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Abstract

Background: Acute kidney injury (AKI) represents a significant global health challenge, leading to increased patient distress
and financial health care burdens. The development of AKI in intensive care unit (ICU) settings is linked to prolonged ICU stays,
a heightened risk of long-term renal dysfunction, and elevated short- and long-term mortality rates. The current diagnostic approach
for AKI is based on late indicators, such as elevated serum creatinine and decreased urine output, which can only detect AKI
after renal injury has transpired. There are no treatments to reverse or restore renal function once AKI has developed, other than
supportive care. Early prediction of AKI enables proactive management and may improve patient outcomes.

Objective: The primary aim was to develop a machine learning algorithm, NAVOY Acute Kidney Injury, capable of predicting
the onset of AKI in ICU patients using data routinely collected in ICU electronic health records. The ultimate goal was to create
a clinical decision support tool that empowers ICU clinicians to proactively manage AKI and, consequently, enhance patient
outcomes.

Methods: We developed the NAVOY Acute Kidney Injury algorithm using a hybrid ensemble model, which combines the
strengths of both a Random Forest (Leo Breiman and Adele Cutler) and an XGBoost model (Tianqi Chen). To ensure the accuracy
of predictions, the algorithm used 22 clinical variables for hourly predictions of AKI as defined by the Kidney Disease: Improving
Global Outcomes guidelines. Data for algorithm development were sourced from the Massachusetts Institute of Technology Lab
for Computational Physiology Medical Information Mart for Intensive Care IV clinical database, focusing on ICU patients aged
18 years or older.

Results: The developed algorithm, NAVOY Acute Kidney Injury, uses 4 hours of input and can, with high accuracy, predict
patients with a high risk of developing AKI 12 hours before onset. The prediction performance compares well with previously
published prediction algorithms designed to predict AKI onset in accordance with Kidney Disease: Improving Global Outcomes
diagnosis criteria, with an impressive area under the receiver operating characteristics curve (AUROC) of 0.91 and an area under
the precision-recall curve (AUPRC) of 0.75. The algorithm’s predictive performance was externally validated on an independent
hold-out test data set, confirming its ability to predict AKI with exceptional accuracy.

Conclusions: NAVOY Acute Kidney Injury is an important development in the field of critical care medicine. It offers the
ability to predict the onset of AKI with high accuracy using only 4 hours of data routinely collected in ICU electronic health
records. This early detection capability has the potential to strengthen patient monitoring and management, ultimately leading to
improved patient outcomes. Furthermore, NAVOY Acute Kidney Injury has been granted Conformite Europeenne (CE)–marking,
marking a significant milestone as the first CE-marked AKI prediction algorithm for commercial use in European ICUs.
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Introduction

Acute kidney injury (AKI) is recognized as a major global public
health concern, leading to increased morbidity and mortality,
with associated high financial health care costs and a major
social impact [1,2]. The incidence of AKI in the intensive care
unit (ICU) has increased over the past decade due to increased
acuity as well as improved recognition. A multinational
epidemiological study has shown that the incidence of AKI in
the ICU exceeds 50% (18% in stage 1, 9% in stage 2, and 30%
in stage 3) [3]. The development of AKI in ICUs is
independently associated with increased ICU length of stay,
risk of long-term renal dysfunction (chronic kidney disease and
end-stage renal disease), and short- and long-term mortality
[4,5].

The definition of AKI has evolved from the risk, injury, failure,
loss, and end-stage criteria and the AKI network classification
to the Kidney Disease: Improving Global Outcomes (KDIGO)
classification [6,7]. These definitions are based exclusively on
serum creatinine and urine output.

Timely recognition of AKI has been challenged by limitations
associated with the traditional parameters used for diagnosis.
Renal impairment typically precedes changes in serum creatinine
and urine output. Thus, the current AKI diagnostic and staging
strategy only detects AKI after renal injury or impairment has
already occurred.

Late AKI diagnosis and its heterogeneous nature have been
identified as contributing factors to the limited efficacy observed
in drug trials targeting this condition. Studies have indicated
that early diagnosis and treatment of reversible AKI reduces
mortality [5]. Therefore, an AKI diagnosis based solely on
creatinine level and urine volume does not meet the clinical
demand. Once AKI has developed, there are no treatments
available to reverse or restore renal function other than
supportive care, emphasizing the importance of early
identification and prevention [8-15].

