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Abstract

Background: Functional limitations are associated with poor clinical outcomes, higher mortality, and disability rates, especially
in older adults. Continuous assessment of patients’ functionality is important for clinical practice; however, traditional
questionnaire-based assessment methods are very time-consuming and infrequently used. Mobile sensing offers a great range of
sources that can assess function and disability daily.

Objective: This work aims to prove the feasibility of an interpretable machine learning pipeline for predicting function and
disability based on the World Health Organization Disability Assessment Schedule (WHODAS) 2.0 outcomes of clinical outpatients,
using passively collected digital biomarkers.

Methods: One-month-long behavioral time-series data consisting of physical and digital activity descriptor variables were
summarized using statistical measures (minimum, maximum, mean, median, SD, and IQR), creating 64 features that were used
for prediction. We then applied a sequential feature selection to each WHODAS 2.0 domain (cognition, mobility, self-care, getting
along, life activities, and participation) in order to find the most descriptive features for each domain. Finally, we predicted the
WHODAS 2.0 functional domain scores using linear regression using the best feature subsets. We reported the mean absolute
errors and the mean absolute percentage errors over 4 folds as goodness-of-fit statistics to evaluate the model and allow for
between-domain performance comparison.

Results: Our machine learning–based models for predicting patients’ WHODAS functionality scores per domain achieved an
average (across the 6 domains) mean absolute percentage error of 19.5%, varying between 14.86% (self-care domain) and 27.21%
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(life activities domain). We found that 5-19 features were sufficient for each domain, and the most relevant being the distance
traveled, time spent at home, time spent walking, exercise time, and vehicle time.

Conclusions: Our findings show the feasibility of using machine learning–based methods to assess functional health solely
from passively sensed mobile data. The feature selection step provides a set of interpretable features for each domain, ensuring
better explainability to the models’ decisions—an important aspect in clinical practice.

(JMIR Form Res 2023;7:e47167) doi: 10.2196/47167
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Introduction

Background
Functional limitations are associated with poor clinical
outcomes, higher mortality, and disability rates, especially in
older adults [1]. Moreover, they are closely related and used for
predicting transitions in activities of daily living or instrumental
activities of daily living due to a disability, thereby significantly
impacting the quality of life of older adults and other age groups
[2]. COVID-19 has been associated with functional limitations
in patients with post–COVID-19 sequelae, further increasing
an already present problem for older adults [3-5]. Sarcopenia,
progressive muscle loss due to aging, is one of the common
functionality problems for older adults with an estimated cost
of hospitalizations for adults in the United States of US $40.4
billion [6]. Early detection of an increase in disability is essential
for clinical practice. It can still be stabilized or even reversed
in the early stages, as in the case of sarcopenia, which can be
prevented, treated, and reversed by exercise. Moreover, one of
the cornerstones of rehabilitation research is the reduction of
disability and restoration of function [7].

There is a great need and much to be gained from defining a
way to measure functioning and disability on a relevant scale,
ideally daily. However, assessing everyday functioning and
disability is complicated due to current measurement modalities
(eg, self-report, proxy report, and clinician rating [8]). These
reports are time-consuming and tedious to fill on follow-up
visits. In addition, disciplines have disagreements about what
constitutes a disability and the methods to measure this disability
especially in a clinical setting [9]. Ecological momentary
assessment (EMA) allows for more continuous assessment and
monitoring of patients without face-to-face appointments and
has the crucial advantage of providing data that is more relevant
to daily life [10]; however, it still requires active patient input,
leading to refusal and attrition. Developing adequate passive
EMA tools may increase retention and help overcome the
limitations of active EMA [11].

Patient-reported outcome measures (PROMs) and
patient-reported experience measures (PREMs) [12] are
increasingly recognized as tools providing valuable information
about patients’ health statuses and perceptions of treatment at
a particular time. Including such tools in the health care
workflow aims to provide a patient-centered, value-based health
care system [13]. A commonly used PROM for disability
assessment is the second version of the World Health

Organization Disability Assessment Schedule (WHODAS 2.0)
[14]. This 36-item questionnaire provides a generic tool to
measure health and disability. It assesses difficulties due to
health conditions, including diseases or illnesses, short or
long-lasting health problems, injuries, mental or emotional
problems, and substance use disorders [15]. WHODAS 2.0
captures the level of functioning in six domains of life: (1)
cognition—understanding and communicating; (2)
mobility—moving and getting around; (3) self-care—attending
to one’s hygiene, dressing, eating, and staying alone; (4) getting
along—interacting with other people; (5) life
activities—domestic responsibilities, leisure, work, and school;
and (6) participation—joining in community activities and
participating in society. Respondents are asked to reflect over
the last 30 days and answer a series of questions, thinking about
how much difficulty they had doing the given activities. There
is a possible maximum score of 5 points for all items, indicating
a rising level of difficulty in performing the activity (1: none,
2: mild, 3: moderate, 4: severe, and 5: extreme). A higher final
score value, calculated as a total score or score by domain,
indicates a higher level of disability [16].

