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Abstract

Background: Sickle cell disease (SCD) is a genetic red blood cell disorder associated with severe complications including
chronic anemia, stroke, and vaso-occlusive crises (VOCs). VOCs are unpredictable, difficult to treat, and the leading cause of
hospitalization. Recent efforts have focused on the use of mobile health technology to develop algorithms to predict pain in people
with sickle cell disease. Combining the data collection abilities of a consumer wearable, such as the Apple Watch, and machine
learning techniques may help us better understand the pain experience and find trends to predict pain from VOCs.

Objective: The aim of this study is to (1) determine the feasibility of using the Apple Watch to predict the pain scores in people
with sickle cell disease admitted to the Duke University SCD Day Hospital, referred to as the Day Hospital, and (2) build and
evaluate machine learning algorithms to predict the pain scores of VOCs with the Apple Watch.

Methods: Following approval of the institutional review board, patients with sickle cell disease, older than 18 years, and admitted
to Day Hospital for a VOC between July 2021 and September 2021 were approached to participate in the study. Participants were
provided with an Apple Watch Series 3, which is to be worn for the duration of their visit. Data collected from the Apple Watch
included heart rate, heart rate variability (calculated), and calories. Pain scores and vital signs were collected from the electronic
medical record. Data were analyzed using 3 different machine learning models: multinomial logistic regression, gradient boosting,
and random forest, and 2 null models, to assess the accuracy of pain scores. The evaluation metrics considered were accuracy
(F1-score), area under the receiving operating characteristic curve, and root-mean-square error (RMSE).

Results: We enrolled 20 patients with sickle cell disease, all of whom identified as Black or African American and consisted
of 12 (60%) females and 8 (40%) males. There were 14 individuals diagnosed with hemoglobin type SS (70%). The median age
of the population was 35.5 (IQR 30-41) years. The median time each individual spent wearing the Apple Watch was 2 hours and
17 minutes and a total of 15,683 data points were collected across the population. All models outperformed the null models, and
the best-performing model was the random forest model, which was able to predict the pain scores with an accuracy of 84.5%,
and a RMSE of 0.84.
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Conclusions: The strong performance of the model in all metrics validates feasibility and the ability to use data collected from
a noninvasive device, the Apple Watch, to predict the pain scores during VOCs. It is a novel and feasible approach and presents
a low-cost method that could benefit clinicians and individuals with sickle cell disease in the treatment of VOCs.

(JMIR Form Res 2023;7:e45355) doi: 10.2196/45355

KEYWORDS

sickle cell disease; vaso-occlusive crises; mobile health; consumer wearable; Apple Watch; machine learning; pain; prediction;
smartwatch; wearable; predict

Introduction

Sickle cell disease (SCD) is an inherited monogenic disorder
that affects millions of individuals across the world and is
estimated to affect 300,000 new children every year [1-3]. The
sickled red blood cells have adhesive properties to other cells,
building up in blood vessels and blocking blood flow to tissues.
This process is known as vaso-occlusive crises (VOCs) and
leads to the onset of a complex cascade of vaso-occlusion,
inflammation, and ischemia, ultimately resulting in
complications such as acute pain [4]. VOCs are often referred
to simply as “pain crises” and frequently do not have a specific
cause [5]. Shah et al looked at over 8000 individuals with sickle
cell disease over a 3-year period and reported that each patient
averaged 3.3 VOCs per year [6].

VOCs are associated with a decreased health-related quality of
life and are a significant morbidity for individuals with sickle
cell disease; it is the most common cause of hospitalization in
SCD [5,7]. The treatment for VOCs is currently limited to
analgesics such as opioids, which are given in proportion to the
reported level of pain [8]. Although most patients manage their
pain at home, if VOCs cannot be controlled, hospitalization is
required to administer intravenous analgesics and fluids.
Ultimately, due to the frequency and unpredictability of VOCs,
there are high health care usage and costs for patients with sickle
cell disease [9]. Having an ability to objectively determine the
timing and intensity of VOCs may improve pain management
and lead to an increased health-related quality of life as well as
lower resource usage in patients living with sickle cell disease.

