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Abstract

Background: Substance use disorder and associated deaths have increased in the United States, but methods for detecting and
monitoring substance use using rapid and unbiased techniques are lacking. Wastewater-based surveillance is a cost-effective
method for monitoring community drug use. However, the examination of the results often focuses on descriptive analysis.

Objective: The objective of this study was to explore community substance use in the United States by analyzing wastewater
samples. Geographic differences and commonalities of substance use were explored.

Methods: Wastewater was sampled across the United States (n=12). Selected drugs with misuse potential, prescriptions, and
over-the-counter drugs and their metabolites were tested across geographic locations for 7 days. Methods used included wastewater
assessment of substances and metabolites paired with machine learning, specifically discriminant analysis and cluster analysis,
to explore similarities and differences in wastewater measures.

Results: Geographic variations in the wastewater drug or metabolite levels were found. Results revealed a higher use of
methamphetamine (z=–2.27, P=.02) and opioids-to-methadone ratios (oxycodone-to-methadone: z=–1.95, P=.05;
hydrocodone-to-methadone: z=–1.95, P=.05) in states west of the Mississippi River compared to the east. Discriminant analysis
suggested temazepam and methadone were significant predictors of geographical locations. Precision, sensitivity, specificity,
and F1-scores were 0.88, 1, 0.80, and 0.93, respectively. Finally, cluster analysis revealed similarities in substance use among
communities.

Conclusions: These findings suggest that wastewater-based surveillance has the potential to become an effective form of
surveillance for substance use. Further, advanced analytical techniques may help uncover geographical patterns and detect
communities with similar needs for resources to address substance use disorders. Using automated analytics, these advanced
surveillance techniques may help communities develop timely, tailored treatment and prevention efforts.
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Introduction

Substance use disorder (SUD) is a widespread, debilitating
disorder with extensive impacts, including social stress,
economic impact, and death [1,2]. Considerable variability
exists across the United States in measures of substance use,
such as drug overdose mortality and survey results [3-5].
Additionally, treatment for SUD depends on the type of drug
being used and its accessibility in communities. Consider the
logistics of obtaining methadone, a prescription medication
used to treat opioid use disorder (OUD) [6]. The median travel
time to an opioid treatment program was 61 minutes in rural
locations versus 12 minutes in urban locations [7]. Patients who
had to travel more than 10 miles were also significantly more
likely to miss methadone treatment doses compared to those
closer to the treatment program [8]. The development of tools
to help capture the impact of these health disparities is needed.
To address communities’ specific needs for treating SUDs
effectively, large-scale monitoring of substance use or misuse
in the population using cost-efficient, noninvasive, rapid, and
unbiased methods is required [9,10].

In the United States, methods of monitoring substance use
include surveys or emergency room visits reported by the
Substance Abuse and Mental Health Services Administration
(SAMHSA) [5] or overdose mortality data from the Centers for
Disease Control [3,4]. These methods provide essential
information about SUD, but they are not without limitations.
Surveys require respondents to reveal personal information
about sensitive topics such as illicit activities, leading to fear
and hesitation to respond honestly, thus potentially generating
biased results [9,10]. Often, it requires the individual to be
contacted via phone, email, or at a household, thus
under-sampling people with unstable housing and those without
access to phones or the internet. Indeed, homelessness is
common among those experiencing SUD, with 1 study finding
that over 40% of participants with SUD were homeless [11].
Overdose data also have limitations. It is highly influenced by
the purity of drugs or the addition of contaminants such as
fentanyl [3,12]. Similarly, assessing overdose mortality may be
complicated by inconsistent use of standardized language and
codes, and variations in postmortem toxicology testing by
jurisdiction, which in turn may contribute to the underreporting
of drug-related deaths [13,14]. Finally, hospitalizations or deaths
due to substance use represent the worst-case scenario.
Developing methods to detect substance use in communities in
near real-time such that early interventions can be deployed is
critically needed.

Although wastewater-based surveillance has gained much
attention in recent years due to its ability to detect SARS-CoV-2
infections in a population [15,16], it has not yet been adopted
for widespread drug detection and monitoring in the United
States [9,17]. One objective of this study was to use wastewater
surveillance methods that could be implemented in a wide
variety of communities, including those that are
resource-limited. Specifically, this study sought to assess
community substance use from wastewater samples. Moreover,
wastewater-based surveillance is just the first step toward
improving public health responses to address SUD in rural and

underserved communities as well as urban areas. Prior research
suggests that wastewater may provide better predictive modeling
and lead time when paired with machine learning compared to
more traditional surveillance methods [18], highlighting the
need to explore the implementation of machine learning for
other wastewater surveillance methods. Applying advanced
analysis techniques can offer additional insight into unique and
common aspects of community substance use. Understanding
these patterns can allow for more targeted and personalized
public health policy and treatment strategies to be implemented.
Therefore, this study tested the ability of machine learning,
specifically discriminant analysis and hierarchical cluster
analysis, to produce algorithms from wastewater-based
surveillance data that could generalize to real-world drug use
measures. With continued widescale monitoring, machine
learning of wastewater results may help communities reduce
SUD and use strategies tailored to their unique needs.

