th>
<th>Not at all or a bit benefited, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased self-awareness of emotional states</td>
<td>25 (56)</td>
<td>12 (27)</td>
<td>8 (18)</td>
</tr>
<tr>
<td>Reduced stress level</td>
<td>24 (53)</td>
<td>12 (27)</td>
<td>9 (20)</td>
</tr>
<tr>
<td>Enhanced ability to be responsive rather than reactive to challenges as they arise</td>
<td>15 (33)</td>
<td>19 (42)</td>
<td>11 (24)</td>
</tr>
<tr>
<td>Enhanced coping skills</td>
<td>14 (31)</td>
<td>17 (38)</td>
<td>14 (31)</td>
</tr>
<tr>
<td>Improved capacity to work with teams on a day-to-day basis</td>
<td>11 (24)</td>
<td>15 (33)</td>
<td>19 (42)</td>
</tr>
</tbody>
</table>

Qualitative Results

Participants

A total of 21 participants agreed to be contacted for participation in an interview and received a standardized invitation letter via email. Qualitative interviews were conducted with 15 consenting participants who answered the email and agreed to be interviewed, including 5 physicians, 2 administrative assistants, 2 physiotherapists, 2 psychotherapists, and 1 each of nurse practitioner, social worker, executive manager, and a speech pathologist. By age, this included 9 (60%) persons aged between 40 and 59 years and 6 (40%) 20 and 39 years. A considerable number of qualitative study respondents were women (13/15, 87%) than men, reflecting the fact that, out of 15 participants, 40 (80%) women and 7 (14%) men completed the descriptive questionnaire. Participants were evenly divided in terms of when they were interviewed during the COVID-19 pandemic: 5 (33%) in the first wave, 5 (33%) in the second wave, and 5 (33%) in the third wave. Interview participants completed a mean of 7 sessions (median 10, range 1 to 11) at the time of completing the questionnaire. Most participants had some prior exposure to mindfulness (11/15, 73%).

Themes

Overview

Themes, experiences, enablers, and barriers to participation were related to respondents’ motivation, satisfaction, impact, and program design. Qualitative findings are described with select quotes and summarized below. Where participants’ quotes are used, we have specified their study number, role, age, number of sessions attended, whether they had applied the mindfulness skills taught, and the pandemic wave during which they were interviewed. A summary of findings is presented in Figure 3 and all data are included in Multimedia Appendix 5.
Motivation to Attend and Expectations

A variety of reasons motivated the participants to take part in the program. Most were looking for ways to relax and manage their stress:

Trying to help deal with the COVID and all the stress behind it. Dealing with the patients and their anxiety with it. I was kind of trying to be more relaxed. [#02, administrative assistant, aged 40-59 years, ≤5 sessions, applied learning, techniques, or tools in daily life, wave 1]

Some participants wanted to decrease their sense of isolation created by the pandemic and have a way to connect with other HCWs:

I had been looking all over the place just for some kind of event or experience or connection of some kind for healthcare staff, healthcare teams because I felt really isolated. [#46, psychotherapist, aged 20-39 years, ≤5 sessions, applied learning, techniques, or tools in daily life, wave 2]

Others said that they were curious about mindfulness, had been exposed to it in the past, saw this as an opportunity to pick it up again, and desired to gather with others and be a role model to encourage other staff to participate:

I am in a leadership position at the hospital and it was passed on to me as something that we could share with our staff. I wanted to encourage them to take it so I thought I should take it myself. [#14, manager, aged 40-59 years, ≤5 sessions, not applied learning, techniques, or tools in daily life, wave 1]

When asked about expectations, participants largely said that they had none and came with an open mind. Several participants anticipated that it was likely to be beneficial but did not specify how:

I didn’t honestly think about it that much other than I know, at least on some level, that mindfulness practice would be good for me, that just by showing up it would be a positive thing. [#10, physiotherapist, aged 20-39 years, 6-10 sessions, applied learning, techniques, or tools in daily life, wave 1]

Feeling quite unmotivated, just finding things at work difficult for the winter and the early part of spring, so it wasn’t necessarily fatigue, it was more feeling a bit overwhelmed with work. [#75, physician, aged 40-59 years, 6-10 sessions, applied learning, techniques, or tools in daily life, wave 3]

Satisfaction

All participants said that the sessions were helpful, and some said that they surpassed their expectations and felt it was essential for getting through the pandemic:

It was more than what I expected. I thought I would try, to help out with the burnout and with the pandemic. But it was a lot more relaxing than I thought it would be. I was able to get into a really deeply relaxed state. [#22, psychotherapist, aged 20-39 years, ≤5 sessions, applied learning, techniques, or tools in daily life, wave 2]
In order to keep working and go on in my life, it’s been one of the very important things for me. [#35, physician, aged 40-59 years, applied learning, techniques, or tools in daily life, wave 3, did not indicate the number of sessions they attended]

When asked to rate the importance of the program to them on a scale from 1 to 10, in which 10 was very important, most participants articulated a moderately high score (mean 7.7, SD 1.48; median 8.0, range 5.0-10.0). Some participants commented on how this program was one of the several resources or supports, such as family, and that they were new to the program and could not yet fully appreciate how important the sessions may be:

I needed multiple things to help me through this time and so it was very important to me to have that regular time twice a week, where I would check-in and do these techniques to make sense of what’s going on, being able to deal with the difficult situation. In order to keep working and go on in my life, it’s been one of the very important things for me. [#35, physician, aged 40-59 years, applied learning, techniques, or tools in daily life, wave 3, did not indicate the number of sessions they attended; level of importance in life: score=10]

I’ve barely scratched the surface... it’s the beginning of a learning. I’m hoping that if and when it ends, I will be able to continue this. A 10 out of 10 would be a sort of life-changing, I don’t think it’s life-changing. I would call it life-enhancing. [#78, physician, aged 40-59 years, >11 sessions, applied learning, techniques, or tools in daily life, wave 3; level of importance in life: score=8]

I can’t say yet. I think I’m still pretty new. I’ve only done two sessions. Yes and no. In the sense that I think it’s nice to have that put in to your schedule a little bit but I can’t say that it’s translated into anything else in my life yet. [#44, physician, aged 40-59 years, ≤5 sessions, not applied learning, techniques, or tools in daily life, wave 2; level of importance in life: score=5]

Impact

The participants articulated the numerous positive benefits of the mindfulness program. Most participants said that it prompted them to disconnect from work responsibilities and take time for self-care. As a result, they were able to unwind and relax at the end of the day and sleep better:

It helps me to realize it’s not all about going, going, going and bringing home your work and thinking about it 24/7. I think it’s a good way to almost detach a little bit from that stuff. [#44, physician, aged 40-59 years, ≤5 sessions, not applied learning, techniques, or tools in daily life, wave 2]

It’s definitely easier to get into that relaxed state to go to sleep... I definitely feel more relaxed those nights when we have the session. [#22, psychotherapist, aged 20-39 years, ≤5 sessions, applied learning, techniques, or tools in daily life, wave 2]

Most participants said that participation in the program helped them to be more present and calm and to better manage stress or anxiety. Many participants applied mindfulness techniques in their daily lives, including at work:

Being present, being consistent and calm when you are working in very high stress environments...I did try that out when I was at work, and especially when you’re feeling overwhelmed or just tired. And so, I think just being able to use those skills can help you think more clearly, tackle things in a calmer manner. [#01, physician, aged 20-39 years, >11 sessions, applied learning, techniques, or tools in daily life, wave 1]

I’m much more productive with my time...and when you start to get more things done you don’t stress as much about it. It’s still pretty intense and it’s been a year and half... it just made me more level and able to work. [#78, physician, aged 40-59 years, >11 sessions, applied learning, techniques, or tools in daily life, wave 3]

I found it a very useful tool to use, in my personal toolbox, to help me be more grounded, to be more productive and actually slow down and listen to others. [#78, physician, aged 40-59 years, >11 sessions, applied learning, techniques, or tools in daily life, wave 3]

Engaging in a shared activity with other HCWs reduced feelings of isolation and loneliness, with gratitude for acknowledging HCWs as those who needed help to combat the undue stress of the pandemic:

I didn’t know any of the other people but you still kind of felt, even if you don’t know them everyone is facing similar challenges and probably having similar worries. That was nice to sit together. [#01, physician, aged 20-39 years, ≤5 sessions, applied learning, techniques, or tools in daily life, wave 2]

It’s really comforting to see the same people coming, even if I don’t see them, sometimes I see their comments... I always like the idea of a community so feeling included or part of the group, where I’m not lost in a big system, so that helps. [#35, physician, aged 40-59 years, applied learning, techniques, or tools in daily life, wave 3]

A few participants mentioned additional positive impacts, such as sharing mindfulness techniques with patients whom they thought might benefit.

Design

When asked about the program design and format, participants appreciated the web-based, drop-in nature requiring no advance registration, the flow and variety of activities during each session, and the interactive components. Participants also appreciated the soothing voices, reassurances and reminders...
offered by faculty facilitators, the timing of the evening sessions, and the short 30-minute session length:

I love that it’s drop-in, you don’t have to register or sign up or make a plan. [#04, nurse practitioner, aged 20-39 years, 6-10 sessions, applied learning, techniques, or tools in daily life, wave 1]

I joined a couple sessions where it seemed to flow really nicely. I thought that there was kind of an initial activity and then a little interlude moment and then a second activity. [#04, nurse practitioner, aged 20-39 years, 6-10 sessions, applied learning, techniques, or tools in daily life, wave 1]

I really also enjoyed that there was a little bit of dialogue at the end, and I thought that was so nice for other people to share their comments, to be able to share mine. [#14, manager, aged 40-59 years, ≤5 sessions, not applied learning, techniques, or tools in daily life, wave 1]

Furthermore, the participants noted specific aspects of the content they found helpful. In most cases, this referred to mindfulness exercises or techniques, for example, breathing exercises or body scans. In other cases, this referred to a concept, such as the need for self-care:

>Self-compassion practices are probably the ones that stick out most. [#10, physiotherapist, aged 20-39 years, 6-10 sessions, applied learning, techniques, or tools in daily life, wave 1]

> The whole practice was around being kind to yourself and kind to others even though we may differ in our opinions or views etcetera. [...] And that was really impactful given the social-political state the world is in right now, so much divide and social injustice and political divide. It was really refreshing to talk about community and generosity and focus on that, when we’re bombarded everyday with the news and tv about what’s different about us right now. [#22, psychotherapist, aged 20-39 years, ≤5 sessions, applied learning, techniques, or tools in daily life, wave 2]

> My personality is that I always helped other people, family. That’s me. That’s my job and that’s also my personality. I always put everybody in front of me instead of taking care of myself. Which I think I do have to change a little bit as I am getting older [...] if I am forced to get into a place where I am the center and not everybody else but just me only, I think that would help me tremendously. [#48, physiotherapist, aged 20-39 years, ≤5 sessions, not applied learning, techniques, or tools in daily life, wave 2]

Enablers

Participants noted multiple factors that enabled or challenged participation in Pause-4-Providers and the application of mindfulness outside the scheduled sessions.

These included a well-designed website and facilitated, web-based drop-in sessions. Although most participants appreciated the group nature of the sessions, they also valued their anonymity:

It’s convenient because it’s online, you don’t have to go somewhere, you can just Zoom in. It’s hard to get myself going somewhere to an actual place, but it is good to be with people. You kind of feel like you are with them, even if you don’t see them, so for me, the virtual format was perfect. [#35, physician, aged 40-59 years, applied learning, techniques, or tools in daily life, wave 3, did not indicate the number of sessions they attended]

I think that’s a really powerful aspect of the program that invites more people to attend because you can change your screen name and be anonymous, so I thought that was cool. I think that anonymity aspect is really important so that everybody can just feel safe to access support and not have to reveal their identity from fear of judgement from coworkers. [#76, administrative assistant, aged 20-39 years, ≤5 sessions, applied learning, techniques, or tools in daily life, wave 3]

Enablers to adopt or use mindfulness included faculty facilitators giving advice and examples on how to integrate practice into daily life, demonstrating techniques that were easy to adopt, and offering self-directed resources on the website to enable practice outside the sessions:

>The way the facilitators are able to link the practices to real, realistic, day-to-day moments where the skills might come in handy [...] the suggestions, gentle reminders of where these skills can be useful in daily life. [#10, physiotherapist, aged 20-39 years, 6-10 sessions, applied learning, techniques, or tools in daily life, wave 1]

>Even throughout the day I think of some of the exercises. I’m seeing that start to change in a positive way. I’m taking a break from work at my desk, I stand up and I’ll take a moment with the practices in mind. [#46, psychotherapist, aged 20-39 years, ≤5 sessions, applied learning, techniques, or tools in daily life, wave 2]

Barriers

Barriers to participation included competing demands that made it difficult to be a priority, being tired and feeling easily distracted, difficulty finding a quiet and private space at home, internet connection issues, and being seen by others in a susceptible state:

I guess the time of day. Although it is very convenient for me to attend, I do have to make a choice to do. Either I fit in time with my husband, or I prep for tomorrow or clean up. It’s a choice. You have to make a choice to go cause there’s always something else that you could be doing. [#04, nurse practitioner, aged <40 years, 6-10 sessions, applied learning, techniques, or tools in daily life, wave 1]

Finding a quiet space in the house. I have to be really intentional about that part of things. I really need to...
The Pause-4-Providers program was intentionally planned for implementation for HCWs with competing demands, time pressures, and exhaustion during the COVID-19 pandemic. Participants corroborated that they valued the program content and format that did not require registration, took place on the internet in the evening, was a drop-in session, and was of short duration (30 min) with the option of anonymity (eg, cameras could be switched off). The nonprescriptive nature of drop-in sessions allowed participants the choice to attend any number of sessions, unlike other structured mindfulness programs. Consistent with mindfulness literature, we observed a potential dose effect [31]. Participants who attended ≥2 sessions reported more positive benefits in coping skills (P < .001) and reduced perceived stress (P = .008).

Half of the participants attending Pause-4-Providers had moderate to high levels of burnout, as measured by the Single-Item Burnout Measure (26/50, 52%), similar to what others had during the COVID-19 pandemic [56]. This highlights the fact that some participants were in need of well-being interventions. In other words, some may have been motivated to alleviate burnout symptoms, while others sought to cultivate their well-being. We observed that resilience and burnout coexisted in this sample of HCWs during the COVID-19 pandemic.

The Pause-4-Providers study participants scored moderately high overall on the Resilience at Work Scale, with high subscale scores of “building networks, interacting cooperatively, finding your calling, and living authentically.” This may reflect HCWs’ need to pull together teams, with a shared purpose and a “calling”—resiliency factors that are essential during a pandemic. There is no ceiling on resilience, which can continue to grow. However, participants endorsed difficulty with the “maintaining perspective” subscale, scoring 48.1 (difficulty ≤ 50). This subscale represents an ability for flexible thinking and optimism. The pandemic has challenged HCWs to be adaptable and maintain positivity. The use of mindfulness training can help stressed individuals maintain perspective and shift from primitive survival stress responses (eg, fight, flight, freeze, or fold) to adaptive coping with mindful and reflective problem-solving skills. The participants scored moderately on the subscale of “managing stress” aligned with their endorsed reasons for taking the course to relax and manage stress or problem solving. The participants scored moderately high on the subscale of “building networks, interacting cooperatively, finding your calling, and living authentically.”

Discussion

Principal Findings

The strain placed on HCWs was evident from the start of the COVID-19 pandemic and persisted as the pandemic endured. This newly conceived well-being support program, Pause-4-Providers, consisted of synchronous, web-based, brief, drop-in mindfulness sessions for HCWs. It was feasible to implement as evidenced by its rapid deployment early in the first phase of the pandemic, with good use and continued session attendance during the first 3 waves of the pandemic (total attendance=1333). This program reached a wide range of HCWs, including physicians, a group typically more reluctant to attend well-being sessions, and more so during the pandemic [57]. It was acceptable to participants, with a large majority endorsing overall satisfaction of 5 out of 5 (32/47, 68%) and 4 out of 5 (11/47, 23%).

The Pause-4-Providers program was intentionally planned for implementation for HCWs with competing demands, time pressures, and exhaustion during the COVID-19 pandemic. Participants corroborated that they valued the program content and format that did not require registration, took place on the internet in the evening, was a drop-in session, and was of short duration (30 min) with the option of anonymity (eg, cameras could be switched off). The nonprescriptive nature of drop-in sessions allowed participants the choice to attend any number of sessions, unlike other structured mindfulness programs. Consistent with mindfulness literature, we observed a potential dose effect [31]. Participants who attended ≥2 sessions reported more positive benefits in coping skills (P < .001) and reduced perceived stress (P = .008).

Half of the participants attending Pause-4-Providers had moderate to high levels of burnout, as measured by the Single-Item Burnout Measure (26/50, 52%), similar to what others had during the COVID-19 pandemic [56]. This highlights the fact that some participants were in need of well-being interventions. In other words, some may have been motivated to alleviate burnout symptoms, while others sought to cultivate their well-being. We observed that resilience and burnout coexisted in this sample of HCWs during the COVID-19 pandemic.

The Pause-4-Providers study participants scored moderately high overall on the Resilience at Work Scale, with high subscale scores of “building networks, interacting cooperatively, finding your calling, and living authentically.” This may reflect HCWs’ need to pull together teams, with a shared purpose and a “calling”—resiliency factors that are essential during a pandemic. There is no ceiling on resilience, which can continue to grow. However, participants endorsed difficulty with the “maintaining perspective” subscale, scoring 48.1 (difficulty ≤ 50). This subscale represents an ability for flexible thinking and optimism. The pandemic has challenged HCWs to be adaptable and maintain positivity. The use of mindfulness training can help stressed individuals maintain perspective and shift from primitive survival stress responses (eg, fight, flight, freeze, or fold) to adaptive coping with mindful and reflective problem-solving skills. The participants scored moderately high on the subscale of “managing stress” aligned with their endorsed reasons for taking the course to relax and manage stress or anxiety. This is consistent with areas that mindfulness sessions can address by helping individuals to keep calm and reduce anxiety. This is consistent with areas that mindfulness sessions can address by helping individuals to keep calm and reduce anxiety.
The reported benefits of the program in the qualitative study included being better able to disconnect and decompress after work, seeing a need to prioritize self-care, and an improved ability to manage stress at work. This aligned with the survey findings of increased self-awareness of emotional states (25/45, 56%) and reduced stress (24/45, 53%). By providing a toolbox of mindfulness strategies and skills, participants were empowered to be calmer and more present. Brief mindfulness micropractices provided a potential mechanism for HCWs to navigate stressful and demanding workplace environments, as demonstrated in previous work done by one of the authors (ME) [13,35,36]. The themed agendas of each session focused on workplace applications of mindfulness practices. Respondents described how the particular use of micropractices allowed them to be more present, calmer, and more balanced at work. Some participants shared these mindfulness tools with their coworkers and patients. Participants also valued the faculty facilitators’ encouragement, tips, and examples of ways to use practices in the workplace, on the go.

Many participants did not turn on their cameras, although many did offer their thoughts and feedback (often gratitude) in the chat at the end of each session. Without their cameras turned on and in their homes in the evenings, the participants reported feeling less susceptible and more relaxed. Despite the anonymity of participation, the attendees endorsed a decreased sense of isolation in the context of the pandemic and felt connected to the group. We speculate that the combination of the live format, the commonality of being with HCWs during the pandemic, and the shared experience of practicing self-care in a group setting was sufficient to promote a sense of connection. This is similar to other mindfulness skills–based groups in which participants do not talk about their life experiences and yet endorse an increased sense of connectedness [37].

The use of an evolving curriculum allowed the team of faculty facilitators to perform practical ongoing needs assessment by checking in with attendees at the start of each session and flexibly adapting the session in response to the relevant needs of the attendees [36]. This was important as HCWs’ needs changed with the course of the pandemic. In the first wave, HCWs were frightened and needed to find ways to cope with uncertainty and change, whereas, with time, participants shared experiences of moral distress, exhaustion, and elements of posttraumatic stress [6,22]. The faculty facilitators could garner an iterative understanding of challenges and burnout factors with time as mental health experts, mindfulness specialists, and HCWs.

Limitations

We largely relied on a top-down approach to invite HCWs to Pause-4-Providers sessions, contacting leadership in a wide array of institutions and health care settings. This dissemination strategy included outreach to interprofessional stakeholder organizations at the provincial, university, and hospital health care system levels. We did not track how or if they disseminated the information, and we did not have a consistent strategy to follow up with these organizations. Although this session recruitment strategy supported an expedient deployment strategy, it may have affected attendee recruitment. Prioritizing anonymity and open access to drop-in web-based sessions with no required registration meant that we were not able to provide attendance reminders and relied on participant engagement and institutions to notify and remind potential attendees. This likely limited session attendance, retention, and study recruitment. Nonetheless, the study design was pragmatic for the drop-in nature of the program, with rolling recruitment during the first 3 waves of the pandemic. Approximately half (24/50, 48%) of the participants attended >2 sessions at the time of survey completion. Participants’ reports on resilience and burnout could have been affected by how many sessions they had attended before study enrollment and how far into the pandemic they started to attend sessions. We do not know if the consenting study participants were representative of the entire Pause-4-Providers attendee population or the HCWs’ population at large, limiting generalizability.

When the program was developed, we did not expect the pandemic to endure and have multiple waves. Attendance in the program was well distributed across the first 3 waves of the pandemic, and survey responses were concentrated between the end of wave 1 and the end of wave 2. It is possible that HCWs became more accustomed to the COVID-19 pandemic, with reduced stress and improved coping with time. Alternatively, the cumulative effect of the pandemic may have adversely affected the well-being of HCWs (eg, with increased levels of moral distress). The sample size was too small to determine how the motivations, benefits, satisfaction, and experiences of the participants may have differed across time points. Consistent with qualitative research standards, saturation of the findings was identified, and our sample size was consistent with the qualitative methodology [55,58].

It is unknown how representative the 50 study HCW participants were in relation to the larger sample of all attendees. The demographics did not include data on race, ethnicity, or intersectional identity, nor did they distinguish between work practice settings (eg, intensive care unit vs outpatient clinics) or whether HCWs were in COVID-19 patient-facing practice settings. Any of these factors could have affected or moderated the findings on burnout, workplace resilience, and pandemic-related stresses. The faculty facilitators in this project were White women psychiatrists. Future iterations of this program would benefit from a more culturally diverse and larger group of interprofessional faculty facilitators and participants. With respect to generalizability, qualitative findings were obtained from participants in the province of Ontario, Canada, and thus may not represent other health settings in other locations. Nurses represent approximately half of the health care workforce in Canada, and yet only 18% of the study participants were nurses. This low level of nurse participation may have been because of long, 12-hour shifts and competing priorities, such as family or childcare during the pandemic. This may also be related to free alternative support provided through their professional organizations (eg, individual psychotherapy) [6].

The format of live web-based mindfulness sessions is resource intensive as it relies on faculty facilitators; therefore, it may not be sustainable without funding or a dedicated team. Early in the COVID-19 pandemic, with heightened uncertainty and major
changes in health care, faculty facilitated 8 evening sessions per week. As the pandemic continued, to reduce the burden on the faculty facilitators, the frequency of sessions was decreased to once a week.

Conclusions
This descriptive, qualitative study and program evaluation demonstrated that the Pause-4-Providers program was feasible, acceptable, and appropriate, with high levels of satisfaction. Half of the participants endorsed moderate to high burnout, which may have motivated their attendance. Most participants endorsed positive benefits enabled by the curriculum, the faculty facilitators and the drop-in, low-dose, open-access format of the program. Importantly, participants reported feeling more relaxed after the sessions and using mindfulness tools at work and in their daily lives.

As Dana Faulds, an American poet, writes, “It only takes a reminder to breathe, a moment to be still, and just like that, something in me settles, softens, makes space for imperfection...I can make the choice to stop, to breathe, and be, and walk slowly into the mystery” [38]. The Pause-4-Providers program reminded HCWs to breathe, create space to be still, reflect on mindful self-compassion, and use microskills in the workplace and at home. To address the unprecedented negative psychological effects and burnout during the COVID-19 pandemic and support the well-being of HCWs beyond the pandemic, this program of brief web-based drop-in mindfulness merits further study.

Acknowledgments
The Pause-4-Providers program was supported by the Innovation Fund of the Alternative Funding Plan for the Academic Health Sciences Centres of Ontario. The authors gratefully acknowledge the Sinai Health System, University Health Network, Women’s College Hospital and University of Toronto, Department of Psychiatry, the Lunenfeld-Tanenbaum Research Institute, and Drs Jon Hunter and Robert Maunder for their mentorship; the Ontario Medical Association; and the contributions of Anna Gagliardi for the qualitative analysis, George Tomlinson and Fuzo Yosh for descriptive analyses in this study, and Natalie Heeney for the design of study figures.

Data Availability
The data sets generated and analyzed during this study are not publicly available because participants’ approval for public data sharing was not explicitly requested in the consent form approved by the research ethics board.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Definitions of mindfulness concepts.
[DOCX File, 20 KB - formative_v8i1e43875_app1.docx]

Multimedia Appendix 2
Pause-4-Providers questionnaire package.
[DOCX File, 34 KB - formative_v8i1e43875_app2.docx]

Multimedia Appendix 3
Weekly number of attendees during the first 3 waves of the COVID-19 pandemic.
[PNG File, 66 KB - formative_v8i1e43875_app3.png]

Multimedia Appendix 4
Pause-4-Providers qualitative interview guide.
[DOCX File, 23 KB - formative_v8i1e43875_app4.docx]

Multimedia Appendix 5
Themes and exemplar quotes on motivation, expectations, design, and impact.
[DOCX File, 81 KB - formative_v8i1e43875_app5.docx]

References

https://formative.jmir.org/2024/1/e43875

Elliott et al

Abbreviations

COREQ: Consolidated Criteria for Reporting Qualitative Research

HCW: health care worker

©Mary Elliott, Camille Khallouf, Jennifer Hirsch, Diane de Camps Meschino, Orit Zamir, Paula Ravitz. Originally published in JMIR Formative Research (https://formative.jmir.org), 14.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Latino Parents’ Reactions to and Engagement With a Facebook Group–Based COVID-19 Vaccine Promotion Intervention: Mixed Methods Pilot Study

Anna I González-Salinas¹, BSc, MBA, MM; Elizabeth L Andrade¹, BA, MPH, DrPH; Lorien C Abroms¹, BSc, MA, DSC; Kaitlyn Gómez², BA; Carla Favetto¹; Valeria M Gómez¹, BS; Karen K Collins¹, PhD

¹George Washington University, Washington, DC, United States
²California State University, Fullerton, CA, United States

Abstract

Background: Misinformation in Spanish on social media platforms has contributed to COVID-19 vaccine hesitancy among Latino parents. Brigada Digital de Salud was established to disseminate credible, science-based information about COVID-19 in Spanish on social media.

Objective: This study aims to assess participants’ reactions to and engagement with Brigada Digital content that sought to increase COVID-19 vaccine uptake among US Latino parents and their children.

Methods: We conducted a 5-week intervention in a private, moderator-led Facebook (Meta Platforms, Inc) group with Spanish-speaking Latino parents of children aged ≤18 years (N=55). The intervention participants received 3 to 4 daily Brigada Digital posts and were encouraged to discuss the covered topics through comments and polls. To assess participants’ exposure, reactions, and engagement, we used participants’ responses to a web-based survey administered at 2 time points (baseline and after 5 weeks) and Facebook analytics to calculate the average number of participant views, reactions, and comments. Descriptive statistics were assessed for quantitative survey items, qualitative responses were thematically analyzed, and quotes were selected to illustrate the themes.

Results: Overall, 101 posts were published. Most participants reported visiting the group 1 to 3 times (22/55, 40%) or 4 to 6 (18/55, 33%) times per week and viewing 1 to 2 (23/55, 42%) or 3 to 4 (16/55, 29%) posts per day. Facebook analytics validated this exposure, with 36 views per participant on average. The participants reacted positively to the intervention. Most participants found the content informative and trustworthy (49/55, 89%), easy to understand, and presented in an interesting manner. The participants thought that the moderators were well informed (51/55, 93%) and helpful (50/55, 91%) and praised them for being empathic and responsive. The participants viewed the group environment as welcoming and group members as friendly (45/55, 82%) and supportive (19/55, 35%). The 3 most useful topics for participants were the safety and efficacy of adult COVID-19 vaccines (29/55, 53%), understanding child risk levels (29/55, 53%), and the science behind COVID-19 (24/55, 44%). The preferred formats were educational posts that could be read (38/55, 69%) and videos, including expert (28/55, 51%) and instructional (26/55, 47%) interviews. Regarding engagement, most participants self-reported reacting to posts 1 to 2 (16/55, 29%) or 3 to 4 (15/55, 27%) times per week and commenting on posts 1 to 2 (16/55, 29%) or <1 (20/55, 36%) time per week. This engagement level was validated by analytics, with 10.6 reactions and 3 comments per participant, on average, during the 5 weeks. Participants recommended more opportunities for engagement, such as interacting with the moderators in real time.

Conclusions: With adequate intervention exposure and engagement and overall positive participant reactions, the findings highlight the promise of this digital approach for COVID-19 vaccine–related health promotion.

(JMIR Form Res 2024;8:e51331) doi:10.2196/51331
Introduction

Background

US Latino individuals have experienced distressing COVID-19 disparities related to morbidity and mortality. Recent studies have demonstrated this heightened risk in Latino adults, who have a 1.5 times greater risk of infection, 2.3 times greater risk of hospitalization, and 1.8 times greater risk of death [1-5]. These increased risks are likely related, in part, to slower vaccine uptake during the pandemic [6,7]. Although adult COVID-19 vaccination rates have increased, with 57.1% of US Latino adults having completed a primary vaccine series as of March 2023, only 8.5% of Latino adults have received a bivalent booster dose, the lowest coverage across racial and ethnic subgroups [8].

What is also alarming is the underrepresentation of Latino children in some age groups among the population vaccinated against COVID-19. The vaccination rates of Latino children continue to lag, with only 5.1% of Latino children aged 6 months to 4 years having completed a 2-dose vaccine series as of December 2022 and 28.8% of Latino children aged 5 to 11 years, 57.8% of Latino adolescents aged 12 to 15 years, and 70.4% of Latino adolescents aged 16 to 17 years having completed the primary series as of August 2022 [9,10]. Booster dose coverage among Latino children is also worrisome, with only 4.6% of Latino children aged 5 to 11 years, 20.7% of Latino adolescents aged 12 to 15 years, and 32.3% of Latino adolescents aged 16 to 17 years having received a booster dose as of August 2022 [9,10]. These low rates are particularly concerning, given that research has demonstrated an increased risk among Latino children and adolescents aged <18 years for COVID-19 infection, hospitalization, multisystem inflammatory syndrome, and related health complications [11-16]. These findings emphasize the need for targeted interventions to mitigate these disproportionate risks and increase immunization rates.

Research has revealed that COVID-19 vaccine hesitancy has been a significant obstacle to reducing these risks for US Latino communities [4,17-19], especially among Latino parents, who have exhibited considerable reluctance toward vaccinating their children against COVID-19 [20-23]. This hesitancy has been partly fueled by exposure to misinformation regarding COVID-19 vaccines, primarily through social media networks [20,24-27]. This exposure has created more mistrust and concerns among Latino parents regarding the safety and efficacy of COVID-19 vaccines for children [28-32], and studies have shown an association between exposure to misinformation on social media and increased hesitancy and decreased intention to vaccinate [33-39].

Although there have been efforts to address vaccine hesitancy among Latino individuals, including communication campaigns and community-based outreach initiatives [25,40-42], few social media–based intervention studies have focused on Latino parents. Ramirez and colleagues [43] implemented a Facebook (Meta Platforms, Inc)–based pilot intervention to promote COVID-19 vaccine uptake among rural community residents in South Texas, whereby intentions to vaccinate were assessed following exposure to video testimonials that acknowledged misinformation and promoted vaccination using peer modeling. Although not explicitly focused on parents, this study demonstrated significantly higher vaccine intentions following exposure to such video testimonials compared with exposure to standard Centers for Disease Control and Prevention advertisements. In addition, a study by Panameno and colleagues [44] assessed Latino parents’ experiences with MiVacunaLA, a mobile phone–delivered digital intervention for improving Latino parents’ vaccination intentions and Latino children’s vaccination rates. The study found that digital technology was beneficial for delivering language-tailored and culturally tailored pediatric COVID-19 vaccine information to Latino parents, which addressed their specific informational needs and increased their confidence in COVID-19 vaccines. This study highlighted the importance of concise, accessible information delivered by trusted sources, such as videos portraying physicians or community health workers, to overcome barriers to health literacy or other barriers to COVID-19 vaccination. Furthermore, this study revealed a persistent need for culturally tailored information about COVID-19 vaccines and boosters, specifically information delivered in Spanish and through trusted sources.

Objectives

In response to information gaps among US-based Spanish-speaking audiences, we established Brigada Digital de Salud in 2021 to disseminate accurate, credible, and science-based COVID-19 information and prevention messages in Spanish based on the latest research and public health guidelines. Brigada Digital aims to serve as a social media resource for Spanish-speaking individuals who want to make sound decisions about their health and the health of their families in the face of web-based misinformation [45]. This paper details the findings from a 5-week study among Latino parents in a private Facebook group to assess their reactions to and engagement with Brigada Digital social media content and to elicit their recommendations for future iterations of the intervention.

Methods

Participant Recruitment

Eligible study participants included Latino adults aged ≥18 years who were parents of at least 1 child aged <18 years, spoke fluent Spanish, and reported using Facebook at least once daily. We recruited participants through 8 targeted Facebook advertisements between August 12 and August 22, 2022. All interested individuals completed an 8-item screener to determine eligibility, and eligible participants were automatically directed to an informed consent form and a baseline survey administered using Qualtrics (Qualtrics International Inc). The participants who completed the baseline survey were assigned to either the intervention Facebook group (N=55) that received Brigada
Digital content or the control Facebook group (n=65) that received only a link to the Centers for Disease Control and Prevention web-based COVID-19 information in Spanish (standard of care) but did not receive the intervention content. This paper discusses the reactions and engagement of only the participants in the intervention group.

Intervention Overview

A 5-week intervention delivered through Facebook groups was created to educate participants on the risks of COVID-19, COVID-19 prevention methods, and the importance of adult and child vaccination. The intervention aimed to address common misinformation often spread through social media. Intervention content development was informed by the Theory of Planned Behavior, according to which beliefs about vaccination, social norms, perceived control over vaccination, and attitudes about vaccination influenced COVID-19 vaccination intentions [46]. The intervention content was developed before the study and was carefully crafted to be accessible to a broad Latino audience, regardless of education or health literacy levels. For example, scientific concepts were explained in simple terms, prevention recommendations were accompanied by visual aids, and the text was audio narrated in Spanish (Figure 1).

Once participants were accepted into the Facebook group, they received prerecorded welcome videos from moderators, 3 posts, and an overview of group expectations and guidelines and were invited to introduce themselves to the group. This point onward, posts were scheduled to be shared with the group on a daily basis. In total, 101 posts were shared during the 5-week period, with at least 2 posts per day being educational and the remainder alternating between posts intended to counter COVID-19 misinformation and posts intended to engage group members.

The content was delivered using various formats, such as a narrated slide carousel, animated images with text and music, and videos featuring health professionals and subject matter experts (Figure 2).

Furthermore, the post content was ordered to progress through various themes related to COVID-19, beginning with fundamental scientific concepts behind disease transmission and then covering topics with increasing complexity. For example, we incorporated content explaining the connection between carbon dioxide levels in indoor environments and COVID-19 transmission risk, which educated participants regarding the risks associated with gathering indoors in crowded spaces and encouraged them to improve ventilation indoors to reduce their risk (Figure 3).

When promoting the use of web-based resources, posts included tools for assisting participants with navigating these resources, such as tutorials and step-by-step instructions (Figure 4).

![Figure 1. Brigada Digital social media post using Spanish audio narration to emphasize the importance of wearing a mask to reduce respiratory viral transmission.](https://formative.jmir.org/2024/1/e51331/fig1.png)

Figure 1. Brigada Digital social media post using Spanish audio narration to emphasize the importance of wearing a mask to reduce respiratory viral transmission.
Figure 2. Brigada Digital TikTok video featuring a Latina health expert explaining the cumulative monthly COVID-19-related hospitalizations among children ages 5-17 years old from June 2021 to March 2022.

Rates of monthly hospitalizations associated with COVID-19 by vaccination status among children and adolescents aged 5 to 17 years old, COVID-NET June 2021-March 2022

Figure 3. Brigada Digital educational post using animated images with text and Spanish audio narration to educate about the link between carbon dioxide levels and COVID-19 risk and provide guidelines for indoor mask use. NIH: National Institutes of Health.

WHAT DOES (CO2) TELL US?

- The air that people exhale (CO2) has small particles. If someone has a COVID infection, those particles can also contain the virus.

- With poor ventilation (airflow), CO2 - and infectious particles - accumulate in the air.

- We can measure CO2 levels in closed spaces. A high CO2 level indicates that it is a riskier place for COVID-19 transmission.
The post content covered a wide range of topics related to COVID-19, including the science of COVID-19 and its transmission, risks, and prevention (36/101, 35.6%); COVID-19 testing (5/101, 4.9%); COVID-19 vaccine information, such as the safety and efficacy of adult and pediatric vaccines and boosters (28/101, 27.7%); risks associated with pregnancy or breastfeeding and COVID-19 (4/101, 4%); COVID-19 treatment and post–COVID-19 condition (6/101, 5.9%); and understanding COVID-19 misinformation (15/101, 14.8%). Furthermore, (7/101, 6.9%) posts were included on related topics for the purpose of participant engagement (refer to Multimedia Appendix 1 for the complete 5-week schedule of intervention post topics). The posts were scheduled to be delivered every morning, afternoon, and evening. Furthermore, the members of the group had unrestricted access to the Facebook group content, allowing them to view the posts and engage with all the content at any time.

The Facebook intervention was facilitated by 2 Spanish-speaking moderators. The moderators engaged group members in discussions about the posts by posing questions, eliciting opinions, and encouraging the sharing of relevant experiences. Group activity was monitored daily to promptly respond to comments and acknowledge group member participation in a timely manner to encourage continued engagement. Furthermore, the moderators aimed to be helpful in responding to questions by providing detailed responses and links to additional information and resources. In addition, 5 weekly polls were administered to inquire about the group members’ risk perceptions, attitudes, and vaccine intentions. Given the timing of the intervention leading up to the start of the school year for children, the poll questions inquired about parents’
concerns about sending their children back to school with COVID-19 still circulating as well as barriers and intentions to vaccinating their children. During their interactions with participants, the moderators prioritized adherence to culturally appropriate expectations of respect, attentiveness, and kindness [47-49].

Data Collection

Survey

A brief, web-based survey was self-administered in Spanish using the Qualtrics software. Following approval by the George Washington University Institutional Review Board committee and participants’ informed consent, the survey was administered at 2 time points, namely at baseline and after 5 weeks. The participants were incentivized for survey completion. This paper reports intervention group participants’ survey responses at the 5-week follow-up and participants’ sociodemographics reported at baseline, including age, sex, education, income, employment status, household composition, and whether they were born in the United States.

The survey instrument included an item for self-reported adult COVID-19 vaccination, with the response options of “I received 1 dose of a 2-dose series,” “I received both doses of a 2-dose series,” “I received a one-dose vaccine (for adults only),” and “I have not been vaccinated against COVID-19.” Furthermore, a survey item for child COVID-19 vaccination was included for parents with children in the age groups of <5 years, 5 to 11 years, and 12 to 17 years, with response options similar to those provided for the item for adult COVID-19 vaccination. In addition, participants were asked whether they had been required to vaccinate.

To assess participants’ intervention exposure, 2 categorical survey items focusing on self-reported exposure asked how frequently participants visited the Brigada Digital Facebook group and saw the group posts in an average week during the intervention. The survey included standardized and open-ended items related to participants’ reactions to the intervention content, moderators, and group environment. A total of 4 categorical survey items assessed participants’ opinions regarding the information received in the group (ie, how informative or trustworthy the information was, the most useful topics, and their preferences regarding post formats); 2 categorical survey items assessed participants’ opinions about the group moderators; and 2 categorical survey items assessed participants’ opinions of the Facebook group environment and members. These items asked the participants to select their level of agreement with a series of statements, using a 5-point Likert scale ranging from disagree to strongly agree. For participant engagement, we used 3 categorical survey items focusing on self-reported engagement, asking whether they introduced themselves to the group and how frequently they reacted to and commented on posts. Furthermore, 3 open-ended items were included to inquire about participants’ reasons for not engaging in each of these actions. Finally, to elicit participants’ feedback about the intervention, we included 3 open-ended survey items that asked what they liked or did not like about the Facebook group and what suggestions they had for improving the intervention.

Facebook Analytics

Facebook analytics facilitated the tracking of views, reactions, and comments for each post and each participant. We assessed participants’ exposure to the intervention using the metrics of total post views and total views for each participant. We assessed participants’ engagement using the metrics of total post reactions and comments and total reactions and comments for each participant.

Ethical Considerations

All study protocols were reviewed and approved by the George Washington University Institutional Review Board (study #NCR213586). All study participants provided informed consent before enrollment, including their acknowledgment that their survey responses were confidential and that data would be deidentified for analysis and reported in aggregate. The participants were compensated with US $65 in retail gift cards for enrolling in the group and completing the surveys.

Data Analysis

We performed a mixed methods analysis. The survey items were assessed cross-sectionally among intervention participants (N=55) only at follow-up. The survey results for participants’ intervention exposure and reactions as well as participants’ self-reported engagement and opinions about the intervention content, moderator, and group environment were assessed using response frequencies for 13 categorical survey items. The participants’ qualitative responses to 6 open-ended survey items were thematically analyzed to identify the predominant reasons for not engaging with the intervention and areas of concordance for what was liked or disliked about the intervention and to summarize suggestions for improving the intervention. The participants’ quotes were selected and translated into English to illustrate these themes and topics.

Facebook metrics were cumulatively assessed for the duration of the intervention. The Facebook metrics of total post views, reactions, and comments were summed to further assess participants’ intervention exposure and engagement. Views, reactions, and comments were also summed for each participant, and participant averages were tabulated for each of the 3 metrics. The Stata (version 17; StataCorp) software was used for quantitative analysis, and the NVivo (version 14; QSR International) software was used for qualitative analysis.

Results

Overview

The 55 intervention group participants had an average age of 38 (SD 7) years, 91% (n=50) were female, 67% (n=37) had less than a college education, and 91% (n=50) were foreign born. Among the intervention group participants, 64% (n=35) reported having children aged 0 to 4 years living in their household, 64% (n=35) had children aged 5 to 11 years, and 49% (n=27) had adolescents aged 12 to 17 years. Regarding employment status and income, 44% (n=24) of the participants were employed, 49% (n=27) reported being unemployed or staying at home, and 58% (n=32) reported earning an annual household income of ≤US $35,000. At baseline, 85% (n=47) of the parent
participants had received an initial 1-dose COVID-19 vaccine or completed a 2-dose vaccine series, with 29% (n=16) of the participants saying that they had been required to vaccinate. Among the intervention participants, 3% (1/35) of the parents with children aged 0 to 4 years said that their children had completed the 2-dose vaccine series, with 31% (11/35) of the parents with children aged 5 to 11 years and 70% (19/27) of the parents with adolescents aged 12 to 17 years also saying that their children had completed the 2-dose vaccine series (Table 1).

Table 1. Intervention group participants’ sociodemographics and COVID-19 vaccination status (N=55).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographics</td>
<td></td>
</tr>
<tr>
<td>Age (y), mean (SD)</td>
<td>38 (7)</td>
</tr>
<tr>
<td>Sex (female), n (%)</td>
<td>50 (91)</td>
</tr>
<tr>
<td>Education lesser than a bachelor’s degree, n (%)</td>
<td>37 (67)</td>
</tr>
<tr>
<td>Foreign born, n (%)</td>
<td>50 (91)</td>
</tr>
<tr>
<td>Employed, n (%)</td>
<td>24 (44)</td>
</tr>
<tr>
<td>Unemployed or staying at home, n (%)</td>
<td>27 (49)</td>
</tr>
<tr>
<td>Annual household income ≤US $35,000, n (%)</td>
<td>32 (58)</td>
</tr>
<tr>
<td>COVID-19 primary vaccination series completion, n (%)</td>
<td></td>
</tr>
<tr>
<td>Parents</td>
<td>47 (85)</td>
</tr>
<tr>
<td>Children aged 0-4 y (n=35)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Children aged 5-11 y (n=35)</td>
<td>11 (31)</td>
</tr>
<tr>
<td>Adolescents aged 12-17 y (n=27)</td>
<td>19 (70)</td>
</tr>
</tbody>
</table>

Participants’ Intervention Exposure
When asked how many times they visited the private Facebook group per week during the study, 40% (22/55) of the participants reported visiting the group 1 to 3 times per week, a substantial proportion (18/55, 33%) of the participants reported visiting the group 4 to 6 times per week, a smaller proportion (8/55, 15%) of the participants reported visiting <1 time per week, and an even smaller proportion (7/55, 13%) of the participants reported visiting the group ≥7 times per week (Table 2).

