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Abstract

Background: Machine learning approaches, including deep learning, have demonstrated remarkable effectiveness in the diagnosis
and prediction of diabetes. However, these approaches often operate as opaque black boxes, leaving health care providers in the
dark about the reasoning behind predictions. This opacity poses a barrier to the widespread adoption of machine learning in
diabetes and health care, leading to confusion and eroding trust.

Objective: This study aimed to address this critical issue by developing and evaluating an explainable artificial intelligence
(AI) platform, XAI4Diabetes, designed to empower health care professionals with a clear understanding of AI-generated predictions
and recommendations for diabetes care. XAI4Diabetes not only delivers diabetes risk predictions but also furnishes easily
interpretable explanations for complex machine learning models and their outcomes.

Methods: XAI4Diabetes features a versatile multimodule explanation framework that leverages machine learning, knowledge
graphs, and ontologies. The platform comprises the following four essential modules: (1) knowledge base, (2) knowledge matching,
(3) prediction, and (4) interpretation. By harnessing AI techniques, XAI4Diabetes forecasts diabetes risk and provides valuable
insights into the prediction process and outcomes. A structured, survey-based user study assessed the app’s usability and influence
on participants’ comprehension of machine learning predictions in real-world patient scenarios.

Results: A prototype mobile app was meticulously developed and subjected to thorough usability studies and satisfaction
surveys. The evaluation study findings underscore the substantial improvement in medical professionals’ comprehension of key
aspects, including the (1) diabetes prediction process, (2) data sets used for model training, (3) data features used, and (4) relative
significance of different features in prediction outcomes. Most participants reported heightened understanding of and trust in AI
predictions following their use of XAI4Diabetes. The satisfaction survey results further revealed a high level of overall user
satisfaction with the tool.

Conclusions: This study introduces XAI4Diabetes, a versatile multi-model explainable prediction platform tailored to diabetes
care. By enabling transparent diabetes risk predictions and delivering interpretable insights, XAI4Diabetes empowers health care
professionals to comprehend the AI-driven decision-making process, thereby fostering transparency and trust. These advancements
hold the potential to mitigate biases and facilitate the broader integration of AI in diabetes care.

(JMIR Form Res 2023;7:e50328) doi: 10.2196/50328

KEYWORDS

disease prediction; explainable AI; artificial intelligence; knowledge graph; machine learning; ontology; diabetes

JMIR Form Res 2023 | vol. 7 | e50328 | p. 1https://formative.jmir.org/2023/1/e50328
(page number not for citation purposes)

Hendawi et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:j.li@ndsu.edu
http://dx.doi.org/10.2196/50328
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
Diabetes is a prevalent chronic disease with severe health
implications, affecting millions of individuals around the world.
According to the Centers for Disease Control and Prevention,
over 37 million Americans (approximately 1 in 10) are affected
by diabetes, with type 2 diabetes accounting for 90% to 95%
of the cases [1]. Artificial intelligence (AI) has brought about
transformative advancements in the field of diabetes diagnosis
and management. Expert systems using logical rules have been
developed to model medical experts’ knowledge, specifically
for prediabetes diagnosis [2]. Machine learning–based
approaches have also been used to construct predictive models
for diabetes risk and its associated complications [3]. In recent
years, deep learning methods have gained prominence in
diabetes prediction systems [4].

Although machine learning models, particularly deep learning
models, have demonstrated remarkable predictive performance
in predictive analytics [5-11] they often lack transparency in
their decision-making process. The ability of health care
professionals to comprehend and trust the predictive analyses
generated by these models is crucial, as they directly impact
human lives. Thus, there is a growing need for explainability
or interpretability in machine learning models.

Existing methods for explaining machine learning model
predictions have been extensively studied, such as in the studies
by Pintelas et al [12], Tasin et al [13], Davagdorj et al [14],
Abdulsalam et al [15], Gao et al [16], Joseph et al [17], Ibrahim
et al [18], Du et al [19], Nagaraj et al [20], Maillot and Thonnat
[21], Icarte et al [22], Daniels et al [23], Zafar and Khan [24],
Srinivasu et al [25], Gerlings et al [26], and Dave et al [27].
However, these methods often have limitations in providing
comprehensive and easily understandable insights into the
decision-making process [28]. Although explainable models
such as local interpretable model-agnostic explanations (LIME)
and Shapley additive explanations (SHAP) have made progress
in increasing transparency, their explanations can still be
challenging for nonexperts, including health care providers, to
comprehend [29,30]. Moreover, these methods primarily focus
on explaining the results without diving into the underlying
mechanisms, specific machine learning techniques, or training
data sets and features.

Therefore, there is a need to enhance the clarity and
comprehensibility of explanations regarding how machine
learning models arrive at their predictions, including the entire
process from data use to model generation, as well as to interpret
the results accurately. This comprehensive understanding is
crucial for health care providers to trust and effectively use the
predictions provided by these models. By addressing these
limitations, we can bridge the gap between complex machine
learning models and their practical applicability in health care
and other domains.