Methods

Ethical Considerations
Ethical guidelines for sewage surveillance to monitor drug use
set forth by Prichard et al [19] were followed. To reduce the
potential that the communities served by the wastewater plants
would be negatively impacted by the findings, plants have been
deidentified. To further reduce the risk of identifying
communities, we report population rates as suggested by
Prichard et al [19]. Only the broad geographical location (west
or east of the Mississippi River) is given. These efforts align
with ethical guidelines for wastewater-based surveillance set
forth by the Sewage Analysis Core group Europe to help
minimize risk to participating communities and their citizens
[20]. The University of South Dakota’s Institutional Research
Board determined the study to not meet the definition of human
participant research because data in this project is not
identifiable.

Wastewater Samples
Staff from wastewater plants were recruited throughout the
United States via email. Upon agreement to participate, plant
supervisors from 12 wastewater plants were sent a survey of
the plant characteristics, the population served, and sampling
materials.

Polar Organic Chemical Integrative Samplers (POCIS;
Environmental Sampling Technologies) were placed into the
inlet of 12 wastewater plants for 7 days in March using methods
similar to those previously described [21]. This sampling
strategy was used to allow diverse populations to participate
and has been previously used to quantify drugs in wastewater
[21-25]. POCIS loaded with 3 Oasis hydrophilic-lipophilic
balance sorbent were mounted within a perforated stainless-steel
deployment canister. At each sampling location, the canister
was secured in the sewage intake immediately after the grit
chamber, before any chemical treatment took place, and it
remained there for 1 week [21]. The canister was retrieved,
rinsed with water, and then packed on ice and shipped to the
University of Nebraska Water Sciences Laboratory in Lincoln,
Nebraska. Samplers were stored at –20 °C until analysis.
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Analysis of Drugs and Metabolites
Upon receiving samples from all participating communities,
drugs and their metabolites were extracted from each
hydrophilic-lipophilic balance sorbent according to prior
research [21], resulting in triplicate results for each treatment
plant. Before extraction, each POCIS device was disassembled,
and the hydrophilic-lipophilic balance sorbent was carefully
transferred through gravity-flow chromatography columns.
Approximately 10 mL of methanol was used to rinse any
remaining sorbent from the membrane into the chromatography
column. Target compounds were eluted from the sorbent using
50 mL of 1:1 methanol or acetonitrile with 0.1% ammonium
hydroxide, and slowly passed through the resin into glass
evaporation tubes (RapidVap N2, Labconco). Then, 80 μL of
1 ng/μL surrogate recovery standards (D11-amphetamine,

orphenadrine, and 13C3-deethylatrazine) were added and mixed
with each extract, which was then evaporated under nitrogen at
40 °C to approximately 1 mL. The sampler extract was
quantitatively transferred to glass culture tubes using additional
methanol and spiked with isotope-labeled internal standards

(250 µL of carbamazepine-13C6, methamphetamine-d8,

MDMA-d5, and MDA-d5, sulfamethazine-13C6, caffeine-13C3,
morphine-d3, methadone-d3, oxycodone-d6, hydrocodone-d6,
and temazepam-d5). The spiked extract was evaporated under
nitrogen to a final volume of 80 µL and then mixed with 320
µL of 10 mM ammonium formate in water before transferring
into an autosampler vial containing a 300 µL silanized glass
insert. Standards for drug compounds, labeled surrogates, and
internal standards were purchased from Sigma-Aldrich or
Cerilliant.

Drugs and metabolites were quantified using an Agilent 6410
triple quadrupole mass spectrometer with electrospray ionization
interfaced with an 1100 high-performance liquid
chromatography (HPLC) system. Gradient separation was
carried out using a Hypurity C18 reverse phase HPLC column

(250 mm × 2.1 mm × 5 µm particle size) at a temperature of 50
°C and a flow rate of 0.2 mL/minute. Electrospray ionization
was carried out in a positive mode. MS capillary voltage was
4000 V, the gas flow was 12 L/minute, and nebulizer pressure
was 40 psi. Mass transitions, fragmentor voltages, collision
energies, and instrument detection limits of each compound are
given in Table 1.

