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Abstract

Background: Traditional surveillance systems rely on routine collection of data. The inherent delay in retrieval and analysis
of data leads to reactionary rather than preventive measures. Forecasting and analysis of behavior-related data can supplement
the information from traditional surveillance systems.

Objective: We assessed the use of behavioral indicators, such as the general public’s interest in the risk of contracting
SARS-CoV-2 and changes in their mobility, in building a vector autoregression model for forecasting and analysis of the
relationships of these indicators with the number of COVID-19 cases in the National Capital Region.

Methods: An etiologic, time-trend, ecologic study design was used to forecast the daily number of cases in 3 periods during
the resurgence of COVID-19. We determined the lag length by combining knowledge on the epidemiology of SARS-CoV-2 and
information criteria measures. We fitted 2 models to the training data set and computed their out-of-sample forecasts. Model 1
contains changes in mobility and number of cases with a dummy variable for the day of the week, while model 2 also includes
the general public’s interest. The forecast accuracy of the models was compared using mean absolute percentage error. Granger
causality test was performed to determine whether changes in mobility and public’s interest improved the prediction of cases.
We tested the assumptions of the model through the Augmented Dickey-Fuller test, Lagrange multiplier test, and assessment of
the moduli of eigenvalues.

Results: A vector autoregression (8) model was fitted to the training data as the information criteria measures suggest the
appropriateness of 8. Both models generated forecasts with similar trends to the actual number of cases during the forecast period
of August 11-18 and September 15-22. However, the difference in the performance of the 2 models became substantial from
January 28 to February 4, as the accuracy of model 2 remained within reasonable limits (mean absolute percentage error
[MAPE]=21.4%) while model 1 became inaccurate (MAPE=74.2%). The results of the Granger causality test suggest that the
relationship of public interest with number of cases changed over time. During the forecast period of August 11-18, only change
in mobility (P=.002) improved the forecasting of cases, while public interest was also found to Granger-cause the number of
cases during September 15-22 (P=.001) and January 28 to February 4 (P=.003).

Conclusions: To the best of our knowledge, this is the first study that forecasted the number of COVID-19 cases and explored
the relationship of behavioral indicators with the number of COVID-19 cases in the Philippines. The resemblance of the forecasts
from model 2 with the actual data suggests its potential in providing information about future contingencies. Granger causality
also implies the importance of examining changes in mobility and public interest for surveillance purposes.
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Introduction

The COVID-19 pandemic remains a significant threat to the
health and well-being of people across the world. Stringent
movement restrictions, including stay-at-home orders and
closure of establishments, were one of the earliest interventions
that were implemented to slow down viral transmission. Many
countries also closed their borders, and up to this day, border
measures such as quarantine and testing of travelers are still in
place in some parts of the world [1]. Vaccines that are effective
in reducing the severity of infection have been developed and
have become a crucial element for governments in planning
their respective lockdown exit strategies. However, more
transmissible variants still emerge as the infection continues to
spread despite these various nonpharmaceutical interventions,
resulting in almost 700 million cases and over 6 million deaths
globally as of September 2022 [2]. Thus, the occurrence of
multiple outbreaks in many countries and areas is inevitable,
and the questions on how to ease out restrictions while cutting
the chain of transmission persist.

Surveillance is one of the key strategies for preventing and
controlling the spread of communicable diseases such as
COVID-19 [3,4]. The routine systematic collection and analysis
of data inform the planning, implementation, and evaluation of
public health programs and policies. It can serve as a system
for generating early warning about imminent threats to public
health or a monitoring system for tracking the attainment of
program goals [5]. However, traditional surveillance systems
are often retrospective due to delays in data gathering from
disease reporting units. This leads to reactionary rather than
preventive measures, especially during public health
emergencies where information is scarce and the situation is
rapidly changing [6].

