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Abstract

Background: New drug treatments are regularly approved, and it is challenging to remain up-to-date in this rapidly changing
environment. Fast and accurate visualization is important to allow a global understanding of the drug market. Automation of this
information extraction provides a helpful starting point for the subject matter expert, helps to mitigate human errors, and saves
time.

Objective: We aimed to semiautomate disease population extraction from the free text of oncology drug approval descriptions
from the BioMedTracker database for 6 selected drug targets. More specifically, we intended to extract (1) line of therapy, (2)
stage of cancer of the patient population described in the approval, and (3) the clinical trials that provide evidence for the approval.
We aimed to use these results in downstream applications, aiding the searchability of relevant content against related drug project
sources.

Methods: We fine-tuned a state-of-the-art deep learning model, Bidirectional Encoder Representations from Transformers, for
each of the 3 desired outputs. We independently applied rule-based text mining approaches. We compared the performances of
deep learning and rule-based approaches and selected the best method, which was then applied to new entries. The results were
manually curated by a subject matter expert and then used to train new models.

Results: The training data set is currently small (433 entries) and will enlarge over time when new approval descriptions become
available or if a choice is made to take another drug target into account. The deep learning models achieved 61% and 56% 5-fold
cross-validated accuracies for line of therapy and stage of cancer, respectively, which were treated as classification tasks. Trial
identification is treated as a named entity recognition task, and the 5-fold cross-validated F1-score is currently 87%. Although
the scores of the classification tasks could seem low, the models comprise 5 classes each, and such scores are a marked improvement
when compared to random classification. Moreover, we expect improved performance as the input data set grows, since deep
learning models need to be trained on a large enough amount of data to be able to learn the task they are taught. The rule-based
approach achieved 60% and 74% 5-fold cross-validated accuracies for line of therapy and stage of cancer, respectively. No attempt
was made to define a rule-based approach for trial identification.

Conclusions: We developed a natural language processing algorithm that is currently assisting subject matter experts in disease
population extraction, which supports health authority approvals. This algorithm achieves semiautomation, enabling subject
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matter experts to leverage the results for deeper analysis and to accelerate information retrieval in a crowded clinical environment
such as oncology.

(JMIR Form Res 2023;7:e44876) doi: 10.2196/44876
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Introduction

Recent developments in deep learning–based [1,2] natural
language processing (NLP) have enabled transfer learning [3]
to be used in automated or semiautomated information extraction
using data sets as small as thousands or even sometimes
hundreds of entries [4]. While a data set containing billions of
words (the full Wikipedia and BooksCorpus content) is
necessary to train models such as Bidirectional Encoder
Representations from Transformers (BERT) [1], a
state-of-the-art deep learning NLP model, fine-tuning this model
can be successfully applied to much smaller data sets [4]. Small
input data sets are often encountered in practice, and such
methods allow applicability to a larger number of problems.
Moreover, BERT has demonstrated state-of-the-art performances
on a wide variety of tasks, including binary and multiclass
classification on balanced and unbalanced data sets or
question-answering data sets [1]. When data drift has to be
expected, such stability is a strong differentiator.

Besides the fine-tuned BERT deep learning model, we develop
a fit-for-purpose rule-based approach. We then compare results
of both approaches, and the algorithm that performs best is
applied to new data. The results are sent for review and curation
to subject matter experts.

In the case study presented in this paper, the goal was to
categorize and extract entities from descriptions of drug
approvals that would allow us to link a particular patient
population and clinical trials to a specific drug approval event.
This linkage supports our aim of streamlining information
extraction and aiding visualization of the competitive drug
approval landscape.

We selected 6 drug targets of relevance to AstraZeneca’s
Oncology portfolio and investigate the capability of NLP tools
to extract an overview of the competitive landscape for these
drug targets. The aim was to retrieve information defining the
patient profile—specifically the approved line of therapy and
stage of cancer—and references to the clinical trial or trials that
support each drug approval.

Machine-learning and rule-based approaches, or their
combination, have been used to extract cancer stage
automatically from electronic medical records.

Shivade et al [5] and Meng et al [6] have reviewed automatic
systems, rule- or machine-learning–based, applied to
automatically identify patient phenotype, including but not
limited to cancer stage and line of therapy.