POCIS extracts were analyzed for 1,7–dimethylxanthine
(caffeine metabolite), acetaminophen (nonsteroidal
anti-inflammatory drug), caffeine (a nonregulated stimulant),
c o t i n i n e  ( n i c o t i n e  m e t a b o l i t e ) ,
3,4-methylenedioxymethamphetamine (MDMA,
psychostimulant), methamphetamine (METH, psychostimulant),
morphine (opioid pain reliever), hydrocodone (opioid pain
reliever), methadone (medication used to treat OUD), oxycodone
(opioid pain reliever), and temazepam (short-term sleep aid,
benzodiazepine). Time-weighted average (Cw) concentrations
of the individual compounds in sampled wastewater were
estimated by:

(1)

where Cs is the concentration of the compound in the sorbent
phases, Ms is the mass of sorbent, and t is the exposure time
[21]. Sampling rates, Rs (L/d), were used from previously
published studies (see Table 2 for values). Collective excretion
rates (CER) were calculated by the following formula [22]:

CER=CwQ (2)

where Q is the plant flow rate (L/day×g/109 ng). The CER per
capita was calculated by dividing the CER by the population
served and converting g to µg. The population served was
determined by information reported by the wastewater treatment
plant.
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Table 1. Quantification characteristics of analytes.

Instrument detection limit (pg)Collision energy (eV)Fragmentor (V)Product ion (m/z)Parent ion (m/z)Analyte

1.742090124.0181.01,7-Dimethylxanthine

2.511590110.0152.0Acetaminophen

4.2420110138.0195.0Caffeine

4.01209098.0177.0Cotinine

1.88880163.0194.0MDMAa

2.37208091.0150.0METHb

8.1340150165.0286.0Morphine

4.2326168199.0300.2Hydrocodone

3.167105161.1222.1Metaxalone

1.6611115265.1310.2Methadone

3.7915148298.1316.2Oxycodone

1.6720122255.1301.1Temazepam

aMDMA: 3,4-methylenedioxymethamphetamine.
bMETH: methamphetamine.

Table 2. Sampling rates (Rs) for each analyte found in the literature were used to calculate observed concentrations of analyte found in wastewater.
Time-weighted average (Cw; ng/L).

Cw (ng/L), median (IQR)SourceSampling rate (Rs)Analyte

848.41 (572.09-2148.04)Bartelt-Hunt et al [23]0.0461,7-Dimethylxanthine

2449.80 (1363.87-7337.70)Bartelt-Hunt et al [23]0.048Acetaminophen

19 078.02 (9424.05-29,977.54)Bartelt-Hunt et al [23]0.044Caffeine

259.51 (128.79-563.98)Bartelt-Hunt et al [23]0.034Cotinine

2.41 (0.24-4.14)Yargeau et al [24]0.222MDMAa

63.03 (25.27-181.71)Yargeau et al [24]0.231METHb

11.36 (7.65-40.80)Yargeau et al [24]0.261Morphine

43.09 (19.66-74.61)Alvarez (personal communication)0.050Hydrocodone

5.27 (1.49-12.49)Yargeau et al [24]0.408Methadone

13.25 (6.36-19.02)Yargeau et al [24]0.152Oxycodone

8.14 (3.95-17.97)MacLeod et al [25]0.421Temazepam

aMDMA: 3,4-methylenedioxymethamphetamine.
bMETH: methamphetamine.

Statistical Analysis
Samples were analyzed in triplicates (3 per location) and
averaged. SAS Studio was used for all analyses. Spearman
correlation coefficient was used to assess correlations among
drugs or metabolites. Briefly, the CER for each analyte was
correlated. Mann-Whitney U was used to test for differences in
drug or metabolite CER levels per capita (CER/pop) between
regions (east and west), given violations in normality. The ratio
of opioid-to-methadone (opioid/methadone) was also tested
using Mann-Whitney U.

Wastewater treatment plants were classified by geographical
location using the Mississippi River as a division between east

and west. Of note, this study used samples collected from only
the contiguous United States. Determining unique patterns of
drug consumption in different geographical areas is critical for
developing targeted interventions and prevention campaigns.
Therefore, linear discriminant analysis [26] was used to
determine which analytes (1,7–dimethylxanthine,
acetaminophen, caffeine, cotinine, MDMA, METH, morphine,
hydrocodone, methadone, oxycodone, and temazepam) uniquely
represent drug consumption in the east and west. This was
chosen due to its performance with a smaller sample size and
its ability to perform with nonnormally distributed data. Analyte
values were included as the independent variables, and
geographical location was considered the dependent variable.
Stepwise selection was used in the linear discriminant analysis
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to determine which analytes best predict each geographical
region. Briefly, forward selection was used to select a variable
with the most discriminatory power in the model as Wilk λ.
Backward elimination is then used to determine the variable
with the least discriminatory power as measured by Wilk λ. The
process of adding variables with high discriminatory power to
the model and eliminating those with low discriminatory power
continued until no more variables could be added or removed
based on discriminatory power. The significance level to enter
and to stay was set at a P value of .15. This was followed by
leave-one-out cross-validation to assess the performance of the
algorithm.