Extensive research has been carried out to try developing new
biomarkers, AKI prediction models, and scoring systems based
on risk factors. In recent years, the use of electronic health
records (EHRs) has become widespread, and the introduction
of artificial intelligence has provided new methods for mining
massive medical data and training models based on machine
learning algorithms.

AKI is well-suited for prediction and risk forecasting based on
routinely collected data contained within ICU EHRs, as the
KDIGO consensus definition for AKI allows for temporal
anchoring of events.

The Acute Dialysis Quality Initiative convened a group of key
opinion leaders and stakeholders to discuss how best to approach
AKI research and care in the “big data” era [16]. Acute Dialysis

Quality Initiative recommends developing tools for predicting
AKI, defined as KDIGO stage 2 or 3, rather than targeting all
AKI stages. KDIGO stage 1 can be viewed more as a “risk of
AKI.” Traditionally, AKI predictors or risk factors have been
more strongly associated with higher-severity AKI [17,18]. This
stronger association will likely result in more powerful and
robust predictive machine learning algorithms.

Previously published machine learning AKI prediction
algorithms have, at least in recent years, shown robust prediction
accuracy. However, the absolute majority of the studies are
retrospective, single-database studies. Many studies have
focused on subspecialized conditions such as cardiac surgery,
trauma, and burns. Very few models have been externally or
prospectively validated, which limits the generalizability of the
models.

To the best of our knowledge, no model has yet taken the final
step in the validation process, testing the impact on patient
outcomes in randomized clinical trials when used as a clinical
decision support tool for making bedside real-time predictions.

In this proof-of-concept study, we have developed, using
machine learning methods, an algorithm for early continuous
predictions of AKI at KDIGO stage 2 or 3 in a broad critical
care setting. This algorithm uses only clinical data routinely
collected from the time of admission to the ICU and is designed
to be integrated as a clinical decision support tool in EHR
systems.

Methods

Data Set and Study Population
The algorithm for predicting AKI was developed based on the
Massachusetts Institute of Technology Lab for Computational
Physiology Medical Information Mart for Intensive Care IV
(MIMIC-IV) clinical database [19,20]. This database contains
demographics, vital signs, laboratory tests, medications, and
more for 53,150 adult ICU patients (76,540 ICU stays) admitted
to an ICU or emergency department between 2008 and 2019.

AKI onset was defined as the time of the first onset of KDIGO
stage 2 or stage 3 [6,7].

Patients included in the analysis (Figure 1 and Table 1) had at
least 1 measurement of each of the variables included in the
algorithm and were aged 18 years or older at the time of
admission. Differences between the AKI and non-AKI cohorts
were assessed by appropriate tests of statistical significance
(Welch t test for numerical variables, Fisher exact test, or
chi-square test for categorical variables). No adjustment was
made for multiple comparisons.

To ensure that spurious variables were excluded and the most
important variables were included, a preselection of the variables
was done in cooperation with medical professionals. Hence, the
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algorithm was based on the following 22 variables: age, sex,
heart rate, respiratory rate, body temperature, systolic blood
pressure, diastolic blood pressure, vasopressor use, pH, glucose,
lactate, serum creatinine, bilirubin, blood urea nitrogen,
leukocytes, thrombocytes, oxygen saturation pulse oximetry,
fraction of inspired oxygen, partial pressure of oxygen,
International Normalized Ratio, Glasgow Coma Scale, and urine
output. Hourly values were used, and a last observation carried
forward approach was used for any hours with missing

information. For any hours with more than one measurement,
hourly averages were used. Feature engineering was performed
to obtain 2 additional variables: the creatinine ratio (ratio of the
current value of creatinine to the minimum creatinine value
during the last 7 days) and the creatinine difference (difference
between the current value of creatinine and the minimum
creatinine value during the last 2 days). All the variables were
then standardized by the mean and SD of the training population.
No additional feature engineering was deemed necessary.

Figure 1. Intensive care unit (ICU) stays included in the analyses. AKI: acute kidney injury; MIMIC IV: Medical Information Mart for Intensive Care
IV.
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Table 1. Patient characteristics of population for algorithm development and validation (patients with data 12 hours before onset, n=11,484 intensive
care unit [ICU] stays).

