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Abstract

Background: Early prediction of the need for invasive mechanical ventilation (IMV) in patients hospitalized with COVID-19
symptoms can help in the allocation of resources appropriately and improve patient outcomes by appropriately monitoring and
treating patients at the greatest risk of respiratory failure. To help with the complexity of deciding whether a patient needs IMV,
machine learning algorithms may help bring more prognostic value in a timely and systematic manner. Chest radiographs (CXRs)
and electronic medical records (EMRs), typically obtained early in patients admitted with COVID-19, are the keys to deciding
whether they need IMV.

Objective: We aimed to evaluate the use of a machine learning model to predict the need for intubation within 24 hours by
using a combination of CXR and EMR data in an end-to-end automated pipeline. We included historical data from 2481
hospitalizations at The Mount Sinai Hospital in New York City.

Methods: CXRs were first resized, rescaled, and normalized. Then lungs were segmented from the CXRs by using a U-Net
algorithm. After splitting them into a training and a test set, the training set images were augmented. The augmented images were
used to train an image classifier to predict the probability of intubation with a prediction window of 24 hours by retraining a
pretrained DenseNet model by using transfer learning, 10-fold cross-validation, and grid search. Then, in the final fusion model,
we trained a random forest algorithm via 10-fold cross-validation by combining the probability score from the image classifier
with 41 longitudinal variables in the EMR. Variables in the EMR included clinical and laboratory data routinely collected in the
inpatient setting. The final fusion model gave a prediction likelihood for the need of intubation within 24 hours as well.
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Results: At a prediction probability threshold of 0.5, the fusion model provided 78.9% (95% CI 59%-96%) sensitivity, 83%
(95% CI 76%-89%) specificity, 0.509 (95% CI 0.34-0.67) F1-score, 0.874 (95% CI 0.80-0.94) area under the receiver operating
characteristic curve (AUROC), and 0.497 (95% CI 0.32-0.65) area under the precision recall curve (AUPRC) on the holdout set.
Compared to the image classifier alone, which had an AUROC of 0.577 (95% CI 0.44-0.73) and an AUPRC of 0.206 (95% CI
0.08-0.38), the fusion model showed significant improvement (P<.001). The most important predictor variables were respiratory
rate, C-reactive protein, oxygen saturation, and lactate dehydrogenase. The imaging probability score ranked 15th in overall
feature importance.

Conclusions: We show that, when linked with EMR data, an automated deep learning image classifier improved performance
in identifying hospitalized patients with severe COVID-19 at risk for intubation. With additional prospective and external
validation, such a model may assist risk assessment and optimize clinical decision-making in choosing the best care plan during
the critical stages of COVID-19.

(JMIR Form Res 2023;7:e46905) doi: 10.2196/46905
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Introduction

Severe COVID-19 caused by SARS-CoV-2 predominantly
affects the lungs due to the high affinity of the virus for the
angiotensin-converting enzyme 2 receptor expressed extensively
in the alveolar epithelium [1]. Approximately 14% of patients
with COVID-19 required hospitalization during the initial wave
of the pandemic, and the intensive care unit transfer rate ranged
from 5% to 32% [2,3]. Acute hypoxemic respiratory failure,
complicated by acute respiratory distress syndrome, is a frequent
cause of mortality among hospitalized patients with severe
COVID-19. Thus, airway and ventilation management is crucial
for optimizing patient outcomes [4]. There are several guidelines
for the respiratory management of SARS-CoV-2 infection,
supporting the emerging consensus that noninvasive ventilation
and high-flow nasal cannula are superior to invasive mechanical
ventilation (IMV) for treating COVID-19 acute hypoxemic
respiratory failure [5-7]. IMV, however, may ultimately be
required in 8%-20% of those hospitalized with COVID-19
[8-10].

The decision to intubate a patient with COVID-19 and the
timings of intubation are very challenging, and there remains
significant clinical uncertainty. Currently, clinical judgment,
patient’s choice, and advance directives regarding IMV are the
main drivers of the decision to intubate. Clinical markers such
as respiratory rate, oxygen saturation, dyspnea, arterial blood
gases, and radiographic observations are the primary markers
routinely being used to identify candidates for intubation [11].
There is no traditionally agreed upon numeric score or index,
and while certain indices have been proposed, such as the ratio
of oxygen saturation index, their use is limited to certain
samples, and these indices are in the early phase of clinical
validation and adoption [12]. As such, opportunity exists for
multimodal artificial intelligence methods to fill this gap.