Objectives
The primary objective of our study was to address the pressing
need for improving the interpretability of machine learning

predictions in the context of diabetes risk assessment.
Specifically, we aimed to overcome the limitations of existing
approaches by developing and evaluating a comprehensive
explanation framework that encompasses the entire prediction
process, from data use to model generation to diabetes risk
prediction results. This framework was designed to bridge the
gap between complex machine learning models and their
practical applicability in health care and other domains.

Our study sought to achieve the following specific objectives:

1. Develop a robust and comprehensive explanation
framework that enhances the transparency and
interpretability of machine learning–based diabetes risk
predictions.

2. Create an AI platform, XAI4Diabetes, that incorporates the
explanation framework and facilitates easy comprehension
of the prediction process by health care professionals.

3. Evaluate the usability and effectiveness of XAI4Diabetes
through rigorous usability studies and satisfaction surveys
among health care providers.

By addressing the limitations of existing methods and providing
clear, interpretable insights into how machine learning models
arrive at their predictions, we aimed to empower health care
providers to trust and effectively use the predictions generated
by these models. Ultimately, our research contributed to the
broader goal of fostering transparency and trust in AI
applications in health care, with the potential to improve diabetes
care and, by extension, health care in general.

Methods

Ethics Approval
This study was approved by the institutional review board of
North Dakota State University (IRB0004513).

System Overview
The proposed framework, shown in Figure 1, consists of the
following 4 key modules: the knowledge base, knowledge
matching, prediction, and interpretation modules.

The knowledge base module serves as the foundation of the
platform and uses a knowledge graph (KG) constructed from
ontologies, semantic rules, and external knowledge sources. It
provides machine-interpretable representations of the entire
prediction process, capturing relevant information for the task.
Within the prediction module, machine learning algorithms are
trained and tested on diabetes-related data sets to predict the
associated risks. The knowledge matching module plays a vital
role in mapping data sets, machine learning algorithms, and
their properties (such as hyperparameters) to the entities within
the KG. The interpretation module is pivotal for providing
comprehensive explanations. It elucidates data set features,
underlying machine learning models, and prediction results. By
offering these explanations, our platform aims to enhance the
understanding of health care stakeholders regarding the
functioning of the models and insights derived from the
prediction process. In the subsequent subsections, we provide
detailed explanations of each module within the framework.
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Figure 1. The architecture of the system. KG: knowledge graph; SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms.

Knowledge Base Module
The knowledge base module serves as a foundational component
of our platform, providing a comprehensive understanding of
the key concepts, relationships, and rules necessary for
explaining the machine learning model. To achieve this, we
leveraged 2 primary ontologies: the diabetes ontology and
machine learning ontology. These ontologies serve as formalized
and standardized representations of their respective domains,
facilitating a structured and organized approach to knowledge
representation.

We began by defining top-level concepts and relationships
within the diabetes ontology, which acts as the core knowledge
representation for diabetes-related concepts and relationships
in our system. In this ontology, we built upon existing
ontologies, such as the Diabetes Mellitus Diagnosis Ontology
[31], which captures various aspects of diabetes, including its
clinical presentation, diagnosis, treatment, and complications.
We extended this ontology by incorporating additional classes
and properties to encompass lifestyle interventions,
complications, and health care providers. For instance, classes
such as physical activity, diet, smoking status, and alcohol
consumption were added to capture crucial lifestyle factors that
influence diabetes management. Figure 2 provides an overview
of the major concepts and relationships within the high-level
diabetes ontology. The top-level classes of the diabetes ontology
include “DiabetesComplication,” “Drug,” “Symptom,”
“Diagnosis,” “Disease,” “DemographicInfo,” “Examination,”
“LaboratoryTests,” “Intervention,” “Patient,” “PhysicalFinding,”
and “RiskFactor.” This enriched diabetes ontology acts as the
bedrock upon which the KG is built.

The KG is an integral part of our platform. The KG, represented
in a graph format, further extends the semantic layer of the
diabetes ontology. In the KG, nodes represent entities such as
diabetes complications, diabetes medications, diabetes
symptoms, and other relevant elements. The edges within the
KG symbolize the relationships connecting these entities. For
instance, the diabetes ontology may include a concept such as
diabetes, which forms relationships with other concepts such
as complications, insulin therapy, and medications. Each of

these concepts is represented as nodes within the KG, with edges
establishing connections among them to reflect their
associations. To enrich the semantic layer and enhance the depth
and breadth of diabetes-related information, we incorporated
external knowledge sources such as UMLS (Unified Medical
Language System) [32], SNOWMED CT (Systematized
Nomenclature of Medicine Clinical Terms) [33], and Wikidata
[34] into the KG. Through this integration, a broader knowledge
base can be drawn upon. The connections between our locally
defined knowledge and external sources are established through
KG links. This interconnected approach enables access to
external knowledge on demand, providing a more
comprehensive knowledge representation.

In addition, the KG is designed to be dynamic and adaptable,
allowing for the incorporation of new knowledge and concepts
as they emerge.