Hierarchical cluster analysis was also performed to assess the
common and unique aspects of substance use in the communities
served. Specifically, range standardized values were computed
for cotinine CER/pop, MDMA CER/pop, methamphetamine
CER/pop, morphine CER/pop, hydrocodone CER/pop,
methadone CER/pop, oxycodone CER/pop, and temazepam
CER/pop. Proc cluster was used to build dendrograms using
the previously described variables using a Ward
minimum-variance clustering method [27]. Briefly, cluster
distance was determined by the sum of squares from the
ANOVA between the 2 clusters added up over all of the
variables. See documentation [27] for more information.

Results

To better understand the relationship between substance use in
the communities, the CERs were correlated with other analytes
(see Table 3 for statistics). The opioids were correlated with
other opioids and temazepam. There was also a significant
correlation between the opioids analyzed and methadone.
Interestingly, methadone was correlated with temazepam.
METH was significantly correlated with hydrocodone,
methadone, oxycodone, and temazepam. Cotinine was
significantly correlated with other licit substances such as
1,7-dimethylxanthine, acetaminophen, and caffeine, as well as
hydrocodone. As expected, 1,7-dimethylxanthine was
significantly correlated with caffeine, acetaminophen, and
cotinine. Acetaminophen was also significantly correlated with
caffeine and MDMA. MDMA was significantly correlated with
morphine. Finally, caffeine was also significantly correlated
with hydrocodone.

Differences in regional drug consumption were assessed. To
account for differences in the population served, first, CERs of
analytes were normalized to population (CER divided by
population served). Cities west of the Mississippi River had

higher METH levels compared to cities east of the river (Figure
1; z=–2.27, P=.02). Although the western cities had higher
METH use, no other analyte differed significantly between the
regions (Table 4).

Next, to assess the availability of methadone, a therapy for
OUD, the ratio of the CER for an opioid analyte to the
methadone analyte was assessed. The ratio of
oxycodone-to-methadone (Figure 1; z=–1.95, P=.05) and
hydrocodone-to-methadone (z=–1.95, P=.05) were significantly
higher in the west compared to the east. This suggests less use
of methadone compared to the opioids used in the western part
of the United States. However, no difference was noted in the
ratio of morphine-to-methadone between the regions (z=0.33,
P=.74).

To determine what patterns are most representative of drug use
in areas east and west of the Mississippi River, a linear
discriminant analysis was completed. Stepwise selection was
used to find the best variables that predict the geographic
regions, resulting in the selection of methadone and temazepam
(Methadone: Wilk λ= 0.50, P=.04; Temazepam: Wilk λ= 0.24,
P=.008; Figure 1). The east was associated with higher
methadone concentrations in sampled water and lower
temazepam levels compared to the west. These variables
correctly predicted the geographic location of 92% of the
wastewater plants. Only 1 eastern plant was misclassified when
cross-validation of the algorithm was performed, resulting in
100% of the western plants being correctly classified and 80%
of the eastern plants. Precision, sensitivity, specificity, and F1
scores were 0.88, 1, 0.80, and 0.93, respectively.

Cluster analysis was also used to create a dendrogram to help
determine which communities might benefit from working
together to address SUDs (Figure 2). Results revealed that
communities 7 and 11 formed 1 cluster disparate from the other

communities. This cluster had a semipartial R2 value of 0.16.
These 2 communities had the highest levels of drugs or
metabolites in their wastewater, suggesting that the need for
interventions may be high. The cluster formed by communities

4, 5, and 8 (semipartial R2=0.08) represented areas with high
opioid and moderate METH levels. The remaining communities
had lower levels of drugs in their wastewater. These findings
highlight the variations of drug use in communities and the need
to develop approaches to meet the community’s needs. With
larger-scale monitoring, these clustering methods may be useful
for helping communities with similar needs work together to
develop targeted interventions.
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Table 3. The correlation among analytes. Spearman rank correlation coefficient was used to correlate the various analytes.