Forecasting and multisource surveillance can fill the gap in
information from traditional surveillance systems. Forecast,
which is the quantitative predictions of health events or
outcomes from previously reported data, can guide the timing
and scale of disease prevention and control measures [6]. It aids
the preparation and coordination of response by providing
information that can be used for making critical decisions on
allocating and deploying resources as well as developing
preventive strategies [5]. On the other hand, unconventional
sources of data complement traditional surveillance systems by
rapidly capturing data about rare events and events that occur
among populations that do not access the formal health care
pathway. Mobility data, search trends, social media, and
environmental data are additional sources of data that can help
in early detection of unknown or emerging diseases [7]. In
addition, these data sources allow the triangulation of evidence
about an ongoing epidemic.

Time series modeling is one of the common methods for
generating forecasts and has informed surveillance and response

for communicable disease such as influenza and dengue [6,8,9].
Recent literature has also shown its potential use for forecasting
COVID-19. Various univariate models have been used to predict
the number of cases, deaths, and hospitalizations due to
COVID-19 [10-14]. However, one of the criticisms of this
approach is its inability to capture the interdependency of these
parameters and hence, multivariate time series methods have
been used to fill this gap [15,16]. Khan et al [15] jointly modeled
the number of cases, hospitalizations, and deaths due to
COVID-19 in Pakistan using vector autoregression (VAR).
Rajab et al [17] used the same method in forecasting the
pandemic in the United Arab Emirates, Saudi Arabia, and
Kuwait, while Meimela et al [18] demonstrated the use of VAR
in predicting together the number of cases and deaths in
Indonesia.

Besides jointly forecasting potentially correlated variables, a
primary application of VAR is investigating the relationship
between variables [19,20]. Scholars have used VAR to describe
the interaction of a variety of variables with the spread of
SARS-CoV-2 using real-world data. A study conducted by
Krishna [21] showed that population density improved the
prediction of the number of COVID-19 cases in all major cities
of India and suggested the possible variation in the
environmental characteristics of each city as the relationship of
temperature, air quality, and humidity with COVID-19 cases
was found to be inconsistent. The interconnectedness of
countries in terms of cross-border transmission was also
exhibited in the works of Fitriani et al [22] and Milani [23].
Milani [23] further emphasized how international experiences
affected the adaptation of response measures and gradual
learning about SARS-CoV-2 as shocks in the number of cases
in Italy or the United States brought about changes in risk
perception and fear of unemployment in other countries.
However, to the best of our knowledge, there is paucity of
studies that explored the usefulness of behavioral indicators for
forecasting and investigated the changes in the interrelationship
of behavioral indicators with the trend of COVID-19 cases over
time.

In this paper, we developed a VAR model using behavioral
indicators such as change in mobility and public interest on the
risk of contracting SARS-CoV-2. Our primary objective was
to assess the use of the abovementioned behavioral indicators
for forecasting the daily number of COVID-19 cases in the
Philippines. The secondary objective was to investigate the
relationship of the daily number of cases with change in mobility
and public interest.

Methods

Study Design and Description of Variables
An etiologic, time-trend, ecologic study design was employed
to forecast the daily number of reported COVID-19 cases in the
National Capital Region (NCR). The NCR was selected as the
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study site because it is considered the epicenter of the pandemic
in the Philippines, with a total of 1,175,949 cases, which
comprise 31.8% of the recorded cases in the country [24]. It is
also more homogenous than other regions in terms of urban-rural
classification, as it is composed of 16 cities and only 1
municipality.

We computed the out-of-sample forecasts at multiple time
periods during the resurgence of COVID-19. The first forecast
period from August 11-18 coincides with the beginning of the
resurgence of COVID-19 due to B.1617.2 (Delta) [24,25]. A
total of 212 time points from January 11 to August 10, 2021,
were used as the training data to obtain the out-of-sample
forecast. We excluded the period of March-December 2020 in
the analysis because the detection of variants of concerns,
improvements in testing availability and strategy, and roll out
of vaccines have only occurred in 2021.

