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Abstract

Background: Schizophrenia is a serious mental disease. With increased research funding for this disease, schizophrenia has
become one of the key areas of focus in the medical field. Searching for associations between diseases and genes is an effective
approach to study complex diseases, which may enhance research on schizophrenia pathology and lead to the identification of
new treatment targets.

Objective: The aim of this study was to identify potential schizophrenia risk genes by employing machine learning methods to
extract topological characteristics of proteins and their functional roles in a protein-protein interaction (PPI)-keywords (PPIK)
network and understand the complex disease–causing property. Consequently, a PPIK-based metagraph representation approach
is proposed.

Methods: To enrich the PPI network, we integrated keywords describing protein properties and constructed a PPIK network.
We extracted features that describe the topology of this network through metagraphs. We further transformed these metagraphs
into vectors and represented proteins with a series of vectors. We then trained and optimized our model using random forest (RF),
extreme gradient boosting, light gradient boosting machine, and logistic regression models.

Results: Comprehensive experiments demonstrated the good performance of our proposed method with an area under the
receiver operating characteristic curve (AUC) value between 0.72 and 0.76. Our model also outperformed baseline methods for
overall disease protein prediction, including the random walk with restart, average commute time, and Katz models. Compared
with the PPI network constructed from the baseline models, complementation of keywords in the PPIK network improved the
performance (AUC) by 0.08 on average, and the metagraph-based method improved the AUC by 0.30 on average compared with
that of the baseline methods. According to the comprehensive performance of the four models, RF was selected as the best model
for disease protein prediction, with precision, recall, F1-score, and AUC values of 0.76, 0.73, 0.72, and 0.76, respectively. We
transformed these proteins to their encoding gene IDs and identified the top 20 genes as the most probable schizophrenia-risk
genes, including the EYA3, CNTN4, HSPA8, LRRK2, and AFP genes. We further validated these outcomes against metagraph
features and evidence from the literature, performed a features analysis, and exploited evidence from the literature to interpret
the correlation between the predicted genes and diseases.

Conclusions: The metagraph representation based on the PPIK network framework was found to be effective for potential
schizophrenia risk genes identification. The results are quite reliable as evidence can be found in the literature to support our
prediction. Our approach can provide more biological insights into the pathogenesis of schizophrenia.

(JMIR Form Res 2023;7:e50998) doi: 10.2196/50998
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Introduction

Background
Schizophrenia is a serious mental disease characterized by
abnormalities in thinking and cognition [1], whose occurrence
is widely believed to be closely related to genetics and gene
expression. This chronic and disability-causing disease not only
has great effects on the quality of life of patients but also
imposes a heavy burden on their families and society as a whole;
therefore, schizophrenia has long been a key focus of research
in the medical field [2]. Searching for the associations between
diseases and genes is an effective way to study complex
diseases, allowing an in-depth exploration of the mechanisms
and molecular basis of diseases, which is crucial to establishing
accurate treatments and diagnoses.

Numerous network-based approaches have recently been
proposed for disease-gene association prediction, such as
protein-protein interaction (PPI), gene regulatory, gene
coexpression, and metabolic interaction networks. Among these
molecular networks, PPI networks are widely used as a
conducive approach to discover potential disease-causing genes
[3] since proteins work together to perform common biological
functions. In addition, proteins associated with a common set
of biological properties tend to have common topological
properties in the network, such as node degree and centrality,
and the pathways elucidating disease mechanisms are typically
represented as strongly connected paths in the PPI network [4].

However, existing PPI networks are often incomplete and noisy.
Thus, it is necessary to collect multiple types of data and build
an integrated network that includes multiple, heterogeneous
types of resources. This method will greatly extend the scope
and ability for disease gene prediction [5]. However, scientific
data do not consider the properties of biological data themselves,
whereas the scientific literature represents a record of the latest
scientific discoveries and important research results, containing
a large amount of additional biological knowledge such as
protein biological functions and sequence characteristics.
Therefore, data from the scientific literature along with primary
scientific data can be used as a complement to discover the
implicit information and enhance the ability to predict
disease-associated genes.

Many new techniques have been developed to study
heterogeneous networks containing multimodal biological data.
Recently, a general framework that considers heterogeneity by
defining type-specific graphs was introduced [6]. The advantage
of metagraph-based approaches is that they capture rich
semantics, comprehensively represent different features, and
effectively identify influential components of the given network,
making it possible to preserve the network structure and
providing flexibility to explore a diverse set of descriptors.

The problem of disease-related genes prediction tackled in our
study can be regarded as a disease protein classification problem
that aims to identify disease-related proteins, and the proteins

are then linked to their gene products to obtain disease-related
genes. The goal is to train a classifier to judge whether the
protein is associated with a disease based on a training set, and
we can then predict each protein’s likelihood of falling into a
given category in the test set with minimal prediction errors
using the learned protein features.

