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Abstract

Background: Since the COVID-19 pandemic, there has been a boost in the digital transformation of the human society, where
wearable devices such as a smartwatch can already measure vital signs in a continuous and naturalistic way; however, the security
and privacy of personal data is a challenge to expanding the use of these data by health professionals in clinical follow-up for
decision-making. Similar to the European General Data Protection Regulation, in Brazil, the Lei Geral de Proteção de Dados
established rules and guidelines for the processing of personal data, including those used for patient care, such as those captured
by smartwatches. Thus, in any telemonitoring scenario, there is a need to comply with rules and regulations, making this issue a
challenge to overcome.

Objective: This study aimed to build a digital solution model for capturing data from wearable devices and making them
available in a safe and agile manner for clinical and research use, following current laws.

Methods: A functional model was built following the Brazilian Lei Geral de Proteção de Dados (2018), where data captured
by smartwatches can be transmitted anonymously over the Internet of Things and be identified later within the hospital. A total
of 80 volunteers were selected for a 24-week follow-up clinical trial divided into 2 groups, one group with a previous diagnosis
of COVID-19 and a control group without a previous diagnosis of COVID-19, to measure the synchronization rate of the platform
with the devices and the accuracy and precision of the smartwatch in out-of-hospital conditions to simulate remote monitoring
at home.

Results: In a 35-week clinical trial, >11.2 million records were collected with no system downtime; 66% of continuous beats
per minute were synchronized within 24 hours (79% within 2 days and 91% within a week). In the limit of agreement analysis,
the mean differences in oxygen saturation, diastolic blood pressure, systolic blood pressure, and heart rate were −1.280% (SD
5.679%), −1.399 (SD 19.112) mm Hg, −1.536 (SD 24.244) mm Hg, and 0.566 (SD 3.114) beats per minute, respectively.
Furthermore, there was no difference in the 2 study groups in terms of data analysis (neither using the smartwatch nor the
gold-standard devices), but it is worth mentioning that all volunteers in the COVID-19 group were already cured of the infection
and were highly functional in their daily work life.

Conclusions: On the basis of the results obtained, considering the validation conditions of accuracy and precision and simulating
an extrahospital use environment, the functional model built in this study is capable of capturing data from the smartwatch and
anonymously providing it to health care services, where they can be treated according to the legislation and be used to support
clinical decisions during remote monitoring.

(JMIR Form Res 2023;7:e47388) doi: 10.2196/47388
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Introduction

Background
After the World Health Organization declared the COVID-19
pandemic on March 11, 2020 [1], with >470 million cases of
infection and >6 million deaths confirmed [2], the digital
transformation in health care worldwide has accelerated [3-5].
In this scenario, where the most frequent comorbidities are
hypertension (55%), coronary artery disease and stroke (32%),
and diabetes (31%) [6], monitoring vital signs such as oximetry,
blood pressure (BP), and heart rate can be of paramount
importance to monitor the evolution of patients infected by
COVID-19. Therefore, wearable devices, such as smartwatches,
are key actors in revolutionizing telemedicine [7-9] through
mobile health and digital health (eHealth), allowing continuous
and longitudinal health monitoring outside health care facilities
[10].

Because of the ease of use of smartwatches, initially aimed at
consumers concerned about their own health, several studies
have shown interest in its application for remote monitoring
[11] and as a tool for telemonitoring and early detection of
respiratory symptoms [12,13], heart disease [14-17], and remote
physician therapy [18]. Smartwatches can record clinical data
in a way that feels organic and unobtrusive to the user, enabling
the construction of a database that will facilitate, with the aid
of artificial intelligence, the recognition of biomarkers capable
of expanding the mechanisms of prediction, prevention, and
health event intervention. There are reports in the literature
discussing smartwatch data collection [19], with the most recent
reports suggesting the possibility of early detection of
COVID-19 [12,13] and atrial fibrillation [15-17]. In addition,
wearable devices present a new perspective on patient
monitoring with its continuous and naturalistic method of data
collection without user action. In a cohort study involving
>59,000 patients, it was found that BP measurements obtained
through 24-hour monitoring were more informative about the
risk of death from cardiovascular reasons than conventional
measurements taken in the clinic [20].

However, for wearable devices to be usable in a clinical setting,
a data processing model that respects legislation, privacy, and
data security is necessary to enable the clinical use of data. In
October 1995, through Directive 95/46/EC [21], the European
Parliament approved the first regulation for the block with the
legal concepts of data protection, which was definitively
replaced in May 2018 by the General Data Protection Regulation
[22], published on April 27, 2016. Inspired by the European
General Data Protection Regulation, in Brazil, on August 14,
2018, the Lei Geral de Proteção de Dados (LGPD) [23]
established rules and guidelines for the processing of personal
data, including those used for patient care, such as those
captured by smartwatches. Therefore, in any telemonitoring
scenario, where patient information needs to reach the caregiver,

there is a need to comply with rules and regulations, making
this issue a challenge to overcome [24].

According to Article 12 of the LGPD [23], “Anonymized data
will not be considered personal data for the purposes of this
Law, except when the anonymization process to which they
were submitted is reversed, using exclusively their own means,
or when, with reasonable efforts, it can be reversed.” In this
way, if the data collected are already anonymized, they can
receive the appropriate treatment “for health guardianship,
exclusively, in a procedure carried out by health professionals,
health services, or health authorities” (LGPD, 2018, Articles 7
and 11) [23].

Therefore, if data from smartwatches are captured anonymously,
with the user’s identification replaced by a random code, they
can be transmitted via the Internet of Things (IoT) from any
location to a cloud; from there, the data will be retransmitted
to health services so that they can be integrated with their
respective medical records, where they have the correct
identification of the user through the random codes used in the
transmission.

Motivation
To enable the future of telemonitoring, early detection, and
remote therapies, there is a need for an information processing
model capable of collecting data from smartwatches,
continuously and effectively, that respect legislation, privacy,
and data security, where the accuracy and precision can be
evaluated as well.

Aim
This study aimed to build a digital solution model for capturing
data from wearable devices and making them available in a safe
and agile manner for clinical and research use, following current
laws.

This study also aimed to analyze the reliability and accuracy of
vital sign measurements (BP, heartbeat/min, and oxygen
saturation) of the Samsung Galaxy Watch 4 (Samsung Group)
with gold-standard measurement equipment (digital wrist BP
device and finger oximeter).

Methods

Overview
A digital solution, named LIKA, was developed to support the
entire clinical study; details on data transfer, data flow, data
synchronization, and components and functionalities can be
found in the preliminary report published earlier [25]. Its role
is to guarantee anonymity, completeness, and reliability of the
data collected, as well as to consolidate different sources of
information input.

Ethics Approval
This project was submitted to the Ethics and Research
Committee of the Hospital das Clinicas, the Faculdade de
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Medicina of the University of São Paulo under number CAAE:
51711921.3.0000.0068 and Opinion number 4,975,512.

Study Type
This was a single-center prospective study following the
guidelines “Evaluating digital health products” from the UK
Health Security Agency [26,27], with local adaptations for the
Brazilian population in the designing and testing phase of a
digital product.

Wearable and Gold-Standard Device
Each volunteer was provided with a smartwatch (Samsung
Galaxy 4). The gold-standard devices used in this study were
a noninvasive BP monitor, G-TECH model GP400 (Agência
Nacional de Vigilância Sanitária [ANVISA] registration number
80275319016) with 2 AAA batteries; a pulse oximeter for
noncontinuous monitoring, AFK model YK009 (ANVISA
registration number 81995169005); and polysomnography

equipment, iCelera Nano Poli (ANVISA registration number
80884610001).

A smartphone (Samsung A52) was provided to volunteers who
did not have a Samsung mobile phone.

Data Setting
A total of 80 volunteers were selected from the Hospital das
Clínicas Faculdade de Medicina da Universidade de São Paulo
collaborators to use the smartwatch over 24 weeks, with daily
visits by research monitors. Oxygen saturation and BP data
from both volunteers’ smartwatch and the gold-standard devices
were collected and registered to REDCap (Research Electronic
Data Capture; Vanderbilt University) [28], to be used to analyze
the reliability and agreement between the gold-standard device
data and the smartwatch data. Table 1 shows how each data
point is collected from the smartwatch, and the configuration
used is detailed in the preliminary report published earlier [25].

Table 1. Information collected from the smartwatch for this study.

Gold-standard comparationCollectionData

NoAutomaticSteps

NoAutomaticFlights of stairs

NoAutomaticExercise time

YesAutomaticSleep quality

YesAutomaticHeart rate

NoAutomaticOxygen saturation during sleep

YesUser actionOxygen saturation

YesUser actionBlood pressure

NoUser actionWeight

NoUser actionHeight

NoUser actionQuantity and type of liquid ingested

NoUser actionQuantity and type of food ingested

Statistical Analysis
The following section describes the statistical methods used to
analyze the data. When relevant, continuous data are numerically
described by mean, SD, and quartiles, whereas categorical data
are described by percentages. The gold-standard measurement
values are assumed to be the true underlying values and are
referred to as the “true value.”

Sample Description
The sample was designed around 2 main groups of interest:
volunteers who had a confirmed diagnosis of COVID-19 before
recruitment (confirmed by a reverse transcription polymerase
chain reaction test), referred to as the “COVID-19 group,” and
volunteers who were not affected by COVID-19, referred to as
the “non–COVID-19 group.” The volunteers were selected for
the groups to have similar distributions of race, sex, and age.

Preprocessing
To mitigate the influence of human errors in the analysis, values
that lie outside the biological viability were excluded from the

analysis. These values were as follows: values <60% and >100%
were excluded for oxygen saturation, and values below <20 and
>300 were excluded for BP (mm Hg) and heart rate (beats/min
[bpm]). For data acquired continuously, only data acquired on
weekdays (Monday to Friday) were considered for the analysis,
as the daily activities on these days present less variability than
those during weekends.