After computing the out-of-sample forecast for August 11-18,
we added data points to the training data set and performed
recalibration to test the data toward the peak in the number of
cases from September 15-22. Lastly, we used the data from June
1 to January 27 to forecast the number of cases during the spread
of B.1.1.529 (Omicron) in NCR; the testing data is from January
28 to February 4.

Daily number of cases, change in mobility, and public interest
on the risk of contracting COVID-19 were treated as endogenous
variables since previous literature suggests the presence of a
bidirectional relationship among these 3 variables [21,23]. These
variables were also chosen to demonstrate the use of publicly
available data for surveillance.

The data on the number of COVID-19 cases was collected from
the COVID-19 case tracker of the Philippine Department of
Health (DOH). The reported number of cases includes only
those that were detected through reverse
transcriptase–polymerase chain reaction (RT-PCR) in
laboratories that were accredited by the DOH-Research Institute
of Tropical Medicine [24].

We used the publicly available data from Google as an indicator
of the behavior-related endogenous variables change in mobility
and public interest on the risk of contracting SARS-CoV-2.
Since 82.5% of the 10- to 64-year-old age group in the urban
area use social media, big data source from Google has the
potential to capture the changes of these variables in NCR over
time [26]. Change in mobility was collected from Google’s
Community Mobility Report. The Community Mobility Report
is aggregated and anonymized GPS-derived data obtained from
people who turned on the location reporting settings of their
devices. Google categorized locations into 6 types, namely,
workplaces, retail and recreation, transit stations, residential,
parks, and groceries and pharmacies, based on the social
distancing guidance. These time series data pertain to the percent
change in mobility from the baseline value, which is the median
value for the corresponding day of the week during the 5-week
period from January 3 to February 6, 2020, for each type of
place [27].

We retrieved the data on public interest on COVID-19 risk from
Google Trends by using keywords related to the risk, symptoms,

and prevention and control of COVID-19 such as “COVID-19
risk,” “COVID-19 control,” “COVID-19 variant,” “COVID-19
symptoms,” and “COVID-19 vaccine treatment” in a single
query. Since the number of keywords is within the limit for
viewing data in a single search, further iteration or
transformation of the time series data was not necessary. The
data from Google Trends are samples of the absolute search
volume that were indexed on a scale ranging from 0 to 100 by
dividing each point by the highest point in the time series. This
means that the time points or dates with a value of 100 are
interpreted as the date or period wherein the number of searches
for the topic was highest [28]. In this study, the downloaded
daily data from Google Trends were directly used in the analysis
and were considered as a measure of the population’s interest
on the risk of contracting COVID-19 in NCR over the study
period.

Analysis
After downloading the data for NCR from Google’s Community
Mobility Report, we computed a combined mobility index for
change in mobility [27]. We modified the method used by Wang
et al [29], wherein the daily changes in mobility in the 6
categories of location were averaged, by excluding the data for
residential places as well as groceries and pharmacies. Mobility
in residential category was not included because its
interpretation is different from the mobility measures in other
types of location. Change in mobility in residential locations
provides information on how the length of stay in residential
places differed from baseline, while the data in other categories
are interpreted as the change in volume of visitors from baseline
[27]. On the other hand, mobility in grocery and pharmacies
was excluded in the analysis because this category includes
health care facilities and other places where basic needs are
obtained, and people were not prohibited from entering these
types of places under this category.

The daily number of COVID-19 cases was forecasted through
VAR. VAR models k variables as a linear function of their own
p lags and the p lags of the other k-1 variables. It is given by:

, where yt is the (n×1) vector of endogenous variables, г0 is
the (n×1) vector of intercept terms, гp is the (n×n) vector of
coefficients, and et is the (n×1) vector of white-noise
disturbances with constant mean and variance.

Model estimation and forecasting using VAR involved five
steps: (1) assessment of stationarity of variables; (2) lag length
selection; (3) model estimation; (4) testing for autocorrelation,
stability, and Granger causality; and (5) assessment of forecast
accuracy [19,20]. All analyses were performed using STATA
14 (StataCorp) and the level of significance for all the tests was
set at .05 [30].