Table 2. Participants’ average weekly exposure to the intervention content (N=55).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of group visits/wk</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>22 (40)</td>
</tr>
<tr>
<td>4-6</td>
<td>18 (33)</td>
</tr>
<tr>
<td><1</td>
<td>8 (15)</td>
</tr>
<tr>
<td>>7</td>
<td>7 (13)</td>
</tr>
<tr>
<td>Number of posts viewed/d</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>23 (42)</td>
</tr>
<tr>
<td>3-4</td>
<td>16 (29)</td>
</tr>
<tr>
<td><1</td>
<td>12 (22)</td>
</tr>
<tr>
<td>≥5</td>
<td>4 (7)</td>
</tr>
</tbody>
</table>

In addition, when asked how many posts, on average, they viewed per day, 42% (23/55) of the participants reported viewing 1 to 2 posts per day, approximately one-third (16/55, 29%) of the participants reported viewing 3 to 4 posts per day, approximately one-fifth (12/55, 22%) of the participants reported viewing <1 post per day, and a small proportion (4/55, 7%) of the participants reported viewing ≥5 posts per day. Facebook group analytics from the 5-week period validated this level of participant exposure, with a total of 2004 post views or an average of 36.4 post views per participant.

Reactions to the Intervention Content
The participants generally had positive reactions to the content of the intervention. Most participants (49/55, 89%) indicated that they agreed or strongly agreed that the intervention content was informative, whereas only 7% (4/55) disagreed or strongly disagreed. When asked what they liked about the intervention, 78% (43/55) of the participants responded that they liked the information provided and found it to be important and beneficial to them:
They give a lot of very important information, and more for parents, it’s super important to keep us informed.
Very good information for our benefit.
Everything, I like it because they inform us well about the vaccine.

Specifically, 13% (7/55) of the participants responded that they liked how the group content kept them informed of the latest, up-to-date information about COVID-19:

It is a very helpful group informing and trying to keep people up to date on COVID.

Furthermore, 13% (7/55) of the participants expressed that they liked that the topics were covered in detail yet in a way that was easy to comprehend, concise, and interesting. One of the participants commented on how the information provided in the group helped her make COVID-19 vaccination decisions:

All the information was explained well and the posts were understood. I had no problems understanding the topics.
I like the way the topics are fully explained.
All the information that was given to me in the group seemed very interesting to me.
This helped me be confident in decisions about the COVID vaccine.

In addition, most participants (49/55, 89%) agreed or strongly agreed that they trusted the information presented in the posts, whereas very few (2/55, 4%) disagreed or strongly disagreed. When asked what they liked about the intervention, 3 (5%) of the 55 participants echoed this viewpoint, indicating that they liked receiving “official” information about COVID-19 vaccines that was from a trusted source or supported by data:

That it addresses issues about vaccines and gives official information that many times one does not know.
That I can get information and opinions from a safe place.

I liked that they talked about the importance of vaccines with data since there are a lot of incredulous people that give out different kinds of information.

When asked for feedback on the quantity of posts received, 89% (49/55) of the participants thought that they had received the correct quantity of posts, and 11% (6/55) thought that they had not received enough posts. Furthermore, the intervention participants were asked which post topics they deemed to be the most useful. According to the participants, the 2 most useful topics were the safety and efficacy of adult COVID-19 vaccines and understanding the levels of COVID-19 risks for children, with over half (29/55, 53%) of the participants selecting each of these 2 topics (Table 3).

Furthermore, 44% (24/55) of the participants found the information about the science behind COVID-19 and its variants to be the most useful, and 38% (21/55) thought that the adult and child COVID-19 booster information was the most useful. Approximately one-fifth to one-quarter of the participants thought that the topics of COVID-19 testing (14/55, 25%), pregnancy and COVID-19 (12/55, 22%), and understanding COVID-19 misinformation (13/55, 24%) were the most useful.

When asked for feedback on how to improve the Facebook group experience, 5 (9%) of the 55 participants suggested having more content in general and continuing to provide information on COVID-19, COVID-19 vaccine side effects, COVID-19 vaccines for children, and other health topics.

Regarding preferred post types or formats, the participants indicated that they liked video content, with 51% (28/55) of the participants liking video interviews with experts, 47% (26/55) of the participants liking instructional videos, and 29% (16/55) of the participants liking audio-narrated educational posts (Table 4).

Most participants (38/55, 69%) indicated favoring educational content that could be read, and a substantial proportion also liked formats that were meant to be engaging, including group polls (25/55, 45%) and funny posts (16/55, 29%).
Table 3. The most useful topics covered in the posts (N=55).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVID-19 test</td>
<td>14 (25)</td>
</tr>
<tr>
<td>COVID-19 and pregnancy and breastfeeding</td>
<td>12 (22)</td>
</tr>
<tr>
<td>COVID-19 transmission and prevention</td>
<td>17 (31)</td>
</tr>
<tr>
<td>Information on the selection and use of masks</td>
<td>19 (35)</td>
</tr>
<tr>
<td>Purpose of adult and child COVID-19 boosters</td>
<td>21 (38)</td>
</tr>
<tr>
<td>Safety and efficacy of the COVID-19 vaccine for adults</td>
<td>29 (53)</td>
</tr>
<tr>
<td>Safety and efficacy of the COVID-19 vaccine for children</td>
<td>19 (35)</td>
</tr>
<tr>
<td>Science behind COVID-19 and its variants</td>
<td>24 (44)</td>
</tr>
<tr>
<td>Understanding COVID-19 risk levels for adults</td>
<td>20 (36)</td>
</tr>
<tr>
<td>Understanding COVID-19 risk levels for children</td>
<td>29 (53)</td>
</tr>
<tr>
<td>Understanding misinformation about COVID-19</td>
<td>13 (24)</td>
</tr>
<tr>
<td>Other topics</td>
<td>3 (5)</td>
</tr>
</tbody>
</table>

*The response format was *select all that apply.*

Table 4. Preferred post types and formats (N=55).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational posts that could be read</td>
<td>38 (69)</td>
</tr>
<tr>
<td>Educational posts that were audio narrated</td>
<td>16 (29)</td>
</tr>
<tr>
<td>Instructional videos (eg, tutorials and demonstrations)</td>
<td>26 (47)</td>
</tr>
<tr>
<td>Videos of interviews or presentations with experts</td>
<td>28 (51)</td>
</tr>
<tr>
<td>Funny posts</td>
<td>16 (29)</td>
</tr>
<tr>
<td>Facebook group polls</td>
<td>25 (45)</td>
</tr>
<tr>
<td>“I did not like any of the posts”</td>
<td>2 (4)</td>
</tr>
</tbody>
</table>

*The response format was *select all that apply.*

Reactions to the Moderators and Group Environment

When asked what they liked about the group, 7 (13%) of the 55 participants said that they liked everything about the group. Furthermore, the results revealed that most participants *agreed* or *strongly agreed* that the moderators were well informed (51/55, 93%) and helpful (50/55, 91%), whereas 2% (1/55) and 5% (3/55) *disagreed* or *strongly disagreed* with these statements, respectively. When asked what they liked about the intervention, 6 (11%) of the 55 participants specifically praised the moderators for being empathetic and responsive:

I really liked the moderator of the group.

The information that they provided and the empathy that was shown.

The information and the attentiveness to answer comments.

Regarding the group environment, a large proportion (51/55, 93%) of the participants *agreed or strongly agreed* that joining the group was helpful and had positive opinions about the group members. Most participants said that their perceptions of other group members were that they were friendly (45/55, 82%) and supportive (19/55, 35%) during their interactions with the group (Table 5).
A little more than one-third (18/55, 33%) of the participants thought that other group members were similar to them; one-fifth (11/55, 20%) of the participants thought that other group members were tolerant; and few participants thought that other group members were critical (3/55, 5%), bothersome (1/55, 2%), or different than me (3/55, 5%).

When asked what they liked about the intervention, 2 (4%) of the 55 participants said that they liked how the group supported the Latino community with an opportunity to connect with people from many locations and with diverse ways of thinking:

I like the interest that exists to inform and support the Latino community.

It is very entertaining and friendly. You meet people from all over with different ways of thinking.

When asked whether they had recommendations for the intervention, 3 (5%) of the 55 participants indicated that they thought that the posts were not always reaching participants and suggested disseminating more posts or repeating posts:

Be more insistent in repeating the posts so that they go out to all the participants.

More posts, so if I miss one, I can look at others.

Participants’ Engagement

The participants were asked about their average weekly engagement with the post content. The levels of engagement were relatively evenly distributed in terms of self-reported reactions to posts, with 13% (7/55) of the participants reacting to ≥5 posts in an average week, 29% (16/55) reacting to 1 to 2 posts per week, 27% (15/55) reacting to 3 to 4 posts per week, and 27% (15/55) reacting to ≤1 post per week. A small proportion (2/55, 4%) of the participants did not react to any posts. This level of participant engagement through post reactions was validated by Facebook analytics; the group had a cumulative total of 584 reactions or an average of 10.6 post reactions per participant. When asked about the reasons for having never commented on posts, the most common reasons were that the participants preferred only receiving information from the posts, disliked commenting, or were shy.

When asked about recommendations for improving the intervention, 3 (5%) of the 55 participants suggested adding more opportunities for engagement, 1 (2%) requested adding more polls, and 2 (4%) suggested having opportunities to interact in real time with the moderators and group members:

Maybe they could do something to get to know each other a little more and resolve certain doubts.

Discussion

Principal Findings

This intervention entailed the delivery of health promotion messaging and engagement with Spanish-speaking Latino parents in a Facebook group to increase the uptake of adult and child COVID-19 vaccination. The study results suggest that this is a promising approach that should be further tested. The digital setting was particularly appealing because of the flexible opportunities it offered parents to interact both with the educational content at their own pace and with the group members and moderators to resolve concerns, ask for advice, and seek social support. This group-based approach also...
facilitated the use of multimedia educational formats, which included accessibility features, such as audio narration or video-based delivery, that are preferred by parents and address barriers related to literacy or health literacy.

A substantial quantity of daily posts was shared in the group over the 5-week period, with content tailored to a Latino parent audience and covering a wide range of topics related to COVID-19 risk, prevention, and vaccination. Intervention content was intended to provide updated, accurate information to influence parents’ attitudes and beliefs about adult and child COVID-19 vaccination and, ultimately, increase intentions to vaccinate. It is important to note that all content was developed before the intervention, with great attention paid to the selection and sequencing of topics, accessibility to diverse educational levels, and cultural aspects of messaging and delivery. This enabled the scheduling and delivery of many posts within a short time frame. However, given that the intervention was implemented during an ongoing pandemic, which was a rapidly evolving context, it was necessary to review and update all content immediately before scheduled delivery to ensure that the messaging was still consistent with current public health guidelines, overall risk levels, and vaccine recommendations.

With the abundance of misinformation and mixed messaging on social media, this is highly important for establishing and maintaining trust and credibility in participants’ eyes [50-53]. Future interventions seeking to replicate this approach, especially in rapidly changing contexts, should also prioritize the review of scheduled content before delivery to ensure the accuracy and consistency of messaging and alignment with the latest guidelines. In addition, given that the group members resided in different areas of the United States, messaging was developed to be relevant to national COVID-19 community transmission trends and risk levels; geographically focused interventions should tailor content to reflect local circumstances more closely.

Participants’ Intervention Exposure

The participants reported viewing posts and visiting the group a fair number of times during the intervention, with 78% (43/55) of the participants saying that they viewed at least 1 post on an average day and 85% (47/55) of the participants saying that they visited the group at least once during an average week. However, 22% (12/55) of the participants reported viewing <1 post on an average day and 15% (8/55) reported visiting the group <1 time in an average week. Although there was considerable variability in participants’ self-reported exposure to post content, posts received an average number of 36.4 views per participant during the 5 weeks.

In addition to creating content that was varied in format and tailored to the Latino parent audience, posts were scheduled to be delivered at different times of the day (10 AM, 3 PM, 5 PM, and 7 PM) to increase the likelihood that participants would receive the intervention posts in their Facebook feed, regardless of when they were using the platform. However, some participants had still not been exposed to all intervention content. This was also reflected in the participant responses, and 3 (5%) of the 55 participants stated that they thought that the posts were not always reaching group members. This could be because of a number of barriers experienced by the participants, such as competing demands for their time, or platform-specific factors, such as the Facebook algorithm for user feed content curation. Given that the Facebook algorithm is personalized and operates based on the user’s history and patterns of content interaction, more exposure will be attained based on past contents, post formats (eg, videos and photos), and posts from sources with which an individual frequently interacts [54]. For example, if intervention participants do not engage with or view posts delivered earlier in the intervention, they are less likely to be exposed to similar content in the later weeks of the intervention. Similarly, if users predominantly engage with video content, they are less likely to be exposed to content containing only images. This algorithm that dictates content in users’ feeds has implications for group-based public health interventions that rely on content exposure to improve knowledge, shift attitudes and beliefs, and increase access to resources and tools for health behavior changes. Because exposing participants to content is imperative for public health impact, future interventions could take actions to increase the likelihood that this algorithm works in their favor, such as placing content or formats that have demonstrated (or are theorized to have) higher levels of engagement at the beginning of the intervention to boost early views and engagement; sending content that varies in terms of format each day or week; and prioritizing early, active engagement strategies as well as continued engagement opportunities each week. Furthermore, as suggested by the study participants, the moderators could post content multiple times to maximize reach or use targeted engagement strategies to prompt the viewing of posts, including tagging or direct messaging specific users. In addition, the Facebook platform, in particular, has added features that allow users to customize their feed to a certain extent, including the option to select up to 30 people and pages to add to “Favorites.” Future interventions should include protocols as part of participant recruitment that request users to select the intervention group as one of their Favorites during the intervention period to increase content exposure. Furthermore, interventions can include information and prompts that explain different ways in which the group members can access content, including through their feed or direct access to the group.

Participants’ Reactions

Overall, the Latino parent participants had positive reactions to the intervention. The participants liked various aspects of the group environment, including the opportunity to come together with other parents like them, support the Latino community, stay informed about COVID-19, and learn the perspectives and experiences of others. The participants’ perception of other group members was very positive in that they viewed others as friendly, supportive, tolerant, and “similar to them.” For future interventions that aim to recruit participants with distinctly opposing views about vaccination or any health issue with polarized viewpoints, group moderators should be trained and prepared to navigate interactions that could become less friendly and tolerant, thus potentially stifling group members’ willingness to interact. This intervention did establish group guidelines at the outset, which did not need to be reinforced at any point during the 5 weeks; however, future interventions...
should consider explicitly stating in the guidelines the grounds for removal from the group to prevent guideline violations.

Another aspect that appeared to contribute to participants’ positive reactions was their perceptions of the group moderators. In addition to being deemed well informed and helpful, the participants provided feedback that the moderators were attentive to the group members’ needs and questions and showed empathy. We prioritized the selection of group moderators to include individuals who were familiar with and adhered to social norms and expectations of positive interpersonal dynamics common to Latin culture, including respect for others, kindness, and attentiveness [47-49]. The moderators were also parents of children aged <18 years, enabling them to relate to the participants’ concerns about their children’s health and safety.

Future interventions should seek to replicate a similar group environment with Latino parent audiences, including by having culturally competent moderators who adhere to these expectations for interactions with participants and who are highly responsive to group members’ inquiries.

Overall, participants’ feedback indicated that the intervention content was perceived to be informative and useful. There were 3 topics in particular that the participants thought were especially useful, namely the safety and efficacy of adult COVID-19 vaccines, understanding the levels of COVID-19 risks for children, and the science behind COVID-19 and its variants. Future interventions should explore these topics in depth and, as recommended by others, such as de Vere Hunt and Linos [55], should directly address COVID-19 misinformation in these areas through audience-tailored, culturally representative messaging. In addition, Latino parent participants appreciated the importance of staying up to date with COVID-19 information by regularly receiving concise content, which has also been reported elsewhere, including by Panameno and colleagues [44].

Interventions seeking to replicate this approach, especially in the context of a rapidly evolving public health emergency, should capitalize on how the interventions can address this need for parents by delivering accurate and convenient messaging at regular intervals. Furthermore, when asked what they liked about the intervention, many participants highlighted that they liked that the information was presented in detail yet in an interesting manner that was easy to comprehend. The main goal of Brigada Digital content was to address the gaps in Spanish-language COVID-19 information that was appealing to and appropriate for the audience and fully explained health and scientific concepts to build vaccine confidence. The combination of supportive, empathetic moderators with topic expertise and the delivery of content that was updated, had consistent messaging, and was accessible to audiences with diverse educational backgrounds likely contributed to 89% (49/55) of the participants saying that they trusted the information provided in the group. Source credibility and trust are paramount to effective health promotion interventions, particularly when promoting COVID-19–related behavior change [56-59]. Future interventions should work to establish this credibility and level of trust among participants by carefully considering the characteristics and selection of group moderators, fostering a welcoming group environment, and tailoring content to the specific audience.

Participants’ Engagement

Intervention participants demonstrated an early willingness to engage with the group following recruitment, with 89% (49/55) of the participants introducing themselves to the Facebook group when prompted by the moderators. In addition, with averages of 10.6 post reactions and 3 post comments per participant, engagement was similar to or higher than that with other parent-focused Facebook interventions [56,60], although comparable interventions reaching Latino parents specifically are very limited. Combined with positive feedback regarding the group dynamics, these are promising signs of Latino parents’ willingness to engage with Brigada Digital content and learn about and discuss health-related topics in this digital group format. Similar willingness has been observed in other Latino parent–focused digital health promotion interventions [61].

The moderators of future interventions should aim to similarly establish rapport and expectations for group interactions that can promote participants’ willingness to engage with the group. This rapport might be further fostered by offering additional opportunities for engagement throughout the intervention, for example, through live discussions and events, as suggested by the participants, or through polls, which almost half of the participants said that they preferred. The kind of engagement observed among the intervention participants through platform analytics as well as from participant self-report is consistent with typical patterns of engagement among social media platform users, including Latino individuals, who are most likely to simply view content and less likely to comment on posts than react [62,63]. Future efforts might explore ways to boost more active engagement, including using polls as catalysts for discussion or addressing individuals directly with targeted engagement tactics. Moreover, based on feedback from the participants, future interventions should explore ways to offer more opportunities to interact with and get to know group moderators and members, which would further develop rapport, establish trust in the information provided, address parental concerns, and increase engagement by making experts available to answer questions that are of the most interest to participants.

In addition, delivering content in a wide variety of formats and then inquiring about preferences helped us hone in on formats that participants gravitated toward the most. Similar to the study by Panameno and colleagues [44], which demonstrated Latino parents’ preferences for COVID-19 educational information in video formats from trusted sources, approximately half (28/55, 51%) of the study participants indicated that video interviews with experts were preferred, as were instructional videos, which often portrayed a Spanish-speaking health professional giving a demonstration. Formats intended to bridge potential literacy barriers, such as videos with audio-narration features, were also well received. One surprising finding, given social media audiences’ increasing affinity for multimedia content, was that most parents liked educational posts they could read; it is possible that the inclusion of an audio-narration feature helped increase parents’ preferences for these types of posts. This may also indicate that parent audiences interested in a particular health topic, especially for their children’s well-being, may be willing to invest time and effort in reading social media content if they perceive the content to be beneficial, trustworthy, and
valuable to them. Implementers of future social media group–based interventions should also aim to offer a diversity of content delivery formats, with an emphasis on video and other multimedia formats “in consonance with “content delivery formats”) accessible to audiences with diverse levels of literacy and health literacy.

Limitations
This study has some limitations that should be considered when interpreting the results. This study included a relatively small sample (N=55) of Spanish-speaking Latino parents, with an overrepresentation of female participants. Therefore, the results may not be generalizable to a broader population of Latino parents, particularly fathers. In addition, the study was only 5 weeks in duration, potentially limiting insights into the sustainability of participant engagement and the long-term impact on vaccine uptake. Furthermore, given that the participants were recruited through their response to Facebook advertisements, there is a potential for selection bias that could have resulted in a sample that was more interested in health-related topics and COVID-19 in particular, was more supportive of vaccination in general, and had the time and ability to participate in the group. In addition, it was not possible for this pilot study to fully track all participants’ engagement, and we did not track Facebook log-ins, the length of time using the platform, or the number of times accessing the group. Besides platform metrics of active participant exposure and engagement, such as views, reactions, and comments, data were limited to participant self-reports of group visits and post views.

Conclusions
The findings of this study highlight the promise of a Facebook group–based intervention approach to engage Spanish-speaking Latino parents in health promotions related to COVID-19 and vaccination. The intervention participants experienced adequate exposure to the intervention content and engagement and reported overall positive reactions to the intervention. Future efforts should consider using this digital health promotion approach while integrating strategies to augment participants’ exposure to health promotion content; cultivating regular participant engagement, including using concise, audience-tailored messaging; and moderating the group with culturally aligned facilitators to foster trust, address misinformation, and promote child vaccine acceptance among parents.

Acknowledgments
This research was funded by the National Institutes of Health Community Engagement Alliance Against COVID-19 Disparities (NIH CEAL; grant 1OT2HL156812-01; multiple Principal Investigators: Mark Edberg and ELA), and the George Washington University Institute for Data, Democracy, and Politics (internal grant; multiple Principal Investigators: LCA and ELA).

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Schedule of posts.
[XLSX File (Microsoft Excel File), 63 KB - formative_v81e51331_app1.xlsx]

References

on social media. Vaccines (Basel) 2023 Aug 09;11(8):1346 [FREE Full text] [doi: 10.3390/vaccines11081346] [Medline: 37631914]

54. Why are posts I've already seen still appearing in my Facebook feed? Facebook. URL: https://www.facebook.com/help/727563780642344/?helpref=sf_share [accessed 2023-07-17]

57. Barua Z. COVID-19 misinformation on social media and public’s health behavior: understanding the moderating role of situational motivation and credibility evaluations. Hu Arenas (Forthcoming) 2022 May 14 [FREE Full text]

Barriers to COVID-19 Vaccination in a Troop of Fleet Antiterrorism Security Team Marines: Observational Study

E Susanne Blazek, PhD; Amy Bucher, PhD
Behavioral Reinforcement Learning Lab (BReLL), Lirio, Knoxville, TN, United States

Corresponding Author:
E Susanne Blazek, PhD
Behavioral Reinforcement Learning Lab (BReLL)
Lirio
320 Corporate Drive
Knoxville, TN, 37923
United States
Phone: 1 865 839 5539
Email: sblazek@lirio.com

Abstract

Background: In 2019, the World Health Organization declared the reluctance to vaccinate despite the availability of vaccination services as one of the top 10 threats to global health. In early 2021, self-reported reluctance to vaccinate among military personnel might have been considered a significant threat to national security. Having a choice architecture that made COVID-19 vaccination optional rather than required for military personnel could have inadvertently undermined military readiness if vaccination uptake did not reach an acceptable threshold.

Objective: The purpose of this observational study was to examine Marines’ self-reported reasons for planning to decline the COVID-19 vaccine to understand their barriers to vaccination.

Methods: As the vaccination became available to 1 company of Fleet Antiterrorism Security Team (FAST) Marines in early 2021, company command required those planning to decline vaccination to write an essay with up to 5 reasons for their choice. These essays provided the data for this study. Qualitative descriptive analysis with elements from grounded theory was used to thematically categorize FAST Marines’ written reasons for planning to decline the COVID-19 vaccine into a codebook describing 8 key behavioral determinants. Interrater agreement among 2 qualitatively trained researchers was very good (κ=0.81).

Results: A troop of 47 Marines provided 235 reasons why they planned to decline the COVID-19 vaccine. The most frequent reasons were difficulty understanding health information (105/235, 45%), low estimates of risk (33/235, 14%), and fear of physical discomfort (29/235, 12%). Resulting interventions directly targeted Marines’ self-reported reasons by reducing barriers (eg, normalized getting the vaccine), increasing vaccine benefits (eg, improved access to base gyms and recreational facilities), and increasing nonvaccine friction (eg, required in writing 5 reasons for declining the vaccine).

Conclusions: Understanding the barriers military personnel experience toward COVID-19 vaccination remains critical as vaccine acquisition and availability continue to protect military personnel. Insights from subpopulations like FAST Marines can enhance our ability to identify barriers and appropriate intervention techniques to influence COVID-19 vaccination behaviors.

(Keywords: behavioral barriers; benefits; COVID-19; Marine Corps; military; vaccine reluctance)

Introduction

In 2019, the World Health Organization declared the reluctance to vaccinate despite the availability of vaccination services as one of the top 10 threats to global health [1]. Since COVID-19 emerged in late 2019, COVID-19 vaccination specifically has been deemed a critical public health priority [2]. Vaccination is associated with reduced hospitalization and death rates following COVID-19 infection [3-5], as well as reductions in transmission and severity of infection [5,6]. Yet, it has proven challenging to achieve the desired rates of vaccination in the United States generally [7] and within specific subpopulations such as rural dwellers [8], political conservatives [9], and people with previous diagnoses of COVID-19 [10].
Combating uneven and inadequate uptake of COVID-19 vaccines requires an understanding of the behavioral determinants (ie, barriers and facilitators of the behavior) leading people to vaccinate or not [11]. Behavioral design frameworks, such as the COM-B (capability, opportunity, motivation, behavior) model of behavior change which suggests that capability, opportunity, and motivation are essential for behavior change, provide a categorization scheme for behavioral determinants that then allows interventionists to select techniques that target the specific barriers preventing people from completing a desired behavior [12-16]. While there are some behavioral determinants that may be addressable through directives from credible sources, as traditional public health campaigns may be described, these campaigns are unlikely to be broadly successful or sufficient in isolation to promote widespread behavior change. This is because they do not adequately account for the breadth of people’s barriers to performing the behavior or adequately enhance the benefits of the behavior [17,18]. Counteracting a crisis like the COVID-19 pandemic necessitates understanding how people make decisions, what gets in the way, and what gets people to take action [19]. Qualitative research approaches that yield richer insights might contribute to a better understanding of these nuances [20-23].

Barriers to COVID-19 vaccination in the general population include, among others, beliefs of low susceptibility to infection, perceived low severity of COVID-19, beliefs of low vaccine effectiveness, concerns about side effects, desires for more information, and not having explicit endorsement from a health care provider [24,25]. Not having received a vaccine in the past year is also associated with lower vaccination rates [26]. Barriers differ for population subgroups based on characteristics such as geographical location, work responsibilities, income level, educational attainment, and insurance status [25], several of which are social determinants of health. To effectively influence vaccination behavior within a population subgroup, researchers should seek to understand the specific barriers prevalent in that group.

One such group is military personnel and veterans. A specific study of the behavioral determinants of COVID-19 vaccination in military personnel is critical, as vaccination against infectious diseases supports operational readiness [27]. Moreover, given military veterans’ high rates of mental health issues and suicide, there has been some effort to consider veteran status as a social determinant of health [28]. A better understanding of the health decisions of military personnel therefore has the added potential of supporting improved health equity.

In early 2021, medical experts and government leaders considered the lack of COVID-19 vaccination among military personnel a potential threat to national security [29,30]. Unlike influenza, tetanus, diphtheria, pertussis, smallpox, and other vaccines, which are required aspects of force readiness, the COVID-19 vaccine was initially optional for military personnel before becoming mandatory [31] and finally becoming optional again on January 10, 2023 [32]. Having a choice architecture that makes COVID-19 vaccination optional for military personnel [33] could inadvertently undermine military readiness if vaccination uptake does not reach an acceptable threshold. Therefore, it is important to understand the reasons why military personnel might not vaccinate to appropriately intervene on those barriers.

In the United States, military personnel are socialized to a specific set of values, including honor, bravery, and personal sacrifice [34]. Each branch of the US military then has characteristics that may influence the specific behavioral determinants of its troops toward vaccination. For example, within the United States Marine Corps, values such as the need for control and independence are reinforced, sometimes to the detriment of health-promoting behaviors [35,36]. Marines report a lower likelihood of vaccine receipt than other branches of service [37,38]. These differences may reflect true differences between the branches or, more likely, may reflect underlying differences in the characteristics of individuals choosing to serve in different branches.

Junior Marines (E1-E4) experiencing a high degree of external control and loss of agency due to service [39] might feel an enhanced need to establish autonomy when given the chance, such as by declining an optional vaccine. Research has found that military personnel ranked E1-E4 were the most likely to reject an avian influenza vaccine [37]. While the Marine Corps has embraced an approach of informed health care choice for its members, there is a rocky history of medical paternalism (eg, anthrax vaccination in the 1991 Gulf War, but see [40]) that may negatively influence modern Marines’ perceptions of vaccination campaigns.

Given their overall health and fitness and the risks that come with their jobs, Marines may also have a low perceived personal risk from the COVID-19 infection and a tolerance for risk that others may find uncomfortably high. Although data were limited at the time, it was projected in early 2021 that those who contracted COVID-19 had a 0.5%-5% chance of developing a critical illness requiring intensive care or resulting in death [41]. Those odds might have seemed acceptable to Fleet Antiterrorism Security Team (FAST) Marines, who are trained to provide security forces to guard high-value naval installations, most notably those containing nuclear vessels and weapons. FAST Marines find themselves in high-risk situations as part of their regular training, for example with live fire, extreme exposure to the elements, and sleep and nutrition deprivation. FAST Marines’ daily work likely undermines their perceived severity of contracting COVID-19. In contrast, the perceived severity of contracting anthrax among 22 Department of Defense (DOD) personnel in 2015 resulted in near 100% adherence to a complex emergency postexposure prophylaxis following accidental exposure to live Bacillus anthracis spores [42]. Americans’ willingness to get the COVID-19 vaccine declined from 72% in May 2020 to 51% in September 2020 [43] and rebounded to 60% in November 2020 [44]. Surveys from early 2021 found that fewer than half of military troops and military spouses planned to receive the vaccine [45]. At the time of the study, FAST Marines in Yorktown, Virginia, were in a privileged position: they were 1 of 12 bases nationwide to be offered the COVID-19 vaccine before widespread availability [46]. Yet an informal poll of Marines in 1 FAST company showed that only 10% planned to get the COVID-19 vaccine,
much lower than other estimates at the time [43,44]. The FAST Marines’ company command introduced key friction to those FAST Marines who planned to decline the COVID-19 vaccine: they had to write formal papers outlining up to 5 reasons why. This observational study makes use of these written data to understand FAST Marines’ barriers to COVID-19 vaccination.

Methods

Ethical Considerations

We followed the Standards for Reporting Qualitative Research [47]. This research was approved by an Exception Determination Official with the Naval Medical Center Portsmouth Research Subjects Protection Division. The study does not meet the Naval Medical Center Portsmouth Research Subjects Protection Division’s definition of research in accordance with 32 CFR 219.102 and DoDI 3216.02. Therefore, no written consent was obtained for the qualitative analyses. Study data were deidentified.

Sample

The FAST platoon is the core operational unit of the Marine Corps Security Force Battalion. There are 18 FAST platoons divided into 3 FAST companies that are based in Norfolk and Yorktown, Virginia. The battalion commander of 1 of the 3 FAST companies asked his Marines to either obtain the COVID-19 vaccine or to provide, in writing, at their own leisure but with a deadline, up to 5 reasons why they did not want the COVID-19 vaccine. One platoon of 47 male junior FAST Marines (ie, E1-E4) exclusively chose to provide written reasons for declining the COVID-19 vaccine. Their responses were collected by the battalion commander, entered into Microsoft Excel (Microsoft Corp) without demographic information, and shared with the researchers. Demographic data were not collected, and Marines did not receive compensation because the writing task was originally intended as a troop exercise and an intervention to promote COVID-19 vaccination, not a research project. Data were collected in February 2021. There were no efforts to retroactively identify which FAST Marine submitted which reasons or determine their demographics or ranks.

Qualitative Descriptive Analysis

The purpose of our study, to examine FAST Marines’ self-reported reasons for planning to decline the COVID-19 vaccine to understand their barriers to vaccination, guided our choice of qualitative descriptive analysis. Qualitative description is an appropriate approach to gathering insights on novel or poorly understood phenomena [20]. We conducted a rapid review to develop a codebook of empirically supported barriers to obtaining a COVID-19 vaccine that we coded the FAST Marines’ responses against. We used thematic analysis [48,49] with elements from grounded theory [50,51]. The 2 qualitatively trained researchers independently coded the responses in Excel. We calculated interrater agreement with Cohen’s κ [52], which accounts for change agreements. The interrater agreement was very good (κ=0.81). See Table 1 for the final codebook consisting of 8 codes.
Table 1. The codebook used for qualitative descriptive analyses of 47 Yorktown, Virginia, Fleet Antiterrorism Security Team Marines’ 235 written reasons for why, in February 2021, they planned to decline the COVID-19 vaccine.

<table>
<thead>
<tr>
<th>Label</th>
<th>Definition</th>
<th>Description of how to know when code occurs</th>
<th>Keywords or phrases</th>
<th>Positive example (is this code)</th>
<th>Negative example (is not this code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty understanding health information [53,54]</td>
<td>Marines do not understand or misunderstand basic medical information.</td>
<td>Responses that inadequately represent (most likely due to honest lack of understanding) what is currently known about the vaccine’s ingredients, effectiveness, side effects, outcomes, etc.</td>
<td>FDA(^b), CDC(^b), mRNA(^a); effective; effectiveness; study; studies; too soon; early to know; immunity; side effects; takes years; not approved; not proven</td>
<td>“I’ve heard that [the vaccine] makes you very susceptible to sickness and weakens your immune system.”</td>
<td>“It is my right to refuse it”</td>
</tr>
<tr>
<td>Perceived low susceptibility of COVID-19 and its severity [55]</td>
<td>Marines underestimated their risk of contracting COVID-19 and of a serious negative outcome.</td>
<td>Responses that suggest a low expected likelihood of contracting COVID-19 and of falling seriously ill.</td>
<td>No symptoms; young; healthy; like-lihood; slim; survival rate; no danger</td>
<td>“I don’t have COVID and have never had a single symptom of it, so therefore I don’t need it.”</td>
<td>“It uses fetus and fetus cell lines of aborted babies”</td>
</tr>
<tr>
<td>Concern over vaccine safety and potential side effects [56]</td>
<td>Marines expect the vaccine or side effects will cause physical pain or discomfort.</td>
<td>Responses mentioning known and unpleasant side effects.</td>
<td>Needles; side effects; symptoms; allergic reaction; getting sick</td>
<td>“I don’t like needles”</td>
<td>“Can cause you to be sterile”</td>
</tr>
<tr>
<td>Status quo bias may impact preventive pandemic behaviors [56,57]</td>
<td>Marines postpone getting the vaccine if doing so does not have an immediate benefit for them.</td>
<td>Responses mentioning drawbacks to getting vaccinated and no benefits.</td>
<td>No benefit; not a requirement; voluntary; wear mask; socially distance</td>
<td>“Not a requirement for the Marine Corps or deployment.”</td>
<td>“I’ve already received a flu shot”</td>
</tr>
<tr>
<td>Distrust in health care [58]</td>
<td>Marines distrust the health care system in general or have had bad experiences in health care settings.</td>
<td>Responses mentioning trust in the health care system, in the CDC, and in the vaccine.</td>
<td>Trust; Pfizer; questionable history; rushed; wrong about the virus</td>
<td>“I don’t trust it at all”</td>
<td>“I’d rather wait and see how people’s body respond to it”</td>
</tr>
<tr>
<td>Social norms may influence attitudes and beliefs about vaccines [55,59]</td>
<td>Marines have no role models—family members, community members, etc.—who are seen endorsing the behavior.</td>
<td>Responses indicating that trusted friends, family, and health care providers are not getting vaccinated.</td>
<td>Family; peers; Marines; doctor; friends</td>
<td>“Other marines I trust aren’t getting it”</td>
<td>“Standard set low, CDC said it only needed to be 50% effective”</td>
</tr>
<tr>
<td>Believing in COVID-19 conspiracies [60]</td>
<td>Marines have strong, irrational, and disproven beliefs against the vaccine.</td>
<td>Responses that indicate believing in non-validated, mis- or dis-information about the COVID-19 vaccine.</td>
<td>Test dummy; guinea pig; political gain; election time; media; democrats</td>
<td>“Don’t want to be a test dummy for the military.”</td>
<td>“The vaccine is not guaranteed to work”</td>
</tr>
</tbody>
</table>

\(^{a}\) NA; effective; effectiveness; study; studies; too soon; early to know; immunity; side effects; takes years; not approved; not proven

\(^{b}\) FDA, CDC, mRNA; effective; effectiveness; study; studies; too soon; early to know; immunity; side effects; takes years; not approved; not proven
Negative example (is not this code)

Positive example (is this code)

Keywords or phrases

Description of how to know when code occurs

Definition

Label

Other or unclear

Combination of categories with fewer than 1% of responses each.

Responses with prosocial beliefs, religious concerns, or vague.

Does not fit in any other category.

• “It goes against my religious beliefs”
• “Personal beliefs”

Negative example (is not this code)

“99.98% survival rate for my age group”

“I simply don’t want the vaccine... Or is it mandatory?”

“It goes against my religious beliefs”

“Personal beliefs”

Does not fit in any other category.

Responses with prosocial beliefs, religious concerns, or vague.

Definition

Label

• Other or unclear

Combination of categories with fewer than 1% of responses each.

Responses with prosocial beliefs, religious concerns, or vague.

Does not fit in any other category.

• “It goes against my religious beliefs”
• “Personal beliefs”

A total of 45% (105/235) of all responses (each FAST Marine gave up to 5), and 3 times as many as the second largest barrier, had to do with difficulty understanding medical information. In fact, 96% (45/47) of FAST Marines—all except 2 FAST Marines—indicated difficulty understanding medical information, ranging from the inability to understand basic medical information to the inability to grasp nuances in the medical literature.

Discussion

Overview

A qualitative descriptive analysis of 235 reasons for planning to decline the COVID-19 vaccine provided a contemporaneous understanding of the barriers to vaccination experienced by an infrequently studied population subgroup: junior FAST Marines. FAST Marines’ barriers to COVID-19 vaccination included low health literacy, perceived low susceptibility to COVID-19 and its severity, concern over vaccine safety and potential side effects, and other less frequently reported barriers. These findings are consistent with work on Air Force personnel who self-identified as vaccine-hesitant and indicated concerns about efficacy, side effects, and vaccine-induced illness as top barriers to vaccination [61], while adding the insight that low health literacy may be associated with such concerns.

Our findings extend previous work on barriers to COVID-19 vaccination in part because we captured in-the-moment attitudes, beliefs, and cognitions about the COVID-19 vaccine in a less frequently studied population subgroup: junior FAST Marines. The barriers described in the written responses were not subject to the same demand characteristics as barriers elicited through formal research. That is, FAST Marines were not restricted to a preselected list of barriers to COVID-19 vaccination as might have been the case in survey research, nor were they aware of a research framing that might have prompted more socially acceptable responses.

Impact on Future Interventions Suggested by Findings

Fear is a common, if not primary, motivator used by Marine Corps leadership. Instead of fear-based messaging, which might induce reactance [62,63], and based on our results from the qualitative descriptive analysis, we recommended to the company command placing emphasis on the fact that FAST Marines are young and healthy, they must get the COVID-19 vaccine. This kind of messaging emphasizes resilience and self-efficacy [55,63] and builds on FAST Marines’...
esprit de corps. Future research should evaluate building upon the positive and strong military identity [34] to promote health behaviors in military personnel.

What makes Marines great at their jobs might get in the way of success elsewhere. That is, feeling invincible could positively support junior Marines in performing their job but could become a barrier when they decide whether or not to get the COVID-19 vaccine. Our results do not suggest or endorse changing traits or skills that make Marines great at their jobs. Instead, the results suggest using that information to better speak the Marines’ language and motivate them to get vaccinated. In this case, intervention design should not treat some of these qualities as barriers to overcome so much as consider them to be facilitators to be leveraged.

The study results provided insights for behavioral intervention at the troop and company levels. Company command developed interventions that directly targeted FAST Marines’ self-reported reasons for increasing nonvaccine friction (eg, required in writing 5 reasons for declining the vaccine), reducing barriers (eg, normalized getting the vaccine by encouraging senior personnel to get vaccinated), and increasing vaccine benefits (eg, provided fringe benefits to vaccinated FAST Marines such as the higher likelihood of approval for out-of-area leave).

Limitations and Directions for Future Research

The primary limitation stems from the nature of the data. The 235 written reasons to decline the COVID-19 vaccine were intended as a troop exercise and not a scientific study. We were unable to explore demographics known to be determinants of COVID-19 vaccination because of the deidentified data.

The second limitation involves our inability to determine our results’ direct impact on COVID-19 vaccination in the troop of FAST Marines. Company command introduced a number of behavioral interventions following this study but implemented them inconsistently across the troops within the company. The goal of managing COVID-19 transmission surpassed scientific rigor. It is therefore difficult to determine why only 10% (11/114) of FAST Marines in the company expressed intentions to accept the COVID-19 vaccine in January of 2021 but, 8 weeks later, 84% (105/114) of the company had chosen to receive the vaccine. Some FAST Marines likely chose to vaccinate due to the interventions implemented by their leadership to address their barriers, but it is also likely that the intention-behavior gap accounts for some of the discrepancy [23]. Future research on vaccine campaigns in the military should explore the impact of behavioral interventions like the ones implemented here and should also capture how vaccines are administered: with informed choice, under time pressure, etc (see Murphy et al [40]).

Conclusion

Understanding the barriers military personnel experience toward COVID-19 vaccination remains critical despite the success of COVID-19 vaccination to date, with 96% of US military personnel fully vaccinated as of January 2023 [32], compared to roughly 70% for all Americans [64]. It is hard to overstate the impact of even small wins when it comes to the health of military personnel. Vaccine acquisition and availability continue protecting military personnel, and the DOD currently offers 17 different vaccines for the prevention of infectious diseases among military personnel, where appropriate [65]. The historical and cultural context of the Marine Corps, and specifically the Marine Corps’ FAST, likely gave rise to a particular constellation of barriers to the COVID-19 vaccine. Identifying these barriers early and as the COVID-19 vaccine was made available helped shape how a FAST company command successfully ensured vaccine participation. With the return to a choice architecture that makes ongoing COVID-19 vaccination voluntary, coupled with the knowledge that ongoing boosters will be necessary to maintain resistance to infection, military leadership has ample opportunity to continue to offer behavioral interventions tailored to their troops’ needs.

Acknowledgments

This paper was not commissioned or requested by the United States Marine Corps or the Department of Defense and should not be construed as an endorsement of Lirio’s services by either organization. The views expressed in this study are those of the authors and do not necessarily reflect the official policy or position of the Marine Corps, the Department of Defense, or the US government. We would like to acknowledge the invaluable support of our second qualitative coder, Signe M Spencer.

Data Availability

The data sets generated and analyzed during this study are not publicly available due to a lack of ethics approval to share.

Conflicts of Interest

ESB and AB are paid employees of Lirio, which developed the intervention studied.

References

Abbreviations

COM-B: capability, opportunity, motivation, behavior

DOD: Department of Defense

FAST: Fleet Antiterrorism Security Team

Edited by A Mavragani; submitted 21.06.23; peer-reviewed by G Goldman, B Eshrati; comments to author 01.11.23; revised version received 21.11.23; accepted 19.02.24; published 19.03.24.

Please cite as:
Blazek ES, Bucher A
Barriers to COVID-19 Vaccination in a Troop of Fleet Antiterrorism Security Team Marines: Observational Study
JMIR Form Res 2024;8:e50181
URL: https://formative.jmir.org/2024/1/e50181
doi:10.2196/50181
PMID:38502179

https://formative.jmir.org/2024/1/e50181
Correction: Evaluating the Clinical Feasibility of an Artificial Intelligence–Powered, Web-Based Clinical Decision Support System for the Treatment of Depression in Adults: Longitudinal Feasibility Study

Christina Popescu¹*, BSc, MSc; Grace Golden²*, David Benrimoh¹*, MSc, CM, MD; Myriam Tanguay-Sela¹, BASc; Dominique Slowey³, BSc; Eryn Lundrigan³, BSc; Jérôme Williams³, BSc; Bennet Desormeau¹, BSc, MSc; Divyesh Kardani¹, BSCE; Tamara Perez³, BSc, MSc; Colleen Rollins⁴, BSc; Sonia Israel¹, BSc; Kelly Perlman¹,²*, BSc; Caitrin Armstrong¹, BASc, MSc; Jacob Baxter³, BSc; Kate Whitmore⁴, BA; Marie-Jeanne Fradette³, BSc; Kaelan Fecarek-Hope³, BSc; Robert Fratila¹, BSc; Joseph Mehltretter³, MSc; Karl Looper³, MD; Warren Steiner³, MD; Soham Rej³, MSc, MD; Jordan F Karp⁵, MD; Katherine Heller⁶, BSc, MSc, PhD; Sagar V Parikh⁷, MD; Rebecca McGuire-Snieckus⁸, BA, MSc, PhD; Manuela Ferrari⁹, PhD; Howard Margolese³, MSc, CM, MD; Gustavo Turecki⁹, PhD, MD

¹Alfred Health Inc., Montreal, QC, Canada
²University of Waterloo, Waterloo, ON, Canada
³McGill University, Montreal, QC, Canada
⁴University of Cambridge, London, United Kingdom
⁵University of Arizona, Tucson, AZ, United States
⁶Duke University, Durham, NC, United States
⁷University of Michigan, Ann Arbor, MI, United States
⁸Barts and the London School of Medicine, London, United Kingdom
⁹Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada

*these authors contributed equally

Corresponding Author:
David Benrimoh, MSc, CM, MD
Alfred Health Inc.
1250 Rue Guy Suite #600
Montreal, QC, H3H 2T4
Canada
Phone: 1 5144637813
Email: david.benrimoh@mail.mcgill.com

Related Article:
Correction of: https://formative.jmir.org/2021/10/e31862

doi:10.2196/56570

In “Evaluating the Clinical Feasibility of an Artificial Intelligence–Powered, Web-Based Clinical Decision Support System for the Treatment of Depression in Adults: Longitudinal Feasibility Study” (JMIR Form Res 2021;5(10):e31862), the authors noted one error.