Furthermore, a subset of data was collected daily and in triplicate
for the evaluation of agreement between the smartwatch and
the respective gold-standard equipment. To better assess the
performance of the devices, the triplicates were treated before
the analysis to minimize outlandish or erroneous readings. To
this end, for each device and each triplicate round, 3 readings
were sorted in ascending order of value. A tolerance region
(TR) is calculated as 10% of the value of the smallest region.
If the distance between the largest and smallest values of the
triplicate is smaller than the TR, all 3 values are considered
valid and averaged before being used in the analysis. If the
middle value distance to one of the extreme (largest or smallest)
values is smaller than the TR, then the middle value and the
corresponding extreme are averaged before the analysis, whereas
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the other extreme is considered invalid. If the distance of the
middle value to both extremes is smaller than the TR, only the
middle value is considered valid and used for the analysis.
Finally, if none of the values fall within the TR of each other,
the variation between them is assumed to be a valid occurrence,
and all 3 readings are averaged before the analysis. In that way,
only 1 value is output for each triplicate and only 1 value per
day is used in the analysis.

Device Agreement Analysis
To check how the smartwatch performs on each of the
measurements of interest (heart rate, oxygen saturation, and
BP), it is of value to compare it with a known gold-standard
device. This comparison should evaluate how the difference
between the devices is related to their magnitude while, in this
case, considering the fact that multiple measurements were
made on the same individual, which constitutes a repeated
measure design. The analysis of choice, then, was the limits of
agreement (LoA) for repeated measure [29], which calculates
an interval around the “true value” (ie, the gold standard) in
which one should expect 95% of the measurements made with
the smartwatch to fall within. This approach is widely applied
in the literature and is based on a fixed-effects model with a
1-way ANOVA test. To understand how the agreement varies
with regard to the groups, the data were segmented and the LoA
were separately calculated for each group and qualitatively
compared, because the analysis was not readily applicable for
group comparison. The LoA analysis assumes that there is no
bias of measurement with regard to the within-volunteer
magnitude, which has been checked for graphically. In addition,
Bland-Altman plots were used to visualize the LoA. Finally,
the percentages of records that fell within different regions
around the “true value” are presented.

Group Comparison
Data collected for device agreement were also used for
comparing the 2 groups. Each volunteer had their measurements
across visits averaged for both the gold-standard device data
and the smartwatch data. Then, the mean value of each group
was compared using the 2-tailed t test for independent samples.
The group comparison was carried out separately for the
gold-standard device data and the smartwatch data.

Continuous Data Analysis
The smartwatch continuously collected heart rate data from
volunteers during their day-to-day activities, and it is noteworthy
to check whether the heart rate behavior was different between
the groups. To that end, one needs to consider not only the
influence of the repeated measures design (as the same volunteer
is evaluated on multiple days) but also the fact that there is an
autocorrelation aspect, as the heart rate measured at time point
t=0 is expected to be closer to that measured consecutively at
time point t=1 than to the one measured at an arbitrary time
point t=n later on. To accommodate these limitations, a profile
analysis based on multivariate ANOVA (MANOVA) was
conducted on the data. This approach provides the answer to
three different hypotheses: (1) the level hypothesis, which
checks whether the baseline heart rate differs across the groups
(between-volunteer effects of MANOVA); (2) the flatness

hypothesis, which tests if the heart rate varies across time
(within-volunteer main effects); and (3) the parallel hypothesis,
which responds to the main question of which the behavior of
the heart rate across time differs across the groups (interaction
term). For use of this analysis, the data of each volunteer were
first averaged per hour and then across the days of measurement,
resulting in a single vector of 24 positions (1 for each hour) for
each volunteer. For statistical significance, F test was used with
Hotelling T² and Wilks Λ. The results were considered
statistically significant if P<.05. Plots of the average 24-hour
curve of the heart rate of each group were used to visualize the
results.

Sleep Data Analysis
To evaluate sleep data quality, volunteers were asked to spend
the night at Instituto de Medicica Física e Reabilitação under
the supervision of a polysomnography technician, where data
gathered from a polysomnography equipment (iCelera Nano
Poli) was used as a gold standard to compare against the sleep
data collected automatically and simultaneously by the
smartwatch.

Because of operational difficulties, there was a delay in the
delivery of the polysomnography equipment as well as in
training the polysomnography technician team. This delay led
to the late start of data acquisition, and only 8 volunteers could
be evaluated in this study.

However, the data recorded by the smartwatch did not follow
the same methodology as the gold-standard equipment. The
former started sleep data recording when the first sleep stage
[30] is reached, whereas the latter started when the volunteer
lies in bed. Furthermore, the gold-standard equipment recorded
data continuously at every 30 seconds, whereas the smartwatch
only recorded summarized data (start and end time of each sleep
stage observed). Because of these facts and the limited number
of volunteers available for analysis, the sleep data were
presented only through descriptive statistics and compared
qualitatively. In addition, the gold-standard equipment recorded
5 different stages of sleep (awake, N1, N2, N3, and rapid eye
movement [REM]), and the smartwatch recorded 4 stages
(awake, light sleep, deep sleep, and REM). For comparison
purposes, the N1 and N2 stages of the gold-standard
measurement were combined into a single stage, equivalent to
the “light sleep” stage of the smartwatch, whereas the N3 stage
was considered equivalent to the “deep sleep” stage, as
recommended by the available literature [31].

The metric of “time in bed” (TIB) considers the total time of
when the volunteer lied in bed up to when the volunteer is fully
awake (according to the device). For the gold-standard
measurement, these were the times of start and end of the report.
Because the smartwatch did not record the time when the patient
lies in bed, the time obtained from the gold-standard
measurement was used instead. Thus, the TIB for the smartwatch
goes from the start time of the gold-standard measurement up
to the start time of the last “awake” stage recorded for that
session.

Therefore, the sleep data are described in this study by the
summary statistics of the following measurements: total sleep
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time (TST); sleep time of each stage; sleep efficiency (SE),
which is the ratio of the TST to the TIB; sleep latency, which
is the time from the beginning of the TIB to the first recorded
sleep stage; and wake after sleep onset (WASO), which is the
total time awake after the first sleep stage.

Alert System Measurement
The following triggers were defined for the BP alerts based on
the manufacturer’s recommendations [32]:

• Systolic BP
• ≤70 mm Hg
• >180 mm Hg

• Diastolic BP
• ≤40 mm Hg
• >120 mm Hg

Every time one of these events was triggered by the digital
platform, the value, date, hour, and volunteer’s identifier were
displayed on the dashboard with the intention of monitoring the
use of the smartwatch by the volunteers. Furthermore,
considering that the normal oxygen levels in a pulse oximeter
usually range from 95% to 100% and hypoxemia is an oxygen
saturation of >90% [33], the digital platform was set up to alert
when the value reaches <88%. Similarly, considering that the
diagnosis of sinus bradycardia requires an electrocardiogram
showing a normal sinus rhythm at a rate ≤60 bpm [34], the
digital platform was set up to alert when the heart rate fell ≤40
bpm.

User Experience Survey Form
A satisfaction survey with a focus on the incorporation of
technology, based on the paper published by Nelson et al [35],
was applied for all volunteers at the end of the clinical
follow-up. The question chosen was “When using the
smartwatch, it almost feels like it is incorporated into the body,”
and translated for our population in Portuguese as “Ao usar o
relógio inteligente, sinto que ele está incorporado ao meu corpo.”

Results

Digital Solution: LIKA
A complete system of data capture, transmission through the
IoT, retransmission to the hospital, and visualization of
information was built to support the study and named as LIKA.
The system received its first volunteer for monitoring on
February 25, 2022 [25].

Volunteers
A total of 122 volunteers were selected for the study, of whom
42 were replaced by new volunteers with the same
sociodemographic profile (Table 2). The 80 selected volunteers,
divided into 2 groups (Table 3), were monitored for 35 weeks,
from February 25, 2022, to October 21, 2022. Data from
dropped out volunteers (465 records) were excluded (Table 4).
In total, there were 13,156 days of follow-up for the 80
volunteers, 43 of whom completed 24 weeks of follow-up as
initially planned (Table 5).

Table 2. Volunteer recruitment data (N=122).

Volunteers, n (%)

122 (100)Recruited for research

17 (13.9)Did not show up at the interview

10 (8.2)Did not meet the requirements during the interview

12 (9.8)Dropped out after inclusion in the study

3 (2.5)Dropped out after beginning telemonitoring

80 (65.6)Total volunteers in the study
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Table 3. Volunteer grouping based on previous diagnosis of COVID-19, sex, age group, and race.

Total (N=80), n (%)COVID-19 group (n=40), n (%)Non–COVID-19 group (n=40), n (%)Characteristic

Sex

60 (75)30 (75)30 (75)Female

20 (25)10 (25)10 (25)Male

Race

6 (8)3 (8)3 (8)Asian

5 (6)2 (5)3 (8)Black

1 (1)1 (3)0 (0)Indigenous

34 (43)17 (43)17 (43)White

34 (43)17 (43)17 (43)Mixed race

Age group (years)

28 (35)14 (35)14 (35)22-39

42 (53)21 (53)21 (53)40-59

10 (13)5 (13)5 (13)≥60

Table 4. Total number of users by weeks of project.

Total users (n=80), n (%)Dropout users (n=3), n (%)New users (n=83), n (%)Week

15 (19)0 (0)15 (18)1-4

47 (59)3 (100)35 (42)5-8

64 (80)0 (0)17 (20)9-12

76 (95)0 (0)12 (14)13-16

78 (98)0 (0)2 (2)17-20

79 (99)0 (0)1 (1)21-24

80 (100)0 (0)1 (1)25

80 (100)0 (0)0 (0)26-35

Table 5. Number of volunteers per follow-up time in weeks and days.