Stationarity of the variables is a requirement for time series
modeling. In this study, we determined the stationarity of each
variable using the Augmented Dickey-Fuller (ADF) test.
Rejection of the null hypothesis of the presence of a unit root
signified that the data are stationary.
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Selection of lag length is another critical step of VAR since the
coefficients of each equation and the properties of the model
depend on the lag length [19,20]. This was performed by
combining knowledge on the epidemiology of SARS-CoV-2
with the results of information criteria measures. The lag with
the smallest value for Akaike information criterion (AIC),
Hannan-Quin information criterion (HQIC), and Schwarz
Bayesian information criterion (SBIC) were considered as
possible candidates for lag length of the VAR with a dummy
variable for the day of the week. We selected the lag that
captured the full cycle of data in relation to the incubation period
of the virus for model estimation [19,20].

After selection of lag length for the VAR, we estimated each
equation of the reduced VAR model using ordinary least
squares. We tested the assumptions on stability and absence of
residual autocorrelation of the estimated system of equations
by checking the modulus of the resulting eigenvalues and
through Lagrange multiplier test, respectively. Presence of a
modulus of an eigenvalue of 1 or more signified that the VAR
was unstable, while rejection of the null hypothesis of no

residual correlation at a given lag length is interpreted as a
violation of the assumption on residual autocorrelation.

Granger causality test was also performed to check whether
inclusion of past values of changes in mobility and public
interest improved the prediction of the number of cases.
Rejection of the null hypothesis at the 0.05 level of significance
suggested that at least one of the past values of the variable
being tested was able to improve the prediction of the daily
number of cases.

We obtained 2 VAR models for each forecast period using the
steps described above. Model 1 contains change in mobility and
number of cases as the endogenous variables and a dummy
variable for the day of the week, while model 2 includes public
interest as an additional endogenous variable. The forecast
accuracy of these models was compared through the mean
absolute percentage error (MAPE). A MAPE of less than 10%
is interpreted as highly accurate forecast, while 11%-20%,
21%-50%, and more than 50% were considered good forecast,
reasonable forecast, and inaccurate forecast, respectively [31].
Figure 1 summarizes the steps that were followed in building
the VAR models.

Figure 1. Steps in collecting and analyzing data. The combined mobility index (CMI) was determined based on Wang et al [29]. AIC: Akaike information
criterion; DOH: Department of Health; HQIC: Hannan-Quin information criterion; MAPE: mean absolute percentage error; OLS: ordinary least squares;
SBIC: Schwarz Bayesian information criterion; VAR: vector autoregression.

Ethical Considerations
The data acquired from Google Trends, Google Community
Mobility Report, and DOH COVID-19 Tracker are secondary
and contain no sensitive information. Thus, there was no need
to secure an informed consent form from any individual. The
research also used open-source data sets, and it is for this reason
that the investigators did not apply for permission to access the
databases. A proper citation was made to acknowledge the
institutions that published the data for public use.

Results

The results of the ADF test revealed that the individual time
series do not contain a unit root, and therefore, integration or
other methods to achieve stationarity are not necessary [19,20].
Table 1 shows the test statistic and the P values obtained from
the test of stationarity.

After testing if the individual variable is stationary or not, we
determined the lag length of each model. All measures of
information criterion selected a lag length of 8 for model 1, with
values of 20.37, 20.62 and 20.98 for AIC, HQIC, and SBIC,
respectively. On the other hand, the second lag has the smallest
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SBIC value equal to 28.75, but the eighth lag was shown to
have the lowest AIC and HQIC of 27.90 and 28.43, respectively,
for model 2. Given the hypothesized seasonality of the 3
variables and the minimum incubation period of SARS-CoV-2,
we favored the use of 8 lags for both model 1 and model 2.
Hence, a VAR(8) was fitted to the daily data points (Table S1
in Multimedia Appendix 1).