In the section “Assessing Physician and Patient Trust in the CDSS and Its Effect on the Clinician-Patient Relationship”, the STAR-P and STAR-C total scores were listed as:

The mean STAR-P and STAR-C scores were 33.62 (SD 2.90) and 31.14 (SD 2.63) comparable with 38.4 (SD 12.0) and 31.5 (SD 6.9) in the original Scale to Assess Therapeutic Relationships in Community Mental Health Care study.

They have been changed to read in the following manner:

The mean STAR-P and STAR-C scores were 42.69 (SD 5.57) and 40.29 (SD 5.65), comparable with 38.4 (SD 12.0) and 31.5 (SD 6.9) in the original Scale to Assess Therapeutic Relationships in Community Mental Health Care study.
The correction will appear in the online version of the paper on the JMIR Publications website on January 24, 2024 together with the publication of this correction notice. Because this was made after submission to PubMed, PubMed Central, and other full-text repositories, the corrected article has also been resubmitted to those repositories.

Submitted 19.01.24; this is a non–peer-reviewed article; accepted 19.01.24; published 24.01.24.

Please cite as:

Correction: Evaluating the Clinical Feasibility of an Artificial Intelligence–Powered, Web-Based Clinical Decision Support System for the Treatment of Depression in Adults: Longitudinal Feasibility Study

JMIR Form Res 2024;8:e56570
URL: https://formative.jmir.org/2024/1/e56570
doi:10.2196/56570
PMID:38266244

©Christina Popescu, Grace Golden, David Benrimoh, Myriam Tanguay-Sela, Dominique Slowey, Eryn Lundrigan, Jérôme Williams, Bennet Desormeau, Divyesh Kardani, Tamara Perez, Colleen Rollins, Sonia Israel, Kelly Perlman, Caitrin Armstrong, Jacob Baxter, Kate Whitmore, Marie-Jeanne Fradette, Kaelan Felcarek-Hope, Ghassen Soufi, Robert Fratila, Joseph Mehltretter, Karl Looper, Warren Steiner, Soham Rej, Jordan F Karp, Katherine Heller, Sagar V Parikh, Rebecca McGuire-Snieckus, Manuela Ferrari, Howard Margolese, Gustavo Turecki. Originally published in JMIR Formative Research (https://formative.jmir.org), 24.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

https://formative.jmir.org/2024/1/e56570
Web-Based Search Volume for HIV Tests and HIV-Testing Preferences During the COVID-19 Pandemic in Japan: Infodemiology Study

Rie Kanamori, MMedSc; Futaba Umemura, MMedSc; Kosuke Uemura, MD; Taiju Miyagami, MD, PhD; Simon Valenti, MD; Nobuyuki Fukui, BA; Mayumi Yuda, BE; Mizue Saita, MD, PhD; Hirotake Mori, MD, PhD; Toshio Naito, MD, PhD

1Department of General Medicine, Faculty of Medicine, Juntendo University, Tokyo, Japan
2Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
3Center for Promotion of Data Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan

Corresponding Author:
Toshio Naito, MD, PhD
Department of General Medicine
Faculty of Medicine
Juntendo University
3-1-3 Hongo Bunkyo-ku
Tokyo, 113-8421
Japan
Phone: 81 3 5802 1190
Email: naito@juntendo.ac.jp

Abstract

Background: Research has found a COVID-19 pandemic–related impact on HIV medical services, including clinic visits, testing, and antiviral therapy initiation in countries including Japan. However, the change in trend for HIV/AIDS testing during the COVID-19 pandemic has not been explored extensively in the Japanese population.

Objective: This infodemiology study examines the web-based search interest for two types of HIV tests, self-test kits and facility-based tests, before and during the COVID-19 pandemic in Japan.

Methods: The monthly search volume of queried search terms was obtained from Yahoo! JAPAN. Search volumes for the following terms were collected from November 2017 to October 2018: “HIV test,” “HIV test kit,” and “HIV test health center.” The search term “Corona PCR” and the number of new COVID-19 cases by month were used as a control for the search trends. The number of new HIV cases in the corresponding study period was obtained from the AIDS Trend Committee Quarterly Report from the AIDS Prevention Foundation.

Results: Compared to the search volume of “corona-PCR,” which roughly fluctuated corresponding to the number of new COVID-19 cases in Japan, the search volume of “HIV test” was relatively stable from 2019 to 2022. When we further stratified by the type of HIV test, the respective web-based search interest in HIV self-testing and facility-based testing showed distinct patterns from 2018 to 2022. While the search volume of “HIV test kit” remained stable, that of “HIV test health center” displayed a decreasing trend starting in 2018 and has remained low since the beginning of the COVID-19 pandemic. Around 66%-71% of the search volume of “HIV test kits” was attributable to searches made by male internet users from 2018 to 2022, and the top three contributing age groups were those aged 30-39 (27%-32%), 20-29 (19%-32%), and 40-49 (19%-25%) years. On the other hand, the search volume of “HIV test health centers” by male users decreased from more than 500 from 2018 to 2019 to fewer than 300 from 2020 to 2022.

Conclusions: Our study found a notable decrease in the search volume of “HIV test health center” during the pandemic, while the search volume for HIV self-testing kits remained stable before and during the COVID-19 crisis in Japan. This suggests that the previously reported COVID-19–related decrease in the number of HIV tests mostly likely referred to facility-based testing. This sheds light on the change in HIV-testing preferences in Japan, calling for a more comprehensive application and regulatory acceptance of HIV self-instructed tests.
Introduction

HIV prevalence in Japan is <0.1% among adults aged 15-49 years, and the cumulative total of people diagnosed and living with HIV at the end of 2018 was approximately 30,000 [1]. A recent study using a national database found that 81.5% of people living with HIV who were on antiretroviral therapy (ART) had at least one chronic comorbidity [2]. According to recent national statistics, the proportion of people diagnosed and living with HIV on ART was 86% and 80% as of 2018 [3], lower than the first two 90-90-90 Joint United Nations Programme on HIV and AIDS (UNAIDS) goals, while the proportion of people living with HIV on ART who are virally suppressed was as high as 99% as of 2020 [4], reaching the UNAIDS goal. Evidence has suggested that earlier HIV diagnosis and linkage to treatment should be the core strategy in controlling the HIV epidemic [5]; however, the sudden and ongoing COVID-19 pandemic has overwhelmed the health care system globally and caused severe disruptions in medical service provision, ranging from elective procedures to routine surveillance for manageable diseases such as HIV infections [6-11]. Additionally, social distancing measures implemented early in the pandemic affected people’s access or willingness to visit health care facilities.

There are concerns that disruptions caused by the COVID-19 pandemic may lead to increased HIV incidence and mortality and pose challenges to the international community’s goal to eliminate the HIV or AIDS epidemic by 2030 [1]. Reports from Africa, Asia, Europe, Japan, and the United States have found a pandemic-related impact on HIV medical services, including clinic visits, testing, and antiviral therapy initiation [1-6]. In particular, the number of HIV tests conducted in health centers in Japan reduced from 142,000 in 2019 to 69,000 in 2020, with the difference amounting to a 50% decline in the first year of the COVID-19 pandemic [3]. The number of HIV consultations performed in public health centers also significantly declined in the second quarter of 2020 (32,565 tests) compared to the same period the year before (11,689 tests) [2].

In Japan, voluntary HIV testing is free of charge and anonymous, and offered as a package service bundled with pre- and posttest counseling at appointed public health facilities by law. Although the number of health center–conducted HIV tests increased steadily and peaked in 2008, a 30% decline was observed before the COVID-19 pandemic [8,12]. This is possibly due to the commercial availability of HIV self-tests in Japan, with the number of dry blood spot HIV self-tests increasing from 26,000 tests in 2005 to 91,000 tests in 2016 [7,12]. However, the HIV self-testing technique is not yet approved by the health authorities in Japan.

The internet is a common source of disease- and health-related information, and internet use influences care initiation and the treatment decisions of people living with HIV [13]. During the COVID-19 pandemic, infodemiology studies found that web-based search trends for symptoms associated with COVID-19 coincided with the disease outbreak [14]. Conversely, the global web-based interest in information on HIV/AIDS care services decreased [15]. However, the search engine trend for HIV/AIDS testing during the COVID-19 pandemic has not been explored extensively in the Japanese population. This study aims to characterize and compare the trend for web-based search interest in HIV testing before and during the pandemic to investigate whether there is a change in HIV/AIDS health-seeking behavior in Japan.

Data from the search engine provided by the Yahoo Japan Corporation will be used for this study because Yahoo! JAPAN is the most visited website in the country, and compared to most other countries, Japan uses Google less frequently.

Methods

Data Source

To examine the pattern of web-based search interests in HIV testing before and during the COVID-19 pandemic, the monthly search volume of selected search terms was determined based on the number of searches over a specified period extracted from Yahoo! JAPAN, which is one of the most used digital services in Japan, and compared to the rest of the world, Google is used less. According to the data, 68.9% of the population (aged >2 years) used Yahoo! JAPAN at least once a month between January and November 2021, while 65.1% used Google in the same period [16]. Search volume data were retrieved with authorized access from the Yahoo Japan Corporation server via the DS.INSIGHT People portal. It has been used in studies focusing on transition or trends in search behavior over time among different demographics (eg, gender, age, or prefecture) [17]. The user manual is available on the web [18].

The internet user population is the number of internet users throughout Japan, calculated based on the “Telecommunications Usage Trends Survey” published by the Ministry of Internal Affairs and Communications.

The quarterly number of new COVID-19 cases between January 2019 and December 2022 was obtained from an excerpt from the Japan Ministry of Health, Labour and Welfare [19].

The number of newly infected people with HIV between December 31, 2018, and June 26, 2022, was obtained from the AIDS Trend Committee Quarterly Report from the AIDS Prevention Foundation, API-Net AIDS Prevention Information Net [20].

Search Queries Used in the Analysis

The search term “HIV検査” (ie, “HIV test” in Japanese) was used to assess the web-based interest in general HIV testing from January 2020 to October 2021. The result is presented together with the search volume of “コロナPCR” (ie,
“corona-PCR” in Japanese) and the number of new COVID-19 cases by month. The search volumes of “HIV検査キット” (ie, “HIV test kit” in Japanese) and “HIV検査保健所” (ie, “HIV test health center” in Japanese) were compared to analyze the difference in web-based interest in self-instructed/postal and facility-based HIV testing from November 2018 to October 2022.

Data Standardization

The monthly number of searches per prefecture for each search query was obtained, adjusted by sex, and converted to standardized z scores according to the following formula:

“Query A” refers to the queried search term.

Statistical Analysis

Internet users were stratified according to age on the day of the search, sex, and year. Demographics were summarized as the number and percentage of patients for categorical variables. Descriptive statistics were summarized using Excel (Microsoft Corporation).

Ethical Considerations

This infodemiology study adhered to chapter 1, section 3, part 1, subsection (C), item 3 of the ethical guidelines for Medical and Health Research Involving Human Subjects of the Ministry of Health, Labour and Welfare of Japan [21]. In accordance with this guideline, since this study used previously anonymized and deidentified data, an ethical review was waived, and patient informed consent was not required.

Results

Between 2018 and 2022, 50% to 51% of overall adult internet users were male, and the user population was evenly distributed across different age groups by decade (11%-18% across different age groups in 2018, 12%-17% in 2019, 12%-18% in 2020, 13%-17% in 2021, and 13%-17% in 2022; Tables 1-3). The first nationwide state of emergency concerning COVID-19 was from April 7 to May 25, 2020, in Japan; since then, the increase in web-based interest in COVID-19 polymerase chain reaction testing (represented by the search volume of “corona-PCR”) roughly corresponded to the peaks and troughs of new COVID-19 infection cases in recent waves of the COVID-19 pandemic in Japan during mid 2021, early 2022, and late 2022. In contrast, the web-based interest in general HIV testing represented by the search term “HIV test” appeared to be relatively stable (Figure 1). Although the sex distribution of the “corona-PCR” search volume varied between 2020 and 2022, people aged 40-49 years consistently showed the highest web-based interest (26%-27%) for COVID-19 polymerase chain reaction testing, followed by those aged 50-59 years (21%-23%) and 30-39 years (15%-18%). In line with the characteristics of people with an increased risk of HIV infection, 57%-60% of the “HIV test” search volume between 2020 and 2022 were from male internet users, and people aged between 20 and 29 years (30%-31%) showed the most interest in general HIV testing within this period, followed by those aged between 30 and 39 years (24%-27%) and 40 and 49 years (17%-20%; Table 1).
Table 1. Search volumes of “HIV test” and “corona-PCR” by the sex and age of internet users in the years 2020, 2021, and 2022.

<table>
<thead>
<tr>
<th>Age group (year)</th>
<th>Search term “HIV検査”</th>
<th>Search term “コロナ pcr”</th>
<th>Search term “HIV検査”</th>
<th>Search term “コロナ pcr”</th>
<th>Search term “HIV検査”</th>
<th>Search term “コロナ pcr”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internet user<sup>a</sup></td>
<td>Search term “HIV検査”<sup>d</sup></td>
<td>Internet user<sup>a</sup></td>
<td>Search term “コロナ pcr”<sup>c</sup></td>
<td>Internet user<sup>d</sup></td>
<td>Search term “コロナ pcr”<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>96,688,079 (100)</td>
<td>2500 (100)</td>
<td>1300 (100)</td>
<td>99,499,669 (100)</td>
<td>2700 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>49,119,275 (51)</td>
<td>1500 (60)</td>
<td>640 (50)</td>
<td>50,286,908 (51)</td>
<td>1600 (59)</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td>47,568,804 (49)</td>
<td>980 (40)</td>
<td>640 (50)</td>
<td>49,212,761 (49)</td>
<td>1100 (41)</td>
</tr>
<tr>
<td></td>
<td>Age group (year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><20</td>
<td>13,386,518 (14)</td>
<td>170 (7)</td>
<td>20 (2)</td>
<td>13,787,372 (14)</td>
<td>280 (10)</td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td>11,777,729 (12)</td>
<td>770 (30)</td>
<td>130 (10)</td>
<td>12,432,946 (13)</td>
<td>840 (31)</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>13,547,255 (14)</td>
<td>670 (27)</td>
<td>190 (15)</td>
<td>13,615,333 (14)</td>
<td>680 (25)</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>17,429,796 (18)</td>
<td>470 (19)</td>
<td>340 (26)</td>
<td>17,491,018 (17)</td>
<td>460 (17)</td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td>15,451,255 (16)</td>
<td>230 (9)</td>
<td>300 (23)</td>
<td>16,258,923 (16)</td>
<td>250 (9)</td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td>12,716,666 (13)</td>
<td>130 (5)</td>
<td>190 (15)</td>
<td>12,887,755 (13)</td>
<td>130 (5)</td>
</tr>
<tr>
<td></td>
<td>≥70</td>
<td>12,378,860 (13)</td>
<td>70 (3)</td>
<td>110 (9)</td>
<td>13,026,322 (13)</td>
<td>80 (3)</td>
</tr>
</tbody>
</table>

^aThe internet user population is the number of internet users throughout Japan, calculated based on the “Telecommunications Usage Trends Survey” published by the Ministry of Internal Affairs and Communications [21].

^bHIV検査: HIV test (in Japanese).

^cコロナ pcr: corona-PCR (in Japanese).

^dThe internet user population in 2022 uses the figures for 2021.
Table 2. Search volumes for “HIV test kit” and “HIV test health center” by the sex and age of the internet users by year (2018-2020).

<table>
<thead>
<tr>
<th>Search term</th>
<th>Year 2020, n (%)</th>
<th>Search term</th>
<th>Year 2019, n (%)</th>
<th>Search term</th>
<th>Year 2018, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internet user population<sup>a</sup></td>
<td></td>
<td>Internet user population<sup>a</sup></td>
<td></td>
<td>Internet user population<sup>a</sup></td>
</tr>
<tr>
<td>Overall</td>
<td>95,590,219 (100)</td>
<td>780 (100)</td>
<td>940 (100)</td>
<td>107,480,629 (100)</td>
<td>850 (100)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>48,932,966 (51)</td>
<td>540 (69)</td>
<td>530 (56)</td>
<td>53,862,486 (50)</td>
<td>560 (66)</td>
</tr>
<tr>
<td>Female</td>
<td>46,657,253 (49)</td>
<td>240 (31)</td>
<td>410 (44)</td>
<td>53,618,143 (50)</td>
<td>290 (34)</td>
</tr>
<tr>
<td>Age group (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20</td>
<td>12,760,379 (13)</td>
<td>20 (3)</td>
<td>30 (3)</td>
<td>13,710,441 (13)</td>
<td>30 (4)</td>
</tr>
<tr>
<td>20-29</td>
<td>12,381,162 (13)</td>
<td>200 (26)</td>
<td>280 (30)</td>
<td>12,514,936 (12)</td>
<td>220 (26)</td>
</tr>
<tr>
<td>30-39</td>
<td>14,321,086 (15)</td>
<td>250 (31)</td>
<td>300 (32)</td>
<td>14,167,245 (13)</td>
<td>250 (28)</td>
</tr>
<tr>
<td>40-49</td>
<td>18,127,686 (18)</td>
<td>190 (24)</td>
<td>180 (19)</td>
<td>18,214,081 (16)</td>
<td>160 (19)</td>
</tr>
<tr>
<td>50-59</td>
<td>14,891,256 (16)</td>
<td>90 (12)</td>
<td>90 (10)</td>
<td>15,903,690 (15)</td>
<td>100 (12)</td>
</tr>
<tr>
<td>60-69</td>
<td>12,991,502 (14)</td>
<td>30 (4)</td>
<td>40 (4)</td>
<td>14,688,962 (14)</td>
<td>60 (7)</td>
</tr>
<tr>
<td>≥70</td>
<td>10,117,148 (11)</td>
<td>0 (0)</td>
<td>20 (2)</td>
<td>18,281,274 (17)</td>
<td>30 (4)</td>
</tr>
</tbody>
</table>

^aThe internet user population is the number of internet users throughout Japan, calculated based on the “Telecommunications Usage Trends Survey” published by the Ministry of Internal Affairs and Communications [22].

^bhiv検査キット: HIV test kit (in Japanese).

^chiv検査 保健所: HIV test health center (in Japanese).
Table 3. Search volumes for “HIV test kit” and “HIV test health center” by the sex and age of the internet users by year (2021 and 2022).

| Age group (years) | Year 2021, n (%) | | Year 2022 (January to October), n (%) | | | | Internet user population\(^a\) | Search term “hiv検査キット” | Search term “hiv検査保健所” | Internet user population\(^d\) | Search term “hiv検査キット” | Search term “hiv検査保健所” |
|---|---|---|---|---|---|---|
| Overall | 99,499,669 (100) | 900 (100) | 640 (100) | 99,499,669 (100) | 570 (100) | 280 (100) |
| Sex | | | | | | |
| Male | 50,286,908 (51) | 590 (66) | 290 (45) | 50,286,908 (51) | 390 (68) | 100 (36) |
| Female | 49,212,761 (49) | 310 (34) | 350 (55) | 49,212,761 (49) | 180 (32) | 180 (64) |
| Age group (years) | | | | | | |
| <20 | 13,787,372 (14) | 30 (3) | 50 (8) | 13,787,372 (14) | 40 (7) | 30 (11) |
| 20-29 | 12,432,946 (13) | 280 (32) | 230 (35) | 12,432,946 (13) | 110 (19) | 90 (32) |
| 30-39 | 13,615,333 (14) | 270 (30) | 170 (27) | 13,615,333 (14) | 180 (32) | 90 (32) |
| 40-49 | 17,491,018 (17) | 190 (21) | 110 (17) | 17,491,018 (17) | 140 (25) | 40 (14) |
| 50-59 | 16,258,923 (16) | 90 (10) | 60 (9) | 16,258,923 (16) | 80 (14) | 20 (7) |
| 60-69 | 12,887,755 (13) | 30 (3) | 10 (2) | 12,887,755 (13) | 0 (0) | 0 (0) |
| ≥70 | 13,026,322 (13) | 10 (1) | 10 (2) | 13,026,322 (13) | 20 (4) | 10 (4) |

\(^a\)The internet user population is the number of internet users throughout Japan, calculated based on the “Telecommunications Usage Trends Survey” published by the Ministry of Internal Affairs and Communications [22].

\(^b\)hiv検査キット: HIV test kit (in Japanese).

\(^c\)hiv検査保健所: HIV test health center (in Japanese).

\(^d\)The internet user population in 2022 uses the figures for 2021.

Figure 1. Monthly web-based search interest in HIV testing and COVID-19 genetic testing and the number of new COVID-19 cases from 2020 to 2022. The monthly search volumes of search terms “HIV検査” (HIV test in Japanese, blue line) and “コロナPCR” (corona-PCR in Japanese, red line) from January 2020 to October 2022 according to the search engine Yahoo! JAPAN are shown. The number of new COVID-19 cases in the corresponding months, according to the Ministry of Health, Labour and Welfare in Japan, is also shown in green bars in this figure.
Web-based interest in HIV testing was further refined as either facility-based HIV tests or self-instructed HIV-testing kits. The search volume for HIV facility-based testing was high in late 2018 and decreased in several instances over the next 3 years, especially in 2020 and 2022 (Figure 2). The search volume of “HIV test kit” (used as a representative search term for HIV self-testing) was lower than that for HIV facility-based testing at the end of 2018. However, the interest remained high over the next 4 years relative to facility-based testing, particularly during the COVID-19 pandemic (Figure 2). Around 66%-71% of the search volume of “HIV test kit” was attributable to searches made by male internet users between 2018 and 2022, and the top three contributing age groups were those 30-39 years (27%-32%), 20-29 years (19%-32%), and 40-49 years (19%-25%). The overall search volume of HIV test health centers decreased from 950 in 2018/2019 to 580 in 2020. The actual search volume for “HIV test kit” versus “HIV test health center” was 560 versus 280 among male internet users in 2020 and 590 versus 290 in 2021; while among female internet users the actual search volume for “HIV test kit” versus “HIV test health center” were similar: 230 versus 300 in 2020 and 310 versus 350 in 2021. Hence, the main population searching for “HIV test health center” shifted from male to female users (n=300, 52%) in 2020 and the following years (n=350, 55% in 2021 and n=180, 64% in 2022). Internet users aged 20-29 years (27%-35%), 30-39 years (24%-32%), and 40-49 years (14%-20%) were the top three representative age groups for the search volume of “HIV test health center” (Tables 2 and 3).

The quarterly number of newly infected HIV cases remained relatively stable since the declaration of a nationwide state of emergency concerning COVID-19, and the search interest remained high for self-testing relative to facility-based testing (Figure 3).

Figure 2. Monthly web-based search interest in HIV self-instructed and facility-based tests and the number of new COVID-19 cases from 2018 to 2022. The monthly search volumes of search terms “HIV検査キット” (HIV test kit in Japanese, orange line) and “HIV検査 保健所” (HIV test health center in Japanese, purple line) from November 2018 to October 2022 according to the search engine Yahoo! JAPAN are shown. The number of new COVID-19 cases in the corresponding months, according to the Ministry of Health, Labour and Welfare in Japan, is shown with green bars.
Figure 3. Monthly web-based search interest in HIV self-instructed and facility-based tests and quarterly number of new infected HIV cases from 2019 to 2022. The monthly search volumes of search terms “HIV検査キット” (HIV test kit in Japanese, orange line) and “HIV検査保健所” (HIV test health center in Japanese, purple line) from January 2019 to December 2022 according to the search engine provided by Yahoo! JAPAN are shown. The number of new HIV cases in the corresponding quarter, according to the AIDS Trend Committee Quarterly Report from the AIDS Prevention Foundation, API-Net AIDS Prevention Information Net, is shown with blue bars.

Discussion

The analysis in our study illustrated that the web-based search interest in general HIV testing remained stable in Japan during the ongoing pandemic. Furthermore, compared to a decrease in HIV facility-based testing, the web-based interest in HIV self-testing has not changed in Japan. The findings suggest that a proportion of the population interested in getting an HIV test or obtaining relevant information may have a lower preference for HIV facility-based testing. This could imply that individuals might have opted for HIV self-testing during the COVID-19 pandemic.

A prolonged decreasing trend in the search volume of “HIV test health center” from late 2018 was observed in this study. This change in search volume was related to the real-world situation reported by recent publications that underscored the situation of facility-based HIV testing during the pandemic [7,8,23]. A trend analysis study exploring data from 2015 to the second quarter of 2020 (during the nationwide state of emergency in Japan) reported a significant decline in the number of HIV tests performed by public health centers in the second quarter of 2020 (n=9584 vs n=35,908 in Q2 2019) [7] and that this decrease coincided with the increase in the number of new HIV cases with an AIDS diagnosis in Japan [7]. Similar situations were reported in other countries, where an approximately 31% to 50% reduction in the number of HIV tests performed by public health centers was observed between 2019 and 2020 due to difficulty accessing testing facilities, shortage of medical staff for HIV-testing services, or closure of HIV-testing facilities [23,24].

Our search trend showed that the web-based search volume for HIV self-tests was relatively unaffected in Japan. Furthermore, we noted the trend for HIV-testing preference was more evident among male internet users. In Japan, men who have sex with men (MSM) constitute more than 70% of newly diagnosed people living with HIV [3,25]; therefore, the difference in search volume for different HIV-testing services most likely reflects the changing preferences among male internet users. This is consistent with the real-world situation reported by other countries. Investigators focusing on the high-risk population’s (MSM) HIV-testing behavior in China during the COVID-19 pandemic found the use of HIV self-testing increased compared to facility-based HIV testing, which decreased by more than 50% overall [26,27]. Earlier investigations in Sweden and Japan showed the interest and demand for HIV self-testing in high-risk populations such as MSM even before the COVID-19 pandemic [12,28]. A study in France also reported that the number of HIV self-testing kits sold in 2021 increased by 3% compared to 2020 [29]. Together, these publications further emphasized the

In this study, interest in HIV self-testing has remained relatively high during the COVID-19 pandemic. Even though web-based search interest only indicates clinical information-seeking behavior, recent infodemiology studies, including that by Ornos et al [15], showed that search volume indices correlated positively with HIV prevalence and negatively with financial and health care service status. Another recent study in Japan by Ishimaru et al [30] also observed a positive correlation between internet search frequency for HIV/AIDS–related terms and the number of voluntary tests.

The change in search volume on HIV-testing preferences in Japan, which highlights the availability, accessibility, and regulatory approval status of HIV self-tests, may be imperative to reduce new HIV infection [7,8]. The pros and cons of alternative HIV-testing approaches such as the use of dried blood spot (DBS) test cards delivered by postal service have been investigated in Japan [8]. So far, DBS-based tests have not been approved as clinical samples for HIV testing in Japan; however, their use has steadily increased in the last two decades, most likely due to convenient and easy self-preparation of blood spots without the need to visit medical facilities [8]. Although the use of DBS is less sensitive than with a plasma sample, the feasibility and reliability of postal DBS have been preliminarily demonstrated in an outreach study in Japan [12]. Other HIV testing to be considered should include the introduction of HIV self-testing, DBS, or oral swabs as an alternative to plasma or serum specimens. However, since HIV self-testing is not yet approved by health authorities, individuals with positive test results may not have been referred to medical facilities for consultations after the test or received appropriate HIV care and treatment. This concern was illustrated in the study by Ejima et al [7], which reported that both the number of HIV tests and consultations performed by public health centers declined during the COVID-19 pandemic in Japan. We believe relevant supporting services, for instance, the provision of web-based counseling services and referral services after HIV self-testing, would be necessary to mitigate the potential concerns and negative impact of using HIV self-test kits without counseling and medical follow-up. Soon, the development of artificial intelligence chatbots may be used to provide real-time instruction and counseling for HIV self-testing users, which may offer potential solutions to this problem [31].

Several factors may limit the generalizability of the preliminary findings presented in this report. First, the data source was solely from Yahoo! JAPAN, and the internet searches conducted using other search engines were not included. Second, the data obtained from a web-based search engine may be subject to the nonrepresentative sampling or methodology bias inherent to the search platform. Third, there could be considerable differences in clinical information-seeking behavior between the internet user population and actual men and women who are affected by HIV; direct and causal relationships cannot be inferred from this study. Nonetheless, most previous studies using search engines have used Google Trends data, but in Japan, Yahoo! JAPAN is the most visited digital service in the country. In addition, sex and prefecture adjustment is possible with Yahoo! JAPAN data, making it appropriate to research topics likely affected by sex differences. Therefore, our preliminary infodemiology using the search engine provided by Yahoo! Japan Corporation is likely representative of the general trend in Japan.

Our infodemiology study indicated that there was a notable decrease in search volume for HIV facility-based testing during the COVID-19 pandemic. Further, a change in HIV-testing preference and interest in HIV self-testing was noted in Japan. To fully delineate and comprehend the changes in HIV-testing behavior, the situation should be continuously monitored and validated by clinical studies.

Acknowledgments

The authors would like to thank 4DIN Ltd, Japan, for the data analysis and for assisting with preparing the manuscript and other materials for journal submission. This work was supported by the Ministry of Health, Labour and Welfare Research on HIV/AIDS (program grant JPMH21HB1005).

Data Availability

The data sets generated or analyzed during this study are not publicly available, complying with the Yahoo! Japan Corporation regulation, but they are available from the corresponding author upon reasonable request.

Authors’ Contributions

FU and TN conceptualized this study. RK and KU are responsible for the methodology. NF and MY collected the data. RK, FU, KU, TM, SV, MS, and HM analyzed the data. RK, NF, MY, and TN prepared the initial draft. RK, FU, KU, TM, SV, MS, HM, and TN critically revised the manuscript. HM and TN obtained the funding. MS was responsible for project administration. All authors approved this version of the manuscript to be submitted.

Conflicts of Interest

None declared.

References

https://(formative.jmir.org/2024/1/e52306)

15. Kanamori et alJMIR FORMATIVE RESEARCH

Abbreviations

ART: antiretroviral therapy
DBS: dried blood spot
MSM: men who have sex with men
UNAIDS: Joint United Nations Programme on HIV and AIDS

©Rie Kanamori, Futaba Umemura, Kosuke Uemura, Taiju Miyagami, Simon Valenti, Nobuyuki Fukui, Mayumi Yuda, Mizue Saita, Hirotake Mori, Toshio Naito. Originally published in JMI Formative Research (https://formative.jmir.org), 18.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMI Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
A Novel Approach for the Early Detection of Medical Resource Demand Surges During Health Care Emergencies: Infodemiology Study of Tweets

Mahakprit Kaur1,2, BSc; Taylor Cargill1,2, BSc; Kevin Hui2,3, BSc; Minh Vu2,3, BSc; Nicola Luigi Bragazzi4,5, MPH, MD, PhD; Jude Dzevela Kong2,4, PhD

1Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
2Africa-Canada Artificial Intelligence and Data Innovation Consortium, Toronto, ON, Canada
3Department of Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada
4Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
5Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON, Canada

Corresponding Author:
Jude Dzevela Kong, PhD
Dalla Lana School of Public Health
University of Toronto
155 College St, Room 500
Toronto, ON, M5T 3M7
Canada
Phone: 1 416 978 0901
Email: jdkong@yorku.ca

Abstract

Background: The COVID-19 pandemic has highlighted gaps in the current handling of medical resource demand surges and the need for prioritizing scarce medical resources to mitigate the risk of health care facilities becoming overwhelmed.

Objective: During a health care emergency, such as the COVID-19 pandemic, the public often uses social media to express negative sentiment (e.g., urgency, fear, and frustration) as a real-time response to the evolving crisis. The sentiment expressed in COVID-19 posts may provide valuable real-time information about the relative severity of medical resource demand in different regions of a country. In this study, Twitter (subsequently rebranded as X) sentiment analysis was used to investigate whether an increase in negative sentiment COVID-19 tweets corresponded to a greater demand for hospital intensive care unit (ICU) beds in specific regions of the United States, Brazil, and India.

Methods: Tweets were collected from a publicly available data set containing COVID-19 tweets with sentiment labels and geolocation information posted between February 1, 2020, and March 31, 2021. Regional medical resource shortage data were gathered from publicly available data sets reporting a time series of ICU bed demand across each country. Negative sentiment tweets were analyzed using the Granger causality test and convergent cross-mapping (CCM) analysis to assess the utility of the time series of negative sentiment tweets in forecasting ICU bed shortages.

Results: For the United States (30,742,934 negative sentiment tweets), the results of the Granger causality test (for whether negative sentiment COVID-19 tweets forecast ICU bed shortage, assuming a stochastic system) were significant ($P<.05$) for 14 (28%) of the 50 states that passed the augmented Dickey-Fuller test at lag 2, and the results of the CCM analysis (for whether negative sentiment COVID-19 tweets forecast ICU bed shortage, assuming a dynamic system) were significant ($P<.05$) for 46 (92%) of the 50 states. For Brazil (3,004,039 negative sentiment tweets), the results of the Granger causality test were significant ($P<.05$) for 6 (22%) of the 27 federative units, and the results of the CCM analysis were significant ($P<.05$) for 26 (96%) of the 27 federative units. For India (4,199,151 negative sentiment tweets), the results of the Granger causality test were significant ($P<.05$) for 6 (23%) of the 26 included regions (25 states and the national capital region of Delhi), and the results of the CCM analysis were significant ($P<.05$) for 26 (100%) of the 26 included regions.

Conclusions: This study provides a novel approach for identifying the regions of high hospital bed demand during a health care emergency scenario by analyzing Twitter sentiment data. Leveraging analyses that take advantage of natural language processing techniques for sentiment analysis and time series forecasting, this study demonstrates the potential of infodemiology to inform the allocation of critical medical resources in real-time.
processing–driven tweet extraction systems has the potential to be an effective method for the early detection of medical resource demand surges.

JMIR Form Res 2024;8:e46087 doi: 10.2196/46087

KEYWORDS
COVID-19; Twitter; social media; medical supply shortage; pandemic; global health; Granger; convergent cross-mapping; causal analysis; intensive care unit bed; ICU bed

Introduction

Background

The World Health Organization declared COVID-19 a pandemic on March 11, 2020 [1]. The emergence of this pandemic, caused by SARS-CoV-2, led to an unprecedented disruption in the global health care system that exposed and exacerbated existing vulnerabilities in health infrastructure around the world. In particular, the COVID-19 pandemic has had a profound impact on the global medical supply chain, leading to people struggling desperately to access crucial medical resources in the face of case surges and high resource demand [2].

The unprecedented nature of the pandemic and the limited availability of resources, no matter the country, will inevitably lead to the need for prioritizing scarce medical resources to different extents [3,4]. Wealthy countries, such as the United States, experienced shortages of personal protective equipment (PPE) and ventilators [5,6]. This led to the Centers for Disease Control and Prevention developing guidelines for the optimal sourcing of COVID-19 mitigation equipment such as face masks [7]. The pandemic also resulted in an increased strain on hospital capacity around the world. This was especially true for low- and middle-income countries, where health care systems are likely to already be underresourced and stretched thin, making them particularly vulnerable to becoming overwhelmed [8,9].

Considering the potential for future pandemic scenarios and for the recurrence of existing disease outbreaks as new virus variants emerge, the development of accurate real-time methodologies for detecting and forecasting disease impacts is critical for an effective global health response [10,11]. For hospitals that experience volatile demand surges in the face of a finite medical resource supply, timely solutions are required that can allow for rapid and precise decisions to be made regarding resource allocation.

Given that social media are an emerging source for real-time and easily accessible information, there is potential to leverage data from social media for forecasting real-world outcomes [12-15]. Social media platforms and web search data host a wealth of real-time data that broadly reflect the current state of affairs in a particular region [16]. Although the standards of validation for these new data streams are still being validated because they do not have a track record of use, these unconventional data sources have the potential to aid in short- and long-term surveillance, although the surveillance goals must be clearly defined. Studies have found that leveraging social media to identify shortages has the potential to be a cost-effective solution that can be used in real time [17,18]; for instance, Get Us PPE is a grassroots organization that leveraged Twitter (subsequently rebranded as X) to address medical supply shortages in US health care facilities during the first year of the COVID-19 pandemic [19]. Its success in garnering both public and governmental attention to the PPE shortage crisis has demonstrated that Twitter can be a useful tool for mobilizing efforts to address gaps, identifying regional PPE shortages, and informing decision-making in the health care supply chain. In other countries too, such as India, people used Twitter during the pandemic to amplify demands for medical oxygen and intensive care unit (ICU) beds during periods when health care facilities were overwhelmed by case surges [20].

Studies examining the role of social media to glean information about the characteristics of the pandemic note that data derived from social media and search engine data were used to predict new cases in countries such as South Korea [21], the United States [22-24], China [25-27], and Iran [28]. Twitter data have been analyzed to understand the population-level spread of disease [29-31]. Furthermore, forecasting models have been created to track demand for ICU capacity planning in countries such as Chile [32,33], Brazil [34], Colombia [35], the United States [36], India [37], and China [38]. Previous studies have applied convergent cross-mapping (CCM) analysis to explore possible relationships involving antiepidemic measure–related tweets [39], the dynamics of misleading news on Twitter [40], and the identification of the global drivers of influenza [41]. However, to our knowledge, there are limited studies examining the potential of social media, particularly Twitter, to better understand hospital bed demand.

Objectives

This study aimed to investigate the potential for social media, a relatively novel data stream, to be leveraged as an early warning and detection system for forecasting medical resource shortages. Specifically, this study sought to determine whether the COVID-19 discourse on Twitter could be linked to real-world ICU bed demand. We applied the Granger causality test and CCM analysis to explore whether a causal relationship exists between the volume of negative sentiment COVID-19 tweets and the proportion of ICU bed occupancy in real time in the United States, Brazil, and India. If social media can be successfully leveraged to develop an effective early warning system for forecasting medical resource demand, health care workers and governments may receive real-time insights into pandemic scenarios to inform urgent resource allocation decisions and gain a head start in preparing for demand surges.

Methods

Overview

For our analyses, the volume of negative sentiment COVID-19 tweets was compared with ICU bed demand data for each
subregion in the United States, Brazil, and India. These 3 countries were selected for this study because they have high cumulative COVID-19 death tolls [42], and they are among the top 4 nations in terms of Twitter users [43]; in addition, publicly accessible validation data on ICU bed demand are available for each country. Three main restrictions in terms of how many patients can be treated at a hospital during the pandemic are available PPE, available ICU beds, and available health care professionals per shift [44]. The number of available ICU beds was selected as the validation parameter for our model.

Data Sets

For tweets, we used the publicly available Twitter data set Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels (TBCOV), which contains >2 billion COVID-19 multilingual tweets, including geographic location and positive, negative, and neutral sentiment labels [45]. From this data set, negative sentiment tweets were selected to capture the volume of negative Twitter discourse surrounding COVID-19 for the United States, Brazil, and India. From this TBCOV data set, for the period from February 1, 2020, to March 31, 2021, a total of 59,832,393 tweets were extracted for the United States, of which 30,742,934 (51.38%) contained negative sentiment. For Brazil, there were 5,343,723 tweets, of which 3,004,039 (56.22%) contained negative sentiment. For India, there were 9,509,766 tweets, of which 4,199,151 (44.16%) contained negative sentiment.

Real-world hospital bed demand was defined as *inpatient_beds_used_covid_coverage* from the US Health Data COVID-19 Reported Patient Impact and Hospital Capacity by State Timeseries (RAW) data set [46] for the United States and as ICU beds needed from the Institute for Health Metrics and Evaluation COVID-19 Projections data set for Brazil and India [47]. The COVID-19 Projections data set contains daily information about each region’s need and capacity for hospital beds overall, including ICU beds. In India, similar to Brazil, the greatest medical supply demand during the pandemic was for oxygen cylinders and ICU beds [48]. Amid the pandemic, the insufficient oxygen-manufacturing capacity and the fragmented nature of the Indian health care system made it extremely difficult for people to obtain the supplies they needed in time [49]. Hashtags and sample tweets posted by the Indian public during the pandemic to secure oxygen cylinders and express the urgent need for ICU beds in specific regions have been documented [50,51].

Data collection and analysis were conducted using Python (Python Software Foundation).

Granger Causality Test Analysis

A time series of each region was generated using the number of negative sentiment tweets per week. This time series was standardized with mean and SD calculated from historical tweet data. Another time series, the ground truth frequency of ICU bed demand, was generated from our preprocessed medical data. In general, all time-series data were binned in intervals of 1 week.

The Granger causality test was used to determine whether past negative tweet frequency contains information that can help forecast ICU bed demand, in addition to the information contained in the past values of ICU bed demand alone [52]. In theory, this test can be applied to a stationary time series. For a nonstationary time series, first or higher difference can be used instead [53,54]. To see whether the time series could satisfy the requirement for the Granger causality test, the augmented Dickey-Fuller (ADF) test, which determines whether a time series is stationary or nonstationary, was used. In our implementation, the functions `grangercausalitytests` and `adfuller` from the `statsmodels` package for Python were used.

CCM Analysis

The CCM analysis workflow consisted of embedding, cross-mapping, and convergence analysis as well as validation and performance testing. In embedding, the negative sentiment tweets and ICU bed demand for each region were embedded into higher dimensional spaces to capture their underlying dynamics. In cross-mapping, the embedded time series were compared to identify their relationship. In convergence analysis, the results were assessed using statistical measures to determine whether there is a robust relationship between negative sentiment tweets and ICU bed demand.

Put another way, given 2 time series X and Y, their data point entries can be considered to exist in a vector space with x and y axes, and the points over time form a trajectory in the space. Likewise, one can include the time-delayed values of X as new axes, where the vectors can be *<X(t), X(t−3), X(t−6)…,**, *<X(t−1), X(t−4), X(t−7),…>* , etc.

If the values of X over time do indeed influence or are linked to the values of Y, then a distance-weighted k-nearest neighbor model in the *X, X with delay 1, X with delay 2,* etc vector space applied to the same Y (and delay axes) space can have its output converge to the actual observed values of Y, that is, predict the value of Y. If the convergence between *modeled Y from X with delays* and the actual observed values of Y is close, we can say that the model constructed represents the causality relation between X and Y.

In our implementation, the `causal_ccm` package for Python was used.

Ethical Considerations

Ethics approval was not required for our study because all data and information are publicly available. In addition, all user-identifiable information was excluded from the study results.

Results

Overview

From the TBCOV data set, for the period from February 1, 2020, to March 31, 2021, a total of 30,742,934 tweets containing negative sentiment were extracted for the United States: 3,004,039 tweets containing negative sentiment were extracted for Brazil; and 4,199,151 tweets containing negative sentiment were extracted for India. Our results can be categorized into (1) Granger causality test analysis and (2) CCM analysis.
Granger Causality Test Analysis

United States

Figure 1 shows time series graphs comparing negative sentiment COVID-19 tweets with real-world ICU bed demand data for each of the 50 US states.

Before performing the Granger causality test, the 2 time series were checked to determine whether they were stationary or nonstationary using ADF tests. After taking the second difference of the 2 time series, the P values of the ADF tests for negative sentiment COVID-19 tweets and ICU bed demand were found to be <.05 for all US states, meaning that we were able to reject the null hypothesis (H_0) that a unit root was present in the time series samples; in other words, the 2 time series were stationary. The results are summarized in Multimedia Appendix 1.

The results for the Granger causality test with H_0, that is, negative sentiment COVID-19 tweets do not Granger-cause ICU bed demand in US states, are presented in Table 1. At lag 2, H_0 was rejected for 14 (28%) of the 50 US states ($P<.05$).
Figure 1. Time series with a comparison of trends for intensive care unit (ICU) bed use with trends for the volume of negative sentiment COVID-19 tweets across all 50 US states. TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels.
<table>
<thead>
<tr>
<th>State</th>
<th>P value</th>
<th>Number of lags</th>
<th>Reject null hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>.37</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Alabama</td>
<td>.04</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Arkansas</td>
<td>.34</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Arizona</td>
<td><.001</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>California</td>
<td>.91</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Colorado</td>
<td>.61</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Connecticut</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Delaware</td>
<td>.40</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Florida</td>
<td>.04</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Georgia</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Hawaii</td>
<td>.93</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Iowa</td>
<td>.97</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Idaho</td>
<td>.45</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Illinois</td>
<td>.04</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Indiana</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Kansas</td>
<td>.25</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Kentucky</td>
<td>.97</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Louisiana</td>
<td>.10</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>.001</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Maryland</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Maine</td>
<td>.95</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Michigan</td>
<td>.02</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>Minnesota</td>
<td>.59</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Missouri</td>
<td>.43</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Mississippi</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Montana</td>
<td>.32</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>North Carolina</td>
<td>.02</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>North Dakota</td>
<td>.004</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>Nebraska</td>
<td>.93</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>.01</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>New Jersey</td>
<td>.93</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>New Mexico</td>
<td>.80</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Nevada</td>
<td><.001</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>New York</td>
<td>.001</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Ohio</td>
<td>.28</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>.047</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Oregon</td>
<td>.54</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>.53</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>.002</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>South Carolina</td>
<td>.78</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>South Dakota</td>
<td>.19</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Tennessee</td>
<td>.94</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>
Brazil

Figure 2 shows time series graphs comparing negative sentiment COVID-19 tweets with real-world ICU bed demand data for each of the 27 Brazilian federative units. Before performing the Granger causality test, the 2 time series were checked to determine whether they were stationary or nonstationary using ADF tests, and H_0 was rejected for all Brazilian federative units ($P<.05$), qualifying all of them for the Granger causality test. The results are summarized in Multimedia Appendix 2.

The results for the Granger causality test with H_0, that is, negative sentiment COVID-19 tweets do not Granger-cause ICU bed demand in Brazilian federative units, are presented in Table 2. At lag 2, H_0 was rejected for 6 (22%) of the 27 Brazilian federative units ($P<.05$).