A carefully crafted sequence of rule-based approaches and
machine learning algorithms allowed cancer stage identification
in McCowen et al’s [7] and Yim et al’s [8] studies. In Nguyen
et al’s [9] study, a rule-based algorithm was compared to a
machine learning approach based on support vector machine,
and performances are found to be equivalent. A recent example
is described by Hu et al [10], where fine-tuned BERT models
were used to identify 14 different named entities and relations
among entities. These are then fed to a rule-based postprocessing
workflow that answers a list of 22 questions indicative of cancer
stage. Most recently, CancerBERT [11] is a fine-tuned
BERT-based deep learning model trained to extract 10 types of
named entity recognition (NER) entities, including cancer stage.

Example applications of rule-based approaches used to extract
line of therapy automatically are described previously [12-15].
In these studies, cancer stage and line of therapy are often
expressed through several indicators that need to be identified
individually and then combined. The nature of the documents
in our case is less detailed, and a new methodology is needed.
A single paragraph of text is available, which sometimes consists
of 2 or 3 lines of text only, sometimes more (Figure 1). Stage
can be mentioned explicitly, or information can be provided
indirectly through words such as “advanced” or “metastatic.”
A text describing an approval can cover only 1 cancer stage or
a wide range of stages. As for line of therapy, a previous
treatment or intervention (resection…) is sometimes mentioned,
which helps narrow down the possibilities.

Finally, automatic information extraction of clinical trial
characteristics has also been published using carefully crafted
combinations of machine learning and rule-based approaches.
The extracted information includes trial names as well as
relevant information about patient populations enrolled in the
trial [16,17]. In our case, we identified, among several trial
names, those that lead to compound approval, hence the need
for a specially crafted model.
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Figure 1. Example approval description from BioMedTracker [18], the data source for this project. The BioMedTracker [18] database contains a
repository of standardized drug approval events, reported across several indications and markets. Each event has a number of structured metadata
associated with it (eg, disease, approval date, and approval region), as shown in the top half of this figure. Information relating to a more granular
description of the patient population is constrained to the unstructured free-text section that is written by an analyst, shown in the lower half of this
figure. Texts describing approvals are accessed programatically using a Representative State Transfer application programming interface query (REST
API). Image reused with permission by Informa Pharma Intelligence.

Methods

Data Set and Labeling Process
The BioMedTracker [18] database contains a repository of
standardized drug approval events, reported across a number
of indications and markets. Each event has a number of
structured metadata associated with it (eg, disease, approval
date, and approval region), as shown in the table in the top half
of Figure 1. However, information relating to a more granular
description of the patient population (including line of therapy
and stage of disease) and any supportive clinical trial is
constrained to the unstructured free-text section that is written
by an analyst. This can be seen in the lower half of Figure 1.
Texts describing drug approvals of interest were accessed
programatically from the database using a Representative State
Transfer application programing interface (API) query.

We focused on approval events in 6 drug targets, which were
included sequentially as the project evolved. The drug targets
taken into account were (1) EGFR (Epidermal Growth Factor
Receptor), (2) human epidermal growth factor receptor 2/neu
or ErbB-2, (3) Cytotoxic T-Lymphocyte Antigen 4, (4)
Programed death-1 receptor/Programed death ligands (1 and
2), (5) Poly ADP-Ribose Polymerase, and (6) Bruton’s Tyrosine
Kinase, which are all of relevance to AstraZeneca’s drug
portfolio.

In terms of preprocessing, hyperlinks were deleted from input
texts. Information about line of therapy and cancer stage was
found in the first 2 paragraphs of text, so only these were
considered for these tasks. The full text was used to identify
trials leading to an approval.

A manual labeling process was applied to ensure consistency;
2 subject matter experts split the task of labeling 433 texts
describing approvals, while an independent third labeler
reviewed their work to ensure accuracy and consistency. The

task is difficult as line of therapy and cancer stage are sometimes
described indirectly. We used Label-studio [19] to perform the
labeling task.