We found that the model satisfied the assumptions for VAR
after the postestimation hypothesis tests. The null hypothesis
of the absence of residual autocorrelation was not rejected for
all the lags that we tested. The result of the assessment of the
stability of the VAR showed that the modulus of each eigenvalue
is strictly less than 1 (Table S2 in Multimedia Appendix 2).

The VAR(8) for model 1 and model 2 was used to forecast the
daily number of cases for 3 periods. Both models generated
forecasts with similar trend and spike to the actual number of
COVID-19 cases. However, model 1 obtained values that are
closer to the reported number of cases during the first forecast
period, with a MAPE of 15.9%. On the other hand, model 2
showed a slightly lower forecast error of 17.6% compared with
17.9% for model 1 for the forecast period of September 15-22.
The forecasted peak in the number of cases occurred earlier

compared with the actual data, despite the improvement in the
overall forecast performance of model 2 during this period. The
difference in the performance of the 2 models became substantial
when we made the predictions for the number of cases from
January 28 to February 4, as the accuracy of model 2 remained
within reasonable limits (MAPE=21.4%), while model 1 became
inaccurate (MAPE=74.2%). The out-of-sample forecast as
compared to the actual number of cases during the 3 forecast
periods are presented in Figures 2-4, while the summary of
MAPE is in Table 2.

The result of Granger causality test for model 2 is shown in
Table 3. It suggests that the relationship of the variables with
the number of cases has changed over time. During the forecast
period of August 11-18, only change in mobility was found to
improve the forecasting of the daily number of cases. It also
became more statistically significant for predicting the number
of cases during the second and third forecast periods. On the
other hand, public interest was also found to Granger-cause the
daily number of cases during September 15-22, and this
statistically significant result was also found for the VAR(8)
that was used for forecasting the number of cases from January
28 to February 4.

Table 1. Results of Augmented Dickey-Fuller test.

P valuez statisticVariable name

<.001–5.26Public interest

<.001–4.81Change in mobility

.02–3.23Number of cases

Figure 2. Out-of-sample forecasts from Model 1 and Model 2 and the observed daily number of cases in the National Capital Region, August 11-19,
2021. Model 1 contains change in mobility and number of cases as endogenous variables and a dummy variable for the day of the week. Model 2
includes all the variables in Model 1 with the addition of public interest as an endogenous variable. Observed Daily Number of Cases refers to the
number of cases reported in the Philippine Department of Health’s COVID-19 Tracker.
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Figure 3. Out-of-sample forecasts from Model 1 and Model 2 and the observed daily number of cases in the National Capital Region, September 15-22,
2021. Model 1 contains change in mobility and number of cases as endogenous variables and a dummy variable for the day of the week. Model 2
includes all the variables in Model 1 with the addition of public interest as an endogenous variable. Observed Daily Number of Cases refers to the
number of cases reported in the Philippine Department of Health’s COVID-19 Tracker.

Figure 4. Out-of-sample forecasts from Model 1 and Model 2 and the observed daily number of cases in the National Capital Region, January 28 to
February 4, 2022. Model 1 contains change in mobility and number of cases as endogenous variables and a dummy variable for the day of the week.
Model 2 includes all the variables in Model 1 with the addition of public interest as an endogenous variable. Observed Daily Number of Cases refers
to the number of cases reported in the Philippine Department of Health’s COVID-19 Tracker.
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Table 2. Mean absolute percentage error of model 1 and model 2 for the forecast periods.

Mean absolute percentage errorForecast period

Model 2, %Model 1, %

21.115.9August 11-18, 2021

17.617.9September 15-22, 2021

21.474.2January 28-February 4, 2022

Table 3. Results of Granger causality test for change in mobility and public interest across the forecast periods.