Since 2020, many published studies [13-24] have tried to use
machine learning techniques to predict the need for mechanical
ventilation in patients with COVID-19. The majority of these
studies used only clinical variables (structured data) [13] and
only 15 of them (Figure 1 [13-24]) considered chest radiographs
(CXRs) as a potential modality combined with clinical variables.
Figure 1 is a funnel graph showing the number of similar
published studies by criteria of review. The scope and top
criteria for this study are “COVID-19 intubation predictive
model using CXR data.” All referenced studies were found
through the following PubMed query between January 1, 2020,
and February 28, 2023: (“COVID-19” OR “coronavirus disease
2019”) AND (“artificial intelligence” OR “machine learning”
OR “deep learning” OR “convolutional neural network”) AND
(“chest x-ray” OR “chest radiograph”) AND (“intubation” or
“mechanical ventilation”). Out of the 18 studies found, 6 were
out of our study’s scope (different clinical outcome prediction
or review type of studies). Each study was evaluated against
each criterion. No study satisfied all the criteria except our study.
Our new approach not only combined CXR data and clinical
variables to predict the need for mechanical ventilation but also
tried to show that applying automated image segmentation and
using longitudinal values of clinical observations builds the
prognostic potential in patients’ clinical profiles.

This study evaluates a machine learning risk stratification
approach to predict the need for invasive ventilation based on
a broad range of potential predictors. We designed a
multimodality machine learning classifier based on electronic
medical record (EMR) data and picture archiving and
communication system images to predict the likelihood of
intubation for patients with COVID-19 on the floor up to 24
hours in advance.
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Figure 1. Funnel graph showing the number of similar published studies [13-24] by criteria of review.

Methods

Study Population and Setting
We included all adult patients (≥18 years of age) admitted to
The Mount Sinai Hospital (New York, NY) between March 8,
2020, and January 29, 2021, with a confirmed COVID-19

diagnosis by real-time reverse transcription polymerase chain
reaction at the time of admission. Patients who were intubated
or discharged within 24 hours of admission were excluded.
Figure 2 shows the flowchart of the inclusion and exclusion of
the patients in this cohort. This study adhered to the TRIPOD
(Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis Or Diagnosis) statement [25].

Figure 2. Inclusion and exclusion criteria chart. RT-PCR: reverse transcription polymerase chain reaction.

Ethics Approval
This study was undertaken at The Mount Sinai Hospital, a
1134-bed tertiary care teaching facility, and it was approved by

the institutional research board (approval IRB-18-00581). All
methods were performed in accordance with the relevant
guidelines and regulations provided by the institutional research
board, which granted a waiver of informed consent.
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Data Sources
The Mount Sinai Hospital currently uses 3 main electronic
health record platforms: Epic (Epic Systems), Cerner (Cerner
Corporation), and Laboratory Information Systems Suite (Single
Copy Cluster Soft Computer). Data are aggregated from all 3
systems into a harmonized data warehouse. We received
admission-discharge-transfer events from Cerner, laboratory
results from Laboratory Information Systems Suite, and clinical
data (ie, vital signs and nursing assessments) from Epic.
Electrocardiogram results were obtained from the MUSE
cardiology information system (GE HealthCare Technologies,
Inc). To assemble the CXR data set, we obtained raw DICOM
(Digital Imaging and Communications in Medicine) files from
the picture archiving and communication system platform (GE
HealthCare Technologies, Inc). CXRs taken in supine and
upright positions were included.

Label and Clinical Profile 
All inpatient encounters were annotated based on the following
logic.

1. If the intubation happened within the inpatient hospital
length of stay, the label was positive, and the label time
stamp was the intubation time.

2. Otherwise, we consider that the patient was not intubated,
and therefore, the label was negative, and the label time
stamp was the discharge time.