P valuebNon-AKIAKIaPatient characteristics

—c83543130ICU stays, n (%)

<.001Age (years)

62.0 (16.8)63.4 (15.5)Mean (SD)

64 (52-75)64 (54-75)Median (IQR)

<.001Age groups (years), n (%)

421 (5)100 (3)18-29

489 (6)142 (5)30-39

870 (10)300 (10)40-49

1648 (20)653 (20)50-59

1911 (23)759 (24)60-69

3015 (36)1176 (38)≥70

.02Sex, n (%)

3264 (39)1299 (42)Female

5090 (61)1831 (58)Male

<.001Length of ICU stay (days)

4.98 (4.6)11.48 (10.2)Mean (SD)

3.5 (2.0-6.2)8.4 (4.6-15.0)Median (IQR)

<.001Length of ICU stay (days), n (%)

5553 (66)880 (28)0-4

1883 (23)949 (30)5-9

561 (7)518 (17)10-14

199 (2)322 (10)15-19

104 (1)163 (5)20-24

54 (0.6)298 (10)>25

—Time from ICU admission to AKI onset (hours)

—105.3 (113.9)Mean (SD)

—63.8 (34.5-135.0)Median (IQR)

<.001Comorbiditiesd, n (%)

1805 (21.6)706 (22.6)Chronic obstructive pulmonary disease

1278 (15.3)609 (19.5)Chronic kidney disease

1831 (21.9)739 (23.6)Diabetes mellitus

1096 (13.1)374 (11.9)Cerebrovascular disease

2227 (26.7)822 (26.3)Ischemic heart disease

3887 (46.5)1457 (46.5)Hypertension

826 (9.9)395 (12.6)Chronic liver disease

1537 (18.4)591 (18.9)Major cancers

1270 (15.2)471 (15)Peripheral vascular disease

1881 (22.5)798 (25.5)Heart failure

1566 (18.7)825 (26.4)Sepsis

<.001Admission to type of ICU, n (%)

1517 (18.2)328 (10.5)Cardiac vascular ICU
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P valuebNon-AKIAKIaPatient characteristics

815 (9.8)380 (12.1)Coronary care unit

2154 (25.8)1029 (32.9)Medical ICU

1411 (16.9)552 (17.6)Medical or surgical ICU

285 (3.4)151 (4.8)Neuro ICU

1192 (14.3)407 (13)Surgical ICU

980 (11.7)283 (9)Trauma surgical ICU

<.001Death during hospital stay, n (%)

1836 (22)1233 (39.4)Yes

6518 (78)1897 (60.6)No

aAKI: acute kidney injury.
bDifferences between the AKI and non-AKI cohorts, as assessed by Welch t test for numerical variables or Fisher exact test or chi-square test for
categorical variables.
cNot applicable.
dComorbidities are defined by International Statistical Classification of Diseases, ninth revision codes registered during the ICU stay.

Machine Learning Algorithm Development
The algorithm was developed using a hybrid ensemble model
[21,22] consisting of a Random Forest (Leo Breiman and Adele
Cutler) and an XGBoost model (Tianqi Chen) [23]. This method
effectively combines both models, and the final risk score is a
weighted combination of the predictions from both models.
This method was chosen based on its strong performance with
tabular data. Each of the 2 models could face difficulties
predicting in specific situations, and their combination acts as
a safety net to mitigate the mistakes of each other, reducing the
impact of their potential individual errors. Data were
preprocessed using R (The R Project), and the models were
executed using XGBoost [23] and Sci-Kit Learn (David
Cournapeau) [24] backends in Python (version 3.8; Python
Software Foundation).

The model’s hyperparameters were selected using a sparse grid
search, exploring a reasonable number of hyperparameter
combinations while excluding combinations that would
obviously underperform or not substantially enhance
performance. The XGBoost model used the following nondefault
hyperparameters: “max_depth” = 8, “learning_rate” = 0.2,
“reg_lambda” = 1.2, and “min_child_weight” = 4. Training
stopped if the validation error had not decreased for the last 10
training rounds. Area under the receiver operating characteristic
curve (AUROC) was used as the evaluation metric. The Random
Forest, executed with Sci-Kit Learn, used the following
hyperparameters: “max_features” = 0.5,
“min_samples_leaf” = 10, and “n_estimators” = 300. The
models were then combined with weights of 0.25 for the
Random Forest model and 0.75 for the XGBoost model.