In this study, we attempted to integrate the PPI network from
the STRING database with the keywords in the UniProt database
to form a heterogeneous PPI-keyword (PPIK) network for
disease protein prediction. Based on the PPIK network, we
extended the metagraph methodology to predict the probability
that an association between a gene and disease exists. Each
protein was represented as a series of metagraphs. A previous
study that utilized metagraph representations to exploit a
keywords-supplemented PPI network achieved good
performance on predictions for breast cancer [7]. We made
some improvement on the basis of this method. In particular,
we extracted basic metagraph structures from the network to
represent proteins, which fully revealed the traits of proteins.
We further considered the use of a more appropriate algorithm
for metagraph representations that is suitable for complex
networks to capture more implicit features. In addition, we used
the latest machine learning models to understand the
ever-growing scientific data, which were applied to
schizophrenia as a more specific disease to enable better
disease-gene association prediction, thereby uncovering potential
therapeutic targets.

Related Work

Pathogenesis Analysis
In recent decades, massive efforts have been made to identify
the mechanisms underlying pathogenesis and explore the genetic
associations of disease. Genome-wide association studies
(GWAS) have been established as a main strategy to solve this
problem. This method infers genome intervals that are involved
in genetic diseases. However, GWAS is a time-consuming and
expensive task. To resolve such issues, several other strategies
have been proposed in recent years. Gene-set enrichment
analysis identifies prevalent biological functions among genes
contained in disease-associated loci. For example, Segrè et al
[8] developed the meta-analysis gene-set enrichment of variant
associations (MAGENTA) method to test whether sets of
functionally related genes are enriched for associations with a
polygenic disease or trait. Network-based approaches exploit
topological characteristics of the network, which is instrumental
in understanding the interactions and pathways in the context
of diseases. For example, Liekens et al [9] used data from 21
publicly available curated databases and built a network called
BioGraph to identify relations between heterogeneous
biomedical entities. Literature mining techniques aim to
chronicle the relatedness of genes to identify a subset of highly
related associated genes. For example, Raychaudhuri et al [10]
reported the Gene Relationships Among Implicated Loci
(GRAIL) algorithm as an approach to assess relationships among
genomic disease regions by text mining of PubMed abstracts.
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Network-based Approach
The network-based approach links diverse aspects of diseases
in a whole-system view, further reveals the useful knowledge
implied in the network using powerful computational and logical
reasoning abilities, and tracks potential disruptions on biological
pathways due to the disease-causing factors. This approach is
conducive for disease biology analysis [11]. The network-based
approaches for disease-causing genes prediction generally fall
into three categories, including methods using graph-theoretic
algorithms, those using machine learning algorithms, and those
using graph representation learning methods [12]. In the
graph-theoretic methods, the simplest approach is direct
neighbor counting, which involves checking whether two genes
are connected directly in a molecular network. Module-based
methods hypothesize that proteins within the same topological
or functional module on a network are more likely to be
associated with the same disease. Diffusion-based methods are
proposed to predict the gene-disease relation using the global
network structure [13]. These methods anchor upon known
disease proteins as seeds, which propagate along the network
through random walks. The machine learning–based methods
use traditional machine learning models, positive and unlabeled
learning, or deep learning to predict disease-gene associations
[14]. For example, a method called BRIDGE [15] was
introduced for prioritization of disease genes by integrating
various gene aspects through a weighting scheme. This scheme
was attained through a multiple linear regression model with a
least absolute shrinkage and selection operator penalty, which
determined the phenotypic similarity between two diseases
based on the functional similarities between their associating
genes. In the graph representation learning methods, the latent
features for the nodes are automatically learned. For example,
matrix factorization techniques are useful for revealing important
associations between diseases and genes. The GeneHound
method was proposed based on Bayesian probabilistic matrix

factorization for addressing the disease gene prioritization
problem, which jointly learns the gene and disease latent factors
and constructs corresponding gene- and disease-association
matrices to predict disease-gene associations [16]. Graph
embedding is another network-based method, which learns the
low-dimensional and continuous vector representations of nodes
through a neural network. For example, the SkipGram
architecture is an extensively used architecture to construct
associations between the node and its neighborhood [17].

Recently, with development in the area of machine learning and
deep learning, deep learning–based techniques have shown
bright prospects for handling network data. Several methods
have been proposed in the field of disease-causing genes
prediction, as well as some similar fields such as drug-disease
association prediction. For example, a method that combines
two graph convolutional networks (GCNs) and matrix
factorization was proposed to predict gene-disease associations.
In this model, diseases, gene features, and similarity graphs are
input to two parallel GCNs, which combine their obtained
embeddings through an inner product to obtain the prediction,
demonstrating effectiveness in capturing useful information
from the network [18]. The relations-enhanced drug-disease
association prediction method was assembled with three
attention mechanisms, which can sequentially learn drug/disease
representations by a general heterogeneous GCN-based node
embedding block, topological subnet embedding block, graph
attention block, and layer attention block. This model enhanced
the performance of drug-disease association prediction [19].

Methods

Design
We employed metagraph representations based on the PPIK
network method to improve disease-associated genes prediction.
The general framework is shown in Figure 1.
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Figure 1. General framework of the proposed method. ACT: average commute time; AUC: area under the receiver operating characteristic curve;
DWPC: degree-weighted path count; ML: machine learning; PDP: path-degree product; PPIK: protein-protein interaction-keywords; RWR: random
walk with restart; SHAP: Shapley additive explanation.

