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Abstract

Background: There is significant heterogeneity in disease progression among hospitalized patients with COVID-19. The
pathogenesis of SARS-CoV-2 infection is attributed to a complex interplay between virus and host immune response that in some
patients unpredictably and rapidly leads to “hyperinflammation” associated with increased risk of mortality. The early identification
of patients at risk of progression to hyperinflammation may help inform timely therapeutic decisions and lead to improved
outcomes.

Objective: The primary objective of this study was to use machine learning to reproducibly identify specific risk-stratifying
clinical phenotypes across hospitalized patients with COVID-19 and compare treatment response characteristics and outcomes.
A secondary objective was to derive a predictive phenotype classification model using routinely available early encounter data
that may be useful in informing optimal COVID-19 bedside clinical management.

Methods: This was a retrospective analysis of electronic health record data of adult patients (N=4379) who were admitted to a
Johns Hopkins Health System hospital for COVID-19 treatment from 2020 to 2021. Phenotypes were identified by clustering 38
routine clinical observations recorded during inpatient care. To examine the reproducibility and validity of the derived phenotypes,
patient data were randomly divided into 2 cohorts, and clustering analysis was performed independently for each cohort. A
predictive phenotype classifier using the gradient-boosting machine method was derived using routine clinical observations
recorded during the first 6 hours following admission.

Results: A total of 2 phenotypes (designated as phenotype 1 and phenotype 2) were identified in patients admitted for COVID-19
in both the training and validation cohorts with similar distributions of features, correlations with biomarkers, treatments,
comorbidities, and outcomes. In both the training and validation cohorts, phenotype-2 patients were older; had elevated markers
of inflammation; and were at an increased risk of requiring intensive care unit–level care, developing sepsis, and mortality
compared with phenotype-1 patients. The gradient-boosting machine phenotype prediction model yielded an area under the curve
of 0.89 and a positive predictive value of 0.83.

Conclusions: Using machine learning clustering, we identified and internally validated 2 clinical COVID-19 phenotypes with
distinct treatment or response characteristics consistent with similar 2-phenotype models derived from other hospitalized populations
with COVID-19, supporting the reliability and generalizability of these findings. COVID-19 phenotypes can be accurately
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identified using machine learning models based on readily available early encounter clinical data. A phenotype prediction model
based on early encounter data may be clinically useful for timely bedside risk stratification and treatment personalization.

(JMIR Form Res 2023;7:e46807) doi: 10.2196/46807
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Introduction

Background
Among hospitalized patients with COVID-19, there is significant
interindividual variability. A significant number (20%-67%)
progress from moderate illness to life-threatening complications,
including acute respiratory distress syndrome (ARDS) [1,2] and
septic shock [3], generating a surge in patients who require
intensive care unit (ICU)–level respiratory and vasopressor
support [4]. Among patients with COVID-19 who are critically
ill and require invasive mechanical ventilation, a delay in
intubation from the first noninvasive respiratory support is
associated with an increase in hospital mortality [4]. Similarly,
delayed vasopressor initiation in patients with septic shock has
been found to be associated with increased mortality [5]. Acute
kidney injury (AKI) is also common among hospitalized patients
with COVID-19 and is associated with high mortality [6]. In a
recent observational study of 3993 hospitalized patients with
COVID-19, AKI occurred in 46% of patients, and 19% required
dialysis [7]. A recent meta-analysis of 34 observational studies
of hospitalized patients found that delayed ICU admission was
remarkably associated with mortality, highlighting the
importance of providing timely critical care in non-ICU settings
[8].

To support risk stratification among heterogeneous hospitalized
patients, recent studies have used machine learning–based
clustering [9] to retrospectively analyze routinely available
patient electronic health record (EHR) data to identify clinically
useful phenotypes [10]. In critical care research, unsupervised
machine learning clustering has been used to identify
homogeneous subgroups within a broad heterogeneous
hospitalized population [11], which elucidates pathophysiology,
can predict treatment response, and has the potential to augment
clinical trial enrollment [10]. The most common clustering
techniques used in medicine are latent class analysis (LCA), an
algorithm that derives clusters using a probabilistic model that
describes the distribution of the data [12,13], and k-means,
which identifies clusters in a data set by using a distance metric
to find k centroids (a weighted average) within the
n-dimensional space of clinical features [11-14]. Both LCA and
k-means have been effectively [15] used to detect homogeneous
phenotypes with distinct severities and treatment responses in
ARDS [16-18], sepsis [19,20], and COVID-19 [21,22].

In support of point-of-care clinical management, modern
predictive machine learning classification algorithms (eg, the
gradient-boosting machine [GBM] algorithm [23]) trained using
features based on observations recorded early in a new encounter
have shown promise in rapidly assigning de novo patients to a
clustering-identified phenotype [24]. GBM classifiers are

increasingly being applied for prediction in the data science
industry and are known to outperform simpler models such as
logistic regression in many clinical research fields, including
critical care [25,26]. GBM has been used to accurately identify
LCA-derived ARDS phenotypes [24], including a
hyperinflammatory phenotype characterized by elevated
inflammatory biomarkers, higher prevalence of vasopressor
use, longer use of ventilation, extended length of stay, higher
prevalence of sepsis, and higher mortality [27-31]. In addition,
a recent ARDS study observed differential responses to positive
end-expiratory pressure strategy by phenotype, with higher
positive end-expiratory pressure associated with improved
outcomes in the hyperinflammatory phenotype [27].

A recently reported EHR data clustering analysis of a relatively
small sample of patients with COVID-19 admitted to a US
hospital identified 2 phenotypes designated as cluster 1 and
cluster 2 [21]. Patients in cluster 1 were older individuals (mean
age 79.5 years) with multiple comorbidities and a higher
mortality rate (25.4% vs 8.97%; P<.001) than patients in cluster
2. Patients in cluster 2 were younger individuals (mean age 53.7
years) who were more likely to be male and racial and ethnic
minority individuals with higher levels of inflammatory markers
and alanine aminotransferase (ALT) and a markedly increased
BMI.

Objectives
In this study, we sought to explore the generalizability of this
2-phenotype finding for COVID-19 using a clustering analysis
of EHR data associated with a much larger cohort of hospitalized
patients. Analogous to the ARDS study cited previously, we
also explored the application of GBM-based phenotype classifier
algorithms trained using routinely available clinical data for the
rapid identification of clustering-derived COVID-19 phenotypes.

Methods

Overview
Deidentified EHR data were extracted from the JH-CROWN
Registry [32] on patients with COVID-19 who were admitted
to the Johns Hopkins (JH) Health System from February 25,
2020, to March 3, 2021. The registry, constructed directly from
the JH clinical EHR, was designed to serve as a comprehensive
projection of structured clinical data for patients with
COVID-19. Diagnosis of COVID-19 was defined as a positive
molecular test for SARS-CoV-2 and either a COVID-19
International Classification of Diseases, 10th Revision, diagnosis
or an associated diagnosis suggesting that COVID-19 was likely
present (eg, pneumonia, ARDS, or anosmia). Patients transferred
from other health care institutions were excluded. Given that
our goal was to identify phenotypes potentially at high risk of
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deterioration, we also excluded patients who had initiated critical
care treatment (eg, invasive mechanical ventilation or dialysis)
or died during the 6-hour time window following admission.
The extracted registry data included patient demographics,
encounter information, problem lists, diagnoses, flow sheets,
laboratory test results, medications, procedures, and outcomes
associated with the patients (N=4379).

Clustering to Identify COVID-19 Phenotypes
Data used for clustering included age, BMI, and 36 clinical
observations (vitals and laboratory tests) selected based on

registry data availability (<25% missingness, as shown in Figure
1) associated with the included patients with COVID-19. Figure
2 is a correlation heat map showing that our selected data
elements were mostly uncorrelated except for expected strong
associations in observations, such as between creatinine and
blood urea nitrogen [33]; among white blood cell count,
lymphocytes, and neutrophils; and among red blood cell count,
hemoglobin, and hematocrit [34]. Clustering features were
generated as minimums or maximums of these vitals and
laboratory tests [31] within the context of severe COVID-19
illness recorded during the entire hospital stay (Textbox 1).

