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Abstract

Background: Parkinson disease (PD) affects millions globally, causing motor function impairments. Early detection is vital,
and diverse data sources aid diagnosis. We focus on lower arm movements during keyboard and trackpad or touchscreen
interactions, which serve as reliable indicators of PD. Previous works explore keyboard tapping and unstructured device monitoring;
we attempt to further these works with structured tests taking into account 2D hand movement in addition to finger tapping. Our
feasibility study uses keystroke and mouse movement data from a remotely conducted, structured, web-based test combined with
self-reported PD status to create a predictive model for detecting the presence of PD.

Objective: Analysis of finger tapping speed and accuracy through keyboard input and analysis of 2D hand movement through
mouse input allowed differentiation between participants with and without PD. This comparative analysis enables us to establish
clear distinctions between the two groups and explore the feasibility of using motor behavior to predict the presence of the disease.

Methods: Participants were recruited via email by the Hawaii Parkinson Association (HPA) and directed to a web application
for the tests. The 2023 HPA symposium was also used as a forum to recruit participants and spread information about our study.
The application recorded participant demographics, including age, gender, and race, as well as PD status. We conducted a series
of tests to assess finger tapping, using on-screen prompts to request key presses of constant and random keys. Response times,
accuracy, and unintended movements resulting in accidental presses were recorded. Participants performed a hand movement
test consisting of tracing straight and curved on-screen ribbons using a trackpad or mouse, allowing us to evaluate stability and
precision of 2D hand movement. From this tracing, the test collected and stored insights concerning lower arm motor movement.

Results: Our formative study included 31 participants, 18 without PD and 13 with PD, and analyzed their lower limb movement
data collected from keyboards and computer mice. From the data set, we extracted 28 features and evaluated their significances
using an extra tree classifier predictor. A random forest model was trained using the 6 most important features identified by the
predictor. These selected features provided insights into precision and movement speed derived from keyboard tapping and mouse
tracing tests. This final model achieved an average F1-score of 0.7311 (SD 0.1663) and an average accuracy of 0.7429 (SD 0.1400)
over 20 runs for predicting the presence of PD.

Conclusions: This preliminary feasibility study suggests the possibility of using technology-based limb movement data to
predict the presence of PD, demonstrating the practicality of implementing this approach in a cost-effective and accessible manner.
In addition, this study demonstrates that structured mouse movement tests can be used in combination with finger tapping to
detect PD.

(JMIR Form Res 2023;7:e49898) doi: 10.2196/49898
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Introduction

In the United States alone, Parkinson disease (PD) affects over
1 million individuals, with approximately 90,000 new diagnoses
each year [1]. PD manifests with motor and nonmotor symptoms
that impact the entire body, including challenges like
micrographia that significantly disrupt daily life [2-6].
Unfortunately, symptomatic evaluation remains the sole
diagnostic method for PD; an official diagnostic procedure is
lacking. As a result, many cases go undiagnosed or
misdiagnosed, hindering effective treatment [7-10]. Moreover,
even unofficial PD diagnostic tests are costly, requiring
specialized equipment and laboratory procedures [11-14]. Thus,
there is an urgent need for scalable and accessible tools for PD
detection and screening. Early diagnosis, which includes
initiation of treatment and medication at an appropriate time,
offers several benefits, including timely intervention and
appropriate medication, leading to improved quality of life for
patients [15,16].

PD affects limb movements, particularly lower hand movements,
as evidenced by multiple studies [5,17-21]. Traditionally, PD
diagnosis in the clinical setting relies on neurologists who
consider medical history, conduct physical examinations, and
observe motor movements and nonmotor symptoms [22,23].
Recently, researchers have explored the use of smartphones as
a measurement tool for PD detection [24-26]. Previous studies
have shown that PD can be detected by monitoring digital device
activity, such as abnormal mouse movements and atypical typing
patterns [27-33]. Building on these findings, our goal is to
develop a user-friendly web application that offers a
cost-effective and accessible diagnostic method, overcoming
the limitations of in-person examinations and smartphone tests.