Clinical profiles, including vital signs, laboratory results, nursing
assessments, and electrocardiograms, were censored 24 hours
before the label time stamp. The prediction window of 24 hours

was chosen to provide a timely opportunity for clinical
interventions, goals of care discussions, and resource planning.

CXR Processing
We included radiograph images with computed radiography
and digital radiography modalities in anteroposterior or
posteroanterior views. For each patient with a CXR, we used
the last segmented CXR before the prediction time stamp. The
images were resized to 224×224 pixels; then, their pixel
intensities were rescaled to range between 0 and 255, and
histogram matching and normalization were performed on the
intensities. To make sure that the deep learning model did not
overfit and was robust, we applied oversampling of the minority
class by augmenting each image in the training set by using a
random combination of right or left rotation (maximum 15°),
random flipping, random translation, random blurring, and
random sharpening. The region of interest in the acquired CXR
was the lungs (left and right). However, they were taken with
some noise surrounding the lungs, including annotated text in
the corners; external devices placed on the patient; and adjacent
anatomy, including the shoulders, neck, and heart. We
performed image segmentation in order to retain only the lung
regions of the images.

The CXRs were segmented using the U-Net model architecture
[26], a fully connected convolutional neural network consisting
of an encoder and a decoder. Specifically, we used the
LungVAE [27] implementation of U-Net, which was trained
on a publicly available CXR data set. Figure 3 shows a CXR
before and after segmentation.

Figure 3. Chest radiographic images before (A and C) and after (B and D) image segmentation.
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Modeling and Localization Framework

Training, Testing, and Holdout Split
We randomly split the cohort into a training set (1734/2481,
70%), a test set (432/2481, 17%), and a holdout set (315/2481,
13%), with no patient overlap between the sets. Because the
intubation rate was 9.6% (239/2481) over the whole cohort,
there was an extreme class imbalance between the majority
class (nonintubated patients) and the minority class (intubated
patients). We performed random undersampling [28] on the
training data set to balance the majority class until both classes
were equally balanced.

Transfer Learning Approach
The segmented CXRs were then fed into a pretrained
DenseNet-201 [29] model. Multimedia Appendix 1 shows the
architecture of the DenseNet-201 model. The DenseNet model
was pretrained on RGB images (3 input channels) from
ImageNet data set and on 1000 classes. Model input and output
dimensions were changed to fit a grayscale image binary
classification task. We also modified the architecture by adding
a linear convolutional layer with a rectified linear unit activation
function and dropout and used the LogSoftmax function to
obtain the final probability output.

The model prespecifications were as follows: Adam optimizer,
the loss function was binary cross-entropy, and the epoch size
was 50. The framework used was PyTorch (version 1.01). Both
segmentation and classification model training were performed
using PyTorch libraries in Python [30] and trained with graphic
processing unit clusters on Amazon Web Services in a secured
network.

Then, using transfer learning [31], our binary classifier was
trained using 10-fold cross-validation and a grid-search
algorithm to tune hyperparameters (learning rate, number of
hidden units, dropout, batch size) based on the area under the
receiver operating characteristic curve (AUROC). Multimedia
Appendix 2 shows the search ranges and the optimal
hyperparameters.

Predictors in the Image Classifier
Convolutional neural network models lack decomposability
into intuitive and understandable components, making them
hard to interpret. To interpret our image classifier, we used the
gradient-weighted class activation mapping method [32]. This
technique provides us with a way to look into what particular
parts of the image influenced the whole model’s decision for a
specifically assigned label. It uses the gradients of our target
label (intubation) flowing into the final convolutional layer to
produce a coarse localization map, highlighting the important
regions in the image for predicting the label. We tested our
method on our test images, but this tool is yet to be automated.

Model Fusion Classification: Combining EMR and
CXR Data
When combining both data modalities—CXRs and EMR
variables—different methods called fusion methods are possible
[33]. The fusion model implemented here is a random forest
[34] that has, as a feature vector, a concatenation of longitudinal
features from the EMR (patient demographics, laboratory results,
vitals, flowsheets) and the output probability from the image
classifier. The final feature vector is described in Figure 4.
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Figure 4. Fusion model architecture. The first 3 steps of the electronic medical record pipeline refer to output data frames. DF: data frame; EMR:
electronic medical record.

