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Abstract

Background: Electronic health record (EHR) systems are widely used in the United States to document care delivery and
outcomes. Health information exchange (HIE) networks, which integrate EHR data from the various health care providers treating
patients, are increasingly used to analyze population-level data. Existing methods for population health surveillance of essential
hypertension by public health authorities may be complemented using EHR data from HIE networks to characterize disease
burden at the community level.

Objective: We aimed to derive and validate computable phenotypes (CPs) to estimate hypertension prevalence for
population-based surveillance using an HIE network.

Methods: Using existing data available from an HIE network, we developed 6 candidate CPs for essential (primary) hypertension
in an adult population from a medium-sized Midwestern metropolitan area in the United States. A total of 2 independent clinician
reviewers validated the phenotypes through a manual chart review of 150 randomly selected patient records. We assessed the
precision of CPs by calculating sensitivity, specificity, positive predictive value (PPV), F1-score, and validity of chart reviews
using prevalence-adjusted bias-adjusted κ. We further used the most balanced CP to estimate the prevalence of hypertension in
the population.

Results: Among a cohort of 548,232 adults, 6 CPs produced PPVs ranging from 71% (95% CI 64.3%-76.9%) to 95.7% (95%
CI 84.9%-98.9%). The F1-score ranged from 0.40 to 0.91. The prevalence-adjusted bias-adjusted κ revealed a high percentage
agreement of 0.88 for hypertension. Similarly, interrater agreement for individual phenotype determination demonstrated substantial
agreement (range 0.70-0.88) for all 6 phenotypes examined. A phenotype based solely on diagnostic codes possessed reasonable
performance (F1-score=0.63; PPV=95.1%) but was imbalanced with low sensitivity (47.6%). The most balanced phenotype
(F1-score=0.91; PPV=83.5%) included diagnosis, blood pressure measurements, and medications and identified 210,764 (38.4%)
individuals with hypertension during the study period (2014-2015).

Conclusions: We identified several high-performing phenotypes to identify essential hypertension prevalence for local public
health surveillance using EHR data. Given the increasing availability of EHR systems in the United States and other nations,

JMIR Form Res 2023 | vol. 7 | e46413 | p. 1https://formative.jmir.org/2023/1/e46413
(page number not for citation purposes)

Valvi et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:bedixon@regenstrief.org
http://www.w3.org/Style/XSL
http://www.renderx.com/


leveraging EHR data has the potential to enhance surveillance of chronic disease in health systems and communities. Yet given
variability in performance, public health authorities will need to decide whether to seek optimal balance or declare a preference
for algorithms that lean toward sensitivity or specificity to estimate population prevalence of disease.

(JMIR Form Res 2023;7:e46413) doi: 10.2196/46413
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Introduction

Hypertension is the most prevalent risk factor for mortality
throughout the world, and it was reported as a primary or
contributing cause of death for over 500,000 Americans in 2019
[1]. Moreover, hypertension is reported as a comorbid condition
for nearly 70% of individuals who have their first myocardial
infarction and almost 80% of those who have their first stroke
[2]. Overall, approximately 1 out of 3 adults in the United States
is diagnosed with hypertension, which translates to almost 75
million Americans [3]. Moreover, given recent changes to
guidelines for the prevention, detection, evaluation, and
management of hypertension, the number of Americans
considered to have this condition is expected to increase in the
future [4].

The surveillance of conditions such as hypertension is a
cornerstone of public health practice [5], yet quantifying the
prevalence of hypertension at granular person, place, and time
levels remains a challenge for local health departments (LHDs).
Existing methods for capturing prevalence data for chronic
disease within a geographic area rely upon community-based
surveys. The 2 surveys most widely used by LHDs are the
Behavioral Risk Factor Surveillance System and the National
Health and Nutrition Examination Survey [6,7]. Those surveys
provide reliable hypertension estimates at state and national
levels, respectively, but have important limitations in their
timeliness, breadth, and cost [8]. Moreover, these surveys
provide very imprecise disease estimates at the local level (eg,
county and neighborhood), where most public health
interventions occur.