Figure 1. Missingness of clinical observations used for clustering. Clinical physiological observations associated with included patients (adults;
nontransferees) with missingness of <25% in the population (N=4379) over the entire encounter. ALT: alanine transaminase; AST: aspartate
aminotransferase; BUN: blood urea nitrogen; CO2: carbon dioxide; CRP: C-reactive protein; MCH: mean corpuscular hemoglobin; MCV: mean
corpuscular volume; MPV: mean platelet volume; NLR: neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; RBC: red blood cell count;
RDW: red cell distribution width; SBP: systolic blood pressure; SFR: oxygen saturation–to–fraction of inspired oxygen ratio; SpO2: oxygen saturation;
WBC: white blood cell count.
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Figure 2. Heat map of correlations among clinical data used to generate clustering features showing highly uncorrelated data except for expected
positive correlations between red blood cell count (RBC), hemoglobin, and hematocrit and correlations between white blood cell count (WBC) and
lymphocytes or neutrophils. ALT: alanine transaminase; AST: aspartate aminotransferase; BUN: blood urea nitrogen; CO2: carbon dioxide; CRP:
C-reactive protein; MCH: mean corpuscular hemoglobin; MCV: mean corpuscular volume; MPV: mean platelet volume; NLR: neutrophil-to-lymphocyte
ratio; PLR: platelet-to-lymphocyte ratio; RDW: red cell distribution width; SBP: systolic blood pressure; SFR: oxygen saturation–to–fraction of inspired
oxygen ratio; SpO2: oxygen saturation.

Textbox 1. Clinical features used for clustering.

Vitals

• Minimum: oxygen saturation (SpO2), SpO2/fraction of inspired oxygen, systolic blood pressure, and pulse pressure

• Maximum: pulse, respiratory rate, and temperature

Laboratory tests

• Minimum: albumin, calcium, carbon dioxide, gamma gap, hematocrit, hemoglobin, lymphocytes, mean corpuscular hemoglobin, mean corpuscular
volume, monocytes, platelets, protein, potassium, red blood cell count, red cell distribution width, and sodium

• Maximum: aspartate transferase, alanine aminotransferase, anion, bilirubin, blood urea nitrogen, creatinine, C-reactive protein, glucose, mean
platelet volume, neutrophils, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and white blood cell count

The practice of splitting a data set into training and validation
data sets toward assessments of generalizability of machine
learning–based subgroup discovery is well established [35].
Accordingly, in our study, patient encounters were split into 2
cohorts randomly. Cohort 1 (2179/4379, 49.76%) was used as
the training cohort, and cohort 2 (2182/4379, 49.83%) served
as the internal validation set. Table 1 shows the basic
demographics, comorbidities, vitals, and inflammation
biomarkers associated with the full cohort as well as the highly
similar training and validation cohorts. Following data cleansing
to account for data outliers, as described in more detail in the
following sections, missing data imputation and clustering
analysis for each cohort were independently performed. Beyond

comparing overall clustering result indexes such as the number
of phenotypes identified and how Textbox 1 features were
statistically distributed across the phenotypes identified in the
2 data sets (ie, internal validation [35]), we also explored the
similarity of clinical data distributions across phenotypes
detected in the training and validation cohorts not used for
clustering (ie, external validation [35]). The features used for
external validation included inflammatory biomarkers not used
for clustering because of excessive missingness (eg, D-dimer
and ferritin), treatment response (eg, the need for critical care
treatment such as invasive mechanical ventilation, dialysis, and
vasopressors), or outcomes (eg, length of stay, sepsis, and
survival).
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Table 1. Basic demographics, comorbidities, vitals, and inflammation biomarkers associated with the full study cohort and the split training and
validation cohorts used for clustering analysis.

Validation (n=2197)Training (n=2182)Full cohort (N=4379)Selected clinical characteristics

Basic demographics and comorbidities

61 (47-75)62 (47-75)62 (48-75)Age (years), median (IQR)

1094 (49.8)1047 (47.98)2141 (48.89)Sex (male), n (%)

Race and ethnicity, n (%)

107 (4.87)140 (6.41)247 (5.64)Asian

766 (34.87)786 (36.02)1552 (35.44)Black

437 (19.89)403 (18.46)840 (19.18)Hispanic

786 (35.77)757 (34.69)1543 (35.23)Non-Hispanic White

1431 (65.13)1436 (65.81)2867 (65.47)Hypertension, n (%)

36 (1.63)43 (1.97)79 (1.8)Lymphoma, n (%)

417 (18.98)431 (19.75)848 (19.36)Congestive heart failure, n (%)

526 (23.94)517 (23.69)1043 (23.81)Renal failure, n (%)

326 (14.83)289 (13.24)615 (14.04)Peripheral vascular disease, n (%)

40 (1.82)41 (1.87)81 (1.85)AIDS, n (%)

611 (27.81)609 (27.91)1220 (27.86)Chronic pulmonary disease, n (%)

137 (6.23)160 (7.33)297 (6.78)Metastatic cancer, n (%)

263 (11.97)259 (11.86)522 (11.92)Liver disease, n (%)

692 (31.49)632 (28.96)1324 (30.23)Diabetes with chronic complications, n (%)

223 (10.15)255 (11.68)478 (10.92)Valvular disease, n (%)

Vitals and inflammation biomarkers, median (IQR)

29.3 (24.1-24.1)28.2 (24.2-33.5)28.3 (24.1-33.8)BMI (kg/m2)a

111.0 (98.0-126.0)111.0 (98.0-126.0)111.0 (98.0-126.0)Maximum pulse (beats per min)

27.0 (22.0-36.0)28.0 (22.0-36.0)27.0 (22.0-36.0)Maximum respiratory rate (breaths per min)

100.6 (99.5-102.2)100.4 (99.4-102.2)100.6 (99.4-102.2)Maximum temperature (°F)

90.0 (85.0-93.0)90.0 (85.0-93.0)90.0 (85.0-93.0)Minimum SpO2
b (%)

438.1 (325.5-476.2)438.1 (321.4-476.2)438.1 (325.0-476.2)Minimum SpO2/FiO2
c,d

96.0 (85.0-106.0)95.0 (85.0-105.0)96.0 (85.0-105.0)Minimum systolic BPe (mm Hg)

96.0 (85.0-106.0)95.0 (85.0-105.0)96.0 (85.0-105.0)Minimum pulse pressure (mm Hg)

9.64 (6.9-13.7)9.71 (6.8-13.7)9.65 (6.8-13.7)Maximum WBCf (K/cu mm)g

6.95 (4.7-10.6)6.9 (4.5-10.7)6.92 (4.6-10.7)Maximum neutrophils (K/cu mm)h

10.6 (4.8-28.3)11.0 (4.8-31.5)10.8 (4.8-30.0)Maximum CRPi (mg/dL)j

172 (133-222.7)175 (132-228)173.0 (133-225)Minimum platelets (K/cu mm)k

0.78 (0.48-1.14)0.77 (0.48-1.14)0.77 (0.48-1.14)Minimum lymphocytes (K/cu mm)l

1.27 (0.67-3.24)1.27 (0.66-3.51)1.27 (0.67-3.38)Maximum D-dimer (mg/L)m

609.5 (286.0-1173.2)627.5 (283.0-1191.75)616.5 (283.7-1186.2)Maximum ferritin (µg/L)n

508.0 (407.0-638.0)496.0 (399.0-633.0)506.0 (409.0-633.0)Maximum fibrinogen (mg/dL)o