Sampling Strategy for EMR Features
Given the crisis nature of the pandemic, clinicians caring for
this cohort collected data such as vital signs, laboratory results,
electrocardiograms, and nursing assessments, based on clinical
judgment and resource availability rather than standard protocols
during the early phase of the crisis. Thus, to create longitudinal
(time-series) data for each observational variable, we included

the 3 most recent assessments available before the prediction
time (Figure 5). Missing values for each variable were imputed
using the median value across the cohort [35]. When less than
3 assessments are available for a particular variable, the
available values are placed in the most recent time slots, and
the oldest time-slot value is imputed with the cross-cohort
median for that variable.

Figure 5. Sampling strategy flowchart for the electronic medical record variables.
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EMR Feature Selection
From a total of 56 routinely collected EMR variables from the
hospital, an optimal set of 41 variables was selected for the
development of the predictive models (Multimedia Appendix
3). The variables initially removed included those with 90% or
higher missing values and highly correlated variables [36]
(above 0.7). We then performed recursive feature elimination
[37]. In this approach, a single feature is removed at each step,
and the model is evaluated on the test set. The quality of the fit
to the data is measured using AUROC. Variables whose removal
does not significantly alter the AUROC are eliminated from the
feature set.

Model Fusion Strategy
A random forest model was developed and optimized in
Scala/Spark with the MLlib library [38] by using the training
and test sets. It was trained using 10-fold cross-validation and
a grid search algorithm to tune hyperparameters based on the
AUROC on the test set to have robust evaluation.

Model Testing and Statistical Methods
For each of the developed models, performance was evaluated
on the test set and on the holdout set (which was not used for
model development), and the model-derived class probabilities

were used to predict intubation within 24 hours with a default
threshold of 0.5. Predictions less than the threshold were
categorized as negative. Sensitivity, specificity, accuracy,
positive predictive value, negative predictive value, F1-score,
AUROC, and area under the precision recall curve (AUPRC),
along with bootstrap 95% CIs, were estimated for evaluating
the screening tool’s performance. Group comparisons were
performed using a 2-sided Student t test or Kruskal-Wallis for
continuous variables as appropriate and chi-square test for
categorical variables. All analyses were performed using SciPy
in Python.

Results

Study Population and Outcomes
A total of 2481 COVID-19–positive patients were included in
the overall study cohort. This cohort included a higher
proportion of men (1390/2481, 56%), and the median age was
62.2 years. The median duration of hospital stay was 4.9 days
and ranged from 1 to 72 days. The overall rate of intubation
was 9.6% (239/2481) in the whole study cohort. Table 1 shows
the clinical characteristics and descriptive statistics of the cohort.
Intubated patients were significantly older and more likely to
be male and diabetic than the nonintubated patients.
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Table 1. Patient cohort and characteristics and statistical comparisons between intubated and nonintubated patient groups.

P valueNonintubated (n=2242)Intubated (n=239)Overall (N=2481)Characteristics

<.001Age (years)

 59.9 (18.1)64.9 (12.4)60.4 (17.7)Mean (SD)

 62.0 (18-120)65.5 (20-94)62.2 (18-120)Median (min-max)

.03Gender, mean (SD)

 1237 (55.2)135 (64)1390 (56.1)Male

 1003 (44.7)86 (36)1089 (43.9)Female

 2 (0.1)0 (0)2 (0.08)Other

<.001Race and ethnicity, mean (SD)

 746 (33.3)72 (30.1)819 (32.9)White

 433 (19.3)24 (10)456 (18.4)African American

 536 (23.9)65 (27.2)600 (24.2)Hispanic

 116 (5.2)13 (5.4)129 (5.2)Asian

 308 (13.7)50 (20.9)358 (14.4)Other

 103 (4.6)15 (6.3)119 (4.8)Unspecified

.03BMI

 29.3 (7.2)30.5 (8.2)29.4 (7.3)Mean (SD)

 28.3 (12.5-69.3)28.7 (12.4-60.5)28.3 (12.5-69.3)Median (min-max)