Recent efforts to better understand pain include using machine
learning techniques to help analyze pain and associated
physiological data. Machine learning is the usage of data and
analytics to predict outcomes, allowing computers to execute
operations without explicit instructions. Machine learning
models have been applied to SCD and non-SCD pain–related
research to visualize how pain indicators relate to subjective
pain [10-12]. Health care studies involving machine learning
have evaluated patients suffering from chronic and postoperative
pain using heart rate variability (HRV), brain activity, and
clinical data to create complex multivariable models that attempt
to predict pain levels [10]. In using the mentioned variables,
researchers built models that successfully predicted self-reported
pain intensity or postoperative pain intensity, but the methods
used to collect data were expensive and difficult to perform on
a large scale.

Even as this research continues, a gap exists in the usage of
sustainable, cost-effective methods to better understand pain in

SCD. We believe that consumer wearable devices, in particular,
smartwatches, may be a way to fill that gap. Consumer wearable
devices are increasing in popularity globally and can be an
affordable way to gather large amounts of continuous and
real-time biometric data both in and out of a clinical setting
[13,14]. Biometric data collected by consumer wearables can
include heart rate (HR), HRV, step count, burned calories, and
oxygen saturation. Our research team previously evaluated data
collected from the consumer wearable Microsoft Band 2 to
assess if subjective pain scores could be predicted in individuals
living with sickle cell disease. The study was able to predict
subjective pain scores using the data collected from Microsoft
Band 2, pain score data, and a regression machine learning
model, with a correlation of 0.706 in adult patients during their
time in the Day Hospital for a painful VOC [6]. The Microsoft
Band 2 provided robust data but had a limited battery life of
approximately 6 hours and has since been discontinued. To
continue our research into the feasibility of using consumer
wearables as a sustainable and cost-effective method to better
understand pain, we adopted the Apple Watch based on its
popularity and global acceptance, as well as the robust data
collection of Apple Health Kit and the open access to raw
collected data. This study looked to evaluate the performance
of various machine learning models on data collected from the
Apple Watch to predict reported pain scores in individuals with
sickle cell disease suffering from VOC.

The aim of this study is to (1) determine the feasibility of using
the Apple Watch to predict the pain scores in people with sickle
cell disease admitted to the Day Hospital and (2) build and
evaluate machine learning algorithms to predict the pain scores
of VOCs with the Apple Watch.

Methods

Data Collection
Following approval from the Duke Institutional Review Board,
patients meeting the inclusion criteria and entering the Day
Hospital with a VOC between July 2021 and September 2021
were approached and consented. Patients included had to have
a confirmed SCD diagnosis, 18 years of age or older, and
admitted with a primary diagnosis of VOC. The study team
provided participants with an Apple Watch Series 3 to be worn
for the duration of their visit. The Apple Watch was attached
to the wrist of the participant and placed in “Other” exercise
mode. Exercise mode allowed for more continuous collection
of HR and other Apple Health Kit data, collecting HR data every
5 seconds [15]. This allowed us to retrieve the maximum amount
of HR data the Apple Watch could record during the time the
participants were enrolled in the study. Biometric data collected
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via the Apple Watch included HR, active calorie burn, and basal
calories burned. Pain scores and vital sign variables including
blood pressure, pulse, and temperature, as well as demographics
including age, SCD genotype, sex, and ethnicity were extracted
from the electronic medical records (EMRs). Patients completed
the study either due to discharge following pain management,
the closing of the Day Hospital, or transferring to the emergency
room. Data from the Apple Watch were extracted from Apple
Health Kit and exported as XML files, converted to XLSX, and
analyzed using Python (version 3.9.6; Python Software
Foundation).

Outcomes
Pain scores, HR data, calculated HRV, and calories burned were
combined using the minimum absolute time difference between
time stamps, to create a cohesive data set. We assumed the pain
score to remain the same for up to ±15 minutes when each pain
score was recorded, in order to expand the usable data set.