Previous studies investigating the use of finger movement for
PD detection often faced challenges in accessibility due to their
requirements for specialized equipment like accelerometers and
gyroscopes [34,35]. For instance, Sieberts et al [31] used
wearable sensors to gather accelerometer and gyroscope data,
which might not be easily accessible to the general population.
Chandrabhatla et al [36] discussed the transition from lab-based
to remote digital PD data collection, but still relied on specific
in-lab tools, which limited accessibility. Skaramagkas et al [37]
used wearable sensors to distinguish tremors, while Schneider
et al [38] found distinctive PD characteristics in shoulder shrugs,
arm swings, tremors, and finger taps. Their findings emphasized
arm swings and individual finger tremors as significant
indicators.

Numerous studies have leveraged mobile apps, such as the work
by Deng et al [32], which used the Mpower app to assess
movement [33]. It is worth noting that older individuals, who
are more vulnerable to PD, might not be as familiar with
handheld devices like phones and tablets as they are with
computers and laptops, which are more common among this
age group [39-42]. Mobile phones became widely used in the
early 2000s, with smartphones gaining popularity later, making

them less familiar to older people [43-45]. On the other hand,
many older adults have more experience with computers, which
have been in use for a longer time [46]. This familiarity not
only expands the potential participant group but also ensures
more reliable data collection due to participants’ better
understanding of the test procedures [47-49].

Keyboard typing’s potential for PD prediction has also been
explored. In a study by Arroyo-Gallego et al [50], the
neuroQWERTY method was used, which is based on computer
algorithms that consider keystroke timing and subtle movements
to detect PD. This approach was extended to uncontrolled
at-home monitoring using participants’natural typing and laptop
interaction to detect signs of PD. The algorithm’s performance
at home nearly matched its in-clinic efficacy. However, the lack
of structure in this approach makes direct performance
comparisons challenging. Additionally, Noyce et al [51]
investigated genetic mutations and keyboard tapping over 3
years. They calculated risk scores using PD risk factors and
early features. However, this study involved genetic information,
which might not be accessible to many patients.

While drawing tests have been well studied, the investigation
of mouse hovering to trace specific paths is limited. Rather than
freehand tablet drawing, which is flexible but does not provide
regulated data, Isenkul et al [52] used a tablet to help PD patients
with micrographia. Yet since touchscreens are scarce on larger
devices, a computer mouse provides a more accessible
comparison [53,54].

Taking a different approach, researchers have used brain scans
and biopsies to study changes in PD-related brain regions.
Kordower et al [55] observed the progression of nigrostriatal
degradation in PD patients over time. By analyzing brain
regions, they found that a loss of dopamine markers 4 years
after diagnosis was an indicator of PD.

These prior studies collectively contribute valuable insights into
using digital devices for gathering motor-related PD data. Our
research aims to expand upon this inspirational prior work by
exploring the potential of an easily accessible web-based test
involving keyboard finger tapping and mouse movements. We
use a web application compatible with common devices to
analyze these data, distinguishing individuals with and without
PD to assess the feasibility of a more accessible and
cost-effective detection method. While in-lab devices are precise
but less accessible due to cost, web-based tests are cost-effective
and accessible. Mobile apps are user-friendly but less familiar
to older PD patients. Our web application, accessible on various
devices, particularly computers, ensures familiarity and
consistency and thus provides reliable data. Building on freeform
drawing and keyboard tapping, our method adds structured
tracing and key tapping tests, allowing direct performance
comparisons.

We present an affordable and accessible method for PD
detection using a web application that captures and analyzes
lower hand movements during keyboard and mouse interactions.
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Keystrokes are measured by logging the time interval between
prompts and keypresses, while false presses are recorded to
detect finger shaking. Mouse movement is tracked every 500
milliseconds to assess precision and identify shaking or
unintended movements. In a remote study with 31 participants,
including 13 patients with PD and 18 controls without PD, we
trained a machine learning (ML) model on 6 extracted
movement features, achieving promising predictive performance.
The model yielded an average F1-score of 0.7311 and an average
accuracy of 0.7429. These results demonstrate the practicality
of technology-driven limb movement data collection for
effective PD detection.