.73Smoking history, mean (SD)

 23 (1)1 (0.4)24 (0.9)Current smoker

 510 (22.7)48 (20.1)558 (22.5)Past smoker

 69 (3.1)9 (3.8)78 (3.1)Never smoked

 1640 (73.2)181 (75.7)1821 (73.4)Missing

.07Hypertension, mean (SD)

 1159 (51.7)130 (54.4)1289 (51.9)Yes

 934 (41.7)79 (33)1013 (40.8)No

 149 (6.6)30 (12.6)179 (7.2)Missing

<.001Diabetes, mean (SD)

 742 (33.1)112 (46.9)854 (34.4)Yes

 1351 (60.3)97 (40.5)1448 (58.4)No

 149 (6.6)30 (12.6)179 (7.2)Missing

.41Chronic obstructive pulmonary disease, mean (SD)

 358 (16)41 (17.1)399 (16.1)Yes

 1735 (77.4)168 (70.3)1903 (76.7)No

 149 (6.6)30 (12.6)179 (7.2)Missing

<.001Obesity, mean (SD)

 381 (17)64 (26.8)445 (17.9)Yes

 1712 (76.4)145 (60.7)1857 (74.9)No

 149 (6.6)30 (12.5)179 (7.2)Missing

.14Length of stay (days)

 6.5 (6.1)7.2 (8.2)6.6 (6.2)Mean (SD)

 4.9 (1-48)4.7 (1-72)4.9 (1-72)Median (min-max)

<.001Intensive care unit care received, mean (SD)

JMIR Form Res 2023 | vol. 7 | e46905 | p. 8https://formative.jmir.org/2023/1/e46905
(page number not for citation purposes)

Nguyen et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


P valueNonintubated (n=2242)Intubated (n=239)Overall (N=2481)Characteristics

 231 (10.3)239 (100)470 (18.9)Yes

 2011 (89.7)0 (0)2011 (81.1)No

Predictors in the Final Fusion Model
Hyperparameters used in the final random forest model are
shown in Multimedia Appendix 2. Figure 6 summarizes the top
predictive variables ordered by the Gini coefficient (the
definitions of the variables in this figure are shown in
Multimedia Appendix 3). Our model identified a series of
features related to progressive respiratory failure (respiratory
rate, oxygen saturation), markers of systemic inflammation
(C-reactive protein, white blood cell count, lactate
dehydrogenase), hemodynamics (systolic and diastolic blood

pressures), renal failure (blood urea nitrogen, anion gap, and
serum creatinine), and immune dysregulation (lymphocyte
count). Respiratory rate (the earliest recorded value of the latest
3 assessments) had the highest predictive value in the random
forest model, and white blood cell count was the second highest.
Variables included in the final model reflected the importance
of temporal changes in vital signs, markers of acid-base
equilibrium and systemic inflammation, and predictors of
myocardial injury and renal function. Figure 7 shows the parts
of the lungs that contributed to intubation risk prediction.

Figure 6. Gini coefficients of the joint fusion random forest model variables. Refer to Multimedia Appendix 3 for the definitions of the variables.
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Figure 7. (A) Example of a segmented lung from the last chest radiograph of an intubated patient. (B) The most important features (pixels) predicting
intubation are highlighted in the class activation map calculated by gradient-weighted class activation mapping projected on the image.

Comparison of the Predictive Performance of the
Models
At a prediction probability threshold of 0.5, the AUROC for
the image classifier alone was 0.58 (95% CI 0.44-0.73) and the
AUPRC was 0.21 (95% CI 0.08-0.38), with a positive predictive
value of 14.8% (95% CI 7%-24%) on the holdout set. Table 2
shows all the performance metrics for all the models on the test
set and the holdout set. Compared to the image classifier, the
fusion model provided boosted performance results in the test

set and the holdout set. By adding additional EMR features, the
sensitivity doubled from 38.5% to 78.9%, specificity increased
by nearly 10%, accuracy by 15%, positive predictive value by
104%, AUROC by 51%, F1-score by 112%, and the AUPRC
by 140% in the holdout set. The AUROC graphs are shown in
Figure 8 and Figure 9. The odds ratio for requiring mechanical
ventilation within 48 hours of a positive prediction was 4.73
(95% CI 4.5-9.3) compared to a negative prediction and 11.2
(95% CI 10.4-12.0) for requiring mechanical ventilation at any
time during admission in the holdout set.