Total days (n=13,156), n (%)Volunteers (n=80), n (%)Follow-up weeks

0 (0)0 (0)<8

282 (2.1)4 (5)8-11

415 (3.2)4 (5)12-15

1276 (9.7)10 (12.5)16-19

2945 (22.4)19 (23.8)20-23

4742 (36)26 (32.5)24-27

3496 (26.6)17 (21.3)28-30

Data Collection
In total, 11,229,796 records were captured: 10,510,351 for
continuous heart rate; 289,749 for heart rate; 25,212 for oxygen
saturation; 16,123 for BP; 12,410 for sleep count (marks the
beginning and end of sleep); and 375,951 for sleep intensity
(marks the beginning and end of each phase of sleep; Table 6).
A few records of vital signs did fall outside the range of
normative values, and to monitor these, the alert system within
our framework was used. In total, 1312 alerts were generated

(Table 7). Furthermore, to assess whether the platform can be
used by the clinical team as a digital health care solution, it is
very important that the data be available on the digital platform
as soon as possible after being recorded by the smartwatch. The
time interval between the moment of recording the continuous
bpm and the moment it is available on the digital platform
depends on the synchronization between the manufacturer’s
health app and the developed digital solution. As shown in Table
8, less than 5% of the records were synchronized within the first
2 hours of interval time. On the other hand, most data
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(6,974,213/10,510,351, 66.36%) were synchronized within 24
hours in either group. Furthermore, only <10% of the data were

synchronized after 7 days.

Table 6. Total data record by type.

Total records (n=11,229,796), n (%)Data type count

10,510,351 (93.59)Continuous heart bpma

289,749 (2.58)Heart bpm

25,212 (0.22)Oxygen saturation

16,123 (0.14)Blood pressure

12,410 (0.11)Sleep

375,951 (3.35)Sleep intensity

abpm: beats per minute.

Table 7. Type of alerts, amount, and index per categorya.

Volunteers (n=80), n (%)Amount (n=1312), n (%)Type of alerts

3 (3.8)7 (0.53)BPb diastolic maximus (≥120)

0 (0)0 (0)BP diastolic minima (≤40)

2 (2.5)4 (0.3)BP systolic maximus (≥180)

0 (0)0 (0)BP systolic minima (≤70)

67 (83.8)1200 (91.46)Low oxygen saturation (<88)

5 (6.3)21 (1.6)Low heart rate (<40)

aTotal: all 1312 alerts and 69 (86%) out of 80 volunteers.
bBP: blood pressure.

Table 8. Synchronization time of continuous beats per minute.

Accumulated (%)Amount (n=10,510,351), n (%)Synchronization time

0.3940,657 (0.39)<1 h

4.72455,285 (4.33)1-2 h

18.321,429,176 (13.6)3-6 h

38.242,094,408 (19.93)7-12 h

66.362,954,687 (28.11)13-24 h

79.361,366,680 (13)1-2 d

91.521,278,007 (12.16)3-7 d

96.46519,138 (4.94)8-14 d

100372,313 (3.54)>14 d

Sleep Data
Data were collected from 8 volunteers for this study. Table 9
lists the TIB for each volunteer. The summary metrics of TST,
SE, sleep latency, WASO, and the subtotals of each sleep stage
for each volunteer and each device are listed in Table 10. The
gold standard used was iCelera Nano Poli Polysomnography
equipment.

From Table 9, it is notable that the smartwatch generally
overestimates the TIB, perhaps because the smartwatch needs
a longer period of activity to consider the volunteer fully awake.

This is especially notable in the data of volunteers 1 and 5,
where there was a large discrepancy between the smartwatch
and the gold-standard measurements.

The WASO differences observed in Table 10 may have the
same underlying cause. As the gold-standard device’s reports
are evaluated every 30 seconds, it could be the case of small
periods of the volunteer being awake that are captured by the
polysomnography device, but are missed or, at least, not
recorded by the smartwatch, which would explain why the
wearable device undershoots the WASO in 7 of the 8 volunteers.
Analogously, the sleep latency tends to be larger for the
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smartwatch, as brief periods of light sleep may be missed—even
more so as this is the beginning of sleep. Nevertheless, the
metrics are not overwhelmingly divergent between the devices,
especially the SE.

The sleep stages were discriminated for each volunteer and
device in Table 11. Awake times for some volunteers presented

large deviations between the equipment, perhaps for the same
reasons mentioned earlier. Nevertheless, the light sleep and
deep sleep times presented by the smartwatch are generally
close to the gold-standard times. REM, on the other hand, tends
to be largely overestimated by the smartwatch, and the
underlying causes should be further investigated (such as what
is considered REM by the smartwatch algorithm).

Table 9. Time in bed (TIB) values recorded for each volunteer.

TIB (h)TIB end (date; time in hours)aTIB begin (date; time in hours)aDevice

Volunteer 1

08:37:10August 11, 2022; 04:58:47August 10, 2022; 20:21:37Gold standard

10:03:23August 11, 2022; 06:25:00August 10, 2022; 20:21:37Smartwatch

Volunteer 2

07:34:23August 17, 2022; 04:46:08August 16, 2022; 21:11:45Gold standard

07:36:15August 17, 2022; 04:48:00August 16, 2022; 21:11:45Smartwatch

Volunteer 3

07:18:40June 16, 2022; 06:11:14June 15, 2022; 22:52:34Gold standard

07:54:26June 16, 2022; 06:47:00June 15, 2022; 22:52:34Smartwatch

Volunteer 4

08:24:10August 5, 2022; 06:00:48August 4, 2022; 21:36:38Gold standard

08:59:22August 5, 2022; 06:36:00August 4, 2022; 21:36:38Smartwatch

Volunteer 5

07:25:10September 22, 2022; 03:32:48September 21, 2022; 20:07:38Gold standard

09:03:22September 22, 2022; 05:11:00September 21, 2022; 20:07:38Smartwatch

Volunteer 6

07:30:37August 25, 2022; 05:24:33August 24, 2022; 21:53:56Gold standard

07:46:04August 25, 2022; 05:40:00August 24, 2022; 21:53:56Smartwatch

Volunteer 7

07:31:40August 5, 2022; 05:23:34August 4, 2022; 21:51:54Gold standard

08:12:06August 5, 2022; 06:04:00August 4, 2022; 21:51:54Smartwatch

Volunteer 8

08:55:28August 25, 2022; 06:06:25August 24, 2022; 21:10:57Gold standard

09:04:03August 25, 2022; 06:15:00August 24, 2022; 21:10:57Smartwatch

aThe date and time for the beginning of TIB were based on the gold-standard device report.
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Table 10. Descriptive summary statistics of sleep data for each volunteer.

WASOc (h)SEb (%)TSTa (h)Sleep latency (h)First sleep stage (date; time in hours)Device

Volunteer 1

00:58:0079.5706:51:3000:52:30August 10, 2022; 21:14:07Gold standard

00:27:0080.7108:07:0001:29:23August 10, 2022; 21:51:00Smartwatch

Volunteer 2

01:35:3063.3804:48:0001:36:32August 16, 2022; 22:48:17Gold standard

00:42:0072.3305:30:0001:24:15August 16, 2022; 22:36:00Smartwatch

Volunteer 3

00:28:0087.0806:22:0000:30:00June 15, 2022; 23:22:34Gold standard

01:00:0076.9306:05:0000:49:26June 15, 2022; 23:42:00Smartwatch

Volunteer 4

01:40:0069.8205:52:0000:53:00August 4, 2022; 22:29:38Gold standard

00:38:0064.3305:47:0002:34:22August 5, 2022; 00:11:00Smartwatch

Volunteer 5

00:52:3082.3306:06:3000:27:30September 21, 2022; 20:35:08Gold standard

00:40:0070.6706:24:0001:59:22September 21, 2022; 22:07:00Smartwatch

Volunteer 6

01:03:0081.0006:05:0000:27:10August 24, 2022; 22:21:06Gold standard

00:45:0085.4006:38:0000:13:04August 24, 2022; 22:07:00Smartwatch

Volunteer 7

01:18:0073.9505:34:0000:42:00August 4, 2022; 22:33:54Gold standard

01:17:0066.6505:28:0001:27:06August 4, 2022; 23:19:00Smartwatch

Volunteer 8

00:37:0087.9607:51:0000:25:18August 24, 2022; 21:36:15Gold standard

00:56:0085.6507:46:0000:22:03August 24, 2022; 21:33:00Smartwatch

aTST: total sleep time.
bSE: sleep efficiency.
cWASO: wake after sleep onset.
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Table 11. Record of total time for each sleep stage.

REMa (h)Deep sleep (h)Light sleep (h)Awake (h)Device

Volunteer 1

00:19:3001:20:3005:11:3001:50:30Gold standard

02:20:0001:22:0004:25:0000:27:00Smartwatch

Volunteer 2

00:14:0000:43:3003:50:3003:11:30Gold standard

01:44:0000:51:0002:55:0000:42:00Smartwatch

Volunteer 3

00:18:3001:29:3004:34:0000:58:00Gold standard

01:56:0000:41:0003:28:0001:00:00Smartwatch

Volunteer 4

00:14:0000:52:0004:46:0002:33:00Gold standard

01:25:0000:32:0003:50:0000:38:00Smartwatch

Volunteer 5

00:36:0000:23:0005:07:3001:20:00Gold standard

01:42:0001:20:0003:22:0000:40:00Smartwatch

Volunteer 6

01:05:0001:12:0003:48:0001:30:00Gold standard

01:45:0001:53:0003:00:0000:45:00Smartwatch

Volunteer 7

00:23:3001:02:3004:08:0002:00:00Gold standard

01:17:0001:01:0003:10:0001:17:00Smartwatch

Volunteer 8

01:21:3001:15:0005:14:3001:02:00Gold standard

02:52:0001:13:0003:41:0000:56:00Smartwatch

aREM: rapid eye movement.