The KG plays a pivotal role in the explanation process within
our platform. It provides a structured framework for generating
explanations by connecting relevant concepts and relationships,
making the AI-driven predictions more transparent and
interpretable for health care professionals.

By contrast, we developed a dedicated ontology that offers a
structured representation of the machine learning domain,
primarily based on the MLOnto ontology [35]. This ontology
encompasses various aspects of machine learning, including
algorithms, applications, and types. We extended the ontology
by introducing classes and properties specific to evaluation
metrics and machine learning purposes. The machine learning
ontology helps our platform understand and interpret machine
learning model behaviors and results. Figure 3 illustrates a
segment of the high-level machine learning ontology,
highlighting key concepts such as algorithms, applications, and
application purposes.

The integration of these ontologies into our platform enables it
to bridge the gap between complex machine learning models
and the practical needs of health care professionals. By
leveraging the structured knowledge from these ontologies, our
platform provides clear and coherent explanations for AI-driven
predictions, fostering transparency and trust among users.
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Figure 2. Part of the high-level diabetes ontology (produced by Protégé [version 5.5.0; Stanford University]) [36].

Figure 3. Part of the high-level machine learning ontology (produced by Protégé [version 5.5.0; Stanford University]) [36].
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Knowledge Matching Module
The knowledge matching module assumes a pivotal role in our
platform, serving as the vital link between data items, such as
features extracted from a training data set, and the entities
present within the KG. This module’s functionality is rooted in
a sophisticated semantic matching process [37] that assesses
the semantic distances between data items and the semantic
entities within the KG.

To address the challenge of entity ambiguity, wherein a single
data item may correspond to multiple candidate entries in the
KG, we used advanced techniques grounded in word
embeddings. These word embeddings represent words as
low-dimensional vectors, effectively capturing their semantics
and intricate relationships. Specifically, we leveraged a
meticulously pretrained embedding model known as
BioWordVec [38], which excels in accurately capturing the
nuanced meanings of entities within the medical and health care
domains. Notably, BioWordVec was constructed using a wealth
of data from authoritative sources, including PubMed and
clinical notes from the MIMIC-III Clinical Database [39].
Contextual information forms another crucial aspect of entity
disambiguation within the knowledge matching module. In our
case, the context of a data item encompasses other closely
related features. By considering the broader context in which a
data item appears, our platform significantly enhances its ability
to pinpoint the most appropriate entity within the KG.

Furthermore, the knowledge matching module intelligently
explores the relationships among the entities contained within
the KG. This examination of entity relationships serves as an
additional source of information for disambiguation purposes.
When 2 entities exhibit a close and meaningful relationship, it
is more likely that the text references the entity that is the most
relevant to the given context. This multifaceted approach to
entity disambiguation ensures that our platform consistently
delivers accurate and contextually appropriate explanations,
thereby enhancing the interpretability of AI-driven diabetes
predictions for health care professionals.

Prediction Module
The prediction module plays a crucial role in our system by
using machine learning algorithms for diabetes risk prediction.
We carefully selected the algorithms based on several factors,
including problem understanding, data analysis, algorithm
suitability, and performance evaluation. For our prototype, we
worked with 2 data sets: the Pima Indians Diabetes Database
[40] and the early-stage diabetes risk prediction data set [41].
After thorough analysis and testing, we selected 3 models: deep
neural network (DNN), random forest (RF), and decision tree
(DT).

To ensure compatibility and consistency in the training process,
we applied the z score scaling method to normalize the data
sets. In addition, we addressed the issue of imbalanced data in
the Pima data set using the synthetic minority oversampling
technique [42] to balance the classes. We then used Tomek links
[43] to remove any introduced noise. The DNN model consists
of 3 hidden layers, with 16 and 8 neurons in the first 2 layers,
respectively, using the Sigmoid activation function. The final

layer consists of 2 neurons using the SoftMax activation function
for multiclass classification. By contrast, both the RF and DT
models use entropy as a metric to measure the impurity or
uncertainty within a group of observations.

By leveraging these diverse models, our system aims to improve
the accuracy and robustness of diabetes risk predictions. The
combination of different algorithms allows the consideration
of various aspects and perspectives of the data, leading to a
comprehensive and well-rounded approach to prediction.

Explanation Module
The explanation model explains machine learning prediction
on the following three levels: (1) the machine learning model
used for diabetes prediction, (2) data used to train and test the
machine learning model, and (3) prediction results generated
by the machine learning model.

Machine Learning Model and Data Set Explanation
When data scientists create diabetes prediction models using
machine learning approaches, instances of the machine learning
model will be generated based on the machine learning ontology
defined in the previous section. All the metadata about the
machine learning model, such as the machine learning algorithm
and parameters, are stored in the knowledge in the format of an
ontology. Querying and reasoning can be performed on the
knowledge base for explanatory purposes.