We expanded our data set by self-calculating HRV from the
HR data, based on existing evidence of HRV’s relationship to
pain [16]. Classically, HRV is calculated by analyzing the
electrocardiography data. Due to the lack of electrocardiography
data, we instead used the fluctuations in the HR to calculate
HRV, which can also be called pulse rate variability. Previous
studies have shown that pulse rate variability and HRV are
significantly correlated, and the values are very close to each
other for measurements [17]. There are multiple metrics to
represent HRV [18], and we chose the root-mean-square of
successive differences between normal heartbeats of 70 and 110
beats per minute. The time difference between successive normal
heartbeats was noted for 5 minutes, the values of their successive

differences were calculated and squared, and then the result was
then averaged and squared off.

Analysis
Considering the discrete pain values as distinct classes, 3
classification models were fit to the data: multinomial logistic
regression, gradient boosting, and random forest (Figure 1).
The machine learning models were trained with half of the data
set, and the other half was then used for testing. The
performance of these models was compared to 2 basic models,
called “null models,” which used no biometric measures in their
prediction. The 2 null models, mode and random, predicted pain
scores based on the frequency of the scores in the training set.
The mode model assumed that the future pain score would be
equal to the most common pain score in the data set, whereas
the random model assumed the probability of each pain score
to be equal to the frequency in which the score appeared in the
data set. It should be noted that these null models are of no
clinical significance but are used as a comparison to assess the
validity and accuracy of our classification models. If the models
we created were no better than the null models, there would be
no validity in using the created models. As our evaluation
metrics, we considered micro-averaged accuracy,
micro-averaged F1-score, area under the receiving operating
characteristic curve, and root-mean-square error (RMSE;
Textbox 1). Except for RMSE, the higher the metrics, the better
the model. We also use cross-validation to further validate the
strength of the models. Using cross-validation, we can use all
the data to assess the performance of the models through
multiple iterations. For the training-testing split to be a good
representation of the overall data, including the class imbalance,
we use stratified-10-fold cross-validation [19].

Figure 1. Random forest classification model: a tree-based algorithm [20].
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Textbox 1. Definitions table of the used metrics to evaluate the performance of each model.

Accuracy

• Refers to the proportion of correct data points predicted by the machine learning algorithm out of all data points.

Micro-averaging

• A way to redefine certain statistical measures to deal with class imbalance, where we take the weighted average of the scores for each class. (“1”
is considered a perfect model.)

F1-score

• Considers not only the accurate recall of a model but also how close together predicted values are to each other. (“1” is considered a perfect
model.)

Area under the receiving operating characteristic curve

• Determines how well our model picks between different pain score classes. In our model, each numerical pain score is a class. (“1” is considered
a perfect model.)

Root-mean-square error

• Refers to how far the true values are from values predicted by our model. Larger values represent the further distance between predicted and true
values.

Ethics Approval
The study protocol was approved by the institutional review
board of Duke University Medical Center (IRB Pro00068979).
All study participants signed consent prior to study participation,
and no compensation was provided. Identifiable personal
information was not collected in this study, and all data were
kept confidential according to the internal data security policy.
Data were only accessible to authorized researchers.

Results

Our study population included 20 patients, including 12 (60%)
females. All participants had a confirmed diagnosis of SCD
including 14 individuals with hemoglobin type SS (70%), 5
with hemoglobin type SC (25%), and 1 with hemoglobin type

SOArab (5%). All participants identified as Black or African
American. A detailed breakdown of the collected data across
the sample population is included (Table 1). The median age

was 35.5 (IQR 30-41) years. The included patients wore the
Apple Watch for the average time of 2 hours 17 minutes.

All models outperformed the 2 null models created, and the
random forest model significantly outperformed all models
followed by the gradient boosting model (Table 2). The scatter
plots in Figure 2 show that the model was not able to predict
some pain scores (0-2) and that it worked best for certain scores
(5-8). This was, respectively, due to the absence of patients
reporting very low pain scores, given that the data were collected
from patients during a VOC, which created a class imbalance
in the data. A comparison of each model is found in Figure 3,
and it is evident that even the worst-performing model that uses
biometric data, the multinomial logistic regression model, is
stronger than the null models. Figure 4 shows the mean and SD
of cross-validation accuracy for the 3 models over the 10 folds.
We see that the SD for all 3 models is fairly small, indicating
that the models are most likely to perform equally well for an
independent data set.