35.7 (14.3-76.8)34.3 (13.8-79.15)34.7 (14.0-77.9)Maximum IL6p (pg/mL)q

335 (245.5-489.0)334.5 (251-468)335 (249-479)Maximum LDHr (U/L)s
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Validation (n=2197)Training (n=2182)Full cohort (N=4379)Selected clinical characteristics

0.25 (0.15-0.67)0.25 (0.15-0.63)0.25 (0.15-0.65)Maximum PCTt (ng/mL)u

a12.35% (541/4379) of patients with missing data.
bSpO2: oxygen saturation.
cFiO2: fraction of inspired oxygen.
d23.04% (1009/4379) of patients with missing data.
eBP: blood pressure.
fWBC: white blood cell count.
g0.11% (5/4379) of patients with missing data.
h1.32% (58/4379) of patients with missing data.
iCRP: C-reactive protein.
j14.32% (627/4379) of patients with missing data.
k0.11% (5/4379) of patients with missing data.
l1.32% (58/4379) of patients with missing data.
m11.1% (486/4379) of patients with missing data.
n22.63% (991/4379) of patients with missing data.
o71.2% (3118/4379) of patients with missing data.
pIL6: interleukin 6.
q63.14% (2765/4379) of patients with missing data.
rLDH: lactate dehydrogenase.
s38.05% (1666/4379) of patients with missing data.
tPCT: procalcitonin.
u61.86% (2709/4379) of patients with missing data.

Confounding Treatment Bias
A recognized challenge in the use of observational clinical data
in machine learning analytics is the need to account for potential
biases resulting from treatment that can influence patient
physiological measurements [36]. For example, in our study, a
significant number of inpatients received supplemental oxygen
for acute COVID-19 respiratory symptoms in an emergency
room setting before admission, thus potentially biasing
observations such as oxygen saturation (SpO2) measured
following admission. Another potential source of bias can be
treatment for hypotension upon presentation, which is known
to occur in patients with chronic hypertension [37], triggering
the need for fluid boluses or vasopressors before admission.
Fortunately, the JH data recorded the start and end times of
critical care therapies (eg, high-flow nasal cannula [HFNC],
oxygen flow rate [L/min], mechanical ventilation, fraction of
inspired oxygen (FiO2; %), vasopressors, and dialysis),
preadmission treatment, and vital sign information, enabling us
to identify the minimums for SpO2 and systolic blood pressure
before treatment. The potential for SpO2 bias owing to
supplemental oxygen was also mitigated by the derived ratio
of SpO2 to FiO2. This ratio was calculated using either an FiO2

value recorded contemporaneously with SpO2 (including cases

in which FiO2 was recorded as 21%, suggesting that SpO2 was
a “room air” measurement) or in cases in which an oxygen flow
rate was documented (eg, in cases using nasal cannulas) using
an estimated FiO2 calculated from the oxygen flow rate [38].

Outliers
Our study explored the detection of phenotypes by clustering
routinely available clinical data. However, raw clinical data
typically extracted automatically from EHRs can often contain
outliers, particularly those associated with observations that
may have been manually entered erroneously [20]. Recent
studies have confirmed that outliers will negatively affect the
quality of derived clusters [39]. Although the JH-CROWN
Registry contained syntax error–free structured tables for vitals
and laboratory test measurements, unlikely outliers, as recorded
in the EHR, were replicated in the registry tables. To cleanse
vitals, we adopted reported rules reflecting commonly accepted
ranges [40] for human physiology in which outliers were
replaced with “null” (ie, treated as “missing”). Table 2 shows
the raw total counts of key vitals—with SpO2, pulse, and
respiration having the highest raw counts followed by
temperature and blood pressure—and the statistics of the
validated (cleansed) vital signs. For laboratory tests, values
were replaced with nulls using the statistical “3(IQR)” criteria
designed to detect extreme outliers in observational data [41].
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Table 2. Statistics on vital signs within acceptable ranges.

SpO2
a (%)Temperature (°F)Diastolic blood pres-

sure (mm Hg)
Systolic blood pres-
sure (mm Hg)

Respiratory rate
(breaths/min)

Pulse (beats/min)

841,647520,819513,758513,758704,180839,771Total count

60-10085.1-106.720-18030-3056-6030-250Acceptable range

840,608520,602504,247513,745698,933839,344Validated count

95.8 (3.8;
60-100)

98.5 (1.4; 85.3-
106.7)

69.0 (13.4; 20-166)125.6 (23.3; 33-272)22.5 (7.4; 6-60)86.9 (19.5; 30-247)Values, mean (SD; range)

aSpO2: oxygen saturation.

Multiple Imputation and Weighted Consensus
Clustering
Multiple imputation (MI) and weighted clustering analysis were
applied to the training and validation cohorts independently.
No validation data were used to influence the imputation of the
training data. MI, known to reduce bias even when the
proportion of missingness is large [42], is an approach to missing
data whereby multiple copies of the feature data set are
generated with missing values replaced by inferences drawn
from the data set. Our approach was based on Bayesian joint
models congenial or compatible with k-means clustering [43,44].
The joint-modeling MI was based on the Dirichlet process
mixture of multivariate normal distributions to reflect complex
distributional features [45]. For each cohort, a total of 100
imputed data sets were created. K-means clustering was then
applied to each imputed data set, generating base clusterings
for final weighted consensus clustering.

Although an old rule of thumb is that 3 to 10 imputations would
typically suffice to ensure precision and replicability [46], recent
studies [47] have developed a new formula based on the fraction
of missing information (FMI) that estimates how many
imputations would be needed for precise and replicable SE, CIs,
t statistics, and P values [47]. Although, to achieve a variation
of <5% in SE at an FMI of 25%, the estimated number of
imputations needed is approximately 20 [48], as the FMI
increases, the required number of imputations increases
quadratically, and at an FMI of 70%, the estimated number of
required imputations is approximately 100 [47]. As, in general,
adding more imputations increases precision and replicability,
we chose 100 imputations to ensure robustness and accuracy,
especially in the context of complex data such as the medical
records of patients with COVID-19 with a substantial amount
of missing data [49].

Although there are numerous methods that have been proposed
to determine the optimal number of partitions or clusters in
k-means analysis, clustering stability has emerged as a general
model-agnostic evaluation method. In statistical learning terms,
if data sets are repeatedly and randomly sampled from the same

underlying distribution, a stable clustering algorithm should
find similar partitions [50]. The approach used in our study
defines a “good clustering” in terms of its instability in response
to imputation-related perturbations in the data. Instability was
assessed using the bootstrapping method [51]. Accordingly, we
selected k as the value that minimizes the instability of the
clustering [52]. Instability-based methods are attractive as they
are not based on a specific metric for the distance between
objects and have been shown to perform at least as well as
state-of-the-art distance-based methods [53].

Consensus clustering has the theoretical advantage of
minimizing overfitting and optimizing the stability of cluster
assignments, as has been shown for identifying subgroups of
heterogeneous patients in the ICU [10]. A weighted consensus
clustering based on the nonnegative matrix factorization (NMF)
framework [54] was obtained for the clustering results from all
imputed data sets [55]. Unlike a consensus approach based on
an averaging process (wherein all base clusterings are treated
with equal weight), the objective of NMF weighted consensus
clustering is to aggregate the base clusterings into a final
clustering using weights optimized for each base clustering in
a manner analogous to least absolute shrinkage and selection
operator regression [56]. Under this approach, the solution for
the weights is sparse (ie, only a small subset of base clusterings
contributes to the final clustering). A wide range of comparative
experiments has demonstrated the effectiveness of the
NMF-based consensus clustering approach [54,55]. The R
package clusterMI (version 0.0.41; R Foundation for Statistical
Computing) [43] was used to perform clustering with MI. In
addition, it allows for the consensus pooling of results in terms
of both partitions and instability [57].