The data were split into 3 separate data sets: 1 training set to
train the model, 1 validation set to continuously evaluate
performance for different hyperparameter combinations, and 1
test set, which was held out to test the final model’s
performance. Random onset matching [25] was used, randomly
selecting 4-hour sequences with the last time point 12 hours
before AKI onset for patients with AKI or at any point during

the entire ICU stay for patients without AKI. The time points
were sampled to maintain a similar distribution of time since
admission to the ICU in both populations. Since the algorithm
was initially planned for implementation in the Nordic countries,
data were sampled to maintain a prevalence of AKI of 22% in
all 3 data sets, resembling the prevalence of AKI stages 2 and
3 in Nordic ICU patients [26]. This also facilitated comparisons
between the data sets, as the AUROC, area under the
precision-recall curve (AUPRC), and accuracy are influenced
by prevalence. A prediction horizon of 12 hours was chosen to
predict AKI as early as possible as well as to minimize
performance degradation observed in longer prediction horizons.
The training data consisted of 9996 sequences (n=9996 ICU
stays) of 4-hour data (AKI, n=2199 sequences and non-AKI,
n=7797 sequences). The validation data consisted of 2128
sequences (n=2128 ICU stays) of 4-hour data (AKI, n=468
sequences and non-AKI, n=1660 sequences). The test data
consisted of 2105 sequences (n=2105 ICU stays) of 4-hour data
(AKI, n=463 sequences and non-AKI, n=1642 sequences) and
were only used in the final evaluation of the chosen model.

Performance
To assess performance, receiver operating characteristic (ROC)
were calculated, that is, the proportion of true positives
(sensitivity) in relation to the proportion of false positives (1–
specificity). Based on the ROC curve, an operating point
(threshold) was chosen for classifying patients with a high risk
of developing AKI. True positives were patients with AKI that
were accurately predicted by the algorithm 12 hours before AKI
onset, and false positives were patients without AKI that were
wrongly predicted by the algorithm to be at risk of developing
AKI. The operating point for the algorithm was chosen to keep
sensitivity (the proportion of true positives) around 0.80 while
maximizing specificity (the proportion of true negatives) to
minimize the false alert rate while ensuring high sensitivity.
The algorithm should ideally provide a high proportion of true
positives and a low proportion of false positives, corresponding
to a large AUROC. The AUPRC is also important, where a
large area represents both high recall (low false negative rate)
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and high precision (low false positive rate). High scores for
both recall and precision show that the algorithm yields accurate
results (high precision) and captures the majority of all positive
results (high recall). Accuracy is the proportion of correct
predictions, and positive predictive value is the proportion of
predicted AKI cases that are true AKI cases.

Variable Importance
For the sake of model interpretability, variable importance was
calculated using the kernel SHAP (Shapley Additive
exPlanations) method [27]. The SHAP method calculates

Shapley values for each prediction, and the Kernel SHAP uses
a weighted linear regression to compute these values. Figure 2
presents an example of a graphic obtained with the SHAP values
calculated on the hold-out data. Figure 2A illustrates the
distribution of the SHAP values for each variable. To evaluate
the global contribution of each variable independently of time,
the SHAP value was summed over time for each variable,
yielding Figure 2B. According to Figure 2, urine output,
creatinine ratio, and Glasgow Coma Scale are the most
contributing variables to the model for the hold-out data set.

Figure 2. Shapley Additive exPlanations (SHAP) values for the hold-out data. Each point on the graph corresponds to the SHAP value for a specific
variable and prediction. The red color indicates a high variable value, while blue indicates a low value. A high absolute SHAP value signifies a variable’s
high importance. A positive SHAP value increases the predicted risk, while a negative SHAP value decreases it. (A) SHAP values produced with input
values of each variable from all 4 time points (with t being the last hour of the 4-hour period). (B) SHAP values averaged over the 4-hour period.
Example of interpretation: urine output at t (12 hours before acute kidney injury onset) is the most important parameter, as it has the largest absolute
SHAP value. The blue color indicates that a low urine output value will increase the predicted risk. Creatinine ratio 12 hours before onset is the second
most important parameter, as it has the second largest absolute SHAP value. The red color indicates that a high creatinine ratio value will increase the
predicted risk.

Ethical Considerations
As this study is based on a publicly available database, an ethics
review was not sought. The MIMIC-IV contains deidentified
data, where patient identifiers have been carefully eliminated
in compliance with the HIPAA (Health Insurance Portability
and Accountability Act) safe harbor provision. The process of
gathering patient data and establishing the research database
underwent evaluation by the institutional review board at the
Beth Israel Deaconess Medical Center. They granted an
exemption from the requirement for informed consent and gave
their approval for the data sharing endeavor [19,20].