In addition to the Behavioral Risk Factor Surveillance System
and the National Health and Nutrition Examination Survey,
some LHDs conduct their own community surveys of health
and health behaviors. While community surveys may be
representative of the local population and powered for granular
estimation, they can be costly to perform and are often spaced
years apart [9]. Furthermore, community surveys typically do
not include any medical, dental, or physiological measurements,
limiting their ability to reliably measure true disease states as
well as adherence to clinical guidelines, such as proper
management of diabetes, hypertension, and other chronic
illnesses.

Given the limitations of existing methods, LHDs seek alternative
methods for obtaining timely information on health behaviors
and risk factors prevalent in their community. Since the passing
of the Health Information Technology for Economic and Clinical
Health Act of 2009, electronic health records (EHR) systems

have become more common in the United States [10],
representing a potential source of chronic disease surveillance
data among those seeking health care.

Over 70% of ambulatory providers in the United States have
adopted EHR systems [10]. As health care systems increasingly
capture data from routine health care visits in EHR systems,
national initiatives, including the digital Learning Health System
of the National Academy of Medicine, the Robert Wood Johnson
Foundation’s Data for Health, and the Multi-State EHR-Based
Network for Disease Surveillance [11], aim to leverage such
data to improve the delivery of health care and community
health outcomes [12]. The hope is that by leveraging existing
digital data sources, public health agencies may access more
timely and complete information to better assess and improve
health in their communities.

Previous studies leveraged EHR data from primary care
information systems funded by public health agencies but did
not capture EHR data from other systems [13]. To explore the
use of data combined from multiple EHR systems covering a
large population in a community, we sought to develop and
validate hypertension computable phenotypes (CPs) using EHR
data available through a community-based health information
exchange (HIE) network. We further sought to assess the HIE
network as a source for accurate estimates of hypertension
prevalence for a geographically defined population. HIE
networks are increasingly available in many jurisdictions and
nations [14], potentially providing public health authorities with
a mechanism to access multiple electronic records for the same
patient from a wide array of hospitals, physician practices, and
other health care organizations that account for a representative
subset of the population.

To assess the measurement of hypertension prevalence using
an HIE network for an LHD population, we empirically derived
and examined 6 hypertension CPs using data extracted from
multiple EHR systems deployed across 3 distinct, large
integrated delivery networks operating in Marion County,
Indiana. This paper reports the prevalence rates derived from 6
hypertension phenotypes as well as the performance of each CP
compared to a human chart review.

Methods

Data Source
The Indiana Network for Patient Care (INPC), launched in the
1990s, is one of the largest interorganizational clinical data
repository in the United States, with more than 10 billion clinical
data elements [15]. The INPC serves as the primary platform
for the Indiana Health Information Exchange, which connects
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more than 100 hospitals, 14,000 practices, and nearly 40,000
providers. Each participating institution submits clinical data
from its EHR system to a centralized repository (the INPC)
managed by the Indiana Health Information Exchange. Incoming
data are matched to existing patients using an enterprise master
person index (eg, master patient index or client registry), and
clinical concepts (eg, laboratory results or blood pressure
readings) are mapped to standardized terminologies for storage
in the common data repository structure [16].

The INPC captures information on 99% of the population of
Marion County, Indiana, which is home to Indianapolis.
According to the 2020 census [17], Marion County had a
resident population of 971,102 with a racial composition of
62.4% White, 29.6% Black or African American, and 11.3%
Hispanic; 51.6% female; and 13.1% adults aged 65 years or
older.

For this study, a subset of 3 health systems was used,
representing at least 80% (776,882/971,102) of the population
of Marion County. The first is an essential health provider
consisting of a large tertiary hospital and 10 federally qualified
health centers geographically spread across the county. The
second is the state’s largest health system, with 3 tertiary
hospitals in Marion County, including the region’s largest
children’s hospital, a level 1 trauma center, and the state’s
largest cancer center. The final system is a regional health
system that includes another large children’s hospital, a tertiary
hospital, and a large network of primary care and neighborhood
emergency departments across the county. Each health system
independently represents a large portion of Marion County
residents based on available health market share data, and each
included system-approved participation in the study.

Study Population
To examine CPs for hypertension, we extracted a cohort of all
adults (at least 18 years of age as of January 1, 2014) living in
Marion County (all patient addresses in INPC are geocoded
[18]) who sought care at 1 of the 3 large integrated delivery
networks between January 1, 2014, and December 31, 2015.