Reproducibility
To support the analysis of reproducibility, a statistical analysis
of how features and outcomes were distributed across
phenotypes in both cohorts, with P values established using the
Kruskal-Wallis rank sum test for continuous variables and the
chi-square test for categorical values [58], was performed. An
overview of the clustering process flow is shown in Figure 3.
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Figure 3. Weighted consensus clustering for COVID-19 phenotype identification process flow. FiO2: fraction of inspired oxygen.

Predicting De Novo Patient Phenotype
Although the identification of phenotypes via clustering has the
potential to inform personalized care [59], the lack of
point-of-care testing of key defining inflammatory biomarkers,
especially during the early stages of an encounter, limits the
clinical utility of phenotypes. A recent related ARDS study
explored the application of supervised GBM phenotype
classifiers trained using routinely available observational data
and clustering-identified labels and achieved a phenotype
classifier with an area under the curve (AUC) of 0.95 [24]. Our
study extends this modeling effort by deriving a predictive GBM
phenotype classifier trained using data observed within the first
6 hours of admission in which, as in the cited ARDS study,
model performance was evaluated against the clustering-derived
phenotype.

Our approach to phenotype prediction model development
adheres to the TRIPOD (Transparent Reporting of a

Multivariable Prediction Model for Individual Prognosis or
Diagnosis) guidelines [60]. For prediction modeling, routinely
available observational data, as shown in Textbox 1 (except for
the C-reactive protein [CRP], which was excluded because of
>40% missingness), for included patients (N=4379) recorded
within 6 hours following admission were used for training. MI
based on Bayesian joint models was applied to create 100
complete feature data sets of the remaining 37 features used for
phenotype identification. On each imputed data set, 69.99%
(3065/4379) of the included patients were randomly selected
as the training set, whereas the remaining 30.01% (1314/4379)
were reserved as the test data set. The imputeData() function
from the aforementioned clusterMI R package [57] was used
to perform MIs of the early feature data before random 70/30
splitting.

The GBM was trained with 10-fold cross-validation for
hyperparameter tuning using a grid search to optimize the
models using the 100 training sets. Prediction performance (eg,

JMIR Form Res 2023 | vol. 7 | e46807 | p. 8https://formative.jmir.org/2023/1/e46807
(page number not for citation purposes)

Velez et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


AUC, sensitivity, and specificity) was assessed on the held-out
test sets. The final performance metrics were estimated by
averaging the performance estimates obtained from each
imputed data set. An overview of the phenotype prediction

process flow is shown in Figure 4. The classification and training
R package caret (version 6.0-93) [61] was used for prediction
phenotype classifier development.

Figure 4. Predictive gradient-boosting machine phenotype classifier derivation process flow. AUC: area under the curve; FiO2: fraction of inspired
oxygen; GBM: gradient-boosting machine; NPV: negative predictive value; PPV: positive predictive value.

Ethical Considerations
This study was approved by the JH institutional review board
(IRB00250903).

Results

Clustering and Phenotype Assignment and Associated
Statistics
By examining the total instability over different numbers of
clusters [52], 2 clusters were found to be optimal in both the
training and validation cohorts as, in both cases, k=2 exhibited
the least instability (Figure 5). The final assignment of each
patient to 1 of the 2 phenotypes in each cohort (phenotype 1:

1284/4379, 29.32% and 1258/4379, 28.73%; phenotype 2:
898/4379, 20.51% and 939/4379, 21.44% in the training and
validation cohorts, respectively) was determined by NMF
consensus clustering using 2 clusters.

Figure 6 depicts rank plots in which the 38 features used for
training and validation cohort clustering are normalized with
respect to the mean and SD of the population of the underlying
paired phenotypes. Between-phenotype comparisons through
nonparametric statistical methods indicate that, among the
considered features in both cohorts, the most significant
phenotype-defining features include age, blood urea nitrogen,
creatinine, and elevated inflammatory laboratory values
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(neutrophils, neutrophil-to-lymphocyte ratio, red blood cell
count, and albumin).

Figure 7 depicts violin plots of the clustered training and
validation data features. In this display of the summary statistics,
distribution, and density of each variable, it appears that features
across phenotypes share similar distributions and densities.

Figure 8 shows the differences in inflammatory biomarkers
(CRP, interleukin 6, D-dimer, ferritin, lactate dehydrogenase,
procalcitonin, and fibrinogen) in both cohorts associated with
poor COVID-19 outcomes, as reported in previous studies
[62,63]. In both the training and validation cohorts, phenotype
2 was associated with elevated inflammatory markers.

Figure 5. Demonstration that k=2 is the optimal number of clusters based on instability analysis for both the training and validation data sets.
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Figure 6. Rank plots showing agreement in the most significant phenotype-defining features (eg, age, blood urea nitrogen [BUN], mean corpuscular
volume [MCV], creatinine, neutrophil-to-lymphocyte ratio [NLR], red blood cell count [RBC], hemoglobin, and hematocrit) across phenotypes in both
the training and validation data sets. ALT: alanine transaminase; AST: aspartate aminotransferase; CO2: carbon dioxide; CRP: C-reactive protein; MCH:
mean corpuscular hemoglobin; MPV: mean platelet volume; PLR: platelet-to-lymphocyte ratio; RDW: red cell distribution width; SBP: systolic blood
pressure; SFR: oxygen saturation–to–fraction of inspired oxygen ratio; SpO2: oxygen saturation; WBC: white blood cell count.
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Figure 7. Violin plots of clustered features showing highly similar distributions and densities of features across phenotypes in both cohorts. ALT:
alanine transaminase; AST: aspartate aminotransferase; BUN: blood urea nitrogen; CO2: carbon dioxide; CRP: C-reactive protein; MCH: mean
corpuscular hemoglobin; MCV: mean corpuscular volume; MPV: mean platelet volume; NLR: neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte
ratio; RBC: red blood cell count; RDW: red cell distribution width; SBP: systolic blood pressure; SFR: oxygen saturation–to–fraction of inspired oxygen
ratio; SpO2: oxygen saturation; WBC: white blood cell count.
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Figure 8. Differences in inflammatory biomarkers across phenotypes showing that phenotype 2, associated with hyperinflammatory biomarkers, was
not used in clustering (D-dimer, ferritin, fibrinogen, interleukin 6 [IL6], lactate dehydrogenase [LDH], and procalcitonin [PCT]). CRP: C-reactive
protein.

Phenotype Association With Comorbidities and
Features
Table 3 and Figure 9 show the odds ratios of phenotype 2 versus
phenotype 1 associated with comorbidities adjusted for age,
race, gender, and ethnicity in both cohorts. These results suggest
that patients in phenotype 2 have a higher likelihood of anemias,
lymphoma, coagulopathy, congestive heart failure, preexisting
renal failure, peripheral vascular disease, AIDS, complicated
hypertension, bleeding peptic ulcers, cancer, electrolyte

disorders, and diabetes with chronic complications. Figures 10
and 11 are principal-component analysis biplots including a
scatterplot that shows the similarity of 2D projections of
clustered observations or patients. These figures have a
superimposed loading plot that shows how strongly features
influence a phenotype (eg, strong associations between
phenotype 1 and lymphocytes, SpO2/FiO2, and albumin and
between phenotype 2 and systolic blood pressure, age,
creatinine, and pulse pressure).
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Table 3. Odds ratios (ORs) of comorbidities in phenotype 2 versus phenotype 1 adjusted for age, gender, race, and ethnicity in the training and validation

cohortsa.