<table>
<thead>
<tr>
<th>State</th>
<th>P value</th>
<th>Number of lags</th>
<th>Reject null hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas</td>
<td>.32</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Utah</td>
<td>.97</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Virginia</td>
<td>.02</td>
<td>7</td>
<td>Yes</td>
</tr>
<tr>
<td>Vermont</td>
<td>.70</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Washington</td>
<td>.69</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>.95</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>West Virginia</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Wyoming</td>
<td>.24</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>
Figure 2. Time series with a comparison of trends for intensive care unit (ICU) bed use with trends for the volume of negative sentiment COVID-19 tweets across Brazil's 27 subdivisions (states and administrative divisions). TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels.
Table 2. Granger causality test for Brazilian federative units.

<table>
<thead>
<tr>
<th>Federative unit</th>
<th>P value</th>
<th>Number of lags</th>
<th>Reject null hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acre</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Alagoas</td>
<td>.90</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Amazonas</td>
<td>.28</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Amapá</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Bahia</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Ceará</td>
<td><.001</td>
<td>9</td>
<td>Yes</td>
</tr>
<tr>
<td>Federal District</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Espírito Santo</td>
<td>.55</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Goias</td>
<td>.60</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Maranhão</td>
<td>.04</td>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>Minas Gerais</td>
<td>.85</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Mato Grosso do Sul</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Mato Grosso</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Pará</td>
<td>.006</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Paraíba</td>
<td>.04</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Paraná</td>
<td>.60</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Pernambuco</td>
<td>.01</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Piauí</td>
<td>.90</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>.16</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Rio Grande do Norte</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Rondônia</td>
<td>.91</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Roraima</td>
<td>.002</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>Rio Grande do Sul</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Santa Catarina</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Sergipe</td>
<td>.48</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>São Paulo</td>
<td>.91</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Tocantins</td>
<td>.50</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>

India

Figure 3 shows time series graphs comparing negative sentiment COVID-19 tweets with real-world ICU bed demand data for the 25 Indian states included in the analysis (Assam, Meghalaya, and Tamil Nadu were excluded owing to lack of data) and the national capital region of Delhi.

Before performing the Granger causality test, the 2 time series were checked to determine whether they were stationary or nonstationary using ADF tests, and H_0 was rejected for all Indian states and the national capital region of Delhi ($P<.05$), qualifying all for the Granger causality test. The results are summarized in Multimedia Appendix 3.

The results for the Granger causality test with H_0, that is, negative sentiment tweets do not Granger-cause ICU bed demand in Indian states and the national capital region, are presented in Table 3. At lag 2, H_0 was rejected for 6 (23%) of the 26 included regions (25 Indian states and the national capital region; $P<.05$).
Figure 3. Time series with a comparison of trends for intensive care unit (ICU) bed use with trends for the volume of negative sentiment COVID-19 tweets across Indian states. TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels.
Table 3. Granger causality test for Indian states and the national capital region of Delhi.

<table>
<thead>
<tr>
<th>State or national capital region</th>
<th>P value</th>
<th>Number of lags</th>
<th>Reject null hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haryana</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>.60</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Uttarakhand</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Gujarat</td>
<td>.86</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Manipur</td>
<td>.003</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>.83</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Punjab</td>
<td>.97</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Karnataka</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Jharkhand</td>
<td>.32</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Bihar</td>
<td>.45</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Arunachal Pradesh</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Sikkim</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Mizoram</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Goa</td>
<td>.81</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Kerala</td>
<td><.001</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>West Bengal</td>
<td>.28</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>.002</td>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>Tripura</td>
<td>.64</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Delhi</td>
<td>.91</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>.88</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Nagaland</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Odisha</td>
<td>.98</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Telangana</td>
<td>.99</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td>.89</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>

CCM Analysis

United States

Figure 4 illustrates the results of the CCM analysis for the United States, where a significant causal relationship was found between ICU bed demand and negative sentiment COVID-19 tweets for 46 (92%) of the 50 states (P<.05). The full list of correlation coefficients (r) and P values for the CCM analysis across US states is presented in Table 4.
Figure 4. Graphs showing the convergence of the correlation coefficient (r) in convergent cross-mapping analysis as the time series length (L) approaches the maximum possible value for each US state. Series X=negative sentiment COVID-19 tweet proportion and series Y=intensive care unit bed demand. The blue graph represents the correlation coefficient when modeling X causing Y (X→Y). The orange graph represents the correlation coefficient when modeling Y causing X (Y→X). The correlation coefficients ranged from 0.0405 (Vermont) to 0.7670 (New York). The P values ranged from .44 (Vermont) to <.001 (New York). Of the 50 US states, 46 (92%) had P values <.05.
Table 4. Results of the convergent cross-mapping analysis for each US state. The correlation coefficients (r) ranged from 0.0405 (Vermont) to 0.7670 (New York). Series X=negative sentiment COVID-19 tweet proportion and series Y=intensive care unit bed demand. $X \rightarrow Y$ refers to the correlation coefficient when modeling X causing Y; $Y \rightarrow X$ refers to the correlation coefficient when modeling Y causing X.

<table>
<thead>
<tr>
<th>State</th>
<th>Correlation coefficient, r</th>
<th>P value</th>
<th>$X \rightarrow Y$</th>
<th>$Y \rightarrow X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>0.1080</td>
<td>.04</td>
<td>0.1080</td>
<td>−0.1520</td>
</tr>
<tr>
<td>Alabama</td>
<td>0.2280</td>
<td><.001</td>
<td>0.2280</td>
<td>0.0211</td>
</tr>
<tr>
<td>Arkansas</td>
<td>0.2320</td>
<td><.001</td>
<td>0.2340</td>
<td>−0.0166</td>
</tr>
<tr>
<td>Arizona</td>
<td>0.5740</td>
<td><.001</td>
<td>0.5730</td>
<td>0.5460</td>
</tr>
<tr>
<td>California</td>
<td>0.6270</td>
<td><.001</td>
<td>0.6260</td>
<td>0.1100</td>
</tr>
<tr>
<td>Colorado</td>
<td>0.5750</td>
<td><.001</td>
<td>0.5760</td>
<td>0.3770</td>
</tr>
<tr>
<td>Connecticut</td>
<td>0.7010</td>
<td><.001</td>
<td>0.7000</td>
<td>0.2770</td>
</tr>
<tr>
<td>Delaware</td>
<td>0.4810</td>
<td><.001</td>
<td>0.4800</td>
<td>0.5290</td>
</tr>
<tr>
<td>Florida</td>
<td>0.7430</td>
<td><.001</td>
<td>0.7430</td>
<td>0.5600</td>
</tr>
<tr>
<td>Georgia</td>
<td>0.4050</td>
<td><.001</td>
<td>0.4040</td>
<td>0.0673</td>
</tr>
<tr>
<td>Hawaiii</td>
<td>0.1650</td>
<td><.001</td>
<td>0.1650</td>
<td>0.3960</td>
</tr>
<tr>
<td>Iowa</td>
<td>0.3930</td>
<td><.001</td>
<td>0.3870</td>
<td>0.2240</td>
</tr>
<tr>
<td>Idaho</td>
<td>0.2080</td>
<td><.001</td>
<td>0.2070</td>
<td>−0.0386</td>
</tr>
<tr>
<td>Illinois</td>
<td>0.5700</td>
<td><.001</td>
<td>0.5700</td>
<td>0.4190</td>
</tr>
<tr>
<td>Indiana</td>
<td>0.2150</td>
<td><.001</td>
<td>0.2190</td>
<td>0.3560</td>
</tr>
<tr>
<td>Kansas</td>
<td>0.3710</td>
<td><.001</td>
<td>0.3750</td>
<td>0.3380</td>
</tr>
<tr>
<td>Kentucky</td>
<td>0.2790</td>
<td><.001</td>
<td>0.2790</td>
<td>0.1840</td>
</tr>
<tr>
<td>Louisiana</td>
<td>0.3880</td>
<td><.001</td>
<td>0.3880</td>
<td>0.5810</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>0.3590</td>
<td><.001</td>
<td>0.3570</td>
<td>0.4900</td>
</tr>
<tr>
<td>Maryland</td>
<td>0.3980</td>
<td><.001</td>
<td>0.3980</td>
<td>0.5700</td>
</tr>
<tr>
<td>Maine</td>
<td>0.0526</td>
<td>.31</td>
<td>0.0518</td>
<td>0.2660</td>
</tr>
<tr>
<td>Michigan</td>
<td>0.5480</td>
<td><.001</td>
<td>0.5500</td>
<td>0.3720</td>
</tr>
<tr>
<td>Minnesota</td>
<td>0.2960</td>
<td><.001</td>
<td>0.2930</td>
<td>0.2920</td>
</tr>
<tr>
<td>Missouri</td>
<td>0.2920</td>
<td><.001</td>
<td>0.2890</td>
<td>0.2170</td>
</tr>
<tr>
<td>Mississippi</td>
<td>0.5950</td>
<td><.001</td>
<td>0.5950</td>
<td>0.2920</td>
</tr>
<tr>
<td>Montana</td>
<td>0.2600</td>
<td><.001</td>
<td>0.2600</td>
<td>0.2020</td>
</tr>
<tr>
<td>North Carolina</td>
<td>0.5470</td>
<td><.001</td>
<td>0.5400</td>
<td>0.5850</td>
</tr>
<tr>
<td>North Dakota</td>
<td>0.6000</td>
<td><.001</td>
<td>0.5990</td>
<td>0.6830</td>
</tr>
<tr>
<td>Nebraska</td>
<td>0.1580</td>
<td>.002</td>
<td>0.1570</td>
<td>0.2520</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>0.4080</td>
<td><.001</td>
<td>0.4080</td>
<td>0.0395</td>
</tr>
<tr>
<td>New Jersey</td>
<td>0.6830</td>
<td><.001</td>
<td>0.6770</td>
<td>0.4970</td>
</tr>
<tr>
<td>New Mexico</td>
<td>0.4810</td>
<td><.001</td>
<td>0.4800</td>
<td>0.3220</td>
</tr>
<tr>
<td>Nevada</td>
<td>0.1800</td>
<td><.001</td>
<td>0.1800</td>
<td>0.2380</td>
</tr>
<tr>
<td>New York</td>
<td>0.7670</td>
<td><.001</td>
<td>0.7660</td>
<td>0.4700</td>
</tr>
<tr>
<td>Ohio</td>
<td>0.4840</td>
<td><.001</td>
<td>0.4830</td>
<td>0.1210</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>0.0565</td>
<td>.27</td>
<td>0.0559</td>
<td>0.0657</td>
</tr>
<tr>
<td>Oregon</td>
<td>0.2590</td>
<td><.001</td>
<td>0.2570</td>
<td>0.1350</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>0.6290</td>
<td><.001</td>
<td>0.6280</td>
<td>0.4440</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>0.3990</td>
<td><.001</td>
<td>0.3990</td>
<td>0.3960</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0.2550</td>
<td><.001</td>
<td>0.2540</td>
<td>0.2780</td>
</tr>
<tr>
<td>South Dakota</td>
<td>0.4140</td>
<td><.001</td>
<td>0.4130</td>
<td>0.1500</td>
</tr>
<tr>
<td>State</td>
<td>Correlation coefficient, r</td>
<td>P value</td>
<td>$X\rightarrow Y$</td>
<td>$Y\rightarrow X$</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Tennessee</td>
<td>0.4920</td>
<td><.001</td>
<td>0.4920</td>
<td>0.0250</td>
</tr>
<tr>
<td>Texas</td>
<td>0.4430</td>
<td><.001</td>
<td>0.4430</td>
<td>0.5220</td>
</tr>
<tr>
<td>Utah</td>
<td>0.2970</td>
<td><.001</td>
<td>0.2950</td>
<td>−0.0438</td>
</tr>
<tr>
<td>Virginia</td>
<td>0.3760</td>
<td><.001</td>
<td>0.3740</td>
<td>0.1550</td>
</tr>
<tr>
<td>Vermont</td>
<td>0.0405</td>
<td>.44</td>
<td>0.0341</td>
<td>0.0602</td>
</tr>
<tr>
<td>Washington</td>
<td>0.5930</td>
<td><.001</td>
<td>0.5930</td>
<td>0.2970</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>0.6140</td>
<td><.001</td>
<td>0.6140</td>
<td>0.2920</td>
</tr>
<tr>
<td>West Virginia</td>
<td>0.0746</td>
<td>.14</td>
<td>0.0752</td>
<td>−0.0510</td>
</tr>
<tr>
<td>Wyoming</td>
<td>0.2700</td>
<td><.001</td>
<td>0.2690</td>
<td>0.3740</td>
</tr>
</tbody>
</table>

Brazil

Figure 5 illustrates the results of the CCM analysis for Brazil, where a significant causal relationship was found between ICU bed demand and negative sentiment COVID-19 tweets for 26 (96%) of the 27 Brazilian federative units ($P<.05$). The full list of correlation coefficients (r) and P values for the CCM analysis across Brazil is presented in Table 5.
Figure 5. Graphs showing the convergence of the correlation coefficient (r) in convergent cross-mapping analysis as the time series length (L) approaches the maximum possible value for each Brazil subregion. Series X=negative sentiment COVID-19 tweet proportion and series Y=intensive care unit bed demand. The blue graph represents the correlation coefficient when modeling X causing Y (X → Y). The orange graph represents the correlation coefficient when modeling Y causing X (Y → X). The correlation coefficients ranged from 0.0751 (Amapá) to 0.8010 (Amazonas). The P values ranged from .14 (Amapá) to <.001 (Amazonas). Of the 27 Brazilian federative units, 26 (96%) had P values <.05.
Table 5. Results of the convergent cross-mapping analysis for each Brazilian federative unit. The correlation coefficients (r) ranged from 0.0751 (Amapá) to 0.8010 (Amazonas). Series X=negative sentiment COVID-19 tweet proportion and series Y=intensive care unit bed demand. $X\rightarrow Y$ refers to the correlation coefficient when modeling X causing Y; $Y\rightarrow X$ refers to the correlation coefficient when modeling Y causing X.

<table>
<thead>
<tr>
<th>Federative unit</th>
<th>Correlation coefficient, r</th>
<th>P value</th>
<th>$X\rightarrow Y$</th>
<th>$Y\rightarrow X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acre</td>
<td>0.5800</td>
<td><.001</td>
<td>0.5800</td>
<td>0.7230</td>
</tr>
<tr>
<td>Alagoas</td>
<td>0.6010</td>
<td><.001</td>
<td>0.6010</td>
<td>0.6250</td>
</tr>
<tr>
<td>Amazonas</td>
<td>0.8010</td>
<td><.001</td>
<td>0.8010</td>
<td>0.8500</td>
</tr>
<tr>
<td>Amapá</td>
<td>0.0751</td>
<td>.14</td>
<td>0.0758</td>
<td>0.6270</td>
</tr>
<tr>
<td>Bahia</td>
<td>0.5940</td>
<td><.001</td>
<td>0.5940</td>
<td>0.4860</td>
</tr>
<tr>
<td>Ceará</td>
<td>0.3140</td>
<td><.001</td>
<td>0.3170</td>
<td>0.7180</td>
</tr>
<tr>
<td>Federal District</td>
<td>0.2720</td>
<td><.001</td>
<td>0.2600</td>
<td>0.1720</td>
</tr>
<tr>
<td>Espírito Santo</td>
<td>0.1940</td>
<td><.001</td>
<td>0.1940</td>
<td>0.4150</td>
</tr>
<tr>
<td>Goiás</td>
<td>0.3290</td>
<td><.001</td>
<td>0.3290</td>
<td>0.2490</td>
</tr>
<tr>
<td>Maranhão</td>
<td>0.3970</td>
<td><.001</td>
<td>0.3960</td>
<td>0.7280</td>
</tr>
<tr>
<td>Minas Gerais</td>
<td>0.5370</td>
<td><.001</td>
<td>0.5360</td>
<td>0.3490</td>
</tr>
<tr>
<td>Mato Grosso do Sul</td>
<td>0.1910</td>
<td><.001</td>
<td>0.1910</td>
<td>0.3350</td>
</tr>
<tr>
<td>Mato Grosso</td>
<td>0.3400</td>
<td><.001</td>
<td>0.3400</td>
<td>0.3070</td>
</tr>
<tr>
<td>Pará</td>
<td>0.4750</td>
<td><.001</td>
<td>0.4830</td>
<td>0.6790</td>
</tr>
<tr>
<td>Paraíba</td>
<td>0.3780</td>
<td><.001</td>
<td>0.3780</td>
<td>0.5710</td>
</tr>
<tr>
<td>Paraná</td>
<td>0.6110</td>
<td><.001</td>
<td>0.6150</td>
<td>0.2810</td>
</tr>
<tr>
<td>Pernambuco</td>
<td>0.4350</td>
<td><.001</td>
<td>0.4350</td>
<td>0.7090</td>
</tr>
<tr>
<td>Piauí</td>
<td>0.2990</td>
<td><.001</td>
<td>0.2990</td>
<td>0.3390</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>0.4760</td>
<td><.001</td>
<td>0.4760</td>
<td>0.5930</td>
</tr>
<tr>
<td>Rio Grande do Norte</td>
<td>0.2810</td>
<td><.001</td>
<td>0.2780</td>
<td>0.5440</td>
</tr>
<tr>
<td>Rondônia</td>
<td>0.2760</td>
<td><.001</td>
<td>0.2770</td>
<td>0.4130</td>
</tr>
<tr>
<td>Roraima</td>
<td>0.5170</td>
<td><.001</td>
<td>0.5160</td>
<td>0.3440</td>
</tr>
<tr>
<td>Rio Grande do Sul</td>
<td>0.5040</td>
<td><.001</td>
<td>0.5040</td>
<td>0.6780</td>
</tr>
<tr>
<td>Santa Catarina</td>
<td>0.5400</td>
<td><.001</td>
<td>0.5490</td>
<td>0.2040</td>
</tr>
<tr>
<td>Sergipe</td>
<td>0.3230</td>
<td><.001</td>
<td>0.3220</td>
<td>0.3400</td>
</tr>
<tr>
<td>São Paulo</td>
<td>0.6240</td>
<td><.001</td>
<td>0.6250</td>
<td>0.5690</td>
</tr>
<tr>
<td>Tocantins</td>
<td>0.3530</td>
<td><.001</td>
<td>0.3530</td>
<td>0.2430</td>
</tr>
</tbody>
</table>

India

Figure 6 illustrates the result of the CCM analysis for India, where a significant causal relationship was found between ICU bed demand and negative sentiment COVID-19 tweets for 26 (100%) of the 26 included regions (25 states and the national capital region; $P<.05$). The full list of correlation coefficients (r) and P values for the CCM analysis across Indian states and the national capital region is presented in Table 6.
Figure 6. Graphs showing the convergence of the correlation coefficient (r) in convergent cross-mapping analysis as the time series length (L) approaches the maximum possible value for each of the 26 Indian states included in the analysis. Series X = negative sentiment COVID-19 tweet proportion and series Y = intensive care unit bed demand. The blue graph represents the correlation coefficient when modeling X causing Y (X→Y). The orange graph represents the correlation coefficient when modeling Y causing X (Y→X). The correlation coefficients ranged from 0.1630 (Sikkim) to 0.8060 (Delhi). The P values ranged from .001 (Sikkim) to <.001 (Delhi). All 25 states and the national capital region of Delhi had P values <.05.
Table 6. Results of the convergent cross-mapping analysis for each of the 25 Indian states included in the analysis and the national capital region. Correlation coefficients (r) ranged from 0.163 (Sikkim) to 0.806 (Delhi). Series X=negative sentiment COVID-19 tweet proportion and series Y=intensive care unit bed demand. $X \rightarrow Y$ refers to the correlation coefficient when modeling X causing Y; $Y \rightarrow X$ refers to the correlation coefficient when modeling Y causing X.

<table>
<thead>
<tr>
<th>State or national capital region</th>
<th>Correlation coefficient, r</th>
<th>P value</th>
<th>$X \rightarrow Y$</th>
<th>$Y \rightarrow X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haryana</td>
<td>0.486</td>
<td><.001</td>
<td>0.4860</td>
<td>0.4840</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>0.417</td>
<td><.001</td>
<td>0.4170</td>
<td>0.3950</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>0.258</td>
<td><.001</td>
<td>0.2580</td>
<td>0.2940</td>
</tr>
<tr>
<td>Uttarakhand</td>
<td>0.489</td>
<td><.001</td>
<td>0.4890</td>
<td>0.5920</td>
</tr>
<tr>
<td>Gujarat</td>
<td>0.669</td>
<td><.001</td>
<td>0.6680</td>
<td>0.6120</td>
</tr>
<tr>
<td>Manipur</td>
<td>0.511</td>
<td><.001</td>
<td>0.5110</td>
<td>0.3720</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>0.470</td>
<td><.001</td>
<td>0.4700</td>
<td>0.3000</td>
</tr>
<tr>
<td>Punjab</td>
<td>0.244</td>
<td><.001</td>
<td>0.2440</td>
<td>0.2260</td>
</tr>
<tr>
<td>Karnataka</td>
<td>0.646</td>
<td><.001</td>
<td>0.6480</td>
<td>0.3830</td>
</tr>
<tr>
<td>Jharkhand</td>
<td>0.517</td>
<td><.001</td>
<td>0.5170</td>
<td>0.4900</td>
</tr>
<tr>
<td>Bihar</td>
<td>0.685</td>
<td><.001</td>
<td>0.6850</td>
<td>0.3870</td>
</tr>
<tr>
<td>Arunachal Pradesh</td>
<td>0.232</td>
<td><.001</td>
<td>0.2320</td>
<td>0.2700</td>
</tr>
<tr>
<td>Sikkim</td>
<td>0.163</td>
<td><.001</td>
<td>0.1630</td>
<td>0.4870</td>
</tr>
<tr>
<td>Mizoram</td>
<td>0.321</td>
<td><.001</td>
<td>0.3180</td>
<td>0.3080</td>
</tr>
<tr>
<td>Goa</td>
<td>0.493</td>
<td><.001</td>
<td>0.4920</td>
<td>0.1650</td>
</tr>
<tr>
<td>Kerala</td>
<td>0.612</td>
<td><.001</td>
<td>0.6120</td>
<td>0.3420</td>
</tr>
<tr>
<td>West Bengal</td>
<td>0.631</td>
<td><.001</td>
<td>0.6360</td>
<td>0.4420</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>0.739</td>
<td><.001</td>
<td>0.7420</td>
<td>0.5630</td>
</tr>
<tr>
<td>Tripura</td>
<td>0.470</td>
<td><.001</td>
<td>0.4680</td>
<td>0.0105</td>
</tr>
<tr>
<td>Delhi</td>
<td>0.806</td>
<td><.001</td>
<td>0.8090</td>
<td>0.4340</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>0.707</td>
<td><.001</td>
<td>0.7070</td>
<td>0.6370</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>0.582</td>
<td><.001</td>
<td>0.5820</td>
<td>0.5200</td>
</tr>
<tr>
<td>Nagaland</td>
<td>0.315</td>
<td><.001</td>
<td>0.2920</td>
<td>0.1790</td>
</tr>
<tr>
<td>Odisha</td>
<td>0.614</td>
<td><.001</td>
<td>0.6140</td>
<td>0.6770</td>
</tr>
<tr>
<td>Telangana</td>
<td>0.573</td>
<td><.001</td>
<td>0.5730</td>
<td>0.2660</td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td>0.390</td>
<td><.001</td>
<td>0.3900</td>
<td>0.1740</td>
</tr>
</tbody>
</table>

Discussion

Principal Findings

Given the need to prioritize the use of limited medical resources during a health care emergency scenario such as the COVID-19 pandemic, social media hold promise in identifying shortages and can be a cost-effective tool for the proper allocation of medical resources, particularly ICU beds, because when governments and organizations are well informed with real-time shortage data, they have the capacity to adequately address the immediate funding and supply needs of health care facilities. This strategy may help mitigate immediate risk to the public until a more systematic solution is possible.

This study sought to determine which patterns existed between negative sentiment COVID-19 tweets and real-world ICU bed shortages during the pandemic, with the aim of leveraging social media to pinpoint regional surges in ICU bed demand in the United States, Brazil, and India. Two statistical tests were conducted to investigate this: the Granger causality test and CCM analysis.

The Granger causality test aims to identify causalities where, in a stochastic system, 1 separable variable is useful for forecasting another. The results of the Granger causality test for this analysis (Figures 1-3 and Tables 1-3) indicate that negative sentiment COVID-19 tweets Granger-caused ICU bed shortage ($P<.05$) for 14 (28%) of the 50 US states, 6 (22%) of the 27 Brazilian federative unit, and 6 (23%) of the 26 Indian regions included in the analysis (25 states and the national capital region). By contrast, the CCM analysis aims to identify causalities for nonseparable variables that are linked in a dynamic system and can identify and quantify weak to moderate causalities that may be missed by the Granger causality test. For the 3 countries, nearly all subregions—46 (92%) of the 50 US states, 26 (96%) of the 27 Brazilian federative units, and 26
(100%) of the 26 Indian regions included in the analysis—had a significant \((P<0.05)\) result in the CCM analysis (Figures 4-6 and Tables 4-6), indicating a relationship between negative sentiment COVID-19 tweets and ICU bed demand.

For the United States (Tables 1 and 4), of the 50 states, 13 (26%) had a significant result for both the Granger causality test and the CCM analysis (Alabama, Arizona, Florida, Illinois, Massachusetts, Michigan, North Carolina, North Dakota, New Hampshire, Nevada, New York, Rhode Island, and Virginia), 33 (66%) passed the CCM test but not the Granger causality test (Alaska, Arkansas, California, Colorado, Connecticut, Delaware, Georgia, Hawaii, Iowa, Idaho, Indiana, Kansas, Kentucky, Louisiana, Maryland, Minnesota, Missouri, Mississippi, Montana, Nebraska, New Jersey, New Mexico, Ohio, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, Utah, Washington, Wisconsin, Wyoming), 1 (2%) passed the Granger causality test only (Oklahoma), and 3 (6%) passed neither the Granger causality test nor the CCM test (Maine, Vermont, and West Virginia). Considering that the majority of the US states (33/50, 66%) passed the CCM test but not the Granger causality test, it can be inferred that the causal relationship between negative sentiment COVID-19 tweets and ICU bed shortage is weak to moderate for US states because CCM analysis is better at detecting weak to moderate causalities than the Granger test. This also implies that the relationship between the 2 variables (social media sentiment and ICU bed shortage) is dynamic and influenced by a number of complex interacting factors such that CCM analysis may be the more appropriate method for detecting and modeling this relationship.

For Brazil (Tables 2 and 5), a similar pattern occurred such that nearly all federative units (26/27, 96%) passed the CCM test, but only a few (6/27, 22%) passed the Granger causality test. Of the 27 federative units, 6 (22%) passed both the Granger causality test and the CCM test (Ceará, Maranhão, Pará, Paraíba, Pernambuco, and Roraima), 20 (74%) passed the CCM test but not the Granger causality test (Acre, Alagoas, Amazonas, Bahia, Federal District, Espírito Santo, Goias, Minas Gerais, Mato Grosso do Sul, Mato Grosso, Pará, Piauí, Rio de Janeiro, Rio Grande do Norte, Rondônia, Rio Grande do Sul, Santa Catarina, Sergipe, São Paulo, and Tocantins), none passed the Granger causality test only, and 1 (4%) state passed neither test (Amapá). This result again supports the idea of a dynamic and complex causal relationship being detected between negative sentiment COVID-19 tweets and ICU bed shortage.

For India (Tables 3 and 6), a similar pattern emerged. Of the 26 regions included in the analysis (25 states and the national capital region), 3 (12%) passed both the Granger causality test and the CCM test (Manipur, Kerala, and Maharashtra), whereas the remaining 23 (88%) passed the CCM test only (Haryana, Madhya Pradesh, Andhra Pradesh, Uttar Pradesh, Punjab, Karnataka, Jharkhand, Bihar, Arunachal Pradesh, Sikkim, Mizoram, Goa, West Bengal, Tripura, Delhi, Uttar Pradesh, Rajasthan, Nagaland, Odisha, Telangana, and Chandigarh), meaning that all 25 states and the national capital region of Delhi passed at least the CCM test. This further demonstrates that CCM analysis is capable of successfully detecting a causal pattern between negative sentiment pandemic tweets and real-world medical resource shortage and that this can potentially be used to pinpoint specific regions that are expected to face surges in medical resource demand at a given time.

Overall, these results suggest that a significant relationship exists between negative sentiment COVID-19 tweets and real-world ICU bed demand at subnational scales and that this relationship can be effectively detected and modeled using CCM analysis. These findings also indicate that the data contained within social media discourse regarding the COVID-19 pandemic can indeed be leveraged to identify and forecast the real-world impacts of the pandemic in the form of ICU bed demand surges. Further optimization of methods for identifying patterns between X sentiment and real-world medical emergencies can support the development of an early warning system for the robust real-time prediction of health care demand surges. Such a system may give health care workers and government decision makers a critical head start when deciding how to most effectively allocate medical resources in a crisis.

Future Directions

These results open up the possibility to develop tools that can forecast hospital bed demand in certain regions, although further research is required. This modeling approach can have a significant impact in the context of the health care supply chain. Forecasting ability is a potential factor affecting supply chain performance [27-29]. One study found that tweets related to food insecurity were strongly correlated with real food insufficiencies [16]; the authors noted that there is potential for tweet sentiment analysis to be used as a cost-effective early warning system that can help direct food-related interventions. Similarly, our results suggest that there is potential for negative sentiment COVID-19 posts to relate to actual medical resource shortage in regions where people use public discourse platforms such as Twitter (since rebranded as X). Although the current iteration of the methods described in this paper is only relevant to the time before a peak infection in the region, such methods have the potential to advance preparedness measures for future pandemics as they become more robust [31,32].

Digital data sources can aid in the identification of changes in disease activity, and it is worth exploring whether they show better performance in this regard than traditional COVID-19 metrics such as confirmed cases [33]. In low- and middle-income countries, there is potential for social media to act as a cost-effective early warning system to identify priority regions for medical resource allocation in real time. User behavior data can be extracted, given the unique social network parameters of a region, including the language spoken and the preference for 1 social media platform over another [34]. Similar to how a multilingual data set was used in the analyses in this study, Lopreite et al [55] analyzed a data set of tweets posted in various European languages and found that there were early warning signals of COVID-19 outbreaks before public announcements about an outbreak were made. Social networks that are particular to a region can provide user behavior data that can inform early warning detection systems specific to that region; for example, using Baidu search data, Qin et al [56] were able to predict the number of new COVID-19 cases such
as fever, coronavirus, and pneumonia. Their study, along with similar social media–based early warning detection efforts [37-40], shows potential for the creation of a more effective yet affordable model to forecast new cases.

As noted in the previous subsection, there are complex interacting factors that may explain the results observed. Thus, further investigation is needed to unveil the dynamics underpinning the relationship between X negative sentiment pandemic tweets and medical resource demand; for instance, sociopolitical and economic challenges may have had varying influences on the X discourse by affecting public perceptions of COVID-19 management measures across countries. For Brazil (Figure 2), it can be seen that an increased proportion of negative sentiment preceded the ICU bed demand surge. Concern about preventing the proliferation of COVID-19 was among the major emergent X topics in Brazil, and politics also influenced the X landscape [57]. Brazil has a decentralized health system where the federal government finances the states and municipalities that provide health care services. Different levels of government must be able to coordinate effectively, and a failure to do so can lead to a disjunction in the care provided. A study by Neves et al [58] found that key government stakeholders underestimated the magnitude of the pandemic in the early weeks; for example, the Minas Gerais State Health Department posted messages on social media about not suspending the carnival, which is Brazil’s largest festival. When questionable COVID-19 management decisions are made that increase public health risk, such as decisions not to suspend major public events (e.g., Brazil’s annual carnival), it is possible for the X discourse to reflect negative public perceptions of these government decisions before their negative impacts on case count and ICU bed demand. Further research is required to better understand the reliability of social media discourse in reflecting current pandemic management landscapes so that web-based public sentiment can accurately forecast pandemic impacts.

Incongruencies among different levels of government may have also contributed to the results observed. The then President of Brazil, Jair Messias Bolsonaro, issued messages that conflicted with those issued by states and municipalities, such as defending hydroxychloroquine as a COVID-19 treatment and countering mask use and physical distancing [59]. At a state-specific level, the governor of Rio de Janeiro state faced charges regarding irregularities in contracts for building emergency field hospitals, which prevented efforts to relieve strain on hospitals [60]. In addition, the state government of São Paulo was being investigated for ventilator fraud, which led to a shortage of ventilators that prevented citizens from accessing life-saving equipment [61]. Overall, the lack of coordinated effort and strategy for dealing with the pandemic contributed to the inconsistent implementation of preventive measures across the states and resulted in confusion for the public. State-specific challenges may have also contributed to the rise in negative sentiment and increased medical resource demand, which can help explain the results observed.

A similar exploration of potential factors for India can shed light on how they contributed to the nuanced and complex relationship observed between negative sentiment COVID-19 tweets and medical resource demand. India emerged as an interesting case study during the pandemic because of the novel use of X by citizens as a way of sourcing ICU beds and ventilators for their loved ones. As citizens found out that there was a shortage of equipment in the hospitals, they took to X in an effort to source medical supplies that were desperately needed. Adherence to government policy is another factor to consider in the Indian X discourse; for example, both COVID-19 waves were associated with nationwide shutdowns, but as the months wore on, people started to adhere less to measures such as masking and physical distancing. This may have contributed to an increase in cases, overwhelming hospitals [62].

Further exploration into region-specific factors as well as social and political contexts will be important for refining our forecasting models and gaining a better understanding of the complex relationship between X negative sentiment pandemic tweets and medical resource demand.

Limitations

One process in our methodology involved using tweets that already had sentiment labels and analyzing them. However, we are aware that there may not be data sets containing pandemic-related tweets in future contexts. Therefore, I recommendation would be to first extract relevant keyword–related tweets and increase accuracy with the help of supervised natural language processing models. A similar study with the aim of predicting medical resource shortages based on tweets was conducted for the state of New York [63]. The method consisted of using supervised learning to find related tweets, which is a more robust method.

One other limitation is that the ICU bed data sets for Brazil and India that were used to validate the model have decreased reliability because they only provide an estimate of the actual data [18], and they may not have accounted for fluctuations in ICU bed supply. However, because there were no other publicly available data sets, it was reasonable to use these data sets.

The use of X data has some important ethical considerations that lie at the intersection of privacy and data collection; for example, social media data collection can be considered a double-edged sword. On the one hand, it provides very valuable data that can increase the possibility of creating important solutions such as a more cost-effective and faster method of gauging PPE shortages and medical resource demand. On the other hand, current artificial intelligence and data collection practices have raised concerns about privacy and the selling of personal data.

Conclusions

The COVID-19 pandemic has made it clear that adequate demand-based allocation of medical resources and adequate preparedness for surges in hospital admissions are paramount to reduce cases and deaths at the onset of a pandemic. Between the time that a pandemic hits and the time that a vaccine is developed and distributed, it is vital that the medical supply is carefully managed to ensure that all health care facilities have adequate capacity and proper plans for meeting unprecedented medical resource demand surges. This study analyzed negative sentiment COVID-19 tweets that were compared with real-world
ICU bed use data. Our results show promise that leveraging social media, particularly X, has the potential to provide a cost-effective relatively rapid method that can inform resource allocation to facilities that need it most. Further investigation into the potential of X data in the modeling of medical supply shortages may lead to the development of powerful tools that can inform health care decision-making in pandemic scenarios. X causal analysis in shortage forecasting has the potential to be applied broadly in a global context for identifying medical resource demand and informing health care supply chain decisions.

Acknowledgments
The authors would like to thank the STEM Fellowship for the opportunity to participate in the Inter-University Big Data Challenge 2022 during which this project was developed. JDK acknowledges support from Canada’s International Development Research Centre (grant 109981) and the International Development Research Centre and the Swedish International Development Cooperation Agency (grant 109559-001). JDK equally acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (grant RGPIN-2022-04559), the NSERC Discovery Launch Supplements (grant DGECR-2022-00454), and the New Frontiers in Research Fund–Exploration Stream (grant NFRFE-2021-00879).

Data Availability
The data sets generated and analyzed during this study are available in the Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels repository [46]; the Institute for Health Metrics and EvaluationCOVID-19 Projections repository [48]; and the COVID-19 Reported Patient Impact and Hospital Capacity by State Timeseries (RAW) [47].

Conflicts of Interest
None declared.

Multimedia Appendix 1
Augmented Dickey-Fuller Test for US states.

[DOCX File, 22 KB - formative_v8i1e46087_app1.docx]

Multimedia Appendix 2
Augmented Dickey-Fuller Test for Brazil subregions.

[DOCX File, 18 KB - formative_v8i1e46087_app2.docx]

Multimedia Appendix 3
Augmented Dickey-Fuller Test for India states.

[DOCX File, 17 KB - formative_v8i1e46087_app3.docx]

References

Abbreviations
- ADF: augmented Dickey-Fuller
- CCM: convergent cross-mapping
- ICU: intensive care unit
- PPE: personal protective equipment
- TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels

©Mahakprit Kaur, Taylor Cargill, Kevin Hui, Minh Vu, Nicola Luigi Bragazzi, Jude Dzevela Kong. Originally published in JMIR Formative Research (https://formative.jmir.org), 29.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Exploring the Perspectives of Patients Living With Lupus: Retrospective Social Listening Study

Erica Spies¹, PhD; Thomas Andreu², PhD; Matthias Hartung², PhD; Josephine Park¹, PhD; Paul Kamudoni³, PhD

¹EMD Serono, Billerica, MA, United States
²Semalytix GmbH, Bielefeld, Germany
³The Healthcare Business of Merck KGaA, Darmstadt, Germany

Corresponding Author:
Paul Kamudoni, PhD
The Healthcare Business of Merck KGaA
Frankfurter Strasse 250
Darmstadt, 64293
Germany
Phone: 49 15114543257
Email: paul.kamudoni@emdgroup.com

Abstract

Background: Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease affecting various organs with a wide range of clinical manifestations. Cutaneous lupus erythematosus (CLE) can manifest as a feature of SLE or an independent skin ailment. Health-related quality of life (HRQoL) is frequently compromised in individuals living with lupus. Understanding patients’ perspectives when living with a disease is crucial for effectively meeting their unmet needs. Social listening is a promising new method that can provide insights into the experiences of patients living with their disease (lupus) and leverage these insights to inform drug development strategies for addressing their unmet needs.

Objective: The objective of this study is to explore the experience of patients living with SLE and CLE, including their disease and treatment experiences, HRQoL, and unmet needs, as discussed in web-based social media platforms such as blogs and forums.

Methods: A retrospective exploratory social listening study was conducted across 13 publicly available English-language social media platforms from October 2019 to January 2022. Data were processed using natural language processing and knowledge graph tagging technology to clean, format, anonymize, and annotate them algorithmically before feeding them to Pharos, a Semalytix proprietary data visualization and analysis platform, for further analysis. Pharos was used to generate descriptive data statistics, providing insights into the magnitude of individual patient experience variables, their differences in the magnitude of variables, and the associations between algorithmically tagged variables.

Results: A total of 45,554 posts from 3834 individuals who were algorithmically identified as patients with lupus were included in this study. Among them, 1925 (authoring 5636 posts) and 106 (authoring 243 posts) patients were identified as having SLE and CLE, respectively. Patients frequently mentioned various symptoms in relation to SLE and CLE including pain, fatigue, and rashes; pain and fatigue were identified as the main drivers of HRQoL impairment. The most affected aspects of HRQoL included “mobility,” “cognitive capabilities,” “recreation and leisure,” and “sleep and rest.” Existing pharmacological interventions poorly managed the most burdensome symptoms of lupus. Conversely, nonpharmacological treatments, such as exercise and meditation, were frequently associated with HRQoL improvement.

Conclusions: Patients with lupus reported a complex interplay of symptoms and HRQoL aspects that negatively influenced one another. This study demonstrates that social listening is an effective method to gather insights into patients’ experiences, preferences, and unmet needs, which can be considered during the drug development process to develop effective therapies and improve disease management.

(JMIR Form Res 2024;8:e52768) doi:10.2196/52768

KEYWORDS
systemic lupus erythematosus; SLE; cutaneous lupus erythematosus; CLE; quality of life; health-related quality of life; HRQoL; social media listening; lupus; rare; cutaneous; social media; infodemiology; infoveillance; social listening; natural language
Introduction

Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease affecting multiple systems in the body; it is characterized by fluctuating symptoms and periods of exacerbation and remission [1-3]. The most common symptoms of SLE include fatigue, skin rashes, fever, and joint pain or swelling [3]. SLE has several phenotypes and clinical manifestations involving various organs, including the joints, skin, kidneys, and organs of the neurological or hematological systems [1,2]. Cutaneous lupus erythematosus (CLE) can manifest as either a feature of SLE or an independent skin ailment [4,5]. The most prevalent symptoms of CLE include rashes, hair loss, blood vessel inflammation, ulcers, and increased sensitivity to light [6,7]. Living with these symptoms can be physically debilitating for patients and can disrupt their family, social, and professional life, thereby negatively impacting their health-related quality of life (HRQoL) [8,9].

Globally, SLE and CLE are estimated to have incidence rates of 5.1 and 4.3 per 100,000 person-years, respectively [10,11]. These rates vary widely according to demographic factors such as ethnicity, sex, and socioeconomic status, with a higher incidence in women, African Americans and other non-White populations [10,11]. The current treatment options for SLE include immunosuppressive agents, new biological therapies, and combination therapies of biologicals with immunosuppressive and immunomodulating agents [12]. Despite recent advances in therapeutic strategies, most of the current medications available for the treatment of lupus provide only symptomatic relief and are frequently associated with undesirable side effects [13,14].

Considering the high clinical variability, inadequate treatment options, and poor HRQoL of patients, understanding the perspectives and experiences of patients with SLE and CLE may be critical for developing effective therapies and improving disease management [13-15]. In the context of drug development, regulatory bodies and health care decision makers are emphasizing patient-focused drug development, which involves actively seeking and incorporating patients’ perspectives when designing interventions that can meet their needs, improve outcomes, and enhance the overall patient experience [16]. The increased presence and active engagement of patients on digital platforms, specifically social media, can serve as a source for understanding their needs, treatment experiences, and the factors affecting treatment decisions in real-world scenarios [15]. Additionally, data regarding the experiences of patients living with the disease can potentially influence key decisions and activities during drug development [16].

Data regarding the experiences of individuals living with diseases can be obtained through various sources, such as observational studies, interviews, focus groups, and patient advisory boards. Social listening is a promising newer approach that complements traditional methods of data collection by providing additional insights into patients’ perspectives beyond clinical settings [17]. Furthermore, this method captures the voices of vulnerable and difficult-to-reach populations who may otherwise not participate in clinical or epidemiological studies, thereby providing an opportunity for data triangulation [17,18]. In this social listening study, we explored the experience of patients living with lupus (SLE and CLE), as discussed in web-based social media platforms, such as blogs and forums, by searching for posts regarding disease burden, HRQoL impacts, treatment experience, and unmet needs.

Methods

Study Design

Overview

This retrospective exploratory social listening study was conducted between October 2019 and January 2022 across 13 publicly available English-language social media platforms (Multimedia Appendix 1). The processes of data identification, collection, and analysis involved have been previously presented [19-22]. The process involved algorithmic processing steps (1-3) and research steps (4 and 5) performed by human analysts (Figure 1). A glossary of terms are provided in Multimedia Appendix 2.
Figure 1. Overview of the study methodology.

Data Source Identification and Data Collection (Step 1)
Identifying data sources was the first step, followed by data collection. Lupus-related keywords, defined and revised by human domain experts, were searched in SocialGist, a third-party search engine providing access to social media sites through an application programming interface search engine, to detect websites hosting relevant lupus-specific content. The following keywords were used for the search: “lupus,” “lupus” AND “systemic” AND “cutaneous” AND “subacute” AND “erythematous” AND “autoimmune” AND “disease,” “SLE,” and “CLE.” All posts from relevant websites found through the searches were retrieved and collected in Pharos, a proprietary data visualization and analysis platform from Semalytix GmbH.

Filtering and Aggregating Content (Step 2)
Filtering and aggregating the content based on algorithmically determined inclusion criteria was the second step. Posts collected in step 1 were aggregated by unique authors, and all posts by the same author were collapsed into 1 author-specific record. Based on algorithmically determined inclusion criteria, only records classified as having been authored by a patient with lupus were retained. Posts authored by nonpatients, such as caregivers and health care providers, and those involving other types of documents, such as journal papers and press releases, were excluded. Throughout this process, human language engineers and data labeling specialists carefully monitored the patient classifications to ensure accuracy and reliability.

Algorithmic Coding of Patient Experience Concepts (Step 3)
Patient experience themes were algorithmically coded in the study’s third step. All lupus-specific patient records from step 2 were algorithmically annotated with patient experience tags using natural language processing. Patient experience themes mentioned in texts related to disease burden, HRQoL, and treatment experiences were added to patient records as semantic tags. Individual aspects (facets) of HRQoL were investigated based on the taxonomy provided by the World Health Organization Quality of Life instrument [23], which served as a guide for developing the inventory of patient experience tags used in this study. Human language engineers and data labeling specialists monitored, cross-validated, and adapted the algorithms as needed. A subject matter expert reviewed the study’s overall approach and medical content.

Quantitative Analysis (Step 4)
Quantitative data analysis was involved in the fourth step, wherein analysts used the Pharos Patient Experience Platform to generate descriptive statistics regarding patient experience tags. The statistics provided insight into the magnitude of individual patient experience variables, the differences between them, and the associations among the algorithmically tagged variables.