Methods

Ethics Approval
This study obtained approval from the University of Hawaii at
Manoa Institutional Review Board (IRB; protocol 2022-00857).
Ensuring accurate identification of PD among participants was
a significant challenge due to the lack of an official diagnostic
certificate for PD. We therefore relied on self-report, and we
required users to confirm their results with an intrusive dialogue
that had to be dismissed before the test commenced, minimizing
mistakes.

Recruitment
Participants were recruited through the Hawaii Parkinson
Association (HPA) and similar organizations. We collaborated
with the former president of the HPA, who shared detailed
information about our test via email. We set up a booth at the
2023 Hawai’i Parkinson’s Symposium, an event coordinated
by the HPA. Attendees had the chance to take the test using a
provided device and receive slips with the test URL. We
welcomed participation from individuals both with and without
PD who showed interest. Participants recruited by email were
provided with a web application link to conveniently complete
the tests remotely. The study included individuals with and
without PD. This feasibility study consisted of a cohort of 31
participants. The age distribution was 65.226 (SD 10.832) years
for all participants, 69 (SD 7.147) years for participants with
PD, and 62.5 (SD 12.144) years for participants without PD.

Recognizing the limitations of our small sample size, we stress
that this study represents an initial investigation into the utility
of this test for PD detection. Our plan is to build upon these
results through a larger-scale study involving a broader range
of participants.

To address potential misclassification associated with using
self-reporting, we implemented a comprehensive strategy.
Participants were presented with an intrusive dialog box
containing their entered demographics, including PD status,
and were required to review and confirm its accuracy. They had
the flexibility to modify their status and demographics,
minimizing errors. Demographic data collection followed IRB

guidelines with support from the HPA. Participants were
provided the option to select “prefer not to answer” for certain
demographic questions, encouraging test completion even
without specific demographic details, as they were not essential
to the study’s objectives.

Parkinson Test
Participants were instructed to type on a keyboard while the
test recorded timestamps and finger movements corresponding
to key positions (Figure 1). They pressed a specific key in
response to on-screen signals, and we collected data on the
expected key, pressed key, and response time. The measurement
process had 3 increasing levels of difficulty with greater key
randomization. The lowest difficulty of keyboard tapping
prompted the press of a single key 10 times, while the second
level alternated between 2 keys for 10 trials. The third difficulty
changed the requested key to a random one for every press for
10 trials. For trackpad and mouse data, participants hovered the
mouse along a designated path. This path was created in a way
such that it took up certain percentages of the screen, as opposed
to a set number of pixels, enabling it to adapt to the screen of
the device being used and present an equal test to all
participants. Starting with a straight line, subsequent levels
introduced a sine wave–like shape and a spiral shape.
Participants could monitor their progress by observing a
highlighted portion of the shape, guided by animated direction
indicators and “start” and “finish” markings. The interface of
the web application, including the interfaces for demographic
data collection and mouse and keyboard test administration, is
show in Figure 2. We recorded data on position, time, and
whether the mouse was inside or outside the indicated area. We
also recorded the height and width of the participant’s device
so it could be considered for calculations and could be used to
recreate the user’s test.

We used a custom web application created with HTML,
JavaScript, and CSS to collect data. For keyboard tapping, an
HTML canvas was used to display a red square as a prompt.
JavaScript was used to track keypress timing and calculate
reaction times. For mouse tracing, an HTML canvas produced
visuals of straight lines, sine waves, and spirals with direction
indicator animations. JavaScript determined cursor location
within the designated area and recorded mouse coordinates
every 500 milliseconds.

After completing both tests, the collected data were securely
transmitted and stored using a deta.sh base (Abstract Computing
UG) facilitated by the deta.sh micros application programming
interface, ensuring efficient data management.