Validation cohort, OR (95% CI)Training cohort, OR (95% CI)Comorbidity

1.56 (1.20-2.03)1.45 (1.12-1.86)Depression

4.69 (3.66-6.01)4.90 (3.83-6.26)Deficiency anemias

2.43 (1.85-3.19)2.07 (1.58-2.70)Hypertension

3.64 (2.60-5.10)2.15 (1.54-3.00)Weight loss

1.52 (0.61-3.74)3.59 (1.58-8.16)Lymphoma

2.03 (1.52-2.70)3.15 (2.37-4.19)Coagulopathy

1.22 (0.80-1.86)1.71 (1.13-2.60)Alcohol abuse

3.82 (2.82-5.16)4.15 (3.10-5.57)Congestive heart failure

6.81 (5.10-9.09)9.66 (7.14-13.07)Renal failure

2.22 (1.62-3.04)3.12 (2.23-4.36)Peripheral vascular disease

1.92 (1.36-2.71)1.70 (1.22-2.37)Solid tumor without metastasis

1.17 (0.56-2.44)1.94 (0.95-3.94)AIDS

2.92 (1.81-4.72)1.59 (1.03-2.45)Paralysis

1.35 (0.90-2.04)1.67 (1.11-2.50)Pulmonary circulation disease

4.29 (3.34-5.50)6.02 (4.67-7.76)Hypertension (complicated)

1.43 (0.72-2.87)2.58 (1.49-4.49)Peptic ulcer with bleeding

1.74 (1.20-2.52)1.61 (1.10-2.38)Psychoses

0.95 (0.75-1.20)1.15 (0.90-1.46)Obesity

2.26 (1.31-3.90)2.40 (1.46-3.95)Chronic blood loss anemia

1.24 (0.97-1.59)1.50 (1.18-1.92)Chronic pulmonary disease

1.51 (0.98-2.33)2.05 (1.35-3.10)Drug abuse

1.12 (0.81-1.55)1.95 (1.42-2.69)Hypothyroidism

1.62 (1.03-2.56)2.33 (1.53-3.54)Metastatic cancer

2.70 (2.11-3.44)3.02 (2.36-3.87)Fluid and electrolyte disorders

1.28 (0.92-1.77)1.64 (1.19-2.26)Liver disease

0.92 (0.58-1.46)2.01 (1.28-3.16)Arthropathies

2.06 (1.58-2.68)1.79 (1.38-2.32)Other neurological disorders

2.21 (1.74-2.80)3.24 (2.54-4.13)Diabetes with chronic complications

2.21 (1.51-3.22)3.00 (2.08-4.34)Valvular disease

1.55 (1.23-1.96)1.76 (1.40-2.21)Diabetes without chronic complications

aAdjusted OR; contrast: phenotype 2 over phenotype 1.
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Figure 9. Adjusted odds ratios of comorbidities to clinical phenotypes showing similar associations between comorbidities and high severity (phenotype
2) of COVID-19 in both cohorts.
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Figure 10. Principal-component analysis (PCA) biplot (training data) showing “good” cluster separation or spatial distribution and similar feature
loading (correlations between key phenotype-defining features and principal components) with validation PCA. ALT: alanine transaminase; AST:
aspartate aminotransferase; BUN: blood urea nitrogen; CO2: carbon dioxide; CRP: C-reactive protein; MCH: mean corpuscular hemoglobin; MCV:
mean corpuscular volume; MPV: mean platelet volume; NLR: neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; RBC: red blood cell
count; RDW: red cell distribution width; Resp_rate: respiratory rate; SBP: systolic blood pressure; SFR: oxygen saturation–to–fraction of inspired
oxygen ratio; SpO2: oxygen saturation; TEMP: temperature; WBC: white blood cell count.
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Figure 11. Principal-component analysis (PCA) biplot (validation data) showing “good” cluster separation or spatial distribution and similar feature
loading (direction or magnitude) of correlations between key phenotype-defining features and principal components with validation PCA. ALT: alanine
transaminase; AST: aspartate aminotransferase; BUN: blood urea nitrogen; CO2: carbon dioxide; CRP: C-reactive protein; MCH: mean corpuscular
hemoglobin; MCV: mean corpuscular volume; MPV: mean platelet volume; NLR: neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio;
RBC: red blood cell count; RDW: red cell distribution width; Resp_rate: respiratory rate; SBP: systolic blood pressure; SFR: oxygen saturation–to–fraction
of inspired oxygen ratio; SpO2: oxygen saturation; TEMP: temperature; WBC: white blood cell count.

Phenotype Association With Treatments, Interventions,
and Mortality
The detailed demographics, clinical characteristics, and
statistical significance of the feature and outcome distribution
across phenotypes in both the training and validation cohorts
are shown in Tables 4 and 5. In these tables, P values suggest
statistically significant associations between the need for
ICU-level care and poor outcomes associated with phenotype
2 in both cohorts. Specifically, as shown in Table 4, phenotype-2
patients were associated with advanced age (mean 76, SD 14.2

years in phenotype 2 vs 52 years in phenotype 1) and with
statistically significant (P<.001) increased risk of developing
sepsis (34% in phenotype 2 vs 21% in phenotype 1), requiring
mechanical ventilation (11% in phenotype 2 vs 4.5% in
phenotype 1), using vasopressors (10.5% in phenotype 2 vs
3.5% in phenotype 1), requiring HFNC (16% in phenotype 2
vs 8% in phenotype 1), requiring continuous renal replacement
therapy (CRRT; 2.4% in phenotype 2 vs 0.5% in phenotype 1),
requiring dialysis (8% in phenotype 2 vs 0.6% in phenotype 1),
and mortality (17% in phenotype 2 vs 2.5% in phenotype 1).
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Table 4. Distribution of features and outcomes across phenotypes identified within the training and validation cohorts (N=4379).

Validation cohortTraining cohortCharacteristic

P valuePhenotype 2 (n=939)Phenotype 1 (n=1258)P valuePhenotype 2 (n=898)Phenotype 1 (n=1284)

Features, median (IQR)

<.00176.7 (65.8-85.7)51.5 (39.4-62.1)<.00176.4 (66.5-85.5)53.0 (39.3-63.5)Age (years)

<.00126.9 (23.4-31.5)31.1 (26.7-36.6)<.00126.6 (23.4-30.8)30.7 (26.5-36.5)BMI (kg/m2)

<.0013.5 (3.1-3.9)3.9 (3.6-4.3)<.0013.5 (3.1-3.8)4.0 (3.6-4.3)Albumin (minimum)

<.00121.0 (15.0-33.0)31.0 (21.0-52.0)<.00123.0 (15.0-36.0)32.0 (21.0-52.0)ALTa (maximum)

.4813.0 (10.0-16.0)13.0 (11.0-16.0)<.00113.0 (11.0-16.0)13.0 (10.0-15.0)Anion (maximum)

<.00132.0 (23.0-46.0)37.0 (25.0-58.0).3637.0 (25.0-54.5)36.0 (26.0-55.0)ASTb (maximum)

.110.5 (0.4-0.7)0.5 (0.3-0.7)<.0010.5 (0.4-0.7)0.4 (0.3-0.6)Bilirubin (maximum)

<.00126.0 (18.0-41.0)12.0 (9.0-16.0)<.00127.0 (19.0-41.0)12.0 (9.0-16.0)BUNc (maximum)

.0478.7 (8.4-9.2)8.8 (8.4-9.2)<.0018.7 (8.3-9.2)8.8 (8.5-9.2)Calcium (minimum)

.0524.0 (21.0-26.0)24.0 (22.0-26.0)<.00123.5 (21.0-26.0)25.0 (23.0-27.0)CO2
d (minimum)

<.0011.3 (0.9-2.1)0.9 (0.7-1.1)<.0011.4 (1.0-2.2)0.9 (0.7-1.1)Creatinine (maximum)

<.00111.6 (5.4-30.7)8.1 (3.3-17.4)<.00112.8 (6.2-32.9)7.2 (3.2-17.9)CRPe (maximum)

<.0011.2 (0.7-2.1)0.7 (0.4-1.1)<.0011.3 (0.8-2.4)0.6 (0.4-1.0)D-dimer (maximum)

.363.2 (2.8-3.7)3.2 (2.9-3.7).763.3 (2.8-3.8)3.2 (2.9-3.7)Gamma gap (minimum)