Qualitative Analysis (Step 5)
Qualitative data analysis was involved in the fifth step. Human analysts used Pharos to investigate the relationships between tags, such as symptoms and outcomes or symptoms and impacts, as well as the language patients used to describe their experiences on social media to identify any emerging themes. The results of the qualitative analysis were used to identify themes in patient language, connections to tagged variables, potential connections between themes, emerging themes, and reorganized themes.
Study Population
Authors of posts who self-identified as patients living with lupus or any of its subtypes (SLE and CLE; algorithmically identified) were included in this study. All posts by the same user were aggregated into a unique patient record for further data analysis. A machine learning algorithm classified authors as patients based on the language used in their self-reported posts. The algorithm was specifically designed to differentiate expressions that indicated that a patient had lupus (“I have lupus” or “I was diagnosed with SLE in 2020”) from those that were ambiguous.

Study Outcomes
Posts from social media platforms were analyzed to investigate symptom burden, impact of lupus on HRQoL, treatment experience, and unmet needs. The related outcomes are described in Table 1. These outcomes were investigated in the SLE as well as CLE-related posts, depending on the robustness of the data.

Table 1. Outcomes investigated in the study.

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom burden</td>
<td>• Patient-reported symptoms</td>
</tr>
<tr>
<td></td>
<td>• Most burdensome symptoms</td>
</tr>
<tr>
<td></td>
<td>• Areas of involvement (body parts)</td>
</tr>
<tr>
<td></td>
<td>• Photosensitivity and body image</td>
</tr>
<tr>
<td></td>
<td>• Sleep disorders</td>
</tr>
<tr>
<td></td>
<td>• Comorbidities</td>
</tr>
<tr>
<td>Overall HRQoL impact</td>
<td>• Psychological well-being (positive feelings and negative feelings)</td>
</tr>
<tr>
<td></td>
<td>• Physical well-being (mobility, activities of daily living, recreation and leisure, and role participation)</td>
</tr>
<tr>
<td></td>
<td>• Impact and functioning (including parental care, burden to or on others, and economic or working capability impacts)</td>
</tr>
<tr>
<td>Treatment experience</td>
<td>• Current treatment options (nonpharmacological and pharmacological interventions)</td>
</tr>
<tr>
<td></td>
<td>• Treatment options and HRQoL aspects based on treatment</td>
</tr>
<tr>
<td></td>
<td>• Level of satisfaction with current treatment options</td>
</tr>
<tr>
<td></td>
<td>• Diagnostic delay and health care availability</td>
</tr>
<tr>
<td></td>
<td>• Coping mechanisms</td>
</tr>
</tbody>
</table>

aOwing to low sample size or insufficient data, these outcomes were not analyzed in the cutaneous lupus erythematosus population.
bHRQoL: health-related quality of life.

Ethical Considerations
Research using data from social media can present ethical challenges owing to the limited guidance on the participants’ consent and anonymity [24]. The data analyzed in this study were obtained from publicly available sources. Identities of the patient posts were appropriately anonymized while ensuring that the data answered specific research questions. To ensure personal data protection, a strict General Data Protection Regulation–compliant process was adopted. Please refer to Multimedia Appendix 3 for further details on the appropriate measures implemented to ensure personal data protection. This study was exempt from ethical review because it examined retrospective publicly available data from a sizeable number of patients.

Results

Patients
During the initial data collection (step 1), a total of 76,538 lupus-related posts were collected, of which 45,554 posts from 3834 patients were included in the lupus-specific data set based on the algorithmically determined inclusion criteria. Among these patients, 1925 (with 5636 posts) and 106 (with 243 posts) patients were identified as having SLE and CLE, respectively. In the population with SLE, sex information was available for 583 patients, and the female-to-male ratio was 9:1. Age data were available for 402 patients, with 76.7% (n=308) aged <60 years.

In the following sections, we report the findings regarding the population with SLE followed by the population with CLE. The study results are structured under 3 primary sections: disease burden as reported by patients, overall HRQoL, and treatment experiences reported for both patient populations separately.

Disease Burden in Patients With SLE

Overview
Disease burden was evident among patients with SLE as indicated by a total of 2029 patient mentions across different social media platforms. Disease burden was quantified in terms of the symptoms that were patient-reported, most burdensome, their severity, areas of involvement (body parts), and comorbidities.

Patient-Reported Symptoms
The most frequently reported symptoms (n=2029 patients) were pain, fatigue, and rashes. Some patients were more specific regarding the type of pain they experienced, including arthralgia, cephalgia, and arthritis. Other less frequently (<10% [203 patients]) reported symptoms included anxiety, clinical depression, alopecia, and pyrexia (Table 2). In total, 20 patients (in approximately 30 posts) reported experiencing...
photosensitivity, with excessive sun exposure leading to flare-ups and worsening of symptoms such as joint pain, weakness, and fatigue.

Table 2. Symptoms most frequently reported by patients with SLEa (n=2029b patient mentions from 5636 posts) and CLEc (n=118b patient mentions from 244 posts).

<table>
<thead>
<tr>
<th>Symptoms or signs</th>
<th>Proportion of patients, n (%)</th>
<th>SLE</th>
<th>CLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>610 (30.1)</td>
<td>25 (21.2)</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>386 (19.2)</td>
<td>19 (16.1)</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>239 (11.8)</td>
<td>27 (22.2)</td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>184 (9.1)</td>
<td>10 (8.5)</td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>150 (7.4)</td>
<td>7 (5.9)</td>
<td></td>
</tr>
<tr>
<td>Cephalgia</td>
<td>143 (7.1)</td>
<td>4 (3.4)</td>
<td></td>
</tr>
<tr>
<td>Clinical depression</td>
<td>98 (4.8)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Arthritis</td>
<td>78 (3.8)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Alopecia</td>
<td>71 (3.5)</td>
<td>11 (9.3)</td>
<td></td>
</tr>
<tr>
<td>Pyrexia</td>
<td>70 (3.4)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Scar</td>
<td>—</td>
<td>7 (5.9)</td>
<td></td>
</tr>
<tr>
<td>Photosensitivity</td>
<td>—</td>
<td>4 (3.4)</td>
<td></td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>—</td>
<td>4 (3.4)</td>
<td></td>
</tr>
</tbody>
</table>

aSLE: systemic lupus erythematosus.

bIndicates that patients were counted more than once if they discussed more than one symptom in a post.

cCLE: cutaneous lupus erythematosus.

dNot available.

Although sleep disturbances were not among the top 10 patient-reported symptoms, it was found to significantly impact the HRQoL of patients with SLE. Among the 114 patients discussing “sleep and rest” topics, over half of the patients (n=70) reported experiencing recurrent insomnia since many years. Nighttime sleep disturbances and daytime napping were common, with some patients stating that insomnia or a hyperactive mood was an early sign of disease flare-ups. Patients reported that insomnia was also linked to the side effects of certain medications taken for their lupus, such as hydroxychloroquine, methotrexate, and prednisone, whereas medications such as cannabidiol and nonpharmacological interventions including exercise, meditation, and acupuncture had a positive impact on sleep maintenance disorders. Quotations of patients with SLE describing their symptoms are provided in Multimedia Appendix 4.

Most Burdensome Symptoms

The most burdensome symptoms were identified by analyzing the degree of severity with which a patient with SLE was affected based on linguistic cues provided by them. The most burdensome symptoms included pain (general pain: 289/870, 33.2%; arthralgia: 59/228, 25.9%; and cephalgia: 65/154, 42.2%); fatigue (192/474, 40.5%), and anxiety (51/193, 26.4%). Other symptoms that were perceived burdensome included clinical depression (30/128, 23.4%), photosensitivity (5/33, 15%), arthritis (12/99, 12.1%), hypothyroidism (2/36, 5.6%), and antiphospholipid syndrome (4/79, 5.1%). Of note, it is possible that the same patient may have reported more than one symptom or sign.

Areas of Involvement

The most frequently reported areas of involvement (n=1778 patients) were the skin (n=224, 12.6%), face (n=224, 12.6%), and eyes (n=197, 11.1%; Multimedia Appendix 5).

Comorbidities

In addition to the symptoms from the main indication, patients with SLE reported experiencing multiple comorbidities (n=488 patients). The most frequently (>5% [24 patients]) reported comorbidities were major depressive disorder (n=98, 20.1%), fibromyalgia (n=66, 13.5%), infection (n=62, 12.7%), dry eye syndrome (n=50, 10.2%), rheumatoid arthritis (n=40, 8.2%), and hypothyroidism (n=34, 7%).

Overall HRQoL in Patients With SLE

Overview

To investigate the HRQoL of patients, the frequency of mentions and the perceived importance of issues related to HRQoL facets were analyzed. Social networking communities discussed several aspects of HRQoL, as evidenced by 2199 patient mentions and 2138 posts accounting to 37.9% (2138/5636) of all posts analyzed in this study. These posts on HRQoL by patients with SLE contained descriptions of how they perceived the most burdensome symptoms and the impact on their daily lives. The most commonly discussed HRQoL aspects based on the total
number of patients mentioning any HRQoL facet (n=2199 patient mentions) were “negative feelings” (n=521, 23.7%) and “recreation and leisure” (n=314, 14.3%). Other commonly discussed HRQoL aspects included “health care availability,” “positive feelings,” “mobility,” “energy and motivation,” “cognitive capabilities,” “sleep and rest,” “work capacity,” and others (Table 3).

Table 3. Distribution of HRQoL aspects among patients with SLE (n=2199 patient mentions from 5636 posts) and CLE (n=78 posts from n=47 patients).

<table>
<thead>
<tr>
<th>HRQoL aspects</th>
<th>SLE (n)</th>
<th>CLE (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative feelings</td>
<td>521</td>
<td>20</td>
</tr>
<tr>
<td>Recreation and leisure</td>
<td>314</td>
<td>14</td>
</tr>
<tr>
<td>Health care availability</td>
<td>205</td>
<td>8</td>
</tr>
<tr>
<td>Positive feelings</td>
<td>183</td>
<td>8</td>
</tr>
<tr>
<td>Mobility</td>
<td>176</td>
<td>7</td>
</tr>
<tr>
<td>Energy and motivation</td>
<td>155</td>
<td>4</td>
</tr>
<tr>
<td>Cognitive capabilities</td>
<td>154</td>
<td>5</td>
</tr>
<tr>
<td>Sleep and rest</td>
<td>114</td>
<td>3</td>
</tr>
<tr>
<td>Work capacity</td>
<td>113</td>
<td>3</td>
</tr>
<tr>
<td>Activities of daily living</td>
<td>106</td>
<td>—</td>
</tr>
<tr>
<td>Financial resources</td>
<td>104</td>
<td>2</td>
</tr>
<tr>
<td>Transport</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>Intimacy and sex</td>
<td>5</td>
<td>—</td>
</tr>
</tbody>
</table>

HRQoL: health-related quality of life.
SLE: systemic lupus erythematosus.
CLE: cutaneous lupus erythematosus.
Indicates that patients were counted more than once if they discussed more than one HRQoL aspect in a post.
Not available.

Patients frequently reported impairments in areas such as “mobility,” “cognitive capabilities,” and “recreation and leisure,” for which pain and fatigue were the leading causes. While pain primarily affected “mobility,” “recreation and leisure,” and “sleep and rest,” fatigue affected multiple HRQoL facets. Overall, the impact of pain on “mobility” and fatigue on “cognitive capabilities” was the most substantial factor impairing HRQoL (Multimedia Appendix 6).

Psychological Well-Being

Negative Feelings

Posts from 1371 patients revealed “negative feelings” (339/521, 65.1%) as the highest-ranked HRQoL facet in terms of high importance to the patient. Further examination of these posts from 521 patients revealed that severe symptoms or side effects such as pain, fatigue, rashes, and depression affected the HRQoL of these patients, thereby leading to frequent mentions of “negative feelings.”

Positive Feelings

“Positive feelings” were expressed by the patients who experienced feelings of satisfaction or wellness and emotions, such as excitement, interest, pride, love, and optimism. “Positive feelings” were mentioned less frequently than “negative feelings” (183/2199, 8.3% vs 521/2199, 23.7%); nevertheless, they were still considered as highly important HRQoL by 63.2% (116/183) of patients, which is comparable to the high importance of “negative feelings” (339/521, 65.1%), suggesting that patients viewed both dimensions as equally important. Among the positive emotions mentioned, “feeling better,” “thankfulness,” and “hopefulness” were the most commonly reported. Notable patient quotations on “negative feelings” and “positive feelings” are presented in Multimedia Appendix 7.

Physical Well-Being

Mobility

Patients reported that the severity of their symptoms limited physical activity and mobility. “Mobility” was mentioned in 176 patient posts corresponding to 8% of all HRQoL patient mentions (n=2199). Within this facet, approximately 58% (103/176) of patients considered this HRQoL aspect as of high importance. Primary factors impeding “mobility” (Multimedia Appendix 6) were attributed to the pain and fatigue they experienced. Moreover, patients noted that reduced mobility negatively impacted their overall health, social life, and mental well-being. One patient described “immobility” as analogous to “poor-performing robot” (Multimedia Appendix 7).
Activities of Daily Living
This HRQoL facet explored a person’s ability to perform usual daily living activities. This facet was identified as highly important by 50.4% (53/106) of patients. Most patients described problems performing (routine) household activities, personal hygiene, going (outside) for a walk, or even getting out of bed due to pain or lack of energy. Patients’ quotations on their struggles with “activities of daily living” are provided in Multimedia Appendix 7.

Recreation and Leisure
For most patients (129/314, 41.3%), the HRQoL facet “recreation and leisure” was described as being highly important. Owing to the severity of the symptoms, this aspect was frequently described as being hindered, limited, or achievable only with appropriate treatments. Patients reported that joint pain, bleeding, or exhaustion frequently limited their physical activity. Additionally, patients with photosensitivity found it challenging to perform leisure activities such as outdoor sports, watching television, or just relaxation. Patients’ quotations on “recreation and leisure” are provided in Multimedia Appendix 7.

Role Participation
Symptoms, especially when combined with flare-ups, limited the everyday functions of patients with SLE and impacted their role participation in multiple ways. Patients reported a decrease in self-esteem and restricted social relationships. Several patients felt that they could not fulfill their parenting duties and were a burden to their partners. Moreover, patients reported that symptoms of SLE compromised their ability and capacity to work.

Treatment Experience of Patients With SLE
Overview
To evaluate the treatment experiences and unmet needs of patients with SLE, the most frequently used current treatment options (nonpharmacological and pharmacological interventions) mentioned by patients were quantitatively analyzed. The level of satisfaction among patients with SLE with existing treatment options and coping mechanisms is described below.

Current Treatment Options
Exercise, sun protection measures, meditation, and massage were the most commonly reported nonpharmacological interventions (Table 4). Patients found that nonpharmacological interventions, particularly exercise activities such as walking, e-biking, swimming, yoga, or Pilates, and other activities such as meditation and massages to be effective coping mechanisms for dealing with the disease and its symptoms. Additionally, based on 1566 posts, hydroxychloroquine, prednisone, and methotrexate were the most frequently reported pharmacological interventions (Table 5). Negative feedback for pharmacological interventions was mostly related to the drug’s side effects (Multimedia Appendix 8).

Table 4. Nondrug treatments most frequently reported by patients with SLEa (n=482b patient mentions and n=267 patients) and CLEc (n=24b patient mentions from n=16 patients).

<table>
<thead>
<tr>
<th>Nondrug treatments</th>
<th>Mentions in posts, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SLE</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Exercise</td>
<td>222 (46.1)</td>
</tr>
<tr>
<td>Sun protection</td>
<td>82 (17)</td>
</tr>
<tr>
<td>Meditation</td>
<td>43 (8.9)</td>
</tr>
<tr>
<td>Massage</td>
<td>36 (7.5)</td>
</tr>
<tr>
<td>Herbal medicine</td>
<td>32 (6.6)</td>
</tr>
<tr>
<td>Nutrition therapy</td>
<td>30 (6.2)</td>
</tr>
<tr>
<td>Acupuncture</td>
<td>18 (3.7)</td>
</tr>
<tr>
<td>Cognitive behavioral therapy</td>
<td>11 (2.3)</td>
</tr>
<tr>
<td>Vitamin D supplements</td>
<td>8 (1.7)</td>
</tr>
</tbody>
</table>

aSLE: systemic lupus erythematosus.
bIndicates that patients were counted more than once if they discussed multiple nondrug treatments in a post.
cCLE: cutaneous lupus erythematosus.
dNot available.
Table 5. Drug treatments most frequently reported by patients with SLE\(^a\) (n=1566\(^b\) posts) and CLE\(^c\) (n=82\(^b\) posts).

<table>
<thead>
<tr>
<th>Drug treatments</th>
<th>Mentions in posts, n (%)</th>
<th>SLE</th>
<th>CLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxychloroquine</td>
<td>538 (34.4)</td>
<td>42 (51.2)</td>
<td></td>
</tr>
<tr>
<td>Prednisone</td>
<td>322 (20.6)</td>
<td>8 (9.6)</td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>303 (19.3)</td>
<td>29 (35.4)</td>
<td></td>
</tr>
<tr>
<td>Azathioprine</td>
<td>107 (6.8)</td>
<td>6 (7.3)</td>
<td></td>
</tr>
<tr>
<td>Prednisolone</td>
<td>100 (6.4)</td>
<td>17 (20.7)</td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>49 (3.1)</td>
<td>1 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>44 (2.8)</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>Warfarin</td>
<td>42 (2.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracetamol</td>
<td>35 (2.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinacrine</td>
<td>26 (1.7)</td>
<td>7 (8.5)</td>
<td></td>
</tr>
<tr>
<td>Cyclosporine</td>
<td></td>
<td>4 (4.8)</td>
<td></td>
</tr>
<tr>
<td>Tacrolimus</td>
<td></td>
<td>3 (3.7)</td>
<td></td>
</tr>
<tr>
<td>Naproxen</td>
<td></td>
<td>2 (2.4)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)SLE: systemic lupus erythematosus.
\(^b\)Indicates that patients were counted more than once they discussed more than one drug treatment in a post.
\(^c\)CLE: cutaneous lupus erythematosus.
\(^d\)Not available.

Treatment Options and HRQoL Aspects

Many relevant aspects of HRQoL, such as “recreation and leisure,” “energy and motivation,” “activities of daily living,” and “mobility,” were improved by nonpharmacological interventions, particularly exercise or meditation. Despite the undesirable side effects, patients frequently used medications, such as hydroxychloroquine, azathioprine, prednisolone, or mycophenolate mofetil, which improved SLE symptoms, although to a lesser extent than that achieved using nonpharmacological interventions. Regarding treatment effects on different aspects of HRQoL (n=5336 posts), 473 (8.9%) reported worsening, while 286 (5.4%) reported improvement of an HRQoL aspect. The most burdensome symptoms, such as pain, fatigue, and rashes, were poorly managed by available drug treatment options for patients with SLE.

Level of Satisfaction With Current Treatment Options

Both positive (65/286 posts) and negative (56/473 posts) feedback were documented when analyzing the level of satisfaction. The reasons for a low level of satisfaction included the lack of treatment options, failure of previously successful treatments due to side effects, or no treatment at all. A high level of satisfaction was primarily attributed to the management of symptoms, initiation of treatments following a successful diagnosis, knowledge level of the doctors treating the patients, and availability of options in case of treatment failure. The most effective pharmacological interventions included prednisone and hydroxychloroquine. However, side effects, such as allergic reactions, insomnia, and increased appetite, caused some patients to discontinue treatment. Discontinuation of treatment and patient satisfaction with drug treatments were frequently attributed to insurance coverage (such as expensive medications). Patient quotations on the levels of satisfaction with current treatment options are presented in Multimedia Appendix 8.

Diagnosis and Access to Care

Health care availability was frequently mentioned in 285 posts authored by 205 patients with SLE. Health care availability was considered as the most important aspect of HRQoL by 45.8% (n=94) of patients with SLE. Some patients with SLE (n=10) reported having received a misdiagnosis or a correct diagnosis only after several years of experiencing symptoms. Several patients with SLE experienced delays in diagnosis and did not receive proper treatment until they found a doctor with enough expertise to diagnose or investigate their symptoms or until they were referred to a specialist. Patients with SLE often managed and advocated for themselves by switching doctors and actively seeking specialists.

Coping Mechanisms

Despite their symptom-related restrictions, patients with SLE reported attempting to stay active and perform daily tasks, even if they could manage only a few of them. Reducing the number of their daily activities helped patients prevent negative side effects and flare-ups. Patients shared coping strategies such as taking medications for side effects and establishing healthy routines involving adequate sleep, proper nutrition, exercise, and hydration. A total of 28 patients (n=40 posts) reported that physical activities or exercise positively affected their physical and psychological well-being. Exercise, meditation, Tai Chi, and yoga were all reported to reduce the burden of symptoms. Some patients found that following an anti-inflammatory diet.
helped reduce skin and joint pain, thereby allowing them to engage in more physical activities. Patient quotations on coping mechanisms are presented in Multimedia Appendix 8.

Disease Burden in Patients With CLE

Overview

The investigation of disease burden in patients with CLE was limited owing to the small sample size (106 patients with CLE and 243 patient posts). Disease burden could be quantified only for the most prevalent symptoms, areas of involvement (body parts), and sleep disturbances.

Patient-Reported Symptoms

Based on an analysis of 244 posts from 118 patients, the most frequently (>5% [6 patients]) reported symptoms were rash (n=27, 23%), pain (n=25, 21%), and fatigue (n=19, 16%) alopecia (n=11, 9%), arthralgia (n=10, 8%), and anxiety and scar (each n=7, 6%; Table 2). Sleep disorders were reported by a total of 8 patients in 10 posts, with insomnia (n=2, 25%) being the most common side effect of lupus medications. Notable quotations from patients describing their symptoms are presented in Multimedia Appendix 4.

Areas of Involvement

Based on an analysis of 169 posts from 148 patients, the skin (n=38, 26%), face (n=20, 14%), legs (n=15, 10%), and hairs (n=15, 10%) were the most frequently reported areas of involvement affected by symptoms (Multimedia Appendix 5).

Overall HRQoL of Patients With CLE

HRQoL facets were discussed by 47 patients with CLE in 78 of 243 (32.1%) posts. The distribution of HRQoL facets of this population (n=78 posts) was similar to that of patients with SLE, with “negative feelings” (n=20, 26%) and “recreation and leisure” (n=14, 18%) being the most frequently reported dimensions of HRQoL based on the total number of posts (Table 3). Few patients mentioned that their condition negatively affected their ability to work. Although “positive feelings,” “health care access,” and “mobility” were frequently mentioned, differences in ranking could not be identified because of the small sample size (n<10) of individual HRQoL facets. Quotations of patients with CLE regarding their HRQoL are available in Multimedia Appendix 7.

Treatment Experience of Patients With CLE

Overview

The treatment experiences and unmet needs of patients with CLE were quantitatively analyzed by assessing the most frequently used treatment options (pharmacological and nonpharmacological interventions) as mentioned by the patients and exploring patient experiences related to diagnostic delay, health care availability, and coping mechanisms.

Nonpharmacological Interventions

From 24 posts, sun protection (n=12, 50%) and exercise (n=7, 29%; Table 4) were the most frequently reported nondrug treatments. Patients found dietary changes, massages, and exercise to be helpful in managing their symptoms and flare-ups.

Drug Agents

The most frequently reported medications (n=119 posts) were hydroxychloroquine (n=42, 35%), methotrexate (n=29, 24%), and prednisolone (n=17, 14%; Table 5). Negative statements regarding treatment experiences were mostly related to side effects of the medications (Multimedia Appendix 8). Methotrexate was associated with side effects, such as fatigue, brain fog, and lack of sleep, which led to patients having to take time off work. Positive statements regarding pharmacological interventions were infrequent (Multimedia Appendix 8).

Diagnosis and Access to Care

Patients with CLE reported difficulties in receiving the correct diagnosis because health care providers did not give sufficient consideration to their skin lesion complaints. They reported being confused or misled by the recommendations of dermatologists and rheumatologists, and they received little support with an understanding of their diagnosis and the symptoms to expect from their health care professionals (HCPs). Patients reported feeling frustrated because dermatologists referred them to rheumatologists who prescribed different medications which only made their symptoms worse (Multimedia Appendix 8). Despite showing clear symptoms and positive diagnostic markers, HCPs often advised patients that they “do not have lupus” or had gone “dormant,” highlighting a concerning trend of misdiagnosis and lack of belief by HCPs when it comes to lupus and related conditions.

Discussion

Principal Findings

This retrospective study investigated the experiences of patients living with SLE or CLE, who publicly discussed their experiences in web-based social media platforms. Patients who were active on these platforms frequently shared and discussed their HRQoL, their perceptions of the disease burden, and treatment experiences affecting their daily lives. Pain and fatigue were identified as symptoms that most impaired HRQoL, negatively impacting physical and psychological well-being. The most frequently used pharmacological interventions included hydroxychloroquine, prednisone, and methotrexate, while nonpharmacological interventions included exercise, meditation, and proper nutrition (diet). Nonpharmacological interventions were more frequently associated with improved HRQoL.

Several studies have explored the disease burden and treatment experiences among patients diagnosed with SLE and CLE [25-31]. Qualitative studies focusing on outcomes reported by patients with SLE suggest that HRQoL is significantly impaired in these patients [26-29]. A qualitative literature analysis of 58 studies relating to the burden of SLE found that in all of these studies, the factors that appeared most frequently affecting the HRQoL in patients with SLE (based on the number of citations) were advanced age, fatigue, the coexistence of neurological or psychiatric conditions (especially depression or anxiety), limited educational achievement, and financial challenges such as poverty or low household income [26]. This is mostly consistent with the findings of this study, wherein pain and fatigue were
identified as key factors negatively impacting HRQoL in patients with SLE. The severity of these symptoms affected patients’ mobility, cognitive abilities, recreation and leisure activities, and sleep and rest. Patients with SLE often found it challenging to engage in work or recreational activities such as sports, biking, or running. Moreover, these impairments had a negative impact on psychological aspects such as low self-esteem, social relationships (such as feeling like a burden to others), and role functions (such as parental responsibilities and the capacity to work).

Lupus symptoms often result in sleep disturbances, which may in turn aggravate fatigue and exhaustion. Sleep disorders in patients with SLE are often linked to disease activity, pain, and fatigue and are influenced by psychosocial and psychological factors [30]. This is consistent with the findings of this study, wherein patients with SLE or CLE reported symptoms such as pain, fatigue, and anxiety, which primarily impacted the “sleep and rest” HRQoL facet. In this study, the correlation between sleep and lupus symptoms was found to be bidirectional, that is, disrupted sleep was associated with increased fatigue and may also worsen symptoms such as pain and discomfort leading to poor sleep quality, thereby, negatively impacting the overall HRQoL. Additionally, some patients regularly experienced insomnia-related difficulties, which even lasted for years in some cases.

In this study, patients with SLE discussed worsening of HRQoL twice as much in the context of pharmacological interventions, suggesting that the most burdensome symptoms, such as pain, fatigue, and rash, were still inadequately controlled under the current treatment options. Notably, patients receiving pharmacological interventions reported positive experiences with HCPs, who considered their symptoms seriously and had adequate knowledge of lupus for providing effective treatments. They appreciated receiving treatments that helped manage their symptoms or the availability of other options if treatments failed, particularly following a successful diagnosis. In contrast, a low satisfaction level with current treatment was attributed to the lack of treatment options available, previously successful treatments that later failed, or not receiving any treatment at all. This finding highlights that effective patient-physician communication and improving patients’ knowledge about disease and treatment through patient education strategies are important for improving patients’ adherence to therapy in SLE [31].

Medications that are effective in treating lupus are frequently associated with undesirable side effects, thereby leading to patient dissatisfaction [31]. This can also be emotionally challenging for patients as it can negatively impact their HRQoL. To overcome such difficulties, patients may seek alternative nonpharmacological treatment options and associated coping strategies [32-34]. Notwithstanding the symptom-related limitations, the patients with SLE and CLE included in this study reported that they attempted to remain active and complete daily tasks despite being able to manage only a few tasks.

As observed in patients with SLE, patients with CLE experienced the same impacts on their HRQoL: “negative feelings,” “recreation and leisure,” and “health care availability.” The HRQoL of these patients with CLE was also impacted by the visibility of lesions regardless of the levels of disease activity. Skin lesions or scars that were constantly visible, alopecia, photosensitivity, and the chronic nature of the disease significantly impaired HRQoL. Patients with CLE felt that they were neglected and did not receive the necessary attention in health care settings. They highlighted that they experienced more difficulties than patients with SLE owing to misdiagnosis, delayed diagnosis, and contradictory treatment approaches between dermatologists and rheumatologists.

This study demonstrated that social listening could be useful for the generation and analysis of large amounts of data from web-based platforms, such as social media, and patient forums. The approach offers an opportunity to obtain insights from a large patient population by capturing their real-time conversations and contextual understanding of their perspectives [17]. Thus, social listening complemented with traditional methods, such as interviews, surveys, focus groups, and advisory boards or panels, can facilitate a deeper understanding of patients’ perspectives and their unmet needs. Additionally, social listening is fast, eliminates the need for patient recruitment, reduces recall bias through instant platforms, does not burden patients, and offers anonymity in reporting socially embarrassing symptoms, thereby reducing reporting bias [17,18].

We departed from traditional methods and used natural language processing and artificial intelligence in this study to apply and enhance both qualitative and quantitative methods. This facilitated more rigorous analyses of large amounts of unsolicited patient-reported narratives from multiple web-based patient forums to better understand patients’ perspectives and disease burden and identify unmet medical needs.

In the context of drug development, identifying and integrating unmet patient needs and experiences in the decision-making process and evidence-generation strategies are important to ensure that patients’ perspectives and needs are considered and truly represented across the entire continuum of the process [16]. Social media offers access to difficult-to-reach populations or help to concentrate on groups with specific conditions or disorders [35,36]. By actively listening to patients’ descriptions of their challenges on social media platforms, pharmaceutical organizations could gain insight into their daily struggles and identify the most relevant and impactful factors [17]. The increasing presence of patients on social media represents an opportunity for pharmaceutical organizations to identify relevant knowledge for different stages of drug development, with a focus on patients’ HRQoL and beyond.

Limitations

This study had several limitations. First, this study relied on publicly available social media data, raising concerns regarding the accuracy of self-diagnosis or self-reported patient experience. Patients who opted not to publicly share their profiles (and were therefore excluded from the study) may have different opinions, thereby resulting in potential bias. Second, the data set may contain duplicate author profiles, wherein similar authors could have been active on multiple social media platforms. Third, this study only included English-speaking countries and younger populations, which could be a source of
bias. Fourth, this study did not examine differences across subgroups (patient populations with SLE and CLE) owing to the inability to identify race or ethnicity or other sociodemographic variables. Fifth, the analysis of patients with CLE was limited by a small sample size, which is why several outcomes reported for SLE could not be reported for CLE; therefore, the results regarding CLE should be interpreted cautiously. The authors’ opinion is that similar type of analyses should be conducted in the future for other novel pharmacological agents to gather valuable insights into the experiences of patients while living with the disease.

Conclusions
This social listening study sheds light on the experiences of patients living with SLE and CLE active on social media, providing valuable insight into their experiences, which have not been extensively investigated. SLE and CLE affect all aspects of patients’ lives owing to their wide-ranging manifestations. This study showed varying severity and frequency of symptoms that were reported as burdensome by patients. Moreover, several aspects of HRQoL and factors contributing to HRQoL improvement or worsening were discussed by patients. The results of this study suggest that current treatment options provide insufficient relief, thereby warranting the development of more effective treatments with good tolerability and safety to address the heavy disease burden and unmet needs of patients with SLE and CLE. Our findings can serve as a valuable resource to inform and shape activities and decisions in drug development to meet patients’ needs and improve their HRQoL.

Acknowledgments
Medical writing assistance was provided by Vimal Kumar Muthyala and Pritorthi Bhattacharjee of Merck Specialties Pvt Ltd, an affiliate of the Healthcare Business of Merck KGaA, Darmstadt, Germany. This work was supported by the Healthcare Business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID 10.13039/100009945).

Authors’ Contributions
ES, TA, and MH contributed to the study concept and design, data acquisition, data analysis, and data interpretation. PK and JP contributed to the study concept and design, data analysis, and data interpretation.

Conflicts of Interest
ES was affiliated with EMD Serono, Billerica, MA, United States at the time of the study and paper preparation and is currently affiliated with Modus Outcomes. TA and MH are employees of Semalytix GmbH. MH is a shareholder of Semalytix GmbH. JP is an employee of EMD Serono, Billerica, MA, United States. PK is an employee of the Healthcare Business of Merck KGaA, Darmstadt, Germany.

Multimedia Appendix 1
List of relevant web-based social media sources retrieved from third-party social media data provider “SocialGist”.
[DOC File, 118 KB - formative_v81e52768_app1.doc]

Multimedia Appendix 2
Glossary of terms.
[DOC File, 110 KB - formative_v81e52768_app2.doc]

Multimedia Appendix 3
Personal data protection measures.
[DOC File, 115 KB - formative_v81e52768_app3.doc]

Multimedia Appendix 4
Quotations of patients with systemic lupus erythematosus or cutaneous lupus erythematosus describing their symptoms.
[DOC File, 123 KB - formative_v81e52768_app4.doc]

Multimedia Appendix 5
Most frequently mentioned body parts by patients with systemic lupus erythematosus or cutaneous lupus erythematosus.
[DOCX File, 93 KB - formative_v81e52768_app5.docx]

Multimedia Appendix 6
Heatmap showing the impairment (negative impact) of a symptom on an aspect of health-related quality of life in patients with systemic lupus erythematosus (n=159 patients from 716 posts).
[PNG File, 43 KB - formative_v81e52768_app6.png]
Multimedia Appendix 7
Quotations of patients with systemic lupus erythematosus or cutaneous lupus erythematosus on their health-related quality of life.
[DOC File , 121 KB - formative_v8i1e52768_app7.doc]

Multimedia Appendix 8
Quotations of patients with systemic lupus erythematosus and cutaneous lupus erythematosus on their drug treatment experiences.
[DOC File , 127 KB - formative_v8i1e52768_app8.doc]

References
16. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Patient-focused drug development: methods to identify what is important to patients: guidance for industry, food and drug administration staff, and other stakeholders. U.S. Food and Drug Administration. 2022 Feb. URL: https://www.fda.gov/media/131230/download [accessed 2023-11-06]

Abbreviations

CLE: cutaneous lupus erythematosus
HCP: health care professional
HRQoL: health-related quality of life
SLE: systemic lupus erythematosus
Spies et al

©Erica Spies, Thomas Andreu, Matthias Hartung, Josephine Park, Paul Kamudoni. Originally published in JMIR Formative Research (https://formative.jmir.org), 02.02.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Patient Experiences and Insights on Chronic Ocular Pain: Social Media Listening Study

Brigitte Sloesen¹, PharmD; Paul O’Brien²*, Grad Dip; Himanshu Verma³, BDentS, MBA, PGDBM; Sathyaraj Asaithambi³*, MSc; Nikita Parashar³*, MPharm; Raj Kumar Mothe³*, MPharm; Javed Shaikh³*, MS; Annie Syntosi⁴*, MSc

¹Novartis Pharma NV, Vilvoorde, Belgium
²Novartis Ireland Limited, Dublin, Ireland
³Novartis Healthcare Pvt Ltd, Hyderabad, India
⁴Novartis Pharma AG, Basel, Switzerland
*these authors contributed equally

Corresponding Author:
Brigitte Sloesen, PharmD
Novartis Pharma NV
Medialaan 40
B-1800
Vilvoorde
Belgium
Phone: 32 478881453
Email: brigitte.sloesen@novartis.com

Abstract

Background: Ocular pain has multifactorial etiologies that affect activities of daily life, psychological well-being, and health-related quality of life (QoL). Chronic ocular surface pain (COSP) is a persistent eye pain symptom lasting for a period longer than 3 months.

Objective: The objective of this social media listening study was to better understand COSP and related symptoms and identify its perceived causes, comorbidities, and impact on QoL from social media posts.

Methods: A search from February 2020 to February 2021 was performed on social media platforms (Twitter, Facebook, blogs, and forums) for English-language content posted on the web. Social media platforms that did not provide public access to information or posts were excluded. Social media posts from Australia, Canada, the United Kingdom, and the United States were retrieved using the Social Studio platform—a web-based aggregator tool.

Results: Of the 25,590 posts identified initially, 464 posts about COSP were considered relevant; the majority of conversations (98.3%, n=456) were posted by adults (aged >18 years). Work status was mentioned in 52 conversations. Patients’ or caregivers’ discussions across social media platforms were centered around the symptoms (61.9%, n=287) and causes (58%, n=269) of ocular pain. Patients mentioned having symptoms associated with COSP, including headache or head pressure, dry or gritty eyes, light sensitivity, etc. Patients posted that their COSP impacts day-to-day activities such as reading, driving, sleeping, and their social, mental, and functional well-being.

Conclusions: Insights from this study reported patients’ experiences, concerns, and the adverse impact on overall QoL. COSP imposes a significant burden on patients, which spans multiple aspects of daily life.

(JMIR Form Res 2024;8:e47245) doi:10.2196/47245

KEYWORDS
chronic ocular surface pain, patients’ experiences; quality of life; social media; Twitter; unmet needs; ocular pain; ophthalmology; ocular; listening; experience; experiences; tweet; eye pain; eye condition; social media platforms; social media use; patient experience; chronic pain; pain; internet; eye; retina; online health; digital health; web; vision; optical
Introduction

Chronic ocular surface pain (COSP) is defined as moderate to severe corneal-induced chronic pain lasting more than 3 months. COSP distracting from, or interferes with, regular daily activities, which may result in poor quality of life (QoL) and health-related QoL, thus impacting the individuals’ ability to carry out daily activities and their psychological well-being [1]. Common pain-related symptoms include ocular irritation, burning, dryness, and other pain descriptors such as corneal sensitivity, shooting, stabbing, grittiness, sharp pain, a hot burning sensation, light sensitivity, and the sensation of a foreign body on the ocular surface. The intensity of ocular pain ranges from simple discomfort to intense unbearable pain; however, evidence elaborating a classification system for COSP is limited [2,3]. COSP can be considered an umbrella term due to the wide spectrum of clinical manifestations, which can result from multiple factors [4].

Patient-reported outcomes (PROs) and patients’ experiences are most often analyzed via conventional methods by using cross-sectional surveys (digital, face-to-face interviews, questionnaires, etc) in different research settings (at hospital sites, home, on the web, through patient-supported organizations, etc). In countries with high internet penetration, access to electronic devices and social media platforms has significantly influenced the health care landscape [5,6]. Social media platforms enable patients to share their perceptions about diseases, treatment patterns, satisfaction with outcomes, and other factors affecting their lives. Therefore, these platforms act as a source to obtain disease-related information, identify and access health care resources, network with fellow patients, and communicate problems and experiences on the web [5-7].

Social media listening (SML) is a new approach to gather information from social media platforms and can be useful in generating insights from users’ experiences. SML has been used to monitor and analyze discussions on health-related topics in diverse diseases [8-13]. Social media facilitates efficient capture of patients’ understanding of a disease and their coping strategies. In addition, SML provides a clear understanding of the patients’ perspectives of a disease, their barriers to health behavior change, and disease-related symptoms [14]. To date, there is no published literature on the use of SML to investigate the needs and experiences of patients with COSP. This study explores SML as a research tool to provide insights on disease burden, diagnosis, treatment patterns, and QoL in patients with COSP.

The objectives of this study are to (1) understand the burden of COSP, its symptoms; its impact on daily life, activities, and QoL, including social well-being and mental health; its management; and the hurdles, gaps, and needs from a patient’s perspective; and (2) capture information directly from patients or caregivers by using their own words and in their familiar environment regarding when and how they feel at that moment, attempting to understand related emotions as well.

The results of this study could help define COSP-related gaps and needs from patients’ perspectives and set priorities for drug development to address them. Our results would also help to develop adequate tools (PRO questionnaires) to quantify the impact of COSP on patients and to develop new PRO end points in clinical studies assessing the potential improvement of new treatments.

Methods

Study Design and Data Source

A comprehensive search from February 2020 to February 2021 was performed on social media platforms (Twitter, Facebook, blogs, and forums) for English-language content posted on the web. Social media platforms that did not provide public access to information or posts were excluded. The following predefined search terms were used to retrieve the relevant web content: “chronic ocular pain” OR “chronic eye pain” OR “ocular surface pain” OR “ocular pain” OR “eye pain” OR “eye aching” OR “eye ache” OR “eye surface pain” OR “keratoconus pain” OR “conjunctivitis pain” OR “keratitis pain” OR “blepharitis pain” OR “Iritis pain" OR “corneal neuropathy pain.” Social media posts from Australia, Canada, the United Kingdom, and the United States were retrieved using the Social Studio platform [15]—a web-based aggregator tool. In the first step (wave 1), the study was limited to English-speaking countries; non–English-speaking countries were assessed later (in wave 2) and will be the subject of a separate publication.

Selection of Posts and Text Data Cleaning

We used the Social Studio tool to download the links of posts with the date stamp and geographic location of users from web-based social media platforms on the basis of the abovementioned keywords. The tool assigned a unique article ID for each downloadable link. These links were used to retrieve the content and remove duplicates (based on unique article IDs and content snippets), irrelevant comments, and out-of-scope content. Irrelevant posts including job postings, aggregator, or junk websites (ie, websites leading to unsolicited advertisements or unrelated misleading links), nonfunctional links, promotional content, and pharmaceutical or e-retailer market reports were removed. Spelling correction was applied while evaluating the content of the post. Additional secondary research including hand searching for posts was performed for patients’ or caregivers’ conversations on forums to increase the robustness of insights and volume of data. The term “mention” indicates the number of times a symptom, treatment, diagnostic test, or another parameter is mentioned in each post. The number of mentions were independent of the number of posts, and due to data anonymization, these users could not be tracked across different platforms. The terms “conversation,” “post,” and “discussion” were synonymously used.

Categorization and Indexing of Social Media Posts

The downloaded links were further indexed using the WordNet Lemmatizer natural language processing (NLP) model to arrive at a sample of possible patient posts using patient lexicons and disease-related keywords. A relevancy check was carried out through a two-step process: (1) NLP was used to identify the relevancy and (2) a manual evaluation of relevant posts identified using NLP was carried out. Gender, age, work status, and other demographic information about the users was recorded.
when available or categorized as unknown if the information was not available at the time. Final analysis was conducted manually to generate patient or caregiver insights. A 4-level hierarchy of the decision-making process was followed to ensure the creation of a robust model of consensus-based analysis and tagging of posts. A self-review, followed by a peer review by analysts, a review by senior analysts, and finally a team review were performed during the study (Figure 1).

Figure 1. Decision-making process for including and tagging of posts.

The key themes identified were patient demographics, perceived causes of COSP, symptoms, disease management (medical consultations, diagnosis, and treatments), and QoL aspects (impact on physical, functional, emotional and social well-being, and work productivity). Posts were further analyzed for the “number of mentions” of a particular theme in the posts. Posts with a mention of COSP-related symptoms (itching, pain, irritation, etc) were used to provide a qualitative description of the patients’ self-reported experience with the disease. The impact of COSP on patients’ QoL was analyzed using posts describing work productivity loss or inefficiency and problems in performing activities of daily living. One post can have multiple mentions (themes) across the patient journey.

Ethical Considerations

This paper does not contain any studies with identifiable participants. All web-based content was anonymized and was in accordance with the HIPAA (Health Insurance Portability and Accountability Act) search strategy and data collection. Approval was obtained from the Novartis safety registry 1P1R—the governing body that holds oversight on the use of social media by Novartis (1P1R ID DE005899). All relevant local and global laws affecting and relating to the use of social media were aligned with and, as reflected in Novartis processes, followed in the conduct of this study. The authors of this manuscript consent to the publication of the submitted manuscript and declare that no individual patient data requiring consent has been presented.

Data Analysis

All data were analyzed using descriptive statistics and are presented as the number of posts, number of mentions, or percentages. All posts were analyzed by (1) social media channel (Twitter, Facebook, forums, and blogs), (2) country (Australia, Canada, the United Kingdom, and the United States), (3) tone (positive, neutral, or negative), and (4) key themes of discussion.

Results

Characteristics of Analyzed Posts

A total of 25,590 outputs were initially extracted from social media platforms using COSP-related keywords during the study period. In all, 5100 patient posts were identified by NLP, which facilitated an automated process of generating unique patient posts. A total of 464 posts determined to be written by patients or caregivers were thus identified and included for further analysis. Figure 2 summarizes the filtering of posts.
Forums and Twitter were the key channels for discussions across all geographies, contributing to ~59% and ~39% of the total conversations, respectively. A detailed list of domains from where the posts were obtained and demographic information are provided in Multimedia Appendix 1. Most of the social media posts were from the United Kingdom (n=208), followed by the United States (n=175), Canada (n=65), and Australia (n=16; Figure 2). Of the 130 conversations mentioning the duration of their ocular pain, the majority of patients had experienced ocular pain for several years (53.1%, n=69), followed by 7 to 12 months (18.5%, n=24), 4 to 6 months (14.6%, n=19), and 3 months (13.8%, n=18).

The majority of conversations were from patients (95%, n=441) as compared to 3.9% (n=18) from caregivers. The gender of the patient was mentioned in 118 posts, of which 57.6% (n=68) of posts were from women and 42.4% (n=50) of them were from men. Only 42 posts specified the patients’ ages; 40.5% (n=17) of patients were 21-30 years of age and 26.2% (n=11) of them were >60 years of age. Approximately 214 posts mentioned whether the patients were adults (99.1%, n=212) or children or teenagers (<18 years of age; 0.9%, n=2). Regarding the work status of the patients determined from among 52 posts, the majority of patients were working (51.9%, n=27), 19.2% (n=10) of them were students, and 19.2% (n=10) of them were retired.