User Experience
To evaluate the user experience, a satisfaction questionnaire
was administered at the end of the volunteers’ participation.
Three questions regarding the use of the smartwatch were asked
using a Likert scale. The responses are presented in Tables
12-14. It is notable that most users felt comfortable using the
smartwatch, with 69% (47/68) agreeing at least partially that
the device felt like it was part of their own body, whereas the
rejection of that sentiment was only 16% (11/68). In addition,
most of the volunteers (38/68, 56%) were interested in acquiring

a smartwatch after the study. When not considering the ones
who already had a wearable device (11/68, 16%), a total of 38
volunteers who were introduced to using a smartwatch during
the study said they were considering buying one, which indicates
a good experience. Finally, 93% (63/68) of the volunteers felt
like recommending the purchase of a smartwatch to friends or
family (answers 7-10), with 67% (39/58) strongly
recommending it (answers 9 and 10), and a median
recommendation of 9, which is another good indicator of the
easy and unobtrusive use of the device in their day-to-day life.

Table 12. User experience query about the feeling of using the smartwatch (n=68).

Values, n (%)When using the smartwatch, it almost feels like it is incorporated in my body.

19 (28)I fully agree

28 (41)I partially agree

10 (15)I neither agree nor disagree

6 (9)I partially disagree

5 (7)I strongly disagree
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Table 13. User experience queries about feelings of ownership (n=68).

Values, n (%)After returning the Galaxy Watch 4 smartwatch

2 (3)You already had one of the same brand to use.

9 (13)You already had one from another brand to use.

38 (56)You did not have any to use, but you decided you are going to buy the same or a similar one.

19 (28)You did not have any to use, and you are not going to buy any similar ones to use.

Table 14. User experience query about the recommendation to a family member (n=68)a.

Values, nConsidering your experience using the smartwatch during the research project, how likely are
you to recommend its purchase to a family member or friend on a scale of 1 to 10?

31

02

13

04

15

06

37

218

149

2510

aThe median was 9.

LoA Analysis
To evaluate the performance of the smartwatch, a comparison
to a known gold-standard device was made. The LoA analysis
was performed separately for each measure of interest.

For oxygen saturation, the smartwatch was compared with the
gold-standard AFK YK009 Pulse Oximeter. A total of 4521
pairs of records (after exclusion and before processing) were
analyzed. The differences are computed as the gold-standard
measurement subtracted from the smartwatch measurement, so
a positive value indicates that the smartwatch overestimated the
value, whereas a negative value indicates an underestimation.
The Bland-Altman plot is presented in Figure 1, and the LoA
values are listed in Table 15.

The fan-shaped distribution presented in Figure 1 is because
the measurement was inherently capped at 100%. The calculated
differences for measurements that lie close to the maximum
value (which were also closer to the normal physiological range)
were bound to lower or negative values. Nevertheless, the LoA

established reasonable agreement, with a lower limit of −6.9%
and an upper limit of 4.4%, that is, one can expect that in 95%
of cases, the error of the oxygen saturation measured by the
smartwatch had a magnitude of, at most, slightly <7%. This
LoA was also calculated across different ranges of the “true
value” (as measured by the gold-standard device) by selecting
only those cases in which the gold-standard measurement was
within specific regions (100%-98%, 100%-95%, and
100%-90%). The LoA was very stable across all ranges, with
a lower limit always close to −7% and an upper limit <2%. The
mean difference (also called bias) was found to be −1.28%,
suggesting that the smartwatch, in general, tends to
underestimate the saturation of oxygen.

Finally, by segmenting the Bland-Altman plot in increasing
intervals around 0 (in the y axis), one can compute how many
of the cases are within a specific magnitude of error. As reported
in Table 16, it is notable that the smartwatch missed the “true
value” by <1% of oxygen saturation in 43.97% (1988/4521) of
the cases, whereas the error was <3% of oxygen saturation in
86.09% (3892/4521) of all the measurements performed.
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Figure 1. Bland-Altman plot of oxygen saturation differences (%) comparing the smartwatch and the AFK YK009 oximeter measurements. LoA: limits
of agreement.

Table 15. Limits of agreement (LoA) calculated for oxygen saturation.

Values (%)Oxygen saturation LoA

−1.28Mean difference

4.399Upper 95% limit

−6.960Lower 95% limit

Table 16. Percentage of oxygen saturation error (difference between smartwatch and gold-standard measurements) within specific ranges.

Oxygen saturation error distribution (%)Range

43.97Within 1%

71.53Within 2%

86.09Within 3%

The same procedure of analysis was repeated for the BP
measurements. A total of 4480 pairs of records were available
for the analysis. However, the analysis was further divided as
the diastolic and systolic BP were evaluated separately from
each other, because their performances in relation to the
gold-standard measurements were not assumed to be related.
The gold-standard device used for BP monitoring is the G-TECH
GP400 digital BP monitor.

The Bland-Altman plot for diastolic BP is presented in Figure
2. The dispersion of data points seems concentrated in a specific
region because of the underlying distribution of the “true value.”
However, the errors are uniformly distributed in that region,
with 95% LoA range of −20.5 mm Hg to 17.7 mm Hg, as
indicated in Table 17. Similar to what was observed in the
oxygen saturation case, this LoA range is fairly stable across
different ranges of the “true value.” The mean difference

observed is close to 0 (−1.399 mm Hg), which further reinforces
the notion of a uniform spread of errors.

By, once again, segmenting the Bland-Altman plot into different
regions around 0, it is possible to check the percentage of cases
within a specific error magnitude. As seen in Table 18, 42.34%
(1897/4480) of the readings were within 5 mm Hg of the “true
value,” whereas 88.21% (3952/4480) were within 15 mm Hg.
This is in accordance with the calculated 95% LoA, which
indicates an error of, at most, 20.5 mm Hg in 95% of cases.

The same analysis was repeated for systolic BP readings with
similar findings. Figure 3 shows a dispersion concentrated in
the expected region (according to the normative physiological
range). The 95% LoA region (Table 19) was slightly larger than
that for diastolic BP, ranging from −25.7 mm Hg to 22.7 mm
Hg. Again, this LoA region was found to be stable across
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different sections of the “true value.” The bias was close to 0
at −1.5 mm Hg.

The distribution of errors also indicates a performance slightly
worse than that observed for diastolic BP, with just <80% of
the readings within 15 mm Hg of the “true value,” as presented
in Table 20.

In addition, it is notable that there is an apparent linear behavior
of the errors with the “true value,” as observed in Figure 4, for

both diastolic and systolic BP. Linear regression analysis
indicated that both distribution have similar slopes (−0.39 for
diastolic BP and −0.36 for systolic BP), while the error seems
to be centered on 82 mm Hg for the diastolic BP and it was
close to 124 mm Hg for the systolic BP. This seems to suggest
that the smartwatch is calibrated around these values and linearly
deviates from the “true value” across the observed range.

Figure 2. Bland-Altman plot of diastolic blood pressure differences (mm Hg) comparing the smartwatch and the G-TECH GP400 blood pressure
monitor measurements. LoA: limits of agreement.

Table 17. Limits of agreement (LoA) calculated for diastolic blood pressure (BP; mm Hg).

Values (mm Hg)LoA for diastolic BP

−1.399Mean difference

17.713Upper 95% limit

−20.517Lower 95% limit

Table 18. Percentage of diastolic blood pressure (BP) error (difference between the smartwatch and gold-standard measurements) within specific
ranges.

Diastolic BP error distribution (%)Range

42.34Within 5 mm Hg

71.67Within 10 mm Hg

88.21Within 15 mm Hg
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Figure 3. Bland-Altman plot of systolic blood pressure differences (mm Hg) comparing the smartwatch and the G-TECH GP400 blood pressure monitor
measurements. LoA: limits of agreement.

Table 19. Limits of agreement (LoA) calculated for systolic blood pressure (BP; mm Hg).

Values (mm Hg)LoA for systolic BP

−1.536Mean difference

22.708Upper 95% limit

−25.780Lower 95% limit

Table 20. Percentage of systolic blood pressure (BP) error (difference between the smartwatch and gold-standard measurements) within specific ranges.

Systolic BP error distribution (%)

35.69Within 5 mm Hg

61.96Within 10 mm Hg

79.35Within 15 mm Hg

A naive correlation analysis between the results obtained by
both equipment shows a reasonable correlation coefficient, with
r=0.60 for diastolic BP measurements and r=0.67 for systolic
BP measurements. However, this result should be interpreted
in light of a skewed distribution of BP values (mostly within
the normative range), and also, because the measurement pairs
are not independent, with repeated measures for each volunteer.

Finally, the heart rate (measured in bpm) was evaluated against
the gold-standard device measurement. The device used as the
gold standard was the same as that used for BP measurements,
the G-TECH GP400 digital BP monitor. In total, 4480 pairs of
readings were analyzed. Compared with the former cases, the
heart rate measurements present a much flatter distribution of
errors across the observed values, which are in good agreement

with the gold-standard measurements, as presented in Figure 5.
The calculated 95% LoA region (Table 21) corroborates to the
flatter distribution of errors, ranging from −2.54 bpm to 3.68
bpm. The bias averaged at less than 1 bpm.

The calculated LoA was uniform across different ranges of the
“true value.” In addition, the distribution of errors across
different segmentations of the Bland-Altman plot further
reinforced the good agreement of the smartwatch measurements,
with >60% of the readings within 1 bpm of the gold-standard
value and just <95% of the cases within 3 bpm of the “true
value”—as was expected from the 95% LoA, which indicates
a maximum expected error of around 3.7 bpm. The results are
listed in Table 22.
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Figure 4. Distribution of smartwatch errors as a function of the respective gold-standard device value (true value). A linear trend was observed for
both diastolic and systolic blood pressure readings. All axes are in mm Hg.

Figure 5. Bland-Altman plot of heart rate differences (beats/min) comparing the smartwatch and G-TECH GP400 blood pressure monitor measurements.
LoA: limits of agreement.