<.001123.0 (105.0-168.0)116.0 (101.0-146.0)<.001125.0 (105.0-164.0)116.0 (101.0-145.0)Glucose (maximum)

<.00137.2 (32.9-40.7)41.1 (38.0-44.3).00336.5 (32.3-40.4)41.1 (38.0-44.0)Hematocrit (minimum)

<.00112.0 (10.4-13.2)13.5 (12.3-14.7)<.00111.8 (10.3-13.2)13.4 (12.4-14.5)Hemoglobin (minimum)

<.0010.8 (0.6-1.2)1.1 (0.8-1.5)<.0010.8 (0.5-1.1)1.1 (0.8-1.6)Lymphocyte (minimum)

<.00129.7 (28.1-30.9)28.7 (27.1-30.0)<.00129.7 (28.2-31.2)28.9 (27.2-30.0)MCHf (minimum)

<.00191.5 (87.8-95.2)86.8 (83.1-89.8).0691.5 (87.5-95.8)87.4 (83.8-90.5)MCVg (minimum)

<.0010.6 (0.4-0.8)0.4 (0.3-0.6)<.0010.5 (0.4-0.8)0.5 (0.3-0.7)Monocyte (minimum)

<.00110.6 (9.9-11.3)10.3 (9.7-11.0)<.00110.6 (10.0-11.3)10.3 (9.7-10.9)MPVh (maximum)

<.0015.2 (3.7-7.9)4.3 (3.1-6.0)<.0015.3 (3.6-8.0)4.2 (3.0-6.0)Neutrophil (maximum)

<.0016.5 (3.8-11.1)3.9 (2.4-6.3)<.0016.7 (3.9-11.4)3.7 (2.3-5.9)NLRi (maximum)

.01197.0 (148.2-257.0)205.0 (160.0-262.0)<.001186.0 (144.0-251.0)212.0 (167.0-266.0)Platelet (minimum)

<.001236.1 (162.0-376.2)184.8 (134.2-261.0)<.001239.5 (153.8-372.2)182.9 (130.2-259.2)PLRj (maximum)

<.0014.2 (3.9-4.6)4.0 (3.7-4.3)<.0014.2 (3.8-4.6)3.9 (3.6-4.2)Potassium (maximum)

<.0016.8 (6.3-7.2)7.2 (6.8-7.6)<.0016.7 (6.3-7.3)7.2 (6.8-7.6)Protein (minimum)

<.00192.0 (81.0-103.0)102.0 (91.0-114.0)<.00192.0 (81.0-106.0)102.0 (90.0-115.0)Pulse (maximum)

<.00146.0 (34.0-59.0)41.0 (33.0-49.0)<.00143.0 (33.0-57.0)40.0 (33.0-49.0)Pulse pressure (minimum)

<.0014.0 (3.6-4.5)4.8 (4.4-5.2)<.0014.0 (3.5-4.4)4.7 (4.3-5.1)RBCk (minimum)

<.00114.0 (13.0-15.3)13.2 (12.5-14.3)<.00114.2 (13.2-15.5)13.2 (12.5-14.1)RDWl (maximum)

.00522.0 (19.0-28.0)20.0 (18.0-26.0)<.00123.0 (20.0-29.0)20.0 (18.0-26.0)Respiratory rate (maximum)

<.001146.0 (130.0-164.0)137.0 (126.0-149.0)<.001145.0 (130.0-162.0)137.0 (125.0-151.0)SBPm (maximum)

.03433.3 (301.9-476.2)438.1 (361.0-476.2)<.001428.6 (265.0-476.2)442.9 (379.2-476.2)SpO2
n to FiO2

o ratio (mini-
mum)

.01137.0 (134.0-140.0)137.0 (134.0-139.0).87137.0 (134.0-140.0)137.0 (134.0-139.0)Sodium (minimum)
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Validation cohortTraining cohortCharacteristic

P valuePhenotype 2 (n=939)Phenotype 1 (n=1258)P valuePhenotype 2 (n=898)Phenotype 1 (n=1284)

.7195.0 (92.0-97.0)95.0 (92.0-97.0)<.00194.0 (91.0-97.0)95.0 (92.0-97.0)SpO2 (minimum)

<.00198.9 (98.2-100.0)99.7 (98.7-101.3)<.00199.0 (98.3-100.2)99.5 (98.6-100.9)Temperature (maximum)

<.0017.0 (5.2-9.8)6.1 (4.7-8.0)<.0017.0 (5.0-9.9)6.0 (4.7-8.0)WBCp (maximum)

Demographics, n (%)

<.001<.001Age group (years)

6 (0.63)130 (10.33)4 (0.44)127 (9.89)21-30

18 (1.91)209 (16.61)22 (2.44)232 (18.06)31-40

29 (3.08)264 (20.98)35 (3.89)217 (16.9)41-50

87 (9.26)299 (23.76)67 (7.46)287 (22.35)51-60

184 (19.59)221 (17.57)196 (21.82)260 (20.24)61-70

245 (26.09)105 (8.34)210 (23.38)124 (9.65)71-80

242 (25.77)25 (1.98)229 (25.5)31 (2.41)81-89

128 (13.63)5 (0.39)135 (15.03)6 (0.46)≥90

.79464 (49.41)630 (50.07)<.001481 (53.56)566 (44.08)Sex (male)

.001<.001Race

46 (4.89)61 (4.84)51 (5.67)89 (6.93)Asian

296 (31.52)470 (37.36)312 (34.74)474 (36.91)Black

489 (52.08)344 (27.34)438 (48.77)358 (27.88)White

105 (11.18)375 (29.8)88 (9.8)358 (27.88)Other

3 (0.32)8 (0.64)9 (1)5 (0.38)Unknown

<.001<.001Ethnicity

87 (9.27)350 (27.82)80 (8.91)323 (25.16)Hispanic

847 (90.2)902 (71.7)808 (89.98)954 (74.3)Not Hispanic

0 (0)3 (0.23)2 (0.22)3 (0.23)Patient refused

5 (0.53)3 (0.23)8 (0.89)4 (0.31)Unknown

Outcomes

<.001315 (33.55)273 (21.7)<.001306 (34.07)257 (20.02)Sepsis, n (%)

.9372 (7.67)94 (7.47).0277 (8.57)75 (5.84)ARDSq, n (%)

.727.8 (2.7)7.9 (3.1).207.8 (3.1)8.5 (2.9)PEEPr, mean (SD)

<.001105 (11.19)63 (5.01)<.00197 (10.8)53 (4.13)Ventilation, n (%)

<.00194 (10.01)49 (3.90)<.00198 (10.91)41 (3.19)IVs pressor, n (%)

.0010 (0)1 (0.08)N/Au0 (0)0 (0)ECMOt, n (%)

<.001160 (17.04)39 (3.10)<.001150 (16.70)25 (1.95)Death, n (%)

<.0018.3 (2.2-14.7)7.9 (3.3-12.5).458.2 (2.1-17.9)6.6 (1.5-12.6)Ventilation duration (days),
median (IQR)

.903.8 (1.5-6.2)3.4 (1.2-6.8).033.1 (0.9-6.5)4.7 (2.4-8.9)HFNCv duration (days), medi-
an (IQR)

<.0015.8 (3.2-10.4)3.6 (1.8-6.5)<.0016.0 (3.5-10.3)3.7 (1.9-6.3)LOSw (days), median (IQR)

<.001139 (14.8)124 (9.86)<.001155 (17.26)99 (7.71)HFNC, n (%)

<.00124 (2.56)9 (0.72)<.00120 (2.23)4 (0.31)CRRTx, n (%)

<.00174 (7.88)12 (.95)<.00184 (9.35)3 (0.23)Dialysis, n (%)
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Validation cohortTraining cohortCharacteristic