To explain the data used for the training and testing of the
diabetes prediction model, data features from the data set are
mapped to the KG of diabetes. Information in the KG can be
used to explain the data features, thus improving the user’s
understanding of the training and testing data. A SPARQL [44]
query is used to query the KG to obtain appropriate information,
for example, what machine learning algorithm and dataset are
used to train the prediction model? This question can be
translated into the following SPARQL query:

The system retrieves the algorithm and data set information
from the machine learning ontology and returns them to the
user.

Moreover, data items (features) are explained by leveraging
entities from external KGs such as the Unified Medical
Language System, Systematized Nomenclature of Medicine
Clinical Terms, and Wikidata. These KGs provide a rich source
of information and definitions that can assist in understanding
unfamiliar data features. For instance, if a data feature is not
known by health care providers, they can access the KG to
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retrieve the definition and even figures related to that feature,
facilitating comprehension. In the Results section, we provide
detailed examples of how the KG enhances the explanation of
data items. These examples demonstrate how the system
retrieves relevant information from the KG to help users
understand and interpret data features in the context of diabetes
risk prediction.

Prediction Result Explanation

Overview

In our prediction result explanation, we adopt 2 perspectives:
global explanations and local explanations. Global explanations
aim to provide an understanding of the diabetes prediction model
as a whole by identifying the data set features (eg, specific
symptoms) that have the most substantial influence on the
predictions. This perspective helps uncover the overarching
patterns and relationships between the features and predictions.
By contrast, local explanations focus on explaining how the
different input features impact the diabetes prediction for an
individual patient. This perspective is particularly valuable for
complex models that exhibit varied responses to different
combinations of features. By analyzing local explanations, we
can gain insights into the specific factors that contribute to a
patient’s prediction, enabling personalized interpretations and
interventions.

By incorporating both global and local explanation techniques,
we covered a comprehensive range of insights from the
macrolevel understanding of the model to the microlevel
understanding of individual predictions. This approach provides
a holistic view of the model’s behavior and empowers health
care providers to make informed decisions based on the
explanations tailored to their specific needs.

Global Explanation

We adopt the SHAP technique [45] to explain the overall
prediction model because of its effectiveness in providing
interpretable and reliable insights. SHAP offers a
game-theoretical approach to attribute the contribution of each
feature in the data set to the model’s predictions [46]. By
quantifying the impact of individual features, SHAP helps
understand the relative importance and influence of different
factors with regard to the overall predictions. This technique
allows for a comprehensive understanding of the prediction
model’s behavior and facilitates the communication of these
explanations to health care providers. The importance of feature
j is defined by the Shapley value [46] in the following equation:

, which is calculated by averaging its contributions across all
possible permutations of feature sets. This allows for the
assessment of the individual impact of features on the model’s
output and determination of their significance in the prediction
process.

Local Explanation

For local explanations, we used LIME [47]. LIME was chosen
for its ability to provide insights into the behavior of the
prediction function f(x) in the vicinity of a specific instance.
LIME achieves this by generating a new data set of perturbed
instances and their corresponding predictions from the black-box
model. These perturbations involve the modification of feature
values, such as introducing noise to continuous features or
removing words from text data. The weighted interpretable
model is then trained using this data set, where the weights are
assigned based on the proximity of the samples to the original
instance being explained. Instances closer to the original have
higher weights, whereas those farther away have lower weights.
The trained interpretable model estimates the probability of the
instances belonging to a specific class, providing a localized
explanation for the prediction of a particular instance. LIME
may suffer from inherent instability arising from its perturbation
technique. Stabilized-LIME for Model Explanation (S-LIME)
[48] can be used to tackle the problem of instability. S-LIME
incorporates a hypothesis testing framework based on the central
limit theorem to determine the number of perturbation points
required to ensure the stability of the resulting explanations. By
quantifying the necessary number of perturbations, S-LIME
aims to provide explanations that are more consistent and less
prone to fluctuations caused by small data variations.

Results

Prototype System
We developed a mobile app, XAI4Diabetes, based on the
proposed approach for predicting diabetes and explaining the
prediction. The target users of the mobile app are health care
providers who treat patients with diabetes. To use the app, a
user can input patient information, such as the patient’s basic
information (Figure 4 [left]), examination information (Figure
4 [right]), symptoms (Figure 5), and family history. Then, the
patient’s risk of having diabetes is predicted (Figures 6 [left]
and 7 [left]) by the machine learning model. In addition, how
this prediction is made by the machine learning model is
explained using human-understandable language and figures
(Figures 6 [right] and 7 [right]).
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Figure 4. Screenshots of a patient’s basic information (left) and examination information (right).

Figure 5. Screenshots of patients’ symptom input.
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Figure 6. Screenshots of prediction result (left) and explanation based on a patient’s examination (right).

Figure 7. Screenshots of prediction result (left) and explanation based on patients’ symptoms (right).