This test was taken by participants both with and without PD
who were primarily aged between 50 and 80 years (Table 1).
The male to female ratio was nearly equal (Table 2), and the
race of participants was predominantly White and Asian (Table
2). In addition, the ratio of participants with and without PD
was slightly skewed toward those without PD (Table 2).
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Figure 1. Overall study design. Participants completed mouse movement and keyboard tapping tests on their devices, from which data were collected
and analyzed for speed, precision, and accuracy. A machine learning model was trained on these data to predict the presence of Parkinson disease.
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Figure 2. Screenshots of the web application. (A) Information is collected through a web-based form. (B) The participant is asked to confirm the entered
information for correctness to prevent mistakes. (C) The linear mouse test asks users to trace the ribbon in a rightward direction. (D) The sine-wave
mouse test asks users to trace the object. (E) The spiral mouse test asks users to trace a spiral. (F) The keyboard test asks users to press a certain letter
when the red square prompt appears. (G) The test informs the participant that it is complete and thanks them for their time. (H) After completion, the
test informs the user that they have already completed the test, minimizing duplicate entries.

Table 1. Participant age distribution (N=31). The average age was 65.226 (SD 10.832) years for all participants, 69 (SD 7.147) years for participants
with Parkinson disease, and 62.5 (SD 12.144) years for participants without Parkinson disease.

Participants without Parkinson disease, n (%)Participants with Parkinson disease, n (%)Overall participants, n (%)Age group (years)

3 (10)0 (0)3 (10)40-49

4 (13)2 (6)6 (19)50-59

5 (16)4 (13)9 (29)60-69

5 (16)7 (23)12 (39)70-79

1 (3)0 (0)1 (3)80-90
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Table 2. Gender and race distribution. Gender was mostly balanced, with a male to female ratio of 15 to 16 and a total distribution slightly skewed
toward female participants without Parkinson disease. Race was largely skewed toward White and Asian participants, with White and American
Indian/Alaska Native participants having similar proportions of participants with and without Parkinson disease; Asian participants were mostly without
Parkinson disease.

Participants (N=31), n (%)Characteristics

Participants with Parkinson disease

Gender

8 (26)Male

5 (16)Female

Race

10 (32)White

3 (10)Asian

0 (0)American Indian or Alaska Native

0 (0)Unspecified

Participants without Parkinson disease

Gender

7 (23)Male

11 (36)Female

Race

8 (26)White

8 (26)Asian

1 (3)American Indian or Alaska Native

1 (3)Unspecified

Statistical Analysis
We conducted a series of tests to measure keyboard keypresses,
false presses, and timestamps as proxies for unintended
movements, shaking, and anomalies. In the mouse hovering
tests, we observed continuous mouse movement controlled by
participants’ arms and recorded deviations from the centerline.
These tests provided insights into events such as accidental
deviations or vibrations, potentially indicative of PD symptoms.
Additionally, we examined mouse data, focusing on hovering
speed and precision as indicators of unintentional lower arm
movements. We observed differences between participants with
and without PD that could serve as potential disease indicators.
These findings contribute to the advancement of PD detection
methods by leveraging discernible distinctions between
individuals with and without the condition.

During the test, we collected a total of 17 features in 4 major
categories. One category assessed participant hand stability
while tracing a straight line, considering mouse coordinates (x
and y), deviation from the centerline, and whether the mouse
was inside or outside the given region; this was measured every
500 milliseconds. Another category focused on tracing a curved
line while maintaining hand stability, for which the coordinates
(x and y) and whether the mouse was inside or outside the region
were recorded. The third category measured response times and
accuracy of key presses prompted by visual cues to evaluate

reaction speed. The final category recorded the number of false
presses during keyboard prompts as an indicator of unintended
hand movements.

We extracted 28 features from each participant’s test. These
included 17 baseline features along with additional features
derived as a function of the baseline features. For instance,
analyzing tracing deviation from the centerline produced
multiple features, such as mean and maximum deviations.
Incorporating screen width into time taken for tracing improved
the feature’s association with PD, as seen in Table 3. An extra
tree classifier predictor assessed the importance of each feature.
We identified 6 key features as the most indicative of PD. These
features were used to train a random forest model. These 6
features were selected due to their significantly higher
importance scores compared to other related features as reported
by the predictor. The selected features included mean deviation
during straight line tracing, time to trace the sine wave relative
to window width, spiral tracing time, average false presses, total
response time for constant key tapping, and accuracy in
responding to random key prompts.

Our random forest model was trained using an 80:20 train-test
split. Due to the internal out-of-bag evaluation of random forest
models, a separate validation set was not used. The model
underwent 20 rounds of training with new train-test splits using
an 80:20 ratio for each round. We used this evaluation method
to account for our data set’s small size.
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Table 3. Feature enhancement. A sample of features that were improved by considering other aspects of the data that affected them.