Table 2. Predictive performance of both the image classifier and the joint fusion classifier on the test set and the holdout set. Positive and negative
predictions were assigned using the prediction probability threshold of 0.5.

Intubation
rate

Unique

patients (n)
AUPRCd

(95% CI)
AUROCc

(95% CI)

F1-score
(95% CI)

NPVb

(95% CI)
PPVa (95%
CI)

Accuracy
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Data set,
model

0.076432Test

0.124
(0.03-0.46)

0.684
(0.49-0.81)

0.160
(0.05-0.40)

0.965
(0.92-1.0)

0.103 (0.0-
0.23)

0.757
(0.68-0.84)

0.776
(0.70-0.85)

0.5 (0.0-
0.83)

Imaging
alone

0.421
(0.19-0.64)

0.873
(0.76-0.95)

0.428
(0.27-0.58)

0.988
(0.96-1.0)

0.292
(0.16-0.43)

0.833
(0.78-0.88)

0.828
(0.78-0.89)

0.860
(0.67-1.0)

Joint fu-
sion

0.117315Holdout

0.206
(0.08-0.38)

0.577
(0.44-0.73)

0.240
(0.09. 0.37)

0.896
(0.82-0.95)

0.184
(0.07-0.32)

0.715
(0.63-0.79)

0.757
(0.68-0.84)

0.385
(0.15-0.64)

Imaging
alone

0.497
(0.32-0.65)

0.874
(0.80-0.94)

0.509
(0.34-0.67)

0.967
(0.93-0.99)

0.372
(0.22-0.54)

0.825
(0.76-0.88)

0.830
(0.76-0.89)

0.789
(0.59-0.96)

Joint fu-
sion

aPPV: positive predictive value.
bNPV: negative predictive value.
cAUROC: area under the receiver operating characteristic curve.
dAUPRC: area under the precision recall curve.
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Figure 8. Receiver operating characteristic curves of the image classifier (blue dashed line) and of the joint fusion model (blue solid line) on the test
set and their respective areas under the curve and 95% CIs. AUROC: area under the receiver operating characteristic curve.

Figure 9. Receiver operating characteristic curves of the image classifier (orange dashed line) and of the joint fusion model (orange solid line) on the
holdout set and their respective areas under the curve and 95% CIs. AUROC: area under the receiver operating characteristic curve.

Discussion

In this study, we examined the utility of a deep learning image
classifier based on routinely available CXR images along with
clinical data to predict the need for IMV in patients with
COVID-19. On the holdout set, the image classifier alone
reached an AUROC of 0.58 and an AUPRC of 0.21; when the
image probability was used in combination with structured EMR
data in a random forest model, the fusion model reached an
AUROC of 0.87 and an AUPRC of 0.50. Despite the relatively
low AUPRC of the image classifier alone, it was still 15th in
overall feature importance in the fusion model, outperforming

some traditionally important clinical parameters such as
creatinine levels, age, and venous blood pH. With optimization,
a further increase in the feature importance of the image
probabilities would be expected. The final fusion model had a
negative predictive value of 97% and positive predictive value
of 37% for the holdout set, which may provide significant
clinical utility. This is supported by the fact that the odds ratio
for intubation in patients with a positive prediction is greater
than 11.