Use Case Study
In our research, we adopted use case studies to comprehensively
evaluate the capabilities and performance of the XAI4Diabetes
mobile app. A use case study is a research method commonly
used in software development and system evaluation to
understand the practical application of a system or technology

in real-world scenarios. By creating various use cases, we aimed
to simulate different scenarios and interactions that health care
providers may encounter when using the app. This approach
allowed us to examine the system’s functionality in a practical
context and assess its effectiveness in supporting diabetes
prediction and explanation tasks.
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In Figure 4, a user inputs the basic and examination information
of a female patient aged 60 years. On the basis of this
information, a prediction is made about whether she may have
diabetes. The prediction result is shown in Figure 6 (left). As
shown in Figure 6 (left), the machine learning model predicts
that the patient has an 83% chance of being diagnosed with
diabetes. Figure 6 (right) explains why the machine learning
model makes this prediction. It shows that the user’s BMI has
a huge impact on this decision; the second factor is her blood
glucose level. The figure lists some major factors impacting the
machine learning model used to make the decision. For different
patients, the factors may be quite different.

The feature importance shown on the mobile app was generated
using LIME, as it is suitable for local explanations of individual
predictions. The output is a list of features and their
corresponding weights, indicating their contribution to the
prediction. This provides a better understanding of the model’s
behavior for a specific data sample and allows for the
identification of the most important features for a prediction.
Our system illustrates feature importance in a user-friendly
figure that can be interpreted without the need for an expert. To
ensure the stability of the explanations, we conducted
experiments using S-LIME. Fortunately, the outcomes of these
experiments indicated that our explanations remain consistent
and reliable, despite the potential instability of LIME.

In Figure 5, the user inputs the symptoms of a female patient.
The prediction module uses the patient’s symptoms to predict
whether she is diabetic (Figure 7 [left]) and to provide an
explanation for why the model made this prediction (Figure 7
[right]). As shown in Figure 7 (left), the machine learning model
predicts that the patient has a 100% chance of being diagnosed
with diabetes. Figure 7 (right) explains why the machine
learning model makes this prediction. It shows that the patient

has polyuria and that this symptom has the greatest contribution
to the prediction result; polydipsia is the second most important
factor that impacts the prediction The figure lists the factors
with the highest effects on the machine learning prediction.

Figure 8 shows the explanation of one of the features of the data
set. The machine learning prediction model was trained using
data sets. Users may not be familiar with the data items used in
the training data sets. The app provides an explanation interface
to help the user understand each data feature of the training and
testing data. In the case of Figure 8, the user may not understand
the meaning of the feature alopecia used in the data set.
Alopecia is one of the common symptoms of diabetes, along
with polyuria, polydipsia, polyphagia, weakness, obesity,
irritability, genital thrush, and other data set attributes [49].
Patients with diabetes are more likely to have alopecia areata
[50].

The user can click on a feature, and its explanation is shown,
as in Figure 8 (left). More details from external links are
provided, as in Figure 8 (right). The knowledge matching
module and the interpretation module link this feature to the
corresponding KG entity and provide the symptom definition
and a link to a trustworthy source for more information (Figure
8 [right]).

Besides the functions shown in Figures 4-8, XAI4Diabetes
provides more services, such as detailed information about the
data sets used to train the models, for instance, their source, the
number of patient cases, and the features. In addition,
XAI4Diabetes explains the machine learning model used to
make the prediction such as its parameters and algorithms.
XAI4Diabetes also gives general insight into the importance of
each feature that influenced the predictive model. All these
functions were evaluated in our user study.

Figure 8. Screenshot of the explanation of one of the data set features (left) [51] and detailed information from an external knowledge source (right)
[52]. CTCAE: Common Terminology Criteria for Adverse Events; FDA: Food and Drug Administration; NCI: National Cancer Institute; NCI-GLOSS:
National Cancer Institute-Dictionary of Cancer Terms; NHI: National Institutes of Health.
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Prediction Model Evaluation
The prediction model was evaluated using 2 data sets: the Pima
Indians Diabetes Dataset and early-stage diabetes risk prediction
data set. The Pima Indians Diabetes Database is a widely used
data set consisting of 768 instances representing female patients
of Pima Indian heritage. The early-stage diabetes risk prediction
data set includes data obtained from 520 individuals, 200 healthy
individuals and 320 patients with diabetes, at Sylhet Diabetes
Hospital. Our system used 3 models for diabetes risk prediction:
DNN, RF, and DT. Our approaches yielded highly competitive
results compared with state-of-the-art approaches, demonstrating
the effectiveness of our framework.

We evaluated our framework based on the metrics of accuracy,
precision, recall, F1-score, and precision-recall curve. Table 1
lists the performance of the 3 algorithms on the Pima data set.
We also compared our approaches with existing approaches,
including naive Bayes [53], sequential minimal optimization
[54], Java 48 [55], k-nearest neighbor (KNN) [56], deep learning
[5], and linear regression [57]. Figure 9 shows the receiver
operating characteristic curves of the 3 algorithms on the Pima
data set.

Similarly, Table 2 depicts the performance of the 3 algorithms
and 2 other approaches, KNN [56]and linear regression [56],
on the early-stage data set. Figure 10 shows the ROC curves of
the 3 algorithms on this data set.

Table 1. Comparison of model performance for the Pima data set.