We found that both line of therapy and cancer stage showed a
large number of possible classes in the data (Table 1), and for
the purposes of model training, pooled some of these categories
together to make the classification task more manageable.

The final list of refined classes was selected based on their
frequency and an assessment of how useful an individual class
would be to the project, as judged by a subject matter expert;
this information was also used to assign an ordinal rank to each
class, lower ranks corresponding to more common classes.

To map from the initial list to the final list, we developed a
binning algorithm that chooses the training class with the highest
rank that overlaps with the labeled class. For example, in Table
2, “Second line” was ranked third and “First line” was ranked
fourth; therefore, a labeled class with the categories “First line;
Second line; Third line” would have the training class value of
“Second line.” The highest-ranked class was always assigned
the null set. This functioned as the default value for when there
is no overlapping training class in the labeled class.

Algorithmically, this means the following:

base_features = {(i,j,k), (i,k,l), (m,n), (k), …},

target_classes_reverse_order = {(i), (j,k), (j), (k), …}

text_target_class = null

for text in texts:

for base_feature in base_features:

for target_class in target_classes_reverse_order:

if base_feature in target_class:

text_target_class = target_class
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Table 1. Labeled classes present in the data set for line of therapy and stage of cancer after labeling. These classes are input into the binning algorithm
to produce the training classes seen in Table 2.

Texts describing approvals, nClass

Line of therapy

123First line

114Second line

62blank

45Maintenance and Consolidation

19First line; Second line

18Second line; Third line

17Fourth line or Greater; Third line

14Adjuvant

5Third line

5Fourth line or Greater; Second line; Third line

3Fourth line or Greater

3Maintenance and Consolidation; Third line

3First line; Second line; Third line

2Adjuvant; Second line; Third line

Stage of cancer

176Stage III; Stage IV

72Stage IV

50blank

41Relapsed

40Relapsed; Stage III; Stage IV

19Stage III

16Relapsed; Stage IV

11Extensive stage

3Stage I; Stage II; Stage III

3Stage I

2Stage I; Stage II
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Table 2. Training classes used for line of therapy and stage of cancer derived by the binning algorithm and ordered by input rank.

Texts describing approvals, nClass

Line of therapy

45Blank 

79Maintenance/Consolidation

163Second line

123First line

23Third line

Stage of cancer

41Blank

201Stage III; Stage IV

73Stage IV

61Relapsed

57Relapsed; Stage III; Stage IV

NLP Algorithm Development
Off-the-shelf packages are available that return state-of-the-art
results on many different benchmarking data sets. Here, we use
the transformers library from huggingface [20,21].

We applied transfer learning [2] and fine-tuned a DistilBERT
[22] model, a distilled version of BERT that runs faster while
retaining comparable performance. We attempted to use
BioBERT [4] because models adapted to medical literature have
been shown to increase scores [23]; however, here, performance
did not improve. Along these lines, we also fine-tuned a
domain-adapted BERT-based model, using trial titles from the
Trialtrove database as text and patient population categories
that had been tagged by a Trialtrove analyst as the target. The
performance of this model was disappointing, and we concluded
that syntaxes were too different between Trialtrove titles and
BioMedTracker approval descriptions, possibly because titles
are too short to allow the model to learn.

Line of therapy and stage of cancer extraction are treated as
classification problems, while trial identification is treated as a
NER task. Preimplemented flows are available in the Hugging
Face library [24,25] and we adapted them to our needs. Selecting
only the first 2 paragraphs of text led to better results in the
classification tasks, while using the full text was found to be
best for the NER task, probably because information relating
to the line of therapy or stage of cancer is located at the
beginning of the text, while trials leading to approval can be
found either at the beginning, or toward the end. We also deleted
HTML tags, which generally correspond to hyperlinks leading
to trial description.

As a benchmark, we developed a rule-based text mining
approach on the same data. Subject matter experts gathered
common examples of words and phrases that were associated
with their choice of line of therapy or stage of cancer. These
examples were used as a lookup list in the text-mining model.

The accuracy of the rule-based approach was then calculated
and compared with the cross-validated accuracy from the deep
learning approach. The highest score was considered as the

winning model. Predictions using this winning model were used
to prepopulate label-studio input to guide the labeling process
when new texts describing approvals became available or new
drug targets were taken into account.