PPIK Network Construction
A PPI network is frequently noisy and incomplete. The
keywords in the UniProt database represent annotated
information based on the literature or empirical evidence,
covering various biological aspects of proteins [20], as
summarized in Table 1. As disease-associated proteins are likely
to share similar properties, these properties may reveal their

function. Furthermore, proteins with the same domain as the
identified disease proteins could also be associated with the
disease. Therefore, we developed a method to associate these
properties with different proteins together to complement
existing PPI networks, which could encode both the interactive
functions and biological properties of proteins. We used data
in the UniProt database to directly construct the relations
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between proteins and keywords. Since each protein corresponds
to multiple keywords in the database, we established the links
between proteins and keywords based on this correspondence.

On the one hand, protein-keyword associations can reinforce
useful PPIs. On the other hand, proteins with no direct
interactions can newly become related through keywords.

Table 1. Summary of keywords from the UniProt database.

ExamplesKeyword category

Apoptosis, cell cycle, cAMP biosynthesisBiological process

Golgi apparatus, vacuole, cytoplasmCellular component

Polymorphisms, RNA-editing, alternative splicingCoding sequence diversity

SH2 domain, Kelch repeat, transmembraneDomain

cAMP, S-adenosyl-l-methionine, cGMPLigand

RNA-binding, protein kinase inhibitorMolecular function

Phosphorylation, ubiquitination, acetylationPosttranslational modification

Allosteric enzyme, transposable elementTechnical term

In this study, we focused only on human proteins. We obtained
PPIs from the STRING database and exploited protein keywords
from the UniProt database to construct the PPIK network. The
network contains two types of nodes, including protein and

keyword nodes. The relationships in the network indicate the
interaction between two proteins and the association between
the protein and keyword, which are not distinguished. A
representative PPIK network is shown in Figure 2.

Figure 2. Part of the protein-protein interaction-keyword (PPIK) network based on the UniProt and STRING databases. In this network, the yellow
nodes represent proteins and the green nodes represent keywords. A zoomed-in view of part of the PPIK network is shown on the left. Here, we can
see that nodes with different protein and keyword labels connect with each other.

Metagraph Identification
A metagraph is a graph structure capturing a particular topology
of the network, which can obtain the location information of

each node and the type-specific path pattern between a source
node and a destination node in the network. Leveraging a
metagraph to characterize a network will not only preserve the
structural features but will also help to identify rich pathway
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information, which offers strong flexibility in heterogeneous
networks [21]. A heterogeneous PPIK network comprises both
proteins and keywords. Proteins with similar functional roles
such as their disease-causing property tend to interact with other
proteins and associate with certain keywords in a similar
arrangement on the PPIK network. Thus, proteins with similar
roles tend to have similar topological characteristics. To model
topological similarities, we used a metagraph approach to define
the specific structure and differentiated between different labels
of nodes on the PPIK network. Each metagraph describes a
particular heteronomous biological arrangement between one
or more proteins and keywords. Two proteins associated with
the same metagraph tend to have similar functional roles.

Therefore, we could use different types of metagraphs to
represent each protein, while identifying its interactions with
other proteins and associations with keywords. Each instance
of a metagraph represents specific evidence of the proteins’
functional properties. In particular, we only considered
metagraphs of three and four nodes, which represented a good
balance between efficiency and accuracy. We defined seven
types of metagraphs to reveal the network feature and their
common structures are shown in Figure 3. The seven metagraphs
cover all instances of network motifs with three and four nodes
on the PPIK network, and thus enable the thorough capture of
structural characteristics of the heterogeneous network, which
in turn allows for an accurate representation of protein features.

Figure 3. Seven types of metagraphs extracted from the protein-protein interaction-keywords (PPIK) network. The left column shows the structures
of the seven metagraphs on the PPIK network and the middle and right columns provide examples and descriptions of each type of metagraph, respectively.

Proteins Representation
We used a series of metagraphs to construct the vector
representation of each protein to characterize its multiple
features. To compute the prevalence of a type-specific
metagraph, we employed a type-specific metapath counts
approach known as the degree-weighted path count (DWPC)
[22], which represents an improvement of the path count metric,
as a basic social network analysis method, by dampening each
edge between a source and target node as an effective feature
extraction methodology accommodating a heterogeneous
network of any size. This method involves first calculating the
path-degree product (PDP) of each edge. All metaedge-specific
degrees along the path (Dpath) are determined, where each edge
composing the path contributes two degrees. Subsequently, each

degree is raised to the –w power, where w≥0, which is known
as the damping exponent. This parameter adjusts the intensity
for each path traversing highly connected nodes to be
down-weighted, and the best performance is usually achieved
with w=0.4. Finally, all exponentiated degrees are multiplied
to yield the PDP of each path according to the following
formula:

PDP(path)=Πd∈Dpath d–w(1)

The DWPC is then calculated as the sum of PDPs:

DWPC=∑path∈pathsPDP(path)(2)

An example of the computation process for the DWPC metric
is shown in Figure 4.
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Figure 4. Computation process for the degree-weighted path count (DWPC) metric. The left is an example graph subset showing select nodes and
edges surrounding the Q92769 protein. To represent this protein, features are computed that measure the prevalence of a specific metapath between
Q92769 protein and other proteins. The right demonstrates the process of calculating and weighting path counts using the DWPC metric. First, two
features (pkp and ppp) can be used to represent the Q92769 protein, and for the specific metagraph, all paths are extracted from the network. Next, each
path is associated with a path-degree product (PDP) measuring its specificity, which requires a damping exponent w; here, we set w=0.4. Finally, the
PDPs are summed to obtain the DWPC.