Table 21. Limits of agreement (LoA) calculated for heart rate (beats/min [bpm]).

Value (bpm)LoA for heart rate

0.566Mean difference

3.680Upper 95% limit

−2.548Lower 95% limit
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Table 22. Percentage of heart rate error (difference between the smartwatch and gold-standard measurements) within specific ranges.

Heart rate error distribution (%)Range

62.41Within 1 bpma

87.16Within 2 bpm

94.35Within 3 bpm

abpm: beats per minute.

LoA: Group Comparisons
The LoA procedure was applied separately to each group of the
study. Although there is no statistical test to check for

differences in the LoA, these results should be evaluated with
regard to clinical relevance rather than a statistical one.

The results for all metrics for both groups are listed in Table
23, where the sample value indicated refers to the pairs of
measurements (smartwatch and gold standard).

Table 23. Limit of agreement (LoA) analysis performed on each group individuallya.

Bias, mean difference (SD; 95% LoA)Values (n=4521), n (%)Measurement for each group

Oxygen saturation

−1.260 (2.890; 4.402 to −6.923)2363 (52.27)COVID-19

−1.304 (2.913; 4.407 to −7.015)2158 (47.73)Non–COVID-19

Diastolic BPb

−0.968 (9.637; 17.921 to −19.858)2344 (52.32)COVID-19

−1.873 (9.876; 17.489 to −21.230)2136 (47.68)Non–COVID-19

Systolic BP

−1.172 (12.613; 23.549 to −25.894)2344 (52.32)COVID-19

−1.934 (12.109; 21.800 to −25.669)2136 (47.68)Non–COVID-19

Heart rate

−0.493 (1.595; 3.621 to −2.637)2344 (52.32)COVID-19

−0.646 (1.579; 3.741 to −2.448)2136 (47.68)Non–COVID-19

aLoA was calculated for each variable of interest. In all cases, the LoA was similar across the groups.
bBP: blood pressure.

For all variables tested, the LoA region was very similar in both
the groups. The behavior observed in the overall LoA was
replicated in the group analysis; the heart rate provided the
narrower region, whereas the systolic BP presented the largest
range. The smartwatch performance does not seem to be affected
by the fact that the volunteer had a diagnosis of COVID-19.

Daily Data: Group Comparisons
The data used to evaluate device agreement were also used to
compare the groups themselves to verify whether there was any
observable difference in the variables monitored.

The mean of each group for each variable, as recorded by the
smartwatch, is listed in Table 24. The 2-tailed t test P values
were adjusted for multiple comparisons.

Through smartwatch readings, it is not possible to find any
difference between the volunteers who had COVID-19 and
those who were not infected. Therefore, the small variations
observed in the means may be because of sampling noise or a
natural intrasample variation.

Confirming these results, the readings from the gold-standard
devices also showed no statistically significant differences, as
presented in Table 25.

The same behavior was observed for both equipment, and
statistical significance was not achieved. Nevertheless, this
result is unsurprising, as the volunteers in the COVID-19 group
not only recovered from the infection, but were already back to
their daily working routine, so no major symptoms or major
complications from “post–COVID-19 condition” were expected.
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Table 24. Group analysis of smartwatch readings.

P valuebCOVID-19 group, meana (SD)Non–COVID-19 group, meana (SD)Smartwatch reading

.1996.253 (1.165)95.930 (0.972)Oxygen saturation (%)

.9174.300 (7.154)74.490 (8.222)Heart rate (bpmc)

.31128.219 (12.660)125.344 (12.175)Systolic blood pressure (mm Hg)

.2385.004 (8.322)82.640 (9.033)Diastolic blood pressure (mm Hg)

aThe mean values were calculated from the averages of the volunteers.
bThe P values were obtained from independent samples’ 2-tailed t tests. No statistically significant difference was found.
cbpm: beats per minute.

Table 25. Group analysis of the gold-standard readings.

P valuebCOVID-19 group, meana (SD)Non–COVID-19 group, meana (SD)Gold-standard reading

.5997.475 (0.891)97.366 (0.872)Oxygen saturation (%)

.9473.709 (7.111)73.840 (8.206)Heart rate (bpmc)

.52129.648 (12.972)127.765 (12.673)Systolic blood pressure (mm Hg)

.5185.050 (8.817)84.730 (8.838)Diastolic blood pressure (mm Hg)

aThe mean values were calculated from the averages of the volunteers.
bThe P values were obtained from independent samples’ 2-tailed t tests. Similar to the smartwatch results, no statistically significant differences were
observed.
cbpm: beats per minute.

Continuous Monitoring: Group Comparisons
Similar to the previous section, the main interest involving
continuous monitoring is not one regarding the smartwatch
itself; its ability to monitor heart rate is proved by the LoA
analysis. Rather, the interest lies in the volunteers themselves,
whether the heart rate activity along the day presents any
difference between those who had and those who did not have
COVID-19. In that sense, the smartwatch is a unique tool that
enables passive monitoring of patients without causing
discomfort to the user.

Volunteers were monitored during the whole day, and only
weekdays were included in the analysis. The measurements
were averaged over an hour. In total, 8,041,871 records were
analyzed.

Figure 6 presents the overall shape of the mean heart rate curve
along the day for both groups (averaged across all volunteers

in each group). In general, both curves show a spike in heart
rate activity at the beginning of work hours (around 6-8 h),
another peak after lunch hours (13-14 h), and a steady decline
during the nighttime (after 22 hours until the spike at 6 hours).

Using the MANOVA profile analysis, it was concluded that the
level hypothesis cannot be rejected (F1,74=.107; P=.75), meaning
that the baseline heart rate was similar across groups. However,
the flatness hypothesis was rejected, as expected (Hotelling
T²=20.282; P<.001). Finally, the parallel hypothesis was not
rejected (Wilks Λ=0.697; P=.99), meaning that the curves
presented the same pattern along the day, as confirmed by visual
inspection.

Therefore, the smartwatch helped evaluate the COVID-19 and
non–COVID-19 groups and enabled the conclusion that these
groups did not differ in relation to their daily heart rate activity.
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Figure 6. Average heart rate hourly activity curves for the COVID-19 and non–COVID-19 groups averaged across all volunteers in each group.

Discussion

Functional Model for Clinical Use of Data
The functional model presented in this study proved to be stable
and ready to fulfill its role of receiving data from mobile devices
and offering them for clinical use. At 35 weeks of follow-up,
we did not have any interruption of its service, and it is being
actively used to monitor the health of volunteers with >10
million records received by the platform and for >13,000
patient-days of clinical follow-up (Tables 5 and 6). With no
intervention to encourage volunteers to synchronize the data,
<0.5% of the records were synchronized in <1 hour, and only
5% of the records were synchronized in <2 hours (Table 8),
indicating that this solution is not suitable for monitoring critical
events and the alert system is unfit for urgent clinical use.
However, two-thirds of the data were synchronized within 24
hours, and <10% of the data were synchronized in >7 days
(Table 8), indicating that the digital solution is more than
adequate to be used as a nonurgent health care tool.

Another relevant point of this model is that it follows all
requirements of data protection and privacy laws. Data of
interest for clinical follow-up are anonymously transmitted via
the IoT through the study model’s own cloud and collected into
the hospital’s data center, which is suited for processing health
data according to the applicable laws. Furthermore, only within
the hospital are the data complemented with other clinical and
identification information, that is, the patient has the security
and protection of their data collected by the wearables, and the
physicians have access to the clinical data for monitoring.

Moreover, as a functional model platform developed with
scalability and interoperability in mind, it is suitable to be used
with IoT devices and other clinical software in multicenter,
large-scale, and long-term follow-up studies, providing
researchers and clinicians with a powerful tool to monitor their
patients. In addition, because digital solutions are entirely based
on cloud technology, they are accessible from any region of the
world. Regions in need of medical assistance and located in
hard-to-reach areas, such as Amazonas in Brazil, will be able
to take advantage of this technology, as suggested in recent
studies conducted by Hospital das Clínicas of the Faculdade de
Medicina da Universidade de São Paulo [36]. These regions
may greatly benefit from a system that enables patient follow-up
remotely, such as the one proposed in this study.

Manual Data Collection Methodology
For gold-standard equipment measurements, the protocols and
recommendations are widely known from the literature.
However, for novel technologies such as the smartwatch, not
much is known about the methodology and best practices for
clinical follow-up, and being subject to a learning curve was
unavoidable during the study execution [37,38]. In this sense,
a few possible confounders that could have not been controlled
in this study (without prior knowledge) may have introduced
noise in our results. Some of these should be investigated further
in future studies to better understand how they alter the results,
such as the best fit and location of the smartwatch on the wrist,
the shape of the smartwatch’s surface that is in contact with the
skin, and the use of dermatological products by the volunteers.
In a similar study, Spaccarotella et al [39] highlighted the need
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for precise and repeatable smartwatch positioning and
adjustment in the wrist of patients [39].

The simultaneous collection of BP on both wrists at the same
time, following the instructions in the Galaxy Watch 4 manual,
should also be reevaluated, because it introduces subjective
variation related to the research monitor performing the tasks
(such as synchronization of both measurements), which may
influence the results obtained. The same-arm sequential
collection (instead of opposite-arm simultaneous collection, as
was performed) is also the most commonly used or
recommended method in the literature for device comparison
[40].

It is important to note that our study focused on smartwatch use
on a regular day-to-day routine of volunteers to better reflect
the real-life setup in which the system will be deployed. This
means that we did not have an optimal preparation for data
collection, nor did we have a controlled environment for
acquisition, as is usually the case with other studies [41].
Furthermore, we had multiple gold-standard devices used for
comparison and calibration, albeit being the same model;
interequipment variation may have also introduced noise in the
analysis. Similarly, because we had multiple data collectors
(even for the same volunteer), additional external variability
might have been introduced.