F1-scoreRecallPrecisionAccuracyModel

0.8450.8460.8470.851Random forest

0.7930.7960.7970.785Decision tree

0.8250.8160.8080.825Deep neural network

0.7670.770.7760.779Naive Bayes [52]

0.7640.7760.769N/AaSequential minimal optimization [53]

0.7920.7800.804N/AJava 48 [54]

0.9680.9850.9520.981Deep learning [5]

aN/A: not applicable.

Figure 9. Receiver operating characteristic curves of different approaches on the Pima data set. AUC: area under receiver operating characteristic
curve.

Table 2. Comparison of model performance for the early-stage data set.

F1-scoreRecallPrecisionAccuracyModel

0.9890.9850.9930.99Random forest

0.9470.9460.9650.952Decision tree

0.9890.9850.9860.991Deep neural network

0.934N/AN/Aa0.925K-nearest neighbor [53]

0.936N/AN/A0.925Linear regression [53]

aN/A: not applicable.
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Figure 10. Receiver Operating Characteristic curves of different approaches on the early-stage data set. AUC: area under receiver operating characteristic
curve.

Usability Evaluation
We conducted a preliminary user study to evaluate the technical
viability and effectiveness of the mobile app. We invited health
care professionals specializing in internal medicine, general
surgery, and endocrinology to participate, and 10 physicians
completed the survey. As the sample size was relatively small,
it could provide only a preliminary assessment of the
framework’s viability and effectiveness.

The survey consisted of 12 questions measured on a 5-point
Likert scale. The participants evaluated the app’s performance
in 4 patient cases. The results, shown in Table 3, indicate that
all the participants agreed that the machine learning prediction
results were reasonable and that the app provided sufficient and
helpful information. They also agreed that the app adequately
explained complex medical features. Most participants (9/10,90
%) found the prediction result explanation reasonable, and the
global explanations aligned with their medical opinions. In
addition, 60% (6/10) of the participants strongly agreed that the
app helped them understand how the machine learning model
made the predictions and could assist data scientists in
reproducing the model.

Lower ratings were observed for the questions related to the
explanation of the machine learning model. This may have been
due to the physicians’ limited background in data science or
machine learning, resulting in difficulty in understanding the
technical details. The lack of familiarity with terminologies
such as feature and hyperparameters could have also contributed
to the challenge. The physicians may have had limited exposure
to formal training in machine learning concepts, making it harder
for them to comprehend how the model works.

To assess the overall satisfaction, the participants were asked
to provide feedback on their experience using the mobile app.
As shown in Table 4, most participants (8/10,80 %) expressed
satisfaction, stating that the app helped them trust AI predictions
better and (10/10, 100%) stated that it was easy to use. Most
participants (8/10,80 %) agreed that they would use the system
more frequently and felt confident about using it. (10/10, 100%)
participants found the predictions made by the machine learning
model consistent with their medical opinions. All the participants
(10/10, 100%) disagreed that the app required technical support
to be used.

These findings provide valuable insights into user satisfaction
and highlight areas for improvement in explaining machine
learning models to health care professionals.
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Table 3. Survey responses from health care professionals.

Rating, n (%)Survey question

Strongly dis-
agree

DisagreeNeither agree nor dis-
agree

AgreeStrongly agree

0 (0)0 (0)0 (0)1 (10)9 (90)The predicted result is reasonable

0 (0)0 (0)1 (10)1 (10)8 (80)The explanation of the prediction is clear and
reasonable

0 (0)2 (20)2 (20)0 (0)6 (60)The explanation helps me comprehend how
machine learning generates the prediction

0 (0)0 (0)0 (0)1 (10)9 (90)The data set explanation assists me in under-
standing the data set used by the machine
learning model for prediction

0 (0)0 (0)4 (40)0 (0)6 (60)The machine learning model explanation aids
data scientists in reproducing the model

0 (0)0 (0)1 (10)0 (0)9 (90)The order of feature importance is logical

0 (0)0 (0)0 (0)2 (20)8 (80)The explanation for complex medical features
is sufficient

Table 4. Overall feedback regarding the use of the mobile app.

Rating, n (%)Survey question

Strongly dis-
agree

DisagreeNeither agree nor
disagree

AgreeStrongly agree

0 (0)0 (0)2 (20)1 (10)7 (70)The application enhances my trust in AIa predictions

0 (0)0 (0)0 (0)0 (0)10 (100)The application is user-friendly and easy to navigate

0 (0)2 (20)0 (0)1 (10)7 (70)I feel very confident about using the system

0 (0)0 (0)0 (0)2 (20)8 (80)The AI predictions align with my medical opinion

8 (80)2 (20)0 (0)0 (0)0 (0)I believe I would require technical assistance to use this
system effectively

aAI: artificial intelligence.