Mobile sensing offers various sources, such as GPS,
accelerometer, gyroscope, and light sensor that can be used to
implement behavioral measures [17]. Unlike traditional
assessment tools, these technologies enable long-term passive
and ecological measurement of patient function. While there
has been some work in digital mental health and machine
learning [18], no studies predict WHODAS 2.0 functionality
score changes using smartphone sensor data. These approaches
are particularly important since they may enable the analysis
of individuals’ functioning and disability evolution and provide
a clinical tool to monitor the progression and efficacy of
treatment. In addition, they provide the opportunity to build
targeted, just-in-time adaptive interventions [19] in a designated
population. Such frameworks deliver interventions within the
context of daily life. Including passive data-driven solutions as
part of the typical PROM frameworks could enrich existing
information and better inform decisions.

Goal of This Study
This work aims to provide a baseline analysis of the feasibility
of using machine learning to predict patients’ WHODAS 2.0
functionality scores from passively gathered digital biomarkers.
Furthermore, we aim to determine which behavioral features
are the most important for predicting different WHODAS 2.0
domains. Using these features, we train a linear regressor for
simplicity and interpretability of the biomarkers as predictors.
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This paper presents a continuous passive assessment modality
and its feasibility in predicting a particular disability scale.

Methods

Ethical Considerations
The data used in this study were collected from an ongoing
study involving passive smartphone monitoring of clinical
outpatients (reference number EO 46-2013). The study received
approval from the institutional review board at the Psychiatry
Department of Fundación Jimenez Diaz Hospital, and all
participants provided written informed consent. The institutional
review board approved the secondary analysis without additional
consent.

The study recruited patients who were at least 18 years old and
were clinical outpatients diagnosed with mental disorders or
attending therapy groups at the institutions mentioned above.
To participate, patients had to own a smartphone with either
Android or iOS operating systems, which they used to connect
to a Wi-Fi network at least once a week. The patients did not
receive payment for their participation. To protect the patient’s
privacy, the study data were anonymized.

Data Set
A clinically validated eHealth platform, eB2 Mindcare [20,21],
collected the participants’ passive data. In addition, clinicians
used the MEmind [22] electronic health tool to record the
patients’ WHODAS 2.0 scores. Patients with the option of
electronic self-reporting filled in an equivalent electronic
WHODAS 2.0 self-report. Patients were able to complete the
WHODAS 2.0 in parts by domain, which allowed for flexibility
and less disruption to the patients. This led to later difficulties
in analyzing WHODAS 2.0 total scores (officially called
WHODAS 2.0 summary score computed by summing the 6
domain scores and adjusting to a range from 0 to 100) due to
uncompleted domains and timing differences of when a patient
would complete each domain. Thus, our predictions are focused
on domain scores that allow for a larger user pool and accurate
time windows for mobile data.

Mobile-Sensed Data
The eB2 MindCare [20,21] mobile app (Evidence-Based
Behavior) collects data from different sources (mobile phone
sensors and wearables) at different frequencies. For this work,
we focused on the data streams related to patient mobility (daily
step count; distance traveled; the number of locations visited
by the patient; time spent at home; and time spent performing
activities such as walking, running, and exercising) and time

spent asleep. Daily summaries were calculated on the values of
these variables, which were then used to extract 64 descriptive
statistical features for characterizing the patient’s behavior in
a 30-day interval.

Data Preprocessing
Figure 1 shows the data selection and feature extraction process.
For each domain, users with the following were removed:
incomplete answers (if some questions were not answered within
a specific domain) and incorrect scores for the individual
questions (if the registered score was out of the range of the
possible scores). In addition, the particular questions’ scores
from 1 to 5 were rescaled following the World Health
Organization guidelines [16] to either values from 0 to 4 or 0,
1, 1, 2, 2. Finally, the score by domain was computed as the
sum of the scores of the respective questions. These scores
served as our target for the supervised prediction problem.