Results

The AUROC for the developed algorithm was as high as 0.91
(Figure 3 and Table 2) when predicting 12 hours before onset.

The AUPRC was 0.75 on training data and 0.71 on test data
when predicting 12 hours before onset (Table 2). The sensitivity,
specificity, and accuracy of the algorithm were all high
(sensitivity 0.84-0.85, specificity 0.85-0.87, and accuracy
0.84-0.85; Table 2). The chosen operating point yielded a
positive predictive value of 0.61 on training data and 0.63 on
test data when predicting 12 hours before onset (Table 2). This
metric was expected to be lower than the sensitivity, specificity,
and accuracy due to the class imbalance. A sensitivity of 80%
(Table 2) results in 20% false positives, and since most patients
were negative cases (non-AKI), there would be an
overproduction of predicted AKI cases. Comparing the
distribution of AKI predictions made by the algorithm with the
distribution of actual AKI cases (prevalence), we can see that
the algorithm predicted 29% of AKI cases in training data and
28% in test data (Table 2), which is somewhat larger than the
prevalence of 22%.
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Figure 3. Receiver operating characteristic (ROC) curve for algorithm predicting acute kidney injury (AKI) and hold-out test data predicting AKI 12
hours before onset. AUROC: area under the ROC curve; FPR: false positive rate; TPR: true positive rate.

Table 2. Validation performance for algorithm predictions 12 hours in advance.

Hold-out test dataTraining dataPerformance metric

0.910.91AUROCa curve

0.710.75AUPRCb

0.85 (0.84-0.87)0.84 (0.83-0.86)Accuracy (95% CI)c

0.790.80Sensitivityc

0.870.85Specificityc

0.630.61PPVc,d

0.280.29Proportion predicted AKIe cases

aAUROC: area under the receiver operating characteristic.
bAUPRC: area under the precision-recall curve.
cOperating points for the algorithm are chosen to keep sensitivity around 0.80.
dPPV: positive predictive value.
eAKI: acute kidney injury.

Discussion

Principal Results
In this study, we developed a machine learning algorithm,
NAVOY Acute Kidney Injury, for early continuous predictions
of stage 2 and 3 AKI in ICU patients. The algorithm was trained
on data from a broad critical care setting (the MIMIC-IV clinical
database) and was designed for integration as a clinical decision
support tool within EHR systems in ICUs. To optimize its use

as a prospective clinical decision support tool, it was designed
to make fully automated continuous predictions based on
real-time data routinely collected in ICU EHR systems, using
variables collected from time of admission and 4 hours of input.
This allows for high-performance risk assessments for AKI in
adult patients to be provided to clinical staff within only a few
hours after ICU admission. Specificity (proportion of true
negatives) was prioritized to reduce false alarms, which is
especially relevant in clinical decision support tools since
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interventions might carry some risk. This also decreases the
risk of alarm fatigue, which is a well-known phenomenon in
critical care settings.

The AUROC of NAVOY Acute Kidney Injury was 0.91 for
predictions 12 hours before AKI onset, and this result was
consistent between training and test data, indicating that the
algorithm yields a high proportion of true positives and a low
proportion of false positives. NAVOY Acute Kidney Injury has
been externally validated at Skåne University Hospital in
Sweden (ClinicalTrials.gov NCT05424874, data on file) and
obtained Conformite Europeenne (CE)–marking, making it the
first CE-marked AKI prediction algorithm for commercial use
in European ICUs.

Limitations
NAVOY Acute Kidney Injury was trained on a US adult
population (MIMIC-IV), and the evaluation was performed on
a hold-out data set from the same population, which may limit
its generalizability and suggest a need for additional external
validation (ongoing research).

Additionally, the evaluation was based on retrospective data,
which could lead to inconsistencies in data recording and
necessitate prospective validation before putting the algorithm
to use in clinical practice. Furthermore, the calculation of the
creatinine ratio used the first creatinine value following ICU
admission as the baseline, not the first value in the patient’s
hospital stay, potentially missing some cases on the first day of
their ICU stay.