Machine Learning
Protein representations were used to train the model through
machine learning. First, disease labels for proteins were obtained
from the UniProt and OMIM databases. We collected the
corresponding genes for schizophrenia from the OMIM
database, and then mapped the genes to their protein products
according to the UniProt database to tag these proteins. Next,
we adopted four machine learning models as classifiers, random
forest (RF), extreme gradient boosting (XGB), light gradient
boosting machine (LGBM), and logistic regression (LR), which
aimed to identify the schizophrenia-associated proteins based
on the extracted metagraphs. For experimental settings,
considering the sparsity of the protein-disease network where
the number of unconfirmed protein-disease associations is much
greater than the number of confirmed associations, we randomly
sampled the nonschizophrenia (negative) proteins and
schizophrenia (positive) proteins with ratios r∈{1,3,5,10,20}
as the data set, and 10-fold cross-validation was used in model
training and testing. Specifically, to avoid the bias of data
splitting, we repeated the cross-validations 10 times in different
random seeds and report the mean (SD) of four performance
metrics: precision, recall, F1-score, and the area under the
receiver operating characteristic curve (AUC).

To demonstrate the validity and superiority of the PPIK-based
metagraph representations method, we compared our proposed
work to other baseline methods developed for link prediction
in networks, especially in the task of gene-disease association
prediction. We selected three representative indices for
performance comparison. The random walk with restart (RWR)
index [23] is a random-walk algorithm based on similarity.
RWR considers a random walker starting from node x, who will
iteratively move to a random neighbor with probability c and
return to node x with probability 1–c, and this process is repeated

until it converges to a steady state. The average commute time
(ACT) index [24] is also a random walk–based similarity index,
which assumes that two nodes are considered to be more similar
if they have a smaller average commute time. ACT is denoted
by the average number of steps required by a random walker
starting from node x to reach node y and from node y to node
x. The Katz algorithm [25] is a path-dependent index that obtains
global knowledge of the network topology; it can distinguish
the impact of different neighbors by assigning them different
weights.

Ethical Considerations
UniProt is a protein database with the most complete sequencing
and extensive annotation data available internationally. The
STRING database contains data on various types of interactions,
including direct physical interactions between proteins, indirect
functional correlations, results extracted from PubMed abstracts,
and outcomes predicted using bioinformatics techniques. The
original data collection in the two databases received
institutional review board (IRB) approval [26,27] and the
scientific data in these two databases are freely available for
users under a Creative Commons BY 4.0 license [28,29]. In
addition, this study involved a secondary analysis, and the
publicly available data sets were prepared with the intent of
making them available for the public. The data available to the
public are not individually identifiable and therefore the analysis
would not involve human subjects. The Ethics Review
Committee of Peking Union Hospital, Chinese Academy of
Medical Sciences recognizes that the analysis of deidentified,
publicly available data does not constitute human subjects
research and therefore does not require IRB review; only
biomedical research involving humans requires the approval of
an ethics committee [30]. Several studies have used these two
databases [31,32]. Over dozens of years, the UniProt and
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STRING databases have accumulated vast amounts of protein
information and ethical approval was granted for collection of
the original data with informed consent from the included
patients. Analyses of these data have led to improvements in
our ability to understand the molecular mechanisms of diseases,
thereby promoting diagnosis and treatment. Since these data
are open source, they remain publicly available for anyone in
the research community to use.

Results

Model Evaluation and Comparison
The performance comparison results of the four machine
learning models is shown in Table 2, with each metric
representing the average score of the data set with different
sampling ratios. The results showed that our proposed method
could achieve relatively good performance with an AUC
between 0.72 and 0.76. Specifically, with a ratio of 1, the RF
model outperformed other models, demonstrating good
discriminatory power with precision of 0.76, recall of 0.73,
F1-score of 0.72, and AUC of 0.76. Therefore, we selected RF
as the algorithm of choice for further investigation.

Table 2. Performance comparison of four machine learning models with different sampling ratios.

Precision, mean (SD)Recall, mean (SD)Accuracy, mean (SD)F1, mean (SD)AUCa, mean (SD)Model