F1-score improvementModel F1-score for
enhanced feature (SD)

Original model
F1-score (SD)

EnhancementFeature

0.06390.7167 (0.1633)0.6528 (0.1960)Feature taken with respect to win-
dow width

Amount of time taken for tracing straight
line

0.06110.6944 (0.2641)0.6333 (0.1944)Feature taken with respect to aver-
age keypress time

Number of correctly pressed keys when
prompted with a random key

Results

Our random forest ML model, trained on 6 features involving
line tracing, sinusoid tracing, spiral tracing, accuracy and speed
of keypress prompts, and false presses, yielded an average
F1-score of 0.7311 (SD 0.1663). It also achieved an average
accuracy of 0.7429 (SD 0.1400) (Table 4). All measurements
were taken over 20 independent runs, with randomly sampled
train-test splits created in each run. In addition, we trained the
same set of 6 high-performing features on different types of ML
models to determine the optimal model type (Table 5).

We identified high-performing features and further analyzed
their relationship with participants’ body movements. By
reconstructing the traces based on the collected data, visual
differences between participants with and without PD were
observed. As shown in Figure 3, while most straight-line traces

showed similarities, the traces of participants with PD exhibited
sudden irregularities, whereas the traces of participants without
PD had minimal irregularities. Additionally, significant
differences were observed in sinusoid traces; participants with
PD completed the test faster but with more irregularities and
fewer points traced within the designated area. Conversely,
participants without PD took more time but demonstrated greater
precision. Similar patterns emerged in spiral traces, where
participants with PD traced the spiral more rapidly but with less
precision compared to participants without PD.

The performance of this model supports the feasibility of the
automatic detection of PD through hand and finger movement
analysis. These findings support the feasibility of using traced
lines and curves as a potential method for predicting the
presence of PD and other related conditions affecting limb
movements using ubiquitous consumer devices such as laptops.
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Table 4. Mean area under the curve, balanced accuracy, and F1-score of models trained on single and multiple features. Each individual feature was
trained to evaluate its efficacy, shown in the first 28 content rows. An extra tree classifier was used to rank features by importance. The 6 most important
features were used to train a final random forest model, shown in the last row.

Mean F1-score
(SD)

Mean balanced
accuracy (SD)

Mean area under
the curve (SD)

Features used

Models trained on single features

0.6722 (0)0.5 (0)0.6722 (0.232)Mean vertical deviation of tracing a straight line

0.6611 (0)0.5 (0)0.6611 (0.257)Maximum vertical deviation of tracing a straight line

0.6222 (0.2667)0.55 (0.099)0.6222 (0.1931)Net vertical deviation of tracing a straight line

0.6138 (0.2667)0.55 (0.099)0.6138 (0.2328)Total of the absolute values of vertical deviations of tracing a straight line

0.5861 (0)0.5 (0)0.5861 (0.2057)Mean of the absolute values of vertical deviations of tracing a straight line

0.6528 (0.3742)0.6417 (0.2102)0.6528 (0.1960)Amount of time taken for tracing straight line

0.7167 (0)0.5 (0)0.7167 (0.1633)Amount of time taken for tracing straight line with respect to window width

0.4056 (0)0.5 (0)0.4056 (0.1196)Percentage of points traced in indicated width of a straight line

0.6319 (0.2696)0.5667 (0.1307)0.6319 (0.2393)Number of points traced inside the expected width of a straight line (with no regard to
time taken)

0.7667 (0.3277)0.65 (0.2118)0.7667 (0.1412)Time taken to trace sine wave

0.7473 (0)0.5 (0)0.7472 (0.1753)Time taken to trace sine wave with respect to device window width

0.6444 (0)0.5 (0)0.6444 (0.2516)Percentage of traced points inside indicated sine curve

0.7 (0.2455)0.6 (0.1409)0.7 (0.2273)Number of points traced inside indicated sine curve with no regard to time taken