P valuePhenotype 2 (n=939)Phenotype 1 (n=1258)P valuePhenotype 2 (n=898)Phenotype 1 (n=1284)

<.001488 (51.97)447 (35.53)<.001498 (55.46)436 (33.96)Antibiotic, n (%)

<.00123 (2.45)24 (1.91)<.00121 (2.34)31 (2.41)Anticoagulant, n (%)

.7162 (6.60)77 (6.12).0275 (8.35)74 (5.76)Steroid, n (%)

aALT: alanine transaminase.
bAST: aspartate aminotransferase.
cBUN: blood urea nitrogen.
dCO2: carbon dioxide.
eCRP: C-reactive protein.
fMCH: mean corpuscular hemoglobin.
gMCV: mean corpuscular volume.
hMPV: mean platelet volume.
iNLR: neutrophil-to-lymphocyte ratio.
jPLR: platelet-to-lymphocyte ratio.
kRBC: red blood cell count.
lRDW: red cell distribution width.
mSBP: systolic blood pressure.
nSpO2: oxygen saturation.
oFiO2: fraction of inspired oxygen.
pWBC: white blood cell count.
qARDS: acute respiratory distress syndrome.
rPEEP: positive end-expiratory pressure.
sIV: intravenous.
tECMO: extracorporeal membrane oxygenation.
uN/A: not applicable.
vHFNC: high-flow nasal cannula.
wLOS: length of stay.
xCRRT: continuous renal replacement therapy.

Table 5. Outcomes or treatments by phenotype in the training and validation cohorts (N=4379).

Validation cohortTraining cohortCharacteristic

P valuePhenotype 2
(n=939), n (%)

Phenotype 1
(n=1258), n (%)

P valuePhenotype 2
(n=898), n (%)

Phenotype 1
(n=1284), n (%)

<.001315 (33.55)273 (21.7)<.001306 (34.08)257 (20.02)Sepsis

<.001105 (11.18)63 (5.17)<.00197 (10.8)53 (4.13)Ventilation

<.00194 (10.01)49 (3.9)<.00198 (10.91)41 (3.19)IV pressora

<.001139 (14.8)124 (9.86)<.001155 (17.26)99 (7.71)HFNCb

<.00124 (2.56)9 (0.72)<.00120 (2.23)4 (0.31)CRRTc

<.00174 (7.88)12 (.95)<.00184 (9.35)3 (0.23)Dialysis

<.001160 (17.04)39 (3.1)<.001150 (16.7)25 (1.95)Death

aIV pressor: vasopressors administered intravenously.
bHFNC: high-flow nasal cannula.
cCRRT: continuous renal replacement therapy.

Survival
Figure 12 shows survival curves. In both cohorts, survival
between phenotypes diverged on day 1 from admission, and the

divergence was sustained over 60 days, with significantly lower
survival in the phenotype 2 group than in the phenotype 1 group.
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Figure 12. Survival curves for patients in phenotype 2 versus phenotype 1 (days) showing significantly lower survival in phenotype 2 versus phenotype
1 in both the training and validation cohorts.

Prediction
The 4379 patients used for phenotype prediction analysis did
not include those who initiated some form of critical care
therapy (eg, HFNC or mechanical ventilation) or died within
the 6 hours following admission. Clustering-identified
phenotypes and clinical features (Textbox 1) based on
observations recorded within the first 6 hours associated with
the included patients were used for GBM predictive classifier

derivation except for CRP, which was excluded because of
excessive missingness (>40%). The classifier performance was
based on comparing clustering-identified phenotype labels with
predicted labels in the held-out test sets. Table 6 shows
predictive metrics with 95% CIs of the classifier performance
over the 100 imputed test sets (1314/4379, 30.01%); the mean
AUC to accurately predict a test patient’s clustering-derived
phenotype was at 0.89 (95% CI 0.887-0.893).
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Table 6. Phenotype prediction model performance characteristics.

Estimate (95% CI)Metric

0.890 (0.887-0.893)Area under the curve

0.846 (0.822-0.873)Sensitivity

0.851 (0.828-0.876)Specificity

0.834 (0.907-0.865)Positive predictive value

0.861 (0.845-0.879)Negative predictive value

Discussion

Principal Findings
The key aim of our study was to develop the foundations of an
EHR data-screening tool that may assist clinicians in the early
identification of patients among a population of highly
heterogeneous hospitalized patients with COVID-19 likely to
deteriorate to hyperinflammation and require ICU-level care
that may include respiratory support across a broad spectrum
of modalities, such as HFNC, Nasal intermittent positive
pressure ventilation, intubation or mechanical ventilation, and
extracorporeal membrane oxygenation. Patients with
hyperinflammation may also develop life-threatening
comorbidities such as septic shock [64] and AKI [65], driving
the need for specialized care, such as vasopressors [66],
intermittent dialysis, and CRRT [67].

The heterogeneity of hospitalized patients with COVID-19 [68]
suggests the potential benefits of clustering encounter data to
identify phenotypes with distinct host response patterns to
treatment that may help guide personalized therapeutics. Recent
studies in Europe and the United States have identified 2
homogeneous clinical phenotypes in hospitalized patients with
COVID-19 using machine learning or clustering algorithms
with the potential utility to identify targeted treatment protocols
[21,22].

Given that, in its most severe form, SARS-CoV-2 infections
lead to life-threatening pneumonia and ARDS, clustering studies
identifying phenotypes of patients with ARDS or who are
mechanically ventilated and at risk of ARDS [69] are highly
relevant. In total, 2 ARDS phenotypes (hyper- and
hypoinflammatory) have been consistently identified in previous
clustering studies [16,24,31,59,69-72] that have statistically
significant similar clinical, physiological, or biomarker traits,
including differential responses to treatments, interventions,
and mortality rates, supporting the potential utility of machine
learning–based ARDS phenotyping [27,59].

Using k-means clustering analysis of training cohort clinical
data, we identified 2 distinct phenotypes that differed
significantly in demographics, sepsis incidence, inflammatory
biomarkers, the need for ICU-level care, and clinical outcomes
including mortality. This result was reproduced in an
independent clustering analysis of an internal validation cohort.
These findings suggest that the early association of a new patient
with a clustering-identified phenotype may provide useful
prognostic information. For example, a hospitalized patient
predicted to be phenotype 2 and not in current need of
supplemental oxygen may be viewed as at high risk of

progression to requiring ICU-level care. This patient could be
flagged by hospital staff so that they might initiate close
monitoring, offer empiric use of therapies such as remdesivir
[73], and prepare critical care resources. Alternatively, a patient
predicted to be phenotype 1 and not in current need of
supplemental oxygen may be viewed as low risk, warranting
supportive care only. To facilitate the early identification of
patient phenotypes, this study developed a predictive GBM
classifier with a mean AUC of 0.89, which would be considered
an excellent statistical performance [74]. In addition, the GBM
classifier used only routinely available vital signs and laboratory
results observed within the first 6 hours of admission, enhancing
the value of this tool as an early warning system.

To our knowledge, this is the largest clustering study identifying
homogeneous phenotypes in hospitalized patients with
COVID-19 using routinely available early clinical data.
Independent clustering analysis of randomly selected patients
in the training and validation cohorts identified a
hyperinflammatory phenotype (phenotype 2) characterized by
higher plasma levels of inflammatory biomarkers that were
associated with a higher prevalence of HFNC, invasive
mechanical ventilation, extracorporeal membrane oxygenation,
CRRT, dialysis, vasopressor use, diagnosis of sepsis or ARDS,
and increased mortality compared with a hypoinflammatory
phenotype (phenotype 1).

Recent reports have concluded that the imbalance between
hyperinflammation and immune paralysis is a hallmark of sepsis
[75] and that the levels of inflammatory biomarkers such as
interleukin 6 in patients with COVID-19 are associated with
mortality [76]. As inherent characteristics and genetic
predisposition are likely key to the heterogeneity of individual
immune responses, the ability to categorize patients based on
the risk of hyperinflammation allows for risk stratification and
personalized treatment using targeted therapeutic regimens. The
ability to identify 2 separate phenotypes based on immune
condition also allows for specific treatment approaches using
immunomodulators.