Ratio=1

0.73 (0.18)0.71 (0.19)0.72 (0.08)0.7 (0.14)0.75 (0.12)LGBMb

0.72 (0.15)0.76 (0.16)0.73 (0.1)0.73 (0.13)0.75 (0.1)LRc

0.76 (0.2)0.73 (0.11)0.72 (0.1)0.72 (0.09)0.76 (0.11)RFd

0.7 (0.16)0.73 (0.13)0.71 (0.1)0.71 (0.13)0.75 (0.11)XGBe

Ratio=3

0.47 (0.1)0.62 (0.16)0.72 (0.07)0.52 (0.08)0.73 (0.07)LGBM

0.46 (0.11)0.72 (0.11)0.7 (0.09)0.54 (0.06)0.74 (0.07)LR

0.44 (0.11)0.64 (0.14)0.69 (0.08)0.5 (0.08)0.75 (0.08)RF

0.48 (0.12)0.65 (0.19)0.71 (0.12)0.53 (0.11)0.76 (0.08)XGB

Ratio=5

0.35 (0.14)0.66 (0.18)0.7 (0.1)0.42 (0.11)0.74 (0.09)LGBM

0.34 (0.15)0.68 (0.13)0.68 (0.13)0.43 (0.11)0.73 (0.09)LR

0.35 (0.13)0.65 (0.15)0.71 (0.14)0.43 (0.11)0.74 (0.07)RF

0.29 (0.09)0.8 (0.12)0.62 (0.1)0.41 (0.1)0.73 (0.08)XGB

Ratio=10

0.23 (0.07)0.64 (0.2)0.74 (0.13)0.32 (0.09)0.75 (0.09)LGBM

0.19 (0.07)0.66 (0.11)0.68 (0.13)0.29 (0.08)0.73 (0.1)LR

0.19 (0.05)0.69 (0.13)0.69 (0.12)0.29 (0.07)0.75 (0.08)RF

0.22 (0.08)0.66 (0.13)0.72 (0.12)0.32 (0.06)0.75 (0.07)XGB

Ratio=20

0.11 (0.05)0.67 (0.13)0.68 (0.13)0.18 (0.07)0.72 (0.07)LGBM

0.13 (0.06)0.65 (0.2)0.72 (0.14)0.2 (0.06)0.73 (0.06)LR

0.11 (0.03)0.63 (0.12)0.72 (0.09)0.18 (0.04)0.72 (0.06)RF

0.1 (0.02)0.69 (0.15)0.67 (0.13)0.17 (0.03)0.74 (0.06)XGB

aAUC: area under the receiver operating characteristic curve.
bLGBM: light gradient boosting machine.
cLR: logistic regression.
dRF: random forest.
eXGB: extreme gradient boosting.
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Comparison to Baseline Methods
We compared the AUC values of the three baseline methods
(RWR, ACT, and Katz index) on the PPI and PPIK networks,
respectively. The performance of these methods on the PPIK
network was better than that on the PPI network under most
circumstances, according to the AUC values, as shown in Table
3. This demonstrated that protein keywords can indeed
complement and enrich the PPI network.

We further compared AUC values between the baseline methods
and our proposed method on the PPIK network. Our method

achieved better performance on the whole, which outperformed
the Katz, ACT, and RWR methods by 0.156, 0.294, and 0.457,
respectively, as shown in Table 3. Thus, it can be concluded
that metagraph representation is a feasible method for network
topological features.

We found that the AUC values of these baseline methods were
quite low overall, which may be due to the difficulty for these
methods to accurately capture the characteristics of the
heterogeneous and sparse network we constructed. However,
our framework can effectively capture various features in the
network and demonstrated good performance.

Table 3. Comparison of performance (area under the receiver operating characteristic curve values) of three baseline models and our proposed metagraph
method on protein-protein interaction (PPI) and PPI-keyword (PPIK) networks.

MetagraphKatzACTbRWRaNetwork

N/Ac0.2690.3330.521PPI

0.760.3030.4660.604PPIK

eRWR: random walk with restart.
bACT: average commute time.
cN/A: not applicable.

Potential Schizophrenia Risk Genes Prioritization
We focused on the results from RF, as the model with the best
performance, for the discovery of potential
schizophrenia-causing proteins. As the goal of our study was
to identify new proteins associated with schizophrenia, we

excluded confirmed protein-schizophrenia associations in the
database and retained the top 20 proteins identified as risk
proteins for schizophrenia. We then transformed our predicted
disease proteins to their producer gene IDs based on UniProt.
The top 20 predicted genes and their probability scores are listed
in Table 4.
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Table 4. Top 20 schizophrenia-associated risk genes predicted from the random forest model.

Predicted probabilityGene symbolUniprot ID

0.94305EYA39606.ENSP00000362978

0.92609CNTN49606.ENSP00000380602

0.871386HSPA89606.ENSP00000432083

0.865878LRRK29606.ENSP00000298910

0.862006AFP9606.ENSP00000379138

0.845441CTNNB19606.ENSP00000344456

0.809024CYP1A19606.ENSP00000369050

0.775439FGFR19606.ENSP00000393312

0.772953PRKAR2A9606.ENSP00000265563

0.770366HTT9606.ENSP00000347184

0.75607SLIT19606.ENSP00000266058

0.744564MEPCE9606.ENSP00000308546

0.738029CENPC9606.ENSP00000273853

0.73425NDUFA139606.ENSP00000423673

0.731391PDE4D9606.ENSP00000345502

0.721304PIEZO19606.ENSP00000301015

0.715347PACSIN29606.ENSP00000263246

0.709701GSPT19606.ENSP00000398131

0.70657LOXL29606.ENSP00000373783

0.69778CD2AP9606.ENSP00000352264

Discussion

Principal Findings
In this work, we proposed an optimized model to enhance
schizophrenia-related genes prediction. Our framework
identified 20 potential schizophrenia risk genes: EYA3, CNTN4,
HSPA8, LRRK2, AFP, CTNNB1, CYP1A1, FGFR1, PRKAR2A,
HTT, SLIT1, MEPCE, CENPC, NDUFA13, PDE4D, PIEZO1,
PACSIN2, GSPT1, LOXL2, and CD2AP. Given these results,
it is promising to examine what our framework produced.
Toward this end, we here further evaluate the top risk genes
associated with schizophrenia based on publications to support
our predictions and analyze these genes from four different
perspectives: function, gene-set enrichment, signaling pathways,
and gene character (ie, verification). The evidence for these
predictions can be found in the up-to-date literature, which has
proven to be reasonable.