0.6986 (0.3363)0.7583 (0.1633)0.6986 (0.1586)Time taken to trace a spiral

0.7389 (0)0.5 (0)0.7389 (0.2247)Time taken to trace spiral with respect to device window width

0.4181 (0)0.5 (0)0.4181 (0.1816)Percentage of points traced inside the width of the indicated spiral

0.7236 (0.2800)0.6833 (0.1137)0.7236 (0.1646)Number of points traced inside the width of the indicated spiral with no regard to time
taken

0.5417 (0.16)0.5083 (0.0167)0.5417 (0.0645)Total false key presses with single prompted key

0.6 (0.2494)0.6 (0.1225)0.6 (0.2273)Total false key presses with prompt key randomly chosen from 2 options

0.2819 (0)0.375 (0.1581)0.2819 (0.1883)Total false key presses with prompt randomly chosen

0.6347 (0.3309)0.575 (0.2048)0.6347 (0.2450)Total false key presses from all trials

0.6194 (0.2847)0.675 (0.1302)0.6194 (0.2208)Average response time when same key prompted

0.6889 (0.1543)0.5417 (0.1863)0.6889 (0.2931)Average response time when semirandom (randomly chosen from 2 options) key
prompted

0.6278 (0.2398)0.725 (0.2)0.6278 (0.2288)Average response time when random key prompted

0.6445 (0)0.5 (0)0.6445 (0.253)Number of correctly pressed keys (when prompted with same key) with respect to the
average time taken

0.6833 (0)0.5 (0)0.6833 (0.3313)Number of correctly pressed keys (with semirandom prompt) with respect to the average
time taken

0.6333 (0.3997)0.6333 (0.1944)0.6333 (0.1944)Number of correctly pressed keys when prompted with a random key

0.6944 (0)0.5 (0)0.6944 (0.2641)Number of correctly pressed keys (when prompted with a random key) with respect to
the average time taken

Model trained with 6 most important features

0.7311 (0.1663)0.7429 (0.1400)0.7311 (0.1663)Mean deviation from centerline when tracing straight line; amount of time taken to trace
sine wave with respect to window width; amount of time taken to trace spiral; average
false presses from 3 keyboard tapping trials; total response time taken when tapping
constant (unchanging) key; number of correct keys with respect to average response time
when prompted with random letter.
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Table 5. Mean balanced accuracy and F1-score of different types of trained models. We trained several types of models on the same set of the 6 most
important features and evaluated their average metrics over 20 runs. Between each run, the train-test split was resampled, maintaining the 80:20 ratio.

F1-score (SD)Accuracy (SD)Model trained (20 runs)

0.7311 (0.1707)0.7429 (0.140)Random forest classifier

0.5862 (0.1455)0.5999 (0.1245)Decision tree regression

0.5816 (0.1622)0.6071 (0.1268)Support vector classifier

0.3740 (0.1939)0.5214 (0.1707)Multilayer perceptron classifier

Figure 3. Sample traces of participants with and without PD. Generally, traces of participants with PD can be seen to be more irregular and less precise
than those of participants without PD. PD: Parkinson disease.

Discussion

Principal Results
This study provides evidence supporting the feasibility of remote
collection of limb movement data using ubiquitously available
consumer technology. We addressed concerns regarding device
variations by considering device performance and specifications,
such as screen height and width, which were measured and
recorded by the application. Interestingly, excluding the time
taken to complete the test improved the results for many
extracted features. The findings suggest that either device
performance affected the timing data or PD has limited influence
on hand movement speed indicators such as key tapping or
drawing. However, the latter scenario is unlikely, as multiple
studies have shown that PD affects key tapping speed [56,57].
Additionally, false presses when prompted with a random key
do not seem to be linked to PD, as this feature’s performance
is notably weak. This might be due to displaying the next key
before the prompt, leading to unintended key presses due to
hand repositioning, a phenomenon common in older individuals
regardless of PD status. Furthermore, our findings reinforce the
use of measuring limb movements as an indicator of PD
presence. The majority of models trained on individual extracted
features yielded mean F1-scores and area under the curve (AUC)
values surpassing 0.5, indicating a weak but existing correlation
between the feature and the existence of PD. Additionally, 82%
(23/28) of the features achieved an F1-score of at least 0.6, while
21% (6/28) achieved an F1-score of at least 0.7. Our final and
most optimal model was able to achieve an accuracy of 74.29%
and an F1-score of 73.11%. These results highlight a clear
correlation between the speed and precision of tracing

movements and the speed and accuracy of finger tapping with
the presence of PD.