In the polysomnography data collection, it was found that some
volunteers continued to sleep after the completion of the
traditional polysomnography, identifying a possible failure in
the collection methodology mainly related to the end of the
examination, where the technique ended before the volunteer
was fully awake. Therefore, despite successful data collection
simultaneously with the gold-standard device, the examiner
bias hindered the accurate analysis of the results.

Galaxy Watch Features
The power of continuous data collection in a naturalistic manner
brings immeasurable benefits to medical monitoring. In this
study, this technology helped diagnose asymptomatic
bradycardia in one of the volunteers whose only complaint was
tiredness. Through the digital solution, the physician identified
recurring moments of bradycardia outside medical care moments
and was able to build a heartbeat variation curve throughout the
day, which will certainly be very useful for monitoring many
diseases.

About Accuracy and Precision
The accuracy and precision study demonstrated that the
measurement of heartbeats is above expectations, added to the
continuous measurement technology, making it a highly valuable
tool for telemonitoring patients [37]. The data indicate that
oxygenation is suitable for use in clinical follow-up and remote
monitoring. As it occurs in gold-standard equipment,
measurements outside the clinical context (eg, oxygenation <88
with a eupneic volunteer) suggest an error, and a new
measurement is suggested in any type of medical device [37].
Thus, the results indicate that these measures can support health
care professionals in decision-making. If the oxygen saturation
be improved with continuous measurement feature, such as

heartbeat, the potential benefit of that would be of great value
for remote monitoring.

As for BP, the data and observations mentioned in the collection
methodology suggest that more studies are needed, especially
for the validation method [38]. Unlike other studies, where
measurements with wearables are performed in the laboratory,
hospital conditions, or under observation, this study focused on
day-to-day, real-life use of the smartwatch. Therefore, optimal
conditions, as suggested in the literature [39,42], were not
guaranteed or expected. These limitations can be noted in the
BP correlation analysis, which achieved only moderate
correlation with the gold-standard measurements.
Notwithstanding these points, our agreement and accuracy
results are similar or better than those of other studies involving
BP and oxygen saturation measurements with smart devices
[38,39,43-45], which suggests an adequate performance even
during real-life conditions. Furthermore, the agreement obtained
with the gold standards allied to the synchronization reliability
of the platform allows us to suggest and consider the use of the
smartwatch and the digital solution to follow patients with
chronic disease, who can be remotely monitored by health
professionals with data collected continuously or under user
action.

These data collected under real-life conditions can support the
clinical decision of the team of caregivers, with a potential
reduction in coming and going to health services, and because
it is a widely accepted equipment, there will be greater
adherence to use, as it is not characterized as assistive equipment
for the disability conditions [46].

Regarding polysomnography, the data indicate great potential
for usability, mainly because of the ease of adherence of the
volunteers; however, based on the collection methodology, a
new study with greater convenience for the participants is
suggested. Nevertheless, the results obtained, allied to the
comfort afforded to the patient during acquisition (compared
with the more intrusive polysomnography equipment), are quite
promising.

About COVID-19
All the volunteers were grouped by disease (COVID-19) status
and demographic characteristics, and no significant difference
was found in our study. This means that there was no loss in
the quality of measurements, even in patients with COVID-19.
With regard to the heart rate activity group comparison, it is
notable that all volunteers from the COVID-19 group were
highly functional and had already returned to their daily work
life. Therefore, one would not expect many differences in heart
rate performance, as observed.

User Experience
The use of smartwatch for monitoring was very well evaluated
by the volunteers, where 69% (47/68) agreed that it felt
embedded in their body (Table 12), which supports the choice
of the device for continuous monitoring use. In addition, the
user experience results indicate that smartwatches have wide
acceptance as an accessory, without the stigma of a medical
device that can cause discomfort in patients with chronic
illnesses, such as some assistive equipment that characterizes
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a disability for observers. This is particularly important for
adherence to a remote monitoring program, as the use of
smartwatches by patients with chronic illnesses does not make
them feel like they have a disability [46].

Limitations
The method used to measure BP simultaneously on opposite
wrists, following the product’s instruction manual, generated a
confounding factor based on the subjectivity of the research
monitor when starting the data collection on the smartwatch.

This study considered a home use environment for remote
monitoring. The measurement conditions for accuracy and
precision are not those recommended by high-precision studies
such as ISO 81060-2:2018 [42]. In addition, as the study
volunteers were drawn from a healthy population, most of the
values recorded throughout the project were within the
normative range, which may also skew the results found, and
is a limitation of our recruitment methodology. Calibration and

manual collection of BP were performed using different digital
devices. Despite being the same model and same brand, it
became a confounding factor in the data analysis. Furthermore,
there was no calibration of the gold-standard digital BP device
throughout the study, simulating domestic use. A booklet of
good practices for using the smartwatch for measurement is
suggested to the manufacturer based on the experience of this
study.

During polysomnography, the technician needed to end the
procedure before the end of the volunteers’ sleep cycle, which
became a limiting factor for the analysis regarding the end of
the volunteers’ sleep.

Cost
A total of US $39,053.98 (Brazilian real to US $ conversion of
5.80, obtained on December 31, 2021) were spent on
smartwatches, gold-standard devices, and mobile phones in this
study (Table 26).

Table 26. Total investment on devices and equipment.

Investment (US $)Quantity, nDevice

19,828.7384Samsung Galaxy 4 smartwatch

1866.5792Noninvasive blood pressure monitor

1130.2492Pulse oximeter for noncontinuous monitoring

16,228.4445Samsung Galaxy smartphone A52

Future Perspectives
The digital solution LIKA is currently a functional model
composed of automation components [47] that could become
a product that plays the role of a bridge between devices that
use the IoT and health services, or as an increment for products
that already exist. Compared with similar recent studies by Quer
et al [12] and Mishra et al [13], which have approached the
detection of COVID-19 through the use of heart rate, steps, and
sleep data, the digital solution platform offers researchers and
clinicians data collected in a naturalistic and continuous way.
With the growth in the use of artificial intelligence in health
care, the functional model presented will allow the formation
of large databases for increasingly precise medicine [48].
Furthermore, a secure way of transmitting and receiving
sensitive data, as done in this study, will allow predictive
machine-learning models to offer preventive advice in real time
to patients and clinicians, as many of these models are not yet
available on mobile or wearable devices and need to be executed
on dedicated hardware. However, the advent of highly
sophisticated large language models will further improve
patients’ health care, because wearable devices will be able to
better communicate to (and receive requests from) the patient
while gathering their vital signs for processing.

To better understand the role of smartwatches in telemonitoring
patients in Brazil, a cost-effectiveness study could clarify the

real benefits that wearable devices can offer by measuring vital
signs in a naturalistic way. Furthermore, a follow-up study with
patients or volunteers from different locations is necessary to
prove the effectiveness of this functional model in different
connectivity realities, because the proposed model relies on
internet connection.

As very well detailed by Vijayan et al [24], smartwatches have
a very wide applicability in the field of health care. As the digital
solution was developed together with the manufacturer, it is
ready to receive and provide, for clinical use, data from other
devices not covered in this version of the study, such as the
electrocardiogram for monitoring atrial fibrillation, reported in
the studies by Nasarre et al [14], Bumgarner et al [15], and Perez
et al [16].

Conclusions
On the basis of the results obtained, considering the validation
conditions of accuracy and precision, and simulating a home
environment for layperson use, we conclude that the functional
model built in this study, named LIKA, is able to capture data
from the smartwatch and anonymously provide the data to health
services, where they can be treated in accordance with
legislation and can be used to support clinical decisions during
remote monitoring.

JMIR Form Res 2023 | vol. 7 | e47388 | p. 20https://formative.jmir.org/2023/1/e47388
(page number not for citation purposes)

Bin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
Part of the results presented in this work were obtained through the project “Predictive monitoring in person-centered care using
smartwatches,” funded by Fundação Faculdade de Medicina in partnership with Samsung Eletrônica da Amazônia Ltda, under
the Brazilian Informatics Law number 8248/91.

The authors would like to thank the fellow research monitors who worked daily with the volunteers: Alysson Michel Mariano,
Amanda Cavalcanti de Oliveira, Andre Luis da Silva, Antenor Bispo dos Santos Silva, Fernanda Kayoko Yokota Harayashiki,
Filipe Eustaquio da Silva Gomes de Oliveira, Joana Beatriz Midoes Mariano, Mariana Cavazzoni Lima de Carvalho, Rafael Luz
dos Anjos, Raquel Kaori Nagai, Ricardo Lira Araujo, Sabrina Saemy Tome Uchiyama, and Vinícius Cardana.

Furthermore, the authors would like to thank the fellow research administrative team for all support offered: Joao Victor Scartozzoni
and Rafael Ferreira dos Reis.

Data Availability
The data sets generated during or analyzed during this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
None declared.