Several published reports have used deep learning of actual
CXR images in combination with EMR data to predict the risk
of intubation for patients admitted with COVID-19. Kwon et
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al [14], Aljouie et al [19], and Lee et al [39] used systematic
manual scoring or manual labeling of CXR images to predict
mechanical ventilation and deaths, achieving high performance;
however, the utility of these approaches is limited, as it requires
manual scoring by experts and cannot easily be rolled out to
stressed health systems in an automated manner. Jiao et al [40]
also used transfer learning on an ImageNet pretrained model to
generate an image classifier used in fusion with EMR data to
generate a classifier for intubation in patients with COVID-19
[40]. As in this study, the addition of EMR data boosted the
image classifier performance, with the image classifier alone
reaching an AUROC of 0.8, EMR alone reaching an AUROC
of 0.82, and the fusion model an AUROC of 0.84. Although
the addition of images only improved the AUROC of the EMR
model from 0.82 to 0.84 in internal testing, on an external
validation set, the addition of images improved AUROC from
0.73 to 0.79, which suggests that the images may be useful in
guarding against overfitting. The differences between the image
classifier and overall performance in the studies mentioned
above and those in this study may be related to the higher event
rate in their cohort, which diminished class imbalance (24%
intubation rate in Jiao et al [40] vs 9.6% in this study) as well
as potentially improved segmentation. Moreover, it suffers from
manual review and hand editing of automated segmentation,
which then limits clinical applicability versus using a fully
automated imaging processing pipeline that this study offers.

Some studies utilized an end-to-end automated pipeline for
processing radiography images and EMR data similar to that
used in this study [17,22,24,41]; however, none make direct
prediction of intubation and IMV in hospitalized patients. Chung
et al [17] and Dayan et al [22] focused on the prediction of
oxygen requirement in emergency department patients with
limited data availability. Duanmu et al [41] focused on
predicting the duration on IMV instead, but they are one of the
very few using longitudinal data in their pipeline, suggesting
that longitudinal data may bring more prognostic value than
single-point data. O’Shea et al [24] had one of the highest
performance end-to-end automated models, with an AUROC
of 0.82 in predicting death or intubation within 7 days. However,
those models are limited by the lack of image segmentation that
ensure only pulmonary or thoracic features are considered in
their models, use of a deep learning model to classify the degree
of lung injury but not predict intubation itself, and use of a single
point, that is, the first available value for each variable;
therefore, they suffer from a lack of robustness that would not
account for changes in the radiographs or in the patient’s clinical
condition. The very long prediction window in O’Shea et al

[24] (7 days vs 24 h in this study) is less amenable to clinical
intervention.

The choice of a pretrained model may also be important.
Kulkarni et al [18] used transfer learning using CheXNeXt, a
DenseNet121 architecture model pretrained on a cohort of CXR
images to identify lung pathologies as a base and reported an
AUROC of 0.79 for their transfer learning model trained with
only 510 images, suggesting that potentially fewer images are
required when the model is pretrained on images closer to the
appropriate subject matter [18].

The limitations of this study include a high-class imbalance of
9.6% (239/2481) intubation rate and a limited sample size of
images. Another limitation was the changing practice pattern
throughout the pandemic, as more was learned about the natural
history of COVID-19, and practice patterns shifted to favor less
frequent use of IMV [42]. Although there were fears of
ventilator shortage or rationing of ventilators early in the
pandemic; fortunately, there was no such shortage in the Mount
Sinai Health System. Finally, the prediction time point for
patients who were not intubated was selected to be 24 hours
before discharge; this may potentially yield an optimistic
performance benefit in this case, as patients are closer to
recovery as opposed to deterioration and intubation. Further
studies will demonstrate how much this affects performance.
The strengths of this study include the use of a real-world
clinical label of intubation that varied with practice patterns
across the pandemic, use of a robust automated end-to-end
pipeline that facilitated rapid deployment into the clinical setting,
and fusion of image classifier and EMR classifier predictions
in an interpretable manner such that the features most relevant
to the prediction can be easily communicated to providers.

As the reach of deep learning and utilization of medical images
in artificial intelligence–based clinical decision support
increases, methods must be developed to combine these models
with clinical data to optimize performance. Here, we
demonstrate that, when linked with EMR data, an automated
deep learning image classifier improved performance in
identifying hospitalized patients with severe COVID-19 at risk
for intubation. The image probability ranks highly among
traditional clinical features in the relative importance of
predictors. Further work is necessary to optimize the image
classifier to yield higher performance and perform prospective
and external validation. Ultimately, we seek methods that
seamlessly integrate CXRs and other medical imaging with
structured EMR data that enable real-time and highly accurate
artificial intelligence clinical decision support systems.
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