The model adopted in our study is a metagraph representation
based on the PPIK network framework. We used this model to
identify potential schizophrenia-associated genes. This model
attempted to integrate the PPI network with the keywords that
describe the biological aspects of the proteins to ultimately form
a PPIK network for disease gene prediction. The heterogeneous
network contains rich information, involving not only protein
interactions with one another but also their functional and
structural similarities, which could better compensate for the
limitations of the standard PPI network. Based on the PPIK
network, we used metagraphs to solve the disease protein

classification problem. This type of graph structure can
thoroughly capture the topology of a heterogeneous network.
By permuting all instances of tiny motifs, we can obtain all
biological arrangements between proteins and keywords on the
PPIK network, allowing an accurate representation of each
protein using a series of metagraphs. In particular, the DWPC
indicator was used to quantify metagraph representations, which
could capture the prominent feature of metagraphs. Finally, we
built a classifier using four advanced machine learning
algorithms for disease proteins based on these metagraph
representations and selected the best-performing model for
disease gene prediction. The utilization of machine learning
models to prioritize selected proteins according to predicted
probabilities enhanced the interpretability of the results. Our
proposed framework can be a practical and efficient prediction
model. Of the four machine learning methods, RF achieved the
best overall performance with precision of 0.76, recall of 0.73,
F1-score of 0.72, and AUC of 0.76. Therefore, the framework
using the RF classifier demonstrates superior predictive power.

Analysis Based on Publications

Overall Approach
We searched for evidence from the literature to further validate
our method. We evaluated the two new genes with the highest
prediction scores and interpreted the potential associations
between these genes and diseases from three perspectives,
including gene-set enrichment analysis, signaling pathways
enrichment analysis, and gene function clustering analysis, as
shown in Figure 5.
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Figure 5. Analysis of the top 20 potential schizophrenia risk genes from different perspectives. (A) Results of gene function clustering analysis, with
each cluster containing a group of genes with similar function. (B-D) Result of gene-set enrichment analysis on biological process, cellular component,
and molecular function terms, respectively, representing the cluster of gene products at three levels based on biological properties. (E) Result of signaling
pathways enrichment analysis, with each signaling pathway made up of a set of genes that share common traits and mechanisms.

Gene Functional Clustering Analysis
By dividing gene sets according to relevant function, six
categories were mainly formed, including neurodevelopment,
immune system, brain abnormality, cancer, gene variant, and
methylation, as shown in Figure 5A.

Genes related to neural development defects play a role in
causing functional disorders in the synapses. The neural
development disorders caused by disruptions in synaptic
communication can lead to schizophrenia. It is suggested that
these genes mediate glutamatergic signal transduction by
partially encoding glutamate receptors, which are important for
regulating the maturation and function of neurons [33].

The immune system–related genes are a group of genes involved
in immune pathways. Immune dysregulation is closely
associated with schizophrenia [34]. The role of inflammatory
mechanisms in schizophrenia is supported by the impact of
immune dysregulation and alterations in neuroinflammatory
pathways in schizophrenia. Neurotransmitter dysfunctions

resulting from cytokine-induced neuroinflammation through
microglial activation lead to the inflammatory process and
neurodegeneration in schizophrenia. The nuclear factor-κB
signaling pathway plays a role in immune response regulation,
synaptic plasticity, and memory, which is also associated with
schizophrenia.

Abnormal expression of genes in the brain seems to be
specifically active in brain neurons. Patients with schizophrenia
often exhibit low levels of cognitive functioning, with decreased
connectivity of whole-brain function detected in computed
tomography scans and low frontal lobe function of the brain
detected in positron emission tomography scans. These findings
are considered to be predicators of structural abnormalities in
the brain [35].

In cancer-related genes, a GWAS revealed a strong correlation
between cancer and schizophrenia risk genes, which is further
supported by a bidirectional epidemiological correlation,
common genetic changes, and biological mechanisms between
the two phenotypes [36].
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Gene variants caused by gene mutation increase the
susceptibility to disease. Genome-wide enrichment of rare
deletions and duplications and a higher rate of de novo copy
number variations have been reported in schizophrenia cases.
For example, gene mutations cause truncation variants in
proteins, resulting in the absence of crucial structural domains
or functional regions. Additionally, rare structural variants can
disrupt genes essential for neural development pathways,
specifically those responsible for synapse formation and
function, and polymorphic sites of single nucleotide
polymorphisms (SNPs) can interact with each other, thereby
increasing the likelihood of schizophrenia.