References

1. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. World Health Organization.
2020 Mar 11. URL: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-
at-the-media-briefing-on-covid-19---11-march-2020 [accessed 2020-03-23]

2. WHO Coronavirus (COVID-19) dashboard. World Health Organization. URL: https://covid19.who.int/ [accessed 2022-03-23]
3. Li JP, Liu H, Ting DS, Jeon S, Chan RV, Kim JE, et al. Digital technology, tele-medicine and artificial intelligence in

ophthalmology: a global perspective. Prog Retin Eye Res 2021 May;82:100900 [FREE Full text] [doi:
10.1016/j.preteyeres.2020.100900] [Medline: 32898686]

4. Zugasti Murillo AZ, Aguilar Sugrañes LA, Álvarez Hernández JA. [Digital transformation of the relationship between
industry and healthcare professionals]. Nutr Hosp 2022 Mar 29;38(Spec No1):14-18 [FREE Full text] [doi:
10.20960/nh.04064] [Medline: 35137592]

5. Vivilaki VG, Chronaki C, Barbounaki S, Petelos E. Accelerating the digital transformation of community midwifery during
the COVID-19 pandemic. Eur J Midwifery 2021 Oct 7;5:44 [FREE Full text] [doi: 10.18332/ejm/142571] [Medline:
34708191]

6. Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the
pandemic coronavirus disease 2019 (COVID-19). Cureus 2020 Apr 06;12(4):e7560 [FREE Full text] [doi:
10.7759/cureus.7560] [Medline: 32269893]

7. Craig J, Patterson V. Introduction to the practice of telemedicine. J Telemed Telecare 2005;11(1):3-9 [doi:
10.1177/1357633X0501100102] [Medline: 15829036]

8. Sharma K, Patel Z, Patel S, Patel K, Dabhi S, Doshi J, et al. Repostioning of telemedicine in cardiovascular world
post-COVID-19 pandemic. Front Cardiovasc Med 2022 May 30;9:910802 [FREE Full text] [doi: 10.3389/fcvm.2022.910802]
[Medline: 35711362]

9. Greiwe J, Nyenhuis SM. Wearable technology and how this can be implemented into clinical practice. Curr Allergy Asthma
Rep 2020 Jun 06;20(8):36 [FREE Full text] [doi: 10.1007/s11882-020-00927-3] [Medline: 32506184]

10. Hayıroğlu M. Telemedicine: current concepts and future perceptions. Anatol J Cardiol 2019 Oct;22(Suppl 2):21-22 [FREE
Full text] [doi: 10.14744/AnatolJCardiol.2019.12525] [Medline: 31670712]

11. Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Per Med 2018 Sep;15(5):429-448 [FREE Full text]
[doi: 10.2217/pme-2018-0044] [Medline: 30259801]

12. Quer G, Radin JM, Gadaleta M, Baca-Motes K, Ariniello L, Ramos E, et al. Wearable sensor data and self-reported symptoms
for COVID-19 detection. Nat Med 2021 Jan;27(1):73-77 [doi: 10.1038/s41591-020-1123-x] [Medline: 33122860]

13. Mishra T, Wang M, Metwally AA, Bogu GK, Brooks AW, Bahmani A, et al. Pre-symptomatic detection of COVID-19
from smartwatch data. Nat Biomed Eng 2020 Dec;4(12):1208-1220 [FREE Full text] [doi: 10.1038/s41551-020-00640-6]
[Medline: 33208926]

14. Nasarre M, Strik M, Daniel Ramirez F, Buliard S, Marchand H, Abu-Alrub S, et al. Using a smartwatch electrocardiogram
to detect abnormalities associated with sudden cardiac arrest in young adults. Europace 2022 Mar 02;24(3):406-412 [doi:
10.1093/europace/euab192] [Medline: 34468759]

15. Bumgarner JM, Lambert CT, Hussein AA, Cantillon DJ, Baranowski B, Wolski K, et al. Smartwatch algorithm for
automated detection of atrial fibrillation. J Am Coll Cardiol 2018 May 29;71(21):2381-2388 [FREE Full text] [doi:
10.1016/j.jacc.2018.03.003] [Medline: 29535065]

JMIR Form Res 2023 | vol. 7 | e47388 | p. 21https://formative.jmir.org/2023/1/e47388
(page number not for citation purposes)

Bin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://covid19.who.int/
https://europepmc.org/abstract/MED/32898686
http://dx.doi.org/10.1016/j.preteyeres.2020.100900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32898686&dopt=Abstract
https://www.nutricionhospitalaria.org/articles/04064/show
http://dx.doi.org/10.20960/nh.04064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35137592&dopt=Abstract
https://europepmc.org/abstract/MED/34708191
http://dx.doi.org/10.18332/ejm/142571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34708191&dopt=Abstract
https://europepmc.org/abstract/MED/32269893
http://dx.doi.org/10.7759/cureus.7560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32269893&dopt=Abstract
http://dx.doi.org/10.1177/1357633X0501100102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15829036&dopt=Abstract
https://europepmc.org/abstract/MED/35711362
http://dx.doi.org/10.3389/fcvm.2022.910802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35711362&dopt=Abstract
https://europepmc.org/abstract/MED/32506184
http://dx.doi.org/10.1007/s11882-020-00927-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32506184&dopt=Abstract
https://doi.org/10.14744/AnatolJCardiol.2019.12525
https://doi.org/10.14744/AnatolJCardiol.2019.12525
http://dx.doi.org/10.14744/AnatolJCardiol.2019.12525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31670712&dopt=Abstract
https://www.futuremedicine.com/doi/abs/10.2217/pme-2018-0044?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.2217/pme-2018-0044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30259801&dopt=Abstract
http://dx.doi.org/10.1038/s41591-020-1123-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33122860&dopt=Abstract
https://europepmc.org/abstract/MED/33208926
http://dx.doi.org/10.1038/s41551-020-00640-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33208926&dopt=Abstract
http://dx.doi.org/10.1093/europace/euab192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34468759&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0735-1097(18)33486-7
http://dx.doi.org/10.1016/j.jacc.2018.03.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29535065&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


16. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Apple Heart Study Investigators. Large-scale
assessment of a smartwatch to identify atrial fibrillation. N Engl J Med 2019 Nov 14;381(20):1909-1917 [FREE Full text]
[doi: 10.1056/NEJMoa1901183] [Medline: 31722151]

17. Ford C, Xie CX, Low A, Rajakariar K, Koshy AN, Sajeev JK, et al. Comparison of 2 smart watch algorithms for detection
of atrial fibrillation and the benefit of clinician interpretation: SMART WARS Study. JACC Clin Electrophysiol 2022
Jun;8(6):782-791 [FREE Full text] [doi: 10.1016/j.jacep.2022.02.013] [Medline: 35738855]

18. Chae SH, Kim Y, Lee KS, Park HS. Development and clinical evaluation of a web-based upper limb home rehabilitation
system using a smartwatch and machine learning model for chronic stroke survivors: prospective comparative study. JMIR
Mhealth Uhealth 2020 Jul 09;8(7):e17216 [FREE Full text] [doi: 10.2196/17216] [Medline: 32480361]

19. Reeder B, David A. Health at hand: a systematic review of smart watch uses for health and wellness. J Biomed Inform
2016 Oct;63:269-276 [FREE Full text] [doi: 10.1016/j.jbi.2016.09.001] [Medline: 27612974]

20. Staplin N, de la Sierra A, Ruilope LM, Emberson JR, Vinyoles E, Gorostidi M, et al. Relationship between clinic and
ambulatory blood pressure and mortality: an observational cohort study in 59 124 patients. Lancet 2023 Jun
17;401(10393):2041-2050 [FREE Full text] [doi: 10.1016/S0140-6736(23)00733-X] [Medline: 37156250]

21. Directiva 95/46/CE do Parlamento Europeu e do Conselho, de 24 de Outubro de 1995, relativa à protecção das pessoas
singulares no que diz respeito ao tratamento de dados pessoais e à livre circulação desses dados. European Union. URL:
https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=celex%3A31995L0046 [accessed 2023-08-02]

22. Regulamento (UE) 2016/679 do Parlamento Europeu e do Conselho, de 27 de abril de 2016, relativo à proteção das pessoas
singulares no que diz respeito ao tratamento de dados pessoais e à livre circulação desses dados e que revoga a Diretiva
95/46/CE (Regulamento Geral sobre a Proteção de Dados) (Texto relevante para efeitos do EEE). European Union. URL:
https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=celex%3A32016R0679 [accessed 2023-08-02]

23. LEI Nº 13.709, DE 14 DE AGOSTO DE 2018. Government of Brazil. URL: https://www.planalto.gov.br/ccivil_03/
_ato2015-2018/2018/lei/l13709.htm [accessed 2023-08-02]

24. Vijayan V, Connolly JP, Condell J, McKelvey N, Gardiner P. Review of wearable devices and data collection considerations
for connected health. Sensors (Basel) 2021 Aug 19;21(16):5589 [FREE Full text] [doi: 10.3390/s21165589] [Medline:
34451032]

25. Bin KJ, De Pretto LR, Sanchez FB, Battistella LR. Digital platform to continuously monitor patients using a smartwatch:
preliminary report. JMIR Form Res 2022 Sep 15;6(9):e40468 [FREE Full text] [doi: 10.2196/40468] [Medline: 36107471]

26. Evaluating digital health products. Office for Health Improvement and Disparities United Kingdom Government. 2020 Jan
30. URL: https://www.gov.uk/government/collections/evaluating-digital-health-products [accessed 2020-06-01]

27. Analysis of routinely collected data: descriptive studies. Office for Health Improvement and Disparities United Kingdom
Government. 2020 Jan 30. URL: https://www.gov.uk/guidance/analysis-of-routinely-collected-data-descriptive-studies
[accessed 2020-09-30]

28. Patridge EF, Bardyn TP. Research Electronic Data Capture (REDCap). J Med Libr Assoc 2018 Jan 12;106(1) [doi:
10.5195/jmla.2018.319]

29. Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm
Stat 2007;17(4):571-582 [FREE Full text] [doi: 10.1080/10543400701329422] [Medline: 17613642]

30. Patel AK, Reddy V, Shumway KR, Araujo JF. Physiology, sleep stages. In: StatPearls [Internet]. Treasure Island (FL):
StatPearls Publishing; Sep 7, 2022.