Explanation Evaluation
For the assessment of attribution explanation faithfulness
qualities, we applied the monotonicity [58] and implementation
invariance [59] quantitative metrics on the 2 data sets, and the
results are shown in Table 5. We used the monotonicity
explanation metric to measure the strength and direction of
association between attributes and explanations. Monotonicity
indicates how faithful a feature attribution explanation is. We
applied Spearman correlation coefficient (ρ) between the
feature’s absolute performance measure of interest and
corresponding expectations. As can be seen in Table 5, the ρ
value is positive and close to 1, which indicates a strong positive
monotonic relationship between the LIME explanation features

and true outcomes. In other words, the attributions are
monotonic, and LIME assigns the correct importance.

To assess explanation consistency, we used the implementation
invariance quantitative metric by computing the Jaccard
similarity between feature importance scores across random
initializations of the predictive model. The Jaccard coefficient
is a similarity and diversity measure among finite sets. It
computes the similarity between 2 sets of data points by dividing
the number of elements in an intersection by the number of
elements in union. When the Jaccard index is between 0 and 1,
there is some degree of overlap between the sets. The high
Jaccard similarity coefficients that we achieved suggest that
LIME consistently selects similar sets of features across data
points, indicating consistency in the explanation.
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Table 5. Quantitative metrics for measuring explanation faithfulness qualities.

Implementation invarianceMonotonicityData set and model

Early-stage diabetes risk prediction data set

0.930.97Random forest

0.910.93Decision tree

0.930.96Deep neural network

Pima Indians Diabetes Database

0.780.86Random forest

0.760.80Decision tree

.740.90Deep neural network

Discussion

Principal Findings
Our research objectives focused on addressing the need for
explaining machine learning predictions in the context of
diabetes risk and developing a comprehensive framework to
enhance their practical applicability in health care. By achieving
these objectives, we aimed to enable health care providers to
trust and effectively use the predictions generated by these
models.

To accomplish these objectives, we designed and developed
the XAI4Diabetes mobile app, which leverages ontologies, a
KG, and external knowledge sources. Our approach involves
KG embedding and semantic similarity measurement to link
concepts such as data sets and machine learning models to the
entities in the KG. It uses both global and local result
explanation mechanisms to deliver clear and understandable
explanations of the diabetes prediction results. The app covers
the entire prediction process, from data use to model generation,
and presents diabetes prediction results in an understandable
manner.

The results of our research demonstrate the effectiveness of the
XAI4Diabetes app in achieving our objectives. Through a user
study and user satisfaction survey, we obtained valuable insights
into the impact and usability of the app. The survey results
revealed that the explanations provided by the app were
instrumental in helping medical providers understand the
prediction mechanism, predicted results, and features used in
the training data. This comprehensive understanding of the
predictions enhances trust in AI prediction in the field of
diabetes risk assessment.

Furthermore, the user satisfaction survey highlighted areas for
improvement, particularly in explaining machine learning
models. The participants expressed the need for more context,
a simpler language, and additional training or resources to
enhance their understanding of the technology. These results
indicate that further enhancements to the explanation framework
of the app are necessary to meet the specific needs of health
care providers.

In conclusion, the results of our study are strongly connected
with our research objectives. The development of the
XAI4Diabetes app successfully addressed the need for
explaining machine learning predictions in diabetes risk

assessment. By providing comprehensive and understandable
explanations, the app supports health care providers in trusting
and effectively using these predictions. However, the survey
results also provide valuable feedback for future improvements,
emphasizing the importance of refining the explanations of
machine learning models to enhance their interpretability and
usability in health care settings.

Comparison With Existing Work
Various machine learning techniques have been used in health
care and disease prediction. Some studies used simple shallow
models [60], whereas others used deep learning models [5,9,61].
Hybrid techniques have been developed to improve the model’s
outcomes [10]. However, all the earlier studies focused on
improving the model’s performance while neglecting the
interpretability concerns. They lack the transparency required
by physicians to trust AI systems [62].

Recently, there has been a surge in research focused on
explainable AI [20,49] to provide explanations for machine
learning results. For example, the study by Tiddi et al [63]
proposed a framework in which an inductive logic-based graph
search is performed to generate explanations for data output by
unsupervised learning algorithms (clusters, association rules,
and time series). In addition, using structured knowledge for
machine learning–based visual explanations was the subject of
the image recognition tasks in the studies by Maillot and
Thonnat [21] and Icarte et al [22]. Similarly, Daniels et al [23]
integrate a generic DNN architecture with WordNet for the
scene classification task. Here, object types from WordNet are
aligned with objects in the ADE20K data set, and the WordNet
hierarchy is then used to train an object identification module,
which is then input into a linear regression model capable of
providing explanations automatically.

A new paradigm of intelligent health care systems has begun
to explore how to deliver understandable results along with
transparent, reliable explanations. For example, in the study by
Zafar and Khan [24], the authors used agglomerative hierarchical
clustering to group the training data and KNN to select the
relevant cluster of the new instance that was being explained.
Then, a linear model was trained over the selected cluster to
generate explanations. The system was tested on 3 medical data
sets. In the study by Caruana et al [64], Microsoft presented 2
case studies based on real medical data, in which
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high-performance generalized additive models with pairwise
interactions achieved state-of-the-art accuracy.