TemazepamOxy-
codone

MethadoneHy-
drocodone

Mor-
phine

METHbMD-

MAa
Coti-
nine

Caf-
feine

Acetaminophen1,7-
dimethyl-
xanthine

Analyte and
measured statis-
tic

1,7-d imethyl-xanthine

0.410.350.230.520.470.530.260.870.850.69—cρ

1.43 (10)1.18
(10)

0.75 (10)1.95 (10)1.68
(10)

1.98
(10)

0.86
(10)

5.69
(10)

5.17
(10)

3.03 (10)—t test (df)

.18.27.47.08.12.08.41<.001<.001.01—P value

Acetaminophen

0.400.360.310.440.440.520.580.590.66—0.69ρ

1.37 (10)1.23
(10)

1.02 (10)1.55 (10)1.56
(10)

1.95
(10)

2.28
(10)

2.34
(10)

2.76
(10)

—3.03 (10)t test (df)

.20.25.33.15.15.08.05.04.02—.01P value

Caffeine

0.490.320.500.620.440.500.250.99—0.660.85ρ

1.78 (10)1.07
(10)

1.81 (10)2.47 (10)1.54
(10)

1.81
(10)

0.80
(10)

18.71
(10)

—2.76 (10)5.17 (10)t test (df)

.11.31.10.03.15.10.44<.001—.02.004P value

Cotinine

0.490.320.470.630.420.520.20—0.990.590.87ρ

1.78 (10)1.07
(10)

1.68 (10)2.56 (10)1.46
(10)

1.91
(10)

0.63
(10)

—18.71
(10)

2.34 (10)5.69 (10)t test (df)

.11.31.12.03.17.08.54—<.001.04.001P value

MDMA

0.500.410.410.450.600.26—0.200.250.580.26ρ

1.83 (10)1.44
(10)

1.41 (10)1.59 (10)2.36
(10)

0.84
(10)

—0.63
(10)

0.80
(10)

2.28 (10)0.86 (10)t test (df)

.10.18.19.14.04.42—.54.44.05.41P value

METH

0.850.830.640.850.47—0.260.520.500.520.53ρ

5.17 (10)4.62
(10)

2.61 (10)5.02 (10)1.66
(10)

—0.84
(10)

1.91
(10)

1.81
(10)

1.95 (10)1.98 (10)t test (df)

<.001.001.03<.001.13—.42.08.10.08.08P value

Morphine

0.700.750.710.75—0.470.600.420.440.440.47ρ

3.07 (10)3.54
(10)

3.23 (10)3.62 (10)—1.66
(10)

2.36
(10)

1.46
(10)

1.54
(10)

1.56 (10)1.68 (10)t test (df)

.01.005.009.005—.13.04.17.15.15.12P value

Hydrocodone

0.960.880.88—0.750.850.450.630.620.440.52ρ

10.57 (10)5.89
(10)

5.89 (10)—3.62
(10)

5.02
(10)

1.59
(10)

2.56
(10)

2.47
(10)

1.55 (10)1.95 (10)t test (df)

<.001<.001<.001—.005<.001.14.03.03.15.08P value

Methadone

0.880.75—0.880.710.640.410.470.500.310.23ρ

5.89 (10)3.57
(10)

—5.89 (10)3.23
(10)

2.61
(10)

1.41
(10)

1.68
(10)

1.81
(10)

1.02 (10)0.75 (10)t test (df)
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TemazepamOxy-
codone

MethadoneHy-
drocodone

Mor-
phine

METHbMD-

MAa
Coti-
nine

Caf-
feine

Acetaminophen1,7-
dimethyl-
xanthine

Analyte and
measured statis-
tic

<.001.005—<.001.009.03.19.12.10.33.47P value

Oxycodone

0.90—0.750.880.750.830.410.320.320.360.35ρ

6.35 (10)—3.57 (10)5.89 (10)3.54
(10)

4.62
(10)

1.44
(10)

1.07
(10)

1.07
(10)

1.23 (10)1.18 (10)t test (df)

<.001—.005<.001.005.001.18.31.31.25.27P value

Temazepam

—0.900.880.960.700.850.500.490.490.400.41ρ

—6.35
(10)

5.89 (10)10.57
(10)

3.07
(10)

5.17
(10)

1.83
(10)

1.78
(10)

1.78
(10)

1.37 (10)1.43 (10)t test (df)

—<.001<.001<.001.01<.001.10.11.11.20.18P value

aMDMA: 3,4-methylenedioxymethamphetamine.
bMETH: methamphetamine.
c—: Not available.

Figure 1. Patterns of drug use across geographical regions. (A) Linear discriminant analysis revealed that areas west of the Mississippi River (N=7)
had higher temazepam levels compared to methadone whereas, in areas east of the river (N=5), the opposite pattern occurred. The wastewater plant that
was misclassified is indicated by the dashed box. (B) Concentrations of METH were higher in wastewater plants west of the Mississippi River compared
to the east (*P=.02). (C) Finally, the ratio of prescription opioids-to-methadone was examined. A higher ratio was found in wastewater in the west
compared to the east (*P=.05); Bars represent the median (IQR); west versus east. METH: methamphetamine.
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Table 4. Median analyte collective excretion rates values in the regions west and east of the Mississippi. Analyte values were normalized to the
population served.