Ethical Considerations
This study is exempt from human subjects’ research review as
no human subjects were involved.

Results

Classification Tasks: Line and Stage
We observed the following results for the classification task.

For the BERT-based models, we display 5-fold cross-validated
accuracy, defined in recent literature as the best available metric
for classification [1,26]. This means that the data set is divided
into 5 segments, which are successively considered as test data
sets; we train the model on 4 segments, that is, 80% of the data,
and test it on the remaining segment, that is, 20% of the data.
Then the next data segment is considered as test data set. Finally,
the 5 results are averaged.

We followed the methodology proposed in appendix A.3 of
Devlin et al [1] and performed a grid search over batch size
(possible values: 16 and 32), learning rate (possible values:
2e-5, 3e-5, and 5e-5), and number of epochs (possible values:
2, 3, and 4). Devlin et al [1] report in appendix A.3 that
searching over these hyperparameters worked well across all
tasks they worked on, which include binary and multiclass
classifications, balanced and unbalanced data sets, and question
answering tasks.

5-fold cross-validated accuracies (red line in Figure 2) generally
increase with the number of texts describing approvals, similarly
to benchmark data sets (Multimedia Appendix 1 [27-43] ). As
a second observation, we notice some local decreases, similar
to those observed for benchmark data sets, for example, TREC-6
or IMDB, for similar abscissas (Multimedia Appendix 1). Based
on these 2 observations, benchmark data sets provide a good
understanding of the fine-tuned BERT models’ behavior.
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Due to the unbalanced data set, we also displayed the percentage
of inputs from the largest class (green line). This percentage
fluctuates through time as new drug targets are included
sequentially. A simple algorithm that would place all entries in
the largest class would return a score corresponding to the green
curve. As an example, for stage of cancer, the proportion of the
class corresponding to “stage III; stage IV” reached almost 65%
during the project.

For the rule-based text mining model (blue line in Figure 2),
accuracies decreased as new texts describing approvals were
added to the database. This is in line with expectations: the
dictionary of expressions was established early on and not
modified, and new texts describing approvals can only bring
more diversity in the expressions.

Marked changes at the end of the curves correspond to two key
operational decisions: (1) labeling was refined and homogenized
and (2) the number of different classes considered in the
classification tasks was increased from 4 to 5 (all 5 lines from
Table 2 for line of therapy and stage of cancer were taken into
account instead of the first 4 lines only).

Current scores of 5-fold cross-validated accuracy were 61% for
line of therapy with the fine-tuned BERT model and 60% for
the rule-based approach. For cancer stage, they were 56% and
74%, respectively. These scores are displayed in Table 3.
Although these scores may seem low, it is important to
understand that each model performs multiclass classification
with 5 classes each, so they are doing much better than random.

Figure 2. Application to the BioMedTracker data set, performance of the fine-tuned bidirectional encoder representations from transformers (BERT)
models at key stages for text classification corresponding to “Line of therapy” and “Stage of cancer.” Rule-based text mining (TEXT) accuracy decreases
when more texts describing approvals are taken into account, as line of therapy or stage of cancer is expressed with slightly different formulations from
one approval to the next. Deep learning accuracies generally increase when more texts describing approvals are added. Marked changes appear on the
right-hand side of the curve, following expert’s intervention to homogenize the labeling and the addition of one target class.
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Table 3. Current 5-fold cross-validated accuracy scores are reported for line of therapy and cancer stage classification classes, and 5-fold cross-validated
F1-scores are reported for the Clinical Trials Named Entity Recognition task.

Clinical Trial, %Cancer Stage, %Line of therapy, %

875661Fine-tuned BERTa model

—b7460Rule-based approach

aBERT: bidirectional encoder representations from transformers.
bNot available.

Model Interpretability
Model interpretability is key in deep learning algorithms, and
models whose results are well understood can be preferred to
less interpretable, higher-accuracy models [44]. We use LIME
[44] to understand what the classification models see in the data.