Change in mobilityPublic interestForecast period

P valueF statisticP valueF statistic

.00224.27.606.61August 11-18, 2021

<.00128.62.00126.67September 15-22, 2021

<.00127.92.00323.36January 28-February 4, 2022

Discussion

Overview
The resulting model containing change in mobility and daily
number of cases had a MAPE ranging from 15.9% to 74.2%,
while the VAR(8) with public interest as an additional variable
achieved MAPEs with values from 17.6% to 21.8%. This shows
that the forecast accuracy of model 1 became inaccurate and
weak over time, while model 2 remained within reasonable
forecasting limits. The MAPE that was obtained in this study
was not as low as the ones developed for other countries, and
this may be partly explained by the use of behavioral indicators
instead of number of deaths and number of hospitalizations
which were used in other models. Despite this, the resemblance
of the trend and the spike of cases based on the forecast with
reported number of cases in the NCR of Philippines makes the
model a potential tool for creating an early warning system.
According to Allard [32], the value of forecasting does not lie
in the ability of the model to predict the future with accuracy
but in its potential to provide information on the contingencies
that may potentially happen in the future. This makes the
forecast results potentially useful, particularly for local
government units and health managers who regularly update
their response measures within a short to medium time frame
during a health emergency.

The use of change in mobility and public interest on the risk of
contracting COVID-19 enabled the investigation of how the
population’s behavior and risk perception may affect the trend
in the daily number of COVID-19 cases. This is one of the
advantages of the model that we developed over previously
published VAR models that focused only on forecasting using
counts of cases and deaths, and environmental factors that are
not easily modifiable. The Granger causality between public
interest and daily number of cases, as well as change in mobility
and daily number of cases, also support the recommendations
on using nonconventional sources of data for surveillance.
Google Trends reflects the topics that are being searched for or
reviewed by internet users. It is for this reason that it has become
a readily available way to track people’s attention and study the
changes in their interest over time, especially in the field of

advertisement and economics [23,28]. In epidemiology, public
interest on COVID-19 can be a marker of ongoing but
undetected infection over a specific period and location, or it
can be a proxy measure for the population’s risk perception and
intention to practice self-protection measures. Krishna [21] and
Milani [23] both demonstrated the possibility of using internet
search volume for words related to protective measures as signs
of precautions taken by the population over a period of time.
On the other hand, Walker and Sulyok [33], Lin et al [34], and
Higgins et al [35] have shown the correlation between
web-based traffic search trend and the number of reported cases
and highlighted the potential of “infodemiology” for
surveillance. However, these studies may have biased results,
as correlation analysis did not account for the serial correlation
of search trends and the number of cases. Previous studies have
also focused on specific keywords, such as “handwashing,”
“mask,” “loss of smell,” “fever,” etc, that are frequently used
by the media, and thus, the results may have been driven by the
media reports instead of the actual interest of the population on
COVID-19. This study adds to the existing body of knowledge
by providing evidence on the usefulness of search trends through
a more statistically robust method and more general search
terms related to the risk of acquiring COVID-19.

Although literature has documented the direct relationship
between mobility and number of cases using simulation studies
and analysis of aggregated mobility data [36-38], community
quarantine alone was shown to be ineffective in curtailing the
spread of infection and brought devastating economic and
societal impact on different populations [39]. As the
governments design their respective lockdown exit strategy, it
is crucial to maintain the awareness of the population about the
persistence of the threat due to the virus and sustain its interest
in disease prevention and control measures [40]. The importance
of providing attention to public interest was supported by the
change in statistical significance of public interest for the
prediction of the number of COVID-19 cases over time and the
weaker performance of model 1 as public interest becomes
important in predicting the number of cases for September
15-22, 2021, and January 28 to February 4, 2022. Friedman and
Kuttner [41] recommended the assessment of the innovation
accounting of variables once Granger causality hints a change
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in the dynamics of variable. Variance decomposition and
impulse response analysis can aid in achieving better
understanding of the interrelationships of the variables and,
consequently, development of more appropriate policies. Hence,
further investigation of how the number of cases will respond
to changes in mobility and public interest may be warranted to
improve the planning and implementation of prevention and
response measures.