CPs for Essential (Primary) Hypertension
There is no standard CP for defining essential (primary)
hypertension based on clinically derived data. To that effect, a
central goal of this work was to propose and test EHR-based
phenotypes of essential hypertension. These algorithms were
developed using available definitions for essential hypertension
from the US Centers for Disease Control and Prevention (CDC)
as well as the American Heart Association (AHA) [19] along
with input from epidemiologists and medical doctors. We
examined a range of phenotype definitions (Table 1) because
evidence of hypertension exists in several places across a
patient’s EHR, with data contributed from multiple health
systems. All included data elements were required to be within
the 2014-2015 period specified for this analysis. While many
clinicians document hypertension through routine billing using
International Classification of Diseases (ICD) codes, previous
studies found this kind of documentation to be incomplete. In
addition to clinical diagnoses, we incorporated physiologic
blood pressure readings for some phenotypes, given that the
CDC and the US Preventative Services Taskforce [19,20]
recommend screening for hypertension using office-based
measurements. When using blood pressure readings,
hypertension was characterized by systolic blood pressure
measurements of at least 140 mm Hg or diastolic blood pressure
measurements of at least 90 mm Hg based on guidelines
published before 2017 by the American College of Cardiology
and the AHA [3]. However, blood pressure recordings were not
available for all individuals in the population. Furthermore, a
meta-analysis revealed major accuracy limitations, including
misdiagnosis for office-based blood pressure measurements
[21]. In addition, previous studies reported that medication data
can be useful when identifying individuals with chronic illness,
as they are typically on maintenance medication [22-24]. We
therefore examined 1 phenotype that included pharmacy data
downloaded from a national repository [25] of claims data. The
list of hypertension medications used was originally created by
pharmacist health services researchers at the Regenstrief Institute
(in Multimedia Appendix 1).
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Table 1. Computable phenotype definitions used to examine hypertension prevalence among adults in Marion County, Indiana (2014-2015).

Data examinedDefinitionComputable
phenotype

Primary diagnosis as well as secondary diagnoses or
comorbidities associated with a clinical encounter doc-

umented in the patient’s EHRc

Individual has at least 1 hypertension ICD-9-CMa or ICD-10-CMb diag-
nostic code documented for at least inpatient or outpatient encounter (≥1
hypertension diagnostic code)

1

Point-of-care- and laboratory-based physiologic mea-
surements recorded in the patient’s EHR

Individual has at least 1 BPd measurement in which the systolic BP was
at least 140 mm Hg or diastolic BP was at least 90 mm Hg (≥1 BP reading)

2

Point-of-care- and laboratory-based physiologic mea-
surements recorded in the patient’s EHR

Individual has at least 2 BP measurements in which the systolic BP was
at least 140 mm Hg or diastolic BP was at least 90 mm Hg (≥2 BP readings)

3

Primary diagnosis as well as secondary diagnoses or
comorbidities, along with point-of-care-based physio-
logic measurements recorded in the patient’s EHR

Individual has at least 1 BP measurement in which the systolic BP was at
least 140 mm Hg or diastolic was at least 90 mm Hg (≥1 BP reading), and
individual has at least 1 hypertension ICD-9-CM or ICD-10-CM diagnostic
code documented for at least inpatient or outpatient encounter (≥1 hyper-
tension diagnostic code)

4

Primary diagnosis as well as secondary diagnoses or
comorbidities, along with point-of-care- and laboratory-
based physiologic measurements recorded in the pa-
tient’s EHR

Individual has at least 1 BP measurement in which the systolic BP was at
least 140 mm Hg or diastolic BP was at least 90 mm Hg (≥ 1 BP reading),
and individual has at least 2 hypertension ICD-9-CM or ICD-10-CM diag-
nostic codes documented for 2 different inpatient or outpatient encounters
(≥2 hypertension diagnostic codes)

5

Primary diagnosis as well as secondary diagnoses or
comorbidities, along with point-of-care- and laboratory-
based physiologic measurements recorded in the pa-
tient’s EHR and pharmacy claims records for filled
prescriptions downloaded from a national repository

Individual has at least 1 BP measurement in which the systolic BP was at
least 140 mm Hg or diastolic BP was at least 90 mm Hg (≥1 BP reading),
individual has at least 1 hypertension ICD-9-CM or ICD-10-CM diagnostic
code documented for at least inpatient or outpatient encounter (≥1 hyper-
tension diagnostic code), or individual has filled at least 1 prescription for
any medication associated with hypertension (≥1 hypertension medication)

6

aICD-9-CM: International Classification of Disease-9 Clinical Modification.
bICD-10-CM: International Classification of Disease-10 Clinical Modification.
cEHR: electronic health record.
dBP: blood pressure.