Table 1. Additional information on the collected data across the sample population.

Median (IQR)

980 (672 to 1282)Number of data points per patient

2 hours 11 minutes (1 hour 31 minutes to 2 hours 50 minutes)Time spent wearing Apple Watch

35.5 (30 to 41)Age of patients, years

8 (7.5 to 8.5)Pain score on entry to Day Hospital
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Table 2. The performance of each model including 2 null models.

RMSEbAUCaMicro-averaged F1-scoreAccuracy (%)Prediction model

1.770.50.2423.83Null model 1: random

1.320.50.3332.92Null model 2: mode

1.300.680.3737.72Multinomial logistic regression fit

1.100.920.6969.06Gradient boosting fit

0.840.980.8584.52Random forest fit

aAUC: area under the receiving operating characteristic curve.
bRMSE: root-mean-square error.

Figure 2. Scatter plots for the 3 models (multinomial logistic regression, gradient boosting, and random forest). The size of the marker represents the
number of data points on the corresponding grid point. The straight line along with the shaded region represents the predicted pain score=true pain
score±1.

Figure 3. Bar graph comparison of the evaluation metrics for each model along with 2 null models. AUC: area under the receiving operating characteristic
curve; RMSE: root-mean-square error.
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Figure 4. Bar graph comparison of the 10-fold cross-validation accuracy for the 3 machine learning models. The error line is the SD of the accuracies
achieved at each fold.

Discussion

Principal Results
In this study, we were able to show the feasibility of using the
Apple Watch Series 3 to collect biometric data during treatment
for VOC in adults with sickle cell disease, and that the data
collected along with pain scores recorded within EMR could
be used to build accurate machine learning models. The random
forest model was our best-performing machine learning model,
with an accuracy of 84.5%. Considering all the measures, our
analyses showed the success of using biometric data collected
from a consumer wearable, the Apple Watch, for use in
dependable and accurate machine learning pain prediction
models.

These results, and those from our previous study with the
Microsoft Band 2 [6], continue to be encouraging the potential
of consumer wearables in pain prediction for VOCs in
individuals with sickle cell disease. In the previous study using
the Microsoft Band 2 and a mobile app for data collection, we
were able to achieve a pain prediction accuracy of 72.9% using
a regression machine learning model. A primary difference in
the studies, aside from the device used, was the method of pain
score variable collection. This study used only the
nurse-recorded pain scores from the EMR, which meant that
the pain scores were discrete instead of continuous variables,
so classification models were the best fit and resulted in higher
accuracy in their pain score prediction. A review of machine
learning and pain studies by Matsangidou et al showed the
prevalence of this research, reviewing 26 papers published
between 2015 and 2021 on pain and machine learning [21].
Within the studies reviewed, many were using machine learning
to classify or predict the manifestation of pain in relation to
conditions such as osteoarthritis, spinal cord injury, ankylosing
spondylitis, and various types of back pain. These studies were
all able to predict pain with accuracies above 50% in their
best-performing machine learning models, with some achieving
accuracies of 90% [21]. The multitude of papers available on
using machine learning and pain prediction shows that this is a
promising and upcoming field. However, we continue to find

a lack of studies, outside our efforts, using the combination of
biometric data collected from wearables and machine learning
to predict pain in SCD.