Comparison to Previous Work
This study extends prior research by bringing lab-based
movement testing to remote assessment on personal devices,
enhancing accessibility and scalability. Unlike studies
monitoring regular keyboard use, we used a structured test for
better comparability. Additionally, our app includes structured
tracing tests, exploring motor aspects other than keyboard
tapping as PD indicators. Our model’s performance is
comparable to the at-home neuroQWERTY test by
Arroyo-Gallego et al [50], which achieved an AUC of 0.7311,
while the clinic-based neuroQWERTY test achieved an AUC
of 0.76. However, our model’s accuracy lags behind clinical
tests with a similar aim, like that of Tsoulos et al [58], which
achieved 93.11% PD detection accuracy, and that of Memedi
et al [59], which reached 84% PD detection accuracy.

Limitations
A key limitation of this study is the use of inconsistent devices.
Using a specific device may introduce biases due to user
unfamiliarity, whereas allowing participants to use their own
devices may result in performance and specification variations.
To address this, we standardized the collected data and recorded
device aspects such as display width, height, and frames per
second. This information enabled us to assess the influence of
screen dimensions and device performance on user results. For
example, by comparing the user’s mouse coordinates to the
screen width in pixels, we determined the percentage of the
screen that the mouse had moved, rather than the raw number
of pixels, which would depend on the device used. However,
other factors affecting the collected data, including differences
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between trackpads and mice, as well as keyboard types, have
not been accounted for. These differences may have influenced
our collected data and impacted our results. Additionally, the
remote nature of the study posed a challenge, as participants
completed it without supervision, potentially introducing errors
and impacting results. It is worth noting that the ratio of
participants with and without PD was 13 to 18, leading to an
imbalance that could affect data analysis. Moreover, the study
predominantly included participants of White and Asian
ethnicities, introducing a racial imbalance that may impact the
model’s accuracy for other racial groups if race influences the
final prediction.

An additional limitation concerns the age difference in our
sample. The participants without PD had an average age of 62.5
years, while the participants with PD had an average age of 69
years. Since we did not adjust for this age disparity, it may have
influenced our results. In addition, the lack of an official PD
diagnosis led us to rely solely on self-reports. Despite efforts
to enhance accuracy, errors could have affected results.
Furthermore, it is recognized that conditions like essential tremor
(ET) cause symptoms similar to PD, potentially leading to
misdiagnoses [60]. This scenario might have skewed our
findings if individuals diagnosed with PD had ET. This concern
could be addressed by inquiring about participants’ history of
ET prior to the test and taking this into account for analysis.

Further Research
ML holds promise for predicting movement-related conditions,
including ET, and its application can be extended to other

movement-impacting diseases. Standardizing a comprehensive
test could offer individuals a single, straightforward assessment
to evaluate their likelihood of having different health conditions.
By incorporating diverse shapes for tracing, such as those
involving sudden stops or changes in direction, additional
valuable insights into hand movements of participants both with
and without PD can be gleaned. To address limitations
associated with unsupervised remote studies, a supervised
approach with real-time monitoring could be implemented,
providing immediate feedback to ensure protocol adherence
and improve data reliability. Additionally, collecting information
on participants’ device types can help address potential bias
arising from device disparities. With a sufficiently large sample
size, subgroup analysis based on device type could mitigate the
impact of device variations on data and strengthen the validity
of the findings. Some related studies have used significantly
more participants [58,59]. Expanding the participant sample
size would support the generalizability of our findings.

Another potentially fruitful avenue of expanding PD screening
tools would be to include additional data modalities such as
computer vision. Computer vision analysis has been successfully
used for a variety of health screening and diagnostic tasks,
including abnormal hand movements and movement of other
body parts for conditions such as autism [61-67]. Using such
techniques for PD screening can expand the performance of the
tools through a more comprehensive and multimodal analysis.
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