Key Themes of Discussion
Of the 464 conversations, symptoms (61.9%, n=287) and the causes of COSP (58%, n=269) were the most common themes that emerged, along with the impact on QoL (20%, n=93). Patients or caregivers also discussed their experiences with health care professionals (HCPs; 25%, n=116), diagnosis (8%, n=37), triggers of their COSP (19%, n=88), treatments (18.1%, n=84), and coping strategies and lifestyle modifications (15.9%, n=74).

Symptoms described by patients varied widely and could be categorized as eye pain–related, such as burning and irritation; vision-related, such as blurred vision and light sensitivity; and physical, such as insomnia and headache (Figure 3). The severity of the symptoms was ranked (high and moderate to low) on the basis of key words and phrases used in the posts. Of the 261 conversations, 85.8% (n=224) of posts were rated as high severity and 14.2% (n=37) as moderate to low severity. Some phrases for high severity mentioned by patients included “eyes burn like hell,” “excruciating (eye) pain,” “eye pain is the
absolute worse,” “unbearable pain,” etc. Moderate to low–severity phrases included “mild redness in my eye occasionally,” “discomfort to mild pain,” and “the pain is pretty manageable.” In 154 conversations, patients also cited emotions that were related to their symptoms, including being upset (35.1%, n=54), worried (26%, n=40), angry (23.4%, n=36), and confused (5.8%, n=9; Figure 3).

Figure 3. Patient-reported symptoms on social media by the number of mentions in the posts.

Figure 3: Severity of Symptoms

There were 282 mentions of the causes of COSP, of which 46.1% (n=130) mentioned underlying ocular medical conditions such as dry eye disease and ocular surgery, and 53.9% (n=152) of them mentioned nonocular conditions contributing to COSP, such as migraine and COVID-19 (Multimedia Appendix 2). Commonly reported environmental triggers of eye pain, such as exposure to bright light or sun and long screen time use (Multimedia Appendix 3), reflect the burden on daily activities.

Overall, 158 patients mentioned the type of HCP they consulted. Of them, 27 consulted an ophthalmologist; 25 consulted an eye, retina, or cornea specialist; 21 consulted a doctor (unspecified specialty); 15 consulted an optometrist; and 14 consulted an optician. Others consulted a neurologist, neuro-ophtalmologist, eye clinic or eye surgeon, otorhinolaryngologists, etc. When the HCP consulted was mentioned (158 patients), the majority of the related comments (n=123) were negative. Many patients expressed that they were not able to get a proper diagnosis and hence expressed negative sentiments in various conversations, citing emotions such as confusion and worry. Pharmaceutical drugs (140/247, 56.7% treatment-related mentions) were cited as the major treatment option for managing COSP symptoms such as topical or oral drugs, followed by alternative remedies (83/247, 33.6%) such as hot compresses, lenses, etc, and lifestyle modifications (24/247, 9.7%) such as sleep, diet changes etc (Multimedia Appendix 4).

Impact of COSP on Patients’ QoL

A total of 159 posts by patients, ascertained to describe their QoL, were grouped in 4 domains: physical, emotional, functional, and social impact (Figure 4). COSP symptoms significantly impacted all aspects of patients’ QoL. Of the 159 posts, various aspects reported were difficulty watching TV or using a phone or computer (8.8%, n=14), executive dysfunction (cognitive, behavioral, and emotional difficulties; 5%, n=8), difficulty performing day-to-day activities such as reading (5%, n=8), and difficulty driving (4.4%, n=7). Emotional well-being, including feelings of depression or hopelessness (10.1%, n=16), frustration or anger (6.9%, n=11), fear (6.3%, n=10), and even suicidal thoughts (1.9%, n=3), were also mentioned. Conversations also mentioned the impact of COSP on functional well-being such as difficulty at the work place or at the place of study (6.9%, n=11), reduced productivity or having to quit their job (5.7%, n=9), as well as social impacts such as being irritated around people (1.9%, n=3) and having a less active social life (2.5%, n=4). Overall, COSP greatly affected the patients’ functional and psychological well-being, as illustrated through patients’ example quotes in Figure 5.
Patients’ Perspectives on Unmet Needs

Patients’ perceptions of unmet needs were grouped under 4 broad categories: diagnosis, HCP-related, treatment, and price- or access-related. A summary of patients’ perceptions of unmet need is presented in Figure 6. Failure to obtain a diagnosis of the underlying cause of COSP, even after undergoing multiple tests, emerged as the primary concern; this also led to a loss of confidence in HCP consultations in most cases.
Figure 6. Key unmet needs across different themes. HCP: health care professional.

Although not assessed in detail, no major differences were observed among the 4 English-speaking countries. Of note, however, the eye pain and related symptoms described by patients most often referred to the eye in general without specification of the ocular surface, so the study assessed chronic ocular pain rather than COSP.

Discussion

Principal Findings

This SML study attempts to use relevant data from social media platforms to understand patients’ problems and concerns related to COSP. This is the first study to use an SML approach to analyze the COSP disease burden and patients’ perspectives on COSP-related symptoms, causes and triggers, treatment options, and QoL aspects. The study provides a useful insight of the significant burden of COSP on patients’ daily activities, such as reading and driving and the negative impact on their emotional and social well-being and their work productivity. The strong wording that patients are using in describing their pain and its impact on their daily life illustrates patients’ suffering as well as their frustration in desperately seeking effective relief for their chronic ocular pain. This highlights the importance and difficulty of interpreting patients’ own wording expressed in spontaneous SML quotes to understand their real suffering. The results also illustrate how the lack of disease awareness to confirm a diagnosis, a dearth of effective treatment options, and the need to increase awareness of COSP among patients and HCPs are the key unmet needs.

The available treatment options for chronic eye pain are very limited, ranging from the use of artificial tear drops, anti-inflammatory agents or local immunomodulators, and analgesic drugs [16]. In this study, symptoms, multifactor etiological causes, diagnosis, and especially treatments of COSP are most frequently discussed in the context of their impact on patients’ lives. This is suggestive of the need for current COSP treatment paradigms to include qualitative aspects of patient experience to develop a patient-centric model of COSP management.

Two broad aspects of patient experience that this study identify are negative impact on QoL and patient perception of unmet needs. Almost 1 in 5 COSP patients described the negative impacts of COSP on work performance. Treatment strategies could be improved by understanding the issues related to patients’ QoL from social media posts. A common theme among patients’ conversations was the delay in the diagnosis of COSP, which resulted in multiple clinic visits and suboptimal management of COSP symptoms. In this study, patients reported that delayed diagnosis and a lack of proper treatments are associated with a negative perception of COSP. Additionally, even after being diagnosed with COSP, patients cited a lack of pain relief despite using multiple pain management options.

Social media interactions on the web present an inherent opportunity to identify and analyze unfiltered experiences of COSP directly from the own words of patients and caregivers. SML has been shown to be a valuable approach to gain an understanding of the patients’ experience of diseases and treatments with a particular advantage that it can allow data to be gathered from a very large, representative sample that is geographically dispersed (ie, from a wide range of countries or locations) [17]. SML has been used as a tool to investigate patients’ perceptions for different indications, including cancer screening [9], dry eye disease [18], HIV [11], inflammatory bowel disease [10], multiple sclerosis [8], presbyopia [19], total joint arthroplasty [13], and Zika virus [12]. Insights and summaries derived from such conversations can be a vital resource in enriching treatment outcomes associated with chronic diseases. It is, however, critical to carefully detect and assess different aspects included in the sometimes lengthy web-based conversations, ensuring the correct interpretation of patients’ posts, including the underlying emotional aspects. In our study, the high severity of COSP symptoms and its lasting effect resulted in negative sentiments in most patients. The variety in terms and the often strong wording used to describe their pain symptoms, their feelings, and the impact on their daily lives reflects the importance of SML in collecting first-line patient information that has been spontaneously expressed. Careful attention must be paid to capture the different aspects addressed in multiple conversations and interpret them correctly.
to adequately understand individuals’ actual suffering. Correct categorization and indexing of the SML posts was critical. Multiple analysts, senior analysts, and experts reviewed the posts during the whole process in order to obtain robust data. This highlights the importance and difficulty of interpreting patients’ own wording expressed in spontaneous SML conversations.

NLP has been widely used in SML studies, and the resulting data have been reported for a variety of diseases [10,12]. In this SML review, NLP has been used for its high-throughput capability, which was then paired with manual assessment to provide the necessary focus and specificity of the outputs. Inherent biases that may affect the accuracy (representativeness of the collected sample and linguistic selection in posts), reliability (consistency of reports from individual patients across time points or descriptors), and quality of information (self-selection bias) obtained from any social media platform may be present in this study as well [20]. One of the limitations of this study was that only publicly available information on digital platforms has been accessed and used; all the personal identifiers were anonymized in the report. Further, owing to the unstructured nature of social media data, it was not possible to obtain information on every research question; therefore, we objectively determined whether the available information supported the research question and, accordingly, our findings, which may be considered a limitation of this study.

Conclusions

Insights from this study reported the experiences and concerns and the adverse impact on overall QoL among patients with COSP. Assessment of patients’ own wording demonstrated that COSP imposes a significant burden of impaired QoL on patients, which spans multiple aspects of daily life, including physical and functional impacts, as well as impacts on emotional and social well-being. The lack of disease awareness among HCPs with long diagnostic delays and the inefficacy of prescribed treatments were cited as concerns. The variety in terms patients used on the web to describe their suffering, issues, and needs as well as the different aspects addressed herein contribute to a better understanding of the patients’ perspectives and highlight the value of SML studies. It is indeed most critical to obtain patients’ insights and address their unmet needs when considering disease management including drug development.

Acknowledgments

The study and article processing charges were funded by Novartis Pharma AG (Basel, Switzerland). The authors acknowledge Gurpreet Kaur Virya (Novartis Healthcare Pvt Ltd, India, at the time of study conduct) and Pradeep Basa (Novartis Healthcare Pvt Ltd, India) for editorial and writing support, in accordance with the Good Publication Practice (GPP3) guidelines of the International Society for Medical Publication Professionals.

Data Availability

The data sets generated or analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions

BS, PO, HV, SA, and AS conceptualized the study design. NP, HV, and SA contributed to the conduct of study and data collection. NP, HV, and SA analyzed and interpreted the data, along with other authors. RKM drafted the manuscript, along with JS, PO, and BS. All authors reviewed the manuscript critically and provided final approval for submission. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this paper and take responsibility for the integrity of the work as a whole.

Conflicts of Interest

BS, NP, SA, and AS are full-time employees at the Novartis group of companies and declare that they have no competing interests. HV, JS, PO, and RKM were full-time employees at the Novartis group of companies at the time this study was conducted and declare that they have no competing interests.

Multimedia Appendix 1

Demographic and clinical characteristics as represented by patient posts.

[DOCX File, 15 KB - formative_v8i1e47245_app1.docx]

Multimedia Appendix 2

Patients’ and caregivers’ example quotes regarding ocular causes of chronic ocular surface pain.

[PDF File (Adobe PDF File), 556 KB - formative_v8i1e47245_app2.pdf]

Multimedia Appendix 3

Patients’ and caregivers’ example quotes regarding nonocular causes of chronic ocular surface pain.

[PDF File (Adobe PDF File), 591 KB - formative_v8i1e47245_app3.pdf]
Multimedia Appendix 4
Patients' and caregivers' discussion on social media regarding treatment options for chronic ocular surface pain.

References

Abbreviations
COSP: chronic ocular surface pain
Identification of Myths and Misinformation About Treatment for Opioid Use Disorder on Social Media: Infodemiology Study

Mai ElSherief¹, PhD; Steven Sumner², MD; Vikram Krishnasamy², MD; Christopher Jones², DrPH; Royal Law², PhD; Akadia Kacha-Ochana², MPH; Lyna Schieber², DPhil; Munmun De Choudhury³, PhD

¹Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
²Centers for Disease Control and Prevention, Atlanta, GA, United States
³Georgia Institute of Technology, Atlanta, GA, United States

Corresponding Author:
Mai ElSherief, PhD
Khoury College of Computer Sciences
Northeastern University
360 Huntington Ave
Boston, MA, 02115
United States
Phone: 1 (617) 373 2462
Email: m.elsherif@northeastern.edu

Abstract

Background: Health misinformation and myths about treatment for opioid use disorder (OUD) are present on social media and contribute to challenges in preventing drug overdose deaths. However, no systematic, quantitative methodology exists to identify what types of misinformation are being shared and discussed.

Objective: We developed a multistage analytic pipeline to assess social media posts from Twitter (subsequently rebranded as X), YouTube, Reddit, and Drugs-Forum for the presence of health misinformation about treatment for OUD.

Methods: Our approach first used document embeddings to identify potential new statements of misinformation from known myths. These statements were grouped into themes using hierarchical agglomerative clustering, and public health experts then reviewed the results for misinformation.

Results: We collected a total of 19,953,599 posts discussing opioid-related content across the aforementioned platforms. Our multistage analytic pipeline identified 7 main clusters or discussion themes. Among a high-yield data set of posts (n=303) for further public health expert review, these included discussion about potential treatments for OUD (90/303, 29.8%), the nature of addiction (68/303, 22.5%), pharmacologic properties of substances (52/303, 16.9%), injection drug use (36/303, 11.9%), pain and opioids (28/303, 9.3%), physical dependence of medications (22/303, 7.2%), and tramadol use (7/303, 2.3%). A public health expert review of the content within each cluster identified the presence of misinformation and myths beyond those used as seed myths to initialize the algorithm.

Conclusions: Identifying and addressing misinformation through appropriate communication strategies could be an increasingly important component of preventing overdose deaths. To further this goal, we developed and tested an approach to aid in the identification of myths and misinformation about OUD from large-scale social media content.

(JMIR Form Res 2024;8:e44726) doi:10.2196/44726

KEYWORDS

addiction treatment; machine learning; misinformation; natural language processing; opioid use disorder; social media; substance use

Introduction

In the United States, more than 100,000 drug overdose deaths occurred in 2021 [1]. Beyond lives lost, the economic costs of both fatal opioid overdose and opioid use disorder (OUD) are estimated to be greater than 1 trillion US dollars per year [2,3]. Furthermore, the extent of OUD is significant; in 2020, about 2.7 million people in the United States aged 12 years or older met the diagnostic criteria for an OUD in the past year [4].

https://formative.jmir.org/2024/1/e44726

JMIR Form Res 2024 | vol. 8 | e44726 | p.2303
(page number not for citation purposes)
The American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) defines OUD as a “problematic pattern of opioid use leading to clinically significant impairment or distress” [5]. OUD is characterized by 11 defining criteria, including taking opioids in larger amounts or over a longer period of time than intended [5]. Medications for opioid use disorder (MOUD), including methadone, buprenorphine, and extended-release naltrexone, are effective treatments for OUD [6]. MOUD increase treatment retention and reduce opioid use and overdose mortality, among other public health benefits [7]. Yet in 2020, it is estimated that only 11.2% of people with OUD received treatment with MOUD in the past year, based on data from the National Survey on Drug Use and Health [8]. Despite its effectiveness, MOUD are underused, in part due to stigma, financial constraints, treatment availability, and a lack of perceived treatment need [4].

When individuals do seek information on MOUD—often on the internet or through social media—they may access inaccurate and potentially harmful health misinformation [9]. A recent review pointed to several areas of misinformation regarding MOUD, including that MOUD may be detrimental to health and can be perceived as simply substituting one addiction with another [10]. Although social media provides a venue for individuals to seek help, advice, and support surrounding their OUD experiences, journeys, and recovery goals [11-13], these platforms also provide a mechanism for misinformation about MOUD to spread [14]. However, most studies to date have focused on general opinions and attitudes regarding MOUD, and less is known about specific misinformation that is shared. For example, Tofighi et al [15] conducted a qualitative analysis of 1010 Twitter (subsequently rebranded as X) posts related to MOUD, assessing general experiences and perceptions. A subsequent study by Chenworth et al [16] assessed tweets that mentioned methadone or suboxone and found that a large percentage expressed negative sentiment about MOUD. Pertaining specifically to misinformation, a study [14] quantified the prevalence of a single myth about MOUD across multiple social media and web-based communication platforms. This myth was drawn from clinical literature; however, it is likely that other myths or misinformation related to MOUD are emerging or being discussed that have not been previously described. Indeed, health care professionals’ understanding of what misinformation and myths may be circulating related to substance use disorder treatment is currently limited to expert opinion, and there is no systematic or large-scale quantitative approach to identify new opioid-related myths from web-based communications and social media platforms. Thus, in this study, we developed and evaluated an approach for identifying potentially novel myths that may exist regarding MOUD. This approach can help identify harmful content to inform strategies to educate clinicians and the public about MOUD and counter myths and misinformation related to MOUD.

Methods

Overview

To accomplish our goal of identifying potentially new myths about MOUD from social media, we used a multistep analytic pipeline (Figure 1), described in detail below. The steps included curating a data set of social media posts across multiple platforms; extracting posts with a high probability of including a myth; using a clustering algorithm to group these posts into themes; and lastly, examining the resulting content for language indicative of misinformation and myths.

Figure 1. Pipeline for the identification of new myths pertaining to treatment for opioid use disorder. We start by transforming each post and myth into a mathematical representation. Next, we identify the posts closest to myths in meaning and have public health experts annotate them for accuracy. We then computationally cluster similar themes together and have public health experts assign a clinical theme. KNN: k-nearest neighbor.

Data Set Curation

We first developed a lexicon of opioid-related keywords; for this, we adopted a 2-pronged approach that combined insights from the substance use literature and feedback from the substance use expert coauthors of this study. Our lexicon encompassed different types of opioids, such as natural opiates, semisynthetic opioids, and synthetic opioids, and included opioids that were prescription or illicit. For each generic drug name, we also included brand and combination product names. In addition, we also included street names of substances, where useful, from the Drug Enforcement Administration. Our final lexicon of 152 keywords was then used in the ensuing data collection.

Using this lexicon, we constructed a diverse data set from Twitter, YouTube, and online health communities (OHCs) such as Reddit and Drugs-Forum. For all the platforms we
investigated, we focused on public posts and messages created between January 1, 2018, and December 31, 2019. Our data set collection methodology for Twitter included querying for all public posts that contained 1 of the words in our lexicon using the then-available Twitter Academic application programming interface (API). This process yielded 6,365,245 posts. For YouTube, due to rate limitations imposed in the data collection process by the platform’s API, we restricted the keywords to 11 MOUD treatment keywords such as buprenorphine and naltrexone. We used the YouTube API to identify 552 public YouTube videos that contain 1 of the 11 keywords in the title and then collected all of the associated comments (99,386 comments). We relied on expert domain knowledge to identify subforums pertinent to OUD for Reddit and Drugs-Forum. We used data from 22 opioid-specific subreddits (carfentanil, opioids, fentanyl, opiatesmemorial, modiquittingkratom, methadone, suboxone, kratom, heroin, quittingkratom, Tianeptine, loperamide, naltrexone, oxycodeone, OpiatesRecovery, opiatewithdrawal, lean, heroinaddiction, HeroinHeroines, OpiateChurch, suboxone, OurOverUsedVeins), resulting in 1,189,590 posts and 12,293,829 comments. Additionally, we collected 5549 messages posted under the various “Opiates and Opioids” subforums on Drugs-Forum. Throughout this paper, we combine Reddit and Drugs-Forum content under the category of OHCs because of their similar affordances.

Mixed Methods Approach to Identify Social Media Posts Relevant to MOUD Myths

We began our analytic and data processing efforts by investigating three “seed” myths drawn from the substance use literature [17-20]: (1) agonist therapy or medication-assisted treatment for OUD replaces one drug with another, (2) only patients treated with opioids who have certain characteristics are at higher risk for opioid addiction, and (3) tramadol is a nonaddictive nonopioid alternative. These seed myths were used, in concert with machine learning approaches, to filter the large volume of semantically rich social media content that would be subsequently investigated for the presence or absence of a new MOUD myth.

Specifically, we used InferSent, a sentence embedding method that provides semantic sentence representations [21], to construct document embeddings for the 3 myth statements noted above. Document embeddings are long sequences of numbers that mathematically represent the semantic meaning of each document (ie, a social media post). InferSent embeddings have been shown to outperform unsupervised methods such as SkipThought vectors on a range of natural language processing (NLP) tasks [21]. In our experiments, we evaluated the embedding values of the social media posts most similar to the seed myths and observed that, indeed, the most similar posts express a similar meaning but are expressed differently (eg, the following blockquote from a sample post in our data set was found to be similar to the seed myth “agonist therapy or medication-assisted treatment for OUD replaces one drug with another”).

```
...So I have decided to discontinue treatment. My family doesn’t agree with this form of treatment and
```

After constructing document embeddings for the seed myth text, we constructed document embeddings for all social media posts in our data set. Using the mathematical representation of each post, we were able to identify posts similar to the seed myths and containing additional information useful for understanding MOUD myths. Specifically, we identified the 200 most semantically similar posts per platform for each seed myth using the k-nearest neighbor (KNN) algorithm [22], implemented in Python’s scikit-learn library [23]. The KNN algorithm assumes that similar things exist in close proximity. In other words, KNN uses the idea that similar things are near each other—in our case, it would compare how close posts are to the seed myths. This process provided us with candidate social media posts that were likely to be discussing MOUD myths or related topics. Additional details of our machine learning and NLP approaches are provided in Multimedia Appendix 1 [21,24-34].

Because not all posts identified through the methods described above may be directly discussing a MOUD myth and document embeddings could pick up some noise, we performed a second data processing step, in which we harnessed annotations from public health experts. The experts reviewed and evaluated whether each post in our now-filtered data set of 800 messages (200 per platform) was relevant to 1 of the seed myths, discussing a new myth, or neither. Specifically, a total of 3 public health experts (coauthors of this paper) reviewed each of the 800 social media posts to perform this qualitative assessment and reach a consensus on the topic discussed therein. Public health experts included 2 clinicians and 1 doctoral-level epidemiologist. The experts reviewed all posts and collectively came to a consensus across all posts in our data set. Our rationale for the qualitative annotation approach followed the guidelines given in the seminal research of McDonald et al [35]. The experts leveraged thematic coding, an iterative process that involves multiple coders developing, discussing, and refining codes through continual discussion. Our qualitative annotation, followed by consensus-building discussion, is situated in grounded theory [36,37].

This manual review resulted in a total of 303 posts identified as discussing potentially new myths. The pipeline for identifying these posts is outlined in Figure 1.

Methods to Understand Discussions of New Myths Arising From the Seeds

We developed additional machine learning–based techniques to better characterize the content of the 303 annotated posts. We leveraged an unsupervised machine learning technique known as hierarchical clustering [24]. This approach provides a probabilistic mechanism to group items (social media posts) into categories (discussion themes). Multimedia Appendix 1 describes this unsupervised technique in greater detail.

Hierarchical clustering was used to construct 10 categories from the 303 posts that are potentially indicative of new myths. All posts per theme were then presented to the above public health
experts to interpret and name the extracted themes. To give richer context to the experts and help with the generation of theme descriptors, we also provided the linguistic markers (n=1-grams or single words) present in the posts for each theme using a commonly used lexical analytic generative model known as Sparse Additive Generative Models (SAGE) of Text [25]. SAGE identifies distinguishing words in our topic themes, where the SAGE magnitude of a word signals the degree of its uniqueness. Previous work has shown that SAGE outperforms other topic models, such as latent Dirichlet allocation (LDA) models, by focusing on high-frequency terms with accurate counts, thus leading to learning more robust interpretable topics [25]. Using this information, the experts developed descriptions of each category and identified myths related to OUD. After careful inspection, the experts aggregated a few topically similar themes, with a final focus on seven themes.

Ethical Considerations
This study is considered exempt research since there are no human participants involved. As such, the study proceeded without obtaining informed consent from social media users. Moreover, social media users who authored posts in the data set were not compensated because the data were publicly available. Social media posts are anonymized by not including usernames in our analysis. All examples given in this study are slightly paraphrased from different social media platforms to further protect user confidentiality. The potential use of these findings by malicious actors cannot be overstated. Motivated actors perpetrating myths and misinformation surrounding OUD could use machine learning and NLP approaches to target susceptible people with OUD and redirect them toward clinically unverified treatments, leading to misinformation exacerbation. Additionally, people with OUD are often stigmatized on multiple levels. Individuals with OUD are perceived as dangerous, of moral failure, and called “addicts” [38]. In light of these possible negative outcomes, although we provided links to all open-source libraries associated with our computational analyses, we have not shared the text data from different social media platforms to minimize the possible identification of OUD social media users.

Results
Our analytics pipeline resulted in the identification of 7 clusters or discussion themes of social media posts related to MOUD. Textbox 1 shows paraphrased example posts that represent new myths or potentially harmful information identified from this data set, and Table 1 displays the salient keywords identified by SAGE for each category to help provide further context.

Textbox 1. Example posts from our data set (n=303) that represent inaccurate or harmful information identified by our human-machine mixed strategies. Themes (in bold font) are labeled by public health experts. The bullet points depict example posts from our data set for each identified type of misinformation. Posts are slightly paraphrased to prevent traceability and author identification.

<table>
<thead>
<tr>
<th>Discussing addiction or addictiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Calling addiction a disease cheapens what I mean.</td>
</tr>
<tr>
<td>• Addiction is just made up in your mind.</td>
</tr>
<tr>
<td>• Buprenorphine is more addictive than opioids.</td>
</tr>
<tr>
<td>• Calling it a disease is just an excuse.</td>
</tr>
<tr>
<td>• Fentanyl is less addictive than marijuana.</td>
</tr>
<tr>
<td>• Withdrawal from buprenorphine is worse than heroin.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taking medication for addiction is not true recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>• You have to be strong. Willpower is the only real way to quit.</td>
</tr>
<tr>
<td>• Who cares if people are addicted to kratom, it’s just like coffee.</td>
</tr>
<tr>
<td>• it’s good for you.</td>
</tr>
<tr>
<td>• Ibogaine cures addiction big time.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative or nonrecommended treatment for addiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The only people overdosing are those taking street heroin.</td>
</tr>
<tr>
<td>• People with chronic pain are physically dependent on opioids to function like a normal person.</td>
</tr>
</tbody>
</table>
Table 1. Top salient words identified using Sparse Additive Generative Models (SAGE) [25] per cluster (total number of posts, n=303). Higher scores in the second column indicate greater saliency.

<table>
<thead>
<tr>
<th>Topic or myth</th>
<th>Frequency, n (%)</th>
<th>SAGE keywords (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments for opioid use disorder</td>
<td>90 (29.8)</td>
<td>therapy (1.36), mat (1.33), primary (1.31), assisted (1.28), treatment (1.24), care (1.22), replacement (1.18), buprenorphine (1.17), medication (1.13), and methadone (1.06)</td>
</tr>
<tr>
<td>Exploring the nature of addiction</td>
<td>68 (22.5)</td>
<td>physical (1.93), difference (1.85), dependence (1.83), addiction (1.77), between say (1.68), disease (1.53), not (1.47), no (1.41), and treated (1.4)</td>
</tr>
<tr>
<td>Pain, opioid use, and addiction</td>
<td>28 (9.3)</td>
<td>ppl (2.31), please (2.31), severe (2.31), majority (2.31), treating (2.31), function patients (2.27), chronic (2.27), people (2.23), and addicted (2.21)</td>
</tr>
<tr>
<td>Use of tramadol</td>
<td>7 (2.3)</td>
<td>study (3.47), extended (3.47), 200 (3.47), 30 (3.47), studies (3.29), mg tramadol (2.82), ibogaine (2.74), safe (2.54), and hard (2.54)</td>
</tr>
<tr>
<td>Physical dependence on medications</td>
<td>22 (7.2)</td>
<td>they’re (2.8), physically (2.57), trading (2.57), you’re (2.48), dependent (2.26), less (2.26), become (2.23), side (2.02), addicted (2.02), and being (1.9)</td>
</tr>
<tr>
<td>Intravenous or injection drug use</td>
<td>36 (11.9)</td>
<td>hit (1.61), nerve (1.61), hands (1.61), veins (1.52), feet (1.46), shoot (1.46), inject (1.46), artery (1.46), foot (1.46), and tying (1.46)</td>
</tr>
<tr>
<td>Pharmacologic properties, effects, and addictiveness of substances</td>
<td>52 (16.9)</td>
<td>sub (1.74), acetaminophen (1.6), targin (1.60), addictive (1.57), codeine (1.37), sometimes (1.36), drug (1.34), seizure (1.32), medical (1.32), and release (1.32)</td>
</tr>
</tbody>
</table>

The most prevalent category described and discussed treatments for opioid use disorder (90/303, 29.8%). Posts described several Food and Drug Administration (FDA)–approved medications for OUD, including buprenorphine and methadone, and nonapproved treatments such as kratom. Additional posts referenced a regulated supply of heroin to treat OUD, while other posts discuss the need for long-term use of buprenorphine or methadone. New myths present in this category perpetuated the notion that addiction is not a medical disease and discussed alternative therapies such as kratom.

The second category explored the nature of addiction (68/303, 22.5%). Posts discussed the definition of addiction and the distinction between dependence and addiction and debated whether addiction is a disease. Similar to the first category, misinformation found in this category included statements that addiction is not a medical disease and the promotion of alternative therapies, such as “Ibogaine cures addiction big time.”

The third category described the pharmacologic properties, effects, and addictiveness of substances (52/303, 16.9%). Posts included comments on how addictive substances were compared with each other (eg, nicotine vs heroin or fentanyl vs marijuana). Additional posts discussed drug metabolism and drug synthesis. Misinformation in this category included statements that “Buprenorphine is more addictive than opioids” and that “Fentanyl is less addictive than marijuana.”

The fourth category focused on intravenous or injection drug use (36/303, 11.9%). Posts covered drug injection techniques, advice, and the health consequences of such injections. Misinformation in this category included statements that “withdrawal from buprenorphine is worse than heroin” and that “willpower is the only way to quit.”

The fifth category centered on pain, opioid use, and addiction (28/303, 9.3%). Posts covered the use of opioids for chronic pain, the risk of addiction when using opioids for pain, and the stigma associated with using opioids for pain. Misinformation in this category included diverse statements such as “the only people overdosing are those taking illicit heroin,” “people with chronic pain are physically dependent on opioids like a normal person,” and “Who cares if people are addicted to kratom, it’s just like coffee, it’s good for you.”

The sixth category described physical dependence on medications (22/303, 7.2%). Posts commented on the distinction between dependence and addiction and specifically noted kratom as resulting in less addiction. Misinformation in this category included statements promoting alternate therapies.

Finally, the seventh category largely described tramadol use (7/303, 2.3%). Posts commented on tramadol dosing and administration. A discussion of the alternative therapy, ibogaine, was also present.

Each of the 7 categories included posts that contained some form of new misinformation that was not present in the initial seed myths we used to build our detection approach. Textbox 1 presents examples of misinformation or myth text. Further review of the misinformation resulted in classifying the misinformation into three themes, as shown in Textbox 1: (1) discussing addiction or addictiveness, (2) taking medication for addiction is not true recovery, and (3) alternative or nonrecommended treatments for addiction.

Discussion

Overview

The aim of this study was to develop and test a methodology for identifying new myths and misinformation related to MOUD. While health professionals are cognizant of the presence of misinformation and its effects on patient populations [39,40], there is currently no systematic approach for identifying potentially harmful information that individuals who use substances are actually exposed to and discussing. We developed a semiautomated pipeline that uses known myths as seed text and a sophisticated NLP approach to identify other misinformation that is circulating. The approach used a recent...
algorithm released by Facebook Research for measuring text similarity in social media postings [21] and then explored results through automated clustering and human expert review. We found that this approach identified new myths and forms of misinformation beyond those used as seed myths, suggesting that this approach may be useful in identifying new and emerging forms of potentially harmful information that may be circulating.

The posts we identified were grouped into 7 main themes related to MOUD, each revealing inaccuracies upon review by public health experts. The most common misinformation included statements endorsing alternative therapies such as kratom or ibogaine or discouraging medication use, favoring less effective abstinence-only approaches [41]. These are critical areas that require ongoing public health attention since alternative therapies such as kratom have been linked to fatal overdoses, and nonpharmacologic therapy for OUD is associated with higher rates of drug resumption and mortality. Our approach, using automatic data mining techniques, successfully flagged these types of misinformation, even uncovering subtler concerns that have not received sufficient attention, such as misinformed statements about the addictiveness of buprenorphine and unwarranted fears about buprenorphine withdrawal. These findings are significant as buprenorphine, a partial-opioid agonist, stands as one of the most effective treatments for OUD [7]. In light of the rising impact of health misinformation on patient populations, this study addresses the lack of tools for identifying potentially harmful information that spreads. We introduce an approach that quantitatively taps into extensive discussions about addiction across major communication platforms, contributing to misinformation identification. This is pivotal because, although patients seek health information from social media, it is also a breeding ground for false information dissemination [42], and there is a lack of systematic tools to assess health information related to addiction shared on these platforms [43]. Most closely related to this study is the work done by Sarker et al [13], Garett and Young [44], and Johnson et al [45]. Garett and Young [44] conducted a review on how inaccurate and false beliefs by both patients and providers can lead to stigma and serve as barriers to receiving appropriate treatment. This study comments on the consequences of 4 types of stigma, including structural stigma, public stigma, self-stigma, and stigma associated with treatment medications [44]. Similar to this study, Johnson et al [45] conducted a content analysis of 33 YouTube videos to identify and understand the lived experiences of parents and families impacted by the opioid crisis. In contrast to their work, we focused on social media posts and comments to identify new myths surrounding OUD. Most closely related to this study is Sarker et al [13], wherein the authors similarly leveraged NLP methods and built a classifier that identified whether a post’s language promoted 1 of the leading myths challenging addiction treatment: that the use of agonist therapy for MOUD is simply replacing one drug with another [13]. However, this study differs in the sense that it does not focus on 1 particularly known myth but rather on finding new pieces of misinformation.

To our knowledge, no studies report interventions directed at web-based misinformation on MOUD, yet lessons from analogous interventions during the COVID-19 pandemic are informative. One study of US-based Facebook users showed decreased distance traveled among those who viewed video messages from health professionals during the 2020 holiday season [46]. Another study found that journalistic fact-checks may be effective against COVID-19 misinformation [47]. Finally, a third study demonstrated the utility of accuracy nudges in addressing COVID-19 misinformation [48]. Taken together, these interventions suggest initial steps in building the evidence base for infodemic response across public health areas. Further study is needed to understand interventions that address MOUD-related misinformation.

The greatest strength of this study is that it is nonobtrusive and leverages a large-scale data set along with advances in machine learning and NLP to identify new pieces of misinformation that could exacerbate OUD health-related risks. Nevertheless, this study is subject to limitations. First, the qualitative assessment of myths and misinformation was conducted by only a limited number of health experts. As myths can be nuanced, further work should aim to codify definitions and guidance around opioid-related myths, particularly as this field of study grows. Second, while we demonstrate success at identifying misinformation beyond the seed myths we used to initialize the algorithm, the nature and scope of all misinformation related to MOUD are not known, and thus we are unable to assess the sensitivity of our approach to capturing all misinformation that may exist. Nevertheless, the ability to quantitatively and algorithmically identify misinformation related to addiction is still an important advancement. Third, although the approach we use harnesses machine learning and NLP techniques, a component of our pipeline still relies on public health expert review. While this necessitates some labor, human-in-the-loop designs are a leading framework for product development, have certain advantages, and can be particularly useful for complex areas such as health misinformation where expert judgment is required [14]. Finally, we acknowledge that there are a multitude of social media–based communication modalities, and this study is limited to those that are publicly available. It is possible that the nature of health misinformation may differ by platform, and further study of these differences is needed.

Our research demonstrates promise in identifying myths and misinformation related to treatment for OUD included in social media posts. With rapidly rising opioid overdose fatality rates, the initiation and adoption of MOUD are increasingly urgent to prevent additional loss of life. Attention by health and public health professionals to the health misinformation that may be affecting individual decisions related to OUD treatment engagement and retention can be a critical element in enhancing prevention.

Conclusions

Health misinformation regarding treatment for OUD is prevalent, contributing to the challenges of preventing opioid-related overdoses. However, a systematic and quantitative methodology to identify this misinformation is lacking. In response, we developed a multistage analytic pipeline to analyze social media posts from platforms such as Twitter, YouTube, Reddit, and Drugs-Forum for OUD-related misinformation. Our
methodology successfully identified 7 main clusters of misinformation related to MOUD. The most salient topics for these myths include treatments for OUD, the nature of addiction, as well as the pharmacologic properties, effects, and addictiveness of substances. Further understanding of the identified myths and continual monitoring of emerging myths are critical in the battle against the opioid overdose epidemic.

Acknowledgments
This research was supported through a contract by the Centers for Disease Control and Prevention (CDC; through the Department of Health and Human Services) with the Georgia Institute of Technology (Principal Investigator MDC). CDC investigators participated in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; the preparation, review, or approval of the manuscript; and the decision to submit the manuscript for publication. ME and MDC had full access to all the data in the study and took responsibility for the integrity of the data and the accuracy of the data analysis. We thank Kenneth Kannampully for his help with the Drugs-Forum data collection.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the CDC.

Data Availability
The data sets generated during and/or analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions
SS, MDC, and ME designed the research. ME, SS, and MDC conceptualized and developed the analytic techniques. ME gathered and analyzed the data and designed the machine learning models. SS, VK, CJ, RL, AKO, and LS provided expert clinical review and annotations for the models and read, edited, and provided feedback on the paper. ME, SS, and MDC interpreted the results and drafted the paper.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Machine learning and clustering approaches.

[DOCX File, 17 KB - formative_v8i1e44726_app1.docx]

References

44. Garett R, Young SD. The role of misinformation and stigma in opioid use disorder treatment uptake. Subst Use Misuse 2022;57(8):1332-1336 [FREE Full text] [doi: 10.1080/10826084.2022.2079133] [Medline: 35611913]

Abbreviations

API: application programming interface
DSM-5: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
FDA: Food and Drug Administration
KNN: k-nearest neighbor
LDA: Latent Dirichlet allocation
MOUD: Medications for Opioid Use Disorder
NLP: natural language processing
OHC: online health community
OUD: opioid use disorder
SAGE: Sparse Additive Generative Models

https://formative.jmir.org/2024/1/e44726
JMI Form Res 2024 | vol. 8 | e44726 | p.2311
(page number not for citation purposes)
Original Paper

Arabic Web-Based Information on Oral Lichen Planus: Content Analysis

Azzam AlMeshrafi, BDS; Arwa F AlHamad, BDS, MSc, PhD; Hamoud AlKuraidees, BDS; Lubna A AlNasser, BDS, MPH, PhD

1Department of Periodontics, King Saud Medical City, Riyadh, Saudi Arabia
2Dental Services, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
3King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
4King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
5Department of Dental Medicine, Maple Clinic, Dammam, Saudi Arabia
6Department of Population Health, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Corresponding Author:
Arwa F AlHamad, BDS, MSc, PhD
Dental Services
Ministry of National Guard Health Affairs
Prince Mutib bin Abdullah bin Abdulaziz Rd
Riyadh, 11426
Saudi Arabia
Phone: 966 118011111
Email: hamadar@mngha.med.sa

Abstract

Background: The use of web-based health information (WBHI) is on the rise, serving as a valuable tool for educating the public about health concerns and enhancing treatment adherence. Consequently, evaluating the availability and quality of context-specific WBHI is crucial to tackle disparities in health literacy and advance population health outcomes.

Objective: This study aims to explore and assess the quality of the WBHI available and accessible to the public on oral lichen planus (OLP) in Arabic.

Methods: The Arabic translation of the term OLP and its derivatives were searched in three general search platforms, and each platform’s first few hundred results were reviewed for inclusion. We excluded content related to cutaneous LP, content not readily accessible to the public (e.g., requiring subscription fees or directed to health care providers), and content not created by health care providers or organizations (i.e., community forums, blogs, and social media). We assessed the quality of the Arabic WBHI with three standardized and validated tools: DISCERN, Journal of the American Medical Association (JAMA) benchmarks, and Health On the Net (HON).

Results: Of the 911 resources of WBHI reviewed for eligibility, 49 were included in this study. Most WBHI resources were provided by commercial affiliations (n=28, 57.1%), with the remainder from academic or not-for-profit affiliations. WBHI were often presented with visual aids (i.e., images; n=33, 67.4%). DISCERN scores were highest for WBHI resources that explicitly stated their aim, while the lowest scores were for providing the effect of OLP (or OLP treatment) on the quality of life. One-quarter of the resources (n=11, 22.4%) met all 4 JAMA benchmarks, indicating the high quality of the WBHI, while the remainder of the WBHI failed to meet one or more of the JAMA benchmarks. HON scores showed that one-third of WBHI sources had scores above 75%, indicating higher reliability and credibility of the WBHI source, while one-fifth of the sources scored below 50%. Only 1 in 7 WBHI resources scored simultaneously high on all three quality instruments. Generally, WBHI from academic affiliations had higher quality scores than content provided by commercial affiliations.

Conclusions: There are considerable variations in the quality of WBHI on OLP in Arabic. Most WBHI resources were deemed to be of moderate quality at best. Providers of WBHI could benefit from increasing collaboration between commercial and academic institutions in creating WBHI and integrating guidance from international quality assessment tools to improve the quality and, hopefully, the utility of these valuable WBHI resources.
Introduction

The internet has revolutionized the visibility and accessibility of data [1]. Over half of today’s world population used the internet in 2021 [2]. Searching the internet for web-based health information (WBHI) was the third most frequent internet activity, and 6.75 million searches are performed daily for health information [3,4]. Often, WBHI is considered a “first aid” resource for health information and is used to compare diagnoses or treatment options [5,6], or to supplement insufficient time with a health care provider [6,7]. More seriously, some patients believe that WBHI is trustworthy and might defer or replace medical consultation or treatment from health care providers [6,8,9]. Lastly, recent evidence suggests that seeking WBHI could be associated with changes in health behavior or patient outcomes [6,8,9]. Therefore, ensuring the availability, accessibility, and quality of WBHI is essential to the well-being of individuals and the community.

The format and quality of WBHI vary substantially. The format ranges from health blogs/forums based on personal experiences offering unregulated information to peer-reviewed journal articles that provide complex data addressed to medical professionals [10,11]. Therefore, the quality of WBHI could vary considerably between the resources of WBHI. Some global research indicates that the quality of some WBHI targeting the public could be of low quality [10,11]. Evidence that examined Arabic WBHI often found that a considerable proportion of the WBHI had low quality, including but not limited to not disclosing the authorship of the information, outdated information, and lack of advice that WBHI should not replace a health care consultation [12-16]. Often, high-quality WBHI would require payment (ie, subscription) for access, exacerbating the inequalities in accessing WBHI for some individuals [10]. The evaluation of context-specific WBHI (ie, language) emerges as a public health priority that might address some health literacy inequality.

Oral lichen planus (OLP) is a prevalent chronic inflammatory mucocutaneous disease that frequently affects the oral mucosa. Between 0.5%–2% of the world’s population is affected by OLP [17-19]. In a review of studies conducted in Arab countries, OLP had a potential malignant transformation rate ranging from 0.4% to 6.5% [20]. Although there is no gold standard measure of the quality of WBHI, some international tools like the Journal of the American Medical Association (JAMA) benchmarks and Health On the Net (HON) are frequently used to examine the WBHI in different languages. Literature that evaluated the English content of WBHI regarding OLP using the aforementioned tools reported moderate accuracy and reliability [11]. A comprehensive evaluation of 122 Arabic health websites revealed that these websites varied substantially in meeting some industry benchmarks, like the HON code. For instance, 16% of the websites provided information on their advertising policies, while 73% provided justification for the content included within a website [21,22].

Though accessing high-quality WBHI can effectively increase the public’s knowledge, support health-related decision-making, and improve health-seeking behaviors or outcomes [8,23], no studies focused on evaluating OLP-related WBHI in Arabic. As such, the need arises to scrutinize the content and accuracy of Arabic WBHI related to OLP that is accessible to the public. This study assessed the availability and quality of OLP-related resources in Arabic.

Methods

Search Strategy

This study was a cross-sectional evaluation of Arabic WBHI on OLP. We searched for the Arabic translation of the keywords “oral lichen planus,” “treatment of oral lichen planus,” and their derivatives (, , ,) in three main search engines, namely, Google, Yahoo, and Bing. We used the Boolean operator (OR) to link these terms but did not use any conditions of filters to mimic electronic research that patients or members of the public might perform on OLP.

We reviewed the first few hundred links on each platform for inclusion until links were no longer relevant to OLP. We included resources (ie, web pages) with information on OLP in Arabic. We excluded WBHI focusing on extra-oral lichen planus, scientific content requiring membership (eg, subscriptions) or directed to professionals (ie, specialty journals), community-based forums without professional guidance, social media posts, and results promoted or advertised by search engines. We also excluded resources that included video or audio content only with no accompanying text and results that were in .doc, .pdf, or .ppt format, as the public might be less likely to seek such resources. Two trained evaluators (AA and HA) simultaneously screened and evaluated the OLP Arabic WBHI resources and deferred to the senior author (AFA) in case of disagreement.

Domains and Tools for Evaluating WBHI

The WBHI resources were assessed for content and quality. The content of the resources was categorized as reported previously by Ni Riordan and McCreary [24] and attached in Multimedia Appendix 1 [24]. Briefly, results were grouped according to the affiliation of the web page (commercial, nonprofit, governmental, or university/medical center), specialization (if a web page is either entirely or partially related to the searched topic), content type (medical facts, clinical trials, human interest stories, or question and answer), and content presentation (text, images/graphs, videos, and audio). The quality of the web pages was assessed with the DISCERN

KEYWORDS

oral lichen planus; health information; Arabic; medical information; information seeking; quality; online information; Arab; oral; inflammatory; inflammation; chronic; mouth; mucous membrane; mucous membranes; reliable; reliability; credible; credibility; periodontontology; dental; dentist; dentistry

https://formative.jmir.org/2024/1/e49198

[JMIR Form Res 2024;8:e49198] doi:10.2196/49198
instrument [25], the JAMA benchmarks [26], and the HON code [27].