The variability of the MAPE during the 3 forecast periods can
be attributed to several factors. The detection of local
transmission of the Delta variant in all cities and municipalities
of NCR had just been reported a week before the time that
coincided with first forecast period while the second forecast
period was the peak of the resurgence [25]. Given the change
in the dominantly circulating variant, with the Delta variant
being markedly more transmissible than previous ones, it was
expected that the epidemic patterns of COVID-19 during August
11-18 and September 15-22 would also be different [42]. It is
possible that the changes in the epidemic pattern of COVID-19
were better captured by the training data that were used for
forecasting the cases from September 15-22 (Multimedia
Appendices 3-5). The increase in statistical significance of
public interest in predicting the number of cases was also
observed during the second forecast period. These 2 factors may
have contributed to the improvement of the forecast performance
of model 2 during the second forecast period. On the other hand,
the faster transmission rate of the Omicron variant during the
third forecast period led to a sharper rise and fall in the number
of COVID-19 cases, and this may be expected to increase the
MAPE for January 28 to February 4, 2022. It is worth noting
that despite the change in trend of the number of cases, the
forecast from model 2 generated values that are very close to
the actual number of cases except for the point for January 29.
This single value led to a bigger absolute difference that skewed
the average of the absolute percentage error.

To the best of our knowledge, this is the first study that
attempted to forecast the number of COVID-19 cases in the
Philippines using time series analysis. Forecasting is not part
of routine surveillance in the Philippines. This may be partly
due to challenges in data management and analysis such as
limited number of skilled data analysts, complicated data
compilation, and lack of clear guidelines on analysis that
low-middle-income countries are experiencing [5,43]. The
modeling approach in this study was kept simple to make it
feasible to transfer the knowledge and skills of data analysis to
end users. It is for this reason that a simple method on computing
the combined mobility index was preferred over more advanced
techniques for creating indices such as Principal Component
Analysis. In addition, geographical variability is an important
consideration in determining the scope of time series analysis
[44] and hence, the forecasting approach was applied to the
NCR instead of the whole Philippines.

Despite the capacity of the resulting model to forecast the
number of cases, this research has some limitations. The data
source included those cases that were confirmed to be positive
through RT-PCR by DOH-accredited laboratories, and as a
consequence, underreporting of cases is possible given that the
current case definition for COVID-19 includes cases that were
detected through antigen tests. Second, since the data sources
for public interest and change in mobility are affected by internet
usage, there is a possibility that the data may not be
representative of behavior-related indicators for the segment of
the population that does not frequently use the internet. Despite
this, the data sources remain useful in investigating risk
perception and behavior at the aggregate level. Third, it was
assumed that public interest, change in mobility, and daily
number of cases were fixed variables throughout the period of
coverage. It may be possible for these indicators to vary over
time, and models that allow time-varying variables can be
explored in future research. Nevertheless, the assumption on
uniform mean and variance is justified given the results of the
ADF test that suggested the stationarity of these variables.
Finally, the demonstration of the modeling approach was done
using publicly available data to ensure the ease of data collection
and model recalibration, which are important considerations in
real-life applications during health emergencies. Due to this,
other variables without readily available data at the time when
the study was conducted were not included in the study. This
may also help explain why the MAPE of the models were not
as low as the models in other countries.

To improve the forecast performance, it is recommended for
future researchers to extend the model by incorporating
additional endogenous variables, such as vaccine coverage and
testing rate, that may be postulated to have a bidirectional
relationship with the variables in this study. Weather-related or
meteorological variables may also be added to the model, as
these variables may affect public interest, change in mobility,
and number of cases.

Conclusions
To the best of our knowledge, this is the first study that
forecasted the number of COVID-19 cases and explored the
relationship of behavioral indicators with the number of
COVID-19 cases in the Philippines. The resemblance of the
forecasts from model 2 with the actual data suggests its potential
in providing information about future contingencies. The results
of Granger causality test also exhibit the importance of public
interest in forecasting the number of cases and signify the
importance of paying attention to the level of public interest in
addition to changes in mobility. Hence, the findings of this study
are indicative of the potential of forecasting and analysis of
nonconventional data sources to complement the traditional
surveillance system.
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