In genes with abnormal methylation, DNA methylation at CpG
sites can regulate gene expression during disease processes [37].
Moreover, methylation can control the onset and progression
of the neurodegeneration associated with different cell signaling
pathways and dynamically regulate differentiated neurons. This
process suggests that there is a correlation between
neurodegenerative diseases with implications for schizophrenia
[38].

Gene-Set Enrichment Analysis
Figure 5B demonstrates the results of gene-set enrichment
analysis on biological processes. Among these biological
processes, regulation of the calcium/calmodulin-dependent
protein kinase kinase (CAMKK)–AMP-activated protein kinase
(AMPK) signaling cascade was among the significantly
correlated pathways, including the LRRK2 and HTT genes,
with a prediction probability of 0.87 and 0.77 in the RF
classifier, respectively. Impaired cognitive function is an
important feature of patients with schizophrenia. This has been
linked to increased levels of free radicals and decreased levels
of antioxidants, which can activate a range of inflammatory
factors, ultimately causing damage to brain cells. In the nervous
system, excessive autophagy causes cell death, which in turn
leads to damage to cognitive function. Inflammatory stimuli
can also cause neurotoxicity and contribute to cognitive
dysfunction. AMPK is a crucial kinase in regulating metabolism,
which participates in a variety of basic biological processes
upon activation, such as cell growth, proliferation, apoptosis,
and autophagy. The upstream kinase CAMKK2 can activate
the AMPK mechanism when triggered by intracellular calcium
ions. By activating AMPK, oxidative stress [39], cellular
autophagy, and neuroinflammatory processes can be modulated,
all of which are closely related to neurodegenerative diseases,
thus providing insight into schizophrenia [40].

Figure 5C demonstrates the results of gene-set enrichment
analysis on cellular components. Of these cell components, the
Wnt signalosome pathway had a significant correlation,
involving the LRRK2 and CTNNB1 genes, and the prediction
probability in the RF classifier of the two genes was 0.87 and
0.85, respectively. The Wnt/β-catenin signaling pathway plays
a crucial role in the central neurodevelopment of the brain and
helps maintain its proper function. Multiple schizophrenia
susceptibility genes have been identified in this pathway. One
such gene is GSK3, a key regulator of signal transfer, and
changes to its expression level may be a contributing factor to
schizophrenia. Additionally, this pathway plays an important

role in the development of dopaminergic neurons. Furthermore,
synaptogenesis, axoplasmic transport, and abnormalities in
learning and memory functions in the pathway may be
associated with certain symptoms of schizophrenia [41].

Figure 5D demonstrates the results of gene-set enrichment
analysis on molecular functions. Among these molecular
functions, the heat shock protein (HSP) binding pathway showed
a significant correlation. This process involves the HSPA8 and
HTT genes with a prediction probability in the RF classifier of
0.87 and 0.77, respectively. HSPs are a group of protein
chaperones that protect cells from stress and play a vital role in
neurodevelopment. In particular, HSP60 has been found to have
dual pro- and anti-inflammatory effects, which have implications
for the development of neuropsychiatric disorders. The central
nervous system of patients with schizophrenia undergoes
autoimmune-mediated processes, which increase the antibody
responses to HSP70 and HSP90AB1 proteins. This indicates a
link between HSPs and the onset of schizophrenia [42].

Signaling Pathways Enrichment Analysis
Figure 5E presents the results of signaling pathways enrichment
analysis. Of various signaling pathways, the most significantly
correlated pathway was the Rap1 signaling pathway, involving
the CTNNB1 gene with a prediction probability of 0.85 and the
FGFR1 gene with a prediction probability of 0.78 in the RF
classifier. The Rap1 signaling pathway has been shown to be
involved in synaptic plasticity, excitation, learning, and memory
by inhibiting the release of L-type calcium channel–dependent
neurotransmitters, suggesting a link with schizophrenia [43].

Verification of the Top Two Genes
We further examined the role of the top two genes among the
top 20 predicted genes. The protein encoded by the EYA3 gene
had a prediction probability of 0.94 in the RF classifier, which
acts as a transcriptional activator and plays a role in the growth
and development process, suggesting a link with human behavior
or neural development. This gene may also induce the
occurrence, progression, and metastasis of tumors. Studies have
found that some genes highly expressed in cancer cells are
closely tied to synaptic plasticity. These genes are often
expressed at high levels in the mature neurons of the
hippocampus and endbrain and can regulate dopamine
dysfunction caused by dopamine D2 receptor expression. These
genes affect the nervous system and regulate memory and
emotions, indicating a strong correlation with schizophrenia
[44]. Therefore, we speculated that EYA3 may be a potential
risk gene for schizophrenia.

Neuronal cell adhesion molecules (CAMs) allow for interactions
between nerve cells, thus providing support for development
of nervous system. Contactins (CNTNs) showed a prediction
probability of 0.93 in the RF classifier. As a special subclass of
immunoglobulin CAMs, CNTNs have been found to play a
critical role in the functioning of neurons and glial networks.
As schizophrenia is believed to have its origins in neural
development [45], CNTN4 may be an important candidate gene
for schizophrenia. Additionally, a nonsynonymous SNP of this
gene was associated with the effects of olanzapine and
risperidone on negative symptoms of schizophrenia, indicating
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that CNTN4 may serve as a risk signal for the identification of
schizophrenia.