P valuez scoreMedian analyte (µg) per population, median (IQR)Analyte

WestEast

.14–1.468490.47 (1878.03-11,118.15)1912.55 (1038.03-3466.89)1,7-Dimethylxanthine

.42–0.8111 903.19 (4463.67-53 219.64)6804.48 (3071.81-7213.99)Acetaminophen

.63–0.4985 838.70 (17,809.02-15,1082.80)48 595.92 (26,435.34-95,659.40)Caffeine

.42–0.811894.11 (258.71-2268.31)902.48 (401.77-1250.37)Cotinine

.29–1.0610.57 (3.75-20.39)0.43 (0.15-14.16)MDMAa

.02–2.27680.98 (141.47-1106.51)59.61 (25.61-175.27)METHb

>.990.0058.01 (0.00-197.59)25.85 (15.28-183.24)Morphine

.33–0.9722.12 (9.58-57.71)14.20 (5.80-38.21)Hydrocodone

.330.977.05 (2.32-73.92)15.90 (11.18-56.63)Methadone

.33–0.9757.84 (15.75-208.98)30.29 (16.82-51.20)Oxycodone

.33–0.9728.40 (17.11-183.08)18.34 (4.35-44.26)Temazepam

aMDMA: 3,4-methylenedioxymethamphetamine.
bMETH: methamphetamine.

Figure 2. Cluster analysis of wastewater levels. Wastewater levels of drugs with the potential for misuse were clustered to assess communities with
similar profiles.

Discussion

Principal Results
This study sought to use wastewater sampling paired with
advanced computational methods to monitor substance use more

rapidly across geographic areas. Using linear discriminant
analysis, methadone and temazepam were identified as the 2
variables that best represent differences in the pattern of
substance use east and west of the Mississippi River.
Temazepam use was higher in the west compared to the east,
whereas methadone was higher in the east compared to the west.
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When examining the ratio of opioid-to-methadone, plants west
of the Mississippi River had higher opioid levels compared to
methadone, suggesting access to this treatment may be lower
than in areas in the east. Results also suggest there was greater
METH use west of the Mississippi River. Overall, these findings
suggest that this multimodal approach may be useful for
revealing geographical differences in SUDs.

Comparisons of Wastewater Sampling Techniques
These findings expand on the basic wastewater methodology
established by previous studies. Many prior wastewater
surveillance efforts in the United States have focused on specific
brief occasions, such as sporting events [28,29]. While these
studies have yielded interesting findings, these are unique events
that may not generalize to daily living, thus limiting their use
as a tool for public health surveillance. Using wastewater
surveillance in the United States across multiple geographical
areas over a longer duration is critical for developing public
health surveillance tools that will allow for rapid responses.
POCIS sampling, as opposed to active sampling, allows for
more inclusive recruitment of communities. Hahn et al [30]
reported that active sampling is costly and challenging to
implement in limited-resource settings. Wastewater plants in
rural communities and other areas with limited resources may
not have the staff and other resources to participate in studies
requiring daily sampling [31]. Capturing temporal variability
in concentrations would require analysis of composite grab
samples collected using either on-site staff (labor intensive and
costly) or installation and operation of refrigerated automated
wastewater samplers (technologically intensive and costly).
While active sampling allows for capturing finer temporal
variability, the cost and resources may be limiting factors.
POCIS have many advantages over traditional grab sampling,
including the lower cost for extended water monitoring periods
between 7 and 30 days with the ability to estimate time-weighted
average concentrations for compounds where uptake rates are
published or measured. Recent studies comparing surface water
grab sampling results to POCIS-derived time-weighted average
concentrations differ by less than a factor of 5 for the majority
(>80%) of pharmaceutical compounds monitored [32].
Pharmaceutical concentrations in wastewater treatment systems
may vary considerably over time. In some cases, daily relative
SDs may exceed 100% of the mean [33]. POCIS offer low cost,
simple deployment, and good in situ preconcentration factors,
which substantially outweigh the benefits of collecting and
analyzing wastewater composite samples, especially in
resource-limited settings.

SUDs are chronic diseases associated with a problematic pattern
of use [34]. Because of this need to capture the chronic,
cumulative drug use paired with the need to include
resource-limited communities, POCIS sampling paired with
limited surveys was used as opposed to daily sampling with
extensive surveys. This allowed for the participation of
wastewater plants from areas with limited resources. Beyond
this inclusive sampling strategy, analytics were performed to
assess geographical patterns of drug use.

Comparison of Analysis Results to Prior Drug
Surveillance Works
Within the United States, regional differences in METH use
have been reported [35]. Consistent with the findings from this
study, 70% of law enforcement agencies reporting from the
West Coast and Midwest regions stated that METH was their
greatest drug threat [36]. Both hospitalizations from
METH-related poisoning and self-reported METH use are higher
outside the Northeast area of the United States [5,37]. However,
there are fewer facilities that will treat METH use disorder in
western states when compared to states east of the river [38].
The results of this study align with methods traditionally used
and suggest METH use is higher west of the Mississippi.