LIME results are generally easy to interpret, which builds
confidence in the models. For line of therapy, the word “first”
appeared repeatedly as the most important word for the class
“First line,” and the word “maintenance” appeared often as the
most important word for the class “Maintenance/Consolidation.”
Figure 3 illustrates this observation on 1 typical example for
the class “First line” (top). On the left-hand side of Figure 3,
LIME displays scores corresponding to individual classes, and
the highest score is the BERT-based model’s result. When the
highest score is close to 1, the choice is unambiguous for the
model (Figure 3, top, 99% for class First line). In other
circumstances, the choice is more balanced (Figure 3, bottom),
and in this second example, the model fails to predict the correct
class. In the middle part of Figure 3, LIME displays words

leading to decision with the most important word at the top and
the least important word at the bottom. This ranking was
obtained by LIME through deletion of randomly selected words
in the text and the reevaluation of the final score. Words
appearing with the color of the class reinforce the decision taken
by the algorithm, while words displayed in blue weaken the
decision. In the right part of Figure 3, LIME displays the input
text and highlights the most important words.

Besides these straightforward cases, other words appear as
important which are a lot less intuitive. For example, “Korea”
was often identified as important in first line and “carcinoma”
in second line. These examples show that biases can appear
when applied to a new data set. We think that these biases will
disappear or be attenuated when the number of inputs increases,
something to be checked over time. Since a subject matter expert
is involved to correct the results of the algorithm before they
are used in the internal software, these possible biases are
appropriately handled in the project (see section Deployment
to production).

Figure 3. Model interpretability by LIME algorithm. Top: typical LIME results for first line of therapy; bottom: example where the model fails. Left:
scores for each category. The highest score corresponds to the model’s results. A highest score close to one is an unambiguous decision, while a lower
highest score is a less certain decision. Middle: most important words, where positive values increase the model’s score, and negative values decrease
it. Right: input text, important words are highlighted.

NER Task: Clinical Study
To identify trials leading to an approval, we adopted a NER
algorithm [45]. We selected 5-fold cross-validated F1-score as
a metric for this task, in agreement with recent literature [1,26]
for NER tasks. F1-scores are the harmonic mean of precision
and recall and are classically used as a measure of success in
NER tasks (unbalanced problems, where accuracy is not
sufficient as a metric) [45]. We also applied the hyperparameters
grid search strategy described for the classification tasks. In this
project, we found that concatenating the BioMedTracker data
set with another data set from the literature [46-48] and solving

for all end points simultaneously was necessary to get a 5-fold
cross-validated F1-score of 87%, as reported in Table 3. Table
4 illustrates this process and summarizes the number of entities
per class available in the merged data set when the merge is
done with the wnut data set [48]. The improved scores are in
agreement with previous work [49-52], which reports that
“multitasking” improves NER results. However, multitask
learning generally leads to a few percent increase in F1-score.
In this study, the F1-score is null when we only use the
BioMedTracker data set, and it reaches 87% when we
concatenate this data set with one of the conll, ncbi, or wnut
data sets [46-48].
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Table 4. Number of entities per class when the data set is merged with the wnut [48] data set for simultaneous named entity recognition problem
resolution. The data set from this study contains only 1 entity type, named clinical trial in the table. All other entity types come from the wnut [48] data
set.

Entries per class in the train data set, nMetric

470person

74location

34corporation

114product

104creative work

39group

345clinical trial

Deployment to Production
Figure 4 illustrates the deployment to production of the 3 models
described above. New texts describing approvals were collected
automatically from the BioMedTracker API [18]. Predicted
labels were calculated using both the rule-based text mining
approach and the deep learning approach described above. The

algorithm leading to the highest accuracy was selected, and its
results are displayed.

The data set was then released both in internal software and to
subject matter experts performing the labeling. Results that
correspond to predictions are explicitly flagged as predictions
to the user.

Figure 4. Full workflow as deployed in preproduction phase. New texts describing approvals are collected automatically from the BioMedTracker API
[18]. Predicted labels are calculated using both the basic text mining approach and the deep learning approach. The algorithm leading to the highest
accuracy is selected. The data set is then released both in the internal custom-made software and to subject matter experts performing the labeling. API:
application programming interface; ErbB2: erythroblastic oncogene B; GUI: graphical user interface; HER2: human epidermal growth factor receptor
2; ML: machine learning.