Comparison With Previous Work
Most previously published machine learning AKI prediction
algorithm studies are retrospective and single-database studies,
often focusing on specific conditions such as cardiac surgery,
trauma, and burns. Few models have been externally or
prospectively validated, limiting their generalizability.

In a review of 19 published machine learning AKI prediction
algorithms by Gameiro et al [28], one model was prospectively
validated in an ICU setting [29]. This model was developed to
predict AKI based solely on creatinine. Baseline creatinine
values were defined as the lowest creatinine value identified in
the 3 months before, not including admission. Predictions were
made upon ICU admission (AUROC 0.80), on the first morning
in the ICU (AUROC 0.94), and after 24 hours of ICU stay
(AUROC 0.95).

Yu et al [30] recently published a review of machine learning
models for AKI. A total of 13 algorithms were studied in a
critical care setting comparable to our patient cohort.
Performance was reported as AUROC, ranging from 0.69 to
0.926. The model with the highest reported AUROC was
designed to predict whether patients with AKI stages 1 or 2 will
progress to AKI stage 3 [31]. One model, designed to make
daily predictions, was externally and prospectively validated,
with an AUROC of 0.86 [32].

As pointed out by Moor et al [25], it can be difficult to compare
studies based on measures such as AUROC or accuracy, as
these measures are directly affected by the prevalence of the
studied condition. Even studies from the same database can be

difficult to compare due to differences in data extraction and
data preprocessing methods. In situations where there is an
imbalance, such as in AKI prediction, where the number of
patients without AKI is substantially greater than those with
AKI, the AUPRC should be reported. While AUROC is
primarily affected by specificity and sensitivity, AUPRC is
more dependent on the balance between precision and recall.
An algorithm can have a very high AUROC, but a much lower
AUPRC if the prevalence is very low. However, the NAVOY
Acute Kidney Injury algorithm has a high AUROC as well as
a high AUPRC, indicating that the algorithm provides accurate
results (high precision) and returns a majority of all positive
results (high recall). Direct comparisons with previously
published AKI algorithms are, however, challenging since none
of them have presented AUPRC values.

To the best of our knowledge, no machine learning AKI
prediction algorithm has yet taken the final step in the validation
process, testing the impact on patient outcomes in randomized
clinical trials when used as a clinical decision support tool for
making real-time bedside predictions. Dascena Inc had planned
a clinical trial for the Previse AKI prediction algorithm [33] but
this study has been withdrawn (ClinicalTrials.gov
NCT04200950). A clinical trial has been conducted with the
Mayo Clinic AKI Sniffer [34,35], but results have not yet been
published (ClinicalTrials.gov NCT01621152).

Future Work
While NAVOY Acute Kidney Injury shows promise, further
research is needed to assess its generalizability and clinical
utility. External validation in diverse patient cohorts and
prospective clinical trials are essential steps toward establishing
the algorithm as a reliable clinical decision-support tool. In
future implementations of the algorithm at different institutions,
an initial “silent” period is planned, during which the predictions
will not be presented. This period will facilitate a prospective
comparison between the predictions and the actual onset of AKI
and will thereby enable calibration of the model to ensure that
the algorithm functions as expected at each institution before
going live. We have developed a technical platform for real-time
predictions, which is currently being tested with our sepsis
prediction algorithm, NAVOY Sepsis [36], in the ICU at the
Southern General Hospital in Sweden (ClinicalTrials.gov
NCT05095220). In future research, we intend to clinically
validate NAVOY Acute Kidney Injury in a similar fashion. The
integration of NAVOY Acute Kidney Injury into ICU settings
holds potential for improving real-time patient care and
outcomes.

Conclusions
AKI affects a large proportion of ICU patients and is associated
with significant morbidity and mortality. Currently, AKI is
diagnosed using the KDIGO classification based on serum
creatinine and urine output, parameters that typically lag behind
renal injury. We have developed a machine learning AKI
prediction algorithm, NAVOY Acute Kidney Injury, that
predicts the risk of AKI (KDIGO stage 2 or stage 3) with high
accuracy up to 12 hours before onset. The algorithm uses
variables routinely collected and contained in ICU EHRs and
could serve as a valuable tool for strengthened patient
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monitoring, earlier detection, and intervention, potentially
improving patient outcomes. NAVOY Acute Kidney Injury is
the first CE-marked AKI prediction algorithm for European

ICUs, but further validation and prospective studies are
necessary to confirm its generalizability and clinical utility.
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