Further, this study confirms that opioid use was similar in
wastewater west and east of the Mississippi River. Pain reliever
use disorder and hospitalizations were largely similar among
these geographical regions [5,37]. These results suggest that
the analytical techniques used produced results that align with
other validated methods of detecting substance use. However,
the combination of wastewater and analytical methods used
here has the potential to produce much more rapid and
automated results than traditional methods.

The current techniques used also provide insights into treatments
for OUD. Although methadone is a well-known treatment for
opioid misuse, its use is limited by accessibility [39-41]. People
from rural and small urban locations often cite transportation
to treatment and distance to treatment as a barrier on their
journey to recovery [42]. This may contribute to the difficult
decision to relocate from their permanent address to seek
treatment. Further, there are distinct geographical variations in
the accessibility of methadone as a treatment option for OUD.
Nearly twice as many methadone facilities exist east of the
Mississippi River compared to the west [38]. The limited access
to methadone treatment may set back the recovery of people
with OUD, particularly in the western states. Indeed, the results
of this study suggest that the ratio of prescription
opioids-to-methadone is higher in the west, which may be
mediated by fewer treatment facilities in the area. Further,
methadone was a key predictor variable when linear discriminant
analysis was used to determine the unique drug patterns between
the east and west. These wastewater and analytical findings
provide further evidence of the need for SUD treatment options
in the western part of the United States.

Discriminant analysis results also suggested that temazepam
was a significant predictor of geographical locations. This may
be particularly problematic given polysubstance drug use and
overdoses have increased over the past decade [14,37].
Benzodiazepines are commonly misused by people who
experience OUD and were involved in 21.7% of all opioid
overdose deaths [43-45]. In this study, temazepam was highly
correlated with the opioids analyzed. These significant
correlations warrant further investigation to understand the
extent and risks imposed by polysubstance drug use. Together,
the results of this study highlight unique patterns of drug use
that can be derived from geographical locations. Determining
unique patterns of drug consumption in different geographical
areas is critical for developing targeted interventions.
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Developing Monitoring Tools Using Wastewater and
Analytics
Wastewater-based surveillance for community drug use
monitoring allows for low-cost, rapid, and noninvasive testing
of entire communities while filling the gaps in drug use surveys
and other traditional drug use analyses [17]. Importantly,
advanced machine learning analytics of wastewater-based
surveillance (discriminant analysis) results can be used to detect
substance use trends in specific geographic areas, even with
relatively few data points. Further, they can help identify
communities with similar patterns of use. Unsupervised machine
learning (cluster analysis) was used to cluster communities
based on the unique combinations of analytes found in
wastewater. This helps identify communities with similar needs
for SUD treatments. By clustering these communities,
implementation plans to address SUD needs can be efficiently
developed while avoiding a one-size-fits-all strategy. Through
clustering, distinct groups of communities with high drug use
overall, high opioid use and moderate methamphetamine use,
and lower overall drug use were found. Not only can wastewater
surveillance be used as an early indicator of changing drug use
patterns, but it can also strengthen the conclusions drawn from
traditional methods [46].

Wastewater-based surveillance, when paired with further
analysis, can help provide more timely information to elucidate
a more complete picture of substance use in the United States.
Given rapid increases in drug overdoses during the COVID-19
pandemic, the advantages of wastewater surveillance for
substance use may be critical for navigating the rapidly changing
situation [47]. Although the sample size was limited in this
study, results still replicated findings derived from more
traditional surveillance methods. As large-scale wastewater
surveillance is being implemented for monitoring SARS-CoV-2
[48], the methods used in sample collecting and machine
learning, specifically discriminant analysis and hierarchical
cluster analysis, can easily be scaled to expand existing
wastewater surveillance efforts to monitor drug epidemics.
Successes for this paired approach have been noted in the
literature. For example, recent studies used random forests
machine learning to predict hospitalizations from COVID-19
[18]. Using wastewater surveillance and machine learning, this
model outperformed more traditional metrics, such as reported
cases paired with machine learning, in predicting weekly
hospital admissions, resulting in longer lead time and lower
error rates. Expanding this infrastructure to include the
surveillance of substances could help advance the monitoring
of substance use. With greater implementation of wastewater
surveillance for drug use, more information about community
substance use can be derived, especially from populations with
limited inclusions in traditional surveillance methods [49]. The
inclusion of a greater population served by the facility is a
benefit of this surveillance strategy compared to sampling a
subset of residents, as occurs with traditional surveys that may
not represent the entire population. Additionally, surveillance
can include a variety of targeted compounds, such as
prescription, over-the-counter, and illicit drugs. Similarly,
emerging drugs not captured by surveys can be included. Finally,
expanding advanced analytics of the resulting wastewater

findings may provide critical information for communities to
work together and develop the tools necessary to meet their
unique needs for SUD treatment and prevention.