Discussion

Principal Results
We have developed and put in 3 deep learning models
corresponding to fine-tuned versions of the BERT model. Each
model is designed to automatically analyze free text describing
approvals taken out of the BioMedTracker database and answer
one of the following questions: (1) Which line of therapy has
the compound been approved for? (2) Which stage of cancer
has the compound been approved for? (3) Which clinical trials
have supported this approved indication? The first 2 questions
have been addressed as classification tasks, while the third
question was addressed as an NER task. For this purpose, we
have used publicly available packages that allow fine-tuning

the BERT model with relative ease [24,25], and we have used
published grid search strategies for the hyperparameters [1].

Current scores of 5-fold cross-validated accuracy were 61%
and 56% for line of therapy and cancer stage, respectively, and
87% 5-fold cross-validated F1-scores for clinical trial. We have
compared a rule-based approach for line of therapy and cancer
stage, whose current scores are 60% and 74%, respectively.

The tasks described in this paper are challenging because they
rely on a variety of subtly different text formulations. Hence,
machine learning results help focus the analysis of the subject
matter expert. For example, they help identify quickly
unambiguous cases (top of Figure 3): the model scores high
(99% for class “First line”), and the highlighted words indicate
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the reason for the decision (the words “first-line treatment” are
highlighted in the text). The second example at the bottom of
Figure 3 is more ambiguous, and the subject matter expert can
focus on the analysis. Overall, the 3 machine learning models
enable subject matter experts to leverage the results for deeper
analysis and to accelerate information retrieval in a crowded
clinical environment such as oncology.

Limitations
The main limitation of the application of deep learning to the
BioMedTracker data set is the size of the labeled training data
set, which currently is equal to 433 texts describing approvals.
More training instances will become available when additional
drug targets are considered or when new approval descriptions
will be stored in the BioMedTracker database.

It also seems that our problem can be considered a complex
problem if we take as a comparison point data sets from the
literature used in Multimedia Appendix 1. Indeed, when we add
more entry texts, accuracies increase slowly, at a rate similar
to the Yahoo! Answers data set (40% accuracy with 200 entry
texts and 77% accuracy for all 1.4 million texts).

This small number of training instances leads to relatively low
scores for the 2 classification tasks: the current 5-fold
cross-validated accuracies for line of therapy and stage of cancer
are 61% and 56%, respectively. However, these accuracies are
still much better than random choice alone because each model
comprises 5 different classes.

Mitigation of these low accuracies for downstream, dependent
systems is handled by the production pipeline, since a subject
matter expert verifies and corrects the automatic labels produced
by the deep learning model so as to return reliable results to end
users.

Despite the lower accuracies seen for the classification tasks,
subject matter experts reported that the labeling experience was
improved by the presence of model predictions; even for a

human, it is a nontrivial task to assess the approved populations
for a large number of event descriptions.

Comparison With Previous Work
In this work, we address the problem of extracting information
for competitive intelligence. NLP tools have been widely applied
to extract information from electronic health records
[5-15,16,17,53-55]. Even though the targets can be similar, for
example, cancer stage or line of therapy, the nature of the
documents is different, a lot less detailed in our case, and a new
methodology is needed.

Conclusions
We have described the development and application of 3 deep
learning models, fine-tuned from BERT [1]. They aim at
extracting structured information from unstructured text, aiding
information extraction and visualizations in downstream
systems. The first model classifies the text describing the
approval (Figure 1) in 1 of 5 categories corresponding to line
of therapy. The second model performs the same task for cancer
stage. The third model identifies trials in the paragraph only if
they lead to the approval. We compared the results of these deep
learning models to rule-based approaches for line of therapy
and cancer stage.

In our case, although much better than random, accuracies
achieved are insufficient for automation, and human intervention
is necessary. We describe how we implement human
intervention, which leads to a process that is effective for the
users, subject matter experts, and machine learning engineers.

Accuracies are expected to improve through time as more
training data become available. However, in the meantime,
subject matter experts already find these results to be an
insightful guide to labeling, saving much-needed time for
extracting this information to support clinical insights and
decision-making.
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