Feature Analysis
We used the Shapley additive explanation value to analyze the
importance of the metagraph features contributing to our model.
The features are arranged in descending order of importance in
Figure 6. We found that features containing keywords ranked
on top, indicating their important role for the prediction
capability of the model and their ability to capture more
information and provide a better representation of each protein.
Among them, larger values of the features pk, kpk, pkp, and pp
indicate a higher likelihood of being a schizophrenia-associated
protein, which indicated that these metagraph features reflected
more characteristics describing the molecular mechanism related
to the pathogenesis of schizophrenia, whereas other metagraph
features seemed to have the opposite impact. The interactions
between proteins form the basis of many crucial life activities,
and they are of great significance in unraveling complex
biological processes in living organisms and understanding the
molecular mechanisms of diseases. In particular, the protein
complexes that are tightly bound and have specific biological

functions are closely related to diseases. The ppk, kpk, pkp, and
ppp metagraphs are denoted as tightly coupled proteins with
specific functions. For example, the 14-3-3 epsilon protein and
the reticulon-4 receptor protein are associated with the same
biological process of cerebral cortex development. Therefore,
such metagraphs may be positively correlated with the incidence
of diseases. By contrast, the pppp, pkpp, and kppp metagraphs
each contained four nodes. An increase in the number of nodes
in the pathway may result in some redundancy of features and
thus weaken their meaning. Such paths typically include the
binding and interaction of two protein complexes that are not
closely linked. For example, the cadherin-related family member
1 protein and the meurexin-2 and neurite extension and
migration factor protein complex are associated with the same
biological process of replication factor C subunit 2, which
therefore have a diminished impact on diseases or may even be
negatively correlated with diseases. However, all of these
features offer important information for the description of a
network, showing various aspects of the network characteristics,
and thus these features should be fully employed to represent
the proteins.

Figure 6. Feature explanation of RF model using the Shapley additive explanation (SHAP) value. The importance of each feature decreases from top
to bottom, and among these metagraph features, the "ppk," "kpk," "pkp," and "ppp’" features are positively correlated with schizophrenia; the features
"pppp" and "pkpp" are negatively correlated; and "kppp" has little influence on the model.

Primary Contribution
In our study, we chose the classifier with the best performance
for disease gene prediction. The proposed framework
successfully discovered associations hidden from the network
and achieved relatively favorable results. The main benefits of
our framework are as follows. First, the keywords we considered
in the network described rich biological properties of proteins
and thus encompassed reasonable predictive power for disease
genes. Second, the vector representations for proteins we
constructed improved our ability to capture the topological

arrangement on the PPIK network for interactions between both
proteins and keywords, and each protein can provide a
comprehensive representation of its characteristics from various
aspects. In addition, it is noteworthy that this framework has
general applicability, which can not only be applied to
schizophrenia but can also be fine-tuned to achieve better
performance by tailoring to other specific diseases.

Limitations
Despite these benefits, our method still has some limitations.
Notably, our method failed to adequately leverage pleiotropy
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and diverse biological features. To resolve this issue, we can
propose a strategy to build a heterogeneous network covering
multimodal data. Based on this comprehensive network, we can
excavate the potential characteristics of the biological entities
and relationships among them to explore candidate disease
genes. In addition, our method was based on machine learning
techniques, and effective algorithms are required to transform
features into a training data set. However, these algorithms are
complex and cannot fully reflect the biological information of
various aspects in the network. For future work, we can employ
deep learning approaches such as convolutional neural networks
and autoencoders into our framework for network embedding,
which can capture both the structural and nonstructural
properties of networks as well as dig out implicit features, thus
leading to better predictive performance.

Conclusions
Predicting potential associations between diseases and genes is
crucial to the diagnosis and treatment of many diseases. In this
work, we proposed an optimized method to mine and predict
schizophrenia-associated risk genes. We incorporated PPI and
biological keywords of proteins to construct a PPIK network.
We then extracted features from the PPIK network and proposed
metagraph representations for proteins. Further, we trained and
optimized our model using four machine learning algorithms,

including RF, XGB, LGBM, and LR, for disease protein
prediction. Our method achieved relatively good performance,
outperforming the RWR, ACT, and Katz baseline methods. We
applied RF, as the machine learning model with better
comprehensive performance, to make the prediction. In
particular, we mapped these proteins to their gene IDs and
obtained the top 20 novel potential schizophrenia-associated
genes. Finally, we performed feature analysis and searched for
evidence in the literature to explain the potential association
between specific genes and diseases. The results indicate that
application of our approach was quite reasonable and reliable
in the discovery of schizophrenia-associated risk genes. Overall,
our method provides a means to enrich protein interactions with
more detailed information, which can encourage the deeper
mining of relations between proteins. This method is likely to
contribute to research on schizophrenia pathology and can offer
some guidance for the diagnosis and treatment of schizophrenia.
In addition, this approach can help to save time and costs,
thereby facilitating basic research. After more testing and
optimization in independent samples, these results are expected
to be applied in future clinical practice and clinical trials.

Data Availability
The data sets generated and analyzed in this study are available
from the corresponding author on reasonable request.
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