Validation of CPs and Chart Review
To validate the phenotypes, we used a chart review using a
sample of 299 individuals randomly selected from the
population. A retired outpatient cardiovascular nurse with more
than 40 years of service reviewed the merged, longitudinal EHR
for patients in the sample using the INPC. In the chart review,
based on clinical judgment, it was noted whether the patient
had hypertension during the study period based on the recorded
data in the chart. Chart reviewers had access to the full clinical
record contained within the HIE, which included clinical text
as well as structured data. In addition, the reviewer documented
any evidence supporting the clinical assessment of hypertension.
The phenotype definitions were applied to the 299 individuals
in the random sample to examine their performance. Phenotype
performance was quantified using sensitivity, specificity, and
positive predictive value (PPV), including the 95% CIs for each
measure, and the F1-score.

These phenotypes were then applied to the entire population
extracted from the INPC to estimate hypertension prevalence
for Marion County, Indiana. Prevalence rates were calculated
by age, sex, race, and ethnicity.

A blinded chart review was conducted on patient records at the
Regenstrief Institute. The chart review was conducted
independently, and the 2 reviewers were trained before the
review. A total of 299 charts were randomly selected from the

INPC, of which 233 were reviewed by reviewer 1. To calculate
interrater reliability, we compared the hypertension
classifications from 150 charts reviewed by a second reviewer,
another outpatient nurse with 20 years of experience, with those
of the first reviewer.

The standard measure of agreement is Cohen κ coefficient (κ).
It adjusts the observed agreement by the agreement expected
by chance. However, if no further adjustments are made, κ can
be deceptive because it is sensitive to both the bias in reporting
“yes” to the classification of hypertension, if any exists, and the
prevalence of “yes” relative to “no” in the sample. We therefore
calculated the prevalence-adjusted bias-adjusted κ (PABAK)
[26-28] for the case definition and the phenotypes. PABAK
values were interpreted according to the guidelines for κ
provided by Landis and Koch [29]: 0.81-1.00=almost perfect
agreement; 0.61-0.80=substantial agreement;
0.41-0.60=moderate agreement; 0.21-0.40=fair agreement; and
0.01-0.20=slight agreement.

All analyses and phenotype coding were conducted using SAS
(version 9.4; SAS Institute Inc).

Ethical Considerations
Study approval was obtained from the Indiana University
Institutional Review Board (exempt protocol 1701925087).
Informed consent was waived due to the retrospective use of
preexisting, deidentified data from medical records.
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Data managers at the Regenstrief Institute extracted EHR data
from the 3 health systems using the INPC clinical data
repository. Data from a third health system were extracted by
analysts at the health system, then linked and merged with the
INPC data as this health system does not contribute ambulatory
clinic data to the INPC repository. A total of 6 CPs were derived
from the data (Table 1), and prevalence was calculated by
dividing the number of individuals meeting each essential
hypertension case definition by the total cohort population.

Results

Population Characteristics
Data were extracted from the INPC from January 1, 2014, to
December 31, 2015, and included 548,232 adults aged 18 years
or older from the 3 health systems within Marion County. The
majority of people were White (308,213/548,232, 56.2%),
female (335,548/548,232, 61.2%), and adults aged 65 years or
older (93,513/548,232, 17.1%; Table 2).

Table 2. Study characteristics and demographics using electronic health records from the Indiana Network for Patient Care, 2014-2015 (N=548,232).