Our findings are in concert with those of other studies that have
associated worse COVID-19 outcomes with comorbid conditions
that include depression [77], anemia [78], hypertension [79],
congestive heart failure [80], preexisting renal failure [81],
peripheral vascular disease [82], cancer [83], paralysis or spinal
cord injuries [84], chronic obstructive pulmonary disease [85],
obesity [86], electrolyte imbalance [87], and diabetes [88].

Although our 2-phenotype findings are similar to those of the
2021 study of 483 patients with COVID-19 at Yale New Haven
Health [21], there are several differences. In the Yale study,
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among the 2 identified phenotypes, the phenotype with the
higher risk of mortality comprised older individuals with more
comorbidities, whereas patients in the group with a lower risk
of mortality comprised younger individuals who were more
likely to be obese, male, and racial and ethnic minority
individuals with higher levels of the CRP and ALT inflammatory
markers. In contrast, our analysis identified a hyperinflammatory
phenotype associated with age and comorbidities highly relevant
to the development of ARDS and sepsis, both leading to
increased mortality rates. However, in both the training and
validation cohorts, we found that elevated ALT and BMI, male
gender, and racial and ethnic minority individuals were
associated with the hypoinflammatory phenotype 1 (Table 3),
which is consistent with the results of the Yale study. Although
the distribution of mortality between the 2 phenotypes was
similar (Yale study: 25% vs 9%; this study: 23% vs 3%), the
Yale study did not find statistically significant differences in
the use of critical care treatments (eg, dialysis or mechanical
ventilation) between the 2 phenotypes. Overall, the Yale study
showed that patients who were admitted for COVID-19 were
found to be classified into 2 cohorts mostly based on age-related
comorbidities and specific demographics. It should be noted
that both the Yale study and our study support the recent finding
that, although there may be an increased incidence of severe
COVID-19 among Black and Hispanic patients, this is not due
to an inherent susceptibility to progression [89].

A recent systematic review of prediction models for COVID-19
[60] enumerated common weaknesses. These include a high
risk of bias from inadequate sample sizes and inappropriate or
incomplete evaluation of model performance with insufficient
internal or external validation. In addition, calibration was often
incomplete or performed using inappropriate statistics. Finally,
inappropriate handling of missing data was common, including
the omission of how missing data were handled. The authors
summarily recommended that prediction modelers “should
adhere to the TRIPOD (Transparent Reporting of a multivariate
prediction model for Individual Prognosis Or Diagnosis)
reporting guideline” [60]. We believe that a key strength of this
study is the proactive adherence to the TRIPOD guidelines [90],
thereby avoiding the weaknesses described in previous
publications [91].

Our study serves as a proof of concept that combines
unsupervised clustering for COVID-19 phenotype identification
in historical data and supervised machine learning for phenotype
prediction model derivation using routine clinical data, which
is feasible as a basis for an “early warning” bedside COVID-19
screening tool [92]. If validated prospectively, such EHR
data–derived and embedded models could automatically
incorporate and analyze clinical data to provide real-time
COVID-19 critical care decision support while minimizing
disruptions to the workflow.

The prospective validation must address 2 factors. First, it is
recognized that COVID-19 populations may differ significantly
across time and geography with changing availability or use of
vaccines, circulating SARS-CoV-2 variants, treatments, and
the influence of comorbidities such as seasonal influenza and
respiratory syncytial virus. Hence, the models derived in our
study to identify or predict phenotypes need to be routinely

“retrained” to reflect hospitalized populations with varying
characteristics. With continuous access to EHR data, this issue
could be addressed through machine learning models that are
routinely updated with changing inpatient population
characteristics.

Second, it must be prospectively demonstrated that the models
can classify phenotypes robustly and consistently in real-time
clinical scenarios in diverse settings. Before their clinical
implementation, the models will need rigorous evaluation of
their interaction with missing data frequently encountered in
the real-world setting of critical care. Although we used a robust
set of 38 features combined with imputation, it may be that a
more effective approach would involve fewer readily available
features that might predict membership to a phenotype with
sufficient accuracy. The development and validation of such
parsimonious models [92] require a careful analysis of the most
important phenotype-defining features that would also most
likely be reliably available during the early stages of an
encounter. Moreover, although we used observations recorded
within the first 6-hour window following admission to derive
our predictive model, multisite studies have shown that the
mean length of stay for patients with COVID-19 requiring
ICU-level care ranges from 12 to 19 days. This suggests that
predictive models trained using data over longer intervals (eg,
recorded within 24 hours following admission, decreasing the
prediction horizon [93]) or updating the prediction longitudinally
[94] may lead to clinically useful models with improved
prediction performance [95].

Limitations
Concerning potential methodological weaknesses of this study,
it should be noted that, in a head-to-head comparison of LCA
versus k-means clustering in a relatively small sample of
pediatric patients with sepsis (n=151), LCA was found to be
somewhat more useful in identifying homogeneous phenotypes.
However, both approaches identified at least one distinct
high-severity phenotype [96]. Given that LCA is
computationally challenging whereas k-means is better scaled
to large data sets [97], most critical medicine clustering studies
involving large cohorts (N>1000) in sepsis [20], ARDS [98],
and COVID-19 [99,100] have effectively used k-means to
identify well-separated phenotypes, leading to early detection
of those who would benefit from certain treatments and close
monitoring. Notably, a large cohort study by Seymour et al [20]
identified and validated 4 clinical phenotypes of sepsis through
k-means clustering analysis that were positively correlated with
host response patterns and clinical outcomes. Most recently,
Duggal et al [98] reported a k-means analysis of routine clinical
data associated with a large cohort (4773 patients) that
successfully identified 2 distinct ARDS phenotypes that included
a phenotype with increased levels of proinflammatory markers,
higher mortality, and longer duration of ventilation compared
with patients in the second phenotype [99]. These studies
support the validity of k-means as an effective machine learning
technology for the identification of clinically useful phenotypes
in “big EHR data” studies.

Another methodological weakness concerns the dependence on
instability analysis (Figure 5) to identify the optimal number of
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phenotypes. Studies have shown that stability-based methods
can be sensitive to underlying data distributions and may not
always provide a valid and meaningful choice of the optimal
number of k-means–derived clusters [101]. Although
instability-based methods compare favorably with commonly
used distance-based methods to identify the optimal k (eg, elbow
and silhouette), alternatives such as the Calinski-Harabasz [102]
evaluation metric that measures the compactness and separation
of clusters, thereby providing a measure of the quality of the
clustering results, would be a useful addition to the analysis.
As this metric can be sensitive to the density and shape of
clusters, in future studies, it may be beneficial to consider both
stability and evaluation metrics when selecting an optimal k
[103]. However, the validity of our finding that k=2 identifies
the true number of COVID-19 phenotypes is bolstered by our
use of a recently improved instability metric that corrects for
the distribution of cluster sizes [52] and the fact that independent

studies in other related populations (ARDS and other
populations with COVID-19) have also identified 2 phenotypes
using totally different clustering algorithms (eg, LCA).

Conclusions
In summary, k-means clustering was effective in identifying
phenotypes with distinct treatments or intervention responses
and outcomes in a large cohort of hospitalized patients with
COVID-19. In addition, a GBM machine learning classifier
model using readily available early encounter data accurately
assigned patients to phenotypes, suggesting that the application
of these models in a clinical setting may provide valuable
prognostic information that could inform personalized
COVID-19 management. Although future studies and trials are
needed to validate the clinical utility of phenotype assignment,
it would seem reasonable to implement successfully validated
machine learning algorithms in extant EHR systems as a tool
to support those trials.
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