Limitations
Volkow et al [50] called for comprehensive and timely data to
address the substance use epidemic without a blindfold.
Specifically, innovative data collection methods are needed to
yield timely information on drug use inclusive of populations
not normally included in traditional surveillance [50]. While
digital surveillance of SUD has been increasing [51-55], other
novel methods are needed to aid those with limited access to
the internet. In this study, a linear discriminant analysis
algorithm both performed with a smaller data set and generalized
to real-world findings. The methods employed led to a sampling
strategy in near real-time and inclusive of low-resource areas,
enabling the surveillance of populations often missing or
under-sampled in traditional drug surveillance efforts. The
algorithm employed was also able to capture similar trends as
those derived from conventional surveillance that require a
much larger sample size. This is in part because each wastewater
sample is a composite sample of the population served by the
plant, thus more representative of the entire community than a
single individual. However, more complicated algorithms are
available, but they often require a much larger sample size,
which would be both costly and require more time to process
wastewater. The small sample sizes and less complex algorithms
are limitations of this study. Other limitations of this study are
related to wastewater surveillance. This form of surveillance
does not capture information on individual users. Information
on the individual user can be helpful for the development of
personalized treatment plans for substance use. While this does
not provide information on the individual users, which is a
limitation, it does protect individuals’ privacy. Another
limitation is that some individuals are served by septic systems
instead of wastewater treatment plants. While this is true, this
population may be captured when they visit more urban centers
for school, work, or shopping. Finally, there are multiple ways
to collect wastewater samples. While multiple composite or
grab samples may provide better temporal resolution, POCIS
sampling offers a lower cost and less labor-intensive sampling
method, which is critical for developing inclusive drug
surveillance. Further, the spatial resolution is limited to the
population served by the wastewater treatment plant. However,
higher spatial resolution could be obtained by sampling from
sewer mains. For more information on analytical techniques
used to analyze wastewater and the benefits and challenges
associated with these methods and wastewater surveillance,
please see Hahn et al [30], Huizer et al [56], and Erickson et al
[57]. With the combination of inclusive sampling methods plus
advanced analysis, this study provides formative evidence that
these methods can be generalized in near real-time and deployed
in real-world population health settings.

Future Studies
The findings of this study provided proof of concept that
wastewater surveillance and advanced analytical techniques can
be combined to monitor substances. While it offered
foundational knowledge, future studies are needed. Notably,
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including a greater number of sampling locations and longer
durations will allow for a fuller understanding of similarities
and differences in community drug use. This will enable more
complex forms of machine learning to be used. Similar to
techniques used in monitoring COVID-19, these models may
provide critical predictions on future health care use related to
substance use, which may help communities prepare and
proactively address issues as they arise. Future studies may pair
these results with community interventions to address substance
use. Although beyond the scope of this study, it may provide
valuable information about the current challenges a community
is facing as well as the short and long-term changes associated
with interventions trialed by the community. Finally, continued
monitoring can allow for assessing emerging drug threats that
can help inform people who use substances and health care
providers of potential contaminants in the drug supply and other
emerging threats. For example, the linear discriminant analysis
used in this study could also identify communities with a new
contaminant in the drug supply. Communities with this impurity
could receive resources to reduce the harm associated with the
contaminant. In contrast, communities without the contaminant
could receive training on what to expect if this enters their drug
supply. This would allow communities facing similar needs to
work together while avoiding a one-size-fits-all strategy.

Conclusions
Wastewater surveillance has become increasingly used to
monitor population health [16,58]. Advanced analytical
techniques, specifically discriminant and hierarchical cluster
analyses, may further the utility of wastewater surveillance to
help discover patterns and clusters of substance use that would
otherwise be overlooked and speed up the time it takes to reveal
patterns. In this study, wastewater surveillance was successfully
used in multiple municipalities across the United States to
provide insights into regional drug use patterns. We used prior
traditional surveillance methods such as surveys by SAMHSA,
reports by law enforcement, CDC findings, and other research
previously published to help validate these findings
[5,14,35-41,43-45]. With the help of discriminant analysis,
findings indicated less access to methadone treatment in states
west of the Mississippi River and higher methamphetamine
levels. Further, wastewater clustering analysis of levels of
substances with the potential for misuse revealed community
clusters with high, moderate, and low levels of substance use.
Although these findings are preliminary and cannot be
extrapolated to all communities in the United States, with greater
use of both wastewater-based surveillance and advanced
analytical techniques, the resulting information could provide
valuable insights into identifying communities most in need of
targeted SUD treatments and prevention programs in a more
rapid and cost-efficient manner.
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