HypertensionOverall (N=548,232)Characteristic

Yes (n=210,764)No (n=337,468)

Age (years), n (%)

52,777 (24.6)161,878 (75.4)214,655 (39.1)18-39

101,416 (42.2)138,648 (57.8)240,064 (43.8)40-64

56,571 (60.5)36,942 (39.5)93,513 (17.1)≥65

Sex, n (%)

121,307 (36.2)214,241 (63.8)335,548 (61.2)Female

89,457 (42.1)123,227 (57.9)212,684 (38.8)Male

Race, n (%)

120,832 (39.2)187,381 (60.8)308,213 (56.2)White

70,060 (47.3)78,057 (52.7)148,117 (27)Black

19,872 (21.6)72,030 (78.4)91,902 (16.8)Other

CPs using INPC
A total of 299 records were randomly drawn from the INPC.
The chart review was completed for 233 records by reviewer 1
(Table 3). According to chart reviewer 1 expert opinion, 167
individuals were identified with hypertension, a prevalence of
71.7%. Of the 167 individuals with hypertension, the phenotype
algorithms identified 82 (CP1), 107 (CP2), 55 (CP3), 47 (CP4),
142 (CP5), and 200 (CP6), respectively. The final CP (CP6)

was determined to have a sensitivity of 99.9% (95% CI
97.8%-100.0%) with a PPV of 83.5% (95% CI 79.9%-86.6%).
However, CP6 had a comparatively lower specificity of 50%
(95% CI 37.4%-62.6%) compared to CP1, with a specificity of
93.9% (95% CI 85.2%-98.3%). For CP6, the F1-score was
closest to 1.0 at 0.91, suggesting that this algorithm has the most
balanced performance across error types. Using the F1-score as
an evaluation metric, the next best-performing algorithm is CP5
(0.71), followed by CP1 (0.63).

Table 3. Performance of computable phenotypes (CPs) for hypertension validated using randomly selected electronic health records from the Indiana
Network for Patient Care (n=233). The prevalence estimate on manual chart review (reviewer 1) was determined to be 71.7% (n=167).

F1-scorePositive predictive
value, % (95% CI)

Specificity, %
(95% CI)

Sensitivity, %
(95% CI)

Prevalence, n (%)Total confirmed hy-
pertension cases, n

Phenotypes

0.6395.1 (88.1-98.0)93.9 (85.2-98.3)46.7 (38.9-54.6)82 (35.2)78≥1 Clinical diagnosis (CP1)

0.5571.0 (64.3-76.9)53.0 (40.3-65.4)45.5 (37.8-53.4)107 (45.9)76≥1 Vitals indicated (CP2)

0.4080.0 (68.8-87.9)83.3 (72.1-91.4)26.3 (19.8-33.7)55 (23.6)44≥2 Vitals indicated (CP3)

0.4295.7 (84.9-98.9)97.0 (89.5-99.6)26.9 (20.4-34.3)47 (20.2)45≥1 Clinical diagnosis and ≥1
vitals indicated (CP4)

0.7176.7 (71.7-81.2)50.0 (37.4-62.6)65.3 (57.5-72.5)142 (60.9)109≥1 Clinical diagnosis or ≥1
vitals indicated (CP5)

0.9183.5 (79.9-86.6)50.0 (37.4-62.6)99.9 (97.8-100.0)200 (85.8)167≥1 Clinical diagnosis, ≥1
vitals indicated, or ≥1 medi-
cations indicated (CP6)
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Interrater Reliability
We assessed interrater reliability between the 2 raters using
PABAK. A total of 150 charts were reviewed by both reviewers
out of the 233 charts that reviewer 1 examined. The interrater

agreement (PABAK=0.91) was an almost perfect agreement
for the 2 reviewers. The estimated PABAK (Table 4) for the
phenotypes ranged from substantial (0.70) to almost perfect
agreement (0.88).

Table 4. Hypertension phenotypes agreement between 2 reviewers and prevalence-adjusted bias-adjusted κ (PABAK; n=150).

PABAKbHTN prevalence estimate, % (95% CI)HTNa, nPhenotype

0.9167.3 (59.2-74.8)101HTN case determination

0.7023.3 (16.8-30.9)35≥1 Clinical diagnosis (CP1c)

0.7336.7 (28.9-44.9)55≥1 Vitals indicated overall (CP2)

0.8119.3 (13.3-26.6)29≥2 Vitals indicated (CP3)

0.7613.3 (8.3-19.8)20≥1 Clinical diagnosis and ≥1 vitals indicated (CP4)

0.7147.3 (39.1-55.6)71≥1 Clinical diagnosis or ≥1 vitals indicated (CP5)

0.8878.0 (70.5-84.3)117≥1 Clinical diagnosis, ≥1 vitals indicated, or ≥1 medications indicated (CP6)

aHTN: hypertension.
bPABAK = 2 × ([positive agreement + negative agreement]/N) – 1.
cCP: computable phenotype.