The DISCERN tool aims to empower consumers when making treatment choices by evaluating the quality of written health information (ie, publications). DISCERN is a validated 16-item instrument, with each item rated on a 5-point scale (1=did not fulfill item to 5=complete fulfillment of item) and is arranged in three sections. The first section (items 1-8) addresses the reliability of the publication, the second section (items 9-15) assesses the quality of the information related to treatment choices, and the third section consists of one item (item 16) that gives an overall quality rating of the content [25,28,29].

JAMA benchmarks assess the accountability of WBHI by examining the following domains of resources: authorship (providing authors and their affiliations), attribution (eg, citations) of the source of information provided, disclosure (revealing any ownership, sponsorship, or conflict of interest in providing the WBHI), and currency (ie, updates of the WBHI) [26].

The HON tool evaluates the reliability and credibility of health websites. HON asks reviewers to evaluate a given web page regarding eight sections: authority, complementarity, confidentiality, attribution, justifiability, transparency, financial disclosure, and advertising policy [30]. The reviewer will score each item from 0% (did not fulfill the specific item) to 100% (total fulfillment of that item), while the HON final score is an average of scores across the eight items.

Statistical Analysis

Data were extracted, coded, and cleaned in Excel (Microsoft Corporation), then analyzed using SPSS Statistics (Version 24.0; IBM Corp.). The data were summarized using frequency and percentage distribution for the categorical variables and means with SDs for the continuous variables. We classified WBHI by type of affiliation into commercial and academic (including nonprofit, medical center, and governmental), then compared the quality of WBHI across these groups using bivariate analyses. To facilitate comparison with previous literature, the HON score was categorized into an ordinal variable as such: scores <50% (low credibility), 51%-75% (moderate credibility), and scores >75% (high credibility). Fleiss κ was used to calculate the interrater reliability of the reviewers in assigning the HON score as a categorical variable [31]. Lastly, to synthesize information from all three quality measures, we created a composite variable as follows: high-quality WBHI means the resource satisfied at least 3 of the JAMA benchmarks, had a HON score ≥75, and had a DISCERN overall score ≥3; otherwise, the WBHI was considered low-quality.

Ethical Considerations

This study was exempt from ethical review since it used publicly available data sources that do not include any patient-identifying data.

Results

Overview

The keywords returned the highest number of hits in Google (n=56,770), followed by Yahoo (n=5188) and Bing (n=1910). We reviewed the first 400 results on Google, 300 on Yahoo, and 211 on Bing until the web pages were unrelated to OLP. After removing duplicated results, a total of 49 results were included in this study. The most frequent reason for exclusion was results about oral lesions other than OLP (Figure 1). The interrater reliability measure indicated a high agreement between the evaluators in assigning HON scores (κ=0.826, 95% CI 0.823-0.828).
Content Assessment

More than half of the web pages had commercial affiliations (n=28, 57.1%), that is, WBHI provided by for-profit clinics with clear advertisements for treatment or establishments (Table 1). Conversely, 43% (n=21) of the WBHI resources had academic affiliations (nonprofit, medical centers, and governmental affiliations). Only one-fifth of the web pages (n=11, 22%) were focused exclusively on OLP, rather than lichen planus in general. The vast majority of Arabic OLP WBHI was in the format of medical facts (n=42, 85.7%), and most WBHI included images of OLP (n=31, 63%; Table 1).
Table 1. Content assessment of Arabic web-based health information on oral lichen planus (OLP) using Ni Riordan and McCreary’s [24] method (n=49).

<table>
<thead>
<tr>
<th>Categories</th>
<th>Web pages, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content affiliation</td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>28 (57.1)</td>
</tr>
<tr>
<td>Nonprofit</td>
<td>19 (38.8)</td>
</tr>
<tr>
<td>Medical center</td>
<td>2 (4.1)</td>
</tr>
<tr>
<td>Governmental</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Content specialization</td>
<td></td>
</tr>
<tr>
<td>Entirely related to OLP</td>
<td>11 (22.3)</td>
</tr>
<tr>
<td>Partially related to OLP</td>
<td>38 (77.6)</td>
</tr>
<tr>
<td>Content format</td>
<td></td>
</tr>
<tr>
<td>Medical facts</td>
<td>42 (85.7)</td>
</tr>
<tr>
<td>Human stories</td>
<td>2 (4.1)</td>
</tr>
<tr>
<td>Question and answer format</td>
<td>4 (8.2)</td>
</tr>
<tr>
<td>Clinical trials</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>Content presentation</td>
<td></td>
</tr>
<tr>
<td>Included images</td>
<td>31 (63.3)</td>
</tr>
<tr>
<td>Included videos</td>
<td>2 (4.1)</td>
</tr>
<tr>
<td>Included audio</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>Text only</td>
<td>15 (30.6)</td>
</tr>
</tbody>
</table>

Quality Assessment by DISCERN

The overall mean score of DISCERN for the included WBHI was rather low (mean 2.61, SD 1); however, the average rating of single items varied substantially (Table 2). Items with the highest DISCERN scores described the publication’s aims and the alternative OLP treatment options. There was no evidence to indicate meaningful differences in the DISCERN scores between WBHI presented by commercial and academic affiliations.
<table>
<thead>
<tr>
<th>Domain and DISCERN item</th>
<th>All (N=49), mean (SD)</th>
<th>Academic (n=21), mean (SD)</th>
<th>Commercial (n=28), mean (SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1. Explicit aims</td>
<td>3.37 (1.0)</td>
<td>3.61 (0.7)</td>
<td>3.19 (1.1)</td>
<td>.07</td>
</tr>
<tr>
<td>Q2. Attainment of aims</td>
<td>3.27 (1.0)</td>
<td>3.17 (1.1)</td>
<td>3.42 (0.7)</td>
<td>.27</td>
</tr>
<tr>
<td>Q3. Relevance</td>
<td>3.18 (1.1)</td>
<td>3.47 (0.92)</td>
<td>2.96 (1.10)</td>
<td>.07</td>
</tr>
<tr>
<td>Q4. Explicit sources</td>
<td>2.20 (1.8)</td>
<td>2.76 (1.94)</td>
<td>1.78 (1.57)</td>
<td>.06</td>
</tr>
<tr>
<td>Q5. Explicit date</td>
<td>1.73 (1.4)</td>
<td>2.05 (1.5)</td>
<td>1.5 (1.17)</td>
<td>.13</td>
</tr>
<tr>
<td>Q6. Balanced and unbiased</td>
<td>2.69 (1.5)</td>
<td>2.57 (1.50)</td>
<td>2.78 (1.47)</td>
<td>.66</td>
</tr>
<tr>
<td>Q7. Additional sources</td>
<td>1.92 (1.2)</td>
<td>1.90 (1.22)</td>
<td>1.92 (1.27)</td>
<td>.96</td>
</tr>
<tr>
<td>Q8. Areas of uncertainty</td>
<td>2.08 (1.3)</td>
<td>3.09 (1.13)</td>
<td>1.32 (0.77)</td>
<td><.001*</td>
</tr>
<tr>
<td>Treatment options</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9. How treatment works</td>
<td>2.57 (1.5)</td>
<td>2.47 (1.28)</td>
<td>2.64 (1.63)</td>
<td>.84</td>
</tr>
<tr>
<td>Q10. Benefits of treatment</td>
<td>2.08 (1.3)</td>
<td>1.95 (0.86)</td>
<td>2.17 (1.56)</td>
<td>.85</td>
</tr>
<tr>
<td>Q11. Risk of treatment</td>
<td>1.92 (1.2)</td>
<td>1.95 (0.86)</td>
<td>1.89 (1.47)</td>
<td>.24</td>
</tr>
<tr>
<td>Q12. Effect of no treatment</td>
<td>1.67 (1.4)</td>
<td>1.42 (1.20)</td>
<td>1.85 (1.48)</td>
<td>.25</td>
</tr>
<tr>
<td>Q13. Effect on quality of life</td>
<td>1.24 (0.7)</td>
<td>1.09 (0.43)</td>
<td>1.35 (0.78)</td>
<td>.18</td>
</tr>
<tr>
<td>Q14. All alternatives described</td>
<td>3.37 (1.9)</td>
<td>3.38 (1.93)</td>
<td>3.35 (1.88)</td>
<td>.96</td>
</tr>
<tr>
<td>Q15. Shared decision</td>
<td>3.20 (1.8)</td>
<td>2.61 (1.49)</td>
<td>3.64 (1.80)</td>
<td>.04</td>
</tr>
<tr>
<td>Q16. Overall rating of the source</td>
<td>2.61 (1.0)</td>
<td>2.61 (1.16)</td>
<td>2.60 (0.91)</td>
<td>.98</td>
</tr>
</tbody>
</table>

*Italics indicate a statistically significant result.

Quality Assessment by JAMA Benchmarks

Only 22.4% (n=11) of the WBHI resources met all 4 JAMA benchmarks, indicating high quality, and another 24.5% (n=12) met 3 of the 4 benchmarks. Overall, most WBHI fulfilled the “Disclosure” criteria, while less than half of the web pages fulfilled the “Attribution” criteria (Table 3). Academic affiliations satisfied the authorship and attribution more often than commercial affiliations but were less current than commercial resources (Table 3).
Table 3. Overall and stratified distribution of the fulfillment of *Journal of the American Medical Association* (JAMA) benchmarks and Health On the Net (HON) scores among reviewed web-based health information (WBHI; n=49).

<table>
<thead>
<tr>
<th></th>
<th>All (n=49), n (%)</th>
<th>Commercial affiliation (n=28), n (%)</th>
<th>Academic affiliation (n=21), n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMA benchmarks fulfilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authorship</td>
<td>27 (55.1)</td>
<td>14 (50.0)</td>
<td>13 (61.9)</td>
<td>.56</td>
</tr>
<tr>
<td>Attribution</td>
<td>18 (36.7)</td>
<td>7 (25.0)</td>
<td>11 (52.4)</td>
<td>.07</td>
</tr>
<tr>
<td>Currency</td>
<td>33 (67.3)</td>
<td>20 (71.4)</td>
<td>13 (61.9)</td>
<td>.55</td>
</tr>
<tr>
<td>Disclosure</td>
<td>40 (81.6)</td>
<td>23 (82.1)</td>
<td>17 (80.9)</td>
<td>>.99</td>
</tr>
<tr>
<td>Fulfilling 3 benchmarks</td>
<td>12 (24.5)</td>
<td>6 (21.43)</td>
<td>6 (28.57)</td>
<td>.74</td>
</tr>
<tr>
<td>Fulfilling all 4 benchmarks</td>
<td>11 (22.4)</td>
<td>6 (21.43)</td>
<td>5 (23.81)</td>
<td>>.99</td>
</tr>
<tr>
<td>HON score (range 0-100)</td>
<td></td>
<td></td>
<td></td>
<td>.09</td>
</tr>
<tr>
<td><50</td>
<td>10 (20.4)</td>
<td>8 (28.6)</td>
<td>2 (10)</td>
<td></td>
</tr>
<tr>
<td>51-75</td>
<td>25 (51.1)</td>
<td>15 (53.6)</td>
<td>10 (46.6)</td>
<td></td>
</tr>
<tr>
<td>>75</td>
<td>14 (28.6)</td>
<td>5 (17.9)</td>
<td>9 (43.9)</td>
<td></td>
</tr>
<tr>
<td>High-quality WBHI</td>
<td>7 (14.29)</td>
<td>2 (7.14)</td>
<td>5 (23.81)</td>
<td>.12</td>
</tr>
</tbody>
</table>

*aJAMA comparisons denote raw percentages comparing the relative contribution by affiliation type within each JAMA benchmark. bHON comparison denotes column contribution by affiliation type across levels of HON scores. cHigh-quality WBHI denotes a WBHI resource that satisfied at least 3 of the JAMA benchmarks, had a HON score >75, and had an overall DISCERN score ≥3; otherwise, a resource was labeled as low-quality.

Quality Assessment by HON

The average HON score was significantly higher for academic affiliation sources of WBHI than commercial affiliations (mean 71, SD 14 vs mean 56, SD 15; P<.001). When HON scores were examined as an ordinal variable, almost one-third (n=14, 29%) of the WBHI resources scored higher than 75, indicating high credibility of the WBHI, with more contributions from academic rather than commercial affiliations (Table 3).

Overall Quality Assessment

When WBHI information was classified by collective score combining all three quality instruments, it was found that 1 in every 7 resources (n=7, 14.3%) had high quality, and most of this high-quality evidence came from academic affiliations (n=5, 23.8% vs n=2, 7.1% from commercial affiliations; Table 3). However, the difference in the distribution of quality levels across affiliation types was not significant (Fisher exact test P=.12).

Discussion

Principal Findings

This study evaluated the content and quality of the Arabic WBHI on OLP available to the public using prevalidated standardized tools. The results indicated that approximately one-third of the WBHI had high scores, corresponding to higher quality, as indicated by the JAMA and HON tools. The Arabic WBHI on OLP was often presented as a narration of medical facts and frequently included audiovisual aids to enhance the consumer’s comprehension of health information, and most were provided by commercial affiliations. To the best of our knowledge, this is the first study to evaluate Arabic WBHI on OLP. As OLP can be a chronic condition with occasional atypical forms and a potential for malignant transformation, patients are likely to supplement their clinical consultations with WBHI [7,17,32,33]. Hence, this evaluation of the quality of WBHI on OLP in Arabic is essential and timely.

The Arabic WBHI on OLP in this study included a higher percentage of resources deemed to be of higher quality compared to Arabic WBHI on other diseases, including periodontal diseases and breast and oral cancers [12,14,34]. For instance, in this study, 1 in every 5 WBHI sources had fulfilled all 4 JAMA benchmarks, while recent results by Halboub et al [16] and Al-Ak’halili et al [34] found the same for 8% and 4%, respectively, of the websites they reviewed. The association of higher quality with resources classified as academic was noted in previous studies evaluating Arabic WBHI [34]. Lastly, DISCERN scores in this study were slightly higher than those reported by Alakhalili et al [14] on oral cancer. However, these studies evaluated different diseases, and the higher scores could reflect “better” WBHI on OLP compared to oral cancer or an inherent subjectivity in the DISCERN instrument by virtue of having a Likert scale.

Most of the WBHI resources we reviewed had more commercial affiliations than affiliations to medical or research centers. This generally agrees with the literature where commercial affiliations were the most prolific providers of WBHI [12,13,34]. This is consequential as the web pages with a commercial affiliation often include advertising of certain treatments or care providers. Some evidence suggests that advertising negatively affects the credibility of the information offered and individuals’ trust in the source of WBHI [35]. Moreover, compared to academic affiliations, we observed a lower quality among WBHI by commercial affiliations, as evidenced by the HON, DISCERN,
and JAMA benchmarks scores. While these differences in quality scores did not always reach statistical significance (possibly due to the relatively small sample size), they indicate a consistent trend among commercial affiliations across all the quality tools used.

Of the WBHI we reviewed, the authority and attribution were the least fulfilled JAMA domains—that is, resources rarely mentioned the authors and the references of the WBHI. This was in line with previous studies on Arabic WBHI on oral cancer, periodontal diseases, and epilepsy [13,34]. This highlights an area of potential improvement as the authority of the author (ie, the level of expertise of the person writing the information) was found to increase the credibility and trust in the content of the WBHI [35]. Moreover, other evidence from an Arabic-speaking country showed that participants prioritized information provided by health care professionals over other sources [9]. Our findings, along with conclusions from other Arabic WBHI, are useful for developers of WBHI resources to promote transparency when creating web-based content to maximize the benefit of WBHI to the public.

Enhancing the content and quality of Arabic WBHI is pivotal in optimizing its effectiveness and influence on patients’ well-being. For example, research reported that 49% of the participants in a US-based national survey used WBHI as a first resource to address health concerns [36]. Another study from Saudi Arabia reported that the patients who sought diabetes mellitus–related WBHI, compared to nonseekers, were more health conscious and showed a positive trend of better self-care [8]. Three critical issues must be highlighted when we combine evidence from this study with conclusions from similar research on Arabic WBHI. First, the quality of available resources in Arabic is moderate at best, leaving the public at a disadvantage as most of the evidence is deemed low-quality. Second, developers and providers of WBHI of digital health content must invest in the quality of WBHI in Arabic to empower the public [37]. This could be accomplished by benchmarking the finalized content against the quality tools frequently used in the relevant literature to build more robust, impactful WBHI. Third, it is imperative to establish policies and guidelines that guarantee the quality of Arabic WBHI that are produced, disseminated, or promoted for the benefit of the public.

Acknowledgments
The authors wish to thank Ms Loiwah Almousa for her help with the statistical analysis and creating graphs. The authors also thank the anonymous peer reviewers for their valuable feedback that shaped the final version of this manuscript.

The authors received no financial support for this research. No generative artificial intelligence tools were used to write any portion of this manuscript.

Data Availability
Data are available from the corresponding author upon request.

Authors’ Contributions
AFA conceptualized the study. AA and HA acquired and curated the data. LAA performed the data analysis. AA, HA, and AFA wrote the initial draft. LAA and AFA edited and critically reviewed the draft. All authors have reviewed and agreed to publish the final version of this manuscript.

Strengths and Limitations
This study reviewed the content of three major search engines, potentially covering the majority of OLP-related WBHI that the public could find, access, and use. Additionally, we used validated and standardized tools to evaluate the quality and content of OLP health information on the web, enhancing the comparability with research elsewhere. However, this study could not assess Arabic readability due to some challenges related to the available tools and our belief that readability in Arabic is context specific and best explored through research that uses community participatory methods (ie, focus groups). Future efforts should strive to include the readability of the Arabic WBHI from both the providers’ and the consumers’ perspectives. Lastly, the WBHI we evaluated included published web pages up to mid-2020, coinciding with the height of the COVID-19 pandemic. The COVID-19 pandemic increased the demand for digital resources in general, which might have positively affected the quality of WBHI in general in response to the increased demand for web-based information. However, given the comparison of our results to other recent evidence on Arabic WBHI post COVID-19 [14,34,38], we assume that the Arabic WBHI content did not experience a change of a magnitude large enough to substantially alter our conclusions regarding the quality of Arabic WBHI related to OLP available to the public.

Conclusion
This study evaluated the quality of Arabic WBHI on OLP available to the public, using several validated and standardized tools, namely, JAMA, DISCERN, and HON. The results indicated that the quality of the WBHI is moderate at best, with only 1 in 7 resources scoring simultaneously high on all three resources. Commercial affiliations of the WBHI provided more content than academic affiliations; however, the content delivered by the former was of lower quality. Therefore, the collaboration between commercial and academic WBHI providers could improve the quality of the OLP resources offered to the public. Lastly, providers of WBHI in Arabic could benefit from integrating guidance from international quality tools to enhance the quality and, hopefully, the utility of these valuable WBHI resources.
Conflicts of Interest

None declared.

Multimedia Appendix 1
Riordan and McCreary content categorization.

References

https://formative.jmir.org/2024/1/e49198 JMIR Form Res 2024 | vol. 8 | e49198 | p.2321 (page number not for citation purposes)

37. AlMeshrafi A, AlHamad AF, AlKuwaidees H, AlNasser LA. Arabic Web-Based Information on Oral Lichen Planus: Content Analysis. JMIR Form Res 2024;8:e49198 [FREE Full text] [doi: 10.2196/jmir.2024/1/e49198] [Medline: 33461516] [PMID: 3502161]
Research Letter

The Relationship Between Changes in Mindfulness and Subsequent Changes in Well-Being Following Psychedelic Use: Prospective Cohort Study

Grant Jones¹, MA; Felipe Herrmann¹, BA; Adam Bear¹, PhD; Robin Carhart-Harris², PhD; Hannes Kettner², MSc

¹Harvard University, Cambridge, MA, United States
²University of California, San Francisco, San Francisco, CA, United States

Corresponding Author:
Grant Jones, MA
Harvard University
32 Mill St Box 78
Cambridge, MA, 02138
United States
Email: gmj005@g.harvard.edu

Abstract

This study demonstrates that changes in mindfulness predict subsequent changes in well-being in a data set including individuals who recently engaged in psychedelic use. (JMIR Form Res 2024;8:e54632) doi:10.2196/54632

KEYWORDS
psychedelics; mindfulness; observational; web-based survey; psychedelic; meditation; mental health; anxiety; depression; survey; surveys; drug; drugs; substance use; hallucinogen; hallucinogens

Introduction

Psychedelics have been linked to improvements in depression, anxiety, and overall well-being in clinical trials and cross-sectional research [1-3]. Psychedelic use has also been linked to improvements in mindfulness [4,5], leading researchers to hypothesize that the link between psychedelic use and improvements in well-being may be driven in part by increased mindfulness [4,6,7]. Yet, there is a dearth of studies that directly explore this research domain.

This study uses a prospective data set of individuals who recently used psychedelics to examine, a priori, whether changes in mindfulness are linked to subsequent improvements in well-being, depression, and anxiety. Additionally, this study builds upon and addresses the core limitations of Mans et al [8], which found that psychedelic use was linked to improvements in mindfulness and well-being in the aforementioned data set. As Mans et al [8] did not control for major demographic and substance use confounds, include anxiety as an outcome in the analyses, nor assess how changes in mindfulness may potentially drive subsequent improvements in mental health, we aim to address these critical limitations within this study.

Methods

Overview

This study includes data that were collected in 2017 through a web-based platform called “Psychedelic Survey.” Haijen et al [9] provide further details on the data collection.

We used linear regression to assess whether changes in mindfulness from time 1 (baseline) to time 4 (2 weeks post psychedelic experience) were associated with changes in overall well-being, depression, and anxiety from time 1 to time 5 (4 weeks post psychedelic experience). We controlled for key demographic and substance use variables including age, gender, education level, and prior classic psychedelic use.

We used the Cognitive and Affective Mindfulness Scale–Revised to measure mindfulness, the Warwick-Edinburgh Mental Wellbeing Scale to measure overall well-being, the Quick Inventory of Depressive Symptomatology to measure depression, and the State-Trait Anxiety Inventory–6 (STA16) to measure anxiety. As the STA16 is commonly used to measure state (ie, momentary) anxiety, the scale was adapted to measure trait (ie, persisting) anxiety; these adaptations are included in Multimedia Appendix 1.
Ethical Considerations

The study was approved by the Joint Research Compliance Office and the Imperial College Research Ethics Committee (ICREC reference 18IC4346). Participant data is anonymous, and participants were not compensated for their responses. All participants provided informed consent before participation.

Results

Table 1 presents the demographics of our participants. Table 2 presents the results of our regression models. Changes in mindfulness (T1→T4) were associated with changes in overall well-being, depression, and anxiety (T1→T5). R^2 values ranged from 0.19 to 0.35, indicating moderate to strong effect sizes for our models. Multimedia Appendix 1 includes supplementary robustness analyses that assess the inverse relationship between well-being and mindfulness (ie, are changes in well-being from T1→T4 associated with changes in mindfulness from T1→T5?). Although these associations were significant, R^2 values for these models were lower than those for our main models assessing the relationship between mindfulness changes (T1→T4) and well-being changes (T1→T5; R^2 range 0.11-0.17). Thus, these additional results offer further evidence supporting the notion that mindfulness changes drove well-being changes in this study.

Table 1. Demographics of the sample.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Participants (N=163)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>28 (23-38)</td>
</tr>
<tr>
<td>Range</td>
<td>16-71</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
</tr>
<tr>
<td>Left school before age 16 without qualifications</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Some high school/GCSE level (in UK)</td>
<td>14 (9)</td>
</tr>
<tr>
<td>High school diploma/A-level education (in UK)</td>
<td>16 (10)</td>
</tr>
<tr>
<td>Some university (or equivalent)</td>
<td>26 (16)</td>
</tr>
<tr>
<td>Bachelor's degree (or equivalent)</td>
<td>63 (39)</td>
</tr>
<tr>
<td>Post-graduate degree (e.g., masters or doctorate)</td>
<td>39 (24)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>113 (69)</td>
</tr>
<tr>
<td>Female</td>
<td>50 (31)</td>
</tr>
<tr>
<td>Prior psychedelic use, n (%)</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>14 (9)</td>
</tr>
<tr>
<td>Only once</td>
<td>11 (7)</td>
</tr>
<tr>
<td>2-5 times</td>
<td>43 (26)</td>
</tr>
<tr>
<td>6-10 times</td>
<td>23 (14)</td>
</tr>
<tr>
<td>11-20 times</td>
<td>23 (14)</td>
</tr>
<tr>
<td>21-50 times</td>
<td>30 (18)</td>
</tr>
<tr>
<td>51-100 times</td>
<td>7 (4)</td>
</tr>
<tr>
<td>More than 100 times</td>
<td>12 (7)</td>
</tr>
</tbody>
</table>

*GCSE: General Certificate of Secondary Education.
Table 2. Results from three linear regression models assessing the relationship between how changes in mindfulness (independent variable [IV]; time 1→time 4) are associated with changes in overall well-being, depression, and anxiety (time 1→time 5; dependent variables [DV]).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Overall well-being (T1→T5; DV)</th>
<th>Depression (T1→T5; DV)</th>
<th>Anxiety (T1→T5; DV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta (95% CI)</td>
<td>P value</td>
<td>Beta (95% CI)</td>
</tr>
<tr>
<td>Mindfulness (T1→T4; IV)</td>
<td>0.71 (0.48 to 0.95)</td>
<td><.001</td>
<td>−0.20 (−0.33 to −0.08)</td>
</tr>
<tr>
<td>R²</td>
<td>0.291</td>
<td>N/Ab</td>
<td>0.187</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.219</td>
<td>N/A</td>
<td>0.104</td>
</tr>
</tbody>
</table>

aAge, gender, education level, and prior psychedelic use are included in all models as covariates.
bN/A: not applicable.

Discussion

Using a sample of individuals who recently used psychedelics, this study demonstrated that changes in mindfulness (T1→T4) were significantly associated with subsequent changes in mental well-being (T1→T5) [8]. Furthermore, models assessing the inverse associations between well-being and mindfulness (ie, assessing whether changes in well-being [T1→T4] predicted subsequent changes in mindfulness [T1→T5]) were weaker, strengthening the possibility that mindfulness drove improvements in well-being in this study.

Hill’s criteria for causation provide guidelines for evaluating the causal power of our results [10]. This study fulfills 7 of the 9 criteria: adequate strength of association, consistency with prior findings, specificity, plausibility, coherence (ie, biological plausibility), analogy (ie, comparability to related phenomena), and temporality (ie, the cause occurring before the effect). Additional research is needed to address the remaining criteria: biological gradient (ie, dose-response) and experimental evidence.

Limitations include the lack of a control group and the likelihood of bidirectional influence between changes in well-being and changes in mindfulness, both of which limit our ability to make definitive causal claims within this study. Another core limitation is our inability to control for important demographic factors in this study (eg, race/ethnicity, income, marital status). Future longitudinal studies and randomized trials can address these limitations. Overall, this study provides preliminary evidence that mindfulness may be a potential driver of the link between psychedelic use and salutary mental health outcomes.

Acknowledgments

This study was supported by the Ad Astra Chandaria Foundation and the funders of the Centre for Psychedelics Research.

Data Availability

Data sets are available upon request.

Authors’ Contributions

GJ and HK conceptualized the study. GJ executed all data analysis and oversaw the writing and drafting of the paper. FH helped write the paper. HK and RCH oversaw data collection. All authors read and edited the manuscript before submission.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Results from three linear regression models and the Adapted State-Trait Anxiety Inventory–6.

[DOCX File, 10 KB - formative_v8i1e54632_app1.docx]

References

https://formative.jmir.org/2024/1/e54632 JMIR Form Res 2024 vol. 8 e54632 p.2326 (page number not for citation purposes)

Abbreviations

STA16: State-Trait Anxiety Inventory–6
Smartwatch Versus Routine Tremor Documentation: Descriptive Comparison

Catharina Marie van Alen1, MSc; Alexander Brenner1, MSc; Tobias Warnecke2, MD; Julian Varghese1, MSc, MD

1Institute of Medical Informatics, University of Münster, Münster, Germany
2Department of Neurology and Neurorehabilitation, Klinikum Osnabrück – Academic Teaching Hospital of the University of Münster, Osnabrück, Germany

Corresponding Author:
Julian Varghese, MSc, MD
Institute of Medical Informatics
University of Münster
Albert-Schweitzer-Campus 1, Bldg A11
Münster, 48149
Germany
Phone: 49 0251 8354 714
Email: julian.varghese@uni-muenster.de

Abstract

We addressed the limitations of subjective clinical tremor assessment by comparing routine neurological evaluation with a Tremor Occurrence Score derived from smartwatch sensor data, among 142 participants with Parkinson disease and 77 healthy controls. Our findings highlight the potential of smartwatches for automated tremor detection as a valuable addition to conventional assessments, applicable in both clinical and home settings.

(JMIR Form Res 2024;8:e51249) doi:10.2196/51249

KEYWORDS
Parkinson disease; tremor; smart wearables; smartwatch; mobile apps; movement disorders; tremor documentation; tremor occurrence; tremor score

Introduction

Clinical assessment of tremor is limited by its subjectivity, making it challenging to detect subtle tremors (<0.05 g) [1]. The need for technology-based evaluations led to extensive research on sensor-based tremor assessments [2-6]. However, the benefits of smart consumer devices for clinical documentation remain unaddressed. We aimed to bridge this research gap by comparing tremor documentation from routine neurological assessments with a Tremor Occurrence Score (TOS) derived from smartwatch sensor recordings. We included 142 participants with Parkinson disease (PD) and 77 healthy controls. During clinical visits, routine neurological assessments were conducted and wrist-motion data were captured using a previously established Smart Device System (SDS) in a controlled setting [1,7]. The SDS is based on consumer smartwatches and smartphones. The smartwatches were validated in a geophysical experiment for tremor analysis with comparison to a gold-standard seismometer [1]. We investigated the potential of complementing routine tremor documentation with tremor capture using smartwatches [8].

Methods

Overview
The SDS parent study [1] recruited 450 participants, including patients with PD and other movement disorders and healthy controls. The SDS implemented data capture through electronic questionnaires and app-guided movement tasks with smartwatch sensing. Varghese et al [7] provide a detailed description of the study. Of the 450 participants, 101 were excluded due to diagnoses other than PD. Moreover, 130 patients with PD without explicit information regarding tremor in routine documentation were excluded, resulting in 219 participants. Table 1 summarizes the age, sex, and years from diagnosis onset distribution.
Table 1. Overview of sex, age, and years to diagnosis onset for the 2 study cohorts.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>PD cohort (n=142)</th>
<th>HC cohort (n=77)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Female</td>
<td>42 (29.6)</td>
<td>48 (62.3)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>100 (70.4)</td>
<td>29 (37.7)</td>
<td></td>
</tr>
<tr>
<td>Age (y), mean (SD)</td>
<td>64.9 (9.4)</td>
<td>62.6 (12.4)</td>
<td>.08</td>
</tr>
<tr>
<td>Years from diagnosis onset</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>6.70 (5.36)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Range, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>60 (42.2)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>5-9</td>
<td>39 (27.5)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>10-14</td>
<td>31 (21.8)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>15-19</td>
<td>6 (4.2)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>≥20</td>
<td>6 (4.2)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

aPD: Parkinson disease.
bHC: healthy control.
cN/A: not applicable.

Patients with PD were labeled as either (1) **TremorDocumented**: tremor was documented in routine documentation, regardless of type or amplitude (78/142, 54.9%), or (2) **NoTremorDocumented**: no information regarding tremor in routine documentation (64/142, 45.1%). We compared the routine tremor documentation to a Tremor Occurrence Score (TOS) from smartwatch recordings of a 20-second task, during which participants remained seated in an armchair. The TOS is normalized, from 0=no tremor occurrence to 1=tremor occurrence with a clear frequency peak, with 0.5 representing the average TOS of healthy controls. Details on calculations can be found in Multimedia Appendix 1 [9,10].

Ethical Considerations

The SDS parent study has been registered (ClinicalTrials.gov NCT03638479) and approved by the ethical board of the University of Münster and the physician’s chamber of Westphalia-Lippe (reference 2018-328-f-S). All participants gave written informed consent, and data were pseudonymized.

Results

Figure 1 shows boxplots of the TOSs according to participants’ routine tremor documentation. Overall, 16 (25%) out of 64 patients in the **NoTremorDocumented** group had a TOS ≥0.75 (the median TOS in the **TremorDocumented** group) and an average amplitude of 0.07 g. Particularly, 10 (16%) patients in the **NoTremorDocumented** group had a clear tremor (TOS >0.88, amplitude >0.10 g). The **TremorDocumented** group had a TOS ≥0.75 and an average amplitude of 0.11 g. Overall, patients with a clear but low-amplitude tremor (TOS ≥0.75, amplitude <0.05 g) were 1.59 times less likely to have a documented tremor (**NoTremorDocumented**) than those with a nonsubtle tremor (TOS ≥0.75, amplitude >0.05 g).
Figure 1. Boxplots of Tremor Occurrence Scores (TOSs) for all participants grouped by their routine tremor documentation. Each data point represents a participant of the respective group. Points are colored according to the average wrist amplitude in grams. The middle line is the median. The top and bottom sections are upper and lower quartiles, respectively. The box represents the middle 50% of TOSs for the group. The upper and lower whiskers represent scores outside the middle 50%. PD: Parkinson disease.

Discussion

Smartwatches can capture clear tremors in certain patients with PD, wherein the tremor was not documented during routine neurological assessments. Generally, patients with a clear but low-amplitude tremor (<0.05 g) were 1.59 times less likely to have a documented tremor than those with a strong tremor. We hypothesize that the tremor may not have been documented during the examination because of its small amplitude and difficulty of being seen. Moreover, a few patients (10/64, 16%) in the NoTremorDocumented group showed a clear tremor with visible amplitudes (>0.10 g), possibly due to the tremor being unnoticed or absent during routine examination. Likewise, tremors may not always manifest during smartwatch-based data capture, ultimately affecting the findings’ reproducibility.

Nevertheless, we suggest that integrating smartwatch-based data capture into routine neurological assessments enhances tremor documentation by providing objective numbers on frequency and amplitude for biomarker analysis. Smartwatch integration would further enable improved longitudinal assessment at home. The findings are not suitable for assessing the potential of diagnostic improvements, as routine manual documentation was only compared to smartwatch-based data capture. The parent study is currently evaluating a larger patient cohort, including differential diagnosis, to evaluate the diagnostic accuracy by using machine learning and more detailed tremor features, other movement characteristics, and nonmotor symptoms [1].

Acknowledgments

We acknowledge support from the Open Access Publication Fund of the University of Münster. We thank the Department of Neurology at the University Hospital Münster for integrating the study.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Tremor Occurrence Score (TOS) and tremor characteristic calculation.
[DOCX File, 14 KB - formative_v8i1e51249_app1.docx]

References

Abbreviations

PD: Parkinson disease
SDS: Smart Device System
TOS: Tremor Occurrence Score
Case Report

Examining Passively Collected Smartphone-Based Data in the Days Prior to Psychiatric Hospitalization for a Suicidal Crisis: Comparative Case Analysis

Ross Jacobucci1, PhD; Brooke Ammerman1, PhD; Nilam Ram2, PhD

1Department of Psychology, University of Notre Dame, Notre Dame, IN, United States
2Departments of Communication and Psychology, Stanford University, Stanford, CA, United States

Corresponding Author:
Ross Jacobucci, PhD
Department of Psychology
University of Notre Dame
390 Corbett Family Hall
Notre Dame, IN, 46556
United States
Phone: 1 574 631 6650
Email: rjacobuc@nd.edu

Abstract

Background: Digital phenotyping has seen a broad increase in application across clinical research; however, little research has implemented passive assessment approaches for suicide risk detection. There is a significant potential for a novel form of digital phenotyping, termed screenomics, which captures smartphone activity via screenshots.

Objective: This paper focuses on a comprehensive case review of 2 participants who reported past 1-month active suicidal ideation, detailing their passive (ie, obtained via screenomics screenshot capture) and active (ie, obtained via ecological momentary assessment [EMA]) risk profiles that culminated in suicidal crises and subsequent psychiatric hospitalizations. Through this analysis, we shed light on the timescale of risk processes as they unfold before hospitalization, as well as introduce the novel application of screenomics within the field of suicide research.

Methods: To underscore the potential benefits of screenomics in comprehending suicide risk, the analysis concentrates on a specific type of data gleaned from screenshots—text—captured prior to hospitalization, alongside self-reported EMA responses. Following a comprehensive baseline assessment, participants completed an intensive time sampling period. During this period, screenshots were collected every 5 seconds while one’s phone was in use for 35 days, and EMA data were collected 6 times a day for 28 days. In our analysis, we focus on the following: suicide-related content (obtained via screenshots and EMA), risk factors theoretically and empirically relevant to suicide risk (obtained via screenshots and EMA), and social content (obtained via screenshots).

Results: Our analysis revealed several key findings. First, there was a notable decrease in EMA compliance during suicidal crises, with both participants completing fewer EMAs in the days prior to hospitalization. This contrasted with an overall increase in phone usage leading up to hospitalization, which was particularly marked by heightened social use. Screenomics also captured prominent precipitating factors in each instance of suicidal crisis that were not well detected via self-report, specifically physical pain and loneliness.

Conclusions: Our preliminary findings underscore the potential of passively collected data in understanding and predicting suicidal crises. The vast number of screenshots from each participant offers a granular look into their daily digital interactions, shedding light on novel risks not captured via self-report alone. When combined with EMA assessments, screenomics provides a more comprehensive view of an individual’s psychological processes in the time leading up to a suicidal crisis.

(JMIR Form Res 2024;8:e55999) doi:10.2196/55999
Introduction

Background

In 2021, a total of 48,183 Americans died by suicide, with rates rising in the United States up to 2019 [1] and early indications of a continuing trend into 2022 [2]. While the number of suicides continues to increase, our ability to predict suicidal thoughts and behaviors (STBs) remains stagnant [3], underscoring the potential benefits of shifting focus from identifying who is at risk to when individuals are at risk for suicide. Studies using ecological momentary assessment (EMA) to collect data multiple times per day have demonstrated that key suicide risk factors, including suicidal ideation, change rapidly across the course of the day [4]. However, this research has been limited by the temporal granularity of assessments (ie, every 3-4 hours). It has yet to pay due attention to prospectively predicting suicidal behaviors (ie, suicidal planning and suicide attempts) [5]. Notably, the transition from contemplating suicide to deciding to act on such thoughts can transpire in as little as 10 minutes [6,7], making this decision-making process an ideal candidate for study in temporally intensive designs.

Intensive time sampling studies that use EMA have been shown to capture suicide risk processes effectively [8]; however, these methodologies carry a high participant burden, with the expectation that participants are willing and able to actively report on their experiences consistently throughout and across several days, including during times of distress. This contributes to the high rates of missing data within EMA designs, with compliance rates often around 60% in clinical populations [8]. Despite these limitations, asking self-report items at an intensive time scale has shed light on the dynamic nature of STB [4], with recent work becoming increasingly granular, prompting assessments every 10 minutes for an hour [9]. Furthermore, EMA research has also shed more light on the dynamic influence (both concurrent and prospective) of theoretically identified constructs [10], with a prominent focus on theoretically relevant risk factors, such as thwarted belongingness and perceived burdensomeness [11].

In contrast to active assessment approaches, the reliable detection of experiences within a relatively short window (eg, minutes) can be enhanced by technologically innovative methodologies that can passively and continuously capture the dynamic nature of factors contributing to suicide risk. This has provided, in part, the foundation for the surge in applications of passive sensing—including digital phenotyping [12]—in clinical research. Digital phenotyping is the use of data from smartphones and other personal digital devices to measure behaviors, cognitive functions, mood, and other psychological variables [13,14]. By collecting and analyzing data such as keystrokes, voice patterns, geolocation, social media activity, and other digital traces, digital phenotyping offers a real-time, high-resolution, yet low burden, approach to understanding and monitoring clinical phenomena.

Digital phenotyping has seen an increase in application across clinical research broadly, with the term being previously applied to suicide risk profiles based on active assessments (ie, EMA) [15]. However, little research has specifically targeted passive assessment approaches to suicide risk detection, with existing findings being mixed concerning its predictive validity. For example, in a recent study, Czyz et al [16] found that sensor-based assessments (resting heart rate, heart rate variability, step count, and sleep duration) did not add incremental validity to the prediction of near-term suicidal thoughts above and beyond EMA self-report questions among high-risk adolescents. Alternatively, it was demonstrated that psychological monitoring of electrodermal activity did improve fit upon EMA-only models in the prediction of suicidal ideation severity [17]. The limited work in this realm leaves open the possible use of passive assessment in better understanding suicide risk.

One of the most recently available methods in performing digital phenotyping is screenomics [18,19], wherein participants passively provide temporally intensive records of their psychological and social life as it manifests on the screens of their digital devices [19]. In this case, screenomes, or the record of experiences on digital devices with screens [19], are captured via software that takes screenshots of an individual’s smartphone screens every 5 seconds when the device is in use. Initial work using screenomics has described the timing and patterns of smartphone usage by extracting various textual and graphical features from screenomes, allowing for a mapping of app use and topic of content viewed [20], among other key use features such as the emotion valence of content viewed [21]. More recently, screenomes have informed the examination of digital communications, including differentiation between produced (ie, actively producing smartphone content) and consumed (ie, passive consumption) communication content [22], as well as the communication dynamics within relationships [23].

This Study

Following the possibility of using screenomes to learn about individuals’ emotional experiences and interpersonal dynamics, this study is the first, to our knowledge, to engage screenomics with a clinical population and, more specifically, for the study of suicide risk. This paper focuses on a comprehensive case review of 2 participants, detailing their passive (ie, obtained via screenomics screenshot capture) and active (ie, obtained via EMA) risk profiles that culminated in suicidal crises and subsequent psychiatric hospitalization. In our approach, we intentionally focused on building a qualitative, rather than quantitative, understanding of the data, purposely eschewing statistical modeling to capture the nuanced individual experiences and complexities inherent in suicide risk. Further, we iteratively followed inductive and deductive approaches.
[24,25] in deciding which variables to define (in passively collected data) and focus on (in actively collected data). Through this analysis, we shed light on the timescale of risk processes as they unfold prior to hospitalization, as well as introduce the novel application of screenomics within the field of suicide research. To underscore the potential benefits of this method in comprehending suicide risk, we concentrate on a specific type of data gleaned from screenshots—text—captured prior to hospitalization, alongside self-reported EMA responses.

Methods

Overview

This case review focuses on 2 participants who had suicidal crises and subsequent psychiatric inpatient treatment, coincident with their participation in an intensive time-sampling study that included both active and passive assessment approaches. To participate in the larger study, participants were required to have an Android smartphone, daily access to the internet (via Wi-Fi or cellular data), a past 1-month history of active suicidal ideation, and no history of being diagnosed with schizophrenia. Participants completed a baseline assessment, 28 days of active assessments obtained via signal-contingent EMA prompts, and 35 days of passive assessments obtained via screenshot collection. Participants were randomly assigned to 2 protocols where they provided the additional 7 days of passive screenshot collection (with no EMA prompts) in the week prior to the 28-day EMA+screenshot collection period (person A) or the week following the 28-day EMA+screenshot collection period (person B). For the 2 participants included in this study, data collection occurred before, during, and after an acute crisis and hospitalization spanning 38 (person A) and 51 (person B) days, respectively. A general overview of the data collected and how the screenshots were processed is depicted in Figure 1.

Ethical Considerations

All procedures were approved by the institutional review board of the University of Notre Dame (protocol number 21-12-6965). Prior to engaging in any study procedures, participants were provided a full description of the study and the opportunity to ask questions, including speaking with study principal investigators (BA and RJ) or the institutional review board if any concerns were expressed. All participants provided written informed consent. They were compensated up to US $215 for participation (ie, US $40 for baseline assessment, US $100 for a 28-day EMA period, US $20 for completing at least 75% of EMA surveys, and US $55 for a 35-day screenomics period). Self-reported data from this study are deidentified; screenshot data are coded with layered IDs, encrypted upon storage upload, processed to remove potentially identifying information (ie, names and addresses), and accessible only to core study team members.

Active Assessment

Overview

Across the 28 days, participants received 6 prompts each day to complete a short survey on their smartphone (ie, signal-contingent design); prompts were delivered randomly within 2-hour windows across a 12-hour participant-selected block (eg, 9 AM to 9 PM). When participants received a prompt, they had 30 minutes (with one 15-minute reminder) to complete the short survey (expected to take <3-4 minutes). The EMA protocol was administered via the LifeData software on participants’ smartphones. To improve compliance and data quality, participants completed a “practice” EMA signal-contingent prompt during the baseline session and were incentivized for completing ≥75% of EMA signal-contingent responses (determined every week); EMA compliance was calculated based on the number of prompts received versus the number of prompts completed. We identified “high” scores for

Figure 1. General overview of the study design. EMA: ecological momentary assessment; OCR: optical character recognition.
each variable depicted below by calculating whether an individual score was at or above the 90th percentile based on the person-specific empirical distribution.