31. Chinoy ED, Cuellar JA, Huwa KE, Jameson JT, Watson CH, Bessman SC, et al. Performance of seven consumer
sleep-tracking devices compared with polysomnography. Sleep 2021 May 14;44(5):zsaa291 [FREE Full text] [doi:
10.1093/sleep/zsaa291] [Medline: 33378539]

32. Samsung Eletronica da Amazonia Ltda. Consultas. URL: https://consultas.anvisa.gov.br/#/saude/25351682843202013/
[accessed 2022-02-07]

33. Torp KD, Modi P, Simon LV. Pulse oximetry. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Aug
10, 2022.

34. Hafeez Y, Grossman SA. Sinus bradycardia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Feb 5,
2023.

35. Nelson EC, Verhagen T, Vollenbroek-Hutten M, Noordzij ML. Is wearable technology becoming part of us? Developing
and validating a measurement scale for wearable technology embodiment. JMIR Mhealth Uhealth 2019 Aug 09;7(8):e12771
[FREE Full text] [doi: 10.2196/12771] [Medline: 31400106]

36. Bin KJ, Santana Alves PG, Costa R, Eiras PC, Nader de Araujo L, Pereira AJ, et al. User experience regarding digital
primary health care in Santarém, Amazon: evaluation of patient satisfaction and doctor's feedback. JMIR Form Res 2023
Jan 11;7:e39034 [FREE Full text] [doi: 10.2196/39034] [Medline: 36630164]

37. Zhang Z, Khatami R. Can we trust the oxygen saturation measured by consumer smartwatches? Lancet Respir Med 2022
May;10(5):e47-e48 [doi: 10.1016/S2213-2600(22)00103-5] [Medline: 35358426]

38. Lee HY, Lee DJ, Seo J, Ihm SH, Kim KI, Cho EJ, Korean Society of Hypertension. Smartphone / smartwatch-based cuffless
blood pressure measurement : a position paper from the Korean Society of Hypertension. Clin Hypertens 2021 Jan 25;27(1):4
[FREE Full text] [doi: 10.1186/s40885-020-00158-8] [Medline: 33494809]

JMIR Form Res 2023 | vol. 7 | e47388 | p. 22https://formative.jmir.org/2023/1/e47388
(page number not for citation purposes)

Bin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/31722151
http://dx.doi.org/10.1056/NEJMoa1901183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31722151&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2405-500X(22)00220-1
http://dx.doi.org/10.1016/j.jacep.2022.02.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35738855&dopt=Abstract
https://mhealth.jmir.org/2020/7/e17216/
http://dx.doi.org/10.2196/17216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32480361&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(16)30113-7
http://dx.doi.org/10.1016/j.jbi.2016.09.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27612974&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(23)00733-X
http://dx.doi.org/10.1016/S0140-6736(23)00733-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37156250&dopt=Abstract
https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=celex%3A31995L0046
https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=celex%3A32016R0679
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
https://www.mdpi.com/resolver?pii=s21165589
http://dx.doi.org/10.3390/s21165589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34451032&dopt=Abstract
https://formative.jmir.org/2022/9/e40468/
http://dx.doi.org/10.2196/40468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36107471&dopt=Abstract
https://www.gov.uk/government/collections/evaluating-digital-health-products
https://www.gov.uk/guidance/analysis-of-routinely-collected-data-descriptive-studies
http://dx.doi.org/10.5195/jmla.2018.319
https://core.ac.uk/reader/52282?utm_source=linkout
http://dx.doi.org/10.1080/10543400701329422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17613642&dopt=Abstract
https://europepmc.org/abstract/MED/33378539
http://dx.doi.org/10.1093/sleep/zsaa291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33378539&dopt=Abstract
https://consultas.anvisa.gov.br/#/saude/25351682843202013/
https://mhealth.jmir.org/2019/8/e12771/
http://dx.doi.org/10.2196/12771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31400106&dopt=Abstract
https://formative.jmir.org/2023//e39034/
http://dx.doi.org/10.2196/39034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36630164&dopt=Abstract
http://dx.doi.org/10.1016/S2213-2600(22)00103-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35358426&dopt=Abstract
https://clinicalhypertension.biomedcentral.com/articles/10.1186/s40885-020-00158-8
http://dx.doi.org/10.1186/s40885-020-00158-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33494809&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


39. Spaccarotella C, Polimeni A, Mancuso C, Pelaia G, Esposito G, Indolfi C. Assessment of non-invasive measurements of
oxygen saturation and heart rate with an Apple smartwatch: comparison with a standard pulse oximeter. J Clin Med 2022
Mar 08;11(6):1467 [FREE Full text] [doi: 10.3390/jcm11061467] [Medline: 35329793]

40. Stergiou GS, Alpert B, Mieke S, Asmar R, Atkins N, Eckert S, et al. A universal standard for the validation of blood pressure
measuring devices: Association for the Advancement of Medical Instrumentation/European Society of
Hypertension/International Organization for Standardization (AAMI/ESH/ISO) collaboration statement. Hypertension 2018
Mar;71(3):368-374 [doi: 10.1161/HYPERTENSIONAHA.117.10237] [Medline: 29386350]

41. Helmer P, Hottenrott S, Rodemers P, Leppich R, Helwich M, Pryss R, et al. Accuracy and systematic biases of heart rate
measurements by consumer-grade fitness trackers in postoperative patients: prospective clinical trial. J Med Internet Res
2022 Dec 30;24(12):e42359 [FREE Full text] [doi: 10.2196/42359] [Medline: 36583938]

42. Alpert BS. J Clin Hypertens (Greenwich) 2022 Apr;24(4):513-518 [FREE Full text] [doi: 10.1111/jch.14464] [Medline:
35312160]

43. Falter M, Scherrenberg M, Driesen K, Pieters Z, Kaihara T, Xu L, et al. Smartwatch-based blood pressure measurement
demonstrates insufficient accuracy. Front Cardiovasc Med 2022 Jul 11;9:958212 [FREE Full text] [doi:
10.3389/fcvm.2022.958212] [Medline: 35898281]

44. van Helmond N, Freeman CG, Hahnen C, Haldar N, Hamati JN, Bard DM, et al. The accuracy of blood pressure measurement
by a smartwatch and a portable health device. Hosp Pract (1995) 2019 Oct;47(4):211-215 [doi:
10.1080/21548331.2019.1656991] [Medline: 31423912]

45. Hahnen C, Freeman CG, Haldar N, Hamati JN, Bard DM, Murali V, et al. Accuracy of vital signs measurements by a
smartwatch and a portable health device: validation study. JMIR Mhealth Uhealth 2020 Feb 12;8(2):e16811 [FREE Full
text] [doi: 10.2196/16811] [Medline: 32049066]

46. Parant A, Schiano-Lomoriello S, Marchan F. How would I live with a disability? Expectations of bio-psychosocial
consequences and assistive technology use. Disabil Rehabil Assist Technol 2017 Oct;12(7):681-685 [doi:
10.1080/17483107.2016.1218555] [Medline: 27677931]

47. Hawkings I. A guide to Robotic Process Automation (RPA). iGrafx. URL: https://www.igrafx.com/blog/
a-guide-to-robotic-process-automation-rpa/ [accessed 2020-06-01]

48. MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome 2021 Apr;64(4):416-425 [FREE Full text]
[doi: 10.1139/gen-2020-0131] [Medline: 33091314]

Abbreviations
ANVISA: Agência Nacional de Vigilância Sanitária
BP: blood pressure
bpm: beats per minute
IoT: Internet of Things
LGPD: Lei Geral de Proteção de Dados
LoA: limits of agreement
MANOVA: multivariate ANOVA
REDCap: Research Electronic Data Capture
REM: rapid eye movement
SE: sleep efficiency
TIB: time in bed
TR: tolerance region
TST: total sleep time
WASO: wake after sleep onset

Edited by A Mavragani; submitted 17.03.23; peer-reviewed by M Hayıroğlu, K Zahed; comments to author 27.07.23; revised version
received 01.08.23; accepted 02.08.23; published 12.09.23

Please cite as:
Bin KJ, De Pretto LR, Sanchez FB, De Souza e Castro FPM, Ramos VD, Battistella LR
Digital Platform for Continuous Monitoring of Patients Using a Smartwatch: Longitudinal Prospective Cohort Study
JMIR Form Res 2023;7:e47388
URL: https://formative.jmir.org/2023/1/e47388
doi: 10.2196/47388
PMID: 37698916

JMIR Form Res 2023 | vol. 7 | e47388 | p. 23https://formative.jmir.org/2023/1/e47388
(page number not for citation purposes)

Bin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://www.mdpi.com/resolver?pii=jcm11061467
http://dx.doi.org/10.3390/jcm11061467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35329793&dopt=Abstract
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29386350&dopt=Abstract
https://www.jmir.org/2022/12/e42359/
http://dx.doi.org/10.2196/42359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36583938&dopt=Abstract
https://europepmc.org/abstract/MED/35312160
http://dx.doi.org/10.1111/jch.14464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35312160&dopt=Abstract
https://europepmc.org/abstract/MED/35898281
http://dx.doi.org/10.3389/fcvm.2022.958212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35898281&dopt=Abstract
http://dx.doi.org/10.1080/21548331.2019.1656991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31423912&dopt=Abstract
https://mhealth.jmir.org/2020/2/e16811/
https://mhealth.jmir.org/2020/2/e16811/
http://dx.doi.org/10.2196/16811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32049066&dopt=Abstract
http://dx.doi.org/10.1080/17483107.2016.1218555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27677931&dopt=Abstract
https://www.igrafx.com/blog/a-guide-to-robotic-process-automation-rpa/
https://www.igrafx.com/blog/a-guide-to-robotic-process-automation-rpa/
https://cdnsciencepub.com/doi/abs/10.1139/gen-2020-0131?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1139/gen-2020-0131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33091314&dopt=Abstract
https://formative.jmir.org/2023/1/e47388
http://dx.doi.org/10.2196/47388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37698916&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Kaio Jia Bin, Lucas Ramos De Pretto, Fábio Beltrame Sanchez, Fabio Pacheco Muniz De Souza e Castro, Vinicius Delgado
Ramos, Linamara Rizzo Battistella. Originally published in JMIR Formative Research (https://formative.jmir.org), 12.09.2023.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information,
a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

JMIR Form Res 2023 | vol. 7 | e47388 | p. 24https://formative.jmir.org/2023/1/e47388
(page number not for citation purposes)

Bin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