In Table 2, the overall hypertension prevalence using CP6 during
the study period was estimated at (210,764/548,232, 38.4%).
The prevalence of hypertension was highest among adults aged
65 years or older (56,571/95,513, 60.5%), female individuals
(121,307/335,548, 36.2%), and Black individuals
(70,060/148,117, 47.3%) during the study period.

Discussion

Principal Findings
We developed and evaluated 6 CPs using a combination of
ICD-9 and 10 codes, medications, and vitals for essential
hypertension using EHR data extracted from multiple health
systems. Despite variation in CP performance, most CPs
possessed PPVs above 75%, making these CPs reasonable for
use in public health surveillance. Unlike in controlled trials or
other research contexts in which investigators seek to maximize
specificity (eg, the ability to identify individuals without
disease), public health surveillance seeks to balance specificity
with sensitivity (eg, the ability to identify all cases in the
population). In this study, CP1, having good specificity, might
serve as an initial screening for selecting individuals who might
benefit from more targeted interventions.

Comparison With Previous Work
Our findings align with previous work examining the
performance of approaches that rely primarily on diagnostic
codes compared to other CP approaches. Relying solely on
diagnostic codes (CP1) resulted in low sensitivity (46.7%) yet
high specificity (93.9%) and PPV (95.1%) to identify individuals
with hypertension. This performance is quite similar to the use
of ICD codes for identifying cases of sexually transmitted
infections, which also possess high specificity (99.9%) and
reasonable PPV (≥85%) yet low sensitivity (<15%) [30]. The
imbalance is also reflected in its F1-score of 0.63, which is
adequate but may not be sufficient for public health surveillance,

where most epidemiologists prefer to err on the side of
sensitivity in case detection.

The broadest phenotype (CP6) that allowed the identification
of individuals on antihypertensive therapies along with clinical
diagnoses and blood pressure readings possessed high sensitivity
(99.9%) but lower specificity (50%) and PPV (83.5%).
However, the F1-score (0.91) suggests CP6 as the best algorithm
for overall balance. It is worth noting that one potential reason
for the low specificity could be due to the treatment of
hypertension, resulting in a reduced blood pressure measurement
during the window of observation. This would indicate
individuals with hypertension who meet the CP definition based
on medication but may not have evidence of hypertension as a
reason for a visit in the clinical text or abnormal blood pressure
readings during the observation window. This and other
indications for hypertensive classification could be explored
further in future studies.

Multiple strategies to identify the prevalence of chronic diseases
have been used previously, either from a single hospital or
within a network-based EHR system [31-35]. Our hypertension
phenotype based on diagnostic codes alone (CP1) was much
lower in sensitivity (46.7%) compared to previous studies from
the United States (83%) [36], Canada (85%) [34], and
Switzerland (83%) [35]. A likely explanation for this is that the
previous studies had participants mainly from primary-care
centers, while this study used data from both outpatient and
hospitalization encounters. Furthermore, many small primary
care practices do not contribute data to the INPC, limiting data
capture in some parts of the metropolitan area. When additional
sources of evidence of hypertension were included in the
phenotype, the sensitivity increased. However, after including
additional sources, the specificity was reduced to 50%. The
increase in sensitivity after including medications can partly be
explained by a study [37] that found that individuals with an
appropriate diagnosis of hypertension were more likely to be
treated (92.6%). Population prevalence (38.4%) calculated using
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CP6 was much higher compared to a diverse patient population
in a California [37] health system (28.7%), which used a similar
definition of hypertension [38]. However, this population
prevalence was comparable to a study from New York (38.4%
vs 39.2%) [36], with a large distributed EHR network having
a similar time period.