Systems in the health care domain often integrate classification
tasks with taxonomical knowledge found in medical diagnosis
metathesaurus or medical ontologies [65]. For example, the
study by Vavpetič et al [66] used the gene ontology and Kyoto
Encyclopedia of Genes and Genomes ontology for subgroup
discovery, with the sense that the constructed rules describing
subgroups are good explanations for their formation. Moreover,
the study by Che et al [67] proposed a health diagnosis
prediction system that uses medical ontologies to learn
(embedded) representations for medical nodes in the KG and
their parent codes. These are then used to learn the input
representations of patient data, which are then loaded into a
neural network architecture. The system uses an attention
mechanism that learns weights to improve the prediction
accuracy and allow the interpretation of the importance of
various pieces of information. In the study by Phan et al [68],
a domain ontology was integrated into a neuro-symbolic
architecture with a restricted Boltzmann machine model to
predict and explain human behaviors for health care intervention
systems in health social networks.

Despite the advancements highlighted in the aforementioned
studies, they primarily focus on explaining the predictive
outcomes. The inner workings of the machine learning process,
such as the training methodologies, used data sets, and selected
data features, remain obscured. In addition, the explanations
predominantly cater to data scientists and technical experts,
requiring specialized knowledge for interpretation. Notably,
these studies lack user-centric evaluations, neglecting feedback
from potential end users.

By contrast, XAI4Diabetes provides users with a thorough
explanation from multiple aspects, thus improving their
understanding of the predictions. The explanation is provided
by an easy-to-use interface using natural language and
straightforward figures.

Limitations and Future Work
There are limitations to our current framework. In addition,
there are several avenues for future work and improvements,
addressing which can enhance the usability and effectiveness
of the system.

One of the major limitations is the small sample size of the user
study conducted during the evaluation of the XAI4Diabetes
app. Although the initial user study provided valuable insights,
a larger and more diverse participant pool is necessary to obtain
a more comprehensive understanding of the system’s
performance and user satisfaction. In the future, we plan to
conduct a long-term, extensive user study with a larger number
of participants, including health care professionals and patients,
to gather more robust feedback and validate the effectiveness
of the framework.

Another limitation is that our current prototype is only a proof
of concept and not a mature product. Although it demonstrates
the feasibility of the proposed framework, there is room for
improvement in terms of user interface design and functionality.
To address this, we will perform a comprehensive requirement

analysis by surveying medical professionals and patients as the
final users. This analysis will help us better understand their
needs and preferences, leading to the development of a more
refined and user-friendly interface.

Furthermore, the current system primarily targets health care
providers, and additional work is needed to ensure that it can
effectively serve patients as well. In the future, we will focus
on enhancing the patient-centric features of the app to provide
personalized explanations and support for individuals managing
their diabetes risk. This includes tailoring the system’s
functionalities to better meet the needs of patients. We plan to
incorporate the use of resources such as MedlinePlus [69] to
make knowledge more accessible to the general public. In
addition, we plan to integrate patient feedback mechanisms.

In terms of explanation representation and presentation, there
is ongoing research for exploring better ways of conveying
explanations. We will investigate techniques such as animation
and graph-based explanations to enhance the visual and
interactive aspects of the app. These approaches have the
potential to further improve the interpretability and
understandability of the machine learning predictions for both
health care providers and patients.

In addition, the current version of the app lacks a user feedback
mechanism. To foster continuous improvement, we recognize
the importance of incorporating health care stakeholders’
feedback. Therefore, in future iterations, we will integrate a
feedback feature that will allow users to provide their insights,
suggestions, and concerns. This feedback will be invaluable for
enhancing the interoperability, interpretability, and overall
performance of the system.

In summary, although our framework has demonstrated
promising results, it is important to acknowledge its limitations
and outline future directions for improvement. By addressing
these limitations and conducting further research, we aim to
develop a more mature and user-centric system that effectively
explains machine learning predictions, empowers health care
providers and patients, and ultimately enhances trust in
AI-assisted diabetes risk assessment.

Conclusions
In conclusion, our study developed the XAI4Diabetes
framework, addressing the need for explaining machine learning
predictions in diabetes risk assessment. Our framework provides
transparent and interpretable explanations for the diabetes
prediction process and prediction results, enhancing the
understanding of health care providers and stakeholders. This
improves trust in AI predictions and supports informed
decision-making in medical research.

By incorporating ontologies and a KG, we created a
user-friendly tool that bridges the gap between complex machine
learning models and their practical applicability in health care.
The framework’s multiaspect explanations link input features,
machine learning algorithms, and external knowledge sources.

Future works include conducting extensive user studies, refining
the user interface based on feedback from health care
professionals and patients, and exploring advanced presentation
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techniques such as animation and graph explanations. Our
research has broader implications for transparent and explainable
AI, enabling the adoption of machine learning models in various
industries.

Overall, our study contributes to the understanding and
trustworthiness of machine learning predictions in health care,
laying the foundation for reliable and transparent applications
in medical decision-making processes.
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