Risk Factors
For this paper, we primarily focus on 2 key risk factors related to suicide: thwarted belongingness and perceived burdensomeness, as explained in the Interpersonal Psychological Theory of Suicide [26]. However, we also examined other important risk factors supported by prior research, including positive and negative emotions, urges, and behaviors related to nonsuicidal self-injury, alcohol and drug use urges, interpersonal conflict, self-reported sleep patterns, and physical pain [10]. The majority of these items were answered on a 5-point Likert scale, except interpersonal conflict, self-injurious and alcohol use behaviors, and nightmares, which were binary. Further, assessments of pain were reported on a 0-100 scale. Multimedia Appendix 1 [27,28] shows details for EMA questions to access risk factors.

Suicide Risk

Suicidal Ideation
Four questions assessed momentary (ie, “In this moment…”) passive (ie, “Life is not worth living for me”; “There are more reasons to die than to live”) and active (ie, “I want to die”; “I think about taking my life”) suicidal ideation, all items were answered on a 5-point Likert scale. Based on prior work by the study team, which showed that the 4 items form 1 factor (rather than 2 factors) [11], the item responses were summed to obtain a composite momentary suicidal ideation score.

Suicidal Planning
Three items assessed suicidal planning since the last prompt (ie, “Considered a specific suicide method”; “Identified how to acquire your suicide method”; “Made other preparations for your death”); these items were summed to create a composite suicidal planning score. All items were answered on a 5-point Likert scale.

Suicidal Desire
Two questions assessed momentary suicidal urges (ie, “How strong is your urge to make a suicide attempt?”; “How intense is your desire to kill yourself?”); items were answered on a 5-point Likert scale. These items were summed to create a composite suicidal desire score.

Passive Assessment

Overview
Continuous smartphone data collection was collected via the ScreenLife Capture [29] app, which is tailored for integration with HIPAA (Health Insurance Portability and Accountability Act of 1996)-compliant servers at the University of Notre Dame. This software passively captures screenshots of participants’ Android smartphone screens at 5-s intervals during smartphone use and stores the screenshots locally on the smartphone before bundling, encrypting, and transmitting them to research servers at intervals that accommodate bandwidth and device memory constraints. The screenshots are obtained continuously as the participant uses their smartphone in everyday life without requiring active engagement from the participant. In postprocessing, the screenshots’ content features are extracted using various image processing tools. In postprocessing, the text from each screenshot was extracted using EasyOCR, an open-source optical character recognition tool for Python, known for its efficiency in processing images containing text, even under less than perfect clarity or with intricate layouts. Optical character recognition technology converts various document types, such as scanned paper documents, PDF files, or images taken by a digital camera, into editable and searchable data. We removed any text extracted with a confidence value of less than 0.70. The text was then normalized by lemmatization, case reduction, and removal of punctuation and numbers and examined using a variety of dictionaries.

Risk Factor–Related Content

Linguistic Inquiry and Word Count
The first dictionary-based method that we tested is the linguistic inquiry and word count (LIWC) [30], which is implemented as a commercially available software program [31]. LIWC analyzes text according to a dictionary comprised of 6400 words, word stems, and emoticons, primarily related to psychological processes (eg, affective and social processes) [31]. The output contains scores on 90 dictionary components and linguistic or grammar dimensions of their data. For this paper, we only extracted components that we thought could be related to psychological processes or risk factors for suicide (eg, substances). Multimedia Appendix 2 [31] shows an overview of LIWC components. To display the scores, we opted to depict a ratio (score for each day/total) score for each instead of the absolute number of mentions for each category.

Topic-Specific Dictionaries
Since the specific words in the LIWC components are proprietary, we also created our own dictionary of common words likely associated with these components, particularly those crucial for understanding the suicide risk process. For example, we created a substances dictionary. Multimedia Appendix 3 contains words used in specific dictionaries.

Social Content
We identified which smartphone app was in use through the text portrayed when an app was in use. After examining participants’ screens to identify phone-specific app displays, we used the following words to identify text messaging (SMS): “text message,” “sms,” and “text,” while the following text for Meta: “write a comment,” “what’s on your mind,” “like,” “facebook,” and “Instagram.” We acknowledge that this dictionary will not perfectly distinguish between each app and similar apps, with a more robust method needed when extrapolating beyond these 2 individuals. Additionally, we used external data to train a model to identify whether the screenshot contained indicators of using a social app. We used the Rico data set [32], a repository of 66,261 screen images from Android operating systems. Each screenshot in Rico captures a momentary snapshot of a mobile app’s user interface. For our purposes, one of the crowdsourced annotations is “Is_Social” (4172 positive cases), which classifies whether or not a screen contains social media elements or functionalities. From this,
we randomly split the images into an 80/20 train-test split and fine-tuned ResNet18, which is a variant of the Residual Network family, a type of convolutional neural network architecture. The model was trained for 50 epochs, choosing a final model based on the test set area under the curve score, which was maximized at 0.89. We applied this model to each person’s screenshots, aggregating the predicted probabilities by day.

Suicide Language

We defined our dictionary to derive scores specific to suicide-related words (ie, “kill myself” and “end it all”) and a separate dictionary based on theoretically linked risk factors (ie, “trapped” and “crying”). These dictionaries were created through literature review and expert consultation. Multimedia Appendix 3 contains words used in specific dictionaries. Finally, we used the dictionary, termed crisis, which was developed by screening crisis chat messages [33]; this dictionary contains 227 words, ranging from specific states regarding suicidality (ie, “hurt myself” and “I just want this all to end”), suicide-related emotion states (ie, “hate my life” and “hopeless”), and potential suicidal behavior–related words (ie, “drown” and “rope”). To clean the text, we first removed screens that contained EMA prompts, namely, to avoid capturing suicide words that were used as a part of the EMA assessments.

Results

Case Overview

Person: A

Overview

Person A was a 37-year-old, straight, White, non-Hispanic individual born female and identifies as a woman. They reported being single, employed full-time, and with an annual household income of US $30,000–US $39,000. This participant’s diagnostic assessment revealed they met the diagnostic criteria for current major depressive disorder, panic disorder, agoraphobia, generalized anxiety disorder, posttraumatic stress disorder, and cannabis use disorder. They reported having engaged in prior individual counseling, as well as spiritual counseling, and that they were currently taking medication for psychiatric and medical reasons, including heart problems and epilepsy. Concerning suicide risk history, they reported chronic suicidal ideation, beginning at age 10 years and attempting suicide on 5 occasions, with the first attempt at age 11 years and the most recent 2 attempts in the year before study enrollment (1 in a month prior). In the week prior to enrolling in the study, they reported thinking about suicide 14 times and denied any suicidal planning.

Provision of Active and Passive Data

Person A responded to EMA prompts on 25 days; on these days, they, on average, only completed 4.04 prompts (SD 1.70), resulting in compliance of 60.1% (101 completed prompts out of 168 total prompts) or 67.3% counting only the days in which they responded at least once. They provided 139,276 screenshots. An average day involved 5.92 (SD 2.75) hours of screenshot data collection.

Person B

Overview

Person B was a 29-year-old, White, non-Hispanic individual who was born female and has a nonbinary gender identity; they reported questioning their sexual identity at the time of baseline assessment. They reported being employed full-time, living with a partner, and having an annual household income of US $40,000–US $49,000. This participant’s diagnostic assessment revealed they met current diagnostic criteria for bipolar I, as well as current panic disorder, social anxiety disorder, and substance use disorders (cannabis, amphetamine, and cocaine). They reported having previously engaged in several forms of outpatient treatment (ie, individual counseling, group counseling, couples counseling, and day treatment) and currently taking medication for medical and psychiatric reasons. Stated medical concerns included heart and respiratory problems. Concerning suicide risk history, person B reported chronic suicidal ideation, experiencing suicidal thoughts on 95% of days, beginning at the age of 7 years. They also reported having attempted suicide on 4 occasions, with the first being at the age of 13 years, and the most recent 5 years prior to study involvement. In the week prior to enrolling in the study, they reported thinking about suicide 7 times and planning for suicide 3 times.

Provision of Active and Passive Data

Person B completed EMA surveys on 23 days, responding to, on average, 2.7 (out of 6; SD 1.63) prompts per day, resulting in a compliance of 37.5% (63 completed prompts out of 168 total prompts) or 45.6% counting only the days in which they responded at least once. Participant B provided 58,098 screenshots. An average day involved 3.59 (SD 2.74) hours of screenshot data collection.

Comprehensive Suicide Risk Assessments

To ensure participant safety, EMA responses that indicated elevations in imminent suicide risk triggered comprehensive risk assessments by study staff. Information obtained during these calls is not presented among active assessment results but rather provided in the Results section to provide a more in-depth contextual understanding of each detailed participant. During study enrollment, person A’s responses resulted in a comprehensive suicide risk assessment 9 times. Through these calls, person A expressed feelings of being overwhelmed and hopeless; they also expressed difficulties with having limited social support. They engaged in means restriction pertaining to their most recent suicide attempt method. Suicidal ideation was reported on these calls; however, the participant denied suicidal planning or intent. Day 26 in the study was the last time person A’s responses triggered a suicide risk assessment (study staff unable to reach them after 3 attempts) prior to their choice for hospitalization; however, on day 29 of participation, the participant reported self-admitting for psychiatric hospitalization due to concerns of being unable to keep themself safe in the context of their suicidal thinking, and study staff spoke with them after they were on the way to the hospital due to EMA responses triggering a suicide risk assessment. They were hospitalized on days 29–32 of study participation.
Comprehensive Suicide Risk Assessments

During study enrollment, person B’s responses to the suicide-specific EMA questions triggered the study risk assessment protocol 8 times. During these calls, the participant expressed their suicidality was prompted by a panic attack, as well as interpersonal conflict that was impacting their housing stability. Suicidal ideation and suicidal planning were expressed in multiple calls; however, intent to act on these plans was low, and confidence in keeping themselves safe was high. They reported the use of several coping strategies, such as connecting with their care provider (resulting in adjustments to their psychiatric medication), means restriction, reviewing reasons for living, future planning, listening to music, sitting with their emotions, and deep breathing. However, on day 18 of participation, the participant attempted suicide and subsequently received inpatient psychiatric treatment from days 18 to 22; person B emailed the study staff to notify them of hospitalization after discharge (ie, day 22).

Comparative Analysis

In the following sections, we describe each person’s active assessment and passive assessment risk profiles surrounding their suicidal crises and subsequent hospital admission. The vertical red line in the visualizations represents the first day of each person’s hospitalization.

General Use Patterns

Active Assessment Compliance

For both individuals, we can see that EMA compliance was lowest surrounding their hospitalization. Particularly for person A (Figure 2), we see a decline in compliance with the active assessment protocol leading up to hospitalization, with a more precipitous decline for person B (Figure 3). For person A, the nonprovision of active assessments presents several problems for assessing suicide risk via EMA, as it suggests that some individuals may be less likely to respond to research survey prompts during periods when they are at the highest risk.

Figure 2. Person A: ecological momentary assessment compliance across the study. The vertical red line denotes the first day of hospitalization.

Figure 3. Person B: ecological momentary assessment compliance across the study. The vertical red line denotes the first day of hospitalization.
Phone Use

We see a different picture regarding phone use leading up to hospitalization, as depicted in Figures 4 and 5. While the number of passively collected screenshots stays relatively consistent leading up to the hospitalization for person A (Figure 4), we see an increase in phone use for person B (Figure 5) the day prior.

Phone use leading up to hospitalization can be further decomposed to look at the timing of when screenshots were collected within a given day; see Figures 6 and 7, where a horizontal red line denotes 50% phone use (ie, 30 minutes=360 five-second intervals) for that hour. For person A (Figure 6), we can see relatively consistent phone use during specific times of the day, along with periods in which their phone is not in use. Most days include at least 1 hour in which they were intensively using their phone (>50% time spent on the phone). In contrast, person B (Figure 7) was more variable in their phone use—some days included periods of intense use, while on others, phone use was sparse. Notably, neither person A nor B’s screenshot patterns indicate a consistent use pattern. The above phone use patterns do not suggest poor sleeping habits as revealed by periods of nonuse; however, we further examine this by considering phone use across hours of the day, aggregated across days. We calculated the percentage of each hour, on average, that each person used their phone (Figure 8: the horizontal red line represents 50% [ie, 30 minutes] average use for that hour). On average, neither person approaches using their phone 50% of the time. As mentioned earlier, person B (Figure 8: right) uses their phone less than person A (Figure 8: left). However, we see similar trends across individuals, with increasing phone use across the day. Notably, we also see some degree of either variable sleep schedules or sleep schedules being interrupted by phone use, as there are few hours of the day with no phone use for either person.

Figure 4. Person A: number of screenshots by day in study. The vertical red line denotes the first day of hospitalization.
Figure 5. Person B: number of screenshots by day in study. The vertical red line denotes the first day of hospitalization.

Figure 6. Person A: screenshot count across days and hours of each day. The horizontal red line depicts 50% phone use for that hour.
Active Assessment

Risk Factors

Self-reported sleep indicators were assessed each morning. Subjective quality of sleep (sleep quality: bottom panel) and the presence of nightmares (top panel: nightmares yes or no) are depicted in Figure 6 (person A: Figure 9 and person B: Figure 10).

Compliance was particularly low for this set of questions. However, there are clear trends for both. While person A had consistent nightmares leading up to the hospitalization, their sleep quality improved (5=very good night of sleep). This is in contrast to person B, where nightmares increased and sleep quality decreased prior to the hospitalization.

Of theoretically and empirically relevant variables that we assessed via EMA, we do not see any increasing trends in perceived burdensomeness, thwarted belongingness, negative affect, or positive affect in Figures 11 and 12 (notably, however, there are a few spikes in negative affect for person A immediately prior to hospitalization). Figures 11 and 12 depict the empirically supported risk factors that demonstrated change leading up to hospitalization. We can see that both individuals reported consistent interpersonal conflicts across the study. However, there were no clear increases leading up to the hospitalization. For person A (Figure 11), we do see a slight increase in urges to drink alcohol; however, when we look at the responses related to alcohol use, they only reported drinking alcohol on 2 days. Further, both individuals report consistent urges to use drugs, with person B exhibiting a slight increase.
in urges prior to hospitalization. Finally, person A reported moderate urges to self-injury, with reported self-injury engagement on 1 occasion. However, there is no clear pattern of changes in risk factors prior to hospitalization.

Figure 9. Person A: ecological momentary assessment sleep responses across days in the study. Nightmares (yes or no) in the top panel, subjective sleep quality in the bottom panel. The vertical red line denotes the first day of hospitalization.

![Graph showing sleep responses](image_url)

Figure 10. Person B: ecological momentary assessment sleep responses across days in the study. Nightmares (yes or no) in the top panel, subjective sleep quality in the bottom panel. The vertical red line denotes the first day of hospitalization.

![Graph showing sleep responses](image_url)
Figure 11. Person A: risk factor ecological momentary assessment responses across days in the study. The blue line is a loess curve, while the vertical red line denotes the first day of hospitalization.

Figure 12. Person B: risk factor ecological momentary assessment responses across days in the study. The blue line is a loess curve, while the vertical red line denotes the first day of hospitalization.

Suicide Risk

EMA responses related to suicidal ideation, planning, and desire for persons A and B are depicted in Figures 13 and 14, respectively; loess curves depict general trends, with red data points denoting higher relative values (ie, above the 90th percentile). For person A, we can see generally increasing trends for self-reported suicidal ideation and suicidal desire leading up to their hospitalization, with the highest reported values of suicidal ideation on the day of hospitalization. For person B, we can see elevated responses of self-reported suicidal ideation and planning leading up to their hospitalization. However, these elevations dissipate in the days immediately prior. As noted in Figures 2 and 3, we see lower response rates for surveys, including questions assessing suicidal ideation, planning, and desires in the days prior to hospitalization.
Passive Assessment

Risk Factor–Related Content

To assess passive assessment indicators of sleep, we attempted to link sleep and wake times, obtained via active assessment once per day, to screenshot collection timestamps. However, person A reported sleep and wake times on 16 days, while person B reported on 14 days. Given the small number of responses for each person (ie, approximately 50% missing data) and variability in their reported sleep and wake times, we did not feel confident calculating whether screenshots were collected during reported sleep times. Thus, we opted against reporting and visualizing this.

For person A (Figure 15), we see peaks in several components leading up to their hospitalization, potentially most evident for the death and conflict scores. Probing further into the screenshot content during this day, we found that person A spent most of the day watching the TV show with “murder” in the title, likely contributing to these peaks. We also see a clear peak in the substances score prior to hospitalization. We created a substance-specific dictionary to further examine this (Multimedia Appendix 3). In applying this dictionary, we identified the top 5 words, and plot their use across the time period in Figure 16. To contextualize these findings, we examined a random selection of 1000 screenshots from the day prior to hospitalization. From these screenshots, it is evident that person A was experiencing a high degree of pain; this was corroborated by active responses of self-reported daily physical pain: although there were only 15 responses, their mean response was 74.4 (SD 16.2). They also disclosed through a SMS text message that an over-the-counter painkiller was not enough,
and they could not get into a doctor to receive a prescription until the following month. Further, given the high identification of “weed” in screenshots the day prior to hospitalization, we extracted co-occurring text (i.e., text from screenshots where “weed” was identified), and it became evident that person A was viewing posts about the medicinal use of marijuana on Facebook.

For person B (Figure 17), we see a number of components peak in the day prior to hospitalization. To contextualize these findings, we examined a random selection of 1000 screenshots from the day prior to hospitalization. We saw that they spent a large amount of time on a dating app (increase in sexual score in Figure 17) and conversing with individuals from that app. Further, like person A, person B was struggling with physical pain (specifically, head pain) and spent considerable time looking at health care providers and trying to identify a diagnosis, thus explaining the spike in a number of LIWC categories (i.e., physical and health). Notably, they only completed 10 active responses of self-reported daily physical pain, making it hard to derive any conclusions from their average score of 26.8 (SD 23.5).

We further examined risk factor text content on the day prior to hospitalization, as presented in Figures 18 (person A) and 19 (person B). For person A, a number of spikes in several risk factors were seen during the evening, whereas for person B, similar spikes were seen earlier in the day.

Figure 15. Person A: Linguistic inquiry and word count scores across days in the study. Note that scores are displayed as a ratio, using the daily score divided by the sum of all time points. The vertical black line denotes the first day of hospitalization.

![Figure 15](image)

Figure 16. Person A: substance use scores across days in the study. The vertical red line denotes the first day of hospitalization.

![Figure 16](image)
Figure 17. Person B: linguistic inquiry and word count scores across days in the study. Note that scores are displayed as a ratio, using the daily score divided by the sum of all time points. The vertical black line denotes the first day of hospitalization.

Figure 18. Person A: Linguistic inquiry and word count scores on the day before hospitalization.
Figure 19. Person B: Linguistic inquiry and word count scores on the day before hospitalization.

Social Content
Given the high amount of social contact for each person, we further examined changes in social behavior prior to hospitalization. Figure 20 shows the SMS text message and Meta (ie, Facebook, Instagram, and WhatsApp) use for person A. While the use of Meta apps does not show a clear change in the pattern of use relative to hospitalization, the use of text messaging peaks on the day of hospitalization. For person B (Figure 21), we see an increased use of Meta apps immediately prior to hospitalization, along with a slight increase in SMS text messaging in the days prior.

A similar conclusion can be drawn from the modeling of whether a screenshot contains social content in Figures 22 (person A) and 23 (person B). In examining a random sample of 1000 screenshots from the day of hospitalization, it appeared that person A was preparing for hospitalization by contacting friends to watch her dog and find a ride. Further, through disclosing her need for hospitalization, she was in frequent SMS text message conversations in which multiple individuals provided support for her decision. Alternatively, for person B, we see an increase in the use of social apps leading up to the day of hospitalization. However, on the day right before hospitalization, we do not see a large predicted total score of a number of screenshots containing social content.

Figure 20. Person A: SMS text message and Meta usage across days in the study. The vertical red line denotes the first day of hospitalization.
Suicide Language

In applying the suicide-specific dictionaries, for person A (Figure 24), we only see the clear spike related to viewing the TV show. This is unsurprising given the other information gleaned from this participant’s screenshots, as their hospitalization was often discussed relative to pain, rather than suicidal thoughts or behaviors. Similarly, for person B (Figure 25), we see more of a peak with respect to risk factors and crisis words as opposed to suicide-specific words.

We then examined the top 10 endorsed individual risk words in Figures 26 and 27. For person A (Figure 26), we unsurprisingly see a large spike in pain on the day prior to...
hospitalization. This is further seen in counting the word identification within the day prior to hospitalization (Figure 28). A peak in pain is followed by similar peaks in guilty and alone later in the day. Similar to person A, for person B (Figure 27), we see pain as peaking on the day before hospitalization, in addition to smaller, but noticeable peaks in anxiety, alone, and depression, as well as numb, in the few days prior. When examining the day prior to hospitalization (Figure 29), we see that the identification of pain primarily occurred earlier in the day, followed by smaller peaks in alone, depression, numb, and anxiety.

Figure 24. Person A: suicide risk scores across days in the study. Each score was derived from applying each dictionary in Multimedia Appendix 3 to text extracted from the screenshots. The vertical red line denotes the first day of hospitalization.

Figure 25. Person B: suicide risk scores across days in the study. Each score was derived from applying each dictionary in Multimedia Appendix 3 to text extracted from the screenshots. The vertical red line denotes the first day of hospitalization.
Figure 26. Person A: individual risk words across day in the study. The vertical red line denotes the first day of hospitalization.

Figure 27. Person B: individual risk words across day in the study. The vertical red line denotes the first day of hospitalization.
Discussion

The goal of this comparative case review was to detail risk profiles obtained from both actively and passively collected smartphone data in the days leading up to a suicidal crisis. Through this, we also aimed to introduce the novel application of screenomics in suicide research. Our preliminary findings underscore the potential of passively collected data in understanding and predicting suicidal crises. The vast number of screenshots from each participant offers a granular look into their daily digital interactions, which, when combined with EMA assessments, provides a more comprehensive view of an individual’s psychological processes in the time leading up to a suicidal crisis. While this variegated picture of each individual’s life, as captured through a phone, makes a clean summarization impossible, it is worth noting some of the common elements evidenced in the data.

The first was decreased EMA compliance leading up to one’s hospitalization, muddying our understanding of an individual’s risk state, including the presence of STB. Perhaps most notably, this highlights the potential downsides of relying solely on one’s ability and willingness to disclose their experiences in times of distress or crisis, having important implications for the prediction of, and intervention during, such risk states. We recognize this is conjecture based on the analysis of only 2 individuals and requires future research as, to our knowledge, this has not been previously assessed or tested in intensive longitudinal studies of STBs. However, if true, it has important consequences for the rising use of just-in-time interventions targeting suicide risk [34]. For example, relying on active (ie, EMA self-reported responses) may offer sufficient temporal granularity for intervening upon lower level risk states but may not be adequate for detecting crises given the burdensome design, particularly when in crises. Rather, as demonstrated in
our case examples, personalized phone use patterns might be a more reliable indicator of impending suicidal crisis than EMA-assessed suicidal ideation.

A second takeaway from our analysis is that screenomics captured the salient precipitating factors for each suicidal crisis, which were not detected via EMA, due to a variety of reasons (ie, nonresponse and ceiling effects). The first illustrative example is that of physical pain. Self-reports via EMA were able to capture the role of physical pain in suicide risk, to some extent, for person A, who responded to approximately 54% of daily questions about pain. However, for both person A and B, texts extracted from their screenshots were able to more fully portray the significant, and dynamic, nature of this experience leading up to one’s hospitalization. While we recognize this risk process may be specific to the individuals selected for inclusion in this report, an effect with similar implications was demonstrated for the theoretically relevant risk factor of thwarted belongingness. For example, EMA responses with regard to thwarted belongingness were elevated across the majority of the study period, preventing an observation of increases, or spikes, prior to hospitalization. Alternatively, for both person A and person B, we see that alone, a central aspect to the construct of thwarted belongingness (ie, “I am alone” [26]), represented one of the top 10 risk factors words used and also demonstrated a spike in use during the day immediately preceding hospitalization. Together, these examples underscore the potential of passive data collection, such as screenomics, to tap into risk processes that are not evident from, or demonstrated by, self-report assessments. Indeed, the low-burden nature of such passive assessment may allow for a more nuanced detection of a wide array of potential risk factors, lending to meaningful personalized risk detection.

Finally, and possibly the most surprising element was a general increase in phone use leading up to the hospitalization, including the increase in social use. It remains unclear as to whether this was a causal factor—that is, contributed to suicide risk—or was the result of seeking social support for their distress, making arrangements to be hospitalized (pet care or work), or other possible help-seeking behaviors, to cope with their escalating suicide risk. Further, the function of social phone use at or near times of suicidal crises may be person or situation specific (ie, idiographic). For example, person A appeared to be engaging in help-seeking behavior via SMS text message (eg, arranging rides) prior to hospitalization, while person B largely engaged in social and dating app usage, potentially contributing to acute interpersonal stressors. It will be useful to further develop our data processing pipeline to further explore the relationships between phone use, particularly social use, and suicide risk.

Of note, we purposely did not report any results from statistical models. While it is becoming more commonplace to apply linear models at the individual level [35], we opted against this. Our main focus for this comparative case report was on identifying risk patterns preceding hospitalization; the forgoing statistical models allowed us to explore a greater number of risk pathways in a more in-depth manner. Further, each participant had a limited number of assessments, with an increasing number of missed prompts leading up to the hospitalization (Figures 2 and 3), making the application of linear models difficult. Moreover, applying a longitudinal model to components derived from screenshots presents a number of challenges due to the high dimensionality, and uncertainty regarding forms of validity (eg, in naming components).

Within suicide research, and particularly intensive longitudinal research, ethical consideration of participant safety is a primary concern [36]. The incorporation of active assessments has the clear benefits of face validity to specific suicide questions (ie, “Are you planning to attempt suicide today?”), along with straightforward processing to derive risk score cutoffs that indicate required follow-up by study staff and the ability to readily access such data (ie, manually examining responses). As noted above, there are potential issues with relying on active assessment responses (ie, noncompliance [37,38]). However, the use of passively collected data (broadly defined) also presents a number of challenges for use in ascertaining risk. The first is the clear lack of published research on which data sources are valid markers of risk. Second, while some data points are easily calculated (ie, the number of screenshots and steps walked), others would require complex and expensive processing pipelines to process data in real time. For instance, in screenshots presented in this case study, this would require automatic decryption of uploaded images to a server that is integrated with a graphics processing unit (or central processing unit) architecture that can apply pretrained models to generate new data sources (eg, SMS text messages) or predictions (eg, suicide risk scores based on the text). Similarly, most smartwatches require manual syncing with software before data are uploaded to the cloud, thus precluding real-time analysis. Thus, a large degree of additional research is required before incorporating various types of passive assessment into real-time participant safety protocols.

A number of limitations to this paper should be mentioned. First, as this is the first comprehensive investigation of smartphone screenshot data to improve our understanding of suicide risk, aspects of our approach are preliminary in nature, including the use of specific (ie, suicide, risk factor, and substance) dictionaries. It will be important for further validation of these dictionaries prior to wide-scale applications. Our focus on studying 2 individuals with a complex case profile limits the generalizability of our findings across the wider spectrum of severity of suicidal ideation, planning, and behaviors. Consequently, our results may not fully represent the experiences of those at lower levels of suicide risk (ie, not experiencing a suicidal crisis). The findings may also not generalize to individuals at a similar risk level but do not consider psychiatric hospitalization as a treatment option. Further research with larger and more diverse samples is necessary to validate and extend our findings to a broader population. Finally, we only included one form of passive sensing, screenomics, while a number of other modalities, such as geo-location or watch-based assessments (ie, sleep, steps, and heart rate), have seen wide application in clinical research [39].

In conclusion, the primary aim of this paper was to provide an in-depth examination of both passive and active data modalities from 2 individuals who were hospitalized for suicidal crises. We hope this paper has introduced the value of collecting...
passive data, specifically screenshots, at an intensive timescale, as well as highlighting the potential of its ability to incrementally add to our understanding of suicide risk timescale and underlying processes.

Acknowledgments
This project was funded by the National Institute of Mental Health (1R21MH129688) awarded to BA and RJ.

Data Availability
The screenshot data set collected and analyzed during this study is not available from the authors at this time. However, it will eventually be accessible through the NIMH National Data Archive. Derivative data sets used to create each figure are available from the corresponding author on reasonable request.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Ecological Momentary Assessment (EMA) questions to assess risk factors. [DOCX File, 13 KB - formative_v8i1e55999_app1.docx]

Multimedia Appendix 2
Linguistic Inquiry and Word Count (LIWC) components [30]. [DOCX File, 14 KB - formative_v8i1e55999_app2.docx]

Multimedia Appendix 3
Words used in specific dictionaries. [DOCX File, 14 KB - formative_v8i1e55999_app3.docx]

References

Abbreviations

EMA: ecological momentary assessment
HIPAA: Health Insurance Portability and Accountability Act of 1996
LIWC: linguistic inquiry and word count
STB: suicidal thoughts and behavior

©Ross Jacobucci, Brooke Ammerman, Nilam Ram. Originally published in JMIR Formative Research (https://formative.jmir.org), 20.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
Short Paper

Tailoring of Health-Promotion Video Messaging for Reproductive-Aged Women at Risk for Developing Cardiometabolic Disease: Qualitative Focus-Groups Study

Jacqueline Kent-Marvick1*, BSN; Bryan Gibson2*, DPT, PhD; Alycia A Bristol1*, RN, AGCNS-BC, PhD; Stephanie St Clair1*, BSN; Sara E Simonsen1*, CNM, MSPH, PhD

1College of Nursing, University of Utah, Salt Lake City, UT, United States
2School of Medicine, University of Utah, Salt Lake City, UT, United States
*all authors contributed equally

Corresponding Author:
Jacqueline Kent-Marvick, BSN
College of Nursing
University of Utah
10 South 2000 East
Salt Lake City, UT, 84112
United States
Phone: 1 4356686932
Email: jacqueline.kent-marvick@utah.edu

Abstract

Background: Targeting reproductive-aged women at high risk for type 2 diabetes (T2D) provides an opportunity for prevention earlier in the life course. A woman’s experiences during her reproductive years may have a large impact on her future risk of T2D. Her risk is 7 to 10 times higher if she has had gestational diabetes (GDM). Despite these risks, T2D is preventable. Evidence-based programs, such as the National Diabetes Prevention Program (DPP), can reduce the risk of developing T2D by nearly 60%. However, only 0.4% of adults with prediabetes have participated in the DPP to date and reproductive-aged women are 50% less likely to participate than older women. In prior work, our team developed a mobile 360° video to address diabetes risk awareness and promote DPP enrollment among at-risk adults; this video was not designed, however, for reproductive-aged women.

Objective: This study aims to obtain feedback from reproductive-aged women with cardiometabolic disease risk about a 360° video designed to promote enrollment in the DPP, and to gather suggestions about tailoring video messages to reproductive-aged women.

Methods: Focus groups and a qualitative descriptive approach were used. Women with at least 1 previous pregnancy, aged 18 to 40 years, participated in one of three focus groups stratified by the following health risks: (1) a history of GDM or a hypertensive disorder of pregnancy, (2) a diagnosis of prediabetes, or (3) a BMI classified as obese. Focus-group questions addressed several topics; this report shared findings regarding video feedback. The 3 focus-group discussions were conducted via Zoom and were recorded and transcribed for analysis. Deductive codes were used to identify concepts related to the research question and inductive codes were created for novel insights shared by participants. The codes were then organized into categories and themes.

Results: The main themes identified were positive feedback, negative feedback, centering motherhood, and the importance of storytelling. While some participants said the video produced a sense of urgency for health-behavior change, all participants agreed that design changes could improve the video’s motivating effect on health-behavior change in reproductive-aged women. Participants felt a tailored video should recognize the complexities of being a mother and how these dynamics contribute to women’s difficulty engaging in healthy behaviors without stirring feelings of guilt. Women desired a video with a positive, problem-solving perspective, and recommended live links as clickable resources for practical solutions promoting health behavior change. Women suggested using storytelling, both to describe how complications experienced during pregnancy impact long-term health and to motivate health behavior change.

Conclusions: Reproductive-aged women require tailored lifestyle-change messaging that addresses barriers commonly encountered by this population (eg, parenting or work responsibilities). Moreover, messaging should prioritize a positive tone that harnesses storytelling and human connection while offering realistic solutions.
Introduction

Targeting reproductive-aged women at high risk for type 2 diabetes (T2D) provides an opportunity for prevention earlier in the life course [1]. This is especially important as a woman’s health status during her reproductive years may have a large impact on her future risk of T2D [2-5]. Her risk is 7 to 10 times higher if she has had gestational diabetes (GDM) [2,5]. Despite these risks, T2D is preventable. Evidence-based programs, such as the National Diabetes Prevention Program (DPP), can reduce the risk of developing T2D by nearly 60% [6,7]. However, very few adults with prediabetes participate in the DPP and reproductive-aged women are 50% less likely to participate than older women [8]. Our team earlier developed a 360° video to increase risk perception of T2D. The video helps participants conceptualize T2D complications throughout the lifespan and is designed to promote DPP enrollment among at-risk adults. It was developed with input from Hispanic community members and was not designed specifically for reproductive-aged women [9]. Because few studies have attempted to understand methods motivating reproductive-aged women to engage in healthy lifestyle change, this study aims to obtain feedback from reproductive-aged women with cardiometabolic disease risk factors in order to tailor messaging for this population.

Methods

Overview

Designed for middle-aged Hispanic men and women with prediabetes, the 360° video can be viewed with a man’s or woman’s voice and in English or Spanish. Viewers can move their phones around to look at the video’s world [10]. The video depicts an individual who has made unhealthy eating choices and has foregone dental care, thereby increasing their risk for T2D. It shows progression from prediabetes through diabetes leading to a heart attack. The video ends with a statement that diabetes can be prevented through the DPP.

Eligible participants included women who have had at least 1 previous pregnancy, were 18 to 40 years of age, and had one of the following three health risks: (1) history of GDM or hypertensive disorder of pregnancy, (2) diagnosis of prediabetes, or (3) BMI classified as obese. Those with GDM or prediabetes were eligible regardless of BMI. The 3 focus groups were conducted via Zoom by an interviewer from the University of Utah’s Center for Clinical and Translational Science Community Collaboration and Engagement Team (CCET) who had been trained in focus-group best practices and community-engaged research. Focus-group questions enabled key themes relating to the topic to be identified [11]. Focus-group participants were recruited by a CCET study coordinator using flyers. These were posted in the University of Utah cardiologist and obstetrics and gynecology offices, and in Facebook and LinkedIn groups within the CCET’s network. The coordinator screened for eligibility and reviewed the study’s consent cover letter with potential participants. The CCET supports community-engaged research that addresses investigator- and community-identified priorities with the goal of promoting community health needs [12].

Data collection included audio-recording the 1-hour-long focus-group discussions between February and April of 2022. Participants were asked to share their feedback on ways to modify the story, the voice-over content, and the imagery to make the video more impactful and appropriate for reproductive-aged women. The focus-group interviewer prompted participants to provide additional details about their perspectives and experiences. Additionally, the interviewer noted commonalities and differences between participant experiences to foster further insight. Members of the research team were present at the focus groups to answer questions and guide follow-up. The research team had no prior relationship with participants. Audio recordings of the focus groups were transcribed by a research assistant and verified for accuracy by additional team members.

Analysis was completed by 4 team members trained in qualitative methods and women’s health. Qualitative content analysis was used to examine the data. Deductive codes were used to identify concepts related to the research questions (eg, positive and negative feedback). Inductive codes were created for novel insights shared by participants (eg, importance of using storytelling and centering the video’s focus on family relationships). The codes were then organized into categories and themes. Lincoln and Guba’s trustworthiness criteria [13] were used, including weekly coding meetings with authors (AAB, SES, JK-M, and SSC) to discuss nuances in the data to ensure consistency in the application of codes. Coding across transcripts was compared to assess similarities and differences between participant experiences not only as women who had given birth, but also as women with differences in health risks. To address reflexivity during analysis, a group memo document was maintained and reviewed weekly. A member of the team audited group notes and coding to assess for consistency and accuracy. No members had a personal history of hypertensive disorder of pregnancy, GDM, or T2D, but all had clinical and research expertise. Our assumption was that participants would provide critical feedback on the video.

Ethical Considerations

Before the study’s initiation, waiver-of-consent documentation was received from the University of Utah Institutional Review Board (IRB 00146243). Participants received a consent cover letter containing information about the study’s purpose, and potential risks associated with participation; this information was reviewed with participants before focus-group sessions began, and the voluntary nature of participation was emphasized. Participants received a US $75 gift card for participation in a
demographic survey, pre-event Zoom technical session, and focus-group discussion. This amount was suggested by the CCET and was approved and deemed noncoercive by the IRB.

Results

Overview

In total, 20 women participated in the 3 focus groups (see Table 1 for demographics).

The main themes were positive video feedback, negative video feedback, centering motherhood, and the importance of storytelling. See Textbox 1 for exemplar quotes.
Table 1. Participant demographics (N=20).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>34.2 (6.46)</td>
</tr>
<tr>
<td>Age (years), Range</td>
<td>26-48</td>
</tr>
<tr>
<td>Age (years), n (%)</td>
<td></td>
</tr>
<tr>
<td>18-28</td>
<td>6 (30)</td>
</tr>
<tr>
<td>29-39</td>
<td>10 (50)</td>
</tr>
<tr>
<td>40-48</td>
<td>4 (20)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>2 (10)</td>
</tr>
<tr>
<td>White or European</td>
<td>15 (75)</td>
</tr>
<tr>
<td>Multiracial</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Unreported</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latina</td>
<td>3 (15)</td>
</tr>
<tr>
<td>Non-Hispanic or Latina</td>
<td>17 (85)</td>
</tr>
<tr>
<td>Partnership status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Married or living with a partner</td>
<td>15 (75)</td>
</tr>
<tr>
<td>Divorced</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Separated</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Single</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
</tr>
<tr>
<td>Some college</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Associate degree</td>
<td>3 (15)</td>
</tr>
<tr>
<td>Bachelor degree</td>
<td>14 (70)</td>
</tr>
<tr>
<td>Master degree</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Setting, n (%)</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Suburban</td>
<td>13 (65)</td>
</tr>
<tr>
<td>Urban</td>
<td>6 (30)</td>
</tr>
<tr>
<td>Number of live births, n (%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5 (25)</td>
</tr>
<tr>
<td>2</td>
<td>6 (30)</td>
</tr>
<tr>
<td>3</td>
<td>8 (40)</td>
</tr>
<tr>
<td>4</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Number of children living in home, n (%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5 (25)</td>
</tr>
<tr>
<td>2</td>
<td>8 (40)</td>
</tr>
<tr>
<td>3</td>
<td>6 (30)</td>
</tr>
<tr>
<td>4</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Prior formal lifestyle program attendance, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (40)</td>
</tr>
<tr>
<td>No</td>
<td>12 (60)</td>
</tr>
<tr>
<td>Variable</td>
<td>Participants</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Weight (lbs), mean (SD)</td>
<td>179.025 (40.6740)</td>
</tr>
<tr>
<td>Weight, range</td>
<td>125-280</td>
</tr>
</tbody>
</table>

Textbox 1. Themes and exemplar quotes.

Positive video feedback
- I thought the information was interesting. I knew that, like, eye doctors often catch diabetes, but I wasn’t aware about the dental connection. So, it was information that I... I personally didn’t realize that dentists would give that kind of information about diabetes, or potential risks.
 [Participant #5; obesity focus group; Hispanic or Latino]
- When I watched it, I was like, ‘Oh, I need to get my crap together and I don’t want to be that.’ ... I felt somewhat motivated to want to, like, improve my life. Like, I don’t know, but it’s more my personality just to be very direct.
 [Participant #3, pregnancy complication focus group; White, Asian, non-Hispanic]

Negative video feedback
- I don’t do well with scare tactics. And, so, it’s just... That kind of style is really off-putting to me. It kind of scares me away from it more.
 [Participant #1; obesity focus group; White, non-Hispanic]
- I think it lacks empathy. ... While I was watching it, I felt a lot of guilt and shame, um, which is something I think if you’re trying to reach women specifically of childbearing age that that should not be something that I think should be the first thing that ignites in someone.
 [Participant #7; prediabetes focus group; Hispanic or Latino]

Centering motherhood
- I would much prefer something that was like super fun and encouraging and saying, you know, like, about being excited about having energy to play with my kids, and being around, you know?
 [Participant #1; obesity focus group; White, non-Hispanic]
- I don’t think the fear tactic is gonna work. Um, like, that’s like, I feel like that’s somebody that’s like yelling at me to go to the gym, ‘You’re just being lazy.’ Like, ‘Just get up and go.’ Like, ‘Disregard your feelings and your postpartum depression and your postpartum anxiety and all of those other things’.
 [Participant #7, pregnancy complication focus group; White, non-Hispanic]

Importance of storytelling
- I think our just our innate human beings, like we really love connection. ... What really would have got me, is if I saw like a mother. ... and how she was given that news at the dentist. And saw her progress with her family.
 [Participant #5; prediabetes focus group; Native Hawaiian or Pacific Islander]
- Maybe a mother and daughter, where the mother is struggling with the beginnings of these issues and shares the information with her daughter to help prevent from developing issues in the future.
 [Participant #2, pregnancy complication focus group; White, non-Hispanic]

Positive and Negative Video Feedback
Feedback about the videos was generally negative. While some participants said the video produced a sense of urgency for healthy behavior change, all participants agreed that it did not motivate health-behavior change in reproductive-aged women.

Centering Motherhood
The participants felt that a tailored video should convey empathy for the complexities of motherhood and recognize how these dynamics contribute to women’s difficulty engaging in healthy behaviors. Participants emphasized that this tailored messaging should convey urgency. They recommended messages that avoided stirring feelings of guilt. Participants desired a video with a positive, problem-solving perspective. They suggested live links could be embedded within the video as clickable resources for practical solutions, helping to promote health behavior change (eg, links to the DPP website, food-preparation tips, and ways to incorporate children into physical activity).

Importance of Storytelling
One woman suggested that an optimal approach to the video would summarize a woman’s personal risk from her doctor’s point of view (eg, “you’ve had gestational diabetes, so this is what that means for your long-term health risk”), and then quickly pivot to a problem-solving tone: “Now here’s how we’re going to help you get to where you need to be.” Women across the 3 focus groups agreed that storytelling would be effective in describing how pregnancy complications impact long-term health. For example, a participant suggested the video could include a mother talking with her adult daughter about developing T2D and how she wishes she had acted earlier for...
prevention. The mother could also encourage her daughter to begin finding solutions while still young and able to maintain health. Other participants agreed that a focus on storytelling and human connection would improve the video’s effectiveness. Finally, the women suggested that it should end by illustrating the benefits of healthy behavior change (eg, being able to keep up with their kids).

Discussion

In focus group interviews with reproductive women at risk for T2D, participants were enthusiastic about the use of 360° videos to promote healthy-lifestyle change and DPP enrollment, but many found the video to be negative or guilt-inducing. Suggestions for change included positive messages and avoidance of guilt-based messaging. Additionally, participants felt that messaging should acknowledge the time demands and challenges faced by reproductive-aged women, including parenting and work demands, and should convey urgency without creating feelings of guilt.

Few efforts have been made at tailoring diabetes-prevention messaging for reproductive-aged women. An example is the Health-e mums study, which used smartphone app–based messaging to target women with a history of GDM. The app prompted women to improve their health behaviors through goal-setting, and personalized responses to the recording of body weights, diet, and activity. Women provided feedback on messages received through the app. As was true of our study, some Health-e mums participants disliked the use of “negative storytelling,” instead preferring positive, health-coaching messages [14]. Recently, the Centers for Disease Control and Prevention (CDC) released a 1-minute-long promotional DPP video entitled “More Energy Means More Family Fun” [15] that is tailored to reproductive-aged women. It is unclear if the video has been successful in motivating their target population to enroll in the DPP.

Study strengths include participant characteristics (eg, racial or ethnic diversity) and a range of cardiometabolic risk factors. Limitations include the small sample size and the homogeneity of the participants, including the fact that all were mothers. Thus, findings may not apply to women who are not mothers.

In sum, participants highlighted the importance of acknowledging shared experiences and struggles of motherhood, while also offering realistic solutions and a positive tone through storytelling. These findings underscore the importance of tailoring health behavior change messaging to address unique needs of reproductive-aged women and to motivate enrollment in lifestyle change programs. Such messaging is essential for engaging this population in lifestyle change so as to reduce disease burden.

Acknowledgments

The authors of this paper give thanks to the University of Utah’s Center for Clinical and Translational Science Community Collaboration and Engagement Team for their collaboration on this project and to Roger Altizer and Greg Stoddard for their assistance with developing the video. This study was supported by funding from the Educational Resource Development Council at the University of Utah. Additionally, author JK-M received support from the National Institute of Nursing Research of the National Institutes of Health under award number (F31NR020431). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. These funding sources had no impact on the study’s design and data collection, or the analysis, interpretation, and writing of the study’s results.

Authors’ Contributions

The conceptualization of the study is attributed to SES and BG. SES, BG, and JK-M created the interview guide for the focus groups. The design and implementation of the qualitative analysis was done by AAB. Data analysis was done by AAB, JK-M, SES, and SSC. The manuscript was written by AAB, JK-M, SES, BG, and SSC. All authors approved the final version for publication.

Conflicts of Interest

None declared.

References

Abbreviations

CCET: Community Collaboration and Engagement Team
CDC: Centers for Disease Control and Prevention
DPP: Diabetes Prevention Program
GDM: gestational diabetes
IRB: institutional review board
T2D: type 2 diabetes

©Jacqueline Kent-Marvick, Bryan Gibson, Alycia A Bristol, Stephanie St Clair, Sara E Simonsen. Originally published in JMIR Formative Research (https://formative.jmir.org), 05.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.