To build the input data set, we cropped a 30-day window of the
data sequences for each WHODAS 2.0 entry. For the baseline
WHODAS 2.0 score completed at study enrollment, we consider
the next 30 days of observations because no previous
mobile-sensed data were collected. For follow-up scores, which
are usually collected biannually, we centered the window on
encapsulating 15 days before and after the score. It was
necessary to transform the time-series data set to be modeled
as a nonsequential supervised learning problem. Therefore, we
extracted statistical summary features (count, minimum,
maximum, mean, SD, and IQR) from the sequences for each
variable and obtained a data set of 64 features. We filtered the
sequences for comprehensive statistics calculation by requiring
every feature to contain at least 2 counts (days) of data and
removing missing values.

We divided the data sets for each domain into 2 independent
subsets based on the patients, ensuring no overlap. The first
subset is the training data set, consisting of 80% of the entries
used to fit the feature selection and predictive models. The
second data set was held out for testing the model performance.
The training set was split into 4 equal folds of 20% for
cross-validation. The train test and cross-validation splits were
done by ensuring the grouping of entries of the same user within
the same set or fold since the model is user independent and
stratifying the IQR of the WHODAS 2.0 scores. The
stratification ensures the model can train and test low, middle,
and high population WHODAS 2.0 scores. Subsequently, the
features were standardized by centering the values around zero
mean with a unit SD. Moving features to a similar scale helps
avoid feature weight problems and provides an interpretable
bias in the case of linear regression.
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Figure 1. Data selection and feature engineering flowchart. WHODAS: World Health Organization Disability Assessment Schedule.

Feature Selection and Predictive Modeling
We used sequential forward selection (SFS) [23], also known
as a sequential feature selection or stepwise forward selection,
a greedy search algorithm for feature selection, which reduces
an initial d-dimensional feature space to a k-dimensional feature
subspace, where k<d. SFS avoids the feature selection stability
problems of the LASSO with a similar idea as best subset
selection but on a reduced set of subsets, which is
computationally feasible [24]. In SFS, features are added one
by one to an empty set of features until reaching an upper bound
set of features. At each step, a criterion or score (in our case
mean absolute error [MAE]) is calculated and saved that is used
to select the feature that provides the better score (lower MAE)
before continuing on to the next step. To find the best set of
features in the case of each domain, we performed a search by
iterating from k=1 to 20 with 4-fold cross-validation over the
training set and selecting the k with the highest average
performance across folds with the same model design as our
final model. Finding the best features for predicting each domain
provides greater interpretability to our models, which is essential
in a clinical setting where clinicians need reliable and
straightforward decision rules [25].

Once the best features were found, we trained linear regression
models to perform the prediction task. To better suit the ordinal
classification problem, we performed a simple modification
after the regressor by thresholding the predictions between the
minimum (0) and maximum values of the specific domain by
rounding. While linear regression has limitations in this specific
setting, it does offer certain advantages. Linear regression
models are less prone to overfitting, especially when dealing
with the noise commonly encountered in real-world data.
Although nonlinear models may perform better, they are more
prone to overfitting and are less interpretable and explainable.

These latter factors are crucial considerations when applying
machine learning in a clinical setting [26,27].

The final models underwent evaluation using the held-out test
set. Test MAE and test mean absolute percentage error (MAPE)
served as the evaluation metrics. MAE was chosen for its
linearity, which aligns well with the context of this study. This
is in contrast to root-mean-squared error, which tends to
overemphasize larger errors due to the squaring of error values.
Given the inherent variability in real-world data sets like the
passive sensing data set in this study, metrics that are more
robust against larger errors were preferred [28,29]. Furthermore,
MAPE provides a metric to compare the different domains with
a different number of questions and different total scores. We
applied this approach separately for the different WHODAS
2.0 domains, using all the extracted features and the best subset
of features.

Results

User Statistics
After our data filtering (Figure 1), 1526 WHODAS 2.0 domain
entries of 396 participants collected between January 2017 and
April 2021 were selected for our analysis. The cohort of patients
had a median age of 44 (IQR 33-53) years at baseline, 63.13%
(250/396) were female participants, and 29.04% (115/396) were
male participants. Age and gender information were unavailable
for 8.08% (32/396) and 7.83% (31/396) of the participants,
respectively. Sociodemographic information was not included
as input to the model. Figure 2 depicts an overview of the
WHODAS 2.0 domain score distributions in the overall
population in the form of violin plots, encompassing the
summary statistics and the density of each domain score. The
white dot in the middle is the median value, and the thick black
bar in the center represents the IQR. Table S1 in Multimedia
Appendix 1 provides the numerical statistics on the distributions.
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Figure 2. The distribution of World Health Organization Disability Assessment Schedule 2.0 functionality scores per domain in the patient cohort.
WHODAS: World Health Organization Disability Assessment Schedule.