Increasing the availability of standardized data within
EHR-based surveillance systems, including the adoption and
use of the US Core Data for Interoperability (USCDI), can
further improve the accuracy and completeness of CPs to
estimate the prevalence of hypertension. EHR-based diagnoses
capture an individual’s state or disease status; however, they
are based on the interpretation of the clinical staff treating the
patient. Using secondary data for estimating prevalence, public
health professionals often do not have the power to enforce
standardization of data capture from the originating health
systems [39]. Further studies should explore the comparison of
prevalence from EHR-based surveillance systems with that of
standardized, representative [40] data captured through other
methods. With the Office of the National Coordinator for Health
Information Technology requiring implementation of USCDI,
all of the CPs used in this study could be implemented through
the Fast Healthcare Interoperability Resources interfaces
throughout the United States in all certified EHR systems
updated after December 31, 2022.

The data for this study were extracted from 3 different health
systems that participate in the INPC, managed by the Indiana
HIE. Leveraging HIE infrastructures to aggregate data across
health care facilities for public health purposes is increasingly
viewed as critical in the wake of the COVID-19 pandemic [41].
As discussed during the 2022 American College of Medical
Informatics Symposium, many HIE networks are working to
become health data utilities that serve as information
infrastructures in support of public health [42]. Unfortunately,
few states have robust HIE infrastructures such as that of the
INPC. Yet, there is hope that policies such as TEFCA (Trusted
Exchange Framework and Common Agreement) [43] and the
emphasis by the Office of the National Coordinator for Health
Information Technology can spur to creation and expansion of
HIE infrastructures across the nation [44]. This will remain a
key area for research and development as public health seeks
to modernize its data infrastructure and HIE networks expand
their support for population health. The work presented here is
just the beginning of efforts to better support public health
surveillance through the EHR and HIE systems.

Limitations
We acknowledge the limitations of using EHR data, some of
which are due to the administrative nature that can produce
misclassification (ie, coding errors or missed fields).
Additionally, in-care adult populations are more likely to be
female, older, non-Hispanic, and insured compared to the
not-in-care adult population [45]. In comparison to the

demographic distribution in the general population, there was
a higher representation of women and older adults in our EHR
cohort. This could either underestimate hypertension prevalence
for younger age groups and for male individuals or overestimate
for female individuals and older adults in our population. Data
obtained from EHR-HIE systems can have variable quality since
they are obtained from diverse health delivery systems due to
differences in documentation processes across providers and
clinicians. For instance, some practices may record information
only from standardized fields, while others may capture values
using free-text fields. All 3 health systems included in this study
use a commercial EHR system. Once clinical encounter data
are submitted from the EHR to the HIE, they undergo quality
control steps to normalize data to the extent possible, including
standardization of terminology. Additionally, the phenotypes
did not leverage unstructured data, which may have resulted in
missing data, depending on how the institutions store the
elements required for the phenotype. We did anticipate some
data quality issues such as missingness or data inaccuracies,
but this limitation is applicable to a minority of cases [46,47].
We further note that the F1-measure, which is widely used in
information retrieval, is calculated based on precision and recall,
and it does not account for accuracy (eg, true negatives), which
means it may not be an ideal measure for performance in cases
involving clinical diagnosis [48]. Lastly, we used both ICD-9
Clinical Modification and ICD-10 Clinical Modification codes
to identify this study population, yet we could not account for
performance differences between the coding systems.

Despite limitations, using EHR-based prevalence estimates for
population health has several benefits. They provide larger
sample sizes while affording granular person, place, and time
that are unavailable from existing population-based self-reported
surveys. The data are more timely and more affordable than
locally commissioned surveys. Furthermore, the collection and
tabulation of estimates can be done more frequently and require
less human effort than traditional approaches. This would enable
resource-limited LHDs to routinely assess chronic disease
burden and trend data over time.

Conclusions
We constructed 6 CPs to estimate the prevalence of hypertension
in support of public health surveillance for chronic disease.
With the help of manual chart reviews, we were able to capture
the variation between phenotypes. In the future, we plan to use
these phenotypes to compare prevalence with estimates from
population-based health surveys. EHR-based estimates for
chronic illnesses are helpful for public health surveillance and
regional quality improvement efforts at much lower costs
compared to traditional population survey approaches. As the
adoption and use of HIE systems and standards such as the
USCDI increase, the quality of population health metrics should
improve over time.
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