Importance of the Work
Predictive pain tools have the potential to help people living
with sickle cell disease, and their medical teams notice trends
in their symptoms and pain. There exists a positive correlation
between anxiety around pain and pain severity, which can lead
to higher pain levels in people with sickle cell disease due to
increased anxiety around their expected symptoms [22]. People
with sickle cell disease have very high readmission rates
associated with excessive costs [23,24]. Treating pain early on
could prevent the pain cascade [25], and this could reduce the
need for further intervention by medical providers. A tool that
both validates their pain and potentially predicts future pain
may lower anxiety by giving more information surrounding
their standardized pain score, enabling preventative treatments
for pain. This may also result in someone living with sickle cell
disease coming into the hospital or primary care to receive
treatment for pain earlier. Also, SCD primarily affects people
of color who have a history of being mistreated or undertreated
by the health care system in the United States [26,27]. Prediction
models can help validate and support a patient’s own experience
and can provide them with a voice in a space where they may
have felt like they have less of one. All of the above may result
in both individuals with sickle cell disease and hospitals alike
saving money regarding treatment, admission, and readmission
rates for in-patient care.

Strengths and Limitations
Our results from the machine learning models are very
promising and could significantly improve the treatment of pain
from VOCs. A key strength in our methods is that the biometric
data collected came from a consumer wearable device, the Apple
Watch, and led to accurate predictive machine learning models.
This means that data can be collected noninvasively and
passively but used to create clinically relevant information.

Overall, 3 classification machine learning models were used to
compare and evaluate their ability to predict pain scores with
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the data set but were also compared to 2 null models. This
further strengthens our results, by comparing the trained machine
learning models not only to each other but also to null models
that used no biometric data. In having all 3 trained models
outperform the null models, we provided a check that our
prediction results using the trained models were valid. In
comparing the 3 trained models, we were able to determine that
1 had the greatest success, the random forest model. Our
cross-validation analyses show that our models including the
random forest model will perform equally in an independent
data set; however, external validation using other data sets is
necessary to determine the reproducibility and generalizability
of this model for all patients with sickle cell disease living in
and outside the United States.

The study included limitations that should be discussed. The
participant pool was created via a single-center Day Hospital,
which is an option for those who are experiencing high levels
of pain but not available in most hospitals. All participants were
treated for pain management based on individual pain plans and
had high levels of pain upon enrollment into the study. This led
to the majority of reported pain scores from participants being
within the 5-8 range in the 11-point pain scale (0-10), with no
scores reported in the 0-2 range. We used micro-averaging
(Textbox 1) to take into account this class imbalance. A full
range of reported scores by including data from participants
who are not experiencing pain or severe pain will help with the
class imbalance. We also have a small sample size of 20 patients,
which resulted in less data for the machine learning algorithms.
Even with our limited sample size, we were able to create
machine learning models that performed well, and better than
the null models, in all metrics.

In future research, related to sample size, we plan to expand on
our available data set both in patients enrolled and length of
time in collecting data from the wearable device, to include

time periods both in VOC pain crises as well as outpatient
periods when not in significant pain. In collecting large
quantities of data from a larger population, we can further train
and evaluate our machine learning models for pain prediction
and remove the class imbalance seen in this data set. The
positive outcomes of the research provide support for the use
of consumer wearables in the health care system; still, several
difficulties have led to limited adoption [28]. One reason is the
number of restrictions around the implementation of these
consumer wearables in research studies or clinics. The time and
money needed to deploy such consumer wearable initiatives
require many financial resources. There also still exists some
stigma around the implementation of consumer wearables in
clinics [29], even with their Food and Drug Administration
approval. However, with the COVID-19 pandemic illuminating
the need for various remote monitoring services and other ways
of managing the health care of so many people, these tools have
become more accepted to manage a wide variety of conditions.
Every year, more and more insurance companies are providing
billable reimbursement for not only the consumer wearable
itself but also reimbursing the provider team for the time spent
managing these consumer wearables in the health care system.
With these improvements, we hope to see that these tools have
greater usage for not only the areas of chronic pain, but also
any others.

Conclusions
Given our results in this study, machine learning can use
biometric data from the Apple Watch to become a tool to predict
pain scores but will require further validation. Collected
information via consumer wearables can be beneficial to
patients, clinicians, and hospitals, due to its ability to provide
a voice to patients’ symptoms, give clinicians an additional tool
for pain reference, and potentially reduce the resource burden
on hospitals.

Data Availability
The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.
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