Results of Feature Selection and Predictive Modeling
We performed the feature selection using SFS, followed by the
training of unregularized linear regressors with the best feature
subset for each domain. We then compared the performance to
linear regressors trained on the entire feature set. Table 1 shows
the domain prediction errors as MAE and MAPE for both
experimental set-ups. Note that these scores are inversely
oriented, meaning that lower values indicate better performance.

Figure 3 summarizes the best feature subsets selected across all
6 domains (refer to Table S2 in Multimedia Appendix 1 for a
detailed overview). In each case, the models consistently
discarded a majority of input features, resulting in a reduction
of the feature space to 19, 19, 5, 6, 17, and 13 features from 64
for the respective domains. Figure 4 illustrates the feature
weights of the linear regressor trained with all features per
domain, with the best subset features indicated by a grid overlay.
To facilitate comparison, the absolute value of regression
coefficients per domain model was normalized within the range
of 0 to 1. While each feature statistic is not shared, it can be
seen that the models coincide in the feature groups important
to all feature models. Both models capture the relevant data
from each feature group but use different statistics. Since the
extracted statistics (count, mean, min, max, and quartiles) are
interrelated, choosing a subset of these statistics can summarize
the relevant information captured by the regressor.

Across all domains, at least 1 statistic related to distance traveled
and time spent at home was consistently selected. These features

impart information on daily movement patterns, which may
indicate many elements of an individual’s lifestyle, including
work (or lack of work), socialization (in and out of the home),
and isolation, among many others. This focus on movement
patterns was further reinforced by including vehicle time, step
count, and walking time statistics across multiple domains. Step
count and walking time are additional physical activity
descriptors, along with exercise time. Physical activity
biomarkers proved important in the cognition, mobility, life
activities, and participation domains. Sleep-related biomarkers,
however, were exclusively selected for the cognition and
participation domains. Physical well-being in both exercise and
sleep is reasonably related to these domains. The self-care
domain and getting along domain were described with the lowest
amount of important features compared to the 4 other domains,
indicating a different pattern of feature relevance.

The performance results presented in Table 1 demonstrate that
the regression models trained on the reduced feature space
slightly outperformed those that were trained on all features.
Regression models estimate parameters for each term in the
model, and the presence of noninformative variables can
introduce uncertainty, thereby diminishing the overall
performance. However, the marginal difference observed
suggests that both models can capture relevant information.
Despite the model trained on all features being burdened with
a larger number of features and lacking regularization, it still
manages to retain some level of effectiveness in regression.
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Table 1. Regression evaluation metrics over the 4 folds.

Predicting with selected featuresPredicting with all 80 featuresScore
range

WHODASa 2.0
domain

MAPE (%), mean (SD)MAE, mean (SD)Features selected, nMAPEc (%), mean (SD)MAEb, mean (SD)

17.76 (14.54)3.55 (2.90)1918.84 (16.09)3.76 (3.21)0-20Cognition

21.26 (12.42)3.40 (1.98)1921.91 (15.26)3.50 (2.44)0-16Mobility

14.86 (15.09)1.48 (1.50)515.69 (17.54)1.56 (1.75)0-10Self-care

20.37 (14.96)2.44 (1.79)626.11 (22.74)3.13 (2.72)0-12Getting along

27.21 (22.52)6.53 (5.40)1731.56 (26.66)7.57 (6.40)0-24Life activities

15.54 (11.23)3.73 (2.69)1316.16 (13.10)3.88 (3.14)0-24Participation

aWHODAS: World Health Organization Disability Assessment Schedule.
bMAE: mean absolute error.
cMAPE: mean absolute percentage error.

Figure 3. Feature selection results per World Health Organization Disability Assessment Schedule 2.0 domain.

Figure 4. The feature importance of the linear regressor with all features per World Health Organization Disability Assessment Schedule 2.0 domain
(shaded boxes) overlaid with the selected ones (hatched area). The shading indicates the size of the regression coefficient, while the hatching marks the
selected feature using sequential forward selection.

Discussion

Principal Findings
In this study, our objective was to predict WHODAS 2.0
functionality scores for each domain using only passively

collected digital biomarkers. To achieve this, we used statistical
feature engineering techniques, followed by a simple machine
learning approach that involved selecting features through SFS
for linear regression. This approach demonstrated the potential
to predict functionality from passively sensed data. Additionally,
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by using a straightforward linear regression model, we ensured
the interpretability of the model’s decisions.

Extracting statistical measures of the time-series sequences
allowed dealing with missing data without applying imputation
techniques; however, certain entries had to be excluded due to
their limited information content (eg, sequences with completely
missing observations per feature). Our focus was to identify the
most relevant features from an ample feature space and eliminate
noninformative or redundant predictors from the model for each
domain. We found that 5-19 features were sufficient for each
domain, and the most relevant being the distance traveled, time
spent at home, time spent walking, exercise time, and vehicle
time. These features are biomarkers for daily movement patterns
and individuals’ physical activity that were most informative
for linear regression.

The models using feature selection outperformed those using
the entire feature space across all domains. They achieved
accurate predictions of patients’ WHODAS 2.0 functionality
scores per domain, with a maximum MAPE of 27.21% on the
life activities domain and a minimum MAPE of 14.86% on the
self-care domain. These errors are reasonable for a linear
regression performing a complicated ordinal classification task.

The overall model performance can be explained by the
distribution of the outcome variable within the respective data
sets: mid-range values dominate in each domain; therefore, it
becomes harder for the models to predict the more extreme
scores. This issue is exacerbated by the fact that the target
variable’s distribution is skewed rather than normally
distributed, potentially affecting the performance of a regression
model. Additionally, both the presence of missing values and
a target variable that is better suited for ordinal classification
presented challenges that impacted performance.

It is worth noting that the domains with the fewest selected
features and the smallest range of possible scores exhibited the
lowest and highest MAPE values, respectively. Feature selection
did not alter the error ranking of the domains when compared
to the model that used all features.

Regarding feasibility, an average MAPE (across the 6 domains)
of 19.5% was a reasonable error for a simple yet interpretable
model. WHODAS 2.0 domain or total scores cut-offs tend to
be used clinically based on population norms [14]. A total score
of 50, which is similar to a percentile score in how it is rescaled
from 0 to 100, almost represents the 95th population percentile
[14]. Our model could be feasibly used to determine cases of
severe disability even with an error margin of around 20%. As
mentioned previously, the most important use case would be
passive continuous assessment of patients. With the current
level of error, using this simple yet effective model would be
feasible for detecting moderate or severe changes in
functionality. Additionally, the experiments presented herein
do not take into account the continuous streaming of data that
can further help the model to be more accurate globally and for
a specific user. We believe that the framework and approach
presented, especially with room to improve, show promising
results for creating a continuous assessment and monitoring

system that could alert physicians to patient loss of functionality
and allow for just-in-time interventions.

Limitations
Although our approach showed promising results, it also has
limitations. The automatically generated wearable device data
were passively collected in a real-world setting. This is a
strength in ecological validity; however, it also introduces
challenges, such as significant missing data and noise, which
are commonly encountered in real-world passive data
acquisition. Moreover, there are also data quality problems:
missing data due to users not wearing the device or incorrect
data arising from the device malfunctioning. These issues may
have adversely affected the predictive performance of our model
and biased the importance of certain variables. Missing data
also posed a problem in the features used from the eB2 database,
as other helpful features, such as app usage and phone unlocks,
which are directly related to social domains, were filtered out,
causing a severely reduced data set. Consequently, this led to
a substantial reduction in our data set. The data set presents
many challenges because it is the result of merging 2 real-world
databases with missing values, erroneous entries, and noise.

Another limitation arises from the fact that, in many cases,
individuals have only a single score, which does not allow for
training personalized models that could better account for the
intraindividual variations. While step data can provide relevant
information for determining mobility, factors such as an
individual’s lifestyle, work conditions, and other variables
greatly influence step count. We hypothesize that a model that
learns individual variability and patterns and then examines the
population would better suit this task. However, obtaining
longitudinal large population data sets that combine clinical and
wearable data poses considerable challenges.

Conclusions
Our work is the first to suggest a machine learning–based
approach for assessing WHODAS 2.0 functionality from
passively sensed data. The results demonstrate the feasibility
of designing a pipeline that passively monitors patients’
functionality over time. However, it is important to note that
predicting scores for each WHODAS 2.0 domain equally well
poses a significant challenge. Nevertheless, the feature selection
approach provides insight into relevant behavioral measures
contributing to improved prediction performance. This aspect
of our approach enhances the interpretability of the results,
which is important for real-world and clinical applications.

Moving forward, an interesting avenue to explore is deep
learning-based temporal methods that operate on the data at a
more refined time scale. Instead of relying on statistical feature
engineering and selection, these models can learn representations
directly from raw input sequences that are most relevant to the
prediction problem. We will further investigate the possibilities
of specialized models for individual patients to understand the
functionality evolution better, improve prediction accuracy, and
provide interpretable model outputs to clinicians. This line of
investigation holds promise for advancing the field and
addressing the challenges associated with predicting WHODAS
2.0 functionality using passive data collection methods.
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